N

N

Ressource allocation and schelduling models for cloud
computing
Fei Teng

» To cite this version:

Fei Teng. Ressource allocation and schelduling models for cloud computing. Other. Ecole Centrale
Paris, 2011. English. NNT: 2011ECAP0043 . tel-00659303

HAL Id: tel-00659303
https://theses.hal.science/tel-00659303

Submitted on 12 Jan 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00659303
https://hal.archives-ouvertes.fr

]
CENTRALE

R |

ECOLE CENTRALE PARIS
. ET MANUFACTURES
({ ECOLE CENTRALE PARIS ))

THESE

présengée par
Fei TENG

pour I'obtention du

GRADE DE DOCTEUR

Spécialité : Mathématiques appliqlees et informatique
Laboratoire d’accueil : Laboratoire math ématiques appliqlees aux systmes
SUJET : MANAGEMENT DES DONN EES ET ORDONNANCEMENT DES TACHES SUR

ARCHITECTURES DISTRIBU EES

soutenue le : 21 Octobre 2011

devant un jury compo<t de :

Christophe Cérin Examinateur
Gilles Fedak Examinateur
Tianrui Li Rapporteur
Frédéric Magoulées Directeur de these
Serge Petiton Rapporteur

1) Numéro d’ordre & demander au Bureau de IEcole Doctorale avant le tirage @finitif de la thése.


0_frontmatter/figures/ecplogo.eps




Abstract

Cloud computing, the long-held dream of computing as a utility, has the potential
to transform a large part of the IT industry, making software even moracttte

as a service and shaping the way in which hardware is designed arthpedc

We review the new cloud computing technologies, and indicate the main chal-
lenges for their development in future, among which resource manag@nodnt

lem stands out and attracts our attention. Combining the current scheduling theo
ries, we propose cloud scheduling hierarchy to deal with different rexpaints of
cloud services.

From the theoretical aspect, we mainly accomplish three research issistly, F

we solve the resource allocation problem in the user-level of cloud scheduling
We propose game theoretical algorithms for user bidding and auctioneeigpricin
With Bayesian learning prediction, resource allocation can reach Nash equilib-
rium among non-cooperative users even though common knowledge ii-insuf
cient. Secondly, we address the task scheduling problem in the systenoflevel
cloud scheduling. We prove a new utilization bound to settle on-line schedulabil-
ity test considering the sequential feature of MapReduce. We deduoeldtien-

ship between cluster utilization bound and the ratio of Map to Reduce. This new
schedulable bound with segmentation uplifts classical bound which is most used
in industry. Thirdly, we settle the evaluation problem for on-line schedulability
tests in cloud computing. We propose a concept of test reliability to express the
probability that a random task set could pass a given schedulability testaiiger

the probability is, the more reliable the test is. From the aspect of system, a test
with high reliability can guarantee high system utilization.

From the practical aspect, we develop a simulator to model MapReduce-frame
work. This simulator offers a simulated environment directly used by Mapg&edu
theoretical researchers. The users of SimMapReduce only corteemtrapecific
research issues without getting concerned about finer implementation details for
diverse service models, so that they can accelerate study progresw afoud
technologies.

Keywords: Cloud computing, MapReduce, resource allocation, game theory, uti-
lization bound, schedulability test, reliability evaluation, simulator
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Introduction

1.1 Research background

Cloud computing is everywhere. When we open any IT magazines, websitkss or TV
channels, "cloud” will definitely catch our eye. Today's most populari@metworking, e-
mail, document sharing and online gaming sites, are hosted on a cloud. Maréaliaf
Microsoft developers are working on cloud products. Even the U.®movent intends to
initialize cloud-based solutions as the default option for federal agenci&l@ Cloud com-
puting makes software more attractive as a service, and shapes the wagtiriTvhardware is
purchased. Predictably, it will spark a revolution in the way organizatiomgge or consume
information and computing.

The cloud has reached into our daily life and led to a broader range ofations, but
people often misunderstand what cloud computing is. Built on many old IT témdies,
cloud computing is actually an evolutionary approach that completely changesonoputing
services are produced, priced and delivered. It allows to accessesethat reside in a distant
datacenter, other than local computers or other Internet-connectiegsle€loud services are
charged according to the amount consumed by worldwide users. Siaésaof computing as
a utility is a long-held dream in the computer industry, but it is still immature until tiversid
of low-cost datacenters that will enable this dream to come true.

Datacenters, behaving as "cloud providers”, are computing infrastasctuhich provide
many kinds of agile and effective services to customers. A wide rang€é obmpanies in-
cluding Amazon, Cisco, Yahoo, Salesforce, Facebook, Microsaft@mogle have their own

datacenters and provide pay-as-you-go cloud services. Twodtiffbut related types of cloud
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service should be distinguished first. One is on-demand computing instaulctheaother is
on-demand computing capacity. Equipped with similar machines, datacenteysataiout by
providing additional computing instances, or can support data- or computesivegeapplica-
tions via scaling capacity.

Amazon’s EC2 and Eucalyptus are examples of the first category, whoeldps comput-
ing instances according to needs. The datacenters instantly creat vatliaktances and give
the response. The virtualized instance might consist of processaniniguait different speeds
and storage that spans different storage systems at different locafttwerefore, virtualization
is an essential characteristic of cloud computing, through which applicationsecaxecuted
independently without regard for any particular configuration.

Google and Yahoo belong to the second category. In these datacéiméenged of pro-
cessing large amounts of raw data is primarily met with distributed and parafigbudong,
and the data can be moved from place to place and assigned changing attrémeed on its
lifecycle, requirements, and usefulness. One core technology is MapgRBea style of parallel
programming model supported by capacity-on-demand clouds. It can temgssive data in
parallel on a cloud.

The above two types of cloud services classify cloud computing into two distapiog
ment models: public and private. A public cloud is designed to provide clendcgs to a
variety of third-party clients who use the same cloud resources. Publid sknvices such as
Google’s App Engine are open to anyone at anytime and anywhere. uottrry, a pri-
vate cloud is devoted to a single organization’s internal use. Google, fon@e, uses GFS,
MapReduce, and BigTable as part of its private cloud services, se fleegices are only open
inside the enterprise. It's important to note that Google uses its private wqrdvide public
cloud services, such as productive applications, media delivery, aal Bderaction.

1.2 Challenges and motivations

Cloud computing is still in its infancy, but it has presented new opportunitieets asd devel-
opers who can benefit from economies of scales, commoditization of asdetsraiormance
to programming standards. Its attributes such as scalability, elasticity, loiertt@rentry and
a utility type of delivery make this new paradigm quickly marketable.

However, cloud computing is not a catholicon. The illusion of scalability is boditge
the limitations that cloud providers place on their clients. Resource limits areexpbpeak
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conditions of the utility itself. For example, bursting spring festival messagestéeautage
for telecom operators, so they have to set limits on the number of short gesdsefore New
Year Eve. The same problem appears in cloud computing. These outaglkappén on peak
computing days such as the day when Internet Christmas sales traditionally begin

Another illusion of elasticity is affected by an inconsistent pricing scheme thk¢sithe
investment no longer scalable to its payoffs. The price for extra largenicestaight be non-
linear to its size, compared with the price for standard instances. Morabgdow barrier to
entry can also be accompanied by a low barrier to provisioning.

Additionally, Internet is one basis of the cloud, so an unavoidable issuetisigihaork
bottlenecks often occur when large data is transferred. In that casbuttien of resource
management is still in the hands of users, but the users usually have limitedenaaat tools
and permission to deal with these problerad|[

Based on the above analysis, resource management is a topic worthgstigation, and
is a key issue to decide whether the new computing paradigm can be adoptednmdabtain
great business success.

From the public perspective of a cloud datacenter, its goal is reducsi@od maximizing
its profit since the public cloud plays a role of service provider in a reaketail he resource
management will focus on pricing schemes to ensure economic benefite fotld agents.

From the private perspective of a cloud datacenter, it focuses motkeosystem per-
formance of the datacenter. In that case, improvement from resouncageraent mainly
concerns technical issues. For example, it is important to optimize the dicigesichemes to
reduce job completion time and to improve resource utilization, when many Map® gths

are running in parallel at the same time.

1.3 Obijectives and contributions

This thesis studies resource management problems related to cloud comuaimas sesource
allocation, scheduling and simulation. The major contributions are as follows.

e A survey of current trends and research opportunities in cloud conputing. We
investigate the state-of-the-art efforts on cloud computing, from both indasd aca-
demic standpoints. Through comparison with other related technologie®armliting
paradigms, we identify several challenges from the cloud adoption p¢ikspad/e also



1. INTRODUCTION

highlight the resource management issue that deserves substantiethresehdevelop-
ment.

e A cloud scheduling hierarchy to distinguish different requirements ofcloud ser-
vices. We systemize the scheduling problem in cloud computing, and present a cloud
scheduling hierarchy, mainly splitting into user-level and system-level. Esmnmod-
els are investigated for resource provision issues between provitkcsistomers, while
heuristics are discussed for meta-task execution on system-level scheduidirepver,
priority scheduling algorithms are complemented for real-time scheduling.

e A game theoretical resource allocation algorithm in cloudsWe introduce game the-
ory to solve the user-centric resource competition problem in cloud marketal@ow
rithm substitutes the expenditure of time and cost in resource consumption, ang allow
cloud customers to make a reasonable balance between budget andedezmiline-
ments. We supplement the bid-shared auction scheme in Cloudsim to supjioit on
task submission and execution. Under sequential games, a Nash equilibrivatiatoc
among cloud users can be achieved.

e A price prediction method for games with incomplete information. We propose an
effective method to forecast the future price of resources in se@aenés, especially
when common knowledge is inadequate. This problem arises from the ndtare o
open market, which enables customers holding different tasks to arrdatatenters
without a prior fixed arrangement. Besides that, the independent custbawverttle or
limited knowledge about others. In that case, our Bayesian learningpoachas stable
performance, which can accelerate the search of Nash equilibrium allocation.

e A theoretical utilization bound for real-time tasks on MapReduce clwster. We ad-
dress the scheduling problem of real-time tasks on MapReduce clustee BapRe-
duce consists of two sequential stages, segmentation execution enablesschstiil-
ing to be more flexible. We analyze how the segmentation between Map andeReduc
influences cluster utilization. Through finding out the worst pattern foedalable task
set, we deduce the upper bound of cluster utilization, which can be usexhfiame
schedulability test in time complexity O(1). This theoretical bound generalizeddlis-
sic Liu's result, and even performs better when there is a proper segmeriiativeen
Map and Reduce.
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e A reliability indicator for real-time admission control test. We settle the comparison
difficulty among real-time admission control tests. Admission control test ainmetert-d
mining whether an arriving task can be scheduled together with the taskdyaftenning
in a system, so it can prevent system from overload and collapse. Weln&g@ concept
of test reliability to evaluate the probability that a random task set can pagsratgst,
and define an indicator to show the test reliability. Our method is useful as earite
to compare the effectiveness of different tests. In addition, an insuifieigument in
previous literature is questioned and then completed.

e A performance analysis for schedulability test on MapReduce cluste We examine
accepted ratio of several most used priority-driven schedulability tests simulated
MapReduce cluster. The development of ubiquitous intelligence increasesatktane
requirements for a cloud datacenter. If one real-time computation does notetemp
before its deadline, it is as serious as that the computation was never exataled
To avoid ineffective computation, the datacenter needs a schedulability tasfdee its
stability. From both realizability analysis and experimental results, we finthatithe
performance discrepancy of schedulability test is determined by a pisitegpattern.
This pattern can be deduced by a reliability indicator, so it may help systeigndes
choose a good schedulability test in advance.

e A simulation toolkit to model the MapReduce framework. We develop a MapRe-
duce simulator, named SimMapReduce, to facilitate research on resouragenant
and performance evaluation. SimMapReduce endeavors to model a vigiRédace
environment, considering some special features such as data localityepaddgnce
between Map and Reduce, and it provides essential entity servicesnhzd peedefined
in XML format. With this simulator, researchers are free to implement scheduling a
gorithms and resource allocation policies by inheriting the provided java classesivitho

implementation details concerns.

1.4 Organization of dissertation

The rest of this thesis is organized as follows.
Chapter 2 gives a general introduction of cloud computing, including definition, architec-
ture, deployment models and cloud services. Through reviewing thetiewroaf cloud history
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and current cloud projects, we conclude the characteristics from thei¢atgualitative, and
economic aspects, and further indicate some open areas in the fututepdeset. These
gaps in cloud computing inspire our interests in our future research. Irollogving chap-

ters, the problem of resource management will be solved using microsmaghimacroscopic
approaches. Specially, issues such as resource allocation and joblschadustudied.

Chapter 3 presents concerned theories used to deal with the problems arisingdrom r
source scheduling in cloud computing. User-level scheduling focusessoaroe provision
issues between providers and customers, which are solved by econongtsnfagstem-level
scheduling refers to meta-task execution, sub-optimal solution of which is giydreuris-
tics to speed up the process of finding a good enough answer. Real-tigdubng, which
is different from economic and heuristic strategies, is discussed to stitesfyal-time cloud
services.

Chapter 4 solves the resource allocation problem in the user-level scheduling. We firstly
present a short tutorial on game theory, covering the different cladsgsmes and their ap-
plications, payoff choice and utility function, as well as strategic choice asth Kquilibrium.
Next, a non-cooperative game for resource allocation is built. The schedntidgl includes
bid-shared auction, user strategy (bid function), price forecasting amitbeiym analysis.
Based on equilibrium allocation, algorithms running on the Cloudsim platform apogedl.
After that Nash equilibrium and forecasting accuracy are evaluated.

Chapter 5 solves the task scheduling problem in the system-level scheduling. We formu-
late the real-time scheduling problem, based on which classic utilization boundshfedu-
lability test are revisited. After analyzing the strengths and weaknessasreht utilization
bounds, combined with the particular characteristics of MapReduce, esemtr MapReduce
scheduling model and a less pessimistic utilization bound. Next we discussibohgquerfor-
mance of our mathematical model and experiment results implemented by SimMeeRed

Chapter 6 further studies on-line schedulability test in cloud computing. This schedula-
bility test can determine whether an arriving application is accepted by cldadetder, so
system stability is well guaranteed. We present task model and seVetabreonditions for
the schedulability test. After introducing a reliability indicator, we compare thf@peance of
different tests, and give practicable examples. The examples are Atide@ by SimMapRe-
duce.

Chapter 7 presents SimMapReduce, a simulator used to model MapReduce framework.
This simulator is designed to be a flexible toolkit to model MapReduce clustetoatesbst
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multi-layer scheduling algorithms on user-level, job-level or task-level. Ttald®f simulator
design are decrypted, including system architecture, implementation diagihmadeling
process.

Chapter 8 concludes the whole thesis.
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Cloud computing overview

2.1 Introduction

This chapter begins with a general introduction of cloud computing, followethéyretro-
spect of cloud evolution history and comparison with several related tedias. Through
analyzing system architecture, deployment model and service type,drectdristics of cloud
computing are concluded from technical, functional and economical aspftes that, cur-
rent efforts both from commercial and research perspectives esemted in order to capture
challenges and opportunities in this domain.

2.1.1 Cloud definitions

Since 2007, the term Cloud has become one of the most buzz words in I3tipduots of
researchers try to define cloud computing from different application &spaat there is not
a consensus definition on it. Among the many definitions, we choose three widslydoas

follows

e |. Foster[60]: “A large-scale distributed computing paradigm that is driven by economies
of scale, in which a pool of abstracted virtualized, dynamically-scalableaggthcom-
puting power, storage, platforms, and services are delivered on ddmarternal cus-
tomers over Internet.”

As an academic representative, Foster focuses on several tedbaicats that differen-
tiate cloud computing from other distributed computing paradigms. For example, com-
puting entities are virtualized and delivered as services, and these semagoggnami-

cally driven by economies of scale.
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e Gartner [52]: “A style of computing where scalable and elastic IT capabilities are pro-

vided as a service to multiple external customers using Internet technologies.”

Garter is an IT consulting company, so it examines qualities of cloud cloudingymos

from the point of view of industry. Functional characteristics are emphdsiz this
definition, such as whether cloud computing is scalable, elastic, servicéngfiand
Internet based.

e NIST[90]: “Cloud computing is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.garketwervers,
storage, applications, and services) that can be rapidly provisionedebeaded with
minimal management effort or service provider interaction.”

Compared with other two definitions, U.S. National Institute of Standards anahdkch
ogy provides a relatively more objective and specific definition, which nbt defines
cloud concept overall, but also specifies essential characteristit®uof computing and
delivery and deployment models.

2.1.2 System architecture

Application Layer

A A

Platform Layer

Unified Resource Layer

Fabric Layer

Figure 2.1: System architecture

Clouds are usually referred to as a large pool of computing and storsgerces, which
can be accessed via standard protocols with an abstract intesfica four-layer architecture
for cloud computing is shown in Figuz1
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2.1 Introduction

The fabric layer contains the raw hardware level resources, sucbhragute resources,
storage resources, and network resources. On the unified redayecr, resources have been
virtualized so that they can be exposed to upper layer and end usetegsied resources.
The platform layer adds on a collection of specialized tools, middleware anides® on top
of the unified resources to provide a development and deployment pratfbine application

layer includes the applications that would run in the clouds.

2.1.3 Deployment models

Clouds are deployed in different fashions, depending on the usagesc There are four

primary cloud deployment models.

e Public cloud is the standard cloud computing paradigm, in which a service provider
makes resources, such as applications and storage, available to thal gebéc over
Internet. Service providers charge on a fine-grained utility computing.bBxeEmples
of public clouds include Amazon Elastic Compute Cloud (EC2), IBM’s Blue @)&un

Cloud, Google AppEngine and Windows Azure Services Platform.

e Private cloudlooks more like a marketing concept than the traditional mainstream sense.
It describes a proprietary computing architecture that provides seteiedsmited num-
ber of people on internal networks. Organizations needing accuratekower their
data will prefer private cloud, so they can get all the scalability, meterind,aayility
benefits of a public cloud without ceding control, security, and recurrasscto a ser-

vice provider. Both eBay and HP CloudStart yield private cloud deploysen

e Hybrid cloud uses a combination of public cloud, private cloud and even local infras-

tructures, which is typical for most IT vendors.

Hybrid strategy is proper placement of workloads depending uporacaksbperational
and compliance factors. Major vendors including HP, IBM, Oracle andvwdké create
appropriate plans to leverage a mixed environment, with the aim of delivegingss to
the business. Users can deploy an application hosted on a hybrid inftasttin which
some nodes are running on real physical hardware and some aregonnitoud server

instances.

11



2. CLOUD COMPUTING OVERVIEW

e Community cloud overlaps with Grids to some extent. It mentions that several orga-
nizations in a private community share cloud infrastructure. The organizatgualy
have similar concerns about mission, security requirements, policy, amoliemce con-
siderations. Community cloud can be further aggregated by public cloud to hugd u
cross-boundary structure.

2.2 Cloud evolution

Although the idea of cloud computing is not new, it has rapidly become a new imethe
information and communication technology domain and gained significant commeiaks
over past years. No one can deny that cloud computing will a play pivolalin the next
decade. Why cloud computing emerges now, not before? This section lacksob the

development history of cloud computing.

2.2.1 Getting ready for cloud

e Datacenter. Even faster than Moore’s law, the number of servers and datacdrasrs
increased dramatically in past few years. Datacenter has become tharmatimn of
the mainframe concept. It is easier to build a large-scale commodity-computeetatac
ter than ever before, just gathering these building blocks together orkimgdot and
plugging them into the Internet .

e Internet: Recently, network performance has improved rapidly. Wired, wireled<lth
generation mobile communication make Internet available to most of the planet. Cities
and towns are wired with hotspots. The transportation such as air, traihjpoalso
equips with satellite based wi-fi or undersea fiber-optic cable. Peopleocauect to the
Internet anywhere and at anytime. The universal, high-speeddimmod Internet lays
the foundation for the widespread applications of cloud computing.

e Terminals: PC is not the only central computing device, various electronic devices in-
cluding MP3, SmartPhone, Tablet, Set-top box, PDA, notebook are navingds that
have the requirement of personal computing. Besides, repeated data@yination
among different terminals is time-consuming so that faults occur frequentlyudm s
cases, a solution that allows individuals to access to personal data asyaitefrom
any device is needed.

12
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2.2.2 A brief history

Along with the maturity of objective conditions (software, hardware), plefgxasting tech-
nologies, results, and ideas can be realized, updated, merged ard fdlavieloped.

Amazon played a key role in the development of cloud computing by initially renting the
datacenter to external customers for the use of personal computing.0f 2@y launched
Amazon EC2 and S3 on a utility computing basis. After that, several major veneleased
cloud solutions one after another, including Google, IBM, Sun, HP, Maftp&orces.com,
Yahoo and so on. Since 2007, the number of trademarks covering awoguting brands,
goods and services has increased at an almost exponential rate.

Cloud computing is also a much favored research topic. In 2007, Goog\, a3l a
number of universities announced a research project, Academic Cloogb@ing Initiative
(ACCI), aiming at addressing the challenges of large-scale distributaguting. Since 2008,
several open source projects have gradually appeared. For exdfoplyptus is the first
API-compatible platform for deploying private clouds. OpenNebula dexyboivate and hybrid
clouds and federates different modes of clouds.

In July 2010, SiteonMobile was announced by HP for emerging marketevpe®ple are
more likely to access the Internet via mobile phones rather than computers.mafiehand
more people owning smartphones, mobile cloud computing has turned out tmbeEnatpend.
Several mobile network operators such as Orange, Vodafone aimbivVérave started to offer
cloud computing services for companies.

In March 2011, Open Networking Foundation consisting of 23 IT compangessfeunded
by Deutsche Telecom, Facebook, Google, Microsoft, Verizon, and&arhis nonprofit orga-
nization supports a new cloud initiative called Software-Defined Networkihg.initiative is
meant to speed innovation through simple software changes in telecommunicativaskag
wireless networks, data centers and other networking areas.

A simple history of cloud development history is presented in Figu2e

2.2.3 Comparison with related technologies

Cloud computing is a natural evolution of widespread adoption of virtualizatiowjcser
oriented architecture, autonomic and utility computing. It emerges as a new togyparadigm

to provide reliable, customized and quality services that guarantee dynamjuting envi-

13
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Figure 2.2: Cloud development history

ronments for end-users, so it is easily confused with several similar aorggaradigms such
as grid computing, utility computing and autonomic computing.

Utility computing

Utility computing was initialized in the 1960s, John McCarthy coined the computer utility
in a speech given to celebrate MIT’s centennial “If computers of the kinave advocated
become the computers of the future, then computing may someday be orgamiaguliblic
utility just as the telephone system is. The computer utility could become the basiseof
and important industry.” Generally, utility computing considers the computing tordge
resources as a metered service like water, electricity, gas and teleptilidynyThe customers
can use the utility services immediately whenever and wherever they need wypthong the
initial cost of the devices. This idea was very popular in the late 1960$adlat by the mid-
1970s as the devices and technologies of that time were simply not reazbntRethe utility
idea has resurfaced in new forms such as grid and cloud computing.

Utility computing is highly virtualized so that the amount of storage or computing power
available is considerably larger than that of a single time-sharing computes. back-end
servers such as computer cluster and supercomputer are used totrealiztualization.

Since the late 90's, utility computing has resurfaced. HP launched the Utility &&txdo
provide the IP billing-on-tap services. PolyServe Inc. built a clusteredydéem that created
highly available utility computing environments for mission-critical applications anttiovad
optimized solutions. With utility including database and file service, custumersrti€ale

14


2_cloud_computing/figures/evolution.eps

2.2 Cloud evolution

industry such as financial services, seismic processing, and coatgimgscan independently
add servers or storage as needed.

Grid computing

Grid computing emerged in the mid 90’s. lan Foster integrated distributed compoiijegt-
oriented programming and web services to coin the grid computing infrasteu¢AGrid is
a type of parallel and distributed system that enables the sharing, selesitbaggregation
of geographically distributed autonomous resources dynamically at runépending on their
availability, capability, performance, cost, and users’ quality-of-semaqairements.’$9 The
definition explains that a gird is actually a cluster of networked, loosely cdumenputers
which works as a super and virtual mainframe to perform thousandsksf. tisan divide the
huge application job into several subjobs and make each run on large-schlimesa

Generally speaking, grid computing goes through three different gemesd103. The
first generation is marked by early metacomputing environment, such as FARNERWAY.
The second generation is represented by the development of core dmiblegies, grid re-
source management (e.g., GLOBUS, LEGION), resource brokersamtiulers (e.g., CON-
DOR, PBS) and grid portals (e.g., GRID SPHERE). The third generationasgmd comput-
ing and web services technologies (e.g., WSRF, OGSI), and moves to asemngiee oriented
approach that exposes the grid protocols using web service standards

Autonomic computing

Autonomic computing, proposed by IBM in 2001, performs tasks that ITggsadbnals choose
to delegate to the technology according to policied7] [Adaptable policy rather than hard
coded procedure determines the types of decisions and actions thatraittcapabilities per-
form. Considering the sharply increasing number of devices, the het@eogs and distributed
computing systems are more and more difficult to anticipate, design and maint&comi
plexity of management is becoming the limiting factor of future development. Autonomic
computing focuses on the self-management ability of the computer system.rdbmes the
rapidly growing complexity of computing systems management and reduces tierdtrat
the complexity poses on further growth.

In the area of multi-agent systems, several self-regulating framewovksiegn proposed,
with centralized architectures. These architectures reduce managersenteit seldom con-
sider the issues of enabling complex software systems and providing inreosativices. IBM
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proposed the self-managing system that can automatically process, igohadifiguration of
the components (Self-Configuration), automatic monitoring and control ofires®to ensure
the optimal (Self-Healing), monitor and optimize the resources (Self-Optimizaticiy)raac-
tive identification and protection from arbitrary attacks (Self-Protection), oty the input
information of policies defined by humangd. In other words, the autonomic system uses
high-level rules to check its status and automatically adapt itself to changiiitioms.
According to the above introductions of the three computing paradigms, wéudenihe
relationship among them. Utility computing concerns whether the packing computing re-
sources can be used as a metered service on the basis of the usérstngéndifferent to
the organization of the resources, both in the centralized and distributteninsysGrid com-
puting is conceptually similar to the canonical Foster definition of cloud computing,daes
not take economic entities into account. Autonomic computing stresses the seffensera of
computer systems, which is only one feature of cloud computing. All in all, clondpciting
is actually a natural next step from the grid-utility model, having grid technaogigtonomic
characteristics and utility bills.

2.3 Cloud service

As an underlying delivery mechanism, cloud computing ability is provisione@mgcss, ba-
sically in three levels: software, platform and infrastruct@d.[

2.3.1 Software as a Service

Software as a Service (SaaS) is a software delivery model in which afiplisare accessed by
a simple interface such as a web browser over Internet. The userd amnnerned with the un-
derlying cloud infrastructure including network, servers, operatintegys, storage, platform,
etc. This model also eliminates the needs to install and run the application on thedogalt-
ers. The term of SaaS is popularized by Salesforce.com, which distribugésess software
on a subscription basis, rather than on a traditional on-premise basis. @reslzdst known
is the solution for its Customer Relationship Management (CRM). Now SaaS Wwasatome
a common delivery model for most business applications, including accouatighoration
and management. Applications such as social media, office software, andganiies enrich
the family of SaaS-based services, for instance, web Mail, Google Dicspsoft online,
NetSuit, MMOG Games, Facebook, etc.

16



2.3 Cloud service

2.3.2 Platform as a Service

Platform as a Service (PaaS) offers a high-level integrated envirorntménild, test, deploy
and host customer-created or acquired applications. Generally, dengeémpept some restric-
tions on the type of software that can write in exchange for built-in applicatialalsitity.
Customers of PaaS do not manage the underlying infrastructure as Sma$asbut control
over the deployed applications and their hosting environment configurations.

PaaS offerings mainly aim at facilitating application development and related nraaage
issues. Some are intended to provide a generalized development envitpantesome only
provide hosting-level services such as security and on-demand scaldbifityal examples of

PaaS are Google App Engine, Windows Azure, Engine Yard, Forcelderoku, MTurk.

2.3.3 Infrastructure as a Service

Infrastructure as a Service (laaS) provides processing, stonefwporks, and other funda-
mental computing resources to users. laaS users can deploy arbitphigatpn, software,
operating systems on the infrastructure, which is capable of scaling up amddymamically.

laaS user sends programs and related data, while the vendor’s compesethe compu-
tation processing and returns the result. The infrastructure is virtualieedlé, scalable and
manageable to meet user requirements. Examples of laaS include AmazpNIEC2BM
Blue Cloud, Eucalyptus, FlexiScale, Joyent, Rackspace Cloud, etc.

Data service concerns user access to remote data in various formatoenciiltiple
sources. These remote data can be operated just like on a local diskoA®azSimpleDB,
SQS and Microsoft SQL are data service products. Figuseshows the relationship among
cloud users, clouds services and cloud providers.

Clients equipped with basic devices, Internet and web browsers catiydiree software,
platform, storage, and computing resources as pay-as-you-go sei@ioeds services are able
to be shared within any one of the service layers, if an Internet protecwiaction is estab-
lished. For example, PaaS consumes laaS offerings, and meanwhitersiplatform services
to SaaS. At the bottom, datacenter consists of computer hardware andregiteducts such

as cloud-specific operating systems, multi-core processors, netwwks, €fc.
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Figure 2.3: Cloud service

2.4 Cloud characteristics

As a general resource provisioning model, cloud computing integrates aenwhbxisting
technologies that have been applied in grid computing, utility computing, serverded ar-
chitectures, internet of things, outsourcing, etc. That is the reasorclebg is mistaken for

“the same old stuff with a new label”. In this section, we distinguish the charatiteris cloud

computing in terms of technical, qualitative and economic aspects.
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2.4 Cloud characteristics

2.4.1 Technical aspects

Technical characteristics are the foundation that ensures other fuaslchioth economical re-

guirements. Not every technology is absolutely new, but is enhancedlizeraapecific fea-

ture, directly or as a pre-condition.

e Virtualization is an essential characteristic of cloud computing. Virtualization in clouds
refers to multi-layer hardware platforms, operating systems, storage den&t@sork

resources, etc.

The first prominent feature of virtualization is the ability to hide the technical ¢exity

from users, so it can improve independence of cloud services. Slgcphysical re-
source can be efficiently configured and utilized, considering that multiglicagions
are run on the same machine. Thirdly, quick recovery and fault tolel@ecgermitted.

Virtual environment can be easily backed up and migrated with no interruptservice

[45].

Multi-tenancy is a highly requisite issue in clouds, which allows sharing of resources

and costs across multiple users.

Multi-tenancy brings resource providers many benefits, for exampiarateation of
infrastructure in locations with lower costs and improvement of utilization and effi-
ciency with high peak-load capacity. Tenancy information, which is storedsiepa-
rate database but altered concurrently, should be well maintained foreiddinants.

Otherwise some problems such as data protection will arise.

Security is one of the major concerns for adoption of cloud computing. There is no rea-
son to doubt the importance of security in any system dealing with sensitiveraate
data. In order to obtain the trust of potential clients, providers must stipplgertificate
of security. For example, data should be fully segregated from one themand an

efficient replication and recovery mechanism should be prepared if disasteur.

The complexity of security is increased when data is distributed over a widaraard
shared by unrelated users. However, the complexity reduction is negessimg to the

fact that ease-of-use ability can attract more potential clients.
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e Programming environment is essential to exploit cloud features. It should be capa-

ble of addressing issues such as multiple administrative domains, large variatien
source heterogeneity, performance stability, exception handling in highnaigrenvi-
ronments, etc.

System interface adopts web services APIs, which provide a stardasds framework
for accessing and integrating with and among cloud services. Browgsie@das the
interface, has attributes such as being intuitive, easy-to-use, startasdd, service-
independent and multi-platform supported. Through pre-defined, ABéss can access,
configure and program cloud services.

2.4.2 Qualitative aspects

Qualitative characteristics refer to qualities or properties of cloud computtiger than spe-
cific technological requirements. One qualitative feature can be realizadltiple ways de-
pending on different providers.

e Elasticity means that the provision of services is elastic and adaptable, which allows

the users to request the service near real-time without engineering fotqaets. The
services are measured in fine-grain, so that the amount of offeringeséectly match
the consumer’s usage.

e Availability refers to a relevant capability that satisfies specific requirements of the ou

sourced services. QoS metrics like response time and throughput mustraeged, so
as to meet advanced quality guarantees of cloud users.

¢ Reliability represents the ability to ensure constant system operation without disruption.

Through using the redundant sites, the possibility of losing data and cad®atcally
decreases. Thus cloud computing is suitable for business continuity antbdisaev-
ery. Reliabitiy is a particular QoS requirement, focusing on prevention of loss

e Agility is a basic requirement for cloud computing. Cloud providers are capable of

on-line reactions to changes in resource demand and environmental condiiathe
same time, efforts from clients are made to re-provision an application fromtzouise
infrastructure to SaaS vendors. Agility requires both sides to providerseihgement
capabilities.
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2.4.3 Economic aspects

Economic features make cloud computing distinct compared with other computirdigrasa
In a commercial environment, service offerings are not limited to an exelusshnological
perspective, but extend to a broader understanding of busineds nee

e Pay-as-you-gais the means of payment of cloud computing, only paying for the ac-
tual consumption of resource. Traditionally, users have to equip with all acétand
hardware infrastructure before computing starts, and maintain them dunmguting
process. Cloud computing reduces cost of infrastructure maintenateeaquisition, so
it can help enterprises, especially small to medium sized, reduce time to madkgéet
return on the investment.

e Operational expenditure is greatly reduced and converted to operational expenditure
[34]. Cloud users enter the computing world more easily, and they can rent ths-inf
tructure for infrequent intensive computing tasks. Minimal technical skidsrequired
for implementation. Pricing on a utility computing basis is fine-grained with usage-
based options, so cloud providers should mask this pricing granularity wigaterm,

fixed price agreements considering the customer’s convenience.

e Energy-efficiencyis due to the ability that a cloud has to reduce the consumption of un-
used resources. Because of central administration, additional costsrglyemnsump-
tion as well as carbon emission can be better controlled than in uncoopaadize. In
addition, green IT issues are subject to both software stack and hardwelre

2.5 Cloud projects

We conclude the state of the art efforts from commercial and academic $idgsr vendors
have invested in forthright progress in the area of global cloud promotibiie compara-
bly, research organizations based on their funding principles and inteoestibute to cloud
technologies in an indirect way.

2.5.1 Commercial products

In the last few years, a number of middleware and platforms emerge, whiclvénmultiple
level services in heterogeneous, distributed systems. Commercial clotidis®augment dra-
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matically and promote organization shift from company-owned assets teperenvice-based
models. The best known cloud projects are Amazon Web Service, Etus|yflexiScale,
Joyent, Azure, Engine Yard, Heroku, Force.com, RightScale, Net§i@gle Apps, etc.

Amazon is the pioneer of cloud computing. Since 2002, Amazon has begunvidero
online computing services though Internet. End users, not limited to devel@aeraccess
these web services over HTTP, using Representational State Trandf&GQAP protocols.
All services are billed on usage, but how usage is measured for billingsverom service
to service 12§. Among them, the most popular two are Amazon EC2 and S3, which are
typical representatives of laaS. The former rents virtual machinasifming local computing
applications, and the latter offers online storage.

Amazon ECZ1] allows users to create a virtual machine, named instance, through an
Amazon Machine Image. An instance functions as a virtual private semecdhtains desired
software and hardware. Roughly, instances are classified into 6 dategstandard, micro,
high-memory, high-CPU, cluster-GPU and cluster compute, each of whshbidivided by
the different memory, number of virtual core, storage, platform, I/Ogwerdnce and API.
Besides, EC2 supports security control of network access, instanuigonmg, multi-location
processing etc.

Amazon S3[2] provides a highly durable storage infrastructure used to store anelveetr
data on the Internet. This service is beneficial to developers by makingutimgpnore scal-
able. S3 stores data redundantly on multiple devices and supports versiool to recover
from both unintended user actions and application failures.

Google App Engine[9], released in 2008, is a platform for developing and hosting web
applications in multiple servers and data centers. In terms of PaaS, GAP is writieridn-
guage dependent, and only supports Python and Java, so the runtino@@@nt on GAP is
limited. Compared to laaS, GAP making it easy to develop scalable applicatigregrbanly
run a limited range of applications designed for that infrastructure.

MapReduce [53] is the best known programming model introduced by Google, which
supports distributed computing on large clusters. It performs map andti@doperations in
parallel. The advantage of MapReduce is that it can efficiently handle tatasets on com-
mon servers and that it can quickly recover from partial failure of serge storage during
the operation. MapReduce is widely used both in industry and academicates€&mogle de-
velopes patented framework, while the Hadoop is open source with freedicBesides that,
many projects like Twister, Greenplum, GridGain, Phoenix, Mars, Couchd&o, Skynet,
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Qizmt, Meguro implement the MapReduce programming model in different laeguaglud-
ing C++, C#, Erlang, Java, Ocaml, Perl, Python, Ruby.

Dryad [7] processing framework was developed by Microsoft as a declarptivgram-
ming model on top of the computing and storage infrastructure. DryadLINf@ts&on writing
large-scale data parallel applications on large data set clusters of compbtgadLINQ en-
ables developers to use thousands of machines without knowing anythong @mncurrent
programming. It supports automatic parallelization and serialization by translati(@ pro-
grams into distributed Dryad computations.

2.5.2 Research projects

Besides company initiatives, a number of academic projects have beenpil/¢toaddress
the challenges including stable testbed, standardization and open sdereace implementa-
tion. The most active projects in Europe and North America are XtreemO3\N&bella, Fu-
tureGrid, elasticLM, gCube, ManuCloud, RESERVOIR, SLA@SOI, CahtECEE, NEON,
VMware, Tycoon, DIET, BEInGRID, etc.

XtreemOS [16] is an open source distributed operation system for grids. The project wa
initialized by INRIA in 2006, and published the first stable release in 2010.

XtreemOS is an uniform computing platform, which integrates heterogeneaastimuic-
tures, from mobile device to clusters. It provides three services inclugiplgcation execution
management, data management and virtual organization management.

Although XtreemOS was originally designed for grids, it can also be seemaseanative
for cloud computing, owing to the fact that it is relevant in the context of viizad distributed
computing infrastructure. Hence, it is able to support cooperation androeseharing over
cloud federations.

OpenNebula[12] is an open source project aiming at managing datacenter’s virtual-nfras
tructure to build laaS clouds. It was established by Complutense Univefditgdrid in 2005,
and released its first software in 2008.

It supports private cloud creation based on local virtual infrastrudtudatacenters, and
has the capabilities for management of user, virtual network, multi-tier sepnacel physical
infrastructures. It also supports combination of the local resourceseamdte commercial
cloud to build hybrid clouds, in which local computing capacity is supplementesingye or
multiple clouds. In addition, it can be used as interfaces to turn local infrasteliato a public
cloud.
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FutureGrid [8] is a test-bed for grid and cloud computing. It is a cooperative project
started in 2010 between Grid’5000 and TeraGrid.

FutureGrid builds the federation of multiple clouds with a large geographical distnit
and allows researchers to study the issues ranging from authenticatioorization, schedul-
ing, virtualization, middleware design, interface design and cyberseduaritiye optimization
of grid-enabled and cloud-enabled computational schemes. The advantdfging a vivid
cloud platform similar to a real commercial cloud infrastructure. Moredvé@mtegrates sev-
eral open source technologies to create an easy-to-use environmemntas Xen, Nimbus,
Vine, Hadoop etc.

DIET [6] is a project initiated by INRIA in 2000, which aims at implementing distributed
scheduling strategies on grids and clouds.

DIET developed scalable middleware for a multi-agent system, in which clieibisis
computation requests to a scheduler to find a server available on the gridielnto facilitate
further researches in cloud computing, it supplements cloud-specific dkeimémscheduler
and adds on-demand resource provision model and economy-basadceemodel to test pro-
vision heuristics.

SLA@SOI [14] is an European project, targeting on evaluation of service provisioning
based on automated SLA management on SOI.

It developed a SLA management framework, which allows the configuratiombi-layer
service and automation in an arbitrary service-oriented infrastructursidé&ethe scientific
values, it implemented a management suit for automated e-contracting andlesst-s

BEINGRID [3] is a research project providing the infrastructure to support pilot implemen
tations of Grid technologies in actual business scenarios.

In BEInGRID, twenty five business experiments were carried out, eaahioh focused
on a real business problem and the corresponding solution. To exdsdgiractice from the ex-
perimental implementations, technical and business consultants workedlgsisaohgeneric
components and development of a business plan. Various technologiesvatuated, in-
cluding cost reduction, enhanced processing power, employing nemelsgasnodel, running
Software-as-a-Service application. Although BEInGRID project was cdedluit obtains ex-
periences for cloud computing such as requirement knowledge, busdiness, technological

solutions and hinted for migration potential.
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2.5 Cloud projects

2.5.3 Open areas

Even though some of the essential characteristics of cloud computing henedsdized by
commercial and academic efforts, not all capabilities are fulfilled to the sapeextent. Sev-
eral challenges are identified as follows
Middleware

Cloud-enablement functions for an application are brought by web semveb portals,
identity management servers, load balancers and application serverdeinacoordinate and
use them harmoniously, middleware continues to play a key role in cloud compGtmgrally
speaking, cloud middleware is the software used to integrate servicdisafipps and content
available on the same or different layers, by which services and otft@ase components can
be reused through Internet.
Platform virtualization

Virtualization is one of the crucial technologies that can merge differerasirnctures,
and the management of virtual machines needs to be further developeeltt&ineare a lot of
mature middleware used in grid computing, how to combine them with cloud middleware is
matter of our concern. Even more, natural evolution from grid to cloud is itapgrbecause
effort and time can be saved by technology reuse.
Programming model

As the migration to cloud is inevitable, programming and accessing cloud platfboukis
perform in a seamless and efficient way. In the future, computational ptafwill have a huge
number of processing nodes, so traditional parallelization models such hgbatessing and
message passing models are not scalable enough to deal with large gdalgtedscomputing.
Resource management

Form the provider’s point of view, large scale of virtual machines néed® allocated to
thousands of distributed users, dynamically, fairly, and most importarfifgirly. From the
consumer’s point of view, users are economy-driven entities whenrttadye the decision to
use cloud servicelfd]. For adequate resource, one user will compare the price amongediffer
providers. For scarce resource, users themselves become compelitossilivimpact the
future price directly, or indirectly. Therefore, the future resouramsisioning will become a
multi-objective and multi-criteria problem.

For practical reasons, resource provisioning needs reliable actteffsupport of nego-
tiation, monitoring, metering, and feedback. Service Level Agreement (8.A)common
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tool to define contracts and to measure fulfillments in business scenaritesclibes a set of
non-functional requirements of the service, and includes penalties whardhirements are
not met. Therefore, formal means for contract description have to beastiined.

2.6 Summary

In this chapter, the concept of cloud computing is first introduced. Althougtetis vast dis-
agreement over what cloud computing is, we try to refine some representatid give an
unbiased and general definition. That definition is not just an overalleminbut describes
system architecture, deployment model and essential features. Cloyzltog is still an
evolving paradigm, and it integrates many existing technologies. A brief psico®f evo-
lution history helps us clarify the conditions, opportunities and challenges existicigud
development. These definitions, attributes, and characteristics will evot/ereange over
time.

Functionally speaking, cloud computing is a service provision model, whegasef plat-
form, infrastructure, data, hardware can be directly delivered avigs¢o end customers. The
service characteristics are presented from technical, qualitative andra@ aspects.

Current efforts are the foundation for further development. After amadyexisting com-
mercial products and research projects, several challenges in temmgdieware, program-
ming model, resource management and business model are highlighted.g@psesa cloud
computing inspire our interest in our future research. In the following telnapthe problem of
resource management is discussed from micro- and macro- aspectsti¢nlpr, issues such
as resource allocation and job scheduling are studied.
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3

Scheduling problems for cloud
computing

3.1 Introduction

This chapter outlines the scheduling problems arising from cloud computing eGmtttheo-
ries including former expressions of problems, algorithms, complexity andretiemethods
are briefly introduced. Then scheduling hierarchy in cloud datacentezsepted, by splitting
scheduling problem into user-level and system-level. The former focusessource provi-
sion issues between providers and customers, which are solved lngicanodels. The latter
refers to meta-task execution, a sub-optimal solution of which is given bystiearto speed
up the process of finding a good enough answer. Moreover, real-thezlgling attracts our
attention. Different from economic and heuristic strategies, priority sdmegalgorithms and
their implementation are discussed at the end of this chapter.

3.2 Scheduling problems

3.2.1 Problems, algorithms and complexity

Scheduling problem33] is the problem of matching elements from different sets, which is
formally expressed as a triple (E, S, O), where

e E is the set of examples, each of which is an instance of problem.

e Sis the set of feasible solutions for the example.

27



3. SCHEDULING PROBLEMS FOR CLOUD COMPUTING

e O s the object of the problem.

Scheduling problem can be further classified into two categories depeodinbgjectO:
optimization problem and decision problem. An optimization problem requires firttieg
best solution among all the feasible solutions in$eDifferent from optimization, the aim of
decision problem is relatively easy. For a specified feasible solutienS, problem needs a
positive or negative answer to whether the objeds achieved. Clearly, optimization problem
is harder than decision problem, because the specified solution only camptrene thresh-
old solution in decision problem, instead of all feasible solutions in optimization problem.

An algorithm is a collection of simple instructions for finding a solution to a problem.
It contains three parts: input, method, output. Input is a set of parantetees dealt with.
Method includes describable, controllable, repeatable procedureditterthe aim using input
parameters. Output is a result of the problem. Especially for schedulinglgbethm is
a method by which tasks are given access, matched, or allocated to prece&enerally
speaking, no absolutely perfect scheduling algorithm exists, becaleshsicly objectives may
conflict with one another. A good scheduler implements a suitable compromisgpbes
combination of scheduling algorithms according to different applications.

A problem can be solved in seconds, hours or even years dependthg algorithm ap-
plied. The efficiency of an algorithm is evaluated by the amount of time negessaxecute
it. The running time of an algorithm is stated as a time complexity function relating the input
length to the number of steps.

There are several kinds of time complexity algorithms that will appear in the fislgpw
chapters.

e For a constant time algorithi®(1), the maximum amount of running time is bounded
by a value that does not rely upon the size of the input.

e For a linear time algorithn®(n), the maximum amount of running time increases lin-
early with the size of the input.

e For a polynomial time algorithn®(n<) with a constani, the maximum amount of
running time is bounded by a polynomial expression in the size of the input.

e For a exponential time algorithi®(2"°) with a constant, the maximum amount of
running time is bounded by an exponential expression in the size of the input.
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3.2 Scheduling problems

If a problem has a polynomial time algorithm, the problem is tractable, feasifitaenf or
fast enough to be executed on a computational machine. In computational cityriplesry, a
complexity class is a set of problems that has the same complexity based ¢aia e=ource

[110.

e Class P is the set of decision problems that are solvable in polynomial time dera de
ministic Turing machine, which means that a problem of Class P can be deciobéd/q
by a polynomial time algorithm.

e Class NP is the set of decision problems that are solvable in polynomial timeam a n
deterministic Turing machine, but a candidate solution of the problem of ClasamBe

verified by a polynomial time algorithm, which means that the problem can be derifie

quickly.

e Class NP-complete is the set of decision problems, to which all other NP prsigen
be polynomial transformable, and a NP-complete problem must be in claGeNexally
speaking, NP-complete problems are more difficult than NP problems.

e Class NP-hard is the set of optimization problems, to which all NP problems can be

polynomial transformable, but a NP-hard problem is not necessarily ia KIBs

Although most of NP-complete problems are computationally difficult, some of them ar

solved with acceptable efficiency. There are some algorithms, the running timleich is
not only bounded by the size of input of an example, but also by the maxinnamber of the
examples. These algorithms have pseudopolynomial time complexity. For dolempraf its
maximum number is not large, it can be solved quickly. Thus, one NP-conmpigidéem with
known pseudo-polynomial time algorithms is called weakly NP-complete, othersvisdled
strongly NP-complete, if it can not be solved by a pseudopolynomial timeitdgounless
P=NP [L10.

3.2.2 Schematic methods for scheduling problem

Scheduling problems belong to a broad class of combinational optimization prokilaing a
at finding an optimal matching from a finite set of objects, so the set of feasitutions is
usually discrete rather than continuous. An easy problem refers to one wittalhnumber
of the examples, so it can be simply worked out by polynomial algorithms or aatiomes.
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On the contrary a problem is in Class NP-complete if its purpose is making dafeasd

is in Class NP-hard if its purpose is optimization. Because an optimization probleat is n
easier than a decision problem, we only list schematic methods for NP-halotemrs. As
shown in Figure3.1, enumeration, heuristic and approximation are three possible solutions,

their corresponding algorithms complement each other to give a relativety gyuewver to a

NP-hard problem.

Scheduling problem ¢ / Heuristic algorithm
NP-hard problem \ Enumeration algorithm

Approximation algorithm
Figure 3.1: Schematic view

Enumeration method

For an optimization problem, its optimal solution can be selected if all the possible selat®n
enumerated and compared one by one. Exact enumerative algorithmsdaxpdnential time
complexity in the worst case. However, for some NP-hard problems in s&ade, when the
number in one instance is relatively small, it can be solved by a pseudopabagorithm,
the time complexity of which is bounded by a polynomial expression of the inpeitasd the
maximum number of the problem.

Moreover, there is another kind of enumeration, called implicit enumeration hvavial-
uates all possible solutions without explicitly listing all of them. Dynamic programming is a
practicable implicit enumeration method to solve combinational optimization problems. It di-
vides a problem into a number of stages, and at each stage a decisianiiedgignpacting on
the decisions to be made at later stages. The number of stored decisioperigmial to the
number of subproblems, so the worst complexity function of dynamic progranmatgogthms

is exponential.
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3.2 Scheduling problems

Heuristic method

Exhaustive enumeration is not feasible for scheduling problems, becalysa tew special
cases of NP-hard problems have exactly-solvable algorithms in polynomial timéhd=sake
of practice, we tend to find suboptimal solutions that are good enough tackaanuracy and
time.

Heuristic is a suboptimal algorithm to find reasonably good solutions reasofzesiblylt
iteratively improves a candidate solution with regard to a given measure tfygbat does
not guarantee the best solution. To be more precise, approximationrateis introduced to
evaluate the accuracy of heuristic algorithras]|

H(e)

ri(e) = 55rio) PT(e) (3.1)

where H (e) is the value of the solution constructed by heuridticfor instancee, and
OPT(e) is the value of the optimal solution fer If there is an integef<, all the instances
satisfyOPT(e) > K, this asymptotic ratie; can be used to measure the quality of approx-
imation algorithm. The closer;; approaches one, the better the performance is achieved by
heuristics.

With greedy rules, several common algorithms are shown as follows.

e Next Fit heuristic: The simplest algorithm for bin-packing problem. Eachabligeas-
signed to the current bin if it fits, otherwise, it is assigned to a new bin. @éppration

rate isryp < 2.

e First Fit heuristic: Each object is assigned to the lowest initialized indexed bifits.
A new bin is created only if the new object can not fit any initialized bin. Agpnation

rate isrpp < 7/4.

e Best Fit heuristic: Each object is assigned to the smallest residual bin if. itAfiteew
bin is created only if the new object can not fit any initialized bin. Approximatada is
rpr < 7/4.

e Next/First/Best Fit Descending heuristic: Objects are first sorted in désgeorder,

and then are assigned by corresponding heuristics. Approximation ratejs< 3/2.
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Relaxation method

Another feasible method to solve NP-hard problems is relaxing some cotsiraposed on
the original problem. In the new relaxed problem, the solution might be easytanamnd
have a good approximation to that in the original problem. The common relaxatiodésclu

e Suppose the elements in one instance are all natural numbers, rathesghanmbers.
e Suppose the value of one special element remains unchanged, ratheairiledn

e Suppose the value of two interrelated elements equal, rather than one bamdgd by
the other.

e Suppose the value of one element is unit, rather than arbitrary.

e Suppose the type of one element is certain, rather than arbitrary.

More relaxation can be applied without the limit of above presentation.

3.3 Scheduling hierarchy in cloud datacenter

In last section, we introduced related theory about scheduling problemtheindgchematic
methods. From this section, we specify scheduling problems in cloud envirésindena key
characteristic of resource management, service scheduling makes clopdtowy different
from other computing paradigms. Centralized scheduler in cluster system a@nkamncing
the overall system performance, while distributed scheduler in grid syatesat enhancing
the performance of specific end-users. Compared with them, schedulifmuith@mputing
is much more complicated. On one hand, centralized scheduler is necdsszayse every
cloud provider, which promises to provide services to users withouterterto the hosted
infrastructure, has an individual datacenter. On the other hand, distilscheduler is also
indispensable, because commercial property determines that cloud cogrghdind deal with
the QoS requirements of customers distributed worldwide.

An important issue of this chapter is to decompose scheduling problems relatied do
computing. Since cloud service is actually a virtual product on a supply ctta@nservice
scheduling can be classified into two basic catagories: user-level aednslevel. The hierar-
chy is shown in Figur8.2. The user-level scheduling deals with the problem raised by service
provision between providers and customers. It mainly refers to econaniems such as
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Figure 3.2: Scheduling hierarchy

equilibrium of supply and demand, competition among consumers and cost minimization u
der elastic consumer preference. The system-level scheduling haesitesae management
within a datacenter. From the point of view of customers, a datacenter is greitibe system,
which provides uniform services. Actually, the datacenter consists of pfaysical machines,
homogeneous or heterogeneous. After receiving numerous taskglfiferent users, assign-
ing tasks to physical machines significantly impacts the performance of datacBe&des
improving the system utilization, some specific requirements should be corsidach as the

real-time satisfaction, resource sharing, fault tolerance, etc.
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3. SCHEDULING PROBLEMS FOR CLOUD COMPUTING

3.4 Economic models for resource-provision scheduling

In the past three years, explosion of supply-side cloud service povigs accelerated, cloud
solutions become mainstream productions of IT industry. At the same time, theskseo
vices gradually mature to become more appropriate and attractive to all tiypesegprises.
The growth of both sides of supply and demand makes the scheduling problem<ono-
plex, sophisticated, and even vital in cloud environment. A bad scheduliregrsz not only
undermines CPU utilization, turnaround time and cumulative throughput, but Is@yesult
in terrible consequences, for example providers lose money and ewart gbbusiness.

Economic models are more suitable for cloud-based scheduling than traditiokigroiu
cessor models, especially for regulating the supply and demand of clougreeso In eco-
nomics, market-based and auction-based schedulers handle two main intdieeg&est-based
schedulers are applied when a large number of naive users can ectiydcontrol service
price in commodity trade. Mainstream cloud providers apply market-basedgschemes
in reality. The concrete schemes vary from provider to provider. As the suxcessful laaS
provider, Amazon EC2 supports commodity and posted pricing models for therience of
users. Another alternative is auction-based scheduler, which is adaptédations where a
small number of strategic users seeking to attain a specific service compegaulitther. In
auctions, users are able to commit the auction price. Amazon spot instance asnaplexof
auction-based model. Instance price adjusts from time to time, depending ampitig and
demand. As a result, users should estimate the future price and make itsadriogemn auction
before placing a spot instance request.

3.4.1 Market-based strategies

In cloud service provision, both service providers and users exfiies requirements through
SLAs contracts. Providers need mechanisms that support price spaifiand increase sys-
tem utilization, while consumers need schemes that guarantee their objectiveached. A
market-based scheduler aims at regulating the supply and demand forcessolio be spe-
cific, the market strategies emphasize the schemes for establishing a geicecdepending
on their customers’ requirements. In previous literature, a broker behavirthe behalf of
one end-user interacts with service providers to determine a propetlpaideseps supply and

demand in equilibrium4Q.
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Strategy types

Commodity model

As a common model in our daily life, service providers specify their servia®e @mnd
charge users according to the amount of resource they consume. s@nysuree to choose
a proper provider, but has no right to change the service price direfily amount of their
purchase can cause the price to derive from supply and demand.

The process of scheduling is executed by brokers. On the behalf o, .essech broker
identifies several providers to inquire the prices, and then selects ovidgravhich can meet
its objective. The consumption of service is recorded and payment is madecasia
Posted price model

The posted price strategy makes some special offers to increase thd stake or to
motivate customers to use the service during the off-peak period. Thedpmsce, as a kind
of advertisement, has time or usage limitations that are not suitable for all ibergfore, the
scheduling process should be modified in this strategy.

Service providers give the regular price, the cheap offers and Hueiated conditions of
usage. Brokers observe the posted price, and compare whethemnieedithe requirement of
users. If not, brokers apply commodity strategy as usual. Otherwisegtsrokly inquire the
provider for availability of posted services, supplementing extra regutaicgewhen associ-
ated conditions are not satisfied.

Bargaining model

In bargaining strategy, price is not given by provider unilaterally, jubdth sides of the
transaction through bargaining. A prerequisite for bargaining is that leetdle functions for
providers and brokers must have an intersection, so that they can negdttaeach other as
long as their objectives are both met.

In this scenario, a broker does not compare all the prices for the sawieesdut connects
with one of the providers directly. The price offered by the provider mighthigher than
customer expectation, so the broker starts with a very low price, which hapside potential.
The bargaining ends when a mutually agreeable price is reached or wéisideris not willing
to negotiate any further. In the latter case, broker will connect with otre/igiers and then
start bargaining again.

Bargaining strategy has an obvious shortcoming, that is, the overheesahamunication
is very high. The time delay might lead to lower utilization of resources for theigo or
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shorten deadline of service for the customers. In reality, the number ofiatgns can not be
infinite, and the bargaining time is always limited.

Principles for strategy design

Several market principles should be considered in the process offileitey the service price
[115.

Equilibrium price refers to a price under which the amount of services bought by buyers
is equal to the amount of services produced by sellers. This price terms dtable unless
demand or supply change.

Pareto efficiencydescribes a situation where no agent can get a better allocation than the
initial one without reducing other individual allocations. In other words, ues® can not be
reallocated in a way that makes everyone better off.

Individual rationality can make price fluctuate around the equilibrium price, which is
determined by the process of supply and demand. A higher price promiziagive to produce
more resource, so the amount of scarce resource can gradualtysatacation then surplus,
and vice-versa. Individual rationality can adjust prices to reach equitibinstantaneously.

Stability examines whether a scheduling mechanism can be manipulated. Individnal ag
may not reveal private information truthfully. A stable mechanism allows adermbstain the
best allocation if they submit their truthful information.

Communication efficiencyevaluates the communication overhead to capture a desirable
global solution. Message passing adds communication overhead on transactddjtenal
time is spent on allocation, rather than on computation. A good scheduling mechardsm fin
out a near-optimum solution efficiently.

3.4.2 Auction strategies

Unlike in market-based models, an auction-based scheduler is a rule nadker,than a price
maker. The rules include how the users bid for services, how the sake ipritetermined,
who the winning bidder is, how the resource is allocated, whether there are dimiisie or
proposal price, etc.

In auction-based schedulers, price is decided according to the gikes) which benefits

consumers by expressing their real requirement strategically, rathrewtiting for price ad-
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justment in a passive manner. Auction-based schedulers are distinguigshreddch other by
several characteristics.

Strategy types

Number of participants

According to different numbers of bidders, auctions are classified imwadd auction,
supply auction and double auction. English auction is an example of demand aiinctidvich
n buyers bid for one service. This type of auction is the most common form of aunotisse
today. Dutch auction focuses on demand of suppliers, whesellers offer the same service
for one buyer.

Double auction is needed under the condition that the number of buyers|kamnd semore
than one. In double auction, sellers and buyers both offer bids. Therdmbinade is decided
by the quantity at which the marginal buy bid is higher than the marginal sellWith the
growing number of participants, double auction converges to the market emuilibr
Information transparency

Participants in an auction may or may not know the actions of other participants. Bo
English and Dutch auctions are open auctions, that is, the participants dipdnadefor the
service with the complete information about previous bids of other bidderatt Apm these,
there is another type of auction, in which participants post sealed bids armdither with
highest bid wins. In close auction, bidders can only submit one bid eachcaode knows the
other bids. Consequently, blind bidders cannot adjust their bids acgbrdin

Close auction is commonly used for modeling resource provision in multi-agentrgyste
considering the simplicity and effectiveness of the sealed bids.

Combinatorial auction

A combinatorial auction is a type of smart market in which participants can pldseoh
combinations of items, rather than just individual items. Combinatorial auction i®apgte
for computational resource auction, where a common procedure acceptsriadsackage of
items such as CPU cycles, memory, storage, and bandwidth.

Combinatorial auctions are processed by bidders repeatedly modifying thpagals until
no one increases its bid any more. In each round, auctioneer publish@satavéeoutcome to
help bidders decide whether increase their bids or not. The tentativenoeiisathe one that
can bring auctioneer the best revenue given the bids. However, findiafjogation of items
to maximize the auctioneer’s revenue is NP-complete. A challenge of combihatacizons
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comes from how to efficiently determine the allocation once the bids have besnitt®abto
the auctioneer.
Proportion shared auction

In proportion shared auctions, no winner exists, but all bidders shanettbke resource
with a percentage based on their bids. This type of auction guarantees a neaiunility
and ensures fairness among users in resource allocation, which suits linsibelces such as
time slot, power and spectrum bandwid#6]. Shares represent relative resource rights that
depend on the total number of shares contending for a resource. @lliecdations degrade
gracefully in overload situations, and clients proportionally benefit from eggaurces when

some allocations are underutilized.

Principles for strategy design

Game theoretical equilibrium

The auction models applied in cloud service and other computational reseavesqning
are listed above, but not limited to these primary types. Generally, aucti@asateduler
emphasizes the equilibrium among users rather than supply-demand baameerbprovider
and user. The effectiveness of auction can be analyzed with the hedpnef theory.

Game theory studies multi-person decision making problems. Any player invoiva
game makes the best decision, taking into account decisions of the othgasné\theoretical
equilibrium is a solution, in which no player gains by only changing his own siyaiagat-
erally. However, this equilibrium does not necessarily mean the best cuneypatyoff for all
players.

Incentive compatibility

In any auction, participants might hide their true preferences. Incertivgatible auction
is one in which participants have incentive to reveal their real privaterirdton. One bidder
can maximize his payoff only if the information is submitted truthfully.

One method to realize incentive compatibility is designing a reasonable pricd pgye
auction winner. A good example of incentive compatible auction is Vickery auctiorhis$
sealed price auction, the highest bidder wins, but pays the second thigtheather than his
own. Under this charging rule, biding lower or higher than his true valuatitmewver increase

the best possible outcome.
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3.4.3 Economic schedulers

Economic schedulers have been applied to solve resource managemairibirs womputing
paradigms, such as cluster, distributed databases, grids, parallel syBeendo-Peer, and
cloud computing44]. Existing middleware applying economic schedulers, not limited to cloud
platforms, are introduced. By doing this, we can examine the applicability aitabgity

of these economic schedulers for supporting cloud resource allocationdticpra This in
turn helps us identify possible strengths of these middleware that may badedeior cloud
environment.

Cluster-on-demand|[4] is a service-oriented architecture for networked utility computing.
It creates independent virtual clusters for different groups. & kétual clusters are assigned
and managed by a cluster broker, supporting tendering and contractemeingic model. The
user submits its requirements to all cluster brokers. Every broker pgs@ospecific contract
with the estimated execution time and cost. If the number of brokers propositactois
more than one, users then select only one of them as the resourcespr&aching is afforded
by users to cluster broker as costs for adhering to the conditions of tiracbn

Mosix [1]] is a distributed operating system for high performance cluster computing that
employs an opportunity cost approach to minimize the overall execution caise afiuster.

It applies commodity model to compute a single marginal cost based on the swoeesl
memory usages of the process. The cluster node with the minimal value of alazgst is
then assigned the process.

Stanford Peers[15]is a peer-to-peer data trading framework, in which both auction and
bartering models are applied. A local site wishing to replicate its collection holdation to
solicit bids from remote sites by first announcing its request for stona@ees Each interested
remote site then returns a bid, and the site with the lowest bid for maximum berssfiected
by the local site. Besides that, a bartering system supports a coopérativey environment
for producer and consumer participants, so that sites exchangetdrages spaces to benefit
both themselves and others. Each site minimizes the cost of trading, which is\thmtaof
disk storage space that it has to provide to the remote site for the requatdezkdhange.

D’Agents[5] is a mobile-agent system for distributed computing. It implements proportion
shared auction where agents compete for shared resources. If tieoecishan one bidder,
resources are allocated proportionally. Costs are defined as ratesssureldigs per minute to
reflect the maximum amount that a user wants to pay for the resource.
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Nimrod-G [19] is a tool for automated modeling and execution of parameter sweep appli-
cations on Grids. Through broker, the grid users obtain service primesdifferent resources.
Deadline and budget are main constraints specified by the user for ruhisirggpplication.
The allocation mechanisms are based on market-based models. Prices afeesious vary
between different executing applications depending on their QoS constrairtsmpetitive
trading environment exists, because users have to compete with one anatrdar to maxi-
mize their own personal benefits.

Faucets[71] is a resource scheduler of computational grid, and its objective is stipgor
efficient resource allocation for parallel jobs executed on a changingewohlallocated pro-
cessors during runtime on demand. Tendering model is used in FaucetsS Adptract is
agreed before job execution, including payoff at soft deadline, a dsedepayoff at hard dead-
line and penalty after hard deadline. Faucets aims to maximize the profit of ceqmowider
and resource utilization.

MarketNet [51] is a market-based protection technology for distributed information sys-
tems. Posted price model is incorporated. Currency accounts for informeage. MarketNet
system advertises resource request by offering prices on a bulletid.b®hrough observing
currency flow, potential intrusion attacks into the information systems areatieatrand the
damages are kept to the minimum.

Cloudbus[42] is a toolkit providing market-based resource management strategies to me-
diate access to distributed physical and virtual resources. A 3rd dattg broker is built on
an architecture that provides a general framework for any other glatfbrms. A number of
economic models with commaodity, tendering and auction strategies are availablistomer-
driven service management and computational risk management. The supkerts various
application models such as parameter sweep, workflow, parallel and bag®f lizhas plug-in
support for integration with other middleware technologies such as Glomekad Unicore,
etc.

OpenPEX[127 is a resource provisioning system with an advanced reservation aproa
for allocating virtual resources. A user can reserve any number of oesanf virtual machine
that have to be started at a specific time and have to last for a specific durAtibilateral
negotiation protocol is incorporated in OpenPEX, allowing users and psvith exchange
their offers and counter-offers, so more sophisticated bartering drlé@uction models are

helpful to improve revenue of cloud users.
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EERM [56€] is a resource broker that enables bidirectional communication between busi-
ness and resource layers to promote good decision-making in resouragenant. EERM
contains sub-components for performing pricing, accounting, billing, joledwding, moni-
toring and dispatching. It uses kinds of market-based mechanisms fortaitpoatwork re-
sources. To increase the revenue, overbooking strategy is implememtéiiyate the effects
of cancellations and no-shows.

A summary of economic schedulers is concluded in T8le

Table 3.1: Economic schedulers

Scheduler Economic model Computing paradigm
Cluster-on-demand tendering cluster

Mosix commodity cluster

Stanford Peers auction/bartering peer to peer
D’Agents proportion shared auction mobile-agent
Faucets tendering grid

Nimrod-G commodity/auctions grid

Marketnet posted price distributed information
Cloudbus commodity/tendering/auctions cloud

OpenPEX bartering/double auction cloud

EERM commodity/posted price/bartering/tenderingloud

3.5 Heuristic models for task-execution scheduling

In cloud computing, a typical datacenter consists of commodity machines conigdégh-
speed links. This environment is well suited for the computation of large, stivgroup of
tasks. Tasks belonging to different users are no longer distinguisleddorn another. Schedul-
ing problem in such a context turns out to be matching multi tasks to multi machi®s.
mentioned in the former section, the optimal matching is an optimization problem, generally
with NP-complete complexity. Heuristic is often applied as a suboptimal algorithmtéinob
relatively good solutions.

This section intensively researches two types of strategies, static anchidyin@uristics.
Static heuristic is suitable for the situation where the complete set of tasks is kmimwmop
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execution, while dynamic heuristic performs the scheduling when a tasksarBeéore further
explanation, several preliminary terms should be defined.

e {;: tasks

e m;: machinej

e ¢;: the time when task; comes

e a;: the time when machine:; is available

e ¢;;: the execution time fof; is executed omn;

e ¢;;: the time when the execution ofis finished onm;, ¢;; = a; + ey

e makespan: the maximum value of;;, which means the whole execution time. The aim
of heuristics is to minimize makespan, that is to say, scheduling should finishtiexec
of metatask as soon as possible.

3.5.1 Static strategies

Static strategies are performed under two assumptions. The first is thabtaskssimulta-
neouslyc; = 0. The second is that machine available timjeis updated after each task is
scheduled.

OLB (Opportunistic Load Balancing) schedules every task, in arbitrary daeext avail-
able machine. Its implementation is quite easy, because it does not need extiaicalcThe
goal of OLB is simply keeping all machines as busy as possible.

MET (Minimum Execution Time) schedules every task, in arbitrary order, to the imach
which has the minimum execution time for this task. MET is also very simple, givingdase b
machine to each task, but it ignores the availability of machines. MET jeopartlie load
balance across machines.

MCT (Minimum Completion Time) schedules every task, in arbitrary order, to the ma-
chine which has the minimum completion time for this task. However, in this heuristiallno
tasks can be given the minimum execution time.

Min-min begins with the sef’ of all unscheduled tasks. Then, the matrix for minimum
completion time for each task in sétis calculated. Task with overall minimum completion
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time is scheduled to its corresponding machine. Next, the scheduled task isedefrmm7".
The process repeats until all tasks are scheduled.

Min-max is similar to Min-min heuristic. Min-max also begins with the §ebf all un-
scheduled tasks, and then calculates the matrix for minimum completion time for ekéh ta
setT. Different from min-min, task with overall maximum completion time is selected and
scheduled to its corresponding machine. Next, the scheduled task is bifnone7. The
process repeats until all tasks are scheduled.

GA (Genetic Algorithm) is a heuristic to search for a near-optimal solution in large solu
tion spaces36]. The first step is randomly initializing a population of chromosomes (possible
scheduling) for a given task. Each chromosome has a fitness value raakésat results from
the scheduling of tasks to machines within that chromosome. After the genertiieniaitial
population, all chromosomes in the population are evaluated based on theg Vitihgs, with a
smaller makespan being a better mapping. Selection scheme probabilistically thspdicane
chromosomes and deletes others, where better mappings have a hidyasiliyoof being
duplicated in the next generation. The population size is constant in all gemsraNext, the
crossover operation selects a random pair of chromosomes and chaaseom point in the
first chromosome. Crossover exchanges machine assignments betwesspanding tasks.
Mutation operation is performed after crossover. Mutation randomly selectsoenokome,
then randomly selects a task within the chromosome, and randomly reassignsévwonaa-
chine. After evaluating the new population, another iteration of GA starts, ingusdilection,
crossover, mutation and evaluation. Only when stopping criteria are met, thioitewdl stop.

SA (Simulated Annealing) uses a procedure that probabilistically allows pooikgians
to be accepted to obtain a better search of the solution space. This probalibtyeid on a
system temperature that decreases for each iteration, which implies thatea poloition is
difficulty to be accepted. The initial system temperature is the makespan oftthkesichedul-
ing, which is mutated in the same manner as the GA. The new makespan is evaluted
end of each iteration. A worse makespan might be accepted based on kilitiolsa the SA
finds poorer solutions than Min-min and GA.

Tabu search keeps track of the regions of the solution space which haveyabead
searched so as not to repeat a search near these areas. A schediuliion uses the same
representation as a chromosome in the GA approach. To manipulate the soittion and
to move through the solution space, a short hop is performed. The intuitipogri of a
short hop is to find the nearest local minimum solution within the solution space. When
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short hop procedure ends, the final scheduling from the local solutecesgearch is added
to the tabu list. Next, a new random scheduling is generated, to perform ddmtp enter
a new unsearched region of the solution space. After each succesgfuiop, the short hop
procedure is repeated. After the stopping criterion is satisfied, the destgling from the
tabu list is the final answer.

A* is a tree-based search heuristic beginning at a root node that is a Intitbiso As the
tree grows, nodes represent partial scheduling (a subset of tagssgaed to machines), and
leaves represent final scheduling (all tasks are assigned to macHihegartial solution of a
child node has one more task scheduled than the parent node. Eadmpakeoan be replaced
by its children. To keep execution time of the heuristic tractable, there is a prproegss to
limit the maximum number of active nodes in the tree at any one time. If the treepsurad,
this method is equivalent to an exhaustive search. This process contimiledeaf (complete
scheduling) is reached.

The listed heuristics above are fit for different scheduling scenarios.v@riation of sce-
narios is caused by the task heterogeneity, machine heterogeneity andeariacbnsistence.
The machines are consistent if maching executes any task faster than maching it exe-
cutes all tasks faster than;. These heuristics are evaluated by simulation in artiet. [For
consistent machines, GA performs the best, while MET performs the warsin€onsistent
machines, GA andl* give the best solution, and OLB gives the worst. Generally, @Aand

min-min can be used as a promising heuristic with short average makespan.

3.5.2 Dynamic strategies

Dynamic heuristics are necessary when task set or machine set is noHixetkample, not all
tasks arrive simultaneously, or some machines go offline at intervals. yftaaric heuristics
can be used in two fashions, on-line mode and batch mode. In the former mdasX is
scheduled to a machine as soon as it arrives. In the latter mode, taskstiyredllected into

a set that is examined for scheduling at prescheduled times.

On-line mode

In on-line heuristics, each task is scheduled only once, the schedulitigoasnot be changed.

On-line heuristic is suitable for the cases in which arrival rate is [0
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OLB dynamic heuristic assigns a task to the machine that becomes ready nediegga
of the execution time of the task on that machine.

MET dynamic heuristic assigns each task to the machine that performs that @sis-c
tation in the least amount of execution time regardless of machine available time.

MCT dynamic heuristic assigns each task to the machine, which results in tadléstear
completion time. MCT heuristic is used as a benchmark for the on-line nidaxd [

SA (Switching Algorithm) uses the MCT and MET heuristics in a cyclic fashion deipgnd
on the load distribution across the machines. MET can choose the best mawhineks but
might assign too many tasks to same machines, while MCT can balance the loatdgbtt
not assign tasks machines that have their minimum executing time. If the tasksiarga
in a random mix, it is possible to use the MET at the expense of load balanweaugiven
threshold and then use the MCT to smooth the load across the machines.

KPB (K-Percent Best) heuristic considers only a subset of machines winésigting a
task. The subset is formed by picking théest machines based on the execution times for
the task. A good value ¢f schedules a task to a machine only within a subset formed from
computationally superior machines. The purpose is to avoid putting the curs&nonéo a
machine which might be more suitable for some yet-to-arrive tasks, so it tealshorter
makespan as compared to the MCT.

For all the on-line mode heuristics, KPB outperforms others in most scerjafiés The
results of MCT are good, only slightly worse than KPB, owing to the lack dfligten for task
heterogeneity.

Batch mode

In batch mode, tasks are scheduled only at some predefined moments. n@blssebatch
heuristics to know about the actual execution times of a larger number of tasks

Min-min firstly updates the set of arrival tasks and the set of available maclualesi-
lating the corresponding expected completion time for all ready tasks. Nextstheith the
minimum earliest completion time is scheduled and then removed from the task sein&ach
available time is updated, and the procedure continues until all tasks ackibdhe

Max-min heuristic differs from the Min-min heuristic where the task with the maximum
earliest completion time is determined and then assigned to the correspondingendadie
Max-min performs better than the Min-min heuristic if the number of shorter tasksger
than that of longer tasks.
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Sufferage heuristic assigns a machine to a task that would suffer most if that particular
machine was not assigned to it. In every scheduling event, a sufferage igacalculated,
which is the difference between the first and the second earliest completianRimeask:y,
if the best machinen; with the earliest completion time is availablg, is assigned tan;.
Otherwise, the heuristic compares the sufferage valug afidt;, the task already assigned to
m;. If the sufferage value aof; is bigger,; is unassigned and added back to the task set. Each
task in set is considered only once.

Generally, Sufferage gives the smallest makespan among batch modgite[1109. The

batch mode performs better than the on-line mode with high task arrival rate.

3.5.3 Heuiristic schedulers

One advantage of cloud computing is that tasks which might be difficult, time oonguor
expensive for an individual user can be efficiently accomplished ircdatar. Datacenter in
clouds supports functional separation between the processing poweatanstarage, both of
which locate in large number of remote devices. Hence, scheduling becomasanplicated
and challenging than ever before. Since scheduler is only a basic centpion the whole
infrastructure, no general scheduler can fit for all cloud architestun this section, we mainly

discuss schedulers used for data-intensive distributed applications.

Hadoop

MapReduce is a popular computation framework for processing lardedsdata in main-
stream public and private clouds, and it is considered as an indispeiesaherstone for cloud
implementation. Hadoop is the most widespread MapReduce implementation fotiedaica
or production uses. It enables applications to work with thousands of raodegetabytes of
data.

A multi-node Hadoop cluster contains two layers. The bottom is Hadoop Distiilftilie
System (HDFS), which provides data location awareness for effeativedsling of work.
Above the file systems is the MapReduce engine, which includes one joleitraiclt several
task trackers. Every tracker inhabits an individual node. Clients subapiRéduce jobs to job

tracker, then job tracker pushes work out to available Task Trackexsriadhe clusterds).
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Hadoop is designed for large batch jobs. The default scheduler UBEsHeuristic to
schedule jobs from a work queue. Alternative job schedulers arecfaidsiler, capacity sched-
uler and delay scheduler.

FIFO scheduler [35] applies first in first out heuristic. When a new job is submitted,
scheduler puts it in the queue according to its arrival time. The earliesihjobeowaiting list
is always executed first. The advantages are that the implementation is gyisndabat the
overhead is minimal. However, throughput of FIFO scheduler is low, diasles with long
execution time can seize the machines.

Fair scheduler [132 assigns equal share of resources to all jobs. When new jobs are
submitted, tasks slots that free up are shared, so that each job getly ibegdame amount of
CPU time. Fair scheduler supports job priorities as weights to determine thierfra€ total
compute time that each job should get. It also allows a cluster to be shared amanter of
users. Each user is given a separate pool by default, so that eeaygts the same share of the
cluster no matter how many jobs are submitted. Within each pool, fair sharingdsaiskare
capacity between the running jobs. In addition, guaranteed minimum share is@llovihen
a pool contains jobs, it gets at least its minimum share, but when the paohdbaeed its full
guaranteed share, the excess is split among other running jobs.

Capacity scheduler[13]] allocates cluster capacity to multiple queues, each of which
contains a fraction of capacity. Each job is submitted to a queue, all jobs subnaittbd
same queue will have access to the capacity allocated to the queue. Queues iémits on
the percentage of resources allocated to a user at any given time, sormoamsmolizes the
resource. Queues optionally support job priorities. Within a queue, jobs igtthphiority will
have access to resources preferentially. However, once a job is gyitnidll not be preempted
for a higher priority job.

Delay scheduler{13( addresses conflict between scheduling fairness and data locality. It
temporarily relaxes fairness to improve locality by asking jobs to wait for aciding oppor-
tunity on a node with local data. When the job that should be scheduled oextding to
fairness cannot launch a local task, it waits for a short length of time, letthrey @bs launch
tasks instead. However, if a job has been skipped long enough, it is ditoeunch non-local
tasks to avoid starvation. Delay scheduler is effective if most tasks arecslmpared to jobs

and if there are many slots per node.
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Dryad

Dryad [7] is a distributed execution engine for general data parallel applicationst s@eeims
to be Microsoft's programming framework, providing similar functionality as étgdl Dryad
applies directed acyclic graph (DAG) to model applications.

Quincy [68] scheduler tackles the conflict between locality and scheduling in Dryatefra
work. It represents the scheduling problem as an optimization problem. Mirffloww makes
a scheduling decision, matching tasks and nodes. The basic idea is killing §threeunning
tasks and then launching new tasks to place the cluster in the configuratiorecehy the flow
solver.

Others

To sum up the heuristic schedulers for cloud computing, scheduling in cloadsllaabout

resource allocation, rather than job delegation in HPC or grid computing. Howeedradi-

tional meta-schedulers can be evolved to adapt cloud architectures anchenpd¢ions, con-
sidering the development of virtualization technologies. Next, we take seeprasentatives
for example as follows

Oracle Grid Engine [13] is an open source batch-queuing system. It is responsible for
scheduling remote execution of large numbers of standalone, parallel adititeruser jobs
and managing the allocation of distributed resources. Now it is integrated byodaahd
Amazon EC2, and works as a virtual machine scheduler for Nimbus in clougating envi-
ronment.

Maui Cluster Scheduler[10] is an open source job scheduler for clusters and supercom-
puters, which is capable of supporting an array of scheduling policiegnaigrpriorities, ex-
tensive reservations, and fair share capabilities. Now it has devel@veteatures including
virtual private clusters, basic trigger support, graphical administratide,tand a Web-based
user portal in Moab.

Condor [117] is an open source high-throughput computing software framework to man-
age workload on a dedicated cluster of computers. Condor-G is develmpeaioning virtual
machines on EC2 through the VM Universe. It also supports launchinipétaMapReduce
jobs in Condor’s parallel universe.

gLite [10Q is a middleware stack for grid computing initially used in scientific exper-
iments. It provides a framework for building grid applications, tapping into theepamf
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distributed computing and storage resources across the Internet, whidie aaampared to
corresponding cloud services such as Amazon EC2 and S3. Sinceltegibasuch as REST,
HTTP, hardware virtualization and BitTorrent displaced existing accessgsdaesources,
gLite federates both resources from academic organizations as welirmsezoial providers
to keep being pervasive and cost effective.

3.6 Real-time scheduling for cloud computing

There are emerging classes of applications that can benefit from imgyéiasing guarantee of
cloud services. These mission critical applications typically have deadlingestnts, and
any delay is considered as failure for the whole deployment. For instaaffig, tontrol centers
periodically collect the state of roads by sensor devices. Databastespdaent information
before next data reports are submitted. If anyone consults the conttel edout traffic prob-
lems, a real-time decision should be responded to help operators chquseraie control
actions. Besides, current service level agreements can not provite uders real-time con-
trol over the timing behavior of the applications, so more flexible, transpanelrtrast-worthy
service agreement between cloud providers and users is needed @ futu

Given the above analysis, the ability to satisfy timing constraints of such real-tipliea:
tions plays a significant role in cloud environment. However, the existing clouedsilers are
not perfectly suitable for real-time tasks, because they lack strict reqeireof hard deadlines.
A real-time scheduler must ensure that processes meet deadlineslesgafdystem load or
makespan.

Priority is applied to the scheduling of these periodic tasks with deadlines. Easyn
priority scheduling is given a priority through some policy, so that schedskigns tasks to re-
sources according to priorities. Based on the policy for assigning price#ytime scheduling
is classified into two types: fixed priority strategy and dynamic priority strategy

3.6.1 Fixed priority strategies

A real-time taskr; contains a series of instances. Fixed priority scheduling is that all instances

of one task have the same priority. The most influential algorithm for priorgigament is
Rate Monotonic (RM) algorithm proposed by Li@7. In RM algorithm, the priority of one
task depends on its releasing rate. The higher the rate is, the higher thty isioPeriodT;

is the length of time between two successive instances, and computatiof'titmehe time
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spent on task execution. Since the releasing rate is inverse to its gerisdysually the direct
criterion to determine task priority.

Schedulbility test is to determine whether temporal constraints of tasks cantla¢ rae-
time. Exact tests are ideal but intractable, because the complexity of exiacist®lP-hard for
non-trivial computational modeld 6. Sufficient tests are less complex but more pessimistic.
Schedulbility analysis is suitable for the systems whose tasks are knowrria prio

Sufficient test can be executed by checking whether a sufficient utilizased condition
is met. For example, Liug2] proved that a set of. periodic tasks using RM algorithm is
schedulable ify % < n(2'/" —1). The bound is tight in the sense that there are some task
sets unschedulable with the utilization that is arbitrarily higher meﬁ/n — 1). Actually,
many task sets with utilization higher than this bound can be scheduled. LeHa@&kroved
that the average schedulable utilization, for large randomly chosen taskestbes 0.88,
much higher than 0.69 of Liu’s result. The desire for more precise angblacschedulability
test pushes researchers to search high utilization bounds under gEstiaiptions, such as
appropriate choice of task periods.

Exact test permits higher utilization levels to be guaranteed. One approaclvedtisis
problem is that determining the worst-case response time of aitasknce the longest time
between arrival of a task and its subsequent instantiations is known, thmatebe checked
by comparing the deadlin®; and the worst-case response tile The complexity of the
test comes from th&; calculation by recursive equation®; = C; + Z;;ll [%W C;. This
equation can be solved iteratively, because only a subset of the taskergéfeas in the in-
terval between zero arif, needs to be examined, observed by Harter, Joseph and Audsley
independently§5, 70, 24].

One relaxation of Liu's model is that task deadline does not exactly equatitslp&here-
fore, RM algorithm is not optimal for priority assignment. Instead, Leung@sed Deadline
Monotonic (DM) algorithm as the optimal policy for such systems, assigningehigtiorities
to tasks with shorter deadlines than those with longer deadl#tés Under this assumption,
Lehoczky [77] proposed two sufficient schedulability tests by restricting= kT;, wherek is
a constant across all tasks. TindélLP extended exact test for tasks with arbitrary deadlines.

A further relaxation is permitting tasks to have unequal offsets. Since the-eass situ-
ation occurs when all tasks share a common release time, utilization bound foiesuffest
and response time for exact test in Liu’s model might be too pessimistic. &aitsets still
remain a problem to efficiently analyze. Under the assumption of specifisetsffRM and
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DM are no longer optimal, but Audsley$] showed the optimal priority assignment can be
achieved by examining a polynomial number of priority ordering over thedask

Liu's model and its further extensions are suitable for single procestmdsling. In
distributed systems, multiple processors can be scheduled in two appropatig®ned and
global. The former is that each task is assigned to one processor, whimltes all incantations
of the task. The latter is that tasks complete for the use of all processat#ioR and global
schemes are incomparable in effectiveness, since the required nuhplbecessors is not the
same 10€.

For partitioned policy, the first challenge is to find the optimal partitioning of tasksng
processors, which is a NP-complete problem. Therefore, heuristiesadeto find good sub-
optimal static allocations. The main advantage of heuristic approaches is tharéeuch
faster than optimal algorithms while they deliver fairly good allocations. DH#l][proved
that RM Next-Fit guarantees schedulability of task sets with utilization bound/¢f +21/3).
Oh [93] showed that RM First-Fit schedules periodic tasks with total uitilizaiton bodifxye
m(21/2 —1). Later, Lopez 83 lifted a tight bound of(m + 1)(2!/(™+1) — 1) for RM First-Fit
scheduling. Anderssor2]] showed that system utilization can not be higher tharn+ 1)/2
for any combination of processor partitioning and any priority assignment.

For global policy, the greatest concern is to find an upper boundthe individual utiliza-
tion for RM global scheduling. The smallpresents high system utilization bound. Andersson
[21] proved that system utilization boundrig® /(3m — 1) with A = m/(3m — 2). Baruah P7]
showed that foi = 1/3 system utilization of at least/3 can be guaranteed. With arbitrary
large\, Barker 6] showed that the system utilization boundis/2)(1 — \) + A.

3.6.2 Dynamic priority strategies

Dynamic priority assignment is more efficient than the fixed manner, since itutlgnuti-
lized the processor for the most pressing tasks. The priorities changémgthvarying from
one request to another or even during the same request. The most us@tiral are Earli-
est Deadline First (EDF) and Least laxity First (LLRA)2[l]. EDF assigns priorities to tasks
inversely proportional to the absolute deadlines of the actives jobs 8P]ipfoved thatn pe-
riodic tasks can be scheduled using EDF algorithm if and onEi% < 1. LLF assigns the
processor to the active task with the smallest laxity. LLF has a large numbent&xt switches
due to laxity changes at runtime. Even though both EDF and LLF are optinwalthlps, EDF
is more popular in real-time research because of smaller overhead than LLF
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Under EDF, schedulability test can be done by processor demand iandtyscessor de-
mand in an intervalt, , t2] is the amount of processing tingét,, t2) requested by those tasks
that must be completed i, t2]. The tasks can be scheduled if and only if any interval of
time the total processor demangis, t2) is less than the available tinig, t;]. Baruah B6]
proved that a set of periodic tasks with the same offset can be schefalretonly if U < 1
andvL > 0,57, {#J C; < L. The sufficient test of EDF is of(n) complexity
if deadline equals period. Otherwise, exact test can be finished in pgelgwmial time
complexity, when deadline is no longer than periba6.

The research on real-time scheduling is not limited to the issues discussesl dbowv
practicable usage, assumptions can be released, so that reseagasraded in a number of

ways.

e Not all the tasks have periodic release. Aperiodic server is introduqastitoit aperiodic
tasks to be accommodated in the periodic models.

e Tasks have resource or precedence relationships. Tasks can bebin&dihear prece-
dence constraint, and communicating via shared resources is allowed to tasitize-
teraction.

e Computation time of tasks varies widely. Some reduced-but-acceptable |esaivide
should be provided when workload exceeds normal expectations.

e Soft real-time applications exist. Control mechanisms can optimize the performfince
the systems, and analytic methods are developed to predict the systermpeide.

3.6.3 Real-time schedulers

A scheduler is called dynamic if it makes scheduling decisions at run time, seleotnut of
the current set of ready tasks. A scheduler is called static (pre-runfihajakes scheduling
decisions at compile time. A static scheduler generates a dispatching table famttime
dispatcher off-line.

Generally, real-time schedulers are embedded in corresponding keitinelespect to their
scheduling approaches. MARS kernél/] targets on hard real-time systems for peak load
conditions. Fixed scheduling approach is adopted. Schedule is completaljatadcoffline
and is given to the nodes as part of system initialization. All inter-proceasntmications and
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resource requests are included in the schedule. Nodes may chaegelsstsimultaneously
to another pre-calculated schedule.

Arts kernel [L19 aims at providing a predictable, analyzable, and reliable distributed com-
puting system. It uses the RM/EDF/LLF algorithms to analyze and guaranteedadtihne
processes offline. Non-periodic hard real-time processes areudebagsing execution time
reserved by a deferrable server. All other processes are dedeatitnamically using a value-
function scheme.

With the augmentation of real-time services, real-time kernel are widely requicdud
computing. However, many kernels are not very capable of satisfyirdimea systems re-
quirements, particularly in the multicore context. One solution is applying loadealdime
scheduler as plug-ins into operation systems regardless of kernel watifigs. As a result,
variant scheduling algorithms are easily installed. A good example is RESCHrfox ker-
nel, which implements four scheduler plugins with partitioned, semi-partitionedganal
scheduling algorithms7p].

When schedulers step into cloud environment, virtualization is an especialrfudtool.
Virtual machines can schedule real-time applicatiagt§, [because they allow for a platform-
independent software development and provide isolation among applicafensexample,
Xen provides simplest EDF scheduler to enforce temporal isolation amongfférert VMs.
OpenVMS, a multi-user multiprocessing virtual memory-based operating systetsg idea
signed for real-time applications.

3.7 Summary

In this chapter, we firstly review the scheduling problems in a general fasfiiben we de-
scribe the cloud service scheduling hierarchy. The upper layer dealscigkgling problems
raised by economic concerns, such as equilibrium in service providdre@arsumers, the
competition among consumers needing the same service. Market-basedctod models
are effective tools, both of which are explained with details and desiggiplas. After that
several middleware leveraging these economic models for cloud envirorareeptesented.
The lower layer refers to metadata scheduling inside of datacenter. Telskging to differ-
ent users are no longer distinguished from each other. Scheduling prabtermatch multi
tasks to multi machines, which can be solved by heuristics. Heuristics asifielésnto two
types. Static heuristic is suitable for the situation where the complete set of taskewia k

53



3. SCHEDULING PROBLEMS FOR CLOUD COMPUTING

prior to execution, while dynamic heuristic performs the scheduling when tasks.aln
cloud-related frameworks such as Hadoop and Dryad, batch-modedyheuristics are most
used, and more practical schedulers are developed for special @Gthge meta-schedulers in
HPC or grid computing are evolved to adapt cloud architectures and implementations

For commercial purpose, cloud services heavily emphasize time guararteeability
to satisfy timing constraints of such real-time applications plays a significant roliil c
environment. We then examine the particular scheduling algorithms for real-time tiagks
is, priority-based strategies. These strategies, already used in tradiBafitihne kernels, are
not very capable of satisfying cloud systems requirements. New teches|sgch as loadable
real-time plug-ins and virtual machines, are introduced as promising solutomsdl-time
cloud schedulers.
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4

Resource-provision scheduling in
cloud datacenter

4.1 Introduction

Clouds gradually change the way we use computing resources. In cloymlitiag, everything
can be treated as a service, which is customized and easily purchasednarktes, like other
consumption goods. This evolution is mainly caused by developed virtualizatiomolegly,
which hides heterogeneous configuration details from customers. oherdfe resource allo-
cation problem in cloud computing needs to take market dealing behaviors into e@tsid,
not only match-making scheduling tasks and machi@gs Market mechanism is used as an
effective method to control electronic resources, but the existing marka¢lsare dedicated
either to maximizing suppliers’ revenue, or to balancing the supply-demartabnslaip (0.

In this chapter, we shall focus on helping a cloud customer make a rddsatetision in a
competitive market.

Game theory studies multi-person decision making problems. If no one wanesitiel
from a strategy, the strategy is in a state of equilibrium. Although there has ésesrches on
allocation strategies using game theddy,[37, 86, 74, 20, 125, 57, 116, none suits the new
computing service market perfectly. In order to establish a proper modeldads, several
important consumer characters should be highlighted. Firstly, cloud useegacentric and
rational, wishing to get better service at a lower cost. Secondly, theseshugee more than
one behavioral constraint, so they have to make a trade-off of ondramndor another in
management practice. Thirdly, the pay-as-you-go feature means thsadtens are never
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4. RESOURCE-PROVISION SCHEDULING IN CLOUD DATACENTER

static, but repeated gambling processes. Each user can adjust its bidgeocdirzg to prior

behaviors of other competitors. Fourthly, cloud customers are distributbdllyloso they do
not know each other very well. In other words, there is no common purgh&sowledge in

the whole system. Fifthly, tasks arrive in datacenter without a prior armaege Sixthly, the
accurate forecast becomes more challenging in such a complex scapaigood allocation
model integrating compromise, competition and prediction should be further ¢jeedrand

well evaluated. Given the above challenges, we therefore use gametit@oauctions to
solve the resource allocation problem in clouds, and propose practicablétatts for user
bidding and auctioneer pricing. With Bayesian learning prediction, res@lloeation can
reach Nash equilibrium among non-cooperative users even if common ldgmikelacking or
dynamically updated.

The rest of this chapter is organized as follows. A short tutorial on gaswhis given
first, covering the different classes of games and their applicationsffpdnaice and utility
function, as well as strategic choice and Nash equilibrium. Next, a non-raiomegame for
resource allocation is built. The scheduling model includes bid-shared auctembid func-
tion, price forecasting and equilibrium analysis. Based on equilibrium allocation, apoge
simulation algorithms running on the Cloudsim platform. After that Nash equilibrium and
forecasting accuracy are evaluated.

4.2 Game theory

Game theory models strategic situations, in which an individual’s payoff degenithe choices
of others. It provides a theoretical basis for the field of economicsnéss, politics, logic,

computer science, and is an effective approach to achieve equilibrium in rgatit-aystems,
computational auctions, peer-to-peer systems, and security and informatiketsn&Vith the

development of cloud service market, game theory is useful to addresssthgrce allocation
problems in cloud systems where agents are autonomous and self-interested

4.2.1 Normal formulation

Game is an interactive environment where the benefit for an individuatellepends on the
behaviors of other competitors. A normal game consists of all conceivithtegies, and their

corresponding payoffs, of every player. There are several itapbterms to characterize a
normal form of gameq2].
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4.2 Game theory

Player is the game participant. There is a finite set of players {1,2,---,m}.

Strategy is the action taken by one player. Each plagen P has a particular strategy
space containing finite number of strategifs,= {si,s%,---,s?}. Strategy space i§ =
S1 x Sy x --- x Sp,. The game outcome is a combination of strategiemgblayerss =
(81,82, Sm), Si € S;.

Payoff is the utility received by a single player at the outcome of one game, which deter
mines the player’s preference. For resource allocation, payoff stantteefamount of resource
received, for exampley;(s) represents the payoff of playéwhen the output of the game is
s,s € S. Payoff functionU = {ui(S),uz2(S),---,un(S)} specifies for each player in the
player setP.

Therefore, the normal form of a game is a structure as

G=<PSU> 4.1)

4.2.2 Types of games

Although classes of games are various, we only list three common criteria in @oouting
market.

Non-cooperative or cooperative players

A Non-cooperative game is characterized by a set of independergrplegno optimize their
own payoff. This model is most used in a competitive market. We take clowiteanar-
ket for instance. There are a great number of small and medium-sizegrésdsras well as
widely distributed customers. Efficient communication and cooperation among teensaf-
ficient and impossible, so the non-cooperation game suits for analyzinghigibes of these
egocentric cloud agents.

On the contrary, a cooperative game is the one where players fromediffeoalitions may
make cooperative decisions, so competition here is between coalitions, tfzihelbetween
individual players. Cooperative game is useful when several apamesa common goal. For
example, the users in P2P file-sharing network have the same object, maxithizigailabil-
ity of desirable files. With the development of electronic commerce, worldwidedatoarkets

are collective and localized, such as Groupon and Google offers.
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4. RESOURCE-PROVISION SCHEDULING IN CLOUD DATACENTER

Compared with the above games, non-cooperative games model situations toetite fi

details, while cooperative games focus on the game at large.

Simultaneous or sequential actions

A simultaneous game is the one where all players make their decisions simuibnedthout
knowledge of the strategies chosen by other players. Simultaneous gane¢imaded in
sealed-bid auctions in tendering for leases, where no one knows bitlseofoompetitors.

A repeated game is the one consisting of some number of repetitions of simultgaaoels
A player has to take into account the impact of his action on the future actiontisesfayers,
and makes the current decision based on past experience. In éerbgame, the threat of
retaliation is real, since one will play the game again with the same competitors. Rdaityd
on eBay is an example of repeated game, in which the current highest bhahissalisplayed.
Under a sophisticated mechanism, rational players bid the maximum amount offirsteir
round, and never raise their bids.

In a sequential game, one player chooses his strategy before thedihecsthe later one
has some knowledge about the earlier players. The sequential gameimedsily applied
in English auction, where players bid openly against one another, withsedosequent bid

higher than the previous one.

Complete or incomplete information

Information refers to the game characteristic including the number of plageselaas their
strategy spaces and payoffs. A game of complete information is the one in wfochmation
is available to all players. Each participant knows all strategies andspameling payoffs, but
does not necessarily know the actions taken by other players inside the game.

Complete information is a strict assumption, which is difficult to be implemented in reality.
For example in a sealed-bid auction each player knows his own valuation feethiee but
does not know competitors’ valuations. Although private information is not commowlkn
edge among players, everyone has some beliefs about what his competitardn the situ-
ation of asymmetric information, we assume that every player knows his owff fiayction,

but is uncertain about others’.
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4.2 Game theory

4.2.3 Payoff choice and utility function

In cloud computing market, service providers and their customers have ihepreferences.
Providers balance the investments on capital, operation, labor and deustenters have dif-
ferent QoS requirements, such as cost, execution time, access speedhpiut and stability.
All these preferences impact on agents’ choices, thus an integratedtiodittaguide agents’
behaviors is necessary.

Utility is a measure of relative satisfaction in economics. It is often expressadienction
to describe the payoff of agents. More specifically, utility function combineserttan one
service requirements and analyzes Pareto efficiency under certam@gms such as service
consumption, time spending, money possession. Therefore, utility is veyl uden a cloud
agent tries to make a wise decision. High value of utility stands for greagnerefe of service
when the inputs are the same.

One key property of utility function is constant elasticity of substitution (CESpriloines
two or more types of consumption into an aggregate quantity. The CES function is

1 s—1 s

C=0 aj¢* |77 (4.2)

=1
C is aggregate consumption; is individual consumptions, such as energy, labor, time,
capital, etc. The coefficient; is share parameter, andis elasticity of substitution. These
consumptions are perfect substitutes whepproaches infinity, and are perfect complements
when s approaches zero. The preferences for one factor over andieysachange, so the
marginal rate of substitution is not constant. For the sake of simplicigguals one in the

following analysis. Let = (s — 1)/s, we obtain

InS™" L=r.r
InC = HZz:I (az cz)

r

(4.3)

Apply I'Hopital’s rule,

n
f n e

Tialne »”
D iy @i

limInC =
r—0

If >, a; = 1, the consumption function has constant returns to scale, which means that

the consumption increased by the same percentage as the rate of growth obeaumption
good. If everya; is increased by 20%(’ increases by 20% accordingly. ¥, a; < 1,
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4. RESOURCE-PROVISION SCHEDULING IN CLOUD DATACENTER

the returns to scale decrease, on the contrary, returns to scale exchd&stake two QoS

requirements, speed and stability, for example. The CES function is shoviguireB.1

atp>1

atp<i atp=1

05l

utility

05 05

stability 10 speed

0.5

05 05
stability 10 speed stability 10 speed

Figure 4.1: CES functions

The contour plot beneath the surface signifies a collection of indiffereanges, which
can represents observable demand patterns over good bundley. cEmer shows different
bundles of goods, between which a consumer has no preferenceeftauadle over another.
One can equivalently refer to each point on the indifference curveratering the same level
of utility for the customer.

Especially, CES function is a general expression of Cobb Douglas fun@imsb Douglas
function has been widely used in consumption, production and other sociaravelialysis.
It can build a utility function. In a generalized form, wherg ¢, - - -, ¢,, are the quantities

consumed ofi goods, the utility function representing the same preferences is written as:

a(c) = H o (4.5)
=1
with ¢ = (c1,¢2,- -+, ¢y). Seta = > | a;, we obtain the functior — ce, which is
strictly monotone foe: > 0.
1
u(c) = tu(c)a (4.6)

represents the same preferences. Sefting a;/a it can be shown that

n

u(c) = Hcfi, Zpi =1 4.7)
=1 i=1

The problem of maximum utility is solved by looking at the logarithm of the utility
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4.2 Game theory

max Z pilnc; (4.8)
i=1

4.2.4 Strategy choice and Nash equilibrium

Nash equilibrium is a certain combination of strategy choices, under which perpan ben-
efit by unilaterally changing his strategy while the other players keep thedtsamged. Nash
equilibrium is under the assumption that all players are rational and that theiral#tios
common knowledge.

A formal definition of Nash equilibrium is as follows. L&t =< P, S,U > be a game and
s; be a strategy profile of all players except for playeAfter each playei has chosen their
strategies, playerobtains payoffu;(si, - - -, s, ). Note that the payoff depends on the strategy
chosen by playet as well as the strategies chosen by all the other players. A strategy profile
{si,---,s:} € Sis a Nash equilibrium if no unilateral deviation in strategy by any single
player is profitable for that player, that is

Vi,s; € Si, Si 7& S;ﬂ : ui(s;‘, Stz) > ui(si, S*_l) (49)

Nash equilibrium analyzes a strategy profile under the assumption of completenaaf
tion. However, if some information is private, and not known to all playersptagers with
incomplete information have to evaluate the possible strategy profiles. In pertievery ra-
tional player tries to take an action which maximizes its own expected payoffgosimg a
particular probability distribution of actions taken by other competitors. Thaxetbe belief
about which strategies other players will choose is crucial. Only basexd amrect belief,
players can make the best responses. Each strategy is the bestecpalh other strategies
in Bayesian Nash equilibrium.

In Bayesian games, a type spdGeof player: is introduced, and each has a probability
distribution D;. Assume that all players know,, - - -, D,,, and the type; of playeri is the
outcome drawn fronD; independently.

Bayesian Nash equilibrium is defined as a strategy profile with which eveeydfyplayers
is maximizing their expected payoffs given other type-contingent strate@specially for
player: with the strategy; : T; — S;, a strategy profilgs;,---, sk} € S is Bayesian Nash
equilibrium if
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Vi,ti € Ty, 85 € Siysi # s;: Ep_ [ui(ti, s7(ti), s%;(t=:))] > Ep_,[ui(ti, si(ti), s*;(t—:))]
(4.10)
However, Nash equilibrium may not be Pareto optimal from the global vievehNagui-
librium checks whether a profitable payoff exists when other payoffaiachanged. Pareto
efficiency examines whether a profitable payoff exists without reducirgr®ayoffs. There-
fore, for the egocentric agents in cloud market, Nash equilibrium is more kuttedn Perato

efficiency to evaluate the allocation decisions.

4.3 Motivation from equilibrium allocation

Market mechanism has been proven as a useful approach for nemyce management sys-

tems, such as agent systet®f], telecommunication network$§], data mining §9], cluster

computing p0] and grid computing91]. In these systems, various management contexts in-

cluding bandwidth pricing, TCP congestion control, contents delivery amiing are studied.
The conventional market models are further categorized by modes ofgpeait transi-

tion, including commodity model, contract model, bartering model and auction-retadeel

els. These models have their own strengths and weaknesses, so thgpléd in different

application scenarios. Stuetl4] preferred the commodity model, in which the price is bal-

anced by analyzing the demand and supply values from the market partcigaratford 13

developed an architecture based on the contract model. This model usesidypricing as

a congestion feedback mechanism, and enables system policy to contriaitextegecisions,

S0 it supports scalability and application specific adaptation. The bartering f®gied stud-

ied as an alternative, because it realizes mutual resource cooperati@waythat one user

obtains remote resources for free, letting others use its privacy reswureturn. Moreover,

various auction models including bid-wined and bid-shared schemes are wiskadyfor re-

source management. In the bid-wined model, the highest bidder wins theaesaund pays

as much as the bid. Lyna8%] evaluates three types of bid-wined auctions and finds out the

substantial difference in completion time and energy consumption. The bideshaction is

inclined to solve cooperative problems which belong to a single administratimaidd40], so

the companies as cloud suppliers are in accordance with bid-sharechauctio
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There have been several scientific and commercial platforms that emplogramometh-
ods to solve resource allocation problems in grid or cloud computing. G-commEzée [
for instance is a computational economy for controlling resource allocation in datignal
grids. It develops two different market conditions, commodities markets acttbas for re-
source allocation. BEInGRIDL[LZ] is an infrastructure to support pilot implementations of grid
technologies in actual business scenarios. GridEt0H project creates a commodity market
platform that enables users to bid on available computing capacity, or to pattender for
a specific computing time slot. Cloudbu&3] provides a service brokering infrastructure and
a core middleware for deploying applications in the datacenter to realize the wikglobal
cloud computing marketplace.

The frameworks mentioned above can support conceptual environneemfsd or cloud
resource allocation, but lack the overall equilibrium utility and optimization, from the c
tomer’s point of view. That is to say, the cooperation in the computing markeimcilydes the
balance between users and providers to maximize resource utilization, bresghe compe-
tition between different users. We therefore introduce game theory torssgarce allocation
problems in cloud environment.

Nash equilibrium analyzes how individuals make rational decisions in nopecatve
games, so it is used in the research of allocation strategies in mobile-agenidsgsgems.
Galstyan p1] studied a minimalist decentralized algorithm for resource allocation in grid envi-
ronment. The agents using a particular resource are rewarded if theiendimds not exceed
the resource capacity, and penalized otherwise. Thus, the systeruligantifize resources
by adjusting its capacity. The limitation of this algorithm is that the number of agentsotan n
be too large. Bredin37] developed decentralized negotiation strategies in auctioning divisible
resources. Mobile agents are given budget constraints in advanttplea expenditures in the
series of tasks to complete. Maheswaréfi [generalized Bredin’s result, and investigated a
divisible auction structure that allows for a quasi linear characterization afla variety of
agent tasks. He also proved that the auction has a unique Nash equilibriigriuddamental
research inspires us to solve the allocation problem by sharing, rather igniag an en-
tire resource to a single user in a cloud market. A common flaw exists in both sttithés
is, their decentralized models idealize the competitive environment. The mobiles ey
other competitors’ information well, which is difficult to achieve in a real market.oK\w 6]
pioneered the consideration of a hierarchical game theoretic model in iriadk also derived

both equilibrium and optimal strategies for general cases, based on al sKilify function.
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This result can serve as valuable reference for designing appeptiategies in a grid, and
even in an exchanging cloud. A&(] presented a proportional resource allocation mechanism
for multi-agent systems and provided analysis of the existence of equilibritexding agents

can optimize resource allocation results by updating beliefs and resubmitting blgpitirn
includes more variables (for example budget constraints and time congtmaiatthe current
mechanism. Weil25 considered a cloud-based resource provisioning problem, taking both
optimization and fairness into account. Wei used approximated methods to sidyeident
optimization by binary integer programming, and to minimize their efficiency lossaa byo-
lutionary game theoretic mechanism. However, the approximation ratio and time complexity

should be further reduced to make the solution more practical.

4.4 Game-theoretical allocation model

Virtualization technology hides heterogeneous configuration details froimmess, and makes
computation services functionally identical. Cloud users only need to choaspergomput-
ing capacity that meets their requirements and pay according to the amoumiget LSloud
suppliers offer their customers more than one payment solution. For exampbgzoh EC2
provides three different purchasing options: on-demand model, ezseredel and spot model.
Each model has different applicable scopes and limitatidt&] In order to satisfy more spe-
cific demands, we study bid-based model as a complementary payment opties tiseys the

flexibility to optimize their costs.

4.4.1 Bid-shared auction

In a cloud market, there ar® users asking for services, each having a sequence of tasks

to complete. The maximum number of tasksis Cloud provider entirely virtualizeg<

resources, each of which can render a specific service with a fixegldapacityC'.
C=1[C1,0C,...,Ck] (4.11)

We characterize one task by its size, which means the amount of computinglitapa

required to complete the task.
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a a ac |
q= qi q/,i€ e qé( (4.12)
g g

Not all users have the same task itinerary, the size of an inexistent taskoisnztre
above matrixq. If a taskq,i can occupy its corresponding resourcg, the computation is
processed fastest, at a speedpf= ¢ /Cy.. However, in our model, resource capacity is never
for exclusive use but shared by multi users. It is reasonable anth&iresource partition
is proportional to the user’'s outlay. We assume that a resource is alwiysitilized and
unaffected by how it is partitioned among users.

In the real commodity market, consumers needing the same commaodity are competitors,
and are reluctant to cooperate with each other. Thus, resource allocatitmuds is a non-
cooperative allocation problem.

Every user has a bidding function, which decides the bid in any roundd=yirg task size,
priority, QoS requirement, budget and deadline. The repeated biddiryibels considered
as a stochastic process indexed by a discrete time set. The outputs ane raaréhbles that
have certain distributions, when these above deterministic arguments and tifixe@re

{B'(k),k € (1,2,...,K)} (4.13)

Where B’ is the money that a user is willing to pay for one unit of resource per second

Useri bids for taskk at priceb: , which can be treated as a sample Bt

[ BY 1 [ b ... bp ... bk ]
B=| B | =] b ... b ... by (4.14)
BN | LY by bR

The sumO,, of total bids for taskk indicates the resource price.

Or =ity by (4.15)

Meanwhile,0, " = Z;V# bl is given as the sum of other bids except bjd

65



4. RESOURCE-PROVISION SCHEDULING IN CLOUD DATACENTER

Bid-shared model indicates that resoukoebtained by the usetris proportional to his bid

price. The portion i} = ﬁ and obviouslyyk, SN | xf = 1.

Time spent on task is defined by

th = Do _ Wi+ wh -k (4.16)
Cost taken to complete tagkis
el = bith = wif, " + wibl, (4.17)

Two illuminations are obtained from the time and cost functions.

4.4.2 Non-cooperative game

Both time and expenditure depend not onlyl@nhat an user is willing to pay, but also d;ji
that other competitors will pay. We therefore construct a non-coopergéiine to analyze the
bid-shared model.

In games, the set of players is denoted Bycloud users. Any playei independently
chooses the strateggz from his strategy spacB’. The preference is determined by payoff,
for example, we take computation tintig as the payoff. Every player wishes his tasks to be
computed as fast as possible, so the payoff value is the lower the betgardRess of the value
of 9,;", the dominated strategy of playgeis a low value ofb}'C if he wants to get the optimal
payoff. On the contrary, when we choose cost as the game payofipthanated strategy is
high value oft? , which is different from the former dominated strategy. This differedegsa
us that the payoff must be carefully selected in order to indicate the outcafergnce of a
game. Absolute dependence on time or money is unreasonable.

We combine cost expense and computation time into an aggregate quantity, telnids s
for the total amount of substituted consumption. Similar to utility function discussegeabo

constant elasticity of substitution function indicates the players’ payoff.

o _ PN e+ pIn i
Pe + Pt

(4.18)

Wherep,, p; are the output elasticities of cost and time, respectively.
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4.4.3 Bid function

In a cloud market, customers are rational decision makers who seek to minimizeotigimp-
tion, and have constraints of coBt= [E', E?, ..., EN] and timeT = T[T',72,...,T"N].

With a limited budget’ and deadling™, the optimal object function of uséiis

Min €
ity < T

The Hamilton equation is built by introducing the Lagrangian

K K i
Lo— peln Dy €+ pdn 34—y
Pe + Pt
+ MO e —EY+NO - T
k=1 k=1
peln 371y (Wi + wibl) + pedn 3oy (w) + Wk bz )
a Pe + Pt
E K 9-@
+ )\E(Z (w0, + wiby) — EY) + Ni( Z Wi + Wi bz —TY
k=1 k=1

L is a function of three variables @f, A\ and \;. To obtain the dynamic extreme point,
gradient vector is set to zero.

VL (b, AL M) =0 (4.20)

1. Take partial derivative with respecti

L e Wl 10, 19 '
872' _ P wki _ Pt wk'k'2 )\’Le )\z k =0 (421)
O, petpidi€y  pet P tibi i2
which gives
+ AL —i
Ze S (4.22)
th + >\ (bk)

A similar result is obtained by setting the gradient ot b’ to zerogbl =0,
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ze o

Etz + )\Z (b;)Q

(4.23)

For useri, the capital sun}_ e} and time sund_ ¢; remain the same for any two tasks,
we could therefore determine the relationship between any two bids in onetaskge,

which is

= (4.24)

Then bidk is expressed by big, b}, = b’ , / Z’E
J
Given ©,, , preferenceg. andp; exert major influence on bids. To be more specific,

pe > p; reveals that one user prefers satisfying budget to deadline, otherwesdijree

constraint is more important than cost consumption.

2. Take partial derivative with respect 3¢

K
aw Z ¢ —E =) wilb,+6,)—E =0 (4.25)
k=1

Substitutingbj. for 4/ ﬂbﬁc, the equation is expanded

07" —i i —i
Zf 11W (\/91—1'172;"‘9]‘ ) + wy (b, +6,°)

Y I A
+ ZJK:k—H W;(\/Zb% + 9;1) _Ei=0

Simplifying the above equation, usewill bid for task £ at price

(4.26)

. Ei— wZOZ—wiQ_i— K wHZ
b — Z] 1 kY% Z] —kt1 (4.27)

2
k=10 00 L K i )%
2j=1 Y 0. T W+ Xk @ 0.

3. Take partial derivative with respect ¢
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w0 +0,")
—_— — TZ == O 4.28
k=1 k=1
The expanded expression is obtained
k—1 _Zb;ﬁe% bi 40, " K 3 6“9;1
_ i k %
Zj:l wj( P ) + wk( bt ) + Ej:kJrl j( -~ ) -1"=0
j_i b/;; JGJ _bi
gk gt k
(4.29)
The above equation is further simplified by
y S Wi 00w+ w ]\/9 9 .30
k= .

T3 W)

Equation 4.27) and equation4.30 show the influences of budget and deadline on bid-
ding pricebl. Both equations reveal that current Wil is decided by competitors’ bids in
pastd;'(j < k), present’, and futuref;*(j > k). If bidding functions are based on the
assumption that all other payments are fixed throughout the network, the imolEssified as
static games of complete informatio2]. However, these isolated cloud users are unable to
collect all rivals’ financial information in a real market, and the resouticeation problem
evolves into the game of mcomplete information. In that casés a function with respect to
avector[f; ", ---,0,", GkH, e ,0 '], only if the expectation of future bld%H_l, E 9 are

estimated precisely.

4.4.4 Parameter estimation

The existence of Nash Equilibrium with complete information has been proveddur37).
However, new problems arise when buyers do not intend to expose tligitdbother com-
petitors or when they are allowed to join or leave a datacenter from time to time. Hesv d
one deal with the lack of information? How do users predict the price trerttiebasis of
inadequate knowledge? We record historical purchasing péges - ©,_; in past auctions,

and then use statistical forecasting method to evaluate the future price.
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In probability theory, Bayes’ theorem shows how the probability of a Hypsis depends
on its inverse if observed evidence is given. The posteriori distributinrbeacalculated from

the priorip(©), and its likelihood functiom(© | ©y) is

p(Ok|©)p(©)

PO 1) = T 6,10)p(0)d0

(4.31)

The posteriori hyperparametes§0|©;) can be achieved by using the Bayesian learning
mechanism, the value of which determines the maximum likelihood prediction of oesour

price. So future bids are forecasted as

Gkil E(0]6)) — E(BY)
(4.32)

~

0 = E(0|0k_1) — E(B)

Three parameters}, 3; and~; are introduced, which stand for information from other

competitors.
a}; = Z; Zj k+1 wjej '
Iy f@] NG (4.33
7;2=Zf 11W +Z] f1 W

Substitutingd; * by ©, — bi. in equation 4.27), we obtain the explicit functiorfi () with
respect t@y.

i _ (B'—a}—w;6)* 4(6;)%©
[1(Or) = Q(kﬁ—;i);k (\/1 + m — 1) (4.34)

Figure4.2 shows that task bid is decided not only by its budget, but also by its workload
Compared with the solid line, the dot dash line shows that a wealthier user is capable
mitting a larger positive bid and has a larger participated bid range. On theaggritre user
with a heavy workload has to save cash for the following competitions, so theynadiocated
to the current task is very limited, which is shown by softened dash line.

Substitutingd; " by ©, — bi, in equation 4.30), we obtain the explicit functiop; (©;) with
respect o, which characterizes bid price under deadline constraint.

i - V(B H4(B)2(T =i ) (TP =i —w} ) O (8})?
9:(Ok) = 7ty Ok + T e (4.35)
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Figure 4.2: Bid under budget constraint

As seen from equatiord(35), g,i(@k) is a monotone increasing function with respect to
O, which means that bids can grow to infinite if the budget constraint is omittedioQly,
exorbitant price would not deter the users who have sufficient capitaicgus competition
can not be restrained.

100

----- longer runtime
initial bid function |4
= = = |onger deadline

90

80

701

60

9O, B w)

Figure 4.3: Bid under dealine constraint

In Figure4.3, the dot dash line illustrates that one user will not be in a hurry to make a high
bid for sufficient resource if he has enough time. Thus, the user ganothis expenditure
more effectively. As seen from softened dash line, longer task runtindsmeere computing
capacity, so bidding price rises accordingly.

The bid functions under budget and deadline constraints are comparedine &i¢ The
range of possible bid enlarges accordingly when constraints are kahs&he intersection of
the two solid lines signifies that budget and deadline are both exhausted atrieise. If
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Figure 4.4: Bid under double constraints

deadline is extended, the solid budget curve meets the dashed deadlingt@loxger position.
It indicates that the possible bid should be above the solid deadline curvdentorcomplete
all tasks in finite time. For the same reason, if one user holds more funds,téngeiction
moves right along the solid deadline curve, so the left side of solid budget will contain the
possible bids. The bid region is surrounded by cross and plus ciBpesifically, the crosses
mean that all capital is used up with time remaining, while the pluses mean that @eiadlin
reached with redundant money. Outside this region, there is no feasitiadpgblution, which
indicates the given constraints are over rigid. Users must loosen eithez tfidhconstraints
slightly if they still wish to accomplish this impossible mission. Furthermore, regardies
whether the budget or deadline constraints are relaxed, the @pgeer which users can
participate is stretched.

The cross curve is chosen as the new bidding fundtigi®;) under double constraints,
because higher bids are more competitive in terms of a fixed

i) =4 Ok fi(Or) = gi(O)
hk(@k)_{ AR k : 4(@:) (4.36)

0 : fi(Ok)

2
<

Eoladtauld

9
)

4.4.5 Equilibrium price

The bid functions of any userhas been deduced. Next, we analyze whether an equilibrium

price exists and how it is obtained.

In the beginning, users who need resoutgaake their initial bids,
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o) ="t (4.37)
N
In the first round, money that users are asked to pay for the respartition is calculated
by bid functionhi(@él)). A general expression is
™ = ni (0™ (4.38)

Wherem means values are in theth round. Hence, the price that the cloud provider

prepares to charge frofi users is actually

oy =3 "nie") (4.39)
N
The corresponding partition igi(m) = b;(m)/@;mﬂ). If anyone disagrees with the allo-

cation due to either insufficient resource, or high cost, iteration will continuerdtsin adjust

their bids in the next round. If all users satisfy their allocation proportions;uhent price

et — gl (4.40)

The resource pricé),(im“) is agreed by every user, so this is an equilibrium price.

In game theory, Nash Equilibrium occurs when no user can obtain mongrcedoy chang-

ing his bid while others keep theirs unchanged, that is

W= Max z(b,0,") (4.41)

Wherebi* is equilibrium bid and), ™ = ©; — bi* is equilibrium performance of his com-
petitors. When demand is higher than provisiply, z;, > 1, users intend to pay more to
improve their own allocation proportion, so the resource price increasesdawly. High re-
source price will then reduce, until 3~ ,, 2}, approaches one. The reverse situaliog z}, <
1 is also true. In conclusion, resource price has a negative impact oaltreofy " , 2%, and
pushes it to the situation where resource is fully utili2eq; x;(m) = 1. Therefore,y" \ =}
can be considered as a descending function with respeé\,of Different resource prices
O}, # O}, have different values of y =%, so the equilibrium pric®; that let}" , 2} = 1

is unique and Nash Equilibrium exists.
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160 O initial resource price ||
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Figure 4.5: Equilibrium resource price under double constraints

Figure4.5shows the equilibrium resource price for a dynamic system under the condition

that all users have similar bid distributions. The line with slope one shows thaittifigniotion
sumy " h(Oy) of taskk is equal to©y. The intersection of this line and the curyéh(©,)
stands for the only stable solution. From this figure, we can observe hdim#hequilibrium
price is affected by different numbers of users. Increasing nunflzamopetitors raises the bid
sum and makes resource more expensive. An user has to bid agaiestongpetitors if he
really needs this resource. As a result, the resource price soarsOngl. the price becomes
too high, some users quit the competitive bidding and the resource priceongkequently
decrease quickly.

4.5 Resource pricing and allocation algorithms

Although there are several commercial cloud computing infrastructurds asusneka, Azure,
EC2 and Google App Engine, building cloud testbed on a real infrastruistesgensive and
time consuming. It is impossible to evaluate performances of various applicaBoarsos in
a repeatable and controllable manner. We therefore apply simulation methy i qeerfor-

mance evaluation of resource allocation algorithms.

45.1 Cloudsim toolkit

Cloudsim R3] is designed to emulate cloud-based infrastructure and application seawite,

can be used in research of economy driven resource managemeigsotidarge scale cloud
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computing systems. Researchers benefit from focusing on resourcatialhoproblems with-
out implementation details. These features are not supported by other claudters §3].

We apply Cloudsim as our simulation framework, but make some improvements aiming
at the following shortcomings. Firstly, sequential auctions are complemerdedimaanied
by several specific policies. Secondly, Cloudsim only supports statignasent with pre-
determined resources and tasks. We realize that multi-users can submiashkeiover time
according to certain arrival rate or probability distribution and that resoapdes can freely
join or leave cloud datacenter. The assignment in our simulation model is muchtdeseral
market than before.

4.5.2 Communication among entities

There are four types of entities to be simulated. CIS Registry provides ladatéevel match-
making service for mapping application requests to datacenter. Datacentgaiesedis-
tributed hardware, database, storage devices, application softwam@parating systems to
build a resource pool, and is in charge of virtualizing applicable computigiress according
to users’ requests. Cloud users have independent task sequamtéisey purchase resources
from datacenter to execute tasks. All these users bid according to tbeiorac capabilities
and priorities under different constraints. Auctioneer is the middleman in eladingnaintain-
ing an open, fair and equitable market environment. In accordance witlulde of market
economy, auctioneer fixes an equilibrium price for non-cooperatives igsexvoid blind com-
petition.

Figure4.6depicts the flow of communication among main entities. At the beginning, data-
center initializes current available hosts, generating provision informatioregiters in CIS.
Meanwhile, cloud users who have new tasks report to auctioneer amne gyein order of
arrival time. At regular intervals, auctioneer collects information and reégukgacenter to
virtualize corresponding resources. Once virtual machines are sgadyding to users’ ser-
vice requirements, datacenter sends the provision information to the auctiameésuccessive
auctions start.

In each auction stage, users ask the auctioneer individually about a@atibguinforma-
tion such as virtual machine provision policy, time zone, bandwidth, resiaduapuating pro-
cessors, and bid according to their asset valuations. Auctioneer collebtdsathen informs
users of the sum of bids. Under the game of incomplete information, cloud asir know
their own price functions as well as the incurred sum of bids. They dynamipedigicate
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Figure 4.6: Flowchart of communication among entities
the future resource price, and update competitors’ informdtiph - - -, 6; ", 6; /1, - -+, 05].

Subsequently, holding all price functions auctioneer makes an equilibrium allocatisiah

and inquires whether everyone is satisfied with the result. If the resultéegalgle, auctioneer
publishes allocation proportions to datacenter and users. Users then etetutasks and
pay for the resource allocated. At the end, datacenter deletes the usedndwvaits for new

service demands.
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4.5.3 Implementation algorithm

Concrete algorithms for users and auctioneer are explained in more detailgdittfn 1 and
Algorithm 2.

From an user’s point of view, after task submission, observer fecaseanalyzing the
received messages that prescribe user’'s next move. If auctioneeurares a new auction,
user adds it to the auction list. If bids are called, an appropriate bid is cald@atereported
to auctioneer. If user receives the message calling for parameters, hanegahe historical
prices and estimates the future bid sum by Bayesian learning mechanismetisrirgforma-
tion back. Finally, if user receives resource price and proportion, he inateddupdates his

price list and begins to execute the task.

Algorithm 1 User¢ bidding algorithm

1: submit tasks to auctioneer

2: if observer receives message of inform staen

3: add current auction

4: end if

5: if observer receives message of call for tiltsn

6:  set{bi, .- bt} bL

7. send message of proposal to auctioneer

8: end if

9: if observer receives message of call for paramekens
10:  inquiry historical priced; ;- -, 6,
11:  forecast future pricé, !, -+, 0"
12:  send message of competitors information to auctioneer
13: end if
14: if observer receives message of resource phiee
15: {@17"‘7@k—1}<—@k
16: send message of task execution to resource
17:  delete current auction
18: end if

From an auctioneer’s perspective, a new auction is triggered off wbea&ew type of task
arrives. Once an auction begins, auctioneer broadcasts the bid callingye&ssarrent users.
As soon as all proposals arrive, auctioneer informs users theGgunSimilarly, auctioneer
collects bidding function parameters from all the bidders, and then decidas@nable bound.

If the bound is too narrow, poor users quit gambling. Resource price iffietbdepeatedly
until the difference betweel ki and©, is less than a predetermined threshold. Once the
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equilibrium price is found, allocation proportions are broadcast to all clousugdter that

auctioneer deletes the current auction and waits for a new task request.

Algorithm 2 Auctioneer allocation algorithm
Require: N > 2

1: initialize auctioneer

2: while auctionk do

3. set bidders to auctioh
broadcast message to call for bids
while bidder’s proposal arrivedo

collect proposal message from bidder

end while
broadcast message to infon,
while bidder’'s parameter arriveto
10: collect parameter message from bidder
11:  end while
12:  while bidders disagree proportiao

© o NGOk

13: for all cloud userglo

14: build new bid functior},

15: end for

16: dif ference =Y hi — Oy

17: if dif ference > threshold then

18: O = > hi

19: else

20: exit

21: end if ) A
22: update vectoff; *, -, 6, 0,1y, -, 0]

23:  end while

24.  broadcast message to inform resource price
25:  stop the current and wait for a new auction
26: end while

27: delete auctioneer

4.6 Evaluation

4.6.1 Experiment setup

We now present the simulated experiments in Cloudsim. Datecenter is usuallpedngf a
set of hosts, each of which represents a physical computing node in titk ohoour simulation,

60 hosts are created with heterogeneous configuration characteristostg picked in Table
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4.1

Table 4.1: Resource characteristics

Characteristics Parameters

Machine architecture x86, Sun Ultra, PowerPC

Operating system Linux, Windows, Solaris

Virtual machine moniton Xen, UML, VMware

Number of PE 2,4,8

MIPS rating per PE 100, 200, 300, 400
Memory 512M, 1024M,2048MB
Storage 160G, 320G, 500G
Bandwidth 128M, 256M, 512M

To model cloud users, we create application tasks that contain informatiordredaeecu-
tion details such as task processing requirements, disk I/0O operations aimtbEisput files.
We simulate 32 users in a cloud system, and each with an exponentially distnitoutdxbr of

tasks. Two common distributions, Normal and Pareto, signify preferences die prices.

4.6.2 Nash equilibrium allocation

Firstly, normal distribution is used to describe the financial capability of thesuggidding
function B? has mean’ and variancer?. We choose one user as our observable object, and
assign a mean purchasing price of 10$/s and bid variance of 0.1. Othebidsame generated
randomly in the range of 1-100%/s. This user is unaware of other ecosdmations, but keeps

on estimating others from their prior behaviors.

Figure4.7illustrates how closing price changes as time goes by. We conclude thattbudge
exerts a huge influence on preliminary equilibrium price, because selfistatiohal users
always wish to seek extra benefits from others. With limited budget, the udvehave
conservatively at the initial stages, to avoid overrunning the budgetiveselve enough money
to complete remaining tasks. Therefore, in the beginning, the equilibrium priceés than
the mean price. On the contrary, if the user has sufficient capital, he isteaggrove current
payment to get a larger proportion. Competition leads equilibrium price to risegitigén the

anticipated cost. However, with the money available for the current jokedsitry, the user
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Figure 4.7: Convergence of Nash equilibrium bid

becomes less aggressive. As bidding is underway, price will graduailyecge to the original
mean value.
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Figure 4.8: Prediction of resource price

Next the accuracy of Bayesian learning prediction is evaluated when the wlatket is

full of uncertainties, such as insufficient common knowledge and on-linestashitting. Fig-

ure 4.8 exhibits the predication of resource price in dynamic game of incomplete information
If the common knowledge is insufficient, the user experientially predicts oidsrusing the
published equilibrium prices. When the bidding variance is low, no more thdn the es-
timation works quite well. Our policy differs a little from the scheme that hypothedizat

all users’ information is fixed and public. If users perform unstably in thelging process
and the offered bids are more random, accurate price forecast beabffieult. Provided
that rivals’ information is learned iteratively, experiment results show #&durce price still
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converges to the equilibrium price stage by stage.

4.6.3 Comparison of forecasting methods

Three forecasting methods are compared, including Bayesian learnitagidaikaveraging and

last-value following.
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Figure 4.9: Forecast errors with normal distribution

Figure4.9 shows the standard deviations of three forecast methods versus time A#ries.
three forecasting methods are able to converge to the result with perfechation, as long
as the user keeps on training his belief of others’ bid functions over time. cabes with
abundant budgets are examined. Some users would like to increase bitisnorgeesource,
so the price keeps rising, to much higher than the estimated bid. If all the hidtorices are
used for prediction, the history averaging method behaves poorly at gimenb®y of auctions,
and is less stable than other two methods. Compared with the last-value metlyedjaRa
learning converges in a smoother manner, because historical pricaseat¢o calculate the
likelihood function rather than simply following the price in the previous auction as/&se
method.

Now we apply another distribution, Pareto, to express users’ bidding, mileanwhile
keeping other experiment setups the same. A similar conclusion can bedéaétigure4.10
except that the worst forecast is last-value method. The result is due #tttlbute of Pareto
distribution. The Pareto principle stands for the probability that the variable#&ey than its
minimum, while normal distribution reveals how close data clusters are around its fRe&a
one specific round of bidding, it's more difficult to estimate the precise vaitieRareto distri-
bution than with normal distribution. In other words, the more historical data isnadeted,
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Figure 4.10: Forecast errors with Pareto distribution

the more accurate the forecast would be. In Figudd), convergence of Bayesian learning is
still the most stable one of the three schemes. As a result, it is recommendddrasaest
method in practical applications.

4.7 Summary

In this chapter, we solve the resource allocation problem in the user-leeébud schedul-
ing. We survey game theory, covering the different classes of gantethain applications,
payoff choice and utility function, as well as strategic choice and Nash equitibrBased
on that, we build a non-cooperative game to solve the multi-user allocation prablgoud
scenario. The scheduling model includes bid-shared auction, user gflaitbfunction), price
forecasting and equilibrium analysis. We propose game theoretical algoritiinsdr bidding
and auctioneer pricing, and then supplement bid-shared auction schenwsud aimulation
framework, named Cloudsim, in order to realize sequential games. Resuitststaesource
allocation reaches Nash equilibrium among non-cooperative users when cadmowledge
is insufficient and that Bayesian learning forecast has the best andstabte performance.
Our algorithms can support financially smart customers with an effectieedsting method,
and can help auctioneer decide an equilibrium resource price. Thertfeyeare potential to
solve resource allocation problems in cloud computing.
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5

Real-time scheduling with MapReduce
In cloud datacenter

5.1 Introduction

Computing in clouds has become more instrumented, interconnected, intelligerdraasiye
than ever before. A cloud datacenter can carry out a wide spectraiata@dfintensive applica-
tions to assist our daily activities and social problems, such as searchnggdening social
networks, recommendation services and advertising back-ends. Thermarging classes of
cloud-based applications that benefit from increasing time guarantee x&opke, real-time
advertising requires a real-time prediction about user intent based on ¢aeghshistories.
Meeting deadlines here translates into higher profits for the content previdtecontrol dat-
acenter, enormous amount of real-time data should be collected and reperigdically by
various sensors. Besides that, ambient intelligence needs a networkbds#ata integrate
these sensor data streams in time and to offer a real-time analysis accordiegtoeguest .
Therefore, computing in clouds, where billions of events occur simultahgeadsigiot in time
linear dimension, but falls into the real-time computing category.

Real-time application is subject to a real-time constraint that must be met, regaoflles
system load. If a real-time computation does not complete before its deadlinegdtisdras a
failed case, as serious as that the computation is never executed. MapR&ihas emerged
as one of the most popular frameworks for distributed cloud computing. Dealihglifferent
real-time tasks on a MapReduce cluster can benefit users from shacorgraon large data
set. However, the traditional scheduling schemes need to be revised, in tepadicular
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characteristics of MapReduce.

MapReduce consists of two individual steps, inspired by Map and Rddncgons. Firstly,
input data is chopped into smaller sub-problems, each of which runs a paptmn. After
all Maps finish, the intermediate answers of these sub-problems are dsdeand then re-
assigned to Reduces according to different keys generated by NRagisices only start after
all Maps are completed, which illustrates a special feature of MapRedwtdsttsequential
segmentation of task execution. The segmentation and interdependence bdtpemmd Re-
duce, provide the primary motivation of our study on real-time scheduling onpRE&uce
cluster. In this chapter, we shall assume the computation ability of a cluster asla oy
hiding assignment detail of every Map/Reduce task in the interior of the cluste

The rest of this chapter is organized as follows. We first formulate thdinea scheduling
problem, based on which classical utilization bounds for schedulability testgisited. Af-
ter analyzing the advantages and disadvantages of current utilizatiodyoua then present
MapReduce scheduling model and a less pessimistic utilization bound, combinipay tice-
lar characteristics of MapReduce. Next we discuss scheduling perfoentd our mathemat-
ical model, following by experiment results implemented by SimMapReduce, a simaofato
MapReduce framework.

5.2 Real-time scheduling

We build a real-time scheduling problem model by a trifiie P, A) wherel is the set of
real-time taskspP the set of processing resources ahthe scheduling algorithms.

5.2.1 Real-time task

A computing task is an application taking up memory space and execution time. Th@tonce
of task should be distinguished from event. An event emphasizes artiopdeking place at
a specific moment, while a task can be submitted, executed, halted, suspeddetlirned.

For the purpose of time analysis, we define a real-time task by its timing characseris
rather than by the functionality requirements, such as execution time, lateeasiind,etc.
The tasks to be scheduled make a taskiset {7, 7,---,7,}, and anyr; consists of a
periodic sequence of requests. When a request arrives, a newcastacreated. For the
periodic real-tasks, several preliminary terms should be defined.
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e T;: period is the time between two successive instances offask
e ();: offset is the first release of task
e (;: computation time is the worst-case execution time;of

e D;: deadline is the relative overdue time in one period.

In addition,r; ;, denotes thé!” instance ofr;. There are several important instantsfpr,
and their relationship is shown in Figusel

e a; ;. activation instant at which instanegy, is released to the scheduler.
e s, ;. starting instant at which the instaneg, starts computation.

e ¢; ;. execution time, it is how long instaneg;, in running

e fix: finishing instant at which instaneg;, finishes the execution.

e d; ;.. overdue instant at which instaneg; is required to be finished.

Cik

1 '

ik Sik fi,k d,',k

Figure 5.1: Relationship between important instants

All instances are activated after the request is submitted; s equal toO; + (k — 1)T;.
The starting times; ;. can not be earlier than the activatioyy,. The total amount of execution
time e; ;, depends on the processing resources, but it can not exceed thisew@cution time,
that isC; = maxe; ;. The execution of; j, finishes atf; ;, ands; ;, + e; ;, < fi . For most
cases, the equal sign is not true, because scheduler might executéhamone task at the
same time. Finishing time is important but varies with different instances. Respione of
taskr; is defined as the maximum of finishing tini& = max(f; » — a; ). The deadlinel;
is the absolute overdue time foy;, sod; , = a;, + D;. The task utilizatioru; = C;/T;
shows the impact of task on processing resource. System utilization is the sum of;aind
it presents the fraction of processor time used by periodic task set.
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v=%u, 5.)
=1

Since the required amount of computation power can not exceed the avadlstiece, the
conditionU < 1 must be satisfied if there are feasible scheduling solutions on task set

5.2.2 Processing resource

Processing resource is the resource in charge of executing taskbefake of simplicity, we
distinguish processors one from another by its computing capability. Theetergrocessor
types or internal architectures are ignored in this model. Typical primgesssources are

e Uniprocessor: there is only one processor in the set, and the woest@aputation time
depends on the size of executed tasks.

¢ |dentical multiprocessor: the number of processors in set is more thammteach of
them has the same computing capability.

e Uniform multiprocessor: the number of processors in set is more than oifferet
processors have different computing capability, but the speed on eackspor is a
constant and does not depends on task type.

e Heterogeneous multiprocessor: multi processors are constituted by wlifferelware
platforms, so the worst-case computation time depends not only on task siaésdoan
task type.

Among them, the uniprocessor and the identical multiprocessor are most stoebadise
they are more general and easily analyzed than the multiprocessor of identie&rogeneous
configuration. The other two cases can be extended by identical multiprozeEspecially,
many results achieved for the uniprocessor are useful for multipracessmurces, we there-
fore focus the discussion on uniprocessor.

5.2.3 Scheduling algorithm

Scheduling algorithm is the set of rules for mapping tasks frdmonto the processing re-
sourceP. An algorithm is preemptive if the execution of one task can be interrupteddihien
task. The interrupted one is resumed later at the same location where the sasiegmpted.
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Non-preemptive algorithms are easily implemented because of no extra averteded for
context switch, but they can not promise that all deadlines are satisfied.résult, preemp-
tive algorithms are applied by real-time scheduling to handle applications with thetistréct
requirements.

Two basic constraints should be met. A task can not be executed on two®pnogessors
simultaneously, and a processor can not execute on two or more tastsr tHase premises,
a feasible scheduling algorithm is that the scheduling can make all tasks meetetuinds.
An algorithm is optimal in the sense that no other feasible scheduling exists if thegsan
not be scheduled by this algorithm.

First In First Out (FIFO) algorithm queues tasks on a waiting list. When a nshisa
submitted, scheduler puts it on the list according to its arrival time. RoumihR&R) is
another common scheduling algorithm. It handles all tasks without priority, andlanic
assigns a fixed time unit to each task in equal portions. However, both oftbdorm badly in
real-time scheduling system, which means they often fail to match the applicaticsisatots.

In the context of real-time systems, the scheduling algorithm is priority drivee.tasks
are assigned priorities according to their constraints, and generally theshigriority is as-
signed to the most urgent task. When a task with low priority encountersenaitk with
high priority, the running one immediately hands over processor to the nkwltass, the task
with the highest priority is always executed no matter whether the prodessmupied or not,
using preemption if necessary. In this case, a static scheduling algorithmtoefieesd priority
assignment. Once the priority is fixed, it never changes till the task is finisbierwise, the
scheduling algorithm is considered to be dynamic, if the priorities of tasks migiigehfrom
time to time. Although dynamic scheduling is more effective than static scheduling in utilizing
the available computational resources. Fixed priority assignment is moredppliadustry
systems, owing to its efficient implementation, simplicity and intuitive meaning. Fotigaac
purposes, we will focus on the study on static scheduling with fixed priorgigament.

5.2.4 Utilization bound

Utilization bound(/ provides a simple and practical way to test the schedulability of a real-
time tasks set. If the system utilization of a given task’set,; is lower than the bound’,

the task set can be scheduled by processing resource. Although the iscanly sufficient,

not necessary, it is widely used in industry. Because it is easily implemente@dstrenough

for on-line test. The simplest bound is decided by the number of tasks in taskseaise
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system utilization bound, strict constrains are relaxed by subsequeatrchsrs. The more
information of the task set included, the better the utilization bound obtained. Iretttiors,

we revisit the development of utilization bound.

Classical bound

In 1973, Liu B2 proposed Rate Monotonic (RM) scheduling algorithm for preemptive pieriod
tasks on uniprocessor in hard real-time system, which played seminal rdhesdavelopment
of real-time scheduling research. RM algorithm assigns priorities to tasksalygsropor-
tional to their periods. Liu proved RM algorithm is the optimal fixed priority assigmmend
derived the lowest upper bound from the worst case of system utilizagianditrary task set,
that is

~

U=n(2Y"-1) (5.2)

This bound decreases monotonically from 0.83 to 0.69 whepproaches infinity. As
long as the utilization of a given task set is beneath this bound, schedulabilitaiargeed.
However, this bound is only sufficient, not necessary. Many task setsuiilitation higher
than this bound can still be scheduled. This phenomenon implies that thesgirageesource
is underutilized. The desire to improve the system utilization leads to researcbrerprecise

bound.

Closer period

Burchard B9 found an increasing utilization if all periods in a task set have values tleat ar
close to each other. For a setiotasks, Burchard introduced two parametgys= log, 7; —

|log, T;] and$ = max S; — min S;. The least upper bound of processor utilization is

17:{ (n—1)@2%" 1) 4217 -1 B<1-1/n (5.3)

n(2'/" — 1) g>1—-1/n
Higher utilization can be obtained if task periods satisfy certain constfaitl — 1/n.

The disadvantage is that more calculation is needed, such as searchthg &xplicit task

periods.
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Harmonic chains

Appropriate choice of task periods guarantees high utilization, especiadly task periods are
harmonic. Sha proved that schedulability is guaranteed up to 100% utilizatloriharnomic
periods [LO7. The limitation of periods hedges the pratice in application domain. K& [
generalized this result by groupping tasks in serveral harmonic ctiamesy harmonic chain is
a list of numbers in which every number divides every nunmber after itetethrek harmonic
chains, clearlyt < n, the least upper bound to processor utilization is

U= k@Y% —1) (5.4)

A better bound is obtained by applying period parameters. Howevernaateg the num-
ber of harmonic chains for a given task set also increases the time complexity

Chen B9 investigated an exact bound that can be derived exhaustively threleondition
where periods and computation times are integers. An algorithm @(th¥) complexity is
presented and performs better than harmonic bound. He also proposteraalgorithm,
which yields an exact bound with exponential complexity.

Hyperbolic

Bini [32] proposed a schedulability condition similar to utilization bound. This condition does
not depend on the number of tasks. The schedulability test using Binil$ ress the same
complexity as using Liu's bound, but less pessimistic. For a settagks with fixed priority
order, where each task is characterized by a single utilizatiotihe task set is schedulable if

[Jw+1) <2 (5.5)

This result can also be integrated into the method of harmonic chains.

Two-level priority

Shih [10g proposed a semi-static scheduling algorithm. Two-level priority algorithm assign
tasks with two priorities, the low for old request and the high for deferegdiest. Deadline is
deferred if an instance of task does not finish before period expiigsmaximum delay of

max (1,7 — 1), where~ is the ratio between the longest period and the shortest period. The
least upper bound to processor utilization is
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U=[14n(2"Y"-1)/2 (5.6)

This bound approaches 0.845 whempproaches infinity. However, this algorithm is not
optimal whery is greater than two.

Arbitrary deadline

A crucial assumption of RM algorithm is that the deadlingalways equals peridfi;. To better
utilize the processing resource, a heavily loaded resource chooséstigety long artificial
deadline, while a lightly loaded resource applies a relatively short artificialidea In this
case, the deadlines may be different from the periods, and Liu’s baeattddown.

Lehockzy [77] proposed an utilization bound for RM does not only depend on the number
of tasks but also the ratid= D;/T;. When the number of tasks approaches infinity, the least
upper bound to processor utilization is

§ § €0, 3]

~ ) In(26)+1-96 §€3,1]

U=) 2m(2) -m@—5) 1251  6e[L?] ®.7)
2In(36) +2 -0 §€(3,2]

WhereS is the smallest root 062 — (§ + 2)S + §. The bound with arbitrary deadline
is a generalized expression of Liu’s bound. If one addition period isgitrat isé = 1, the

utilization bound increases from 0.69 to 0.81.

Aperiodic task

Some real-time systems contain tasks that have non-periodic requestgchexicution times
or no hard deadlines. Therefore, the periodic bounds are inapplicébleuvthe periodicity
assumptions.

Abdelzaher 18] proposed a synthetic utilization in the spirit of Liu’s bound to test whether
the aperiodic tasks meet their deadlines. Synthetic utilization need informationtbb@aim-
putation time and deadlines of all active tasks, thdfis= % A active task means that
it has arrived, but has not yet expired. When the number of taskeagpes infinity, the least
upper bound to synthetic utilization is

Ué =22 (5.8)
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An arriving task that lead§ ¢ to exceed the bound will be rejected. Consequently, aperiodic
utilization is improved by only accepting task whose deadline can be guaranteed.

5.3 Motivation from MapReduce

Besides sufficient tests with utilization bounds, there are several exaetidability tests
yielding to sufficient and necessary conditions independently propgsg@24, 111]. How-
ever, these exact tests are nearly intractable in real-time system. Their timéegitynis
NP-hard for these non-trivial computational model8€], which is not acceptable for an on-
line test. We therefore concentrate on looking for a utilization bound on Mapdeecluster
for on-line schedulability analysis.

The improvement of bound is achieved by introducing practical requirenoémtsplica-
tions. When periodic tasks are executed on MapReduce cluster, the combofatemuential
computing and parallel computing impacts on real-time scheduling. In the next secdon, w
analyze how the segmentation between Map and Reduce influences clustdrarntiliza

5.4 Real-time scheduling model for MapReduce tasks

5.4.1 System model

Assume a task sdf = (71,7, --,7,) including n periodic tasks on MapReduce cluster.
Without losing generality, we l€f; < 75 < --- < T,,. In RM scheduling, task with higher
request rate has higher priority, so taskwith shortest period has highest priority, while the
last 7,, has the lowest. All tasks are independent, that is, have no precedsatienship.
Besides that, all tasks are fully preemptive, and the overhead of preengpiiegligible.

MapReduce solves distributable problems using a large number of commaiéestively
referred to as a cluster with certain computing capability. One task is partitioned, jntbaps
andn, Reduces. The numbers of, andn, are not fixed, varying from one task to another.
Maps performed in parallel finish in a certain timé;, which means total time required to
completen,,, Map operations. Total time spent e Reduces is execution timg;. For
simplification, we assum&; is in proportion toM;, anda = R;/M; is introduced to express
the ratio between the two operations. Here we simply let all tasks use thensahie whole
computation time for task; is
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1
Ci=M;+ R; = M,; +aM; = ERZ + R; (5.9)

One remarkable character of MapReduce is that no Reduce operatibe sabmitted till
all Map operations finish, sd/; and R; have innate temporal sequence and share no over-
lap. In the following context, we use Map/Reduce to signify the whole exegptiocess of
Map/Reduce operations.

As former assumption, request of each instance occurs when a new pegms, so the
Map request is consistent with the request of the whole task. The momentRédduce request
is submitted makes a huge impact on cluster utilization. If Reduce always exesu$eon as
Map finishes, two stages of Map and Reduce are continuous. Hencekloarase considered
as a general case without segmentation, the bound of which is the famousdbiuisl. |If
Reduce does not make its request in a hurry, this tradeoff can bedeheficluster utilization
by making better use of spare time. We introduce parameter Tr, /Ty, to reveal the
segmentation ratio. The samas applied for all tasks in task s€t Clearly,

1

Utilization u; is the ratio of computation time to its periag = C; /T;. System utilization
U is the sum of utilization for all the tasks in task set.

= + ot (5.11)

5.4.2 Benefit from MapReduce segmentation

Seen from above system model, there is a natural segmentation betweem#/&educe.
For a MapReduce task, a delay might exist during the whole execution time, tirasbwith
normal task executed in one go from beginning to end. How does thisatbasic impact on
the schedulability performance? We take Figbr2for example to give an intuitive idea.

There is atask sét = (11, 72, 73), inwhichC; = 4, Cy = 6. Becausé€1(12) < T5(16) <
T5(24), taskr; has the highest execution priority, while taskhas the lowest.

Firstly, we analyze the case of normal tasks. In order to fully utilize clusteigomputation
time C5 of taskrs is no more than 4. Otherwise, the cluster fails in scheduling these three tasks
simultaneously. In this case, the system utilizatiotl i, ya = %1 + %’ + %3 = 0.875
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T1

MapReduce task

Figure 5.2: Comparison of normal task and MapReduce task

Next, we consider the case of MapReduce tasks with= 1. Computation timeCs

can be increased to 7 from 4, without changitig and C>. The system utilization is then

Mi+Rq Mo+ Ro Mi+Rs __
T + To + T3 =L

Therefore, the system utilization augments owing to the segmentation betweemiflap a

UM apReduce —

Reduce. Quantitative analysis of exact augmentation is presented in treentah.

5.4.3 Worst pattern for schedulable task set
At the beginning, let us review the concept of critical instant theorerpgsed by Liu 82].

Theorem 1. A critical instant of a task is the moment at which the task makes a reqhéest w
has the largest response time. It happens whenever the task is tedjsaaultaneously with
all higher priority tasks.

The concept implies the worst case occurs when all the tasks start to etplests at the
same time. Therefore, the offsets of all tasks are set to zero, tliats,0. In order to decide
whether a task set is schedulable, we check if and only if the first regfieach task is met in
their first period when all tasks begin simultaneously.

In this section,Iy;, andTs, are treated as relative deadlines for Map and Reduce, respec-
tively. Map M; instantiates at the beginning of a new period, and must be finished Before
At the momentl’,,,, ReduceR; makes the request, and its execution lasts/f@rat most. In
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this assumption, how does the cluster bound change according to the decyl®;,? In
order to get the lowest utilization, we find out the worst pattern for schbtiutask set on
MapReduce cluster. Lemmniadepicts the worst pattern for a schedulable task set that fully

utilizes MapReduce cluster.

Lemma 2. For a task sefl’ = (7,72, --,7,) with fixed priority assignment whefg, >
T,_1>---> Ty > Ty, if the relative deadline of Reduce is not longer than Map<{ 1), the
worst pattern ensuring all tasks to be scheduled is

M, =T, —T
My =13 -1T5

+ptn

n (2 + CK)TI - %Tn

M,_1=—2T, —Th
M, =
Proof. Suppose a task set fully utilizing MapReduce cluster. Fully utilizing has two mgsn
The first implies that a task set can be scheduled on cluster, and thedss&wons that no
improvement can be made in terms of cluster utilization. Each#asktask sef” is defined
by a triple< M;, R;, T; >, or equally< M;, o, T; > consideringy = R;/M,;.
In order to analyze the period relationship between two neighboring taskgheitinost
adjacent priorities, we assume that

T
M, =T, — HJ Ty +e (5.12)

Wheree is a real number. We reduce Map runtimé& with ¢ whene > 0. In order to
maintain the full processor utilizatiodd/$ is improved with the amount ef

M =T, — {%J T TO=Th
Mg = My +e T¢ =Ty 5.13)

M? = M, T =1T,

n n

Through this adjustment cluster utilizati@rf is consequently smaller than original uti-
lization U, because ) .
U-U*=¢(1 e 0 514
((1+a)(z = 75) > (5.14)
Although the two task sets fully utilize the cluster, the latter has a low cluster utilization.

As a result, the new pattern is worse than the former one.

94



5.4 Real-time scheduling model for MapReduce tasks

On the contrary, whea < 0, M, gets longer to fully use the cluster as

M{’:Tg—[%J-Tl =1

b T Tb T
My =M+ FTﬂ I Bt (5.15)
MY = M, " =T,
The corresponding utiIizatioUb decreases again, owing to
1 [1]1
b 2
U-Ul=el+a)(—=—— 2| = 5.16

The worst pattern of task set makes cluster utilization reach minimum, as longmas
proaches zero. The following analysis is based on the conditiof.
Next, the periodl’} enlarges[%J times as

Mf:Tz—H—fJ-Tl Tf:L%J-Tl
_ T T _
M3 = M + (LT%J - (T2 - Lﬁj ) T5s =T, (5.17)

n

Compare new utilizatio®“ with U

U—U°=(1+a)(1—1/ {%J)(%)zo (5.18)

This revise further pulls down the cluster utilization, which gives us inspirgtibat closer
periods degrade the system utilization. If we try to search for the worst pather smallest
value of L%J should be taken. Hence the worst case happens \h/%eﬁ: 1, in other words,
Ty < 2T7.

To sum up, we have

My =T, - T (5.19)

Using similar methods, we obtain more results about the period relationship bbetwee

adjacent tasks.

Mi:T%—Q—l_Tia i:2,3,---,n—2 (520)

For the purpose of analyzing the relationship betwEgn, andT,,, we construct a new task
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set by halving the period;, ;. The periods of other tasks keep the safels, - - - 15,2, Tr,.
To avoid any waste, Map execution timé, ; is transferred front,,_; to 7,.

M = M T =T
M = M, Td =Ty
Z : (5.21)
Mﬁlfl =0 szlfl =Th-1/2
Mé=M,+M, 1 T=T,
A lower utilizationU¢ is achieved, comparing with old
U—-U%= M, ( L i) >0 (5.22)
Tn—l Tn

The task set is resorted according to the length of period asslifingT;, 1 > -+ > Tb >
T,. The new pattern further decreases utilization under the condltlorﬂbqt < 1}FBT;f,
owing o7y < 115 - 213 1 = 3Tn—1 < 13510 = 13510

Map M,,_; is obtained

1

Myt = BT — Ty (5.23)
Time left for Map executionV/,, is
1 =, o« 1+a
M, = an — ; C; — Z; Mi = (2+a)Ti - - ﬁTn (5.24)

O]

The above worst pattern stands for the most pessimistic situation where thatlkzest
tion can be calculated. Under the condition given by Lemma 2, schedulable lwmped on

MapReduce cluster is derived.

5.4.4 Generalized utilization bound

Theorem 3. For a task sef” = (7, 72, -, 7,) with fixed priority assignment whefg, >
Tn—1 > ---> Ty > Ty, if the length of reduce is not longer than map< 1), the schedulable

upper bound of cluster utilization i$ = (1 + «) { [(?iE})”” 1]+ ‘fIZ }

Proof. To simplify the notation, parametets, vo, - - -, v, are introduced
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5.4 Real-time scheduling model for MapReduce tasks

T,=~T, i=12-,n—1 (5.25)

Computation time of, tasks is expressed as

Ci:(1+Ck)(’yi+1Tn—’yiTn) 1=1,2,---,n—2

Cnfl = (1 + O‘)(ﬁTn - ’YnflTn) (526)
Cn=0+a)[2+a)nT, — i—%Tn]

Which gives the cluster utilizatiotl

N v A ! I1+a
U:(1+O‘)[Z%H, ’Yz+ I+3 L2+ —

5.27
i1 Vi Tn—1 1+ ﬁ] ( )

In order to compute the minimum value bf, we set the first order partial derivative of
functionU with respect to variable; to zero

oU B
i B

For variabley;, we get the equation

0 i=12-,n—1 (5.28)

2 1
M= 2a? (5.29)

V= V1%t t=2-,n-1
The general expression ¢f is
1 (2 + «
2414

By substituting general value of into U, the least cluster utilization is achieved as

i ym i=1,2,---,n—1 (5.30)

U:(Lﬂm{mfig

ym_4y+f;g} (5.31)

O

Moreover, a symmetric utilization bound is easily deduced using similar methodeas Th
orem 2. If the length of reduce is longer than mgp>{ 1), the schedulable upper bound of

cluster utilization is

U_a+a)%ma+aﬁf —u+a+aﬁ} (5.32)
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On a real MapReduce cluster, numerous tasks are executed caotiguise the number
n is typically very large. Therefore, for all practical purposes, weraost interested in the

cluster utilization as: — oco. Whenn is infinite, the limit ofU is

1 In (2t B-a <1
U= imu=q GEORED L, O (5.33)
n=—00 + =)[In( a+aﬁ)—|—a+a5] 6>1

5.5 Numerical analysis

Figure 5.3outlines the fluctuation of utilization bound with respecttand(, wherea shows

the proportion of execution time between Map and Reduceditidstrates the ratio between
two relative deadlines. Seen from Figuge3, the bound is a symmetrical plane on the axis
«a = #. Itimplies that the value oft and s should be harmonious, that is, difference between
« and g can not be too dramatic. Easily understood, if a long Map<( 1) is given a short
relative deadlinef > 1), itis impossible to schedule all the tasks before periods expire. Thatis
why the cluster utilization dips to zero when assignment of the two variablesrgjoampposite
directions. Ifa andj are given reasonable values in advance and task set can be sctmduled

MapReduce cluster, utilization bound is a concave function with respecatul 3.

Utilization w.r.t.a and B

o
o

0.

c
2
T
N
3

Figure 5.3: Utilization bound

In order to analyze the bound fluctuation more conveniently, we take those sections
of differenta. As shown in the Figure5.4, whethera is greater, less than or equal to 1, the
bound first ascends, and then descends gradually. Cluster utilizatidressthe highest point
ata = (.
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5.5 Numerical analysis

Uiilzation w.r.t. B when a < 1 (a = 0.5) Uiiization w.r.. B when a = 1 Uilization w.r.t.8 when o > 1 (a = 2)

Utiization w...a when B < 1 Utiization w.r..a when B = 1 Uilzation w.r..a when B> 1

= =

Figure 5.5: Utilization comparison with different

Next we take three cross sections of differgntising the same method. In Figurg5,
a similar conclusion is summarized as the cases of fixetlowever, the curve is no longer
jumpy, but becomes smooth. Because the pessimistic bound is piecewiserfumithioespect
to 4, not toa. Another phenomenon that should be paid attention to is that the peak is not
necessarily reached at the paint 3.

All these figures also suggest that the more harmonioaisd 5 are, the more effective the
scheduling for a given task set could be. In order to find out where tixénman value ofU

is, we set the first order partial derivative of functiGrwith respect to variablg to zero

(1+a)(f—a) g<1
1+ (& - a) 0 f>1

Both equations are true under the same conditios (5. It is fair and in accord with

(5.34)

‘Q |

reality, that is, Map and Reduce share one period exactly accordingit@tbportion.

A+8) {nGHY" -1} <1
<1+%>{[<1Hg>1/"—1]} 1

Figure 5.6is drawn whemx = 3. The bound rises steadily due to segmentation of Map

(5.35)
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and Reduce. Whefi approaches zero, the least cluster utilization is near 0.7. The amount of
utilization rises ag? goes up untild = 1, peaking at 0.81, which is also a global maximum
point. After that, cluster bound declines slowly to 0.7 again, whéncreases to infinity.

Utilization by Diagonal Slice
:

09r

0.6

0.5

Utilization

04

0.3r

0.2

Segmented Request (a = B)
01l == Successive Request (LLB)

10° 107" 10° 10" 10°
B

Figure 5.6: Optimal utilization

Notice that Liu’s utilization bound/ = n(Q% — 1) can be represented in a task set with
B =0o0r3 =o00. §=0Is an extreme case where the time spent on Reduce is negligible, so
Map execution time stands for the whole computation time. The caSe-oft implies that
Reduce execution occupies the whole computation time. Therefore, our e isca general
expression of Liu’s bound, only if a special value®is assigned in these functions.

Our result improves the Liu's work. This augmentation comes from the flexibifity o
MapReduce. The execution of Map operations should be first promisedus® Reduces
need to collect all the output of Maps. However, the moment when Reducesnaatequest
changes the final cluster utilization. If Reduce waits in a reasonable paribtands over
cluster to a more pressing task with lower priority, it is possible to achieve myarandic al-
location and a higher utilization bound than the case in which no segmentation exgtebe

Map and Reduce.

5.6 Evaluation

In order to further validate the effectiveness of the new scheduling algofihiapReduce
tasks, we compare the proposed bound and Liu's bound by a Map&staalator, named
SimMapReduce. SimMapReduce can model a vivid MapReduce environmeigivee a de-
tailed analysis on task processing. It supports multi-layer scheduling ofewsé job-level
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5.6 Evaluation

Table 5.1: Node characteristics

Characteristics | Parameters
Cluster rating | 10000MIPS

memory 2G

storage 200G
bandwidth 100Mbps
network star-shaped

or task-level. For example, economic schemes coordinate demand aryl Isallppce among
the users of MapReduce cluster, and heuristics dispatch Map/Redksédaailable CPUs.
Next, we complement the priority-based scheduling algorithms in SimMapReduceyalne

ate the scheduling performance for real-time tasks in MapReduce cluster.

5.6.1 Simulation setup

We initialize .xml configure file as simulation setup.

(1) Setup of node: A MapReduce cluster is configured by homogensmiss. More
parameters are shown in Talsel

(2) Setup of user: A certain number of users enter into the cluster simulisiyeAny
userr; has an unique type of task, which arrives periodically. These periosks @onstruct a
sequence, belonging to one specific usey, is the kth task in sequence. In this simulation,
the size of task sequence is 50. Users are given priorities by RM algorgfonebsimulation
starts, and these priorities are fixed throughout the execution of simulatiotagkweith short
period preempts the cluster whenever it meets task with long period. If dnistast finished
before the next task of the same user arrives, this task as well as itsamspot be scheduled
by the cluster. As a result, the set of tasks is not scheduable.

Two concepts concerning utilization should be clarified first. Task utilizatiopis C; /T;,
and set utilization is the utilization sum of all types of tagks= > u;. Obviously,Ur is no
more than one if there is a feasible scheduling algorithm. We then assume that one million
Ur distribute uniformlyU(0,1). For everyUr, a set of task utilization; is generated by
Algorithm 3 [31].

Since this experiment only focuses on the computation time, data size includirtgilapu
Size, intermediateFileSize, outputFileSize are set as small as possible.iaigptde time
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spent on data transmission approaches negligible compared with task exern#oif the

bandwidth is large enough. The user characteristics are shown ing.&ble

Table 5.2: User characteristics

Characteristics Parameters

set utilizationUr, | [0,1]

user number 2,20

task utilizationu; | uniform distribution [0, 1] (Algorithm 3)

task number 50

arrival intervalT; uniform distribution [10, 100]
MapTask length | 10000 u;T; (MI)

1+3
ReduceTask length 1000075, 7; (MI)
input size 1KB

intermediate size | 1KB

output size 1KB

Algorithm 3 Generation ofuy, - - -, uy,| (JAVA)

1. n=20

2: sumU = Ur

3 fori=1—-n—-1do

4. nextSumU = sumU x Math.pow(rand.nextDouble(), )
5. w; = sumU — nextSumU

6: sumU = nextSumU

7: end for

8: u, = sumU

5.6.2 Validation results

For a givenUr, 1000 random sets are generated. Evenf'set {r;, o, --,7,} is examined
by bound test and simulation test. After repeated tests, an accepted ratisunwbss ratio are
calculated with respect tOr.

If a MapReduce task is scheduled by classical Liu’s algorithm, Reduce k&ggns imme-
diately after Map stage completes. The task is unscheduable if Reduce isdirifbr next

Map arrives.
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In the new segmentation algorithm, two absolute deadlings ;, andrD; ; are added for
MapTask and ReduceTaskf respectively.

mD;y = (k—1)T; + =T,
rDi,I;kZ k(Tz ) o (5-36)
MapTask is submitted when a new MapReduce task begins, and Redkice$abmitted
at the momeninD; ;.. The whole task is unscheduable, if MapTask is finished aftey, ;, or
if the ReduceTask is finished afteD; ;. Consequently, thE = {7, 72, -- -, 7, } with Ur can
not be scheduled on cluster.

Bound test (2 tasks)
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Figure 5.7: Bound tests (2 tasks)

Figure5.7 shows the accepted ratio of bound tests when the size of task set is twae The
tests seem like step functions. They thoroughly accept task set if the settidilizs less than
the bound, otherwise, refuse it. The MapReduce scheduling improvetatscal bound in
varying extents, arriving at maximum whehequals one. Since these bounds are deduced
on the basis of worst cases, they are pessimistic for average caséob®hAs a result, it is
meaningful to lift bound for practical applications.

Figure 5.8 shows the success ratios when there are 2 tasks in task set. Liu’s scheduling
is compared with the MapReduce algorithm whgequals 1, 0.5, 4, respectively. Our new
scheduling algorithm can promise better performance than original Liu’s mebecduse the
success ratio keeps on rising/approaches one. We take MapReduce schedulingavithl
for example. When set utilization is less than 0.85, the schedulable probabilianyoran-
dom set is 100%. This result has slight difference with the theoreticaldofi.89, because
the transferring delay is included in simulated cluster, but ignored in the idedél. There-
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Figure 5.8: Simulation (2 tasks)

fore, this result can still validate the existence of the MapReduce boupadged in previous
section, and further prove that the bound is only sufficient, not neigesBlae schedulability
of a set under this bound is guaranteed, and the scheduability of aysetdothe bound is
uncertain. When set utilization is more than 0.85, there are still chances tuselzeset of

tasks on MapReduce cluster, but the propobility reduces with the incgedsimand of cluster
utilization.
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Figure 5.9: Bound test (20 tasks)

Figure5.9shows the accepted ratios with 20 tasks in set. Similar conclusions can be made
as the case with 2 tasks. Liu’s bound is still the lowest, while the highest orhisvad by
MapReduce schedulingd(= 1). The bound of3 = 0.5 performs better than thg = 4,
becaused of the former is closer to one, the maximum value.

In Figure5.10 the differences of these algorithms are more obvious than that with 2 tasks.
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Figure 5.10: Simulation (20 tasks)

The sulfficient threshold moves to 0.65 wherquals one, and to 0.55 when Liu’s algorithm
is taken. MapReduce scheduling is less pessimistic than Liu's work, by uplitiegeal
schedulability. This improvement is determined by the property of MapRedueebiggers

is, the more benefit is archived. Whénapproaches zero, the two algorithms are nearly the
same.

5.7 Summary

In this chapter, we study the problem of scheduling real-time tasks on MapReduster,
arising from demand for cloud computing. We first formulate the real-time sdimgcproblem,
based on which classical utilization bounds for schedulability test are reli¥ite then present
a MapReduce scheduling algorithm, combining the particular characteristicapRétiuce.
After Map is finished, a proper pause before submission of Reducerdsance scheduling
efficiency for the whole cluster. We deduce the relationship between clutiteation bound
and the ratio of Map to Reduce. This new schedulable bound with segmentglifs LLiu’s
bound. The latter can be further considered as a special case ofttier f@ he effectiveness of
this bound is evaluated by simulation using SimMapReduce. Results show thawhimond
is less pessimistic, and it supports on-line schedulability teSX(in time complexity.
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6

Reliability evaluation of schedulability
test in cloud datacenter

6.1 Introduction

Since real-time requirement is a significant QoS criterion of cloud servamagion, schedula-
bility tests are necessary. These tests can determine whether an arrpiicgtéqm is accepted
or not, so it can well guarantee the system stability. Some of schedulabilityyiekisto
exact conditions to achieve the maximum system utilization, but the time complexity is not
acceptable for an on-line test. Some of them applying sufficient conditions sogmewhat
underutilize cluster, but can be finished quickly, in predictable running tlduasidering on-
line guarantee in clouds context, a test with constant-time complexity is more sudableud
datacenter.

Although a number of constant-time tests have been studied, they are incbtephtiae
determination conditions are different. In order to keep high system utilizatiopytinéem of
choosing a reliable test attracts our attention. Typically, simulation can give d@ivimanswer,
but the result always depends on the way of generating random parammetkthe number of
experiments. Therefore, we introduce a concept of test reliability to aethe probability
that a random task set can pass a given schedulability test, and defimgicator to express
the test reliability. The larger the probability is, the more reliable the test is. Ererpoint of
view of system, a test with high reliability can guarantee high system utilization.

The rest of this chapter is organized as follows. We first investigate kederesearch of
schedulability tests in real-time system. Then we explain the importance of on-liedida-
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bility tests in cloud datacenter, and present several related conditionshieddability tests.
After introducing reliability indicator, we give some practicable examples téa@gxjpow the
indicator is used to compare the reliability of different tests. The comparesarits are vali-
dated by SimMapReduce.

6.2 Schedulbility test

This chapter breaks the limitation that deadline exactly equals its period, and dpeeral
survey on schedulability tests with arbitrary deadlines. In that case, Deadtinetonic (DM)
strategy replaces RM as the optimal priority assignment policy for periodis {86§]. Con-
sequently, assigned priorities are inversely proportional to the length dietdline. The task
with the shortest deadline is assigned the highest priority, while the one withrthedbdead-
line has the lowest priority. When deadline equals period, DM assignmenildeta RM
assignment.

The schedulability test predicts temporal behavior of a given task setieanides whether
the deadline constraints will be met at runtime, that is, the given task set sghéduled. Two

main types are

e Sufficient test: All task sets that pass the test can meet their deadlinesvétpg@me
of task sets that do not pass the test can still be scheduled by processsingce.

e Exact test: A task set can be scheduled if and only if it passes the test.

In this chapter, we investigate current schedulability tests in terms of desigripte,
time complexity and applicable scenario. System designers , who face aftriagisveen test
accuracy and overhead, could make a reasonable decision basecwaitable computational

power.

6.2.1 Pseudo-polynomial complexity

An exact schedulability test yields to a sufficient and necessary condauit, requires high
computational complexity7[0], even in the simple case where task relative deadlines are equal
to periods. Lehoczky78] studied an exact feasibility test with pseudo-polynomial complexity
for that RM priority assignment. Based on linear programming, Pa8kdchieved the exact
utilization bound without knowledge of exact task computation time. Subsequentlg/eyud

108



6.2 Schedulbility test

[24] considered a DM priority assignment and improved Lehoczky’s exeagibility test by
searching worst-case response time in an iterative manner. Lehd@zkiygn proposed a more
general feasibility test for arbitrary deadlines. Later, methods for spgegh the analysis of
task sets were proposed7] 111, 17, 29, 49, 30|, but the complexity of the approach always
remains pseudo-polynomial in the worst case. Here we present two $@seuoao-polynomial
complexity tests.

Breakdown utilization

Breakdown utilization is first proposed by Lehoczkig],describing an exact characterization
of RM scheduling algorithm. For a random task set, the computation time scales tarthatpo
which a deadline is first missed. The corresponding set utilization is the lmeakdtilization
U;:. This bound is an exact bound, which provides both sufficient andseaneconditions for
a schedulability test. If the utilization of task set is higher than this bound, ntiGolexists
for scheduling all the tasks on one processor. Otherwise, the taskrsbeccheduled with-
out missing any deadline. The result seems exciting, but this breakdown utilizhizoges
according to tasks with different periods and computation times. In otherswtarsk set size
n is not enough to make a decision, and precise details such as computatiary tipeeiod7;
for every task should be known in advance.

U* — > G/

n T minges, v C;[t/T5 1/t (6.1)

In order to characterize the average behavior, Lehoczky studied yheptstic behavior
of the breakdown utilization when periods and computation times are generathohiy.
EspeciallyU;: converges to a constant as the task set size increases, dependiog pefiods,
no longer on computation times. Given task periods generated uniformly in thetémeal
[1,B], breakdown utilizatiorU;: converges to.

1 B=1
U* = gl_Bl 1< B<?2 (62)
n In B B>2 ’

IR
and the rate of convergence(¥./n)
In addition, the function otU;; with respect taB first decreases and then increased3as
grows from one to infinity, bottoming @ = 2, which is in agreement with Liu’s result. For
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uniformly distributed tasks, 0.88 is a reasonable approximation for the hreakdtilization
bound, which is much larger than Liu’s sufficient bound of 0.69.

Response time analysis

Breakdown utilization has a strict restriction that the deadline of a task must thguaériod.
For tasks with deadlines no more than periods, DM is the optimal priority assidrig@n
Audsley proposed a method to estimate the actual worst response time tiotaskcso the
schedulability test turns out to be a trivial comparison of each task’'onssptime and its
deadline.

Response time is the period between task submission and execution completiarar$he
response timek; for a taski equals the sum of its computation tirog and the worst interfer-
encel;. Interference is defined as the preemption time of higher priority tgsks:), and is
given by the sum o{%ﬂ Cj.

Ri=Ci+ Y ﬁﬂ C; (6.3)

Vji<i

R; can be calculated by asymptotic iteration.

R?‘H — O+ Z F;}L—‘ C; (6.4)
vi<i ' Y
R? is thenth iteration. The iteration begins &) = 0, and ends aR!™! = R?. If
R} reachesD; before termination of convergence, iteration also halts, that is to say, the task
set is not schedulable. This analysis intends to predict the worst irgeciethat a task can
suffer from higher priority tasks. Since the prediction formulation doesefet to any priority
assignment strategy, it is effective for both RM and DM approaches.

6.2.2 Polynomial complexity

Response time analysis (RTA) is a popular method for schedulability analyséaletime
tasks. Many efforts of RTA in the simplification have been made by reducinguimder of
iterations [L11, 38, 84]. Although some of them can shorten the run time with a saving of
26-33% calculationg4], all algorithms currently known still take runtime pseudo-polynomial
in the representation of the task system. Besides that, approximation is then apfligder
reduce the time complexity of an exact schedulability test.
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Fisher p8] derived a fully polynomial time approximation scheme of the RTA. This scheme
accepts two inputs, the specifications of a task system and a constat1], to examine fea-
sibility tests. If the test returns feasible, the task set is guaranteed to bdusett on the
processor for which it has been specified. If the test returns ubfeathe task set is guaran-
teed to be unscheduled on a slower processor, the computing capacitychfis/in (1 — ¢)
proportion to the specified processor.

The number of iteration of interference calculation is limited to a congiantherek =
[1/e] — 1. So the approximated value 6fis

[Tﬂ G t<(k-1T

~i — . = ' (6.5)
Ci"‘TiCi t>(k—1)T;

Therefore, the worst response tirRgis calculated irO(n?k) time complexity.

In addition, Bini [28] derived an upper bound on the response times in polynomial time.

The worst response tim&; is bounded b)R;‘b as

Ci+ Yo -
ZS Z]_l iijl( J) _ R;Lb (67)
1- Zj:l Uj

The time complexity of computing the response time upper boﬁﬁdis O(i), and the

complexity of computing the bound for all the task€ién?).

More polynomial complexity tests can apply the utilization bounds in the previouseshap
For example, Hang4] suggested modifying the task set with smaller, but harmonic, periods
using an algorithm withO(n? log n) complexity. Chen49] investigated an algorithm with
O(n?) complexity that obtains an exact bound under the condition where periddsoanpu-
tation times are integers. Lauzac limited period relations, and improved schedulalitity w
aO(nlogn) time complexity.

Generally speaking, all polynomial complexity tests are only sufficient, ao¢éssary. The
time complexity for exact tests is always NP-hard for non-trivial computatioagaels [LOF].

Less complexity is always achieved at the cost of less accuracy.
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6.2.3 Constant complexity

The constant complexity tests apply the simplest bound, such as the cléssioa B2] or

the hyperbolic bound32]. Both of these tests are (1) time complexity, so they are easily
implemented and fast enough for on-line schedulability tests. As long as thetidiizd a
given task set is under this bound, all tasks can be scheduled forGuesshortcoming is that
the two bounds are only suitable for RM approach. In order to find ouhaise schedulable
condition like Liu’s result, Peng9P] proposed a concept of system hazard to check whether
assigned tasks miss their deadlines, and computed lowest upper boundaifiithm. The
calculation of DM bound can be finished@ (1) time complexity.

Recently, another schedulability test witli1) constant complexity has been developed by
Masrur B9, 88]. This test calculates an upper bound of the worst response time congide
all accepted tasks, and is different from all mentioned tests based syslieatian. If this
upper bound does not exceed the respective deadlines, all taske sahdaluled under DM.
However, the comparison with other bound-based tests remains unfitigltiee authors.

6.3 Motivation from constant complexity

In cloud computing, a service request may arrive at any time in a datacentender to
guarantee the system against overload and collapse, an arrivingeied then to be admitted
or rejected on-line according to whether it can be feasibly scheduled widigtutbing other
tasks. Therefore, the datacenter requires a schedulability test thae éiarshed in predictable
running time.

Schedulability tests strongly affect system stability, especially for systerouéirng pe-
riodic tasks that treat deadline as a dominant QoS constraint. For exampiepaaet of
interactive computer games needs to be processed well before trad afriie next packet.
From a practical point of view, we limit our study to fixed priority schedulingcduse it is
prevailingly supported by commercial real-time operating systems.

Exact schedulability tests are already known for fixed priorities. Although &ccuracy is
always desirable, exact tests are often not eligible for on-line requirefleatrunning time of
such a pseudo-polynomial test depends on various task parameteygliffioult to precisely
bound such a running time in an on-line setting where the task set is constamttjiraja

Polynomial-time approximation tests require tasks to be sorted according tasiage
priority. When a new task arrives, we only need to add it to a sorted listfterdretest all
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already accepted lower-priority tasks. This leads to additional delay andenagpractical,
particularly, for a large number of tasks.

Considering the on-line nature of the problem in cloud computing, a schedulgb#ity
with constant time complexity is applicable, which does not depend on the nwhtesks
currently running in the system. Although there have been several céesljgtaviding on-line
commitments, schedulability tests using different conditions are incomparabéequestion
how to choose the best among all available alternatives provides the pmmoéiation of our
study.

However, a criterion has not been established to compare the constanttinissi@n con-
trol test using different conditions. In this chapter, we introduce a methasbrigpare the
accuracy of different schedulability tests. The principle comes from llem@menon that a
test admitting more tasks is more reliable given a number of random tasks. litdite in-
dicator can be used to evaluate test performance. From the point of /&y8tem, a test with

high reliability can guarantee high system utilization.

6.4 On-line schedulability test

We first clarify system model and relative terms that will appear in the follgwgctions.

6.4.1 System model

Atask sefl’ = (11,7, -, 7,) is formulated including: independent periodic tasks. Task
consists of a periodic sequence of requests. The interval betweenteessive instances is
periodT;. The time taken to executgis C;. In the duration of any instance, computation must
be completed before the deadlibg. Herein, we assum€; < D; < T;. Utilization u; is the
ratio of computation time to its periad, = C;/T;.

A task 7; is schedulable with respect to an algorithm if no instance misses its deadline,
and a task sdf is feasible with respect to an algorithm that can schedule all tasks in the set
before their deadlines. Each task is assigned to a priority before execQtortrete priority
assignment is discussed in the next section. When a running task with loay@ncounters
a new request from a task with high priority, it hands over the cluster togheimstance with

a negligible overhead.
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6.4.2 Test conditions

Liu's RM condition

RM scheduling is an optimum static algorith82]. If RM can not make a task set schedulable
on a cluster, no other rules can succeed in scheduling. RM algorithm is oitdyplsufor
the cases in which task period exactly equals its deadline. Liu proposedceptai system
utilizationU as a sufficient condition for schedulability test. The subsctiptandm represent

the work of Liu, Peng and Masrur detailed in the following content, resgsgti

Theorem 4. For a set ofn tasks with fixed utilization, us, - - -, u,,, there exists a feasible
algorithm ensuring all tasks can be scheduled on a cluster if

U = Zul < n(2Y/" —1) (6.8)
i=1

Peng’s DM condition

Deadline replaces period as the new determinant when deadline does ngbexipth Peng
[99] modified the system utilizatiot/,, for DM algorithm by introducing system hazafio=

Theorem 5. For a set ofn tasks with fixed utilization, us, - - -, u,,, there exists a feasible
algorithm ensuring all tasks can be scheduled on a cluster if

_S 0 9 €0,0.5)
e ;u@ - { n[(20)Y/" —1]+1—-0 6 €[0.5,1] (6.9)

Marur's DM condition

Marsur B9] also studied a set of tasks with deadline no longer than period, and papdsad
condition to test whether a task set is schedulable on a cluster.

Theorem 6. For a set ofn tasks with fixed utilization, us, - - - , u,,, there exists a feasible
algorithm ensuring all tasks can be scheduled on a cluster if

n

3 max(, 2ui <1 (6.10)

i=1
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Marur’s condition contains a maximum operator. For the sake of simplicity, plaae the
max by introducing two parameterg = (1 + minwu;)/2 andu, = (1 + maxwu;)/2. There
arem tasks {n < n) satisfy thatu; /0 is larger thar2u; /(1 + ;). Then Masrur’s condition is

decomposed to

g i ui <1 ) 0 € [0,u)
— U
Un =3 §mui+ 52" mre <10 € [ug,up) 6.11)
S 2 <1 0 lun. 1)

6.5 Reliability indicator and applications

The effectiveness of a sufficient schedulability test can be measyrdtklaccepted ratio of
task sets. The larger the ratio is, the more reliable the test is. One typical nmethattu-
late accepted ratio is Monte-Carlo simulation, in which a large number of synthskicéhs
need to be generated with random parameters. However, almost all er@asis are made
with some intrinsic errors. If the method of generating parameters is biasezhsamable
conclusion might be deduced due to the different hypotheses betweelatsoamsi and actual
working conditions. For these reasons, a probability method is used to inthedli&elihood
of accepted ratio.

Note that this accepted ratio is different from the similar concept in previessarches
[30]. The denominator of this ratio is the total number of participated tests, ratherttie
number of feasible ones. Such an adjustment makes our analysis muchlessese finding
out all feasibly schedulable task sets in an exact test is extremely time cowsuAniother
advantage is that simple UUniform algorithm turns out to be practical in our siimmijavhich

does not work for original test of accepted ratio, owing to a huge nunfbhrations[32].

6.5.1 Probability calculation

Without loss of generality, we suppose that task utilizatigns uniformly distributed with
mean valuel /2 and variancel /12. Two probability distributions will be calculated in the
following context.
X = Z?:1 Uq

X is the sum of: independent:;, and the Probability Density Function (PDF) &fis
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LUJ

: !Z(—l)k(z)(U— k)"t U eo,n] (6.12)

9'~PDF(AX) = m
k=0

Therefore[V has mean value/2 and variance:/12. Its Cumulative Distribution Function
(CDF)is

1 Wl

Fepr(X)= = (DU — k)" U e[o,n] (6.13)

" k=0
More generally, for a sequence of independent and identically distdbatelom variables
u; with expected values and variances?, the central limit theorem asserts that for large

the distribution of the sunX is approximately normal with meaiy, and varianceo?.

n n

X = NG

) (6.14)

QY =510 2u/(1 4 w)

An intermediate variablg; = 1/(1 + w;) is introduced, and its PDF is expressed as

1 1
Spor(yi) = g W€ [5:1 (6.15)
Mean and variance af; are
1
B(w) = | wig(u)dys = n2 (6.16)
2
1
D(y;) = E(y}) — [E(y:)]* = 3~ (In2)? (6.17)
With y;, we obtain
Y = zn: Ui _ zn:2(1 — ) (6.18)
o ltw I
Y is approximated by a normal distribution as
Y — N[2n(1 —1n?2), 4n(% — (In2)%)] (6.19)
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6.5.2 Reliability indicator w

We define reliability indicatotw as

w="2"F (6.20)

(o
For a generic normal random variable with meaand variancer?, the CDF isF(z) =
®(*=£), inwhich®(z) is the standard normal distribution. Since the CDR¢iv) is a mono-
tone increasing function with respectitw can indicate the probability that a random task set
passes a given examination. The higher the probability is obtained, the bettaimination
is. Therefore, different schedulability tests can be compared by aitigjiatdicator. The test

with a large value ofv is more reliable than that with a small value.

6.5.3 Reliability comparison of RM conditions

When deadline equals period, we have two RM sufficient conditions fodsdduality test.
Based on Liu’s conditiond.8) and 6.14), we getu = n/2,0 = /n/12 andz = n(2'/" —
1), hence the reliability indicator of Liu’s condition is

;E—,u:n(21/”—1)—g

w; = — (6.21)
g 12
According to Masrur’s load test, we obtain

U, —f: 2ui (6.22)

e P 1+wu; — ’
From 6.19, 4 = 2n(1 — In2),0 = {/4n(3 — (In2)2) andz = 1, so the reliability

indicator of Masrur’s condition is
— 1-2n(1—-1n2

wy = L H n{l —In2) (6.23)

g An(3 — (In2)?)
The comparison between the two reliability indicators has been plotted in FegLrblo-
tice thatw; is always larger tham,,, which implies that the schedulability test using Liu’s
condition is more reliable than that using Masrur’s condition. This comparisaitrean be

more intuitive when we focus on the accepted probability of the two tests.
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Figure 6.1: Comparison of reliability indicators
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Figure 6.2: Comparison of accepted probabilities

Figure6.2 shows the comparison of accepted probability with different numbers ksd,tas
ranging from 2 to 20. Masrur’s test is more pessimistic, because an ayhbiasi set has
lower probability of succeeding in Masrur’s test than in Liu’'s test. Theedifiice between
two accepted ratios diminishes as the number of tasks augments. When the neschesra
certain value, the reliability of two tests is nearly the same. In Figutend Figuret.2, the
gap between two reliability indicators increases when the gap between atpegtability is
reduced. Hence, the reliability indicator can only show relative differerfidest reliability,

rather than absolute performance.
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6.5 Reliability indicator and applications

6.5.4 Reliability comparison of DM conditions

Next, the limitation that deadline exactly equals period is broken. In DM schedwia@lso
analyze two schedulable conditions when deadline is not longer than period.
According to Peng’s conditior6(9) and 6.14), we obtainy = n/2, 0 = y/n/12. Relia-

bility indicator is

>

2 60,05
w = Vi 0.0 (6.24)
S I COR ) o e RSN TE Y '
wy, Is a function of two variables of andd, and its gradient vector is
0wy, Owy

The gradient vector implies: (é%% < 0 means that reliability indicator decreases as the
number of tasks increases. This result makes sense, because it is trtieethehedulable
probability descends if more tasks try to enter cluster.%@ > 0 means that the indicator
rises when the deadline is prolonged.

A factor « is introduced to represent the ratio= m/n, and the distribution of/,,, can be

developed as

N(MLJ%) NS [Ovul)

U,, — N(MQ,U%) 0 e [ul,uh)
N(M3?U§) ZAS [ufw 1]
wher e:
m=gs
o1 =3v1% (6.26)
po =55 +2(1 —a)n(l —In2)
o2 =/ gz15 T 4(1 - a)n(% — (In2)?)
w3 =2n(1 —1In2)
o3 =/4n(3 — (In2)?)
Reliability indicators are
1—p .
w; = i=1,2,3 (6.27)

Gradient vectors are
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Vun(n,0) = (3L, %)
Vuwa(n, 0, a) = (52, G5 9) (6.28)
Vws(n) = %

Reliability indicator of Masrur's DM condition is quite complicated. (%55 < 0,7 €
[1,2,3] shows that the accepted ratio of test decreases as the number of tasksescr(b)
w > 0 implies that lengthened deadline can increase the passing probability if the dead
line is less than half of the period. (c) The variationswefn, 6, «) in thed and« directions are
not monotonic any more. Figu@3shows how the value afi;(n, 6, ) changes with respect

to 6 ando.

Figure 6.3: wa(n, 0, a) w.r.td anda

Reliability indicators of the two conditions are both piecewise functions. In aoddearly
compare them, a factor is defined as
A =wy —wp (6.29)

The positive value ofA indicates that a task set is more likely to pass Masrur’s test than
Peng’s test. In other words, Masrur’s test is better. Comparison caetaged by the following
four steps.

6 €[0,0.5)

Al = W1 — Wy = 0 (630)
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6.5 Reliability indicator and applications

In this part, the value of\ is always zero, so two tests have the same reliability. System
designer can choose any of them as the schedulable condition.
0 e [0.5, ul)

AQ = w1 — Wp (631)

Consideringn - minwu; < Y, u; < 6, another conditiod < u; = (1 4+ minwu;)/2 <
(1+ %)/2 is obtained. Therefore, the valuefalls into rang€0.5,n/(2n — 1)).

n tasks 0 o5

¢]

Figure 6.4: Better performance of Masrur’s tegt € [0.5, u;))

Figure6.4 presents the cases in which Masrur’s condition is less pessimistic than Peng’s
When the deadline is relatively short, Masrur's test performs better. Hawévis superi-
ority diminishes as more tasks admit in the system. That is caused by the posdible fi
[0.5,n/2n — 1) shrinks with increasing number of tasks.

0 € [ug, up)
Az = wy — w (6.32)

Figure6.5shows the performance comparisor ibcates in the fieldu;, u;). The points
on each sub-figure stand for the cases where Masrur’s conditioa@xt®e Peng’s. Especially,
Masrur’s test is more reliable for most cases when there are only twoitaslesset. Bursting
number of tasks results in the degradation of Masrur’s advantage.

The reliability indicator is not only useful for performance comparison,atso capable
of specifying an exact pattern where the winner can be applied. For éxamg-igure6.5,
system designer can choose dominated condition based on foresegalaled. If the point
appears on the figure, Masrur’s condition wins, otherwise, Peng'stpatferred.
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Figure 6.5: Better performance of Masrur's te@t € [u;, up,))
0 [uha 1]
Ay = w3 —wp (6.33)

In this part, one condition needs to be satisfied, thaf is; u;, = (1 + maxu;)/2 >
(1+ 2)/2. The possible field of is [n/(2n — 1), 1].

0 05
n tasks 9

Figure 6.6: Better performance of Masrur’s te# € [uy, 1])

In Figure6.6, only two short lines appear, which stand for the cases where Masest's
performs better. Clearly, it seldom works as the dominated condition fodatdiglity test,
only under strict constraint that the number of tasks is no more than threeceHMasrur’s

condition is not recommended to system designers.
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6.6 Evaluation

6.5.5 Reuvisit of Masrur’s condition

Itis interesting to notice the contradiction between our results and previousuref@9]. The
authors proved Marsur’s test is always less pessimistic than hyperfmoiiedd32] and Liu’s
bound BZ], if & € [0,;). In our analysis of part 1 and 2, Masrur’s test sometimes performs
well, but not always.

In Masrur's work B9], the Liu’s condition developed for RM is adapted to come up with

DM tests as

<n@2Y"-1) 0€]0,1] (6.34)

However, this adoption is not true. Suppose there is a RM task,seith period P; and
computation time’;. Equation 6.34) is the test condition for another RM task dé&t with
periodd P; and computation timé’;, rather than for DM task sdts with period P;, deadline
0 P; and computation time’;.

The contradiction is caused by misunderstanding that Liu’s condition cantbaded in
deadline monotonic algorithm. Equatiod.84) is not a DM condition for schedulability test.
The right test condition fol'; is (6.9). Therefore, the argumer9] is incomplete.

In the next section, we rectify this incorrect claim by extensive simulation ardiffegent

schedulability tests.

6.6 Evaluation

We use SimMapReduce to simulate a set of real-time tasks running on a MajgReds-
ter. Simple priority-based scheduling is applied in the following experiments. Tib&ty
assignments are distinguished by rate monotonic and deadline monotonic algorithms.
Similarly as Chapter 5, the MapReduce cluster and the users are configurable 6.1
and Tables.2
HereUr is set utilization, which is the sum of task utilization 7; is the interval between
two successive tasks of the same user. Every task must be finished bedaarrival of its

successor, otherwise, the whole task set can not be scheduled dustiee. c
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Table 6.1: Node characteristics

Characteristics | Parameters
cluster rating 10000MIPS

memory 2G

storage 200G
bandwidth 100Mbps
network star-shaped

Table 6.2: User characteristics

Characteristics Parameters

set utilizationUr, | uniform distribution [0,1]
system hazard 0.3,0.6,0.9
user number 2,20

task utilizatiomu; | uniform distribution [0, 1] (Algorithm 3)

task number 50

arrival intervalT; | uniform distribution [10, 100]
MapTask length | 5000u;T; (MI)
ReduceTask length 5000w, T; (MI)

6.6.1 RM scheduling results

This experiment compares accepted ratio of schedulability tests with theblitythat a ran-
dom task set can be scheduled. For the case of RM algorithm, schedulabifétyapply Liu's
and Masrur’s conditions, respectively. Concrete experimental paseshown in Algorithm
4.

For each value of set utilizatiolir, we randomly generate 20 tasks. Each task utilization
distributed uniformly, and the sum af equalsUr. Other parameters are configured as Table
?7?. Then the task set passes Liu’s and Masrur’s schedulability tests, siitisevhether this
task set is accepted. After that, SimMapReduce runs the task set, an@ tbpdinal decision
whether these tasks can be scheduled on a real MapReduce clustecc&€pted ratio and exact
scheduled ratio can be calculated by a large number of task sets, soaaétiép examination
a thousand times with the same hypothetical assumpijon

Figure6.7 shows accepted ratios with respect to set utilization. Since Liu’s test is decided
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Algorithm 4 Reliability comparison of RM conditions(JAVA)

1. N =20

2: numExp = 1000

3: Ur

4: fori =1 — numFExp do

5. generatgu,---,uj,---,un| randomly
6. configure other parameters of task set
7. Liu’s schedulability test

8. if pasghen

9: nLiu + +

10: endif

11:  Masrur’s schedulability test
12:  if passthen

13: nMasrur + +

14:  endif

15:  SimMapReduce simulation
16:  if passthen

17: nSim + +
18: endif
19: end for

20: Liu's accepted ratip Liu = nLiu/numExp
21: Masrur’s accepted ratipM asrur = nMasrur/numExp
22: Exact scheduled ratipSim = nSim/numEzp

RM scheduling (20 tasks)

wwwwwwwwww

[ | —#*— Liu boud test
0.1} | —©— Masrur load test
—— Simulation

L L
0 0.2 0.4

Figure 6.7: RM conditions

by the set utilization, the schedulability curve looks like a sign function. Whent#ization
is less than Liu’s bound, the accepted ratio is one, otherwise, it is zerstuWgatest can not

be compared with Liu’s directly, but experiment results illustrate that Maskonhdition is
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more pessimistic, which coincides with the result obtained by reliability indication rdetho
addition, both tests are sufficient. Notice that a violation appears Whes 0.7. Liu’s test
predicts that any task set is schedulable, but simulation reveals that onlpf8%k sets can
be scheduled on a MapReduce cluster. The reason is that file transnoissigries some time
in the MapReduce simulation. For a real-time task, a tiny delay is not permitted.r&odam
task set with utilization of more than 0.7, it is possible to be scheduled by the clitegh
this probability reduces as set utilization increases.

6.6.2 DM scheduling results

When deadline is no longer than period, DM schedulability tests apply PendyMasrur’s
conditions, respectively. The following experiments target on analyzingdiedulability with
respect to set utilizatiofir and system hazaml The simulation flow is similar to that in RM
experiments, except that two parameters, set size and system hazgritheir values.

Given a fixed system hazaty we first analyze the accepted ratio of schedulability tests
with respect to set utilizatiofir. Concrete experimental process is shown in Algorithm 5.

We taked = 0.5 and N = 2 for example. Twenty one types of task sets are generated, and
their set utilizationg/r uniformly locate in the field0, 1]. For anyUr, the same simulation is
repeated 1000 times, but given differéwittasks.

When the size of task set is two, schedulability analysis is shown in Fiy8rand Fig-
ure 6.9. Generally,Ur < 6 is a necessary condition that a random task set can pass any
schedulability test.

Figure6.8deals with the accepted ratios with respedi/tq by varyingd with the value of
0.5, 0.7 and 0.9. Masrur’s test is beneficial to the tasks with a large settinitizay offering
more opportunities to enter a cluster. Take- 0.9 for example, task set with 80% utilization
could be scheduled at 25% probability if system employs Masrur’s stdatity test, but
would certainly failed if Peng’s test in applied. Comparing three sub-figur&igure6.8, the
benefit of Masrur’s test magnifies as the deadline is prolonged. Howtheradvantage is
obtained at the cost of reducing schedulable possibility for the tasks witthsghatilization.

Figure6.9 deals with the accepted ratios with respect tdy varyingUr with the value
of 0.5, 0.7 and 0.9. Test performance, in terms of schedulable probabiligy irandom task,
is interpreted as the area under the curve of accepted ratio. Two tesimmpéne same when
Ur is less than 0.5. Peng’s test allows more tasks to enter the clusteriihequals 0.7,
while Masrur’s test still admits tasks when Peng’s refuses everythidg-at 0.9. These
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Algorithm 5 Accepted ratio w.r.Ur

1: 8 =0.5

2. N=2

3: numU = 21

4: numExp = 1000

5. for i = 1 — numU do

6: Upr=0.05x%(i—1)

7. for j=1— numFExzpdo

8: generatéu, - - -, ug, - - -, uy| randomly
9 configure other parameters of task set
10: Peng’s schedulability test

11: if passthen

12: nPeng + +

13: end if

14: Masrur’'s schedulability test

15: if passthen

16: nMasrur + +

17: end if

18: SimMapReduce simulation

19: if passthen

20: nSim + +

21: end if

22:  end for

23:  Peng’s accepted ratigPeng = nPeng/numExp
24:  Masrur’s accepted ratipM asrur = nMasrur /numExp

25:  Exact scheduled ratipSim = nSim/numFExp
26: end for

results exactly agree with the conclusion deduced by the reliability analyisimuyh they are
very intuitive, they can not provide a practicable solution for system dessgas the reliability
indication method does.

Next, we analyze the cases with 20 tasks per set in Figld@and Figures.11 Obviously,
Peng’s test outperforms Masrur’s in any case. When the deadline iveglaghort ¢ = 0.5),
two tests have the same reliability.

In Figure6.10 Peng’s reliability keeps growing dsincreases from 0.5 to 0.9, while the
reliability of Masrur’s test remains almost unchanged. This phenomersnss® go against
Masrur’s test being always better than Peng’s wHen [0.5,4;). That is actually caused
by the small probability of preconditions. The possibility that task utilization is less tha

w; is expressed afr(u; < w;). According to multiplication rule, for. independent tasks,
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Figure 6.8: Accepted ratio w.r.tUr (2 tasks) Figure 6.9: Accepted ratio w.r.td (2 tasks)

the event that all utilizations are belaw occurs with the possibility [ Pr(u; < ;). Since

0 < Pr(u; < w) < 1, the product decreases sharply with a largeBesides that) <
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(1 4+ minw;)/2 < (1+ %)/2 must be met, so the value éfalls into rang€g0.5,n/(2n — 1)).
When the task numberincreasesy/(2n — 1) approaches 0.5 gradually.
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As a result of transmission delay, the schedulable ratio is less than 108%pas not fit
in with the schedulability tests exactly. However, the overall variation is aeocelwith the
reality. These experimental results further validate our reliability comparitgmedwo DM
schedulability test. Since it is rare that MapReduce cluster only deals with ke itareality,
Peng’s condition is more suitable for DM schedulability test than Masrur’s.

6.7 Summary

In this chapter, we contemplate real-time schedulability tests in cloud datacEméeschedu-
lability tests aim at determining whether a set of tasks is schedulable on a cl8st@e of
them yield to exact conditions to achieve the maximum system utilization, but the time com-
plexity is not acceptable for on-line tests. Some of them applying sufficientittons might
somewhat underutilize a cluster, but they can be executed in predictatrimgutime. We
focus on the tests with constant-time complexity, because a schedulability téstighcom-
puting should be taken on-line. Given the lack of general solutions to evall@grturacy
of schedulability tests, we propose a method to indicate test reliability. Thraughability
indicator, the probability of passing different tests can be compared. Ylg #ps method
in several classical schedulability tests. Results show that Liu’s saliemichis a dominated
condition in RM tests. For DM tests, test reliability depends on system paramiétbese pa-
rameters are known in advance, datacenter designers can analyeeftinsmpnce exactly, and
then choose an applicable test among several alternatives. We also alidete conclusions
by simulation using SimMapReduce.

130



SimMapReduce: a simulator for
modeling MapReduce framework

7.1 Introduction

MapReduce is a language-independent framework proposed by Gadngdé targets on solv-
ing data explosion problem for real Internet services. As a parallgirpmming framework, it
organizes a large number of computers with relatively simple functional primsitikéhough
MapReduce is simple, it is capable of solving many real world problemsciedlgehe prob-
lems processing huge datasets such as data mih), [scientific computing $5], artificial
intelligence B7], and image processin@?] etc. In most of these cases, programmers are free
from some tough tasks such as distributing data, specifying parallelismuahtbfarance, and
only need to implement two functions: Map and Reduce. That is the reasoiiapiReduce
quickly evolves as a prominent and mainstream programming model for aatagsing in the
past couple of years.

More attentions are paid to MapReduce not only by IT enterprises, bubglsesearch
institutes. The researchers make efforts on theoretical analysis on Map&keomputational
model [L27], scheduling mechanism429 132 131], task assignmentlR0, 95|, workflow
optimization, instead of implementing a real MapReduce application. In addition atiffap-
plications require different system configurations and parameters, sotisguction of such
real MapReduce systems is extremely challenging on a large scale otrunétases. Under
above considerations, simulation method becomes a good alternative, whickocederate
study progress by opening the possibility of evaluating tests with hypothétsigysa advance
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and by simplifying the programming of implementation. It is easy to configure thasimérc-
tures according to user requirements, and costs very few to repeatedhrieas performances
in a controllable manner.

Although there are some open source supporters of MapReduce implemeritaticpe-
cific simulators exist to offer a simulated environment for MapReduce thieakreesearchers.
Therefore, a simulation tool, SimMapReduce, is developed to simulate the penfuerodif-
ferent applications and scenarios using MapReduce framework. Ehg efsSimMapReduce
only concentrate on specific research issues without getting conceroetfaer implemen-
tation details for diverse service models.

The rest of this chapter is organized as follows. We first investigatesatadigd program-
ming model, MapReduce, including its language syntax, logical dataflow, dedata storage
and current implementations. Targeting on assisting researchers by optimizamggber con-
figuration and testing new theoretical algorithms, a simulator modeling MapReducevioakne
is developed. Next, we present simulator design issues such as syshatecinre, implemen-
tation diagram and modeling process. More research values of SimMapERaduexplained
in the end of this chapter.

7.2 MapReduce review

7.2.1 Programming model

MapReduce is a programming model for executing distributed data-intermiveutations on
clusters of commodity machines. It was originally developed by Google anutediavorid-
wide via an open-source implementation called Hadoop. Today, a vibramasefecosystem
has sprung up around Hadoop, with significant activities in both industtyagademia.

MapReduce is the very successful abstraction over large-scale compaitaiieaurces.
The abstraction is inspired by the Map and Reduce primitives in functional d@egusuch as
Lisp, Haskell, etc. Map function is in charge of splitting input file into chops pmtessing
each of them to generate a set of intermediate pairs, while Reduce functioptte merge
all intermediate values and makes the final result. By performing Map andcBegherations
in parallel, MapReduce allows distributed processing on a large server far

The syntax of MapReduce model is

Map(keyl,valuel) — list(key2, value2)

Reduce(key2, list(value2)) — list(key3, value3) (7.1)
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Key-value pairs form the basic data structure in MapReduce. Keys a@ogssrmay be
primitives such as integers, strings or other complex structures. WhepRedace program is
written, the key-value structure on arbitrary datasets should be imposlke wieb application
for instance, the keys can be URLSs and values can be the actual HTMé&rmnto

The input of a MapReduce job is the data stored on the underlying distriblgegstem.
Every chunk of input is expressed as a key/value pair. Map function isedpjo every in-
put (keyl, valuel) pair to generate an arbitrary number of intermediayR (kalue2) pairs.
The Map phase ends till all input (keyl, valuel) pairs are proceskey?2,(value2) pairs are
shuffled and sorted into several groups, where each group haartteley2. Then Reduce
function is applied to all values associated with the same intermediate key?2 t@geoetput
(key3, value3) pairs. Output key/value pairs from each Reducewaditen persistently back
onto the distributed file system. Figurel shows the logical dataflow of MapReduce.

Input (Key1, valuel) (Keyl1, valuel) LI (Keyl1, valuel)
A 4 A 4 A4
Map @B @ ...... @9
Intermediate List(key2, value2) List(key2, value2) List(key2, value2)

| l l

Sort < shuffler

Y 4

Intermediate (Key2, list(value2)) (Key2, list(value2))
Reduce Reducer
v 2
Output (Key3, value3) (Key3, value3)

Figure 7.1: Logical view of MapReduce model
Overall, the MapReduce procedure is informally described as five steps

e Read input data from file system
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Map: extract useful information from every data chunk

Sort: aggregate values by keys

Reduce: filter useful information and summarize the final results

Write output data to file system

Note that the keys in Map and Reduce phase are not the same. The dat# f@y/value
pair is flexible, so that programmers are free to decide the keys in thesehbgesq There is
a slight difference between the Hadoop implementation of MapReduce and Gdoybée-
mentation. In Google’s MapReduce, the output key of Reduce function raukelsame key
as input. However, the programmers of Hadoop are free to changeybénkBeducer, so an
arbitrary number of output key/value pairs is emitted.

Overall, a typical MapReduce computation processes terabytes of datawsaitius of
machines, so the MapReduce tasks are more data-intensive, ratheommaute-intensive. A

MapReduce framework can be compared with other similar computing paradigms.

e HPC: the HPC jobs run on a fixed number of machines communicate through a mech
anism like MPI. MapReduce jobs are elastic, so we can change allocationtrge
HPC jobs are often CPU-bound, so there is less need for node-levdbdality. Espe-
cially for parallel computing with shared memory, the parallel tasks have obbeson-
ship with each other. In MapReduce, every Mapper or Reducer déalsndependent
subtasks on separated machines.

e Grids: Grid jobs are more compute-intensive than MapReduce. The disttibamput-
ing refers to an organization of geographic clusters, rather than a clistemonodity
machines. Moreover, errors from one grid task does not affecesdts of other tasks,
but in MapReduce the mistakes in Map phase will cause further mistakes uc®ed

phase, even a wrong final result.

e Parallel Databases: parallel databases run data-intensive workio@dgistributed sys-
tem. The main concerns differentiating MapReduce from these systems acaldiaes
use of commodity hardware in MapReduce, and the MapReduce executimyptod
small independent tasks instead of long-running pipelined queries.
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7.2.2 Distributed data storage

In traditional cluster architectures, storage is viewed as a separate cemfiamm computa-
tion. As dataset sizes increase, more computing capacity is required faspiog. In that
case, the storage and the link between the compute nodes become a bottl@nedeasi-
ble solution is breaking the separation of computation and storage as distinct cntgpon
a cluster. MapReduce adopts distributed file system that underlies pnogng model to re-
alize parallel computations. Google File System (GFS) and Hadoop Distribilee8ystem
(HDFS) are two implementation of distributed file system.

The main idea is to divide user data into blocks and to replicate those blodssabe
local disks of nodes in the cluster. The distributed file system adopts n&eterarchitecture
on which the master maintains the file namespace and the slaves manage thiesatoialcks.

An application wishing to read a file must contact the master to determine wherettlaé a
data is stored. As response, master transfers metadata and the locatietheh#ock is held.
The application then retrieves data from the slaves that store the actual datataXransfers
only occur between applications and slaves.

Master is responsible for maintaining metadata, directory structure, file to biaping,
location of blocks, and access permissions. These data are held in memfast fccess, and
all mutations are persistently logged. Master ensures the integrity of the syktdetides

where the data replicas are created to keep the fault tolerance and bpdégrting.

7.2.3 Hadoop implementation framework

MapReduce is applied to large datasets as a reliable and distributed computdigpato
process tera- or petabytes data in parallel. One key characteristic iStivatiéaves sequential
and parallel computation. On the parallel part, all computations are executadaifepeither
in Map phase or in Reduce phase. On the part of sequential procagss lways taken before
Reduce, because Reduce should wait for the results integrated byt afall Maps.
Google’s MapReduce implementation is roughly based on the above idea,daterged
privacy [63]. However, Google published a paper to describe technical details aftie-
mentation, which paves the way for MapReduce framework to become a comnhongiez
for parallelization. What's more, MapReduce is realized by multiple implementationglinclu
ing open source projects such as Hada&f, [CouchDB [79], Mars [66], Phoenix [LO1], Planet
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[96]. Among them, Hadoop, the most well-known, improves behaviors in sonugasigeenar-
ios like real-time stream processing and cascading, so it is widely appli@ddmympanies such
as Yahoo, Facebook, Twitter etc. Hadoop is also applied by researlich&osme universities,
for instance, Carnegie Mellon, Cornell and Maryland.

Hadoop provides a HDFS file system storing data across thousandsvefsseand a
MapReduce framework running jobs across those machines. In Hatasger/slave architec-
ture is applied both by HDFS file system and MapReduce framework. THeSHDstallation
consists of a single Namenode regulating the filesystem namespace, as aellaber of
Datanodes managing storage attached to the hosted nodes. Meanwhil®agdteduce job
has a single master, called Jobtracker, as well as several slaves,Tealkthckers. The com-
putation job is programmed by a sequence of distributed operations on daté lseysvalue
pairs. When a MapReduce job is submitted, Jobtracker takes chargegfrasnt of Map and
Reduce tasks to the Tasktrackers. The Tasktrackers execute taskssipoctions from the
Jobtracker and also handle data motion between the Map and Reduce phases

In Hadoop, Mappers are Java objects with a Map method. A Mapper ébjestantiated
for every Map task by the Tasktracker. The life-cycle of this objectrisegith instantiation, so
that Mappers can read in additional de84][ After initialization, the Map method is called on
all key-value pairs in the input split. When all key-value pairs in the inplit lsave been pro-
cessed, the Mapper object runs programmer-specified termination ddaeactual execution
of Reducers is similar to that of the Mappers, except that the executionvitaikespeatedly
calls the Reduce method with an intermediate key and an iterator over all vabosadsd
with that key. A complete Hadoop cluster architecture is shown in Figixe

The Jobtracker monitors the progress of running MapReduce jobs,camdirating the
execution of the Mappers and Reducers. Typically, Namenode and teentmte Jobtracker
locates are different machines, although in smaller clusters they are ofiecated. Slave
nodes run both a Tasktracker running Map/Reduce functions and addataerving HDFS
data.

A Hadoop MapReduce job is divided into a number of Map and Reduce takksnumber
of Reduce tasks is equal to the number of Reducers specified by theupmogr. The number
of Map tasks, on the other hand, depends on the number of input data llodkDFS. Each
Map task is assigned a sequence of input key-value pairs, called arspijpin Hadoop. The

Jobtracker tries to schedule tasks on the slave node that holds the ilipgbghat the Mapper
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Figure 7.2: A Hadoop cluster

can process local data. If it is not possible to run a Map task on locglitlhéecomes necessary
to stream input key-value pairs across the network.

Although HDFS is Hadoop’s own rack-aware filesystem, it is not necgssalterna-
tive choice is any distributed file system with an operating system that alloviaviet files
from remote computers, such as Amazon S3, CloudStore, FTP, Readtohnly and HTTPS
file systems. However, data locality will decrease without information provigeddmoop-
specific filesystem bridges.

7.3 Motivation from simulation

Although the scope of MapReduce application spreads day by day, malsctlon and in-
frastructure generalization obstructs the theoretical studies and applicdbil#jopment. For
a specific application, the MapReduce setup might be complicated consideiiogm config-
uration, network topology and node resources. To yield an efficietersysnassive parameters
should be tuned, tested and evaluated before MapReduce comes into use.

Simulation is an essential tool to study performance by researchers. Vieittepidea
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of creating a MapReduce simulator from another distributed computing para@iggnwhich
deals with high performance services for compute-intensive or datasimestientific applica-
tions. There are several grid/cloud simulators, such as Grid&linGangSim p4], SimGrid
[48] and CloudSim 46] to support research and development of new policies. GridSim allows
the modeling of entities (e.g.users, applications, resources, and resakeeshin parallel and
distributed computing systems for design and evaluation of scheduling algoritim&ri&
provides core functionalities for the simulation of distributed applications in hetasmys
and distributed environments ranging from simple network of workstationsrtgpuatational
grids. GangSim supports studies for controlled resource sharingdbased virtual organiza-
tions and resources. Cloudsim, as an extension of Gridsim, strengthensememagf virtual
machines and generic application provisioning techniques, which are gistelopment of
cloud computing.

Although the above simulators are capable of simulating execution, schedulingtiattoca
and monitoring behaviors in distributed environment, none of them tacklesaghkeprs caused
by MapReduce framework such as interdependence between Mapednddras well as data
locality. Furthermore, other relative research interests including faultatoder;, distributed
execution, scheduling and rescheduling schemes, concurrency, @mdiand network com-
munication, are worthy to be investigated. MRPér24, 123, a pioneer of MapReduce sim-
ulators, provides means for analyzing application performance on Hadatiprm and op-
timizing MapReduce setups, but it ignores reservations and scheduling schétowever,
in MapReduce, scheduling decisions including OS scheduling, master scheatudirigoker
scheduling, should be made harmoniously due to the great impact on systermpace. As
a consequence, it is pressing and meaningful to design software todsisb r@searchers in
promoting the scheduling studies related to MapReduce.

7.4 Simulator design

7.4.1 Multi layer architecture

A multi-layer architecture shown in Figure3, is applied for the design of SimMapReduce
simulator for two reasons. The first is that layered design classes haganiie module de-
pendency. It is much clearer for both simulator designer and usersldn@mgrchitecture. The

second is that existing technologies and packages are easily leverag8iniMapReduce as
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separate components, so the reusable codes can save designer’s tamergies in similar cir-
cumstances. More specifically, SimJava and GridSim packages aresusedmsed layers of
SimMapReduce simulator to provide the entities, communication, and task modeling capacity

e N

Scenario Description

Configure.xml

Cluster configuration | | User/Job specification || Data storage

o /

=

( MapReduce Entity Simulation A
MRNode MRBroker MRMaster FileManager
T T / SimMapReduce /
BrokerScheduler MasterScheduler
. { } ‘ y,
Grid Entity Simulation ) Gridsim
( Discrete Event Simulation ) SimJava

Figure 7.3: Four layers architecture

e Discrete event simulation

As a discrete event simulation infrastructure, SimJava consists of collectiottiné®
connected together by ports. The process of simulation advances theeeighdeliv-
ery. Each entity responses to a coming event, and then sends the exqiedo the
next entity. The way dealing with discrete events perfectly suits for the simulafion
MapReduce framework, because entities are distributed in the cluster apiiRbtiuce

computations are sequential and parallel.

e Grid entity simulation

The GridSim toolkit supports entities modeling in distributed computing systems. It
simulates geographically distributed resources in multiple administrative domauhs, a
provides interfaces to fulfill resource management schemes. GridSilitafas us the
basic provision of system components such as grid resource, bgvldtet, workload

trace, networks and simulation calendar.

139


7_simulator/figures/fourLayer1.eps

7. SIMMAPREDUCE: A SIMULATOR FOR MODELING MAPREDUCE
FRAMEWORK

e MapReduce entity simulation

The higher level of simulation is the core of MapReduce functionality modeling, some

of which are extended by GridSim library. SimMapReduce toolkit can simulateus
cluster environments regardless of small shared-memory machine, nhassivallel
supercomputer, or large collection of networked commodity PCs. Every nedeves
separated slots for Map and Reduce. Broker takes the responsibiléjtdoating nodes
to coming users. After user receives a set of available nodes, the jodtctier named
master, is in charge of mapping Map/Reduce tasks to a specific node. limthlatsr,
each job possesses one correspondent master. Although several trbdiibkagmaster
schedulers are integrated in SimMapReduce, advanced implementation délguipe
algorithms and policies is open to users. They are free to achieve multi-ldyedding
schemes on user-level and task-level. These algorithms can be conveoventlyitten

on the basis of predefined abstract classes. Besides, the file transrtiregids involved

into the completion time of jobs, which is monitored by a FileManager. FileManager

can be considered as an abstract function entity of a HDFS Namenodé, whiages
the file system namespace and operations related to files, such as input fil&smnitia

intermediate file management and file transmission.

e Scenario description

The top layer is open for users of SimMapReduce. Different simulatiorasicsnare
modeled by defining specific parameters in a configuration file in a quick masmer,
that identical results are easily promised by repeated simulations. Extenanke:im
Language (XML) is a set of rules for encoding documents in machine éaftam. The
design goals of XML emphasize simplicity, generality, and usability over therete
Many application programming interfaces (APIs) have been developedpsdiéware
developer process XML data. Therefore, a XML file is a good choicghe system

configuration file of the simulator.

7.4.2 Input and output of simulator

In SimMapReduce, system parameters are configured in the file contigiirencluding three

parts: cluster configuration, user/job specification, and data storage.
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Figure 7.4: Example of cluster configuration

e Cluster configuration: The cluster consists of a number of computing resources. Each
resource, named node, encompasses several homogeneous agdretetus machines.
The type of machine is predefined, varying the number of cores and the ndillic
struction per Second (MIPS) rating. In order to monitor MapReduce nodmlstihg,
each node reserves a certain number of slots for Mapper and Redzsperctively. The
active execution can not exceed the max slot limitation, if more than one tasksarriv
The computing capacity is scheduled by round robin algorithm, except thaslkdl &ae
executed at the same time. The network simulation is based on Gridsim. Routing in-
formation protocol is used by router. Links introduce propagation delays] bate and
the maximum transmission unit (MTU) to facilitate data transmission through a link. An
example of cluster configuration is given by Figuréd.

e User/job specification Job stands for one MapReduce application running on cluster.
Each job consists of several Map and Reduce tasks. The task computatitsdecaled
by the job length expressed in millions instruction (MI), not by input data. Thatinp
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Figure 7.5: Example of user/job specification

of Map task is the data stored on cluster, and its size usually follows chuitingp
convention, 64M, for example. Intermediate file is considered as the outpvgp
task as well as the input of Reduce task. The size of output file dependpeific
applications. For a sort job, the output size equals to the input size. Cainpdhethat,
the output size for a search application is much small, because the seasshitignight
be just a figure or a word.

Users submit jobs to cluster through a broker. Jobs belonging to onamisersimulta-
neously or in time sequence. Besides the arrival rate is specified in ajweser could
also assign priorities to jobs according to theirimportance. An example dfalsepec-
ification is given by Figure.5.

Initial data layout is about the location of data chucks on cluster. As the filpudf
Map tasks, data storage and transferring affects the computation pert@rtariMap
phase, even for the overall job. We assume a uniform distribution asltdfiwever,
our design is flexible and other distribution is allowed for particular tests.

e Output: The output of SimMapReduce is a report.txt, which provides a detailed exe-
cution trace. The trace can be shown in a coarse or fine manner. The featoeds
phase-level time execution for jobs, while the latter is able to records event.en

142


7_simulator/figures/jobConfig.eps

7.4 Simulator design

P report.txt - Bloc-notes

Fichier FEdition Format Affichage 7

0. 3 ' userl Send J1obl TO Broker

0.0 User? sengd Job? To Broker

1.0 erokarl Recetve Jobz

1.0 Brokerl Allocate nodes For user?'s Job2

1.0 Brokerl receive Jobl

1.0 Brokerl Allocate nodes for Userl's Jobl

1. Masl Submit Jobl's MapTask_ 1 to Mode: rd

1.0 Masg2 Submit Job2's MapTask_2 to Mode: rl

1.0 Masl Submit Jobl's MapTask_3 to Mode: rd

1.0 Mas2? submit Job2's MapTask_4 to Mode: r3

1.0 Masl Subtemit Jobl's MapTask_& to Wode: r2

1.0 Mas? Submit Job2's MapTask_5 To Wode: r3

1.0 Mas2 submlt Job2's MapTask_7 to sode: rl

1.0 Masz sutent Job2"s MapTask ¥ to mode: rl

5.529?14"3‘?1!1295 I Masl Finish Jobl's maprask 5
F.205714285714285 4 Masd Finish Jo0b2's maprask_ 4

0. 00i714285714284 4 Masl Fimish Jobl's Hap‘esl._l

O, BETUGHLGOGO0G0G o Masl Fimish Jobi's mapTask_

10, 7oS4 2R5714 2857 T Masl Fimish Jokl's HapTaSL_3

10, FOS4 2857142857 H Masl Complete Map stage, start Aeduce stage
10, 7954 2857142857 x Masl schedu'linglof #ap stage failure

10, 7954 2857142857 H Masl Submit Jobl's peduceTask D to Hode: r4
11, 4737142B5714285 d Mas? Fimish aobz's maprask_5
11.451714265714 284 s Masd Finish Job2's maprask_7

17, 59714 2857142854 5 Masl Finish Jobl's meduceTask_ 9

12, 5%7142857142854 i Masl complete peduce stage, wait for outfile transmission
12, 597142857142854 : Masl scheduling of reduecé stage failure

12, 60514285 7142853 H Masl outputFile transmission with size 1
12, 80514 2857142853 3 Brokerl Inform Userl Jcbl completed
12.605150857142853 : Userl Delete Jobl

12.6051508571426853 ; Brokerl pelate Userl

13.27542B57142857 3 Mas2 Fimish Job2's mapTask_8

13,2754 28571432857 i Mas? Complete Map stage, start Heduce stage
13,2754 2857142857 : Mas? srheduﬁng of map stage Tallure
13,2754 2857142857 3 Mas2 submit Jobz's reduceTask 10 to mode: r3
13, 2734 {8 7142857 X Mas2 submit Jobz's PeduceTask 11 to wode: r3
15, 0%3142857142853 i Mas? Firish Job2's reduceTask_ 10

16, B3685714265714 4 Maz2 Finish Job2's ReduceTask_11

16, BAGRSTI4285 714 E Masg Complete Reduce stage, wait for outfile transmission
14, B3AES 714255714 : Mas? Scheduling of reduce stage Tailure

16, BS4B35F142 857138 1 Mas2 outputFile transmission with size 2
16, B34ES7142857138 L Erokerl Inform User? Job2 completed

16, B E7I142857136 i Userz pelete Job2

15, B 573242857136 : Brokerl pelete Userd

Figure 7.6: Example of output

example of simulator output is shown in Figuté. Every row begins with the time, and
follows the name of entity and its behavior.

7.4.3 Java implementation

The Class diagram is shown in Figut&, the gray ones are parent classes archived by Gridsim.

e MRNode: this class models the computing infrastructure, each instance df sthitds
for a physical node on a cluster. Modelers can vary the charactesstitsas proces-
sor number, speed and reserved Map/Reduce slot number. Inpus davaed on disk
within the given storage. Furthermore, this class is in charge of the rege@sircuting,
returning of submitted Map/Reduce task and input/intermediate/output file trangfe

e MRBroker: this class models the mediating broker between both sides of sapgly
demand. It is equipped with several lists of updated information about nsée,and
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Configure.xml
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MRBroker| 'UserimplementScheduler!
F |

MRBrokerScheduler

+allocateNodeToJob() : boolean(idl)

|
User GridSim

Job

1 -CreatedJob

1 -CreatedMRMaster

MRMasterqi ________________

MRMasterScheduler

+mapTaskScheduler() : MRNode
+reduceTaskScheduler() : MRNode
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FileManager| |

MapTask

ReduceTask

>

Figure 7.7: Class diagram

job, and it is capable of allocating proper nodes to jobs according QoS néddus.

concrete allocation policy must be pointed out in MRBrokerScheduler.
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MRBrokerScheduler: this abstract class provides the possibility for lad® desig-
nate the scheduling algorithm used by MRBroker. Modeler can integratdastesh as
client priority cost, deadline, due time and flow to draw up a reasonable allocaticy. p
The default implementation is SimpleMRBrokerScheduler, which allocate all rafdes
cluster to every coming job.

User: this class models the resource demander, each instance of witesergs a natu-
ral MapReduce client who communicates with broker directly. It consistssefjaence
of jobs that arrive simultaneously, randomly or repeatedly. Like in a redtehdviapRe-
duce users are assigned to ranks according to their priorities.

Job: this class models the core functional MapReduce service, which isyddpbm
a group of nodes. It records every detail of service demands inguairival time,
deadline, program operations, granularity and quantity of Map/Reduce tasksion
and size of files.

MRMaster: this class models the entity which takes responsibility for assigniohdia-
patching Map/Reduce task to one node, managing intermediate files, by#eyifvalue
pairs and supporting scheduling in static or dynamical manners. The cohergistic
policy must be pointed out in MRMasterScheduler.

MRMasterScheduler: this abstract class defines abstract methods (pTaska&chedul-
ing and reduceTaskScheduling) which should be implemented by usersrabele-
ments must be taken into account for the implementation of these abstract metiads,
as data locality, interdependence between Map and Reduce, andsomitesughput.
Default SimpleMRMasterScheduler realizes strict local assignment fortikl¢s and
random assignment for Reduce tasks.

Task: this class models the finest unit for a MapReduce job. It can lzbvéddd into

two types, MapTask and ReduceTask. After all the MapTasks finistiyu¢é®Iasks are
created by MRMaster depending on the location of intermediate key/value Jdies
distinction between the two types of task mainly lies in the different input and output
files.

FileManager: this class models a manager taking charge of all operatiowesireldiles,
including recording, inquiring, tracing, updating and so on. This entity is duid to
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the fact that a typical MapReduce computation processes massive data fedastic
cluster.

e Simulnit: this class models initialization of simulation. It reads the parameter values into
the instances of class and starts the simulation.

7.4.4 Modeling process

) ) ) Y
Master 1
Node 1 User 1 m

Master 1;
Node k User k

- J - J - J

Master k;
= _/

Initialize «—Send jobs

Initialize job—

Report——» /

Generate masters

Allocate available nodes———»

<« Execute job 4q

4—Report job completion—;

]

Destroy

«Report jobs completion—

Gather simulation data

Figure 7.8: Communication among entities

Since SimMapReduce is built on the discrete event simulation package Simédavaains
a few entities running in parallel in their own threads. The entities reprebgstcal objects in
real MapReduce simulation, and create a network to communicate with each pgesrding
and receiving messages through SimJava’s timestamp event queue.

Main entities for node, broker, user and master are implemented by sepelesses dis-
cussed above. The communication among them is shown in Fig8re
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In the beginning, nodes in cluster report their characters to brokerthédsame time,
users initialize their own job sequences, and send jobs one by one dilggpen arrival rate.
Arbitrary job generates amount of ordinary copies naming MapTask addide Task as well

as a special copy of operation program, master, acting on behalf of job.

In every round, master firstly sends information to broker to request biait@des. MR-
Broker matches both sides’ requirement and allocates a number of nodestéw foaits inner
scheduling. Master manages the scheduling of Map/Reduce tasks, amdsegpéheir exe-
cution. When all subtasks have been completed, master reports job completiser tand

destroys itself. Concrete control flow of master is shown in Figuée

When a user has completed all jobs in the sequence, it informs broker thmaifon. If

no more jobs are created, broker gathers the simulation data and finishegisimula

MRMaster is in charge of spawning Map and Reduce tasks, schedulirgjttaglorking
nodes, managing their associate data, and producing the final outpuEfiey process is
triggered by an event message. Having the available node list, MRMasker igle nodes
to schedule MapTasks. As soon as a node receives a MapTaskckisclwbether the input
file is on local disk. If not, the node asks for input transmission. Whentidpta is ready,
MapTask runs its Map function. After that, intermediate files produced by Ndapations are
buffered on memory. MapTask then reports its completion to MRMaster. MRIvIkseps on
examining whether all MapTasks finish. If yes, MRMaster stops the Magehand start the
shuffle phase that groups the key/value pairs by common values of theGenerally, data

with the same key will be sent to one ReduceTask.

In the begining of Reduce phase, MRMaster makes a scheduling decisimp#éboth Re-
duceTasks to different nodes. The first action in Reduce phase imgeatermediate files
remotely. In our current design, each ReduceTask receives ah ey from each MapTask
output. Thus the input of ReduceTask sums up all intermediate files regmmfieveights.
Then Reduce function is operated, generating output file. Similarly as in MagepMRMas-
ter collects the message about completion of ReduceTask. When they all dirfiisal output
result is obtained. The computation of job terminates, and its manager, MRMastks

down.
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Figure 7.9: Control flow of MRMaster
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7.5 Evaluation

The following experiments aim at observing the performance of SimMapdeettuvalidate
whether it can simulate MapReduce framework effectively and efficie@iyr experiments
are taken on a personal computer with the configuration of dual Intel X80 processor and
2G memory. Meanwhile, JDK 1.6 is applied, and the amount of memory used Myh#g
128M maximum heap size and 64K stack size.

7.5.1 Instantiation efficiency

Firstly, we try to evaluate the overhead of building a MapReduce cluster witumsidering

the workload. A MapReduce cluster consists of a certain amount of corgpudides, and
each node further includes one or more machines which have homogenbeterogeneous
configurations, such as architecture, processor number, MIPS ratingeawwidth. In order

to test computing power requirement, we build one million machines in the cluster. The time
spent on instantiation is shown in FigufeLQ
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Figure 7.10: Instantiation time

From the FigureZ.10 the amount of creation time increases as the amount of machines
increases. Two extreme instances are taken, one is thousand machinedgeand the other
is million machines per node. Both cases perform quite well if less than 100060imaa
are needed, and the process of instantiation spends only severatise@dong with more
machines are required, the difference between two cases enlargesalBespeaking, the time
to instantiate million machines is below 2 minutes, which can be easily accepted bypege
who want to simulate MapReduce framework even with simple personal coreputer
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Next we evaluate the memory consumptions by Figuld. The usage of memory grows
linearly with respect to number of nodes, not to number of machines. Thaicesube that
every node, working as an entity in SimMapReduce, consumes memory in téthreads.
We therefore have to limit the total amount of nodes according to the memonyfsiaeputer.
Modulars can create more nodes by changing the heap/stack size ofRArtitularly in our
test, a MapReduce cluster with thousand nodes only demands 400M of RiAibh can satisfy
most of common users.

7.5.2 Scheduling performance

In order to illustrate the usage of SimMapReduce and to explain the resestshof this
simulator, we build a MapReduce cluster on which two simple job scheduleamalgzed.

The simulation is built in several steps.

(1) Setup of node: The cluster is homogeneous with identity quad-coesmdd 00 MIPS.
The nodes are arranged in a two-level star-shaped switched netitbrkG@ Mbps bandwidth
at machine level. Input data locates uniformly on the whole cluster. In thenfioiipexperi-
ments, two scenarios are compared, a heavy load case with a small clus@enades and a
light load case with a flarge cluster of 500 nodes. More parameters are ghdable7.1

(2) Setup of broker: SimpleMRBrokerScheduler inherits MRBrokee8dler class to spec-
ify the allocation policy for broker. We suppose that this broker alwaysaletsodes to be
available for a coming user.

(3) Setup of user: We assume that 100 jobs belonging to the same user tthogluister
simultaneously, so there are nearly 1000 MapTask and 200 RedudeTeskomputed totally,
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Table 7.1: Node characteristics

Characteristics | Parameters
PE rating 100MIPS
PE number 4

node number 50,500
max Map slots 10

max Reduce Slots 1

allocation policy | Round-Robin

network star-shaped

each of which has around 1000 million instructions. Since intermediate files pheakes
pairs, its size is much smaller than input files. The user characteristicsaave ghTable7.2

Table 7.2: User characteristics

Characteristics Parameters
user number 1

arrival rate 0.001

job number 100
MapTask length 1000 M
ReduceTask length 1000 M
Map number 10

Reduce number 2

input size 1,20,50,100,200,500,1000 MB
intermediate size policy 10 MB
output size 10 MB

(4) Setup of master: MRMasterScheduler class is extended. The fiedider randomly
schedules tasks to arbitrary node without considering data storage ecesgor overload,
whilst the second always schedules tasks to the node where the inputdiledoc

This experiment outlines how data size influences on completion time of the whole job
sequence. Results are shown in FigarE2 For a random scheduler, if the data is considered
small, which means time for data transmission is negligible compared with time for computa-

tion, the difference of completion time mainly depends upon computing capability déclus
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Clearly, large cluster can finish computation more quickly than small cluster doer®nodes
provided. The delay caused by transferring files among nodes aggsawvith respect to data
size, especially for the small cluster. Because the submitted task has to foad in@ut data
arrives, and the queuing of data transmission greatly extends the compligtidrsequence.
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Figure 7.12: Influence of data size

Compared with random assignment, local scheduler has more stable andpeefber
mance, mainly because data transmission is really time consuming. As showniia FitR)
completion time slightly fluctuates with input size. This result points that data locality ex-
erts a huge influence on completion time, and encourages researchersnwifmeffective
scheduling algorithms.

Moreover, MapReduce artificially subdivides data into several Map&faudces to realize
parallel computing. Generally speaking, the number of MapTask is more #ducBTask, and
there are M * R states to be stored in memory temperately. The number of Map®othe
too few, because remote input files take time to be transferred, meanwhie itat be too
many, because local intermediate files take space to be stored. Whatas {@sipgranularity?
What is the best proportion between amount of MapTask and ReduceVdslkanswer these
guestions with help of simulation in the following environment. Assume that each pdsne
to deal with 1GB data divided into many chops on the whole cluster. We cortipadifferent
computation time caused by different number of Map, when the number of Résliiged to
two. Other configuration is shown in Table3.

As can be seen from Figuie13 the best ratio for both scenarios is obtained neither at least
one (2 Maps), nor at most fifty (100 Maps). The completion time firstly des;ehen ascends,
achieving bottom at a median value, which validates our assumption. In additiomttheab
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Table 7.3: User characteristics

Characteristics Parameters

Map number 2,5,10,20,30,50,100

Reduce number 2

input size 500,200,100,50,33,20,10 MB
intermediate size policy 10 MB

output size 10 MB
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Figure 7.13: Influence of task granularity

ratio is not the same for small cluster and large cluster, because therpanioe is closely
related to assembled parameters, not to one unilateral parameter. Thahisstheonvenience
SimMapReduce can offer, cluster performance is easily analyzed asatopgrameters are
defined in advance.

More implementations of MapReduce are possible, as long as parametexsdicefiend-
ing on specific applications. Besides, users of SimMapReduce only needigmacheduling
schemes, and then can obtain users’ execution performance of job siobirfisstransferring,
task queuing, pausing, staging and executing as well as time consuming.

7.6 Summary

In this chapter, we review the new programming model for cloud computing,Rddpce.
Through studying its language syntax, logical dataflow, related dategsterad current im-
plementations, we make effort to design a software tool for analyzing apptigeerformance
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on MapReduce cluster and facilitate scheduling studies related to MapRedigcdevelop
a simulator to model MapReduce framework, SimMapReduce. SimMapRedocegs a
vivid MapReduce environment and can test multi-layer scheduling algorithnusemlevel,
job-level or task-level. It is convenient to inherit or be inherited by o#ipercific packages. We
decrypt the details of simulator design, including system architecture, imptatiendiagram
and modelling process.
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Cloud computing implies that computing is not only operated on local computersnlngn-
tralized facilities by third-party computing and storage utilities. It refers to boghagbpli-
cations delivered as services over the Internet and system hardvitavarsan datacenter as
service providers. Cloud solutions seem to state master keys for the I'presgsiwhich suffer
from budget concerns and economic woes, and a number of indusfecishave been started
the creation of a global, multi-data center, open source cloud computing testhieddstry,
research and education.

Encouraging opportunities also bring out corresponding challengésud @omoputing
is easy to be confused with several existing technologies including grid dorgputility
computing, web service and virtualization. Again, cloud computing is a newly evdistvery
model. It covers the equal importance both on technology and businasseragnts, and
it lets users focus on their abilities on demand by abstracting its technology layéhat
case, scheduling problem in cloud computing is worthy to be reconsideraegbbsgrchers and
engineers.

In our work, we addressed the resource allocation problem in terms obewoaspects to
meet the business requirements. At the same time, we concerned the realhiadelzbility
test to provide cloud datacenter with technical supports. Both theoretidgiractical efforts
were made to solve cloud scheduling problems and to facility the succeedazgalkss.

In this chapter, we first present a short summary of this thesis, andidwrsd some further

possible research directions.
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8.1 Summary

The objective of our work targets on scheduling problems in cloud datacente

e Profiling scheduling solutions for cloud computing. In Chapter 3 we investigated
scheduling theories including former expressions of problems, algorithimsoamplex-
ity and schematic methods. In terms of the complexity of cloud computing, we distin-
guished the large issue between two topics: resource allocation on udesedviask
scheduling on system-level. Resource allocation aims at economic featuresfirat dif
entiate cloud computing from other computing paradigms, while task schedulingef®cu
on technical features that ensure cloud datacenter to meet variousernsents gener-
ated by plentiful customized services. Several concrete schedulingprehare stressed
and then followed by their general solutions. For instance, market-basgkdwetion
models are presented to resolve the competition problems among consumersegho n
the same service. Metadata scheduling inside the datacenter can be sdialibjcs.
Moreover, real-time scheduling is extended in cloud environment. Prioritydlsisse-
gies are reviewed as the traditional methods, and updated plug-ins and wigctzines

provide promising solutions for real-time cloud schedulers.

e Resource pricing and equilibrium allocation algorithms. Compared with similar
computing paradigms, cloud is more involved in purchasing and consuming rsanner
between providers and users. Thus, the problem about how to makeanedle price
and allocate resources fairly needs to be questioned. In Chapter 4, waigddbd new
game theoretical algorithm to solve this resource management problem in cloydt
ing. This algorithm fully considered the possible situations such as the hetemgen
distribution of resource, rational exchange behavior of cloud use@yiplete common
information and dynamic successive allocation. We derived that a Nash equilisoium
lution exists among all the possible prices, which means no one can get a leeitéit b
without damaging others. Furthermore, we evaluated the performance afojespd
approach by Cloudsim experimentation, and this new algorithm is proved tdcotived
and easily implemented.

e Schedulability bound for real-time tasks on MapReduce clusterlUtilization bound is
a powerful approach for schedulability test that is concerned withmé@ierg whether a
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set of tasks is schedulable on a cluster. In Chapter 5, we studied the ggdi¢tiedula-
bility bound caused by MapReduce segmentation execution. Based on theatbesn
for schedulable task set, we deduced its corresponding system utilizditamy. thsk set
utilizes MapReduce cluster below this bound, the schedulability is promisedvalA/e
idated this result by SimMapReduce. This new bound is more precise than $s&cla
Liu's bound, and can ensure a higher utilization for a running MapReduster.

e Reliability indication method for on-line schedulability tests. A number of on-line
schedulability tests have been developed, but they are incomparable difeetent
determination conditions. This deficiency leads to difficulties to choose the Istst te
among all available alternatives. In Chapter 6, we introduced a reliabilityatatic¢o
evaluate the accuracy of schedulability test, as well as pointed out aypiste pattern
accompanying with the performance discrepancy. In addition, an insoffiaigument
in previous literature is questioned and then completed. Experiments on SimiilagRe
agreed with the theoretical results achieved by the reliability indication method.

e Simulating MapReduce framework with various scheduling algorithms. MapRe-
duce plays a key role in cloud computing by providing transparent and lfexdzess to
a large number of computing, storage and network resources. In Ciiaptedeveloped
a simulation tool, SimMapReduce, to construct a simulated MapReduce envirbtamen
facility theoretical research under different scenarios. The usesalof this simulator
have been intuitively revealed in above schedulability tests, and moreiregmewere
supplemented to illustrate that SimMapReduce can be easily executed in egbecson
puter and can provide qualitative analysis for MapReduce systems.

8.2 Future directions

In this research, we dealt with the resource allocation and scheduling problefsdcom-
puting. From the theoretical aspect, we mainly finished three researcls issligling game
theoretical algorithms for resource allocation, a new schedulability test fod datacenter
using MapReduce, and an effective analysis indicator for on-line sidiatity tests. As a
practical supplementation, we developed a MapReduce simulator to facilitetlwabstudies
for us and other researchers. Besides these contributions, our a®rkised many interesting
guestions and issues that deserve further research.
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e Generalizing price prediction mechanisms. Although we have proposed Bayesian
learning interference to forecast future price, this prediction is noepewith its own
limitations. For instance, accurate calculation of posteriori hyperparametens faiilg
if some parameters of likelihood function are unknown. In addition, the congestion
problem caused by network topology is not considered in current allocatidelmo

e Enriching business models for cloud providers.Besides technical strengths of cloud
computing, users decide to head in clouds due to the economical reasdhs, Bsi-
ness model of cloud computing should be more flexible, offering clients deghaice
options. For example, customers of Amazon can choose purchasing moubelg an-
demand, reserved, spot and even free tier according their owrrgmeés. With more
and more cloud solutions emerge, business models must be reformed to maintain the
customer loyalty or attract new attentions. In addition, new economic models fhat su
port the trading, negotiation, provisioning and allocation based on consuefergiice
should be developed.

e Expanding schedulability bound to more complicated systemThe primer utilization
bound for MapReduce cluster is not a final result, our investigation wilbiogicue con-
sidering more realistic features of cloud services. We shall extend aut tesases of
imprecise computations, dependent tasks, aperiodic tasks and non pvesgrptiution
in the future. Since we ideally assume the computation ability of cluster as a whole by
hiding assignment detail of every Map/Reduce task in the interior of cluktethound
is mainly used by the scenario of single processor. Next, we intend féy tpg bound
and heuristics for solving multi processor problems.

e Improving reliability of on-line schedulability tests for cloud datacenters. There is
always a contradiction between the test accuracy and its time complexity. \Werhav
proved the schedulability bound by introducing practical characteristitdd&apReduce
segmentation, but it is still pessimistic compared with exact schedulability test.-Deter
mining test reliability with a low time complexity is still challenging.

e Completing the functions of SimMapReduce.In the future, our short-term focus is
further perfecting the simulator with powerful functionality, such as more kirids$oo-
age topologies, friendlier GUI, redundant execution for handing mastiesures and
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data loss. We also intend to investigate more effective schedulers in ancergvith
different applications.
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