
HAL Id: tel-00658981
https://theses.hal.science/tel-00658981v1
Submitted on 11 Jan 2012 (v1), last revised 2 Feb 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Agreement Protocols for Asynchronous
Distributed Systems

Izabela Moise

To cite this version:
Izabela Moise. Efficient Agreement Protocols for Asynchronous Distributed Systems. Distributed,
Parallel, and Cluster Computing [cs.DC]. Université Rennes 1, 2011. English. �NNT : �. �tel-
00658981v1�

https://theses.hal.science/tel-00658981v1
https://hal.archives-ouvertes.fr

No d’ordre: 4481 ANNÉE 2011

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention: INFORMATIQUE
Ecole doctorale MATISSE

présentée par

Izabela Moise
préparée à l’unité de recherche no 6074 - IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires
IFSIC

Efficient
Agreement

Protocols
in Asynchronous

Distributed Systems

Thèse soutenue à Rennes
le 12 decembre 2011

devant le jury composé de:

Michel HURFIN/directeur de thèse
Chargé de recherche, INRIA Rennes, France

Jean-Pierre LE NARZUL/encadrant
Maitre de conférence, Télécom Bretagne Rennes, France

Roberto BALDONI/rapporteur
Professeur, Sapienza Università Di Roma, Rome, Italie

Sébastien TIXEUIL/rapporteur
Professeur, LIP6, Paris, France

César VIHO/président
Professeur, Université de Rennes 1, Rennes, France

Achour MOSTÉFAOUI/examinateur
Professeur, Université de Nantes, Nantes, France

iii

Abstract

The Consensus problem is recognized as a central paradigm of fault-tolerant distributed
computing. In a purely asynchronous system, Consensus is impossible to solve in a de-
terministic manner. However, by enriching the system with some synchrony assumptions,
several solutions have been proposed in order to circumvent the impossibility result, among
which the Paxos approach introduced by Lamport.

This work represents a contribution to the construction of efficient consensus protocols in
asynchronous distributed systems. The algorithmic contribution of this thesis consists of an
efficient framework, called the Paxos-MIC protocol, that follows the Paxos approach and in-
tegrates two existing optimizations. Paxos-MIC generates a sequence of consensus instances
and guarantees the persistence of all decision values. The main feature of the protocol is its
adaptability. As one of the optimizations may be counterproductive, Paxos-MIC incorpo-
rates a triggering mechanism that dynamically enables the optimization. This mechanism
relies on several triggering criteria with the main purpose of predicting if the activation
of the optimization will be beneficial or not. Extensive experimentations on the Grid’5000
testbed were carried out with the purpose of evaluating the protocol and the efficiency of
the triggering criteria.

A second part of this work focuses on the use of consensus as a building-block for de-
signing higher-level applications. We consider the particular context of transactional mo-
bile agents and we propose a solution to support the execution of transactions in an ad-hoc
network. This solution relies on an everlasting sequence of decision values, generated by
repeatedly invoking a consensus building-block. The consensus service is provided by the
Paxos-MIC framework.

iv

v

Contents

1 Introduction 1
1.1 Context . 2

1.2 Contributions . 3

1.3 RoadMap . 5

Part I – Context: Consensus in Asynchronous Distributed Systems 7

2 Consensus in Asynchronous Distributed Systems 9
2.1 System model . 10

2.2 Consensus . 11

2.2.1 The problem specification . 11

2.2.2 Agreement problems . 12

2.2.3 Impossibility result . 13

2.3 Unreliable failure detectors . 15

2.4 ♢S based protocols . 16

2.4.1 Fundamental principles . 16

2.4.2 The Chandra-Toueg protocol . 17

2.4.3 The Early Consensus protocol . 19

2.4.4 The General Consensus Protocol - A General Quorum-Based Approach 21

2.4.5 Particularities . 22

2.5 Other approaches to specifying the system model 23

2.6 Conclusions . 24

3 The Paxos protocol 25
3.1 Leader Election Oracles . 26

3.2 History of Paxos . 26

3.2.1 The original Paxos . 26

vi Contents

3.2.2 Paxos made simple . 27
3.3 Formal model . 27
3.4 The roles . 27
3.5 The structure of the algorithm . 28

3.5.1 Rounds . 28
3.5.2 Two phases of Paxos . 29

3.6 Main principles - why does Paxos work? . 31
3.7 The latency of classic Paxos . 32
3.8 Making Paxos fast . 33

3.8.1 Motivation . 33
3.8.2 State Machine Replication . 33
3.8.3 FastPaxos . 34
3.8.4 Fast Paxos . 35
3.8.5 Related work . 38

3.9 Conclusions . 39

Part II – Contribution: Paxos-MIC, an Adaptive Fast Paxos 41

4 Paxos-MIC - An Adaptive Fast Paxos 43
4.1 The Multiple-Integrated Consensus problem 44
4.2 The System model . 45
4.3 Architecture of Paxos-MIC . 46

4.3.1 Interaction with external proposers and learners 46
4.3.2 Roles and communication scheme . 46

4.4 The behavior of Paxos-MIC with just SO . 49
4.5 Paxos-MIC with both SO and RO . 58
4.6 Paxos-MIC: positioning with respect to the Paxos protocol 61

Part III – Implementation and Evaluation 63

5 Implementation 65
5.1 EVA: An EVent based Architecture . 65

5.1.1 The architecture of EVA . 66
5.2 Paxos-MIC implementation . 69

5.2.1 Building the components . 69
5.2.2 Example: the Acceptor class . 70

5.3 Final words . 72

Contents vii

6 Evaluation of Paxos-MIC 73
6.1 Experimental setup: the Grid’5000 platform . 74

6.1.1 Infrastructure details . 74
6.1.2 Grid’5000 experimental tools . 76
6.1.3 Environment settings for Paxos-MIC . 76

6.2 Overview of the experiments . 77
6.3 Automatic deployment tools . 78
6.4 Results . 79

6.4.1 Failures . 79
6.4.2 Scalability . 80
6.4.3 Localization . 81
6.4.4 Delays . 83
6.4.5 Participation to several consensus instances 83
6.4.6 Collisions . 85

6.5 Zoom on RO - Prediction of collisions . 86
6.5.1 Four main reference contexts . 87
6.5.2 How collisions occur . 88

6.6 Simulation of Paxos-MIC . 89
6.6.1 Application: A secure Web Architecture 89
6.6.2 Log analysis . 90

6.7 Triggering criteria . 91
6.7.1 Classification . 91
6.7.2 Results and analysis . 94
6.7.3 Which criterion? . 97

6.8 Final remarks . 98

Part IV – Sequence of Decisions - Support for Transactional Mobile Agents 99

7 Sequences of Decisions as a Support for Transactional Mobile Agents 101
7.1 Context . 102
7.2 Transactions, Requests, and Nodes . 105

7.2.1 Distributed Transactions . 105
7.2.2 The Execution Phase (1st phase) . 105
7.2.3 The commitment phase (2nd phase) . 107
7.2.4 The six possible states of a visited node 108

7.3 Use of Mobile Agents . 110
7.4 Use of a centralized support . 113
7.5 A Unified Approach Based on Agreement . 115

viii Contents

7.6 Implementing the Services . 116
7.7 Evaluation . 120
7.8 Final remarks . 123

Part V – Conclusions: Achievements and Perspectives 125

8 Conclusions 127
8.1 Achievements . 127
8.2 Perspectives . 129

I Résumé en français 137
I.1 Introduction . 137
I.2 Contributions . 140
I.3 Brève description de Paxos-MIC . 142
I.4 Critères de déclenchement de RO . 145

I.4.1 Critères dynamiques . 145
I.4.2 Critères statiques . 146

I.5 Conditions d’expérimentation . 146
I.5.1 Quatre contextes de référence . 147

I.6 Déclenchement de RO : analyse dans le cadre d’une application WEB 147
I.6.1 Critères de déclenchement . 148
I.6.2 Logs . 148
I.6.3 Contextes . 148
I.6.4 Résultats et analyses . 149
I.6.5 Evaluation du risque . 150

I.7 Conclusion . 151

1

Chapter 1
Introduction

Contents
1.1 Context . 2

1.2 Contributions . 3

1.3 RoadMap . 5

DISTRIBUTED systems are everywhere. They emerged for two main reasons: inherent
distribution (applications that require sharing of resources or dissemination of in-
formation among geographically distant entities are “natural” distributed systems)

and also as a solution to satisfy requirements such as fault-tolerance. Indeed, a general ap-
proach for supporting fault-tolerance consists in decentralizing and replicating components,
functions and data. Variations at the level of synchrony properties, inter-process communi-
cation, failure model of the system and many other factors, have led to a prolific literature
revolving around distributed systems.

The construction of distributed systems rises many challenges, among which the main
challenge remains: how do we coordinate the components of a distributed system? Replica-
tion requires a protocol that enables replicas to agree on values and actions. Many relevant
practical problems, such as atomic broadcast for state-machine replication or decentralized
atomic commit for database transactions, can be reduced to the problem of reaching Consen-
sus.

Consensus encapsulates the inherent problems of building fault-tolerant distributed sys-
tems. Consensus represents the greatest common denominator of the so-called class of
Agreement problems such as data consistency, group membership, consistent global states,
distributed consensus, atomic broadcast and many others.

2 Chapter 1 – Introduction

1.1 Context

In the general context of system models, we address the particular settings of asynchronous
distributed systems prone to crash failures and message omissions. In this context, provid-
ing efficient solutions to agreement problems is a key issue when designing fault-tolerant
applications. The state machine approach [50] illustrates this concern. In this particular ex-
ample, replicas of a critical server need to agree on a sequence of incoming requests. Such a
sequence is usually constructed by repeatedly calling a Consensus service. This importance
explains why Consensus has attracted so much interest. The classical specification of the
Consensus problem [40] requires that each participant proposes an initial value and, despite
failures, all the correct processes decide on a single value selected out of these proposals.
Solving consensus goes back three decades ago, with a fundamental result in distributed
computing: the FLP impossibility result stating that Consensus is unsolvable by a determin-
istic algorithm in an asynchronous system even if only a single process may crash [40]. The
intuition behind this result is that without any synchrony assumptions, there is no reliable
way of detecting failures, in other words, we do not know if a process is really crashed or just
slow. Nevertheless, under some well-identified additional synchrony properties that can be
indirectly exploited by a failure detector or a leader-election service, deterministic consensus
protocols have been proposed.

In the context of algorithms, we refer to two major contributions: the ♢S based protocols,
in particular the CT protocol [15], and the Paxos [35, 36] protocol. Both approaches solve
consensus in an asynchronous system extended with an oracle that provides useful informa-
tion for the process that invokes it. ♢S based protocols rely on an iterative control structure:
processes proceed in a sequence of asynchronous rounds, with the main purpose of allowing
a convergence towards a same value and eventually decide on it.

The classical rigid interaction scheme requires that each participant to the consensus,
provides an initial value and then waits for the decision value. Many solutions have been
proposed to bypass this rigid scheme. One of the most famous is the Paxos protocol [35, 36].
Indeed, in Paxos-like protocols, a participant to a consensus instance is neither required
to propose an initial value nor to wait for a returned decision value. This is achieved by
identifying roles that participants may fulfill. A proposer is a process able to supply an initial
value during a consensus instance. A learner is a process interested in acquiring a decision
value. In an open system, their number is unbounded and may vary in time. However, it
is assumed that at least one non-crashed proposer supplies an input during each consensus
instance. In Paxos-like protocols, proposers and learners are external entities and they are
not involved in the consensus mechanism, which is driven only by the interaction between
acceptors and coordinators.

We aim at understanding the underlying principles of both approaches and also the sim-
ilarities and the differences between them. Although they rely on different types of oracles,
namely failure detectors and leader-election services, the two approaches have strong simi-
larities: the agreement property of consensus is never violated regardless of asynchrony and
messages losses. In addition, both are based on the same “most recent voting scheme”.

Once solving consensus became understood, a hot topic quickly emerged: how can the
performance of a consensus algorithm be improved? This interest was mainly motivated by
the use of consensus as a building block for higher-level applications. Indeed, many tech-
niques used in distributed systems often rely upon a sequence of decision values, usually

1.2 – Contributions 3

generated by repeatedly invoking a consensus service. The performance of the application
is directly impacted by the efficiency of the underlying consensus protocol. A traditional
cost criterion for consensus algorithms is defined by the number of communication steps re-
quired to reach a decision in a well-behaved run of the algorithm. This is called the latency. In
particular, a prolific research trend has explored techniques for improving the performance
of Paxos-like protocols.

In this general context, the objectives of our research were twofold. Our core goal was to
design and evaluate a protocol able to efficiently build an everlasting sequence of decisions.
Second, we wanted to outline the interest of using such a building-block in applications
based on transactional mobile agents.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

Formal definition of the Multiple-Integrated Consensus problem. This work focuses in a
first phase, on both the construction and the availability of an everlasting sequence of deci-
sion values, during a long-lasting computation. We denote the problem of generating such
a sequence by the Multiple-Integrated Consensus problem. We assume that this sequence is cre-
ated, step by step, by a rather stable subset of dedicated processes called the core. This subset
is in charge of generating the sequence of decisions and also it can provide all the decision
values already computed (or the most recent ones) to any interested process. Members of
the core interact with external entities that act as proposers or as learners and also they co-
operate among themselves to establish the sequence of decisions. We extend the classical
formal definition of the Consensus problem in order to specify properties when coping with
a sequence of consensus instances.

Paxos-MIC: an adaptive fast Paxos for making quick everlasting decisions. The algo-
rithmic contribution of this work consists in designing an efficient framework that is adap-
tive, reaches fast decisions and ensures the persistence of all decision values. This protocol,
called Paxos-MIC, satisfies the specification of the Multiple-Integrated Consensus problem.
The Paxos-MIC protocol allows to solve a sequence of consensus instances in an unreliable,
asynchronous system. As suggested by its name, the protocol follows the Paxos approach
(the Paxos protocol and several of its variants [35, 36]). Our contribution proceeds in sev-
eral phases. We begin by revisiting the interaction scheme between proposers, learners,
coordinators and acceptors. We concretize this interaction in an architecture describing the
communication pattern between all entities involved. Further, we provide an algorithmic
description of the Paxos-MIC protocol, sustained by a detailed description of the underlying
principles of the protocol. Paxos-MIC integrates two optimizations: a safe optimization (de-
noted SO) that is always activated and a risky optimization (denoted RO) that is activated at
runtime, only in favorable circumstances. The main feature of the framework is its adaptabil-
ity: for each consensus instance, the leader checks at runtime if the context seems suitable
for activating optimization RO.

We try to have a presentation of the Paxos-MIC protocol that remains as close as possible
to the terminology and the basic principles used in Paxos [36] and Fast Paxos [37]. Never-

4 Chapter 1 – Introduction

theless, some choices that have conducted the design of our protocol, may help the reader
to have a slightly different look at all the protocols belonging to the Paxos Family. Thus, this
manuscript is also a didactic contribution, as it may help to get a better understanding of
different contributions, by merging them within a single simple framework.

Interest of activating the risky optimization. Part of our work was dedicated to investi-
gating in which conditions the risky optimization would lead to a performance gain. To meet
this goal, we analyzed the performance of the protocol and observed its behavior in several
specific scenarios. During the evaluation phase of the Paxos-MIC protocol, we proceed first
with identifying a series of synthetic benchmarks. We consider the behavior of the protocol
when either only SO or both SO and RO are used. Our aim is to determine the impact of
some contextual factors (size of the core, geographical position of the actors) on the time re-
quired to reach a decision and also to obtain an assessment of the performance degradation
of optimization RO when used in less favorable circumstances.

Prediction of collisions. One of the main benefits of Paxos-MIC consists in the dynamic
activation of optimization RO at runtime. This optimization is risky and may lead to sig-
nificant degradation of the protocol when proposers provide different values for the same
consensus instance. In this case, we say that a collision occurs. The question that arises is
the following: is it possible to predict a collision? In our approach, the leader is in charge of
deciding the activation of optimization RO, at runtime, between two consecutive consensus
instances. Its decision is based upon a so-called triggering criterion. The specification of this
criterion may allow us to answer the aforementioned question. Based on the performance
analysis of Paxos-MIC, we define four reference contexts that are relevant for optimization
RO. We propose several triggering criteria. Their definition relies on different knowledge,
such as an analysis of the recent past, the study of the current context and also a possible pre-
diction of the future. In order to obtain a comparison and an assessment of their efficiency,
we consider a particular application (a secure Web server) and a real trace that records the
activation dates of the successive consensus instances. Through an analysis of the trace, we
evaluate the expected gain in each of the four contexts and we observe the accuracy of the
triggering criteria in predicting future collisions.

Consensus as a building block. Consensus is intensively used as a building block for con-
structing higher-level applications. Generating an everlasting sequence of decisions is at
the heart of the state machine approach. Usually this approach is used to maintain consis-
tency between replicas. We consider a particular application where the sequence of decisions
aims at implementing a reliable server that supervises the behavior of transactional mobile
agents. We propose a cloud-based solution to support the execution of transactions in an
ad-hoc network. Mobile agents migrate among the places of an ad-hoc network with the
goal of building an itinerary that is able to commit a given transaction. We identify two
services, Availability of the Source and Atomic Commit, that provide support for the agent exe-
cution. These services ensure reliability and atomic validation of the transaction and can be
supplied by entities located in a cloud. These higher-level services are constructed by rely-
ing on an everlasting sequence of decisions, generated by repeatedly invoking a consensus
service. We propose a solution where these two services are provided in a reliable and ho-

1.3 – RoadMap 5

mogeneous way. To guarantee reliability, the proposed solution relies on a single agreement
protocol that orders continuously all the new actions whatever the related transaction and
service. The agreement service is provided by the Paxos-MIC protocol. The two identified
services require reaching agreement on three types of decisions: the source of the itinerary,
the itinerary itself and the outcome of this itinerary. We show how such an architecture can
be constructed by relying on Paxos-MIC as a building-block.

Implementation and evaluation. An important part of this work has been dedicated to
providing an efficient practical implementation of the Paxos-MIC protocol, based on the al-
gorithmic description. A great amount of work has also been invested in the evaluation
of the protocol, through a series of synthetic benchmarks. All experiments involved in the
aforementioned contributions were carried out on the Grid’5000/ALLADIN experimental
testbed federating 10 different sites in France. It is an initiative of the French Ministry of
Research through the ACI GRID incentive action, INRIA, CNRS, RENATER and other con-
tributing partners. We are particularly grateful for the excellent support that was provided
by the Grid’5000 team during the time in which the work presented in this thesis was carried
out.

1.3 RoadMap

This manuscript is organized in five main parts.

The first part: Context - Consensus in asynchronous distributed systems. This part of
the manuscript provides a general overview of the context of our work. This part contains
two main chapters that present the state of the art of distributed asynchronous consensus
protocols. Chapter 2 presents the consensus problem in asynchronous distributed systems
and an important result obtained regarding this problem. Further, this chapter focuses on
failure detectors and in particular, explores deterministic consensus protocols that are based
on ♢S failure detectors.

In a second step, Chapter 3 introduces the Paxos approach, as a famous and efficient so-
lution to the consensus problem. After describing the underlying principles of the protocol,
we focus on variants of Paxos, proposed with the purpose of optimizing the protocol’s la-
tency. The motivation of these protocols comes from the repeated use of consensus protocols
as building-blocks for higher-level application, among which the state machine approach
represents a powerful example.

The second part: Contribution - Paxos-MIC, an adaptive fast Paxos. The second part
of the manuscript presents the algorithmic contribution of this thesis: the development of
Paxos-MIC - an efficient framework for making quick everlasting decisions. Chapter 4 com-
mences with the formal specification of the Multiple Integrated Consensus problem that allows
us to identify the context of our approach and the motivation for proposing our protocol. We
briefly discuss the system model and also the architecture of our protocol from the point of
view of the entities involved and the communication scheme. The presentation of the Paxos-
MIC protocol is done in two steps. We describe a first version of the protocol that only inte-

6 Chapter 1 – Introduction

grates optimization SO (used in FastPaxos [7]). Then, we present the modifications required
to use (depending on the context) both optimizations. This two-step description allows to
clearly identify the parts of the protocol that are impacted by optimization RO (introduced
by Lamport in Fast Paxos [37]).

The third part: Implementation and evaluation. In the third part, we discuss the imple-
mentation details of the algorithm introduced in Chapter 4. Chapter 5 discusses the imple-
mentation of the protocol in two steps: firstly, it provides an overview of the event-based
architecture, EVA and later, in a second step, we show how abstractions defined in EVA are
used as building blocks for the Paxos-MIC protocol. This chapter also insists on software
engineering aspects and other practical issues and technical details that we encountered.

In a second phase, this part evaluates the implementation described in Chapter 5. Chap-
ter 6 is structured in two main parts: first, the Paxos-MIC protocol is evaluated in this
through a series of synthetic benchmarks. These benchmarks consist of specific scenarios
that facilitate the study of the protocol’s performance and the analysis of its behavior. In a
second step, Chapter 6 focuses on the risky optimization RO. As this optimization is unsafe
and can lead to additional cost when used in bad circumstances, its activation is carefully
done at runtime by relying on the so-called triggering criterion. We propose several triggering
criteria and we evaluate them in the context of a particular application (a secure Web server).

The Paxos-MIC protocol combines two optimizations dynamically. It allows to solve sev-
eral consensus instances and to guarantee the persistence of all decision values. The protocol
is adaptive as it tries to obtain the best performance gain depending on the current context.
Between two consecutive consensus instances, the Leader determines if the optimization RO
has to be triggered or not. We analyzed its behavior when both optimizations (or just the
safe one SO) are used. We studied favorable and unfavorable scenarios where RO may lead
to an additional cost. We considered an application for securing a Web server and showed
that simple triggering criteria do not allow to predict accurately collisions but they are pre-
cise enough to adapt dynamically the behavior of the protocol to the current context. All our
results demonstrate that there is a real interest in using RO.

The fourth part: Sequence of decisions as a support for transactional mobile agents. of
the manuscript focuses on using the Paxos-MIC protocol as a building-block for higher-level
applications. Chapter 7 addresses the context of transactional mobile agents and proposes
a cloud-based solution to support the execution of transactions in ad-hoc networks. First,
this solution identifies two important services that provide support for the agent execution.
Further, these higher-level services are constructed by relying on a sequence of decision
values generated by the repeated invocation of a consensus service. This service is provided
by the Paxos-MIC protocol, executed by processes located in a cloud. We define the interface
that manages the interactions between the Paxos-MIC building-block and the higher-level
services that invoke it.

The fifth part: Achievements and perspectives is represented by Chapter 8 and summa-
rizes the aforementioned contributions and presents a series of future perspectives that are
interesting to explore.

7

Part I

Context: Consensus in Asynchronous
Distributed Systems

9

Chapter 2
Consensus in Asynchronous

Distributed Systems

Contents
2.1 System model . 10

2.2 Consensus . 11

2.2.1 The problem specification . 11

2.2.2 Agreement problems . 12

2.2.3 Impossibility result . 13

2.3 Unreliable failure detectors . 15

2.4 ♢S based protocols . 16

2.4.1 Fundamental principles . 16

2.4.2 The Chandra-Toueg protocol . 17

2.4.3 The Early Consensus protocol . 19

2.4.4 The General Consensus Protocol - A General Quorum-Based Ap-
proach . 21

2.4.5 Particularities . 22

2.5 Other approaches to specifying the system model 23

2.6 Conclusions . 24

«

ADistributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable. »

10 Chapter 2 – Consensus in Asynchronous Distributed Systems

Leslie Lamport
This informal way of defining a distributed system captures one of the most important

features of a distributed system: despite its distributed nature, the system behaves as a sin-
gle coherent entity, from the point of view of the users. The definition of Leslie Lamport
also insists on the fact that a distributed system is prone to failures. A distributed system
is defined as a collection of independent computing entities, located on different comput-
ers. These entities (represented by software and hardware components) are sometimes also
called processes.

2.1 System model

In a distributed system, the entities are connected through a network and can be viewed
as nodes in a connected graph where the edges are the communication links. Processes
perform local computation and coordinate their actions by exchanging relevant information.
The system model is defined by a set of assumptions characterizing the properties of the
system. The communication mechanism used by the entities is part of the specification of
the system model. In a shared memory model, processes communicate by accessing shared
objects located in a common memory. In a second category, communication is provided by
message passing, i.e., by sending and receiving messages over point-to-point or multicast
communication channels.

The system specification also depends on the failure model. By definition, a process that
deviates from its execution specification is considered to be faulty or incorrect. Otherwise, the
process is said to be non-faulty or correct. In the crash failure model, a process may fail only by
prematurely stopping its execution. A more general failure model is the Byzantine failure,
defined by an arbitrary behavior of the faulty process: failing to send or receive a message,
corrupting local state, or sending an incorrect reply to a request.

In this work, we consider a distributed system prone to crash failures. We define the
system as a finite set Π of n processes, with n > 1, more precisely Π = {p1, p2, ..., pn}.
Different computing units are used to execute the n processes in the system. Among the
n processes we assume that at most f processes may fail only by crashing. We also make
the assumption that there exists a majority of correct processes, which means that f < n/2.
As mentioned before, processes communicate by message passing. We assume that each
pair of processes is connected by bidirectional, fair lossy channels. The network links are
unreliable: messages can be lost and duplicated but not corrupted. However, if a process pi
sends infinitely often a message to a process pj, then pj receives infinitely often the message.

In the context of distributed systems, introducing asynchrony usually entails the lack
of any global timing assumption. Processes operate at arbitrary speed and there exists no
upper bound on message transfer delays. On the contrary, a synchronous model, implies
timing bounds on the actions performed by the processes and on message transfer delays.

The asynchronous model is a weak one, but probably the most realistic one. Indeed,
in many real systems, there exist arbitrary delays that can be easily modeled by an asyn-
chronous system. In a pure asynchronous system, there is no reliable way of detecting fail-
ures. In a synchronous system, a straightforward and reliable solution for failure detection
relies on timeout mechanisms. However, in a pure asynchronous model, the question that
arises is the following: is a process really crashed or just slow in its computation? Although

2.2 – Consensus 11

the asynchronous model is better suited to represent a real system, a number of important
properties have been proven impossible to fulfill, even under very weak assumptions, while
they become achievable in the synchronous model.

Failure detection represents an important issue in designing fault-tolerant distributed
systems. Failure detection mechanisms usually rely on augmenting a system Π =
{p1, p2, ..., pn} by allowing each process pi to access a local module, called a failure detec-
tor. This component outputs the list of processes it currently suspects of being crashed. In
other words, it monitors a subset of the processes in the system and updates a list of crashed
processes. If a process pi suspects another process pj at a given time t, then pj ∈ suspectedi
at time t, where suspectedi denotes the list provided by the failure detector of process pi.

However, any failure detector module can be unreliable by providing misleading infor-
mation. For instance, it can erroneously suspect a process of being crashed, even though
the process is behaving correctly, or it can fail to suspect a process that has really crashed.
If a failure detector makes mistakes, the list of suspected processes is repeatedly modified
and the same process may be added and removed from the list. As a consequence of the
unreliability of failure detectors, the lists provided by two different modules located at two
different processes may not contain the same entries.

More formally, failure detectors are defined by two types of abstract properties, namely
Completeness and Accuracy. Accuracy specifies which processes are not suspected and when,
while completeness specifies which processes are suspected and when. Both properties are
needed to avoid a trivial failure detector that will satisfy any accuracy property by never sus-
pecting any process or completeness property by always suspecting all processes. Indeed,
a failure detector can make two types of mistakes: it may fail to suspect a faulty process or
it may falsely suspect a correct one. Both types of properties aim at limiting the number of
mistakes a failure detector can make. More precisely, the completeness requirement limits
the number of mistakes a failure detector can make, by not suspecting processes that are
really crashed. A failure detector that has the property of completeness eventually suspects
every process that actually crashes. Accuracy limits the number of erroneous suspicions that
a failure detector can make.

2.2 Consensus

2.2.1 The problem specification

In an asynchronous distributed system prone to crash failures, providing efficient solutions
to agreement problems is a key issue when designing fault-tolerant applications. The State
Machine approach [50] illustrates this concern. In this particular example, replicas of a critical
server need to agree on a sequence of incoming requests. The goal is to define a total order
on all events that may affect the state of the running replicas. Such a sequence is usually
constructed by repeatedly calling a Consensus service.

Consensus is recognized as one of the most fundamental problems in distributed comput-
ing. The classical specification of the consensus problem [40] requires that each participant
to the consensus proposes an initial value (also called, a proposal or a proposed value) and, de-
spite failures, all the correct processes have to decide on a single value selected out of these
proposals. More formally, consensus is defined by the following three properties:

12 Chapter 2 – Consensus in Asynchronous Distributed Systems

1. Agreement: No two correct processes decide on different values.

2. Termination: Every correct process eventually decides.

3. Validity: Any decided value is a proposed value.

Any algorithm that satisfies these three properties is said to solve the consensus problem.
Thus, in more details, consensus is defined by two safety properties (Validity and Agreement)
and one liveness property (Termination). Note that Agreement refers only to correct processes.
However, the possibility that a process decides on a different value just before crashing,
still exists. In order to prevent this, the stronger notion of Uniform Consensus defines the
Agreement requirement in the following manner:

1. Agreement: No two processes (correct or not) decide on different values.

2.2.2 Agreement problems

Consensus protocols are intensively used as building blocks for implementing higher-level
services, of key importance when designing fault-tolerant distributed applications. Many
practical problems such as electing a leader, or agreeing on a value of a replicated server, are
solved by relying on a consensus algorithm. The consensus problem can be viewed as the
"greatest common denominator" for a class of problems known as Agreement problems, which
includes, among other: Atomic Broadcast, Group Membership and Atomic Commit.

In the following, we provide a general overview of each of these agreement problems.

Atomic Broadcast Reliable Broadcast is the weakest type of fault-tolerant broadcast. It
requires that all processes agree on the delivered messages. Informally, if a correct process
broadcasts a message then all correct processes eventually receive that message. Reliable
Broadcast does not impose any message delivery ordering.

On the contrary, Causal Broadcast guarantees that if the broadcast of a message m1 hap-
pens before (or causally precedes) the broadcast of message m2, then no correct process de-
livers m2 before m1.

Atomic Broadcast [15] is an agreement problem that entails two aspects: processes agree
on the set of messages they deliver and also on the order in which these messages are deliv-
ered. Therefore, Atomic Broadcast (sometimes called Ordered Reliable Broadcast) represents
a communication paradigm that ensures that all correct processes deliver the same sequence
of messages.

More formally, Atomic Broadcast is specified by the Total Order requirement: if two cor-
rect processes pi and pj deliver two messages m1 and m2, then pi delivers m1 before m2 if and
only if pj delivers m1 before m2.

Group Membership As replication is a key solution for introducing fault-tolerance in dis-
tributed applications, group-based computing facilitates the design of such applications. A
group is defined as a set of processes that cooperate in order to accomplish a common task. If
we consider an unbounded set of processes Π = {p1, p2, ..., pn, ...}, any subset forms a group.
A composition of a group evolves in a dynamical manner: crash failures of group members

2.2 – Consensus 13

may occur, a process may want to join the group or a member of the group may want to
leave it. The current composition of the group defines the current view of the group. In group
membership, consensus is often used to agree on the sequence of views of the group.

Atomic Commit The transaction concept is widely recognized as a powerful model to struc-
ture distributed applications. A distributed transaction is structured as a sequence of ele-
mentary operations, performed at multiple sites, terminated with a request to commit or
abort the transaction. The sites that performed the operations, execute an atomic commit
protocol to decide whether the transaction is aborted or committed. The atomic commit
protocol implements an all-or-nothing approach: either the transaction is committed if and
only if each site agrees to commit the specific operation it has executed, or the transaction is
aborted on every site.

Executing a distributed task usually comes down to executing a sequence of elementary
requests, with the constraint that all of them are viewed as a single operation. Atomic Com-
mit requires that all operations are executed successfully or all of them aborted, if at least one
of the operations cannot be completed. Therefore, Atomic Commit can be seen as an agree-
ment problem as it entails agreeing on the outcome of a distributed task: abort or commit
the task, as a whole.

2.2.3 Impossibility result

What exactly makes Consensus hard to solve?

When the only failures considered are process crashes, this problem has relatively sim-
ple solutions in synchronous distributed systems. However, solving consensus in a purely
asynchronous distributed system prone to crash failures is far from being a trivial task. Let
us consider a simple scenario described in Figure 2.1: a system consisting of three processes
that communicate by message passing. A very simple protocol has the following behavior:
each process broadcasts its own value and gathers the messages from the other two pro-
cesses. Each process then determines the minimum value among the gathered values, and
decides on it. Such a protocol, called the strawman protocol, would work only if all processes
were correct, albeit limited in speed by the slowest process or link.

v2

v2

v3

v3

v1

v1

p1 p2

p3

decision = min{v1, v2, v3}

vd = v1

vd = v1

vd = v1

Figure 2.1: Strawman Protocol (best case scenario: all processes are correct).

14 Chapter 2 – Consensus in Asynchronous Distributed Systems

However, in the presence of a single failure, the processes might gather different sets of
values and the minimum among them might not be the same for each process. If processes
use timeouts, then each of them might use different timeout on different sets of proposals
which would lead to processes deciding on different values, therefore violating the Agree-
ment property. Thus, each process should wait until it has received a value from each other
process. But if only one process is faulty and crashes, every other correct process would then
wait forever and may never decide on a value (see Figure 2.2).

v2

v2

v3

v3

v1

v1

p1 p2

p3

vd = v1

vd = v2

Figure 2.2: Strawman Protocol (when a crash failure occurs).

Solving Consensus in a synchronous system
In a synchronous setting, a straightforward implementation of the strawman protocol relies
on a timeout mechanism. In such a context, there exist timing bounds on execution steps
and communication latency, a straightforward implementation of the strawman protocol
relies on a simple timeout mechanism. It is possible to tune the timeouts to ensure that
any suspected process is really crashed. Processes can proceed in simultaneous steps and
failures can be detected in the following way. First, a process waits for a certain reply from
another process, for a given period of time. If the timeout expires and no reply is received,
the process is considered to be crashed.

One of the fundamental results in distributed computing is also a negative one. The
Impossibility of Asynchronous Distributed Consensus with a Single Faulty Process, also known
in the literature as the FLP-Impossibility Result [25], proves that in the context of a purely
asynchronous system, it is impossible to build a deterministic algorithm for agreeing on a
one-bit value, that can terminate in the presence of even a single crash failure.

The intuition behind this impossibility result is based on the observation that, in a purely
asynchronous system, a slow process cannot be safely distinguished from a crashed one.
However, this result does not state that consensus can never be reached, merely that under
the model’s assumptions, no algorithm can always reach consensus in bounded time. There
exist algorithms, even under the asynchronous model, that can (sometimes) reach consensus.
However, this "bad" input may be unlikely in practice. Circumventing this impossibility
result has been one of the main challenges for researchers, along the years. Their works have
proven that by introducing a minimal set of properties that are satisfied in an asynchronous
system, a deterministic algorithm for solving consensus, can be designed.

Apart from introducing stronger synchrony assumptions, another solution for circum-

2.3 – Unreliable failure detectors 15

venting impossibility is to consider a more general definition of the consensus problem. The
k-Set agreement problem was introduced in [18] and it basically represents an extension of the
classical consensus problem. Participants to the k-Set agreement problem are allowed to
decide on different values. The number of different decision values is bounded by k. The
Validity and Termination properties have the same specification as for the classical consen-
sus problem. The Agreement property is more general than its corespondent in the basic
consensus specification. In the particular case of k = 1, only one decision value is allowed.
This unanimous decision leads to the classical consensus problem. Whereas the consensus
problem has no deterministic solution as soon as at least one crash may occur, the k-Set
agreement problem has rather straightforward solutions for k > f (f being the maximum
number of crash failures in the system). This result has been obtained in [18]. In [10], the
authors show that the k-Set agreement problem is impossible to solve for any k ≤ f .

Another major work-around consists in extending the asynchronous system with some
synchrony properties, usually exploited by failure detectors.

2.3 Unreliable failure detectors

The failure detector concept was introduced by Chandra and Toueg in [15] with the purpose of
identifying the minimal extensions to an asynchronous system that would render consensus
solvable.

In [15], the authors identify two completeness properties and four accuracy properties.
This classification leads to eight classes of failure detectors, which can be reduced to just four
distinct classes, by applying reduction algorithms.

In the following, we provide some basic definitions for the two completeness and four ac-
curacy properties. The weak completeness property requires that there is a time after which ev-
ery process that crashes is permanently suspected by some correct process. If we strengthen
the constraint and we require that eventually every crashed process is permanently sus-
pected by every correct process, we obtain the so-called strong completeness property.

The perpetual accuracy property requires that accuracy is always satisfied. Eventual accu-
racy relaxes this constraint: accuracy must be permanently satisfied only after some time.
Strong accuracy states that no process is suspected before it crashes. The less constraint-full
version of strong accuracy is weak accuracy: some correct process is never suspected.

Among the classes of failure detectors, we particularly focus on three of them, which are
relevant for our work, namely Eventually Weak, denoted by ♢W, Perfect, denoted by P, and
Eventually Strong, denoted by ♢S.

The Eventually Weak class of failure detectors is described in [15] as the weakest class that
renders consensus solvable. A failure detector is in ♢W if it satisfies weak completeness and
eventual weak accuracy. These two properties require that eventually some conditions are
satisfied and hold forever. However, in a real system in which properties cannot be satisfied
forever, it is required that they hold for a sufficiently long period of time. If we refer to
the consensus problem, we can quantify the “sufficiently long” period of time as being long
enough to allow the algorithm to terminate and each process to decide.

The Perfect class, denoted by P, contains the failure detectors that satisfy the most
constraint-full requirements, which are strong completeness and strong accuracy.

16 Chapter 2 – Consensus in Asynchronous Distributed Systems

Another important class of failure detectors, intensively investigated in the literature, is
the class of Eventually Strong failure detectors, denoted by ♢S. A failure detector belonging
to this class satisfies the properties of strong completeness and eventual weak accuracy. This
type of failure detector can make an arbitrary number of mistakes. In the context of an asyn-
chronous distributed system, extended with failure detectors of class ♢S, several protocols
for solving consensus have been proposed. In the following section, we describe the main
principles of protocols that rely on ♢S failure detectors.

2.4 ♢S based protocols

2.4.1 Fundamental principles

The execution of a ♢S based protocol usually proceeds in a sequence of consecutive asyn-
chronous rounds. The concept of round is well suited for structuring fault tolerant asyn-
chronous algorithms. Each round is uniquely identified by a round number r and the se-
quence of rounds is totally ordered. While executing a round, a process adopts the following
behavior: it exchanges messages with other processes and, based on the gathered informa-
tion, it performs several execution steps before proceeding to the next round. From the point
of view of the communication, the round model is communication-closed: a process pi com-
municates only with processes that are currently executing the same round as pi.

The main purpose of the sequence of rounds is to ensure that processes will eventually
converge towards a single value and decide on it. As rounds are executed asynchronously,
different processes may be executing different rounds. Furthermore, they may decide dur-
ing different rounds, due to crashes and failure suspicion patterns. In order to ensure that
Agreement is always satisfied, protocols must make certain that all processes decide on the
same value, even if they do not decide in the same round. This is usually achieved in the
following way: each process maintains its current estimation of the decision value, which is
initially set to the process initial value. This value is updated during the protocol’s execution
and converges towards the decision value. Each process also maintains the current round
number it is executing and includes this number in all messages it sends. Such a mechanism
is called a timestamp or tag mechanism. Based on the round number (included as a field in
the message), a process can filter the received information. By comparing the round number
of the message with the round number of the process, messages received late are discarded
while messages received early are buffered for future delivery.

Many of the ♢S protocols are based on the the rotating coordinator paradigm. This concept
assumes that any round r is coordinated by a process pc, called the coordinator of round r. To
ensure that only one process is the coordinator of a round r, the identifier of a coordinator
pc is computed according to the rule: c = (r mod n) + 1. The role of a coordinator is to
determine and try to impose a decision value. If its attempt is successful during a round and
if it is not suspected by any correct process, then the coordinator can safely decide a value
and all other correct processes can safely agree on it.

With failure detectors of class ♢S, all processes may be added to the list of suspected
processes. As they also satisfy the property of eventually weak accuracy, there is a correct
process and a time after which that process is not suspected of being crashed. This important
property ensures that eventually, a current coordinator will not be suspected by all other pro-

2.4 – ♢S based protocols 17

cesses and will allow the algorithm to reach a decision value, thus ensuring the Termination
property.

Another important assumption these protocols require, is that a majority of the processes
in the system are correct, f < ⌈ n+1

2 ⌉, where n is the total number of processes in the system
and f is the total number of crash failures. This assumption is essential for ensuring that
Agreement is always satisfied. As processes may not decide in the same round, the protocol
relies on majority sets to ensure the following property: if a process pi decides a value v
during a round r, no other decision value is possible for any other process pj that decides in
a round r′ > r. These sets are also called majority quorums. The cardinality of a majority set
is equal to ⌈ n+1

2 ⌉, where n is the total number of processes in the system. The main property
of any two majority sets is that they always have a non-empty intersection. The majority
requirement is also mandatory at certain steps during the computation: processes wait for
messages from a majority quorum, in order to progress. As a majority quorum of processes
is correct, the processes will not remain blocked while waiting for conditions that may not
become true. The progress of the computation relies on this assumption.

The usual metrics for assessing the performance of a consensus protocol are the follow-
ing:

• the latency degree: the minimum number of communication steps required by the pro-
tocol to reach a decision value.

• the number of messages: the minimum number of messages exchanged during the com-
putation, between processes, before converging to a decision.

♢S based protocols also include a reliable broadcast mechanism for the decision value.
Once a correct process decides, it will no longer participate in the protocol’s execution and a
process that has not decided yet may not learn the decision value. The main purpose of this
mechanism is to broadcast the decision message to all other processes, such that if a correct
process decides a value, then eventually every correct process also decides.

The following subsections provide a brief overview of some ♢S based protocols, relevant
for our work.

2.4.2 The Chandra-Toueg protocol

Description
Among the numerous contributions of [15], the authors also propose the first protocol that
solves consensus by using a ♢S failure detector, namely the Chandra-Toueg protocol (also ab-
breviated as the CT algorithm). In this approach, all messages are directed to and sent from
the current coordinator. Therefore, such approaches are called centralized.

An execution of the CT protocol proceeds in asynchronous rounds, where each round is
composed of four consecutive phases. As previously specified, each process pi maintains
an estimation of the decision value, esti, set to the pi’s initial value, at the beginning of the
computation.

The structure of a round r is described in Figure 2.3 and explained in the following:

1. Phase 1: Each process pi sends its esti value to pc, the coordinator of round r. Along
with this value, pi also provides the so-called timestamp of the value, specified by the

18 Chapter 2 – Consensus in Asynchronous Distributed Systems

most recent round number in which pi has updated its estimate. Initially, the times-
tamp is set to 0.

2. Phase 2: Coordinator pc of round r gathers the messages sent during Phase 1 and
selects a value from the received ones. The selection criterion is based on the highest
timestamp observed by the coordinator in the received messages. In order to select a
value, the coordinator must gather a majority of estimation values from processes. The
cardinality of a majority set of replies is equal to ⌈ n+1

2 ⌉. After selecting the most recent
value denoted by estc, the coordinator sends it to all processes as the new estimation
value.

3. Phase 3: When a process pi waits for the estc value from the coordinator, it must pre-
pare a reply to send back to the coordinator. In order to do that, pi queries its local
failure detector. If the information provided by the failure detector places pc among
the suspected processes, then pi will send a negative reply (a nack) to the current coor-
dinator. Otherwise, pi receives the message of the coordinator, updates its estimate to
estc, the timestamp to the current round number r and sends a positive reply (an ack)
to the coordinator.

4. Phase 4: Coordinator pc waits for replies from a majority quorum consisting of at least
⌈ n+1

2 ⌉ processes. If the set of gathered replies contains only positive feedbacks, a ma-
jority of processes have set their estimates to the same value estc, in other words, the
value estc has been locked. Only a value that has been previously locked can become a
decision value. The coordinator reliably broadcasts a request to decide the value estc
to all other processes. If a process pi receives such a request, then it can safely decide
estc. If no value can be locked, in other words, the set of replies contains at least one
nack, the coordinator proceeds to the next round.

(estc,r)

(estc,r) Decide

estc

wait for

majority

(esti,0)

pc

pi

pn

I am the
coordina

tor wait for

majority

Decide

estc

Phase 1

Choose estc

with max
timestamp

(estn,0)
Decide

estc

estc

Phase 2 Phase 3 Phase 4

Figure 2.3: A best-case round in CT: pc is correct and not suspected.

As the system model assumes at least a majority of correct processes, this requirement
ensures that a coordinator will never remain blocked during Phase 2 and 4, while waiting
for a majority of replies from processes.

2.4 – ♢S based protocols 19

How exactly do majority sets ensure Agreement in the CT protocol?
Let us consider the execution of two consecutive rounds r and r + 1. During Phase 4 of

a round r, the coordinator decides a value v only after it has observed that a majority set of
processes has adopted this value (value v has been locked). First, let us assume that a value
v is selected during Phase 1 of the round r + 1. During the first phase of the round r + 1,
the coordinator waits for a majority set of estimation values. As the value v has been locked
during round r and as the intersection of two majority sets contains at least one process,
the coordinator will observe this value v. The timestamp of this value is equal to r and it
represents the highest timestamp possible, thus the coordinator will select this value as its
new estimate. Therefore, the only value that can be locked and decided during round r + 1
is v. If no value is selected during the first phase of round r + 1 because the coordinator may
crash, the same reasoning can be applied for other rounds.

Complexity Analysis
As described in [15], the CT protocol has a latency of four communication steps: in favor-

able circumstances, if the first coordinator is correct and not suspected by all other processes,
each phase requires one communication delay. A trivial optimization allows to reduce this
latency to three communication steps: round 1 can start directly with the second phase dur-
ing which the coordinator broadcasts its estimate to all other processes.

Regarding the number of messages needed to reach a decision, we also refer to the best
case scenario, in which the first coordinator is correct and able to decide in the first round.
The total number of messages consists of the following: one estimate message sent by p1 to
all, n− 1 replies from p2, p3, ..., pn to p1 and one decide message sent by p1 to all, which leads
to n + 1 messages sent during the computation, before reaching a decision. Therefore, the
CT protocol requires O(n) messages in the best case scenario.

2.4.3 The Early Consensus protocol

Description
Another protocol based on the rotating coordinator paradigm was proposed by Schiper

in [49]. The Early Consensus protocol is based on the same main principles as the CT protocol.
The main focus of this protocol is to improve the performance of algorithms based on the
rotating coordinator paradigm and ♢S failure detectors.

The protocol consists of two concurrent tasks: the first thread is triggered by the reception
of a decision message. The main purpose of this task is to re-broadcast the decision message
to all other processes, such that if a correct process decides a value, then eventually every
correct process also decides. A second task executes the consensus protocol itself. Similar
to the CT protocol, the execution of the Early Consensus protocol proceeds in asynchronous
rounds, each round ri being divided into two phases. In addition to the value itself, the
estimation of a process pi also includes the process identifier i of the process that proposed
this estimation value.

The first phase of a round r attempts to decide on the estimation value of the coordinator.
During this phase, the coordinator pc of round r, broadcasts its value to all processes. When
a process pi receives this estimation message, it behaves as a relay: it passes on the received
message to all other processes, after having adopted the value of the coordinator. In the
best case scenario, if the coordinator pc is not suspected, a process pi can decide on the

20 Chapter 2 – Consensus in Asynchronous Distributed Systems

estimation value of the coordinator as soon as it observes this value in messages received
from a majority set of processes. This favorable scenario is depicted in Figure 2.4. However,
during the first phase, a process pi can suspect the current coordinator, by relying on the
information supplied by its ♢S failure detector. In this case, pi sends a suspicion message,
through which it notifies all other processes that it suspects the coordinator. The transition
from the first phase of round r to the second phase of the same round, is triggered by the
following event: pi gathers suspicion messages from a majority set of processes. During this
phase transition, the estimate value of the coordinator is locked. As soon as pi learns that a
majority of processes have reached the second phase of round r, pi can proceed to the first
phase of round r + 1. The main purpose of the second phase is to allow a faster convergence
to a decision value, during the next round r + 1: processes will start the next round with
consistent estimate values. If a process has decided estc during round r, then any process pi
that executes round r + 1, will start with esti = estc. This estimate-locking was also applied in
the CT protocol.

(estc,r)

(estc,r) Decide

estc

pc

pi

pn

I am the
coordina

tor

Decide

estc

Phase 1

Decide

estc

estimation(estc, r)
estimation(estc, r)

estimation(estc, r)

wait for majority of

estimation(estc, r)

wait for majority of

estimation(estc, r)

wait for majority of

estimation(estc, r)

Decide

estc

Figure 2.4: A best-case round in Early Consensus: pc is correct and not suspected.

Complexity Analysis
In an optimal scenario, where the first coordinator p1 is correct and no false suspicion

occurs, the Early Consensus algorithm reduces the latency of reaching a decision to just two
communication steps:

1. p1 sends a message with is own estimate.

2. any process pi receives and forwards this message.

3. any process pi decides the estimate of the coordinator as soon as it gathers a majority
set of messages that contain this estimate.

In the best case scenario, the pattern of messages issued by processes executing the Early
Consensus algorithm is the following: p1 sends its estimate message to all other processes,
each process p2, p3, ..., pn re-transmits the estimate message to all other processes. The total
of issued messages is N. Thus, the protocol requires O(n) messages, the same as the CT
protocol.

2.4 – ♢S based protocols 21

2.4.4 The General Consensus Protocol - A General Quorum-Based Approach

Description
The General Consensus Protocol described in [44], is designed upon the same concepts of

asynchronous round execution and rotating coordinator paradigm. In addition to the two
previously described protocols, this approach brings a novelty through its generic dimension:
the protocol is designed such that it works with any failure detector of class S or ♢S. This
generic dimension comes with an additional assumption. Let us define f as the number of
processes that may crash and n as the total number of processes in the system. The protocol
works with any failure detector of class S as long as f < n, whereas for any failure detector
of class ♢S, it is required that f < n/2.

A round consists of two phases, each of which has a well-identified purpose. Similar
to other ♢S protocols, during the first phase, the coordinator of the round broadcasts its
estimate value estc. In addition to its own estimate value esti, each process pi also maintains
a variable called est_ f rom_ci that can take two possible values: the default value is a special
mark denoted by ⊥; or the value pi has received from the coordinator. The first phase ends
when either pi has received the estimate value from the coordinator and updates est_ f rom_ci
to estc, or when pi suspects the coordinator (in this case, est_ f rom_ci = ⊥). The purpose of
the first phase is to ensure that at its end, each process pi will have in its est_ f rom_ci value
either ⊥ either estc.

The purpose of the second phase is to ensure that Agreement is always satisfied. As pro-
cesses may decide in different rounds, the second phase ensures the following: if a process
pi decides a value v = estc during a round r, then any process pj that proceeds to round
r + 1, will start the round with estj = v. Each process pi begins the execution of the second
phase of a round r by broadcasting its est_ f rom_ci value. The second phase is completed
only when pi gathers est_ f rom_c values from enough processes. “Enough” is quantified ac-
cording to the failure detector class. The set of processes from which a process pi receives
est_ f rom_c values defines a quorum and it is denoted by Qi. Figure 2.5 describes an execution
of the protocol in the best-case scenario in which p1 is the correct coordinator and it is not
suspected by any other correct process.

pc

pi

pn

I am the
coordina

tor

Phase 1

(estc, r)
(est_from_c, r)

wait for Qi
Decide v,

reci = {v}

(estc, r)

est_from_c = estc

(est_from_c, r)

est_from_c = estc

(est_from_c, r)

Decide v,

reci = {v}

Decide v,

reci = {v}wait for Qi

wait for Qi

Phase 2

Figure 2.5: A best-case round in General Consensus: pc is correct and not suspected.

22 Chapter 2 – Consensus in Asynchronous Distributed Systems

To ensure that processes do not decide on different values, a constraint is imposed when
defining quorums: any two quorums Qi and Qj must have a non-empty intersection. This is
known as the quorum requirement and must hold for any pair of processes (pi, pj). Based
on this requirement, a quorum is defined as a majority set of processes, in the case of ♢S
failure detectors. The quorum requirement states that there exists a process pk, such that
pk ∈ (Qi ∩ Qj). This process has broadcast its est_ f rom_ck value to both pi and pj, and
furthermore, both processes have received its value.

A quorum is dynamically built during each round. Let reci be the set of values a process
pi receives from the processes belonging to Qi. There are three possible cases for the values
contained in reci :

1. reci = {⊥}

2. reci = {v}

3. reci = {v,⊥}

If a process gathers only values equal to v in his reci set, then it knows that all non-crashed
processes have adopted v. Thus, pi can safely decide the value v. If the reci set contains only
⊥ values, pi knows that a majority of processes suspects the current coordinator. In this case,
no process can decide and pi proceeds to the next round. Finally, if pi observes both the ⊥
value and the value v, pi updates its estimate esti to v, so that if a process decides v during
round r, pi will proceed to the next round with esti = v.

Complexity Analysis
Let us consider the case in which the underlying failure detector behaves reliably and the

first coordinator p1 is correct. The latency degree of the protocol consists of two communi-
cation steps: p1 broadcasts its value, each process relays this value, and once it has gathered
a majority of such messages, it is able to decide.

The total number of messages issued in the best case scenario, is given by: one message
sent by p1, and each process p2, p3, ..., pn broadcasts its estimate to all other processes. The
total amount of messages is O(n).

2.4.5 Particularities

The three protocols previously described are built upon two types of interaction schemes:
centralized and decentralized. These schemes are specified by the way the processes interaction
is modeled and by the tasks performed by the coordinator as opposed to other processes.
Both the Early Consensus and the Quorum-based protocols rely on a decentralized approach.
In these protocols, the coordinator of a round behaves as an initiator, by broadcasting its
estimate. Apart from this particular role, the coordinator and the rest of the processes behave
in a similar way. In this sense, the protocols provide a uniform manner of describing the
behavior of any process in the system. This is no longer the case in the CT protocol. An
asymmetry is created between the current coordinator of a round and other processes. The
coordinator executes special tasks and has an important role in selecting the estimation value
and in deciding a value. The coordinator determines the estimation value and also notifies
all other processes when a decision was made. Furthermore, the communication pattern is
centralized: all messages are directed to the coordinator.

2.5 – Other approaches to specifying the system model 23

This constraint is relaxed in decentralized approaches as processes cooperate in a dis-
tributed manner. Any process can decide a value without needing a special notification
from the coordinator. However, the condition for reaching a decision is similar: a process
(coordinator or not) must learn that a majority of the processes have adopted the estimation
value proposed by the coordinator. Another similarity comes from the fact that a process
cannot participate in a previous round. Once it was completed, a round cannot be executed
again.

In the CT protocol, the rule for progressing to the next round is the following: a process
has sent a reply to the current coordinator, either a positive or a negative one, in case of
suspecting the coordinator. The Early Consensus protocol introduces a barrier at the end of
each round: a process must receive messages from a majority set before proceeding to the
next round.

2.5 Other approaches to specifying the system model

The failure detector model augments the asynchronous system with external entities that
provide useful information to the processes that query them. Contrary to this concept, there
are several approaches that integrate within the system model all aspects related to syn-
chrony and failures. These concepts are integrated within the system and they define the
so-called environment.

GIRAF-General Round-based Algorithm Framework

A different approach for modeling round-based algorithms is introduced in [34]. The
General Round-based Algorithm Framework allows to structure a round-based protocol into two
separate components: the algorithm’s computation during each round (controlled by the al-
gorithm itself) and the round progress condition. The later is determined by an environment
that satisfies specific failure detector properties. The framework defines end-of-round actions
that are executed independently by each process. During each round, a process sends a mes-
sage to all other processes and receives messages on incoming links, until the end-of-round
actions are triggered. At this point, the oracle is queried and the message for the next round
is computed. The environment encapsulates both the synchrony properties of the system
and the failure model.

The HO Model

The Heard-Of (HO) Model, described in [16], provides a round-based model for structur-
ing consensus protocols. In the HO model, the synchrony properties and the failure model
are abstracted by the same concept: transmission failures are only detected without focusing
on the faulty entity. Computation proceeds into rounds, similar to any other round-based
model, with the particularity that any missed communication is lost. In each round, a pro-
cess sends a message to all others and then waits to receive messages from the other pro-
cesses. The model defines for each process pi, the heard-of set as the set of processes from
which pi receives a message. The system properties are abstracted in a predicate defined
over the collection of the heard-of sets obtained during a round.

24 Chapter 2 – Consensus in Asynchronous Distributed Systems

2.6 Conclusions

In round-based protocols, computation proceeds in a sequence of asynchronous rounds. The
usual behavior of a process during a round is the following: a process sends a message
to other processes, waits to receive messages from some processes and then executes local
computation to update its state. The purpose of executing rounds is to converge towards a
single value and eventually decide on it. A round is a communication-closed layer: during
a round, processes consume only messages sent during that round.

The rotating coordinator paradigm gives a special privilege to a single process during
each round. This process is called the coordinator of the round and its main goal is to
determine and try to impose a decision value. Regarding the interaction scheme between
processes, centralized and decentralized approaches have been proposed. In decentralized
models, the coordinator has the role of initiating a round by broadcasting its own value.
After this first phase, all processes behave in the same way and each of them is able to de-
termine a decision value and decide on it. In centralized schemes, the coordinator has the
special task of deciding a value, any other process is able to decide if and only if it receives a
decision message from the coordinator.

25

Chapter 3
The Paxos protocol

Contents
3.1 Leader Election Oracles . 26
3.2 History of Paxos . 26

3.2.1 The original Paxos . 26
3.2.2 Paxos made simple . 27

3.3 Formal model . 27
3.4 The roles . 27
3.5 The structure of the algorithm . 28

3.5.1 Rounds . 28
3.5.2 Two phases of Paxos . 29

3.6 Main principles - why does Paxos work? . 31
3.7 The latency of classic Paxos . 32
3.8 Making Paxos fast . 33

3.8.1 Motivation . 33
3.8.2 State Machine Replication . 33
3.8.3 FastPaxos . 34
3.8.4 Fast Paxos . 35
3.8.5 Related work . 38

3.9 Conclusions . 39

IN the previous chapter we described failure detector oracles and we focused on ♢S based
protocols for solving consensus in asynchronous systems. This chapter addresses an-
other type of oracles, namely leader oracles and focuses mainly on the Paxos protocol.

After a brief overview of leader oracles, we then describe the main principles of the Paxos
approach. We also focus on two major optimizations proposed in the literature for improv-
ing the performance of the protocol.

26 Chapter 3 – The Paxos protocol

3.1 Leader Election Oracles

Oracles usually provide hints about the current status of the processes in the system. A
leader election oracle represents a particular type of failure detectors. Whereas a failure detec-
tor provides a list of suspected processes, a leader election oracle supplies the identity of a
process trusted to be correct. In [14], the authors introduce the weakest failure detector with
which consensus can be solved. This failure detector is called Ω. Informally, an Ω oracle
allows processes to eventually elect a common leader. Each process in the system queries its
local Ω module and obtains the identity of the current leader, a process trusted to be correct
at that time. Ω oracle may be unreliable as they may provide misleading information. This
leads to different processes having different leaders. However, Ω guarantees that there is a
time after which all processes have the same correct leader.

The practical interest for the Ω oracle comes from the fact that many consensus algo-
rithms, including Paxos, rely on Ω as a failure detector. In [5], the authors address the prob-
lem of implementing Ω by considering two main aspects: the feasibility and the cost of an
implementation.

3.2 History of Paxos

In this section, we briefly discuss the articles that introduced Paxos in the world of dis-
tributed consensus protocols.

3.2.1 The original Paxos

Paxos is a fault-tolerant protocol for solving Consensus in an asynchronous distributed sys-
tem prone to crash failures. The original Paxos protocol was introduced by Leslie Lamport
in [35] and revised later in [36].

Lamport has chosen to introduce the Paxos protocol in an unconventional manner: the
name “Paxos” is derived from the greek island of Paxos. The inhabitants of this island formed
the so-called part-time parliament that managed the legislative aspects of the Paxon society.
The part-time parliament relied upon a consensus protocol. The Paxon legislators (members
of the parliament) maintained consistent copies of the parliamentary records and commu-
nicate by messengers that delivered messages between legislators. Both messengers and
legislators could leave the chamber of the parliament.

The data (ledger) is replicated at n processes (legislators). Operations (decrees) should
be invoked (recorded) at each replica (ledger) in the same order. Processes (legislators) can
fail (leave the parliament) at any time. At least a majority of processes (legislators) must be
correct (present in the parliament) in order to make progress (pass decrees). The main pur-
pose of the legislators is to issue law decrees concerning different aspects of the greek society.
Each legislator maintains a ledger that contained the numbered sequence of the decrees that
were passed. The main requirement for the ledgers is that of consistency: for a given decree
number, no two ledgers are allowed to contain different decrees. A decree would be passed
and noted on the ledgers if there is a majority of the legislators that stayed in the chamber
for a sufficiently long period of time.

3.3 – Formal model 27

3.2.2 Paxos made simple

« The Paxos algorithm, when presented in plain English, is very simple. »
Leslie Lamport

The part-time parliament protocol is also known in the literature as the synod protocol.
It provides an efficient way of implementing a consensus service by replicating it over a
system of (non-malicious) processes communicating through message passing. However,
the simplicity and efficiency of the Paxos protocol failed to emerge from the metaphoric and
rather complex approach in which the protocol was presented.

As the first attempt at introducing the Paxos protocol has proven to be difficult to un-
derstand, Lamport has later revised the Paxos solution in [36]. As the author himself states,
this new attempt is much more clear and simple, as it “contains no formula more compli-
cated than n1 > n2” [4]. In the following subsections, we provide a description of the Paxos
protocol based on the version presented in [37].

3.3 Formal model

The Paxos protocol assumes an asynchronous distributed system in which processes com-
municate by message passing. The failure model is non-byzantine, which means that pro-
cesses may fail only by crashing. The system model also assumes eventually reliable links;
there is a time after which every message sent by a correct process to another correct process
eventually arrives (i.e. there are no message losses).

3.4 The roles

The classical specification of the consensus problem requires that each participant to the con-
sensus provides an initial value and then waits for the decision value. This is no longer the
case in Paxos-like protocols. Indeed, a participant to a consensus instance is neither required
to propose an initial value nor to wait for a returned decision value. In fact, a splitting into
several roles allows to get free from the classical rigid interaction scheme. Regarding the
structure of the Paxos-like protocols, Lamport has identified four basic roles [37]:

1. proposer (denoted herein by Pi)

2. learner (Li)

3. coordinator (Ci)

4. acceptor (Ai)

Each process may take on a single or multiple roles. If f is the maximal number of failures
that may occur, at least f + 1 coordinators, f + 1 learners, and 2 f + 1 acceptors should be
defined. Herein, we assume that the protocol is executed by n processes with f < n/2.
Proposers and learners are not counted.

Proposers are external entities that may provide initial values during a consensus instance.
In an open system, their number and identities may vary in time. It is assumed that at least
one non-crashed proposer supplies an input during each consensus instance.

28 Chapter 3 – The Paxos protocol

Learners are in charge of detecting that the protocol has successfully converged toward
a decision value. Proposers and learners are not involved in the convergence procedure,
which is driven only by the interactions between coordinators and acceptors.

Coordinators and acceptors play a central role in ensuring that eventually a single value
is selected to become the decision value. A coordinator is an active entity. When it is granted
special privileges, a coordinator is in charge of selecting a value and trying to impose it as a
decision value. An asymmetry is created between the coordinators by using a leader election
service.

Paxos is a leader-based protocol. It relies upon a leader election mechanism, supplied by
a leader oracle. A leader oracle outputs a unique process trusted to be correct, this process is
called the current leader (see Section 3.1).

A leader election service is used to eventually grant a privilege to a single coordinator.
Any coordinator can assume the role of the current leader. A coordinator determines if it
should act as a leader by relying (directly or indirectly) on the information supplied by a
leader election service1. The use of such a service ensures that a new process is selected as
leader when the current leader is suspected to have crashed. The Paxos protocol is indulgent:
it has been designed to never violate safety even if, at the same time multiple coordinators
consider themselves leaders. In an asynchronous distributed system prone to crash failures,
such a situation is always possible.

If a correct coordinator becomes the unique leader forever (or at least, till the current
consensus instance ends), it is able to impose a selected value to a majority of acceptors
and to detect the successful termination of its attempt. This extra synchrony assumptions
(exploited by the leader election service) are required to circumvent the FLP impossibility
result [25] and consequently to ensure liveness in the protocol.

Acceptors are passive objects that can accept or refuse to store a value suggested by a
coordinator. Acceptors are used to implement quorums as majority sets. Therefore, by as-
sumption, a majority of acceptors should never crash during the computation. The concept
of majority quorum is detailed in Section 3.6.

3.5 The structure of the algorithm

3.5.1 Rounds

As described in [36], the Paxos protocol is concerned with solving a single consensus in-
stance. The protocol’s execution proceeds in a sequence of rounds. A round, also called a
ballot [35], is identified by a round number denoted by r. Round numbers must fulfill the
following properties (among others):

• a round number is unique and locally monotonically increasing.

• the number of rounds required to solve a consensus instance is unbounded.

• a relation of total order is defined among the round numbers (also called the ballot
numbers).

1This service can be provided by a failure detector oracle Ω.

3.5 – The structure of the algorithm 29

When a coordinator is elected as a leader, it must determine the round number (or the
ballot number) under which it will execute an attempt to converge towards a decision. To
guarantee that two leaders will not choose the same round number, this monotonically in-
creasing value reflects the identity of a single coordinator. For example, each coordinator Ci
can take an initial value equal to i for its first attempt and later increase it by n (or by any
multiple of n) at each new attempt. In this way, a round numbered r is coordinated by a
single coordinator whose identity is r mod n.

The Paxos protocol is based on a timestamp mechanism which is defined by the round
number. All communication messages between acceptors and coordinators are timestamped
with the round number. Each acceptor keeps track of the highest round number ever ob-
served. An acceptor responds only to the leader with the highest round number seen so far
and discards all other requests with lower round numbers.

During each round it participates in, an acceptor casts a vote to adopt only one value
proposed during that round by the current leader. As several leaders can potentially act at
the same time, the round numbers allow to distinguish between values proposed by different
leaders. An acceptor agrees to participate only to the round that has the highest timestamp
(round number).

3.5.2 Two phases of Paxos

The execution of a round proceeds in two phases: a Prepare phase during which the leader
gathers information from acceptors, and a Propose phase that represents the attempt of the
leader to impose a value. If this attempt is successful, the leader can safely decide the value.
Both phases are initiated by the current leader and the Propose phase is always executed after
a Prepare phase. In each of the two phases, the leader contacts the acceptors and waits for
replies from a majority of them.

In Paxos-like protocols, only a leader can interact with acceptors. This interaction is
achieved by broadcasting either a Read request or a Write request. In the Paxos terminology,
a Read request is sent during the Prepare phase, while a Write request is sent during the
Propose phase. A Read request carries only a round number, while a Write request contains
both a round number and an attached value.

An execution of the Paxos protocol in well behaved runs (when no crashes occur) is
depicted in Figure 3.1. The figure describes the behavior of coordinators, acceptors and
learners (coordinator C1 acts as the current leader).

Prepare phase
The main role of the Prepare phase is to ensure consistency with actions performed by
previous leaders. During this phase, a leader communicates its new round number to
the acceptors (Read operations). If it gathers enough feedbacks from them, it can switch
to the Propose phase. The leader contacts the acceptors, asks them to join his round and
obtains information about possible past decisions.

The Prepare phase is always performed when a new round is initiated. Any coordinator
can query its leader election module at any time. If it believes it can act as the current
leader, any coordinator can initiate a new round, more precisely a Prepare phase. A
leader starts the Prepare phase by broadcasting a Read request carrying a round number

30 Chapter 3 – The Paxos protocol

wait for majority

of OK

OK

Can I lead r?
C1

A1

A2

Ak

Choose a

value v

Do you

accept v?

OK

wait for majority

of OK

Decide v

1a 1b 2a 2b

C2

I am the
leader

L

Figure 3.1: Paxos in well behaved runs.

(previously selected by the leader, as explained above). This step is also called Phase 1a.
As each acceptor keeps track of the highest round number ever observed, the round
number contained in any request sent by a leader is used by an acceptor to discard
old requests. A reply returned by an acceptor contains the last value adopted by this
acceptor as well as the round number during which this last update has been done.
This reply is also called a Phase 1b message and it is depicted in the figures by the ok
message. This messages contains three fields of information: the round number, the
last value adopted by the acceptor and the round number during which it adopted
this value. By agreeing to participate to a round r, an acceptor also makes the implicit
promise not to participate to any other round r′ < r. However, it may still take part in
a round r′ > r. An acceptor’s reply itself represents a positive acknowledgment. If an
acceptor does not agree to participate to a round, it will just ignore the request without
sending a negative reply. Figure 3.2 zooms on the Prepare phase.

Phase Transition
If a leader gathers enough positive replies during a Prepare phase of round r, it switches
to the Propose phase r. The notion of “enough” is quantified by majority quorums. A
leader can proceed to the Propose phase only if it has received replies from a majority
quorum of acceptors. Otherwise, the leader will execute a new Prepare phase with a
higher round number. The concept of majority quorums is essential for ensuring safety
and will be detailed in Section 3.6. When this phase transition occurs, the leader uses
the information collected during the Prepare phase to determine the origin of the value
it will use during the Propose phase. Two cases are envisioned. If at least one acceptor
has informed the leader of a value previously proposed by another coordinator acting
also as leader during the same consensus instance, the leader must select one of the
most recent values among such values. The most recent value is the value adopted
by acceptors during the highest round number ever observed. The selection of such a
value is mandatory to ensure safety. Otherwise, if no such value exists, any value can
be chosen by the current leader. In this case, the chosen value can be provided by a
proposer to the current leader.

3.6 – Main principles - why does Paxos work? 31

wait for

majority of OK

OK

Can I lead r?
C1

A1

A2

Ak

I am the
leader

Do you

accept v?

OK

wait for majority

of OK

Decide v

1a 1b 2a 2b

Prepare Phase

C2
Choose a

value v

L

Figure 3.2: Paxos: Prepare Phase.

Propose Phase
Any leader executing the Propose phase of a round has previously executed the cor-
responding Prepare phase. During the following Propose phase, a Write operation exe-
cuted by the leader aims at suggesting a safe value to the acceptors. If enough acceptors
follow this suggestion, this value becomes the decision value. The leader broadcasts a
Write request (also called a Phase 2a request) to all acceptors. This request carries the
previously selected value and the round number. Once it receives such a message, an
acceptor adopts the value of the leader only if it still takes part to the round number
contained in the request or to a lower round number. If another leader has acted with
a higher round number, the acceptor has proceeded to another round and will ignore
the request of the leader. In order to complete the Propose phase, a leader must gather
replies from a majority quorum of acceptors. These replies, also called Phase 2b mes-
sages, inform the leader that a majority of acceptors have adopted the value suggested
by the leader. In this case, the leader can safely decide the value.

Figure 3.3 emphasizes the steps of the Propose phase.

3.6 Main principles - why does Paxos work?

Paxos is an efficient yet simple protocol as it relies on some principles that ensure that Paxos
always works.

Never go back. Each participant to the Paxos protocol adopts the same behavior: it partic-
ipates only to rounds higher-numbered than the previous round. An acceptor always joins
the newest round it learns about and it will even abandon old rounds if necessary.

Paxos is guaranteed safe. To ensure safety, all Paxos-like protocols rely on the concept
of Majority Quorum. In [37], Lamport defines quorums as majority sets of acceptors: a
quorum represents a majority of correct acceptors. The Quorum Requirement states that

32 Chapter 3 – The Paxos protocol

wait for

majority of OK

Choose

a value v

OK

Can I lead r?
C1

A1

A2

Ak

I am the
leader

Do you

accept v?

OK

wait for majority

of OK

1a 1b 2a 2b

Propose Phase

Decide v
L

C2

Figure 3.3: Paxos: Propose Phase.

any two quorums must intersect. More formally, if Q and R are acceptor-quorums, then
Q ∩ R ̸= ∅.

To decide a value v1, a learner must detect that a majority of acceptors have sent a positive
reply in response to Write operations sent by the same leader during the same Propose phase
(i.e., all these Write operations are equivalent and contain the same round number r1 and
value v1). Later, to end a Prepare phase with a round number r3 such that r3 > r1, a leader
must also gather a majority of positive replies. As two majority quorums intersect, among
the positive replies to the Read operation, at least one acceptor indicates that its current value
v2 has been obtained during round r2 with r1 ≤ r2 < r3. A reasoning by induction on the
value r3 allows to conclude that necessarily v1 = v2.

Paxos is not guaranteed live. The protocol never blocks, however the termination is ensured
once the leader election service stops making mistakes and provides a single identity of the
leader for every process that invokes it. Once there is a correct leader, it chooses the highest
round number. No other process becomes a leader with a higher round number. All correct
process reply to its Prepare message, accept its proposed value and decide on it.

Once reached, a decision is stable. Once the protocol reaches consensus, this property is
never violated and the agreed value is never changed.

3.7 The latency of classic Paxos

The Paxos protocol introduced by Lamport in [35, 36] is also known in the literature as the
Classic Paxos.

The usual metric for evaluating consensus protocols is the latency. The latency of reaching
a decision is defined by the number of communication steps that link two events: “a value is
available at a proposer” and “a decision value is acquired by a learner”.

3.8 – Making Paxos fast 33

This communication path depends on many factors that influence the protocol’s execu-
tion and varies according to different scenarios. In a best case scenario, each of the two
phases of Paxos require two communication steps. The stability of the current leader in-
fluences the performance of the protocol, as a new leader must start a new round with a
new Prepare phase. Another aspect that must be taken into account is the time at which the
proposal arrives; more specifically, the computation step reached by the protocol when the
value provided by the proposer becomes available.

During periods of asynchrony, the leader election service makes many mistakes and the
leader changes often. In this case, the latency is finite but unbounded, as each new leader
will start a new round by executing a Prepare phase, until one leader is stable for a long
enough period.

During stable periods, in which the leader remains stable for sufficiently long time, a
proposer is linked to a learner by a communication path of length six in the worst case
(proposer→ leader→ acceptors→ leader→ acceptors→ leader→ learner).

The latency can be better if we consider that a coordinator can also behave as a learner.
Let us also notice that, while the message sent by a proposer to a leader is in transit, the
leader can perform simultaneously the first step of the Prepare phase. In this case, the replies
of the acceptors for the Prepare phase and the two steps required by the Propose phase add
three more message delays. Thus, the latency of classic Paxos consists of four communica-
tion steps.

In the best case scenario, if the value provided by a proposer becomes available after
the Prepare phase is completed, the latency is reduced to three communication steps: one
corresponding to the message sent by the proposer and two other message delays required
by the Propose phase.

3.8 Making Paxos fast

3.8.1 Motivation

As consensus protocols are intensively used as building blocks for higher-level applications,
many research works have been devoted to optimizing their performance. Many fault-
tolerant techniques are implemented by relying on a unique and everlasting sequence of
decisions. Such a sequence is usually constructed by invoking repeatedly a consensus ser-
vice provided by a dedicated set of n nodes. As presented in [37], the description of Paxos
focuses mainly on a single consensus instance. The Paxos protocol (and more generally, any
consensus protocol) can be used as a basic building block to solve a sequence of consensus
instances. This can be achieved by launching separate instances of the consensus protocol.

3.8.2 State Machine Replication

Producing a unique and everlasting sequence of decisions is at the cornerstone of the State
machine approach [50] which aims at creating a sequence of commands. In this problem, the
external clients are the processes that are issuing commands. The servers are the processes
in charge of executing those commands according to the unique total order defined by the
core. Each client participates to some consensus instances (but not all). The Propose primitive

34 Chapter 3 – The Paxos protocol

accepts a single parameter, namely the proposed value. If a Proposer provides a value vx
then this proposed value will eventually appear in a future decision <c , vx> but the client
ignores (and has no control on) the value of c when it submits vx.

In this approach, data is replicated at n servers. This technique relies upon the client-
server interaction: each process (client/server) has an estimate of who the current leader is.
Clients issue operations that need to be performed in the same order at all correct servers. A
client sends a request to the current leader that launches the Paxos consensus algorithm to
agree upon the order of the requests. Once the consensus is completed, the leader sends the
response back to the client.

To implement the state machine approach, Lamport suggests to tag each command with
the round number (also called ballot number) that is used in the protocol. Yet, this strat-
egy may lead to have holes in the sequence and, consequently, nop commands may have
to correspond to some sequence numbers. In [38] and [41], a single everlasting instance of
the protocol manages both a round number (like in Paxos) and a consensus number that are
initialized once.

3.8.3 FastPaxos

Regarding the Paxos algorithm, two main strategies have already been proposed in a re-
cent past, namely FastPaxos (without space) described in [7] and Fast Paxos (with a blank)
presented in [37]. In the following subsections, we provide an overview of these two op-
timizations. We aim at describing the context that enables each optimization, their main
functioning principle and the gain obtained for each of the two strategies.

A first strategy leads to a performance gain if circumstances are favorable when exe-
cuting several consecutive consensus instances. The context that enables the use of this opti-
mization consists in long lasting failure-free synchronous periods in which the elected leader
remains stable. This optimization strategy tries to benefit from the stability of an elected
leader. When a coordinator is the unique leader for several consecutive consensus instances,
it does not have to run a Prepare phase (more precisely, Read operations) followed by a Pro-
pose phase (Write operations) for each new consensus instance. In fact, the Prepare phase is
executed only when a coordinator becomes the current leader to ensure consistency with
possible actions made by previous leaders. Once a Propose phase begins, it lasts as long as no
other leader appears. Consequently, several consecutive consensus instances can be solved
within the same Propose phase, as long as no other leader appears. Moreover, except the
first one, each new consensus instance just requires four communication steps in favorable
circumstances: proposer→ leader→ acceptors→ leader→ learner (depicted in Figure 3.4).

The main principle of this optimization consists in the removal of the Prepare phase. As
long as the current leader remains stable, it will execute only Propose phases. A new Pre-
pare phase must be run only when a leader change occurs. This optimization was already
suggested in the original descriptions of the Paxos protocol [35, 36]. The FastPaxos protocol
(without space) presented in [7] includes among numerous contributions a rather complex
implementation of this optimization. The principle used to reduce the number of commu-
nication steps in FastPaxos is also adopted in other works: for example, by Lampson in [38]
(where the notion of view is proposed) and in the work of Martin and Alvisi [41] (where the
concept of regency is introduced).

3.8 – Making Paxos fast 35

a

C1

A1

A2

Ak

I am the
leader

Do you

accept a?

OK

wait for majority

of OK

2a 2b

Propose Phase

Decide v
L

C2

P2

P1

b

Figure 3.4: FastPaxos.

In [8] (with a ♢S-based consensus protocol) and in [7] (with a Paxos-like protocol), the
authors suggest to keep, even after the end of a consensus instance, the identity of the co-
ordinator that has made the last decision and to reuse this information during the next con-
sensus instance. In [7], when a (potentially new) leader starts the next consensus instance,
this information can be exploited to optimize the decision latency. Indeed, if the leader has
not changed in between, the first phase required in the original Paxos protocol (called the
Prepare phase), is useless and in favorable circumstances, the new consensus instance just
requires four communication steps.

3.8.4 Fast Paxos

Fast Paxos [37] involves two types of execution modes: a classic and a fast mode, that cor-
respond to classic and respectively fast rounds. The classic mode functions just the same as
Classic Paxos. In [37], there exists a static a priori agreement between the participants, regard-
ing the round numbers that will be executed in the fast mode.

This second strategy, presented by Lamport in a protocol called Fast Paxos (with a
blank) [37], tries to take advantage from a low throughput of the flow of initial values pro-
vided by the proposers. It aims at reducing the number of communication steps to three
(proposer→ acceptors→ leader→ learner), in favorable circumstances. If the most recent
consensus instance has been completed for a long time, instead of being idle, the current
leader can anticipate some part of the computation for the next consensus instance. The
leader prepares the next consensus instance by sending a special value, called an Any value,
to the acceptors. Once an acceptor receives it, it knows it is allowed to adopt a value directly
provided by a proposer, which sends an initial value to both acceptors and coordinators.
This is also called a fast round. In favorable circumstances, a gain can be obtained: if all pro-
posers provide the same initial value, as such an initial value does not pass in transit through

36 Chapter 3 – The Paxos protocol

the leader and therefore the decision latency is reduced. These communication steps are de-
scribed in Figure 3.5.

v

Any

C1

A1

A2

Ak

P1

wait for a larger

quorum

P2

C2

Decide v

L

v

v

Figure 3.5: Fast Paxos.

Unlike Paxos, in Fast Paxos [37], the values adopted by the acceptors during a round r
are not necessarily equal. Different proposers may provide different values. These proposal
messages may be received in different orders by different acceptors. In such cases, a collision
may occur. Consequently, a more restrictive definition of quorums has to be used to assess
the successful termination of either a Read or a Write operation. As indicated by Lamport
[9], majority quorums have to be replaced by larger quorums called herein Any quorums.
As an Any quorum is larger, the maximal number of failures f that are tolerated has to be
lower. Moreover, these larger quorums are more difficult to obtain as they require to collect
more replies from the acceptors.

In [37], Lamport defines quorums as sets of processes (acceptors). Each round has a set
of quorums associated with it. Classic rounds use classic quorums while fast rounds rely
on fast quorums. These sets of acceptors must satisfy some given properties called Quorum
Requirements. These properties state that (1) any two quorums must have a nonempty in-
tersection and (2) any quorum and any two fast quorums from the same round must also
have a nonempty intersection. More formally, the Fast Quorum Requirement states that for
any rounds i and j:

Let an i-quorum denote the quorum of acceptors used during round i.
- if Q is an i-quorum and R is a j-quorum, then Q ∩ R ̸= ∅.

- if Q is an i-quorum, R and S are j-quorums and j is a fast round, then

Q ∩ R ∩ S ̸= ∅.

Based on these requirements, Lamport has defined in [37], the minimum number of
acceptors that can constitute a quorum. Let us assume that N is the total number of acceptors

3.8 – Making Paxos fast 37

that are in the system. The cardinality of any classic quorum, Qc, and of any fast quorum,
Qa, can be computed as follows:

|Qc| ≥ ⌊N/2⌋+ 1, |Qa| ≥ ⌈3N/4⌉.
The same requirements for quorums cardinalities are also obtained in [55].

v2

No value

to decide

Conflicting

Proposals

v1

Any

C1

A1

A2

Ak

P1

wait for a larger

quorum

P2

C2

v

Figure 3.6: Collisions.

When different values are proposed simultaneously, this optimization can be coun-
terproductive as it may require the execution of a time consuming recovery procedure. In
case of competing proposals, no value can be safely chosen (see Figure 3.6). The usual way
to recover from such a collision is to begin a new round. A coordinator Ci that learns of a
collision in round i must start a new round with a number j > i. More precisely, Ci must
initiate a Prepare phase by sending a Read request. In [37], Lamport suggests to optimize
the classical mechanism of recovering from collisions. However, this optimization is only
possible under stronger assumptions. If i is a fast round and Ci is coordinator of rounds i
and i + 1, the information last sent during round i can be used during round i + 1. Based on
this observation, Ci can skip the Prepare phase for round i + 1 as it knows that no one else has
acted as a leader between rounds i and i + 1. Therefore, round i + 1 can begin directly with
the Propose phase. Two collision recovery mechanisms are described in [37], namely coordinated
and uncoordinated recovery.

The main disadvantages of this optimization are the following:

• it relies on a static a-priori convention on the fast rounds numbers.

• larger quorums (Any quorums) must be used.

• if collisions are frequent, it can be counterproductive as it requires an expensive recov-
ery procedure.

38 Chapter 3 – The Paxos protocol

3.8.5 Related work

These two types of optimizations (Fast Paxos and FastPaxos) are also combined in works
as [28] and [24]. In [28], Guerraoui and al. introduce the notion ofrefined quorum system: the
optimization proposed by Fast Paxos, is a particular case of this more general model. They
consider byzantine failures and propose a solution to the consensus problem that integrates
the two optimizations in each round of a consensus instance. In an inappropriate scenario,
where different proposers send different initial values, the use of optimization Fast Paxos
prevents a decision during the initial round and delays the computation. In [24], Dobre and
Al. propose a solution that relies also on these two optimizations. During each round, they
simultaneously manage an execution with optimization FastPaxos only and an execution
with both optimizations. Whatever the circumstances, they obtain a latency corresponding
to the faster strategy. Yet the solution requires a few more messages and this hybrid solu-
tion is well suited to the case of wide area network where the cost of communication has
a high impact on the time required to reach a decision. While optimization Fast Paxos is
activated during each round in [28] and [24], there exists a static a-priori agreement between
the participants, regarding the use of an Any value during a round in [37].

The main disadvantage of Classic Paxos is the high dependancy on the availability
of the current round coordinator. In case of a leader failure, extra communication steps are
required in order to resume normal execution: the failure of the leader must be detected, a
new leader must be elected, the new leader has to synchronize with a quorum of acceptors
etc.

Multicoordinated Paxos [12] introduces a third type of execution mode, the multicoor-
dinated mode, besides the fast and classic modes. During a multicoordinated round, the role
of a coordinator is played by a quorum of coordinators. Proposers send their proposals to
the coordinator quorums of the current round, instead of a single leader. Each round i has
a set of coordinator-quorums (a set of sets of coordinators), also denoted by coordquorum. An
i-coordquorum represents a coordinator quorum employed during round i and it is defined
as a majority of coordinators. Acceptors adopt a value only if it is forwarded by a quorum
of coordinators. When consensus runs in the classic mode, a round has a single quorum of
coordinators, containing a single element. The Coordquorum Requirement states that for any
classic round i, if Q and R are i-coordquorums, then Q ∩ R ̸= ∅.

Collisions may also occur in multicoordinated rounds: if the quorums of coordinators
receive different values from different proposers, the coordinators will forward to acceptors
different values for the same round. In this case, acceptors will not be able to accept any
value and the algorithm requires extra communication steps for recovery. However, a colli-
sion in multicoordinated mode are different than collisions in fast mode because in the latter,
acceptors must write in stable storage every time they accept a value, while coordinators
do not have to. The main advantage of Multicoordinated Paxos is the low dependency on the
availability of the current leader. Indeed, a single coordinator failure does not prevent values
from being learned.

3.9 – Conclusions 39

3.9 Conclusions

This chapter provides an overview of the Paxos protocol [35, 36] and several of its variants.
The Paxos protocol introduced by Lamport in [35] represents an efficient and clever solution
for solving consensus in an asynchronous system. After describing the underlying principles
of the protocol, we focus on variants of Paxos, proposed with the purpose of optimizing
the protocol’s latency. The motivation of these protocols comes from the repeated use of
consensus protocols as building blocks for higher-level application, among which the state
machine approach represents a powerful example.

Regarding the Paxos protocol, two main optimizations have been proposed for re-
ducing the latency of learning a decision: FastPaxos [7] and Fast Paxos [37]. From now on,
we denote these two optimizations by SO and respectively by RO. For each of the strategies,
we provide a description that focuses on the following main aspects: the context that en-
ables the optimization, the main principle of the optimization and the improvement in the
protocol’s latency. However, the optimization RO succeeds only in favorable circumstances,
otherwise it can be counterproductive and it increases the total latency of the protocol.

41

Part II

Contribution: Paxos-MIC, an Adaptive
Fast Paxos

43

Chapter 4
Paxos-MIC - An Adaptive Fast Paxos

Contents
4.1 The Multiple-Integrated Consensus problem 44

4.2 The System model . 45

4.3 Architecture of Paxos-MIC . 46

4.3.1 Interaction with external proposers and learners 46

4.3.2 Roles and communication scheme . 46

4.4 The behavior of Paxos-MIC with just SO . 49

4.5 Paxos-MIC with both SO and RO . 58

4.6 Paxos-MIC: positioning with respect to the Paxos protocol 61

THIS chapter presents the algorithmic contribution of our work: the development of
Paxos-MIC - an efficient framework for making quick everlasting decisions. We first
define the Multiple-Integrated Consensus problem that allows us to identify the context

of our approach and the motivation for proposing our protocol: the focus on both the con-
struction and the availability of a sequence of decision values. We briefly discuss the system
model and also the architecture of our protocol from the point of view of the entities in-
volved and the communication scheme. The presentation of the Paxos-MIC protocol is done
in two steps. We describe a first version of the protocol that only integrates optimization
SO (used in FastPaxos [7]). Then, we present the modifications required to use (depending
on the context) both optimizations. This two-step description allows to clearly identify the
parts of the protocol that are impacted by optimization RO (introduced by Lamport in Fast
Paxos [37]).

44 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

4.1 The Multiple-Integrated Consensus problem

In an asynchronous distributed system prone to crash failures and message losses, the prob-
lem of making a unique and everlasting sequence of decisions is crucial as it lies at the heart
of many fault tolerant techniques. A well-identified subset of n nodes (called herein the core)
is usually in charge of serving this never-ending need for agreement. On one hand, mem-
bers of the core interact with external proposers (through the Propose primitive) and external
learners (through the Decide primitive). On the other hand, they cooperate among themselves
to establish the sequence of decisions. Each decision is a pair < vx, c > which can be deliv-
ered to any interested external learner. The integer c identifies the consensus instance during
which a decision < vx, c > is reached while vx denotes the corresponding decision value.

An external proposer participates to a consensus number c by invoking the Propose
primitive with two parameters: the consensus number c and an initial value v. During the
execution of a consensus instance c, a value v, chosen among the proposed initial values,
becomes the unique decision value. The notation < v, c > specifies this decision value. An
external proposer that has sent a proposal during a consensus instance c is also regarded as
an external learner to which the information < v, c > must be transmitted.

If a protocol that solves the consensus problem [40] is available, separate occurrences
of this protocol can be launched to construct step by step the sequence of decisions. The
decision < vx, c > is the outcome of its cth execution. Formally, the problem of building a
sequence of decisions is defined by the following three properties.

1. Validity: If a process decides < v, c >, then an external proposer has previously called
Propose(v,c).

2. Agreement: If a process decides < vx, c > and another process decides < vy, c >, then
vx = vy.

3. Termination: If a correct external proposer p calls infinitely often Propose(vx, c) and if
either c = 1 or a process decides < vy, c− 1 >, then p eventually decides < vz, c >.

By definition, during each consensus instance, the safety properties that characterize
the consensus problem are satisfied. The Validity property states that the decision value vx
that appears in < vx, c > must be selected among the proposed values that are available
during the consensus instance numbered c. Due to the Agreement property, if two learners
obtain two decisions < vx, c > and < vy, c > then the equality vx = vy necessarily holds. The
Termination property indicates that any correct external proposer that provides infinitely
often an initial value for the consensus instance number c, will eventually obtain a decision,
once all the previous consensus instances (numbered from 1 up to c− 1) will be finished: at
least one process has decided during each of them. Due to this last property, the problem we
want to solve is slightly different from the consensus problem.

Producing a unique and everlasting sequence of decisions is at the cornerstone of the
state machine approach [50] (detailed in Section 3.8.2) which aims at creating a sequence of
commands. In this problem, the external proposers are the processes that are issuing com-
mands. The external learners are the processes in charge of executing those commands ac-
cording to the unique total order defined by the core. Each external proposer participates to
some consensus instances (but not all) and it is not aware of the consensus instance. The Pro-
pose primitive accepts a single parameter, namely the proposed value. If a proposer provides

4.2 – The System model 45

a value vx then this proposed value will eventually appear in a future decision < vx, c > but
the proposer ignores (and has no control on) the value of c when it submits vx.

The Repeated consensus problem [22] requires also to solve a sequence of consensus
instances. In this problem, each correct proposer originates an infinite sequence of pro-
posed values. The Propose primitive accepts two parameters: when a proposer provides
the proposed value vx, it also indicates the consensus number c during which this value
may become a decision value. By definition, this proposer has already participated to the
c− 1 previous consensus instances. In the Repeated Consensus problem, n proposers and n
learners are considered and are supposed to be the n members of the core. Each consensus
instance starts in an initial configuration [17] defined as a collection of n initial values (i.e.,
one proposed value per node).

Within this work, we consider the Multiple-Integrated Consensus problem which is a
mix of the above problems. As it was the case in the state machine approach described in
Section 3.8.2, the number of external proposers is unbounded and none of them is supposed
to participate to all the consensus instances. A participant to the consensus c is a node PLextk
(correct or not) that invokes Propose(vk,c). By assumption, the number of participants to a
consensus c is greater or equal to 1, but unbounded: there exists at least one correct partic-
ipant per consensus. When a proposer provides a value to the core, it has to identify the
consensus instance during which its proposed value may become a decision value. For the
sake of simplicity we assume that each external proposer is de facto an external learner in-
terested by the decision value. Herein, each of them is called an external proposer/learner
and denoted PLext1, ..., PLextk, Each consensus instance satisfies the classical validity,
uniform agreement, and termination properties. To ensure the liveness property, we assume
that, for each consensus instance c, there exists at least one correct external proposer/learner
that is able to propose an initial value.

In most practical settings, a consensus instance c starts only if the previous one (num-
bered c− 1) is already completed (i.e., the (c− 1)th first decision values are available). For a
few problems such as the Atomic Broadcast problem, consensus based solutions that do not
require this synchronization have been proposed [15, 7]. The specification of the Multiple-
Integrated Consensus problem does not include this synchronization constraint and allows a
chaotic construction of the sequence of decisions. However, in the protocol under study,
namely Paxos-MIC, we made the choice of generating decisions in the order defined by the
consensus numebr. Therefore, this design limits drastically the interest of having external
Proposer-Learners that may participate simultaneously to distinct consensus instances1.

4.2 The System model

We consider an asynchronous distributed system where processes communicate by message
passing, through bidirectional, fair lossy channels. Messages can be duplicated and lost but
not corrupted. Among the n processes involved in the agreement protocol, at most f pro-
cesses may crash. Yet, a majority of correct processes never crash: (f<n/2). To circumvent
the FLP impossibility result [25], the system is extended with a leader election service. This
service must ensure that eventually a single correct process is elected to be the leader until
the current consensus instance ends.

1Indeed we show that there is no interest to launch more than 2 consensus instances in parallel.

46 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

4.3 Architecture of Paxos-MIC

4.3.1 Interaction with external proposers and learners

We consider an open distributed system where nodes, called external Proposers/Learners and
denoted PLextk, interact with a finite set of n nodes whose mission is to deliver a unique
sequence of decision values by executing the Paxos-MIC agreement protocol. External pro-
posers and learners are not involved in the convergence mechanism that is only driven by
the interactions between the set of n nodes.

An external proposer/learner PLextk participates to a consensus instance by identi-
fying it with a sequence number called the consensus number and denoted c. For each value
of c such that c ≥ 1, we assume that at least one correct node PLextkc calls the function
Propose(c,vkc). In doing so, this node suggests an initial value vkc that is likely to be the de-
cided value determined at the end of consensus c. Without loss of generality, we assume that
a node that provides an initial value during consensus c is implicitly interested in knowing
the corresponding decision: therefore it must receive a Decision message that contains this
decision value (denoted < v, c >).

The Paxos-MIC protocol manages the complete series of consensus and not just a
single consensus instance. More precisely, it begins by running an initial consensus that is
numbered 1. Once the first decision is obtained, the protocol continues its execution and
starts immediately the next consensus instance numbered 2 and so on. Assuming that c is
the number of the current consensus instance, the protocol can converge toward a new deci-
sion value < vx, c > because at least one correct participant calls the function Propose(vy,c)2.
In the Paxos-MIC protocol, an external entity does not have to know the consensus number
corresponding to the last reached decision. As the protocol is responsible for archiving all
decisions adopted in the past, a call to the function Propose(vk,ca) done by a participant that
is unaware of being behind (i.e., ca < c) will receive back a stored decision value. On the con-
trary the initial value proposed by a participant that is either synchronized or ahead may be
used during the current consensus (when ca = c) or is stored to be used later (when ca > c).
While the consensus number managed within the Paxos-MIC protocol is incremented by 1
after each decision, an external entity can execute calls in a random order (knowing that any
proposed value can potentially become a decision value). At any time, the number of con-
sensus that a node has participated in and for which he has not yet received a decision can be
greater than one: this flexibility can potentially be exploited by the distributed application.

4.3.2 Roles and communication scheme

Let us now consider the n nodes that are directly involved in the execution of Paxos-MIC.
Each of them may act as a coordinator, as an acceptor, or both. The role of coordinator is
played by nc nodes while na nodes behave as acceptors. Among the nc coordinators (re-
spectively, the na acceptors), at most fc coordinators (respectively, fa acceptors) may fail by
crashing. The correctness of Paxos-MIC relies on the fact that at least one coordinator is cor-
rect and a majority of acceptors never fail: (nc ≥ fc + 1) ∧ (na ≥ 2 fa + 1). Whatever the
deployment , we have nc + na ≥ n ≥ maximum(nc, na). The notations Ci (with 1 ≤ i ≤ nc)
and Aj (with 1 ≤ j ≤ na) are used to refer respectively to a coordinator and to an acceptor.

2Of course, if a single external entity is involved in the consensus c, the values vx and vy are equal.

4.3 – Architecture of Paxos-MIC 47

An acceptor is a passive entity that performs an update of its state whenever it re-
ceives an Operation message from a coordinator acting as a leader or a Propose message from
an external proposer/learner. Regardless of whether or not its state changes, an acceptor
always sends a State message that reflects its current state to its supported leader. Moreover
when it receives an Operation message from a leader that is not the one it supports, it also
provides its state (that includes the identity of the supported leader) to this other leader. We
extend the usual remits of an acceptor with a logging activity: in Paxos-MIC, an acceptor also
acts to guarantee the persistence of past decisions. The protocol ensures that, for each deci-
sion value, at least one correct acceptor will be aware of it. A past decision can be obtained
by invoking the RetrieveDec function that fetches the required value from the acceptors logs.
In order to integrate the optimization RO, we extend the acceptor’s activity by allowing it to
directly receive proposals from external proposers.

As in Paxos, a coordinator in Paxos-MIC is defined as an active entity that has the
ability to select a value that can safely become a decision value. As in any Paxos-like pro-
tocol, an asymmetry is created between the coordinators by using a leader election service.
The Paxos-MIC protocol is indulgent: it never violates its safety properties even when, at
the same time, multiple coordinators consider themselves leaders. Once the role of leader is
assigned to a single correct coordinator, the stability of this elected leader over a period of
time that is long enough is a key element to ensure the termination of the current consensus
instance. Regarding the selection of a leader, a two-stage approach that involves both the
acceptors and the coordinators is adopted in Paxos-MIC.

• Each acceptor Aj periodically queries a leader election service in order to obtain the
identity of the single coordinator Clj that Aj identifies as being the current leader. This
information (i.e., the identity of the coordinator Clj currently supported by Aj) is trans-
mitted by Aj to the coordinator Clj and also to any coordinator who acts as a leader
without the support of Aj.

• A coordinator receives information from the acceptors that support its leadership.
Once a coordinator is supported by a majority of acceptors, it acts as a leader. As such
it interacts with all the acceptors. Therefore if a majority of acceptors no more support
its leadership, a coordinator will inevitably become aware of this and will stop being
the leader.

At any time, each coordinator can determine whether it should act as a leader or not. More-
over, each acceptor identifies a coordinator that seemed to be the current leader.

Regarding the communication scheme, depicted in Figure 4.1, coordinators never
communicate with each other. Similarly acceptors never interact with each other. Coordi-
nators and acceptors use two types of messages to interact: Operation and State (denoted in
Figure 4.1 by Op and St). A coordinator that is not acting as a leader remains silent. It can
only receive a Propose message from an external proposer/learner or a State message from
an acceptor. As a leader, it can broadcast Operation messages to all acceptors.

Note that this communication scheme is more or less adopted by all the Paxos like
protocols. The fact that an external proposer/learner communicates directly with the accep-
tors is at the core of the optimization proposed in Fast Paxos [37]. The query-reply scheme
implemented in Paxos-MIC is inspired from the one proposed by Lamport. A coordinator
broadcast an Operation message and the acceptors send back State messages. Yet Lamport

48 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

Figure 4.1: Interaction Scheme.

distinguishes a request corresponding to a Read operation (broadcast during a Prepare phase)
from a request corresponding to a Write operation (broadcast during a Propose phase). In
Paxos-MIC, this distinction that is managed by the leader does not appear in the messages
it transmits: as explained later, each operation is interpreted as being both a Write operation
and a Read operation. Thanks to this standardization of messages, all the actions performed
by an acceptor and the major part of the actions performed by a coordinator, aim at maintain-
ing their local state as up-to-date as possible by taking into account the received information
when this one appears to be more recent. As a consequence, the query-reply communication
pattern implemented in Paxos-MIC does not use well-formed requests. More precisely we
assume neither that a coordinator initiates only one query-reply at a time, nor that it waits
for appropriate replies before proceeding to the next step. To cope with message losses, the
last sent message is retransmitted periodically as it reflects the current state of the sender.

To each coordinator is attached an internal proposer-learner running on the same ma-
chine (called PLint for short). A PLint is in charge of the interactions between its associated
coordinator and the external proposers and learners. In Paxos-MIC, the usual specification of
a coordinator is extended in order to ensure the interaction with its associated PLint. A coor-
dinator never interacts with a remote PLint. The communication between a coordinator and
its local PLint is performed via two functions: ProposePull and DecidePush (see Figure 4.1).
Note that the call is initiated by the coordinator in both cases. The code executed by a PLint
is described in Figure 4.2.

The PLint may be regarded as a temporary storage unit that knows the following:

• the current consensus number c;

• the received proposals related to this consensus instance, denoted by Buffer. An entry
in this buffer contains a proposal for consensus c, with the value vp, made by proposed
with identity pid;

• the identities of the learners interested by the corresponding decision;

• the last decision value DVal corresponding to the previous consensus instance c− 1.

4.4 – The behavior of Paxos-MIC with just SO 49

At any time, a PLint gathers proposed values related to consensus c upon the invo-
cation of Propose(vp, c) by a PLext (lines 1 to 4). A PLint may provide any decision already
made. Indeed, it knows the last decision corresponding to consensus c− 1 and it can call the
RetrieveDec function to ask to all the acceptors a decision made during a consensus whose
number is between 1 and c− 2 (lines 5 to 14).

A coordinator calls the ProposePull function only when it acts as a leader. The value
returned by PLint is either an initial value v (that may become a decision value < v, c >) or
a special mark, ⊥ or ⊤ (that cannot be selected to become a decision value). Indeed, PLint
has three possible choices. It can postpone its choice until the next call to the ProposePull
function. In that case, it uses the special mark ⊥ to invite the calling leader to call again
this function later. Otherwise, the proposer can return immediately a definitive answer
that is either an initial value (if available) or the special mark ⊤: the leader will never
have to call again the ProposePull function during this consensus instance. When an initial
value v is returned, it becomes the initial value of the leader during the current consensus
instance. Following the Paxos terminology, ⊤ is called an Any value. When PLint returns
⊤, it allows the use of optimization RO, because the context seems favorable. For example,
it may return ⊤ after having returned ⊥ during several previous calls. In that case, as all
the external proposers seem to be idle, using the second optimization is more likely to be
beneficial. The special mark ⊤ will be used by the leader as if it were a significant value.
The acceptors will adopt temporarily this special mark ⊤ until they can replace it with an
initial value v directly provided by an external proposer. During consensus instance c, once
the protocol has converged to a decision < v, c >, a call to the DecidePush function made by
a coordinator, provides the new decision < v, c > to the local PLint.

When the Propose primitive is invoked by an external proposer (denoted PLext), a
message containing a consensus number c and an initial value v is broadcast to all the PLint
and all the acceptors (see Figure 4.1 describing the interaction scheme between all the entities
involved in Paxos-MIC). An acceptor has to determine if it accepts or ignores each value it
receives from proposers. When the optimization RO is not used, the acceptors ignore all the
values directly received from an external proposer: only a value that has passed through a
PLint and an Op message can become a decision value.

4.4 The behavior of Paxos-MIC with just SO

Within this section, we provide a description of the protocol without considering the use
of Any values: a call to the ProposePull function returns either an initial value or the spe-
cial mark ⊥ (but never the Any value ⊤). Under this additional assumption, the proposed
protocol satisfies the specification of the MIC problem and integrates in a simple way the
optimization proposed in FastPaxos [7], which we denote by SO. This optimization SO (de-
scribed previously in Section 3.8.3), tries to take advantage from long-lasting stable periods,
in which the current leader seldom changes. During these periods, a current leader does not
have to execute a Prepare phase followed by a Propose phase for each consensus instance. In
fact, the leader executes only Propose phases and the execution of a Prepare phase is required
only when a new leader is elected, in order to ensure consistency with actions performed by
the previous leader.

50 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

% Last known decision value and last known consensus number
DVal← ⊥; Con← 0;
% List of received proposals: (c, vp, Pid)
Buffer← ∅;

Task 1: Upon invocation of Propose(vp, c) by PLext
When PLinti receives msg Proposal(c, vp) from PLext
(1) if(c <= Con− 2) then vd ← RetrieveDec(c);
(2) send Decision< vd, c > to PLext;
(3) if(c = Con− 1) then send Decision< DVal, c > to PLext;
(4) if(c >= Con) then Add(Buffer, (c, vp, PLext);

Procedure DeliverDecisions< v, c >
(5) DVal← v;
(6) for all(Pid ∈ Buffer s.t. Buffer.c = c) do
(7) send Decision< v, c > to Pid;
(8) Remove(Buffer, (c, vp, Pid);
(9) for all((i ≥ Con) ∧ (i < c)) do
(10) vd ← RetrieveDec(i);
(11) for all(Pid ∈ Buffer s.t. Buffer.c = i) do
(12) send Decision< vd, i > to Pid;
(13) Remove(Buffer, (i, vp, Pid));
(14) Con← c;

Task 2: Upon invocation of ProposePull(DVal, c) returns PVal
(15) DeliverDecisions< DVal, c− 1 >;
(16) Con← c;
(17) PVal← TopOrBottom;
(18) if (∃vp ∈ Buffer s.t. Buffer.c = c) then PVal← vp;
(19) return PVal;

Task 3: Upon invocation of DecidePush< DVal, c >
(20) DeliverDecisions< DVal, c >;

Figure 4.2: Protocol executed by a PLinti .

The next section extends the protocol in order to allow the treatment of Any values.
Recall that an Any values is a special value sent by a leader to all acceptors with the purpose
of notifying them that for the next consensus instance, they are allowed to adopt a value
supplied directly by proposers. This two-step description allows to clearly identify which
parts of the protocol are impacted by the risky optimization proposed in Fast Paxos [37].
Before providing the pseudo-code of the protocol, we first discuss some underlying elements
of the protocol.

As suggested by its name, the Paxos-MIC protocol follows the same main principles
of any Paxos-like protocol. In the following, we describe these principles in detail and we
underline how they are implemented by Paxos-MIC, by providing the pseudo-code executed

4.4 – The behavior of Paxos-MIC with just SO 51

by each of the participants. In addition to the PLint role detailed in Section 4.3, the Paxos-
MIC protocol describes the behavior of two types of entities: acceptor (denoted Ai) and
coordinator (denoted Ci). An acceptor executes two tasks called Tasks A and B (Figure 4.3).
A coordinator executes Task C (Figure 4.4) and, when it acts as a leader, Task D (Figure 7.12).
Tasks A and C are executed upon the receipt of a message. Tasks B and D are executed
periodically. All the statements contained in Task D can only be executed by a coordinator
when it acts as a leader: for this reason, Task D is also called the Leader Task. In the next
section, Figure 4.6 includes additional code executed by the acceptors and the coordinators
to take Any values into account.

Messages: Coordinators and acceptors use two types of messages to interact: Oper-
ation and State messages. These messages have the same uniform structure, a process does
not distinguish between them. A coordinator broadcasts its Operation messages to all the
acceptors when it acts as a leader (Task D). An Operation message corresponds either to a
Read operation (Task D, line 16), or to a Write operation (Task D, line 14). An acceptor sends
its State messages to the current leader (Task A, line 5 and Task B, line 9) and also to the ini-
tiator of an operation (Task A, line 5). A State message informs the recipients of the current
state of the acceptor and it is also intended as a (positive or negative) acknowledgment by
the initiator of an operation. Note that the proposed interaction scheme is slightly different
from the classical one adopted in Paxos-like protocols. In Paxos-MIC, Read and Write op-
erations are not called “requests” because the sender does not wait for a reply. Even if an
acceptor always sends a State message in reply to each received Operation message, such a
query-reply communication pattern does not correspond to the well-formed requests used
in Paxos-like protocols. We assume neither that a coordinator initiates only one query-reply
at a time, nor that it waits for appropriate replies before proceeding to the next step. To cope
with message losses, the last sent message is retransmitted as it reflects the current state of
the sender. For this reason, Tasks B and D are executed periodically.

Variables: Table 4.1 provides a brief overview of the variables used in the code. It
indicates, for each variable, the role played by the process that manages it (acceptor Ai or
coordinator Cj), a small description of its meaning and its assigned initial value. The list
of variables is divided into three parts, based on the purpose they have in the protocol.
The first part of the variables is related to the use of the leader election mechanism, while the
second part of the list comprises the variables involved in the management of tags and tagged
values. Finally, the last part of the table describes the variables used for the deciding, learning
and logging processes. Note that three variables (SetRnd, SetCTag and SetLid) are used by a
coordinator to manage sets of acceptors identities. In the code, if X is one of the three sets,
any call to the function Reset(X, f alse) empties the set.

Leader Election: The leader election service is invoked only by the acceptors and
never by a coordinator. This service ensures that a new process is selected as a leader when
the current leader is suspected to have crashed and can be provided by a failure detector or-
acle Ω, as explained in Section 3.1. Moreover, it guarantees that eventually, all the acceptors
will select the same correct coordinator to be the leader. Task B of the protocol is periodically
executed by an acceptor to query this service by executing a call to the function GetLeader
(line 8). After learning the identity of its leader, an acceptor sends a State message to the cho-
sen coordinator (line 9). Indeed, the first field St.Lid of such a message contains the identity
of the elected coordinator.

A coordinator determines if it should act as a leader by relying indirectly on the infor-

52 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

Table 4.1: Table of variables
Role Name Significance Initial value

Ai Lid identity of the supported leader 1

Cj SetLid set of Ai that support Cjas leader

[true, .., true]
if j = 1

[false, .., false]
if j ̸= 1

RndLid leader’s round number j
Rnd highest round ever observed 1

Ai VTag highest tag ever observed (0,0,0)
VVal value associated to VTag ⊥
Rnd highest round ever observed 1

SetRnd set of Ai that reached Rnd [true,..,true]
Cj CTag highest tag ever observed (1,1,0)

CVal set of the most recent tagged values [⊥,...,⊥]
SetCTag set of Ai that sent CTag [false,.,false]

Ai LogDVal array of logged values [⊥,...,⊥]
DVal last known decision value ⊥

Cj PVal value used for a Write operation ⊥
PreparePhase current phase false

LVal last recorded tagged value ⊥

mation supplied to the acceptors. A coordinator Ci does not store the identity of the leader
selected by an acceptor Aj but just the fact that it has been chosen or not by Aj. Every time
Ci receives a State message from Aj, SetLid[j] is set to true only if Aj considers Ci to be the
leader (Task C, line 1). Ci can act as the current leader only when it has gathered the sup-
port of a majority quorum of acceptors (Task D, line 1). After the initialization phase, the
coordinator C1 is supported by all the acceptors as the initial leader. A coordinator that has
never been a leader remains quiescent until it obtains the support of enough acceptors. Each
time an acceptor receives an Operation message from a deposed leader, a State message is
returned (Task A). Consequently, the deposed leader will eventually discover that it is no
longer supported. As a State message is periodically sent to the leader, a unique leader even-
tually obtains a stable and up-to-date information from a majority of acceptors, once all the
old messages have been lost or consumed.

In order to ensure progress, the leader election service must guarantee that, for all
the acceptors, any call to the GetLeader function eventually designates the same correct co-
ordinator. As a State message is periodically sent to the leader, a unique leader eventually
obtains this stable and up-to-date information from a majority of acceptors, once all the old
messages have been either lost or consumed The Paxos-MIC protocol is indulgent as it never
violates its safety properties even if, at the same time, multiple coordinators consider them-
selves leaders.

Consensus Instances and Round Periods: A coordinator proceeds in a sequence of
consensus instances and also in a sequence of round periods. Each consensus instance (re-
spectively, each round period) is identified by a consensus number, variable CTag.Con (re-
spectively, a round number-variable Rnd). These counters are independently updated. The

4.4 – The behavior of Paxos-MIC with just SO 53

Task A: When Ai receives Op(Rnd, Tag, Val, DVal) from Cj
% Maintaining the most recent information ever observed

(1) if ((Op.Tag.Rnd ≥ Rnd) ∧ (VTag ≺ Op.Tag) ∧ (Op.Val ̸= ⊥))
(2) then VTag← Op.Tag; VVal← Op.Val;
(3) if (Op.Rnd > Rnd) then Rnd← Op.Rnd;

% Logging decision values
(4) LogDVal[Op.Tag.Con - 1]← Op.DVal;
(5) send St(Lid, Rnd, VTag, VVal, LogDVal[VTag.Con - 1]) to Cj and CLid;

Task B: Periodically
% Query the Leader Election Service

(6) Lid← GetLeader();
(7) send St(Lid, Rnd, VTag, VVal, LogDVal[VTag.Con - 1]) to CLid;

Figure 4.3: Protocol executed by an acceptor Ai.

division into consensus instances follows from the specification of the problem itself. The di-
vision into round periods results from the use of a leader election mechanism: a leader starts
a new round period when it discovers that another coordinator has concurrently acted as a
leader by executing a round period with a higher round number. Consensus instances and
round periods are not linked: a consensus instance may span over several round periods
and, conversely, during a single round period, several consensus instances may be solved
(when optimization SO is used). The current consensus number (CTag.Con) increases only
when a new decision is made during Task C (line 17). Indeed, the participation of a coordi-
nator Ci to a new consensus instance numbered c, can only start when the outcome of the
previous instance, c− 1, is obtained. The current round number (variable Rnd) is increased
either during Task C (line 9) when a coordinator observes a higher round or during Task
D (line 3), when a leader starts a new round period. More precisely, the round number of
a coordinator has to satisfy the three following rules. At any time, the round number of
a coordinator (Rnd) must be greater or equal to the highest round ever observed (variable
CTag.Rnd). Therefore, when it receives a message, a coordinator may adopt a round number
already reached by another coordinator (line 9). When Ci is elected as a new leader, it has to
adopt the round number under which it will execute attempts to converge towards decision
values (Task D, line 4). This round number has to be strictly higher than the highest round
ever observed by Ci. Moreover, another leader should not be able to use the same number.
In the code, the variable RndLid is used by Ci, to identify this particular round number. By
construction (Task C, line 10), the value of RndLid is obtained by adding the value i to a mul-
tiple of n. Thus, a round period numbered r is associated to a unique leader whose identity
is equal to r mod n. While it acts as a leader, the two variables Rnd and RndLid managed by a
coordinator are equal (Task D, lines 2 and 4). When the coordinator is not acting as a leader,
the variable RndLid may be strictly greater than the variable Rnd.

Prepare and Propose Phases: As in Paxos [36], a round period consists of an initial
Prepare phase followed by a Propose phase. This distinction is only relevant when a coordina-
tor acts as a leader (i.e. during an execution of Task D). Otherwise (i.e. during an execution
of Task C), a coordinator takes its current round period number into account, but ignores the
subdivision into two phases. A boolean variable PreparePhase indicates the current phase.

54 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

This variable is set to true at the beginning of any round period and remains true till the
Propose phase can start. After the initialization, the coordinator C1 can immediately execute
the Propose phase of the round period number 1. Apart from this particular optimization,
any leader executing the Propose phase of a round has previously executed the correspond-
ing Prepare phase. Similar to any Paxos-like protocol, during the Prepare phase (respectively,
Propose phase), a leader can generate Read (respectively, Write) operations, while it executes
Task D.

The names given to the phases and the operations are similar to those used in the
Paxos terminology introduced by Lamport [36]. The purpose of a Prepare phase is to en-
sure that all the future Write operations of a leader will be consistent with those performed
by previous leaders. During this phase, a leader communicates its new round number to
the acceptors (Read operations). If it gathers enough feedbacks from them, it can switch to
the Propose phase (Task D, line 8). When this phase transition occurs, the leader uses the
information collected during the Prepare phase to determine the origin of the value it will
use during the first Write operation of its Propose phase (variable PVal). Two cases are en-
visioned. If at least one acceptor has informed the leader of a value previously proposed
by another coordinator acting also as leader during the same consensus instance, the leader
must select one of the most recent values among such values (Task D, lines 7-8). In the basic
version of the protocol, as we assume that no Any value is proposed, all these tagged values
are necessarily equal and different from⊥ and⊤. Otherwise, at the end of the Prepare phase,
the value of PVal remains equal to ⊥. As any value can be chosen, the proposed value can
be provided later by the PLint in reply to a call to the ProposePull function (Task D, line 12).

Task C: When Ci receives St(Lid, Rnd, Tag, Val, DVal) from Aj
(1) SetLid[j]← (St.Lid = i);

% Maintaining the most recent information ever observed
(2) if (CTag ⪯ St.Tag) then
(3) if (CTag ≺ St.Tag) then
(4) if (St.Tag.Con < CTag.Con) then DVal← St.DVal;
(5) CTag← St.Tag; Reset(SetCTag, false);
(6) CVal[j]← St.Val; SetCTag[j]← true; LVal← St.Val;
(7) if (St.Rnd ≥ Rnd) then
(8) if (St.Rnd > Rnd) then
(9) Reset(SetRnd, false); Rnd← St.Rnd;
(10) while (RndLid < Rnd) do RndLid← RndLid + n;
(11) SetRnd[j]← true;

% Deciding for the current consensus instance
(12) if (CTag.Any = 0) then
(13) if ((Quorum_Maj(SetCTag) ∧ (LVal ̸= ⊤)) then
(14) DVal← LVal; PVal←⊥; LVal←⊥;
(15) DecidePush(< DVal , CTag.Con >);
(16) Reset(SetCTag, false);
(17) CTag.Con← CTag.Con +1; CTag.Any← 0;
(18) else execute(code CAny);

Figure 4.4: Protocol executed by a coordinator Ci.

4.4 – The behavior of Paxos-MIC with just SO 55

During the following Propose phase, each Write operation executed by the leader aims
at suggesting a safe value to the acceptors. If enough acceptors follow this suggestion, this
value becomes the decision value. Once the decision is learned (during the execution of Task
C), the protocol goes on with the next consensus instance. While the leader remains stable, it
will continue to execute the same round period and, more precisely, the same Propose phase.
The fact that several consensus instances can be executed during the same round period is
the result of the optimization SO. Let us notice that, once it enters the Propose phase, a leader
broadcasts at most one Write message during each execution of Task D. Indeed, if it can
propose neither a significant initial value nor an Any value ⊤, a leader sends no message.
Otherwise, it periodically sends its last Write message until it makes a decision during Task
C. Each time it decides, the proposed value is reset to ⊥, the consensus number is increased
and all the tagged values are discarded.

Tags and Tagged Values: A tag is defined as a triplet of integers denoted (r, c, a): the
first integer r is a Round number, the second integer c is a Consensus instance number and
the last integer a is only useful when Any values are used. At this stage of the explanation,
we just need to know that this last integer is effectively a boolean variable, set to 0 or 1.
When no Any values are used, a is always equal to 0. Otherwise, it can be set to 0 or 1. A
tagged value v is defined as the result of a deliberate decision to associate a value v with a tag
(r, c, a) and we represent this through the notation (v, (r, c, a)). In Paxos-MIC, we assume
that a tagged value can be created (or declared) only at some well-defined stages of the
computation, namely during the initialization phase and during a Write operation. Indeed,
only the leader is allowed to declare new tagged values during the computation. Once it has
been declared, a tagged value is propagated within the set of processes. A tagged value is
contained in the Operation messages broadcast by a coordinator to all the acceptors and in the
State messages sent by an acceptor to some coordinators. When a message is received, a copy
of the transmitted tagged value can be stored temporarily in a set of four related variables.
With regard to a given consensus instance, an acceptor can store a single tagged value while
a coordinator can store up to n tagged values that share the same tag. More precisely, an
acceptor stores a tagged value in its variables (VVal,(VTag.Rnd,VTag.Con,VTag.Any)). This
set of variables is initialized to (⊥, (0, 0, 0)). A coordinator can store a tagged value received
from an acceptor Aj, in its set of variables (CVal[j],(CTag.Rnd,CTag.Con,CTag.Any)). This
set of variables stores a tagged value if and only if the variable SetCTag[j] is equal to true.
When no Any values are used, all the values logged in CVal by a coordinator are equal.
Consequently, this common value is also contained in the variable LVal, which is used to
keep the last recorded tagged value.

Lexicographical order: A lexicographical order is defined over the set of tagged
values and denoted ⪯. Let (v, (r, c, a)) and (v′, (r′, c′, a′)) be two tagged values. Then,
(v, (r, c, a)) ⪯ (v′, (r′, c′, a′)) if and only if (r < r′) ∨ ((r = r′) ∧ (c < c′)) ∨ ((r = r′) ∧ (c =
c′) ∧ (a ≤ a′)). When (v, (r, c, a)) ⪯ (v′, (r′, c′, a′)) and (r, c, a) ̸= (r′, c′, a′), the tagged
value (v′, (r′, c′, a′)) is said to be more recent than (v, (r, c, a)), denoted by (v, (r, c, a)) ≺
(v′, (r′, c′, a′)). When a process receives a message which contains a tagged value, the tag
of the received value and the tag of the value(s) already stored, are compared to determine
the most recent one. Indeed, the coordinators and the acceptors only keep the most up-to-
date tagged values, by taking into account only the messages that provide a more recent
information. Task A executed by an acceptor, manages the updating mechanism. When an
acceptor receives an Operation message from a leader (Task A), it updates its tagged value

56 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

(variables VTag and VVal) at lines 1-2 and its round number (variable Rnd) at line 3. The
other fields of a State message are similar to those of an Operation message. In addition to
the leader identity, a State message includes a round number r, a tagged value (vp, (rp, c, a))
and a value vd. The value r contained in the variable Rnd matches the highest round number
ever observed by the acceptor. The tagged value (vp, (rp, c, a)) contained in the variables
(VVal, (VTag.Rnd , VTag.Con , VTag.Any)) is the most recent one that has been accepted. The
value vd is the last known decision value obtained during the previous consensus instance
numbered c− 1. By construction, this value is stored in the variable LogDVal[VTag.Con - 1].
A coordinator follows a similar behavior: during Task C, a coordinator updates its tagged
values at lines 2-5 and its round number at lines 7-9. At any time, SetCTag[j] is equal to true
if and only if the coordinator has received from Aj the value contained in CVal[j] associated
with the tag CTag. Recall that, the variable LVal is used to keep the value of the last recorded
tagged value. When a coordinator observes a higher tag, it resets the variable SetCTag be-
fore recording the value associated to the new tag. When a coordinator updates the value of
the highest round number it has observed (variable Rnd), it also resets the list of acceptors
that have reached this level (variable SetRnd). Note that the behavior of the acceptor is more
restrictive because the test performed in Task A, at line 1 may lead to ignore a tagged value
even if it is more recent than the logged one.

When they are not lost, messages may arrive in a random order at their recipients.
As coordinators and acceptors manage monotonically increasing variables (Rnd, RndLid)
and ordered tagged values (CTag, VTag), a receiver can easily ascertain which fields of the
message provide a more recent information. Note also that while the first field of a tag
(the round number) is a monotonically increasing variable, the second field (the consensus
number) may vary non-monotonically due to the use of the ⪯ relation. The computation
of RndLid ensures that the leader’s tagged value will be the most recent one in the system.
Thus, its proposed value has a chance of being adopted by at least a majority of acceptors.

Operations: Only a leader is allowed to initiate an Operation. An Operation message
includes four fields: a round number r, a tag (rp, c, a), a value vp, and a value vd. The value
vd contained in the last field is the last known decision value of the previous consensus
instance, c− 1 (i.e. < vd, c− 1 > is a decision). The value r, stored in the variable RndLid, is
the current round number of the leader.

During a Prepare phase, the value r is necessarily strictly higher than rp. A leader may
execute several Read operations (Task D, line 16) during the same phase but all referring
to the same round period. If an acceptor receives a Read operation and adopts r, it can
no more consider tagged values with a lower round number, even if the received value is
more recent than its current one. In a Read operation, the leader also relays a tagged value
previously observed. Indeed, the tag (rp, c, a) is contained in CTag, the highest tag ever
observed. The tagged values associated with this tag are logged in CVal and in particular
the value vp is stored in LVal. As the tagged value (vp, (rp, c, a)) was previously observed
by an acceptor, it had been proposed in a past Write operation by the leader of round rp.
The leader of round r observed it and forwards it during its Read operation. Task A treats
an Operation message without checking its type (Read or Write). Roughly speaking, each
received message is considered as a Write (lines 1 - 2) and then as a Read operation (line 3).
Therefore, a simple test can distinguish a Read from a Write operation. In the former case,
r > rp, while in the latter, r = rp. Note that in the beginning, due to the initialization, a
leader may provide a tagged value equal to (⊥, (1, 1, 0)) which will not be considered by the

4.4 – The behavior of Paxos-MIC with just SO 57

acceptors, during Task A.
The tagged value (vp, (rp, c, a)) contained in a Write message is proposed by the leader

itself to become the next decision value. The value vp is contained in the variable PVal and
the associated tag is defined by the triplet (RndLid,CTag.Con,0). The Prepare phase executed
at the beginning of a round period ensures the correctness of the first Write operation. At the
end of the Prepare phase, PVal might have been updated to be consistent with any previous
attempts to converge to a decision value, made by another leader (Task D, line 8). Once
the leader has decided during round period r, the following consensus instances cannot be
in conflict with a previous attempt made by another leader. Ci may participate within the
same round period to several consensus instances without executing again Prepare phases
(optimization SO).

Task D: Periodically
(1) if (Quorum_Maj(SetLid)) then % Ci can act as a leader
(2) if (Rnd < RndLid) then % A new round period starts

% Beginning of a Prepare phase
(3) PreparePhase← true; Reset(SetRnd, false);
(4) Rnd← RndLid;
(5) if (CTag.Any = 0) then
(6) if ((Quorum_Maj(SetRnd) ∧ PreparePhase) then

% Ci has gathered enough feedbacks from acceptors
% It selects one of the most recent values

(7) if (∃ k s.t. SetCTag[k]) then
(8) PVal← CVal[k]; PreparePhase←false;

% Ci can now execute the Propose phase
(9) else execute(code DAny);
(10) if (PreparePhase = false) then

% A Write operation must contain a non-⊥ value
(11) if (PVal = ⊥) then
(12) PVal← ProposePull(DVal, CTag.Con);
(13) if (PVal ̸= ⊥) then % Ci executes a Write operation
(14) send Op(RndLid, (RndLid, CTag.Con, 0), PVal, DVal) to every Ak;
(15) else % Ci executes a Read operation
(16) send Op(RndLid, CTag, LVal, DVal) to every Ak;

Figure 4.5: Protocol executed by a leader Ci.

Decisions: Let us consider a coordinator Ci that receives a State message such that the
tag contained in the field St.Tag is equal to the highest tag ever observed by Ci and stored in
CTag. Ci can decide if it observes that a majority quorum of acceptors have adopted tagged
values during the same round and consensus instance (Task C, lines 13 - 17). The test is
done when a State message is received. As no Any value is used, all these tagged values are
necessarily equal and different from ⊥ and ⊤.

Logs: By construction, the field DVal of a State or an Operation message, related to
consensus instance c, contains the last known decision value, corresponding to the previous
consensus instance (c− 1). Old decision values are logged by the acceptors. Each acceptor
Ai maintains an array of logged values, LogDVal. An entry k of this array is initialized

58 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

to ⊥ and used to store the decision for consensus number k. Ai may acquire this value
which is contained in the field DVal of any Operation message related to consensus number
k + 1. To decide a value v during consensus k + 1, a coordinator must observe that v has
been adopted by a majority of acceptors. Consequently, the previous decision contained
also in these Operation messages, has necessarily been observed and logged by a majority of
acceptors. At least one of them is correct and can provide it, if necessary. The RetrieveDec
function is used by an internal learner PLint to obtain an old decision value. In our solution,
each time an acceptor sends a State message during consensus number c, it includes in the
last field of the message, the logged value related to consensus c − 1. Due to this choice,
Operation and State messages have similar structures. Moreover, it speeds up the retrieving of
the last decision value. The logs can be used to ensure the termination property which states
that, during each consensus instance, at least one correct process eventually decides a value.
Of course, in an asynchronous system, these logs might store an unbounded number of
values. If weaker termination properties are considered, it is possible to implement amnesic
logs that store only a limited number of decision values [19].

A different mechanism for logging decisions is used in [7]. A distributed structure,
called a round based register, is used to log decision values. Each time a new consensus in-
stance is started, a new register is created. Any correct process must be able to retrieve the
decision value for any completed consensus instance. For achieving this purpose, the reg-
ister instances must remain active even after the corresponding consensus instance has fin-
ished. The logged information is available and can be retrieved at any time. Such a logging
mechanism requires that (possibly) a high number of register instances are kept active.

Retrieving Decision Values:

The retrieving mechanism is employed by a PLint whenever it needs to provide a
decision value to a PLext that is interested in learning a previous decision. The RetrieveDec
function takes as parameter, a consensus number c and returns the decision value corre-
sponding to consensus number c. This function can be invoked by external learners or by
a PLint executing lines 1 or 10. The retrieving mechanism fetches decision values from the
acceptors logs. A call to the RetrieveDec function with c as parameter, will periodically broad-
cast a request to obtain the decision value corresponding to consensus number c. This re-
quest message is sent to at least a majority of acceptors. Each acceptor Aj store the decision
value for consensus number c, in the entry c of its logs (variable LogDVal[c]), only if Aj has
received this value in an Operation message sent by a leader. If the message has not reached
Aj, LogDVal[c] stores the ⊥ value. Each time Aj receives a request to access the c entry of
its logs, it will provide the corresponding value only if this value is different from ⊥. Once
a PLint receives a message containing a value different from ⊥, it has successfully retrieved
decision number c.

4.5 Paxos-MIC with both SO and RO

We present the modifications that have to be done in order to integrate the use of Any val-
ues. During a call to the ProposePull function, a PLint can now take the decision to use the
optimization O2, by returning ⊤ (see Section 4.3). Proposers make a commitment to provide
later all the acceptors with at least one significant value. Such a value is sent directly by a
proposer to acceptors and it is called a direct value. The name Any value denotes either the

4.5 – Paxos-MIC with both SO and RO 59

special mark ⊤ or a direct value received by an acceptor from an external proposer. Detect-
ing that v is an Any value is obvious when v is equal to ⊤ but impossible when v is a direct
value. To solve this, the third field of a tag, called Any, is set to 1 when the value adopted
by an acceptor is a direct value. This boolean field only indicates the origin of the value
(provided by an external proposer or by a coordinator). If the leader is currently executing
the Propose phase of a round period r, when it obtains a ⊤ value, it can instantly broadcast
Operation messages with the tagged value (⊤, (r, c, 0)). An acceptor may adopt the ⊤ value
as if it were a real initial value.

As the⊤ value is managed like an initial value, we have to ensure that no coordinator
decides < ⊤, c >, in Task C at line 15. The test performed at line 13 was introduced for
this purpose. To allow an acceptor to receive a direct value from a proposer, we define an
extension of the acceptor’s protocol. In Figure 4.6, the additional code is denoted by Task
A-Any and it is triggered by the reception of a Propose message from an external proposer.
This message contains a consensus number c and a direct value that should be an initial
value (different from ⊥ and ⊤). If the current tagged value (v′, (r′, c′, a′)) of the acceptor is
such that v′ is equal to⊤, c′ = c, and r′ is still the highest round number ever observed by the
acceptor, then the direct value replaces the ⊤ value and the Any field of the tag (VTag.Any)
is set to 1. This verifies that the last operation modifying the state of an acceptor, was the
Write of the ⊤ value.

Different proposers may provide different direct values. These proposal messages
may be received in different orders by different acceptors. In such cases, a collision may occur.
Unfortunately, all these values will share the same tag (r, c, 1). As indicated by Lamport [37],
majority quorums have to be replaced by larger sets called Fast or Any quorums. In [37],
Lamport defines quorums as sets of acceptors. Each round has a set of quorums associated
with it: classic rounds use classic quorums while fast ones rely on fast sets. The Quorum
Requirements state that (1) any two quorums must intersect and (2) any quorum and any
two fast quorums from the same round must also have a nonempty intersection. Based
on these requirements [28], Lamport has defined in [37], the minimum number of acceptors
contained in a quorum. Let N be the total number of acceptors in the system. The cardinality
of any classic quorum, Qc, and of any fast quorum, Qa, can be computed as follows: |Qc| ≥
⌊N/2⌋+ 1, |Qa| ≥ ⌈3N/4⌉.

The same results are also obtained in [55]. As an Any quorum is larger, the maximal
number of tolerated failures f has to be lower (or timeout mechanisms have to be used to
prevent a deadlock). These larger quorums are more difficult to obtain as they require to
collect more replies from the acceptors. In Paxos-MIC, an Any quorum is mandatory if and
only if the highest tag ever observed by the coordinator is associated to a direct value. The
quorum used in Task C, line 13 (during the learning activity) should be an Any quorum when
the current tag is associated to direct values (code CAny is executed). Otherwise a majority
quorum can be used. Note that the quorums used in Task D, line 1 and in line 6 (during the
Prepare phase) are still majority quorums.

When an Any quorum is used, the selection of a value among the set of received
tagged values should return one of the most frequent values. No collision occurs when only
one external proposer is active or when all external proposers provide the same direct value:
all the values logged in CVal are equal. This unique value can be decided (code CAny, lines 6
- 10). It could also be the case that one particular direct value is frequent enough so that it can
be safely chosen. Indeed, the predicate CollisionSafe allows to implement different strategies.

60 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

Task A-Any: When Ai receives Propose(Val, Con) from PLextk
(1) if ((P.Val ̸= ⊥) ∧ (P.Val ̸= ⊤) ∧
(2) (VVal = ⊤) ∧ (VTag.Con = P.Con) ∧ (Rnd = VTag.Rnd))
(3) then VTag.Any← 1; VVal← P.Val;
(4) send St(Lid, Rnd, VTag, VVal, LogDVal[VTag.Con-1]) to CLid;

code CAny:
(5) if (CollisionSafe) then
(6) if (Quorum_Any(SetCTag)) then
(7) DVal← the most frequent value CVal[k]

such that SetCTag[k];
(8) PVal←⊥;
(9) DecidePush(< DVal , CTag.Con >); CTag.Any← 0;
(10) Reset(SetCTag, false); CTag.Con← CTag.Con +1;
(11) else if (Rnd = RndLid) then RndLid← RndLid + n;

code DAny:
(12) if (Quorum_Maj(SetRnd) ∧ PreparePhase) then
(13) PVal← the most frequent value CVal[k]

such that SetCTag[k];
(14) PreparePhase←false;

Figure 4.6: Extension to the protocol to cope with Any values.

In its simpler version, this function may return true when all the gathered values are equal
and false otherwise. In the code CAny, when CollisionSafe is false due to the existence of too
many collisions, possible deadlocks are avoided by forcing the execution of a new Prepare
phase, if the coordinator is the current leader (code CAny, line 11). The leader remains the
same and it selects again a new PVal value among the multiple direct values.

Finally, note that during the Prepare phase executed by a new leader, the selected
value can be the value ⊤. When this occurs, the value of the variable CTag.Any is equal to 0
and all the tagged values stored in CVal are equal to ⊤. As the ⊤ value is selected at line 8,
in Task D, a new leader will execute a Write operation with an Any value ⊤ like a previous
leader, but with a higher round number. Proposers are expected to provide again their direct
values until the end of this consensus instance.

In [37], Lamport suggests to optimize the classical mechanism to recover from colli-
sions. However, this optimization is only possible under stronger assumptions. If i is a fast
round and Ci is coordinator of rounds i and i + 1, the information last sent during round
i can be used during round i + 1. Based on this observation, Ci can skip the Prepare phase
for round i + 1 as it knows that no one else has acted as a leader between rounds i and
i + 1. Therefore, round i + 1 can begin directly with the Propose phase. Two collision recovery
mechanisms are described in [37], namely coordinated and uncoordinated recovery.

4.6 – Paxos-MIC: positioning with respect to the Paxos protocol 61

4.6 Paxos-MIC: positioning with respect to the Paxos protocol

Although it follows the Paxos approach, the Paxos-MIC protocol includes numerous differ-
ent features compared to the original protocol. As stated before, the Paxos-MIC protocol
allows to solve an infinite sequence of consensus instances. In [36], the description of Paxos
focuses mainly on a single consensus instance.

In this section, we highlight the aspects that differentiate Paxos-MIC from the Paxos
approach.

1. The main feature of the proposed protocol is represented by its adaptability. The deci-
sion to activate optimization RO is taken by the current leader dynamically and locally,
at runtime and depending on the current context. This triggering of the optimization
does not require any synchronization between the leader and other actors. In the orig-
inal Paxos [37], the use of the optimization is decided before the execution of the pro-
tocol itself begins. More precisely, there exists an a-priori static convention between the
process. This convention regards the round numbers during which the current leader
is allowed to initiate a fast round.

2. The Paxos-MIC protocol ensures the persistency of all the past decision values, without
sending additional messages. All decision values are logged by all acceptors in their
local memories and can be retrieved at any time by learners. The logging mechanism
ensures that at least one correct acceptor is able to provide any past decision value.
Ensuring the persistency of the decisions allows to tolerate asynchrony between the
external proposer/learners and the core members. The simple solution adopted in
Paxos-MIC just requires to carry two values in each message rather than a single one.

3. The Paxos protocol distinguishes a request corresponding to a Read operation (broad-
cast during a Prepare phase) from a Write request broadcast during a Propose phase). In
Paxos-MIC, each operation sent by the leader is interpreted as being both a Read and
a Write operation. This standardization of messages leads to a uniform behavior of
both acceptors and coordinators. Indeed, most actions performed by an acceptor or a
coordinator aim at updating their local state when the received message contains more
recent information.

4. The proposed protocol extends the concept of round in order to cope with a sequence
of consensus instances. Paxos-MIC introduces the notion of tag that contains, in addi-
tion to the round number, the current consensus instance. This extra counter provides
the index of the current consensus instance in the sequence of decisions. All the ex-
changed values are tagged. The lexicographical order is used to identified the more
recent tagged values.

5. As a consequence of the two previous features, the communication pattern imple-
mented in Paxos-MIC does not use well-formed requests. More precisely, the request-
reply pattern is relaxed in the following way: we assume neither that a coordinator
initiates only one query-reply at a time, nor that it waits for the appropriate answers
before proceeding to the next step. To cope with message losses, the last sent message
is retransmitted periodically as it reflects the current state of the sender.

62 Chapter 4 – Paxos-MIC - An Adaptive Fast Paxos

6. The leader election service differs from the original Paxos, by indirectly relying on the
information supplied to the acceptors. The leader election service is invoked only by
the acceptors and never by a coordinator. In this way, a coordinator is only aware if
it can behave as the current leader or not. The identity of the leader is not known
by the coordinators. By moving the leader election service at the acceptors level, the
communication scheme between coordinators and acceptors is impacted. Whenever
its current state changes, an acceptor sends a message only to its current leader and to
the initiator of an operation (usually, they are the same process). An acceptor does not
need to broadcast its state to all coordinators, to ensure that the leader will receive its
message, as it is done in the original Paxos. Thus, the number of messages exchanged
between entities is reduced. Regarding optimization RO, once an acceptor adopts a
value provided directly by a PLext, it sends its updated state to its current leader. In
Fast Paxos [37], at the end of a fast round, acceptors broadcast the adopted values to
all learners.

63

Part III

Implementation and Evaluation

65

Chapter 5
Implementation

Contents
5.1 EVA: An EVent based Architecture . 65

5.1.1 The architecture of EVA . 66
5.2 Paxos-MIC implementation . 69

5.2.1 Building the components . 69
5.2.2 Example: the Acceptor class . 70

5.3 Final words . 72

THE algorithm and data structures of Paxos-MIC presented in chapter 4, are imple-
mented in Java on top of EVA [11], an event-based distributed framework. This chap-
ter discusses the implementation of the protocol in two steps: first, we provide an

overview of the event-based architecture, EVA; in a second step, we show how abstractions
defined in EVA are used as building blocks for the Paxos-MIC protocol.

5.1 EVA: An EVent based Architecture

EVA [11] was developed as part of the INRIA Gforge project PROMETEUS. EVA represents an
event-based distributed framework that provides an environment for designing high-level
communication protocols, (i.e. protocols providing complex services such as reliable atomic
broadcast). The EVA framework implements a publish-subscriber communication environ-
ment that allows to structure the entities composing high-level protocols. The architecture of
EVA relies upon the event channel abstraction for the interaction between entities that share
the same address space. This abstraction facilitates a flexible and simple design of commu-
nication protocols and allows to circumvent the drawbacks of the layered-based approach
traditionally used to develop these protocols.

66 Chapter 5 – Implementation

5.1.1 The architecture of EVA

In [11], the authors propose an object-oriented architecture based on the event channel ab-
straction and denote it by EVA. A distributed application constructed on top of EVA is de-
fined as a set of cooperating objects, called components, that communicate mainly by exchang-
ing special objects, called events, via an event channel and also by invoking special operations,
called services. The interaction between components is either asynchronous (by the means of
events) or synchronous (by the means of services).

An entity in EVA may act as both a producer and a consumer of events and may be
subordinated to any number of components. Any entity is first required to register or subor-
dinate itself to a corresponding component before it can consume and produce events. The
component is in charge of managing an event channel that has the role of routing the events
produced by a subordinated producer to all interested subordinated consumers. The event
channel decouples suppliers from consumers yielding the sought flexibility. Components
provide an interface that allows the subordinated entities to register/access the services they
wish to offer/use to/from other entities that share the same component. A component can
register the services defined inside it, to a super-component to which it is subordinated. This
allows the access to the component’s services for external entities that share the same super-
component. Components have two main roles: i) they control the interactions between sub-
ordinated entities and ii) they provide a way of structuring applications into related entities,
while hiding them from unrelated entities and yielding application design more modular.
Figure 5.1 depicts the architecture of a super-component (Component E) composed of two
sub-components (Component C and Component D), an entity (Entity X) and an event channel.

Component

A

Component

B

Event Channel

Component C

Component

D
Entity X

Component E

Event Channel

Figure 5.1: Event Channel in EVA.

In summary, the event-based architecture relies on the following four main concepts:
i) events; ii) entities; iii) components; and iv) services. An event is a “container” object used
to convey data from supplier to consumer entities, while a service allow synchronous com-
munication. An entity is a “worker” object that interacts with other entities to implement
part of the functionality of the application. A component is both a “structuring” object that
assembles related entities together, as well as a “manager” object that coordinates the inter-
actions of its subordinated entities. A component is itself an entity that can be subordinated
to other super-components.

5.1 – EVA: An EVent based Architecture 67

In the following, we detail each of the main concepts.

Events
The event concept is well suited to model messages that contain data fields. Typed events
convey data that has to be exchanged between entities. In EVA, an event instantiates a class
that implements the interface Event. This interface defines a method getType() to obtain the
type of the event at runtime. The EventImpl class provided by the framework, offers a stan-
dard implementation for events. Usually, a particular application requires the definition of
new types of events. This is achieved by defining classes that inherit from the standard
EventImpl class and that add extra data fields and methods required by the application. The
framework also defines interfaces that describe the events that will be consumed (Consum-
ableEventDescriptor), more precisely the way these events will be consumed, or produced
(SupplyableEventDescriptor).

Entities
Entities provide the core functionality of the framework. An entity is an instance of a class
that extends the standard class Entity. Furthermore, consumer/supplier entities must im-
plement the Consumer respectively Supplier interfaces. The Consumer interface defines the
consumeEvent method that is invoked by the event channel of a component when an event
is delivered to the target consumer entity. The consumptionNotification operation defined by
the Supplier interface, notifies a producer that new consumers are interested by its produced
events.

Entities are also described as being passive or active. An active entity has an indepen-
dent thread associated with it. For example, most of the consumer entities are active entities.
Due to the fact that event consumption is asynchronous, each consumer buffers events for
future processing. The invocation of the consumeEvent operation on entities of these classes
simply places the given event into their buffer. The associated thread continuously verifies
if new events have appeared in the buffer. It is also possible to associate with an entity, a
timeout that triggers the execution of a periodic task. The timeout defines the time inter-
val between two consecutive executions of the operation. Such entities are called periodical
entities.

Components
A component is defined by a set of entities sharing a same event channel through which they
communicate by exchanging events. A component instantiates the ComponentEntity class. In
order to be able to use the event channel service of a component, an entity must subordi-
nate itself to the corresponding component. This is achieved by invoking the addEntity()
operation of the component interface, giving as a parameter a reference to itself.

A component can also behave as an entity that consumes and produces events. When
a component registers itself with one of its super-components for consuming/producing a
particular type of event, it registers all its internal entities that registered themselves for the
consumption/production of that type of event.

Services
When entities execute within the same address space, synchronous interactions are modeled
by classical procedure-call mechanisms. However, if an entity invokes directly an operation
implemented by another entity, a static coupling is created between them. In order to over-
come this constraint, EVA allows to decouple entities that need to interact synchronously,
thus increasing the design flexibility for an application. In EVA, components provide an in-

68 Chapter 5 – Implementation

terface that allows their subordinated entities to register the operations they want to make
available to other entities sharing the same component. This is achieved by a call to the regis-
terService method. Components also provide the appropriate interface to allow access to the
registered operations, by a call to the method invokeRequest. An entity that uses an operation
does not need to know the provider of the operation. Such operations are called services.

Services model synchronous (blocking) one-way interactions between entities. This
can be exploited by applications based on a client-server communication pattern.

Inter-process communication
As mentioned before, in the EVA architecture, communication is possible between entities
that share the same address space and it relies upon the event channel mechanism.

Special entities (listener/notifier) dedicated to network communication are provided
by the EVA framework to allow events transmission between remote entities (located at
different nodes). The framework defines special types of consumers, named network noti-
fiers, able to transmit special type of events, called remote events from one process to another
remote process. Also, special types of suppliers (network listeners), are defined at the cor-
responding receiver process. These special suppliers are responsible for receiving remote
events and producing them locally. A pair of linked network notifier and network listener
can be regarded as a single distributed entity that consumes an event produced by a com-
ponent located on a site, and produces it at a component located on a remote site. This
special type of pairs establishes the connections between distributed components. Figure 5.2
illustrates how communication is achieved between entities located remotely.

Net

Notifier

Net

Listener

Event Channel

Net

Notifier

Net

Listener

Event Channel

Network

Figure 5.2: communication between remote entities in EVA.

EVA defines three basic types of notifiers and listeners:

1. DatagramUnicastNotifier and DatagramUnicastListener provide a point-to-point unreli-
able communication service (relying on UDP).

2. DatagramMulticastNotifier and DatagramMulticastListener implement an unreliable one-
to-many communication service (UDP).

3. StreamNotifier and StreamListener provide a reliable, FIFO, point-to-point communica-
tion service (TCP).

Applications can use the provided network entities or define classes that extend them,
in order to meet their particular needs. The events that are transferred across the network,

5.2 – Paxos-MIC implementation 69

must inherit from the RemoteEvent class, defined by the framework. As opposed to a local
event, a remote event must incorporate the definitions of the operations that marshall and
unmarshall an event. These operations allow the reconstruction of an event at the remote
destination.

5.2 Paxos-MIC implementation

The functionalities that EVA provides have proven to be particularly useful for building
the Paxos-MIC protocol. The event-based communication model used by EVA components
helps to fill in the gap between the specification of the protocol and its implementation.

5.2.1 Building the components

We first identify the entities that need to be constructed. The implementation of Paxos-
MIC defines four main classes, corresponding to the four roles a participant to the protocol
may have. These classes are built by extending entity classes from EVA. The Acceptor and
Coordinator classes extend the EVA TimedConsumerSupplierEntity class, as both entities are
consumers and producers of events and both have periodical tasks (for retransmission of
State messages and verifying the leader statute). An internal proposer learner, PLint is an
entity that consumes events and also produces them. Thus, the class implementing the PLint
extends the ConsumerSupplierEntity class defined in EVA. Similarly, we construct the class
that defines the behavior of the external proposer learner PLext. These entities do not require
periodical tasks.

The Paxos-MIC entities define handler methods (one per consumed event type) that
implement a code that is very close to the specification of the protocol. These four main
entities also define extra data fields and operations required by the protocol. We made the
choice of considering three different groups: acceptors, coordinator and external proposer-
s/learners. This choice facilitates the communication exchanges between entities as most of
the messages have multiple destinations and can be modeled as multicast communication.
Each of the three groups is identified by a group id and has a pair of network multicast
address and port associated to it. These network parameters allow inter-groups communi-
cation. Each process belonging to a group is uniquely identified by a pair of group id and a
process id, which is unique at the level of the group.

In addition to these four main entities, the protocol also relies upon a leader election
mechanism. This is provided by a failure detector module queried by acceptors. The easi-
est way of implementing this mechanism is by defining a TimedConsumerSupplierEntity that
manages a list of non-crashed coordinators. The entity is in charge of monitoring the events
produced by coordinators and based on a timeout mechanism, it simply decides if a coordi-
nator is alive or not. When it is queried by an acceptor interested in knowing the identity
of the current leader, the failure detector provides the coordinator with the lowest process
identifier among the list of not suspected coordinators.

The second step of the implementation concerns the communication layer. In Paxos-
MIC, entities communicate by asynchronously sending and receiving messages which we
model through EVA events. We map each type of message exchanged between entities into
a type of event. Events that are to be transmitted between entities located remotely are

70 Chapter 5 – Implementation

implemented by defining a new class that inherits from the RemoteEvent class. This is the
case of Operation, State, Decide, RetrieveDec, Propose events. In this case, apart from any extra
data fields and operations required, the derived class must also provide implementations for
the marshall and unmarshall operations necessary to correctly transmit data across different
execution platforms. The protocol also defines events that extend the LocalEvent class, for
modeling messages that are sent locally. For example, the interaction between an acceptor
and its associated failure detector module is ensured by local events for monitoring processes
activity and triggering failure suspicions.

The synchronous interaction between a coordinator and its associated PLint is sup-
plied by EVA services. As a PLint is constructed as an extension to a coordinator, operations
such as ProposePull and DecidePush are invoked locally and synchronously. Thus, the services
concept defined in EVA is suitable to implement locally invoked operations.

After defining all entities, events and services, the final step in the design is to define
how the entities must be connected together. This is achieved by subordinating the defined
entities to the appropriate component entities and furthermore, structuring the architecture
of the protocol into super-components. This step includes establishing how the entities exe-
cuted within a process will interact with those executing within another process. This in turn
requires identifying the appropriate listener and notifier entities that will allow the cooper-
ation of the different processes that implement the protocol. We made the following choice
for designing components: the Paxos-MIC protocol will be executed on nodes (processors)
of a grid. On each of these nodes, we deployed various configurations of the core. Thus, on
a given node we may have several acceptors, coordinators and PLext running. As explained
in section 4.1, acceptors and coordinators are part of the core, while external clients are out-
side this core. This is mainly the reason for creating two separate components for the core
members and for outside clients. The core component is in fact a super-component, as it is
composed of three other components: a coordinator/acceptor component (that subordinates
all acceptor and coordinator entities located on the node), a listener component (that com-
prises all network listeners) and a notifier component (consisting of all network notifiers).
The two last components are responsible for the inter-nodes communication.

5.2.2 Example: the Acceptor class

This subsection presents an extract from the Java class that implements an acceptor. The
code defines the handler for the consumption of Operation messages sent by the leader. In
addition, each acceptor executes a periodical task, in charge of producing a StateEvent that
notifies the leader of the current state of the acceptor. The example also depicts the extension
to the acceptor’s code, enabling the entity to handle the receipt of a proposal value from a
PLext. This extension allows the acceptor to adopt directly the value of the proposer, when
optimization RO is activated (after the receipt of a TOP value from the current leader). The
example represents the “translation” in Java of the pseudo-code depicted in Figure 4.3.

1
2 public class Acceptor extends TimedConsumerSupplierEntity

3 {

4 public synchronized void operationHandler(OperationEvent opEvent)

5 {

6 long c;

5.2 – Paxos-MIC implementation 71

7 Tag tag = opEvent.getTag();

8
9 produceMonitor(opEvent.getSrcGid(), opEvent.getSrcPid());

10
11 if ((tag.getRnd() >= this.rnd) &&

12 (vTag.compareTo(tag) == -1) &&

13 (opEvent.getVal().getClass().getName().

14 contains("Bottom") == false)) {

15 this.vTag.setTag(tag);

16 this.vVal = opEvent.getVal();

17 this.initiator = opEvent.getSrcPid();

18 }

19 if (opEvent.getRnd() > rnd) {

20 rnd = opEvent.getRnd();

21 this.initiator = opEvent.getSrcPid();

22 }

23 c = tag.getCon();

24 logDVal.put(new Long(c-1), opEvent.getDVal());

25 opEvent.returnShareableEvent();

26 this.produceState();

27 }

28
29 private void produceState()

30 {

31 StateEvent stEvent;

32
33 stEvent = (StateEvent) this.newEvent(StateEvent.class);

34 if (this.vTag.getCon() == 0) {

35 try {

36 stEvent.setState(lid, initiator, rnd, vTag,

37 new Bottom(), new Bottom(), gid, pid,

38 InetAddress.getByName(this.ip.getHostAddress()));

39 } catch (UnknownHostException e) {

40 e.printStackTrace();

41 }

42 }

43
44 else {

45 if (vVal.getClass().getName().contains("Top")) {

46 if (proposals.containsKey(vTag.getCon())) {

47 vVal = proposals.get(vTag.getCon());

48 proposals.remove(vTag.getCon());

49 }

50 }

51 try {

52 stEvent.setState(lid, initiator, rnd, vTag, vVal,

53 logDVal.get(vTag.getCon()-1), gid, pid,

54 InetAddress.getByName(this.ip.getHostAddress()));

55 } catch (UnknownHostException e)

56 {

57 e.printStackTrace();

58 }

59 }

72 Chapter 5 – Implementation

60 this.produceEvent(stEvent);

61 }

62
63
64 public synchronized void proposalHandler(ProposeEventA proposal)

65 throws IncreasingReferenceForNotAllocatedObjectException,

66 InvocationServiceException

67 {

68 boolean already = false;

69 Object val = proposal.getProposal().getVal();

70 String s = val.getClass().getName();

71 long con = proposal.getProposal().getCon();

72 Random r = new Random();

73
74 if ((vVal.getClass().getName().contains("Top"))) {

75 if ((!s.contains("Bottom")) && (!s.contains("Top"))) {

76 if ((vTag.getCon() == con) && (rnd == vTag.getRnd())) {

77 vTag.setAny(1);

78 vVal = proposal.getProposal().getVal();

79 produceState();

80 }

81 }

82 }

83 proposal.returnShareableEvent();

84 }

85 }

5.3 Final words

The Paxos-MIC implementation was written from scratch in Java by relying on an event-
driven architecture, that allows to model high-level distributed protocols relying on asyn-
chronous communication. The implementation of the framework defines the classes, corre-
sponding to the four roles a participant to the protocol may have: acceptor, coordinator (and
its associated PLint) and external proposer/learner, PLext. The communication between the
entities is modeled through the event consuming/supplying system provided by EVA and
also by defining services for synchronous interaction.

73

Chapter 6
Evaluation of Paxos-MIC

Contents
6.1 Experimental setup: the Grid’5000 platform 74

6.1.1 Infrastructure details . 74

6.1.2 Grid’5000 experimental tools . 76

6.1.3 Environment settings for Paxos-MIC 76

6.2 Overview of the experiments . 77

6.3 Automatic deployment tools . 78

6.4 Results . 79

6.4.1 Failures . 79

6.4.2 Scalability . 80

6.4.3 Localization . 81

6.4.4 Delays . 83

6.4.5 Participation to several consensus instances 83

6.4.6 Collisions . 85

6.5 Zoom on RO - Prediction of collisions . 86

6.5.1 Four main reference contexts . 87

6.5.2 How collisions occur . 88

6.6 Simulation of Paxos-MIC . 89

6.6.1 Application: A secure Web Architecture 89

6.6.2 Log analysis . 90

6.7 Triggering criteria . 91

6.7.1 Classification . 91

6.7.2 Results and analysis . 94

6.7.3 Which criterion? . 97

6.8 Final remarks . 98

74 Chapter 6 – Evaluation of Paxos-MIC

THE Paxos-MIC implementation described in chapter 5 is evaluated in this chapter
through a series of synthetic benchmarks. These benchmarks consist of specific sce-
narios that facilitate the study of the protocol’s performance and the analysis of its

behavior. This chapter first describes the experimental settings, then identifies the param-
eters that influence the protocol’s behavior and presents the experimental results obtained
during the evaluation.

In a first step, we consider the behavior of the protocol when either only SO or both
SO and RO are used. Our aim is to determine the impact of some contextual factors (size
of the core, geographical position of the actors) on the time required to reach a decision. In
a second step, this chapter focuses on the risky optimization RO. This optimization fails
when collisions occur: during the same consensus instance, at least two different proposers
propose different initial values. In the case of a real application, we address the problem of
the specification of the trigger criterion and its tuning.

6.1 Experimental setup: the Grid’5000 platform

Our experiments were carried out on the Grid’5000 [32, 13] experimental platform.
Grid’5000 provides to the community of researchers a testbed allowing experiments for dis-
tributed and parallel computing research. The infrastructure of Grid’5000 supplies a highly-
configurable environment, enabling the users to perform experiments under real-life condi-
tions for all software layers ranging between network protocols up to applications.

The platform of Grid’5000 is geographically distributed on different sites located at
different places through the French territory. More than 20 clusters spread over 10 sites (see
Figure 6.1) are available and each cluster includes up to 64 computing nodes: Bordeaux,
Grenoble, Lille, Lyon, Nancy, Orsay, Reims, Rennes, Sophia-Antipolis and Toulouse. Two
foreign sites (Luxembourg and Porto Alegre in Brazil) have recently joined the Grid’5000
project, which now comprises more than 7000 CPU cores.

6.1.1 Infrastructure details

Grid’5000 was developed as a hierarchical infrastructure, where the computing nodes are
grouped into clusters and several clusters form a site.

Resources. Grid’5000 is designed as a federation of independent clusters and therefore it
consists of a complex hierarchy of heterogeneous physical resources. The resource hetero-
geneity concerns various levels of the architecture, as detailed below [32, 13] :

Processor: The processor families include AMD Opteron (62%) and Intel Xeon EMT64
(32%), featuring mono-core (38.5%), DualCore (32%), QuadCore (27%), 12-core (2.7%)
processors.

6.1 – Experimental setup: the Grid’5000 platform 75

Figure 6.1: Grid sites by number of nodes.

Memory: The nodes are equipped with at least 2 GB of physical memory, which can increase
up to 48 GB for some clusters, such as parapluie on the Rennes site.

Network: The network interconnects range from Ethernet cards to high-speed Infiniband or
Myrinet links for intra-cluster communication.

Although all nodes in Grid’5000 are equipped with Unix-based operating systems,
the distributions vary across sites, as well as the set of pre-installed libraries. This issue has
to be taken into account for multi-site deployments, as user applications may require specific
libraries and tools.

Network. The various sites are interconnected through a high-performance backbone net-
work infrastructure provided by RENATER, the French National Telecommunication Net-
work for Technology, Education and Research. The architecture is based on 10 Gbit/s dark
fibers and provides IP transit connectivity, enabling inter-site latencies in the order of 10 mil-
liseconds. Within each site, the resources are typically interconnected through Gigabit Eth-
ernet switches; some sites also provide high speed and low latency interconnects, such as
Myrinet or Infiniband, which feature 10 Gb/s and 20 Gb/s links, respectively.

Data Storage. The Grid’5000 architecture provides two levels of data storage:

Local disk: Each computing node is equipped with a local hard disk accessible for user
applications. It is however reserved for temporary storage, all data being deleted when
the user job is completed.

76 Chapter 6 – Evaluation of Paxos-MIC

Shared storage: A network file system (NFS) [51] is deployed on each site, the shared stor-
age server being available from each computing node. It enables users to persistently
store data on Grid’5000. This feature is essential for the deployment of distributed
applications: the application code and libraries can be installed in the shared storage
space and then the user can directly access data and execute the code on multiple com-
puting nodes. Nevertheless, the NFS servers are neither replicated, nor synchronized
between Grid’5000 sites. These operations must be manually performed by the user, if
a multi-site deployment is required.

6.1.2 Grid’5000 experimental tools

Grid’5000 provides a series of tools that enable users to carry out large-scale experiments
and facilitate the deployment of customized environments:

OAR [3] is a batch scheduler that allows Grid’5000 users to make fine-grain reservations,
ranging from one processor core to Grid-level reservations spanning over several sites
and hundreds of nodes.

Kadeploy [2] enables users to deploy a customized operating system image on the
Grid’5000 infrastructure, with administrator rights allowing users to install specific
software for their experiments. Moreover, Kadeploy allows users to control the entire
software stack and the reproducibility of their experiments.

The Grid’5000 API is a set of well-defined interfaces that enable secure and scalable access
to resources in Grid’5000 from any machine through standard HTTP operations.

Taktuk [20] is a tool designed for efficiently managing parallel remote executions on large
scale, heterogeneous infrastructures. This tool is particularly useful when the users
want to simultaneously start a script on each of the reserved nodes. We used taktuk
for each of our experiments in order to deploy the core (acceptors and coordinators)
and also to run the clients (external proposers/learners).

6.1.3 Environment settings for Paxos-MIC

We used the OpenJDK 6 Java Virtual Machine with no JIT compilation to run our measure-
ments. Two types of network configurations have been considered for the measurements
of the Paxos-MIC protocol. The first one is mono-site (Rennes) inside which the Roundtrip
Time (RTT) between two nodes is low (less than 0.140 ms). The second one is multi-site as it
interconnects different Grid’5000 sites (Orsay, Lille, Toulouse, Grenoble and Rennes). In this
configuration, the RTT between two nodes located at two different sites is much higher than
within one site and varies according to the considered sites (see Table 6.1).

As explained in Section 5.2, a significant part of the process interaction is modeled as
multicast communication. In mono-site configurations, our current implementation of the
Paxos-MIC protocol uses multicast listeners/notifiers between nodes located on the same
site. However, the routers that connect Grid’5000 sites do not forward multicast traffic. In
order to overcome this drawback, for our multi-site configurations, we also implemented
UDP relays that transmit multicast packets to nodes located at remote sites. The UDP relays

6.2 – Overview of the experiments 77

RTT (in ms) Lille Toulouse Orsay Rennes
Lille - 19.8 4.75 10.58

Toulouse 19.8 - 16.51 22.3
Orsay 4.75 16.51 - 9.18

Rennes 10.58 22.3 9.18 -

Table 6.1: Intra-sites RTT

ensure the following: every packet sent over one multicast address is forwarded to the other
multicast addresses through several unicasts.

6.2 Overview of the experiments

During the evaluation of the Paxos-MC framework, we aimed at analyzing the performance
of the protocol and observe its behavior in several specific scenarios. Our major aim was to
identify i) the interest of using either only SO or both SO and RO, ii) the main factors that
have an impact on the protocol, iii) the cost of RO when this optimization is used in bad
circumstances, and iv) the potential impact of deploying different roles on remote nodes.

For measuring the performance of the protocol, we selected the classic performance
metric for the category of consensus protocols, namely the latency. This performance indica-
tor was previously defined in Section 3.7. Recall that the latency is defined by the number of
communication steps required by the protocol to reach a decision value, once a proposal is
made available, in best-case executions.

A testing scenario is constructed by taking into account parameters that impact the
protocol’s behavior:

• the occurrence of failures;

• the number of participating entities that defines the size of the core;

• the geographical localization and distribution of the entities on different nodes of
Grid’5000;

• the pattern of the consensus sequence; this last parameter characterizes the structure
of consensus sequences and is described by:

– the length of the sequence (or the number of consensus instances executed in
sequence);

– the time between the executions of two consecutive instances (also called the de-
lay);

– the number of proposers;

We carried out most of our experiments in an environment setup consisting of 5 ac-
ceptors and 3 coordinators deployed on a local cluster. We also considered that a proposer
acts as a learner and we measured the latency of the protocol when executing a sequence of
400 consensus instances. This is what we denote by a classic setup. In the figures displaying

78 Chapter 6 – Evaluation of Paxos-MIC

the results, we denote by Paxos-MIC-SO the Paxos-MIC protocol executing optimization SO.
Similarly, Paxos-MIC-SO-RO indicates the Paxos-MIC protocol when both optimizations SO
and RO are activated.

6.3 Automatic deployment tools

In order to accommodate the settings of the various testing scenarios, we designed a deploy-
ment framework for the Grid’5000 environment. This framework integrates configurable
scripts that provide an automatic and fine-tuned deployment and execution of the experi-
ments. The main functions fulfilled by these scripts are the following:

1. Configure the parameters of the testing scenarios. The deployment scripts allow the
tuning of the parameters that define the testing scenario (the size of the core, number
of clients, the length of the consensus sequence, etc.). They generate the configuration
files for the core members and the external clients. The entities involved in the execu-
tion of the protocol, can be located on the same site or on remote sites, which leads to
difficulties in generating the configuration files and in deploying the entities.

2. Repeatable experiments. The outcome of the experiments are impacted by extra fac-
tors inherent to a distributed testbed (such as, fluctuant network latencies), factors that
a user cannot control. Thus, we repeated the experiments several times, under the
same conditions, with the purpose of improving the accuracy of the obtained results.
The scripts re-execute experiments automatically, for a number of retries specified by
the user.

3. Flexible execution. The framework should allow users to develop their experiments
in a flexible manner, so that they can perform evaluations that do not depend on pre-
defined parameters or system settings.

The deployment and execution framework consists of scripts that operate at three
important levels:

Global settings. The scripts also handle the global settings that users must define when
employing the Grid’5000 platform. For instance, to use the Grid’5000 platform, one
has to specify the type of OAR reservation used and the required identifiers, such
as the reservation id and associated key. Moreover, the scripts include the type of
connector used to contact the nodes (e.g. ssh), a list of the Grid’5000 sites involved
in the deployment and global environment variables. A particular type of script is in
charge of propagating the global variables on all the nodes and of synchronizing the
configurations on each Grid’5000 site.

Deployment specification. These scripts are in charge of defining the entities that will be
executed on specific nodes. These scripts receive as an input, a file containing the
names of the Grid’5000 nodes obtained after making a reservation, and they auto-
matically generate the files required to define and start the Paxos-MIC entities. The
description of the entities comprises configuration files containing specific parameters
and requirements. For example, for each coordinator or acceptor, the configuration file

6.4 – Results 79

must “know” the IP address of the Grid’5000 node on which the entity will be run. In
addition, multicast addresses and ports are included in these configuration files, being
mandatory for ensuring multicast communication among the entities of Paxos-MIC.

Results handling. To collect all the logs generated by the deployed platforms, our frame-
work takes advantage of the shared-user directory enabled by the NFS on Grid’5000.
Dedicated scripts gather all the nodes logs and parse the files in order to obtain rel-
evant results. The numbers are passed as an input to scripts that output a graphical
representation of the results.

6.4 Results

In this section, we describe the experimental evaluation and discuss the obtained results.
With each testing scenario, we gradually varied each of the aforementioned parameters and
observed its impact on the protocol’s behavior.

6.4.1 Failures

In this series of experiments, we evaluate the impact of failures on the Paxos-MIC protocol.
As explained in Section 4.3.2, the Paxos-MIC protocol has been designed to tolerate up to fc
crashes of coordinators and up to fa crashes of acceptors.

In terms of performance, the failure of an acceptor has no effect when all acceptors are
located on a single cluster. Conversely, when the acceptors are deployed over several sites,
the failure of an acceptor near the leader (in terms of communication delay) is detrimental to
all future consensus instances. To be convinced, the reader is invited to look at the Table 6.2
that identifies variations in cost depending on the positioning of the acceptors. The failure of
acceptors that are far from the leader (in terms of communication delay) is not problematic.

Obviously, the failure of a coordinator that is not acting as a leader has no impact. The
failure of a leader creates an important additional cost which depends essentially on the time
required by the leader election mechanism to suggest a new correct leader. Although this
time is very high, its analysis is not necessarily very informative as the cost is proportional
(in our implemented solution) to the timeout values used to detect failures. It seems more
interesting to focus on the additional cost caused at the level of Paxos-MIC by the arrival of
a new leader.

More precisely, in Figure 6.2, we show the latency observed when 400 consensus are
executed by the same leader during the same Propose phase and the latency observed when
each consensus requires the execution of both a Prepare phase and a Propose phase. As a two-
phase execution is required each time a new leader appears, this second measure indicates
the (small) additional cost induced by the Paxos-MIC protocol itself.

In this experimentation, both the number of acceptors and the number of coordina-
tors increase: na = 2 f + 1 and nc = f + 1, where f varies from 1 to 15. Thus, in a first
step we have a core of 2 coordinators and 3 acceptors, which gradually increases up to 16
coordinators and 31 acceptors. The core members are deployed on a local cluster. A client
behaves both as a proposer as well as a learner and it is in charge of proposing a sequence
of 400 initial values, for each of the core configurations. We measure in each configuration,

80 Chapter 6 – Evaluation of Paxos-MIC

the latency of Paxos-MIC when no failures occur and the latency of Paxos-MIC when an
additional cost is required for executing a new Prepare phase for each consensus instance.

The experiment described above is performed for each of the core configurations,
which results in the curves depicted in Figure 6.2. We observe that for a number of acceptors
na < 12, the two curves evolve similarly: if the leader changes, an additional 30 % cost is
observed. Beyond 13 acceptors, the gap between the two curves increases and goes up to
an additional cost of 50 %. In fact, the execution of the two phases requires two successive
observations of a majority quorum (one at the end of each phase). When the number of
acceptors increases, the number of messages that have to be gathered in order to achieve a
quorum also increases.

6.4.2 Scalability

One of our goals was to assess how the protocol scales when the number of coordinators
and acceptors increases. This particular parameter, namely the size of the core, also allows
to determine the interest of the optimization RO.

We consider an experimental setup that is favorable to this optimization. A single
PLext is involved in the 400 consensus. 50 ms elapses between the receipt of a decision
value related to a consensus c and the sending of an initial value for the consensus c + 1.
Both the number of acceptors and the number of coordinators are increased: na = 2 f + 1
and nc = f + 1. We deployed the core members on the clusters of the Orsay sites. Our
goal is to see how the protocol is scalable when the number of acceptors increases up to 51.
For each of the possible core sizes, we ran 400 consensus instances and measure the latency
of the protocol with its two behaviors: Paxos-MIC-SO and Paxos-MIC-SO-RO. Figure 6.3

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30

La
te

nc
y

fo
r

40
0

in
st

an
ce

s
(m

s)

Number of Acceptors

Paxos-MIC-So
Two Phases of Paxos-MIC

Figure 6.2: Cost of the Prepare phase (in case of a failure).

6.4 – Results 81

displays the obtained results.

When the number of acceptors is relatively low (below 15), optimization RO allows
gains ranging from 30% to 50%. When the number of acceptors increases, the interest of the
optimization RO decreases. The two curves converge when the number of acceptors is equal
to 37. At this point the cost of an Any quorum (gathering of at least 28 State messages) is
much greater than the cost of a majority quorum (gathering of at least 19 State messages).
The gain obtained by bypassing the leader is no longer sufficient to hide the growing addi-
tional costs of an Any quorum. However, up to 50 acceptors, the worst performance with
optimization RO (in favorable circumstances) is never higher than 4%. Note that the slope
followed by the two curves changes slightly when 35-40 acceptors are used. At this stage,
all the acceptors were no longer located on the same cluster. This has an impact on the
measurements. For this particular experimental settings, we always ensure that every node
implements at most one role (coordinator, acceptors, external proposer/learner). Thus, we
used up to 80 nodes.

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

La
te

nc
y

fo
r

40
0

in
st

an
ce

s
(m

s)

Number of Acceptors

Paxos-MIC-So
Paxos-MIC-So-Ro

Figure 6.3: Scalability.

As a concluding remark, we observe that a higher number of acceptors (up to 51)
impacts optimization RO to a greater extent than optimization SO, as RO requires greater
quorums (Any quorums as opposed to classic majority quorums). However, up to 50 accep-
tors, the worst degradation of RO (in favorable circumstances) is never higher than 4%.

6.4.3 Localization

This subsection studies another parameter that influences the protocol’s latency, namely the
localization of the entities. By considering different distributions of the entities on different
sites, we aim at observing the impact of entities localization on the performances. For this

82 Chapter 6 – Evaluation of Paxos-MIC

purpose, we deployed 3 coordinators, 5 acceptors and one proposer on four different sites
of Grid’5000: Rennes, Lille, Orsay and Toulouse. In the Table 6.2, deployment scenarios are
denoted by Di.

In both scenarios D1 and D2, the proposer is co-located with the leader and a ma-
jority of acceptors. The leader Cl has direct access to a local majority quorum composed
of acceptors located in Rennes. However, when optimization RO is used, the Any quorum
has a cardinality of 4. When all the acceptors are no longer co-located (case D2), the latency
increases considerably, as one of the acceptors located in Lille is necessary to gather an Any
quorum.

Consider cases D3 and D4: a majority of acceptors is deployed on a different site than
the leader and the proposer, which are co-located. By spreading acceptors over 3 different
sites, we observe a slight variation of the latencies for both optimizations. However, as the
links Rennes-Lille and Rennes-Orsay have similar network delays, the two optimizations are
slightly impacted. The best scenario for RO requires that all entities are co-located. In this
way, the proposer is able to rapidly reach both the leader and the acceptors.

Scenario D5 places the proposer remotely from both the leader and the acceptors. By
deploying the proposer in Toulouse, both optimizations degrade considerably as the link
delay between Toulouse and Rennes is very high. Scenarios from D6 to D8 deploy different
distributions of acceptors over the 4 sites. When the proposer moves from Orsay (case D6a)
to Toulouse (case D6b), the costs of both optimizations increase considerably, due to the links
between Toulouse and every other site, which are much more cost-full. Again, we notice that
when optimization RO is used, the protocol hardly reacts to changes in acceptors topology.

Rennes Lille Orsay Toulouse Paxos-MIC+SO Paxos-MIC+RO

D1 P Cl C C A A A A A 1275 ms 859 ms
D2 P Cl C C A A A A A 1273 ms 5147 ms
D3 P Cl C C A A A A A 5853 ms 5417 ms
D4 P Cl C C A A A A A 5888 ms 5499 ms
D5 Cl C C A A A A A P 10276 ms 10078 ms
D6a Cl C C A A A P A A 8929 ms 6099 ms
D6b Cl C C A A A P A A 15239 ms 11983 ms
D7a Cl A C A A C A A P 13626 ms 11922 ms
D7b Cl A A C A A C A P 13630 ms 11967 ms
D8 Cl C A A A C A A P 14851 ms 12465 ms

Table 6.2: Localization

From the obtained results, we can conclude that the best scenario for RO requires
that all entities are co-located. In this way, the proposer is able to rapidly reach both the
leader and the acceptors. As soon as one acceptor relocates on a different site, optimization
RO degrades in latency, while optimization SO is less impacted by this change. By spread-
ing acceptors over 3 different sites, we observe a slight variation of the latencies for both
optimizations.

6.4 – Results 83

6.4.4 Delays

The purpose of this series of experiments is to assess how the protocol behaves in more
"stressful" conditions. The parameter that allows such an assessment is the delay between
two consecutive consensus instances.

We consider the deployment of 5 acceptors and 3 coordinators on a local cluster on
the site of Rennes. A single external proposer/learner located on the same cluster proposes
initial values at regular time intervals. We vary this time interval from 0 to 50 ms, the value
is gradually increased by a step size of 5 ms. At each step, we ran 400 consensus instances
and measured the total latency for such a sequence. Thus, we obtained the curves presented
in Figure 6.4.

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 10 20 30 40 50

La
te

nc
y

fo
r

40
0

in
st

an
ce

s
(m

s)

Delay (ms)

Paxos-MIC-So
Paxos-MIC-So-Ro

Figure 6.4: Delays.

If we analyze the results, we observe that beyond 15 ms, the cost remains relatively
stable. For smaller values, a rapid succession of consensus leads to an increase in latency.
Yet this increase is limited (about 10%). As we have a single external proposer/learner,
optimization RO was always successful. The interest of optimization RO appears clearly in
these favorable circumstances: the gain is greater than 20%.

6.4.5 Participation to several consensus instances

The usual pattern of a consensus sequence is the following: once an external pro-
poser/learner obtains the decision for consensus c, it immediately provides an initial value
for the following consensus, c + 1. Paxos-MIC allows a degree of parallelism at the higher-
level of the external proposer/learner. More precisely, the internal proposer/learner PLint
manages the interface between the protocol itself and the external proposers. The behavior
of the PLint, as described in Section 4.3.2, allows this small degree of parallelism. Although

84 Chapter 6 – Evaluation of Paxos-MIC

the consensus instances are still executed sequentially, we show that there is an interest in
allowing an external proposer/learner to be involved in several consensus instances at the
same time. However, the gain is obtained only if an external proposer participates to two
consensus instances at the same time.

To estimate the potential benefit that may be provided by this additional degree of
freedom, we have executed the protocol Paxos-MIC-SO in two different settings. We de-
ployed 3 coordinators and 5 acceptors on a cluster located in Rennes. A single external
proposer/learner (denoted PLext1 and also located in Rennes) was using the agreement pro-
tocol. In the first case, PLext1 never participates to more than one consensus instance. Once it
gets the decision corresponding to the consensus c, it immediately provides an initial value
for the following consensus c + 1. In the second case, PLext1 participates simultaneously to
two consecutive consensus instances. When it receives the decision corresponding to the
consensus c, it calls the function Propose(c + 2, v). In that case, the total cost corresponding
to the execution of a series of 400 consensus decreases by 29% (See Table 6.3). Indeed, in
the second case, the sending of all initial values from PLext1 to the leader (except the first)
and the sending of all decision values from the leader to PLext1 (except the last) are done
while consensus are in progress. Of course, this observed benefit can actually be obtained
only if an application is able to progress alternately in the construction of two sequences of
independent decisions (for example, Atomic Broadcast).

One consensus at a time Two consensus at a time Three consensus at a time
1226.902 ms 871.282 ms 872.386 ms

Table 6.3: A single proposer’s participation to 400 consensus.

Executing consensus instances in parallel in other works: A higher degree of parallelism
is provided in [7]. The protocol described in [7] provides a modular deconstruction of the
Paxos protocol [36]. The authors identify building blocks of Paxos, denoted by abstraction,
such as weak leader election and round based consensus. The latter acts as a sub-protocol used
to agree on the decision value and it relies upon a round based register to store and lock the
decision value. The register plays the role of an acceptor in the classic Paxos protocol [36].

Among other numerous contributions, the authors show in [7], how the deconstruc-
tion of Paxos into independent abstractions can be used in implementing higher level appli-
cations. They consider the Total Order Broadcast and Delivery protocol. Whenever a process
wants to broadcast a message, it sends the message to the current leader. The leader triggers
a new consensus instance by proposing a batch of messages composed of all the messages
received so far and not yet delivered. In their approach, a consensus instance corresponds
to a single instance of total order, more precisely to a single batch of messages. Each new
consensus instance creates a new register instance, thus leading to an array of round-based
registers (each register stores and locks the decision value for a given consensus instance).
The round-based register is used for logging the decision value. Any correct process must be
able to retrieve the decision value for any completed consensus instance. For achieving this
purpose, the register instances must remain active even after the corresponding consensus
instance has finished. The logged information is available and can be retrieved at any time.
Such a logging mechanism requires that (possibly) a high number of register instances are
kept active.

6.4 – Results 85

Several consensus instances are executed in parallel due to the "one to one" asso-
ciation between a consensus instance and a register instance. This parallelism brings the
advantage of a low latency for reaching decisions. However, making us of a decision is
a time-consuming process. Let us assume that k consensus instances were launched and
executed simultaneously. These instances correspond to k batches of messages whose inter-
section is a non-empty set. When a process pi receives the decision for a consensus instance
k, it first verifies that the received decision is the next decision that was expected. pi will
deliver messages in batch k, only if it has previously delivered batch k− 1. When delivering
the batch of messages number k, pi must deliver only the messages that were not yet deliv-
ered: for the k′th new decision (more precisely, batch of messages), pi must filter a window
of k− 1 previous decisions and deliver only the messages contained in batch k and not yet
delivered when consuming all previous k− 1 decisions.

6.4.6 Collisions

The optimal conditions in which optimization RO has a positive impact on the latency by
allowing a performance gain, require the absence of collisions. In performing our experi-
ments, we also focused on assessing the performance degradation when the conditions that
have motivated the use of optimization RO become less favorable.

We considered a simple scenario: we deployed 3 coordinators, 5 acceptors and 2
proposers on 10 nodes of a local cluster situated on the Rennes site. We analyze the two
possible behaviors of Paxos-MIC-SO and Paxos-MIC-SO-RO. We also slightly modify Paxos-
MIC to execute a new Prepare phase after each decision. In that case, the observed behavior
is quite similar to that of classic Paxos (with no optimization).

In order to simulate the degradation of the conditions favorable for optimization RO,
we introduce the notion of probability. As we have 2 proposers, p is defined as the probability
that an acceptor adopts the value from the first proposer while (1-p) is the probability to
adopt the value from the second one. Figure 6.5 illustrates the latency (y-axis) measured for
the three behaviors of Paxos-MIC, previously mentioned. For each point on a curve, we run
400 consensus instances and we compute the mean latency for one instance. The parameter
that varies in this set of experiments, is the probability p, previously defined. On the x-axis,
the value of p varies from 1 to 0.5. When p = 1, no collisions occur as the value provided
by the first proposer will always be adopted by all acceptors. The worst scenario happens
when both values have equal probabilities of being adopted by acceptors, in which case p =
0.5.

The probability does not impact optimization SO nor the behavior of Paxos-MIC
when no optimization was used. However, the latencies of these two behaviors (which are
constant) are also displayed in the figure, to serve as a comparison point.

When p = 1, we measured for Paxos-MIC with both optimizations a latency that is
more than twice better than the one obtained for the Classic Paxos protocol. Compared to
the Paxos-MIC-SO, Paxos-MIC with both optimizations exhibits a significant gain as latency
is reduced by 30%. As expected, the latency of the Paxos-MIC with both optimizations starts
to be higher than the latency of the Paxos-MIC-SO protocol very quickly (when p < 0.97).
In other words, even a small number of collisions is sufficient to eliminate the performance
gain brought by optimization RO. Then, when p reaches almost 0.7, the latency of Paxos-
MIC with both optimizations is higher than the latency of Classic Paxos. However, we can

86 Chapter 6 – Evaluation of Paxos-MIC

observe that even higher, the latency of Paxos-MIC-SO-RO stays reasonable as it never ex-
cesses a 15% penalty in the worst case (p=0.5).

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

fo
r

40
0

in
st

an
ce

s
(m

s)

Probability

Two Phases of Paxos-MIC
Paxos-MIC-So

Paxos-MIC-So-Ro

Figure 6.5: Probability of collisions (two proposers).

We now extend the previous scenario by considering more than one collision and
analyzing the degradation of the latency required by optimization RO. We vary the number
of colliding proposals from 1 to 9 and we represent in Figure 6.6 the latency for 400 consensus
instances. For a given number x of simultaneous proposals, we consider the worst case: all
values have equal chances of being selected by acceptors (the probability for each value is p
= 1

x). The results show that as soon as a collision appears, the latency increases considerably
as its value becomes twice as great. By increasing the number of colliding proposals, the
chances of a leader gathering the same value from an Any quorum of acceptors, decrease and
thus impacting the latency of optimization RO. However, the degradation is still reasonable
even if the number of collisions increases.

In the first scenario of this subsection, we considered only two proposers that may
collide while providing their values. Further, we extended this scenario by considering sev-
eral collisions. Our results show that optimization RO is impacted considerably when a
collision occurs (the number of simultaneous proposals = 2) but degrades reasonably once
the number of collisions increases.

6.5 Zoom on RO - Prediction of collisions

As explained in Section 4.4, the SO optimization reduces the latency to four communication
steps. When both SO and RO are combined, the cost is reduced to three in favorable cir-
cumstances. However, as the optimization RO is unsafe, its use can be counterproductive.
One of the main benefits of Paxos-MIC lies in the fact that it allows to determine if the RO

6.5 – Zoom on RO - Prediction of collisions 87

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

fo
r

40
0

in
st

an
ce

s
(m

s)

Number of colliding proposals

Paxos-MIC-So-Ro

Figure 6.6: Collisions (several proposers).

optimization has to be triggered or not at runtime. This choice is made by the leader be-
tween two consecutive consensus instances if an idle period occurs. The test evaluated by
the leader is called a triggering criterion: its evaluation is done locally and does not require
any synchronization with other actors.

This section zooms on the risky optimization RO. This optimization fails when col-
lisions occur: during the same consensus instance, at least two different proposers propose
different initial values. So far in this chapter, we analyzed the behavior of Paxos-MIC in dif-
ferent scenarios. This analysis provides a better understanding of the protocol. Furthermore,
it leads us to define four reference contexts that are characterized by the knowledge of three
durations, namely the time required to reach a decision i) when RO is not triggered, ii) when
RO is successfully triggered, and iii) when RO is triggered in bad circumstances. In a second
step, we propose several triggering criteria. Some are static (Always, Never) while others are
dynamic (Time, Result, Random). To compare them, we consider a particular application (a
secure Web server) and a real trace that records the activation dates of the successive con-
sensus instances during a period of 16 days. By simulation, we evaluate the expected gain
in each of the four contexts. Even if they fail to predict accurately the future collisions, some
triggering criteria allow nevertheless to adapt more or less the behavior of the protocol to
the current situation.

6.5.1 Four main reference contexts

Based on the above observations, we identify four different contexts, in which we vary two
important factors: the core size and the localization. In two of them (CL5 and CW5), the core
is composed of 3 coordinators and 5 acceptors. In the two others, the core is composed of 6

88 Chapter 6 – Evaluation of Paxos-MIC

coordinators and 11 acceptors. In two of them (CL5 and CL11), the whole core is on the same
site (Rennes). In the two others, external proposers-learners are on a same site, coordinators
and a minority of acceptors are on a second site while a majority of acceptors are located on
a third site. Table I.2 indicates three durations of consensus that have been observed during
experimentations: Dsucc (RO is triggered and no collision occurs), Dnorm (RO is not triggered),
and D f ail (RO is triggered and a collision occurs). In the four contexts, the optimization RO
may be of interest if Dsucc < Dnorm < D f ail . The ratio is defined as (D f ail - Dnorm) / (Dnorm -
Dsucc). It indicates the number of success that are required to compensate a failure.

Dsucc Dnorm D f ail ratio (fail/succ)
Context CL5 1.31ms 1.92ms 3.15ms 2.0
Context CL11 1.78ms 2.12ms 5.18ms 8.8
Context CW5 18.68ms 25.88ms 42.20ms 2.3
Context CW11 21.59ms 26.01ms 42.82ms 3.8

Table 6.4: Mean Duration of a Consensus.

6.5.2 How collisions occur

Optimization RO improves the latency of the protocol only when the circumstances are fa-
vorable, i.e. when no collision occurs. Here, we analyze the performance degradation when
the conditions become less favorable. As mentioned before, a collision can occur only if sev-
eral different values are proposed during a same consensus instance. A simple scenario is
considered: 3 coordinators, 5 acceptors and 2 proposers Pa and Pb are deployed on 10 nodes
of a local cluster (context CL5). The proposer Pa provides a value va while Pb proposes always
the value vb. Let us consider that each acceptor has a probability p to adopt the initial value
va and a probability (1− p) to adopt the initial value vb. The leader has to execute the recov-
ery procedure (i.e., the optimization RO fails) if both the value va and the value vb appear
among the four values gathered by the leader. Let us consider the set of four gathered values.
Four values va can be collected with a probability p4. Four values vb can be collected with
a probability (1− p)4. Thus, the probability for the optimization RO to succeed is equal to
p4 + (1− p)4. Consequently, if we consider a sequence of consensus instances (all executed
with the optimization RO and with an important delay between each pair of consecutive in-
stance), the average duration Daverage of a consensus can be approximated by the following
formula: (p4 + (1− p)4)Dsucc + (1− p4 − (1− p)4)D f ail . There is a gain if Daverage > Dnorm.
Thus, in context CL5, using RO is of interest if p > 0.9. In other words, the optimization RO
is not risky if one of the two values has about 9 times more chance to be adopted by each
acceptor. In the worst case, both values va and vb have the same probability to be adopted:
p = 1− p = 0.5. In that case, an additional cost of 52% compared to the normal duration is
observed.

Assume that Sx (with x ∈ 0, 1, 2) denotes the following property “one of the two
values (va or vb) is adopted by exactly x acceptors”. When the 5 acceptors are correct, only
one property (S0, S1, or S2) holds while the two others are false. If property S0 is satisfied,
no collision can occur. If property S2, holds a collision is unavoidable: the 4 values gathered
by the leader cannot be all equal. When S1 is satisfied, the probability that a collision occurs
is equal to 4/5 if all communication channels are fair. To verify the above theoretical results

6.6 – Simulation of Paxos-MIC 89

during experiments, we have artificially controlled the probability that an acceptor adopts
va (or vb). All the above formula are satisfied when we launch 400 consensus instances.
The conditions that lead to observe either the property S0, S1, or S2 are difficult to master.
Of course, the fact that the two proposers act quite simultaneously is the main requirement.
Yet, other factors (traffic intensity, broadcast mechanism, local or wide area network, ...) may
increase or reduce the risk.

6.6 Simulation of Paxos-MIC

As one of the main interests of Paxos-MIC resides in the ability to trigger RO when it is ap-
propriate (and not to trigger it when it is not appropriate), we focus now on the definition of
triggering criteria for RO. In this section, we aim at assessing various triggering criteria for
RO in the context of a real application that relies upon the consensus in order to progress.
The application is a replicated Web architecture in which HTTP requests have to be ordered,
thanks to the Paxos-MIC protocol, before being sent to the Web servers. We use a log of
HTTP requests and, for each request, we simulate an execution of Paxos-MIC. Four differ-
ent configuration contexts (see Section 6.5.1) are retained and for each of these contexts, we
evaluate the quality of the proposed triggering criteria for RO.

6.6.1 Application: A secure Web Architecture

In the context of a project called DADDI, we have designed an architecture which provides
an IDS (Intrusion Detection System) component in charge of detecting intrusions in an infor-
mation system by comparing the outputs delivered by several diverse Web servers [29, 54].
The architecture (see Figure 6.7) is organized as follows. A proxy handles the clients’ re-
quests. It forwards the requests received from a client to the Web servers and later forwards
the response received from the IDS to this client. It ensures that the Web servers receive the
same sequence of requests and thus evolve consistently.

In this approach, the idea is to take advantage of the existing software and hardware
diversity: as the Web servers have been designed and developed independently, they do not
exhibit the same vulnerabilities. If we assume that a malicious payload contained in a Web
request cannot take advantage of two different vulnerabilities, then an intrusion may occur
in only one Web server at a time. In this case, as the other Web servers are not exhibiting the
same vulnerability, they are not affected by the attack and they all provide a same response
that is supposed to be different from the response provided by the corrupted Web server. The
IDS is in charge of comparing the responses returned by the servers. To select the response
that has to be sent back to the client, it uses a majority voting algorithm. If it detects some
differences among the responses, it raises an alarm. We showed in [29] that this solution
guarantees confidentiality and integrity.

Availability is partially offered at the server level thanks to the set of diverse Web
servers. To enhance availability, it is also necessary to replicate the reverse proxy/IDS and
hence to form a group of reverse proxies. To ensure that the group of reverse proxies/IDS
evolve consistently, despite the occurrence of failures, an atomic broadcast service has to be
used. This atomic broadcast service relies upon a consensus protocol to order the requests.

90 Chapter 6 – Evaluation of Paxos-MIC

Figure 6.7: Architecture of the secure web-server.

Among the members of the group, a leader is elected. It is in charge of broadcasting
the requests to the set of diverse Web servers. In [29], we proposed a solution in which each
request to be submitted to the Web servers is only addressed to the leader of the group of
reverse proxies. In this particular approach, the leader is the unique member of the group
to propose value and hence the RO optimization is effective as no conflict could happen.
An alternative, considered in the rest of this section, would be to have every reverse proxy
receiving requests. Thus, the values are potentially proposed by more than one proposer
and they may differ. The interest of triggering the RO optimization for the consensus pro-
tocol depends on the probability that at least two different requests are “simultaneously”
proposed (occurrence of a collision) for a same consensus instance.

6.6.2 Log analysis

We use a log of HTTP requests that has been collected during a period of 16 days. During
this period, 573753 requests were addressed to the Web server of a french engineer school.
The log contains lines of requests. For each request, the host originating the request, its
arrival time (with 1 µs resolution), and the body of the request are available. The frequency
of requests is not very high (about 25 requests per minute in average) but this frequency is
not uniform on the whole log: the night periods have considerably less requests than the day
periods. We found in the log a period of 10 hours that is six times more dense that the whole
log. As it is not enough to represent a heavy loaded server, we decided to compute a new
log where the time interval between two consecutive requests of the original log is divided
by 60. Thus, the average frequency of requests is about 1500 requests by minute in this new
log. Hence, we have two logs: the original log and a compacted log on which we can test

6.7 – Triggering criteria 91

our triggering criteria.
Based on the knowledge of the arrival times of the requests, we simulate the execu-

tion of the Paxos-MIC protocol for various triggering criteria of RO (see Figure 6.8 for the
algorithm executed by the simulation). The algorithm loops over the individual requests
contained in the log. Two separate parts are identified inside the loop. The first part (lines 6
to 23) of the algorithm is dedicated to the evaluation of success/error in the decision related
to the activation of RO for the request rprev. The triggeredRO boolean variable indicates if RO
was triggered during the previous consensus. The idle boolean variable indicates if there
was an idle period before the previous consensus. Once the arrival time atcurr for the current
request is known, the ending time of the consensus ordering the request rprev is computed.
If RO has been triggered for request rprev , the computed ending time depends on the occur-
rence of a collision. A collision is considered to occur if the difference between atcurr and
atprev is less than δ. In that way, δ represents in our simulation the estimation of the risk of a
collision. We choose to fix the value of δ to be equal to Dsucc. This choice means that a collision
would be observed if RO was triggered for rprev and the arrival time of rcurr falls in the time
interval of the consensus ordering rprev. Our goal being to evaluate the interest of RO and
the accuracy of the triggering tests, we argue that this overestimation does not disclaim our
conclusions.

The second part (lines 25 to 34) of the algorithm is related to the decision of activating
RO (or not) for the current request. If the arrival time of the current request occurs before the
ending time of the previous consensus (line 25), the activation is non sense (lines 29 to 30).
Indeed, activating RO requires the leader to send a special mark ⊤ to the acceptors to force
them to directly accept a value from the proposers. If the value is already available, it does
not make sense for a leader to send ⊤ instead of the real value. If the activation is possible,
the triggering criteria that allows to decide if RO has to be triggered or not, is executed (line
27). This test is either trivial (static tests like Always or Never that return the same boolean
value, true or false) or more sophisticated (tests based on the knowledge of the past or even
on the future for unrealistic tests).

The tree given in Figure 6.9 shows the different percentages of successes and errors
that will be used in our evaluation. All can be computed thanks to the algorithm of Fig-
ure 6.8. In the BUSY state, a new consensus starts immediately because at least one initial
value is available. We call such a consensus, an immediate consensus. The triggering crite-
rion is evaluated only when an idle period occurs.

6.7 Triggering criteria

The ability to decide whether to trigger optimization RO is one of the main interests of Paxos-
MIC. We implement different triggering criteria and we evaluate their effectiveness. They
are classified in three categories: static, dynamic (realistic) and unrealistic, which we use as
references for comparison purposes with the other ones.

6.7.1 Classification

1. Static Criteria The static tests give always the same results: the Never test does not
trigger RO and the Always test triggers RO, each time they are evaluated (Figure 6.8,

92 Chapter 6 – Evaluation of Paxos-MIC

(1) triggeredRO , idle← True; endingTime← 0
(2) Nsuccess1, Nsuccess2, Nerror1, Nerror2, Nimmediate← 0
(3) rprev ← readline (log); atprev ← timestamp (r)
(4) While (log not empty) do
(5) rcurr ← readline (log); atcurr ← timestamp (r)
(6) // PART 1
(7) if (triggeredRO) then
(8) if (atcurr − atprev) > δ then
(9) Nsuccess2← Nsuccess2+1
(10) endingTime← atprev + Dsucc
(11) else
(12) Nerror2← Nerror2+1
(13) endingTime← atprev + D f ail
(14) else
(15) if (!idle) then
(16) Nimmediate← Nimmediate+1
(17) endingTime← endingTime+ Dnorm
(18) else
(19) endingTime← atprev+ Dnorm
(20) if (atcurr − atprev) < δ then
(21) Nsuccess1← Nsuccess1+1
(22) else
(23) Nerror1← Nerror1+1
(24) // PART 2
(25) if (atcurr > endingTime) then
(26) idle← True
(27) test = Evaluate (triggeringtest)
(28) if (test = true) then
(29) triggeredRO ← True
(30) else
(31) triggeredRO ← False
(32) else
(33) triggeredRO ← False
(34) idle← False
(35) rprev ← rcurr; atprev ← atcurr

Figure 6.8: Simulation of Paxos-MIC.

line 27). These triggering criteria are clearly not optimal: depending on the context and
the frequency of the consensus requests, the Always test can lead to many collisions
degrading the performance of the architecture and the Never test will not be able to
take advantage of RO.

2. Dynamic Criteria Two of the three dynamic tests that we define use knowledge based
on the past to decide whether to trigger or not RO.

6.7 – Triggering criteria 93

Figure 6.9: Observed durations, percentages of success/error.

• The Time test triggers RO if there is no consensus request during a period of at
least ∆ ms after the end of the last consensus (in our simulations, ∆ is equal to 10
ms). If the frequency of the requests is high and so is the probability of collisions,
this test will not often trigger RO and thus will limit the effects of the collisions.

• The Result test triggers RO except if there was at least one collision during the last
two consensus. As for the Time test, the Result test will tend not to trigger RO if
the frequency of the requests is high.

• The Random test triggers RO by using a fixed probability of triggering and so does
not use any knowledge to decide whether to trigger RO or not (in our simulations,
the probability of triggering RO is set to 0.8).

If the frequency of the requests is high and so is the probability of collisions, this test
will not often trigger RO and thus will limit the effects of the collisions. As for the Time
test, the Result test will tend not to trigger RO if the frequency of the requests is high.

3. Unrealistic Criteria The unrealistic tests are tests that can be computed on the log but
can not be implemented as they rely on a knowledge of the future.

• The Optimal test triggers RO only if there is not collision in the future (as defined
by the simulation algorithm) and so will give the best possible performance (in
the case of the simulations).

• Unlike the Optimal test, the Worst one triggers RO only if there is not a collision
(as defined by the simulation algorithm) and does not trigger it otherwise.

We use these two tests as a scale for measuring the performances of the five other
tests: If t is the mean duration of a consensus for an activation of RO according a given
criterion C, tworst, the mean duration according the Worst criterion and toptimal , the mean
duration according the Optimal duration, the gain for C is set to (tworst − t)/(tworst −
toptimal).

94 Chapter 6 – Evaluation of Paxos-MIC

6.7.2 Results and analysis

The behavior of the leader CL leads to classify a consensus instance c in one of the there
following classes.

1. Consensus immediate: CL does not evaluate the triggering criterion because an initial
value was already available at the end of the consensus c− 1. RO is not activated and
the duration of consensus c is equal to Dnorm.

2. Consensus Type 1: CL evaluates the triggering criterion to false. RO is not activated and
the duration of consensus c is equal to Dnorm. The prediction is either right or wrong.
Of course, during the computation, CL can not know (even a posteriori) if a mistake
has been done or not. However, during our simulation we distinguish the predictions
that are a success from those that are an error (a gain was possible).

3. Consensus Type 2: CL evaluates the triggering criterion to true. RO is activated. If no
collision occurs, the activation is a success and the duration of consensus c is equal to
Dsucc. Otherwise the activation is an error and the duration of consensus c is equal to
D f ail .

During our analysis, each consensus instance belongs to one of the five following classes:
immediate, type 1 success, type 1 error, type 2 success, or type 2 error. To evaluate the risk of
collision, we adopt the following rule. A collision occurs during the consensus instance c if
RO is activated during this consensus and at least another proposal is generated before the
end of the consensus. Clearly, this choice leads to an overestimation of the risk.

Two other weaker definitions of the risk have been studied. In both, the risk of col-
lision is no more the same during the whole execution of the consensus instance. In our
second estimation of the risk, we consider that a risk exists only during the first half of the
execution and is null after. In our third estimation of the risk, we consider that the level of
risk decreases uniformly throughout the execution. Of course, the weaker the risk is, the
higher the observed gain is. Yet, our results (relative placement of a criterion according to
the optimal and worst cases) are slightly impacted by the choice of a definition rather than
another. Therefore, the results presented here are those obtained with our first definition.

Table I.3 shows all the results for the different criteria, the different contexts and the
two logs. We also measure the different percentages of successes and errors and the percent-
age of immediate consensus for each triggering criterion in each context and for the two logs.
This gives us more details about the quality of the triggering tests. The table 6.6 resumes all
the different percentages.

Original log Compacted log
Never Always Random Time Result Never Always Random Time Result

Context CL5 4.8% 95.1% 77% 89.7% 93.8% 25.2% 70.7% 60.8% 52.3% 69.7%
Context CL11 19.9% 80% 67.9% 77.3% 80.1% 62.9 % 31.8% 37% 62.2% 35.1%
Context CW5 18.9% 80.4% 68% 79% 78.8% 53 % 42.8% 44.7% 44.3% 44%
Context CW11 29.9% 69.5% 61.4% 68.8% 70.1% 67.1 % 29.9% 36.9% 33.1% 33.5%

Table 6.5: Duration gains on the scale Worst (0%) - Optimal (100%)

6.7 – Triggering criteria 95

Original log Compacted log

Context CL5 Optimal Worst Always Never Random Time Result Optimal Worst Always Never Random Time Result
% immediate 2.9% 3.4% 3% 3.3% 3.1% 3% 3% 37.1% 43.5% 39.6% 41.6% 40.3% 41.2% 39.6%
% error 1 0% 94.2% 0% 94.3% 18.9% 5.8% 1.6% 0% 47.8% 0% 49% 10% 25.5% 2.6%
% success 1 2.4% 0% 0% 2.4% 0.5% 0.3% 0.2% 10% 0% 0% 9.4% 1.9% 7.2% 1%
% error 2 0% 2.4% 2.4% 0% 1.9% 2.1% 2.2% 0% 8.7% 9.3% 0% 7.4% 2.3% 8.3%
% success 2 94.7% 0% 94.6% 0% 75.6% 88.8% 93% 52.9% 0% 51.1% 0% 40.4% 23.8% 48.5%

Context CL11 Optimal Worst Always Never Random Time Result Optimal Worst Always Never Random Time Result
% immediate 3.3% 3.7% 3.4% 3.6% 3.5% 3.4% 3.4% 43.3% 49.6% 48.3% 45.5% 47.9% 45.9% 48.1%
% error 1 0% 93.7% 0% 93.7% 18.8% 5.6% 1.8% 0% 41.4% 0% 44.2% 8.6% 21.1% 2%
% success 1 2.7% 0% 0% 2.7% 0.5% 0.3% 0.2% 10.8% 0% 0% 10.3% 1.8% 7.5% 0.8%
% error 2 0% 2.6% 2.6% 0% 2.1% 2.4% 2.4% 0% 8.8% 9.2% 0% 7.5% 2.7% 8.5%
% success 2 94% 0% 93.9% 0% 75.1% 88.3% 92.2% 45.9% 0% 42.5% 0% 34.2% 22.9% 40.6%

Context CW5 Optimal Worst Always Never Random Time Result Optimal Worst Always Never Random Time Result
% immediate 12.9% 14.8% 13.4% 14.4% 13.6% 13.4% 13.5% 93.1% 93.7% 93.4% 93.4% 93.4% 93.4% 93.4%
% error 1 0% 77.1% 0% 77.4% 15.6% 1.9% 4% 0% 4.1% 0% 4.3% 0.9% 0.3% 0.4%
% success 1 8.4% 0% 0% 8.2% 1.6% 0.3% 1.2% 2.4% 0% 0% 2.3% 0.5% 0.2% 0.2%
% error 2 0% 8.1% 8.3% 0% 6.6% 8% 7.1% 0% 2.2% 2.3% 0% 1.8% 2.1% 2.1%
% success 2 78.7% 0% 78.3% 0% 62.6% 76.4% 74.2% 4.5% 0% 4.3% 0% 3.4% 4% 3.9%

Context CW11 Optimal Worst Always Never Random Time Result Optimal Worst Always Never Random Time Result
% immediate 13.6% 14.9% 14.1% 14.4% 14.2% 14.1% 14.2% 93.3% 93.7% 93.6% 93.5% 93.6% 93.6% 93.6%
% error 1 0% 76.4% 0% 76.8% 15.4% 1.8% 4.1% 0% 4% 0% 4.1% 0.8% 0.3% 0.4%
% success 1 8.9% 0% 0% 8.8% 1.7% 0.3% 1.3% 2.5% 0% 0% 2.4% 0.5% 0.2% 0.2%
% error 2 0% 8.7% 8.8% 0% 7% 8.5% 7.5% 0% 2.3% 2.3% 0% 1.9% 2.1% 2.1%
% success 2 77.5% 0% 77.1% 0% 61.7% 75.3% 72.9% 4.2% 0% 4.1% 0% 3.2% 3.8% 3.7%

Table 6.6: Percentages of error and success for the different contexts and triggering criteria.

Table 6.6 gives a huge array of rates from which we extract the main information and
we use it for a better representation in Figure 6.10 and Figure 6.11.

Regarding the original log, for all the contexts, the gains are high with Random, Al-
ways, Time and Result. The comparison of these gains with the gain obtained with the Never
criterion unambiguously demonstrates the interest of RO. When considering the compacted
log, the gain remains high for the CL5 context with the Always, Random, Time and Result cri-
teria; it becomes less than the gain with the Never criterion for the three other contexts CL11,
CW5 and CW11.

We also measure the rates of successes and errors (type 1 and 2) and the rate of imme-
diate consensus for each triggering criterion in each context and for the two logs. Fig. 6.10
shows the rates of error type 1 and 2 with the Optimal, Time and Result criteria. Obviously,
these rates are equals to 0 for the Optimal criterion (recall that Optimal is an unrealistic cri-
terion that makes no error and only serves as a comparison point for the other criteria).
Fig. 6.11 shows the rates of immediate consensus with the Optimal, Time and Result criteria.

Impact of the failure/success ratio on the gain.

In the case of the original log, the slight diminution of the gain from the CL5 context to the
CL11 context can easily be explained by the failure/success ratio (see Table I.2) that is signif-
icantly higher for the CL11 context than it is for the CL5 context (for CL11, a lot of successes
in the activation of RO are required to compensate for failures). Similarly, for the CW5 and
CW11 contexts, the lower gain (observed for the original log) can also be partially explained
by the increase of the ratio.

96 Chapter 6 – Evaluation of Paxos-MIC

(a) (a) (b) (b)

Figure 6.10: Rates of error (type 1 and 2).

Figure 6.11: Rates of immediate consensus.

Impact of errors (type 1 and 2) on the gain.

We observe on the left part of Figure 6.10 (a) the increase of errors type 2 for the CW5 and CW11
contexts with the Time and Result criteria; this increase necessarily impacts the gain as the
number of consensus with duration D f ail raises. As explained before, this is not true for CL11
for which the ratio augmentation is solely responsible of the diminution of the gain. Let’s
consider now the effects of the rate of errors type 2 and type 1 for the compacted log with the
Time and Result criteria. With Time and for the CL5 and CL11 contexts, we observe a high rate
of errors type 1 (above 20%) and a low rate of errors type 2 (under 3.5%). As seen before,
an error type 1 leads to a consensus duration Dnorm instead of Dsucc (error type 1 means
that RO should have been triggered for this consensus and that it would have succeeded).
Consequently, an error type 1 is penalizing when Dnorm>> Dsucc. For the CL5 context, Dnorm

6.7 – Triggering criteria 97

is 46% above Dsucc while it is only 19% above for the CL11 context. For this main reason,
the gain for CL11 is much better than the gain for CL5 despite the bad ratio failure/success
exhibited by CL11.

With the Result criterion and for the CL5 and CL11 contexts, we observe a low rate
of error type 1 (under 2.5%) and a moderate rate of error type 2 (around 8%). Again, the
augmentation of the ratio failure/success (from CL5 to CL11) impacts the gain (69.7% for CL5
vs. 35.1 % for CL11). It was already the case in the original log (rate of error type 2 around
2%). In the compacted log, this is even more obvious (rate of error type 2 around 8%).

Impact of immediate consensus on the gain.

In Figure 6.11, for the compacted log, we observe a high rate of immediate consensus (around
40%) for the CL5 and CL11 contexts and a very high rate (above 90%) for the CW5 and CW11
contexts. Consequently, for CW5 and CW11, very few consensus will be eligible for the RO
optimization whatever is the retained triggering criteria. Here, the gains obtained for CW5
and CW11 are not significative because our way of computing the gain force it to spread
between 0% (worst) and 100% (optimal) even if the values are closed to each other; indeed,
for CW11, the consensus mean duration (with Optimal) is just 2.6% below the consensus mean
duration with Worst (as a matter of comparison, for the original log and for the CL5 context,
the difference between Optimal and Worst reaches 44%). Whatever the used criterion, the
adaptive behavior of the protocol is mainly due to the fact that immediate consensus are
more frequent when the protocol is more solicited.

6.7.3 Which criterion?

So far, we did not evaluate the Random criterion. We introduced it in order to check if the
results obtained with the Time and Result criteria were due more to their acuity rather than
to the number of activation of RO they induced. For the original log, the Random criterion is
always below the Time and Result criteria. For the compacted log, Random is between Result
and Time for the CL5 and CL11 contexts; as explained before, the gains for CW11 and CW5 are
not significative. The Time criterion requires to tune the duration of the parameter ∆ to fit
the characteristics of the context. Obviously, 10 ms is a good choice for CL5 and CL11 but not
for CW5 and CW11. The Result criterion requires no tuning and allows to obtain a rather im-
portant gain whatever the context. A combination of criteria (conjunction or disjunction) has
been also evaluated. However, this does not improve significantly the results and requires
to select a priori if it is better to increase or to reduce the number of activation of RO.

Evaluation of the collision risk

The results obtained in our simulations depend on the way we evaluate whether two or
more requests generate a collision when the risky optimization is triggered. For the results
presented, we estimate that a collision occurs when two consecutive requests arrive in less
than the average consensus time for the context (when RO is triggered). It is clearly an over-
estimation of the collision risk. We try two other collision risk parameters and we launch the
set of simulations for both theses parameters. First, we reduce the value of the time parame-
ter by fixing it at half the value of the average consensus time. Secondly, we change the law:

98 Chapter 6 – Evaluation of Paxos-MIC

we consider that a collision occurs with a probability inversely proportional to the difference
between the arrival time of two requests if the difference is less than the average consensus
time and zero otherwise. In this case, when the optimization is triggered, we consider all
the requests that have a positive probability to generate a collision for the consensus and
generate a random number between 0 and 1 for each. If for one of the requests, the random
number is less than the calculated probability, we consider that a collision occurs for the
consensus.

The two other collision risk parameters we use clearly reduce the number of collisions
in our simulations. The results obtained for these two parameters are very close. The gain
obtained by the Always, Result and Time triggering criteria are closer to the Optimal depend-
ing on the context and the log, the gain increases by 0.5% to 6% for these criteria. The success
and error percentages are better too. These two other collision risk parameters do not change
the relative results of the triggering criteria for the different contexts and the different logs
and the analysis is the the same for these collision risk parameters.

6.8 Final remarks

This chapter presented the evaluation of the Paxos-MIC protocol, carried out in different
testing scenarios that are relevant for the protocol’s behavior. The main purpose of the ex-
perimental phase was to determine the factors that influence the protocol’s performance
when optimization SO or both optimizations SO and RO are activated. The second part of
this chapter was dedicated to the study of optimization RO and more precisely, the triggering
criteria and the possibility to predict collisions. We considered an application for securing
a Web server and showed that simple triggering criteria do not allow to predict accurately
collisions but they are precise enough to adapt dynamically the behavior of the protocol to
the current context. All our results demonstrate that there is a real interest in using RO.

99

Part IV

Sequence of Decisions - Support for
Transactional Mobile Agents

101

Chapter 7
Sequences of Decisions as a Support

for Transactional Mobile Agents

Contents
7.1 Context . 102
7.2 Transactions, Requests, and Nodes . 105

7.2.1 Distributed Transactions . 105
7.2.2 The Execution Phase (1st phase) . 105
7.2.3 The commitment phase (2nd phase) 107
7.2.4 The six possible states of a visited node 108

7.3 Use of Mobile Agents . 110
7.4 Use of a centralized support . 113
7.5 A Unified Approach Based on Agreement 115
7.6 Implementing the Services . 116
7.7 Evaluation . 120
7.8 Final remarks . 123

MANY distributed applications that require fault-tolerance are built upon a sequence
of decisions generated by repeatedly invoking a consensus building-block. In this
chapter, we study the context of transactional mobile agents and propose a solu-

tion to support the execution of transactions in ad-hoc networks. We begin by describing
the general context of transactions and the atomic commit problem. Further, we outline the
underlying principles of the mobile agent technology. In such a context, we identify two ser-
vices that support the execution of transactional mobile agents and show how these services
can be implemented by relying on an everlasting sequence of decisions. The Paxos-MIC
protocol is in charge of building such a sequence.

102 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

7.1 Context

A transaction is a computation unit that combines multiple instructions into a single atomic
action. Transaction processing is increasingly used in designing distributed applications. In
a distributed system, a transaction can be defined as a composition of several separate re-
quests, each request being directed to a particular remote node. As the whole execution of
a transaction may modify data across multiple nodes and organizational boundaries, trans-
actions are well suited to develop e-business applications that involve autonomous and het-
erogeneous participants into a collaborative process. In particular, the atomicity property
(“All or nothing”) is a key for solving booking problems when the required resources are
distributed all over a wide geographical area.

When a node executes a request, the outcome depends on its local state but it may
also depend on the inputs provided by its surrounding environment. In particular, sensors
are now embedded in many devices: they provide multimedia data (microphone, camera)
and sense their environment (ambient light, temperature, airflow, noise, motion, position-
ing). Moreover, systems are more and more pervasive in our everyday’s lives. Wireless
mobile devices (such as a smartphone, a laptop, or a tablet) allow to access the Internet from
anywhere and also to participate in dynamic ad-hoc networks consisting of other devices
located in the neighborhood. As a consequence, the specification of a request can now also
refer to these surrounding (mobile and static) sources of information. A transaction com-
posed of n requests may involve n main nodes but also several sensors and people that are
either located or in transit in one of the n identified geographical sub-areas. Furthermore,
as a transaction is described by a sequence of requests its execution determines an itinerary
that allows to reach successively the n separated sub-areas [53]. For example, in the context
of a mall, a sub-area may correspond to a shop. A transaction can be used to organize the
future walk of a customer: executing the transaction leads to identify n shops that can satisfy
the client’s requirements and make the necessary bookings of items. To illustrate this point,
let us consider the following booking scenario.

When his car arrives at a mall, a client may launch a transaction denoted P;R;M;T which expresses
his following booking requirements. Just before lunchtime, this client wants to find a shady
place in the parking lot of the shopping center (request P, for Parking). Then, he wants to have
breakfast on the terrace of a crowded but quiet restaurant, if a table protected from wind and sun
is available (request R, for Restaurant). Today is the birthday of his girlfriend Christina. After
lunch, he wishes to purchase an album from any metal band among the top ten best-selling
albums of the week but only if this album appears on the playlist of at least one customer who
has about the same age as Christina (request M, for Music). Furthermore, he wants to offer her
a black T-shirt on which the band name is printed (request T, for T-shirt).

The transaction P; R; M; T is composed of four requests. For each of them, at least
one node able to satisfy the request has to be discovered. In our example, such a node is
acting on behalf of a shop representative. Sensing devices are used to attest that all the
specified requirements are met (for example, the lack of noise in a restaurant). People in the
vicinity are also consulted (for example, their payload lists are accessed). In our approach,
we propose and evaluate some strategies that will enable this scenario to become a reality in
the very near future.

7.1 – Context 103

The sources of information that are consulted during the execution of a transaction
are numerous and unpredictable. As a consequence, a centralized solution where all the pro-
duced data are gathered by a few dedicated servers has to be avoided. A centralized storage
makes sense only if the data is very specific and relevant to a wide range of people. For
example, an application such as the monitoring of traffic, weather and road conditions may
benefit from a centralization of informations produced within a large geographical area. In
our transactional scenario, the nature of the data is rather varied and they are unevenly pro-
duced by unregistered devices. The relevance of each information is not recognized by all
the users: the noise in a restaurant or the shadow in a parking lot are time-fluctuating infor-
mation that are critical for only a limited number of users. Continuously gathering a large
volume of data is clearly counterproductive when each data concerns neither a geographical
hotspot nor a thematic hotspot. Moreover, in general, in the case of sensors, only the last
available value is of interest (not the whole sequence of values produced in the past). To
choose between a centralized and a decentralized storage of the data, security concerns have
also to be taken into account. In our scenario, the lack of formal relationships among the
different traders is a major obstacle in the way of developing a centralized solution. Indeed,
some shops may have competing business activities and thus may be reluctant to entrust to
a third party the management of business information, especially if this third party is also
related to competitors. For all the above reasons, data have not to be transferred to a central
entity but they should remain stored on the sites where they have been produced.

The agent technology aims at moving the code where the data are produced [46].
Consequently, this technology seems appropriate. A mobile agent is a computer program
that can migrate autonomously from node to node, in order to perform some computation
on behalf of the codes’s owner. In our context, the code’s owner is the customer who issues
a transaction and expects a firm commitment of n traders about its n requests. The agent is
in charge of exploring a geographical area (i.e. the mall). In order to move within this area,
it relies on both fixed and ad-hoc networks. Indeed, an agent is a proven solution to cope
with the dynamic changes that continually modify the topology (connections and discon-
nections, node’s movings). For example, in such contexts, this technology was adopted to
solve routing [6, 33] and service discovery [39, 21]. Herein, for each of the n stages of the
transaction, the agent must identify a node (called a place) able to satisfy the corresponding
request. A node is defined as either a static or a mobile device owned by a trader. By defi-
nition, a node is a computing unit that provides an appropriate infrastructure to support a
mobile agent migrating to and from that location. For a given request, a node is able, first, to
test if it may satisfy the request and, second, to execute the corresponding work if needed.
During both the test and the request’s execution, a node may interact with its surrounding
environment and in particular with available devices located nearby. As sensor-generated
data fluctuate both with time and with the location of a device, the values taken into account
are those available at the time of the visit of the agent. Regarding its communication capa-
bilities, during the visit of an agent, a node can provide an IP address which can be used
later to contact this node directly. The concept of transactional mobile agent [47] has been
introduced as a mix between the agent technology and the transactional model. During its
move, the agent discovers and visits n places that satisfy the n requests. During the agent’s
visit, a node records enough information so that it can subsequently either commit or abort
the transaction.

Different works on transactional mobile agents [26, 27, 48, 45] have identified two

104 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

problems that can not be solved by the agent alone. The first one is related to the reliability
of the agent. Agents and nodes may fail. More precisely, we consider that they may fail
by crashing. Failure detection and recovery procedures have to be defined. A classic solu-
tion consists in using the last visited node to monitor the state of an agent once it moves to
another place. In that case, the last visited node which is hosting a failure detection mecha-
nism becomes also a critical point of failure and thus, it has also to be monitored. One thing
leading to another, all the nodes already visited by the agent (and the client who initiates
the transaction) have to form a chain where each node observes its successor and may act to
ensure the existence of at least one alive agent. When the agent is suspected to be crashed
or when the monitoring chain is broken at a point, a new agent is created by the node that
suspects the occurrence of a failure. Note that in an asynchronous distributed system where
failure detectors are sometimes unreliable, the generation of a new agent in case of prob-
lems no more guarantees its uniqueness. Since the client is the first node in the monitoring
chain, it has to remain connected during the whole execution of the transaction. The sec-
ond problem for which the agent needs assistance is related to the atomic validation of the
transaction. Once an agent has identified and visited n nodes able to satisfy the n requests
of a transaction, it has to delegate the supervision of the validation process to an external
reliable entity. For several reasons, this final task should not be made solely by the agent.
First, by definition, an agent is a moving entity that executes a local code on the node where
it is located. But a validation protocol is typically a distributed service that requires commu-
nications between its initiator and the n involved nodes. Second, the computing power of an
agent depends on its hosting node which may have limited processing, storage and power
resources. Third, a validation protocol relies on the fact that a single coordinator exists or,
more generally, on the fact that any coordinator acts in a manner consistent with what has
been done by previous coordinators. As mentioned before, to tackle dependability issues,
multiple agents are sometimes created. As they do not know each other and sometimes
follow different itineraries, ensuring consistency between them is impossible. Last but not
least, the outcome of a transaction (commit or abort) has to be kept in stable storage. Ensur-
ing the persistency of data is not a task that can be assigned to a mobile agent. To address all
the above remarks, a centralized and reliable entity can be defined to assist all the agents in
their monitoring, validation and logging tasks.

The duration of an execution depends on n, the number of requests specified within
the transaction. Indeed, the greater the value of n, the longer the path followed by the agent
to find n places. In commercial applications, the execution of a request typically results in
the booking of some resources [56]. As a consequence, reservations made during the visit
of an agent can be canceled very late (when the transaction is aborted). In general, a long-
lasting booking of resources is not desirable. It can be detrimental to the trader’s interest.
Indeed, while a resource is blocked, the seller may refuse to satisfy other requests that require
the same resource. If the transaction (for which the trader was prepared to satisfy a request)
aborts, he may miss many sales. Consequently, to be widely accepted, a solution must ensure
that the trader keeps control over its resources for as long as possible.

7.2 – Transactions, Requests, and Nodes 105

7.2 Transactions, Requests, and Nodes

Although the transactional model is widely known and adopted in many application do-
mains, this section aims at briefly recalling some related concepts and definitions. Some
notations and the terminology used within this chapter are also introduced.

7.2.1 Distributed Transactions

The notation Tα refers to a transaction uniquely identified by α. We assume that a client
generates a different identifier for each new transaction it creates and starts. To ensure the
uniqueness of a transaction’s identifier within the whole distributed system, a client can in-
clude its own identity as part of each identifier it produces. A transaction is defined as a
sequence of requests. Let us assume that the transaction Tα consists of n successive requests:
Tα ≡ R1

α; R2
α; . . . Rx

α; . . . Rn
α . The integer value x is called the stage of the request Rx

α while n
represents the length of the transaction. Going back to the example described in the Intro-
duction, the transaction P;R;M;T is initiated by a client before its visit to a mall. It consists
of four requests denoted respectively P (for Parking), R (for Restaurant), M (for Music) and
T (for T-shirt). The execution of a transaction requires finding, for each request, a node that
can satisfy it. The discovery process is detailed in Section 7.2.2.1.

The transactional model is characterized by the four ACID properties (atomicity, con-
sistency, isolation, and durability). When these properties are satisfied, a transaction can be
considered as a single logical operation whose execution is reliable despite the possible
hardware and software failures. A transaction is atomic: the rule “all or nothing” ensures
that either the entire transaction is executed or none of the requests are executed. A trans-
action is consistent: either it has no impact on the distributed system or its execution takes it
from one consistent state to another. In particular, as a request can be computed by different
alternative nodes, each request has to be executed by just one of them. In its most restrictive
definition, the isolation property states that a transaction should not observe changes made
by another transaction if the latter is not yet complete. Yet, for the purpose of efficiency,
weaker definitions are usually adopted []. Finally, the durability property guarantees that the
effects of a committed transaction are never lost even if failures occur in the future.

The lifetime of a transaction can be divided into two phases, called the execution phase
and the commitment phase. During the first phase, for each request, a node able to execute
it has to be found. The second phase begins when n discovered nodes have processed the
n requests: an atomic commitment protocol is used in this final phase to ensure transaction
atomicity.

7.2.2 The Execution Phase (1st phase)

7.2.2.1 Discovery of alternative nodes

A request Rx
α expresses the client’s needs with regards to products and services that may be

provided by a single node. However a request does not identify the node that will be respon-
sible for meeting them. A request is a purely local transaction: its execution corresponds to
a sequence of read and write statements that are applied atomically to a local information
system. In our context, a node is a computing unit that acts as a representative for either

106 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

an economic organization (for example, an enterprise or a shop) or a geographical area (for
example, an entrance of a mall).

In the example, the transaction involves four nodes that act respectively as a repre-
sentative for the parking lot, a restaurant, a music store and a clothing store. To hide the
complexity of each local environment, we assume that the local execution of each request
is under the responsibility of a single node. Yet this node can coordinate read operations
performed on several other computers, mobile devices and sensors that belong either to the
same organization or to external people in transit in this area. For example, in a restaurant,
sensors are disseminated and queried to determine the temperature or the noise level. In
the music store, the tastes of other clients are taken into account by accessing their personal
playlists.

As the identities of the n nodes are not specified in the transaction itself, a mechanism
for discovering sites that are likely to participate in the transaction is required. In order to
be selected to execute a request, a node has usually to be registered in public repositories as
a possible alternative for this type of request. In a commercial context, such a registration is
natural and is part of the promotion process and business development: it helps to inform
potential customers about the services and products offered. The discovery process may rely
on various mechanisms [43]. The fact that a node is considered as an alternative node does
not imply that it can currently satisfy the client’s needs. For example, a registered restaurant
is perhaps already full or its noise level is too high compared to the wishes of the client.

For a given request, once different alternative nodes have been discovered, their abil-
ity to execute the request is evaluated in an order that is usually not left to chance. For
example, minimizing the physical distance between any two consecutive nodes involved in
the transaction can be an extra wish of the client [53]. To take into account such an addi-
tional requirement, a greedy strategy is often chosen. The different stages of the request are
analyzed in sequence: looking for a solution at stage x + 1 begins only once a node Ni that
satisfies the request Rx

α has been found. The alternative nodes that may execute the request
Rx+1

α are considered one after another from the nearest to farthest from Ni till one of them
is able to satisfy the request. This greedy strategy often, but not always, yields an optimal
solution where the physical path that connects all the selected nodes is minimal.

For each stage x, the number of alternative nodes that may satisfy a request Rx
α de-

pends on the demand of the client. Obviously, a client that is looking for a place to eat is
less difficult to please than a client looking only for a pizzeria. If the client’s request is too
precise and too restrictive, his request may not be satisfied and, as a consequence, the whole
transaction is unfulfilled. But if the request is too vague and too permissive, it may be sat-
isfied in a way that is not ideal for the client. To solve this dilemma, levels of satisfaction
can be defined for each stage. In that case, a request Rx

α is now represented by kx alternative
requests that are denoted Rx1

α , Rx2
α . . . Rxkx

α . The request Rxkx
α is the one that maximizes the

client’s satisfaction while the request Rx1
α is the one that meets his minimal requirements.

At each stage x, the requests are examined in descending order from kx to 1 till a node that
satisfies a request Rxk

α with kx ≥ k ≥ 1 is found. A request Rxk
α is less demanding or at least

different from the kx − k requests previously examined. Thus by defining several levels of
satisfaction for each stage, the chances of finding a node that is able to meet one of these
alternative requests increases while the discovery process is still based an order of prefer-
ence expressed by the client himself. In our example, regarding the request R of stage 2, the
client may wish to eat in a restaurant with a menu under 15 euros. Yet if it is impossible to

7.2 – Transactions, Requests, and Nodes 107

satisfy this first request, he may agree to relax its budget constraint and to accept any menu
under 25 euros (i.e. an alternative request with a lower satisfaction level). In the context of
an atomic transaction, this feature is important as it may avoid to abort a long lasting trans-
action (i.e., a transaction with many stages) just because a single request (for which the client
is ready to make concessions) can not be satisfied. Clearly, the concept of satisfaction level is
of practical value. Yet, as it just impacts the discovery process, we often refer only to a single
request Rx

α per stage (unless otherwise noted).

7.2.2.2 Execution of a request by a node

When an alternative node Ni is contacted to execute a request Rx
α, it has to assess whether it

can satisfy the request and run it once. If the node can not satisfy the request, the outcome is
negative and the node keeps no information about its failed attempt to execute the request.
Otherwise, if enough resources are available and all the operations are successful, the out-
come is positive. In that case, the required local resources are booked on a temporary basis
and the result of the execution, as well as how this computation may later affect the local
state of the node are logged in a versatile memory. At this point, the node has made no firm
commitment. A booking can be canceled at any time and for any reason (timeout expired,
reallocation of the resources to another request, ...).

When the outcome is positive, the result returned by a node contains information
that may be used by dependent requests. By definition, a request Ry

α depends on a request
Rx

α (with x < y) if Ry
α refers to some variables that are initialized during the execution of Rx

α.
For example, in the transaction P; R; M; T, the booking of a table in a restaurant (request
R) requires to know the timeframe during which a parking space is assigned (request P).
Similarly, to buy a T-shirt with the name of the band printed on it (request T), the selected
disc of music must be known (request M). To cope with these frequent dependencies, an
additional rule has to be respected. Requests of a same transaction have to be executed
sequentially in accordance with their stage number and not in parallel. This constraint can
be relaxed [52] only when the lack of dependency is proven. Herein, we assume that no
exception to the rule is allowed: the requests are examined sequentially. Thus, when a node
Ni is contacted to execute a request Rx

α, the parameters provided to it mention the results
obtained during the execution of all requests of lower stage (i.e. requests Ry

α such that 1 ≤
y < x). This rule has a negative impact on the duration of a transaction which depends
mainly on the length n of the transaction. As a consequence, for each request Rx

α, the period
during which resources are booked depends also the stage number x: the lower this number
is the longer the booking duration should be. The execution phase ends when the execution
of the last request Rn

α ends successfully or when no node can be found for a given level.

7.2.3 The commitment phase (2nd phase)

An atomic commitment protocol is launched once n participating nodes have been iden-
tified. Such a protocol aims at ensuring agreement among these n nodes on whether to
commit or abort (roll back) the transaction. Many atomic commitment protocols rely on the
definition of a (static or dynamic) leader in charge of coordinating the n nodes. During a
voting phase, a coordinator attempts to prepare all nodes to take the necessary steps for ei-
ther committing or aborting the transaction. More precisely, each node votes either Yes if it

108 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

agrees to commit the transaction or No if it appears that the transaction has to be aborted.
The reply No is always returned by a node if it has detected a local problem that may prevent
the execution of the assigned request to end properly. During a commit phase, the coordi-
nator decides whether to commit or to abort the transaction. Then it notifies this outcome
to the n nodes. To decide commit, the coordinator must received n votes Yes. Otherwise, if
the coordinator receives at least one vote No or if some votes are missing (due to the crash
of a node, its slow execution speed, the lost of a message, or high transfer delays) deciding
to abort is mandatory. Whatever the decision, the n nodes must comply and perform the
necessary actions.

If a node replies Yes, he agrees to fully and properly execute its assigned request what-
ever the circumstances. In particular, if it answers Yes, the corresponding bookings become
locally irrevocable: only an abort of the transaction may result in revoking them. Since a
node that returns Yes relinquishes control over its allocated resources, it must be informed of
the final decision (Commit or Abort) whatever the circumstances. A commitment protocol
generally ensures a stronger property: every node contacted (by a coordinator) during the
commitment phase is informed of the final decision. The coordinator knows the list of n
nodes that have been contacted. Thus it can notify the outcome to all these nodes (i.e. even
to those from which it has not received an answer). When the transaction aborts, no resource
remains locked.

The atomic commitment protocol is executed by one or several processes called the
transaction manager(s). Once n nodes have been identified, an interaction between a trans-
action manager and these n nodes occurs through one of the two following primitives: Vote()
and Outcome(). Both primitives are called by the transaction manager. In both cases, a mes-
sage is broadcast to the n nodes. Any message sent by a transaction manager to a node
identifies (without any ambiguity) a visit previously made by an agent to this node: the
message contains the transaction id α, the request id x and a tag that identifies an instance of
a visit related to Rx

α. The primitive Vote() triggers the vote. In response, each node returns ei-
ther the value Yes or the value No. The primitive Outcome() informs the nodes of the decision
(Abort or Commit). In response, each node returns an acknowledgment.

In the proposed solution, an agent (and its possible replicas) may identify different
sets of n nodes that satisfy the requirements expressed in the transaction. Rather than just
checking the first one, the commitment phase can be revisited to increase the chance of reach-
ing a positive outcome (Commit) by increasing the number of trials. For a given transaction,
the atomic commitment protocol can be run multiple times till a significant decision (Abort
or Commit) is adopted. During each execution a different set of nodes is analyzed. Of course,
each execution is still carried out according to the general principles described in the above
paragraph. Yet the outcome of an execution can now be one of the three following values:
Abort, Commit or Release. For a given transaction, the last execution will reach a significant
decision (Abort or Commit), while all the previous ones necessarily end with the outcome
Release. Abort is decided only when it appears that no new set of n nodes is going to be
identified.

7.2.4 The six possible states of a visited node

In the following, we focus on the behavior of an alternative node Ni involved in the execution
of a request Rx

α. We will see later that the node Ni can be solicited several times for the same

7.2 – Transactions, Requests, and Nodes 109

request Rx
α. Each solicitation is called a visit. A visit is identified by a triplet < α , x , t >:

the two first fields identify the request while the last one, called a tag, allows to differentiate
between visits.

In a trading context, a request often refers to local resources that are for sale (articles,
deliveries, . . .). If they are not available, the request can not be satisfied by the node. If
the transaction commits, they are purchased and consumed by the client. As mentioned
before, the resource allocation system has to be as flexible as possible. In particular, firm
booking have to be done as late as possible. In our example, a shopkeeper can set aside
an item (a parking space, a table, a disk, or a T-shirt). During a limited period of time, this
product will be considered already sold or assigned. Yet, the node can reverse this temporary
commitment.

Figure 7.1: The possible states of a visited node and the transitions between them.

To keep control over its revocable and firm reservations, each node Ni manages a
local table called Tab_Visit in the proposed solution. When a node is visited, it first assesses
whether it can satisfy the request and run it once. Let us consider that Ni is able to satisfy the
request Rx

α. In that case, Ni creates a new entry in the table Tab_Visit. An entry of the table
contains three main fields corresponding to the identifier of the visit, the results generated
during the successful execution of the request and the state which is initialized with the
value booked. The state is the only flied which may change later either during the execution
phase or the commitment phase. We define six different states that can be reached by the
node Ni during the execution of the request Rx

α. The six states are called the Booked state, the
Cancelled state, the PrepareYes state, the PrepareNo state, the Commit state, and the Abort state.
The possible transactions between those states are depicted in Figure 7.1. While Ni remains
in the booked state, the required resources are booked on a temporary basis and the result of
the execution of Rx

α, as well as how this computation will affect the local state of the node
are logged in a versatile memory. In the Booked state, a booking can be canceled at any time
and for any reason (timeout expired, reallocation of the resources to another request, ...). The
decision to cancel is the sole responsibility of the node itself. If the booking is invalidated,

110 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

the node Ni transits into the state Cancelled. But a new reservation (which is the same as
the first) is still possible later. The duration of the stay in the state Booked is usually long and
depends on the stage x of the request: the smaller the value of x the longer the duration of the
stay. Therefore there is a real interest to make no firm commitment during this period. When
Ni receives a Vote message related to this particular visit, it transits either to the PrepareYes
state or the PrepareNo state depending on its reply (Yes or No). When the node receives an
Outcome message related to this visit, it transits to the Commit state (respectively the Abort
state) if the received message contains Commit (respectively Abort). Otherwise, when the
Outcome message carries the value Release, the node Ni will either stay in the PrepareNo state
or transit from the PrepareYes state to the Booked state. In this last case, the node comes back
to its previous state and switches from a firm reservation to a cancelable one.

Note that the progress into one of the four last states is driven by the atomic commit-
ment protocol. The node Ni must received a message from an entity involved in the atomic
commitment protocol to transit into one of these states. The duration of the stay in either
the PrepareYes or the PrepareNo state is the same for all the nodes involved in the transaction.
Once arrived in either the PrepareYes or the Commit state, a node has to ensure the promised
provision of resources.

7.3 Use of Mobile Agents

The agent technology aims at moving the code where the data are produced and stored.
Therefore, such a technology is well suited to design decentralized solutions where the data
remains on the owner’s sites. Agents have been used in various contexts (LAN, sensor net-
works, ad-hoc wireless networks). In the context of non-persistent networks, agent based
solutions have been proposed to solve Discovery and Routing problems [39, 21, 6, 33]. Thus
the heterogeneity of the environment that characterized our targeted applications is not a
major constraint and do not prevent the use of agents. Through the concept of transactional
agent, It has been proved that transaction processing can also be implemented following
the agent based approach: the concept of transactional agent has been studied in several
works [47, 45]. When a client launches a transaction Tα, a mobile agent Aα is created. This
agent is able to migrate autonomously throughout a defined geographical area. Within this
region any node that offers services must also provide an execution environment that allows
the agent to reach the node and to execute its code. Thus codes related to the n different
stages of the transaction can be transferred and executed on remote sites. According to the
usual terminology, a visited node is called a place as it corresponds to a context in which the
agent executes. The node where the agent Aα is initially created corresponds to the place p0.
Starting from this initial place, the agent will move to discover a path (called an itinerary)
that goes through n other places (denoted p1

α, p2
α, . . ., pn

α). An itinerary must satisfy the fol-
lowing property: if a place pk

α is listed in the itinerary, the associated node has confirmed
that it was able to execute the request Rk

α at the time of the visit of the agent (i..e. an entry
has been created in the table Tab_Visit of the node).

Once the agent knows a complete itinerary (i.e. after the visit of the last place pn
α),

the agent stops moving and an atomic validation protocol can be launched. This strategy
is called Commit-At-Destination: the validation of the transaction starts only when a set of n
participants has been identified by the agent. In that case, a single decision is made for the

7.3 – Use of Mobile Agents 111

entire transaction. Another approach called Commit-After-Stage requires to decide at each
stage of the construction of the itinerary. In that case, the commitment of a node is made
during the visit of the agent and is irrevocable. This second approach leads to confirm book-
ings well in advance, especially in the case of the first visited places. For this reason we
consider herein only the first approach as it allows to postpone the definitive booking of the
local resources for as long as possible. In favorable circumstances, an agent that starts from
p0 migrates only n times to discover a complete itinerary. Its behavior can be summarized
as follows. In each place pk

α (with 0 ≤ k ≤ n− 1), the agent identifies an alternative node for
the next request Rk+1

α . Then it migrates to this node which becomes the place pk+1
α . Finally,

before iterating to the next stage, it checks whether the new visited node is able to execute
the request Rk+1

α and to book (for a minimum period) the required resources. In the above
description, nothing complicates and delays the progress of the agent. Yet as mentioned be-
fore, two phenomena disrupt the creation of an itinerary. First, the node selected to be the
next place is not always able to satisfy the request’s requirements. Second, crash failures
may affect the agent and the node currently visited. To cope with crash failure, monitor-
ing mechanisms have to be created and activated by the agent itself all along its itinerary.
More precisely, before leaving the place pk to migrate to pk+1, the agent creates a fixed agent
called a watch agent which observes the agent during its attempt to move. A watch agent is
in charge of executing a monitoring code on behalf of its creator once this one has leaved
the place. In favorable circumstances, the agent will create a path of length n and will leave
behind n watch agents (one per site visited). Failures are detected using classical detection
mechanisms: to prove that it is still alive an agent sends periodically messages to the last
created watch agent. When a watch agent receives no messages, it suspects that a crash has
occurred on the next place. Of course, as the monitoring of the agent is performed by a
single watch agent which may fail, this watch agent has also to be monitored. To solve this
problem, all the watch agents form a chain of control that maps the last itinerary discovered
by the agent. The watch agent of the visited place pk is monitored by the watch agent of
the previous place pk−1. Of course, such a solution relies on the assumption that the first
element in the chain (i.e. the place p0) is either safe or under the control of another exter-
nal entity that is reliable. Once this germ of reliability is established, the simple monitoring
mechanism allows to detect failures (crash of a visited node, crash of the agent) and to create
a new copy of the agent. As explained in section 7.1 ensuring the availability of a first place
(also called a source, herein) is one of the two services that cannot be ensured by an agent
alone.

The atomic validation is the second service that deserves to be under the control of
some entities that are neither the visited nodes nor the mobile agent. Of course, the agent has
to interact with these entities in charge of executing the atomic commitment protocol. Three
types of messages are defined and called respectively End, Stop and Double. These messages
are sent by the agent to the external entities. When the agent arrives at a destination (i.e. once
an itinerary of length n has been found), it stops its execution and provide, within a message
called End, the list of n visited nodes. A visited node is not always able to satisfy a request
(lack of resources, requirements not met). After the visit of a place pk that is not a destination
(k < n), the agent visits different alternative nodes one after the other until it discovers a
place that can satisfy the next request Rx

α. If no place is found, the agent stops the migration
and sends a message Stop to indicate the prefix of an itinerary that can not be completed.
Finally, for the same request, Rx

α, a node can be visited several times by different copies of

112 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

the agent. The failure detection mechanism is at the origin of these multiple visits. First of
all, the failure detection mechanism is unreliable (as it is implemented in an synchronous
environment). A correct agent can be erroneously suspected to be crashed by a watch agent
located on the previous place. In that case, a new agent is generated and moves towards
an alternative node while the former continues its way in the network. Both agents follow
different paths but can later visit the same node regarding the same request. In that case,
an agent is older than the other one. Thus, any node visited by the two agents can easily
determine (at the time of the second visit) in which order it has received the two agents
(the oldest and then the newest or the newest and then the oldest). A node authorizes an
agent to progress only if its visit is the first one related to this request or if all the previous
visits have been done by older agents. When a agent is not authorized to continue, it stop
its execution and send a Double message to the external entities. This message contains the
prefix of an itinerary that can not be completed. Note that a node keep track of all the
visits already made (table Tab_Visit) even if only the most recent one is used to test if a new
visit is allowed or refused. A tag is used to date the visits. For a visit corresponding to
stage x of the transaction, the tag is a sequence of x integers t1 t2 . . . tx where each ty with
1 ≤ y ≤ x is the number of agents that have leaved the place py−1: this includes the first
agent that has visited the place py−1 and the possible ty − 1 replicas generated by the watch
agent located in the place py−1. In Figure 7.2, we illustrate a possible scenario in the case
of the transaction P;R;M;T. False suspicions are depicted by dotted crossed lines while real
crash are represented by continuous crossed lines. The Stop message contains a tag equal to
11. The End message includes a full itinerary and a tag equal to 2211. The Double message
contains a partial itinerary and a tag equal to 211. Indeed we make the assumption that the
second generated agent was slower than the third one. In the next section, we will show that
the atomic commitment protocol take advantages of the full itineraries but also of the partial
ones.

Figure 7.2: Multiple itineraries and messages.

The failure detection mechanism aims at detecting the failure of an agent. But more
generally it detects any break in the monitoring chain of watch agents. When the problem
is due to the failure of a watch agent, a new agent is created even if the previous one is still

7.4 – Use of a centralized support 113

alive (and potentially far away from the crashed node). Indeed this creation is essential as an
new itinerary can only be build by a moving agent. The same failure detection mechanism is
also used to cope with booking failure. When a place pk+1 decides to cancelled the booking
related to a given visit (i.e. the most recent one), it sends a failure message to the watch agent
located on the previous place pk. This one behaves as if it was a crashed failure: a new agent
is generated to create a new path.

7.4 Use of a centralized support

In the proposed solution, two services are provided by the cloud: Availability of the Sources
(denoted AS) and Atomic Commit (denoted AC).

Whenever it wants to start a new transaction Ta, a client activates the AS service
by sending a Req_AS message. Through this service, the client delegates to the cloud all
the tasks related to the agent activation and the monitoring of the source places. As the
progress of the transaction and the persistence of the final result (Commit or Abort) will be
ensured by the two cooperating networks, the client does not have to remain connected
while waiting for the outcome. The Req_AS message includes the identity of the transaction
Ta (denoted Tid) and a descriptor (denoted Desc) where some static information about the
transaction itself is stored: the number of stages (variable Stages), the code used to create
an instance of the agent Aa in a source place (variable Code), information to identify some
potential sources (variable Places0) and a timeout whose use is detailed later (variable ∆).
Periodically, the AS service will check the status (available or failed) of the source place(s)
where it has previously activated an instance of the corresponding agent Aa. If none of these
places is still available (or if no activation of Aa has occurred before), AS looks for another
possible source place: it calls the function NewPlace with the variable Places0 as a parameter.
Such a call returns either a next source place or a special value ⊥. We will not detail the
mechanisms that may be used at this level. Note that, in a very simple solution, the variable
Places0 is a list of predefined places and the function NewPlace just returns one of the places
not yet explored, if any, or ⊥ otherwise. More sophisticated solutions based on dynamic
discovery services can also be defined. Whatever the adopted solution, if this research is
successful, the agent Aa is activated in the new discovered source place. If no alternative
exists (i.e., the returned value is ⊥), a Req_AC message with an empty itinerary and a State
field equal to Stop is directly addressed by the AS service to the AC service. In this way, the
AS service informs the AC service that, due to multiple failures of source places, it cannot
ensure that an instance of the agent Aa is able to migrate within the ad-hoc network to reach
a non faulty place from which it will send a Req_AC message (with a State field equal either
to End or Stop). In our solution, the AS service must keep the identities of all the source
places where an instance of the agent Aa was already created. A failure detector periodically
observes the status (available or failed) of each of them and maintains a suspicion list. As
the failure detector is not necessarily reliable, all the source places already created (and not
only the last one) are monitored. Of course, if the failure detector is perfect (no erroneous
suspicion), just one source place, namely the last place where the agent Aa was activated, has
to be checked. To mask these details we consider a boolean function Alive(Kp) that returns
false if and only if all the source places contained in the list of places Kp are suspected to be
failed. The AS services implemented at the cloud level manages only the source places (i.e.,

114 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

the nodes where an initial copy of the mobile agent is loaded). The next places are visited by
the mobile agent without any help from a service located within the cloud.

The AC service is activated when the cloud receives a Req_AC message from an agent
(or from the AS service). As shown in Section 7.3, an agent migrates in the ad-hoc network
until it reaches a place where its trip ends: the agent’s status is either End, Stop or Double.
Any Req_AC message contains the identities of the visited places. This information denotes
either a complete itinerary (composed of one place per stage) or just a prefix of an itinerary.
During the migration of an agent, a visited place only confirms that its current state allows
to satisfy the request corresponding to the current stage. No binding booking is made at that
time.

The AC service constructs possible itineraries and validates one of them when this is
possible. The AS service and the monitoring tasks performed by each visited place ensure
that at least one message will be received. Thus, AC does not require a timeout mechanism,
as it can be sure that at least one agent will contact it. The AC service is activated when
a first message related to a given transaction is received. The timeout ∆ defined by the
client, is just used to wait for possible additional messages. As each message may contain
alternative places, this information can be used to replace invalid places in a previously
evaluated itinerary. After the receipt of a Req_AC message, AC builds an itinerary (or at
least the highest prefix) and tries to test it. All the places on this itinerary participate to the
distributed atomic transaction. The AC service sends an AskPlace query to all the places and
waits for their replies (Yes or No). A place that replies Yes must take the necessary steps for
committing or aborting the transaction: it executes the transaction up to the point where it
will be asked to commit or to abort. Based on the gathered votes, AC decides whether to
commit (only if all votes are Yes) or to wait for alternative places that may substitute a place
that voted No or has not yet replied. When the timeout ∆ expires, the AC service aborts the
transaction.

Figure 7.3: How the cloud and places interact.

The AC and AS services are independent from each other. When several transactions
are executed simultaneously, these services run concurrently. Yet, for any transaction Ta,
considered in isolation from the others, these services are used sequentially. As soon as at
least one (complete or partial) itinerary is known by the AC service, the availability of a
source has no more to be ensured. Conversely, while no itinerary is known, the validation

7.5 – A Unified Approach Based on Agreement 115

problem does not arise. As the services do not interfere, they can share a single data structure
and just one record per transaction is used to store all the information. Figure 7.3 depicts the
interaction between the ad-hoc network and the cloud.

7.5 A Unified Approach Based on Agreement

A single reliable machine in the cloud can act as a stable coordinator and provide both ser-
vices. To cope with failures that may occur in the cloud, replicas have to be defined and a
leader has to be elected among them. In this paper, each important act of the leader is the
subject of a decision involving all copies. More precisely, a modification of the set of sources,
a choice of the next itinerary to evaluate or a evaluation of the current itinerary require an
agreement among all possible leaders. Due to the unique sequence of decisions, any new
leader can restart in a consistent state.

The Paxos-MICprotocol is used to implement the functionalities of the agreement ser-
vice, denoted by AG. Both the AS and the AC modules interact with the AG service through
an intermediate level, called Proposer Learner Dispatcher and denoted by PLD. A PLD, an AS
and an AC modules are attached to each coordinator. These modules interact locally and
never communicate with remote nodes. By construction, only the modules associated to
the leader are active. The general architecture used in the cloud is depicted in Figure 7.4.
The communication messages between the AG level and the AS/AC modules pass in transit
through the PLD. Any ProposePull call initiated by AG is first received at the PLD level of
the leader. When the ProposePull function is invoked, the last decision value is attached and
provided only to the PLD module of the current leader, which is acting as a unique learner.
The ProposePull function is used both to provide the decision for the last consensus instance
and to ask for a new proposal that will be used during the next consensus instance.

Figure 7.4: Architecture of the cloud services.

116 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

To limit the repeated use of the AG service, each proposal (decision) is the concatena-
tion of several “small” proposals (“small” decisions), each referring only to one transaction.
In this way, several transactions may be treated simultaneously during a single consensus
instance. A small proposal or a small decision related to a transaction Ta, includes the identi-
fier of Ta and a Type field that indicates the service currently provided for Ta. This structure
is only relevant at the PLD and the AS/AC levels. The AG service does not require to know
the structure of the value it decides upon. When the PLD receives a ProposePull call, it first
checks if it already knows the complete sequence of previous decision values. This is not
necessarily the case if the coordinator became the leader recently. If past decisions are miss-
ing, a call to the RetrieveDec function is addressed by the PLD level to the AG service. Any
decision received by the PLD module, is split into small decisions that are routed by PLD to
the corresponding service, by invoking the DecidePush function. In a second step, the Pro-
posePull call is forwarded to both the AS and AC modules. The returned value also comes
in transit through the PLD that acts as a proposer for the AG module. If we consider all the
small decisions related to a transaction Ta, this sequence is composed of two parts. The prefix
contains small decisions (at least one) related to the AS service. Each of these small decisions
corresponds to an increasing set of monitored source places. By construction, the cardinal-
ity of this set increases by one with each taken decision. The last part is a subsequence of
decisions concerning the AC service. Once an itinerary (complete or not) is learned, the AC
service proceeds in constructing and evaluating itineraries. Two types of decisions are used.
First, AC decides on the constructed itinerary: a small decision is a list of places. Then, AC
decides on the outcome of the evaluation of this itinerary: a small decision is a list of votes
provided by the places of the evaluated path. Once an itinerary has been evaluated, the
transaction can end (Commit or Abort) or AC can wait for new information to construct and
evaluate new itineraries. A decided itinerary is always followed by the list of votes provided
by the places of the decided path. The actual information is contained in the Data field and
consists of either a list of places or a list of votes. To cope with the timeout ∆, a StartTime
field is included in each small decision.

7.6 Implementing the Services

The roles defined in the agreement protocol are also used in the implementation of the ser-
vices. Coordinators and acceptors are also in charge of implementing the services provided
by the cloud. Any request to activate either one of the services (Req_AS or Req_AC) is sent
by a client or an agent to an available acceptor that forwards a message (Monitor or Path)
to its leader. The requests pass in transit through the acceptors as only they are aware of
a leader’s identity (not necessarily the right one). As we assume 2 + 1 acceptors and f + 1
coordinators, the probability of contacting a non-crashed acceptor is greater than of finding
an available coordinator. We assume that an agent can acquire the information it needs to
contact several acceptors within the cloud, until it finds a non-crashed one.

Based on the messages they receive, acceptors and coordinators maintain a local data
structure called TransactionsDirectory and denoted by TD. All data structures managed by
the entities are displayed in figure 7.5. Each time a coordinator/acceptor becomes aware of a
new transaction, it will create a corresponding entry in TD. This entry is created by invoking
the Put function during an execution of tasks TaskAS A1, TaskASC1, TaskAC A1 and TaskACC1.

7.6 – Implementing the Services 117

% Transaction Descriptor: Desc← (Stages, Code, Places0, ∆)
% Tag: has replied Yes, has replied No, not tested yet
% Last: true if the place belongs to the last tested itinerary
Tag ∈ {Yes, No, NT}; Place = (Id, Tag, Last);
% Knowledge is either a list of places or a list of lists of places
% Type of Service or Type of the next decision
Type ∈ {AS, AC1, AC2}; Data ∈ {"list of places", "list of votes"}
dec← (Type, Tid, StartTime, Data)
% Transactions Directory: keep useful information for each transaction
TD← [(Tid, Desc, Type, Knowledge, Result, StartTime)];
TD← ∅; Val← [dec]; LastCon← 0; % Last consensus number

Figure 7.5: Data structures.

These tasks1 are executed by an acceptor when it receives service requests from clients and
agents and by a coordinator, upon the receipt of a message from an acceptor.

% A client sends a request to initiate the execution of a transaction to an acceptor
TaskASA1:When Ai receives msg Req_AS(Desc, Tid) from Client
(1) if (Get(Req_AS.Tid, _, _, _, _, _) = false) then
(2) Put(Req_AS.Tid, Req_AS.Desc, AS, _, _, _);
(3) send Monitor(Req_AS.Desc, Req_AS.Tid) to CLid;

TaskASC1:When Ci receives msg Monitor(Desc, Tid) from Aj
(4) if (Get(Monitor.Tid, _, _, _, _, _) = false) then
(5) Put(Monitor.Tid, Monitor.Desc, AS, _, _, _);

Figure 7.6: AS service: Monitor the first place.

Regarding a transaction Ta, the information logged in TD consists of several fields.
The transaction identifier denoted by Tid and the transaction descriptor, Desc, store some
static informations about Ta. The service currently provided for Ta by the cloud is indi-
cated by the Type field. When the provided service is AC, this field also indicates the type
of the next proposal the AC service must provide, regarding Ta, during a call to the Pro-
posePull function. This proposal may carry a list of places (Type = AC1) or a list of votes
(Type = AC2). All the useful information related to Ta is logged in a special field called
Knowledge, maintained both by a coordinator and an acceptor. In the case of the AS service,
this field is defined by the list of source places currently monitored. Regarding the AC ser-
vice, the Knowledge is implemented as a list of lists of places: for each stage i of the mobile
agent execution, Knowledge[i] represents the list of alternative places where stage i of Ta was
executed by different agents. Each acceptor periodically sends its current knowledge to its
chosen leader (Figure 7.7, TaskA2), using Monitor or Path messages. Coordinators and accep-
tors adopt the same behavior: they increase the knowledge with new alternative places, each
time new itineraries are observed by an acceptor, in Req_AC messages (Figure 7.7, TaskAC A1)
and by a coordinator, in Path messages sent by acceptors (Figure 7.7, TaskACC1).

The IncreaseKnowledge function tries to expand the current knowledge with new re-

1In the notation, AS/AC identifies the service, while Ax/Cx distinguishes acceptors’ tasks from coordinators’
tasks.

118 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

TaskACA1: When Ai receives msg Req_AC(Tid, State, Itinerary)
from Agentk
(1) if (Get(Req_AC.Tid, _, Type, K, _, _) = false) then
(2) IncreaseKnowledge(K, Req_AC.Itinerary);
(3) Put(Req_AC.Tid, _, AC1, K, _, _);
(4) else if (Type = AS) then K← ∅; Type← AC1;
(5) IncreaseKnowledge(K, Req_AC.Itinerary);
(6) Update(Req_AC.Tid, _, Type, K, _, _);
(7) send Path(Req_AC.Tid, K) to CLid;

TaskA2: Periodically
(8) for each (i < TD.size()) do
(9) if (TD[i].Type = AS) then
(10) send Monitor(TD[i].Tid, TD[i].Knowledge) to CLid;
(11) else
(12) send Path(TD[i].Tid, TD[i].Knowledge) to CLid;

Figure 7.7: Ai: validate the best path.

TaskACC1: When Ci receives msg Path(Tid, K) from Aj
(1) if (Get(Path.Tid, _, Type, K, _, _) = false) then
(2) Put(Path.Tid, _, AC1, Path.K, _, _);
(3) else if (Result ̸= ⊥) then
(4) if (Type = AS) then K← ∅; Type← AC1;
(5) IncreaseKnowledge(K, Path.K)
(6) Update(Path.Tid, _, Type, K, _, _);

Figure 7.8: Ci: validate the best path.

ceived information. The outcome of the validation process for Ta is stored in the Result field.
As the computation process progresses, different places in the knowledge are tested in order
to construct the best path. Testing a place pi for a transaction Ta consists in obtaining a vote
(Yes or No) from pi regarding Ta. A coordinator must be able to distinguish between a place
not yet tested and a tested place that has replied Yes or No. Along with the identifier of
a place pi, a coordinator logs in its knowledge, a tag that indicates if pi was tested or not,
denoted by Tag, and also a boolean field, Last, set to true if pi was included in the last tested
path. Any PLD module also maintains information related to decision values sent by the AG
level, such as the last completed consensus instance, LastCon.

The execution of TaskPLDC1, in Figure. 7.9 is performed only by the PLD of the current
leader. It is triggered by an invocation to the ProposePull function. The leader is invited to
propose a value for the current consensus instance denoted by the variable Con. Moreover,
this function provides to the leader, the last known decision (variable DVal). In order to
construct a new proposal, the leader must acquire a complete knowledge of the current stage
of the validation process. Thus, it first retrieves all missing decisions, related to consensus
instances i, with LastCon < i < Con− 1.

The past decision values are routed through the PLD level towards the AS or AC
service, according to the service type of the decision. For a transaction Ta, the leader will
execute either TaskACC2 or TaskASC2, described in Figure. 7.10. The retrieved decision is

7.6 – Implementing the Services 119

TaskPLDC1: Upon invocation of ProposePull(Con, DVal)
returns PVal
(1) for each (i = LastCon + 1; i< (Con− 1); i++) do
(2) Val← RetrieveDec(i);
(3) for each (dec ∈ Val) do
(4) if (dec.Type = AS) then DecidePushAS(dec);
(5) else DecidePushAC(dec);
(6) if (DVal.Type = AS) then DecidePushAS(DVal);
(7) else DecidePushAC(DVal);
(8) LastCon← Con-1;
(9) PVal1 ← ProposePullAS(); PVal2 ← ProposePullAC();
(10) PVal← PVal1 ∪ PVal2;
(11) return PVal;

Figure 7.9: Relay ProposePull.

used by a leader to update its current knowledge. For the AS service, the leader just adds
the newly observed source places to its knowledge. For the AC service, the leader first checks
the type of the information contained in the value. If the decision carries a list of votes, the
leader computes the outcome of the currently considered path. If the result returned by the
CheckList function is Commit (and if the tested itinerary is a complete one, i.e. its size is equal
to the number of stages), the validation process for Ta is completed and the client is notified
of the constructed path. Otherwise, the leader uses the retrieved votes to filter its current
knowledge.

TaskACC2: Upon invocation of DecidePushAC(dec)
(1) Get(dec.Tid, Desc, Type, K, Res, _);
(2) if (Res ̸= ⊥) then STOP;
(3) if (dec.Type = AC2) then
(4) if (dec.StartTime ̸= 0) then
(5) Update(dec.Tid, _, _, _, _, dec.StartTime);
(6) Res← CheckList(dec.Data);
(7) if ((Res = Commit) ∧ (dec.Data.size() = Desc.Stages)) then
(8) Update(dec.Tid, _, _, _, Res, _);
(9) else FilterKnowledge(dec.Data, K);
(10) Update(dec.Tid, _, AC1, K, _, _);
(11) else IncreaseKnowledge(K, dec.Data); SetLast(dec.Data, K);
(12) Update(Dec.Tid, _, AC2, K, _, _);

TaskASC2: Upon invocation of DecidePushAS(dec)
(13) Get(dec.Tid, Desc, _, K, _, _);
(14) IncreaseKnowledge(K, dec.Data);
(15) Update(dec.Tid, _, _, K, _, _);

Figure 7.10: Usage of a decision.

The filtering mechanism updates the tag of the last tested places in the knowledge,
according to the vote provided by each of them. If the leader retrieved a list of places, this
decision indicates the last tested path for Ta. This itinerary expands the current knowledge
of the leader with new places, if any. After exploiting all the retrieved information, the

120 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

leader is now able to construct a proposal. The result of its computation will contain several
proposals related to different transactions. Thus, services are provided simultaneously to
several transactions.

TaskACC3:Upon invocation of ProposePullAC() returns PVal
(1) PVal← ∅;
(2) for each (Tid ∈ TD) do
(3) Get(Tid, Desc, Type, K, Res, ST);
(4) if ((Res ̸= ⊥) ∧ (Type ̸= AS)) then
(5) PVal←PVal ∪ NewProposalAC(Type,Tid,Desc,K,ST);
(6) return PVal;

TaskASC3: Upon invocation of ProposePullAS() returns PVal
(7) PVal← ∅;
(8) for each (Tid ∈ TD) do
(9) Get(Tid, Desc, Type, _, Res, _);
(10) if ((Res ̸= ⊥) ∧ (Type = AS)) then
(11) PVal← PVal ∪ NewProposalAS(Tid, K, Desc);
(12) return PVal;

Figure 7.11: Providing a proposal at the AC and AS Service modules.

For each transaction Ta, logged in the knowledge, the leader invokes the
NewProposalAS or NewProposalAC function, according to the service provided for Ta (see
Figure. 7.11). The NewProposalAS function constructs a new proposal for Ta only if all the
monitored source places are suspected (see section 7.4). In the case of the AC service, the
Type field of the knowledge indicates the type of the next proposal for transaction Ta. Two
cases are possible. 1) If the last observed decision was a list of votes obtained from a path that
did not successfully commit the transaction, the leader tries to compute a new path (function
GetNewPath). During its research, the leader will explore the knowledge corresponding to
Ta, with the purpose of finding useful alternative places (function FindAlternative). A place
is useful if it was not tested or its vote was Yes. If this research fails, the leader waits (during a
timeout specified by the user) for agents to arrive with new itineraries. Once the timeout for
Ta expired, the leader will abort the transaction. 2) If the last decision for Ta was an itinerary,
the new proposal must include the list of votes corresponding to the places of this itinerary.
By invoking the GatherVotes function, the leader obtains from each place on the path, a vote,
regarding Ta. After constructing the list of votes, the leader arms the timeout mechanism for
Ta, by setting the StartTime to the current time. The client specifies through this timeout, the
amount of time it is willing to wait for its transaction to be committed, if the first tested path
yielded Abort. The StartTime for Ta is included in the new proposal that will become the
next decision value. In this way, it will be observed by any future leader that will retrieve
past decisions.

7.7 Evaluation

The code executed by a mobile agent was implemented on top of an existing mobile agent
platform called JADE [1]. The Java Agent DEvelopment framework represents a software
implemented in Java language that facilitates the implementation of multi-agent systems.

7.7 – Evaluation 121

Function IncreaseKnowledge(Knowledge, List)
% List can be a list of places or a list of lists
(1) for each (mj ∈ List) do
(2) Knowledge[j]← Knowledge[j] ∪ ([mj]);

Function NewProposalAC(Type, Tid, Desc, K, ST) returns PVal
(3) PVal←⊥;
(4) if (Type = AC1) then
(5) List← GetNewPath(K);
(6) if (List ̸= ⊥) then PVal← (AC1, Tid, List);
(7) else if ((ST + Desc.∆) < CurrentTime) then
(8) Update(Tid, _, _, K, Abort, _);
(9) else List← FindLastTested(K);
(10) Votes← GatherVotes(List, Tid);
(11) if(ST = 0) then ST← CurrentTime;
(12) PVal← (AC2, Tid, ST, Votes);
(13) Update(Tid, _, _, _, _, ST);
(14) return PVal;

Function NewProposalAS(Tid, K, Desc) returns PVal
(15) PVal←⊥;
(16) if (Alive(K) = False) then
(17) p← NewPlace(Desc.Places0);
(18) if (p = ⊥) then send Req_AC(Tid, Stop, ⊥) to Aj;
(19) else K← K ∪ [p]; PVal← (AS, Tid, K);
(20) return PVal;

Function FilterKnowledge(votes, K)
(21) for each (i < K.size()) do
(22) for each (p ∈ K[i]) do
(23) if (p.Last = true) then p.Tag← votes[i]); break;

Figure 7.12: Functions.

JADE offers a set of graphical tools for the debugging and deployment phases. The agent
platform can be distributed across several sites and a graphical user interface (GUI) allows a
remote control of the configuration.

The proposed mobile agent system was developed on top of JADE. The actual Java
classes implementing the mobile agent code, are not available on the places.

The experimental settings consist of 6 machines with processors Pentium IV, 3 GHz
and 1 GB of RAM, connected by a 100 Mb/s Ethernet network. The JADE platform is run-
ning under JDK1.5 Virtual Machine.

In a first testing scenario, the goal is to measure the time required by a mobile agent
execution when the itinerary consists of an increasing number of stages. This experiment
was carried out by using first a simple mobile agent and then, a fault-tolerant mobile agent.
The obtained results are displayed in Figure 7.14.

An analysis of the figure, shows that the FT-Agent introduces a performance over-
head of 160% compared to a simple mobile agent execution, without integrating fault-

122 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

Function GetNewPath(K) returns Places or ⊥
(1) Places←⊥;
(2) for each (i < K.size()) do
(3) Places←Places ∪ FindAlternative(K[i]);
(4) return Places;

Function SetLast(places, K)
(5) ResetLast(K, false);
(6) for each (i < K.size()) do
(7) for each (p ∈ K[i]) do
(8) if (p.Id = places[i])) then p.Last← true; break;

Function CheckList(List) returns Abort ∨ Commit
(9) for each (v ∈ List) do if (v = NO) then return Abort;
(10) return Commit;

Function GatherVotes(List, Tid) returns Votes
(11) for each (pi ∈ List) do
(12) vote←AskPlace(pi, Tid); Votes←Votes ∪ {vote};
(13) return Votes;

Function FindAlternative(List) returns alt or ⊥
(14) alt←⊥;
(15) for each (p ∈ List) do
(16) if (p.Tag = Yes) then return p;
(17) else if (p.Tag = NT) then alt← p;
(18) return alt;

Function FindLastTested(K) returns List
(19) List←⊥;
(20) for each (i < K.size()) do
(21) for each (p ∈ K[i]) do
(22) if (p.Last = true) then List← List ∪ [p]; break;
(23) return List;

Figure 7.13: Functions.

tolerant mechanism. However, the protocol that renders the mobile agent fault-tolerant,
provides two main advantages. First, a temporal replication provides fault-tolerance during
the mobile agent trip. Second, the transactional scheme copes with the case of long-running
transactions, in which the booking may be canceled before the end of the mobile agent trip.
Thus, the whole transaction will not be committed. The proposed protocol anticipates the
detection of this semantic failure by launching a new agent on another path before the end
of the transaction.

In a second testing scenario, we aim at measuring the time required by the Atomic
Commit phase implemented by relying on the Paxos-MIC protocol. For this purpose, we
considered a mobile agent execution with a varying number of stages per itinerary. Fig-
ure 7.15 depicts the time required by the mobile agent execution in the ad-hoc network and
the time required by the AC service to validate the transaction as a whole. The latency in-
troduced by the AC service implemented by using Paxos-MIC as a building-block, does not

7.8 – Final remarks 123

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 3 4 5 6

T
im

e(
m

s)

No of stages

FT Agent
Simple Agent

Figure 7.14: Time required by a simple agent and a FT-Agent execution.

introduce a significant overhead.

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 3 4 5 6

T
im

e(
m

s)

No of stages

FT Agent
AC with Paxos-MIC

Figure 7.15: Time required by a FT-Agent execution and the AC protocol.

7.8 Final remarks

In this chapter, we focused on fault-tolerant distributed applications that rely on an ever-
lasting sequence of decision values. In this general context, we addressed the concept of
transactions, recognized as a powerful approach to model distributed applications. Further,

124 Chapter 7 – Sequences of Decisions as a Support for Transactional Mobile Agents

we considered the particular case of transactions executed in an ad-hoc network, by relying
on a mobile agent system. We proposed a solution to support the execution of a transactional
mobile agent, solution that provides two important services: the monitoring of the source
places (AS service) and atomic commit of the transaction (AC service). In our approach,
these services are made reliable by implementing them on top of a unique agreement service
that generates a sequence of decisions. The agreement service is provided by the Paxos-MIC
protocol, used as a consensus building-block.

125

Part V

Conclusions: Achievements and
Perspectives

127

Chapter 8
Conclusions

Contents
8.1 Achievements . 127

8.2 Perspectives . 129

THE Consensus problem is a central paradigm of fault-tolerant distributed computing,
as it encapsulates many challenges that arise from the design reliable and efficient
distributed applications. The work presented in this thesis represents a contribution

to the understanding of these challenges and to building efficient distributed consensus pro-
tocols.

The work carried out throughout this PhD has led to the development of Paxos-MIC,
an efficient consensus protocol that allows reaching fast and everlasting decisions. We moti-
vated the need for such a protocol by arguing the importance of generating a persistent se-
quence of decision values. Such a sequence lies at the heart of many important fault-tolerant
techniques, the state machine approach representing a reference argument in this concern.
We evaluated the main features of the Paxos-MIC protocol through extensive experimenta-
tions and also focused on identifying contextual factors that impact the performance of the
framework.

In this chapter, we resume our contributions and outline some perspectives for future
directions.

8.1 Achievements

In the context of asynchronous distributed systems prone to crash failures, providing effi-
cient solutions to agreement problems is a key issue when designing fault-tolerant applica-
tions. Our core contribution was the design and evaluation of a protocol able to efficiently

128 Chapter 8 – Conclusions

build an everlasting sequence of decisions. Another major contribution studied the use of
such a sequence of decisions as support for designing higher-level applications. In the fol-
lowing, we provide a summary of our contributions.

Formal definition of the Multiple-Integrated Consensus problem. We defined the
Multiple-Integrated Consensus problem that allows us to identify the context of our approach
and the motivation for proposing our protocol: the focus on both the construction and the
availability of a sequence of decision values. We extended the classical formal definition
of the consensus problem in order to specify properties when coping with a sequence of
consensus instances.

Paxos-MIC: an adaptive fast Paxos for making quick everlasting decisions. We proposed
the Paxos-MIC protocol, an efficient framework that is adaptive, reaches fast decisions and
ensures the persistence of all decision values. The Paxos-MIC protocol allows to solve a
sequence of consensus instances in an unreliable, asynchronous system. At this algorithmic
level, our contributions were defined in several steps. We revisited the interaction scheme
between proposers, learners, coordinators and acceptors, based on which we constructed an
architecture that describes the communication pattern between all involved entities. Further,
we provided an algorithmic description of the Paxos-MIC protocol, sustained by a detailed
description of the underlying principles of the protocol. The key targets of the protocol’s
design were efficiency and adaptability. Indeed, Paxos-MIC integrates two optimizations: a
safe optimization (denoted SO) that is always activated and a risky optimization (denoted
RO) that is activated at runtime, only in favorable circumstances. The main feature of the
framework is its adaptability: for each consensus instance, the leader checks at runtime if the
context seems suitable for activating optimization RO. A detailed proof of a protocol similar
to Paxos-MIC can be found in [30].

Interest of activating the risky optimization. An important focus of our work was opti-
mization RO. As this optimization may be counterproductive, when used in unfavorable
circumstances, we investigated the conditions that enable a performance gain when opti-
mization RO is activated. To meet this goal, we performed extensive synthetic benchmarks
using Paxos-MIC, with two major goals: to analyze the impact of some contextual factors
(size of the core, geographical position of the actors) on the time required to reach a decision
and also to obtain an assessment of the performance degradation of optimization RO when
used in less favorable circumstances.

Prediction of collisions. Optimization RO succeeds only in favorable conditions: all pro-
posers provide the same initial value for a given consensus instance. Otherwise, a collision
occurs and the optimization may lead to a significant additional cost. An important chal-
lenge for our work was to determine if collisions can be predicted in a reliable manner.
For this purpose, we proposed and evaluated several triggering criteria used by the leader
to decide the activation of optimization RO, at runtime and depending on the current con-
text. The definition of these criteria relied on different knowledge, such as an analysis of
the recent past, the study of the current context and also a possible prediction of the future.
We evaluated the efficiency of the criteria by considering a particular application (a secure

8.2 – Perspectives 129

Web server) and a real trace that records the activation dates of the successive consensus
instances. Through an analysis of the trace, we measured the expected gain for each of the
defined criterion and we observed the accuracy of the triggering criteria in predicting future
collisions.

Consensus as a building block. Many fault-tolerant distributed applications are built
upon a consensus service in charge of generating a sequence of decision values. Considering
this as a motivation, we addressed the context of transactional mobile agents and proposed
a solution to support the execution of transactions in ad-hoc networks. We defined two im-
portant services that provide support for the agent execution and showed how these services
can be implemented by relying on an everlasting sequence of decisions. This sequence was
generated by the Paxos-MIC protocol. To guarantee reliability, our solution relies on a sin-
gle agreement protocol that orderes continuously all the new actions whatever the related
transaction and service. This work was carried out in collaboration with Linda Zeghache
and Nadjib Badache from CERIST, Algeria.

Implementation and evaluation. An important part of this work has been dedicated to
providing an efficient practical implementation of the Paxos-MIC protocol, based on the al-
gorithmic description. A great amount of work has also been invested in the evaluation
of the protocol, through a series of synthetic benchmarks. All experiments involved in the
aforementioned contributions were carried out on the Grid’5000/ALLADIN experimental
testbed federating 10 different sites in France. It is an initiative of the French Ministry of
Research through the ACI GRID incentive action, INRIA, CNRS, RENATER and other con-
tributing partners. We are particularly grateful for the excellent support that was provided
by the Grid’5000 team during the time in which the work presented in this thesis was carried
out.

8.2 Perspectives

The research described in this thesis opens several perspectives that we find interesting to
pursuit. In this section, we discuss future directions.

Paxos-MIC for byzantine systems. Paxos-MIC was designed to solve consensus in a crash-
failure system model in which a process crashes by halting its execution. An interesting
future direction is the extension of Paxos-MIC in order to support byzantine failures. In a
byzantine failure model, processes can fail arbitrarily: failing to send or receive a message,
corrupting local state, or sending an incorrect reply to a request. Optimization SO for the
byzantine model was already proposed in [42]. The Paxos approach in byzantine model
requires 5 f + 1 acceptors, 3 f + 1 proposers and 3 f + 1 learners, where f represents the max-
imum number of byzantine failures in the system. There are several challenges that arise
when considering Paxos-MIC for the byzantine model. As processes may have a malicious
behavior, important actions should be made only after “enough” knowledge has been gath-
ered. For instance, each coordinator updates its tag according to the most recent information
observed in the State messages received from acceptors. To tolerate malicious behavior, this

130 Chapter 8 – Conclusions

update of the tag should be made only after the coordinator has observed a higher tag in
“enough” messages sent by acceptors. With regard to optimization RO, a malicious proposer
may provide different values to different acceptors, thus generating collisions on purpose.
However, given the functioning mechanisms of the Paxos-MIC protocol, such a behavior
would postpone the decision, but not prevent it. Once a leader observes a collision, it begins
the recovery procedure by initiating a Prepare phase. After this phase, the leader will select
the most frequent value among the ones gathered and will attempt to decide on this value.

Consensus in anonymous asynchronous systems. In the context of distributed comput-
ing, many challenges arise as a result of asynchrony and failures. In a recent past, a great
part of specialized literature has focused on a new uncertainty aspect, namely anonymity.
This concept introduces new challenges in distributed computing. Roughly speaking, this
means that, apart from being asynchronous and prone to crash failures, processes have no
identity and consequently, they cannot distinguish the ones from the others. Anonymity
represents a challenge of great interest for domains in which guaranteeing privacy becomes
a crucial issue. In an anonymous system, processes have no name and execute the same
algorithm. Solving consensus in such a system, becomes even more difficult. A recent work
has focused on defining failure detectors for the anonymous system model [9]. The authors
propose several classes of anonymous failure detectors that represent the counterparts of
already existing classes in the classical system model. In [23], the authors investigate under
which conditions information can be reliably shared and consensus can be solved in un-
known and anonymous message-passing networks prone crash-failures. To this goal, they
define some synchrony assumptions that extend the anonymous system and render consen-
sus solvable.

We have recently directed our research towards solving consensus in anonymous sys-
tems. Most of the algorithms for distributed systems consider that the number of processes
in the system is known and every process has a unique identifier. However, in some net-
works such as in wireless sensors networks, this is not necessarily true. The lack of identities
leads to many challenges, some of which are already under study.

Different applications, same building block. Many fault tolerant techniques are imple-
mented by relying on a unique and everlasting sequence of decisions. Such a sequence is
usually constructed by invoking repeatedly a consensus service provided by a dedicated
set of n nodes. Although the service provided by the consensus building-block is the same,
the upper-layer applications interact differently with this building-block. Many works have
been devoted to optimizing the performance of the consensus protocol used as a building-
block. However, little focus has been dedicated to the interaction between the building-
block and the application itself. This interaction differs according to the application’s re-
quirements. If we consider a consensus building-block capable of constructing a sequence
of decisions, is this block “plugable” in any application’s architecture? A possible future di-
rection would be to identify various factors that define the interaction between a consensus
building-block and an upper-layer application. Considering Paxos-MIC as an engine gener-
ating a sequence of persistent decisions, an interesting challenge would be the construction
of an interface versatile enough to connect such a building block with different applications
with various requirements.

8.2 – Perspectives 131

A practical estimation of the risk of collisions. In chapter 6, part of the work has focused
on collisions and the possibility to predict them. We evaluated the accuracy of different
triggering criteria in four different contexts by analyzing the logs of a real application: a
real trace that records the activation dates of the successive consensus. In all our measure-
ments, we used real values for durations of consensus, values obtained as a result of several
experimentations. For instance, Dnorm, Dsucc and D f ail have been obtained through several
experiments. However, for the function that estimates the collisions risk, we have no prac-
tical support. We chose several definitions for this estimation. The definition we used for
the measurements considers that a collision occurs during the consensus instance c if RO is
activated during this consensus and at least another proposal is generated before the end of
the consensus. Two other weaker definitions of the risk have been studied. In both, the risk
of collision is no more the same during the whole execution of the consensus instance. In
our second estimation of the risk, we consider that a risk exists only during the first half of
the execution and is null after. In our third estimation of the risk, we consider that the level
of risk decreases uniformly throughout the execution.

During our experiments, we made several attempts at obtaining a real definition of
this risk estimation. We replayed the sequence of logs in both local areas and wide areas set-
tings with the purpose of observing how often collisions appear. However, in real settings,
there are many issues that may appear and are out of the control of the developer. In particu-
lar, synchronizing threads on multi-core machines is one of the hardest to manage challenge.
In addition, message losses in local area networks, increase the probability of collisions. On
the contrary, network devices such as routers or switches, create an order on the packages
they forward, which reduces the risk of collisions.

Amnesic logs. Decision values generated by the Paxos-MIC protocol, are persistent. The
logging mechanism implemented by acceptors, ensures that any past decision value can be
retrieved by any interested learner at any time. The logs can also ensure the termination
property stating that, during each consensus instance, at least one correct process eventually
decides a value. However, in an asynchronous system, these logs might store an un-bounded
number of values. If weaker termination properties are considered, it is possible to imple-
ment amnesic logs that store only a limited number of decision values [19]. Paxos-MIC can
be extended to integrate a mechanism that “cleans” the logs after a specific time, by erasing
the entries that contain decisions considered as being “old”. Classifying a decision values
as being “ol’d’ depends on the application built on top of the sequence of decisions. We
may imagine following the model of the garbage collection mechanisms to implement these
amnesic logs. Each decision value has associated a counter indicating the number of times
the value was retrieved, at the request of a learner. When this counter is not being updated
for a given timeout, we may assume that the corresponding value is no longer requested by
learners and may be deleted from the logs.

132 Chapter 8 – Conclusions

133

Bibliography

[1] The Java Agent DEelopement framework. http://jade.tilab.com/.

[2] The Kadeploy project. http://kadeploy.imag.fr/.

[3] The OAR project. http://oar.imag.fr/.

[4] The Writings of Leslie Lamport. http://research.microsoft.com/en-us/um/people/
lamport/pubs/pubs.html.

[5] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implementing
omega with weak reliability and synchrony assumptions. In PODC’03, pages 306–314,
2003.

[6] A. Basu, A. Lin, and S. Ramanathan. Routing using potentials: a dynamic traffic-aware
routing algorithm. In Proceedings of the 2003 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, SIGCOMM ’03, pages 37–48, New
York, NY, USA, 2003. ACM.

[7] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Deconstructing Paxos. ACM SIGACT
News, 34(1):47–67, 2003.

[8] R. Boichat, P. Dutta, and R. Guerraoui. Asynchronous leasing. IEEE Int. Workshop on
Object-Oriented Real-Time Dependable Systems, 2002.

[9] F. Bonnet and Michel Raynal. Anonymous asynchronous systems: the case of fail-
ure detectors. In Proceedings of the 24th international conference on Distributed computing,
DISC’10, pages 206–220, Berlin, Heidelberg, 2010. Springer-Verlag.

[10] E. Borowsky and E. Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM.

[11] F. Brasileiro, F. Greve, M. Hurfin, J.P. Le Narzul, and F. Tronel. Eva: an Event-Based
Framework for Developing Specialised Communication Protocols. In IEEE Int. Symp.
on Network Computing and Applications, pages 108–119, 2002.

[12] L. J. Camargos, R. M. Schmidt, and F. Pedone. Multicoordinated agreement protocols
for higher availabilty. NCA, Proc. of the 7th IEEE Int. Symp. on Networking Computing and
Applications, pages 76–84, 2008.

134 BIBLIOGRAPHY

[13] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou, S. Lanteri, J. Leduc,
N. Melab, G. Mornet, R. Namyst, P. Primet, and O. Richard. Grid’5000: A large
scale, reconfigurable, controlable and monitorable grid platform. In Grid ’05: Proc. 6th
IEEE/ACM Intl. Workshop on Grid Computing, pages 99–106, Seattle, Washington, USA,
November 2005.

[14] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. J. ACM, 43:685–722, July 1996.

[15] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

[16] B. Charron-Bost and A. Schiper. The Heard-Of Model: Unifying all Benign Failures.
Technical report, 2006.

[17] B. Charron-Bost and A. Schiper. Improving fast paxos: being optimistic with no over-
head. PRDC, 12th IEEE Pacific Rim Int. Symp. on Dependable Computing, pages 287–295,
2006.

[18] S. Chaudhuri. Agreement is harder than consensus: set consensus problems in totally
asynchronous systems. In Proceedings of the ninth annual ACM symposium on Principles of
distributed computing, PODC ’90, pages 311–324, New York, NY, USA, 1990. ACM.

[19] G. Chockler, R. Guerraoui, and I. Keidar. Amnesic distributed storage. Proc. of the 21st
Int. Symp. on Distributed Computing (DISC’07), pages 139–151, 2007.

[20] B. Claudel, G. Huard, and O. Richard. TakTuk, adaptive deployment of remote ex-
ecutions. In HPDC ’09: Proceedings of the 18th ACM international symposium on High
performance distributed computing, pages 91–100, New York, NY, USA, 2009. ACM.

[21] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An architecture for a secure
service discovery service. In Proceedings of the 5th annual ACM/IEEE international con-
ference on Mobile computing and networking, MobiCom ’99, pages 24–35, New York, NY,
USA, 1999. ACM.

[22] C. Delporte-Gallet, S. Devismes, H. Fauconnier, F. Petit, and S. Toueg. With finite mem-
ory consensus is easier than reliable broadcast. OPODIS, 12th Int. Conf. on Principles of
Distributed Systems, 5401:41–57, 2008.

[23] C. Delporte-Gallet, H. Fauconnier, and A. Tielmann. Fault-tolerant consensus in un-
known and anonymous networks. 2009 29th IEEE International Conference on Distributed
Computing Systems, pages 368–375, 2009.

[24] D. Dobre, M. Majuntke, M. Serafini, and N. Suri. Hp: Hybrid Paxos for WANs. European
Dependable Computing Conference, pages 117–126, 2010.

[25] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[26] S. Frolund and R. Guerraoui. Implementing e-transactions with asynchronous replica-
tion. IEEE Trans. Parallel Distrib. Syst., 12(2):133–146, 2001.

BIBLIOGRAPHY 135

[27] S. Frolund and R. Guerraoui. e-transactions: End-to-end reliability for three-tier archi-
tectures. IEEE Trans. Software Eng., 28(4):378–395, 2002.

[28] R. Guerraoui and M. Vukolic. Refined quorum systems. Distributed Computing, pages
1–42, 2010.

[29] M. Hurfin, J.P. Le Narzul, F. Majorczyk, L. Mé, A. Saidane, E. Totel, and F. Tronel. A
dependable intrusion detection architecture based on agreement services. Proc. of the
8th Int. Symp. on Stabilization Safety and Security, pages 378–394, November 2006.

[30] M. Hurfin and I. Moise. A multiple integrated consensus protocol based on Paxos,
FastPaxos and Fast Paxos. IRISA Technical Report, PI-1941, Dec 2009.

[31] M. Hurfin, I. Moise, and J.P. Le Narzul. An adaptive Fast Paxos for making quick
everlasting decisions. The 25th IEEE Int. Conf. on Advanced Information Networking and
Applications (AINA-2011), pages 208–215, March 2011.

[32] Y. Jégou, S. Lantéri, J. Leduc, Melab N., G. Mornet, R. Namyst, P. Primet, B. Quetier,
O. Richard, E.G. Talbi, and T. Iréa. Grid’5000: a large scale and highly reconfigurable
experimental grid testbed. International Journal of High Performance Computing Applica-
tions, 20(4):481–494, November 2006.

[33] D.B. Johnson. Routing in ad hoc networks of mobile hosts. In Mobile Computing Systems
and Applications, 1994. Proceedings., Workshop on, pages 158 –163, dec 1994.

[34] I. Keidar. Timeliness, failure-detectors, and consensus performance. In In PODC, pages
169–178. ACM Press, 2006.

[35] L. Lamport. The Part-Time Parliament. ACM Transaction on Computer Systems, 16(2):133–
169, May 1998.

[36] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):51–58, Dec. 2001.

[37] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.

[38] B. Lampson. The ABCDs of Paxos. Proc. of the 20th Annual ACM Symp. on Principles of
Distributed Computing, 2001.

[39] V. Lenders, M. May, and B. Plattner. Service discovery in mobile ad hoc networks: A
field theoretic approach. In Proceedings of the Sixth IEEE International Symposium on World
of Wireless Mobile and Multimedia Networks, WOWMOM ’05, pages 120–130, Washington,
DC, USA, 2005. IEEE Computer Society.

[40] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[41] J. P. Martin and L. Alvisi. Fast byzantine consensus. Proc. of the Int. Conf. on Dependable
Systems and Networks, pages 402–411, June 2005.

[42] J.P. Martin and L. Alvisi. Fast byzantine consensus. In IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING, pages 402–411, 2005.

[43] A. Noor Mian, R. Baldoni, and R. Beraldi. A survey of service discovery protocols in
multihop mobile ad hoc networks. IEEE Pervasive Computing, 8(1):66–74, 2009.

136 BIBLIOGRAPHY

[44] A. Mostefaoui and M. Raynal. Solving consensus using chandra-toueg’s unreliable fail-
ure detectors: A general quorum-based approach. In Proceedings of the 13th International
Symposium on Distributed Computing, pages 49–63, London, UK, 1999. Springer-Verlag.

[45] S. Pleisch and A. Schiper. Non-blocking transactional mobile agent execution. In
ICDCS, pages 443–444, 2002.

[46] S. Pleisch and A. Schiper. Fault-tolerant mobile agent execution. IEEE Transactions on
Computers, 52:209–222, 2003.

[47] S. Pleisch and A. Schiper. Approaches to fault-tolerant and transactional mobile agent
execution—an algorithmic view. ACM Comput. Surv., 36:219–262, September 2004.

[48] F. Quaglia and P. Romano. Reliability in three-tier systems without application server
coordination and persistent message queues. In SAC, pages 718–723, 2005.

[49] A. Schiper. Early consensus in an asynchronous system with a weak failure detector.
Distributed Comput, pages 149–157, 1997.

[50] F.B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4):299–319, December 1990.

[51] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck.
Network file system (NFS) version 4 protocol, 2003.

[52] R. Sher, Y. Aridor, and O. Etzion. Mobile transactional agents. In Distributed Computing
Systems, 2001. 21st International Conference on., pages 73 –80, apr 2001.

[53] M. Strasser and K. Rothermel. Reliability concepts for mobile agents. Int. J. Cooperative
Inf. Syst., 7(4):355–382, 1998.

[54] E. Totel, F. Majorczyk, and L. Mé. Cots diversity based intrusion detection and applica-
tion to web servers. 3858:43–62, 2005.

[55] G. M. D. Vieira and L. E. Buzato. On the coordinator’s rule for fast paxos. Information.
Processing Letters, pages 183–187, March 2008.

[56] W. Zhao, L. Moser, and P. M. Melliar-Smith. A reservation-based extended transaction
protocol. IEEE Trans. Parallel Distrib. Syst., 19(2):188–203, 2008.

137

Appendix I
Résumé en français

Contents
I.1 Introduction . 137
I.2 Contributions . 140
I.3 Brève description de Paxos-MIC . 142
I.4 Critères de déclenchement de RO . 145

I.4.1 Critères dynamiques . 145
I.4.2 Critères statiques . 146

I.5 Conditions d’expérimentation . 146
I.5.1 Quatre contextes de référence . 147

I.6 Déclenchement de RO : analyse dans le cadre d’une application WEB . . . 147
I.6.1 Critères de déclenchement . 148
I.6.2 Logs . 148
I.6.3 Contextes . 148
I.6.4 Résultats et analyses . 149
I.6.5 Evaluation du risque . 150

I.7 Conclusion . 151

Nous fournissons ici un résumé long du manuscrit de thèse rédigé en langue anglaise.
sectionse

I.1 Introduction

Les systèmes répartis sont désormais omniprésents. Ils ont émergé pour deux raisons prin-
cipales. Tout d’abord, les entités qui interagissent dans le cadre d’une application (ou les

138 Chapter I – Résumé en français

données qui sont exploitées) sont souvent dispersées géographiquement, indépendantes et
parfois mobiles: du fait de sa nature même, l’application est répartie. La répartition peut
également être un choix. Ainsi pour satisfaire des contraintes en terme de sûreté de fonction-
nement, un service critique peut être répliqué sur des sites distants. Les multiples systèmes
répartis se différencient, entre autre, par le niveau de synchronie qu’ils offrent, par les modes
de communications entre processus qui sont disponibles, et par les modèles de défaillances
qui les caractérisent.

Nous considérons un système réparti où les nœuds communiquent par échange de
messages et peuvent connaître des défaillances de type panne franche ou de type omission lors
de l’envoi ou lors de la réception d’un message. Un nœud qui ne tombe jamais en panne est
dit correct. Inversement, un nœud est incorrect s’il arrête prématurément et définitivement
son exécution durant le calcul. Un message peut être dupliqué ou perdu mais n’est jamais
altéré. Par ailleurs, le système considéré est asynchrone: il n’existe pas de référentiel de
temps commun et les temps de transfert des messages sont non bornés (ou du moins, si des
bornes existent, elles ne sont pas connues).

La conception d’un système réparti soulève de nombreux défis. L’un des principaux
défis concerne la fourniture de mécanismes de coordination entre les différents composants
du système. Ces mécanismes sont indispensables. Par exemple, dans le cas d’un mécanisme
de réplication destiné à assurer la tolérance aux défaillances, une cohérence forte doit être
maintenue entre les différentes copies d’un serveur critique. Beaucoup de services essen-
tiels, tel que la diffusion atomique ou la validation atomique peuvent se réduire en partie à
un problème d’accord entre composants. L’approche "State Machine" en est une illustration.
Dans cette approche, les répliques d’un serveur critique doivent s’entendre pour définir une
séquence unique de requêtes entrantes. La construction de cette séquence se fait générale-
ment en appelant de façon répétée un service de consensus. La thèse présentée dans ce
manuscrit se focalise sur le problème du Consensus qui est sous-jacent à beaucoup de prob-
lèmes d’accord.

Résoudre efficacement des problèmes d’accord tel que le Consensus est un challenge
important. Ce problème dont la spécification est relativement simple a fait l’objet de nom-
breux travaux de recherche. Durant une instance de consensus (identifiée par un entier c),
des valeurs initiales (potentiellement distinctes) peuvent être proposées par un ou plusieurs
nœuds appelés des auteurs de propositions. Chaque valeur est communiquée par son auteur
à un sous ensemble unique de n nœuds parfaitement identifiés au sein du système global.
Ces nœuds particuliers, que nous appellerons les acteurs, sont en charge d’exécuter le pro-
tocole de consensus. Les n acteurs ont pour mission de générer une séquence de décisions
et d’en assurer la persistance afin que tout nœud intéressé puisse prendre connaissance des
valeurs déjà décidées. Les nœuds intéressés sont appelés les apprenants. Un nœud qui joue
le rôle d’auteur durant une instance de consensus joue aussi très souvent le rôle d’apprenant
durant cette même instance. Cependant, en toute généralité, un nœud peut ne jouer qu’un
seul de ces deux rôles. Les nombres d’auteurs et d’apprenants ne sont pas nécessairement
bornés. Auteurs et apprenants peuvent être externes au sous-ensemble des acteurs ou mem-
bres de celui-ci. Durant une instance de consensus c, les n acteurs coopèrent entre eux afin de
déterminer la valeur qui sera adoptée comme nouvelle valeur de décision. Par définition, le
protocole de consensus exécuté par les acteurs doit permettre de converger inéluctablement
(propriété de terminaison) vers une valeur de décision unique (propriété d’accord uniforme)
qui doit nécessairement être l’une des valeurs proposées (propriété de validité). La valeur

I.1 – Introduction 139

de décision est alors retournée vers tous les apprenants qui se sont fait connaître (i.e., dans
cette étude, vers tous les auteurs qui ont fourni ou fourniront une valeur initiale concernant
cette instance de consensus).

Dans un environnement réparti asynchrone où au moins un processus peut être dé-
faillant, il a été prouvé qu’aucun protocole déterministe ne peut résoudre ce problème [25].
Néanmoins, ce résultat d’impossibilité peut être contourné en s’appuyant sur un service
(détecteurs de défaillances, élection de leader, . . .) qui sera utilisé comme oracle par le pro-
tocole. De nombreux protocoles indulgents ont été proposés: ils ne remettent jamais en cause
les deux propriétés de sûreté qui caractérisent le problème du consensus (accord et validité).
Par contre, dans ces protocoles, la propriété de vivacité (i.e., la propriété de terminaison)
n’est satisfaite que si l’oracle utilisé offre inéluctablement un niveau minimum de qualité de
service. Dans cette thèse, nous nous intéressons à des protocoles ayant recours à un service
d’élection de leader. En théorie, l’oracle doit être un service d’élection de leader ultime: il
existe un instant à partir duquel un acteur correct est considéré par tous comme étant le seul
leader au sein du groupe d’acteurs. En pratique, le service d’élection de leader doit identifier
un acteur correct et le désigner comme étant le seul leader possible durant un laps de temps
suffisamment long pour que le protocole de consensus ait le temps de converger vers une
valeur de décision. Durant cette période, à chaque consultation de l’oracle, c’est l’identité de
ce leader unique et correct qui est retournée.

Le protocole Paxos est le plus connu des protocoles de consensus s’appuyant sur un
service d’élection de leader. Ce protocole a été initialement présenté par Lamport dans [35]
puis reformulé de manière plus conventionnelle dans [36]. Dans Paxos, la notion de quorum
majoritaire [28] est un élément clef qui régit les collectes d’information effectuées par un ac-
teur. Les nœuds corrects sont supposés être majoritaires au sein du groupe de n acteurs: si f
est le nombre maximum de pannes pouvant affecter le groupe de n nœuds alors f < n/2. Le
protocole Paxos identifie deux rôles distincts: le rôle de coordinateur et le rôle d’accepteur.
Chaque acteur joue un ou deux rôles. Une majorité d’accepteur doit être correcte: le nombre
d’accepteurs doit donc être supérieur ou égal à 2 f + 1. Au moins un coordinateur doit être
correct: le rôle de coordinateur est joué par au minimum f + 1 acteurs. Une asymétrie est
créée entre les coordinateurs grâce au service d’élection de leader. Lorsque la qualité des
informations fournies par l’oracle est parfaite, un seul coordinateur agit en temps que leader
et coordonne la prise de décision. Paxos partage de nombreuses similitudes avec les proto-
coles s’appuyant sur des détecteurs de défaillances de la classe ♢S [15]. Ainsi, la progression
du calcul durant une instance de consensus est rythmée par la notion de tour. Un tour est
une tentative pour converger vers une valeur de décision. Chaque tour est identifié par un
numéro et est géré par un coordinateur unique: le lien entre un numéro de tour et l’identité
du coordinateur est une information prédéfinie connue de tous les acteurs. Le protocole
Paxos n’impose pas aux acteurs qui exécutent un tour r d’avoir auparavant participé aux
r− 1 tours précédents. Ceci a une conséquence intéressante: le protocole Paxos n’exige pas
d’avoir des canaux de communication fiables. Cet atout supplémentaire explique l’intérêt
porté au protocole Paxos qui se révèle par ailleurs tout aussi performant que les autres pro-
tocoles de consensus cités.

A partir du protocole original, plusieurs variantes ont ensuite été proposées afin no-
tamment d’en améliorer les performances. Même si le protocole est conçu pour pouvoir
évoluer dans des circonstances défavorables, les conditions d’exécution sont la plupart du
temps favorables et c’est donc dans ces circonstances (normales et fréquentes) qu’il faut

140 Chapter I – Résumé en français

obtenir des gains de performance. Durant l’exécution du protocole Paxos, les conditions
d’exécution sont favorables si les trois conditions suivantes sont réunies. Premièrement,
il ne doit pas se produire de défaillance (pas de panne d’un nœud, pas de perte de mes-
sage). Deuxièmement, le système doit se comporter comme un système synchrone (les temps
nécessaires au transfert d’un message ou à l’exécution d’un pas de calcul sont correctement
estimés). Troisièmement, l’oracle doit être fiable et certain (le leader est correct et stable).
Lorsque ces trois conditions sont réunies, le comportement du protocole est prévisible et le
nombre d’étapes de communication peut alors être inféré via une analyse statique du code.
Cette analyse se focalise sur l’enchainement des messages qui font qu’une valeur initiale v
proposée par un auteur va finalement devenir la valeur de décision diffusée à tous les au-
teurs. Une analyse statique de ce type permet d’associer à chaque protocole une mesure
correspondant au nombre d’étapes de communication requises.

I.2 Contributions

Les principales contributions de cette thèse peuvent être résumées de la façon suivante:

• Définition formelle du problème du Consensus multiple intégré
Nous nous intéressons au problème de la construction et de la disponibilité d’une
séquence de valeurs de décision durant toute la durée d’un calcul. Nous définissons ce
double défis comme étant le problème du Consensus multiple intégré. Cette séquence
est crée, pas à pas, par un sous ensemble plutôt stable de noeuds appelé le coeur. Ces
noeuds se chargent également d’assurer la disponibilité des valeurs de décision déjà
calculées. Nous étendons la définition classique du problème du consensus pour tenir
compte du fait que les instances de consensus s’enchaînent.

• Proposition d’un protocole adaptatif pour prendre rapidement des décisions persis-
tantes

Nous avons conçu et développé un protocole adaptatif qui permet de générer et de
stocker efficacement des décisions prises durant une séquence d’instance de consensus.
Le protocole proposé s’appelle Paxos-MIC. Comme le suggère son nom, il s’appuie sur
les principes généraux du protocole Paxos. Les interactions entres les différents types
d’entités sont revisitées. Pour accroître les performances, nous considérons deux op-
timisations déjà connues qui visent à améliorer la latence du protocole Paxos original
en réduisant le nombre d’étapes de communication. Ces optimisations sont appelées
respectivement SO et RO. Ces notations font référence au fait que la première optimisa-
tion, SO, est sûre alors que la seconde, RO, est risquée. L’optimisation SO a été suggérée
par Lamport [35, 36] et adoptée par la suite dans plusieurs autres travaux [38, 41, 7].
Cette optimisation vise à supprimer des étapes de communication lorsque celles-ci
sont inutiles. Alors que l’algorithme original nécessite 6 étapes de communication,
Paxos combiné avec l’optimisation SO ne nécessite plus que 4 étapes de communica-
tion lorsque les conditions d’exécution sont favorables. La seconde optimisation a été
présentée par Lamport dans [37]. Dans cet article, Lamport propose un protocole ap-
pelé Fast Paxos qui intègre l’optimisation RO et améliore les performances du protocole
Paxos lorsque les conditions d’exécution et les conditions d’utilisation sont favorables.
Les conditions d’utilisation font référence aux comportements des auteurs. De fait,

I.2 – Contributions 141

l’optimisation RO est plus exigeante en terme de contraintes. Durant une instance de
consensus, l’optimisation RO sera forcement couronnée de succès si tous les auteurs
qui y participent proposent la même valeur. Dans le cas contraire, si au moins deux
participants proposent des valeurs distinctes, un phénomène appelé collision risque
éventuellement de se produire et une procédure de recouvrement devient nécessaire.
Le gain escompté par rapport à une exécution normale du protocole se transforme
alors en un surcoût en temps d’exécution qui peut être conséquent.

L’optimisation RO est compatible avec l’optimisation SO. Alors que l’optimisation
SO concerne la première phase du protocole Paxos (la phase dite de préparation),
l’optimisation RO se focalise sur la deuxième et dernière phase du protocole (la phase
dite de proposition). L’optimisation RO consiste, d’une part, à anticiper une partie du
calcul (i.e., à exécuter entièrement la phase de préparation et à débuter la phase de
proposition avant même que des valeurs initiales soient proposées par des auteurs) et,
d’autre part, à désigner les accepteurs comme étant les destinataires directs des valeurs
initiales proposées par les auteurs (au lieu de faire transiter ces valeurs par le leader
comme cela est le cas dans le protocole Paxos original). Dans les cas favorables, la com-
binaison des deux optimisations requièrent seulement 3 étapes de communication.

• Estimer l’intérêt de l’optimisation risquée

Du fait de son caractère risqué, l’optimisation RO est l’objet d’une partie de nos
travaux. Comme l’optimisation SO est sûre, Paxos-MIC intègre l’optimisation SO et
permet au leader de décider (après évaluation d’un test local) si il déclenche ou pas
l’optimisation RO. Ce protocole permet donc de comparer un comportement de type
Paxos + SO avec un comportement de type Paxos + SO+ RO. Le fait que RO soit une
optimisation risquée fait que son activation peut conduire à un succès ou à un échec.
Dans un premier temps, nous allons montrer que l’ampleur du gain de temps ou de
la perte de temps dépend du contexte dans lequel les acteurs ont été déployés. En
particulier, le nombre d’acteurs mais aussi leurs positionnements respectifs ont une in-
fluence très importante. Une implémentation du protocole Paxos-MIC a été réalisée.
Au travers d’exécutions réalisées sur une grille de calcul, le ratio entre gain et perte
est calculé pour des contextes types. Ce ratio indique le nombre de succès nécessaires
pour pouvoir compenser une perte.

• Proposition de mécanismes de déclenchement automatique de l’optimisation
risquée

Nous proposons des critères de déclenchement et évaluons leur qualité, en particulier,
leur aptitude à prédire les occurrences de collision. L’ensemble des données expéri-
mentales obtenues sont réutilisées pour tester l’intérêt de ces critères de déclenche-
ment. Cinq critères de base (et certaines de leurs combinaisons) sont analysés en
s’appuyant sur un scénario d’utilisation réel. Dans le cas d’un serveur Web sécurisé,
nous avons collecté une trace réelle où sont enregistrées les dates d’activation des
instances successives de consensus. En nous appuyant sur cette trace ainsi que sur
une estimation du risque de collision, nous analysons la qualité de chaque test de dé-
clenchement proposé. Le fait de déclencher l’optimisation RO peut être une erreur
(conduisant à une perte de temps) ou pas (obtention d’un gain de temps). De même, le
fait de ne pas déclencher l’optimisation RO peut être une erreur (pas de gain de temps)
ou pas (pas de perte de temps). Aucun des tests proposés ne permet de prédire avec

142 Chapter I – Résumé en français

précision l’occurrence d’une collision future. Cependant alors que les tests statiques
(toujours activer RO ou ne jamais activer RO) se révèlent incapables de s’adapter à
des fluctuations importantes du rythme de déclenchement des consensus, les tests dy-
namiques que nous proposons permettent pour certains d’obtenir de bons résultats en
terme de qualité et en terme d’adaptabilité.

• Utilisation du consensus comme brique de base

Comme nous l’avons mentionné, le consensus est intensivement utilisé comme brique
de base pour construire des applications réparties. Nous considérons une application
particulière où la séquence de décisions créée permet d’obtenir un coordinateur fiable
qui supervise le comportement d’un agent mobile transactionnel. Tandis que l’agent
évolue dans un réseau qui peut être un réseau ad-hoc, le coordinateur et ses copies
évoluent dans un réseau indépendant. Pour chaque transaction, un agent mobile est
créé. L’agent mobile évolue de place en place dans le réseau ad-hoc afin de décou-
vrir un itinéraire où les places visitées pourront satisfaire les requêtes de la transac-
tion. Nous identifions deux services Disponibilité de la source et validation atomique qui
doivent être fournis par le coordinateur extérieur. Leur implémentation repose sur un
protocole générant des séquences de décisions persistantes.

• Implémentation et évaluation

Une part importante du travail a été consacré au développement d’une implé-
mentation efficace du protocole Paxos ainsi qu’à son évaluation. Les expéri-
ences ont été réalisées en utilisant la plateforme expérimentale Grid’5000, issue de
l’Action de Développement Technologique (ADT) Aladdin pour l’INRIA, avec le
support du CNRS, de RENATER, de plusieurs Universités et autres contributeurs
(http://www.grid5000.fr).

Dans la suite de ce résumé, nous donnons quelques indications sur le protocole
Paxos-MIC, sur les optimisations qu’il intègre ainsi que sur les critères de déclenchement.
Nous présentons également quelques résultats obtenus lors de l’évaluation de Paxos-MIC.

I.3 Brève description de Paxos-MIC

Une description détaillée de Paxos-MIC est proposée dans [31, 30]. Nous fournissons ici une
brève description des principes généraux et nous soulignons les principales différences avec
les autres protocoles de la famille Paxos. Malgré ses spécificités, le comportement de Paxos-
MIC correspond soit au comportement de Paxos + SO, soit au comportement de Paxos +
SO+ RO.

Deux rôles distincts (Coordinateur et Accepteur) sont définis et chaque acteur joue un
ou deux rôles. Plus précisément, les n acteurs (et de fait, une majorité de noeuds corrects)
jouent le rôle d’accepteurs tandis qu’au moins f + 1 acteurs (et de fait, au moins un noeud
correct) jouent le rôle de coordinateur. Un coordinateur n’est actif que lorsque le service
d’élection de leader le désigne comme leader. En pensant alors agir comme un leader unique
et incontesté (ce qui n’est pas forcément le cas), le coordinateur tente d’imposer une valeur
de décision aux autres acteurs. Dans les protocoles de la famille Paxos, un numéro de tour r

I.3 – Brève description de Paxos-MIC 143

est associé à chaque tentative. Ce numéro est propre au noeud leader Ni qui exécute la ten-
tative: dans notre implémentation, si 1 ≤ i ≤ n, la valeur de r choisie par le leader Ni pour
identifier son tour courant doit être un multiple de i supérieur à tous les numéros de tour
qu’il a pu observer par le passé (les siens et ceux utilisés par d’autres coordinateurs). Dans
la version originale du protocole Paxos, un leader tente d’imposer une valeur de décision en
exécutant successivement deux phases au cours d’un tour r. Au cours d’une première phase
de Préparation, le leader s’assure que la valeur qu’il soumettra lors de la seconde phase n’est
pas incompatible avec celles éventuellement soumises par d’autres coordinateurs ayant agi
comme leader au cours du même consensus mais durant des tours précédents (i.e., des tours
dont le numéro est inférieur à r). La phase de préparation implique la diffusion d’un mes-
sage du leader vers l’ensemble des accepteurs puis la collecte, par le leader, de réponses
favorables en provenance d’une majorité d’accepteurs (soit deux étapes de communication).
La seconde phase est une phase de Proposition. Elle débute une fois que le leader a identi-
fié une valeur qu’il peut soumettre sans risquer de violer les propriétés de sûreté (Accord et
Validité). La valeur est diffusée par le leader vers l’ensemble des accepteurs puis le leader at-
tend de collecter une majorité de réponses favorables avant de pouvoir considérer que cette
valeur soumise est la valeur de décision (soit à nouveau deux étapes de communication). Un
accepteur est une entité passive dont l’état fait référence à la dernière phase de préparation
acceptée (numéro de tour r1) et à la dernière phase de proposition acceptée (numéro de tour
r2 et valeur adoptée). Cet état ne peut évoluer que lors de la réception d’une requête diffusée
par un coordinateur et à condition que cette requête soit acceptable. Une requête peut être
ignorée par un accepteur si la mise à jour qu’elle entrainerait ne garantit pas i) que la valeur
de r1 croit, ii) que la valeur de r2 croit ou iii) que r1 ≤ r2 au moment d’une mise à jour de r2.

Dans sa version originale, le protocole requiert donc 4 étapes de communications en-
tre les acteurs auxquelles viennent s’ajouter 2 étapes "externes" correspondant à la diffusion
des valeurs initiales des auteurs vers les coordinateurs et à la diffusion de la valeur de dé-
cision du leader vers les auteurs. Le chemin de communication correspond à : auteur →
coordinateurs (leader)→ accepteurs→ leader→ accepteurs→ leader→ auteurs.

L’optimisation SO consiste à supprimer une partie du calcul (la phase de préparation)
lorsque celle-ci est inutile. Si le leader Ni a réussi à imposer une valeur de décision concer-
nant le consensus c− 1 durant la tentative r et si, du point de vue de Ni, aucun autre coor-
dinateur Nj ne semble avoir agi avec un numéro de ronde supérieur à r ni durant l’instance
de consensus c − 1 ni durant l’instance c alors Ni peut agir en temps que leader durant le
consensus c en utilisant le même numéro de tour r. De fait, un tour r comporte alors une
seule phase de préparation qui est suivie par autant de phases de proposition que Ni peut en
lancer avant d’être destitué. En conséquence, plusieurs instances de consensus peuvent donc
être exécutées durant le même tour. Lorsque le leader élu reste stable (pas de défaillance, in-
teractions avec les autres acteurs suffisamment synchrones), le chemin de communication
est de longueur 4 et correspond à : auteur→ coordinateurs (leader)→ accepteurs→ leader
→ auteurs.

L’optimisation RO consiste à exécuter de façon anticipée la partie de la phase de
proposition correspondant à la diffusion par le leader d’une requête et à sa réception par les
accepteurs. L’objectif est de tirer profit du fait que, durant la plupart des instances de con-
sensus, un seul auteur participe au consensus et donc une seule valeur initiale est disponible.
Le leader qui ne connait aucune valeur initiale relative au consensus c adopte une valeur par
défaut appelée ANY qu’il soumet lors de la phase de proposition. Tout accepteur recevant

144 Chapter I – Résumé en français

cette valeur fictive est alors autorisé à la remplacer par une vraie valeur initiale directement
reçue d’un auteur. Lorsque l’activation de RO est un succès, le chemin de communication
est de longueur 3: auteur → accepteurs → leader → auteurs. Sans RO, une seule valeur
initiale est soumise durant une phase de proposition, et donc tous les accepteurs qui ac-
ceptent une valeur durant cette phase adoptent nécessairement la même valeur. Avec RO,
cette propriété n’est plus vérifiée dès lors que deux auteurs fournissent deux valeurs ini-
tiales distinctes durant l’instance c. Ceci a deux conséquences majeures. D’une part, même
lorsque les conditions sont favorables, la définition d’un quorum est plus contraignante: le
leader doit collecter plus d’acceptations [28]. Dans notre implémentation, le taux de retours
attendus passe de ⌈n/2⌉ à ⌈3n/4⌉. D’autre part, l’optimisation est un échec lorsque les re-
tours collectés par le leader font référence à plus d’une valeur (occurrence d’une collision).
Un recouvrement est alors nécessaire: un nouveau tour est démarré par le coordinateur (via
l’exécution d’une phase de préparation) et une nouvelle phase de proposition est lancée mais
cette fois, sans activer RO.

Les auteurs externes qui ne savent pas si l’optimisation est activée ou pas, doivent dif-
fuser systématiquement leur valeur initiale à l’ensemble des coordinateurs et à l’ensemble
des accepteurs. Dans le protocole Paxos-MIC, l’activation de RO est gérée de la façon suiv-
ante. Lorsque l’exécution de l’instance de consensus c− 1 se termine, un leader qui dispose
déjà d’une proposition concernant le prochain consensus c ne déclenche pas RO et effectue
un consensus en n’utilisant que SO: nous dirons dans ce cas que les consensus c − 1 et c
s’enchainent. Si au contraire, aucune proposition n’est disponible, le leader est temporaire-
ment inactif et il évalue alors un test de déclenchement pour déterminer si RO doit être
activée ou pas. Si le test est faux (ou plus généralement si il ne devient pas vrai avant qu’une
proposition parvienne au leader), le consensus c s’exécute en n’utilisant que SO: nous dirons
dans ce cas que RO est non activée (par choix).

Les optimisations SO et RO ne sont pas des contributions nouvelles. Par contre, le
mécanisme d’activation de RO à la demande est nouveau. Dans Paxos-MIC, le leader peut
choisir en cours d’exécution et pour chaque instance de consensus si l’optimisation risquée
RO est utilisée ou pas. L’optimisation SO a été suggérée dans la description originale du
protocole Paxos [35, 36]. Elle est utilisée par Lampson dans [38] (concept de vue) ainsi que
par Martin et Alvisi dans [41] (concept de régence). Le protocole FastPaxos (sans espace
entre les mots) présenté dans [7] inclut aussi (parmi de nombreuses autres contributions)
une implémentation plutôt complexe de l’optimisation SO. En ce qui concerne l’optimisation
RO, elle a été présenté par Lamport dans un protocole appelé Fast Paxos [37] (avec un espace
entre les mots). L’optimisation RO est également étudiée dans [24, 28, 17].

Dans [28], les auteurs introduisent la notion de système de quorum raffiné:
l’optimisation RO est un cas particulier dans ce modèle plus général. Ils considèrent des dé-
faillances byzantines et proposent une solution au problème du consensus qui utilisent les
deux optimisations SO et RO à chaque tour d’une instance de consensus. Dans les scénarios
inappropriés où plusieurs auteurs proposent des valeurs initiales différentes, l’utilisation de
RO peut empêcher une décision durant le tour initiale et retarder le calcul.

Dans [24], les auteurs proposent également une solution qui combine les deux opti-
misations. Durant chaque tour, le protocole gère simultanément une exécution avec seule-
ment SO et une exécution avec à la fois SO et RO. Quelles que soient les circonstances, le
temps nécessaire à la prise de décision correspond à la plus rapide de ces deux stratégies
menées en parallèle. Cette solution nécessite d’émettre un peu plus de message. De plus,

I.4 – Critères de déclenchement de RO 145

elle s’avère être adaptée au cas des réseaux large échelle où le coût de communication a un
impact important sur le temps nécessaire pour prendre une décision.

Alors que l’optimisation RO est systématiquement déclenchée dans [28] et [24], les
coordinateurs s’accordent à priori sur le fait qu’un tour utilisera l’optimisation RO dans Fast
Paxos [37]. Il n’est donc pas question d’adaptation dynamique dans ce protocole. Enfin,
dans [17], l’optimisation RO est tentée par le leader en charge du tout premier tour et n’est
jamais activée lors des tours suivants.

I.4 Critères de déclenchement de RO

La décision de déclencher ou de ne pas déclencher l’optimisation RO pour l’instance de
consensus c est prise de manière centralisée par le leader lorsqu’il n’y a pas de valeur de
proposition disponible lorsque le consensus c− 1 se termine. Cette décision conditionne le
comportement du consensus c qui sera exécuté. En cas de déclenchement de RO, les accep-
teurs se verront octroyer l’autorisation par le leader de renvoyer une valeur au leader sur la
base des propositions reçues directement des auteurs. Si un quorum d’accepteurs (égal à 3/4
des accepteurs) renvoie une valeur unique au leader, cette valeur deviendra la valeur de dé-
cision. Dans le cas contraire (absence de quorum d’accepteurs renvoyant une même valeur),
il s’agit alors d’une collision et une procédure de recouvrement (coûteuse) sera nécessaire.
Le déclenchement de RO aura donc été inapproprié. Il apparait donc clairement que la dé-
cision de déclencher RO constitue un pari sur l’avenir et qu’il est donc crucial de définir ce
que nous appellerons désormais un critère de déclenchement le plus précis possible afin que le
consensus s’exécute à chaque fois en un temps le plus court possible.

I.4.1 Critères dynamiques

Nous définissons des critères de déclenchement génériques dépendant du comportement
récent du protocole de consensus. Ces critères sont indépendants de l’application ou du
protocole utilisant le consensus et ne nécessitent tout au plus qu’une mémorisation du com-
portement des instances précédentes du consensus. Deux critères simples, pouvant être
évalués très rapidement par le leader, sont définis. Le premier de ces critères, dénommé
Time déclenche RO s’il n’y a pas de valeur de proposition disponible avant un délai d’au
moins ∆ ms après la fin du dernier consensus. On profite ici d’une période d’accalmie
(plus ou moins relative en fonction de la valeur attribuée à ∆) pour anticiper sur l’absence
de collision lors du prochain consensus. Le second critère, dénommé Result déclenche RO
sauf s’il y a eu au moins une collision durant les k derniers consensus exécutés. La dé-
marche est ici différente de celle adoptée pour le critère Time dans la mesure où on ne prof-
ite pas nécessairement d’une "accalmie" mais d’une configuration débouchant rarement sur
des collisions (cela peut être lié par exemple à la localisation d’un quorum d’accepteurs fa-
vorisant l’absence de collisions même en présence de différentes valeurs de proposition).
Un troisième critère, dénommé Random déclenche RO en utilisant une probabilité fixe de dé-
clenchement p et n’utilise donc pas une quelconque connaissance du passé pour décider s’il
faut déclencher RO ou pas.

146 Chapter I – Résumé en français

Réglages des critères

Les deux critères Time et Result peuvent être réglés pour déclencher RO de façon plus ou
moins fréquentes. Ainsi, si la procédure de recouvrement à exécuter en cas de collision est
relativement peu coûteuse et si le gain apporté par l’optimisation RO en cas de déclenche-
ment approprié (pas de collision) est élevé, on peut être plus agressif en favorisant le dé-
clenchement de RO. Pour cela, fixer à ∆ à une valeur très faible (critère Time) ou fixer k à 1
pour le critère Result peuvent constituer des choix intéressants. Inversement, si la procédure
de recouvrement est coûteuse et si le gain apporté par un déclenchement approprié de RO
est faible, on peut adopter une attitude plus prudente en fixant ∆ à une valeur élevée (critère
Time) ou k à une valeur élevée (critère Result).

I.4.2 Critères statiques

Nous définissons également deux critères statiques dont l’évaluation donne toujours les
mêmes résultats: Never et Always. Lorsqu’il est évalué, le critère Never ne déclenche pas
RO. Inversement, quand il est évalué, le critère Always déclenche RO.

I.5 Conditions d’expérimentation

Le protocole Paxos-MIC, dont le pseudo-code est disponible dans [31] a été mis en œuvre
en langage Java. Nos expérimentations ont été conduites sur la plateforme expérimentale
Grid’5000 qui comporte plus de vingt clusters répartis sur dix sites en France. Dans un
cluster, les nœuds de calcul sont homogènes (même processeur) mais les processeurs peu-
vent différer d’un cluster à un autre. Tous les nœuds de calcul exécutent le système Debian.
Nous utilisons la machine virtuelle OpenJDK6 (compilateur JIT désactivé) pour réaliser nos
mesures sur les nœuds de la grille.

RTT (en ms) Lille Toulouse Orsay Rennes
Lille - 19.8 4.75 10.58

Toulouse 19.8 - 16.51 22.3
Orsay 4.75 16.51 - 9.18

Rennes 10.58 22.3 9.18 -

Table I.1: RTT inter-sites

Deux configurations réseau ont été prises en compte pour les mesures de Paxos-MIC.
La première configuration est mono-site (Rennes) au sein de laquelle, le RTT (Round-Trip
Time) entre deux nœuds est peu élevé (moins de 0.140 ms). La seconde configuration est
multi-sites. Elle interconnecte plusieurs sites Grid’5000 (Orsay, Lille, Toulouse, Grenoble et
Rennes ont été retenus). Dans cette configuration, le RTT entre deux nœuds appartenant à
deux sites différents peut aller jusqu’à 20 ms (22.3 ms entre Rennes et Toulouse).

Nos expérimentations mettent l’accent sur deux facteurs qui ont un impact direct
sur les performances du protocole Paxos-MIC: la localisation géographique des différents
acteurs et la taille du groupe d’acteurs (nombre d’accepteurs et de coordinateurs). D’autres

I.6 – Déclenchement de RO : analyse dans le cadre d’une application WEB 147

facteurs, comme l’occurence de défaillances et le délai moyen entre consensus ont également
été étudiés.

I.5.1 Quatre contextes de référence

Sur la base des observations précédentes, nous identifions quatre contextes différents. Dans
deux d’entre eux (CL5 et CW5), le groupe d’acteurs est constitué de 3 coordinateurs et 5 accep-
teurs. Dans les deux autres, le groupe d’acteurs est constitué de 6 coordinateurs et 11 accep-
teurs. Dans deux d’entre eux (CL5 et CL11), les acteurs sont sur le même site (Rennes). Dans
les deux autres, les auteurs-apprenants externes sont sur le même site, les coordinateurs et
une minorité d’accepteurs sont sur un second site et une majorité d’accepteurs est sur un
troisième site. Le tableau I.2 indique les durées de consensus qui ont été observées pendant
les expérimentations: Dsucc (RO est déclenchée et aucune collision ne survient), Dnorm (RO
n’est pas déclenchée), et D f ail (RO est déclenchée et une collision se produit). Dans les qua-
tre contextes, l’optimisation RO peut présenter un intérêt: Dsucc < Dnorm < D f ail . Le ratio est
défini comme étant (D f ail - Dnorm / Dnorm - Dsucc). Il indique le nombre de succès nécessaires
pour compenser un échec.

Dsucc Dnorm D f ail ratio (échec/succès)
Contexte CL5 1.31ms 1.92ms 3.15ms 2.0
Contexte CL11 1.78ms 2.12ms 5.18ms 8.8
Contexte CW5 18.68ms 25.88ms 42.20ms 2.3
Contexte CW11 21.59ms 26.01ms 42.82ms 3.8

Table I.2: Durée moyenne du consensus

I.6 Déclenchement de RO : analyse dans le cadre d’une application
WEB

Etant donné que l’un des principaux intérêts de Paxos-MIC réside dans sa capacité à dé-
clencher RO lorsque cela est approprié (et à ne pas le déclencher quand cela n’est pas ap-
proprié), nous mettons désormais l’accent sur l’analyse des critères de déclenchement de
RO. Dans cette section, nous cherchons à évaluer différents critères de déclenchement dans
le contexte d’une application réelle nécessitant pour sa progression l’utilisation d’un algo-
rithme de consensus. L’application consiste en une architecture WEB répliquée dans laque-
lle les requêtes HTTP doivent être ordonnées, grâce au protocole Paxos-MIC avant d’être
envoyées aux serveurs WEB. Ici, à la différence des mesures réalisées à la section I.6.4, nous
n’exécutons pas le code du protocole Paxos-MIC. Nous utilisons un log de requêtes HTTP
qui ont été collectées auprès du serveur WEB d’une école d’ingénieurs durant une période
de 16 jours. En analysant le log, sur la base des temps d’arrivée des requêtes qui y sont en-
registrées et en tenant naturellement compte des différentes durées Dnorm, Dsuccet D f ail , nous
calculons:

• le nombre de déclenchements de RO,

148 Chapter I – Résumé en français

• les nombres de succès et d’échecs dans les déclenchements de RO,

• les nombres de succès et d’échecs dans les non déclenchements de RO.

I.6.1 Critères de déclenchement

L’avantage de cette analyse de log par rapport à une exécution réelle du protocole pour or-
donner les requêtes du log est que cela nous permet de tester des critères dits irréalistes nous
servant ainsi de points de comparaison avec les critères dits réalistes définis à la section I.4.
Les critères irréalistes peuvent être évalués en analysant le log mais ne peuvent pas être mis
en œuvre car ils nécessitent une connaissance du futur. Nous en définissons deux: Optimal
et Worst.

Le critère Optimal déclenche RO seulement s’il n’y aura pas de collision dans le futur
et donne ainsi la meilleure performance possible (dans le cas de notre analyse). A la dif-
férence du critère Optimal, le critère Worst déclenche RO seulement s’il y aura une collision
et ne déclenche pas RO sinon. Nous utilisons ces deux critères pour définir une échelle per-
mettant d’évaluer comparativement les performances des cinq autres critères (Always, Never,
Random, Result et Time). Si t est la durée moyenne du consensus pour une activation de RO
selon un critère donné C, tworst, la durée moyenne selon le critère Worst et toptimal , la durée
moyenne selon le critère Optimal, le gain pour le critère C est (tworst − t)/(tworst − toptimal).

Par ailleurs, pour les critères réalistes définis à la section I.4, nous avons fait les choix
suivants. Pour le critère Time, ∆ est fixé à 10ms: si une requête arrive dans un délai de
10ms après la fin du consensus précédent, RO ne sera pas déclenchée. Concernant le critère
Result, k est fixé à 2. Il faut donc 2 consensus consécutifs sans collision pour que le troisième
consensus soit exécuté avec l’optimisation RO. Enfin, dans le cas du critère Random, p est
fixé à 0.8.

I.6.2 Logs

Pendant la période des 16 jours de collecte du log, un total de 573753 requêtes ont été
adressées au serveur Web. La fréquence des requêtes n’est pas très élevée (environ 25 re-
quêtes par minute en moyenne) mais cette fréquence n’est pas uniforme sur la totalité du
log: les périodes "nuit" ont considérablement moins de requêtes que les périodes "jour".
Nous avons trouvé dans le log une période de 10 heures qui est six fois plus dense que le
log entier. Comme cela n’est cependant pas suffisant pour représenter un serveur fortement
chargé, nous avons décidé de calculer un nouveau log où l’intervalle de temps entre deux
requêtes consécutives du log original est divisée par 60. Ainsi, la fréquence moyenne des
requêtes est d’environ 1500 requêtes par minute dans ce nouveau log.

Nous disposons donc de deux logs: le log original et le log compressé sur lesquels
nous pouvons tester nos critères de déclenchement.

I.6.3 Contextes

Quatre contextes précédement définis sont considérés et pour chacun de ces contextes, nous
évaluons la qualité des différents critères de déclenchement de RO. Nous estimons le risque
de collision de la manière suivante: soient pi et pj deux requêtes qui apparaissent dans le

I.6 – Déclenchement de RO : analyse dans le cadre d’une application WEB 149

log. Si RO est activée lors du consensus c destiné à ordonner pi, nous considérons qu’il y a
un risque de collision si pj est proposé avant que le consensus c termine.

I.6.4 Résultats et analyses

Le comportement du leader conduit à classer une instance c de consensus dans l’une des
trois classes suivantes:

1. Consensus immédiat: le leader n’évalue pas le critère de déclenchement parce qu’un
valeur initiale était déjà disponible à la fin du consensus c− 1. RO n’est pas déclenchée
et la durée du consensus c est égale à Dnorm.

2. Consensus Type 1: le leader évalue le critère de déclenchement à faux. RO n’est pas
déclenchée et la durée du consensus c est égale à Dnorm. La prédiction est soit juste soit
erronée. Bien sûr, durant le calcul, le leader ne peut pas savoir (même a posteriori) si
une erreur a été commise ou pas. Cependant, au cours de notre analyse, nous consid-
érons le risque de collision afin de distinguer les prédictions qui sont justes de celles
qui sont erronées (un gain était possible).

3. Consensus Type 2: le leader évalue le critère de déclenchement à vrai. RO est déclenchée.
Si aucune collision ne se produit, le déclenchement est un succès et la durée du con-
sensus c est égale à Dsucc. Dans le cas contraire, le déclenchement est un échec et la
durée du consensus est égale à D f ail .

Lors de notre analyse, chaque instance du consensus appartient à l’une des cinq
classes suivantes: immédiat, succès type 1, erreur type 1, succès type 2 ou erreur type 2.
Rappelons que pour évaluer le risque d’une collision, nous adoptons la règle suivante. Une
collision se produit durant l’instance c du consensus si RO est déclenchée durant ce consen-
sus et au moins une autre propostion est générée avant la fin du consensus.

Nous évaluons les critères de déclenchement en mesurant le gain obtenu sur la durée
moyenne du consensus pour les quatre contextes et avec les deux logs. Le tableau I.3 donne
tous les gains mesurés.

Log original Log compressé

Never Always Random Time Result Never Always Random Time Result

CL5 4.8% 95.1% 77% 89.7% 93.8% 25.2% 70.7% 60.8% 52.3% 69.7%

CL11 19.9% 80% 67.9% 77.3% 80.1% 62.9 % 31.8% 37% 62.2% 35.1%

CW5 18.9% 80.4% 68% 79% 78.8% 53 % 42.8% 44.7% 44.3% 44%

CW11 29.9% 69.5% 61.4% 68.8% 70.1% 67.1 % 29.9% 36.9% 33.1% 33.5%

Table I.3: Gains sur une échelle Worst (0%) - Optimal (100%)

Concernant le log original, pour tous les contextes, les gains sont élevés avec les
critères Random, Always, Time et Result. La comparaison de ces gains avec le gain obtenu
avec le critère Never démontre sans ambiguité l’intérêt de RO. Lorsque l’on considère le
log compressé, le gain demeure élevé pour le contexte CL5 avec les critères Always, Random,
Time et Result. Il devient cependant plus faible qu’avec le critère Never pour les trois autres
contextes CL11, CW5 et CW11.

150 Chapter I – Résumé en français

Nous avons également mesuré le taux de succès et d’erreurs (type 1 et 2) ainsi que le
taux de consensus immédiats pour chaque critère de déclenchement dans chaque contexte
et ceci pour les deux logs.

Quel critère ?

Jusqu’à présent, nous n’avons pas discuté du critère Random. Ce critère a été introduit pour
vérifier si les résultats obtenus avec les critères Time et Result étaient davantage dus à leur
acuité (ou précision ?) plutôt qu’au nombre d’activations de RO. Pour le log original, le
gain avec le critère random est toujours inférieur à celui obtenu avec les critères Time et
Result. Pour le log compressé, le gain avec se situe entre celui avec Result et Time pour les
contextes CL5 et CL11. Comme expliqué précédemment, les gains pour CW11 et CW5 ne sont
pas significatifs. Le critère Time nécessite de régler la durée du paramètre ∆ pour s’adapter
aux caractéristiques du contexte. Clairement, 10ms est un choix approprié pour CL5 et CL11
mais pas pour CW5 et CW11. Le critère Result ne requiert pas de réglage et permet d’obtenir
un gain relativement important quel que soit le contexte. Des combinaisons des critères
(conjonction ou disjonction) ont été évaluées; elles n’améliorent pas significativement les
résultats et requièrent de sélectionner a priori s’il est préférable d’augmenter ou de diminuer
le nombre de déclenchements de RO.

I.6.5 Evaluation du risque

Lors de l’analyse, nous avons utilisé une approche assez pessimiste concernant l’évaluation
du risque de collision: si une proposition pj est générée (correspondant à une arrivée de
requête HTTP) avant la fin d’une instance c d’un consensus (pour lequel une proposition pi
avait été initialement diffusée), nous considérons qu’une collision survient. Ce choix con-
duit clairement à une surestimation du risque de collision. En effet, si une proposition pj est
générée très peu de temps avant la fin d’une instance c du consensus, il est très fortement
probable qu’elle n’induira pas de collision pour cette instance c (un quorum d’accepteurs
ayant eu suffisamment de temps pour faire de la proposition initiale pi une valeur décidée
avant la diffusion de pj). Nous avons donc souhaité vérifier si notre approche (pessimiste)
faussait les résultats et notamment les performances relatives des différents critères de dé-
clenchement. Pour cela, nous avons utilisé deux nouvelles versions du risque de collision.
Dans une première version, nous avons considéré qu’une collision ne pouvait se produire
que si une proposition pj était générée pendant la première moitié de l’exécution du consen-
sus c. Dans une seconde version, nous avons considéré que la génération d’une proposition
pj conduisait à une collision avec une probabilité décroissante au fil de l’exécution du con-
sensus c (égale à 1 au début de l’exécution et à 0 vers la fin de l’exécution).

Avec ces deux nouvelles versions du risque de collision, nous n’avons observé que de
très légères variations des résultats par rapport à ce que nous avons obtenu avec la version
jugée pessimiste de notre évaluation du risque de collision.

I.7 – Conclusion 151

I.7 Conclusion

Dans ce résumé, nous avons vu que le protocole Paxos-MIC combine l’utilisation de deux
optimisations. Il permet de résoudre plusieurs instances de consensus et de garantir la per-
sistance des valeurs décidées. Le protocole est adaptatif dans la mesure où il vise à obtenir
le meilleur gain de performances en fonction du contexte. Entre deux instances consécutives
du consensus, le leader détermine si l’optimisation RO doit être déclenchée ou pas.

Le document complet comporte d’autres contributions (notamment une étude sur
l’utilisation du consensus dans le cas d’agents mobiles transactionnels).

Parmi nos perspectives de recherche, nous pouvons mentionner: la prise en compte
des comportements arbitraires, l’anonymat des participants, une étude pratique du risque
de collision, la proposition d’un mécanisme générique de prise de décision, et enfin l’étude
des mécanismes d’oublis du préfixe de la séquence de décisions.

152 Chapter I – Résumé en français

VU:

Le Directeur de Thèse

Michel HURFIN

VU:

Le Responsable de l’École Doctorale

Olivier BONNAUD

VU pour autorisation de soutenance

Rennes, le

Le Président de l’Université de Rennes 1

Guy CATHELINEAU

VU après soutenance pour autorisation de publication:

Le Président du jury,

César VIHO

2 Chapter I – Résumé en français

