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Chapter 1

Introduction

La calibration des surfaces d’options vanilles est un problème primordial de la modélisation en
finance. Dans le cas de trois différents modèles: volatilité locale et stochastique, corrélation locale
et volatilité locale avec taux stochastiques, ce problème se résume à la résolution d’une équa-
tion intégro-différentielle partielle non linéaire. D’un point de vue mathématique, cette classe
d’équations est particulièrement complexe, elle soulève de nombreuses questions, aussi bien d’un
point de vue théorique que d’un point de vue pratique.

Considérations financières

Les mathématiques financières trouvent leur origine dans les travaux de Louis Bachelier au début
du 20ème siècle, avec sa thèse intitulée "Théorie de la Spéculation" [22]. Mais c’est seulement dans
les années 70 qu’elles prirent réellement leur envol grâce aux célèbres articles de Black, Scholes
et Merton [6] et [7]. Poursuivant l’idée de Bachelier selon laquelle un mouvement brownien est
à même de capturer l’incertitude liée à l’évolution future du prix d’une action, ils choisirent de
modéliser ce cours par l’équation différentielle stochastique suivante

dSt

St
= r(t)dt +σdWt (1.1)

où St représente le prix de l’actif financier, r(t) le taux d’intérêt, σ la volatilité et Wt un mouvement
brownien standard. Cette équation et ses développements ont permis l’essor d’un immense marché
de produits financiers dérivés d’une grande variété de valeurs économiques sous-jacentes. Le plus
important de ces marchés est sans conteste celui des actions, sur lequel reposent également de mul-
tiples transactions d’options vanilles.
La complexité croissante des produits devant être évalués a progressivement rendu obsolète le mod-
èle de Black, Scholes et Merton. Ce dernier, n’utilisant que le sous-jacent et la monnaie pour
couvrir une vanille, est de fait incapable de rendre compte du "smile" de la volatilité implicite ob-
servé systématiquement sur les cours d’options vanilles [43]. Fondamentalement, cette limitation
provient du caractère stochastique de la volatilité instantanée d’une action (Black et Scholes sup-
posaient de leur côté cette quantité constante).
Le caractère stochastique de la variance instantanée du prix d’une action est particulièrement im-
portant lorsqu’il s’agit d’évaluer et de couvrir des options exotiques dépendant fortement de la
volatilité: variance swaps, cliquets... Ces derniers ne peuvent être évalués correctement dans le
cadre du modèle de Black et Scholes, leur valeur étant intimement liée aux mouvements de la
volatilité.
Deux solutions bien connues existent pour traiter ce problème. La première, et plus simple, façon
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de rendre la volatilité stochastique est de la faire dépendre de la valeur du sous-jacent. Dans ce
contexte, σ devient une fonction du temps et du niveau de l’action σ(t,St), la volatilité ainsi définie
est appelée locale. La deuxième solution, les modèles à volatilité stochastique, bien plus ambitieuse
d’un point de vue conceptuel consiste à ajouter à la volatilité un facteur stochastique qui lui serait
propre. Ces deux approches possèdent leurs propres avantages. La volatilité implicite découlant
des modèles à volatilité stochastique présente un intérêt particulier, de nombreuses références peu-
vent être trouvées à ce sujet [40] and [41]. Dans [20], les auteurs écrivent une équation aux dérivées
partielles quasi-linéaire parabolique vérifiée par la volatilité implicite pour une classe de modèles
assez générale, et introduisent la notion de volatilité effective qui nous sera utile plus tard. Dans
[29], le comportement de cette quantité est étudié à proximité de la maturité.
L’un des problèmes les plus importants à résoudre lors de la confrontation de nos modèles avec la
réalité des marchés est celui de la calibration. Comme dans de nombreuses situations en physique
ou en ingénierie, lorsqu’un modèle a été suggéré, ses paramètres doivent être estimés grâge à des
données externes. Dans le cas de la modélisation des produits dérivés en finance, ces données
sont les valeurs des options les plus liquides, les vanilles. Il est bien connu depuis les travaux
fondateurs de Litzenberger et Breeden [19] et leur célèbre extension par Bruno Dupire [13] que la
connaissance des prix de vanilles pour tous les strikes et toutes les maturités (notons C(T,K) une
telle surface) est équivalente à la connaissance de la marginale, sous la probabilité risque-neutre1,
de l’actif sous-jacent, et plus précisément, qu’il existe une unique valeur pour la volatilité locale
σ(t,St) permettant de reproduire de telles marginales

σ2
D(T,K) = 2

∂C
∂T

+ rK ∂C
∂K

K2 ∂2C
∂K2

Toutefois, il est également bien connu que l’évolution en temps du modèle à volatilité locale n’est
pas stable: le smile de la volatilité implicite générée par ce modèle s’aplatit au cours du temps ce qui
contredit la persistance de ce phénomène observée sur les marchés. Ceci a conduit les chercheurs
à créer une modélisation plus robuste, du type volatilité stochastique.
De nombreux modèles ont été écrits depuis plus de 20 ans. Parmi les plus populaires, on trouve
ainsi Heston [17], le SABR [9], Fouque et al. [18] mais aussi [28]. Le modèle d’Heston, par
exemple, est le suivant

dSt

St
= r(t)dt + ytdW 1

t dyt = κ (α− yt) dt + γ
√

yt dW 2
t

Ces modèles offrent les dynamiques réalistes manquant à la volatilité locale. Néanmoins, le prob-
lème de leur calibration se pose. La solution la plus communément acceptée est l’écriture d’un
modèle combinant les deux types de volatilité mentionnés précédemment: un modèle générique
avec une volatilité ayant à la fois une composante locale et une composante stochastique. De tels
modèles sont particulièrement utiles en pratique, ils offrent la souplesse et les dynamiques réalistes
des modèles à volatilité stochastique ainsi que les propriétés de calibration des modèles à volatilité
locale. Leurs équations de diffusion sont les suivantes

dSt

St
= r(t)dt +a(t,St)b(yt)dW 1

t (1.2)

dyt = µ(t,yt)dt +ξ(t,yt)dW 2
t (1.3)

Le problème de la calibration de modèles à volatilité locale et stochastique a été résolu depuis
quelques temps maintenant. Du point de vue des équations différentielles stochastiques, sa réso-
lution se fonde sur les théorèmes de Gyongy [10]. L’équation vérifiée par la densité du couple

1Dans [27], pour un marché sans arbitrages, les auteurs prouvent l’existence d’une mesure, appelée risque-neutre, sous laquelle les prix actualisés
sont des martingales locales.



sous-jacent/volatilité, dans le cas r = 0, est l’équation intégro-différentielle non linéaire du second
ordre

∂p

∂t
− ∂2

∂S2 (
S2

2
σ2

Db2
∫
R pdy∫

R b2 pdy
p)− ∂2

∂S∂y
(ρσDbξS(

∫
R pdy∫

R b2 pdy
)

1
2 p)− ∂2

∂y2 (
ξ2

2
p))+

∂

∂y
(µp) = 0 (1.4)

p(0,S,y) = δ(S = S0,y = y0) (1.5)

La première question qui se pose est la suivante

Problème 1. Peut-on prouver l’existence et l’unicité de solutions de l’équation de calibration (1.4-

1.5) des modèles à volatilité locale et stochastique? Quels résultats obtient-on en pratique lors de

sa résolution numérique?

Un autre important domaine de recherche est celui de la corrélation entre produits financiers. Les
mesures empiriques donnent des résultats satisfaisants pour des actifs donnés. Néanmoins, le cas
d’un panier de sous-jacents pose problème. L’utilisation d’un modèle à volatilité locale pour la dif-
fusion de chacun des sous-jacents du panier et de la corrélation empirique pour relier les browniens
des différents actifs ne permet pas de reproduire les vanilles du panier cotées sur le marché. Ceci
soulève des problèmes significatifs lors de la couverture de produits dépendants de plusieurs sous-
jacents. L’une des approches pour résoudre ce problème est la "Corrélation Locale": la matrice de
corrélation ρ des n sous-jacents est déformée en utilisant un paramètre λ, fonction du temps et du
niveau du panier (d’où le nom de corrélation locale)

ρ̃i j = λ+(1−λ)ρi j = ρi j +λ(1−ρi j) (1.6)

Ceci nous mène au second problème

Problème 2. Peut-on trouver la valeur de λ permettant de calibrer les vanilles du panier? De

quel genre de résultats (existence, unicité...) dispose-t-on concernant l’équation découlant de cette

calibration? Est-il possible de calibrer numériquement les vanilles d’un panier sur deux sous-

jacents?

Le dernier sujet sur lequel nous nous penchons est celui des taux d’intérêt. Le modèle le plus utilisé
dans ce domaine est celui de Heath, Jarrow et Morton [26]. En ce qui nous concerne, nous étudions
un modèle hybride à volatilité locale et taux stochastique

dSt

St
= r(t,yt)dt +σ(t,St)dW 1

t dyt = µ(t,yt)dt +λ(t,yt)dW 2
t (1.7)

Grâce à une approche edp similaire à celle utilisée pour la volatilité locale et stochastique, il est
possible d’écrire une équation de calibration pour les vanilles du modèle hybride. Le même genre
de questions que précédemment apparaît

Problème 3. Quelles sont les propriétés de l’équation de calibration? La résolution numérique

de cette équation aux dérivées partielles permet-elle de reproduire efficacement les vanilles du

marché?

Approche théorique des équations de calibration

D’un point de vue mathématique, les problèmes précédents se réduisent à un type d’équations plus
général

∂p

∂t
−Lp p = 0 dans ]0,T [×Ω (1.8)

p(0,x) = p0(x) sur Ω (1.9)



où l’opérateur Lq est égal à

Lq p =
1
2 ∑
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Les termes essentiels de cette équation sont les quotients

Qi j(t,x) =

∫
fi j(x

λC
i j)qi j(t,x

λi j ,xλC
i j)dx

λC
i j

∫
qi j(t,xλi j ,xλC

i j)dx
λC

i j

Ils rendent l’équation à la fois non linéaire et intégro-différentielle. Dans [34], le terme non local
se trouve à l’extérieur des dérivées, dans ce cas les auteurs parviennent à prouver l’existence et
l’unicité de solutions. Néanmoins, dans notre cas, les Qi j étant dérivés, nous sommes confrontés
à un domaine particulièrement complexe des équations intégro-différentielles partielles. Le type
d’équations le plus général étudié jusqu’à présent est à notre connaissance le suivant

∂p

∂t
−F(t,x, p,Dp,D2 p,N(p)) = 0 in QT =]0,T [×Rd (1.10)

p(0,x) = p0(x) on Rd

où F est une fonction de [0,T ]×Rd ×R×Rd ×S(d)×R dans R. Dp est le gradient de p et D2 p sa
matrice hessienne. S(d) est l’espace des matrices d×d symétriques réelles. N(p) est un terme non
local. Dans [14], l’auteur prouve l’existence de solutions pour (1.10) sous certaines hypothèses.
En particulier, N(p) doit être défini pour toutes les fonctions p continues et bornées. De plus,
l’opérateur N doit être Lipschitz pour une certaine norme. Ce genre de résultat peut être adapté
au cas de l’équation adjointe de (1.8), les opérateurs Qi j sont en effet bien définis et Lipschitz
sur l’ensemble des fonctions minorées par une constante donnée strictement positive. Toutefois,
l’équation (1.8) ne peut être traitée avec le même genre de méthodes, les dérivées du terme non
local étant impliquées. De nouvelles questions voient ainsi le jour

Problème 4. Quelle méthode peut-on utiliser pour prouver l’existence de solutions de (1.8)? Les

Qi j admettent-ils des propriétés exploitables à cet égard? Quel genre d’estimations à priori doit-on

employer?

Résolution numérique

La résolution numérique des équations de calibration est bien évidemment particulièrement intéres-
sante d’un point de vue financier. Une méthode efficace pour résoudre des équations paraboliques
du second ordre est le schéma Alternate Direction Implicit. Il est généralement appliqué à des équa-
tions linéaires classiques, et est décrit en profondeur dans [15]. De nombreuses questions voient le
jour du fait du caractère non local du cadre de notre étude

Problème 5. Est-il pertinent d’utiliser l’algorithme ADI pour résoudre nos équations de calibra-

tion? Comment peut-on traiter le terme non local? Le schéma aux différences finies choisi est-il

consistent, et quel est l’ordre de l’erreur de troncature?



La précision de la calibration obtenue en résolvant l’équation est satisfaisante pour les trois modèles
financiers mentionnés précédemment. Néanmoins, le cas du modèle à volatilité locale et stochas-
tique présente un intérêt certain, et soulève plusieurs questions. Certains praticiens s’accordent
pour dire que la stabilité de la calibration est incertaine lorsque la volatilité de la volatilité (la fonc-
tion ξ dans le modèle (1.3)) est trop grande, ce qui nous amène au dernier problème étudié dans
cette thèse

Problème 6. Trouve-t-on en pratique une instabilité quand ξ est grand? Est-il possible de relier

cette instabilité aux limitations rencontrées lors de l’étude du Problème 4? Sommes-nous capables

de lui apporter une explication théorique?

Plan et Résultats

Cette thèse comporte trois parties: la première traite les questions théoriques liées au Problème
4. Ces résultats sont ensuite appliqués aux questions financières ayant motivé notre travail. Pour
conclure, nous nous intéressons aux aspects numériques découlant des parties précédentes.

Partie I: Etude théorique des équations de calibration

Dans le chapitre 3, nous commençons par introduire les espaces de base couramment utilisés dans
le cadre des équations linéaires paraboliques: les espaces de Hölder. Nous donnons ensuite les
résultats classiques concernant de telles équations: de quelles hypothèses a-t-on besoin, qu’appelle-
t-on conditions de compatibilité... Pour finir, nous prouvons quelques estimations sur les solutions
u de telles équations, par exemple

|u|H0,h,h/2(Dt) ≤ t1− h
2 KH1 | f |H0(Dt)

où f est le second membre de l’équation, et les conditions aux bords sont supposées nulles.

Le chapitre 4 est consacré à l’équivalence entre équations intégro-différentielles stochastiques et
équations intégro-différentielles partielles. L’application du théorème de Gyongy au cas du modèle
à volatilité locale et stochastique prouve que la diffusion calibrée de tels modèles suit une EIDS.
L’équation de Kolmogorov progressive appliquée à la densité de solutions d’EDS permet de relier
ces dernières au domaine des équations aux dérivées partielles. Toutefois, cette équivalence doit
être étendue au cas des SIDE. Après un rapide tour d’horizon des équations de McKean-Vlasov,
intimement liées à l’EIDS de calibration, nous prouvons que l’équivalence reste vraie dans notre
cadre non linéaire: la densité calibrée du modèle à volatilité locale et stochastique suit l’équation
intégro-différentielle partielle non linéaire (1.4).

Dans le chapitre 5, nous étudions l’équation généralisée (1.8). Comme souligné ci-dessus, cette
équation est particulièrement complexe. Le fait que le terme non local soit dérivé rend inutiles les
résultats déjà existants. La seule méthode venant à l’esprit pour surmonter cette difficulté est de
construire un point fixe pour la solution de l’équation paramétrisée. Pour ce faire, il est nécessaire
de disposer d’un certain contrôle sur les variations des quotients Qi j.
Une propriété importante concernant ces quantités est leur trivialisation quand les fonctions fi j

sont constantes. Une telle observation permet de prouver un premier résultat: si les fonctions fi j

sont suffisamment proches de constantes, nous obtenons le contrôle requis sur les Qi j, et prouvons
l’existence de solutions pour (1.8) avec une condition aux bords (1.9) strictement positive. Ce
résultat est vrai sur ]0,T ] pour tout T, la distance f ∗ entre fi j et ladite constante décroît toutefois



quand T grandit.
Dans la preuve du résultat précédent, f ∗ a deux raisons d’être. Premièrement, il nous assure du fait
que la solution reste bornée inférieurement par une constante strictement positive fixée au préalable.
Et deuxièmement, il garantit la stabilité de l’ensemble des solutions de l’équation paramétrisée. En
modifiant la preuve d’existence, nous sommes capables de prouver un résultat auxiliaire, l’existence
locale en temps: on trouve une autre constante f ∗∗ à priori plus grande que f ∗, un temps T ∗ et une
solution de l’équation sur ]0,T ∗] pour des fonctions fi j proches de constantes, la distance entre les
deux étant plus petite que f ∗∗.
Nous donnons également un résultat d’unicité faible, si deux fonctions sont solutions de (1.8) avec
les mêmes conditions aux bords et produisent les mêmes quantités Qi j, alors elles sont égales.
Pour conclure, on s’intéresse à l’équation adjointe. Par une méthode de point fixe, on prouve
l’existence de solutions en temps court pour des fonctions fi j quelconques. Ce résultat, intéressant
en lui-même, nous permet également de mieux comprendre les limitations qu’on rencontre pour
l’équation initialement étudiée.

Partie II: Applications à la finance

Cette deuxième partie de ma thèse est consacrée aux trois modèles financiers introduits précédem-
ment. Un premier chapitre traite du modèle à volatilité locale et stochastique. On commence par
rappeler quelques propriétés classiques de ce modèle. On exhibe en particulier un graphique mon-
trant les inconsistances de ses dynamiques. On utilise ensuite une approche équations aux dérivées
partielles pour trouver la valeur de la partie locale de la volatilité permettant de calibrer les vanilles
du modèle. Ce résultat n’est en lui-même pas original et peut être obtenu grâce au théorème de Gy-
ongy comme mentionné précédemment. La méthode présente toutefois de l’intérêt et sera utilisée
plus loin pour les deux autres modèles. On adapte ensuite les résultats théoriques de la Partie I pour
prouver l’existence de solutions calibrées quand la fonction b gouvernant la partie stochastique de
la volatilité est proche d’une constante. Pour conclure, on donne les résultats obtenus lors de la
résolution numérique de l’équation de calibration pour deux exemples de volatilité stochastique:
une volatilité lognormale et un CIR.

Le deuxième chapitre s’intéresse aux modèles à corrélation locale. En utilisant une méthode sim-
ilaire au cas du modèle à volatilité locale et stochastique, nous parvenons à écrire la valeur du
paramètre λ (dont la définition est donnée ci-dessus) permettant de calibrer les vanilles du panier.
Ceci nous permet d’écrire une équation intégro-différentielle partielle vérifiée par la densité de
notre modèle. Après avoir présenté un résultat d’existence théorique de solutions pour cette EIDP,
nous la résolvons numériquement dans le cas d’un panier à deux sous-jacents pour tester l’efficacité
de la calibration.

Le dernier chapitre est consacré à l’étude d’un modèle hybride à volatilité locale et taux stochas-
tiques. Comme dans les exemples précédents, il est possible d’écrire une EIDP non linéaire sur
la densité calibrée de la diffusion de notre modèle. Cette équation n’a pas exactement la même
forme que l’équation généralisée (2.8). Une méthode similaire pour sa résolution peut toutefois
être appliquée et permet d’obtenir un résultat d’existence. Pour ce qui est de l’aspect pratique
de ce modèle, la calibration obtenue en résolvant numériquement l’équation permet d’obtenir des
résultats plutôt satisfaisants.



Partie III: Etude numérique et instabilité de l’équation

La dernière partie de cette thèse est consacrée aux aspects pratiques de mon travail. Dans le
chapitre 9, nous nous intéressons aux questions concernant le schéma ADI utilisé pour la résolution
numérique de l’équation. On définit d’abord ses équations aux différences finies. Afin d’obtenir
une meilleure approximation de la solution, un algorithme prédicteur-correcteur est implémenté.
Nous prouvons la consistence de ces deux étapes et montrons que l’erreur de troncature est en
O(∆t2), comme dans le cas linéaire. Pour conclure, on trace le graphe de l’erreur de convergence
contre le nombre de pas de temps utilisé dans la résolution. Dans le schéma basique à une étape,
l’erreur est en O(∆t) comme attendu. Quand les étapes prédictrices et correctrices sont toutes deux
utilisées, le graphe montre une erreur du second ordre, ce qui confirme nos résultats théoriques.

Pour conclure cette thèse, on étudie l’apparition d’instabilités dans la résolution numérique de la
calibration du modèle à volatilité locale et stochastique. Comme mentionné précédemment, il a été
observé que la calibration perd grandement en précision lorsque la volatilité de la volatilité devient
trop grande. Ce phénomène est en fait plutôt en accord avec les limitations rencontrées lors de
l’étude théorique de l’équation de calibration. En effet, un simple changement d’échelle montre
l’équivalence entre un ξ grand et une fonction b variant beaucoup. Pour vérifier cette assertion, on
trace le graphe de la densité du modèle pour une maturité donnée et ce pour différentes fonctions
b. Une instabilité apparaît clairement quand b prend un large spectre de valeurs.
Pour expliquer ce phénomène, on se concentre sur l’instabilité dite de Hadamard. Dans un premier
temps, on décrit cette instabilité d’un point de vue théorique et on donne quelques exemples connus
d’opérateurs instables au sens de Hadamard. Ensuite, en remarquant que l’équation de calibration
linéarisée peut s’écrire sous une forme plus générale, nous donnons un critère sur les coefficients
de l’équation généralisée garantissant son instabilité. Finalement, on tente d’apliquer ce critère au
cas de la volatilité locale et stochastique. Malheureusement, ledit critère n’étant pas vérifié, de
nouvelle pistes doivent être étudiées.

On conclut dans le chapitre 11 avec un court résumé des résultats obtenus, ainsi que des questions
toujours ouvertes.
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Chapter 2

Introduction

Consistently fitting vanilla option surfaces is an important issue when it comes to modeling in
finance. In three different models: local and stochastic volatility, local correlation and hybrid local
volatility with stochastic rates, this calibration boils down to the resolution of a nonlinear partial
integro-differential equation. The mathematical resolution of that type of equation is particularly
challenging and raises numerous questions both theoretical and numerical. In this thesis, we study
those calibration equations.

2.1 Financial considerations

Financial mathematics find their origin in the work of Louis Bachelier at the beginning of the 20th

century with his thesis "Théorie de la Spéculation" [22]. But it was only 70 years later that they
gained a wider recognition, when Black, Scholes and Merton published their famous articles [6]
and [7]. Pursuing the idea of Bachelier that a brownian motion can capture the uncertainty related to
the future evolution of a stock price, they chose to model said price with the stochastic differential
equation

dSt

St
= r(t)dt +σdWt (2.1)

where St stands for the stock price, r(t) is the interest rate, σ the volatility and Wt a standard
brownian motion. This equation and its implications induced the development of huge financial
derivative markets on a wide range of underlying economic quantities. One of the most visible
market of underlyings is surely the equities. Index level and share price quotes are nowadays a
common topic. Upon equities also rest deep exchange-based markets of vanilla derivatives on
indices and single stocks.
The increasing complexity of the products that need to be evaluated and risk-managed made the
model of Black, Scholes and Merton obsolete. While they only used the underlying stock price and
the bond to hedge a derivative, this cannot be justified anymore: their model is not able to capture
what is today known as the implied volatility "smile" of traded vanilla options [43]. The root of
this discrepancy is that the volatility is not, as assumed in Black and Scholes’ model, a constant
but rather, by itself, stochastic. This stochastic nature of the instantaneous stock price variance is
of particular relevance when it comes to pricing and hedging heavily volatility-dependent exotic
options such as variance swaps or cliquet-type products. They cannot be priced properly in Black
and Scholes’ framework since their very risk lies in the movements of the volatility.
There are two well-known approaches to deal with this problem. The first and simplest way to
render the volatility stochastic is making it depend on the stock price. In this context, σ becomes

11



a function of time and spot level σ(t,St), giving rise to the so-called local volatility models. The
second and more ambitious solution, the stochastic volatility models, consists in adding to the
volatility a stochastic factor of it’s own. Both approaches are of particular interest. The implied
volatitility stemming from stochastic volatilities is of particular interest, many references study the
links between them like [40] and [41]. In [20], the authors derive a quasi-linear parabolic partial
differential equation solved by the implied volatility in a general class of models and introduce the
notion of effective volatility, that shall appear later in this work. In [29], the authors describe the
behaviour of this quantity near expiry.
One of the most important challenge for real-life applications of a model to derivatives trading is
the issue of calibration. Similar to common situations in many areas of physics and engineering,
once a model has been suggested, its parameters have to be estimated using external data. In the
case of derivative modeling, those data are the liquid (tradable) options, generally called vanilla
products. It is well-known since the pioneering work of Litzenberger and Breeden [19] and its
celebrated extension by Bruno Dupire [13] that the knowledge of market data such as the prices of
vanilla options across all strikes and maturities (let C(T,K) denote such surface) is equivalent to the
knowledge of the risk-neutral marginals1 of the underlying stock distribution, and moreover, that
there is a unique value for the local volatility σ(t,St) that recovers exactly such marginals

σ2
D(T,K) = 2

∂C
∂T

+ rK ∂C
∂K

K2 ∂2C
∂K2

However, it has also been well-known for almost as many years that the evolution in time of local
volatility models is not stable: the implied volatility smile generated by the model flattens out
over time which contradicts the persistent presence of this phenomenon in reality. Thereby leading
researchers and financial engineers to look for a more robust, stochastic volatility type of modeling.
Numerous models have been created for over 20 years. Among the most popular ones we find
Heston [17], the SABR [9], Fouque et al. [18] or else [28]. For instance, Heston’s model is the
following

dSt

St
= r(t)dt + ytdW 1

t dyt = κ (α− yt) dt + γ
√

yt dW 2
t

These models offer the realistic dynamics that lack in local volatility ones. However, the problem
of their calibration arises. To deal with it a common solution is considering a mix of the two kind of
volatilities previously mentioned: a generic model with a local and a stochastic component for the
volatility. Such models are very useful in practice, since they offer both the flexibility and realistic
dynamics of stochastic volatility models, and the exact calibration properties of local volatility
models. Their diffusion is the following

dSt

St
= r(t)dt +a(t,St)b(yt)dW 1

t (2.2)

dyt = µ(t,yt)dt +ξ(t,yt)dW 2
t (2.3)

The problem of calibrating local and stochastic volatility models has been dealt with for quite
some time now, its resolution from a stochastic differential equation point of view is based upon
Gyongy’s mimicking theorems [10]. The equation solved, in the case r = 0, by the density of the

1In [27], and in the case of a arbitrage-free market, the authors prove the existence of a measure, called risk-neutral under which the discounted
prices are local martingales



couple spot/volatility is the second order fully nonlinear partial integro-differential equation,

∂p

∂t
− ∂2

∂S2 (
S2

2
σ2

Db2
∫
R pdy∫

R b2 pdy
p)− ∂2

∂S∂y
(ρσDbξS(

∫
R pdy∫

R b2 pdy
)

1
2 p)− ∂2

∂y2 (
ξ2

2
p))+

∂

∂y
(µp) = 0 (2.4)

p(0,S,y) = δ(S = S0,y = y0) (2.5)

The first question that arises is

Problem 1. Is it possible to prove existence and uniqueness of solutions for the calibration equation

(2.4-2.5) of local and stochastic volatility models? What kind of numerical results do we get when

solving this pde?

Another important field of research in financial modeling is the correlation between assets. Em-
pirical measures give satisfactory results. However, the case of a basket on multiple underlyings is
problematic. If someone uses local volatility models for each underlying and correlates the brow-
nian motions using the empirical correlation, the basket obtained will not reproduce the vanillas
quoted on the market. This raises significant issues when hedging multiple underlying products.
One of the solution for this problem is the known "local correlation" approach: the correlation ma-
trix for the n underlyings is deformed using a parameter λ, function of the time and the basket level
(hence the name local correlation)

ρ̃i j = λ+(1−λ)ρi j = ρi j +λ(1−ρi j) (2.6)

This leads to the second problem

Problem 2. Can we find the value of λ that fits the vanillas of the basket? What kind of results

(existence, uniqueness...) can we get on solutions of that equation? Is it possible to calibrate

numerically the vanillas of a basket on two underlyings?

The last financial topic we shall be interested in are interest rates. The most famous model in this
area was written by Heath, Jarrow and Morton [26]. As far as we are concerned, we study a hybrid
local volatility model with stochastic rates

dSt

St
= r(t,yt)dt +σ(t,St)dW 1

t dyt = µ(t,yt)dt +λ(t,yt)dW 2
t (2.7)

Using a partial differential equation approach similar to the local correlation and the local and
stochastic volatility, we write a calibration equation for the vanillas of this hybrid model. The same
kind of question arises

Problem 3. What are the properties of this calibration equation? Does the numerical resolution of

the pde bring a satisfactory fit?

2.2 Theoretical approach of the calibration equations

From a mathematical point of view, the previous problems boil down to the more general type of
equations

∂p

∂t
−Lp p = 0 in ]0,T [×Ω (2.8)

p(0,x) = p0(x) on Ω (2.9)



where the operator Lq is equal to

Lq p =
1
2 ∑

1≤i, j≤d

∂2

∂xi∂x j
(

d

∑
k=1

Vik(t,x,

∫
fik(x

λC
ik)qik(t,x

λik ,xλC
ik)dxλC

ik∫
qik(t,xλik ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
jk)q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

)p(t,x))− ∑
1≤i≤d

∂

∂xi
(µi

t p(t,x))

The essential terms of this equation are the quotients

Qi j(t,x) =

∫
fi j(x

λC
i j)qi j(t,x

λi j ,xλC
i j)dx

λC
i j

∫
qi j(t,xλi j ,xλC

i j)dx
λC

i j

They make it both nonlinear and integro-differential. In [34], the nonlocal term is outside of the
derivatives, the authors manage to prove existence and uniqueness of solutions. However, in our
case, the Qi j being differentiated, they lead us to a particularly intricate domain of partial integro-
differential equations. The most general equation of the type studied until now was, to our knowl-
edge, the following

∂p

∂t
−F(t,x, p,Dp,D2 p,N(p)) = 0 in QT =]0,T [×Rd (2.10)

p(0,x) = p0(x) on Rd

where F is a function from [0,T ]×Rd ×R×Rd ×S(d)×R into R. Dp is the gradient of p and D2 p

its hessian matrix. S(d) is the space of symmetric d × d real valued matrices. N(p) is a nonlocal
term. In [14], the author proves the existence of solutions for (2.10) under suitable assumptions.
In particular, N(p) needs to be defined for all continuous and bounded functions p. Moreover, the
operator N must be Lischiptz for a certain norm. This kind of result can be adapted to the adjoint
of equation (2.8), the operators Qi j are indeed well-defined and Lipschitz on the sets of functions
strictly positive, bounded away from 0. However, equation (2.8) can not be dealt with using those
methods since the derivatives of the nonlocal term are involved. New questions have to be tackled
with, we summarize them

Problem 4. What method can we use to prove existence of solutions for (2.8)? Do the Qi j have

properties we could exploit? What kind of a priori estimates are required?

2.3 Numerical Resolution

The numerical resolution of the calibration equations is obviously very interesting from a financial
point of view. A very efficient method to solve second order parabolic equations is the Alternate
Direction Implicit scheme. It is usually applied to classic linear equations and is thouroughly
described in [15]. Being in a nonlinear non-local framework, many questions arises

Problem 5. Is it relevant to use ADI algorithms to solve the equations stemming from our cali-

bration problems? How should we deal with the nonlocal term? Is the finite difference scheme we

chose consistent, and what is the order of the truncation error?

The accuracy of the fit we obtain when solving the calibration equations is satisfactory in the three
financial cases we mentioned. However, the case of the local and stochastic volatility model is of
particular interest, and raises some questions. Practitioners seem to agree that the stability of the



calibration becomes uncertain when the volatility of the volatility (the function ξ in model (2.3)) is
too large. This brings us to the last problem we shall consider in this thesis

Problem 6. Do we get in practice an instability when ξ is large? Is it possible to link this instability

to the limitations we faced when studying Problem 4? Can we find a theoretical explanation to this

phenomenon?

2.4 Outline and Results

This thesis is split into three consecutive parts: the first one deals with the theoretical questions
raised in Problem 4. We then apply those results to the financial issues that motivated this work.
Finally the third part discusses the numerical aspects we just expounded.

Part I: Theoretical study of the calibration equations

In Chapter 3, we start by introducing the basic spaces used in linear parabolic equations: Hölder
spaces. We then give the classic results concerning such equations: what assumptions are required,
what do we call compatibility conditions... At last, we shall prove some estimates on the solution
u of said equations, for instance

|u|H0,h,h/2(Dt) ≤ t1− h
2 KH1 | f |H0(Dt)

where f is the second member of the equation, and the boundary conditions are assumed to be null.

Chapter 4 is dedicated to the equivalence between stochastic integro-differential equations and
partial integro-differential equations. Applying Gyongy’s theorem to the case of the local and
stochastic volatility model shows that the calibrated diffusion of such models follows an SIDE. It
is common knowledge that Kolmogorov forward equations can be written on the density of SDE
solutions thus linking SDEs to PDEs. However, in the case of SIDE, this equivalence result needs
to be extended. After a brief overview of McKean-Vlasov type equations, which are intimately
related to the calibration SIDE, we prove that such an equivalence remains true in our framework.
The density of the calibrated local and stochastic volatility model follows the nonlinear PIDE (2.4).

In Chapter 5, we study the general equation (2.8). As pointed out above, this equation is particu-
larly intricate. The fact that the nonlocal term is differentiated renders useless the existing results.
The only method that comes to mind to overcome those difficulties is to construct a fixed point for
the solution of the parameterized equation. To do so, we need some control over the variations of
the quotients Qi j.
An essential feature of those quantities is that when the function fi j is constant, the quotient is
trivial (and equal to said constant). Such a fact enables us to prove a first result: if the functions fi j

are close enough to constants, we gain the control we needed on Qi j, and show the existence of a
solution for (2.8) with a strictly positive boundary condition (2.9). This result is true on ]0,T ] for
any T, the distance f ∗ between fi j and the constant however decreases when T becomes larger.
In the proof of the previous result, f ∗ is used for two purposes. First, it guarantees that the solution
remains bounded away from 0 by a constant previously determined. Second, it ensures us of the
stability of the set of solutions for the parameterized equation. Modifying this proof, we are able to
prove an auxiliary result, a local existence in time. We find a different constant f ∗∗ possibly larger
than f ∗, a time T ∗ and a solution for the equation on ]0,T ∗] with functions fi j close to a constant,
the distance being smaller than f ∗∗.



We also give a weak uniqueness result, if two functions are solutions of (2.8) with the same bound-
ary conditions and produce the same quantities Qi j, then they are equal. At last, we consider the
adjoint equation. Using a fixed point method, we prove short-time existence of a solution for any
functions fi j. This result, by itself interesting, also gives us a better understanding of the limitations
we face for the equation we were originally studying.

Part II: Financial applications

This part of the thesis is dedicated to the three financial topics we introduced earlier. A first chapter
deals with local and stochastic volatility models. We start with a reminder of the properties of a
local volatility model. In particular, we give a graph showing the inconsistencies of its dynamics.
We then use a partial differential equation approach to find the value of the volatility’s local part
that fits the vanillas. In itself, the result is not original and can be obtained through Gyongy’s the-
orem as mentioned before. The method however is of interest and will be used in the two other
financial cases. We then adapt the theoretical results of Part I to prove existence of solutions when
the function b that governs the stochastic part of the volatility is close to a constant. At last, we give
the numerical results obtained when solving the calibration equation for two examples of stochastic
volatility: a lognormal volatility and a CIR.

The second chapter deals with local correlation models. We start with a graph showing the discrep-
ancy between the vanillas of the underlyings and of the basket. This justifies the use of a different
correlation. We then write the value of the parameter λ (defined above) that fits the vanillas using
the same kind of method than in the local and stochastic volatility model. This enables us to write
a partial integro-differential equation solved by the density of our model. After expounding the
existence result we can get concerning that PDE, we solve it numerically in the case of a basket on
two underlyings and give the calibration results obtained in this way.

The last chapter is dedicated to the study of hybrid local volatility models with stochastic rates.
Using the same approach than in the previous examples, we are able to write a nonlinear PIDE on
the density of the diffusion. Due to some differences in the model, the equation does not have the
same form as previously. A similar resolution method can however be applied and gives the same
kind of existence results. As for the numerical computations they offer a very satisfactory fit of our
model’s vanillas.

Part III: Numerical studies and instabilities of the solutions

This last part is devoted to the numerical aspects of our work. In Chapter 9, we answer the questions
concerning the ADI scheme. We define the finite difference equations used in the resolution. To
get a better approximation of the solution, a predictor-corrector algorithm based upon ADI schemes
was implemented. We prove the consistency of those two steps and get an error in O(∆t2), as in
the classic linear case. To finish, we plot the convergence accuracy of the algorithm against the
number of time steps. In the basic one step scheme, we get a O(∆t) error as expected. When both
the predictor and the corrector steps are used, the graph also shows the theoretical error, a second
order convergence.

To conclude the thesis, we study the occurence of instabilities in the numerical resolution of the
LSV calibration problem. As mentioned earlier, it is commonly accepted that the fit looses its
accuracy when the volatility of the volatility becomes large. This phenomenon is actually quite
consistent with the limitations we faced in the theoretical parts of this work. Indeed, a simple



change of scale shows a direct link between a large ξ and a function b that varies a lot. To check
this statement, we plot the density at a given maturity for different functions b. An instability
clearly occurs when b takes a large range of values.
To explain this phenomenon, we focus on Hadamard instabilities. At first, we describe this in-
stability and give a few examples of known Hadamard unstable operators. Then, we notice that
the linearized calibration equation can be written in a more general form. We find a criterion on
the coefficients of this new equation that guarantees its Hadamard instability. Unfortunately, said
criterion is not verified by the local and stochastic volatility model.

We conclude in Chapter 11 with a short summary of our results, and of the open questions that still
need to be dealt with.

2.5 Notations

Ω : bounded open subset of Rd

∂Ω : boundary of Ω

D :=]0,T [×Ω, cylindrical parabolic domain of definition

B := {0}×Ω, base of the cylinder

BT := {T}×Ω, top of the domain

C :=]0,T ]×∂Ω, face of the cylinder

Dt :=]0, t[×Ω, time-dependent cylinder

Bt := {t}×Ω, top of the time-dependent cylinder

Ct :=]0, t]×∂Ω, face of the time-dependent cylinder

B : closure of B

d(P,Q) := [|x− x′|2 + |t − t ′|]1/2 where P = (t,x),Q = (t ′,x′) ∈ D

H2,1(D) : space of functions on D twice continuously differentiable in space and once in time

Hk,h,h/2(D) : space of Hölder functions on D with order k, exponent h in space and h/2 in time

Hk,h/2(]0,T [) := space of time dependent Hölder functions in ]0,T[ with order k and exponent h/2

|u|Hk,h,h/2(D) : Hölder norm related to Hk,h,h/2(D)

|u|H0(D) = sup
D

|u|

δ.=x := Dirac distribution in x



Part I

Theoretical study of the calibration

equations
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Chapter 3

Results concerning linear differential

equations of parabolic type

The first part of my thesis is dedicated to the study of the stochastic differential equation

dXt = (Vi j(t,Xt ,

∫
fi j(x

λC
i j)pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∫
pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

))1≤i, j≤ddWt +µtdt (3.1)

X0 = φ

and of the partial differential equation

∂p

∂t
−Lp p = 0 (3.2)

p(0,x) = p0(x)

where the operator Lq is equal to

Lq p =
1
2 ∑

1≤i, j≤n

∂2

∂xi∂x j
(

n

∑
k=1

Vik(t,x,

∫
fik(x

λC
i j)qik(t,x

λik ,xλC
ik)dxλC

ik∫
qik(t,xλik ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
i j)q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

)p(t,x))− ∑
1≤i≤n

∂

∂xi
(µi

t p(t,x))

When considering the operator Lq p with q frozen and taken as a parameter, the Equation (3.2)
becomes a classic second order parabolic equation.
In this first chapter, we recall the existing theory concerning that kind of equation and prove two
estimates that shall be needed. We have at our disposal many tools to study them. The usual
spaces used for their resolution are Hölder spaces. In a brief first section, we define those spaces.
The second section is dedicated to parabolic equations. We recall the known existence results
concerning the linearized equation ∂p

∂t
−Lq p = 0 as well as Schauder’s inequality. At last, we prove

a few estimates on different Hölder norms of the solutions, estimates that contain a power of the
time in the bound. They shall be used in the next chapters to prove short-time existence of solutions
for (3.2).
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3.1 Hölder spaces

Let D be a domain in Rd+1, the first coordinate plays the part of the time, the d remaining variables
are space variables, a point P in D can also be written as (t,x) = (t,x1, ...,xd) ∈ D. We start as in
[3] and [12] with the following notion of parabolic distance1 d(P,Q) = [|x−x′|2+ |t − t ′|]1/2 where
P = (t,x) and Q = (t ′,x′) belong to D and |x| is the euclidian norm of the d-dimensional vector x.
This formula defines a metric and can be used to define the concept of h-Hölder continuity (with h
a number between 0 and 1 strictly). For a function u, we write

|u|H0(D) = sup
D

|u|

HD
h (u) = sup

P,Q∈D

|u(P)−u(Q)|
d(P,Q)h

|u|H0,h,h/2(D) = |u|H0(D)+HD
h (u)

One says that u is uniformly Hölder with exponent h in D if and only if |u|H0,h,h/2(D) < ∞. We

denote by H0,h,h/2(D) the set of all functions u for which |u|H0,h,h/2(D) < ∞. We now assume that u
is differentiable with respect to t and twice differentiable with respect to the space variables, with
all the derivatives continuous2. The following norms can de defined

|u|H1,h,h/2(D) = |u|H0,h,h/2(D)+ ∑
1≤i≤d

| ∂u

∂xi
|H0,h,h/2(D)+ |∂tu|H0,h,h/2(D) (3.3)

|u|H2,1(D) = |u|H0(D)+ ∑
1≤i≤d

| ∂u

∂xi
|H0(D)+ ∑

1≤i, j≤d

| ∂2u

∂xi∂x j
|H0(D)+ |∂tu|H0(D) (3.4)

|u|H2,h,h/2(D) = |u|H1,h,h/2(D)+ ∑
1≤i, j≤d

| ∂2u

∂xi∂x j
|H0,h,h/2(D) (3.5)

We denote respectively by H1,h,h/2(D), H2,1(D) and H2,h,h/2(D) the set of all functions u for which
|u|H1,h,h/2(D)<∞, respectively |u|H2,1(D)<∞ and |u|H2,h,h/2(D)<∞. Those sets are Banach spaces and

algebras for the norms given by definitions (3.3), (3.4) and (3.5). Indeed, for all u,v in H0,h,h/2(D),
we see that

HD
h (uv)≤ HD

h (u)|v|H0(D)+HD
h (v)|u|H0(D)

which clearly gives us

|uv|Hk,h,h/2(D) ≤ |u|Hk,h,h/2(D)|v|Hk,h,h/2(D) (3.6)

for all u,v in Hk,h,h/2(D) and k = 0,1,2. The spaces of higher order can be defined exactly in the
same way. In the rest of this work, we shall need Hk,h,h/2(D) for k = 1,2,4.

3.2 Linear equations of parabolic type

We are now interested in parabolic differential equations. Let us first define more precisely the
domain of definition of the equations. D is in the following a bounded (d+1) dimensional domain,

1The same notion obviously exists in an elliptic framework as defined in [25]
2We notice that this assumption is only needed for H2,1(D) since h-Hölder continuity implies regular continuity.



lying between a domain B on t=0 and another domain BT on t = T (for a fixed T). The rest of the
boundary of D, lying in the strip 0 < t ≤ T , is denoted by C. We also assume that D verifies the
property

Property 1. Smoothness of the boundary. For every point Q of C, there exists a (d+1)-dimensional

neighborhood V such that V ∩C can be represented, for some i (1 ≤ i ≤ d), in the form

xi = r(t,x1, ...,xi−1,xi+1, ...,xd) (3.7)

with r, ∂r
∂x

, ∂2r
∂x2 , ∂r

∂t
Holder continuous (exponent h) and ∂2r

∂x∂t
, ∂2r

∂t2 simply continuous.

Since we wish to impose boundary conditions, we also have to consider functions ψ defined on
B∪C.

Definition. A function ψ is said to belong to Hk,h,h/2(∂D) if there exists a function Ψ in Hk,h,h/2(D)
and Ψ = ψ on B∪C. We then define

|ψ|Hk,h,h/2(∂D) = inf |Ψ|Hk,h,h/2(D)

where the inf is taken on the set of functions Ψ in Hk,h,h/2(D) that coincide with ψ on B∪C.

This process defines a norm on Hk,h,h/2(∂D). Let us now consider the operator

Lu :=
d

∑
i, j=1

ai j(x, t)
∂2u

∂xi∂x j
+

d

∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u (3.8)

The coefficients of L are assumed to verify

• ∀1 ≤ i, j ≤ d, ai j, bi and c belong to H0,h,h/2(D) and

|ai j|H0,h,h/2(D) ≤ K1 |bi|H0,h,h/2(D) ≤ K1 |c|H0,h,h/2(D) ≤ K1 (3.9)

• There exists K2 > 0 such that ∀(t,x) ∈ D and ∀ξ ∈ Rd

d

∑
i, j=1

ai j(x, t)ξiξ j ≥ K2 | ξ |2 (3.10)

An operator verifying (3.10) is said to be uniformly parabolic on D. Let us now consider the
equation

∂u

∂t
−Lu = f (x, t) in D∪BT (3.11)

u = ψ on B∪C (3.12)

The boundary condition and term source are assumed to verify

f ∈ H0,h,h/2(D) ψ ∈ H2,h,h/2(∂D) (3.13)

In addition, imposing boundary values for the solution of the partial differential equation (3.11)
implies some compatibility assumptions between L and ψ. Indeed, let us consider a function Ψ

extension of ψ in D. By continuity and given assumption (3.7) on B, the quantity ∂Ψ
∂t

is properly



defined on C and does not depend there on the choice of Ψ. We are thus able to define on C the
quantity ∂ψ

∂t
.

The same method allows us to define for all 1 ≤ i, j ≤ d, ∂ψ
∂xi

and ∂2ψ
∂xi∂x j

on B, the base of our domain

of definition. Hence, on ∂B, which is also a part of the boundary of C, the operator Lψ and the
derivative ∂ψ

∂t
are both defined. Since we wish a function u to solve ∂u

∂t
−Lu = f (x, t) on D, with

u = ψ on B∪C, by continuity of all the quantities used here, we can write the following definition

Definition. Compatibility condition. We say that a boundary condition ψ defined on B∪C verifies

the compatibility condition with the source function f if

∂ψ

∂t
−Lψ = f (x, t) on ∂B (3.14)

We have given all the assumptions needed for the existence theorem, we can state it now

Theorem 1. If ψ verifies the compatibility condition (3.14) and under the assumptions (3.9), (3.10)

and (3.13), there exists a unique solution of the Equation (3.11), this solution belongs to H2,h,h/2(D)
and we have the Schauder inequality (with KH2 depending only on K1, on K2, on h and on D)

|u|H2,h,h/2(D) ≤ KH2(|ψ|H2,h,h/2(∂D)+ | f |H0,h,h/2(D)) (3.15)

Proof. This result is classic, its proof can be found for instance in Chapter 3 of [12] by A. Friedman.

We now consider cylindrical domains and slightly different notations. Since we wish to prove
time-dependent results, the height T of the domain of definition is now a variable. The base of
the cylinder is still denoted by B, but we define the domain as Dt =]0, t[×Ω. We also write Ct =
]0, t[×∂B the side of the cylinder. We are interested in Equation (3.11) on Dt with the boundary
condition u = 0 on B∪Ct . We prove the following original estimates that shall be useful to get
short-time existence of solutions in the next chapters

Lemma 1. When ψ is equal to 0 in the previous theorem, we can write bounds containing the time

on norms of the solution. For all 0 < t ≤ T , the solution u of (3.11)-(3.12) on Dt verifies

|u|H0(Dt) ≤ tKH0 | f |H0(Dt) (3.16)

|u|H0,h,h/2(Dt) ≤ t1− h
2 KH1 | f |H0(Dt) (3.17)

KH0 and KH1 only depends on K1, on K2, on h and on B.

Proof. To prove the first inequality, one needs a result from O. Ladyzhenskaya, V. Solonnikov and
N. Ural’ceva [3] about volume potentials and representation of solutions of parabolic equations. It
is the theorem (16.2) of section IV.16 we shall use. One reads there that the solution of Equation
(3.11) with ψ = 0 can be written as

u(x, t) =
∫ t

0

∫
Ω

G(x,y, t,τ) f (y,τ)dydτ

where G is Green’s function for the operator L and verifies for all x,y ∈ D, 0 ≤ τ < t ≤ T the
inequality

|G(x,y, t,τ)| ≤ K(t − τ)−
d
2 exp(−K′ |x− y|2

t − τ
)



with K and K′ two constants depending on the data of the problem but not on f, that might change
from one line to another. Using both these results, we get, for all t ′ ≤ t and x ∈ Ω

|u(x, t ′)| ≤
∫ t ′

0

∫
Ω
|G(x,y, t ′,τ)|| f (y,τ)|dydτ

≤ | f |H0(Dt)

∫ t

0
dτ

∫
Ω

K(t − τ)−
d
2 exp(−K′ |x− y|2

t − τ
)dy

≤ t| f |H0(Dt)KH0

where KH0 depends on K, on K′ and on B. Eventually, we get the inequality

|u|H0(Dt) ≤ tKH0 | f |H0(Dt)

As for the second inequality, we need other estimates of Green’s function: for all x,x′,y ∈ D,
0 ≤ τ < t ≤ T

|G(x,y, t,τ)−G(x′,y, t,τ)| ≤ K
|x− x′|h

(t − τ)
d+h

2

exp(−K′ |x”− y|2
t − τ

)

with x” the closest point to y between x and x′. And for all x,y∈D, 0≤ τ< t ′ < t ≤ T the inequality

|G(x,y, t,τ)−G(x,y, t ′,τ)| ≤ K
|t − t ′| h

2

(t ′− τ)
d+h

2

exp(−K′ |x−ξ|2
t − τ

)

The proof of those estimates can be found in appendix B. Now, for all 0 ≤ t” ≤ t ′ ≤ t and x,x′ ∈ Ω,
we have

|u(x, t ′)−u(x′, t ′)| ≤
∫ t ′

0

∫
Ω
|G(x,y, t ′,τ)−G(x′,y, t ′,τ)|| f (y,τ)|dydτ

≤ K| f |H0(Dt)

∫ t ′

0

∫
Ω

|x− x′|h

(t ′− τ)
d+h

2

exp(−K′ |x”− y|2
t ′− τ

)dydτ

≤ K| f |H0(Dt)

∫ t ′

0

|x− x′|h

(t ′− τ)
h
2

dτ ≤ t ′1−
h
2 K| f |H0(Dt)|x− x′|h

We assume that t ′− t” < t”/2, this ensures us that 0 < 2t”− t ′ and that ∀0 ≤ τ ≤ 2t”− t ′, we have
t ′− τ ≤ 2(t”− τ). Let us compute

|u(x, t ′)−u(x, t”)| ≤
∫ 2t”−t ′

0

∫
Ω
|G(x,y, t ′,τ)−G(x,y, t”,τ)|| f (y,τ)|dydτ

+
∫ t ′

2t”−t ′

∫
Ω
|G(x,y, t ′,τ)|| f (y,τ)|dydτ +

∫ t”

2t”−t ′

∫
Ω
|G(x,y, t”,τ)|| f (y,τ)|dydτ

≤ K| f |H0(Dt)(
∫ 2t”−t ′

0

∫
Ω

|t ′− t”| h
2

(t”− τ)
d+h

2

exp(−K′ |x− y|2
t ′− τ

)dydτ+ |t ′− t”|)

≤ K| f |H0(Dt)|t ′− t”| h
2 (
∫ 2t”−t ′

0

∫
Ω

2
d+h

2

(t ′− τ)
d+h

2

exp(−K′ |x− y|2
t ′− τ

)dydτ+ |t ′− t”|1− h
2 )

≤ K| f |H0(Dt)|t ′− t”| h
2 (t ′1−

h
2 + |t ′− t”|1− h

2 )



We now study the case t ′− t” ≥ t”/2.

|u(x, t ′)−u(x, t”)| ≤
∫ t”

0

∫
Ω
|G(x,y, t ′,τ)+G(x,y, t”,τ)|| f (y,τ)|dydτ

+
∫ t ′

t”

∫
Ω
|G(x,y, t ′,τ)|| f (y,τ)|dydτ

≤ K| f |H0(Dt)(t”+ |t ′− t”|)

This concludes the proof.

Remark 1. The proof of inequality (3.15) in [3] shows that the constant KH1 only depends on the

coefficients of the operator L through their norm, it is actually a nondecreasing function of those

norms. Such a property is also true for the constant KH2 .

We shall also need a weak form of the maximum principle

Proposition 1. Let us consider Equation (3.11) with the boundary condition (3.12). If ψ ≥ 0 on

B∪CT and f ≥ 0 in D∪BT , then u ≥ 0 in D∪BT .

Proof. The proof of this property is classic, it can be found for instance on p.135 of Friedman [5]
in the case where c ≥ 0. The change of function q = exp(−c∗t)p with c∗ ≥ c deals with the general
case.



Chapter 4

Theoretical study of the SIDE and PIDE

stemming from the calibration

The calibration of diffusion models in finance (such as the Local and Stochastic Volatility model,
or the Local Correlation model) raises very challenging theoretical problems. They can be studied
from two - equivalent - points of view.
The first one is probabilistic, by the mean of Stochastic Differential Equations. Indeed, using
Gyongy’s theorem, one can prove (as shall be done in Chapter 6, Section 6.2) that for a given Local
Volatility σD(T,K), the diffusion model following the stochastic differential equation

dSt

St
=

σD(t,St)
√

E[b2(yt)|St ]
b(yt)dW 1

t (4.1)

dyt = ξ(t,yt)dW 2
t +µ(t,yt)dt

replicates the vanilla prices implicitly defined by σD(T,K). W 1
t and W 2

t are two correlated brownian
motions, we denote by ρ their correlation and assume it to be constant.
If we denote by pt the time density of the couple (St ,yt) (assuming it exists), this last equation can
also be seen formally as

dSt

St
=

( ∫
pt(St ,y)dy∫

b2(y)pt(St ,y)dy

) 1
2

σD(t,St)b(yt)dW 1
t (4.2)

dyt = ξ(t,yt)dW 2
t +µ(t,yt)dt

Equivalently, such a diffusion can be studied from a Partial Differential Equation point of view by
the mean of Kolmogorov forward equation, described for instance in [5] or [47]. The density pt of
the previous model satisfies the nonlinear integro-differential equation

∂p

∂t
=

1
2

∂2

∂S2 (σ
2
Db2

∫
pdy∫

b2 pdy
p)+

∂2

∂S∂y
(ρσDbξ(

∫
pdy∫

b2 pdy
)

1
2 p)+

1
2

∂2

∂y2 (ξ
2 p))− ∂

∂y
(µp) (4.3)

The previous stochastic and partial differential equations can be formalized in a more general
framework, where one can still prove that existence of solutions for one is equivalent to existence
of solutions for the other. In this third chapter, we study theoretical aspects of those different types
of equations. We start with a brief overview of McKean-Vlasov equations, which present many
likenesses with our case. We then describe a generalized form of Equation (4.2) and expound the
assumptions we shall need. At last, we prove the equivalence between this generalized equation
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and a nonlinear partial integro-differential equation: existence of a strong solution for one of the
two implies the same thing for the other.

4.1 McKean-Vlasov type equations

4.1.1 First example

We say an SDE is of McKean-Vlasov type when the coefficients of the diffusion depend on the
distribution of the solution itself. It was suggested by Kac [31] and is a model for Vlasov kinetic
equation of plasma [32] (hence its name). McKean first studied it in [44], two important references
in the matter are [30] and [45]. A simple example we give here is

dXt = (
∫

b(Xt ,y)µt(dy))dt +dWt (4.4)

X0 = x0

where Xt is a Rd process, Wt a Rd brownian motion and x0 ∈ Rd . The function b is defined on
Rd ×Rd . The important feature of this equation is the dependance on µt , the law of the random
variable Xt . We call solution of the Equation (4.4) a couple (Xt ,µt) verifying (4.4). In [1], the
following theorem is proved

Theorem 2. If b verifies the assumptions |b(x,y)| ≤ C(1+ |x|) and ∀x, b(x, .) is continuous, then

there exists a strong solution to Equation (4.4).

This previous equation is nonlocal: the dependence on the law of Xt has nonlocality in the sense
that the drift term at a given point x depends on the entire distribution µt of the solution.

4.1.2 Local dependence

A different kind of McKean-Vlasov equations can be defined. We consider here a stochastic dif-
ferential equation where both the drift and the volatility term depend on the density of the time
marginal, the dependence in this case being local. It is written as follows

dXt = b(Xt , pt(Xt))dt +σ(Xt , pt(Xt))dWt (4.5)

X0 = x0

where pt is the density of Xt (with respect to Lebesgue measure). Here too, the processes considered
belong to Rd . The volatility matrix σ is a mapping from Rd ×R into the d ×d matrices which are
symmetric and verify the condition

∀x, p ∈ Rd ×R,∀ξ ∈ Rd,ξtσ(x, p)ξ ≥ Kσ|ξ|2

We also let a = σσ∗ denote the square of matrix σ. The drift term is a function from Rd ×R into
R. Wt is still a d-dimensional brownian motion1. x0 the initial condition is now a random variable
on Rd . In [2], B. Jourdain and S. Meleard prove, by placing this equation in the frame of Hölder
spaces, the result

Theorem 3. Under the stronger assumption

∀x, p ∈ Rd ×R,∀ξ ∈ Rd,ξt(a(x, p)+ p
∂a

∂p
(x, p))ξ ≥ Ka|ξ|2

1In [33], the authors give some existence results in the case of SDEs driven by Levy processes.



the nonlinear stochastic differential equation (4.5) admits a unique strong solution (Xt , pt).

The method used to prove the theorem actually gives p as the solution in H2,h,h/2(]0,T [×Rd) of
the nonlinear partial differential equation

∂p

∂t
− 1

2 ∑
1≤i, j≤d

∂2

∂xi∂x j
(ai j(x, p(x))p(x))+ ∑

1≤i≤n

∂

∂xi
(bi(x, p(x))p(x)) = 0 (4.6)

p0(x) = ξ(x)

where ξ is the density of the random variable x0 and is assumed to belong to H2,h,h/2. The functions
σ and b belong respectively to H2,h,h/2(Rd ×R) and H1,h,h/2(Rd ×R). The Hölder spaces Hk,h,h/2

are defined in section 3.1 of Chapter 3. The Equation (4.6) has been known to admit solutions
since the work of O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural’ceva [3]. We mention this
previous example because the methods used in the article [2] are similar to ours.

4.1.3 General existence result

The previous result required assumptions about the derivatives of σ and b. Here, we state a theorem
with weaker requirements. The usual assumption for classical stochastic differential equation is the
Lipschitz growth of the coefficients. In the case of coefficients depending on the law of the process
Xt , the same is true when the Lipschitz condition is defined with respect to Vasserstein metric on
the space of probability laws on Rd . The definition of this metric is the following

ρ(p,q) = inf{
∫
Rd×Rd

|x− y|r(dx,dy)}

where the inf is taken over all measures r with marginals p on x and q on y. In [4], K. Graham
proves the

Theorem 4. If for all x,y ∈ Rd and p,q probability laws on Rd , we have |σ(x, p)− σ(y,q)|+
|b(x, p)− b(y,q)| ≤ K(|x − y|+ ρ(p,q)|, then there is strong existence and uniqueness for the

stochastic differential equation (4.5).

This result can not be applied to our equations: the quantity
∫

pt(St ,y)dy∫
b2(y)pt(St ,y)dy

is not lipschitz with
respect to the metric ρ.

4.2 Stochastic Differential Equation with conditional expectations

We are interested in the following d-dimensional stochastic differential equation

dXt = σtdWt +µtdt (4.7)

X0 = φ

with Wt a Brownian motion in Rd and µt a given drift. The initial condition φ is a given random
variable. The volatility matrix σt is chosen as

σ
i j
t =Vi j(t,Xt ,E[ fi j(X

λC
i j

t )|Xλi j

t ]) (4.8)



where X i
t is the i-th coordinate of Xt , λi j a subset of {1, ...,d} and X

λi j

t the vector (Xk
t )k∈λi j

. In the
case where Xt admits a density p(t, .), the stochastic differerential equation becomes

dXt = (Vi j(t,Xt ,

∫
fi j(x

λC
i j)pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∫
pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

))1≤i, j≤ddWt +µtdt (4.9)

X0 = φ

where
∫

f (xλC
i j)dxλC

ik is the integral against the variables xk1 , ...,xkl
with (k1, ...,kl) the complemen-

tary set of λik in {1, ...d}, the domain of integration being Rl .

We also write pi j(t,X
λi j

t ,xλC
i j) = p(t,x) with x ∈ Rd and xi = X i

t if i ∈ λi j, xi = x
λC

i j

i otherwise.
This last diffusion is a generalization of the equations that appear when calibrating the previously
mentioned financial models. In part II of this thesis, one can find different examples of equations
involving conditional expectations or quotients of the form

∫
fi j(x

λC
i j)pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∫
pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

In the current section, we prove a relationship between these last stochastic differential equations
and the following nonlinear integro-differential equation

∂p

∂t
−Lp p = 0 in ]0,T [×Rd (4.10)

p(0,x) = p0(x) on Rd

where the operator Lq is defined as

Lq p =
1
2 ∑

1≤i, j≤d

∂2

∂xi∂x j
(

d

∑
k=1

Vik(t,x,

∫
fik(x

λC
ik)pik(t,x

λik
t ,xλC

ik)dxλC
ik∫

pik(t,x
λik
t ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
jk)p jk(t,x

λ jk

t ,xλC
jk)dx

λC
jk

∫
p jk(t,x

λ jk

t ,xλC
jk)dx

λC
jk

)p(t,x))− ∑
1≤i≤n

∂

∂xi
(µi

t p(t,x))

and p0 is the density of φ the initial condition for Equation (4.7).

Remark. • An example of equation involving conditional expectations can be found in [52]. In

that case however, the conditioning is taken with respect to another random variable, not the

unknown process itself.

• For other articles concerning conditional expectations in the drift term, we refer the reader to

[57] and its references.

4.2.1 The classic stochastic differential equation associated with (4.9)

Let us first study the equation where p is considered as a parameter and not an unknown. As in [2],
the functional spaces used are Hölder spaces, they are described thoroughly in Chapter 3. We make
the following assumptions on the coefficients of the equation

• ∀1 ≤ i ≤ d,µi
t ∈ H1,h,h/2(DT )



• ∀1 ≤ i, j ≤ d,Vi j(t,x,e) ∈C3(R∗
+×Rd ×R∗

+) with all derivatives bounded on the domain of
definition

• ∀1 ≤ i, j ≤ d, fi j ∈ H2,h,h/2(Rd)

• ∀(t,x,e) ∈ R∗
+×Rd ×R∗

+, ∀(ξi)1≤i≤d ∈ Rd ,

∑
1≤i, j≤d

ξiξ j

d

∑
k=1

Vik(t,x,e)Vjk(t,x,e)≥ K|ξ|2

We now let q denote a function belonging to H2,h,h/2(]0,T [×Rd) such that

∀1 ≤ i ≤ d,

∫
fi j(x

λC
i j)qi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∫
qi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∈ H2,h,h/2(DT )

The classic stochastic differential equation we are interested in is

dXt = (Vi j(t,Xt ,

∫
fi j(x

λC
i j)qi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∫
qi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

))1≤i, j≤ddWt +µtdt (4.11)

X0 = φ

Using results from Friedman in Chapter VI of his book [5], and given the set of assumptions we
just described, we have the

Proposition 2. The Stochastic Differential Equation (4.11) admits a unique strong solution Xt .

Moreover, there exists a function p ∈ H2,h,h/2(]0,T [×Rd) such that p(t, .) is the density of Xt with

respect to Lebesgue measure. This function p is the unique solution of the partial differential

equation
∂p
∂t
−Lq p = 0 with the initial condition p(0, .) = p0.

4.2.2 Equivalence between existence results for (4.9) and existence results for (4.10)

In this section, we are interested in the links between the Equations (4.9) and (4.10). We prove the
following

Proposition 3. If the Equation (4.9) admits a couple (Xt , p) as solution for t ∈ [0,T ], with p(t, .)

the density of Xt and p ∈ H2,h,h/2(]0,T [×Rd), then the function p is solution of the partial integro-

differential equation (4.10).

Reciprocally, if the Equation (4.10) has a solution p ∈ H2,h,h/2(]0,T [×Rd), then there exists a

process (Xt)t∈[0,T ] such that (Xt , p) is a strong solution of Equation (4.9).

Proof. We start by assuming the existence of a couple (Xt , p) such that

dXt = (Vi j(t,Xt ,

∫
fi j(x

λC
i j)pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∫
pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

))1≤i, j≤ddWt +µtdt

X0 = φ

with t ∈ [0,T ], p ∈ H2,h,h/2(]0,T [×Rd) and p(t, .) the density of the random variable Xt . Since
X0 = φ, and the law of φ is assumed to have density p0(.), we have p(0,x) = p0(x) on Rd .



Now, let f be a function in C2
b(R

d), Ito’s lemma gives us

d f (X t) = ∑
1≤i≤d

∂ f

∂xi
dX i

t + ∑
1≤i, j≤d

1
2

∂2 f

∂xi∂x j
< dX i

t ,dX
j

t >

= ∑
1≤i≤d

∂ f

∂xi
µi

tdt + ∑
1≤i, j≤d

∂ f

∂xi
Vi j(t,Xt ,

∫
fi j(x

λC
i j)pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∫
pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

)dW
j

t

+ ∑
1≤i, j≤d

1
2

∂2 f

∂xi∂x j
(

n

∑
k=1

Vik(t,Xt ,

∫
fik(x

λC
ik)pik(t,X

λik
t ,xλC

ik)dxλC
ik∫

pik(t,X
λik
t ,xλC

ik)dxλC
ik

)

Vjk(t,Xt ,

∫
f jk(x

λC
jk)p jk(t,X

λ jk

t ,xλC
jk)dx

λC
jk

∫
p jk(t,X

λ jk

t ,xλC
jk)dx

λC
jk

))

Integrating this equality and taking expectations, we have

E[ f (Xt)]−E[ f (X0)] =
∫ t

0
∑

1≤i≤d

E[
∂ f

∂xi
(Xs)µ

i
s]ds+

∫ t

0
∑

1≤i, j≤d

1
2
E[

∂2 f

∂xi∂x j
(Xs)

(
n

∑
k=1

Vik(s,Xs,

∫
fik(x

λC
ik)pik(s,X

λik
s ,xλC

ik)dxλC
ik∫

pik(s,X
λik
s ,xλC

ik)dxλC
ik

)Vjk(s,Xs,

∫
f jk(x

λC
jk)p jk(s,X

λ jk
s ,xλC

jk)dx
λC

jk

∫
p jk(s,X

λ jk
s ,xλC

jk)dx
λC

jk

))]ds

Since p(t, .) is the density of Xt , the expectations can be written differently

E[ f (Xt)]−E[ f (X0)] =
∫ t

0

∫
Rd

pLp f dxds (4.12)

where Lp is defined as

Lp f (t,x) = ∑
1≤i≤d

∂ f

∂xi
(x)µi

t + ∑
1≤i, j≤d

1
2

∂2 f

∂xi∂x j
(x)(

n

∑
k=1

Vik(t,x,

∫
fik(x

λC
ik)pik(t,x

λik ,xλC
ik)dxλC

ik∫
pik(t,xλik ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
jk)p jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
p jk(t,x

λ jk ,xλC
jk)dx

λC
jk

))

In equality (4.12), we integrate by parts. The adjoint Lp of operator Lp thus appears, with deriva-
tives in the sense of distributions. Since p belongs to H2,h,h/2(]0,T [×Rd), the derivatives are in
fact classic and we get

∫
Rd

f (x)p(t,x)dx−
∫
Rd

f (x)p(0,x)dx =
∫ t

0

∫
Rd

f (x)Lp p(s,x)dxds

Differentiating this last line with respect to the time, it becomes
∫
Rd

f (x)
∂p

∂t
(t,x)dx =

∫
Rd

f (x)Lp p(t,x)dx

The equality being true for all f ∈ C2
b(R

d , we obtain p as solution of the equation ∂p
∂t
−Lp p with

initial condition p(0,x) = p0(x). This concludes the first part of the proof.
As for the reciprocal, let p belong to H2,h,h/2(]0,T [×Rd) and solve ∂p

∂t
−Lp p with p(0,x) = p0(x).



We use this function p as parameter in the stochastic differential equation (4.11). Proposition 2
gives us the strong existence of a process Xt solution of the stochastic differential equation

dXt = (Vi j(t,Xt ,

∫
fi j(x

λC
i j)pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

∫
pi j(t,X

λi j

t ,xλC
i j)dx

λC
i j

))1≤i, j≤ddWt +µtdt (4.13)

X0 = φ

It also gives us the density of this process Xt as the unique solution of equation ∂·
∂t
−Lp· = 0 with

initial condition p0. Since p verifies this equation, the couple (Xt , p) is indeed solution of (4.9).
This concludes the proof.



Chapter 5

Resolution of the Partial

Integro-Differential Equation

We are now interested in the equations we presented in Chapter 4. The first one is the evolution
equation associated to operator Lp

∂p

∂t
−Lp p = 0 in ]0,T [×Ω (5.1)

p(0,x) = p0(x) on Ω (5.2)

where the operator Lq is equal to

Lq p =
1
2 ∑

1≤i, j≤d

∂2

∂xi∂x j
(

d

∑
k=1

Vik(t,x,

∫
fik(x

λC
ik)qik(t,x

λik ,xλC
ik)dxλC

ik∫
qik(t,xλik ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
jk)q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

)p(t,x))− ∑
1≤i≤d

∂

∂xi
(µi

t p(t,x))

This last Equation (5.1) is written in a form where the derivatives of the non local terms are in-
volved. It is an extremely complicated endeavour to solve it, we are only able to prove two partial
existence results. Both are based upon the following idea: if we consider constant functions fi j,
then the quotient of integrals simplifies itself and the equation becomes a classic linear parabolic
equation. We thus consider a set of functions ( fi j)1≤i, j≤d , a set of constants ( f i j)1≤i, j≤d and assume
some control over the gap between those two sets: for all 1 ≤ i, j ≤ d

| fi j − f i j| ≤ f ∗ (5.3)

Using fixed point methods in Hölder spaces and the previous statement, we prove two theorems:

• for any T , existence of a solution on ]0,T ] for f ∗ small enough.

• existence of an F∗ > 0 such that for all f ∗ ≤ F∗, we have short time existence of a solution.

Another equation is of particular interest. The evolution equation for the adjoint L of operator L is
simpler, and quite similar to a few problems studied in the litterature. Since the nonlocal terms are
this time outside of the derivatives, we get more general results and a better understanding of the
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original equation. We thus have another equation to deal with

∂p

∂t
−Lp p = 0 in ]0,T [×Ω (5.4)

p(0,x) = p0(x) on Ω (5.5)

where the operator Lq is equal to

Lq p =
1
2 ∑

1≤i, j≤d

(
d

∑
k=1

Vik(t,x,

∫
fik(x

λC
ik)qik(t,x

λik ,xλC
ik)dxλC

ik∫
qik(t,xλik ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
jk)q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

))
∂2 p

∂xi∂x j
+ ∑

1≤i≤d

µi
t

∂p

∂xi

As far as Equation (5.4) is concerned, we do not need such assumptions over the set ( fi j)1≤i, j≤d to
prove existence of a solution. We are actually able to prove short time existence for any ( fi j)1≤i, j≤d .

Since the functions ( fi j)1≤i, j≤d play a particular part in this chapter, we use different notations for
the operators. First, we let { f} define the collection ( fi j)1≤i, j≤d . Then, we write

Li j(p,{ f}) :=
d

∑
k=1

Vik(t,x,

∫
fik(x

λC
ik)pik(t,x

λik ,xλC
ik)dxλC

ik∫
pik(t,xλik ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
jk)p jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
p jk(t,x

λ jk ,xλC
jk)dx

λC
jk

) (5.6)

The operator Lp is now considered as a mapping taking a function p and a collection { f} as argu-
ments, it becomes

L(p,{ f}) :=
1
2 ∑

1≤i, j≤d

∂2

∂xi∂x j
(pLi j(p,{ f}))− ∑

1≤i≤d

∂

∂xi
(µi

t p)

This chapter is organized as follows. First, we study the operator L, the assumptions required
for it to be properly defined and its differentiability. We then prove the two theorems concerning
Equation (5.1). And at last, we deal with the case of the adjoint equation (5.4).

5.1 Assumptions and study of the operator L

Keeping the notations from Chapter 3, we denote by 0 < t ≤ T the time-variable and by x =
(x1,x2, ...,xd) ∈ Ω ⊂Rd the d-dimensional space variable where Ω is an open bounded subset with
a sufficiently smooth boundary, meaning that DT =]0,T [ × Ω verifies Property 1. DT is the domain
of definition of the variable (t,x). We also denote by B = {0} × Ω, BT = {T} × Ω and CT =]0,T ]
× ∂Ω the different parts of the boundary. Since we want to use the classic results from Chapter 3
concerning parabolic equations, we assume that all the coefficients of L belong to the appropriate
Hölder spaces

• ∀1 ≤ i ≤ d,µi
t ∈ H1,h,h/2(DT ), ∀1 ≤ i, j ≤ d, fi j ∈ H2,h,h/2(Rd) with K0 a born on their norms

• ∀1 ≤ i, j ≤ d,Vi j(t,x,e) ∈C3(R∗
+×Rd ×R∗

+) and its three derivatives with respect to the last
variable are bounded on [η,+∞[ for all η > 0



Another necessary condition concerns the quotients

Qi j(t,x) =

∫
Ωi j(x)

fi j(x
λC

i j)pi j(t,x
λi j ,xλC

i j)dx
λC

i j

∫
Ωi j(x)

pi j(t,xλi j ,xλC
i j)dx

λC
i j

where

Ωi j(x) = {y ∈ R
Card(λC

i j) such as (xλi j ,y) ∈ Ω}

Those quotients must belong to H2,h,h/2(DT ). Let us assume that p belongs to H2,h,h/2(DT ) and
that p and fi j are strictly positive on the closure of their domain of definition. This gives us two
constants such that 0 < δ ≤ fi j ≤ ∆. Since p is nonnegative, we obtain that Qi j is well-defined and

0 < δ ≤ Qi j ≤ ∆

Let us now study the differentiability of Qi j with the

Lemma 2. The functions Qi j belong to H2,h,h/2(DT ). Moreover, for any V ∈ C3(R∗
+) with V and

its three derivatives bounded on [η,+∞[ for any η by a constant Kη, and any real number f , we

have

|V (Qi j)−V ( f )|H2,h,h/2(DT ) ≤ | f − f |H0(DT )P(|p|H2,h,h/2(DT ))

where P denotes a polynomial function, nondecreasing and strictly positive on R+.

This lemma is essentially technical, its proof can be found in Appendix A. It requires a new
assumption on Ω

Property 2. Smoothness of the integration domains. There exists a constant K > 0, such that

∀1 ≤ i, j ≤ d and ∀x,x′ ∈ Ω, |
∫

Ωi j(x)\Ωi j(x′)
1dx

λC
i j | ≤ Kd(x,x′)h (5.7)

Let us exhibit an example of domain that satisfies the previous condition. We choose d = 2 and
define Ω as the set (x,y) ∈ R2 symmetric with respect to the y axis and that verifies

• |y| ≤ 2 if x belongs to [0,1]

• |y| ≤ 1+
√

1− (x−1)2 if x belongs to [1,2]

Ω is simply a square where the corners have been replaced by quadrants. We now choose to
integrate against y, the condition (5.7) is trivial for x ∈ [−1,1]. Let us choose x < x′ ∈ [1,2] (the
other cases are similar), we see that

|
∫

Ωi j(x)\Ωi j(x′)
1dx

λC
i j |= 2(

√

1− (x−1)2 −
√

1− (x′−1)2)≤ K|x− x′| 1
2

For the property to be true, a condition appears on h, it must be smaller than 1
2 . We assume in the

following that Ω and h are such that Property 2 is verified.

Lemma 2 enables us to choose the domain of definition for L as the following

D = {(p,{ f}), p, fi j ∈ H2,h,h/2(DT ) and ∀1 ≤ i, j ≤ d, p, fi j > 0 on DT}



We write Dp and D{ f} the projections on p and { f} of D . We also notice that L(p,{ f}) belongs

to H0,h,h/2(DT ). Let us study the differentiability of L as an operator from D into H0,h,h/2(DT ).
For notational simplicity, in the rest of this chapter, we omit the arguments of functions when

integrating against dx
λC

i j . We take (p,{ f}),(q,{g}) ∈ D and compute

L(p,{g})−L(q,{g}) = 1
2 ∑

1≤i, j≤d

∂2

∂xi∂x j
(pLi j(p,{g})−qLi j(q,{g}))− ∑

1≤i≤d

∂

∂xi
(µi

th)

with h= p−q. We are reduced to the differentiability of Li j as an operator from D into H2,h,h/2(DT ).

Li j(p,{g})−Li j(q,{g}) =
d

∑
k=1

Vik(t,x,

∫
gik p∫

p
)Vjk(t,x,

∫
g jk p∫

p
)−Vik(t,x,

∫
gikq∫

q
)Vjk(t,x,

∫
g jkq∫

q
)

which itself boils down to the linearization of Vi j(t,x,
∫

gi j p∫
p
). Since Vi j belongs to C3(R∗

+×Rd ×
R∗
+) and

∫
gi j(q+h)∫

q+h
−

∫
gi jq∫

q
=

∫
gi jh∫

q
−

∫
gi jq

∫
h

(
∫

q)2 +o(|h|H2,h,h/2(DT ))

we eventually get

DpL(q,{g}).h =
1
2 ∑

1≤i, j≤d

∂2

∂xi∂x j
(hLi j(q,{g})+qDpLi j(q,{g}).h)− ∑

1≤i≤d

∂

∂xi
(µi

th)

with

DpLi j(q,{g}).h =
d

∑
k=1

Vik(t,x,

∫
gikq∫

q
)
∂Vjk

∂e
(t,x,

∫
g jkq∫

q
)(

∫
g jkh∫

q
−

∫
g jkq

∫
h

(
∫

q)2 )

+
∂Vik

∂e
(t,x,

∫
gikq∫

q
)(

∫
gikh∫

q
−

∫
gikq

∫
h

(
∫

q)2 )Vjk(t,x,

∫
g jkq∫

q
)

Similarly, writing {h}= { f}−{g}, we have

D{ f}L(q,{g}).{h}=−1
2 ∑

1≤i, j≤d

∂2

∂xi∂x j
(qD{ f}Li j(q,{g}).{h})

with

D{ f}Li j(q,{g}).{h}=
d

∑
k=1

Vik(t,x,

∫
gikq∫

q
)
∂Vjk

∂e
(t,x,

∫
g jkq∫

q
)

∫
h jkq∫

q

+
∂Vik

∂e
(t,x,

∫
gikq∫

q
)

∫
hikq∫

q
Vjk(t,x,

∫
g jkq∫

q
).

DpL and D{ f}L are clearly continuous. As a conclusion, L is differentiable.



5.2 Implicit function theorem and compatibility conditions

Let ψ be a strictly positive function defined on B∪CT and belonging to H2,h,h/2(∂DT ). We are
interested in the equation

∂p

∂t
−L(p,{ f}) = 0 in DT (5.8)

p = ψ on B∪CT

We consider the following operator

F : (p,{ f}) → (
∂p

∂t
−L(p,{ f}), p|B∪CT −ψ)

S → H0,h,h/2(DT )×H2,h,h/2(∂DT )

Now, having noticed that the quotient
∫

fi j p∫
p

is trivial for a constant fi j, let us take a collection { f} of

strictly positive constants fi j ∈R and a boundary condition ψ (verifying the previous assumptions)
such that

∂ψ

∂t
− 1

2 ∑
1≤i, j≤d

∂2

∂xi∂x j
(ψ

d

∑
k=1

Vik(t,x, fik)Vjk(t,x, f jk))+ ∑
1≤i≤d

∂

∂xi
(µi

tψ) = 0 on ∂B (5.9)

in the sense described in the preliminaries, Chapter 3, and such that ∀(t,x) ∈ DT and ∀(ξi)1≤i≤d ∈
Rd ,

∑
1≤i, j≤d

ξiξ j

d

∑
k=1

Vik(t,x, fik)Vjk(t,x, f jk)≥ Kσ|ξ|2 (5.10)

for a certain constant Kσ (this is a classic ellipticity assumption). One clearly has

∂p

∂t
−L(p,{ f}) = ∂p

∂t
− 1

2 ∑
1≤i, j≤d

∂2

∂xi∂x j
(p

d

∑
k=1

Vik(t,x, fik)Vjk(t,x, f jk))+ ∑
1≤i≤d

∂

∂xi
(µi

t p)

And the operator ∂.
∂t
−L(.,{ f}) acting on functions p is uniformly parabolic and linear. The classical

results expounded in Chapter 3 give us the existence of a function p ∈ H2,h,h/2(DT ) solution of
∂p
∂t
−L(p,{ f}) = 0 and p = ψ on B∪CT and with 0 < p∗ ≤ p for a certain constant p∗:

• the coefficients of the operator belong to the appropriate spaces.

• the compatibility condition is given by (5.9)

• the ellipticity is given by (5.10).

• the existence of p∗ is proved at the end of this section using Proposition 1 and the fact that
ψ > 0 on B∪CT .

This gives us F (p,{ f}) = 0. The first idea that comes to mind is an application of the implicit
function theorem. Indeed, in our case, it would give us a neighborhood of { f} where a solution of
∂.
∂t
−L(.,{ f}) = 0 exists. Since

DpLi j(p,{ f}) = 0



we have

DpL(p,{ f}).h =
1
2 ∑

1≤i, j≤n

∂2

∂xi∂x j
(hLi j(p,{ f}))− ∑

1≤i≤n

∂

∂xi
(µi

th)

It is clear that F is differentiable, with in particular DpF (p,{ f}).h = (∂h
∂t
−DpL(p,{ f}).h,h|B∪CT )

To apply the implicit function theorem, we need to prove that DpF (p,{ f}) is a bijection. This boils
down to finding for all q ∈ H0,h,h/2(DT ) and χ ∈ H2,h,h/2(∂DT ) a function h in H2,h,h/2(DT ) such
that

∂h

∂t
−DpL(p,{ f}).h = q in DT

h = χ on B∪CT

A difficulty appears here, the compatibility condition (3.14) is required between q and χ for such
a function h to exist, this condition is ∂χ

∂t
−DpL(p,{ f}).χ = q on ∂B and is clearly not verified for

any (q,χ), the differential is therefore not a bijection.

This impossibility to apply the implicit function theorem enhances the necessity for compatibility
conditions in our nonlinear case. For a given { f}, with boundary conditions ψ on B∪CT , if p is
solution of the problem ∂p

∂t
−L(p, f ) = 0 and p = ψ on B∪CT , then necessarily

∂ψ

∂t
−L(ψ,{ f}) = 0 on ∂B (5.11)

With such an assumption, we shall prove in the next section two existence results. But first, let us
prove the strict positivity of p

Lemma 3. The solution p ∈ H2,h,h/2(DT ) of
∂p
∂t
−L(p,{ f}) = 0 and p = ψ ≥ ψ∗ > 0 on B∪CT

verifies 0 < p∗ ≤ p for a certain constant p∗.

Proof. Developing the derivatives in L(.,{ f}) enables us to write the equation as ∂p
∂t
−Gp+cp = 0

where G contains all the space derivatives and c is the term of order 0.
We start by noticing that if c is a positive constant, then the function q = exp(−ct)ψ∗ is solution of
∂q
∂t
−Gq+ cq = 0 with p− q = ψ− exp(−ct)ψ∗ ≥ 0 on B∪CT . Applying Proposition 1 to p− q

gives us p ≥ q ≥ exp(−cT )ψ∗ > 0.
For any function c, let us now consider a constant c∗ ≥ c and q verifying ∂q

∂t
−Gq+ c∗q = 0 with

q = ψ on B∪CT . We just proved that q > p∗ for a given p∗ > 0. Now, we have

∂p−q

∂t
−G(p−q)+ c(p−q) = (c∗− c)q

Proposition 1 guarantees that p ≥ q > p∗ which concludes the proof.

5.3 Existence results for Equation (5.8)

The theorem we will prove in this section requires the assumptions made previously.



5.3.1 Global existence in time

Theorem 5. For every collection { f} in D{ f} with fi j a constant function verifying the compati-

bility assumptions

∂ψ

∂t
−L(ψ,{ f}) = 0 on ∂B (5.12)

and uniform ellipticity ie ∃Kσ > 0,∀(ξi)1≤i≤d ∈ Rd ,

∑
1≤i, j≤n

ξiξ j

n

∑
k=1

Vik(t,x, fik)Vjk(t,x, f jk)≥ Kσ|ξ|2

there exists f ∗, a strictly positive constant such that, for any collection { f} in D{ f} with

|{ f}−{ f}|
(H0(DT ))d2 ≤ f ∗ (5.13)

∂ψ

∂t
−L(ψ,{ f}) = 0 on ∂B (5.14)

there exists p ∈ H2,h,h/2(DT ) verifying
∂p
∂t
−L(p,{ f}) = 0 on DT ∪BT and p = ψ on B∪CT

Proof. Let { f} belong to D{ f} with the conditions (5.13) and (5.14) verified. We start with a
technical lemma proved in Appendix A

Lemma 4. For a given ε > 0, there exists two constants Kl,K
′
l > 0 depending on ε and on the data

of the problem such as ∀p,q ∈ H2,h,h/2(DT ) with p,q ≥ ε on DT and ∀1 ≤ i, j ≤ n,

|Li j(p,{ f})−Li j(p,{ f})|H2,h,h/2(DT ) ≤ Kl (|{ f}|+ |{ f}|) |{ f}−{ f}| P(|p|H2,h,h/2(DT ))

|Li j(p,{ f})−Li j(p,{ f})− (Li j(q,{ f})−Li j(q,{ f}))|H2,h,h/2(DT )

≤ K′
l |{ f}| |{ f}−{ f}| |p−q|H2,h,h/2(DT )

P(|p|H2,h,h/2(DT )) P(|q|H2,h,h/2(DT ))

with P a polynomial function, increasing and strictly positive on R+, and all the norms involving

{ f} or { f} are (H0(DT ))n2
.

This lemma gives us control over the variations of Li j. When the functions fi j are close to constants,
the operator L is close to a classic linear one. We now remember from the previous section that
there exists a function p ∈ H2,h,h/2(DT ) solution of ∂p

∂t
−L(p,{ f}) = 0 and p = ψ on B∪CT with

p∗ ≤ p for a certain strictly positive constant p∗. The idea is to construct a sequence of functions
(pn)n∈N ∈ Dp that shall converge to a solution of Equation (5.8) We define (pn)n∈N as follows

• p0 = p

• pn+1 is solution of the equation ∂p
∂t
− L(p,{ f}) = L(pn,{ f})− L(pn,{ f}) with p = ψ on

B∪CT

The existence of pn+1 stems from the same points than the existence of p. The only thing we have to
do is verify the compatibility condition: from assumptions (5.12) and (5.14) the left-side term takes
the values ∂ψ

∂t
−L(ψ,{ f}) = 0 on ∂B while the right-side term is equal to L(ψ,{ f})−L(ψ,{ f}) = 0

on ∂B.
Hence, we do have ∂pn+1

∂t
−L(pn+1,{ f}) = L(pn,{ f})−L(pn,{ f}). We notice that a function p



limit in an appropriate space of the sequence (pn)n∈N is solution of our problem (given the fact that
L is continuous with respect to p in a certain topology). Let us prove the convergence of pn by
showing that it is a Cauchy sequence.
We consider the quantity |pn+1 − pn|H2,h,h/2(DT ). The idea is to show that this last norm can be
controlled by a constant depending on f ∗ times the difference |pn − pn−1|H2,h,h/2(DT ), choosing f ∗

small enough thus allows to prove two things: first that the pn are strictly positive and second that
pn is a Cauchy sequence. Let us start with

∂p1

∂t
−L(p1,{ f}) = L(p,{ f})−L(p,{ f})

∂p

∂t
−L(p,{ f}) = 0

Recalling that L(.,{ f}) is linear, we get

∂p1 − p

∂t
−L(p1 − p,{ f}) = L(p,{ f})−L(p,{ f})

with the clear boundary condition p1 − p = 0 on B∪CT . We apply Schauder’s inequality (3.15)
which gives us, with K denoting a constant depending on the data of the problem (it might be
different from one line to another)

|p1 − p|H2,h,h/2(DT ) ≤ KH2 |L(p,{ f})−L(p,{ f})|H0,h,h/2(DT )

≤ KH2 |1
2 ∑

1≤i, j≤n

∂2

∂xi∂x j
(p(Li j(p,{ f})−Li j(p,{ f})))|H0,h,h/2(DT )

≤ K ∑
1≤i, j≤n

|p(Li j(p,{ f})−Li j(p,{ f}))

≤ f ∗(1+ f ∗)KKl|p|H2,h,h/2(DT )P(|p|H2,h,h/2(DT ))

where the last line is an application of Lemma 4 with ε = p∗. We are now able to choose f ∗ as the
only strictly positive root of

f ∗(1+ f ∗) =
p∗

4KKL|p|H2,h,h/2(DT )P(|p|H2,h,h/2(DT ))
(5.15)

This gives us

|p1 − p|H2,h,h/2(DT ) ≤
p∗
4

Let us now prove by recursion that

|pn+1 − pn|H2,h,h/2(DT ) ≤
1
2
|pn − pn−1|H2,h,h/2(DT )

The recursion assumption and the inequality on p1 − p give us (keeping in mind that p0 = p)

∀k ≤ n, |pk − p|H2,h,h/2(DT ) ≤
p∗
2



We compute

∂pn+1

∂t
−L(pn+1,{ f}) = L(pn,{ f})−L(pn,{ f})

∂pn

∂t
−L(pn,{ f}) = L(pn−1,{ f})−L(pn−1,{ f})

Since L(.,{ f}) is linear, we get

∂pn+1 − pn

∂t
−L(pn+1 − pn,{ f}) = L(pn,{ f})−L(pn,{ f})−L(pn−1,{ f})+L(pn−1,{ f})

with pn+1 − pn = 0 on B∪CT . Once again, we apply Schauder’s inequality (3.15)

|pn+1 − pn|H2,h,h/2(DT ) ≤ KH2 |L(pn,{ f})−L(pn,{ f})−L(pn−1,{ f})+L(pn−1,{ f})|H0,h,h/2(DT )

≤ KH2 |1
2 ∑

1≤i, j≤n

∂2

∂xi∂x j
(pn(Li j(pn,{ f})−Li j(pn,{ f}))

−pn−1(Li j(pn−1,{ f})−Li j(pn−1,{ f})))|H0,h,h/2(DT )

≤ K ∑
1≤i, j≤n

|pn(Li j(pn,{ f})−Li j(pn,{ f}))

−pn−1(Li j(pn−1,{ f})−Li j(pn−1,{ f}))|H2,h,h/2(DT )

Developing and applying Lemma 4 with ε = p∗
2 , we get

|pn+1 − pn|H2,h,h/2(DT ) ≤ K ∑
1≤i, j≤n

|pn − pn−1|H2,h,h/2(DT )|Li j(pn,{ f})−Li j(pn,{ f})|H2,h,h/2(DT )

+|pn−1|H2,h,h/2(DT )|Li j(pn−1,{ f})−Li j(pn−1,{ f})−Li j(pn,{ f})+Li j(pn,{ f})|H2,h,h/2(DT )

≤ f ∗(1+ f ∗)KK′
l |pn − pn−1|H2,h,h/2(DT )P(|pn|H2,h,h/2(DT ))P(|pn−1|H2,h,h/2(DT ))

We now choose f ∗ as the minimum of its previous value and the only strictly positive root of

f ∗(1+ f ∗) =
1

2KK′
LP2( p∗

2 + |p|H2,h,h/2(DT ))
(5.16)

(we recall that P is increasing, K′
l is a constant depending on the data of the problem, p∗ in particu-

lar, but not on n). This gives us the inequality we were looking for, and proves that pn is a Cauchy
sequence in H2,h,h/2(DT ). We let p ∈ H2,h,h/2(DT ) denote its limit. We also have

∀n ∈ N, |pn − p|H2,h,h/2(DT ) ≤
p∗
2

The last step of the proof is to make n tend to +∞ in the equation

∂pn+1

∂t
−L(pn+1,{ f}) = L(pn,{ f})−L(pn,{ f})

The only result needed is Vi j(t,x,
∫

fi j pn∫
pn

)→Vi j(t,x,
∫

fi j p∫
p
). Since |pn| is smaller than |p|H2,h,h/2(DT )+

p∗
2 , we can apply the dominated convergence theorem to

∫
fi j pn and to

∫
pn and all the necessary



derivatives, this proves that
∫

fi j pn →
∫

fi j p

∫
pn →

∫
p

Moreover, because pn ≥ p∗
2 , the denominator

∫
pn is bounded away from 0. Using the continuity

of Vi j, we obtain the convergence we were looking for. It is thus possible to take the limit in the
previous equation

∂p

∂t
−L(p,{ f}) = L(p,{ f})−L(p,{ f})

ie ∂p
∂t
−L(p,{ f}) = 0. Since ∀n ∈ N, pn = ψ on B∪CT , the boundary condition is also verified. p

is the solution we were looking for.

5.3.2 Local existence

The theorem we just proved gives existence of a solution on the domain DT for any T . Intuitively,
the fact that T can be as large as we want, suggests a smaller f ∗. It is possible to modify the proof
of the previous theorem to give short time existence for possibly larger values of f ∗.

Theorem 6. For every collection { f} in D{ f} defined as in Theorem 5, there exists T ∗ ≤ T and f ∗,

two strictly positive constant such that, for all collection { f} in D{ f} with

|{ f}−{ f}|
(H2,h,h/2(DT∗))d2 ≤ f ∗

∂ψ

∂t
−L(ψ,{ f}) = 0 on ∂B

there exists p ∈ H2,h,h/2(DT ∗
) verifying

∂p
∂t
−L(p,{ f}) = 0 on DT ∗ ∪BT ∗

and p = ψ on B∪CT ∗

Proof. We still use the function p∗ ≤ p ≤ p∗. But this time, the strict positivity of the pn is proved
using a short-time argument. Let |p|H2,h,h/2(DT ) ≤ x and t ≤ T be two real numbers and let X t

x denote
the set

X t
x = {p ∈ H2,h,h/2(Dt), |p|H2,h,h/2(Dt) ≤ x,

p∗
2

≤ p ≤ p∗+
p∗
2
, p = ψ on B∪Ct}

The set X t
x clearly contains the function p. We then consider the application M which takes a

function u ∈ X t
x and sends it on v ∈ H2,h,h/2(DT ) solution of the equation

∂v

∂t
−L(v,{ f}) = L(u,{ f})−L(u,{ f}) in Dt

v = ψ on B∪Ct

The existence of v stems from the same arguments than in the previous theorem. We apply once
again Schauder’s inequality

|v|H2,h,h/2(Dt) ≤ KH2(|ψ|H2,h,h/2(∂Dt)+ |L(u,{ f})−L(u,{ f})|H0,h,h/2(Dt))

≤ KH2(|ψ|H2,h,h/2(∂Dt)+K f ∗(1+ f ∗)Q(|u|H2,h,h/2(Dt)))

≤ KH2(|ψ|H2,h,h/2(∂Dt)+K f ∗(1+ f ∗)Q(x))



Choosing f ∗ such that

f ∗(1+ f ∗) = max
x−KH2 |ψ|H2,h,h/2(∂Dt)

KH2KQ(x)
(5.17)

where the max is taken on the set of x larger than |p|H2,h,h/2(DT ) and x∗ the value where the max is
reached (the quotient goes to 0 when x tends to +∞), we get that

|v|H2,h,h/2(Dt) ≤ x∗

We now want to prove that M is a contraction, we see that for all p,q ∈ X t
x

∂M(p)−M(q)

∂t
−L(M(p)−M(q),{ f}) = L(p,{ f})−L(p,{ f})−L(q,{ f})+L(q,{ f})

with M(p)−M(q) = 0 on B∪CT . The exact same computations than earlier give the existence of
a constant F∗ > 0 such that ∀ f ∗ ≤ F∗ M is a contraction.
Let us now define the value of t. In the proof of the global existence, we used f ∗ to ascertain the
strict positivity of the functions pn. Here, we apply Theorem 1 to the function ṽ = v− p. v and p

are equal to ψ on B∪Ct , thus ṽ is null on the boundary. Plus, we have

∂ṽ

∂t
−L(ṽ,{ f}) = L(u,{ f})−L(u,{ f}) in Dt

Hence

|ṽ|H0(Dt) ≤ tKH0 |L(u,{ f})−L(u,{ f})|H0(Dt)

≤ tKH0K f ∗(1+ f ∗)Q(|u|H2,h,h/2(Dt))

≤ tKH0K f ∗(1+ f ∗)Q(x∗)

If f ∗ is such that T KH0K f ∗(1+ f ∗)Q(x∗) < p∗, then the result is exactly the same as in Theorem
5. On the contrary, if f ∗ is too large for this inequality to be verified, we control the sign of ṽ using
t. Taking

T ∗ =
p∗

2KH0K f ∗(1+ f ∗)Q(x∗)
(5.18)

guarantees that v ≥ p∗
2 . We have proved that v = M(u) belongs to XT ∗

x∗ for the values just defined,
and that M is a contraction on that set. This gives us the existence of a fixed point for M. We
conclude as in Theorem 5.

Remark. It is difficult to quantify precisely the gain in f ∗ obtained through this local existence

theorem. In Part III however, we notice some numerical instabilities that seem to be linked to the

theoretical limitations we just faced. In particular, the time at which those instabilities occur is

inversely related to the magnitude of the variations of f .

We now give a weak uniqueness result for our equation.

Proposition 4. If two function p1 and p2 are solutions of

∂p

∂t
−Lp p = 0 in ]0,T [×Ω

p = ψ on B∪CT



and furthermore, for all 1 ≤ i, j ≤ d, we have

Fi j(t,x) :=

∫
fi j(x

λC
i j)p1

i j(t,x
λi j ,xλC

i j)dx
λC

i j

∫
p1

i j(t,x
λi j ,xλC

i j)dx
λC

i j

=

∫
fi j(x

λC
i j)p2

i j(t,x
λi j ,xλC

i j)dx
λC

i j

∫
p2

i j(t,x
λi j ,xλC

i j)dx
λC

i j

(5.19)

Then p1 = p2.

Proof. From (5.19), we see that p1 and p2 are solutions of

∂p

∂t
− 1

2 ∑
1≤i, j≤d

∂2

∂xi∂x j
(

d

∑
k=1

Vik(t,x,Fik(t,x))Vjk(t,x,Fjk(t,x))p(t,x))− ∑
1≤i≤d

∂

∂xi
(µi

t p(t,x)) = 0

Both of these functions verify the same boundary condition p=ψ on B∪CT . The uniqueness result
contained in Theorem 1 gives us the equality we were looking for.

5.4 The adjoint equation: a simpler case

We now study the adjoint equation for operator (5.8)

∂p

∂t
−Lp p = 0 in ]0,T [×Ω (5.20)

p(0,x) = p0(x) on Ω

where we recall that operator Lq is equal to

Lq p =
1
2 ∑

1≤i, j≤d

(
d

∑
k=1

Vik(t,x,

∫
fik(x

λC
ik)qik(t,x

λik ,xλC
ik)dxλC

ik∫
qik(t,xλik ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
jk)q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
q jk(t,x

λ jk ,xλC
jk)dx

λC
jk

))
∂2 p

∂xi∂x j
+ ∑

1≤i≤d

µi
t

∂p

∂xi

We start by noticing that, since its coefficients are outside of the derivatives, this last equation has
the same form than Equation (5.21) below

∂u

∂t
−F(t,x,u,Du,D2u,N(u)) = 0 in QT =]0,T [×Rd (5.21)

u(0,x) = u0(x) on Rd

where F is a function from [0,T ]×Rd ×R×Rd ×S(d)×R into R. Du is the gradient of u and
D2u the hessian matrix of u. S(d) is the space of symmetric d × d real valued matrices. N(u) is
a nonlocal term. This last equation is thoroughly studied in [14]. The author makes a number of
assumptions among which we find

1. For all u ∈Cb(Q
T
), the function N(u) exists and belongs to Cb(Q

T ).

2. For all u,v ∈Cb(Q
T
) and 0 ≤ t ≤ T ,

sup
τ∈[0,t]

|N(u)(τ, .)−N(v)(τ, .)|∞ ≤ K sup
τ∈[0,t]

|u(τ, .)− v(τ, .)|∞



3. For all u ∈ H
0,h,h/2
b (Q

T
) and 0 ≤ t ≤ T ,

sup
τ∈[0,t]

|N(u)(τ, .)|H0,h,h/2(Rd) ≤ K(1+ sup
τ∈[0,t]

|u(τ, .)|H0,h,h/2(Rd))

4. F is Lipschitz with respect to its last variable, independently of the others.

He then proves that there exists a unique u∈H
0,h,h/2
b (Q

T
) viscosity solution1 of the problem (5.21).

In our case, there are actually d2 nonlocal terms, they are defined as

Nik(p)(t,x) =

∫
fik(x

λC
ik)qik(t,x

λik ,xλC
ik)dxλC

ik∫
qik(t,xλik ,xλC

ik)dxλC
ik

It is however impossible to apply (at least directly without modifications) the previous existence
result. Handling the Nik is intricate because of the denominator. For instance, Assumption 2 is not
verified. We need to prove by ourselves that there are actual solutions for Equation (5.20).

We now relax the previous set of assumptions to

• ∀1 ≤ i ≤ d,µi
t ∈ H0,h,h/2(DT ), ∀1 ≤ i, j ≤ d, fi j ∈ H2,h,h/2(Rd) with K0 a born on their norms

• ∀1 ≤ i, j ≤ d,Vi j(t,x,e) ∈C1(R∗
+×Rd ×R∗

+) with the derivative with respect to the last vari-
able bounded on [η,+∞[ for all η > 0.

and prove the

Theorem 7. Given the assumptions above, for any collection { f} in D{ f} with

∂ψ

∂t
−Lψψ = 0 on ∂B

there exists T ∗ ≤ T a strictly positive constant and p ∈ H2,h,h/2(DT ∗
) such that

∂p
∂t

− Lp p =

0 on DT ∗ ∪BT ∗
and p = ψ on B∪CT ∗

.

Remark. This result does not need the assumption that { f} is close to a constant, it is much more

general. Its proof gives a better understanding of the theoretical limitations appearing in the first

case we studied.

Proof. Let us consider { f} ∈ D{ f} with ∂ψ
∂t
−Lψψ = 0 on ∂B.

This proof too is based upon a fixed point method. We let p0 belong to H2,h,h/2(Dt) with p0 = ψ on
B∪CT ∗

. Such a p0 exists, plus we can choose it so that 0 < δ ≤ p0 on DT . Now, let pn be defined
by induction. We take pn+1 as the solution of the equation

∂pn+1

∂t
−Lpn

pn+1 = 0 on Dt ∪Bt (5.22)

pn+1 = ψ on B∪Ct

It admits a solution from the same arguments than earlier, including the compatibility condition.
Given the regularity assumptions on the coefficients, from Lemma 1 and inequality (3.17) in par-
ticular, we have for all t ≤ T

|p1 − p0|H0,h,h/2(Dt) ≤ t1− h
2 KH1 |∂p0

∂t
−Lp0 p0|H0(Dt)

1We refer to [49] for a presentation of the theory of viscosity solutions.



Choosing

T ∗ = (
δ

4KH1 |∂p0
∂t

−Lp0 p0|H0(Dt)

)
1

1−h/2

ensures us that

|p1 − p0|H0,h,h/2(Dt) ≤ δ

4

Let us now compute

∂pn+1 − pn

∂t
−Lpn

(pn+1 − pn) = (Lpn
−Lpn−1)pn on Dt ∪Bt

pn+1 − pn = 0 on B∪Ct

The same inequality than above and Lemma 4 with ε = δ
2 give us

|pn+1 − pn|H0,h,h/2(Dt) ≤ t1− h
2 KH1 |(Lpn

−Lpn−1)pn|H0(Dt)

≤ t1− h
2 KH1 | ∑

1≤i, j≤d

(Li j(pn,{ f})−Li j(pn−1,{ f}))|H0(Dt)|pn|H2,1(Dt)

≤ t1− h
2 KH1KH2K′

l K |pn − pn−1|H0,h,h/2(Dt)P(|pn|H0,h,h/2(Dt)) P(|pn−1|H0,h,h/2(Dt))

We recall from Remark 1 that KH1 and KH2 depend on the coefficients of Lpn
only through their

norms and in a nondecreasing way. From the regularity assumptions made on the Vi j and the fi j

and this statement, we deduce that KH1 and KH2 are functions of the norms of
∫

fik pn∫
pn

. Using the
study of those quotients’s regularity made in Appendix A, we get that KH1 and KH2 are bounded
from above by an increasing function of the quantity |pn|H0,h,h/2(Dt). The same statement applies to

K′
l . Thus, if we assume by induction that |pn − p0|H0,h,h/2(Dt) ≤ δ

2 (it is in particular true for n = 1),
then KH1KH2K′

l KP(|pn|H0,h,h/2(Dt))P(|pn−1|H0,h,h/2(Dt)) is smaller than a constant depending on δ but
not on n, let ∆ denote that constant. All we have to do now is choose T ∗ as the minimum of its

previous value and of ( 1
2∆)

1
1−h/2 to get

|pn+1 − pn|H0,h,h/2(Dt) ≤ 1
2
|pn − pn−1|H0,h,h/2(Dt)

As in the proof of Theorem 5, this shows that pn is a Cauchy sequence and that |pn− p0|H0,h,h/2(DT∗)≤
δ
2 (we recall that this is a sufficient condition for the quotients of integrals to be well-defined and in
H2,h,h/2(DT ∗

)). We thus obtain a function p in H0,h,h/2(DT ∗
) limit of pn in that space.

Moreover, from Schauder’s inequality (3.15) applied to (5.22), we see that

|pn+1|H2,h,h/2(DT∗) ≤ KH2 |ψ|H2,h,h/2(∂DT∗)

where KH2 depends only on |pn|H0,h,h/2(DT∗), which is smaller than a constant independent from n.

pn is thus a bounded sequence in H2,h,h/2(DT ∗
), let κ denote said bound. Repeated applications of

Ascoli-Arzelà theorem give us a function q ∈ H2,1(DT ∗
) limit in H2,1(DT ∗

) of a subsequence of pn.



Since

sup
n∈N

{
| ∂2 pn

∂xi∂x j
(t,x)− ∂2 pn

∂xi∂x j
(t ′,x′) |

(| x− x′ |2 + | t − t ′ |)h/2
;(x, t),(x′, t ′) ∈ DT ∗} ≤ κ

we have

sup
n∈N

{
| ∂2q

∂xi∂x j
(t,x)− ∂2q

∂xi∂x j
(t ′,x′) |

(| x− x′ |2 + | t − t ′ |)h/2
;(x, t),(x′, t ′) ∈ DT ∗} ≤ κ

And this computation being true for all the derivatives appearing in the norm H2,h,h/2, we find that
q ∈ H2,h,h/2(DT ∗

). By uniqueness of pn’s limit in H0,h,h/2(DT ∗
), we clearly have p = q. Let c(n)

denote the extraction such that pc(n) → p in H2,h,h/2(DT ∗
).

Since pc(n)−1 → p in H0,h,h/2(DT ∗
), we see that operator Lpc(n)−1

tends to Lp (using the same
considerations than in Theorem 5). Taking the limit in

∂pc(n)

∂t
−Lpc(n)−1

pc(n) = 0

shows that p is solution of Equation (5.20), which concludes the proof.

Remark. We notice that this method cannot be applied to Equation (5.8) because of the presence

of the derivatives of pn in the operator Lpn
. The norm |∂p0

∂t
−Lpn

p0|H0(Dt) can only be controlled by

|pn|H2,h,h/2(Dt), and equivalently |pn+1|H0,h,h/2(Dt) by |pn|H2,h,h/2(Dt).
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Chapter 6

Local and Stochastic Volatility models

In the first part of this thesis, we have considered some theoretical Stochastic and Partial Differ-
ential equations. Those equations first appeared when studying the calibration of the vanillas in
Local and Stochastic Volatility models. But more generally, the same kind of problems appears in
different frameworks in Finance. This part of my work is dedicated to some of them.
At first, we go back to the original study of Local and Stochastic Volatility models. We expound
the motivation for those models: combining the rich possibilities given by stochastic volatilities in
term of dynamics with the main feature of local volatility, fitting the vanillas quoted on the market.
We then write the calibration equations of those vanillas in a formal way and see in what measure
results from Part I can be applied. At last, we give the results stemming from the numerical resolu-
tion of those equations when applied to different stochastic volatilities.

6.1 Local volatility and Stochastic volatility models

Financial mathematics find their origin in the work of Louis Bachelier at the beginning of the 20th

century with his thesis "Théorie de la Spéculation". But it was Black, Scholes and Merton who
gave them a new dimension in 1973 with their study of the evaluation and hedging of options [6],
[7]. Their model gained a wide recognition among the practicioneers, it is written as

dSt

St
= r(t)dt +σdWt

with r(t) the deterministic interest rate and σ the volatility of the model, assumed constant in their
framework. Wt is a standard brownian motion, the idea of using it as source of randomness actually
came to Bachelier who noticed the similarities between its trajectories and the prices on a stock
exchange.
The parameter σ is of special interest since it allows us to define the notion of implied volatility.
Let us consider a given price for a certain financial product. Black-Scholes modelization generates
a pricing formula related to this product1. The implied volatility is the unique value of σ, the
volatility parameter, which when used in the formula gives the initial price. The implied volatility
is a dimensionless quantity, it is commonly used to quote prices and provides a way to compare
products that have different characteristics.
In the introduction, we pointed out the major part played by vanilla options in the world of finance.
Computing the implied volatility for vanillas with different strikes and maturities gives a surface of
implied volatility. Had Black-Scholes model been perfect, this surface would have been constant

1This formula is thoroughly described in the very useful book by Lamberton and Lapeyre [53].
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at the height σ. Unfortunately it is not the case, in practice one gets a "smile", as can be seen for
instance in [23].
This major drawback in Black-Scholes construction led to consider the volatility not as a constant
but as a stochastic process. The first way to do so is to consider a volatility depending on the time
and on the level of the underlying. This is what we call Local Volatility models, the concept was
created by B. Dupire in 1993 [13], it is also attributed to Derman [8]. Dupire showed that such
models can replicate exactly a given surface of vanillas. They are written as

dSt

St
= r(t)dt +σD(t,St)dWt (6.1)

The second way to create some randomness in the volatility is to add to the model another stochatic
component, and then to consider the volatility as a function of this component. Those stochastic
volatility models are more complex and are richer from a theoretical point of view. The Stochastic
Differential Equation associated to them is the following

dSt

St
= r(t)dt +b(yt)dW 1

t

dyt = µ(t,yt)dt +ξ(t,yt)dW 2
t

6.1.1 Dupire’s model

Dupire’s formula

In this brief subsection, we recall the results from Dupire. Under the dynamics described in (6.1),
if one considers an option with terminal payoff h(S), then the price of this option P(t,S) satisfies
the following pde

∂P

∂t
+

σ2(t,S)

2
S2 ∂2P

∂S2 + rS
∂P

∂S
− rP = 0 (6.2)

with the terminal condition P(T,S) = h(S). The case we are interested in is the one of vanilla
options h(S) = (S−K)+. Let us write P as a function of the four variables C(t,S;T,K). Differenti-
ating twice the pricing Equation (6.2) with respect to the strike gives a pde with terminal condition
δS=K and unknow function G = ∂2C

∂K2 . By uniqueness, G is thus the Green function associated to the
linear equation (6.2). As a function of (T,K) it verifies the adjoint of equation (6.2), also known as
Kolmogorov forward equation

∂G

∂T
− ∂2

∂K2 (
σ2(T,K)

2
K2G)+ r

∂

∂K
(KG)+ rG = 0

with the initial condition G|T=t = δS=K . Integrating twice with respect to K this last equation gives
at last

∂C

∂T
− σ2(T,K)

2
K2 ∂2C

∂K2 + rK
∂C

∂K
= 0 (6.3)

with the initial condition C(t,S; t,K) = (S−K)+.
Eventually, we take an initial state (t0,S0) and a sufficiently smooth surface of vanillas C(T,K) for
T > t0 (the exact smoothness of the surface is not the question here, for details we refer the reader



to [13]). This allows us to take

σ2(T,K) = 2
∂C
∂T

+ rK ∂C
∂K

K2 ∂2C
∂K2

(6.4)

The uniqueness of the solution of (6.3) guarantees us that a model with the local volatility (6.4)
gives the exact prices C. This was Dupire’s original purpose. As pointed out in the Introduction, it
is an essential feature: it feels comfortable hedging a product using vanillas that are properly fitted
to the market.

Dynamics of Local Volatility models

Nevertheless, local volatility models have a major drawback, their dynamics with respect to spot
shifts are inconsistent with the markets. Indeed, one can observe on market quotes that when the
spot moves in a certain direction, the surface of vanillas moves in the same direction: if the spot
increases, the smile at a given maturity shifts to the right. And inversely when the spot decreases. In
the article [9], P. Hagan, D. Kumar, A. Lesniewski and D. Woodward use first-order approximations
of the implied volatility in the case of a Local Volatility depending only on the spot to prove that
the dynamics in such a model are wrong: the smile moves in the opposite direction as the price of
the underlying asset.
To illustrate this fact, we conduct a numerical simulation. Let us take a surface of vanilla prices
(one can find the exact surface in the Appendix C). Using a local volatility model and a Monte-
Carlo algorithm, we compute the implied volatility for differents strikes and maturities using an
initial spot value of 1. We then make the same computations shifting the spot in both directions and
plot the evolution of the smile after such changes.

Figure 6.1: Implied Volatility for shifted initial spot values

We notice that the smile evolves accordingly to the predictions of Hagan, Kumar, Lesniewski and
Woodward. In local volatility models, the smile exhibits the wrong sensitivity to spot shifts. This
is potentially problematic with regard to hedges, they become unstable when the spot moves.



6.1.2 Mimicking theorem and Stochastic volatilities

This last statement led researchers to consider a more general class of models. The stochasticity
of the volatility now stems from another stochastic component, different from the one of the spot.
Those Stochastic Volatility models can be written as

dSt

St
= r(t)dt +b(yt)dW 1

t (6.5)

dyt = µ(t,yt)dt +ξ(t,yt)dW 2
t

where W 1
t is a one-dimension standard brownian motion, yt the stochastic factor of the volatility,

W 2
t a k-dimensional brownian motion, possibly correlated to W 1

t and ξ the volatility matrix of the
volatility factor. We let Xt = (St ,yt) denote this k+1-dimensional process, we write its diffusion as

dXt = αtdt +βtdWt (6.6)

As was stressed in the Introduction, as far as vanillas are concerned, only the one-dimensional
marginal of the first coordinate of Xt matters. To exploit this fact, we turn ourselves to a mimicking
theorem from Gyongy [10]2

Theorem 8. If Xt follows (6.6), with βt verifying the uniform ellipticity condition βT
t βt ≥ KI

k+1 ,

then the functions

σ(t,x) = (E[βT
t βt |Xt = x])

1
2

γ(t,x) = E[αt |Xt = x]

are bounded, measurable, from R+×Rk+1 into the space of (k+1)× (k+1) symmetric matrices

and into Rk+1 respectively and there exists a weak solution to the sde

dxt = γ(t,xt)dt +σ(t,xt)dWt (6.7)

That solution has the same one-dimensional marginals as Xt .

Remark. One says that the stochastic differential equation (6.7) has a weak solution if there exists

a probability space (Ω,F ,P), an Ft-Brownian motion W t and an Ft-adapted stochastic process xt

such that

dxt = γ(t,xt)dt +σ(t,xt)dW t

The theorem we just cited allows to deal with the problem: if we consider the Stochastic Volatility
model (6.5), then we are able to construct a Local Volatility model that has the exact same vanillas
as the initial Stochastic Volatility model. Indeed, applying Gyongy to (6.6), tells us that the first
coordinate of xt has the same law as St . And this first coordinate St follows the stochastic differential
equation

dSt = r(t)dt +E[b2(yt)|St = s]
1
2

s=St
dW

1
t

This "localization" of a stochastic volatility model is treated thoroughly in an article by M. Atlan,
precisely entitled "Localizing volatilities" [11]. Let us now study the inverse problem: given a
surface of vanillas, construct a stochastic volatility model that replicates them. In order to answer

2Krylov also studied in [46] the construction of stochastic differential equations whose solutions mimick certain features of the solutions of Ito
processes.



this problem, we consider a mix of the two models previously described, a Local and Stochastic
Volatility model.

6.2 Partial Differential Equation for the calibration of LSV models

The diffusion for our model is assumed to be the following

dSt

St
= r(t)dt +a(t,St)b(yt)dW 1

t (6.8)

dyt = µ(t,yt)dt +ξ(t,yt)dW 2
t (6.9)

(St , t ≥ 0) is the stock price process and (yt , t ≥ 0) the stochastic component of the volatility. The
function b simply transforms that factor into a proper volatility. a is the local volatility part of the
model, exactly as in Dupire’s formula, we shall specify its value depending on the vanillas we want
to calibrate. ξ is the volatility of the volatility factor (commonly called vovol) and µ is a drift term.
W 1 and W 2 are one-dimensional standard brownian motions with correlation ρ.

6.2.1 Calibration equation

Let us now consider a surface of vanilla prices C(T,K) and the corresponding Local Volatility σD.
We make the following set of hypothesis

• (H1) for all t ≥ 0, S ∈ R∗
+ and (y,δ1,δ2) ∈ R3,

a2(t,S)b2(y)S2δ2
1 +2ρa(t,S)b(y)Sξ(t,y)δ1δ2 +ξ2(t,y)δ2

2 ≥ K(δ2
1 +δ2

2)

for a certain constant K > 0 (uniform ellipticity)

• (H2) the functions a2, b2, abξ and ξ2 belong to H2,h,h/2(R2), the function b2 belongs to
H2,h(R)

• (H3) r(t) is in H1,h/2(]0,T ]) and µ in H1,h,h/2(R)

Proposition 5. The diffusion model defined by (6.8-6.9) has a density with respect to Lebesgue

measure, we let p(t,S,y) denote said density. Moreover, if the model fits the surface of vanillas

C(T,K) then necessarily

a2(t,S) = σ2
D(t,S)

∫
R p(t,S,y)dy∫

R b2(y)p(t,S,y)dy
(6.10)

Proof. Given the regularity of the coefficients and the uniform ellipticity assumption (H1), we can
apply results from the chapter VI of Friedman’s book [5]. It ensures us that the transition probability
of the couple (St ,yt) has a transition density with respect to Lebesgue measure.

Remark. This existence does not need the coefficients to be differentiable with derivatives Holder.

Those assumptions are made to give us the right to take the adjoint of Kolmogorov backward

equation.

We now assume that our model fits exactly the surface C. Letting (S0,y0) denote the initial state of



the system, the joint density p(t,S,y) of the couple (St ,yt) verifies Kolmogorov forward equation

∂p

∂t
− ∂2

∂S2 (
1
2

a2b2S2 p)− ∂2

∂S∂y
(ρabξSp)− ∂2

∂y2 (
1
2

ξ2 p))+
∂

∂S
(rSp)+

∂

∂y
(µp) = 0

p(0,S,y) = δ(S = S0,y = y0)

Applying Fubini, we can define q(t,S) =
∫
R p(t,S,y)dy the first marginal density of our couple. We

can then integrate the previous equation. Passing to the limit to nullify the integration constant, we
obtain

∂q

∂t
− ∂2

∂S2 (
1
2

a2S2(
∫
R

b2(y)p(t,S,y)dy))+
∂

∂S
(rSq) = 0

q(0,S) = δ(S = S0)

We now apply this equation to a local volatility model, equivalent to the case b = 1 and a = σD.
qD, the density of the spot in this model solves the equation

∂qD

∂t
− ∂2

∂S2 (
1
2

σ2
DS2qD)+

∂

∂S
(rSqD) = 0

qD(0,S) = δ(S = S0)

Since we assumed that the vanillas of the LSV model are perfectly fitted, we have q = qD. Iden-
tifying the terms in the two last formulas gives us the necessary value of a for the vanillas to be
calibrated

a2(t,S) = σ2
D(t,S)

q∫
R b2 pdy

= σ2
D(t,S)

∫
R p(t,S,y)dy∫

R b2(y)p(t,S,y)dy

Using this proposition, and reintroducing the value of a in Kolmogorov forward equation, we see
that the joint density p(t,S,y) is solution of the nonlinear partial integro-differential equation

∂p

∂t
− ∂2

∂S2 (
1
2

σ2
Db2S2

∫
R pdy∫

R b2 pdy
p)− ∂2

∂S∂y
(ρσDbξS(

∫
R pdy∫

R b2 pdy
)

1
2 p)

− ∂2

∂y2 (
1
2

ξ2 p))+
∂

∂S
(rSp)+

∂

∂y
(µp) = 0 (6.11)

p(0,S,y) = δS0,y0 (6.12)

We thus have the equivalence between the existence of a model of the form (6.8-6.9) that calibrates
perfectly the vanillas C and the existence of a solution p to the pide (6.11) such that the function a

defined by (6.10) verifies the assumptions (H1) and (H2).
The reciprocal stems directly from using the solution p of the pide in the definition of a. The
diffusion then becomes a classic linear stochastic differential equation.

Remark. This pde approach of the problem makes the quotient
∫
R

b2 pdy∫
R

pdy
appear. Looking at it from

a probabilistic point of view, we notice that it is nothing but the conditional expectation of the

volatility squared, knowing the spot. Now, if we apply Gyongy theorem to the diffusion (6.8-6.9)

where a is replaced by the value we just computed, we get that the Local Volatility that replicates



the vanillas of our LSV is equal to

E[a2(t,St)b
2(yt)|St ] = E[σ2

D(t,St)

∫
R pdy∫

R b2 pdy
b2(yt)|St ] = σ2

D(t,St)

which confirms that our vanillas are properly fitted. The result we just saw in itself is not original,

the partial differential equation method however is unusual.

Furthermore, the quotient above is nothing else than the effective volatility mentioned in the intro-

duction.

6.2.2 Application of the results from Part I

We are now interested in the resolution of Equation (6.11). Taking the notations from Chapter 5,
we have, with d = 2 and x = (S,y)

V11(t,S,y, I) =
S√
I
σD(t,S) b(y) V12 = 0

λ11 = {1} f11(y) = b2(y)

V21(t,S,y, I) = ρ ξ(t,y) V22(t,S,y, I) =
√

1−ρ2 ξ(t,y)

λ12 = /0 λ21 = /0 λ22 = /0

µ1(t,S,y) = r(t) S µ2(t,S,y) = µ(t,y)

We start by a theoretical study of the solvability of the equation. Because of the theoretical limi-
tations faced in Part I, we are obliged to be in a bounded domain framework. We thus consider a
rectangle ]Sm,SM[×]ym,yM[ and let Ω denote this rectangle where the corners have been smoothed
so that Ω verifies Property 1 and 2 (we replace the corners with crescents).
The domain of definition is DT =]0,T [×Ω. We recall that B = {0}×Ω and CT =]0,T ]×∂Ω. We
take an initial condition p0(S,y) and define a function Ψ on B∪CT by

Ψ = p0 on B

Ψ(t,S,y) = p0(S,y) for (S,y) ∈ ∂Ω

As was done previously, we define two sets (the first one is trivial, the second one stems from the
change we operated on the initial rectangle)

ΩS = {S ∈ R such as ∃y ∈ R with (S,y) ∈ Ω} = ]Sm,SM[

Ω(S) = {y ∈ R such as (S,y) ∈ Ω}

The integral over R becomes, for t > 0 and S ∈ ΩS∫
Ω(S) p(t,S,y)dy∫

Ω(S) b2(y)p(t,S,y)dy

We take any y0 in ]ym,yM[ and make the following assumptions

• (A1) Ψ belongs to H2,h,h/2(∂DT ) and is strictly positive on B∪CT

• (A2) σD belongs to C3(R∗
+×R∗

+), b to C3(R) and ξ to C3(R∗
+×R)



• (A3) for all t ≥ 0, (S,y) ∈ Ω and (δ1,δ2) ∈ R2,

S2

b2(y0)
σ2

D(t,S)b
2(y)δ2

1 +2ρ
S

b(y0)
σD(t,S)b(y)ξ(t,y)δ1δ2 +ξ2(t,y)δ2

2 ≥ K(δ2
1 +δ2

2)

• (A4) Ψ verifies two different compatibility conditions, ie on ∂B we have

∂Ψ

∂t
=

∂2

∂S2 (
1
2

σ2
Db2 S2

b2(y0)
Ψ)+

∂2

∂S∂y
(ρσDbα

S

b(y0)
Ψ)+

∂2

∂y2 (
1
2

α2 p)− ∂

∂S
(rSΨ)− ∂

∂y
(βΨ)

∂Ψ

∂t
=

∂2

∂S2 (
1
2

σ2
Db2S2

∫
Ψdy∫

b2Ψdy
Ψ)+

∂2

∂S∂y
(ρσDbαS(

∫
Ψdy∫

b2Ψdy
)

1
2 Ψ)

+
∂2

∂y2 (
1
2

α2Ψ))− ∂

∂S
(rSΨ)− ∂

∂y
(βΨ)

• (A5) r(t) is in H1,h/2(]0,T ]) and µ in H1,h,h/2(R)

Proposition 6. For any T > 0, there exists a constant b∗ > 0 such that, if |b2 − b2(y0)| ≤ b∗ on

]ym,yM[, then the equation

∂p

∂t
− ∂2

∂S2 (
1
2

σ2
Db2S2

∫
Ω(S) pdy∫

Ω(S) b2 pdy
p)− ∂2

∂S∂y
(ρσDbαS(

∫
Ω(S) pdy∫

Ω(S) b2 pdy
)

1
2 p)

− ∂2

∂y2 (
1
2

α2 p))+
∂

∂S
(rSp)+

∂

∂y
(βp) = 0

p = Ψ on B∪CT

admits a solution on DT , this solution belongs to H2,h,h/2(DT ).

Proof. This result is a direct application of Theorem 5. All the assumptions needed are verified, for
instance, we do have S√

I
σD(t,S) b(y) ∈ C3(Ω×R∗

+) with the three derivatives with respect to the

last variable bounded on [η,+∞[ for all η > 0.

From a theoretical point of view, this result is not completely satisfying, for two reasons. The first
one is the necessity of considering bounded domains. And the second is the initial condition that
needs to be strictly positive and in H2,h,h/2. We could indeed consider a sequence of such functions
approximating the Dirac mass in (6.12). But the corresponding sequence of numbers b∗ would have
no reason to be bounded away from 0.
However, from a numerical point of view, we are obliged to consider bounded domains and an
approximation of the Dirac as initial condition, so our result gives us at least the existence in such
a case.

6.3 Numerical results

The theoretical limitations we ran into trying to prove the global existence of a solution and the par-
tial result we were only able to obtain motivated the numerical resolution of that type of equation.
Discussions with a few practitioners confirmed that instabilities occur in the calibration when the
vovol (in our notations the function ξ) is too large. This seems to confirm the idea that when the
function b oscillates too much (a change of scale in the factor yt clearly shows the equivalence be-
tween a b that moves a lot and a large ξ), the resolution of the equation is not guaranteed anymore.



In this section, we study the calibration that stems from solving the partial differential equation
(6.11), for two stochastic volatilities: "lognormal" and "CIR". The details of the algorithm used for
the resolution and a study of the instabilities can be found in Part III.

6.3.1 Lognormal volatility

We start with a simple mean reverting model for the volatility factor, the function b is chosen as an
exponential

dSt

St
= r(t)dt +a(t,St)exp(yt)dW 1

t (6.13)

dyt = κ (δ− yt) dt + γ dW 2
t (6.14)

with

a2(t,S) = σ2
D(t,S)

∫
R p(t,S,y)dy∫

R exp(2y)p(t,S,y)dy

We solve the Equation (6.11) with the functions we just chose and the Local Volatility σD associated
to the implied volatility surface described in Appendix C. Once we have found the function p,
density of the couple (St ,yt), we compute the vanilla prices for different strikes and maturities
using this density. To have a point of comparison, we also calculate the same prices with the Local
Volatility σD and compare all of them to the targeted prices (column TP).

Table 6.1: 6 months Vanillas

Strike TP LV LSV
0.5 54.54 54.46 54.43
0.6 51.35 51.34 51.20
0.7 48.12 48.14 48.02
0.8 44.86 44.93 44.82
0.9 41.57 41.66 41.56
1.0 38.26 38.32 38.15
1.1 35.41 35.46 35.34
1.2 33.25 33.27 33.15
1.3 31.68 31.67 31.57
1.4 30.53 30.48 30.46
1.5 29.80 29.72 29.76

Table 6.2: 1 year Vanillas

Strike TP LV LSV
0.5 49.82 49.79 49.71
0.6 47.23 47.22 47.15
0.7 44.61 44.60 44.56
0.8 41.97 41.98 41.92
0.9 39.30 39.32 39.29
1.0 36.63 36.61 36.59
1.1 34.31 34.30 34.29
1.2 32.35 32.38 32.36
1.3 30.75 30.77 30.75
1.4 29.43 29.44 29.44
1.5 28.41 28.42 28.40

We then plot the gaps between the original vanillas we wanted to calibrate and the ones obtained
with the model.

We see that the calibration is quite efficient, the gaps are equivalent to the ones of the Local Volatil-
ity model. Reducing the grid, and using fewer time points gives a less accurate convergence,
however, it makes the calculation quicker. A tradeoff has naturally to be found between the quality
of calibration for long maturities, and calculation time. We now reproduce the same computations
for another model of volatility.



Figure 6.2: Smile for 1 year maturity calls, computed with LV and LSV

6.3.2 CIR

In this subsection, we are interested in the calibration of a CIR model, the diffusion is the following

dSt

St
= r(t)dt +a(t,St)ytdW 1

t (6.15)

dyt = κ (α− yt) dt + γ
√

yt dW 2
t (6.16)

Detailled properties of this process are described in Appendix D. In particular, as long as 2κα > γ2,
yt is strictly positive a.e. Once again, we solve the Equation (6.11) with this stochastic volatility
and plot the results of the calibration.

Figure 6.3: Smile for 1 year maturity vanillas computed with LV and calibrated CIR

The exact gap between the curves can be found in Appendix C. The accuracy of the fit is satisfac-
tory.



Chapter 7

Application to the "Local Correlation"

model

In this chapter, we are interested in the calibration of the vanillas of a basket on n underlyings. We
consider a market with n stocks and a basket on those stocks. The purpose is to define a diffusion
model for those underlyings that is able to reproduce their implied volatility surface as well as the
one of the basket.
We start with notations, let (Si

t)1≤i≤n denote the n stocks involved in our problem. The basket’s
value is given by

Bt =
n

∑
i=1

wiS
i
t (7.1)

where the set (wi)1≤i≤n stands for the weights of the different underlyings. They are assumed to be
constant in the rest of our work. We also fix n+1 surfaces of vanillas (Ci(T,K))1≤i≤n and CB(T,K).

7.1 Inconsistencies between stock and basket options

The naive approach to solve this problem is simply to consider n local volatility models

dSi
t

Si
t

= r(t)dt +σi(t,S
i
t)dW i

t (7.2)

We know how to choose the functions σi to fit the surfaces (Ci(T,K))1≤i≤n with this diffusion
for the Si. The correlation matrix ρ = (ρi j)1≤i, j≤n associated to the standard brownian motions
W i

t of each underlying can be estimated with historical data. The model is now entirely defined.
By equation (7.1) of Bt , the vanilla prices for the basket are completely determined and are equal
to E[(∑wiS

i
T −K)+]. However, there is no particular reason why the surface computed in this

framework would be equal to CB(T,K). In fact, the skew of the basket is more pronounced on the
market than in a model with constant correlations between the underlyings [50].

7.2 "Local Correlation" model

In the manner of B. Dupire who decided to let the volatility depend on the level of the spot, we add
a degree of freedom to our model by distorting the matrix of correlation with a function of Bt the
level of the basket. This method is involved in [51], where the spot level induces some feedback on
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the values of the different underlyings. In our context, the new correlation matrix we take is written
as a linear combination of ρ and of the constant matrix with only 1 for coefficients. This matrix ρ̃
is equal to

ρ̃i j = λ+(1−λ)ρi j = ρi j +λ(1−ρi j) (7.3)

We shall see while writing the calibration equation that λ has to be chosen as a function of the
time and of Bt . The matrix ρ̃i j can be seen as an analoguous of Dupire’s Local Volatility, a "Local
Correlation" so to speak.
Now that the model is properly defined, let us precise the assumptions needed to pursue the cali-
bration

• (H1) the matrix ρ is a correlation matrix1, ie is semidefinite, positive, with non-diagonal
coefficients in ]− 1,1[ and diagonal coefficients equal to 1. In order to be in a well-posed
pde framework, we have to strengthen this definition and assume that ρ is definite, we let Kρ

denote its smaller (necessarily strictly positive) eigenvalue.

• (H2) the functions σi belong to H2,h,h/2(R) and the Siσi(t,S
i) are bounded away from 0 on

R+×R∗
+.

• (H3) r(t) is in H1,h/2(]0,T ])

Given those assumptions, we have existence of a density in the more general case of a matrix ρ
function of the couple (t,B). We are also able to write a condition for the vanillas of the model to
be fitted.

Proposition 7. The diffusion model defined by (7.2), in the more general case of a correlation

function of the couple (t,B), has a density p(t,S1, ..,Sn) with respect to Lebesgue measure. Fur-

thermore, this model calibrates the surface CB(T,K) of Bt’s vanillas (represented by it’s local

volatility surface σB) if and only if

σ2
B(t,B)B

2
∫

p̃(t,B,S2, ..,Sn)dS2..dSn = ∑
1≤i, j≤n

wiw jρi j(t,B)
∫
(β̃iβ̃ j p̃)(t,B,S

2, ..,Sn)dS2..dSn(7.4)

where

p̃(t,B,S2, ..,Sn) = p(t,S1,S2, ..,Sn) β̃i(t,B,S
2, ..,Sn) = Siσi(t,S

i)

with

S1 =
1

w1
(B−

n

∑
i=2

wiS
i) (7.5)

Proof. Using the same argument and the results from Friedman [5], we get the existence of the
transition density p(t,S1, ..,Sn). We can now write the calibration problem for the vanillas of the
basket Bt . The density we just defined satisfies Kolmogorov forward equation

∂p

∂t
− 1

2 ∑
1≤i, j≤n

∂2

∂Si∂S j
(ρi jSiσiS jσ j p)+ ∑

1≤i≤n

∂

∂Si
(rSi p)+ rp = 0

1An interesting reference on the subject, with a different parameterization can be found in [42]



To ease the problem, it is useful to change the coordinates (S1, ...,Sn) into (B,S2, ...,Sn) with S1

defined by (7.5). After computations, the equation becomes

∂p̃

∂t
− 1

2 ∑
1≤i, j≤n

wiw j
∂2

∂B2 (ρi jβ̃iβ̃ j p̃)−
1
2 ∑

2≤i, j≤n

(
∂2

∂Si∂S j
+wi

∂2

∂B∂S j
+w j

∂2

∂Si∂B
)(ρi jβ̃iβ̃ j p̃)

− ∑
2≤i≤n

w1
∂2

∂B∂S j
(ρ1iβ̃1β̃i p̃)+

∂

∂B
(rBp̃)+ ∑

2≤i≤n

∂

∂Si
(rSi p̃)+ r p̃ = 0

where p̃(B,S2, ...,Sn) and β̃i(B,S
2, ...,Sn) are defined above. We integrate the equation against the

variables (S2, ...,Sn), and writing q = 1
w1

∫
p̃dS2..dSn, we see that the density of the marginal law

of B satisfies

∂q

∂t
− 1

2 ∑
1≤i, j≤n

wiw j
∂2

∂B2 (ρi j

∫
β̃iβ̃ j p̃dS2..dSn)+

∂

∂B
(rBq)+ rq = 0

Comparing this equation to Dupire’s equation for the local volatility σB

∂q

∂t
− 1

2
∂2

∂B2 (σ
2
DB2q)+

∂

∂B
(rBq)+ rq = 0

we see that if our model reproduces the vanillas σD then, we have the equality

σ2
DB2

∫
p̃dS2..dSn = ∑

1≤i, j≤n

wiw jρi j

∫
β̃iβ̃ j p̃dS2..dSn

Reciprocally, the condition we just wrote is clearly sufficient for the options to be calibrated

Remark. Let us note that this condition is written as an equality between two functions of the time

and of B. The other variables are no longer represented.

We now assume that the condition (7.4) is not verified, the model defined by (7.2) does not fit the
vanillas of the basket Bt . We need to enrich it if we want to solve the calibration problem. Our
choice is to distort the correlation matrix. We write the new matrix ρ̃ as described before (7.3).
Hence, we denote by Θ the matrix Θi j = 1 for all 1 ≤ i, j ≤ n. We also notice that, the trace of ρ
being equal to n, Kρ is smaller than 1.

Lemma 5. The matrix ρ̃ = (1−λ)ρ+λΘ is also a correlation matrix as long as λ is in ]r,1[ with

r =−min(max
i 6= j

1+ρi j

1−ρi j
,

Kρ

n−Kρ
)< 0 (7.6)

Proof. Clearly, we have for all (ξi,ξ j) ∈ R2

∑
1≤i, j≤n

ξi((1−λ)ρi j +λ)ξ j ≥ Kρ(1−λ)|ξ|2 +λ( ∑
1≤i≤n

ξi)
2

If λ is positive, since Kρ(1− λ) is stricty positive, the matrix remains definite positive. Now, if
λ < 0, we can apply Cauchy-Schwarz to get

∑
1≤i, j≤n

ξi((1−λ)ρi j +λ)ξ j ≥ (Kρ(1−λ)+λn)|ξ|2

Since Kρ ≤ 1, we see that λ >− Kρ

n−Kρ
is enough for Kρ(1−λ)+λn to be stricly positive.



The diagonal coefficients of ρ̃ are still 1. As for the other terms, thanks to the first term in relation
(7.6), they still belong to the interval ]−1,1[.

We introduce the new correlation matrix in condition (7.4), this gives us the value of λ

λ(p̃) =

σ2
DB2 ∫ p̃dS2..dSn − ∑

1≤i, j≤n

wiw jρi j

∫
β̃iβ̃ j p̃dS2..dSn

∑
1≤i, j≤n

wiw j(1−ρi j)
∫

β̃iβ̃ j p̃dS2..dSn
(7.7)

λ(p̃) is a function of B and t. We can now use this value to write a pide on the density p̃. Any
solution of this equation is a density that calibrates the vanillas of the basket. The equation is the
following

∂p̃

∂t
+L1 p̃+L2(p̃) = 0 (7.8)

where L1 is linear and verifies

L1 p̃ =−1
2 ∑

1≤i, j≤n

wiw jρi j
∂2

∂B2 (β̃iβ̃ j p̃)−
1
2 ∑

2≤i, j≤n

ρi j(
∂2

∂Si∂S j
+wi

∂2

∂B∂S j
+w j

∂2

∂Si∂B
)(β̃iβ̃ j p̃)

− ∑
2≤i≤n

w1ρ1i
∂2

∂B∂S j
(β̃1β̃i p̃)+

∂

∂B
(rBp̃)+ ∑

2≤i≤n

∂

∂Si
(rSi p̃)+ r p̃

and L2 is the nonlinear part of the equation

L
λ( p̃)
2 (p̃) =−1

2 ∑
1≤i, j≤n

wiw j(1−ρi j)
∂2

∂B2 (λ(p̃)β̃iβ̃ j p̃)−
1
2 ∑

2≤i, j≤n

(1−ρi j)(
∂2

∂Si∂S j
+wi

∂2

∂B∂S j

+w j
∂2

∂Si∂B
)(λ(p̃)β̃iβ̃ j p̃)− ∑

2≤i≤n

w1(1−ρ1i)
∂2

∂B∂S j
(λ(p̃)β̃1β̃i p̃)

Remark. The operator L1+L2 stems from a change of coordinates on a uniformly elliptic operator.

It is also elliptic, uniformly on any domain where the β̃i are bounded away from 0 by a strictly

positive constant.

Furthermore, the initial condition is

p̃(0,B,S2, ...,Sn) = δ(∑wiS
i
0,S

2
0, ...,S

n
0)

where Si
0 is the market value at instant 0 of the i-th stock. Applying this initial condition to (7.7),

we see that the initial value of λ is

λ(p̃)(0,B) =

σ2
D(0,B)B

2 − ∑
1≤i, j≤n

wiw jρi jS
i
0σi(0,S

i
0)S

j
0σ j(0,S

j
0)

∑
1≤i, j≤n

wiw j(1−ρi j)S
i
0σi(0,S

i
0)S

j
0σ j(0,S

j
0)

(7.9)



7.3 Resolution of the equation for the calibration of a basket

7.3.1 Theoretical study

We still have time 0 < t ≤ T and space-variables x = (B,S2, ...,Sn) ∈ Ω ⊂ Rn. Ω remains an open
subset with a sufficiently smooth boundary. Since the first space-variable plays a particular part,
we write U = (S2, ...,Sn). We also denote by DT =]0,T [ × Ω the domain of definition and by
Db = {0} × Ω, DT

s = {T} × Ω and CT =]0,T [ × ∂Ω the different parts of the boundary. We also
specify ΩB = {B ∈ R/∃U ∈ Rn−1,(B,U) ∈ Ω} and ∀B ∈ ΩB,ΩU(B) = {U ∈ Rn−1/(B,U) ∈ Ω}.
We are interested in the following equation

∂p

∂t
+L1 p+L

λ(p)
2 (p) = 0 on DT ∪DT

s (7.10)

We add the boundary condition p = Ψ on Db ∪CT with Ψ constant on CT . The complexity of the
equation stems from the term λ

λ(p)(t,B) =

σ2
DB2 ∫

ΩU (B) pdU − ∑
1≤i, j≤n

wiw jρi j

∫
ΩU (B)

β̃iβ̃ j pdU

∑
1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
β̃iβ̃ j pdU

Remark. The equation (7.10) is very similar to the type of equations studied in Part I. The existence

result is obtained through the same means, we only need control over λ to be sure that this quantity

remains in the domain [r,1[. Here too, we have to suppose that the βi do not vary too much

The result we are interested in requires the following assumptions on the βi and Ψ.

• (A1) ∀1 ≤ i ≤ n,βi ∈ H2,h,h/2(DT ) and there exists two constants (βin f ,βsup) ∈ R2 such that

0 < βin f ≤ βi |βi|H2,h,h/2(DT ) ≤ βsup

• (A2) the functions βi are close to a constant ie ∀1 ≤ i ≤ n,∃β∗
i , |βi −β∗

i |H0(DT ) ≤ b∗ where b∗

will be computed later

• (A3) Ψ is strictly positive and in H2,h,h/2(∂DT ). Furthermore, the initial condition must verify
the inequality of Lemma 5 ie for all B ∈ ΩB,

r < λ(Ψ) =

σ2
DB2 ∫

ΩU (B)Ψ|Db
dU − ∑

1≤i, j≤n

wiw jρi j

∫
ΩU (B)

β̃iβ̃ jΨ|Db
dU

∑
1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
β̃iβ̃ jΨ|Db

dU

< 1

• (A4) compatibility conditions are obviously still necessary

∂Ψ

∂t
+L1Ψ+L

λ(Ψ)
2 (Ψ) = 0 on ∂Db

∂Ψ

∂t
+L1Ψ+Lλ∗

2 (Ψ) = 0 on ∂Db



where the quantity λ∗ is defined by

λ∗(t,B) =

σ2
DB2 − ∑

1≤i, j≤n

wiw jρi jβ
∗
i β∗

j

∑
1≤i, j≤n

wiw j(1−ρi j)β
∗
i β∗

j

(7.11)

We also define a function p0 as p0(t,B,U) = Ψ(B,U) on Ω for any t ≥ 0. By assumptions on Ψ,
the function p0 belongs to H2,h,h/2(DT ) and is strictly positive on DT . We write p0 = inf p0 and
p0 = sup p0.

Theorem 9. Under the previous assumptions, there exists 0 < b∗, 0 < T ∗ ≤ T and a solution

p ∈ H2,h,h/2(DT ∗
) of the equation (7.10) on DT ∗∪BT ∗

with boundary condition p = Ψ on Db∪CT ∗
.

Moreover, we have the inequality r ≤ λ(p) < 1 on DT ∗ ∪BT ∗
which guarantees us that the matrix

ρ̃ of our model is indeed a correlation matrix.

Proof. The proof of this result is almost identical to the one of Theorem 6. The assumption (A2)
gives us control over the variations of λ. We have the

Lemma 6. There exists two constants Kλ,K
′
λ (depending only on h, n, βin f , βsup, p0, p0 and Ω)

and a polynomial function P strictly positive and increasing on R∗
+ such that ∀p,q ∈ H2,h,h/2(DT )

verifiying
p0

2 ≤ p,q, we have

|λ(p)−λ∗|Dt

2+h ≤ b∗(1+b∗)3KλP(|p|Dt

2+h)

|λ(p)−λ(q)|Dt

2+h ≤ b∗(1+b∗)3K′
λ|p−q|Dt

2+hP(|p|Dt

2+h)P(|q|D
t

2+h)

Remark. As a consequence of this lemma, we see that ∀p ∈ H2,h,h/2(DT ) verifying
p0

2 ≤ p, λ(p)

belongs to H2,h,h/2(DT ).

To solve Equation (7.10), we apply the same fixed point method than before and use Lemma 6 to
get an upper bound on the second term. Let us consider the application M which takes a function
u ∈ X t (where t will be defined in order for the distorted matrix ρ̃ to remain a correlation matrix)
and sends it on v ∈ H2,h,h/2(Dt) solution of the equation

∂v

∂t
+L1v+Lλ∗

2 (v) = Lλ∗
2 (u)−L

λ(u)
2 (u) on Dt ∪Dt

s (7.12)

and v = Ψ on Db ∪Ct . This application sends the set

X t = {p ∈ H2,h,h/2(Dt), |p− p0|D
t

2+h ≤
p0

2
, p = Ψ on Db ∪Ct}

into itself and is a contraction for a suitable b∗. We compute, with v = M(u) and q = M(p)

∂v− p0

∂t
+L1(v− p0)+Lλ∗

2 (v− p0) = Lλ∗
2 (u)−Lλ

2(u)−
∂p0

∂t
−L1 p0 −Lλ∗

2 (p0)

and

∂v−q

∂t
+L1(v−q)+Lλ∗

2 (v−q) = Lλ∗
2 (u− p)− (L

λ(u)
2 (u)−L

λ(p)
2 (p))



Exactly as in Chapter 5, we apply Schauder’s inequality to get

|v− p0|D
t

2+h ≤ KKλb∗(1+b∗)3P(|u|Dt

2+h)

|v−q|Dt

2+h ≤ KK′
λb∗(1+b∗)3|u− p|Dt

2+hP(|u|Dt

2+h)P(|p|D
t

2+h)

where P are polynomial functions, strictly positive and increasing on R+. The first inequality allows
to prove that v belongs to X t for b∗ small enough, the second that M is a contraction.
Let us now define the value of t. We apply Theorem 1 to the function ṽ = v− p0. v and p0 are equal
to ψ on Db ∪Ct , thus ṽ is null on the boundary. Hence

|ṽ|H0(Dt) ≤ tKH0 |Lλ∗
2 (u)−Lλ

2(u)−
∂p0

∂t
−L1 p0 −Lλ∗

2 (p0)|H0(Dt)

Since, |λ(v)−λ(p0)| ≤ K|ṽ| and λ(p0) = λ(Ψ), we get from assumption (A3) that

r ≤ λ(v)< 1

for t small enough. There remains to prove Lemma 6. Let us compute

λ(p)−λ∗ =

σ2
DB2 ∫

ΩU (B) pdU − ∑
1≤i, j≤n

wiw jρi j

∫
ΩU (B)

β̃iβ̃ j pdU

∑
1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
β̃iβ̃ j pdU

−
σ2

DB2 − ∑
1≤i, j≤n

wiw jρi jβ
∗
i β∗

j

∑
1≤i, j≤n

wiw j(1−ρi j)β
∗
i β∗

j

= (σ2
DB2T1 −T2)T3

with

T1 = ∑
1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
(β∗

i β∗
j − β̃iβ̃ j)pdU

T2 = ∑
1≤i, j,k,l≤n

wiw jwkwlρi j(1−ρkl)
∫

ΩU (B)
(β̃iβ̃ jβ

∗
kβ∗

l −β∗
i β∗

j β̃kβ̃l)pdU

and

T3 =
1

∑
1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
β̃iβ̃ j pdU ∑

1≤i, j≤n

wiw j(1−ρi j)β
∗
i β∗

j

Those three terms can be computed exactly as in Appendix A. It gives us the result we wanted. We
also have

λ(p)−λ(q) = (σ2
DB2T ′

1 −T ′
2)T

′
3

with

T ′
1 = ∑

1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
β̃iβ̃ jqdU ∑

1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
(β∗

i β∗
j − β̃iβ̃ j)(p−q)dU

− ∑
1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
(β∗

i β∗
j − β̃iβ̃ j)qdU ∑

1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
β̃iβ̃ j(p−q)dU



T ′
2 = ∑

1≤i, j,k,l≤n

wiw jwkwlρi j(1−ρkl)
∫

ΩU (B)
(β̃iβ̃ jβ

∗
kβ∗

l −β∗
i β∗

j β̃kβ̃l)(p−q)dU

∑
1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
β̃iβ̃ jqdU − ∑

1≤i, j≤n

wiw j(1−ρi j)
∫

ΩU (B)
β̃iβ̃ j(p−q)dU

∑
1≤i, j,k,l≤n

wiw jwkwlρi j(1−ρkl)
∫

ΩU (B)
(β̃iβ̃ jβ

∗
kβ∗

l −β∗
i β∗

j β̃kβ̃l)qdU

and

T ′
3 =

1

∑
1≤i, j≤n

wiw j(1−ρi j)
∫

β̃iβ̃ j pdU ∑
1≤i, j≤n

wiw j(1−ρi j)
∫

β̃iβ̃ jqdU ∑
1≤i, j≤n

wiw j(1−ρi j)β
∗
i β∗

j

which concludes the proof.

Remark. Once again, the existence result is partial. In the case of "Local Correlation", the proof

requires for the βi to be close to constants, the volatilities σi must behave like 1
Si

.

7.3.2 Numerical Resolution

In this subsection, we present the results of the calibration for a basket on two underlyings. Let us
consider two assets, we assume both of them generate the following implied volatility surface

Table 7.1: Implied Volatility Surface for the basket’s underlyings

K
T

0,088 0,167 0,25 0,50 0,75 1,0 1,1

80% 48,0% 47,9% 46,5% 45,0% 43,8% 43,0% 43,0%
90% 45,0% 44,9% 44,1% 43,0% 42,0% 41,4% 41,4%
100% 43,0% 42,9% 42,2% 41,5% 40,8% 40,4% 40,4%
110% 41,5% 41,4% 40,8% 40,3% 39,9% 39,6% 39,6%
120% 41,0% 40,9% 40,6% 40,2% 39,7% 39,4% 39,4%

Using a Monte-Carlo simulation and the Local Volatilities stemming from those surfaces, we
compute the theoretical prices for the basket Bt , with weights w1 = w2 = 0.5 and a correlation
ρ12 =−0.5

Table 7.2: Theoretical Implied Volatility Surface for the basket

K
T

0,088 0,167 0,25 0,50 0,75 1,0 1,1

80% 22,90% 22,54% 21,80% 20,72% 20,00% 19,61% 19,54%
90% 21,52% 21,21% 20,73% 19,78% 19,34% 19,03% 19,04%

100% 20,01% 19,94% 19,83% 19,15% 18,91% 18,68% 18,71%
110% 18,73% 18,43% 18,77% 18,58% 18,47% 18,26% 18,31%
120% 17,91% 17,67% 18,04% 18,11% 18,15% 18,04% 18,13%

We distort this theoretical surface by a factor of 0.9 making the prices of the basket inconsistent
with the prices of the underlyings and apply our calibration algorithm. Solving the partial integro-
differential equation (7.8) gives the following vanillas (quoted in implied volatility)



K
T

0,25 0,50 0,75 1,0

Theor. LC Theor. LC Theor. LC Theor. LC
80% 19,62% 19,77% 18,65% 19,03% 18,00% 18,55% 17,65% 18,14%
90% 18,66% 18,83% 17,80% 18,21% 17,40% 17,91% 17,13% 17,70%
100% 17,85% 17,66% 17,24% 17,18% 17,02% 17,08% 16,81% 16,99%
110% 16,89% 16,66% 16,72% 16,54% 16,63% 16,34% 16,44% 16,35%
120% 16,23% 16,02% 16,29% 16,24% 16,34% 16,11% 16,24% 16,26%

Table 7.3: Calibration of the basket

The results are rather satisfactory, especially at the money. Due to lengthy computations, we chose
to define a sparse initial surface, this is probably why the calibration is not better far from the
money. However, the fitting method appears to be valid. In Appendix C, we give results for
other correlations and weights. Now follows an outlook of the values taken by the new correlation
ρ̃ at different maturities when the theoretical surface is distorted by factors 0.95 and 1.05. The
parameters are: ρ = 0.5, w1 = 0.7 and w2 = 0.3.

Figure 7.1: Local Correlation for different distorsions and different maturities

As expected, we notice that the Local Correlation and the distorsion factor evolve in the same direc-
tion. The underlyings must be more correlated when the implied volatility of the basket is higher,
and reciprocally. Furthermore, it appears that in the case of the 0.95 distorsion, the correlation has
to violently decrease for high values of B: the two underlyings must be anti-correlated when they
are both large.
As for the influence of the maturity, we must first explain that in the computation of λ, when the
denominator is smaller than 10−6, we chose not to change the correlation, to avoid numerical er-
rors. It appears that, as long as B is in a zone where λ was actually computed, the framework we
chose to test the calibration actually generates a Local Correlation constant in time.



Chapter 8

Application to stochastic interest rates

In this chapter, we are interested in hybrid local volatility models with stochastic rates. We assume
that the interest rate is stochastic, it follows a diffusion equation. The volatility depends on the level
of the spot exactly as in a local volatility model. We are looking for the exact value of the volatility
that enables us to calibrate the vanillas in this model.

8.1 Hybrid Local Volatility models

8.1.1 Calibration equation

The risk-neutral diffusion of the model is written as

dSt

St
= r(t,yt)dt +σ(t,St)dW 1

t (8.1)

dyt = µ(t,yt)dt +λ(t,yt)dW 2
t

The two brownian motions are correlated, the value of the correlation is assumed to be constant,
still equal to ρ. We make the classic assumptions on the coefficients of the diffusion

• (H1) for all t ≥ 0, S ∈ R∗
+ and (y,δ1,δ2) ∈ R3,

σ2(t,S)δ2
1 +2ρσ(t,S)λ(t,y)δ1δ2 +λ2(t,y)δ2

2 ≥ K(δ2
1 +δ2

2)

• (H2) the functions r, σ and λ belong to H2,h,h/2(]0,T [×R)

• (H3) µ is in H1,h,h/2(]0,T [×R)

Proposition 8. The diffusion model defined above has a transition density with respect to Lebesgue

measure. The value of σ that fits the vanillas is given by

σ2(t,S) = σ2
D(t,S)+2

r(t)
∫
R

∫ +∞
S p(t,s,y)dsdy− ∫

R

∫ +∞
S r(t,y)p(t,s,y)dsdy

S
∫
R p(t,S,y)dy

(8.2)

where p(t,S,y) is the density of the couple (St ,yt). And r(t) a deterministic curve of rates used in

the computation of Dupire’s local volatility σD.

Proof. The existence of the density p(t,S,y) has already been proved. Let us prove Formula (8.2).
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The function p solves the forward parabolic equation

∂p

∂t
− ∂2

∂S2 (
1
2

σ2S2 p)− ∂2

∂S∂y
(ρσλSp)− ∂2

∂y2 (
1
2

λ2 p))+
∂

∂S
(rSp)+

∂

∂y
(µp)+ rp = 0

with the initial condition p(0,S,y) = δ(S = S0,y = y0). As previously, we integrate the equation
with respect to y, writing q(t,S) =

∫
R p(t,S,y)dy

∂q

∂t
− ∂2

∂S2 (
1
2

σ2S2q)+
∂

∂S
(S

∫
R

r(t,y)p(t,S,y)dy)+
∫
R

r(t,y)p(t,S,y)dy = 0

This equation needs to be matched with

∂qD

∂t
− ∂2

∂S2 (
1
2

σ2
DS2qD)+

∂

∂S
(rSqD)+ rqD = 0

qD(0,S) = δ(S = S0)

Both of them can be written as

1
2

σ2S2 =

∫ +∞
0 (s−S)+(∂q

∂t
+ ∂

∂s
(s
∫

rpdy)+
∫

rpdy)ds

q

1
2

σ2
DS2 =

∫ +∞
0 (s−S)+(∂qD

∂t
+ ∂

∂s
(srqD)+ rqD)ds

qD

We compute
∫ +∞

0
(s−S)+

∂

∂s
(s
∫

rpdy)ds =
∫ +∞

0
(s−S)+(s

∂

∂s
(
∫

rpdy)+
∫

rpdy)ds

= −
∫ +∞

0

∂

∂s
((s−S)+)s

∫
rpdyds

= −
∫ +∞

0
s1s≥S

∫
rpdyds

where the second line stems from a simple integration by parts. Reintroducing this into the previous
equations, we get

1
2

σ2S2 =

∫ +∞
0 (s−S)+ ∂q

∂t
ds−S

∫ +∞
S

∫
rpdyds

q

1
2

σ2
DS2 =

∫ +∞
0 (s−S)+ ∂qD

∂t
ds− rS

∫ +∞
S qDds

qD

In order to calibrate the vanillas, all we need to do is match the marginal density q with qD, this
gives us the necessary condition

1
2

σ2S2 +
S
∫ +∞

S

∫
rpdyds

q
=

1
2

σ2
DS2 +

rS
∫ +∞

S qds

q

The only thing that remains to be done now is replace q by
∫
R p(t,S,y)dy. This completes the

proof.



8.1.2 Theoretical study

The calibration equation for the vanillas of our hybrid model is thus

∂p

∂t
− ∂2

∂S2 (
1
2

σ2S2 p)− ∂2

∂S∂y
(ρσλSp)− ∂2

∂y2 (
1
2

λ2 p))+
∂

∂S
(rSp)+

∂

∂y
(µp)+ rp = 0 (8.3)

with σ given by formula (8.2). Using the same technics as in Part I, we are able to prove an
existence result under a certain number of assumptions. The domain of definition DT =]0,T [×Ω
for the equation still has to be bounded, we define

ΩS = {S ∈ R such as ∃y ∈ R with (S,y) ∈ Ω}
Ωy = {y ∈ R such as ∃S ∈ R with (S,y) ∈ Ω}

Ω(S) = {y ∈ R such as (S,y) ∈ Ω}
ω(S) = {(s,y) ∈ [S,+∞[×R such as (s,y) ∈ Ω}

The definition (8.2) becomes, for t > 0 and S ∈ ΩS

σ2(t,S) = σ2
D(t,S)+2

∫
ω(S)(r(t)− r(t,y))p(t,s,y)dsdy

S
∫

Ω(S) p(t,S,y)dy

The boundary condition Ψ on B∪CT p0(S,y) is defined as earlier by

Ψ = p0 on B Ψ(t,S,y) = p0(S,y) for (S,y) ∈ ∂Ω

with p0(S,y) the initial condition. The coefficients of equation (8.3) are assumed to verify the
sufficient properties

• (A1) Ψ belongs to H2,h,h/2(∂DT ) and is strictly positive on B∪CT

• (A2) σD belongs to C3(R∗
+×R∗

+) and λ to C3(R∗
+×R)

• (A3) for all t ≥ 0, (S,y) ∈ Ω and (δ1,δ2) ∈ R2,

σ2
D(t,S)S

2λ(t,y)δ2
1 +2ρσD(t,S)Sλ(t,y)δ1δ2 +λ2(t,y)δ2

2 ≥ K(δ2
1 +δ2

2)

• (A4) Ψ verifies the two different compatibility conditions on ∂B

∂Ψ

∂t
=

∂2

∂S2 (
1
2

σ2
DS2Ψ)+

∂2

∂S∂y
(ρσDSλΨ)+

∂2

∂y2 (
1
2

λ2Ψ)− ∂

∂S
(rSΨ)− ∂

∂y
(µΨ)− rΨ

∂Ψ

∂t
=

∂2

∂S2 (
1
2
(σ2

D +2

∫
ω(S)(r− r)Ψdsdy

S
∫

Ω(S)Ψdy
)S2Ψ)+

∂2

∂S∂y
(ρ

√

σD +2

∫
ω(S)(r− r)Ψdsdy

S
∫

Ω(S)Ψdy
SλΨ)

+
∂2

∂y2 (
1
2

λ2Ψ)− ∂

∂S
(rSΨ)− ∂

∂y
(µΨ)− rΨ

• (A5) r is in H1,h/2(]0,T ]) and r in H2,h,h/2(]0,T [×R)

Proposition 9. There exists a constant r∗ > 0 such that, if

∀y ∈ Ωy, |r(.,y)− r(.)|H1,h/2(]0,T ]) ≤ r∗ (8.4)

then equation (8.3) has a solution on DT , this solution belongs to H2,h,h/2(DT ).



Proof. The form of the equation is slightly different than previously. The same method works
nevertheless. Here, all we need to prove is that

|σ2 −σ2
D|H2,h,h/2(DT ) = |2

∫
ω(S)(r− r)pdsdy

S
∫

Ω(S) pdy
|H2,h,h/2(DT ) ≤ r∗P(|p|H2,h,h/2(DT ))

and that

|
∫

ω(S)(r− r)pdsdy

S
∫

Ω(S) pdy
−

∫
ω(S)(r− r)qdsdy

S
∫

Ω(S) qdy
|H2,h,h/2(DT ) ≤ r∗|p−q|H2,h,h/2(DT )P(|p|H2,h,h/2(DT ))P(|q|H2,h,h/2(DT ))

It can be done exactly as in Appendix A.

8.2 Numerical calibration

In this section, we apply the theoretical results above to calibrate a given diffusion model. We sup-
pose that the instantaneous rate obeys a Vasicek model (or in other words is an Ornstein-Uhlenbeck
process). This gives the diffusion equations

dSt

St
= rtdt +σ(t,St)dW 1

t (8.5)

drt = a(b− rt)dt + γdW 2
t

We apply the ADI algorithm described in Chapter 9 to Equation (8.3) with the coefficients associ-
ated to this diffusion. The initial condition is p0(S,r) = δ(S = S0,r = r0).
As in the two previous chapters, this pide is solved with a variable change for the spot x = ln(S).
The grid we choose is [−10σ

√
t,10σ

√
t]× [−0.1,0.2] with σ = 0.2 and r0 = 0.04. We discretize it

with 300 points in both the spot direction and the rate direction. The initial condition (Dirac mass
at the point (ln(S0),r0)) is approximated by a bivariate Gaussian centered at that point with a very
small variance.

The following numerical values are taken for the diffusion

a = 0.5 b = 0.7 γ = 0.01 r0 = 0.04

These values generate the interest rate

Table 8.1: Interest rates

Maturity 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
Rate 4.344% 4.634% 4.880% 5.090% 5.269% 5.423% 5.672% 5.861%

To assess the quality of the calibration, we calculate call and put options on the spot process by
integration on the grid and compare them to the targeted prices (target columns). Convergence is
quite satisfactory. For instance, for 6 months and 1 year maturity vanillas, we find



Table 8.2: 6 months options

Strike Target Call Target Put
0.5 49.30 49.31 0.39 0.40
0.6 40.14 40.15 1.01 1.02
0.7 31.49 31.51 2.15 2.16
0.8 23.55 23.57 3.99 4.00
0.9 16.52 16.55 6.74 6.76
1.0 10.62 10.65 10.62 10.64
1.1 6.16 6.19 15.95 15.96
1.2 3.22 3.24 22.79 22.79
1.3 1.53 1.54 30.87 30.87
1.4 0.67 0.68 39.79 39.79
1.5 0.28 0.28 49.18 49.17

Table 8.3: 1 year options

Target Call Target Put
48.95 48.97 1.25 1.26
40.63 40.66 2.47 2.48
32.89 32.91 4.27 4.28
25.80 25.83 6.72 6.74
19.45 19.48 9.91 9.93
13.94 13.96 13.94 13.95
9.46 9.48 19.00 19.02
6.07 6.09 25.15 25.16
3.68 3.70 32.31 32.31
2.12 2.13 40.28 40.29
1.17 1.18 48.87 48.87



Part III

Numerical studies and instabilities of the

solutions
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Chapter 9

Algorithm for the resolution of the

calibration equation

In the previous chapters, were treated the calibration equations from a theoretical point of view and
gave graphs for their efficiency. In this part, we work from a numerical point of view: the empir-
ical resolution of the nonlinear non-local partial differential equations mentioned in Part I and II.
First, we describe the algorithm used to solve the equation: a classic Alternating-Direction Implicit
scheme. The nonlinear term is handled using a forward induction.
The strong feature of an ADI scheme is its convergence rate in time and space: O(δx2)+O(δt2).
The nonlinearity of the equation challenges this assertion. In a second part, we study the conver-
gence rate in time of the algorithm for the calibration.

9.1 Alternating Direction Implicit scheme

The calibration equation is a parabolic equation of the second-order. One of the most efficient
method to solve such equations is a finite-difference approximation with alternating direction meth-
ods. For more informations on the subject, we refer the reader to the book from Richtmyer and
Morton [15], numerous articles have also been published, in particular [37], [38] and [39]. We now
consider the following equation

∂p

∂t
− ∂2

∂x2 (
1
2

f 2I2(p)p)− ∂2

∂x∂y
(ρ f gI(p)p)− ∂2

∂y2 (
1
2

g2 p))+
∂

∂x
(αp)+

∂

∂y
(βp)+ γp = 0 (9.1)

p(0,S,y) = δ(S = S0,y = y0) (9.2)

where the term I(p) is the quotient of integrals

I2(p)(t,x) =

∫
h2(y)p(t,x,y)dy∫

p(t,x,y)dy
(9.3)

Remark. We restricted ourselves to two-dimensional equations since they cover all the concrete

examples studied previously. But the computations that follow are true in the general case. The

cost in time however becomes an issue in higher dimensions.

The domain for the numerical resolution is ]0,T [×]x∗,x∗[×]y∗,y∗[. The first step is to take care of
the initial condition. Instead of the Dirac, we choose for initial condition p0 a gaussian distribution
with very small variance . It obviously approximates our initial condition. It also verifies (on any
bounded domain) the properties of regularity and strict positivity required in Part I to obtain exis-
tence (though in the present chapter, we are only interested in a numerical resolution). We define
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the boundary condition by p(t,x,y) = p0(x,y) if x = x∗,x∗ or y = y∗,y∗.

The algorithm is based upon a predictor-corrector approach. Let ∆x, ∆y and ∆t be increments of the
variables x, y and t, where ∆x = x∗−x∗

I
, ∆y = y∗−y∗

J
and ∆t = T

N
with I, J and N integers. The sets of

points in the x,y,t-plane is given by xn = x∗+ i ∆x
x∗−x∗

, y j = y∗+ j
∆y

y∗−y∗
and tn = n∆t

T
, for 0 ≤ i ≤ I,

0 ≤ j ≤ J and 0 ≤ n ≤ N. We construct four sequences pn, p∗n, qn and q∗n of space-dependent func-
tions with n between 0 and N.

A classic Alternating-Direction Implicit scheme functions as follows: we define the initial functions

p∗0(i, j) = q0(i, j) = q∗0(i, j) = p0(xi,y j)

and then by induction

q∗n+1 − pn

∆t
= δ2

x(I
2(pn)

f 2
n+1q∗n+1 + f 2

n pn

4
)+δ2

xy(ρ fngnI(pn)pn)+δ2
y(

1
2

g2
n pn)

− δx(
αn+1q∗n+1 +αn pn

2
)−δy(βn pn)−

γn+1q∗n+1 + γn pn

2
(9.4)

qn+1 − pn

∆t
= δ2

x(I
2(pn)

f 2
n+1q∗n+1 + f 2

n pn

4
)+δ2

xy(ρ fngnI(pn)pn)+δ2
y(

g2
n+1qn+1 +g2

n pn

4
)

− δx(
αn+1q∗n+1 +αn pn

2
)−δy(

βn+1qn+1 +βn pn

2
)− γn+1qn+1 + γn pn

2
(9.5)

where fn(i, j) designates f (n∆t,xi,y j) (the same thing being true for the other coefficients of the
equation). δ is a difference operator for the space derivatives. For instance, with 1 ≤ i ≤ I −1 and
1 ≤ j ≤ J−1

δ2
x fn =

fn(i−1, j)−2 fn(i, j)+ fn(i+1, j)

∆x2

δ2
xy fn =

fn(i−1, j−1)− fn(i+1, j)− fn(i, j+1)+ fn(i+1, j+1)
4∆x∆y

δx fn =
fn(i+1, j)− fn(i−1, j)

2∆x
...

The equations (9.4) and (9.5) form two tridiagonal systems that can be solved very efficiently. A
recursion formula can be computed on the functions qn we just defined

qn+1 −q∗n+1

∆t
= δ2

y(
g2

n+1qn+1 −g2
n pn

4
)−δy(

βn+1qn+1 −βn pn

2
)− γn+1

qn+1 −q∗n+1

2

Thus

q∗n+1 = qn+1 −
2∆t

2+ γn+1∆t
(δ2

y(
g2

n+1qn+1 −g2
n pn

4
)−δy(

βn+1qn+1 −βn pn

2
))



And eventually

qn+1 − pn

∆t
= δ2

x(I
2(pn)

f 2
n+1qn+1 + f 2

n pn

4
)+δ2

xy(ρ fngnI(pn)pn)+δ2
y(

g2
n+1qn+1 +g2

n pn

4
)

− δx(
αn+1qn+1 +αn pn

2
)−δy(

βn+1qn+1 +βn pn

2
)− γn+1qn+1 + γn pn

2

− ∆t

4+2γn+1∆t
δ2

x(I
2(pn) f 2

n+1(δ
2
y(

g2
n+1qn+1 −g2

n pn

4
)−δy(

βn+1qn+1 −βn pn

2
)))

+
∆t

2+ γn+1∆t
δx(αn+1(δ

2
y(

g2
n+1qn+1 −g2

n pn

4
)−δy(

βn+1qn+1 −βn pn

2
))) (9.6)

In the litterature concerning Alternating Direction Implicit schemes, the functions qn are often
called the predicted value of the solution p, a second "corrector" step usually follows. In our
case, the equation being nonlinear, we start by chosing pn+1 = qn+1 and study the finite-difference
approximation that results.

Proposition 10. This last finite-difference equation is consistent with the partial differential equa-

tion (9.1) on a bounded domain with smooth initial condition p0, the truncation error is O(∆t)+

O(∆x2)+O(∆y2)+O(∆x3

∆y
).

Proof. Let p be a classic solution of equation (9.1) on a bounded domain, with p|t=0 = p0. We
assume that p is strictly positive and sufficiently differentiable for all the quantities in the sequel
to be properly defined (we know from the previous chapters that such a p exists when h is close
enough to a constant and the coefficients of the equation are smooth enough). All the derivatives
that we use are bounded as a consequence of the Hölderian nature of p. We now write pn

i, j =

pn(xi,y j) = p(tn,xi,y j). A simple Taylor expansion with remainder gives

pn+1
i, j − pn

i, j

∆t
=

∂p
∂t
(tn,xi,y j)+

∂p
∂t
(tn+1,xi,y j)

2
+

∆t

2
(
∂2 p

∂t2 (tn +θ,xi,y j)−
∂2 p

∂t2 (tn +θ∗,xi,y j))

As for the space derivatives, we clearly have

δ2
x pn =

∂2 pn

∂x2 (xi,y j)+
∆x2

24
(
∂4 pn

∂x4 (xi +θ1,y j)+
∂4 pn

∂x4 (xi −θ2,y j))

δ2
xy pn =

∂2 pn

∂x∂y
(xi,y j)+

∆y2

12
(

∂4 pn

∂x∂y3 (xi,y j +θ1)+
∂4 pn

∂x∂y3 (xi,y j −θ2))

+
∆x2

24∆y
[
∂3 pn

∂x3 (xi +θ3,y j−1)−
∂3 pn

∂x3 (xi +θ4,y j−1)

+
∂3 pn

∂x3 (xi −θ5,y j+1)−
∂3 pn

∂x3 (xi −θ6,y j+1)]

δx pn =
∂pn

∂x
(xi,y j)+

∆x2

12
(
∂3 pn

∂x3 (xi +θ1,y j)+
∂3 pn

∂x3 (xi −θ2,y j))

where the different constants θ are between 0 and ∆t, ∆x or ∆y depending on the context, they may



change from one formula to another. Let E denote the truncation error for scheme (9.6), we have

E =
pn+1 − pn

∆t
−δ2

x(I
2(pn)

f 2
n+1 pn+1 + f 2

n pn

4
)−δ2

xy(ρ fngnI(pn)pn)−δ2
y(

g2
n+1 pn+1 +g2

n pn

4
)

+ δx(
αn+1 pn+1 +αn pn

2
)+δy(

βn+1 pn+1 +βn pn

2
)+

γn+1 pn+1 + γn pn

2

+
∆t

4+2γn+1∆t
δ2

x(I
2(pn) f 2

n+1(δ
2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

− ∆t

2+ γn+1∆t
δx(αn+1(δ

2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

Applying the previous expansions and using the fact that p verifies equation (9.1) at times tn and
tn+1 gives us

E = e1 − e21 − e22 − e23 − e3 + e41 + e42 + e5

with e1 the error coming from the time-derivative

e1 =
∆t

2
(
∂2 p

∂t2 (tn +θ,xi,y j)−
∂2 p

∂t2 (tn +θ∗,xi,y j))

e21, e22 and e23 come from the second order space-derivatives

e21 =
∆x2

96
[

∂4

∂x4 (I
2(pn) f 2

n pn)(xi +θ1,y j)+
∂4

∂x4 (I
2(pn) f 2

n pn)(xi −θ2,y j)

+
∂4

∂x4 (I
2(pn) f 2

n+1 pn+1)(xi +θ3,y j)+
∂4

∂x4 (I
2(pn) f 2

n+1 pn+1)(xi −θ4,y j)]

e22 =
∆y2

12
(

∂4

∂x∂y3 (ρ fngnI(pn)pn)(xi,y j +θ1)+
∂4

∂x∂y3 (ρ fngnI(pn)pn)(xi,y j −θ2))

+
∆x2

24∆y
(

∂3

∂x3 (ρ fngnI(pn)pn)(xi +θ3,y j−1)−
∂3

∂x3 (ρ fngnI(pn)pn)(xi +θ4,y j−1)

+
∂3

∂x3 (ρ fngnI(pn)pn)(xi −θ5,y j+1)−
∂3

∂x3 (ρ fngnI(pn)pn)(xi −θ6,y j+1))

e23 =
∆y2

96
[

∂4

∂y4 (g
2
n pn)(xi,y j +θ1)+

∂4

∂y4 (g
2
n pn)(xi,y j −θ2)

+
∂4

∂y4 (g
2
n+1 pn+1)(xi,y j +θ3)+

∂4

∂y4 (g
2
n+1 pn+1)(xi,y j −θ4)]

e3 allows to compensate for both the nondiagonal term and the nonlocal term I(pn) that cannot be
computed implicitely

e3 =
∂2

∂x2 [(I
2(pn)− I2(pn+1))

f 2
n+1 pn+1

4
]+

∂2

∂x∂y
[
ρ

2
( fngnI(pn)pn − fn+1gn+1I(pn+1)pn+1)]



e41 and e42 are the terms corresponding to the first order space-derivatives

e41 =
∆x2

24
[

∂3

∂x3 (αn pn)(xi +θ1,y j)+
∂3

∂x3 (αn pn)(xi −θ2,y j)

+
∂3

∂x3 (αn+1 pn+1)(xi +θ3,y j)+
∂3

∂x3 (αn+1 pn+1)(xi −θ4,y j)]

e42 =
∆y2

24
[

∂3

∂y3 (βn pn)(xi,y j +θ1)+
∂3

∂y3 (βn pn)(xi,y j −θ2)

+
∂3

∂y3 (βn+1 pn+1)(xi,y j +θ3)+
∂3

∂y3 (βn+1 pn+1)(xi,y j −θ4)]

At last, e5 is the correction term steming from the Alternating Direction Implicit scheme

e5 =
∆t

4+2γn+1∆t
δ2

x(I
2(pn) f 2

n+1(δ
2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

− ∆t

2+ γn+1∆t
δx(αn+1(δ

2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

Thanks to the regularity of p and of the coefficients of (9.1), we have e1 ≤ K∆t2, e21+e41 ≤ K∆x2,
e23 + e42 ≤ K∆y2 and e22 ≤ K(∆y2 + ∆x3

∆y
). We can also easily prove that e5 ≤ K∆t2. The term that

prevents us from getting an error in O(∆t2) is e3. All we can get is e3 ≤ K∆t (using Lemma 4 Part
I, we know that I(.) is differentiable, with bounded derivatives). This concludes the proof.

Remark. In a case with no I(p) term, the equation is a classic linear and parabolic one. In that

case, when the off-diagonal1 term is absent (ρ = 0 for instance), the previous scheme has an error

in O(∆t2). To obtain such an error in the general case, a second "corrector" step is generally used:

the predicted value qn+1 is introduced as an approximation of pn+1 in the cross-derivatives. Here,

we try to use it in the nonlocal term too.

The correction step is the following

p∗n+1 − pn

∆t
= δ2

x(
I2(qn+1) f 2

n+1 p∗n+1 + I2(pn) f 2
n pn

4
)+δ2

xy(ρ
( f g)n+1I(qn+1)qn+1 +( f g)nI(pn)pn

2
)

+ δ2
y(

1
2

g2
n pn))−δx(

αn+1 p∗n+1 +αn pn

2
)−δy(βn pn)−

γn+1 p∗n+1 + γn pn

2
pn+1 − pn

∆t
= δ2

x(
I2(qn+1) f 2

n+1 p∗n+1 + I2(pn) f 2
n pn

4
)+δ2

xy(ρ
( f g)n+1I(qn+1)qn+1 +( f g)nI(pn)pn

2
)

+ δ2
y(

g2
n+1 pn+1 +g2

n pn

4
)−δx(

αn+1 p∗n+1 +αn pn

2
)−δy(

βn+1 pn+1 +βn pn

2
)

− γn+1 pn+1 + γn pn

2

Here too, one can compute p∗n+1

p∗n+1 = pn+1 −
2∆t

2+ γn+1∆t
(δ2

y(
g2

n+1 pn+1 −g2
n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
))

1The case of mixed-derivatives in the equation is dealt with in [35]



Eventually, we have a Crank-Nicholson like formula

pn+1 − pn

∆t
= δ2

x(
I2(qn+1) f 2

n+1 pn+1 + I2(pn) f 2
n pn

4
)+δ2

xy(ρ
( f g)n+1I(qn+1)qn+1 +( f g)nI(pn)pn

2
)

+ δ2
y(

g2
n+1 pn+1 +g2

n pn

4
)−δx(

αn+1 pn+1 +αn pn

2
)−δy(

βn+1 pn+1 +βn pn

2
)

− γn+1 pn+1 + γn pn

2

− ∆t

4+2γn+1∆t
δ2

x(I
2(qn+1) f 2

n+1(δ
2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

+
∆t

2+ γn+1∆t
δx(αn+1(δ

2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

Let us study the consistency of this new scheme

Proposition 11. The algorithm with a corrector step is also consistent. The truncation error is

O(∆t2)+O(∆x2)+O(∆y2)+O(∆x3

∆y
).

Proof. To prove the consistency, we define qn+1 as

qn+1 − pn

∆t
= δ2

x(I
2(pn)

f 2
n+1qn+1 + f 2

n pn

4
)+δ2

xy(ρ fngnI(pn)pn)+δ2
y(

g2
n+1qn+1 +g2

n pn

4
)

− δx(
αn+1qn+1 +αn pn

2
)−δy(

βn+1qn+1 +βn pn

2
)− γn+1qn+1 + γn pn

2

− ∆t

4+2γn+1∆t
δ2

x(I
2(pn) f 2

n+1(δ
2
y(

g2
n+1qn+1 −g2

n pn

4
)−δy(

βn+1qn+1 −βn pn

2
)))

+
∆t

2+ γn+1∆t
δx(αn+1(δ

2
y(

g2
n+1qn+1 −g2

n pn

4
)−δy(

βn+1qn+1 −βn pn

2
)))

The computations are almost identical to the previous proposition. This time the error is equal to

E∗ =
pn+1 − pn

∆t
−δ2

x(
I2(qn+1) f 2

n+1 pn+1 + I2(pn) f 2
n pn

4
)

− δ2
xy(ρ

( f g)n+1I(qn+1)qn+1 +( f g)nI(pn)pn

2
)−δ2

y(
g2

n+1 pn+1 +g2
n pn

4
)

+ δx(
αn+1 pn+1 +αn pn

2
)+δy(

βn+1 pn+1 +βn pn

2
)+

γn+1 pn+1 + γn pn

2

+
∆t

4+2γn+1∆t
δ2

x(I
2(qn+1) f 2

n+1(δ
2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

− ∆t

2+ γn+1∆t
δx(αn+1(δ

2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

We use the same decomposition. The errors e∗1, e∗23, e∗41 and e∗42 do not change. e∗21 is slightly



different but still in O(∆x2). As for e∗22 and e∗5, we now have

e∗22 =
e22

2
+ρ

∆y2

24
(

∂4

∂x∂y3 (( f g)n+1I(qn+1)qn+1)(xi,y j +θ1)+
∂4

∂x∂y3 (( f g)n+1I(qn+1)qn+1)(xi,y j −θ2))

+
∆x2

24∆y
(

∂3

∂x3 (( f g)n+1I(qn+1)qn+1)(xi +θ3,y j−1)−
∂3

∂x3 (( f g)n+1I(qn+1)qn+1)(xi +θ4,y j−1)

+
∂3

∂x3 (( f g)n+1I(qn+1)qn+1)(xi −θ5,y j+1)−
∂3

∂x3 (( f g)n+1I(qn+1)qn+1)(xi −θ6,y j+1))

e∗5 =
∆t

4+2γn+1∆t
δ2

x(I
2(qn+1) f 2

n+1(δ
2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

− ∆t

2+ γn+1∆t
δx(αn+1(δ

2
y(

g2
n+1 pn+1 −g2

n pn

4
)−δy(

βn+1 pn+1 −βn pn

2
)))

which also verify e∗22 ≤ K(∆y2 + ∆x3

∆y
) and e∗5 ≤ K∆t2. The real difference can be seen in

e∗3 =
∂2

∂x2 [(I
2(qn+1)− I2(pn+1))

f 2
n+1 pn+1

4
]+

∂2

∂x∂y
[
ρ

2
(( f g)n+1I(qn+1)qn+1 − ( f g)n+1I(pn+1)pn+1)]

The important feature of the predictor is that the difference qn+1 − pn+1 is O(∆t2). This gives
e∗3 ≤ K(∆t2) and concludes the proof.

9.2 Time Convergence Rate of the modified ADI algorithm

In this brief section, we compare the convergence of the algorithm with the theoretical rates com-
puted in the previous part. To do so, we compute the calibrated value of 1-year at-the-money
vanillas for different number N of time steps. We then plot the error between this price and the
targeted value against N. The next graph is obtained with the one-step predictor algorithm

Figure 9.1: Vanilla price error for different number of time steps, predictor step only

The error is clearly in O(∆t) as was proved in Proposition 10. We conduct the same experiment



with this time both the predictor and the corrector steps.

Figure 9.2: Vanilla price error for different number of time steps, predictor/corrector algorithm

This time too, numerical experiments seem to agree with theory. The error appears to be in O(∆t2).
The predictor/corrector scheme serves its purpose.



Chapter 10

Instabilities of the solutions

In Chapter 9, we described the algorithm used to solve the different partial differential equations
concerned by our work, and in Part I, we studied those equations from a theoretical point of view.
Though a partial existence result for Equation (5.1) was found, we were still unable to prove it in
the general case: strongly variable functions ( fi j).
In this last chapter, we study the local and stochastic volatility model from that point of view. We
start with the numerical resolution of the calibration for strongly variable functions b. Plotting
the density, we see the appearance of what seems to be an instability of the solution1. Such an
instability does not occur in the case of the adjoint equation, which confirms us that the general
equation 5.1 has some peculiar properties.
We then try to explain this instability from a theoretical point of view. Hadamard instability seems
to be the logical explanation. Studying the linearized operator, we give a criterion for the instability
of a certain type of equations. Unfortunately, that criterion is not fulfilled in the case of the local
and stochastic volatility. New leads need to be found.

10.1 Numerical explosion for "oscillating" volatilities

At first, we go back to the equation for the calibration of a local and stochastic volatility model.
For the sake of simplicity, we assume the interest rate to be zero. The equation is the following

∂p

∂t
− ∂2

∂S2 (
1
2

σ2
Db2S2

∫
pdy∫

b2 pdy
p)− ∂2

∂S∂y
(ρσDbαS(

∫
pdy∫

b2 pdy
)

1
2 p)− ∂2

∂y2 (
1
2

α2 p)+
∂

∂y
(βp) = 0(10.1)

p(0,S,y) = δ(S = S0,y = y0)

In Chapter 6, we saw the existence of a solution (on a bounded domain, with regularized boundary
conditions) under certain assumptions on b, the essential one being: there exists a constant b∗ such
that |b−b(y0)| ≤ b∗ for a given y0. Using the algorithm described in the previous chapter, we are
now interested in the behavior of the numerical solution of (10.1) when the function b violates the
assumption.
The model chosen for this study is the mean-reverting volatility already expounded

b(y) = exp(y) α(t,y) = γ β(t,y) = κ (δ− y)

with γ, κ and δ three strictly positive constants. The value we chose in Part II for the different
parameters of the model and of the algorithm led us to a satisfactory calibration. Here, we plot the
density p(T,x,y) for T = 1 year and x = ln(S/S0) close to 0.

1A study of the stability of linear finite difference schemes can be found in [36]

81



As expected, the solution p is perfectly smooth. Now, bouncing on the idea of strongly variable
functions b, we plot the same thing with a function b equal to b(y) = exp(10y).



This time, the solution does not appear to be smooth anymore, on the contrary some kind of insta-
bility seem to occur. In the following, we focus our attention on a lead to explain this instability.
In similar cases, an interesting approach is to consider the linearized operator, the bifurcation the-
ory for instance, deals with some examples [24]. Here, we thus conduct a study of the linearization
of equation (5.1). Computations are carried out on a simplified version of the linearized operator.
We find a criterion under which this new operator is Hadamard unstable. Unfortunately, the LSV
calibration equation does not verify this criterion.

Remark. We remember from Part I that we obtained local existence in the case of the adjoint

equation, and this for any functions ( fi j)1≤i, j≤d . Even if the adjoint has no meaning from a financial

point of view, its numerical resolution is interesting to see the impact of an oscillating function b.

The adjoint equation for the local and stochastic volatility calibration is

∂p

∂t
− 1

2
σ2

Db2S2
∫

pdy∫
b2 pdy

∂2 p

∂S2 −ρσDbαS(

∫
pdy∫

b2 pdy
)

1
2

∂2 p

∂S∂y
− 1

2
α2 ∂2 p

∂y2 +β
∂p

∂y
= 0 (10.2)

We make the same test and plot its numerical solution for b(y) = exp(Cy) with C = 10 and C = 15

On both these graphics, we cannot see any sign of instability. With higher values of C, for instance
C = 20, the function p computed numerically takes meaningless values (1080), but at no time does
it start to oscillate. We also compute the solution p for a maturity of T = 2 years (until now, let us
recall that T = 1 year) and C = 15, the graph shows values from −1018 to 1018, we are probably
outside of the local existence in time.
To sum up, all the results for the adjoint seem to be in agreement with the theoretical proofs of Part
I.
As for the original equation, the numerical resolution points towards the same conclusion: an
instability when b varies too much.



10.2 Hadamard instability and Linearized equation

In this section, we go back to the operator described in Part I and study its linearization

∂p

∂t
−L(p,{ f}) :=

∂p

∂t
− 1

2 ∑
1≤i, j≤d

∂2

∂xi∂x j
(

d

∑
k=1

Vik(t,x,

∫
fik(x

λC
i j)pik(t,x

λik ,xλC
ik)dxλC

ik∫
pik(t,xλik ,xλC

ik)dxλC
ik

)

Vjk(t,x,

∫
f jk(x

λC
i j)p jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
p jk(t,x

λ jk ,xλC
jk)dx

λC
jk

)p(t,x))+ ∑
1≤i≤d

∂

∂xi
(µi

t p(t,x)

In Section 5.1 and 5.2, we considered a particular solution for the equation above (p̃,{ f̃}) ie
F (p̃,{ f̃}) = 0 (with F defined in the proof of Theorem 5) and studied the differential of the
operator L around this solution

DpL(p̃,{ f̃}).h =
∂h

∂t
− 1

2 ∑
1≤i, j≤d

∂2

∂xi∂x j
(hLi j(p̃,{ f̃})+ p̃DpLi j(p̃,{ f̃}).h)+ ∑

1≤i≤d

∂

∂xi
(µi

th)

with

Li j(p̃,{ f̃}) :=
d

∑
k=1

Vik(t,x,

∫
f̃ik(x

λC
i j)p̃ik(t,x

λik ,xλC
ik)dxλC

ik∫
p̃ik(t,xλik ,xλC

ik)dxλC
ik

)Vjk(t,x,

∫
f̃ jk(x

λC
i j)p̃ jk(t,x

λ jk ,xλC
jk)dx

λC
jk

∫
p̃ jk(t,x

λ jk ,xλC
jk)dx

λC
jk

)

DpLi j(p̃,{ f̃}).h =
d

∑
k=1

Vik(t,x,

∫
f̃ik p̃∫
p̃

)
∂Vjk

∂e
(t,x,

∫
f̃ jk p̃∫

p̃
)(

∫
f̃ jkh∫
p̃

−
∫

f̃ jk p̃
∫

h

(
∫

p̃)2 )

+
∂Vik

∂e
(t,x,

∫
f̃ik p̃∫
p̃

)(

∫
f̃ikh∫
p̃

−
∫

f̃ik p̃
∫

h

(
∫

p̃)2 )Vjk(t,x,

∫
f̃ jk p̃∫

p̃
)

=
n

∑
k=1

(
∫

˜f jkh

∫
p̃−

∫
˜f jk p̃

∫
h)Ṽi jk +(

∫
f̃ikh

∫
p̃−

∫
f̃ik p̃

∫
h)Ṽjik

and

Ṽi jk :=
1

(
∫

p̃)2Vik(t,x,

∫
f̃ik p̃∫
p̃

)
∂Vjk

∂e
(t,x,

∫
f̃ jk p̃∫

p̃
)

Developing the integral terms, we get
∫

˜f jkh

∫
p̃−

∫
˜f jk p̃

∫
h =

∫
h(t,xλ jk ,xλC

jk)(
∫

p̃ jk(t,x
λ jk ,yλC

jk)( f̃ jk(x
λC

j j)− f̃ jk(y
λC

j j)))dy
λC

jkdx
λC

jk

The coefficient of h in this integral is C =
∫

p̃ jk(t,x
λ jk ,yλC

jk)( f̃ jk(x
λC

j j)− f̃ jk(y
λC

j j))dy
λC

jk . Two cases
appear

• If f̃ jk is close to a constant then C is small. The operator DpL(p̃,{ f̃}).h is a perturbation of
an adjoint heat equation. This fact was used in Part I to prove existence of solutions.

• On the contrary if f̃ jk varies a lot, the coefficient C is negative for values of x
λC

j j close to the
point where the minimum of f̃ jk is attained.

In the second case, we do not obtain per say a backward heat equation. However, this property
and the fact that the operator DpL(p̃,{ f̃}).h resembles the heat operator led us to the study of a



simplified equation involving an integral term similar to the previous one

∂h

∂t
− 1

2
∂2

∂y2 (µ(t,y,z)(h(t,y,z)+ν(t,y,z)
∫

ρ(t,y,z)h(t,y,z)dz))− 1
2

∂2

∂z2 (ξ(t,z)h) = 0 (10.3)

Let us study the well-posedness of this last equation. The notion of ill and well-posed problems
goes back to the beginning of the twentieth century with the work of J. Hadamard described for
instance in [16]. A problem is said to be well-posed if it admits a unique solution and if this solution
depends continuously on the data of the problem. On the contrary, Hadamard unstable operators
are a class of ill-posed operators. This kind of instability is defined as

Definition. We say that a linear operator is Hadamard unstable with respect to a norm ||.|| when

the parabolic equation associated to L lacks of continuous dependance on the initial condition.

This boils down to the following property: for all ε > 0, we can find two functions p and φ verifying

for a given t

∂p

∂t
−Lp = 0 ||p(t, .)|| ≥ 1

p(0,x) = φ(x) ||φ|| ≤ ε

The most basic example of Hadamard unstable operator is L = −∆, where ∆ is the Laplacian 2.
More generally, parabolic operators with "negative" diffusion matrix are ill-posed.

Remark. A few references study the so-called forward-backward heat equation and give existence

results of solutions for L = x∆ with x ∈]−1,1[ and mixed initial-terminal conditions, for instance

[55] or [56].

We show this property for the particular case DT =]0,T [×]x,x[.

Lemma 7. The operator L = a(t,x) ∂2

∂x2 with a ∈ H2,h,h/2(DT ) and a(t0,x0)< 0 for a given (t0,x0)∈
DT is Hadamard unstable.

Proof. The proof is divided into three steps.

First Step. Let us first consider the case of a function a(x)< 0 for all x ∈]x,x[. Spectral theory gives
us the existence of a sequence (λn)n∈N of positive eigenvalues of L diverging to +∞. Let (en)n∈N
be corresponding eigenvectors verifying |en|∞ = 1. For a given ε, we choose

pn(t,x) = ε en(x) exp(λnt)

Clearly, for all n ∈ N, pn is solution of ∂p
∂t
− a(t,x) ∂2

∂x2 = 0. Since |en|∞ = 1, the initial condition
verifies |pn(0, .)|∞ = ε. And for any t > 0, |pn(t, .)|∞ = εexp(λnt). The λn being positive and non
bounded, for n large enough, we have |pn(t, .)|∞ ≥ 1. In this case, the operator L is indeed ill-posed
in the sense of Hadamard.

Second Step. We now relax the time hypothesis by assuming that a(t,x)< 0 for all (t,x) ∈ DT . For
any η,ε > 0, there exists t∗ > 0 such that |a(t,x)−a(0,x)|< η for all (t,x) ∈ Dt∗ .
From the first step, we get two functions p and φ verifying

∂p

∂t
−a(0,x)

∂2 p

∂x2 = 0 |p(t∗, .)|H2(]x,x[) ≥ 1

p(0,x) = φ(x) |φ|H2(]x,x[) ≤ ε

2With a constraint on the terminal condition, this operator becomes well-posed as shown in [54]



By contradiction, if L was well-posed, and since

∂p

∂t
−Lp = (a(0,x)−a(t,x))

∂2 p

∂x2

We would have, with K independent from t∗, thus from η,

|p|H2(Dt∗) ≤ K(|(a−a(0, .))
∂2 p

∂x2 |H0(Dt∗)+ |φ|H2(]x,x[))≤ K(η|p|H2(Dt∗)+ ε)

Hence, for η and ε small enough, |p|H2(Dt∗) ≤ Kε
1−Kη < 1 which is impossible: the operator L is

ill-posed.

Third Step. Let us now consider the case a(0,x0) < 0 for a given x0. By continuity of a and the
same kind of argument than in the previous step, we can assume that a(t,x)< 0 on [0,T ∗]×]x1,x2[
and a(t,x1) = a(t,x2) = 0 on [0,T ]. From the previous step, we get for any ε > 0 two functions p

on [0,T ]× [x1,x2] and φ on [x1,x2] verifying for a given t∗ ≤ T ∗

∂p

∂t
−a(t,x)

∂2 p

∂x2 = 0 |p(t∗, .)|H2(]x1,x2[)
≥ 1

p(0,x) = φ(x) |φ|H2(]x1,x2[)
≤ ε

We extend φ by continuity to ]x,x[, let us call φ this extension. We can clearly construct φ such that
|φ|H2(]x,x[) ≤ 2ε. By contradiction, if L was well-posed, we would have a function p such that

∂p

∂t
−a(t,x)

∂2 p

∂x2 = 0 p(0,x) = φ(x)

and |p|H2DT ≤ Kε, with K independent from ε. Since a(t,x1) = a(t,x2) = 0, we have p(t,x1) =
φ(x1) and p(t,x2) = φ(x2). By the maximum principle, we get p = p on [0,T ]×]x1,x2[, which is
impossible.

We now consider the following partial differential equation system

∂H

∂t
= M

∂2H

∂x2 +N
∂H

∂x
+PH (10.4)

where H ∈ (H2,h,h/2(DT ))n is the unknown, M and N two coefficients matrices belonging to
(H0,h,h/2(DT ))n2

and P a vector in (H0,h,h/2(DT ))n.

Lemma 8. The system 10.4 is well-posed if and only if the matrix M is definite positive.

Proof. This result is well-known, it can be found for instance in [24].

We are now interested in the well-posedness of equation (10.3) on the domain Ω =]0,T [×B with
B =]ymin,ymax[×]zmin,zmax[.

We define an initial condition h(0,y,z) = h0(y,z) > 0 on B. The boundary condition is completed
with h(t,y,z) = h0(y,z) on ∂B. We write the compatibility assumption

1
2

∂2

∂y2 (µ(t,y,z)(h0(y,z)+ν(t,y,z)
∫

ρ(t,y,z)h0(y,z)dz))+
1
2

∂2

∂z2 (ξ(t,z)h0(y,z)) = 0 on ∂B



Futhermore, we assume that µ, ν, ρ and ξ belong to H2,h,h/2(]0,T [×B) and that µ, ν and ξ are
strictly positive on [0,T ]×B.

Let us study the operator associated to (10.3). We start with the case where µ, ν and ∂2

∂z2 (ξ(t,z)) are
independent from z. We assume that 1+ν(t,y)

∫
ρ(t,y,z)dz < 0 for some (t,y)∈]0,T [×]ymin,ymax[.

Our goal is to prove the theorem

Theorem 10. For all ε > 0, there exists h0 ∈ H2,h,h/2 with |h0|H2,h,h/2 ≤ ε and h ∈ H2,h,h/2(Ω)
solution of (10.3) such that h(T,y,z)≥ 1 for some (y,z) ∈ B.

Proof. We write the solution as h(t,y,z) = hy(t,y)hz(t,z). The equation we obtain is

hy[
∂hz

∂t
− 1

2
∂2

∂z2 (ξ(t,z)h
z(t,z))]+hz[

∂hy

∂t
− 1

2
∂2

∂y2 (µ(t,y)h
y(t,y))]

−1
2

∂2

∂y2 (µ(t,y)ν(t,y)h
y(t,y)

∫
ρ(t,y,z)hz(t,z)dz) = 0

Given the assumption concerning ξ, the function hz(t) = exp(1
2

∫ t
0

∂2

∂z2 (ξ(s,z))ds) is solution of ∂hz

∂t
−

1
2

∂2

∂z2 (ξ(t,z)h
z(t,z)) = 0 with hz(0) = 1. It does not depend on z. Thus, we have to solve

hz(t)[
∂hy

∂t
− 1

2
∂2

∂y2 (µ(t,y)h
y(t,y))]− 1

2
∂2

∂y2 (µ(t,y)ν(t,y)h
y(t,y)

∫
ρ(t,y,z)hz(t)dz)

= hz(t)[
∂hy

∂t
− 1

2
∂2

∂y2 (µ(t,y)h
y(t,y)(1+ν(t,y)

∫
ρ(t,y,z)dz))] = 0(10.5)

We see that if 1+ν(t,y)
∫

ρ(t,y,z)dz < 0 for some (t,y) ∈]0,T [×]ymin,ymax[, the equation becomes
locally a heat equation backward in time, which is known to be Hadamard unstable. We use the
Lemma 7 to find a function h

y
0(y) such that |hy

0|H2,h,h/2 ≤ ε and a solution hy(t,y) to the equation
(10.5) with initial condition h

y
0 and verifing |hy(t, .)|H2,h,h/2(]ymin,ymax[)

≥ 1/ inf(hz(1,z)).

We now consider the case where the functions µ, ν and ξ oscillate slowly with respect to z. This
means that, for a given z0 ∈]zmin,zmax[ and some Z > 0 (Z will be computed later), we have

|µ−µ(., .,z0)|H2,h,h/2(Ω) ≤ Z |ν−ν(., .,z0)|H2,h,h/2(Ω) ≤ Z |ξ−ξ(.,z0)|H2,h,h/2(Ω) ≤ Z

We write

Lh(t,y,z) :=
∂2

∂y2 (µ(t,y,z)(h(t,y,z)+ν(t,y,z)
∫

ρ(t,y,z)h(t,y,z)dz))+
∂2

∂z2 (ξ(t,z)h)

We also assume that for some (t,y) ∈]0,T [×]ymin,ymax[, 1+ν(t,y,z0)
∫

ρ(t,y,z)dz < 0. We prove
the

Theorem 11. For Z small enough, the operator ∂
∂t
− 1

2L is ill-posed.

Proof. The proof is based upon the fact that for Z small enough the operator L is close to the
operator L0 (defined two lines below) that is known to be ill-posed.

L0h(t,y,z) :=
∂2

∂y2 (µ(t,y,z0)(h(t,y,z)+ν(t,y,z0)
∫

ρ(t,y,z)h(t,y,z)dz))+
∂2

∂z2 (ξ(t,z0)h)



We have

|(L−L0)h|H0,h,h/2(Ω) ≤ |(µ(t,y,z)−µ(t,y,z0))(h(t,y,z)+ν(t,y,z)
∫

ρ(t,y,z)h(t,y,z)dz)|H2,h,h/2(Ω)

+ |µ(t,y,z0)(ν(t,y,z)−ν(t,y,z0))
∫

ρ(t,y,z)h(t,y,z)dz+(ξ(t,z)−ξ(t,z0))h|H2,h,h/2(Ω)

≤ Z(2|h|H2,h,h/2(Ω)+ |(ν(t,y,z)+µ(t,y,z0))
∫

ρ(t,y,z)h(t,y,z)dz|H2,h,h/2(Ω))

≤ ZK|h|H2,h,h/2(Ω)

with K a constant depending on the norm of µ, ν and ρ. The equation we are interested in is
∂h
∂t
− 1

2Lh = 0. Let us assume by contradiction that this operator is well-posed. As a consequence,

it depends continuously on the data of the problem. This means that for all f ∈ H0,h,h/2(Ω) and
φ∈H2,h,h/2(B), there exists a unique h∈H2,h,h/2(Ω) solution of ∂h

∂t
− 1

2Lh= f with h|t=0 = φ. Plus,
this function verifies

|h|H2,h,h/2(Ω) ≤ KL(| f |H0,h,h/2(Ω)+ |φ|H2,h,h/2), (10.6)

where KL is a constant depending on the norm of the coefficients of L.
Now, we notice that the operator ∂

∂t
− 1

2L0 falls under the assumptions of Theorem 10. Hence, there
exists two functions h

y
0(y) and hy(t,y) such that

• ∂hy

∂t
− 1

2L0hy = 0 hy(0,y) = h
y
0(y)

• |hy
0|H2,h,h/2 ≤ ε |hy|H2,h,h/2(Ω) ≥ 1

Since ∂hy

∂t
− 1

2L0hy = 0, we have ∂hy

∂t
− 1

2Lhy = 1
2(L0 −L)hy. We apply inequality (10.6) and obtain

|hy|H2,h,h/2(Ω) ≤ KL(|
1
2
(L0 −L)hy|H0,h,h/2(Ω)+ |hy

0|H2,h,h/2)≤ KL(
1
2

ZK|hy|H0,h,h/2(Ω)+ ε)

If Z < 2
KKL

, this last line gives us |hy|H2,h,h/2(Ω)≤ 2KLε
2−ZKKL

. Choosing ε< 2−ZKKL

2KL
, we get |hy|H2,h,h/2(Ω)<

1 which is the contradiction we were looking for. This just proves that the operator is ill-posed.

We are now interested in a generalization of the method previously used. Let us consider functions
µ and ξ independent from z and a function ν polynomial in this variable. We look for a solution h
under the same form

ν(t,y,z) =
l

∑
i=0

νi(t,y)z
i h(t,y,z) =

l

∑
i=0

hi(t,y)z
i

Writing equation (10.3) using this decomposition gives

l

∑
i=0

∂hi

∂t
zi − 1

2

l

∑
i=0

zi ∂2

∂y2 (µ(t,y)(hi(t,y)+
l

∑
k=0

νi(t,y)hk(t,y)
∫

ρ(t,y,z)zkdz))

−1
2

l

∑
i=2

i(i−1)zi−2ξ(t)hi(t,y) = 0



Projecting this last computation on the powers of z, we obtain a system of parabolic equations

∂hi

∂t
− 1

2
∂2

∂y2 (µ(hi(1+
∫

ρzidz)+∑
k 6=i

νihk

∫
ρzkdz))− (i+1)(i+2)

2
ξhi+2 = 0 for i ≤ l −2

∂hi

∂t
− 1

2
∂2

∂y2 (µ(hi(1+
∫

ρzidz)+∑
k 6=i

νihk

∫
ρzkdz)) = 0 otherwise

Remark. We notice that ξ could actually be a polynomial of degree up to 2, this slightly modifies

the system, but only for the terms of order 0.

This system can be written in matrix form as
(

∂hi

∂t

)

=
1
2

M

(

∂2µhi

∂y2

)

+N

(

∂hi

∂y

)

+P(hi)

where, in particular,








1+ν0
∫

ρdz ν0
∫

zρdz . . . ν0
∫

zlρdz

M =
...

...
. . .

...
νl

∫
ρdz νl

∫
zρdz . . . 1+νl

∫
zlρdz

The condition for such a system to be ill-posed is stated previously in Lemma 8: the matrix M must
have at least one negative eigenvalue. It is possible to show that the eigenvalues of M are 1 with a

multiplicity of (l −1) and 1+
l

∑
i=0

νi

∫
ρzidz = 1+

∫
ρνdz. Eventually, this gives us the following

result that actually contains Theorems 10 and 11

Theorem 12. There exists a Z such that, if |µ(., ., .)−µ(., .,z0)|H2,h,h/2(Ω) ≤ Z and |ξ−P|H2,h,h/2(Ω) ≤
Z where P is a polynomial in z of degree 2, and if

∃(t,y) ∈ ]0,T [ × ]ymin,ymax[ , 1+
∫

ν(t,y,z)ρ(t,y,z)dz ≤ 0 (10.7)

Then, equation (10.3) is ill-posed in the sense of Hadamard.

Proof. For a given Z > 0, the density of polynomial functions in H2,h,h/2(Ω) gives us l functions
(νi)1≤i≤l ∈ (H2,h,h/2(Ω))l such that

|ν(t,y,z)−
l

∑
i=0

νi(t,y)z
i|H2,h,h/2(Ω) ≤ Z

The operator stemming from equation (10.3) can thus be approached by

L0h(t,y,z) :=
∂2

∂y2 (µ(t,y,z0)(h(t,y,z)+
l

∑
i=0

νi(t,y)z
i

∫
ρ(t,y,z)h(t,y,z)dz))+

∂2

∂z2 (ξ(t,z0)h)

with an error bounded by Z. Condition (10.7) gives us the ill-posedness of this last operator. Using
the proof of Theorem 11, we obtain the instability of equation (10.3) under these new assumptions.

In the case of the LSV calibration, we start with simplifying assumptions: we choose a correlation



equal to 0 and ignore the term of order 1. The linearized equation (taken in (p,b)) is

∂h

∂t
− ∂2

∂S2 (
1
2

σ2
Db2S2(

∫
pdy∫

b2 pdy
h+

∫
hdy∫

b2 pdy
p−

∫
pdy

∫
b2hdy

(
∫

b2 pdy)2 p)− ∂2

∂y2 (
1
2

α2h) = 0 (10.8)

Using the formalism previously described, we write

∂h

∂t
− ∂2

∂S2 (
1
2

σ2
Db2S2

∫
pdy∫

b2 pdy
(h+ p(

∫
hdy∫
pdy

−
∫

b2hdy∫
b2 pdy

)))− ∂2

∂y2 (
1
2

α2h) = 0

This gives us

µ = σ2
Db2S2

∫
pdy∫

b2 pdy
ν = p ρ =

1∫
pdy

− b2∫
b2 pdy

Computing condition (10.7) in the case of the LSV brings

1+
∫

ν(t,S,y)ρ(t,S,y)dy = 1+
∫

p∫
pdy

− b2 p∫
b2 pdy

= 1

Unfortunately, the calibration equation does not fall under the scope of Theorem 12. In this case,
the functions ν and ρ are orthogonal.



Chapter 11

Conclusions

Calibrating the financial models we consider in this work brought us to study of a broad variety of
problems. Let us summarize the results we attained

• The theoretical question of existence and uniqueness of solutions for the calibration PIDE has
been partially solved, a strong assumption is required on certain coefficients of the equation.

• We also proved short-time existence of solutions for the adjoint equation of said PIDE. The
assumption previously mentioned is not needed in that case.

• The generalization of the proof for the original PIDE is still an open problem.

• However, numerical experimentations pointed out the appearance of an instability phenomenon,
which might explain our inability to extend the existence result.

• The study of the numerical problems we encountered led us to a linearized equation for which
we gave an instability criterion.

• This criterion is not verified in the case we were originally interested in. Other leads need to
be explored.

• From an algorithmic point of view, we managed to extend the ADI predictor-corrector algo-
rithm to our nonlinear framework and gave consistency results for the scheme.

• We also applied our results to three financial models and obtained satisfactory calibrations.
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Appendix A

Proof of Lemma 4

We recall that DT =]0,T [ × Ω verifies Property (1). We need to integrate functions of (x, t) against
a given number of variables (xi)i∈λ where λ is a subset of {1, ..,d}. To simplify the notations, we
consider an integer 1 ≤ k ≤ d and the functions Q and R defined as

Q(t,z) =

∫
Ω(z) f (y)p(t,z,y)dy∫

Ω(z) p(t,z,y)dy
R(t,z) =

∫
Ω(z) f (y)q(t,z,y)dy∫

Ω(z) q(t,z,y)dy

where z belongs to Ωz, y to Rd−k and

Ωz = {z ∈ Rk such as ∃y ∈ Rd−k with (z,y) ∈ Ω}
Ω(z) = {y ∈ Rd−k such as (z,y) ∈ Ω}

Let F f be a bounded set containing Ωz for all z ∈ Ωz. f, p and q are assumed to belong respectively
to H2,h,h/2(F f ) and H2,h,h/2(DT ) (for p and q) and to be strictly positive on the closure of their
domain of definition. This gives us two constants 0 < η < ξ such that η ≤ f ≤ ξ, hence Q and R
are properly defined, with η ≤ Q,R ≤ ξ. Let us now study their differentiability

Lemma 9. The functions Q and R belong to H2,h,h/2(DT ). Moreover, for any V ∈C3(R∗
+) with V

and its three derivatives bounded on [η,ξ], by a constant Kη, and any real number f , we have

|V (Q)−V ( f )|H2,h,h/2(DT ) ≤ | f − f |H0(DT )P(|p|H2,h,h/2(DT ))

|V (Q)−V (R)|H2,h,h/2(DT ) ≤ | f − f |H0(DT )|p−q|H2,h,h/2(DT )P(|p|H2,h,h/2(DT ))P(|q|H2,h,h/2(DT ))

where P denotes a polynomial function, nondecreasing and strictly positive on R+.

Proof. Proving the inequality gives the whole result. We start with V (X) = X

|Q− f |H2,h,h/2(DT ) = |
∫

Ω(z)( f (y)− f )p(t,z,y)dy∫
Ω(z) p(t,z,y)dy

|H2,h,h/2(DT )

≤ |
∫

Ω(z)
( f (y)− f )p(t,z,y)dy|H2,h,h/2(DT )|

1∫
Ω(z) p(t,z,y)dy

|H2,h,h/2(DT )

We study those two norms separately. Let 0 < t ′ < t ≤ T and z,z′ belong to Ωz. In the following, K
stands for a constant depending only on the domain Ω. We see that

|
∫

Ω(z)
( f (y)− f )p(t,z,y)dy| ≤ K| f − f |H0(DT )|p|H0(DT )
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and

|
∫

Ω(z)
( f (y)− f )p(t,z,y)dy−

∫
Ω(z′)

( f (y)− f )p(t ′,z′,y)dy|

≤ |
∫

Ω(z)∩Ω(z′)
( f (y)− f )(p(t,z,y)− p(t ′,z′,y))dy|

+ |
∫

Ω(z)\Ω(z′)
( f (y)− f )p(t,z,y)dy| + |

∫
Ω(z′)\Ω(z)

( f (y)− f )p(t ′,z′,y)dy|

≤ K| f − f |H0(DT )|p|H0,h,h/2(DT )d((t,z),(t
′,z′))h

+ | f − f |H0(DT )|p|H0(DT )(
∫

Ω(z′)\Ω(z)
1dy+

∫
Ω(z′)\Ω(z)

1dy)

By Property 2 of the boundary of our domain DT , it is possible to find a constant K depending only
on Ω such as ∀z,z′ ∈ Ωz,

∫
Ω(z)\Ω(z′) 1dy ≤ Kd(z,z′)h. This gives us

|
∫

Ω(z)
( f (y)− f )p(t,z,y)dy|H0,h,h/2(DT ) ≤ K| f − f |H0(DT )|p|H0,h,h/2(DT )

The exact same computations prove that

| ∂

∂t
(
∫

Ω(z)
( f (y)− f )p(t,z,y)dy)|H0,h,h/2(DT ) ≤ K| f − f |H0(DT )|

∂p

∂t
|H0,h,h/2(DT )

≤ K| f − f |H0(DT )|p|H1,h,h/2(DT )

And so on for the other derivatives, eventually, we get

|
∫

Ω(z)
( f (y)− f )p(t,z,y)dy|H2,h,h/2(DT ) ≤ K| f − f |H0(DT )|p|H2,h,h/2(DT )

There remains to study the norm | 1∫
Ω(z) p(t,z,y)dy

|H2,h,h/2(DT ). We see that if g is a function in H2,h,h/2(DT )

with g ≥ ε, then letting 0 < t ′ < t ≤ T and x,x′ belong to Ω, we have

|1
g
(t,x)| ≤ 1

ε

|1
g
(t,x)− 1

g
(t ′,x′)| ≤ |g(t ′,x′)−g(t,x)|

ε2 ≤
|g|H0,h,h/2(DT )

ε2 d((t,x),(t ′,x′))h

The time derivative gives

|−
∂g
∂t

g2 | ≤
|g|H2,1(DT )

ε2

|
∂g
∂t

g2 (t,x)−
∂g
∂t

g2 (t
′,x′)| ≤

|∂g
∂t
(t,x)− ∂g

∂t
(t ′,x′)|g2(t ′,x′)+ |g2(t,x)−g2(t ′,x′)||∂g

∂t
(t ′,x′)|

ε4

≤
|g|3

H1,h,h/2(DT )

ε4 d((t,x),(t ′,x′))h



As for the second space derivatives, we have

|−
∂2g

∂xix j

g2 +2

∂g
∂xi

∂g
∂x j

g3 | ≤
|g|H2,1(DT )

ε2 +
|g|2

H2,1(DT )

ε3

|
∂2g

∂xix j

g2 (t,x)−
∂2g

∂xix j

g2 (t ′,x′)| ≤
|g|3

H2,h,h/2(DT )

ε4 d((t,x),(t ′,x′))h

|
∂g
∂xi

∂g
∂x j

g3 (t,x)−
∂g
∂xi

∂g
∂x j

g3 (t ′,x′)| ≤
|g|5

H2,h,h/2(DT )

ε6 d((t,x),(t ′,x′))h

These inequalities boil down to

|1
g
|H2,h,h/2(DT ) ≤ KεP(|g|H2,h,h/2(DT ))

with P(X) = 1+X +X2 +X3 +X5 and Kε a constant depending only on ε. Eventually, we have

| 1∫
Ω(z) p(t,z,y)dy

|H2,h,h/2(DT ) ≤ KεP(|
∫

Ω(z)
p(t,z,y)dy|H2,h,h/2(DT ))

≤ KεP(K|p|H2,h,h/2(DT ))

To conclude, we see that

|Q− f |H2,h,h/2(DT ) ≤ K| f − f |H0(DT )|p|H2,h,h/2(DT )P(K|p|H2,h,h/2(DT ))

Let us now prove

|Q−R|H2,h,h/2(DT ) ≤ | f − f |H0(DT )|p−q|H2,h,h/2(DT )P(|p|H2,h,h/2(DT ))P(|q|H2,h,h/2(DT ))

We have

|Q−R|H2,h,h/2(DT ) = |
∫

Ω(z) f pdy
∫

Ω(z) qdy− ∫
Ω(z) f qdy

∫
Ω(z) pdy∫

Ω(z) pdy
∫

Ω(z) qdy
|H2,h,h/2(DT )

The denominator can be dealt with exactly as earlier, all we have to study is

|
∫

f p

∫
q−

∫
f q

∫
p|H2,h,h/2(DT ) = |

∫
( f − f )(p−q)

∫
q−

∫
( f − f )q

∫
p−q|H2,h,h/2(DT )

≤ K| f − f |H0(DT )|p−q|H2,h,h/2(DT )(|p|H2,h,h/2(DT )+ |q|H2,h,h/2(DT ))

which ends the case V (X) = X . We now consider any function V .

|V (

∫
f p∫
p
)(t,x)−V ( f )| ≤ Kη|

∫
f p∫
p
(t,x)− f |

|V (

∫
f p∫
p
)(t,x)−V (

∫
f p∫
p
)(t ′,x′)| ≤ Kη |

∫
( f − f )p∫

p
(t,x)−

∫
( f − f )p∫

p
(t ′,x′)|

Hence, we have

|V (Q)−V ( f )|H0,h,h/2(DT ) ≤ Kη|Q− f |H0,h,h/2(DT )



Thus

| ∂

∂t
(V (Q)−V ( f ))|H0,h,h/2(DT ) ≤ |V ′(Q)|H0,h,h/2(DT )|

∂Q

∂t
|H0,h,h/2(DT )

≤ Kη|Q|H0,h,h/2(DT )|
∂

∂t
(Q− f )|H0,h,h/2(DT )

≤ Kη|Q|H0,h,h/2(DT )|Q− f |H1,h,h/2(DT )

As far as second derivatives are concerned, we see that

| ∂2

∂xix j
(V (Q)−V ( f ))|H0,h,h/2(DT ) ≤ |V ′′(Q)|H0,h,h/2(DT )|

∂Q

∂xi
|H0,h,h/2(DT )|

∂Q

∂x j
|H0,h,h/2(DT )

+ |V ′(Q)|H0,h,h/2(DT )|
∂2Q

∂xix j
|H0,h,h/2(DT )

≤ Kη(|Q|H0,h,h/2(DT )+ |Q|2
H1,h,h/2(DT )

)|Q− f |H2,h,h/2(DT )

Eventually, we get

|V (Q)−V ( f )|H2,h,h/2(DT ) ≤ K|Q− f |H2,h,h/2(DT )P(|Q|H2,h,h/2(DT ))

≤ K| f − f |H0(DT )P(|p|H2,h,h/2(DT ))

The same computations obviously work for the second inequality of the lemma, which concludes
the proof.

Remark. The exact same computations in the case of a function V (Q) alone clearly gives us the

following inequality

|V (Q)|H2,h,h/2(DT ) ≤ | f |H0(DT )P(|p|H2,h,h/2(DT ))

Using this last lemma, we can prove the auxiliary lemma used in the proofs of Part I.

Lemma. For a given ε > 0, there exists a constant Kl > 0 depending on ε and on the data of the

problem such that ∀p,q ∈ H2,h,h/2(DT ), p,q ≥ ε on DT , ∀1 ≤ i, j ≤ n,

|Li j(p,{ f})−Li j(p,{ f})|H2,h,h/2(DT ) ≤ Kl (|{ f}|+ |{ f}|) |{ f}−{ f}| P(|p|H2,h,h/2(DT ))

|Li j(p,{ f})−Li j(p,{ f})− (Li j(q,{ f})−Li j(q,{ f}))|H2,h,h/2(DT )

≤ K′
l |{ f}| |{ f}−{ f}| |p−q|H2,h,h/2(DT )

P(|p|H2,h,h/2(DT )) P(|q|H2,h,h/2(DT ))

with P a polynomial function, increasing and strictly positive on R+, and all the norms involving

{ f} or { f} are (H0(DT ))n2
.

Proof. In this proof, we omit the variables t and x as arguments for Vi j since they clearly pose no
problem. We compute

|Li j(p,{ f})−Li j(p,{ f})|H2,h,h/2(DT ) = |
n

∑
k=1

(Vik(

∫
fik p∫
p

)Vjk(

∫
f jk p∫

p
)−Vik( fik)Vjk( f jk))|H2,h,h/2(DT )

≤
n

∑
k=1

|Vik(

∫
fik p∫
p

)−Vik( fik)|H2,h,h/2(DT )|Vjk(

∫
f jk p∫

p
)|H2,h,h/2(DT )

+ |Vik( fik)|H2,h,h/2(DT )|Vjk(

∫
f jk p∫

p
)−Vjk( f jk)|H2,h,h/2(DT )



Given the assumptions on the functions fi j and Vi j, we can apply Lemma 9 and the remark above
to get

|Li j(p,{ f})−Li j(p,{ f})|H2,h,h/2(DT ) ≤ K
n

∑
k=1

| f jk|H0(DT )| fik − fik|H0(DT )P(|p|H2,h,h/2(DT ))

+ | fik|H0(DT )| f jk − f jk|H0(DT )P(|p|H2,h,h/2(DT ))

≤ K(|{ f}|
(H0(DT ))n2 + |{ f}|

(H0(DT ))n2 )|{ f}−{ f}|
(H0(DT ))n2 P(|p|H2,h,h/2(DT ))

Noticing that Li j(p,{ f}) = Li j(q,{ f}), let us now compute

|Li j(p,{ f})−Li j(q,{ f})|H2,h,h/2(DT ) = |
n

∑
k=1

(Vik(

∫
fik p∫
p

)Vjk(

∫
f jk p∫

p
)−Vik(

∫
fikq∫
q

)Vjk(

∫
f jkq∫
q

))|H2,h,h/2(DT )

≤
n

∑
k=1

|Vik(

∫
fik p∫
p

)−Vik(

∫
fikq∫
q

)|H2,h,h/2(DT )|Vjk(

∫
f jk p∫

p
)|H2,h,h/2(DT )

+ |Vik(

∫
fikq∫
q

)|H2,h,h/2(DT )|Vjk(

∫
f jk p∫

p
)−Vjk(

∫
f jkq∫
q

)|H2,h,h/2(DT )

Exactly as earlier, we apply Lemma 9 to conclude the proof.



Appendix B

Estimates for Green’s function

In this technical appendix, we use the notations from [3]. The goal is to prove the following
estimates on Green’s function for operator (3.8): for all x,x′,y ∈ D, 0 ≤ τ < t ≤ T

|G(x,y, t,τ)−G(x′,y, t,τ)| ≤ K
|x− x′|h

(t − τ)
d+h

2

exp(−K′ |x”− y|2
t − τ

) (B.1)

with x" the closest point to y between x and x’. And for all x,y∈D, 0≤ τ< t ′ < t ≤ T the inequality

|G(x,y, t,τ)−G(x,y, t ′,τ)| ≤ K
|t − t ′| h

2

(t ′− τ)
d+h

2

exp(−K′ |x− y|2
t − τ

) (B.2)

K and K’ are two constants depending on the coefficients of operator (3.8), on h and on d. They
might change in the rest of this appendix.
From (16.7) p.408, we write G as

G(x,y, t,τ) = Z(x,y, t,τ)−g(x,y, t,τ)

with Z a fundamental solution for parabolic equation (3.11) and g defined in p.409. To prove (B.1)
and (B.2), we show those exact same estimates on Z and g.

Lemma 10. For all x, ξ ∈ Rd and 0 ≤ τ < λ < t ≤ T

∫
Rd

exp(−K′ |x− y|2
t −λ

)exp(−K′ |y−ξ|2
λ− τ

)dy ≤ K
(t −λ)

d
2 (λ− τ)

d
2

(t − τ)
d
2

exp(−K′ |x−ξ|2
t − τ

)

Lemma 11. For all 0 ≤ τ < t ≤ T and α,β > 0
∫ t

τ
(t −λ)α−1(λ− τ)β−1dλ ≤ K(t −λ)α+β−1

B.1 Space estimate B.1

We first prove estimate B.1 on the fundamental solution Z then on the single-layer potential g. The
function Z is constructed using the parametrix method of E. Levy, it is written as

Z(x,ξ, t,τ) = Z0(x−ξ,ξ, t,τ)+
∫ t

τ

∫
Rd

Z0(x− y,y, t,λ)Q(y,ξ,λ,τ)dydλ (B.3)

Z0 stands for the heat kernel with frozen coefficients. One has the following lemma
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Lemma 12. For all x,x′,y ∈ Rd and 0 ≤ τ < t ≤ T

|Z0(x− y,y, t,τ)−Z0(x
′− y,y, t,τ)| ≤ K

|x− x′|h

(t − τ)
d+h

2

exp(−K′ |x”− y|2
t − τ

)

with x" the closest point to y between x and x’.

Proof. From the definition (11.2) p.356, we have ∀x,x′,y ∈ Rd,∀0 ≤ τ < t ≤ T

Diff = |Z0(x− y,y, t,τ)−Z0(x
′− y,y, t,τ)| ≤ K

|x− x′|
(t − τ)

d+1
2

exp(−K′ |x”− y|2
t − τ

)

Indeed, from (11.3) p.357, with r = 0 and s = 1, we see that

|∂Z0

∂z
(z− y,y, t,τ)| ≤ K(t − τ)−

d+1
2 exp(−K′ |z− y|2

t − τ
)

Placing ourselves in the plane generated by the points x, x′ and y, we let C denote the half-circle of
diameter [x,x′], lying in the half-space created by (x,x′) and that does not contain y1. The distance
from y to C is clearly larger than |x”− y|. This allows us to write

Diff ≤
∫

C

|∂Z0

∂z
(z− y,y, t,τ)|dz ≤ K

π|x− x′|
(t − τ)

d+1
2

exp(−K′ |x”− y|2
t − τ

)

As in p.361, we now use interpolation inequalities to get

Diff ≤ K
|x− x′|h

(t − τ)h d+1
2

exp(−K′ |x”− y|2
t − τ

)(|Z0(x− y,y, t,τ)|+ |Z0(x
′− y,y, t,τ)|)1−h

≤ K
|x− x′|h

(t − τ)h d+1
2 +(1−h) d

2

exp(−K′ |x”− y|2
t − τ

)

≤ K
|x− x′|h

(t − τ)
d+h

2

exp(−K′ |x”− y|2
t − τ

)

Given this lemma, we use (11.26) p.363

|Q(x,ξ, t,τ)| ≤ K
1

(t − τ)
d+2−h

2

exp(−K′ |x−ξ|2
t − τ

)

to estimate

Diff = |
∫ t

τ

∫
Rd
(Z0(x− y,y, t,λ)−Z0(x

′− y,y, t,λ))Q(y,ξ,λ,τ)dydλ|

≤
∫ t

τ

∫
Rd

K
|x− x′|h

(t −λ)
d+h

2

exp(−K′ |x”− y|2
t −λ

)
1

(λ− τ)
d+2−h

2

exp(−K′ |y−ξ|2
λ− τ

)dydλ

1If y belongs to (x,x′), both possibilities are fine.



Replacing exp(−K′ |x”−y|2
t−λ ) by exp(−K′ |x−y|2

t−λ )+exp(−K′ |x′−y|2
t−λ ) and using the preliminary lemmas

10 and 11, we get

Diff ≤ K exp(−K′ |x”−ξ|2
t − τ

)
∫ t

τ

|x− x′|h

(t −λ)
d+h

2 (λ− τ)
d+2−h

2

(t −λ)
d
2 (λ− τ)

d
2

(t − τ)
d
2

dλ

≤ K
|x− x′|h

(t − τ)
d
2

exp(−K′ |x”−ξ|2
t − τ

)
∫ t

τ
(t −λ)−

h
2 (λ− τ)

h−2
2 dλ

≤ K
|x− x′|h

(t − τ)
d
2

exp(−K′ |x”−ξ|2
t − τ

)

We now prove the inequality for function g. Using (16.10) p.409, we know that

g(x,y, t,τ) =
∫ t

τ

∫
∂Ω

Z(x,ξ, t,λ)ω(ξ,y,λ,τ)dSξdλ

with Sξ the element of the surface ∂Ω taken in ξ and ω defined by (16.11) such that

|ω(ξ,y,λ,τ)| ≤ K(λ− τ)−
d+1

2 exp(−K′ |ξ− y|2
λ− τ

)
∫ t

τ

∫
∂Ω

|ω(ξ,y,λ,τ)|dSξdλ ≤ K

Let x,x′,y ∈ D, 0 ≤ τ < t ≤ T . As in [3], we let σ denote the intersection of ∂Ω with B(x, |x”−y|
2 )∪

B(x′, |x”−y|
2 ). We compute

Diff = |g(x,y, t,τ)−g(x′,y, t,τ)|= |
∫ t

t+τ
2

∫
∂Ω
(Z(x,ξ, t,λ)−Z(x′,ξ, t,λ))ω(ξ,y,λ,τ)dSξdλ|

+ |
∫ t+τ

2

τ

∫
∂Ω�σ

(Z(x,ξ, t,λ)−Z(x′,ξ, t,λ))ω(ξ,y,λ,τ)dSξdλ|

+ |
∫ t+τ

2

τ

∫
σ
(Z(x,ξ, t,λ)−Z(x′,ξ, t,λ))ω(ξ,y,λ,τ)dSξdλ|

≤ K(t − τ)−
d+1

2 |
∫ t

t+τ
2

∫
∂Ω

|Z(x,ξ, t,λ)−Z(x′,ξ, t,λ)|exp(−K′ |ξ− y|2
λ− τ

)dSξdλ

+ K sup
ξ∈∂Ω�σ,τ≤λ≤ t+τ

2

|Z(x,ξ, t,λ)−Z(x′,ξ, t,λ)|
∫ t+τ

2

τ

∫
∂Ω�σ

|ω(ξ,y,λ,τ)|dSξdλ

+ K

∫ t+τ
2

τ

∫
σ
|Z(x,ξ, t,λ)−Z(x′,ξ, t,λ)|(λ− τ)−

d+1
2 exp(−K′ |ξ− y|2

λ− τ
)dSξdλ

Since

|Z(x,ξ, t,λ)−Z(x′,ξ, t,λ)| ≤ K
|x− x′|h

(t −λ)
d+h

2

exp(−K′ |ξ′−ξ|2
t −λ

)

with ξ′ the closest point to ξ between x and x′. We also notice that |ξ′− ξ| ≥ 1
2 |x”− y| on ∂Ω�σ



and |y−ξ| ≥ 1
2 |x”− y| on σ. We get

Diff ≤ K
|x− x′|h

(t − τ)
d+1

2

∫ t

t+τ
2

∫
∂Ω
(t −λ)−

d+h
2 exp(−K′ |ξ′−ξ|2

t −λ
)exp(−K′ |ξ− y|2

λ− τ
)dSξdλ

+ K
|x− x′|h

(t −λ)
d+h

2

exp(−K′ |x”− y|2
t −λ

)

+ K
|x− x′|h

(t − τ)
d+h

2

∫ t+τ
2

τ

∫
σ
(λ− τ)−

d+1
2 exp(−K′ |ξ′−ξ|2

t −λ
)exp(−K′ |ξ− y|2

λ− τ
)dSξdλ

:= J1 + J2 + J3

We split exp(−K′ |ξ′−ξ|2
t−λ ) into exp(−K′ |x−ξ|2

t−λ )+ exp(−K′ |x′−ξ|2
t−λ ) and compute for instance

|x−ξ|2
t −λ

+
|ξ− y|2
λ− τ

=
t − τ

(t −λ)(λ− τ)
|ξ− (λ− τ)x+(t −λ)y

t − τ
|2 + |x− y|2

t − τ

This allows us to write

∫
∂Ω

exp(−K′ |x−ξ|2
t −λ

)exp(−K′ |ξ− y|2
λ− τ

)dSξ =
∫

∂Ω
θ

d−1
2 exp(−θ|ξ−X |2)dSξ

exp(−K′ |x−y|2
t−τ )

θ
d−1

2

≤ Kθ−
d−1

2 exp(−K′ |x− y|2
t − τ

)

with θ = t−τ
(t−λ)(λ−τ) and X = (λ−τ)x+(t−λ)y

t−τ . Applying this last result and the preliminary lemma 11
gives

J1 ≤ K
|x− x′|h

(t − τ)
d+1

2

∫ t

t+τ
2

(t −λ)−
d+h

2
(t −λ)

d−1
2 (λ− τ)

d−1
2

(t − τ)
d−1

2

exp(−K′ |x”− y|2
t − τ

)dλ

≤ K
|x− x′|h

(t − τ)
d+1

2

exp(−K′ |x”− y|2
t − τ

)
∫ t

t+τ
2

(t −λ)−
1+h

2 dλ

≤ K
|x− x′|h

(t − τ)
d+1

2

exp(−K′ |x”− y|2
t − τ

)(t − τ)
1−h

2

The estimate we were looking for is proven for J1 and J2. As far as J3 is concerned, the exact same
computations as in p.412 give us the result.



B.2 Time estimate B.2

We now want to prove the time inequality. Let x,y ∈ D and 0 ≤ τ < t ′ < t ≤ T . First, we assume
that t − t ′ < t ′−τ

4 . Using Theorem 16.3 p.413, we compute

|G(x,y, t,τ)−G(x,y, t ′,τ)| ≤
∫ t

t ′
|∂G

∂t
(x,y,λ,τ)|

≤ K|t − t ′| sup
t ′≤λ≤t

|λ− τ|− d+2
2 exp(−K′ |x− y|2

λ− τ
)

≤ K
|t − t ′|

|t ′− τ| d+2
2

exp(−K′ |x− y|2
t − τ

)

≤ K
|t − t ′| h

2

|t ′− τ| d+h
2

exp(−K′ |x− y|2
t − τ

)

where we used in the last line t − t ′ < t ′−τ
4 .

Let us now consider the case t − t ′ ≥ t ′−τ
4 . Inequality (16.16) p.412 gives us

|G(x,y, t,τ)−G(x,y, t ′,τ)| ≤ K(|t − τ|− d
2 exp(−K′ |x− y|2

t − τ
)+ |t ′− τ|− d

2 exp(−K′ |x− y|2
t ′− τ

))

≤ K|t ′− τ|− d
2 exp(−K′ |x− y|2

t − τ
)

≤ K
|t − t ′| h

2

|t ′− τ| d+h
2

exp(−K′ |x− y|2
t − τ

)



Appendix C

Data for the numerical simulations

In this appendix, we give more data concerning Part II and the numerical results obtained using the
calibration method stemming from the partial differential equation (5.1).

C.1 LSV and Stochastic Interest Rates models

The surface of implied volatility used for the tests in Chapters 6 and 8 is the one of the EuroSTOXX
50 on the 2009/04/02. It was modified to have a spot of 100 and to nullify the impact of the
forward, the interest rate is chosen constant equal to 3%. A functional is fitted to the existing quoted
options, the rest of the surface is extrapolated using said functional. The surface thus obtained is
the following

0,003 0,088 0,167 0,250 0,500 0,750 1,000
5% 126,2% 79,21% 78,13% 72,65% 68,57% 63,00% 61,20%
10% 121,9% 77,19% 76,17% 70,94% 67,02% 61,68% 59,94%
15% 117,5% 75,16% 74,20% 69,23% 65,46% 60,36% 58,68%
20% 113,1% 73,13% 72,24% 67,53% 63,91% 59,04% 57,42%
30% 104,3% 69,08% 68,31% 64,11% 60,80% 56,41% 54,90%
40% 95,47% 65,01% 64,37% 60,68% 57,69% 53,76% 52,38%
50% 86,33% 60,87% 60,36% 57,21% 54,54% 51,09% 49,82%
60% 76,92% 56,66% 56,30% 53,71% 51,35% 48,39% 47,23%
70% 67,22% 52,39% 52,17% 50,15% 48,13% 45,66% 44,62%
80% 57,22% 48,04% 47,98% 46,55% 44,87% 42,91% 41,97%
90% 46,92% 43,64% 43,74% 42,90% 41,58% 40,14% 39,30%

100% 36,30% 39,18% 39,42% 39,25% 38,26% 37,37% 36,64%
110% 30,87% 36,70% 35,71% 36,39% 35,42% 34,97% 34,31%
120% 30,30% 35,76% 33,41% 34,22% 33,26% 32,93% 32,36%
130% 30,13% 35,38% 32,25% 32,64% 31,68% 31,26% 30,75%
140% 29,96% 35,03% 31,45% 31,81% 30,53% 29,92% 29,43%
150% 29,79% 34,65% 30,77% 31,36% 29,80% 28,90% 28,41%
160% 29,62% 34,27% 30,07% 30,91% 29,27% 28,14% 27,64%
170% 29,45% 33,89% 29,36% 30,44% 28,78% 27,65% 27,09%
180% 29,27% 33,48% 28,63% 29,97% 28,27% 27,17% 26,60%
190% 29,10% 33,08% 27,89% 29,49% 27,75% 26,70% 26,12%
200% 28,92% 32,66% 27,13% 28,99% 27,24% 26,22% 25,62%
210% 28,75% 32,23% 26,35% 28,50% 26,71% 25,73% 25,11%
220% 28,57% 31,79% 25,55% 27,99% 26,17% 25,23% 24,60%
230% 28,39% 31,35% 24,74% 27,48% 25,62% 24,74% 24,08%
240% 28,21% 30,89% 23,90% 26,96% 25,06% 24,23% 23,56%
250% 28,03% 30,42% 23,06% 26,42% 24,51% 23,71% 23,02%
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1,500 2,000 3,000 4,000 5,000 7,000 10,000
5% 54,25% 52,70% 47,80% 46,37% 44,22% 42,21% 40,36%
10% 53,31% 51,80% 47,14% 45,74% 43,69% 41,76% 39,99%
15% 52,36% 50,91% 46,47% 45,12% 43,15% 41,31% 39,62%
20% 51,42% 50,02% 45,80% 44,49% 42,61% 40,86% 39,25%
30% 49,53% 48,23% 44,46% 43,23% 41,54% 39,95% 38,50%
40% 47,63% 46,44% 43,12% 41,98% 40,46% 39,05% 37,75%
50% 45,71% 44,63% 41,75% 40,70% 39,37% 38,13% 37,00%
60% 43,77% 42,80% 40,36% 39,40% 38,28% 37,22% 36,24%
70% 41,81% 40,95% 38,95% 38,09% 37,16% 36,28% 35,48%
80% 39,83% 39,08% 37,50% 36,76% 36,04% 35,34% 34,71%
90% 37,82% 37,19% 36,04% 35,41% 34,89% 34,40% 33,94%

100% 35,80% 35,29% 34,55% 34,05% 33,74% 33,43% 33,16%
110% 33,92% 33,57% 33,16% 32,81% 32,65% 32,54% 32,44%
120% 32,30% 32,07% 31,98% 31,75% 31,72% 31,78% 31,81%
130% 30,93% 30,81% 30,98% 30,85% 30,94% 31,15% 31,28%
140% 29,79% 29,74% 30,17% 30,11% 30,29% 30,62% 30,84%
150% 28,86% 28,86% 29,51% 29,49% 29,76% 30,20% 30,47%
160% 28,13% 28,16% 28,96% 28,86% 29,23% 29,84% 30,10%
170% 27,60% 27,58% 28,40% 28,22% 28,70% 29,47% 29,75%
180% 27,20% 27,12% 27,79% 27,58% 28,15% 29,10% 29,37%
190% 26,80% 26,67% 27,19% 26,93% 27,59% 28,71% 29,00%
200% 26,41% 26,22% 26,56% 26,26% 27,02% 28,33% 28,62%
210% 26,01% 25,77% 25,93% 25,58% 26,45% 27,94% 28,25%
220% 25,60% 25,32% 25,28% 24,88% 25,85% 27,55% 27,85%
230% 25,19% 24,85% 24,62% 24,17% 25,26% 27,16% 27,46%
240% 24,78% 24,37% 23,95% 23,44% 24,64% 26,75% 27,05%
250% 24,36% 23,89% 23,26% 22,69% 24,02% 26,34% 26,65%

We now give the results of the calibration for other maturities. We compute the fitted prices for the
two stochastic volatilities already studied in Chapter 6, the lognormal one "LNV" and the "CIR".

50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150%
LNV 44,55% 42,75% 40,92% 39,08% 37,20% 35,19% 33,49% 32,00% 30,75% 29,71% 28,83%
BS 44,63% 42,80% 40,95% 39,08% 37,19% 35,29% 33,57% 32,07% 30,81% 29,74% 28,86%
CIR 44,53% 42,74% 40,91% 39,05% 37,16% 35,20% 33,50% 32,01% 30,76% 29,72% 28,85%

Table C.1: Calibrated prices for 2 year options

50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150%
LNV 41,77% 40,37% 38,97% 37,57% 36,13% 34,58% 33,21% 32,04% 31,06% 30,27% 29,62%
BS 41,75% 40,36% 38,95% 37,50% 36,04% 34,55% 33,16% 31,98% 30,98% 30,17% 29,51%
CIR 41,73% 40,34% 38,94% 37,54% 36,11% 34,54% 33,17% 32,00% 31,03% 30,24% 29,60%

Table C.2: Calibrated prices for 3 year options

50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150%
LNV 39,42% 38,27% 37,11% 35,99% 34,83% 33,76% 32,68% 31,76% 30,99% 30,35% 29,82%
BS 39,37% 38,28% 37,16% 36,04% 34,89% 33,74% 32,65% 31,72% 30,94% 30,29% 29,76%
CIR 39,29% 38,17% 37,04% 35,92% 34,78% 33,71% 32,65% 31,73% 30,96% 30,33% 29,81%

Table C.3: Calibrated prices for 5 year options

50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150%
LNV 38,87% 37,84% 36,82% 35,82% 34,82% 33,43% 32,53% 31,76% 31,13% 30,61% 30,22%
BS 38,13% 37,22% 36,28% 35,34% 34,40% 33,43% 32,54% 31,78% 31,15% 30,62% 30,20%
CIR 38,03% 37,13% 36,21% 35,28% 34,36% 33,42% 32,17% 31,46% 30,87% 30,39% 30,02%

Table C.4: Calibrated prices for 7 year options



50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150%
LNV 37,01% 36,24% 35,47% 34,72% 33,97% 33,22% 32,45% 31,87% 31,41% 31,04% 30,75%
BS 37,00% 36,24% 35,48% 34,71% 33,94% 33,16% 32,44% 31,81% 31,28% 30,84% 30,47%
CIR 36,97% 36,19% 35,43% 34,67% 33,91% 33,03% 32,36% 31,78% 31,31% 30,94% 30,64%

Table C.5: Calibrated prices for 10 year options

C.2 Local Correlation model

Here, we give some results for other tests. We calibrate a model with the following parameters
ρ = 0, w1 = 0.3 and w2 = 0.7, the targeted surface is the theoretical one distorted with two factors:
first 0.95 and second 1.05.

K
T

0,25 0,50 0,75 1,0

Theor. LC Theor. LC Theor. LC Theor. LC
80% 32.17% 32.10% 30.91% 30.88% 29.99% 29.96% 29.46% 29.43%
90% 31.49% 31.40% 30.43% 32.10% 29.60% 29.52% 29.22% 29.14%
100% 30.58% 30.42% 29.86% 29.62% 29.30% 29.02% 29.02% 28.76%
110% 30.01% 29.80% 29.68% 29.36% 29.04% 28.66% 28.93% 28.56%
120% 29.92% 29.74% 29.63% 29.30% 29.08% 28.68% 28.96% 28.52%

Table C.6: Calibration of the basket with D = 0.95, ρ = 0, w1 = 0.3 and w2 = 0.7

K
T

0,25 0,50 0,75 1,0

Theor. LC Theor. LC Theor. LC Theor. LC
80% 35.56% 35.36% 34.17% 34.05% 33.15% 33.01% 32.56% 32.42%
90% 34.81% 34.63% 33.64% 33.50% 32.73% 32.56% 32.30% 32.14%
100% 33.81% 33.60% 33.01% 32.75% 32.39% 32.07% 32.08% 31.75%
110% 33.17% 32.93% 32.81% 32.44% 32.10% 31.66% 31.98% 31.50%
120% 33.07% 32.81% 32.75% 32.35% 32.14% 31.65% 32.02% 31.47%

Table C.7: Calibration of the basket with D = 1.05, ρ = 0, w1 = 0.3 and w2 = 0.7

At last, we choose a different surface for the second underlying mutliplying the first one (described
in 7.1) by 0.9, the correlation is this time taken as 0.5.

K
T

0,25 0,50 0,75 1,0

Theor. LC Theor. LC Theor. LC Theor. LC
80% 40.78% 40.35% 39.16% 38.77% 37.87% 37.49% 37.16% 36.84%
90% 39.73% 39.51% 38.39% 38.10% 37.26% 36.97% 36.74% 36.46%
100% 38.44% 38.37% 37.52% 37.27% 36.71% 36.40% 36.32% 36.01%
110% 37.54% 37.40% 37.06% 36.78% 36.20% 35.85% 36.05% 35.71%
120% 37.31% 37.24% 36.89% 36.68% 36.10% 35.81% 35.98% 35.68%

Table C.8: Calibration of the basket with D = 0.95, ρ = 0.5, w1 = 0.3 and w2 = 0.7



Appendix D

CIR

Let us go back to the case of the CIR diffusion used in Chapter 6 as a volatility factor

dyt = κ (α− yt) dt + γ
√

yt dWt

We let τ denote τ = inf{t ≥ 0,yt = 0}. In [48], one finds the

Proposition 12. If α, κ and γ are positive, then there exists a unique positive solution yt . Moreover,

under the condition 2κα > γ2 then P(τ = ∞) = 1.

This last condition guarantees the strict positivity of the volatility process. Let us now simulate this
process. The natural explicit euler scheme is

yti+1 = yti +κ(α− yti)(ti+1 − ti)+ γ
√

yti(Wti+1 −Wti)

Unfortunately, it can lead to negative values since the gaussian increment is not negatively bounded.
However, exactly as in [58], if we write

yt = y0 + lim
n→∞

{ ∑
i,ti<t

κ(α− yti+1)
t

n
+ γ ∑

i,ti<t

√
yti+1(Wti+1 −Wti)− γ ∑

i,ti<t

(
√

yti+1 −
√

yti)(Wti+1 −Wti)}

= y0 + lim
n→∞

{ ∑
i,ti<t

(κ(α− yti+1)−
γ2

2
)

t

n
+ γ ∑

i,ti<t

√
yti+1(Wti+1 −Wti)}

The following implicit scheme appears quite naturally

yti+1 = yti +(κ(α− yti+1)−
γ2

2
)

t

n
+ γ

√
yti+1(Wti+1 −Wti)

More precisely,
√

Vti+1 can be chosen as the unique strictly positive root of the polynomial P(x) =

(1+κ t
n
)x2 − γ(Wti+1 −Wti)x− (Vti +(κα− γ2

2 )
t
n
). Indeed, the condition 2κα > γ2 gives P(0) < 0.

Eventually, we obtain the formula used in the previous numerical computations

Vti+1 =





γ(Wti+1 −Wti)+

√

γ2(Wti+1 −Wti)
2 +4(yti +(κα− γ2

2 )
t
n
)(1+κ t

n
)

2(1+κ t
n
)





2
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