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Cloud computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way in which hardware is designed and purchased. We review the new cloud computing technologies, and indicate the main challenges for their development in future, among which resource management problem stands out and attracts our attention. Combining the current scheduling theories, we propose cloud scheduling hierarchy to deal with different requirements of cloud services.

From the theoretical aspect, we mainly accomplish three research issues. Firstly, we solve the resource allocation problem in the user-level of cloud scheduling. We propose game theoretical algorithms for user bidding and auctioneer pricing. With Bayesian learning prediction, resource allocation can reach Nash equilibrium among non-cooperative users even though common knowledge is insufficient. Secondly, we address the task scheduling problem in the system-level of cloud scheduling. We prove a new utilization bound to settle on-line schedulability test considering the sequential feature of MapReduce. We deduce the relationship between cluster utilization bound and the ratio of Map to Reduce. This new schedulable bound with segmentation uplifts classical bound which is most used in industry. Thirdly, we settle the evaluation problem for on-line schedulability tests in cloud computing. We propose a concept of test reliability to express the probability that a random task set could pass a given schedulability test. The larger the probability is, the more reliable the test is. From the aspect of system, a test with high reliability can guarantee high system utilization.

From the practical aspect, we develop a simulator to model MapReduce framework. This simulator offers a simulated environment directly used by MapReduce theoretical researchers. The users of SimMapReduce only concentrate on specific research issues without getting concerned about finer implementation details for diverse service models, so that they can accelerate study progress of new cloud technologies.
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Research background

Cloud computing is everywhere. When we open any IT magazines, websites, radios or TV channels, "cloud" will definitely catch our eye. Today's most popular social networking, email, document sharing and online gaming sites, are hosted on a cloud. More than half of Microsoft developers are working on cloud products. Even the U.S government intends to initialize cloud-based solutions as the default option for federal agencies of 2012. Cloud computing makes software more attractive as a service, and shapes the way in which IT hardware is purchased. Predictably, it will spark a revolution in the way organizations provide or consume information and computing.

The cloud has reached into our daily life and led to a broader range of innovations, but people often misunderstand what cloud computing is. Built on many old IT technologies, cloud computing is actually an evolutionary approach that completely changes how computing services are produced, priced and delivered. It allows to access services that reside in a distant datacenter, other than local computers or other Internet-connected devices. Cloud services are charged according to the amount consumed by worldwide users. Such an idea of computing as a utility is a long-held dream in the computer industry, but it is still immature until the advent of low-cost datacenters that will enable this dream to come true. Datacenters, behaving as "cloud providers", are computing infrastructures which provide many kinds of agile and effective services to customers. A wide range of IT companies including Amazon, Cisco, Yahoo, Salesforce, Facebook, Microsoft and Google have their own datacenters and provide pay-as-you-go cloud services. Two different but related types of cloud
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service should be distinguished first. One is on-demand computing instance, and the other is on-demand computing capacity. Equipped with similar machines, datacenters can scale out by providing additional computing instances, or can support data-or compute-intensive applications via scaling capacity. Amazon's EC2 and Eucalyptus are examples of the first category, which provides computing instances according to needs. The datacenters instantly creat virtualized instances and give the response. The virtualized instance might consist of processors running at different speeds and storage that spans different storage systems at different locations. Therefore, virtualization is an essential characteristic of cloud computing, through which applications can be executed independently without regard for any particular configuration.

Google and Yahoo belong to the second category. In these datacenters, the need of processing large amounts of raw data is primarily met with distributed and parallel computing, and the data can be moved from place to place and assigned changing attributes based on its lifecycle, requirements, and usefulness. One core technology is MapReduce, a style of parallel programming model supported by capacity-on-demand clouds. It can compute massive data in parallel on a cloud.

The above two types of cloud services classify cloud computing into two distinct deployment models: public and private. A public cloud is designed to provide cloud services to a variety of third-party clients who use the same cloud resources. Public cloud services such as Google's App Engine are open to anyone at anytime and anywhere. On the contrary, a private cloud is devoted to a single organization's internal use. Google, for example, uses GFS, MapReduce, and BigTable as part of its private cloud services, so these services are only open inside the enterprise. It's important to note that Google uses its private cloud to provide public cloud services, such as productive applications, media delivery, and social interaction.

Challenges and motivations

Cloud computing is still in its infancy, but it has presented new opportunities to users and developers who can benefit from economies of scales, commoditization of assets and conformance to programming standards. Its attributes such as scalability, elasticity, low barrier to entry and a utility type of delivery make this new paradigm quickly marketable.

However, cloud computing is not a catholicon. The illusion of scalability is bounded by the limitations that cloud providers place on their clients. Resource limits are exposed at peak
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conditions of the utility itself. For example, bursting spring festival messages lead to outage for telecom operators, so they have to set limits on the number of short messages before New Year Eve. The same problem appears in cloud computing. These outages will happen on peak computing days such as the day when Internet Christmas sales traditionally begin.

Another illusion of elasticity is affected by an inconsistent pricing scheme that makes the investment no longer scalable to its payoffs. The price for extra large instance might be nonlinear to its size, compared with the price for standard instances. Moreover, the low barrier to entry can also be accompanied by a low barrier to provisioning.

Additionally, Internet is one basis of the cloud, so an unavoidable issue is that network bottlenecks often occur when large data is transferred. In that case, the burden of resource management is still in the hands of users, but the users usually have limited management tools and permission to deal with these problems [START_REF] Armbrust | A view of cloud computing[END_REF].

Based on the above analysis, resource management is a topic worthy of investigation, and is a key issue to decide whether the new computing paradigm can be adopted more and obtain great business success.

From the public perspective of a cloud datacenter, its goal is reducing cost and maximizing its profit since the public cloud plays a role of service provider in a real market. The resource management will focus on pricing schemes to ensure economic benefits for the cloud agents.

From the private perspective of a cloud datacenter, it focuses more on the system performance of the datacenter. In that case, improvement from resource management mainly concerns technical issues. For example, it is important to optimize the scheduling schemes to reduce job completion time and to improve resource utilization, when many MapReduce jobs are running in parallel at the same time.

Objectives and contributions

This thesis studies resource management problems related to cloud computing, such as resource allocation, scheduling and simulation. The major contributions are as follows.

• A survey of current trends and research opportunities in cloud computing. We investigate the state-of-the-art efforts on cloud computing, from both industry and academic standpoints. Through comparison with other related technologies and computing paradigms, we identify several challenges from the cloud adoption perspective. We also
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highlight the resource management issue that deserves substantial research and development.

• A cloud scheduling hierarchy to distinguish different requirements of cloud services. We systemize the scheduling problem in cloud computing, and present a cloud scheduling hierarchy, mainly splitting into user-level and system-level. Economic models are investigated for resource provision issues between providers and customers, while heuristics are discussed for meta-task execution on system-level scheduling. Moreover, priority scheduling algorithms are complemented for real-time scheduling.

• A game theoretical resource allocation algorithm in clouds. We introduce game theory to solve the user-centric resource competition problem in cloud market. Our algorithm substitutes the expenditure of time and cost in resource consumption, and allows cloud customers to make a reasonable balance between budget and deadline requirements. We supplement the bid-shared auction scheme in Cloudsim to support on-line task submission and execution. Under sequential games, a Nash equilibrium allocation among cloud users can be achieved.

• A price prediction method for games with incomplete information. We propose an effective method to forecast the future price of resources in sequent games, especially when common knowledge is inadequate. This problem arises from the nature of an open market, which enables customers holding different tasks to arrive in datacenters without a prior fixed arrangement. Besides that, the independent customers have little or limited knowledge about others. In that case, our Bayesian learning prediction has stable performance, which can accelerate the search of Nash equilibrium allocation.

• A theoretical utilization bound for real-time tasks on MapReduce cluster. We address the scheduling problem of real-time tasks on MapReduce cluster. Since MapReduce consists of two sequential stages, segmentation execution enables cluster scheduling to be more flexible. We analyze how the segmentation between Map and Reduce influences cluster utilization. Through finding out the worst pattern for schedulable task set, we deduce the upper bound of cluster utilization, which can be used for on-line schedulability test in time complexity O(1). This theoretical bound generalizes the classic Liu's result, and even performs better when there is a proper segmentation between Map and Reduce.
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• A reliability indicator for real-time admission control test. We settle the comparison difficulty among real-time admission control tests. Admission control test aims at determining whether an arriving task can be scheduled together with the tasks already running in a system, so it can prevent system from overload and collapse. We introduce a concept of test reliability to evaluate the probability that a random task set can pass a given test, and define an indicator to show the test reliability. Our method is useful as a criterion to compare the effectiveness of different tests. In addition, an insufficient argument in previous literature is questioned and then completed.

• A performance analysis for schedulability test on MapReduce cluster. We examine accepted ratio of several most used priority-driven schedulability tests on a simulated MapReduce cluster. The development of ubiquitous intelligence increases the real-time requirements for a cloud datacenter. If one real-time computation does not complete before its deadline, it is as serious as that the computation was never executed at all.

To avoid ineffective computation, the datacenter needs a schedulability test to ensure its stability. From both realizability analysis and experimental results, we find out that the performance discrepancy of schedulability test is determined by a prerequisite pattern. This pattern can be deduced by a reliability indicator, so it may help system designers choose a good schedulability test in advance.

• A simulation toolkit to model the MapReduce framework. We develop a MapReduce simulator, named SimMapReduce, to facilitate research on resource management and performance evaluation. SimMapReduce endeavors to model a vivid MapReduce environment, considering some special features such as data locality and dependence between Map and Reduce, and it provides essential entity services that can be predefined in XML format. With this simulator, researchers are free to implement scheduling algorithms and resource allocation policies by inheriting the provided java classes without implementation details concerns.

Organization of dissertation

The rest of this thesis is organized as follows.

Chapter 2 gives a general introduction of cloud computing, including definition, architecture, deployment models and cloud services. Through reviewing the evolution of cloud history 1. INTRODUCTION and current cloud projects, we conclude the characteristics from the technical, qualitative, and economic aspects, and further indicate some open areas in the future development. These gaps in cloud computing inspire our interests in our future research. In the following chapters, the problem of resource management will be solved using microscopic and macroscopic approaches. Specially, issues such as resource allocation and job scheduling are studied.

Chapter 3 presents concerned theories used to deal with the problems arising from resource scheduling in cloud computing. User-level scheduling focuses on resource provision issues between providers and customers, which are solved by economic models. System-level scheduling refers to meta-task execution, sub-optimal solution of which is given by heuristics to speed up the process of finding a good enough answer. Real-time scheduling, which is different from economic and heuristic strategies, is discussed to satisfy the real-time cloud services.

Chapter 4 solves the resource allocation problem in the user-level scheduling. We firstly present a short tutorial on game theory, covering the different classes of games and their applications, payoff choice and utility function, as well as strategic choice and Nash equilibrium.

Next, a non-cooperative game for resource allocation is built. The scheduling model includes bid-shared auction, user strategy (bid function), price forecasting and equilibrium analysis.

Based on equilibrium allocation, algorithms running on the Cloudsim platform are proposed.

After that Nash equilibrium and forecasting accuracy are evaluated.

Chapter 5 solves the task scheduling problem in the system-level scheduling. We formulate the real-time scheduling problem, based on which classic utilization bounds for schedulability test are revisited. After analyzing the strengths and weaknesses of current utilization bounds, combined with the particular characteristics of MapReduce, we present MapReduce scheduling model and a less pessimistic utilization bound. Next we discuss scheduling performance of our mathematical model and experiment results implemented by SimMapReduce.

Chapter 6 further studies on-line schedulability test in cloud computing. This schedulability test can determine whether an arriving application is accepted by cloud datacenter, so system stability is well guaranteed. We present task model and several related conditions for the schedulability test. After introducing a reliability indicator, we compare the performance of different tests, and give practicable examples. The examples are also validated by SimMapReduce.

Chapter 7 presents SimMapReduce, a simulator used to model MapReduce framework. This simulator is designed to be a flexible toolkit to model MapReduce cluster and to test

Organization of dissertation

multi-layer scheduling algorithms on user-level, job-level or task-level. The details of simulator design are decrypted, including system architecture, implementation diagram and modeling process.

Chapter 8 concludes the whole thesis.

INTRODUCTION 2 Cloud computing overview 2.1 Introduction

This chapter begins with a general introduction of cloud computing, followed by the retrospect of cloud evolution history and comparison with several related technologies. Through analyzing system architecture, deployment model and service type, the characteristics of cloud computing are concluded from technical, functional and economical aspects. After that, current efforts both from commercial and research perspectives are presented in order to capture challenges and opportunities in this domain.

Cloud definitions

Since 2007, the term Cloud has become one of the most buzz words in IT industry. Lots of researchers try to define cloud computing from different application aspects, but there is not a consensus definition on it. Among the many definitions, we choose three widely quoted as follows • I. Foster [START_REF] Foster | Cloud computing and grid computing 360-degree compared[END_REF]: "A large-scale distributed computing paradigm that is driven by economies of scale, in which a pool of abstracted virtualized, dynamically-scalable, managed computing power, storage, platforms, and services are delivered on demand to external customers over Internet."

As an academic representative, Foster focuses on several technical features that differentiate cloud computing from other distributed computing paradigms. For example, computing entities are virtualized and delivered as services, and these services are dynamically driven by economies of scale.
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• Gartner [START_REF] Daryl | Cloud computing confusion leads to opportunity[END_REF]: "A style of computing where scalable and elastic IT capabilities are provided as a service to multiple external customers using Internet technologies."

Garter is an IT consulting company, so it examines qualities of cloud clouding mostly from the point of view of industry. Functional characteristics are emphasized in this definition, such as whether cloud computing is scalable, elastic, service offering and Internet based.

• NIST [START_REF] Mell | The NIST Definition of Cloud Computing (Draft)[END_REF]: "Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."

Compared with other two definitions, U.S. National Institute of Standards and Technology provides a relatively more objective and specific definition, which not only defines cloud concept overall, but also specifies essential characteristics of cloud computing and delivery and deployment models. Clouds are usually referred to as a large pool of computing and storage resources, which can be accessed via standard protocols with an abstract interface [START_REF] Foster | Cloud computing and grid computing 360-degree compared[END_REF]. A four-layer architecture for cloud computing is shown in Figure 2.1.

System architecture

Introduction

The fabric layer contains the raw hardware level resources, such as compute resources, storage resources, and network resources. On the unified resource layer, resources have been virtualized so that they can be exposed to upper layer and end users as integrated resources.

The platform layer adds on a collection of specialized tools, middleware and services on top of the unified resources to provide a development and deployment platform. The application layer includes the applications that would run in the clouds.

Deployment models

Clouds are deployed in different fashions, depending on the usage scopes. There are four primary cloud deployment models.

• Public cloud is the standard cloud computing paradigm, in which a service provider makes resources, such as applications and storage, available to the general public over Internet. Service providers charge on a fine-grained utility computing basis. Examples of public clouds include Amazon Elastic Compute Cloud (EC2), IBM's Blue Cloud, Sun Cloud, Google AppEngine and Windows Azure Services Platform.

• Private cloud looks more like a marketing concept than the traditional mainstream sense.

It describes a proprietary computing architecture that provides services to a limited number of people on internal networks. Organizations needing accurate control over their data will prefer private cloud, so they can get all the scalability, metering, and agility benefits of a public cloud without ceding control, security, and recurring costs to a service provider. Both eBay and HP CloudStart yield private cloud deployments.

• Hybrid cloud uses a combination of public cloud, private cloud and even local infrastructures, which is typical for most IT vendors.

Hybrid strategy is proper placement of workloads depending upon cost and operational and compliance factors. Major vendors including HP, IBM, Oracle and VMware create appropriate plans to leverage a mixed environment, with the aim of delivering services to the business. Users can deploy an application hosted on a hybrid infrastructure, in which some nodes are running on real physical hardware and some are running on cloud server instances.
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• Community cloud overlaps with Grids to some extent. It mentions that several organizations in a private community share cloud infrastructure. The organizations usually have similar concerns about mission, security requirements, policy, and compliance considerations. Community cloud can be further aggregated by public cloud to build up a cross-boundary structure.

Cloud evolution

Although the idea of cloud computing is not new, it has rapidly become a new trend in the information and communication technology domain and gained significant commercial success over past years. No one can deny that cloud computing will a play pivotal role in the next decade. Why cloud computing emerges now, not before? This section looks back on the development history of cloud computing.

Getting ready for cloud

• Datacenter: Even faster than Moore's law, the number of servers and datacenters has increased dramatically in past few years. Datacenter has become the reincarnation of the mainframe concept. It is easier to build a large-scale commodity-computer datacenter than ever before, just gathering these building blocks together on a parking lot and plugging them into the Internet .

• Internet: Recently, network performance has improved rapidly. Wired, wireless and 4th generation mobile communication make Internet available to most of the planet. Cities and towns are wired with hotspots. The transportation such as air, train, or ship also equips with satellite based wi-fi or undersea fiber-optic cable. People can connect to the Internet anywhere and at anytime. The universal, high-speed, broadband Internet lays the foundation for the widespread applications of cloud computing.

• Terminals: PC is not the only central computing device, various electronic devices including MP3, SmartPhone, Tablet, Set-top box, PDA, notebook are new terminals that have the requirement of personal computing. Besides, repeated data synchronization among different terminals is time-consuming so that faults occur frequently. In such cases, a solution that allows individuals to access to personal data anywhere and from any device is needed.

Cloud evolution

A brief history

Along with the maturity of objective conditions (software, hardware), plenty of existing technologies, results, and ideas can be realized, updated, merged and further developed. 

Comparison with related technologies

Cloud computing is a natural evolution of widespread adoption of virtualization, serviceoriented architecture, autonomic and utility computing. It emerges as a new computing paradigm to provide reliable, customized and quality services that guarantee dynamic computing envi- 
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Utility computing

Utility computing was initialized in the 1960s, John McCarthy coined the computer utility in a speech given to celebrate MIT's centennial "If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is. The computer utility could become the basis of a new and important industry." Generally, utility computing considers the computing and storage resources as a metered service like water, electricity, gas and telephony utility. The customers can use the utility services immediately whenever and wherever they need without paying the initial cost of the devices. This idea was very popular in the late 1960s, but faded by the mid-1970s as the devices and technologies of that time were simply not ready. Recently, the utility idea has resurfaced in new forms such as grid and cloud computing. Utility computing is highly virtualized so that the amount of storage or computing power available is considerably larger than that of a single time-sharing computer. The back-end servers such as computer cluster and supercomputer are used to realize the virtualization.

Since the late 90's, utility computing has resurfaced. HP launched the Utility Datacenter to provide the IP billing-on-tap services. PolyServe Inc. built a clustered file system that created highly available utility computing environments for mission-critical applications and workload optimized solutions. With utility including database and file service, custumers of vertical
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industry such as financial services, seismic processing, and content serving can independently add servers or storage as needed.

Grid computing

Grid computing emerged in the mid 90's. Ian Foster integrated distributed computing, objectoriented programming and web services to coin the grid computing infrastructure. "A Grid is a type of parallel and distributed system that enables the sharing, selection, and aggregation of geographically distributed autonomous resources dynamically at runtime depending on their availability, capability, performance, cost, and users' quality-of-service requirements." [START_REF] Foster | The anatomy of the grid -enabling scalable virtual organizations[END_REF] The definition explains that a gird is actually a cluster of networked, loosely coupled computers which works as a super and virtual mainframe to perform thousands of tasks. It can divide the huge application job into several subjobs and make each run on large-scale machines.

Generally speaking, grid computing goes through three different generations [START_REF] Roure | The evolution of the grid[END_REF]. The first generation is marked by early metacomputing environment, such as FAFNER and I-WAY.

The second generation is represented by the development of core grid technologies, grid resource management (e.g., GLOBUS, LEGION), resource brokers and schedulers (e.g., CON-DOR, PBS) and grid portals (e.g., GRID SPHERE). The third generation merges grid computing and web services technologies (e.g., WSRF, OGSI), and moves to a more service oriented approach that exposes the grid protocols using web service standards.

Autonomic computing

Autonomic computing, proposed by IBM in 2001, performs tasks that IT professionals choose to delegate to the technology according to policies. [START_REF] Parashar | Autonomic computing: An overview[END_REF] Adaptable policy rather than hard coded procedure determines the types of decisions and actions that autonomic capabilities perform. Considering the sharply increasing number of devices, the heterogeneous and distributed computing systems are more and more difficult to anticipate, design and maintain. The complexity of management is becoming the limiting factor of future development. Autonomic computing focuses on the self-management ability of the computer system. It overcomes the rapidly growing complexity of computing systems management and reduces the barriers that the complexity poses on further growth.

In the area of multi-agent systems, several self-regulating frameworks have been proposed, with centralized architectures. These architectures reduce management costs, but seldom consider the issues of enabling complex software systems and providing innovative services. IBM
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proposed the self-managing system that can automatically process, including configuration of the components (Self-Configuration), automatic monitoring and control of resources to ensure the optimal (Self-Healing), monitor and optimize the resources (Self-Optimization) and proactive identification and protection from arbitrary attacks (Self-Protection), only with the input information of policies defined by humans [START_REF] Kephart | The vision of autonomic computing[END_REF]. In other words, the autonomic system uses high-level rules to check its status and automatically adapt itself to changing conditions. According to the above introductions of the three computing paradigms, we conclude the relationship among them. Utility computing concerns whether the packing computing resources can be used as a metered service on the basis of the user's need. It is indifferent to the organization of the resources, both in the centralized and distributed systems. Grid computing is conceptually similar to the canonical Foster definition of cloud computing, but it does not take economic entities into account. Autonomic computing stresses the self management of computer systems, which is only one feature of cloud computing. All in all, cloud computing is actually a natural next step from the grid-utility model, having grid technologies, autonomic characteristics and utility bills.

Cloud service

As an underlying delivery mechanism, cloud computing ability is provisioned as services, basically in three levels: software, platform and infrastructure [START_REF] Armbrust | Above the clouds: A berkeley view of cloud computing[END_REF].

Software as a Service

Software as a Service (SaaS) is a software delivery model in which applications are accessed by a simple interface such as a web browser over Internet. The users are not concerned with the underlying cloud infrastructure including network, servers, operating systems, storage, platform, etc. This model also eliminates the needs to install and run the application on the local computers. The term of SaaS is popularized by Salesforce.com, which distributes business software on a subscription basis, rather than on a traditional on-premise basis. One of the best known is the solution for its Customer Relationship Management (CRM). Now SaaS has now become a common delivery model for most business applications, including accounting, collaboration and management. Applications such as social media, office software, and online games enrich the family of SaaS-based services, for instance, web Mail, Google Docs, Microsoft online, NetSuit, MMOG Games, Facebook, etc.

Cloud service

Platform as a Service

Platform as a Service (PaaS) offers a high-level integrated environment to build, test, deploy and host customer-created or acquired applications. Generally, developers accept some restrictions on the type of software that can write in exchange for built-in application scalability.

Customers of PaaS do not manage the underlying infrastructure as SaaS users do, but control over the deployed applications and their hosting environment configurations.

PaaS offerings mainly aim at facilitating application development and related management issues. Some are intended to provide a generalized development environment, and some only provide hosting-level services such as security and on-demand scalability. Typical examples of PaaS are Google App Engine, Windows Azure, Engine Yard, Force.com, Heroku, MTurk.

Infrastructure as a Service

Infrastructure as a Service (IaaS) provides processing, storage, networks, and other fundamental computing resources to users. IaaS users can deploy arbitrary application, software, operating systems on the infrastructure, which is capable of scaling up and down dynamically.

IaaS user sends programs and related data, while the vendor's computer does the computation processing and returns the result. The infrastructure is virtualized, flexible, scalable and manageable to meet user requirements. Examples of IaaS include Amazon EC2, VPC, IBM Blue Cloud, Eucalyptus, FlexiScale, Joyent, Rackspace Cloud, etc. Data service concerns user access to remote data in various formats and from multiple sources. These remote data can be operated just like on a local disk. Amazon S3, SimpleDB, SQS and Microsoft SQL are data service products. Figure 2.3 shows the relationship among cloud users, clouds services and cloud providers.

Clients equipped with basic devices, Internet and web browsers can directly use software, platform, storage, and computing resources as pay-as-you-go services. Clouds services are able to be shared within any one of the service layers, if an Internet protocol connection is established. For example, PaaS consumes IaaS offerings, and meanwhile, delivers platform services to SaaS. At the bottom, datacenter consists of computer hardware and software products such as cloud-specific operating systems, multi-core processors, networks, disks, etc. 
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Cloud characteristics

As a general resource provisioning model, cloud computing integrates a number of existing technologies that have been applied in grid computing, utility computing, service oriented architectures, internet of things, outsourcing, etc. That is the reason why cloud is mistaken for "the same old stuff with a new label". In this section, we distinguish the characteristics of cloud computing in terms of technical, qualitative and economic aspects.

Cloud characteristics

Technical aspects

Technical characteristics are the foundation that ensures other functional and economical requirements. Not every technology is absolutely new, but is enhanced to realize a specific feature, directly or as a pre-condition.

• Virtualization is an essential characteristic of cloud computing. Virtualization in clouds refers to multi-layer hardware platforms, operating systems, storage devices, network resources, etc.

The first prominent feature of virtualization is the ability to hide the technical complexity from users, so it can improve independence of cloud services. Secondly, physical resource can be efficiently configured and utilized, considering that multiple applications are run on the same machine. Thirdly, quick recovery and fault tolerance are permitted.

Virtual environment can be easily backed up and migrated with no interruption in service [START_REF] Cafaro | Grids, Clouds and Virtualization[END_REF].

• Multi-tenancy is a highly requisite issue in clouds, which allows sharing of resources and costs across multiple users.

Multi-tenancy brings resource providers many benefits, for example, centralization of infrastructure in locations with lower costs and improvement of utilization and efficiency with high peak-load capacity. Tenancy information, which is stored in a separate database but altered concurrently, should be well maintained for isolated tenants.

Otherwise some problems such as data protection will arise.

• Security is one of the major concerns for adoption of cloud computing. There is no reason to doubt the importance of security in any system dealing with sensitive and private data. In order to obtain the trust of potential clients, providers must supply the certificate of security. For example, data should be fully segregated from one to another, and an efficient replication and recovery mechanism should be prepared if disasters occur.

The complexity of security is increased when data is distributed over a wider area and shared by unrelated users. However, the complexity reduction is necessary, owing to the fact that ease-of-use ability can attract more potential clients.

CLOUD COMPUTING OVERVIEW

• Programming environment is essential to exploit cloud features. It should be capable of addressing issues such as multiple administrative domains, large variations in resource heterogeneity, performance stability, exception handling in highly dynamic environments, etc. System interface adopts web services APIs, which provide a standards-based framework for accessing and integrating with and among cloud services. Browser, applied as the interface, has attributes such as being intuitive, easy-to-use, standards-based, serviceindependent and multi-platform supported. Through pre-defined APIs, users can access, configure and program cloud services.

Qualitative aspects

Qualitative characteristics refer to qualities or properties of cloud computing, rather than specific technological requirements. One qualitative feature can be realized in multiple ways depending on different providers.

• Elasticity means that the provision of services is elastic and adaptable, which allows the users to request the service near real-time without engineering for peak loads. The services are measured in fine-grain, so that the amount of offering can perfectly match the consumer's usage.

• Availability refers to a relevant capability that satisfies specific requirements of the outsourced services. QoS metrics like response time and throughput must be guaranteed, so as to meet advanced quality guarantees of cloud users.

• Reliability represents the ability to ensure constant system operation without disruption.

Through using the redundant sites, the possibility of losing data and code dramatically decreases. Thus cloud computing is suitable for business continuity and disaster recovery. Reliabitiy is a particular QoS requirement, focusing on prevention of loss.

• Agility is a basic requirement for cloud computing. Cloud providers are capable of on-line reactions to changes in resource demand and environmental conditions. At the same time, efforts from clients are made to re-provision an application from an in-house infrastructure to SaaS vendors. Agility requires both sides to provide self management capabilities.

Cloud projects

Economic aspects

Economic features make cloud computing distinct compared with other computing paradigms.

In a commercial environment, service offerings are not limited to an exclusive technological perspective, but extend to a broader understanding of business need.

• Pay-as-you-go is the means of payment of cloud computing, only paying for the actual consumption of resource. Traditionally, users have to equip with all software and hardware infrastructure before computing starts, and maintain them during computing process. Cloud computing reduces cost of infrastructure maintenance and acquisition, so it can help enterprises, especially small to medium sized, reduce time to market and get return on the investment.

• Operational expenditure is greatly reduced and converted to operational expenditure [START_REF] Böhm | Cloud computing -outsourcing 2.0 or a new business model for it provisioning[END_REF]. Cloud users enter the computing world more easily, and they can rent the infrastructure for infrequent intensive computing tasks. Minimal technical skills are required for implementation. Pricing on a utility computing basis is fine-grained with usagebased options, so cloud providers should mask this pricing granularity with long-term, fixed price agreements considering the customer's convenience.

• Energy-efficiency is due to the ability that a cloud has to reduce the consumption of unused resources. Because of central administration, additional costs of energy consumption as well as carbon emission can be better controlled than in uncooperative cases. In addition, green IT issues are subject to both software stack and hardware level.

Cloud projects

We conclude the state of the art efforts from commercial and academic sides. Major vendors have invested in forthright progress in the area of global cloud promotion, while comparably, research organizations based on their funding principles and interest, contribute to cloud technologies in an indirect way.

Commercial products

In the last few years, a number of middleware and platforms emerge, which involve multiple level services in heterogeneous, distributed systems. Commercial cloud solutions augment dra-

CLOUD COMPUTING OVERVIEW

matically and promote organization shift from company-owned assets to per-use service-based models. The best known cloud projects are Amazon Web Service, Eucalyptus, FlexiScale, Joyent, Azure, Engine Yard, Heroku, Force.com, RightScale, Netsuite, Google Apps, etc. Amazon is the pioneer of cloud computing. Since 2002, Amazon has begun to provide online computing services though Internet. End users, not limited to developers, can access these web services over HTTP, using Representational State Transfer and SOAP protocols.

All services are billed on usage, but how usage is measured for billing varies from service to service [START_REF] Yi | Reducing costs of spot instances via checkpointing in the amazon elastic compute cloud[END_REF]. Among them, the most popular two are Amazon EC2 and S3, which are typical representatives of IaaS. The former rents virtual machines for running local computing applications, and the latter offers online storage.

Amazon EC2[1]

allows users to create a virtual machine, named instance, through an Amazon Machine Image. An instance functions as a virtual private server that contains desired software and hardware. Roughly, instances are classified into 6 categories: standard, micro, high-memory, high-CPU, cluster-GPU and cluster compute, each of which is subdivided by the different memory, number of virtual core, storage, platform, I/O performance and API.

Besides, EC2 supports security control of network access, instance monitoring, multi-location processing etc.

Amazon S3

[2] provides a highly durable storage infrastructure used to store and retrieve data on the Internet. This service is beneficial to developers by making computing more scalable. S3 stores data redundantly on multiple devices and supports version control to recover from both unintended user actions and application failures. [START_REF]Google app engine[END_REF], released in 2008, is a platform for developing and hosting web applications in multiple servers and data centers. In terms of PaaS, GAP is written to be language dependent, and only supports Python and Java, so the runtime environment on GAP is limited. Compared to IaaS, GAP making it easy to develop scalable applications, but can only run a limited range of applications designed for that infrastructure.

Google App Engine

MapReduce [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF] is the best known programming model introduced by Google, which supports distributed computing on large clusters. It performs map and reduction operations in parallel. The advantage of MapReduce is that it can efficiently handle large datasets on common servers and that it can quickly recover from partial failure of servers or storage during the operation. MapReduce is widely used both in industry and academic research. Google developes patented framework, while the Hadoop is open source with free license. Besides that, many projects like Twister, Greenplum, GridGain, Phoenix, Mars, CouchDB, Disco, Skynet, 

Research projects

Besides company initiatives, a number of academic projects have been developed to address the challenges including stable testbed, standardization and open source reference implementation. The most active projects in Europe and North America are XtreemOS, OpenNebula, Fu-tureGrid, elasticLM, gCube, ManuCloud, RESERVOIR, SLA@SOI, Contrail, ECEE, NEON, VMware, Tycoon, DIET, BEinGRID, etc.

XtreemOS [16] is an open source distributed operation system for grids. The project was initialized by INRIA in 2006, and published the first stable release in 2010.

XtreemOS is an uniform computing platform, which integrates heterogeneous infrastructures, from mobile device to clusters. It provides three services including application execution management, data management and virtual organization management.

Although XtreemOS was originally designed for grids, it can also be seen as an alternative for cloud computing, owing to the fact that it is relevant in the context of virtualized distributed computing infrastructure. Hence, it is able to support cooperation and resource sharing over cloud federations.

OpenNebula [START_REF] Opennebula | [END_REF] 
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FutureGrid [START_REF] Futuregrid | [END_REF] is a test-bed for grid and cloud computing. It is a cooperative project started in 2010 between Grid'5000 and TeraGrid.

FutureGrid builds the federation of multiple clouds with a large geographical distribution, and allows researchers to study the issues ranging from authentication, authorization, scheduling, virtualization, middleware design, interface design and cybersecurity, to the optimization of grid-enabled and cloud-enabled computational schemes. The advantage is offering a vivid cloud platform similar to a real commercial cloud infrastructure. Moreover, it integrates several open source technologies to create an easy-to-use environment, such as Xen, Nimbus, Vine, Hadoop etc.

DIET [START_REF] Diet | [END_REF] is a project initiated by INRIA in 2000, which aims at implementing distributed scheduling strategies on grids and clouds.

DIET developed scalable middleware for a multi-agent system, in which clients submit computation requests to a scheduler to find a server available on the grid. In order to facilitate further researches in cloud computing, it supplements cloud-specific elements into scheduler and adds on-demand resource provision model and economy-based resource model to test provision heuristics. [START_REF]Sla@soi[END_REF] is an European project, targeting on evaluation of service provisioning based on automated SLA management on SOI.

SLA@SOI

It developed a SLA management framework, which allows the configuration of multi-layer service and automation in an arbitrary service-oriented infrastructure. Besides the scientific values, it implemented a management suit for automated e-contracting and post-sales.

BEinGRID [3] is a research project providing the infrastructure to support pilot implementations of Grid technologies in actual business scenarios.

In BEinGRID, twenty five business experiments were carried out, each of which focused on a real business problem and the corresponding solution. To extract best practice from the experimental implementations, technical and business consultants worked on analysis of generic components and development of a business plan. Various technologies were evaluated, including cost reduction, enhanced processing power, employing new business model, running Software-as-a-Service application. Although BEinGRID project was concluded, it obtains experiences for cloud computing such as requirement knowledge, business drivers, technological solutions and hinted for migration potential.

Cloud projects

Open areas

Even though some of the essential characteristics of cloud computing have been realized by commercial and academic efforts, not all capabilities are fulfilled to the necessary extent. Several challenges are identified as follows

Middleware

Cloud-enablement functions for an application are brought by web servers, web portals, identity management servers, load balancers and application servers. In order to coordinate and use them harmoniously, middleware continues to play a key role in cloud computing. Generally speaking, cloud middleware is the software used to integrate services, applications and content available on the same or different layers, by which services and other software components can be reused through Internet.

Platform virtualization

Virtualization is one of the crucial technologies that can merge different infrastructures, and the management of virtual machines needs to be further developed. Since there are a lot of mature middleware used in grid computing, how to combine them with cloud middleware is a matter of our concern. Even more, natural evolution from grid to cloud is important, because effort and time can be saved by technology reuse.

Programming model

As the migration to cloud is inevitable, programming and accessing cloud platforms should perform in a seamless and efficient way. In the future, computational platforms will have a huge number of processing nodes, so traditional parallelization models such as batch processing and message passing models are not scalable enough to deal with large scale distributed computing.

Resource management

Form the provider's point of view, large scale of virtual machines needs to be allocated to thousands of distributed users, dynamically, fairly, and most important, profitably. From the consumer's point of view, users are economy-driven entities when they make the decision to use cloud service [START_REF] Buyya | Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility[END_REF]. For adequate resource, one user will compare the price among different providers. For scarce resource, users themselves become competitors who will impact the future price directly, or indirectly. Therefore, the future resource provisioning will become a multi-objective and multi-criteria problem.

For practical reasons, resource provisioning needs reliable and efficient support of negotiation, monitoring, metering, and feedback. Service Level Agreement (SLA) is a common
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tool to define contracts and to measure fulfillments in business scenarios. It describes a set of non-functional requirements of the service, and includes penalties when the requirements are not met. Therefore, formal means for contract description have to be standardized.

Summary

In this chapter, the concept of cloud computing is first introduced. Although there is vast disagreement over what cloud computing is, we try to refine some representatives and give an unbiased and general definition. That definition is not just an overall concept, but describes system architecture, deployment model and essential features. Cloud computing is still an evolving paradigm, and it integrates many existing technologies. A brief retrospect of evolution history helps us clarify the conditions, opportunities and challenges existing in cloud development. These definitions, attributes, and characteristics will evolve and change over time.

Functionally speaking, cloud computing is a service provision model, where software, platform, infrastructure, data, hardware can be directly delivered as a service to end customers. The service characteristics are presented from technical, qualitative and economic aspects.

Current efforts are the foundation for further development. After analyzing existing commercial products and research projects, several challenges in terms of middleware, programming model, resource management and business model are highlighted. These gaps in cloud computing inspire our interest in our future research. In the following chapters, the problem of resource management is discussed from micro-and macro-aspects. In particular, issues such as resource allocation and job scheduling are studied.

3

Scheduling problems for cloud computing

Introduction

This chapter outlines the scheduling problems arising from cloud computing. Concerned theories including former expressions of problems, algorithms, complexity and schematic methods are briefly introduced. Then scheduling hierarchy in cloud datacenter is presented, by splitting scheduling problem into user-level and system-level. The former focuses on resource provision issues between providers and customers, which are solved by economic models. The latter refers to meta-task execution, a sub-optimal solution of which is given by heuristics to speed up the process of finding a good enough answer. Moreover, real-time scheduling attracts our attention. Different from economic and heuristic strategies, priority scheduling algorithms and their implementation are discussed at the end of this chapter.

Scheduling problems

Problems, algorithms and complexity

Scheduling problem [START_REF] Blazewicz | Scheduling in Computer and Manufacturing Systems[END_REF] is the problem of matching elements from different sets, which is formally expressed as a triple (E, S, O), where • E is the set of examples, each of which is an instance of problem.

• S is the set of feasible solutions for the example.
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• O is the object of the problem.

Scheduling problem can be further classified into two categories depending on object O: optimization problem and decision problem. An optimization problem requires finding the best solution among all the feasible solutions in set S. Different from optimization, the aim of decision problem is relatively easy. For a specified feasible solution s ∈ S, problem needs a positive or negative answer to whether the object O is achieved. Clearly, optimization problem is harder than decision problem, because the specified solution only compares with one threshold solution in decision problem, instead of all feasible solutions in optimization problem.

An algorithm is a collection of simple instructions for finding a solution to a problem.

It contains three parts: input, method, output. Input is a set of parameters to be dealt with.

Method includes describable, controllable, repeatable procedures to realize the aim using input parameters. Output is a result of the problem. Especially for scheduling, the algorithm is a method by which tasks are given access, matched, or allocated to processors. Generally speaking, no absolutely perfect scheduling algorithm exists, because scheduling objectives may conflict with one another. A good scheduler implements a suitable compromise, or applies combination of scheduling algorithms according to different applications.

A problem can be solved in seconds, hours or even years depending on the algorithm applied. The efficiency of an algorithm is evaluated by the amount of time necessary to execute it. The running time of an algorithm is stated as a time complexity function relating the input length to the number of steps.

There are several kinds of time complexity algorithms that will appear in the following chapters.

• For a constant time algorithm O(1), the maximum amount of running time is bounded by a value that does not rely upon the size of the input.

• For a linear time algorithm O(n), the maximum amount of running time increases linearly with the size of the input.

• For a polynomial time algorithm O(n c ) with a constant c, the maximum amount of running time is bounded by a polynomial expression in the size of the input.

• For a exponential time algorithm O(2 n c ) with a constant c, the maximum amount of running time is bounded by an exponential expression in the size of the input.

Scheduling problems

If a problem has a polynomial time algorithm, the problem is tractable, feasible, efficient or fast enough to be executed on a computational machine. In computational complexity theory, a complexity class is a set of problems that has the same complexity based on a certain resource [START_REF] Sipser | Introduction to the Theory of Computation[END_REF].

• Class P is the set of decision problems that are solvable in polynomial time on a deterministic Turing machine, which means that a problem of Class P can be decided quickly by a polynomial time algorithm.

• Class NP is the set of decision problems that are solvable in polynomial time on a nondeterministic Turing machine, but a candidate solution of the problem of Class NP can be verified by a polynomial time algorithm, which means that the problem can be verified quickly.

• Class NP-complete is the set of decision problems, to which all other NP problems can be polynomial transformable, and a NP-complete problem must be in class NP. Generally speaking, NP-complete problems are more difficult than NP problems.

• Class NP-hard is the set of optimization problems, to which all NP problems can be polynomial transformable, but a NP-hard problem is not necessarily in class NP.

Although most of NP-complete problems are computationally difficult, some of them are solved with acceptable efficiency. There are some algorithms, the running time of which is not only bounded by the size of input of an example, but also by the maximum number of the examples. These algorithms have pseudopolynomial time complexity. For one problem, if its maximum number is not large, it can be solved quickly. Thus, one NP-complete problem with known pseudo-polynomial time algorithms is called weakly NP-complete, otherwise is called strongly NP-complete, if it can not be solved by a pseudopolynomial time algorithm unless P=NP [START_REF] Sipser | Introduction to the Theory of Computation[END_REF].

Schematic methods for scheduling problem

Scheduling problems belong to a broad class of combinational optimization problems aiming at finding an optimal matching from a finite set of objects, so the set of feasible solutions is usually discrete rather than continuous. An easy problem refers to one with a small number of the examples, so it can be simply worked out by polynomial algorithms or enumerations.
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On the contrary a problem is in Class NP-complete if its purpose is making a decision, and is in Class NP-hard if its purpose is optimization. Because an optimization problem is not easier than a decision problem, we only list schematic methods for NP-hard problems. As shown in Figure 3.1, enumeration, heuristic and approximation are three possible solutions, their corresponding algorithms complement each other to give a relatively good answer to a NP-hard problem. 

Enumeration method

For an optimization problem, its optimal solution can be selected if all the possible solutions are enumerated and compared one by one. Exact enumerative algorithms have the exponential time complexity in the worst case. However, for some NP-hard problems in weak sense, when the number in one instance is relatively small, it can be solved by a pseudopolynomial algorithm, the time complexity of which is bounded by a polynomial expression of the input size and the maximum number of the problem. Moreover, there is another kind of enumeration, called implicit enumeration, which evaluates all possible solutions without explicitly listing all of them. Dynamic programming is a practicable implicit enumeration method to solve combinational optimization problems. It divides a problem into a number of stages, and at each stage a decision is required, impacting on the decisions to be made at later stages. The number of stored decisions is exponential to the number of subproblems, so the worst complexity function of dynamic programming algorithms is exponential.

Scheduling problems

Heuristic method

Exhaustive enumeration is not feasible for scheduling problems, because only a few special cases of NP-hard problems have exactly-solvable algorithms in polynomial time. For the sake of practice, we tend to find suboptimal solutions that are good enough to balance accuracy and time.

Heuristic is a suboptimal algorithm to find reasonably good solutions reasonably fast. It iteratively improves a candidate solution with regard to a given measure of quality, but does not guarantee the best solution. To be more precise, approximation rate r H (e) is introduced to evaluate the accuracy of heuristic algorithms [START_REF] Blazewicz | Scheduling in Computer and Manufacturing Systems[END_REF].

r H (e) = H(e) OP T (e) (3.1) 
where H(e) is the value of the solution constructed by heuristic H for instance e, and OP T (e) is the value of the optimal solution for e. If there is an integer K, all the instances satisfy OP T (e) ≥ K, this asymptotic ratio r H can be used to measure the quality of approximation algorithm. The closer r H approaches one, the better the performance is achieved by heuristics.

With greedy rules, several common algorithms are shown as follows.

• Next Fit heuristic: The simplest algorithm for bin-packing problem. Each object is assigned to the current bin if it fits, otherwise, it is assigned to a new bin. Approximation rate is r N F ≤ 2.

• First Fit heuristic: Each object is assigned to the lowest initialized indexed bin if it fits.

A new bin is created only if the new object can not fit any initialized bin. Approximation rate is r F F ≤ 7/4. 
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Relaxation method

Another feasible method to solve NP-hard problems is relaxing some constraints imposed on the original problem. In the new relaxed problem, the solution might be easy to obtain and have a good approximation to that in the original problem. The common relaxation includes:

• Suppose the elements in one instance are all natural numbers, rather than real numbers.

• Suppose the value of one special element remains unchanged, rather than varied.

• Suppose the value of two interrelated elements equal, rather than one being bounded by the other.

• Suppose the value of one element is unit, rather than arbitrary.

• Suppose the type of one element is certain, rather than arbitrary.

More relaxation can be applied without the limit of above presentation.

Scheduling hierarchy in cloud datacenter

In last section, we introduced related theory about scheduling problems and their schematic methods. From this section, we specify scheduling problems in cloud environments. As a key characteristic of resource management, service scheduling makes cloud computing different from other computing paradigms. Centralized scheduler in cluster system aims at enhancing the overall system performance, while distributed scheduler in grid system aims at enhancing the performance of specific end-users. Compared with them, scheduling in cloud computing is much more complicated. On one hand, centralized scheduler is necessary, because every cloud provider, which promises to provide services to users without reference to the hosted infrastructure, has an individual datacenter. On the other hand, distributed scheduler is also indispensable, because commercial property determines that cloud computing should deal with the QoS requirements of customers distributed worldwide.

An important issue of this chapter is to decompose scheduling problems related to cloud computing. Since cloud service is actually a virtual product on a supply chain, the service scheduling can be classified into two basic catagories: user-level and system-level. The hierarchy is shown in Figure 3.2. The user-level scheduling deals with the problem raised by service provision between providers and customers. It mainly refers to economic concerns such as

Scheduling hierarchy in cloud datacenter

Figure 3.2: Scheduling hierarchy equilibrium of supply and demand, competition among consumers and cost minimization under elastic consumer preference. The system-level scheduling handles resource management within a datacenter. From the point of view of customers, a datacenter is an integration system, which provides uniform services. Actually, the datacenter consists of many physical machines, homogeneous or heterogeneous. After receiving numerous tasks from different users, assigning tasks to physical machines significantly impacts the performance of datacenter. Besides improving the system utilization, some specific requirements should be considered, such as the real-time satisfaction, resource sharing, fault tolerance, etc.

SCHEDULING PROBLEMS FOR CLOUD COMPUTING

Economic models for resource-provision scheduling

In the past three years, explosion of supply-side cloud service provision has accelerated, cloud solutions become mainstream productions of IT industry. At the same time, these cloud services gradually mature to become more appropriate and attractive to all types of enterprises.

The growth of both sides of supply and demand makes the scheduling problems more complex, sophisticated, and even vital in cloud environment. A bad scheduling scheme not only undermines CPU utilization, turnaround time and cumulative throughput, but may also result in terrible consequences, for example providers lose money and even go out of business.

Economic models are more suitable for cloud-based scheduling than traditional multiprocessor models, especially for regulating the supply and demand of cloud resources. In economics, market-based and auction-based schedulers handle two main interests. Market-based schedulers are applied when a large number of naive users can not directly control service price in commodity trade. Mainstream cloud providers apply market-based pricing schemes in reality. The concrete schemes vary from provider to provider. As the most successful IaaS provider, Amazon EC2 supports commodity and posted pricing models for the convenience of users. Another alternative is auction-based scheduler, which is adapted to situations where a small number of strategic users seeking to attain a specific service compete with each other. In auctions, users are able to commit the auction price. Amazon spot instance is an example of auction-based model. Instance price adjusts from time to time, depending on the supply and demand. As a result, users should estimate the future price and make its proposal in an auction before placing a spot instance request.

Market-based strategies

In cloud service provision, both service providers and users express their requirements through SLAs contracts. Providers need mechanisms that support price specification and increase system utilization, while consumers need schemes that guarantee their objectives are reached. A market-based scheduler aims at regulating the supply and demand for resources. To be specific, the market strategies emphasize the schemes for establishing a service price depending on their customers' requirements. In previous literature, a broker behaving on the behalf of one end-user interacts with service providers to determine a proper price that keeps supply and demand in equilibrium [START_REF] Buyya | Economic models for resource management and scheduling in grid computing[END_REF].

Economic models for resource-provision scheduling

Strategy types

Commodity model

As a common model in our daily life, service providers specify their service price and charge users according to the amount of resource they consume. Any user is free to choose a proper provider, but has no right to change the service price directly. The amount of their purchase can cause the price to derive from supply and demand.

The process of scheduling is executed by brokers. On the behalf of users, each broker identifies several providers to inquire the prices, and then selects one provider which can meet its objective. The consumption of service is recorded and payment is made as agreed.

Posted price model

The posted price strategy makes some special offers to increase the market share or to motivate customers to use the service during the off-peak period. The posted price, as a kind of advertisement, has time or usage limitations that are not suitable for all users. Therefore, the scheduling process should be modified in this strategy.

Service providers give the regular price, the cheap offers and the associated conditions of usage. Brokers observe the posted price, and compare whether it can meet the requirement of users. If not, brokers apply commodity strategy as usual. Otherwise, brokers only inquire the provider for availability of posted services, supplementing extra regular service when associated conditions are not satisfied.

Bargaining model

In bargaining strategy, price is not given by provider unilaterally, but by both sides of the transaction through bargaining. A prerequisite for bargaining is that the objective functions for providers and brokers must have an intersection, so that they can negotiate with each other as long as their objectives are both met.

In this scenario, a broker does not compare all the prices for the same service, but connects with one of the providers directly. The price offered by the provider might be higher than customer expectation, so the broker starts with a very low price, which has the upside potential.

The bargaining ends when a mutually agreeable price is reached or when one side is not willing to negotiate any further. In the latter case, broker will connect with other providers and then start bargaining again.

Bargaining strategy has an obvious shortcoming, that is, the overhead on communication is very high. The time delay might lead to lower utilization of resources for the provider or
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shorten deadline of service for the customers. In reality, the number of negotiations can not be infinite, and the bargaining time is always limited.

Principles for strategy design

Several market principles should be considered in the process of determining the service price [START_REF] Sun | Markets, Mechanisms, Games, and Their Implications in Grids[END_REF].

Equilibrium price refers to a price under which the amount of services bought by buyers is equal to the amount of services produced by sellers. This price tends to be stable unless demand or supply change.

Pareto efficiency describes a situation where no agent can get a better allocation than the initial one without reducing other individual allocations. In other words, resource can not be reallocated in a way that makes everyone better off.

Individual rationality can make price fluctuate around the equilibrium price, which is determined by the process of supply and demand. A higher price provides incentive to produce more resource, so the amount of scarce resource can gradually reach saturation then surplus, and vice-versa. Individual rationality can adjust prices to reach equilibrium instantaneously.

Stability examines whether a scheduling mechanism can be manipulated. Individual agent may not reveal private information truthfully. A stable mechanism allows agents to obtain the best allocation if they submit their truthful information.

Communication efficiency evaluates the communication overhead to capture a desirable global solution. Message passing adds communication overhead on transaction, so additional time is spent on allocation, rather than on computation. A good scheduling mechanism finds out a near-optimum solution efficiently.

Auction strategies

Unlike in market-based models, an auction-based scheduler is a rule maker, rather than a price maker. The rules include how the users bid for services, how the sale price is determined, who the winning bidder is, how the resource is allocated, whether there are limits on time or proposal price, etc.

In auction-based schedulers, price is decided according to the given rules, which benefits consumers by expressing their real requirement strategically, rather than waiting for price ad-
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justment in a passive manner. Auction-based schedulers are distinguished from each other by several characteristics.

Strategy types

Number of participants

According to different numbers of bidders, auctions are classified into demand auction, supply auction and double auction. English auction is an example of demand auction, in which n buyers bid for one service. This type of auction is the most common form of auction in use today. Dutch auction focuses on demand of suppliers, where m sellers offer the same service for one buyer.

Double auction is needed under the condition that the number of buyers and sellers is more than one. In double auction, sellers and buyers both offer bids. The amount of trade is decided by the quantity at which the marginal buy bid is higher than the marginal sell bid. With the growing number of participants, double auction converges to the market equilibrium.

Information transparency

Participants in an auction may or may not know the actions of other participants. Both English and Dutch auctions are open auctions, that is, the participants repeatedly bid for the service with the complete information about previous bids of other bidders. Apart from these, there is another type of auction, in which participants post sealed bids and the bidder with highest bid wins. In close auction, bidders can only submit one bid each and no one knows the other bids. Consequently, blind bidders cannot adjust their bids accordingly.

Close auction is commonly used for modeling resource provision in multi-agent system, considering the simplicity and effectiveness of the sealed bids.

Combinatorial auction

A combinatorial auction is a type of smart market in which participants can place bids on combinations of items, rather than just individual items. Combinatorial auction is appropriate for computational resource auction, where a common procedure accepts bids for a package of items such as CPU cycles, memory, storage, and bandwidth.

Combinatorial auctions are processed by bidders repeatedly modifying their proposals until no one increases its bid any more. In each round, auctioneer publishes a tentative outcome to help bidders decide whether increase their bids or not. The tentative outcome is the one that can bring auctioneer the best revenue given the bids. However, finding an allocation of items to maximize the auctioneer's revenue is NP-complete. A challenge of combinatorial auctions
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comes from how to efficiently determine the allocation once the bids have been submitted to the auctioneer.

Proportion shared auction

In proportion shared auctions, no winner exists, but all bidders share the whole resource with a percentage based on their bids. This type of auction guarantees a maximized utility and ensures fairness among users in resource allocation, which suits limited resource such as time slot, power and spectrum bandwidth [START_REF] Kwok | Selfish grid computing: Game-theoretic modeling and nash performance results[END_REF]. Shares represent relative resource rights that depend on the total number of shares contending for a resource. Client allocations degrade gracefully in overload situations, and clients proportionally benefit from extra resources when some allocations are underutilized.

Principles for strategy design

Game theoretical equilibrium

The auction models applied in cloud service and other computational resource provisioning are listed above, but not limited to these primary types. Generally, auction-based scheduler emphasizes the equilibrium among users rather than supply-demand balance between provider and user. The effectiveness of auction can be analyzed with the help of game theory.

Game theory studies multi-person decision making problems. Any player involved in a game makes the best decision, taking into account decisions of the others. A game theoretical equilibrium is a solution, in which no player gains by only changing his own strategy unilaterally. However, this equilibrium does not necessarily mean the best cumulative payoff for all players.

Incentive compatibility

In any auction, participants might hide their true preferences. Incentive compatible auction is one in which participants have incentive to reveal their real private information. One bidder can maximize his payoff only if the information is submitted truthfully.

One method to realize incentive compatibility is designing a reasonable price payed by auction winner. A good example of incentive compatible auction is Vickery auction. In this sealed price auction, the highest bidder wins, but pays the second highest bid rather than his own. Under this charging rule, biding lower or higher than his true valuation will never increase the best possible outcome.

Economic models for resource-provision scheduling

Economic schedulers

Economic schedulers have been applied to solve resource management in various computing paradigms, such as cluster, distributed databases, grids, parallel systems, Peer-to-Peer, and cloud computing [START_REF] Buyya | Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility[END_REF]. Existing middleware applying economic schedulers, not limited to cloud platforms, are introduced. By doing this, we can examine the applicability and suitability of these economic schedulers for supporting cloud resource allocation in practice. This in turn helps us identify possible strengths of these middleware that may be leveraged for cloud environment.

Cluster-on-demand [START_REF]Cluster-on-demand[END_REF] is a service-oriented architecture for networked utility computing.

It creates independent virtual clusters for different groups. These virtual clusters are assigned and managed by a cluster broker, supporting tendering and contract-net economic model. The user submits its requirements to all cluster brokers. Every broker proposes a specific contract with the estimated execution time and cost. If the number of brokers proposing contacts is more than one, users then select only one of them as the resource provider. Earning is afforded by users to cluster broker as costs for adhering to the conditions of the contract.

Mosix [START_REF]Mosix[END_REF] is a distributed operating system for high performance cluster computing that employs an opportunity cost approach to minimize the overall execution cost of the cluster.

It applies commodity model to compute a single marginal cost based on the processor and memory usages of the process. The cluster node with the minimal value of marginal cost is then assigned the process.

Stanford Peers [START_REF]Stanford peers[END_REF]is a peer-to-peer data trading framework, in which both auction and bartering models are applied. A local site wishing to replicate its collection holds an auction to solicit bids from remote sites by first announcing its request for storage space. Each interested remote site then returns a bid, and the site with the lowest bid for maximum benefit is selected by the local site. Besides that, a bartering system supports a cooperative trading environment for producer and consumer participants, so that sites exchange free storage spaces to benefit both themselves and others. Each site minimizes the cost of trading, which is the amount of disk storage space that it has to provide to the remote site for the requested data exchange. [START_REF]D'agents[END_REF] is a mobile-agent system for distributed computing. It implements proportion shared auction where agents compete for shared resources. If there is more than one bidder, resources are allocated proportionally. Costs are defined as rates, such as credits per minute to reflect the maximum amount that a user wants to pay for the resource.

D'Agents
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Nimrod-G [START_REF] Abramson | A computational economy for grid computing and its implementation in the nimrod-g resource broker[END_REF] is a tool for automated modeling and execution of parameter sweep applications on Grids. Through broker, the grid users obtain service prices from different resources.

Deadline and budget are main constraints specified by the user for running his application.

The allocation mechanisms are based on market-based models. Prices of resources thus vary between different executing applications depending on their QoS constraints. A competitive trading environment exists, because users have to compete with one another in order to maximize their own personal benefits.

Faucets [START_REF] Kale | Faucets: Efficient resource allocation on the computational grid[END_REF] is a resource scheduler of computational grid, and its objective is supporting efficient resource allocation for parallel jobs executed on a changing number of allocated processors during runtime on demand. Tendering model is used in Faucets. A QoS contract is agreed before job execution, including payoff at soft deadline, a decreased payoff at hard deadline and penalty after hard deadline. Faucets aims to maximize the profit of resource provider and resource utilization.

MarketNet [START_REF] Dailianas | Marketnet: Market-based protection of network systems and services -an application to snmp protection[END_REF] is a market-based protection technology for distributed information systems. Posted price model is incorporated. Currency accounts for information usage. MarketNet system advertises resource request by offering prices on a bulletin board. Through observing currency flow, potential intrusion attacks into the information systems are controlled, and the damages are kept to the minimum.

Cloudbus [START_REF] Buyya | Cloudbus toolkit for market-oriented cloud computing[END_REF] is a toolkit providing market-based resource management strategies to mediate access to distributed physical and virtual resources. A 3rd party cloud broker is built on an architecture that provides a general framework for any other cloud platforms. A number of economic models with commodity, tendering and auction strategies are available for customerdriven service management and computational risk management. The broker supports various application models such as parameter sweep, workflow, parallel and bag of tasks. It has plug-in support for integration with other middleware technologies such as Globus, Aneka, Unicore, etc.

OpenPEX [START_REF] Venugopal | Openpex: An open provisioning and execution system for virtual machines[END_REF] is a resource provisioning system with an advanced reservation approach for allocating virtual resources. A user can reserve any number of instances of virtual machine that have to be started at a specific time and have to last for a specific duration. A bilateral negotiation protocol is incorporated in OpenPEX, allowing users and providers to exchange their offers and counter-offers, so more sophisticated bartering or double auction models are helpful to improve revenue of cloud users.

Heuristic models for task-execution scheduling

EERM [START_REF] Elmroth | A grid resource broker supporting advance reservations and benchmark-based resource selection[END_REF] is a resource broker that enables bidirectional communication between business and resource layers to promote good decision-making in resource management. EERM contains sub-components for performing pricing, accounting, billing, job scheduling, monitoring and dispatching. It uses kinds of market-based mechanisms for allocating network resources. To increase the revenue, overbooking strategy is implemented to mitigate the effects of cancellations and no-shows.

A summary of economic schedulers is concluded in Table 3.1. 

Heuristic models for task-execution scheduling

In cloud computing, a typical datacenter consists of commodity machines connected by highspeed links. This environment is well suited for the computation of large, diverse group of tasks. Tasks belonging to different users are no longer distinguished one from another. Scheduling problem in such a context turns out to be matching multi tasks to multi machines. As mentioned in the former section, the optimal matching is an optimization problem, generally with NP-complete complexity. Heuristic is often applied as a suboptimal algorithm to obtain relatively good solutions.

This section intensively researches two types of strategies, static and dynamic heuristics.

Static heuristic is suitable for the situation where the complete set of tasks is known prior to
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execution, while dynamic heuristic performs the scheduling when a task arrives. Before further explanation, several preliminary terms should be defined.

• t i : task i • m j : machine j • c i : the time when task t i comes
• a j : the time when machine m j is available

• e ij : the execution time for t i is executed on m j • c ij : the time when the execution of t i is finished on m j , c ij = a j + e ij
• makespan: the maximum value of c ij , which means the whole execution time. The aim of heuristics is to minimize makespan, that is to say, scheduling should finish execution of metatask as soon as possible.

Static strategies

Static strategies are performed under two assumptions. The first is that tasks arrive simultaneously c i = 0. The second is that machine available time a j is updated after each task is scheduled.

OLB (Opportunistic Load Balancing) schedules every task, in arbitrary order, to next available machine. Its implementation is quite easy, because it does not need extra calculation. The goal of OLB is simply keeping all machines as busy as possible.

MET (Minimum Execution Time) schedules every task, in arbitrary order, to the machine which has the minimum execution time for this task. MET is also very simple, giving the best machine to each task, but it ignores the availability of machines. MET jeopardizes the load balance across machines.

MCT (Minimum Completion Time) schedules every task, in arbitrary order, to the machine which has the minimum completion time for this task. However, in this heuristic, not all tasks can be given the minimum execution time.

Min-min begins with the set T of all unscheduled tasks. Then, the matrix for minimum completion time for each task in set T is calculated. Task with overall minimum completion
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time is scheduled to its corresponding machine. Next, the scheduled task is removed from T .

The process repeats until all tasks are scheduled.

Min-max is similar to Min-min heuristic. Min-max also begins with the set T of all unscheduled tasks, and then calculates the matrix for minimum completion time for each task in set T . Different from min-min, task with overall maximum completion time is selected and scheduled to its corresponding machine. Next, the scheduled task is removed from T . The process repeats until all tasks are scheduled.

GA (Genetic Algorithm) is a heuristic to search for a near-optimal solution in large solution spaces [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF]. The first step is randomly initializing a population of chromosomes (possible scheduling) for a given task. Each chromosome has a fitness value (makespan) that results from the scheduling of tasks to machines within that chromosome. After the generation of the initial population, all chromosomes in the population are evaluated based on their fitness value, with a smaller makespan being a better mapping. Selection scheme probabilistically duplicates some chromosomes and deletes others, where better mappings have a higher probability of being duplicated in the next generation. The population size is constant in all generations. Next, the crossover operation selects a random pair of chromosomes and chooses a random point in the first chromosome. Crossover exchanges machine assignments between corresponding tasks.

Mutation operation is performed after crossover. Mutation randomly selects a chromosome, then randomly selects a task within the chromosome, and randomly reassigns it to a new machine. After evaluating the new population, another iteration of GA starts, including selection, crossover, mutation and evaluation. Only when stopping criteria are met, the iteration will stop.

SA (Simulated Annealing) uses a procedure that probabilistically allows poorer solutions to be accepted to obtain a better search of the solution space. This probability is based on a system temperature that decreases for each iteration, which implies that a poorer solution is difficulty to be accepted. The initial system temperature is the makespan of the initial scheduling, which is mutated in the same manner as the GA. The new makespan is evaluated at the end of each iteration. A worse makespan might be accepted based on a probability, so the SA finds poorer solutions than Min-min and GA.

Tabu search keeps track of the regions of the solution space which have already been searched so as not to repeat a search near these areas. A scheduling solution uses the same representation as a chromosome in the GA approach. To manipulate the current solution and to move through the solution space, a short hop is performed. The intuitive purpose of a short hop is to find the nearest local minimum solution within the solution space. When the
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short hop procedure ends, the final scheduling from the local solution space search is added to the tabu list. Next, a new random scheduling is generated, to perform a long hop to enter a new unsearched region of the solution space. After each successful long hop, the short hop procedure is repeated. After the stopping criterion is satisfied, the best scheduling from the tabu list is the final answer.

A * is a tree-based search heuristic beginning at a root node that is a null solution. As the tree grows, nodes represent partial scheduling (a subset of tasks is assigned to machines), and leaves represent final scheduling (all tasks are assigned to machines). The partial solution of a child node has one more task scheduled than the parent node. Each parent node can be replaced by its children. To keep execution time of the heuristic tractable, there is a pruning process to limit the maximum number of active nodes in the tree at any one time. If the tree is not pruned, this method is equivalent to an exhaustive search. This process continues until a leaf (complete scheduling) is reached.

The listed heuristics above are fit for different scheduling scenarios. The variation of scenarios is caused by the task heterogeneity, machine heterogeneity and machine inconsistence.

The machines are consistent if machine m i executes any task faster than machine m j , it executes all tasks faster than m j . These heuristics are evaluated by simulation in article [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF]. For consistent machines, GA performs the best, while MET performs the worst. For inconsistent machines, GA and A * give the best solution, and OLB gives the worst. Generally, GA, A * and min-min can be used as a promising heuristic with short average makespan.

Dynamic strategies

Dynamic heuristics are necessary when task set or machine set is not fixed. For example, not all tasks arrive simultaneously, or some machines go offline at intervals. The dynamic heuristics can be used in two fashions, on-line mode and batch mode. In the former mode, a task is scheduled to a machine as soon as it arrives. In the latter mode, tasks are firstly collected into a set that is examined for scheduling at prescheduled times.

On-line mode

In on-line heuristics, each task is scheduled only once, the scheduling result can not be changed.

On-line heuristic is suitable for the cases in which arrival rate is low [START_REF] Shoukat | Dynamic mapping of a class of independent tasks onto heterogeneous computing systems[END_REF].
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OLB dynamic heuristic assigns a task to the machine that becomes ready next regardless of the execution time of the task on that machine.

MET dynamic heuristic assigns each task to the machine that performs that task's computation in the least amount of execution time regardless of machine available time.

MCT dynamic heuristic assigns each task to the machine, which results in task's earliest completion time. MCT heuristic is used as a benchmark for the on-line mode [START_REF] Shoukat | Dynamic mapping of a class of independent tasks onto heterogeneous computing systems[END_REF].

SA (Switching Algorithm) uses the MCT and MET heuristics in a cyclic fashion depending on the load distribution across the machines. MET can choose the best machine for tasks but might assign too many tasks to same machines, while MCT can balance the load, but might not assign tasks machines that have their minimum executing time. If the tasks are arriving in a random mix, it is possible to use the MET at the expense of load balance up to a given threshold and then use the MCT to smooth the load across the machines.

KPB (K-Percent Best) heuristic considers only a subset of machines while scheduling a task. The subset is formed by picking the k best machines based on the execution times for the task. A good value of k schedules a task to a machine only within a subset formed from computationally superior machines. The purpose is to avoid putting the current task onto a machine which might be more suitable for some yet-to-arrive tasks, so it leads to a shorter makespan as compared to the MCT.

For all the on-line mode heuristics, KPB outperforms others in most scenarios [START_REF] Shoukat | Dynamic mapping of a class of independent tasks onto heterogeneous computing systems[END_REF]. The results of MCT are good, only slightly worse than KPB, owing to the lack of prediction for task heterogeneity.

Batch mode

In batch mode, tasks are scheduled only at some predefined moments. This enables batch heuristics to know about the actual execution times of a larger number of tasks.

Min-min firstly updates the set of arrival tasks and the set of available machines, calculating the corresponding expected completion time for all ready tasks. Next, the task with the minimum earliest completion time is scheduled and then removed from the task set. Machine available time is updated, and the procedure continues until all tasks are scheduled.

Max-min heuristic differs from the Min-min heuristic where the task with the maximum earliest completion time is determined and then assigned to the corresponding machine. The Max-min performs better than the Min-min heuristic if the number of shorter tasks is larger than that of longer tasks.

SCHEDULING PROBLEMS FOR CLOUD COMPUTING

Sufferage heuristic assigns a machine to a task that would suffer most if that particular machine was not assigned to it. In every scheduling event, a sufferage value is calculated, which is the difference between the first and the second earliest completion time. For task t k , if the best machine m j with the earliest completion time is available, t k is assigned to m j .

Otherwise, the heuristic compares the sufferage value of t k and t i , the task already assigned to m j . If the sufferage value of t k is bigger, t i is unassigned and added back to the task set. Each task in set is considered only once.

Generally, Sufferage gives the smallest makespan among batch mode heuristics [START_REF] Shoukat | Dynamic mapping of a class of independent tasks onto heterogeneous computing systems[END_REF]. The batch mode performs better than the on-line mode with high task arrival rate.

Heuristic schedulers

One advantage of cloud computing is that tasks which might be difficult, time consuming, or expensive for an individual user can be efficiently accomplished in datacenter. Datacenter in clouds supports functional separation between the processing power and data storage, both of which locate in large number of remote devices. Hence, scheduling becomes more complicated and challenging than ever before. Since scheduler is only a basic component for the whole infrastructure, no general scheduler can fit for all cloud architectures. In this section, we mainly discuss schedulers used for data-intensive distributed applications.

Hadoop

MapReduce is a popular computation framework for processing large-scaled data in mainstream public and private clouds, and it is considered as an indispensable cornerstone for cloud implementation. Hadoop is the most widespread MapReduce implementation for educational or production uses. It enables applications to work with thousands of nodes and petabytes of data.

A multi-node Hadoop cluster contains two layers. The bottom is Hadoop Distributed File System (HDFS), which provides data location awareness for effective scheduling of work.

Above the file systems is the MapReduce engine, which includes one job tracker and several task trackers. Every tracker inhabits an individual node. Clients submit MapReduce jobs to job tracker, then job tracker pushes work out to available Task Tracker nodes in the cluster [START_REF] Borthakur | The Hadoop Distributed File System: Architecture and Design[END_REF].
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Hadoop is designed for large batch jobs. The default scheduler uses FIFO heuristic to schedule jobs from a work queue. Alternative job schedulers are fair scheduler, capacity scheduler and delay scheduler.

FIFO scheduler [START_REF] Borthakur | The Hadoop Distributed File System: Architecture and Design[END_REF] applies first in first out heuristic. When a new job is submitted, scheduler puts it in the queue according to its arrival time. The earliest job on the waiting list is always executed first. The advantages are that the implementation is quite easy and that the overhead is minimal. However, throughput of FIFO scheduler is low, since tasks with long execution time can seize the machines.

Fair scheduler [START_REF] Zaharia | Improving mapreduce performance in heterogeneous environments[END_REF] assigns equal share of resources to all jobs. When new jobs are submitted, tasks slots that free up are shared, so that each job gets roughly the same amount of CPU time. Fair scheduler supports job priorities as weights to determine the fraction of total compute time that each job should get. It also allows a cluster to be shared among a number of users. Each user is given a separate pool by default, so that everyone gets the same share of the cluster no matter how many jobs are submitted. Within each pool, fair sharing is used to share capacity between the running jobs. In addition, guaranteed minimum share is allowed. When a pool contains jobs, it gets at least its minimum share, but when the pool does not need its full guaranteed share, the excess is split among other running jobs.

Capacity scheduler [START_REF] Zaharia | Job scheduling for multi-user mapreduce clusters[END_REF] allocates cluster capacity to multiple queues, each of which contains a fraction of capacity. Each job is submitted to a queue, all jobs submitted to the same queue will have access to the capacity allocated to the queue. Queues enforce limits on the percentage of resources allocated to a user at any given time, so no user monopolizes the resource. Queues optionally support job priorities. Within a queue, jobs with high priority will have access to resources preferentially. However, once a job is running, it will not be preempted for a higher priority job.

Delay scheduler [START_REF] Zaharia | Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling[END_REF] addresses conflict between scheduling fairness and data locality. It temporarily relaxes fairness to improve locality by asking jobs to wait for a scheduling opportunity on a node with local data. When the job that should be scheduled next according to fairness cannot launch a local task, it waits for a short length of time, letting other jobs launch tasks instead. However, if a job has been skipped long enough, it is allowed to launch non-local tasks to avoid starvation. Delay scheduler is effective if most tasks are short compared to jobs and if there are many slots per node.
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Dryad [7] is a distributed execution engine for general data parallel applications, and it seems to be Microsoft's programming framework, providing similar functionality as Hadoop. Dryad applies directed acyclic graph (DAG) to model applications.

Quincy [START_REF] Isard | Quincy: fair scheduling for distributed computing clusters[END_REF] scheduler tackles the conflict between locality and scheduling in Dryad framework. It represents the scheduling problem as an optimization problem. Min-cost flow makes a scheduling decision, matching tasks and nodes. The basic idea is killing some of the running tasks and then launching new tasks to place the cluster in the configuration returned by the flow solver.

Others

To sum up the heuristic schedulers for cloud computing, scheduling in clouds are all about resource allocation, rather than job delegation in HPC or grid computing. However, the traditional meta-schedulers can be evolved to adapt cloud architectures and implementations, considering the development of virtualization technologies. Next, we take several representatives for example as follows Oracle Grid Engine [START_REF]Oracle grid engine[END_REF] is an open source batch-queuing system. It is responsible for scheduling remote execution of large numbers of standalone, parallel or interactive user jobs and managing the allocation of distributed resources. Now it is integrated by Hadoop and Amazon EC2, and works as a virtual machine scheduler for Nimbus in cloud computing environment.

Maui Cluster Scheduler [START_REF]Maui cluster scheduler[END_REF] 

Real-time scheduling for cloud computing

There are emerging classes of applications that can benefit from increasing timing guarantee of cloud services. These mission critical applications typically have deadline requirements, and any delay is considered as failure for the whole deployment. For instance, traffic control centers periodically collect the state of roads by sensor devices. Database updates recent information before next data reports are submitted. If anyone consults the control center about traffic problems, a real-time decision should be responded to help operators choose appropriate control actions. Besides, current service level agreements can not provide cloud users real-time control over the timing behavior of the applications, so more flexible, transparent and trust-worthy service agreement between cloud providers and users is needed in future.

Given the above analysis, the ability to satisfy timing constraints of such real-time applications plays a significant role in cloud environment. However, the existing cloud schedulers are not perfectly suitable for real-time tasks, because they lack strict requirement of hard deadlines.

A real-time scheduler must ensure that processes meet deadlines, regardless of system load or makespan.

Priority is applied to the scheduling of these periodic tasks with deadlines. Every task in priority scheduling is given a priority through some policy, so that scheduler assigns tasks to resources according to priorities. Based on the policy for assigning priority, real-time scheduling is classified into two types: fixed priority strategy and dynamic priority strategy.

Fixed priority strategies

A real-time task τ i contains a series of instances. Fixed priority scheduling is that all instances of one task have the same priority. The most influential algorithm for priority assignment is Rate Monotonic (RM) algorithm proposed by Liu [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. In RM algorithm, the priority of one task depends on its releasing rate. The higher the rate is, the higher the priority is. Period T i is the length of time between two successive instances, and computation time C i is the time
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spent on task execution. Since the releasing rate is inverse to its period, T i is usually the direct criterion to determine task priority.

Schedulbility test is to determine whether temporal constraints of tasks can be met at runtime. Exact tests are ideal but intractable, because the complexity of exact tests is NP-hard for non-trivial computational models [START_REF] Sha | Real time scheduling theory: A historical perspective[END_REF]. Sufficient tests are less complex but more pessimistic.

Schedulbility analysis is suitable for the systems whose tasks are known a priori.

Sufficient test can be executed by checking whether a sufficient utilization-based condition is met. For example, Liu [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] proved that a set of n periodic tasks using RM algorithm is schedulable if

C i T i ≤ n(2 1/n -1).
The bound is tight in the sense that there are some task sets unschedulable with the utilization that is arbitrarily higher than n(2 1/n -1). Actually, many task sets with utilization higher than this bound can be scheduled. Lehoczky [START_REF] Lehoczky | The rate monotonic scheduling algorithm: Exact characterization and average case behavior[END_REF] proved that the average schedulable utilization, for large randomly chosen task sets, reaches 0.88, much higher than 0.69 of Liu's result. The desire for more precise and tractable schedulability test pushes researchers to search high utilization bounds under special assumptions, such as appropriate choice of task periods.

Exact test permits higher utilization levels to be guaranteed. One approach to solve this problem is that determining the worst-case response time of a task R i . Once the longest time between arrival of a task and its subsequent instantiations is known, the test can be checked by comparing the deadline D i and the worst-case response time R i . The complexity of the test comes from the R i calculation by recursive equations.

R i = C i + i-1 j=1 R i
T j C j . This equation can be solved iteratively, because only a subset of the task release times in the interval between zero and T i needs to be examined, observed by Harter, Joseph and Audsley independently [START_REF] Harter | Response times in level-structured systems[END_REF][START_REF] Joseph | Finding response times in a real-time system[END_REF]24].

One relaxation of Liu's model is that task deadline does not exactly equal its period. Therefore, RM algorithm is not optimal for priority assignment. Instead, Leung proposed Deadline Monotonic (DM) algorithm as the optimal policy for such systems, assigning higher priorities to tasks with shorter deadlines than those with longer deadlines [START_REF] Leung | On the complexity of fixed-priority scheduling of periodic, real-time tasks[END_REF]. Under this assumption, Lehoczky [START_REF] Lehoczky | Fixed priority scheduling of periodic task sets with arbitrary deadlines[END_REF] proposed two sufficient schedulability tests by restricting D i = kT i , where k is a constant across all tasks. Tindell [START_REF] Thuel | Algorithms for scheduling hard aperiodic tasks in fixed-priority systems using slack stealing[END_REF] extended exact test for tasks with arbitrary deadlines.

A further relaxation is permitting tasks to have unequal offsets. Since the worst-case situation occurs when all tasks share a common release time, utilization bound for sufficient test and response time for exact test in Liu's model might be too pessimistic. General offsets still remain a problem to efficiently analyze. Under the assumption of specified offsets, RM and
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DM are no longer optimal, but Audsley [START_REF] Audsley | Fixed priority pre-emptive scheduling: An historical perspective[END_REF] showed the optimal priority assignment can be achieved by examining a polynomial number of priority ordering over the task set.

Liu's model and its further extensions are suitable for single processor scheduling. In distributed systems, multiple processors can be scheduled in two approaches, partitioned and global. The former is that each task is assigned to one processor, which executes all incantations of the task. The latter is that tasks complete for the use of all processors. Partition and global schemes are incomparable in effectiveness, since the required number of processors is not the same [START_REF] Sha | Real time scheduling theory: A historical perspective[END_REF].

For partitioned policy, the first challenge is to find the optimal partitioning of tasks among processors, which is a NP-complete problem. Therefore, heuristics are used to find good suboptimal static allocations. The main advantage of heuristic approaches is that they are much faster than optimal algorithms while they deliver fairly good allocations. Dhall [START_REF] Dhall | On a real-time scheduling problem[END_REF] proved that RM Next-Fit guarantees schedulability of task sets with utilization bound of m/(1+21/3).

Oh [START_REF] Oh | Utilization bounds for n-processor rate monotonescheduling with static processor assignment[END_REF] showed that RM First-Fit schedules periodic tasks with total uitilizaiton bounded by m(21/2 -1). Later, Lopez [START_REF] López | Minimum and maximum utilization bounds for multiprocessor rate monotonic scheduling[END_REF] lifted a tight bound of (m + 1)(2 1/(m+1) -1) for RM First-Fit scheduling. Andersson [START_REF] Andersson | Static-priority scheduling on multiprocessors[END_REF] showed that system utilization can not be higher than (m + 1)/2 for any combination of processor partitioning and any priority assignment.

For global policy, the greatest concern is to find an upper bound λ on the individual utilization for RM global scheduling. The small λ presents high system utilization bound. Andersson [START_REF] Andersson | Static-priority scheduling on multiprocessors[END_REF] proved that system utilization bound is m 2 /(3m -1) with λ = m/(3m -2). Baruah [START_REF] Baruah | Rate-monotonic scheduling on uniform multiprocessors[END_REF] showed that for λ = 1/3 system utilization of at least m/3 can be guaranteed. With arbitrary large λ, Barker [START_REF] Baker | An analysis of edf schedulability on a multiprocessor[END_REF] showed that the system utilization bound is (m/2)(1 -λ) + λ.

Dynamic priority strategies

Dynamic priority assignment is more efficient than the fixed manner, since it can fully utilized the processor for the most pressing tasks. The priorities change with time, varying from one request to another or even during the same request. The most used algorithms are Earliest Deadline First (EDF) and Least laxity First (LLF) [START_REF] Uthaisombut | Generalization of edf and llf: Identifying all optimal online algorithms for minimizing maximum lateness[END_REF]. EDF assigns priorities to tasks inversely proportional to the absolute deadlines of the actives jobs. Liu [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] proved that n periodic tasks can be scheduled using EDF algorithm if and only if

C i T I ≤ 1.
LLF assigns the processor to the active task with the smallest laxity. LLF has a large number of context switches due to laxity changes at runtime. Even though both EDF and LLF are optimal algorithms, EDF is more popular in real-time research because of smaller overhead than LLF.
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Under EDF, schedulability test can be done by processor demand analysis. Processor demand in an interval [t 1 , t 2 ] is the amount of processing time g(t 1 , t 2 ) requested by those tasks that must be completed in [t 1 , t 2 ]. The tasks can be scheduled if and only if any interval of time the total processor demands g(t 1 , t 2 ) is less than the available time [t 1 , t 2 ]. Baruah [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF] proved that a set of periodic tasks with the same offset can be scheduled if and only if U < 1

and ∀L > 0, n i=1 L+T i -D i T i C i ≤ L. The sufficient test of EDF is of O(n) complexity
if deadline equals period. Otherwise, exact test can be finished in pseudo-polynomial time complexity, when deadline is no longer than period [START_REF] Sha | Real time scheduling theory: A historical perspective[END_REF].

The research on real-time scheduling is not limited to the issues discussed above. For practicable usage, assumptions can be released, so that researches are extended in a number of ways.

• Not all the tasks have periodic release. Aperiodic server is introduced to permit aperiodic tasks to be accommodated in the periodic models.

• Tasks have resource or precedence relationships. Tasks can be linked by a linear precedence constraint, and communicating via shared resources is allowed to realize task interaction.

• Computation time of tasks varies widely. Some reduced-but-acceptable level of service should be provided when workload exceeds normal expectations.

• Soft real-time applications exist. Control mechanisms can optimize the performance of the systems, and analytic methods are developed to predict the system performance.

Real-time schedulers

A scheduler is called dynamic if it makes scheduling decisions at run time, selecting one out of the current set of ready tasks. A scheduler is called static (pre-run-time) if it makes scheduling decisions at compile time. A static scheduler generates a dispatching table for the run-time dispatcher off-line.

Generally, real-time schedulers are embedded in corresponding kernels with respect to their scheduling approaches. MARS kernel [START_REF] Hyman | Real-time scheduling with quality of service constraints[END_REF] targets on hard real-time systems for peak load conditions. Fixed scheduling approach is adopted. Schedule is completely calculated offline and is given to the nodes as part of system initialization. All inter-process communications and
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resource requests are included in the schedule. Nodes may change schedules simultaneously to another pre-calculated schedule.

Arts kernel [START_REF] Tokuda | Arts: a distributed real-time kernel[END_REF] aims at providing a predictable, analyzable, and reliable distributed computing system. It uses the RM/EDF/LLF algorithms to analyze and guarantee hard real-time processes offline. Non-periodic hard real-time processes are scheduled using execution time reserved by a deferrable server. All other processes are scheduled dynamically using a valuefunction scheme.

With the augmentation of real-time services, real-time kernel are widely required in cloud computing. However, many kernels are not very capable of satisfying real-time systems requirements, particularly in the multicore context. One solution is applying loadable real-time scheduler as plug-ins into operation systems regardless of kernel configurations. As a result, variant scheduling algorithms are easily installed. A good example is RESCH for Linux kernel, which implements four scheduler plugins with partitioned, semi-partitioned, and global scheduling algorithms [START_REF] Kato | A loadable real-time scheduler suite for multicore platform[END_REF].

When schedulers step into cloud environment, virtualization is an especially powerful tool.

Virtual machines can schedule real-time applications [START_REF] Buyya | Cloudbus toolkit for market-oriented cloud computing[END_REF], because they allow for a platformindependent software development and provide isolation among applications. For example, Xen provides simplest EDF scheduler to enforce temporal isolation among the different VMs.

OpenVMS, a multi-user multiprocessing virtual memory-based operating system, is also designed for real-time applications.

Summary

In this chapter, we firstly review the scheduling problems in a general fashion. Then we describe the cloud service scheduling hierarchy. The upper layer deals with scheduling problems raised by economic concerns, such as equilibrium in service providers and consumers, the competition among consumers needing the same service. Market-based and auction models are effective tools, both of which are explained with details and design principles. After that several middleware leveraging these economic models for cloud environment are presented.

The lower layer refers to metadata scheduling inside of datacenter. Tasks belonging to different users are no longer distinguished from each other. Scheduling problem is to match multi tasks to multi machines, which can be solved by heuristics. Heuristics are classified into two types. Static heuristic is suitable for the situation where the complete set of tasks is known
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prior to execution, while dynamic heuristic performs the scheduling when tasks arrive. In cloud-related frameworks such as Hadoop and Dryad, batch-mode dynamic heuristics are most used, and more practical schedulers are developed for special usage. Other meta-schedulers in HPC or grid computing are evolved to adapt cloud architectures and implementations.

For commercial purpose, cloud services heavily emphasize time guarantee. The ability to satisfy timing constraints of such real-time applications plays a significant role in cloud environment. We then examine the particular scheduling algorithms for real-time tasks, that is, priority-based strategies. These strategies, already used in traditional real-time kernels, are not very capable of satisfying cloud systems requirements. New technologies, such as loadable real-time plug-ins and virtual machines, are introduced as promising solutions for real-time cloud schedulers.

4

Resource-provision scheduling in cloud datacenter

Introduction

Clouds gradually change the way we use computing resources. In cloud computing, everything can be treated as a service, which is customized and easily purchased in the market, like other consumption goods. This evolution is mainly caused by developed virtualization technology, which hides heterogeneous configuration details from customers. Therefore, the resource allocation problem in cloud computing needs to take market dealing behaviors into consideration, not only match-making scheduling tasks and machines [START_REF] Armbrust | Above the clouds: A berkeley view of cloud computing[END_REF]. Market mechanism is used as an effective method to control electronic resources, but the existing market models are dedicated either to maximizing suppliers' revenue, or to balancing the supply-demand relationship [START_REF] Buyya | Economic models for resource management and scheduling in grid computing[END_REF].

In this chapter, we shall focus on helping a cloud customer make a reasonable decision in a competitive market.

Game theory studies multi-person decision making problems. If no one wants to deviate from a strategy, the strategy is in a state of equilibrium. Although there has been researches on allocation strategies using game theory [START_REF] Galstyan | Resource allocation games with changing resource capacities[END_REF][START_REF] Bredin | Computational markets to regulate mobile-agent systems[END_REF][START_REF] Maheswaran | Nash equilibrium and decentralized negotiation in auctioning divisible resources[END_REF][START_REF] Khan | Non-cooperative, semi-cooperative, and cooperative games-based grid resource allocation[END_REF][START_REF] An | Market based resource allocation with incomplete information[END_REF][START_REF] Wei | A game-theoretic method of fair resource allocation forcloud computing services[END_REF][START_REF] Fan | Game and balance multicast architecture algorithms for sensor grid[END_REF][START_REF] Teng | A new game theoretical ressource allocation algorithm for cloud computing[END_REF], none suits the new computing service market perfectly. In order to establish a proper model for clouds, several important consumer characters should be highlighted. Firstly, cloud users are egocentric and rational, wishing to get better service at a lower cost. Secondly, these buyers have more than one behavioral constraint, so they have to make a trade-off of one constraint for another in management practice. Thirdly, the pay-as-you-go feature means that transactions are never 

Game theory

Game theory models strategic situations, in which an individual's payoff depends on the choices of others. It provides a theoretical basis for the field of economics, business, politics, logic, computer science, and is an effective approach to achieve equilibrium in multi-agent systems, computational auctions, peer-to-peer systems, and security and information markets. With the development of cloud service market, game theory is useful to address the resource allocation problems in cloud systems where agents are autonomous and self-interested.

Normal formulation

Game is an interactive environment where the benefit for an individual choice depends on the behaviors of other competitors. A normal game consists of all conceivable strategies, and their corresponding payoffs, of every player. There are several important terms to characterize a normal form of game [START_REF] Gibbons | A Primer in Game Theory[END_REF].

Game theory

Player is the game participant. There is a finite set of players

P = {1, 2, • • • , m}.
Strategy is the action taken by one player. Each player k in P has a particular strategy space containing finite number of strategies,

S k = {s 1 k , s 2 k , • • • , s n k }. Strategy space is S = S 1 × S 2 × • • • × S m . The game outcome is a combination of strategies of m players s = (s 1 , s 2 , • • • , s m ), s i ∈ S i .
Payoff is the utility received by a single player at the outcome of one game, which determines the player's preference. For resource allocation, payoff stands for the amount of resource received, for example, u i (s) represents the payoff of player i when the output of the game is s, s ∈ S. Payoff function U = {u 1 (S), u 2 (S), • • • , u m (S)} specifies for each player in the player set P . Therefore, the normal form of a game is a structure as

G =< P, S, U > (4.1)

Types of games

Although classes of games are various, we only list three common criteria in cloud computing market.

Non-cooperative or cooperative players

A Non-cooperative game is characterized by a set of independent players who optimize their own payoff. This model is most used in a competitive market. We take cloud service market for instance. There are a great number of small and medium-sized enterprises as well as widely distributed customers. Efficient communication and cooperation among them are insufficient and impossible, so the non-cooperation game suits for analyzing the behaviors of these egocentric cloud agents.

On the contrary, a cooperative game is the one where players from different coalitions may make cooperative decisions, so competition here is between coalitions, rather than between individual players. Cooperative game is useful when several agents have a common goal. For example, the users in P2P file-sharing network have the same object, maximizing the availability of desirable files. With the development of electronic commerce, worldwide cloud markets are collective and localized, such as Groupon and Google offers.
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Compared with the above games, non-cooperative games model situations to the finest details, while cooperative games focus on the game at large.

Simultaneous or sequential actions

A simultaneous game is the one where all players make their decisions simultaneously, without knowledge of the strategies chosen by other players. Simultaneous game model is used in sealed-bid auctions in tendering for leases, where no one knows bids of other competitors.

A repeated game is the one consisting of some number of repetitions of simultaneous game.

A player has to take into account the impact of his action on the future actions of other players, and makes the current decision based on past experience. In a repeated game, the threat of retaliation is real, since one will play the game again with the same competitors. Proxy bidding on eBay is an example of repeated game, in which the current highest bid is always displayed.

Under a sophisticated mechanism, rational players bid the maximum amount on their first round, and never raise their bids.

In a sequential game, one player chooses his strategy before the others do, so the later one has some knowledge about the earlier players. The sequential game model is easily applied in English auction, where players bid openly against one another, with each subsequent bid higher than the previous one.

Complete or incomplete information

Information refers to the game characteristic including the number of players as well as their strategy spaces and payoffs. A game of complete information is the one in which information is available to all players. Each participant knows all strategies and corresponding payoffs, but does not necessarily know the actions taken by other players inside the game.

Complete information is a strict assumption, which is difficult to be implemented in reality.

For example in a sealed-bid auction each player knows his own valuation for the service but does not know competitors' valuations. Although private information is not common knowledge among players, everyone has some beliefs about what his competitors know. In the situation of asymmetric information, we assume that every player knows his own payoff function, but is uncertain about others'.

Game theory

Payoff choice and utility function

In cloud computing market, service providers and their customers have their own preferences.

Providers balance the investments on capital, operation, labor and device. Customers have different QoS requirements, such as cost, execution time, access speed, throughput and stability.

All these preferences impact on agents' choices, thus an integrated indication to guide agents' behaviors is necessary.

Utility is a measure of relative satisfaction in economics. It is often expressed as a function to describe the payoff of agents. More specifically, utility function combines more than one service requirements and analyzes Pareto efficiency under certain assumptions such as service consumption, time spending, money possession. Therefore, utility is very useful when a cloud agent tries to make a wise decision. High value of utility stands for great preference of service when the inputs are the same.

One key property of utility function is constant elasticity of substitution (CES). It combines two or more types of consumption into an aggregate quantity. The CES function is

C = [ n i=1 a 1 s i c s-1 s i ] s s-1 (4.2)
C is aggregate consumption, c i is individual consumptions, such as energy, labor, time, capital, etc. The coefficient a i is share parameter, and s is elasticity of substitution. These consumptions are perfect substitutes when s approaches infinity, and are perfect complements when s approaches zero. The preferences for one factor over another always change, so the marginal rate of substitution is not constant. For the sake of simplicity, s equals one in the following analysis. Let r = (s -1)/s, we obtain

ln C = ln n i=1 (a 1-r i c r i ) r (4.3)
Apply l'Hopital's rule,

lim r→0 ln C = n i=1 a i ln c i n i=1 a i (4.4)
If n i=1 a i = 1, the consumption function has constant returns to scale, which means that the consumption increased by the same percentage as the rate of growth of each consumption good. If every a i is increased by 20%, C increases by 20% accordingly. If n i=1 a i < 1,
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the returns to scale decrease, on the contrary, returns to scale increase. We take two QoS requirements, speed and stability, for example. The CES function is shown in Figure 4.1. 

ũ(c) = n i=1 c a i i (4.5) with c = (c 1 , c 2 , • • • , c n ). Set a = n i=1 a i , we obtain the function c → c 1 a , which is strictly monotone for c > 0. u(c) = ũ(c) 1 a (4.6)
represents the same preferences. Setting ρ i = a i /a it can be shown that

u(c) = n i=1 c ρ i i , n i=1 ρ i = 1 (4.7)
The problem of maximum utility is solved by looking at the logarithm of the utility 

Strategy choice and Nash equilibrium

Nash equilibrium is a certain combination of strategy choices, under which no player can benefit by unilaterally changing his strategy while the other players keep theirs unchanged. Nash equilibrium is under the assumption that all players are rational and that their rationality is common knowledge.

A formal definition of Nash equilibrium is as follows. Let G =< P, S, U > be a game and s i be a strategy profile of all players except for player i. After each player i has chosen their strategies, player i obtains payoff

u i (s 1 , • • • , s n ).
Note that the payoff depends on the strategy chosen by player i as well as the strategies chosen by all the other players. A strategy profile

{s * 1 , • • • , s * n } ∈
S is a Nash equilibrium if no unilateral deviation in strategy by any single player is profitable for that player, that is ∀i,

s i ∈ S i , s i = s * i : u i (s * i , s * -i ) > u i (s i , s * -i ) (4.9)
Nash equilibrium analyzes a strategy profile under the assumption of complete information. However, if some information is private, and not known to all players, the players with incomplete information have to evaluate the possible strategy profiles. In particular, every rational player tries to take an action which maximizes its own expected payoffs, supposing a particular probability distribution of actions taken by other competitors. Therefore, the belief about which strategies other players will choose is crucial. Only based on a correct belief, players can make the best responses. Each strategy is the best response to all other strategies in Bayesian Nash equilibrium.

In Bayesian games, a type space T i of player i is introduced, and each T i has a probability distribution D i . Assume that all players know D 1 , • • • , D n , and the type t i of player i is the outcome drawn from D i independently.

Bayesian Nash equilibrium is defined as a strategy profile with which every type of players is maximizing their expected payoffs given other type-contingent strategies. Especially for player i with the strategy s i :

T i → S i , a strategy profile {s * 1 , • • • , s * n } ∈ S is Bayesian Nash equilibrium if 4. RESOURCE-PROVISION SCHEDULING IN CLOUD DATACENTER ∀i, t i ∈ T i , s i ∈ S i , s i = s * i : E D -i [u i (t i , s * i (t i ), s * -i (t -i ))] > E D -i [u i (t i , s i (t i ), s * -i (t -i ))] (4.10) 
However, Nash equilibrium may not be Pareto optimal from the global view. Nash equilibrium checks whether a profitable payoff exists when other payoffs are unchanged. Pareto efficiency examines whether a profitable payoff exists without reducing others payoffs. Therefore, for the egocentric agents in cloud market, Nash equilibrium is more suitable than Perato efficiency to evaluate the allocation decisions.

Motivation from equilibrium allocation

Market mechanism has been proven as a useful approach for many resource management systems, such as agent system [START_REF] Sandholm | Distributed rational decision making. Multiagent systems: a modern approach to distributed[END_REF], telecommunication networks [START_REF] Gibney | Market-based call routing in telecommunications networks using adaptive pricing and real bidding[END_REF], data mining [START_REF] Joita | A catallactic market for data mining services[END_REF], cluster computing [START_REF] Chun | User-centric performance analysis of market-based cluster batch schedulers[END_REF] and grid computing [START_REF] Nguyen | Autonomic data management system in grid environment[END_REF]. In these systems, various management contexts including bandwidth pricing, TCP congestion control, contents delivery and routing are studied.

The conventional market models are further categorized by modes of pricing and transition, including commodity model, contract model, bartering model and auction-related models. These models have their own strengths and weaknesses, so they are applied in different application scenarios. Stuer [START_REF] Stuer | A commodity market algorithm for pricing substitutable grid resources[END_REF] preferred the commodity model, in which the price is balanced by analyzing the demand and supply values from the market participants. Stratford [START_REF] Stratford | An economic approach to adaptive resource management[END_REF] developed an architecture based on the contract model. This model uses dynamic pricing as a congestion feedback mechanism, and enables system policy to control adaptation decisions, so it supports scalability and application specific adaptation. The bartering model [START_REF] Ozturan | Resource bartering in data grids[END_REF] is studied as an alternative, because it realizes mutual resource cooperation in the way that one user obtains remote resources for free, letting others use its privacy resource in return. Moreover, various auction models including bid-wined and bid-shared schemes are widely used for resource management. In the bid-wined model, the highest bidder wins the resources and pays as much as the bid. Lynar [START_REF] Lynar | Auction resource allocation mechanisms in grids of heterogeneous computers[END_REF] evaluates three types of bid-wined auctions and finds out the substantial difference in completion time and energy consumption. The bid-shared auction is inclined to solve cooperative problems which belong to a single administrative domain [START_REF] Buyya | Economic models for resource management and scheduling in grid computing[END_REF], so the companies as cloud suppliers are in accordance with bid-shared auction.

Motivation from equilibrium allocation

There have been several scientific and commercial platforms that employ economic methods to solve resource allocation problems in grid or cloud computing. G-commerce [START_REF] Wolski | G-commerce: Market formulations controlling resource allocation on the computational grid[END_REF] for instance is a computational economy for controlling resource allocation in computational grids. It develops two different market conditions, commodities markets and auctions for resource allocation. BEinGRID [START_REF] Stanoevska-Slabeva | Beingrid: Development of business models for the grid industry[END_REF] is an infrastructure to support pilot implementations of grid technologies in actual business scenarios. GridEcon [START_REF] Risch | The gridecon platform: A business scenario testbed for commercial cloud services[END_REF] project creates a commodity market platform that enables users to bid on available computing capacity, or to put out a tender for a specific computing time slot. Cloudbus [START_REF] Buyya | Modeling and simulation of scalable cloud computing environments and the cloudsim toolkit: Challenges and opportunities[END_REF] provides a service brokering infrastructure and a core middleware for deploying applications in the datacenter to realize the vision of global cloud computing marketplace.

The frameworks mentioned above can support conceptual environments for grid or cloud resource allocation, but lack the overall equilibrium utility and optimization, from the customer's point of view. That is to say, the cooperation in the computing market only includes the balance between users and providers to maximize resource utilization, but ignores the competition between different users. We therefore introduce game theory to solve resource allocation problems in cloud environment.

Nash equilibrium analyzes how individuals make rational decisions in non-cooperative games, so it is used in the research of allocation strategies in mobile-agent and grid systems.

Galstyan [START_REF] Galstyan | Resource allocation games with changing resource capacities[END_REF] studied a minimalist decentralized algorithm for resource allocation in grid environment. The agents using a particular resource are rewarded if their number does not exceed the resource capacity, and penalized otherwise. Thus, the system can fully utilize resources by adjusting its capacity. The limitation of this algorithm is that the number of agents can not be too large. Bredin [START_REF] Bredin | Computational markets to regulate mobile-agent systems[END_REF] developed decentralized negotiation strategies in auctioning divisible resources. Mobile agents are given budget constraints in advance, and plan expenditures in the series of tasks to complete. Maheswaran [START_REF] Maheswaran | Nash equilibrium and decentralized negotiation in auctioning divisible resources[END_REF] generalized Bredin's result, and investigated a divisible auction structure that allows for a quasi linear characterization of a wide variety of agent tasks. He also proved that the auction has a unique Nash equilibrium. This fundamental research inspires us to solve the allocation problem by sharing, rather than assigning an entire resource to a single user in a cloud market. A common flaw exists in both studies, that is, their decentralized models idealize the competitive environment. The mobile agents know other competitors' information well, which is difficult to achieve in a real market. Kwok [START_REF] Kwok | Selfish grid computing: Game-theoretic modeling and nash performance results[END_REF] pioneered the consideration of a hierarchical game theoretic model in grids. Kwok also derived both equilibrium and optimal strategies for general cases, based on a skillful utility function.
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This result can serve as valuable reference for designing appropriate strategies in a grid, and even in an exchanging cloud. An [START_REF] An | Market based resource allocation with incomplete information[END_REF] presented a proportional resource allocation mechanism for multi-agent systems and provided analysis of the existence of equilibrium. Trading agents can optimize resource allocation results by updating beliefs and resubmitting bids. The upturn includes more variables (for example budget constraints and time constraints) into the current mechanism. Wei [START_REF] Wei | A game-theoretic method of fair resource allocation forcloud computing services[END_REF] considered a cloud-based resource provisioning problem, taking both optimization and fairness into account. Wei used approximated methods to solve independent optimization by binary integer programming, and to minimize their efficiency losses by an evolutionary game theoretic mechanism. However, the approximation ratio and time complexity should be further reduced to make the solution more practical.

Game-theoretical allocation model

Virtualization technology hides heterogeneous configuration details from customers, and makes computation services functionally identical. Cloud users only need to choose a proper computing capacity that meets their requirements and pay according to the amount of usage. Cloud suppliers offer their customers more than one payment solution. For example, Amazon EC2 provides three different purchasing options: on-demand model, reserved model and spot model.

Each model has different applicable scopes and limitations [START_REF] Yi | Reducing costs of spot instances via checkpointing in the amazon elastic compute cloud[END_REF]. In order to satisfy more specific demands, we study bid-based model as a complementary payment option to give users the flexibility to optimize their costs.

Bid-shared auction

In a cloud market, there are N users asking for services, each having a sequence of tasks to complete. The maximum number of tasks is K. Cloud provider entirely virtualizes K resources, each of which can render a specific service with a fixed finite capacity C.

C = [C 1 , C 2 , . . . , C K ] (4.11)
We characterize one task by its size, which means the amount of computing capability required to complete the task.

Game-theoretical allocation model

q =         q 1 1 . . . q 1 k . . . q 1 K . . . . . . . . . . . . . . . q i 1 . . . q i k . . . q i K . . . . . . . . . . . . . . . q N 1 . . . q N k . . . q N K         (4.12)
Not all users have the same task itinerary, the size of an inexistent task is zero in the above matrix q. If a task q i k can occupy its corresponding resource C k , the computation is processed fastest, at a speed of ω i k = q i k /C k . However, in our model, resource capacity is never for exclusive use but shared by multi users. It is reasonable and fair that resource partition is proportional to the user's outlay. We assume that a resource is always fully utilized and unaffected by how it is partitioned among users.

In the real commodity market, consumers needing the same commodity are competitors, and are reluctant to cooperate with each other. Thus, resource allocation in clouds is a noncooperative allocation problem.

Every user has a bidding function, which decides the bid in any round considering task size, priority, QoS requirement, budget and deadline. The repeated bidding behavior is considered as a stochastic process indexed by a discrete time set. The outputs are random variables that have certain distributions, when these above deterministic arguments and time are fixed.

B i (k), k ∈ (1, 2, . . . , K) (4.13)
Where B i is the money that a user is willing to pay for one unit of resource per second.

User i bids for task k at price b i k , which can be treated as a sample for B i .

B =         B 1 . . . B i . . . B N         =         b 1 1 . . . b 1 k . . . b 1 K . . . . . . . . . . . . . . . b i 1 . . . b i k . . . b i K . . . . . . . . . . . . . . . b N 1 . . . b N k . . . b N K         (4.14)
The sum Θ k of total bids for task k indicates the resource price.

Θ k = N i=1 b i k (4.15)
Meanwhile, θ -i k = N j =i b j k is given as the sum of other bids except bid b i k .
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Bid-shared model indicates that resource k obtained by the user i is proportional to his bid price. The portion is

x i k = b i k N i=1 b i k
, and obviously, ∀k, N i=1 x i k = 1. Time spent on task k is defined by

t i k = q i k C k x i k = ω i k + ω i k θ -i k b i k (4.16)
Cost taken to complete task k is

e i k = b i k t i k = ω i k θ -i k + ω i k b i k (4.17)
Two illuminations are obtained from the time and cost functions.

Non-cooperative game

Both time and expenditure depend not only on b i k that an user is willing to pay, but also on θ -i k that other competitors will pay. We therefore construct a non-cooperative game to analyze the bid-shared model.

In games, the set of players is denoted by N cloud users. Any player i independently chooses the strategy b i k from his strategy space B i . The preference is determined by payoff, for example, we take computation time t i k as the payoff. Every player wishes his tasks to be computed as fast as possible, so the payoff value is the lower the better. Regardless of the value of θ -i k , the dominated strategy of player i is a low value of b i k if he wants to get the optimal payoff. On the contrary, when we choose cost as the game payoff, the dominated strategy is high value of b i k , which is different from the former dominated strategy. This difference alerts us that the payoff must be carefully selected in order to indicate the outcome preference of a game. Absolute dependence on time or money is unreasonable.

We combine cost expense and computation time into an aggregate quantity, which stands for the total amount of substituted consumption. Similar to utility function discussed above, constant elasticity of substitution function indicates the players' payoff.

C = ρ e ln K k=1 e i k + ρ t ln K k=1 t i k ρ e + ρ t (4.18)
Where ρ e , ρ t are the output elasticities of cost and time, respectively.

Game-theoretical allocation model

Bid function

In a cloud market, customers are rational decision makers who seek to minimize their consumption, and have constraints of cost E = [E 1 , E 2 , . . . , E N ] and time

T = T [T 1 , T 2 , . . . , T N ].
With a limited budget E i and deadline T i , the optimal object function of user i is

Min C s.t. K k=1 e i k ≤ E i K k=1 t i k ≤ T i (4.19)
The Hamilton equation is built by introducing the Lagrangian

L = ρ e ln K k=1 e i k + ρ t ln K k=1 t i k ρ e + ρ t + λ i e ( K k=1 e i k -E i ) + λ i t ( K k=1 t i k -T i ) = ρ e ln K k=1 (ω i k θ -i k + ω i k b i k ) + ρ t ln K k=1 (ω i k + ω i k θ -i k b i k ) ρ e + ρ t + λ i e ( K k=1 (ω i k θ -i k + ω i k b i k ) -E i ) + λ i t ( K k=1 (ω i k + ω i k θ -i k b i k ) -T i )
L is a function of three variables of b i k , λ i e and λ i t . To obtain the dynamic extreme point, gradient vector is set to zero.

∇L(b

i k , λ i e , λ i t ) = 0 (4.20)
1. Take partial derivative with respect to b i k

∂L ∂b i k = ρ e ρ e + ρ t ω i k e i k - ρ t ρ e + ρ t ω i k θ -i k t i k b i k 2 + λ i e ω i k -λ i t ω i k θ -i k b i k 2 = 0 (4.21)
which gives

ρe e i k + λ i e ρt t i k + λ i t = θ -i k (b i k ) 2 (4.22)
A similar result is obtained by setting the gradient of L at b i j to zero ∂L ∂b i j = 0,
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ρe e i k + λ i e ρt t i k + λ i t = θ -i j (b i j ) 2 (4.23)
For user i, the capital sum e i k and time sum t i k remain the same for any two tasks, we could therefore determine the relationship between any two bids in one task sequence, which is

θ -i k (b i k ) 2 = θ -i j (b i j ) 2 (4.24) Then bid k is expressed by bid j, b i k = b i j θ -i k θ -i j .
Given Θ k , preferences ρ e and ρ t exert major influence on bids. To be more specific, ρ e > ρ t reveals that one user prefers satisfying budget to deadline, otherwise, deadline constraint is more important than cost consumption.

Take partial derivative with respect to λ

i e ∂L ∂λ i e = K k=1 e i k -E i = K k=1 ω i k (b i k + θ -i k ) -E i = 0 (4.25) Substituting b i j for θ -i j θ -i k b i k , the equation is expanded k-1 j=1 ω i j ( θ -i j θ -i k b i k + θ -i j ) + ω i k (b i k + θ -i k ) + K j=k+1 ω i j ( θ -i j θ -i k b i k + θ -i j ) -E i = 0 (4.26)
Simplifying the above equation, user i will bid for task k at price

b i k = E i -k-1 j=1 ω i j θ -i j -ω i k θ -i k -K j=k+1 ω i j θ -i j k-1 j=1 ω i j θ -i j θ -i k + ω i k + K j=k+1 ω i j θ -i j θ -i k (4.27)
3. Take partial derivative with respect to λ i t

Game-theoretical allocation model

∂L ∂λ i t = K k=1 t i k -T i = K k=1 ω i k (b i k + θ -i k ) b i k -T i = 0 (4.28)
The expanded expression is obtained

k-1 j=1 ω i j ( θ -i j θ -i k b i k +θ -i j θ -i j θ -i k b i k ) + ω i k ( b i k +θ -i k b i k ) + K j=k+1 ω i j ( θ-i j θ -i k b i k + θ -i j θ-i j θ -i k b i k ) -T i = 0 (4.29)
The above equation is further simplified by

b i k = k-1 j=1 ω i j θ -i j θ -i k + ω i k θ -i k + K j=k+1 ω i j θ -i j θ -i k T i -K j=1 ω i j (4.30) 
Equation (4.27) and equation (4.30) show the influences of budget and deadline on bidding price b i k . Both equations reveal that current bid b i k is decided by competitors' bids in past θ -i j (j < k), present θ -i k , and future θ -i j (j > k). If bidding functions are based on the assumption that all other payments are fixed throughout the network, the model is classified as static games of complete information [START_REF] Gibbons | A Primer in Game Theory[END_REF]. However, these isolated cloud users are unable to collect all rivals' financial information in a real market, and the resource allocation problem evolves into the game of incomplete information. In that case, b i k is a function with respect to a vector

[θ -i 1 , • • • , θ -i k , θ-i k+1 , • • • , θ -i K ], only if the expectation of future bids θ-i k+1 , • • • , θ -i K are estimated precisely.

Parameter estimation

The existence of Nash Equilibrium with complete information has been proved by Bredin [START_REF] Bredin | Computational markets to regulate mobile-agent systems[END_REF].

However, new problems arise when buyers do not intend to expose their bids to other competitors or when they are allowed to join or leave a datacenter from time to time. How does one deal with the lack of information? How do users predict the price trend on the basis of inadequate knowledge? We record historical purchasing prices Θ 1 , • • • Θ k-1 in past auctions, and then use statistical forecasting method to evaluate the future price.
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In probability theory, Bayes' theorem shows how the probability of a hypothesis depends on its inverse if observed evidence is given. The posteriori distribution can be calculated from the priori p(Θ), and its likelihood function

p(Θ | Θ k ) is p(Θ | Θ k ) = p(Θ k |Θ)p(Θ) p(Θ k |Θ)p(Θ)dΘ (4.31)
The posteriori hyperparameters p(Θ|Θ k ) can be achieved by using the Bayesian learning mechanism, the value of which determines the maximum likelihood prediction of resource price. So future bids are forecasted as

θ-i k+1 = E(Θ|Θ k ) -E(B i ) . . . θ -i K = E(Θ|Θ K-1 ) -E(B i ) (4.32)
Three parameters α i k , β i k and γ i k are introduced, which stand for information from other competitors.

α i k = k-1 j=1 ω i j θ -i j + K j=k+1 ω i j θ -i j β i k = k-1 j=1 ω i j θ -i j + K j=k+1 ω i j θ -i j γ i k = k-1 j=1 ω i j + K j=k+1 ω i j (4.33)
Substituting θ -i k by Θ k -b i k in equation (4.27), we obtain the explicit function

f i k (Θ k ) with respect to Θ k . f i k (Θ k ) = (E i -α i k -ω i k Θ k ) 2 2(β i k ) 2 1 + 4(β i k ) 2 Θ k (E i -α i k -ω i k Θ k ) 2 -1 (4.34) 
Figure 4.2 shows that task bid is decided not only by its budget, but also by its workloads.

Compared with the solid line, the dot dash line shows that a wealthier user is capable of submitting a larger positive bid and has a larger participated bid range. On the contrary, the user with a heavy workload has to save cash for the following competitions, so the money allocated to the current task is very limited, which is shown by softened dash line.

Substituting θ -i k by Θ k -b i k in equation (4.30), we obtain the explicit function g i k (Θ k ) with respect of Θ k , which characterizes bid price under deadline constraint. As seen from equation (4.35), g i k (Θ k ) is a monotone increasing function with respect to Θ k , which means that bids can grow to infinite if the budget constraint is omitted. Obviously, exorbitant price would not deter the users who have sufficient capital, so vicious competition can not be restrained. In Figure 4.3, the dot dash line illustrates that one user will not be in a hurry to make a high bid for sufficient resource if he has enough time. Thus, the user can control his expenditure more effectively. As seen from softened dash line, longer task runtime needs more computing capacity, so bidding price rises accordingly.

g i k (Θ k ) = ω i k T i -γ i k Θ k + √ (β i k ) 4 +4(β i k ) 2 (T i -γ i k )(T i -γ i k -ω i k )Θ k 2(T i -γ i k ) 2 - (β i k ) 2 2(T i -γ i k ) 2
The bid functions under budget and deadline constraints are compared in Figure 4.4. The range of possible bid enlarges accordingly when constraints are loosened. The intersection of the two solid lines signifies that budget and deadline are both exhausted at the same time. If It indicates that the possible bid should be above the solid deadline curve in order to complete all tasks in finite time. For the same reason, if one user holds more funds, the intersection moves right along the solid deadline curve, so the left side of solid budget curve will contain the possible bids. The bid region is surrounded by cross and plus curves. Specifically, the crosses mean that all capital is used up with time remaining, while the pluses mean that deadline is reached with redundant money. Outside this region, there is no feasible bidding solution, which indicates the given constraints are over rigid. Users must loosen either of the two constraints slightly if they still wish to accomplish this impossible mission. Furthermore, regardless of whether the budget or deadline constraints are relaxed, the range Θ k over which users can participate is stretched.
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The cross curve is chosen as the new bidding function h i k (Θ k ) under double constraints, because higher bids are more competitive in terms of a fixed Θ k .

h i k (Θ k ) = f i k (Θ k ) : f i k (Θ k ) ≥ g i k (Θ k ) 0 : f i k (Θ k ) < g i k (Θ k ) (4.36)

Equilibrium price

The bid functions of any user i has been deduced. Next, we analyze whether an equilibrium price exists and how it is obtained.

In the beginning, users who need resource k make their initial bids,

Game-theoretical allocation model

Θ (1) k = N b i k (4.37)
In the first round, money that users are asked to pay for the resource partition is calculated by bid function

h i k (Θ (1) k ). A general expression is b i(m) k = h i k (Θ (m) k ) (4.38)
Where m means values are in the mth round. Hence, the price that the cloud provider prepares to charge from N users is actually

Θ (m+1) k = N h i k (Θ (m) k ) (4.39)
The corresponding partition is

x i(m) k = b i(m) k /Θ (m+1) k 
. If anyone disagrees with the allocation due to either insufficient resource, or high cost, iteration will continue, Users can adjust their bids in the next round. If all users satisfy their allocation proportions, the current price

Θ (m+1) k = Θ (m) k (4.40)
The resource price Θ (m+1) k is agreed by every user, so this is an equilibrium price.

In game theory, Nash Equilibrium occurs when no user can obtain more resource by changing his bid while others keep theirs unchanged, that is

b i * k = Max x(b i k , θ -i * k ) (4.41) Where b i * k is equilibrium bid and θ -i * k = Θ * k -b i *
k is equilibrium performance of his competitors. When demand is higher than provision N x i k > 1, users intend to pay more to improve their own allocation proportion, so the resource price increases accordingly. High resource price will then reduce x i k until N x i k approaches one. The reverse situation N x i k < 1 is also true. In conclusion, resource price has a negative impact on the value of N x i k , and pushes it to the situation where resource is fully utilized N x i(m) k = 1. Therefore, N x i k can be considered as a descending function with respect of Θ k . Different resource prices

Θ * k1 = Θ * k2 have different values of N x i k
, so the equilibrium price Θ * k that let N x i k = 1 is unique and Nash Equilibrium exists. really needs this resource. As a result, the resource price soars high. Once the price becomes too high, some users quit the competitive bidding and the resource price will consequently decrease quickly.
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Resource pricing and allocation algorithms

Although there are several commercial cloud computing infrastructures, such as Aneka, Azure, EC2 and Google App Engine, building cloud testbed on a real infrastructure is expensive and time consuming. It is impossible to evaluate performances of various application scenarios in a repeatable and controllable manner. We therefore apply simulation methodology for performance evaluation of resource allocation algorithms.

Cloudsim toolkit

Cloudsim [START_REF] Buyya | Modeling and simulation of scalable cloud computing environments and the cloudsim toolkit: Challenges and opportunities[END_REF] is designed to emulate cloud-based infrastructure and application service, and can be used in research of economy driven resource management policies on large scale cloud

Resource pricing and allocation algorithms

computing systems. Researchers benefit from focusing on resource allocation problems without implementation details. These features are not supported by other cloud simulators [START_REF] Buyya | Modeling and simulation of scalable cloud computing environments and the cloudsim toolkit: Challenges and opportunities[END_REF].

We apply Cloudsim as our simulation framework, but make some improvements aiming at the following shortcomings. Firstly, sequential auctions are complemented, accompanied by several specific policies. Secondly, Cloudsim only supports static assignment with predetermined resources and tasks. We realize that multi-users can submit their tasks over time according to certain arrival rate or probability distribution and that resource nodes can freely join or leave cloud datacenter. The assignment in our simulation model is much closer to a real market than before.

Communication among entities

There are four types of entities to be simulated. CIS Registry provides a database level matchmaking service for mapping application requests to datacenter. Datacenter integrates distributed hardware, database, storage devices, application software and operating systems to build a resource pool, and is in charge of virtualizing applicable computing resources according to users' requests. Cloud users have independent task sequences, and they purchase resources from datacenter to execute tasks. All these users bid according to their economic capabilities and priorities under different constraints. Auctioneer is the middleman in charge of maintaining an open, fair and equitable market environment. In accordance with the rules of market economy, auctioneer fixes an equilibrium price for non-cooperative users to avoid blind competition. In each auction stage, users ask the auctioneer individually about configuration information such as virtual machine provision policy, time zone, bandwidth, residual computing processors, and bid according to their asset valuations. Auctioneer collects all bids then informs users of the sum of bids. Under the game of incomplete information, cloud users only know their own price functions as well as the incurred sum of bids. They dynamically predicate 

set {b i 1 , • • • , b i k-1 } ← b i k 7:
send message of proposal to auctioneer 8: end if 9: if observer receives message of call for parameters then 10:

inquiry historical price θ -i 1 , • • • , θ -i k 11: forecast future price θ-i k+1 , • • • , θ -i K 12:
send message of competitors information to auctioneer 13: end if 14: if observer receives message of resource price then 15:

{Θ 1 , • • • , Θ k-1 } ← Θ k 16:
send message of task execution to resource As soon as all proposals arrive, auctioneer informs users the sum Θ k . Similarly, auctioneer collects bidding function parameters from all the bidders, and then decides a reasonable bound.

If the bound is too narrow, poor users quit gambling. Resource price is modified repeatedly until the difference between h i k and Θ k is less than a predetermined threshold. Once the 

dif f erence = h i k -Θ k 17:
if dif f erence > threshold then 18: end if

Θ k = h i k 19:
22: update vector [θ -i 1 , • • • , θ -i k , θ-i k+1 , • • • , θ -i K ] 23:
end while

24:

broadcast message to inform resource price 25:

stop the current and wait for a new auction 26: end while 27: delete auctioneer

Evaluation

Experiment setup

We now present the simulated experiments in Cloudsim. Datecenter is usually composed of a set of hosts, each of which represents a physical computing node in the cloud. In our simulation, 60 hosts are created with heterogeneous configuration characteristics randomly picked in Table To model cloud users, we create application tasks that contain information related to execution details such as task processing requirements, disk I/O operations and the size of input files.

We simulate 32 users in a cloud system, and each with an exponentially distributed number of tasks. Two common distributions, Normal and Pareto, signify preferences about the prices.

Nash equilibrium allocation

Firstly, normal distribution is used to describe the financial capability of the users. Bidding function B i has mean µ i and variance σ 2 . We choose one user as our observable object, and assign a mean purchasing price of 10$/s and bid variance of 0.1. Other mean bids are generated randomly in the range of 1-100$/s. This user is unaware of other economic situations, but keeps on estimating others from their prior behaviors.

Figure 4.7 illustrates how closing price changes as time goes by. We conclude that budget exerts a huge influence on preliminary equilibrium price, because selfish but rational users always wish to seek extra benefits from others. With limited budget, the user will behave conservatively at the initial stages, to avoid overrunning the budget and to save enough money to complete remaining tasks. Therefore, in the beginning, the equilibrium price is lower than the mean price. On the contrary, if the user has sufficient capital, he is eager to improve current payment to get a larger proportion. Competition leads equilibrium price to rise, higher than the anticipated cost. However, with the money available for the current job decreasing, the user If the common knowledge is insufficient, the user experientially predicts other bids using the published equilibrium prices. When the bidding variance is low, no more than 0.01, the estimation works quite well. Our policy differs a little from the scheme that hypothesizes that all users' information is fixed and public. If users perform unstably in the gambling process and the offered bids are more random, accurate price forecast becomes difficult. Provided that rivals' information is learned iteratively, experiment results show that resource price still
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5

Real-time scheduling with MapReduce in cloud datacenter

Introduction

Computing in clouds has become more instrumented, interconnected, intelligent and pervasive than ever before. A cloud datacenter can carry out a wide spectrum of data-intensive applications to assist our daily activities and social problems, such as search indexing, mining social networks, recommendation services and advertising back-ends. There are emerging classes of cloud-based applications that benefit from increasing time guarantee. For example, real-time advertising requires a real-time prediction about user intent based on their search histories.

Meeting deadlines here translates into higher profits for the content providers. In control datacenter, enormous amount of real-time data should be collected and reported periodically by various sensors. Besides that, ambient intelligence needs a networked database to integrate these sensor data streams in time and to offer a real-time analysis according to event request .

Therefore, computing in clouds, where billions of events occur simultaneously, is not in time linear dimension, but falls into the real-time computing category.

Real-time application is subject to a real-time constraint that must be met, regardless of system load. If a real-time computation does not complete before its deadline, it is treated as a failed case, as serious as that the computation is never executed. MapReduce [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF] has emerged as one of the most popular frameworks for distributed cloud computing. Dealing with different real-time tasks on a MapReduce cluster can benefit users from sharing a common large data set. However, the traditional scheduling schemes need to be revised, in terms of particular 
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Real-time scheduling

We build a real-time scheduling problem model by a triple (Γ, P, A) where Γ is the set of real-time tasks, P the set of processing resources and A the scheduling algorithms.

Real-time task

A computing task is an application taking up memory space and execution time. The concept of task should be distinguished from event. An event emphasizes an operation taking place at a specific moment, while a task can be submitted, executed, halted, suspended and returned.

For the purpose of time analysis, we define a real-time task by its timing characteristics, rather than by the functionality requirements, such as execution time, lateness, deadline,etc.

The tasks to be scheduled make a task set Γ = {τ 1 , τ 2 , • • • , τ n }, and any τ i consists of a periodic sequence of requests. When a request arrives, a new instance is created. For the periodic real-tasks, several preliminary terms should be defined.

Real-time scheduling

• T i : period is the time between two successive instances of task τ i .

• O i : offset is the first release of task τ i .

• C i : computation time is the worst-case execution time of τ i .

• D i : deadline is the relative overdue time in one period.

In addition, τ i,k denotes the k th instance of τ i . There are several important instants for τ i,k , and their relationship is shown in Figure 5.1

• a i,k : activation instant at which instance τ i,k is released to the scheduler.

• s i,k : starting instant at which the instance τ i,k starts computation.

• e i,k : execution time, it is how long instance τ i,k in running

• f i,k : finishing instant at which instance τ i,k finishes the execution.

• d i,k : overdue instant at which instance τ i,k is required to be finished. All instances are activated after the request is submitted, so a i,k is equal to

O i + (k -1)T i .
The starting time s i,k can not be earlier than the activation a i,k . The total amount of execution time e i,k depends on the processing resources, but it can not exceed the worst execution time, that is C i = max e i,k . The execution of τ i,k finishes at f i,k , and s i,k + e i,k ≤ f i,k . For most cases, the equal sign is not true, because scheduler might execute more than one task at the same time. Finishing time is important but varies with different instances. Response time of task τ i is defined as the maximum of finishing time

R i = max(f i,k -a i,k ). The deadline d i,k
is the absolute overdue time for τ i,k , so

d i,k = a i,k + D i . The task utilization u i = C i /T i
shows the impact of task τ i on processing resource. System utilization is the sum of all u i , and it presents the fraction of processor time used by periodic task set.
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U = n i=1 u i (5.1)
Since the required amount of computation power can not exceed the available resource, the condition U ≤ 1 must be satisfied if there are feasible scheduling solutions on task set Γ.

Processing resource

Processing resource is the resource in charge of executing tasks. For the sake of simplicity, we distinguish processors one from another by its computing capability. The concrete processor types or internal architectures are ignored in this model. Typical processing resources are

• Uniprocessor: there is only one processor in the set, and the worst-case computation time depends on the size of executed tasks.

• Identical multiprocessor: the number of processors in set is more than one, and each of them has the same computing capability.

• Uniform multiprocessor: the number of processors in set is more than one. Different processors have different computing capability, but the speed on each processor is a constant and does not depends on task type.

• Heterogeneous multiprocessor: multi processors are constituted by different hardware platforms, so the worst-case computation time depends not only on task size, but also on task type.

Among them, the uniprocessor and the identical multiprocessor are most studied, because they are more general and easily analyzed than the multiprocessor of identical or heterogeneous configuration. The other two cases can be extended by identical multiprocessors. Especially, many results achieved for the uniprocessor are useful for multiprocessor resources, we therefore focus the discussion on uniprocessor.

Scheduling algorithm

Scheduling algorithm A is the set of rules for mapping tasks from Γ onto the processing resource P . An algorithm is preemptive if the execution of one task can be interrupted by another task. The interrupted one is resumed later at the same location where the task was preempted.

Real-time scheduling

Non-preemptive algorithms are easily implemented because of no extra overhead needed for context switch, but they can not promise that all deadlines are satisfied. As a result, preemptive algorithms are applied by real-time scheduling to handle applications with the strict time requirements.

Two basic constraints should be met. A task can not be executed on two or more processors simultaneously, and a processor can not execute on two or more tasks. Under these premises, a feasible scheduling algorithm is that the scheduling can make all tasks meet their deadlines.

An algorithm is optimal in the sense that no other feasible scheduling exists if the task set can not be scheduled by this algorithm.

First In First Out (FIFO) algorithm queues tasks on a waiting list. When a new task is submitted, scheduler puts it on the list according to its arrival time. Round-Robin (RR) is another common scheduling algorithm. It handles all tasks without priority, and circularly assigns a fixed time unit to each task in equal portions. However, both of them perform badly in real-time scheduling system, which means they often fail to match the applications constraints.

In the context of real-time systems, the scheduling algorithm is priority driven. The tasks are assigned priorities according to their constraints, and generally the highest priority is assigned to the most urgent task. When a task with low priority encounters another task with high priority, the running one immediately hands over processor to the new task. Thus, the task with the highest priority is always executed no matter whether the processor is occupied or not, using preemption if necessary. In this case, a static scheduling algorithm refers to fixed priority assignment. Once the priority is fixed, it never changes till the task is finished. Otherwise, the scheduling algorithm is considered to be dynamic, if the priorities of tasks might change from time to time. Although dynamic scheduling is more effective than static scheduling in utilizing the available computational resources. Fixed priority assignment is more applied by industry systems, owing to its efficient implementation, simplicity and intuitive meaning. For practical purposes, we will focus on the study on static scheduling with fixed priority assignment.

Utilization bound

Utilization bound U provides a simple and practical way to test the schedulability of a realtime tasks set. If the system utilization of a given task set u i is lower than the bound U , the task set can be scheduled by processing resource. Although the bound is only sufficient, not necessary, it is widely used in industry. Because it is easily implemented and fast enough for on-line test. The simplest bound is decided by the number of tasks in task set. To raise
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system utilization bound, strict constrains are relaxed by subsequent researchers. The more information of the task set included, the better the utilization bound obtained. In this section, we revisit the development of utilization bound.

Classical bound

In 1973, Liu [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] proposed Rate Monotonic (RM) scheduling algorithm for preemptive periodic tasks on uniprocessor in hard real-time system, which played seminal roles in the development of real-time scheduling research. RM algorithm assigns priorities to tasks inversely proportional to their periods. Liu proved RM algorithm is the optimal fixed priority assignment, and derived the lowest upper bound from the worst case of system utilization by arbitrary task set, that is

U = n(2 1/n -1) (5.2)
This bound decreases monotonically from 0.83 to 0.69 when n approaches infinity. As long as the utilization of a given task set is beneath this bound, schedulability is guaranteed.

However, this bound is only sufficient, not necessary. Many task sets with utilization higher than this bound can still be scheduled. This phenomenon implies that the processing resource is underutilized. The desire to improve the system utilization leads to research on more precise bound.

Closer period

Burchard [START_REF] Burchard | Assigning real-time tasks to homogeneous multiprocessor systems[END_REF] found an increasing utilization if all periods in a task set have values that are close to each other. For a set of n tasks, Burchard introduced two parameters S i = log 2 T i -⌊log 2 T i ⌋ and β = max S i -min S i . The least upper bound of processor utilization is

U = (n -1)(2 β/n-1 -1) + 2 1-β -1 β < 1 -1/n n(2 1/n -1) β ≥ 1 -1/n (5.3)
Higher utilization can be obtained if task periods satisfy certain constraint β < 1 -1/n.

The disadvantage is that more calculation is needed, such as searching for the explicit task periods.

Real-time scheduling

Harmonic chains

Appropriate choice of task periods guarantees high utilization, especially when task periods are harmonic. Sha proved that schedulability is guaranteed up to 100% utilizaion with harnomic periods [START_REF] Sha | Real-time scheduling theory and ada[END_REF]. The limitation of periods hedges the pratice in application domain. Kuo [75] generalized this result by groupping tasks in serveral harmonic chains. Every harmonic chain is a list of numbers in which every number divides every nunmber after it. If there are k harmonic chains, clearly k ≤ n, the least upper bound to processor utilization is

U = k(2 1/k -1) (5.4)
A better bound is obtained by applying period parameters. However, determining the number of harmonic chains for a given task set also increases the time complexity.

Chen [START_REF] Chen | Utilization bound revisited[END_REF] investigated an exact bound that can be derived exhaustively under the condition where periods and computation times are integers. An algorithm with O(n 3 ) complexity is presented and performs better than harmonic bound. He also proposed another algorithm, which yields an exact bound with exponential complexity.

Hyperbolic

Bini [START_REF] Bini | Rate monotonic analysis: The hyperbolic bound[END_REF] proposed a schedulability condition similar to utilization bound. This condition does not depend on the number of tasks. The schedulability test using Bini's result has the same complexity as using Liu's bound, but less pessimistic. For a set of n tasks with fixed priority order, where each task is characterized by a single utilization u i , the task set is schedulable if

(u i + 1) ≤ 2 (5.5)
This result can also be integrated into the method of harmonic chains.

Two-level priority

Shih [START_REF] Shih | Modified rate-monotonic algorithm for scheduling periodic jobs with deferred deadlines[END_REF] proposed a semi-static scheduling algorithm. Two-level priority algorithm assign tasks with two priorities, the low for old request and the high for deferred request. Deadline is deferred if an instance of task does not finish before period expires, with maximum delay of max(1, γ -1), where γ is the ratio between the longest period and the shortest period. The least upper bound to processor utilization is
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U = [1 + n(2 1/n -1)]/2 (5.6)
This bound approaches 0.845 when n approaches infinity. However, this algorithm is not optimal when γ is greater than two.

Arbitrary deadline

A crucial assumption of RM algorithm is that the deadline D i always equals period T i . To better utilize the processing resource, a heavily loaded resource chooses a relatively long artificial deadline, while a lightly loaded resource applies a relatively short artificial deadline. In this case, the deadlines may be different from the periods, and Liu's bound breaks down.

Lehockzy [START_REF] Lehoczky | Fixed priority scheduling of periodic task sets with arbitrary deadlines[END_REF] proposed an utilization bound for RM does not only depend on the number of tasks but also the ratio δ = D i /T i . When the number of tasks approaches infinity, the least upper bound to processor utilization is

U =        δ δ ∈ [0, 1 2 ] ln(2δ) + 1 -δ δ ∈ [ 1 2 , 1] 2 ln( δ 2S ) -ln(δ -S) + 2S -1 δ ∈ [1, 5 3 ] 2 ln( 3 4 δ) + 2 -δ δ ∈ [ 5 3 , 2] (5.7) 
Where S is the smallest root of S 2 -(δ + 3 2 )S + δ. The bound with arbitrary deadline is a generalized expression of Liu's bound. If one addition period is given, that is δ = 1, the utilization bound increases from 0.69 to 0.81.

Aperiodic task

Some real-time systems contain tasks that have non-periodic requests, no fixed execution times or no hard deadlines. Therefore, the periodic bounds are inapplicable without the periodicity assumptions.

Abdelzaher [START_REF] Abdelzaher | A utilization bound for aperiodic tasks and priority driven scheduling[END_REF] proposed a synthetic utilization in the spirit of Liu's bound to test whether the aperiodic tasks meet their deadlines. Synthetic utilization need information about the computation time and deadlines of all active tasks, that is U ξ = C i D i . A active task means that it has arrived, but has not yet expired. When the number of tasks approaches infinity, the least upper bound to synthetic utilization is

U ξ = 2 - √ 2 (5.8) 

Motivation from MapReduce

An arriving task that leads U ξ to exceed the bound will be rejected. Consequently, aperiodic utilization is improved by only accepting task whose deadline can be guaranteed.

Motivation from MapReduce

Besides sufficient tests with utilization bounds, there are several exact schedulability tests yielding to sufficient and necessary conditions independently proposed by [START_REF] Lehoczky | The rate monotonic scheduling algorithm: Exact characterization and average case behavior[END_REF]24,[START_REF] Sjödin | Improved response-time analysis calculations[END_REF]. However, these exact tests are nearly intractable in real-time system. Their time complexity is NP-hard for these non-trivial computational models [START_REF] Sha | Real time scheduling theory: A historical perspective[END_REF], which is not acceptable for an online test. We therefore concentrate on looking for a utilization bound on MapReduce cluster for on-line schedulability analysis.

The improvement of bound is achieved by introducing practical requirements of applications. When periodic tasks are executed on MapReduce cluster, the combination of sequential computing and parallel computing impacts on real-time scheduling. In the next section, we analyze how the segmentation between Map and Reduce influences cluster utilization.

Real-time scheduling model for MapReduce tasks

System model

Assume a task set Γ = (τ 1 , τ 2 , • • • , τ n ) including n periodic tasks on MapReduce cluster.

Without losing generality, we let

T 1 < T 2 < • • • < T n .
In RM scheduling, task with higher request rate has higher priority, so task τ 1 with shortest period has highest priority, while the last τ n has the lowest. All tasks are independent, that is, have no precedence relationship.

Besides that, all tasks are fully preemptive, and the overhead of preemptive is negligible.

MapReduce solves distributable problems using a large number of computers, collectively referred to as a cluster with certain computing capability. One task is partitioned into n m Maps and n r Reduces. The numbers of n m and n r are not fixed, varying from one task to another.

Maps performed in parallel finish in a certain time M i , which means total time required to complete n m Map operations. Total time spent on n r Reduces is execution time R i . For simplification, we assume R i is in proportion to M i , and α = R i /M i is introduced to express the ratio between the two operations. Here we simply let all tasks use the same α. The whole computation time for task τ i is
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C i = M i + R i = M i + αM i = 1 α R i + R i (5.9) 
One remarkable character of MapReduce is that no Reduce operation can be submitted till all Map operations finish, so M i and R i have innate temporal sequence and share no overlap. In the following context, we use Map/Reduce to signify the whole executing process of Map/Reduce operations.

As former assumption, request of each instance occurs when a new period begins, so the Map request is consistent with the request of the whole task. The moment when Reduce request is submitted makes a huge impact on cluster utilization. If Reduce always executes as soon as Map finishes, two stages of Map and Reduce are continuous. Hence the task can be considered as a general case without segmentation, the bound of which is the famous Liu's bound. If

Reduce does not make its request in a hurry, this tradeoff can be beneficial to cluster utilization by making better use of spare time. We introduce parameter β = T R i /T M i to reveal the segmentation ratio. The same β is applied for all tasks in task set Γ. Clearly,

T i = T M i + T R i = T M i + βT M i = 1 β T R i + T R i (5.10)
Utilization u i is the ratio of computation time to its period u i = C i /T i . System utilization U is the sum of utilization for all the tasks in task set.

U = n i=1 u i = M 1 + R 1 T 1 + M 2 + R 2 T 2 + • • • + M n + R n T n (5.11) 

Benefit from MapReduce segmentation

Seen from above system model, there is a natural segmentation between Map and Reduce.

For a MapReduce task, a delay might exist during the whole execution time, in contrast with normal task executed in one go from beginning to end. How does this characteristic impact on the schedulability performance? We take Figure 5.2 for example to give an intuitive idea.

There is a task set Γ = (τ 1 , τ 2 , τ 3 ), in which C 1 = 4, C 2 = 6. Because T 1 (12) < T 2 (16) < T 3 (24), task τ 1 has the highest execution priority, while task τ 3 has the lowest.

Firstly, we analyze the case of normal tasks. In order to fully utilize cluster, the computation time C 3 of task τ 3 is no more than 4. Otherwise, the cluster fails in scheduling these three tasks simultaneously. In this case, the system utilization is can be increased to 7 from 4, without changing C 1 and C 2 . The system utilization is then

U N ormal = C 1 T 1 + C 2 T 2 + C 3 T 3 = 0.875

Real-time scheduling model for MapReduce tasks

U M apReduce = M 1 +R 1 T 1 + M 2 +R 2 T 2 + M 1 +R 3 T 3 = 1.
Therefore, the system utilization augments owing to the segmentation between Map and

Reduce. Quantitative analysis of exact augmentation is presented in the next section.

Worst pattern for schedulable task set

At the beginning, let us review the concept of critical instant theorem proposed by Liu [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF].

Theorem 1. A critical instant of a task is the moment at which the task makes a request which has the largest response time. It happens whenever the task is requested simultaneously with all higher priority tasks.

The concept implies the worst case occurs when all the tasks start to make requests at the same time. Therefore, the offsets of all tasks are set to zero, that is, O i = 0. In order to decide whether a task set is schedulable, we check if and only if the first request of each task is met in their first period when all tasks begin simultaneously.

In this section, T M i and T R i are treated as relative deadlines for Map and Reduce, respectively. Map M i instantiates at the beginning of a new period, and must be finished before T M i .

At the moment T M i , Reduce R i makes the request, and its execution lasts for T R i at most. In
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this assumption, how does the cluster bound change according to the given latency T M i ? In order to get the lowest utilization, we find out the worst pattern for schedulable task set on MapReduce cluster. Lemma 2 depicts the worst pattern for a schedulable task set that fully utilizes MapReduce cluster.

Lemma 2. For a task set

Γ = (τ 1 , τ 2 , • • • , τ n ) with fixed priority assignment where T n > T n-1 > • • • > T 2 > T 1
, if the relative deadline of Reduce is not longer than Map (β ≤ 1), the worst pattern ensuring all tasks to be scheduled is

M 1 = T 2 -T 1 M 2 = T 3 -T 2 . . . M n-1 = 1 1+β T n -T n-1 M n = (2 + α)T 1 -1+α 1+β T n
Proof. Suppose a task set fully utilizing MapReduce cluster. Fully utilizing has two meanings. The first implies that a task set can be scheduled on cluster, and the second shows that no improvement can be made in terms of cluster utilization. Each task τ i in task set Γ is defined by a triple

< M i , R i , T i >, or equally < M i , α, T i > considering α = R i /M i .
In order to analyze the period relationship between two neighboring tasks with the most adjacent priorities, we assume that

M 1 = T 2 - T 2 T 1 • T 1 + ǫ (5.12)
Where ǫ is a real number. We reduce Map runtime M 1 with ǫ when ǫ > 0. In order to maintain the full processor utilization, M a 2 is improved with the amount of ǫ.

M a 1 = T 2 -T 2 T 1 • T 1 T a 1 = T 1 M a 2 = M 2 + ǫ T a 2 = T 2 . . . . . . M a n = M n T a n = T n (5.13) 
Through this adjustment cluster utilization U a is consequently smaller than original utilization U , because

U -U a = ǫ(1 + α)( 1 T 1 - 1 T 2 ) > 0 (5.14)
Although the two task sets fully utilize the cluster, the latter has a low cluster utilization. As a result, the new pattern is worse than the former one.

Real-time scheduling model for MapReduce tasks

On the contrary, when ǫ < 0, M 2 gets longer to fully use the cluster as

M b 1 = T 2 -T 2 T 1 • T 1 T b 1 = T 1 M b 2 = M 2 + T 2 T 1 • ǫ T b 2 = T 2 . . . . . . M b n = M n T b n = T n (5.15) 
The corresponding utilization U b decreases again, owing to

U -U b = ǫ(1 + α)( 1 T 1 - T 2 T 1 1 T 2 ) > 0 (5.16)
The worst pattern of task set makes cluster utilization reach minimum, as long as ǫ approaches zero. The following analysis is based on the condition ǫ = 0.

Next, the period T 1 enlarges T 2 T 1 times as

M c 1 = T 2 -T 2 T 1 • T 1 T c 1 = T 2 T 1 • T 1 M c 2 = M 2 + ( T 2 T 1 -1)(T 2 -T 2 T 1 T 1 ) T c 2 = T 2 . . . . . . M c n = M n T c n = T n (5.17) 
Compare new utilization

U c with U U -U c = (1 + α)(1 -1/ T 2 T 1 )( T 2 T 1 ) ≥ 0 (5.18) 
This revise further pulls down the cluster utilization, which gives us inspirations that closer periods degrade the system utilization. If we try to search for the worst pattern, the smallest value of

T c 2 T c
1 should be taken. Hence the worst case happens when

T c 2 T c 1 = 1, in other words, T 2 < 2T 1 .
To sum up, we have

M 1 = T 2 -T 1 (5.19)
Using similar methods, we obtain more results about the period relationship between two adjacent tasks.

M i = T i+1 -T i , i = 2, 3, • • • , n -2 (5.20)
For the purpose of analyzing the relationship between T n-1 and T n , we construct a new task
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set by halving the period T n-1 . The periods of other tasks keep the same

T 1 , T 2 , • • • T n-2 , T n .
To avoid any waste, Map execution time M n-1 is transferred from τ n-1 to τ n .

M d 1 = M 1 T d 1 = T 1 M d 2 = M 2 T d 2 = T 2 . . . . . . M d n-1 = 0 T d n-1 = T n-1 /2 M d n = M n + M n-1 T d n = T n (5.21) A lower utilization U d is achieved, comparing with old U U -U d = M n-1 ( 1 T n-1 - 1 T n ) > 0 (5.22)
The task set is resorted according to the length of period assuring

T n > T n-1 > • • • > T 2 > T 1 .
The new pattern further decreases utilization under the condition that

T d n-1 < 1 1+β T d n , owing to T d n-1 ≤ 1 1+β • 2T d n-1 = 1 1+β T n-1 < 1 1+β T n = 1 1+β T d n . Map M n-1 is obtained M n-1 = 1 1 + β T n -T n-1 (5.23) 
Time left for Map execution M n is

M n = 1 1 + β T n - n-1 i=1 C i - n-1 i=1 M i = (2 + α)T 1 - 1 + α 1 + β T n (5.24) 
The above worst pattern stands for the most pessimistic situation where the least utilization can be calculated. Under the condition given by Lemma 2, schedulable upper bound on MapReduce cluster is derived.

Generalized utilization bound

Theorem 3. For a task set Γ = (τ 1 , τ 2 , • • • , τ n ) with fixed priority assignment where

T n > T n-1 > • • • > T 2 > T 1 , if the length of reduce is not longer than map (β ≤ 1), the schedulable upper bound of cluster utilization is U = (1 + α) n[( 2+α 1+β ) 1/n -1] + β-α 1+β .
Proof. To simplify the notation, parameters γ 1 , γ 2 , • • • , γ n are introduced
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On a real MapReduce cluster, numerous tasks are executed concurrently, so the number n is typically very large. Therefore, for all practical purposes, we are most interested in the cluster utilization as n → ∞. When n is infinite, the limit of U is Next we take three cross sections of different β using the same method. In Figure 5.5, a similar conclusion is summarized as the cases of fixed α. However, the curve is no longer jumpy, but becomes smooth. Because the pessimistic bound is piecewise function with respect to β, not to α. Another phenomenon that should be paid attention to is that the peak is not necessarily reached at the point α = β.

U ∞ = lim n→∞ U = (1 + α)[ln( 2+α 1+β ) + β-α 1+β ] β < 1 (1 + 1 α )[ln( β+2αβ α+αβ ) + α-β α+αβ ] β ≥ 1 (5.33)

Numerical analysis

All these figures also suggest that the more harmonious α and β are, the more effective the scheduling for a given task set could be. In order to find out where the maximum value of U is, we set the first order partial derivative of function U with respect to variable β to zero

(1 + α)(β -α) = 0 β ≤ 1 (1 + 1 α )( β+1 β -α+1 α ) = 0 β > 1 (5.34)
Both equations are true under the same condition α = β. It is fair and in accord with reality, that is, Map and Reduce share one period exactly according to their proportion.

U =    (1 + β) n[( 2+β 1+β ) 1/n -1] β < 1 (1 + 1 β ) n[( 1+2β 1+β ) 1/n -1] β ≥ 1 (5.35)
Figure 5.6 is drawn when α = β. The bound rises steadily due to segmentation of Map
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and Reduce. When β approaches zero, the least cluster utilization is near 0.7. The amount of utilization rises as β goes up until β = 1, peaking at 0.81, which is also a global maximum point. After that, cluster bound declines slowly to 0.7 again, when β increases to infinity. Reduce execution occupies the whole computation time. Therefore, our new bound is a general expression of Liu's bound, only if a special value of β is assigned in these functions.

Our result improves the Liu's work. This augmentation comes from the flexibility of MapReduce. The execution of Map operations should be first promised, because Reduces need to collect all the output of Maps. However, the moment when Reduce makes a request changes the final cluster utilization. If Reduce waits in a reasonable period and hands over cluster to a more pressing task with lower priority, it is possible to achieve more dynamic allocation and a higher utilization bound than the case in which no segmentation exists between Map and Reduce.

Evaluation

In order to further validate the effectiveness of the new scheduling algorithm for MapReduce tasks, we compare the proposed bound and Liu's bound by a MapReduce simulator, named SimMapReduce. SimMapReduce can model a vivid MapReduce environment and give a detailed analysis on task processing. It supports multi-layer scheduling on user-level, job-level Next, we complement the priority-based scheduling algorithms in SimMapReduce, and evaluate the scheduling performance for real-time tasks in MapReduce cluster.

Evaluation

Simulation setup

We initialize .xml configure file as simulation setup.

(1) Setup of node: A MapReduce cluster is configured by homogeneous nodes. More parameters are shown in Table 5.1.

(2) Setup of user: A certain number of users enter into the cluster simultaneously. Any user τ i has an unique type of task, which arrives periodically. These periodic tasks construct a sequence, belonging to one specific user. τ i,k is the kth task in sequence. In this simulation, the size of task sequence is 50. Users are given priorities by RM algorithm before simulation starts, and these priorities are fixed throughout the execution of simulation. The task with short period preempts the cluster whenever it meets task with long period. If any task is not finished before the next task of the same user arrives, this task as well as its user can not be scheduled by the cluster. As a result, the set of tasks is not scheduable.

Two concepts concerning utilization should be clarified first. Task utilization is

u i = C i /T i ,
and set utilization is the utilization sum of all types of tasks U Γ = u i . Obviously, U Γ is no more than one if there is a feasible scheduling algorithm. We then assume that one million U Γ distribute uniformly U (0, 1). For every U Γ , a set of task utilization u i is generated by Algorithm 3 [START_REF] Bini | Measuring the performance of schedulability tests[END_REF].

Since this experiment only focuses on the computation time, data size including inputFile-Size, intermediateFileSize, outputFileSize are set as small as possible. Especially, the time
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spent on data transmission approaches negligible compared with task execution time, if the bandwidth is large enough. The user characteristics are shown in Table 5.2. 

u i T i (MI) ReduceTask length 10000 β 1+β u i T i (MI) input size 1KB intermediate size 1KB output size 1KB Algorithm 3 Generation of [u 1 , • • • , u n ] (JAVA) 1: n = 20 2: sumU = U Γ 3: for i = 1 → n -1 do 4:
nextSumU = sumU * M ath.pow(rand.nextDouble(), 1 n-i )

5:

u i = sumU -nextSumU 6:
sumU = nextSumU 7: end for 8: u n = sumU

Validation results

For a given U Γ , 1000 random sets are generated. Every set 

Γ = {τ 1 , τ 2 , • • • , τ n } is examined

Evaluation

In the new segmentation algorithm, two absolute deadlines mD i,k and rD i,k are added for MapTask and ReduceTask of τ i , respectively.

mD i,k = (k -1)T i + 1 1+β T i rD i,k = kT i (5.36)
MapTask is submitted when a new MapReduce task begins, and ReduceTask is submitted at the moment mD i,k . The whole task is unscheduable, if MapTask is finished after mD i,k or if the ReduceTask is finished after rD i,k . Consequently, the

Γ = {τ 1 , τ 2 , • • • , τ n } with U Γ can
not be scheduled on cluster. Figure 5.7 shows the accepted ratio of bound tests when the size of task set is two. These tests seem like step functions. They thoroughly accept task set if the set utilization is less than the bound, otherwise, refuse it. The MapReduce scheduling improves the classical bound in varying extents, arriving at maximum when β equals one. Since these bounds are deduced on the basis of worst cases, they are pessimistic for average case behaviors. As a result, it is meaningful to lift bound for practical applications. Figure 5.8 shows the success ratios when there are 2 tasks in task set. Liu's scheduling is compared with the MapReduce algorithm when β equals 1, 0.5, 4, respectively. Our new scheduling algorithm can promise better performance than original Liu's method, because the success ratio keeps on rising as β approaches one. We take MapReduce scheduling with β = 1 for example. When set utilization is less than 0.85, the schedulable probability for any random set is 100%. This result has slight difference with the theoretical bound of 0.89, because the transferring delay is included in simulated cluster, but ignored in the ideal model. There- Figure 5.9 shows the accepted ratios with 20 tasks in set. Similar conclusions can be made as the case with 2 tasks. Liu's bound is still the lowest, while the highest one is achieved by MapReduce scheduling (β = 1). The bound of β = 0.5 performs better than the β = 4, because β of the former is closer to one, the maximum value.
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In Figure 5.10, the differences of these algorithms are more obvious than that with 2 tasks.

6

Reliability evaluation of schedulability test in cloud datacenter

Introduction

Since real-time requirement is a significant QoS criterion of cloud service provision, schedulability tests are necessary. These tests can determine whether an arriving application is accepted or not, so it can well guarantee the system stability. Some of schedulability tests yield to exact conditions to achieve the maximum system utilization, but the time complexity is not acceptable for an on-line test. Some of them applying sufficient conditions might somewhat underutilize cluster, but can be finished quickly, in predictable running time. Considering online guarantee in clouds context, a test with constant-time complexity is more suitable for cloud datacenter.

Although a number of constant-time tests have been studied, they are incomparable if the determination conditions are different. In order to keep high system utilization, the problem of choosing a reliable test attracts our attention. Typically, simulation can give an intuitive answer, but the result always depends on the way of generating random parameters and the number of experiments. Therefore, we introduce a concept of test reliability to evaluate the probability that a random task set can pass a given schedulability test, and define an indicator to express the test reliability. The larger the probability is, the more reliable the test is. From the point of view of system, a test with high reliability can guarantee high system utilization.

The rest of this chapter is organized as follows. We first investigate the related research of schedulability tests in real-time system. Then we explain the importance of on-line schedula-
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bility tests in cloud datacenter, and present several related conditions for schedulability tests.

After introducing reliability indicator, we give some practicable examples to explain how the indicator is used to compare the reliability of different tests. The comparison results are validated by SimMapReduce.

Schedulbility test

This chapter breaks the limitation that deadline exactly equals its period, and does a general survey on schedulability tests with arbitrary deadlines. In that case, Deadline Monotonic (DM) strategy replaces RM as the optimal priority assignment policy for periodic tasks [START_REF] Leung | On the complexity of fixed-priority scheduling of periodic, real-time tasks[END_REF]. Consequently, assigned priorities are inversely proportional to the length of the deadline. The task with the shortest deadline is assigned the highest priority, while the one with the longest deadline has the lowest priority. When deadline equals period, DM assignment defaults to RM assignment.

The schedulability test predicts temporal behavior of a given task set, and decides whether the deadline constraints will be met at runtime, that is, the given task set can be scheduled. Two main types are • Sufficient test: All task sets that pass the test can meet their deadlines. However, some of task sets that do not pass the test can still be scheduled by processing resource.

• Exact test: A task set can be scheduled if and only if it passes the test.

In this chapter, we investigate current schedulability tests in terms of design principle, time complexity and applicable scenario. System designers , who face a tradeoff between test accuracy and overhead, could make a reasonable decision based on the available computational power.

Pseudo-polynomial complexity

An exact schedulability test yields to a sufficient and necessary condition, but it requires high computational complexity [START_REF] Joseph | Finding response times in a real-time system[END_REF], even in the simple case where task relative deadlines are equal to periods. Lehoczky [START_REF] Lehoczky | The rate monotonic scheduling algorithm: Exact characterization and average case behavior[END_REF] studied an exact feasibility test with pseudo-polynomial complexity for that RM priority assignment. Based on linear programming, Park [START_REF] Park | A generalized utilization bound test for fixed-priority real-time scheduling[END_REF] achieved the exact utilization bound without knowledge of exact task computation time. Subsequently, Audsley

Schedulbility test

[24] considered a DM priority assignment and improved Lehoczky's exact feasibility test by searching worst-case response time in an iterative manner. Lehoczky [START_REF] Lehoczky | Fixed priority scheduling of periodic task sets with arbitrary deadlines[END_REF] then proposed a more general feasibility test for arbitrary deadlines. Later, methods for speeding up the analysis of task sets were proposed [START_REF] Manabe | A feasibility decision algorithm for rate monotonic scheduling of periodic real-time tasks[END_REF][START_REF] Sjödin | Improved response-time analysis calculations[END_REF][START_REF] Abdelzaher | Schedulability analysis and utilization bounds for highly scalable real-time service[END_REF][START_REF] Bini | The space of rate monotonic schedulability[END_REF][START_REF] Chen | Utilization bound revisited[END_REF][START_REF] Bini | Schedulability analysis of periodic fixed priority systems[END_REF], but the complexity of the approach always remains pseudo-polynomial in the worst case. Here we present two seminal pseudo-polynomial complexity tests.

Breakdown utilization

Breakdown utilization is first proposed by Lehoczky [START_REF] Lehoczky | The rate monotonic scheduling algorithm: Exact characterization and average case behavior[END_REF],describing an exact characterization of RM scheduling algorithm. For a random task set, the computation time scales to the point at which a deadline is first missed. The corresponding set utilization is the breakdown utilization

U *
n . This bound is an exact bound, which provides both sufficient and necessary conditions for a schedulability test. If the utilization of task set is higher than this bound, no solution exists for scheduling all the tasks on one processor. Otherwise, the task set can be scheduled without missing any deadline. The result seems exciting, but this breakdown utilization changes according to tasks with different periods and computation times. In other words, task set size n is not enough to make a decision, and precise details such as computation time C i , period T i for every task should be known in advance.

U * n = n i=1 C i /T i min t∈Sn n j=1 C j ⌈t/T j ⌉/t S n = kT j j = 1, • • • , n; k = 1, • • • , ⌊T n /T j ⌋ (6.1)
In order to characterize the average behavior, Lehoczky studied the asymptotic behavior of the breakdown utilization when periods and computation times are generated randomly.

Especially, U * n converges to a constant as the task set size increases, depending only on periods, no longer on computation times. Given task periods generated uniformly in the the interval [1,B], breakdown utilization U * n converges to.

U * n =      1 B = 1 ln B B-1 1 < B < 2 ln B B ⌊B⌋ + ⌊B⌋-1 i=2 1/i B ≥ 2 (6.2)
and the rate of convergence is O( √ n)

In addition, the function of U * n with respect to B first decreases and then increases as B grows from one to infinity, bottoming at B = 2, which is in agreement with Liu's result. For
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uniformly distributed tasks, 0.88 is a reasonable approximation for the breakdown utilization bound, which is much larger than Liu's sufficient bound of 0.69.

Response time analysis

Breakdown utilization has a strict restriction that the deadline of a task must equal the period.

For tasks with deadlines no more than periods, DM is the optimal priority assignment [START_REF] Leung | On the complexity of fixed-priority scheduling of periodic, real-time tasks[END_REF].

Audsley proposed a method to estimate the actual worst response time for each task, so the schedulability test turns out to be a trivial comparison of each task's response time and its deadline.

Response time is the period between task submission and execution completion. The worst response time R i for a task i equals the sum of its computation time C i and the worst interference I i . Interference is defined as the preemption time of higher priority tasks (j < i), and is given by the sum of R i T j C j .

R i = C i + ∀j<i R i T j C j (6.3) 
R i can be calculated by asymptotic iteration.

R n+1 i = C i + ∀j<i R n i T j C j (6.4)
R n i is the nth iteration. The iteration begins at R 0 i = 0, and ends at

R n+1 i = R n i . If R n
i reaches D i before termination of convergence, iteration also halts, that is to say, the task set is not schedulable. This analysis intends to predict the worst interference that a task can suffer from higher priority tasks. Since the prediction formulation does not refer to any priority assignment strategy, it is effective for both RM and DM approaches.

Polynomial complexity

Response time analysis (RTA) is a popular method for schedulability analysis of real-time tasks. Many efforts of RTA in the simplification have been made by reducing the number of iterations [START_REF] Sjödin | Improved response-time analysis calculations[END_REF][START_REF] Bril | Initial values for on-line response time calculations[END_REF][START_REF] Lu | A precise schedulability test algorithm for scheduling periodic tasks in real-time systems[END_REF]. Although some of them can shorten the run time with a saving of 26-33% calculation [START_REF] Lu | A precise schedulability test algorithm for scheduling periodic tasks in real-time systems[END_REF], all algorithms currently known still take runtime pseudo-polynomial in the representation of the task system. Besides that, approximation is then applied to further reduce the time complexity of an exact schedulability test.

Schedulbility test

Fisher [START_REF] Fisher | A fully polynomial-time approximation scheme for feasibility analysis in static-priority systems with bounded relative deadlines[END_REF] derived a fully polynomial time approximation scheme of the RTA. This scheme accepts two inputs, the specifications of a task system and a constant ǫ ∈ [0, 1], to examine feasibility tests. If the test returns feasible, the task set is guaranteed to be scheduled on the processor for which it has been specified. If the test returns unfeasible, the task set is guaranteed to be unscheduled on a slower processor, the computing capacity of which is in (1 -ǫ) proportion to the specified processor.

The number of iteration of interference calculation is limited to a constant k, where k = ⌈1/ǫ⌉ -1. So the approximated value of

I i is Ĩi = t T i C i t ≤ (k -1)T i C i + t T i C i t > (k -1)T i (6.5)
Therefore, the worst response time Ri is calculated in O(n 2 k) time complexity.

Ri = C i + ∀j<i Ĩi (6.6) 
In addition, Bini [START_REF] Bini | Efficient computation of response time bounds under fixed-priority scheduling[END_REF] derived an upper bound on the response times in polynomial time.

The worst response time R i is bounded by R ub i as

R i ≤ C i + i-1 j=1 C j (1 -U j ) 1 -i-1 j=1 U j = R ub i (6.7)
The time complexity of computing the response time upper bound R ub i is O(i), and the complexity of computing the bound for all the tasks is O(n 2 ).

More polynomial complexity tests can apply the utilization bounds in the previous chapter.

For example, Han [START_REF] Han | A better polynomial-time schedulability test for real-time multiframe tasks[END_REF] suggested modifying the task set with smaller, but harmonic, periods using an algorithm with O(n 2 log n) complexity. Chen [START_REF] Chen | Utilization bound revisited[END_REF] investigated an algorithm with O(n 3 ) complexity that obtains an exact bound under the condition where periods and computation times are integers. Lauzac limited period relations, and improved schedulability within a O(n log n) time complexity.

Generally speaking, all polynomial complexity tests are only sufficient, not necessary. The time complexity for exact tests is always NP-hard for non-trivial computational models [START_REF] Sha | Real time scheduling theory: A historical perspective[END_REF].

Less complexity is always achieved at the cost of less accuracy.

On-line schedulability test

already accepted lower-priority tasks. This leads to additional delay and may be impractical, particularly, for a large number of tasks.

Considering the on-line nature of the problem in cloud computing, a schedulability test with constant time complexity is applicable, which does not depend on the number of tasks currently running in the system. Although there have been several candidates providing on-line commitments, schedulability tests using different conditions are incomparable. The question how to choose the best among all available alternatives provides the primary motivation of our study.

However, a criterion has not been established to compare the constant-time admission control test using different conditions. In this chapter, we introduce a method to compare the accuracy of different schedulability tests. The principle comes from the phenomenon that a test admitting more tasks is more reliable given a number of random tasks. The reliability indicator can be used to evaluate test performance. From the point of view of system, a test with high reliability can guarantee high system utilization.

On-line schedulability test

We first clarify system model and relative terms that will appear in the following sections.

System model

A task set Γ = (τ 1 , τ 2 , • • • , τ n ) is formulated including n independent periodic tasks. Task τ i consists of a periodic sequence of requests. The interval between two successive instances is period T i . The time taken to execute τ i is C i . In the duration of any instance, computation must be completed before the deadline D i . Herein, we assume C i ≤ D i ≤ T i . Utilization u i is the ratio of computation time to its period

u i = C i /T i .
A task τ i is schedulable with respect to an algorithm if no instance misses its deadline, and a task set Γ is feasible with respect to an algorithm that can schedule all tasks in the set before their deadlines. Each task is assigned to a priority before execution. Concrete priority assignment is discussed in the next section. When a running task with lower priority encounters a new request from a task with high priority, it hands over the cluster to the new instance with a negligible overhead.
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Test conditions

Liu's RM condition RM scheduling is an optimum static algorithm [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. If RM can not make a task set schedulable on a cluster, no other rules can succeed in scheduling. RM algorithm is only suitable for the cases in which task period exactly equals its deadline. Liu proposed a concept of system utilization U as a sufficient condition for schedulability test. The subscripts l, p and m represent the work of Liu, Peng and Masrur detailed in the following content, respectively. Theorem 4. For a set of n tasks with fixed utilization u 1 , u 2 , • • • , u n , there exists a feasible algorithm ensuring all tasks can be scheduled on a cluster if

U l = n i=1 u i ≤ n(2 1/n -1) (6.8) 

Peng's DM condition

Deadline replaces period as the new determinant when deadline does not equal period. Peng [START_REF] Peng | A new performance measure for scheduling independent real-time tasks[END_REF] modified the system utilization U p for DM algorithm by introducing system hazard θ =

D i /T i , 1 ≤ i ≤ n.
Theorem 5. For a set of n tasks with fixed utilization u 1 , u 2 , • • • , u n , there exists a feasible algorithm ensuring all tasks can be scheduled on a cluster if

U p = n i=1 u i ≤ θ θ ∈ [0, 0.5) n[(2θ) 1/n -1] + 1 -θ θ ∈ [0.5, 1] (6.9) 

Marur's DM condition

Marsur [START_REF] Masrur | Constant-time admission control for deadline monotonic tasks[END_REF] also studied a set of tasks with deadline no longer than period, and proposed a load condition to test whether a task set is schedulable on a cluster. Theorem 6. For a set of n tasks with fixed utilization u 1 , u 2 , • • • , u n , there exists a feasible algorithm ensuring all tasks can be scheduled on a cluster if

n i=1 max( u i θ , 2u i 1 + u i
) ≤ 1 (6.10)

Reliability indicator and applications

Marur's condition contains a maximum operator. For the sake of simplicity, we replace the max by introducing two parameters u l = (1 + min u i )/2 and u h = (1 + max u i )/2. There are m tasks (m ≤ n) satisfy that u i /θ is larger than 2u i /(1 + u i ). Then Masrur's condition is decomposed to

U m =      1 θ n i=1 u i ≤ 1 θ ∈ [0, u l ) 1 θ m i=i u i + n-m j=1 2u j 1+u j ≤ 1 θ ∈ [u l , u h ) n i=1 2u i 1+u i ≤ 1 θ ∈ [u h , 1]
(6.11)

Reliability indicator and applications

The effectiveness of a sufficient schedulability test can be measured by the accepted ratio of task sets. The larger the ratio is, the more reliable the test is. One typical method to calculate accepted ratio is Monte-Carlo simulation, in which a large number of synthetic task sets need to be generated with random parameters. However, almost all measurements are made with some intrinsic errors. If the method of generating parameters is biased, unreasonable conclusion might be deduced due to the different hypotheses between simulations and actual working conditions. For these reasons, a probability method is used to indicate the likelihood of accepted ratio.

Note that this accepted ratio is different from the similar concept in previous researches [START_REF] Bini | Schedulability analysis of periodic fixed priority systems[END_REF]. The denominator of this ratio is the total number of participated tests, rather than the number of feasible ones. Such an adjustment makes our analysis much easier, because finding out all feasibly schedulable task sets in an exact test is extremely time consuming. Another advantage is that simple UUniform algorithm turns out to be practical in our simulation, which does not work for original test of accepted ratio, owing to a huge number of iterations [START_REF] Bini | Rate monotonic analysis: The hyperbolic bound[END_REF].

Probability calculation

Without loss of generality, we suppose that task utilization u i is uniformly distributed with mean value 1/2 and variance 1/12. Two probability distributions will be calculated in the following context.

(1) X = n i=1 u i X is the sum of n independent u i , and the Probability Density Function (PDF) of X is
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F P DF (X) = 1 (n -1)! ⌊U ⌋ k=0 (-1) k ( n k )(U -k) n-1 U ∈ [0, n] (6.12) 
Therefore, U has mean value n/2 and variance n/12. Its Cumulative Distribution Function (CDF) is

F CDF (X) = 1 n! ⌊U ⌋ k=0 (-1) k ( n k )(U -k) n U ∈ [0, n] (6.13) 
More generally, for a sequence of independent and identically distributed random variables u i with expected values µ and variances σ 2 , the central limit theorem asserts that for large n, the distribution of the sum X is approximately normal with mean nµ and variance nσ 2 .

X → N( n 2 , n 12 ) (6.14) 
(2) Y = n i=1 2u i /(1 + u i ) An intermediate variable y i = 1/(1 + u i ) is introduced, and its PDF is expressed as

G P DF (y i ) = 1 y 2 i y i ∈ [ 1 2 , 1] (6.15) 
Mean and variance of y i are

E(y i ) = 1 1 2 y i g(y i )dy i = ln 2 (6.16) D(y i ) = E(y 2 i ) -[E(y i )] 2 = 1 2 -(ln 2) 2 (6.17)
With y i , we obtain

Y = n i=1 2u i 1 + u i = n i=1 2(1 -y i ) (6.18)
Y is approximated by a normal distribution as

Y → N[2n(1 -ln 2), 4n( 1 2 -(ln 2) 2 )] (6.19) 
6.5 Reliability indicator and applications

Reliability indicator w

We define reliability indicator w as

w = x -µ σ (6.20)
For a generic normal random variable with mean µ and variance σ 2 , the CDF is F (x) = Φ( x-µ σ ), in which Φ(x) is the standard normal distribution. Since the CDF of Φ(w) is a monotone increasing function with respect to w, w can indicate the probability that a random task set passes a given examination. The higher the probability is obtained, the better the examination is. Therefore, different schedulability tests can be compared by a reliability indicator. The test with a large value of w is more reliable than that with a small value.

Reliability comparison of RM conditions

When deadline equals period, we have two RM sufficient conditions for schedulability test.

Based on Liu's condition (6.8) and (6.14), we get µ = n/2, σ = n/12 and x = n(2 1/n -1), hence the reliability indicator of Liu's condition is (6.21) According to Masrur's load test, we obtain

w l = x -µ σ = n(2 1/n -1) -n 2 n 12
U m = n i=1 2u i 1 + u i ≤ 1 (6.22)
From (6.19), µ = 2n(1 -ln 2), σ = 4n( 1 2 -(ln 2) 2 ) and x = 1, so the reliability indicator of Masrur's condition is

w m = x -µ σ = 1 -2n(1 -ln 2) 4n( 1 2 -(ln 2) 2 ) (6.23)
The comparison between the two reliability indicators has been plotted in Figure 6.1. Notice that w l is always larger than w m , which implies that the schedulability test using Liu's condition is more reliable than that using Masrur's condition. This comparison result can be more intuitive when we focus on the accepted probability of the two tests. two accepted ratios diminishes as the number of tasks augments. When the number reaches a certain value, the reliability of two tests is nearly the same. In Figure 6.1 and Figure 6.2, the gap between two reliability indicators increases when the gap between accepted possibility is reduced. Hence, the reliability indicator can only show relative difference of test reliability, rather than absolute performance.
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Reliability indicator and applications

Reliability comparison of DM conditions

Next, the limitation that deadline exactly equals period is broken. In DM scheduling, we also analyze two schedulable conditions when deadline is not longer than period.

According to Peng's condition (6.9) and (6.14), we obtain µ = n/2, σ = n/12. Reliability indicator is

w p =      θ-n 2 √ n 12 θ ∈ [0, 0.5) n[(2θ) 1/n -1]+1-θ-n 2 √ n 12 θ ∈ [0.5, 1] (6.24)
w p is a function of two variables of n and θ, and its gradient vector is

∇w p (n, θ) = ( ∂w p ∂n , ∂w p ∂θ ) (6.25) 
The gradient vector implies: (a) ∂wp ∂n < 0 means that reliability indicator decreases as the number of tasks increases. This result makes sense, because it is true that the schedulable probability descends if more tasks try to enter cluster. (b) ∂wp ∂θ > 0 means that the indicator rises when the deadline is prolonged.

A factor α is introduced to represent the ratio α = m/n, and the distribution of U m can be developed as

U m →    N(µ 1 , σ 2 1 ) θ ∈ [0, u l ) N(µ 2 , σ 2 2 ) θ ∈ [u l , u h ) N(µ 3 , σ 2 3 ) θ ∈ [u h , 1] where: µ 1 = 1 θ n 2 σ 1 = 1 θ n 12 µ 2 = α θ n 2 + 2(1 -α)n(1 -ln 2) σ 2 = α θ 2 n 12 + 4(1 -α)n( 1 2 -(ln 2) 2 ) µ 3 = 2n(1 -ln 2) σ 3 = 4n( 1 2 -(ln 2) 2 ) (6.26)
Reliability indicators are

w i = 1 -µ i σ i i = 1, 2, 3 (6.27) 
Gradient vectors are 
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∇w 1 (n, θ) = ( ∂w 1 ∂n , ∂w 1 ∂θ ) ∇w 2 (n, θ, α) = ( ∂w 2 ∂n , ∂w 2 ∂θ , ∂w 2 ∂α ) ∇w 3 (n) =
(θ ∈ [u l , u h )) θ ∈ [u h , 1] ∆ 4 = w 3 -w p (6.33) 
In this part, one condition needs to be satisfied, that is, In Figure 6.6, only two short lines appear, which stand for the cases where Masrur's test performs better. Clearly, it seldom works as the dominated condition for schedulability test, only under strict constraint that the number of tasks is no more than three. Hence Masrur's condition is not recommended to system designers. the event that all utilizations are below u l occurs with the possibility P r(u i < u l ). Since 0 < P r(u i < u l ) < 1, the product decreases sharply with a large n. Besides that, θ < (1 + min u i )/2 < (1 + θ n )/2 must be met, so the value of θ falls into range [0.5, n/(2n -1)). When the task number n increases, n/(2n -1) approaches 0.5 gradually.

θ > u h = (1 + max u i )/2 > (1 + θ n )/2
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Evaluation
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As a result of transmission delay, the schedulable ratio is less than 100%, and does not fit in with the schedulability tests exactly. However, the overall variation is accordance with the reality. These experimental results further validate our reliability comparison of the two DM schedulability test. Since it is rare that MapReduce cluster only deals with two tasks in reality, Peng's condition is more suitable for DM schedulability test than Masrur's.

Summary

In this chapter, we contemplate real-time schedulability tests in cloud datacenter. The schedulability tests aim at determining whether a set of tasks is schedulable on a cluster. Some of them yield to exact conditions to achieve the maximum system utilization, but the time complexity is not acceptable for on-line tests. Some of them applying sufficient conditions might somewhat underutilize a cluster, but they can be executed in predictable running time. We focus on the tests with constant-time complexity, because a schedulability test in cloud computing should be taken on-line. Given the lack of general solutions to evaluate the accuracy of schedulability tests, we propose a method to indicate test reliability. Through a reliability indicator, the probability of passing different tests can be compared. We apply this method in several classical schedulability tests. Results show that Liu's salient bound is a dominated condition in RM tests. For DM tests, test reliability depends on system parameters. If these parameters are known in advance, datacenter designers can analyze the performance exactly, and then choose an applicable test among several alternatives. We also validated these conclusions by simulation using SimMapReduce.

7

SimMapReduce: a simulator for modeling MapReduce framework

Introduction

MapReduce is a language-independent framework proposed by Google, which targets on solving data explosion problem for real Internet services. As a parallel programming framework, it organizes a large number of computers with relatively simple functional primitives. Although MapReduce is simple, it is capable of solving many real world problems, especially the problems processing huge datasets such as data mining [START_REF] Zhang | Decomposing data mining by a processoriented execution plan[END_REF], scientific computing [START_REF] Ekanayake | Mapreduce for data intensive scientific analyses[END_REF], artificial intelligence [START_REF] Cao | A mapreduce-based architecture for rule matching in production system[END_REF], and image processing [START_REF] Nguyen | Autonomic data management system in grid environment[END_REF] etc. In most of these cases, programmers are free from some tough tasks such as distributing data, specifying parallelism and fault tolerance, and only need to implement two functions: Map and Reduce. That is the reason why MapReduce quickly evolves as a prominent and mainstream programming model for data processing in the past couple of years.

More attentions are paid to MapReduce not only by IT enterprises, but also by research institutes. The researchers make efforts on theoretical analysis on MapReduce computational model [START_REF] Yang | Map-reduce-merge: simplified relational data processing on large clusters[END_REF], scheduling mechanisms [START_REF] Yu | Service scheduling and rescheduling in an applications integration framework[END_REF][START_REF] Zaharia | Improving mapreduce performance in heterogeneous environments[END_REF][START_REF] Zaharia | Job scheduling for multi-user mapreduce clusters[END_REF], task assignment [START_REF] Ucar | Task assignment in heterogeneous computing systems[END_REF][START_REF] Pan | Parallelizing multiple group-by query in share-nothing environment: a mapreduce study case[END_REF], workflow optimization, instead of implementing a real MapReduce application. In addition, different applications require different system configurations and parameters, so the construction of such real MapReduce systems is extremely challenging on a large scale of infrastructures. Under above considerations, simulation method becomes a good alternative, which can accelerate study progress by opening the possibility of evaluating tests with hypothesis setting in advance
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and by simplifying the programming of implementation. It is easy to configure the infrastructures according to user requirements, and costs very few to repeatedly test various performances in a controllable manner.

Although there are some open source supporters of MapReduce implementation, few specific simulators exist to offer a simulated environment for MapReduce theoretical researchers.

Therefore, a simulation tool, SimMapReduce, is developed to simulate the performance of different applications and scenarios using MapReduce framework. The users of SimMapReduce only concentrate on specific research issues without getting concerned about finer implementation details for diverse service models.

The rest of this chapter is organized as follows. We first investigates the parallel programming model, MapReduce, including its language syntax, logical dataflow, related data storage and current implementations. Targeting on assisting researchers by optimizing parameter configuration and testing new theoretical algorithms, a simulator modeling MapReduce framework is developed. Next, we present simulator design issues such as system architecture, implementation diagram and modeling process. More research values of SimMapReduce are explained in the end of this chapter.

MapReduce review

Programming model

MapReduce is a programming model for executing distributed data-intensive computations on clusters of commodity machines. It was originally developed by Google and adopted world- 
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• Map: extract useful information from every data chunk

• Sort: aggregate values by keys

• Reduce: filter useful information and summarize the final results

• Write output data to file system Note that the keys in Map and Reduce phase are not the same. The data form of key/value pair is flexible, so that programmers are free to decide the keys in these two phases. There is a slight difference between the Hadoop implementation of MapReduce and Google's implementation. In Google's MapReduce, the output key of Reduce function must be the same key as input. However, the programmers of Hadoop are free to change the keys in Reducer, so an arbitrary number of output key/value pairs is emitted.

Overall, a typical MapReduce computation processes terabytes of data on thousands of machines, so the MapReduce tasks are more data-intensive, rather than compute-intensive. A MapReduce framework can be compared with other similar computing paradigms.

• HPC: the HPC jobs run on a fixed number of machines communicate through a mechanism like MPI. MapReduce jobs are elastic, so we can change allocations over time.

HPC jobs are often CPU-bound, so there is less need for node-level data locality. Especially for parallel computing with shared memory, the parallel tasks have close relationship with each other. In MapReduce, every Mapper or Reducer deals with independent subtasks on separated machines.

• Grids: Grid jobs are more compute-intensive than MapReduce. The distributed computing refers to an organization of geographic clusters, rather than a cluster of commodity machines. Moreover, errors from one grid task does not affect the results of other tasks, but in MapReduce the mistakes in Map phase will cause further mistakes in Reduce phase, even a wrong final result.

• Parallel Databases: parallel databases run data-intensive workloads on a distributed system. The main concerns differentiating MapReduce from these systems are the scalable use of commodity hardware in MapReduce, and the MapReduce execution strategy of small independent tasks instead of long-running pipelined queries. Although HDFS is Hadoop's own rack-aware filesystem, it is not necessary. Alternative choice is any distributed file system with an operating system that allows retrieving files from remote computers, such as Amazon S3, CloudStore, FTP, Read-only HTTP and HTTPS file systems. However, data locality will decrease without information provided by Hadoopspecific filesystem bridges.

Motivation from simulation

Motivation from simulation

Although the scope of MapReduce application spreads day by day, model abstraction and infrastructure generalization obstructs the theoretical studies and applicability development. For a specific application, the MapReduce setup might be complicated considering platform configuration, network topology and node resources. To yield an efficient system, massive parameters should be tuned, tested and evaluated before MapReduce comes into use.

Simulation is an essential tool to study performance by researchers. We inspire the idea

SIMMAPREDUCE: A SIMULATOR FOR MODELING MAPREDUCE FRAMEWORK

of creating a MapReduce simulator from another distributed computing paradigm, Grid, which deals with high performance services for compute-intensive or data-intensive scientific applications. There are several grid/cloud simulators, such as GridSim [START_REF] Buyya | Gridsim: A toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing[END_REF], GangSim [START_REF] Dumitrescu | Gangsim: a simulator for grid scheduling studies[END_REF], SimGrid [START_REF] Casanova | Simgrid: A generic framework for large-scale distributed experiments[END_REF] and CloudSim [START_REF] Calheiros | Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[END_REF] Users submit jobs to cluster through a broker. Jobs belonging to one user arrive simultaneously or in time sequence. Besides the arrival rate is specified in advance, user could also assign priorities to jobs according to their importance. An example of user/job specification is given by Figure 7.5.

Initial data layout is about the location of data chucks on cluster. As the input file of Map tasks, data storage and transferring affects the computation performance for Map phase, even for the overall job. We assume a uniform distribution as default. However, our design is flexible and other distribution is allowed for particular tests.

• Output: The output of SimMapReduce is a report.txt, which provides a detailed execution trace. The trace can be shown in a coarse or fine manner. The former records phase-level time execution for jobs, while the latter is able to records every event. An

Simulator design

• MRBrokerScheduler: this abstract class provides the possibility for modelers to designate the scheduling algorithm used by MRBroker. Modeler can integrate criteria such as client priority cost, deadline, due time and flow to draw up a reasonable allocation policy.

The default implementation is SimpleMRBrokerScheduler, which allocate all nodes of cluster to every coming job.

• User: this class models the resource demander, each instance of which represents a natural MapReduce client who communicates with broker directly. It consists of a sequence of jobs that arrive simultaneously, randomly or repeatedly. Like in a real market, MapReduce users are assigned to ranks according to their priorities.

• Job: this class models the core functional MapReduce service, which is deployed on a group of nodes. It records every detail of service demands including arrival time, deadline, program operations, granularity and quantity of Map/Reduce tasks, location and size of files.

• MRMaster: this class models the entity which takes responsibility for assigning and dispatching Map/Reduce task to one node, managing intermediate files, buffering key/value pairs and supporting scheduling in static or dynamical manners. The concrete heuristic policy must be pointed out in MRMasterScheduler.

• MRMasterScheduler: this abstract class defines abstract methods (e.g. mapTaskScheduling and reduceTaskScheduling) which should be implemented by users. Several elements must be taken into account for the implementation of these abstract methods, such as data locality, interdependence between Map and Reduce, and processor throughput.

Default SimpleMRMasterScheduler realizes strict local assignment for Map tasks and random assignment for Reduce tasks.

• Task: this class models the finest unit for a MapReduce job. It can be subdivided into two types, MapTask and ReduceTask. After all the MapTasks finish, ReduceTasks are created by MRMaster depending on the location of intermediate key/value pairs. The distinction between the two types of task mainly lies in the different input and output files.

• FileManager: this class models a manager taking charge of all operations related to files, including recording, inquiring, tracing, updating and so on. This entity is built due to
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the fact that a typical MapReduce computation processes massive data files on a elastic cluster.

• SimuInit: this class models initialization of simulation. It reads the parameter values into the instances of class and starts the simulation. 

Modeling process

Simulator design

In the beginning, nodes in cluster report their characters to broker. At the same time, users initialize their own job sequences, and send jobs one by one, depending on arrival rate.

Arbitrary job generates amount of ordinary copies naming MapTask and ReduceTask as well as a special copy of operation program, master, acting on behalf of job.

In every round, master firstly sends information to broker to request available nodes. MR-Broker matches both sides' requirement and allocates a number of nodes to master for its inner scheduling. Master manages the scheduling of Map/Reduce tasks, and supervises their execution. When all subtasks have been completed, master reports job completion to user and destroys itself. Concrete control flow of master is shown in Figure 7.9.

When a user has completed all jobs in the sequence, it informs broker the information. If no more jobs are created, broker gathers the simulation data and finishes simulation.

MRMaster is in charge of spawning Map and Reduce tasks, scheduling tasks to working nodes, managing their associate data, and producing the final output file. Then Reduce function is operated, generating output file. Similarly as in Map phase, MRMaster collects the message about completion of ReduceTask. When they all finish, a final output result is obtained. The computation of job terminates, and its manager, MRMaster breaks down.

Evaluation

Evaluation

The following experiments aim at observing the performance of SimMapReduce to validate whether it can simulate MapReduce framework effectively and efficiently. Our experiments are taken on a personal computer with the configuration of dual Intel Xeon 5130 processor and 2G memory. Meanwhile, JDK 1.6 is applied, and the amount of memory used by JVM has 128M maximum heap size and 64K stack size.

Instantiation efficiency

Firstly, we try to evaluate the overhead of building a MapReduce cluster without considering the workload. A MapReduce cluster consists of a certain amount of computing nodes, and each node further includes one or more machines which have homogenous or heterogeneous configurations, such as architecture, processor number, MIPS rating and bandwidth. In order to test computing power requirement, we build one million machines in the cluster. The time spent on instantiation is shown in Figure 7.10. linearly with respect to number of nodes, not to number of machines. That is because that every node, working as an entity in SimMapReduce, consumes memory in terms of threads.

SIMMAPREDUCE: A SIMULATOR FOR MODELING MAPREDUCE FRAMEWORK

We therefore have to limit the total amount of nodes according to the memory size of computer.

Modulars can create more nodes by changing the heap/stack size of JVM. Particularly in our test, a MapReduce cluster with thousand nodes only demands 400M of RAM, which can satisfy most of common users.

Scheduling performance

In order to illustrate the usage of SimMapReduce and to explain the research value of this simulator, we build a MapReduce cluster on which two simple job schedulers are analyzed.

The simulation is built in several steps.

(1) Setup of node: The cluster is homogeneous with identity quad-core nodes of 400 MIPS.

The nodes are arranged in a two-level star-shaped switched network with 100 Mbps bandwidth at machine level. Input data locates uniformly on the whole cluster. In the following experiments, two scenarios are compared, a heavy load case with a small cluster of 50 nodes and a light load case with a flarge cluster of 500 nodes. More parameters are shown in Table 7.1.

(2) Setup of broker: SimpleMRBrokerScheduler inherits MRBrokerScheduler class to specify the allocation policy for broker. We suppose that this broker always sets all nodes to be available for a coming user.

(3) Setup of user: We assume that 100 jobs belonging to the same user flow into cluster simultaneously, so there are nearly 1000 MapTask and 200 ReduceTask to be computed totally,
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Clearly, large cluster can finish computation more quickly than small cluster due to more nodes provided. The delay caused by transferring files among nodes aggravates with respect to data size, especially for the small cluster. Because the submitted task has to wait before input data arrives, and the queuing of data transmission greatly extends the completion of job sequence. As can be seen from Figure 7.13, the best ratio for both scenarios is obtained neither at least one (2 Maps), nor at most fifty (100 Maps). The completion time firstly descends, then ascends, achieving bottom at a median value, which validates our assumption. In addition, the optimal 7.6 Summary 

Summary

In this chapter, we review the new programming model for cloud computing, MapReduce.

Through studying its language syntax, logical dataflow, related data storage and current implementations, we make effort to design a software tool for analyzing application performance Encouraging opportunities also bring out corresponding challenges. Cloud comoputing is easy to be confused with several existing technologies including grid computing, utility computing, web service and virtualization. Again, cloud computing is a newly evolved delivery model. It covers the equal importance both on technology and business requirements, and it lets users focus on their abilities on demand by abstracting its technology layer. In that case, scheduling problem in cloud computing is worthy to be reconsidered by researchers and engineers.

In our work, we addressed the resource allocation problem in terms of economic aspects to meet the business requirements. At the same time, we concerned the real-time schedulability test to provide cloud datacenter with technical supports. Both theoretical and practical efforts were made to solve cloud scheduling problems and to facility the succeeding researches.

In this chapter, we first present a short summary of this thesis, and then discuss some further possible research directions.

CONCLUSIONS

Summary

The objective of our work targets on scheduling problems in cloud datacenter.

• Profiling scheduling solutions for cloud computing. In Chapter 3 we investigated scheduling theories including former expressions of problems, algorithms, and complexity and schematic methods. In terms of the complexity of cloud computing, we distinguished the large issue between two topics: resource allocation on user-level and task scheduling on system-level. Resource allocation aims at economic features that differentiate cloud computing from other computing paradigms, while task scheduling focuses on technical features that ensure cloud datacenter to meet various requirements generated by plentiful customized services. Several concrete scheduling problems are stressed and then followed by their general solutions. For instance, market-based and auction models are presented to resolve the competition problems among consumers who need the same service. Metadata scheduling inside the datacenter can be solved by heuristics.

Moreover, real-time scheduling is extended in cloud environment. Priority-based strategies are reviewed as the traditional methods, and updated plug-ins and virtual machines provide promising solutions for real-time cloud schedulers.

• Resource pricing and equilibrium allocation algorithms. Compared with similar computing paradigms, cloud is more involved in purchasing and consuming manners between providers and users. Thus, the problem about how to make a reasonable price and allocate resources fairly needs to be questioned. In Chapter 4, we introduced a new game theoretical algorithm to solve this resource management problem in cloud computing. This algorithm fully considered the possible situations such as the heterogeneous distribution of resource, rational exchange behavior of cloud users, incomplete common information and dynamic successive allocation. We derived that a Nash equilibrium solution exists among all the possible prices, which means no one can get a better benefit without damaging others. Furthermore, we evaluated the performance of the proposed approach by Cloudsim experimentation, and this new algorithm is proved to be effective and easily implemented.

• Schedulability bound for real-time tasks on MapReduce cluster. Utilization bound is a powerful approach for schedulability test that is concerned with determining whether a 8.2 Future directions set of tasks is schedulable on a cluster. In Chapter 5, we studied the uplifting schedulability bound caused by MapReduce segmentation execution. Based on the worst pattern for schedulable task set, we deduced its corresponding system utilization. If any task set utilizes MapReduce cluster below this bound, the schedulability is promised. We validated this result by SimMapReduce. This new bound is more precise than the classic Liu's bound, and can ensure a higher utilization for a running MapReduce cluster.

• Reliability indication method for on-line schedulability tests. A number of on-line schedulability tests have been developed, but they are incomparable due to different determination conditions. This deficiency leads to difficulties to choose the best test among all available alternatives. In Chapter 6, we introduced a reliability indicator to evaluate the accuracy of schedulability test, as well as pointed out a prerequisite pattern accompanying with the performance discrepancy. In addition, an insufficient argument in previous literature is questioned and then completed. Experiments on SimMapReduce agreed with the theoretical results achieved by the reliability indication method.

• Simulating MapReduce framework with various scheduling algorithms. MapReduce plays a key role in cloud computing by providing transparent and flexible access to a large number of computing, storage and network resources. In Chapter 7, we developed a simulation tool, SimMapReduce, to construct a simulated MapReduce environment to facility theoretical research under different scenarios. The usefulness of this simulator have been intuitively revealed in above schedulability tests, and more experiment were supplemented to illustrate that SimMapReduce can be easily executed in a personal computer and can provide qualitative analysis for MapReduce systems.

Future directions

In this research, we dealt with the resource allocation and scheduling problems in cloud computing. From the theoretical aspect, we mainly finished three research issues including game theoretical algorithms for resource allocation, a new schedulability test for cloud datacenter using MapReduce, and an effective analysis indicator for on-line schedulability tests. As a practical supplementation, we developed a MapReduce simulator to facility theoretical studies for us and other researchers. Besides these contributions, our work has raised many interesting questions and issues that deserve further research.
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  Amazon played a key role in the development of cloud computing by initially renting their datacenter to external customers for the use of personal computing. In 2006, they launched Amazon EC2 and S3 on a utility computing basis. After that, several major vendors released cloud solutions one after another, including Google, IBM, Sun, HP, Microsoft, Forces.com, Yahoo and so on. Since 2007, the number of trademarks covering cloud computing brands, goods and services has increased at an almost exponential rate. Cloud computing is also a much favored research topic. In 2007, Google, IBM and a number of universities announced a research project, Academic Cloud Computing Initiative (ACCI), aiming at addressing the challenges of large-scale distributed computing. Since 2008, several open source projects have gradually appeared. For example, Eucalyptus is the first API-compatible platform for deploying private clouds. OpenNebula deploys private and hybrid clouds and federates different modes of clouds. In July 2010, SiteonMobile was announced by HP for emerging markets where people are more likely to access the Internet via mobile phones rather than computers. With more and more people owning smartphones, mobile cloud computing has turned out to be a potent trend. Several mobile network operators such as Orange, Vodafone and Verizon have started to offer cloud computing services for companies. In March 2011, Open Networking Foundation consisting of 23 IT companies was founded by Deutsche Telecom, Facebook, Google, Microsoft, Verizon, and Yahoo. This nonprofit organization supports a new cloud initiative called Software-Defined Networking. The initiative is meant to speed innovation through simple software changes in telecommunications networks, wireless networks, data centers and other networking areas. A simple history of cloud development history is presented in Figure 2.2.
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2. 5

 5 Cloud projects Qizmt, Meguro implement the MapReduce programming model in different languages including C++, C#, Erlang, Java, Ocaml, Perl, Python, Ruby. Dryad [7] processing framework was developed by Microsoft as a declarative programming model on top of the computing and storage infrastructure. DryadLINQ targets on writing large-scale data parallel applications on large data set clusters of computers. DryadLINQ enables developers to use thousands of machines without knowing anything about concurrent programming. It supports automatic parallelization and serialization by translating LINQ programs into distributed Dryad computations.
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Figure 4 . 3 :

 43 Figure 4.3: Bid under dealine constraint
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 4 Figure 4.5 shows the equilibrium resource price for a dynamic system under the condition that all users have similar bid distributions. The line with slope one shows that the bid function sum h(Θ k ) of task k is equal to Θ k . The intersection of this line and the curve h(Θ k ) stands for the only stable solution. From this figure, we can observe how the final equilibrium price is affected by different numbers of users. Increasing number of competitors raises the bid sum and makes resource more expensive. An user has to bid against more competitors if he

Figure 4 .

 4 Figure 4.6 depicts the flow of communication among main entities. At the beginning, datacenter initializes current available hosts, generating provision information and registers in CIS. Meanwhile, cloud users who have new tasks report to auctioneer and queue up in order of arrival time. At regular intervals, auctioneer collects information and requests datacenter to virtualize corresponding resources. Once virtual machines are ready according to users' service requirements, datacenter sends the provision information to the auctioneer, and successive auctions start.

  From an auctioneer's perspective, a new auction is triggered off whenever a new type of task arrives. Once an auction begins, auctioneer broadcasts the bid calling message to current users.

Figure 4 . 7 :
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  DATACENTER characteristics of MapReduce. MapReduce consists of two individual steps, inspired by Map and Reduce functions. Firstly, input data is chopped into smaller sub-problems, each of which runs a Map operation. After all Maps finish, the intermediate answers of these sub-problems are assembled and then reassigned to Reduces according to different keys generated by Maps. Reduces only start after all Maps are completed, which illustrates a special feature of MapReduce, that is, sequential segmentation of task execution. The segmentation and interdependence between Map and Reduce, provide the primary motivation of our study on real-time scheduling on a MapReduce cluster. In this chapter, we shall assume the computation ability of a cluster as a whole by hiding assignment detail of every Map/Reduce task in the interior of the cluster. The rest of this chapter is organized as follows. We first formulate the real-time scheduling problem, based on which classical utilization bounds for schedulability test are revisited. After analyzing the advantages and disadvantages of current utilization bounds, we then present MapReduce scheduling model and a less pessimistic utilization bound, combining the particular characteristics of MapReduce. Next we discuss scheduling performance of our mathematical model, following by experiment results implemented by SimMapReduce, a simulator of MapReduce framework.
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 5 Figure 5.3 outlines the fluctuation of utilization bound with respect to α and β, where α shows the proportion of execution time between Map and Reduce and β illustrates the ratio between two relative deadlines. Seen from Figure 5.3, the bound is a symmetrical plane on the axis α = β. It implies that the value of α and β should be harmonious, that is, difference between α and β can not be too dramatic. Easily understood, if a long Map (α < 1) is given a short relative deadline (β > 1), it is impossible to schedule all the tasks before periods expire. That is why the cluster utilization dips to zero when assignment of the two variables goes into opposite directions. If α and β are given reasonable values in advance and task set can be scheduled on MapReduce cluster, utilization bound is a concave function with respect to α and β.
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  by bound test and simulation test. After repeated tests, an accepted ratio and a success ratio are calculated with respect to U Γ . If a MapReduce task is scheduled by classical Liu's algorithm, Reduce stage begins immediately after Map stage completes. The task is unscheduable if Reduce is finished after next Map arrives.
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  wide via an open-source implementation called Hadoop. Today, a vibrant software ecosystem has sprung up around Hadoop, with significant activities in both industry and academia.MapReduce is the very successful abstraction over large-scale computational resources. The abstraction is inspired by the Map and Reduce primitives in functional languages such as Lisp, Haskell, etc. Map function is in charge of splitting input file into chops and processing each of them to generate a set of intermediate pairs, while Reduce function attempts to merge all intermediate values and makes the final result. By performing Map and Reduce operations in parallel, MapReduce allows distributed processing on a large server farm. The syntax of MapReduce model is M ap(key1, value1) → list(key2, value2) Reduce(key2, list(value2)) → list(key3, value3) (7.1)
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 47475 Figure 7.4: Example of cluster configuration
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  Every process is triggered by an event message. Having the available node list, MRMaster picks idle nodes to schedule MapTasks. As soon as a node receives a MapTask, it checks whether the input file is on local disk. If not, the node asks for input transmission. When input data is ready, MapTask runs its Map function. After that, intermediate files produced by Map operations are buffered on memory. MapTask then reports its completion to MRMaster. MRMaster keeps on examining whether all MapTasks finish. If yes, MRMaster stops the Map phase, and start the shuffle phase that groups the key/value pairs by common values of the key. Generally, data with the same key will be sent to one ReduceTask. In the begining of Reduce phase, MRMaster makes a scheduling decision to dispatch Re-duceTasks to different nodes. The first action in Reduce phase is reading intermediate files remotely. In our current design, each ReduceTask receives an equal part from each MapTask output. Thus the input of ReduceTask sums up all intermediate files regardless of weights.
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7. 8 Conclusions

 8 SIMMAPREDUCE: A SIMULATOR FOR MODELING MAPREDUCE FRAMEWORKon MapReduce cluster and facilitate scheduling studies related to MapReduce. We develop a simulator to model MapReduce framework, SimMapReduce. SimMapReduce provides a vivid MapReduce environment and can test multi-layer scheduling algorithms on user-level, job-level or task-level. It is convenient to inherit or be inherited by other specific packages. We decrypt the details of simulator design, including system architecture, implementation diagram and modelling process.Cloud computing implies that computing is not only operated on local computers, but on centralized facilities by third-party computing and storage utilities. It refers to both the applications delivered as services over the Internet and system hardware/software in datacenter as service providers. Cloud solutions seem to state master keys for the IT enterprises which suffer from budget concerns and economic woes, and a number of industry projects have been started the creation of a global, multi-data center, open source cloud computing testbed for industry, research and education.

Table 3 .1: Economic schedulers

 3 

	Scheduler	Economic model	Computing paradigm
	Cluster-on-demand tendering	cluster
	Mosix	commodity	cluster
	Stanford Peers	auction/bartering	peer to peer
	D'Agents	proportion shared auction	mobile-agent
	Faucets	tendering	grid
	Nimrod-G	commodity/auctions	grid
	Marketnet	posted price	distributed information
	Cloudbus	commodity/tendering/auctions	cloud
	OpenPEX	bartering/double auction	cloud
	EERM	commodity/posted price/bartering/tendering cloud

6 Real-time scheduling for cloud computing

  

	distributed computing and storage resources across the Internet, which can be compared to
	corresponding cloud services such as Amazon EC2 and S3. Since technologies such as REST,
	HTTP, hardware virtualization and BitTorrent displaced existing accesses to grid resources,
	gLite federates both resources from academic organizations as well as commercial providers
	to keep being pervasive and cost effective.
	Condor [117] is an open source high-throughput computing software framework to man-
	age workload on a dedicated cluster of computers. Condor-G is developed, provisioning virtual
	machines on EC2 through the VM Universe. It also supports launching Hadoop MapReduce
	jobs in Condor's parallel universe.

is an open source job scheduler for clusters and supercomputers, which is capable of supporting an array of scheduling policies, dynamic priorities, extensive reservations, and fair share capabilities. Now it has developed new features including virtual private clusters, basic trigger support, graphical administration tools, and a Web-based user portal in Moab.

gLite

[START_REF] Ragusa | Experiencing with the cloud over glite[END_REF] 

is a middleware stack for grid computing initially used in scientific experiments. It provides a framework for building grid applications, tapping into the power of 3.

4. RESOURCE-PROVISION SCHEDULING IN CLOUD DATACENTER static

  , but repeated gambling processes. Each user can adjust its bid price according to prior behaviors of other competitors. Fourthly, cloud customers are distributed globally, so they do not know each other very well. In other words, there is no common purchasing knowledge in the whole system. Fifthly, tasks arrive in datacenter without a prior arrangement. Sixthly, the accurate forecast becomes more challenging in such a complex scenario, so a good allocation model integrating compromise, competition and prediction should be further generalized and well evaluated. Given the above challenges, we therefore use game theoretical auctions to solve the resource allocation problem in clouds, and propose practicable algorithms for user bidding and auctioneer pricing. With Bayesian learning prediction, resource allocation can reach Nash equilibrium among non-cooperative users even if common knowledge is lacking or dynamically updated.

The rest of this chapter is organized as follows. A short tutorial on game theory is given first, covering the different classes of games and their applications, payoff choice and utility function, as well as strategic choice and Nash equilibrium. Next, a non-cooperative game for resource allocation is built. The scheduling model includes bid-shared auction, user bid function, price forecasting and equilibrium analysis. Based on equilibrium allocation, we propose simulation algorithms running on the Cloudsim platform. After that Nash equilibrium and forecasting accuracy are evaluated.

4.5 Resource pricing and allocation algorithms 4.5.3 Implementation algorithm

  From an user's point of view, after task submission, observer focuses on analyzing the received messages that prescribe user's next move. If auctioneer announces a new auction, user adds it to the auction list. If bids are called, an appropriate bid is calculated and reported to auctioneer. If user receives the message calling for parameters, he examines the historical prices and estimates the future bid sum by Bayesian learning mechanism, then sends information back. Finally, if user receives resource price and proportion, he immediately updates his price list and begins to execute the task.

	Concrete algorithms for users and auctioneer are explained in more details by Algorithm 1 and
	Algorithm 2.
	Algorithm 1 User i bidding algorithm
	3:	add current auction
	4: end if

1: submit tasks to auctioneer 2: if observer receives message of inform start then 5: if observer receives message of call for bids then 6:

Table 4 .1: Resource characteristics

 4 

	Characteristics	Parameters
	Machine architecture	x86, Sun Ultra, PowerPC
	Operating system	Linux, Windows, Solaris
	Virtual machine monitor Xen, UML, VMware
	Number of PE	2, 4, 8
	MIPS rating per PE	100, 200, 300, 400
	Memory	512M, 1024M,2048MB
	Storage	160G, 320G, 500G
	Bandwidth	128M, 256M, 512M

Table 5 .1: Node characteristics

 5 For example, economic schemes coordinate demand and supply balance among the users of MapReduce cluster, and heuristics dispatch Map/Reduce tasks to available CPUs.

	Characteristics Parameters
	Cluster rating	10000MIPS
	memory	2G
	storage	200G
	bandwidth	100Mbps
	network	star-shaped
	or task-level.	

Table 5 .2: User characteristics

 5 

	Characteristics	Parameters
	set utilization U Γ ,	[0,1]
	user number	2, 20
	task utilization u i	uniform distribution [0, 1] (Algorithm 3)
	task number	50
	arrival interval T i	uniform distribution [10, 100]
	MapTask length	10000 1 1+β

Table 6 .1: Node characteristics
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	Characteristics Parameters
	cluster rating	10000MIPS
	memory	2G
	storage	200G
	bandwidth	100Mbps
	network	star-shaped

Table 6 .2: User characteristics

 6 

	Characteristics	Parameters
	set utilization U Γ ,	uniform distribution [0,1]
	system hazard θ	0.3, 0.6, 0.9
	user number	2, 20
	task utilization u i	uniform distribution [0, 1] (Algorithm 3)
	task number	50
	arrival interval T i	uniform distribution [10, 100]
	MapTask length	5000u i T i (MI)
	ReduceTask length 5000u i T i (MI)
	6.6	

.1 RM scheduling results This

  For each value of set utilization U Γ , we randomly generate 20 tasks. Each task utilization distributed uniformly, and the sum of u i equals U Γ . Other parameters are configured as

experiment compares accepted ratio of schedulability tests with the probability that a random task set can be scheduled. For the case of RM algorithm, schedulability tests apply Liu's and Masrur's conditions, respectively. Concrete experimental process is shown in Algorithm 4.

Table ? ?

 ? . Then the task set passes Liu's and Masrur's schedulability tests, with results whether this task set is accepted. After that, SimMapReduce runs the task set, and reports the final decision whether these tasks can be scheduled on a real MapReduce cluster. The accepted ratio and exact scheduled ratio can be calculated by a large number of task sets, so we repeat this examination a thousand times with the same hypothetical assumption U Γ .

								6.6 Evaluation
	Algorithm 4 Reliability comparison of RM conditions(JAVA)
	1: N = 20					
	2: numExp = 1000					
	3: U Γ					
	4: for i = 1 → numExp do 5: generate [u 1 , • • • , u j , • • • , u N ] randomly 6: configure other parameters of task set	
	7:	Liu's schedulability test			
	8:	if pass then					
	9:	nLiu + +					
	10:	end if					
	11:	Masrur's schedulability test			
	12:	if pass then					
	13:	nM asrur + +					
	14:	end if					
	15:	SimMapReduce simulation			
	16:	if pass then					
	17:	nSim + +					
	18:	end if					
	19: end for					
	20: Liu's accepted ratio pLiu = nLiu/numExp	
	21: Masrur's accepted ratio pM asrur = nM asrur/numExp
	22: Exact scheduled ratio pSim = nSim/numExp
					RM scheduling (20 tasks)
			1				
			0.9				
			0.8				
			0.7				
		Accepted ratio	0.4 0.5 0.6				
			0.3				
			0.2		Liu boud test		
			0.1		Masrur load test Simulation		
			0	0	0.2	0.4	0.6	0.8	1
						U Γ	
	Figure 6.7 shows accepted ratios with respect to set utilization. Since Liu's test is decided

4 Simulator design separate

  to support research and development of new policies. GridSim allows the modeling of entities (e.g.users, applications, resources, and resource brokers) in parallel and distributed computing systems for design and evaluation of scheduling algorithms. SimGrid provides core functionalities for the simulation of distributed applications in heterogeneous and distributed environments ranging from simple network of workstations to computational grids. GangSim supports studies for controlled resource sharing on grid-based virtual organizations and resources. Cloudsim, as an extension of Gridsim, strengthens management of virtual machines and generic application provisioning techniques, which are raised by development of cloud computing.Although the above simulators are capable of simulating execution, scheduling, allocation and monitoring behaviors in distributed environment, none of them tackles the problems caused by MapReduce framework such as interdependence between Map and Reduce as well as data components, so the reusable codes can save designer's time and energies in similar circumstances. More specifically, SimJava and GridSim packages are used as the based layers of SimMapReduce simulator to provide the entities, communication, and task modeling capacity.

	locality. Furthermore, other relative research interests including fault tolerance, distributed
	execution, scheduling and rescheduling schemes, concurrency, coordination and network com-
	munication, are worthy to be investigated. MRPerf [124, 123], a pioneer of MapReduce sim-
	ulators, provides means for analyzing application performance on Hadoop platform and op-
	timizing MapReduce setups, but it ignores reservations and scheduling schemes. However,
	in MapReduce, scheduling decisions including OS scheduling, master scheduling and broker
	scheduling, should be made harmoniously due to the great impact on system performance. As
	a consequence, it is pressing and meaningful to design software tools to assist researchers in
	promoting the scheduling studies related to MapReduce.
	7.4 Simulator design
	7.4.1 Multi layer architecture
	A multi-layer architecture shown in Figure 7.3, is applied for the design of SimMapReduce
	simulator for two reasons. The first is that layered design classes have the same module de-

pendency. It is much clearer for both simulator designer and users than plane architecture. The second is that existing technologies and packages are easily leveraged into SimMapReduce as 7.

Table 7 . 3 :

 73 User characteristics

	Characteristics	Parameters
	Map number	2,5,10,20,30,50,100
	Reduce number	2
	input size	500,200,100,50,33,20,10 MB
	intermediate size policy 10 MB
	output size	10 MB

Acknowledgements

I would like to express my gratitude to those who have made this thesis possible.

First and foremost, I offer my sincerest gratitude to my supervisor, Professor

LIST OF TABLES

RESOURCE-PROVISION SCHEDULING IN CLOUD DATACENTER

. Subsequently, holding all price functions auctioneer makes an equilibrium allocation decision and inquires whether everyone is satisfied with the result. If the result is agreeable, auctioneer publishes allocation proportions to datacenter and users. Users then execute their tasks and pay for the resource allocated. At the end, datacenter deletes the used VMs and waits for new service demands.

Evaluation

converges to the equilibrium price stage by stage.

Comparison of forecasting methods

Three forecasting methods are compared, including Bayesian learning, historical averaging and last-value following. 4.9 shows the standard deviations of three forecast methods versus time series. All three forecasting methods are able to converge to the result with perfect information, as long as the user keeps on training his belief of others' bid functions over time. The cases with abundant budgets are examined. Some users would like to increase bids to get more resource, so the price keeps rising, to much higher than the estimated bid. If all the historical prices are used for prediction, the history averaging method behaves poorly at the beginning of auctions, and is less stable than other two methods. Compared with the last-value method, Bayesian learning converges in a smoother manner, because historical prices are used to calculate the likelihood function rather than simply following the price in the previous auction as last-value method. Now we apply another distribution, Pareto, to express users' bidding rules, meanwhile keeping other experiment setups the same. A similar conclusion can be reached in Figure 4.10, except that the worst forecast is last-value method. The result is due to the attribute of Pareto distribution. The Pareto principle stands for the probability that the variable is greater than its minimum, while normal distribution reveals how close data clusters are around its mean. For one specific round of bidding, it's more difficult to estimate the precise value with Pareto distribution than with normal distribution. In other words, the more historical data is accumulated, the more accurate the forecast would be. In Figure 4.10, convergence of Bayesian learning is still the most stable one of the three schemes. As a result, it is recommended as a forecast method in practical applications.

RESOURCE-PROVISION SCHEDULING IN CLOUD DATACENTER

Summary

In this chapter, we solve the resource allocation problem in the user-level of cloud scheduling. We survey game theory, covering the different classes of games and their applications, payoff choice and utility function, as well as strategic choice and Nash equilibrium. Based on that, we build a non-cooperative game to solve the multi-user allocation problem in cloud scenario. The scheduling model includes bid-shared auction, user strategy (bid function), price forecasting and equilibrium analysis. We propose game theoretical algorithms for user bidding and auctioneer pricing, and then supplement bid-shared auction schemes in a cloud simulation framework, named Cloudsim, in order to realize sequential games. Results show that resource allocation reaches Nash equilibrium among non-cooperative users when common knowledge is insufficient and that Bayesian learning forecast has the best and most stable performance.

Our algorithms can support financially smart customers with an effective forecasting method, and can help auctioneer decide an equilibrium resource price. Therefore, they are potential to solve resource allocation problems in cloud computing.

Real-time scheduling model for MapReduce tasks

Computation time of n tasks is expressed as

(5.26)

Which gives the cluster utilization

In order to compute the minimum value of U , we set the first order partial derivative of function U with respect to variable γ i to zero

For variable γ i , we get the equation

The general expression of γ i is

By substituting general value of γ i into U , the least cluster utilization is achieved as

Moreover, a symmetric utilization bound is easily deduced using similar method as Theorem 2. If the length of reduce is longer than map (β > 1), the schedulable upper bound of cluster utilization is The sufficient threshold moves to 0.65 when β equals one, and to 0.55 when Liu's algorithm is taken. MapReduce scheduling is less pessimistic than Liu's work, by uplifting the real schedulability. This improvement is determined by the property of MapReduce. The bigger β is, the more benefit is archived. When β approaches zero, the two algorithms are nearly the same.

Summary

In this chapter, we study the problem of scheduling real-time tasks on MapReduce cluster, arising from demand for cloud computing. We first formulate the real-time scheduling problem, based on which classical utilization bounds for schedulability test are revisited. We then present a MapReduce scheduling algorithm, combining the particular characteristics of MapReduce.

After Map is finished, a proper pause before submission of Reduce can enhance scheduling efficiency for the whole cluster. We deduce the relationship between cluster utilization bound and the ratio of Map to Reduce. This new schedulable bound with segmentation uplifts Liu's bound. The latter can be further considered as a special case of the former. The effectiveness of this bound is evaluated by simulation using SimMapReduce. Results show that this new bound is less pessimistic, and it supports on-line schedulability test in O(1) time complexity.

RELIABILITY EVALUATION OF SCHEDULABILITY TEST IN CLOUD DATACENTER

Constant complexity

The constant complexity tests apply the simplest bound, such as the classical bound [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] or the hyperbolic bound [START_REF] Bini | Rate monotonic analysis: The hyperbolic bound[END_REF]. Both of these tests are in O(1) time complexity, so they are easily implemented and fast enough for on-line schedulability tests. As long as the utilization of a given task set is under this bound, all tasks can be scheduled for sure. One shortcoming is that the two bounds are only suitable for RM approach. In order to find out a concise schedulable condition like Liu's result, Peng [START_REF] Peng | A new performance measure for scheduling independent real-time tasks[END_REF] proposed a concept of system hazard to check whether assigned tasks miss their deadlines, and computed lowest upper bound of DM algorithm. The calculation of DM bound can be finished in O(1) time complexity.

Recently, another schedulability test with O(1) constant complexity has been developed by Masrur [START_REF] Masrur | Constant-time admission control for deadline monotonic tasks[END_REF][START_REF] Masrur | Near-optimal constant-time admission control for dm tasks via non-uniform approximations[END_REF]. This test calculates an upper bound of the worst response time considering all accepted tasks, and is different from all mentioned tests based system utilization. If this upper bound does not exceed the respective deadlines, all tasks can be scheduled under DM.

However, the comparison with other bound-based tests remains unfinished by the authors.

Motivation from constant complexity

In cloud computing, a service request may arrive at any time in a datacenter. In order to guarantee the system against overload and collapse, an arriving task needs then to be admitted or rejected on-line according to whether it can be feasibly scheduled without disturbing other tasks. Therefore, the datacenter requires a schedulability test that can be finished in predictable running time.

Schedulability tests strongly affect system stability, especially for system executing periodic tasks that treat deadline as a dominant QoS constraint. For example, each packet of interactive computer games needs to be processed well before the arrival of the next packet.

From a practical point of view, we limit our study to fixed priority scheduling, because it is prevailingly supported by commercial real-time operating systems.

Exact schedulability tests are already known for fixed priorities. Although high accuracy is always desirable, exact tests are often not eligible for on-line requirement. The running time of such a pseudo-polynomial test depends on various task parameters, so is difficult to precisely bound such a running time in an on-line setting where the task set is constantly changing.

Polynomial-time approximation tests require tasks to be sorted according to decreasing priority. When a new task arrives, we only need to add it to a sorted list, and then retest all

Reliability indicator and applications

In this part, the value of ∆ is always zero, so two tests have the same reliability. System designer can choose any of them as the schedulable condition.

Therefore, the value of θ falls into range [0.5, n/(2n -1)). When the deadline is relatively short, Masrur's test performs better. However, this superiority diminishes as more tasks admit in the system. That is caused by the possible field [0.5, n/2n -1) shrinks with increasing number of tasks. The reliability indicator is not only useful for performance comparison, but also capable of specifying an exact pattern where the winner can be applied. For example, in Figure 6.5, system designer can choose dominated condition based on foreseeable n, α and β. If the point appears on the figure, Masrur's condition wins, otherwise, Peng's test is preferred.

Evaluation

Revisit of Masrur's condition

It is interesting to notice the contradiction between our results and previous literature [START_REF] Masrur | Constant-time admission control for deadline monotonic tasks[END_REF]. The authors proved Marsur's test is always less pessimistic than hyperbolic bound [START_REF] Bini | Rate monotonic analysis: The hyperbolic bound[END_REF] and Liu's bound [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF], if θ ∈ [0, u l ). In our analysis of part 1 and 2, Masrur's test sometimes performs well, but not always.

In Masrur's work [START_REF] Masrur | Constant-time admission control for deadline monotonic tasks[END_REF], the Liu's condition developed for RM is adapted to come up with DM tests as

However, this adoption is not true. Suppose there is a RM task set Γ 1 with period P i and computation time C i . Equation (6.34) is the test condition for another RM task set Γ 2 with period θP i and computation time C i , rather than for DM task set Γ 3 with period P i , deadline

The contradiction is caused by misunderstanding that Liu's condition can be extended in deadline monotonic algorithm. Equation (6.34) is not a DM condition for schedulability test.

The right test condition for Γ 3 is (6.9). Therefore, the argument [START_REF] Masrur | Constant-time admission control for deadline monotonic tasks[END_REF] is incomplete.

In the next section, we rectify this incorrect claim by extensive simulation among different schedulability tests.

Evaluation

We use SimMapReduce to simulate a set of real-time tasks running on a MapReduce cluster. Simple priority-based scheduling is applied in the following experiments. The priority assignments are distinguished by rate monotonic and deadline monotonic algorithms.

Similarly as Chapter 5, the MapReduce cluster and the users are configured in Table 6.1 and Table 6.2.

Here U Γ is set utilization, which is the sum of task utilization u i . T i is the interval between two successive tasks of the same user. Every task must be finished before the arrival of its successor, otherwise, the whole task set can not be scheduled on the cluster.

RELIABILITY EVALUATION OF SCHEDULABILITY TEST IN CLOUD DATACENTER

more pessimistic, which coincides with the result obtained by reliability indication method. In addition, both tests are sufficient. Notice that a violation appears when U Γ = 0.7. Liu's test predicts that any task set is schedulable, but simulation reveals that only 86% of task sets can be scheduled on a MapReduce cluster. The reason is that file transmission occupies some time in the MapReduce simulation. For a real-time task, a tiny delay is not permitted. For a random task set with utilization of more than 0.7, it is possible to be scheduled by the cluster, though this probability reduces as set utilization increases.

DM scheduling results

When deadline is no longer than period, DM schedulability tests apply Peng's and Masrur's conditions, respectively. The following experiments target on analyzing the schedulability with respect to set utilization U Γ and system hazard θ. The simulation flow is similar to that in RM experiments, except that two parameters, set size and system hazard, vary their values.

Given a fixed system hazard θ, we first analyze the accepted ratio of schedulability tests with respect to set utilization U Γ . Concrete experimental process is shown in Algorithm 5.

We take θ = 0.5 and N = 2 for example. Twenty one types of task sets are generated, and their set utilizations U Γ uniformly locate in the field [0, 1]. For any U Γ , the same simulation is repeated 1000 times, but given different N tasks.

When the size of task set is two, schedulability analysis is shown in Figure 6.8 and Figure 6.9. Generally, U Γ < θ is a necessary condition that a random task set can pass any schedulability test.

Figure 6.8 deals with the accepted ratios with respect to U Γ , by varying θ with the value of 0.5, 0.7 and 0.9. Masrur's test is beneficial to the tasks with a large set utilization, by offering more opportunities to enter a cluster. Take θ = 0.9 for example, task set with 80% utilization could be scheduled at 25% probability if system employs Masrur's schedulability test, but would certainly failed if Peng's test in applied. Comparing three sub-figures in Figure 6.8, the benefit of Masrur's test magnifies as the deadline is prolonged. However, this advantage is obtained at the cost of reducing schedulable possibility for the tasks with small set utilization.

Figure 6.9 deals with the accepted ratios with respect to θ, by varying U Γ with the value of 0.5, 0.7 and 0.9. Test performance, in terms of schedulable probability for a random task, is interpreted as the area under the curve of accepted ratio. Two tests perform the same when U Γ is less than 0.5. Peng's test allows more tasks to enter the cluster when U Γ equals 0.7, while Masrur's test still admits tasks when Peng's refuses everything at U Γ = 0.9. These U Γ = 0.05 * (i -1)

7:

configure other parameters of task set Peng's accepted ratio pP eng = nP eng/numExp 24:

Masrur's accepted ratio pM asrur = nM asrur/numExp 25:

Exact scheduled ratio pSim = nSim/numExp 26: end for results exactly agree with the conclusion deduced by the reliability analysis. Although they are very intuitive, they can not provide a practicable solution for system designers as the reliability indication method does.

Next, we analyze the cases with 20 tasks per set in Figure 6.10 and Figure 6.11. Obviously, Peng's test outperforms Masrur's in any case. When the deadline is relatively short (θ = 0.5), two tests have the same reliability.

In Figure 6.10, Peng's reliability keeps growing as θ increases from 0.5 to 0.9, while the reliability of Masrur's test remains almost unchanged. This phenomenon seems to go against Masrur's test being always better than Peng's when θ ∈ [0.5, u l ). That is actually caused by the small probability of preconditions. The possibility that task utilization is less than u l is expressed as P r(u i < u l ). According to multiplication rule, for n independent tasks,

MapReduce review

Key-value pairs form the basic data structure in MapReduce. Keys and values may be primitives such as integers, strings or other complex structures. When a MapReduce program is written, the key-value structure on arbitrary datasets should be imposed. Take web application for instance, the keys can be URLs and values can be the actual HTML content.

The input of a MapReduce job is the data stored on the underlying distributed file system.

Every chunk of input is expressed as a key/value pair. Map function is applied to every input (key1, value1) pair to generate an arbitrary number of intermediate (key2, value2) pairs. The Map phase ends till all input (key1, value1) pairs are processed. (key2, value2) pairs are shuffled and sorted into several groups, where each group has the same key2. Then Reduce function is applied to all values associated with the same intermediate key2 to generate output (key3, value3) pairs. Output key/value pairs from each Reducer are written persistently back onto the distributed file system. Figure 7.1 shows the logical dataflow of MapReduce. 

Distributed data storage

In traditional cluster architectures, storage is viewed as a separate component from computation. As dataset sizes increase, more computing capacity is required for processing. In that case, the storage and the link between the compute nodes become a bottleneck. One feasible solution is breaking the separation of computation and storage as distinct components in a cluster. MapReduce adopts distributed file system that underlies programming model to realize parallel computations. Google File System (GFS) and Hadoop Distributed File System (HDFS) are two implementation of distributed file system.

The main idea is to divide user data into blocks and to replicate those blocks across the local disks of nodes in the cluster. The distributed file system adopts master-slave architecture on which the master maintains the file namespace and the slaves manage the actual data blocks.

An application wishing to read a file must contact the master to determine where the actual data is stored. As response, master transfers metadata and the location where the block is held.

The application then retrieves data from the slaves that store the actual data. All data transfers only occur between applications and slaves.

Master is responsible for maintaining metadata, directory structure, file to block mapping, location of blocks, and access permissions. These data are held in memory for fast access, and all mutations are persistently logged. Master ensures the integrity of the system. It decides where the data replicas are created to keep the fault tolerance and system balancing.

Hadoop implementation framework

MapReduce is applied to large datasets as a reliable and distributed computing paradigm to process tera-or petabytes data in parallel. One key characteristic is that it interleaves sequential and parallel computation. On the parallel part, all computations are executed in parallel either in Map phase or in Reduce phase. On the part of sequential process, Map is always taken before Reduce, because Reduce should wait for the results integrated by the output of all Maps.

Google's MapReduce implementation is roughly based on the above idea, but is patented privacy [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF]. However, Google published a paper to describe technical details of the implementation, which paves the way for MapReduce framework to become a common technique for parallelization. What's more, MapReduce is realized by multiple implementations including open source projects such as Hadoop [START_REF] Borthakur | The Hadoop Distributed File System: Architecture and Design[END_REF], CouchDB [START_REF] Lennon | Introduction to couchdb[END_REF], Mars [START_REF] He | Mars: a mapreduce framework on graphics processors[END_REF], Phoenix [START_REF] Ranger | Evaluating mapreduce for multi-core and multiprocessor systems[END_REF], Planet [START_REF] Panda | Planet: massively parallel learning of tree ensembles with mapreduce[END_REF]. Among them, Hadoop, the most well-known, improves behaviors in some special scenarios like real-time stream processing and cascading, so it is widely applied by IT companies such as Yahoo, Facebook, Twitter etc. Hadoop is also applied by researchers in some universities, for instance, Carnegie Mellon, Cornell and Maryland.

SIMMAPREDUCE: A SIMULATOR FOR MODELING MAPREDUCE FRAMEWORK

Hadoop provides a HDFS file system storing data across thousands of servers, and a MapReduce framework running jobs across those machines. In Hadoop, master/slave architecture is applied both by HDFS file system and MapReduce framework. The HDFS installation consists of a single Namenode regulating the filesystem namespace, as well as a number of Datanodes managing storage attached to the hosted nodes. Meanwhile, each MapReduce job has a single master, called Jobtracker, as well as several slaves, called Tasktrackers. The computation job is programmed by a sequence of distributed operations on data sets of key/value pairs. When a MapReduce job is submitted, Jobtracker takes charge of assignment of Map and Reduce tasks to the Tasktrackers. The Tasktrackers execute tasks upon instructions from the Jobtracker and also handle data motion between the Map and Reduce phases.

In Hadoop, Mappers are Java objects with a Map method. A Mapper object is instantiated for every Map task by the Tasktracker. The life-cycle of this object begins with instantiation, so that Mappers can read in additional data [START_REF] Lin | Data-Intensive Text Processing with MapReduce[END_REF]. After initialization, the Map method is called on all key-value pairs in the input split. When all key-value pairs in the input split have been processed, the Mapper object runs programmer-specified termination codes. The actual execution of Reducers is similar to that of the Mappers, except that the execution framework repeatedly calls the Reduce method with an intermediate key and an iterator over all values associated with that key. A complete Hadoop cluster architecture is shown in Figure 7 Map task is assigned a sequence of input key-value pairs, called an input split in Hadoop. The Jobtracker tries to schedule tasks on the slave node that holds the input split, so that the Mapper

SIMMAPREDUCE: A SIMULATOR FOR MODELING MAPREDUCE FRAMEWORK

• MapReduce entity simulation The higher level of simulation is the core of MapReduce functionality modeling, some of which are extended by GridSim library. SimMapReduce toolkit can simulate various cluster environments regardless of small shared-memory machine, massively parallel supercomputer, or large collection of networked commodity PCs. Every node reserves separated slots for Map and Reduce. Broker takes the responsibility for allocating nodes to coming users. After user receives a set of available nodes, the job dispatcher named master, is in charge of mapping Map/Reduce tasks to a specific node. In the simulator, each job possesses one correspondent master. Although several traditional broker/master schedulers are integrated in SimMapReduce, advanced implementation of scheduling algorithms and policies is open to users. They are free to achieve multi-layer scheduling schemes on user-level and task-level. These algorithms can be conveniently overwritten on the basis of predefined abstract classes. Besides, the file transmission time is involved into the completion time of jobs, which is monitored by a FileManager. FileManager can be considered as an abstract function entity of a HDFS Namenode, which manages the file system namespace and operations related to files, such as input files initiation, intermediate file management and file transmission.

• Scenario description

The top layer is open for users of SimMapReduce. Different simulation scenarios are modeled by defining specific parameters in a configuration file in a quick manner, so that identical results are easily promised by repeated simulations. Extensive Markup Language (XML) is a set of rules for encoding documents in machine readable form. The design goals of XML emphasize simplicity, generality, and usability over the Internet.

Many application programming interfaces (APIs) have been developed to help software developer process XML data. Therefore, a XML file is a good choice for the system configuration file of the simulator.

Input and output of simulator

In SimMapReduce, system parameters are configured in the file configure.xml, including three parts: cluster configuration, user/job specification, and data storage. 

Simulator design

Java implementation

The Class diagram is shown in Figure 7.7, the gray ones are parent classes archived by Gridsim.

• MRNode: this class models the computing infrastructure, each instance of which stands for a physical node on a cluster. Modelers can vary the characteristics such as processor number, speed and reserved Map/Reduce slot number. Input data is stored on disk within the given storage. Furthermore, this class is in charge of the receiving, executing, returning of submitted Map/Reduce task and input/intermediate/output file transferring.

• MRBroker: this class models the mediating broker between both sides of supply and demand. It is equipped with several lists of updated information about node, user and This experiment outlines how data size influences on completion time of the whole job sequence. Results are shown in Figure 7.12. For a random scheduler, if the data is considered small, which means time for data transmission is negligible compared with time for computation, the difference of completion time mainly depends upon computing capability of cluster.

SIMMAPREDUCE: A SIMULATOR FOR MODELING MAPREDUCE FRAMEWORK
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CONCLUSIONS

• Generalizing price prediction mechanisms. Although we have proposed Bayesian learning interference to forecast future price, this prediction is not perfect with its own limitations. For instance, accurate calculation of posteriori hyperparameters might fail if some parameters of likelihood function are unknown. In addition, the congestion problem caused by network topology is not considered in current allocation model.

• Enriching business models for cloud providers. Besides technical strengths of cloud computing, users decide to head in clouds due to the economical reasons, so the business model of cloud computing should be more flexible, offering clients scalable price options. For example, customers of Amazon can choose purchasing models among ondemand, reserved, spot and even free tier according their own preferences. With more and more cloud solutions emerge, business models must be reformed to maintain the customer loyalty or attract new attentions. In addition, new economic models that support the trading, negotiation, provisioning and allocation based on consumer preference should be developed.

• Expanding schedulability bound to more complicated system. The primer utilization bound for MapReduce cluster is not a final result, our investigation will be continue considering more realistic features of cloud services. We shall extend our result to cases of imprecise computations, dependent tasks, aperiodic tasks and non preemptive execution in the future. Since we ideally assume the computation ability of cluster as a whole by hiding assignment detail of every Map/Reduce task in the interior of cluster, this bound is mainly used by the scenario of single processor. Next, we intend for apply this bound and heuristics for solving multi processor problems.

• Improving reliability of on-line schedulability tests for cloud datacenters. There is always a contradiction between the test accuracy and its time complexity. We have improved the schedulability bound by introducing practical characteristics of MapReduce segmentation, but it is still pessimistic compared with exact schedulability test. Determining test reliability with a low time complexity is still challenging.

• Completing the functions of SimMapReduce. In the future, our short-term focus is further perfecting the simulator with powerful functionality, such as more kinds of storage topologies, friendlier GUI, redundant execution for handing machines features and
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