
HAL Id: tel-00659305
https://theses.hal.science/tel-00659305

Submitted on 12 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and testing of component-based systems
Bilal Kanso

To cite this version:
Bilal Kanso. Modeling and testing of component-based systems. Other. Ecole Centrale Paris, 2011.
English. �NNT : 2011ECAP0050�. �tel-00659305�

https://theses.hal.science/tel-00659305
https://hal.archives-ouvertes.fr

MODELING AND TESTING OF

COMPONENT-BASED SYSTEMS

Bilal KANSO

November 21, 2011

M. Marc AIGUIER Ecole Centrale Paris (ECP) Thesis director

M. Frédéric BOULANGER Engineering School SUPELEC Co-advisor

M. Farhad ARBAB Centre for Mathematics and Reporter

Computer Science (CWI) Amsterdam

Mme. Virginie WIELS Onera Toulouse Reporter

M. Roland GROZ Université de Grenoble et Ensimag Examiner

M. Daniel KROB Ecole polytechnique Examiner

Order number: 2011ECAP0050

Ecole Centrale Paris (ECP)

Acknowledgments

I thank my parents for encouraging and

supporting me during my whole study.

iv

Abstract

In spite of several decades of research, assuring the quality of software systems still repre-

sents a major and serious problem nowadays for the industry with respect to both results and

costs. This thesis comes within the scope of a proposal centered on a generic unified framework

for both complex software systems modeling and testing.

The contribution of this paper is then twofold: first, it defines a unified framework for mod-

eling generic components, as well as a formalization of integration rules to combine their be-

haviour. This is based on a coalgebraic definition of components, which is a categorical rep-

resentation allowing the unification of a large family of formalisms for specifying state-based

systems. Second, it studies compositional conformance testing i.e. checking whether an im-

plementation made from correct interacting components combined with integration operators

conforms to its specification.

keywords: Component-based system, Integration operators, Trace semantics, Transfer function,

Compositional testing, Conformance testing, Coalgebra, Monad, Testing in context.

La thèse s’inscrit dans le domaine de la modélisation et de la validation des systèmes mod-

ernes complexes. Les systèmes actuels sont en fait d’une complexité sans cesse croissante et

formés de plus en plus de composants de natures différentes. Ceci rend leur processus de con-

ception et de validation coûteux et difficile. Il semble être la simple façon permettant de faire

face à cette hétérogénéité et à cette complexité est l’approche orientée composant. Suivant cette

approche, le système est une entité formée par un ensemble des composants interconnectés. Les

composants définissent une interface qui permet d’abstraire leur modèle interne (boîte noire), ce

qui favorise la modularité et la réutilisation des composants. L’interaction entre ces composants

se fait conformément à un ensemble des règles pré-établies, permettant ainsi d’avoir une vision

globale de comportement du système.

La conception ainsi que la validation des systèmes modernes reste alors problématique à

cause de la nécessité de prendre en compte l’hétérogénéité des différents composants. Dans ce

cadre, dans un premier temps, nous définirons un cadre formel générique dans lequel une large

famille de formalismes de description de systèmes à base d’états peut être naturellement cap-

turée. Ainsi, nous allons définir un ensemble de règles de composition permettant de mettre en

correspondance les différents composants et ainsi de constituer un modèle global du système

à concevoir. Dans un second temps, nous proposerons une approche de test d’intégration qui

permet de valider le comportement d’un système complexe sous l’hypothèse que chaque com-

posant est testé et validé. Cette approche vise à générer automatiquement des cas de test en

s’appuyant sur un modèle global décrit dans notre framework du système sous test.

vi

Contents

1 Contexte général . 1

1.1 Modélisation d’un système . 1

1.2 Validation et vérification . 4

2 Contributions de la thèse . 7

I Introduction 11

1 Context . 11

1.1 System modeling . 11

1.2 Validation and verification . 14

2 Thesis overview . 18

2.1 Thesis contributions . 18

2.2 Plan of the thesis . 20

I Theoretical preliminaries 23

II Category theory 27

1 Category . 28

1.1 Category definition . 28

1.2 Constructions of categories . 29

1.3 Properties of arrows . 30

2 Universal properties . 31

2.1 Commutative diagrams . 31

2.2 Initial and terminal objects . 32

2.3 Product . 32

2.4 Coproduct . 33

2.5 Exponents . 34

3 Functors and natural Transformations . 36

3.1 Functors . 36

3.1.1 Powersets . 37

3.1.2 Free monoid . 37

3.1.3 Polynomial functors and Kripke polynomial functors 37

3.1.4 The category of category . 38

3.2 Natural transformations . 38

3.3 Heterogeneous Compositions . 40

3.3.1 Functor categories . 40

3.3.2 Heterogeneous compositions . 40

4 Monads in category theory . 41

4.1 Definition . 42

4.2 A working example . 42

viii CONTENTS

4.3 More examples . 44

4.3.1 Partial . 44

4.3.2 Ordered nondeterminism . 45

4.3.3 Exception . 45

4.4 Category of Kleisli . 46

III Coalgebras 49

1 Coalgebra definition . 50

1.1 Streams . 50

1.2 Mealy Machines . 51

1.3 Labeled Transition Systems (LTS) . 51

1.4 Input-Output Labeled Transition Systems (IOLTS) 52

2 Morphisms . 52

3 Bisimulation . 54

3.1 Stream . 55

3.2 Mealy machines . 55

3.3 Labeled transition systems . 55

4 Final coalgebras . 57

4.1 Streams . 58

4.2 Mealy machines . 60

4.3 Labeled transition systems . 61

4.4 More examples . 63

5 Co-induction . 64

5.1 Proof by bisimulation . 66

II Systems modeling framework 69

IV Generic components 73

1 Components as coalgebras . 74

1.1 Motivation . 74

1.2 Components . 74

1.3 Genericity of component definition . 77

2 Component traces . 80

2.1 Transfer function . 80

2.2 Component Traces . 81

3 Results . 82

3.1 Final model . 83

3.2 Minimal component . 85

4 Conclusion . 88

V Integration of components 89

1 Basic integration . 90

1.1 Cartesian product . 90

1.2 Feedback . 90

2 Complex operators . 99

2.1 Sequential composition . 100

2.2 Double sequential composition . 102

2.3 Synchronous product . 104

2.4 Concurrent composition . 105

CONTENTS ix

2.5 Synchronous parallel composition . 106

3 Systems and compositionality . 108

3.1 Systems . 108

3.2 Examples . 109

3.3 Compositionality . 118

4 Related works . 123

5 Conclusion . 125

III Validation of component-based systems by testing 127

VI Conformance testing theory: a general overview 131

1 Formal Method in Conformance Testing . 132

1.1 General principle . 132

1.2 The meaning of conformance . 133

1.2.1 Specification model . 133

1.2.2 Implementation model . 133

1.2.3 Conformance relation . 133

1.3 Formal framework for conformance testing 134

1.3.1 Test execution . 134

1.3.2 Test case properties . 135

VII Testing of components 137

1 Conformance relation . 138

1.1 Specification model . 138

1.2 Implementation model . 138

1.3 Conformance . 139

1.3.1 An overview . 139

1.3.2 Definition . 141

2 Finite computation tree . 144

2.1 Formal definition . 144

2.2 Unfolding algorithm . 146

3 Test Purpose . 149

4 Test generation guided by test purposes . 150

4.1 Preliminaries . 153

4.2 Inferences rules . 154

4.3 Example . 156

4.4 Properties . 158

5 Instantiating of the approach . 161

VIII Integration Testing 163

1 Compositional testing . 164

1.1 Compositional testing with cioco . 164

1.2 Compositionality for cartesian product . 168

1.3 Compositionality for feedback operators 168

1.4 Compositionality for complex operator . 172

2 Test purposes for sub-systems . 173

2.1 Sub-systems and projection . 174

2.2 System-based test purposes . 175

3 Related works . 177

x CONTENTS

IX Conclusion 181

1 Summary . 181

2 Future research . 181

Bibliography 187

Introduction Générale

Ce chapitre décrit le contexte de cette thèse et la motivation de notre recherche. Il propose

une définition d’un système complexe et se demande comment celui-ci peut être modélisé et

testé. Il présente aussi la « feuille de route » pour les chapitres à suivre et fournit les concepts et

notions nécessaires pour à la compréhension.

1 Contexte général

En dépit de plusieurs décennies de recherche, assurer la qualité des systèmes informatiques

représente toujours un problème actuel majeur et épineux pour l’industrie en ce qui concerne à

la fois les résultats et les coûts [1]. Cette thèse a pour but de proposer une théorie générique et

unifiée pour la modélisation et la validation des systèmes complexes.

Par la suite, nous présenterons les concepts et les notions nécessaires pour atteindre notre

objectif.

1.1 Modélisation d’un système

Les travaux que nous proposons dans cette thèse consistent d’abord à définir un formal-

isme générique permettant de modéliser la notion d’un composant informatique comme une

coalgèbre concrète d’un foncteur donné dans la catégorie des ensembles Set. Avant d’aller à

l’explication de ce formalisme, nous allons d’abord succinctement expliquer :

– Ce que nous endentons par la notion d’un composant et d’un système complexe,

– L’importance d’avoir une description générique d’un composant,

– Pourquoi utiliser la définition du composant proposé par Barbosa dans le cadre de la

théorie des coalgèbres et celle des monades.

Composants L’approche orientée composant [2, 3, 4] est de plus en plus sollicitée grâce à son

potentiel. Elle offre de nombreux avantages tels que la modularité, la ré-utilisabilité, et divers

autres avantages. Dans cette approche, les composants sont séparément conçus, développés et

testés une seule et unique fois, afin d’être utilisés dans divers domaines.

Les fonctionnalités d’un composant sont alors définies à un niveau d’abstraction plus haut

que celui de son implantation. Ainsi, la meilleur façon d’adresser formellement le composant est

de le considérer comme une représentation abstraite, en omettant les détails de son implanta-

tion, tout en surlignant les principales propriétés liées à ses fonctionnalités. Cette représentation

est seulement construite en décrivant comment les sorties sont produites en corrélation à la fois

avec les entrées et l’état du composant. On parle classiquement d’une représentation boîte noire.

La structure interne d’un système (i.e comment il a été mis en œuvre) est ainsi ignorée. Seule la

2 CONTENTS

vue fonctionnelle (ou comportementale) du système (i.e ce que fait un système) est considérée.

Toutes les communications entre le système et l’environnement sont décrites via l’interface du

système. Un observateur extérieur peut seulement observer le système via cette interface. Une

telle vue d’un observateur externe représente le comportement complet du système en termes

d’entrées sorties.

Du point de vue de l’environnement, une boîte noire peut alors être considérée comme une

fonction qui associe, à tout instant t (qui peut être discret ou continu), une sortie du système

o ∈ Out après avoir reçu une entrée i ∈ In. Cette fonction dépend de l’état courant s ∈ S du

système, et prend la forme suivante :

y = F (x, s, t)

où x, y et s sont respectivement l’entrée, la sortie et l’état du composant considéré et t est l’in-

stant de temps.

D’un point de vue environnemental, un système peut donc être représenté comme dans la

figure suivante.

SIn(t) Out(t)

FIGURE 1 – Représentation du système par une boîte noire

Systèmes complexes Jusqu’ici, nous avons vu que l’approche orientée composant pourrait

faire face à l’hétérogénéité croissante des composants de différentes natures en cachant plus

ou moins de détails liés aux architectures internes des composants selon l’étape du processus

de conception considérée. Cela signifie que le comportement global d’un système complexe,

serait moins difficile à étudier quand les sous-systèmes sous-adjacents sont considérés comme

des représentations boîte noire. De cette façon, une approche puissante pour le développement

des systèmes informatiques complexes pourrait se reposer sur l’idée qu’un système complexe

est construit en ayant assemblé des composants d’une manière hiérarchique et récursive. Ces

sous-systèmes sont ainsi intégrés par le biais de connecteurs architecturaux, qui sont des outils

puissants pour décrire les systèmes en termes de composants et de leurs interactions [4].

L’idée de base est que, à un haut niveau d’abstraction, les systèmes complexes peuvent être

récursivement et hiérarchiquement constitués d’un ensemble de plusieurs sous-systèmes inter-

connectés. Chaque sous-système peut être lui-même un système complexe ou un système sim-

ple et élémentaire qui peut être traité entièrement. Une telle description hiérarchique formelle

d’un système complexe ressemblerait généralement à la construction illustrée dans la Figure I.2.

La composition est utilisée pour assembler les différents sous-systèmes entre eux pour alors

former de plus grands systèmes. Une telle composition peut être considérée comme une opéra-

tion qui prend les composants ainsi que la nature de leurs interactions pour construire un nou-

veau composant beaucoup plus complexe. Cette représentation récursive d’un système com-

plexe comme une composition de composants élémentaires en utilisant les règles d’intégration,

nous permet alors de séparer la réalisation de différents composants. Cela a pour conséquence

de rendre le processus de conception plus modulaire. La composition elle-même devient un

composant qui peut être encore composé comme si il était lui-même un composant atomique.

1 - Contexte général 3

C1 C2

op1

C11

C12
op2

C21

C22

C23

op3

FIGURE 2 – vue compositionnelle d’un système complexe

Vue unifiée des systèmes Les sous-systèmes à partir desquels les systèmes complexes sont

conçus, peuvent en effet être modélisés, en utilisant des formalismes de spécification qui dif-

férent principalement selon les disciplines scientifiques et les modèles de calcul utilisés pour

spécifier l’interaction entre les différents éléments du système. A l’heure actuelle, il n’existe

toujours pas de formalisme unifié qui pourrait supporter la conception et la validation des sys-

tèmes modernes dans leur généralité. Néanmoins, on peut observer que la plupart des systèmes

modernes peuvent être considérés, d’un point de vue théorique et à un haut niveau d’abstrac-

tion, comme des systèmes à base d’états dont le comportement peut être seulement observé au

travers de leurs interfaces.

Cependant, il s’avère de plus en plus difficile, voire impossible, de construire par de for-

malismes de description classiques tels que les logiques du premier ordre ou équationnelle, le

comportement de ces systèmes dont les structures sont intrinsèquement dynamiques. En effet,

les caractéristiques des systèmes actuels tendent à être vues non plus du point de vue de la

façon dont ils ont été construits, mais de celui des résultats qu’ils produisent. La sémantique de

ces systèmes est alors essentiellement observationnelle. Tout ce qui peut être capturé dans leur

évolution est leur interaction avec l’environnement, c’est-à-dire les échanges possibles entre des

entrées et des sorties avec le monde extérieur. De ce point de vue, l’approche coalgèbrique peut

être perçue comme l’approche duale de l’approche algébrique. Au lieu de construire les objets,

on les observe. Dans ce contexte, la théorie des catégories et celle des coalgèbres fournissent tous

les concepts nécessaires pour gérer abstraitement le comportement observable de tels systèmes.

Approches coalgèbriques pour la modélisation des systèmes Les coalgèbres se montrent

ainsi de plus en plus adaptées pour définir la sémantique des systèmes réactifs. Elles sont con-

sidérées aujourd’hui comme une abstraction de formalismes à base d’états fournissant un cadre

formel unifié et générique dans lequel une large variété des systèmes à base d’états pourrait

être décrite tels que les systèmes de transition, les automates et les classes dans les langages ori-

entés objet [5, 6, 7, 8]. Une des contributions majeures dans la modélisation coalgèbrique d’un

composant est le travail proposé par Barbosa [9, 10, 11, 12, 13]. Les coalgèbres ont été utilisées

4 CONTENTS

comme un modèle sémantique pour les composants informatiques pour un endofoncteur dans

la catégorie des ensembles. Un composant est ainsi décrit comme une machine de Mealy étendue

par paramétrisation par une monade T, comme il est d’usage dans la programmation fonction-

nelle [14]. La monade T agit comme un modèle de comportement qui peut gérer les calculs

usuels tels que le déterminisme, le non-déterminisme, les situations de blocage, les exceptions

et beaucoup d’autres encore [15, 16].

La notion d’un composant comme il a été introduit par Barbosa est la pierre angulaire de

notre modélisation.

1.2 Validation et vérification

Correction des systèmes et son importance Avec la complexité croissante des systèmes in-

formatiques modernes, les techniques de vérification et de validation gagnent en importance.

Assurer le bon fonctionnement des systèmes modernes est devenu l’un des défis majeurs de

nos jours. Des conséquences dramatiques en termes de vies humaines, de pertes économiques,

de problèmes écologiques, etc. sont causées lorsque une panne (ou défaillance) dans le sys-

tème survient. Les pannes des systèmes sont en effet omniprésentes à tel point qu’elles sont

si familières pour nous que nous avons pris l’habitude de les oublier. Certaines d’entre elles

ont peu d’impact dans notre vie quotidienne, par exemple, lorsque notre téléphone mobile ne

fonctionne pas correctement ou notre enregistreur vidéo réagit de façon inattendue et à tort, à

des commandes. Toutefois, d’autres erreurs ont un énorme impact. Dans l’histoire, il y a une

longue liste de bugs typiques qui ont causé des lourdes pertes en termes de vies humaines tels

que Therac-25, ou en terme d’argent tels que le crash d’Ariane 5 (qui a coûté environ 500 millions

de dollars américains) et le bug de la division du Pentium (environ 500 millions de dollars améri-

cains), etc. [17, 18]. Ces exemples font que la correction des systèmes informatiques constitue

aujourd’hui un vrai défi (en termes de temps et d’argent) autant pour la conception que pour la

validation et la vérification de leur comportement.

Test et vérification La validation d’un système se fait par la mise en œuvre de méthodes

utilisant une représentation formelle du comportement du système. Dans ce cadre, plusieurs

techniques ont été proposées telles que la preuve, la vérification de modèles « model checking »

ou encore le test. La preuve, telle que la logique de Hoare [19], consiste à exprimer formelle-

ment les propriétés attendues du système et à démontrer que ces propriétés sont vraies par

déduction à partir d’un ensemble d’axiomes et de règles d’inférences. Les techniques de model

checking [20, 21] consistent à construire, à partir d’une description formelle d’un système, l’es-

pace des états atteignables puis, en parcourant l’ensemble de ces états, à vérifier d’une manière

automatique le respect des propriétés attendues du système. Le test [22, 23] vise à vérifier par

expérimentation que le système sous test répond bien aux critères déjà définis (robuste, fonc-

tionnalités correctement implémentées, etc.).

Ces trois techniques sont complémentaires dans le sens où aucune d’entre elles ne suffit à

elle-même pour établir complètement la correction d’un système. En effet, la mise en œuvre

de la technique par la preuve est très difficile et nécessite généralement de fortes compétences

mathématiques de la part de l’utilisateur. De plus, elle n’est pas complètement automatisée.

Par contraste, bien que les techniques de model checking soient exhaustives et automatiques,

elles se heurtent rapidement au problème de l’explosion combinatoire du nombre des états

du système. Enfin, le test peut servir à détecter automatiquement les erreurs du système mais

n’établit jamais leur absence [24]. Il est indispensable pour nous renseigner sur la correction

d’un système, surtout dans le cas où la complexité des modèles est importante.

1 - Contexte général 5

Dans ce travail, nous intéresserons plus particulièrement aux techniques de tests. Nous pro-

poserons de nous intéresser à la définition d’une théorie du test. Nous justifions de porter notre

attention sur le test au détriment de la preuve pour deux raisons :

1. Le premier est que, nous avons pour ambition de définir un formalisme, permettant de

modéliser des systèmes informatiques complexes dont l’une des caractéristiques est leur

grande taille. Or nous venons de voir précédemment que pour de tels systèmes, les méth-

odes de vérification étaient limitées.

2. La seconde raison de notre choix est plus pratique. En effet, les méthodes de vérification

ont pour but essentiel de montrer que les systèmes vérifient un certain nombre de pro-

priétés formelles. Ces propriétés formelles sont exprimées dans une logique. Donc, pour

aborder la vérification dans notre cadre, il aurait fallu définir une logique (temporelle) au-

dessus de notre formalisme et établir un certain nombre de propriétés sur cette logique.

Il faudrait par exemple définir un calcul et montrer que ce dernier est correct et complet,

montrer que la logique est stable pour la bisimulation, étudier la préservation des pro-

priétés au-travers des opérateurs d’intégration, etc. Or tout ceci est souvent un travail de

longue haleine, difficilement abordable en même temps que la définition du formalisme

lui-même. Cependant, la définition d’une telle logique est primordiale. Elle fait donc na-

turellement partie des perspectives de la thèse.

Techniques du test Le test est l’activité du génie logiciel qui vise à renforcer la qualité des

systèmes à l’aide d’expérimentations dans l’intention d’y trouver des erreurs. Il peut être utilisé

pour révéler la présence d’erreurs, mais ne peut pas établir leur absence [22, 24, 25]. Dans la

littérature, on trouve une multitude de techniques de test qui différent principalement selon les

trois critères suivants:

caractéristiques

accessibilité

niveau de détails

fonctionnalité

robustesse

sécurité

boîte blanche boîte noire

unitaire

intégration

système

FIGURE 3 – Classification des techniques de test

6 CONTENTS

1. niveau d’accessibilité du code : deux techniques de test sont généralement distinguées.

Dans le test structurel (appelé aussi test boîte blanche) [23], la structure interne du système

est connue. Le testeur a le droit d’accéder à des informations comme la structure de code,

les valeurs possibles de certaines variables du programme, etc. Dans le test fonctionnel

(appelé aussi test boîte noire) [26], la structure interne du système sous test est cachée. Le

testeur ne dispose pas du code source du système sous test. Il ne peut accéder qu’aux

descriptions des fonctionnalités du système.

2. niveau d’abstraction : trois méthodes de test sont communément distinguées. Pour le test

unitaire, les systèmes examinés ne peuvent pas être subdivisés en d’autres sous-systèmes.

Pour le test d’intégration, un système construit comme une combinaison d’un ensemble de

sous-systèmes (or composants) est examiné. Pour le test du système, le système complet est

testé.

3. l’aspect que l’on veut tester : il y a multitude d’aspects différents que l’on pourrait utiliser

pour tester un système. Par exemple, le test de conformité consiste à tester le comportement

de implémentation pour s’assurer que celle-ci va se comporter comme prévu (par rapport

à une référence de correction disponible représentée par un cahier des charges). Le test

de robustesse vise à tester si l’implémentation réagit bien au comportement non-spécifié,

incertain ou malveillant d’environnement, etc.

Dans le cadre de cette thèse, nous allons bien entendu nous intéresser aux techniques de test

unitaire et d’intégration qui sont fonctionnelles et fondées sur le test de conformité.

Test de conformité Le test de conformité est une technique de test de type boîte noire, qui

a pour objectif de vérifier la conformité d’une réalisation concrète du système (implémentation)

à une description formelle de son comportement (spécification) [27, 26]. Il vise à réaliser des

expérimentations sur l’implantation afin de vérifier la correction de son comportement vis-à-

vis de sa spécification. L’idée consiste alors à dériver automatiquement une suite de cas de tests

de la spécification suivant un algorithme de dérivation de tests. L’exécution de chacun des tests

générés sur l’implantation à l’aide d’un testeur (qui peut être un être humain ou un programme)

mène à un verdict : Pass ou Fail. Le verdict Pass indique que l’implantation est conforme à la

spécification pour ce test, tandis que le verdict Fail signifie la non-conformité.

Test d’intégration A l’heure actuelle, la complexité des systèmes, qui ne cesse de croître, mène

naturellement à des difficultés, voire une impossibilité dans certains cas, à utiliser les techniques

standards de validation et vérification dans la pratique. Il s’avère que des aspects importants

tels que l’hétérogénéité, la décentralisation et la distribution des applications sont difficilement

pris en compte par les techniques actuelles de vérification et de validation. Ceci est particulière-

ment dû au fait que ces techniques ne permettent de considérer que des systèmes de taille réelle

maniable, pris comme un seul bloc. Ceux-ci sont généralement traités en de temps raisonnable.

Cependant, dès que les systèmes sont de complexité rédhibitoire, ce qui est le cas aujourd’hui

avec les systèmes informatiques, ces techniques deviennent difficile à être mises en place. Dans

ce cadre, les approches basées sur le raisonnement compositionnel [28, 29, 30] semblent être

une des directions les plus prometteuses pour combler le fossé entre la complexité réaliste et

croissante des systèmes et les limites des méthodes de vérification et de test.

L’idée directrice de ces approches émergentes, est d’utiliser le principe « diviser pour mieux

régner » consistant à décomposer la correction d’un système de taille réaliste en petites tâches.

Celles-ci ont ainsi des complexités maniables et leur correction peut être validée localement

2 - Contributions de la thèse 7

Specification

Système sous test

Suite de tests abstraits

Suite de tests exécutables

Testeur Verdicts

génération de tests

conforme à ?

observer

simuler

FIGURE 4 – Illustration du test de conformité

au niveau des composants. La correction du système entier est alors élaborée en combinant,

suivant certaines règles de composition, les résultats de la vérification des sous-tâches sans

vérifier l’ensemble du système.

La vérification compositionnelle a pour but de déduire les propriétés globales d’un système

complexe à partir des propriétés de ses composants. Soient n composants dont les modèles de

comportement sontM1, . . . ,Mn satisfaisant respectivement les propriétés locales φ1, . . . , φn et

op est l’opérateur de composition de comportement. La vérification compositionnelle consiste

alors à vérifier si le système op(M1, . . . ,Mn) résultant de la composition deM1, . . . ,M2 sat-

isfait une propriété globale φ. De cette façon, les techniques de vérification compositionnelle

peuvent éviter l’explosion combinatoire, en décomposant les systèmes en petits sous-systèmes

sur lesquels les techniques de vérification classiques peuvent être appliquées directement.

En ce sens, la théorie du test d’intégration vise à vérifier si la correction du système C =

op(C1, . . . , C2) est établie en utilisant la correction de chaque composant Ci où op est l’opérateur

d’intégration considéré. Le problème de test d’intégration peut être alors vu comme suivant :

étant données les implantations iut1, . . . , iutn, les spécifications spec1, . . . , specn, un opérateur

d’intégration op et une relation de conformité ref telles que iut1, . . . , iutn ont été testées pour être

conforme à leurs spécifications spec1, . . . , specn respectivement, par rapport à la relation ref,

pouvons-nous conclure que leur composition op(iut1, . . . , iutn) est aussi conforme à la spécifica-

tion globale op(spec1, . . . , specn), par rapport à la relation ref ?

2 Contributions de la thèse

Comme indiqué dans l’introduction de ce chapitre, le travail que nous présentons a comme

objectif la proposition d’une théorie générique pour la modélisation et la validation des sys-

tèmes informatiques complexes. Cette thèse est constituée de deux parties principales : la partie

« modélisation » et la partie « validation par la technique du test de conformité ». La première

partie consiste à proposer un cadre générique unifié pour la modélisation de systèmes standards

à base d’états, en particulier, ceux qui sont dédiés à la génération de cas de tests de conformité.

8 CONTENTS

Elle vise aussi à définir un ensemble minimaliste d’opérateurs d’intégration pour combiner des

sous-systèmes. La deuxième partie consiste à proposer une théorie du test d’intégration visant

à être en mesure de valider les systèmes informatiques complexes.

Nous nous intéressons plus particulièrement aux thèmes suivants :

Cadre formel unifié pour la modélisation des systèmes à base d’états

Basé sur l’approche proposée [9, 31] par Barbosa pour la modélisation de composants, nous

proposons un cadre formel générique unifié pour la modélisation de systèmes à base d’états.

Un tel système est alors représenté par une coalgèbre

(S, init, α : S −→ T(Out× S)In)

du foncteur F défini par FX = H(Out× X)In dans la catégorie des ensembles Set, avec T une

monade, et In et Out deux ensembles d’éléments qui désignent respectivement les entrées et les

sorties du composant. Cette représentation coalgébrique des composants nous permettra :

– de considérer d’une manière générique une large famille de calculs usuels tels que le

déterminisme, le non-déterminisme, la partialité, et d’autres. Ceci est dû à l’introduction

de la notion d’une monade T dans la définition du composant qui nous permet de définir

les composants d’une manière indépendante de toute structure de calcul [32, 14].

– de fournir un cadre formel générique dans lequel une large famille de formalismes de

description peut être naturellement capturée. En particulier, il permet d’englober les for-

malismes standards dédiés à la génération de test de conformité tels que les automates

de Mealy [33, 34], les systèmes de transitions étiquetées (LTS) [35, 36], les systèmes de

transitions étiquetées à entrées et sorties (IOLTS) [37, 38, 39, 40], etc.

Sémantique unifiée des traces pour les systèmes à base d’états

Cette manière de décrire le comportement des composants nous permettra, suivant les travaux

de Rutten [41], de définir un modèle de traces pour les composants par des fonctions causales.

Ces fonctions sont des transformations de flux de données de la forme :

y = f (x, s, t)

où x, y et s sont respectivement l’entrée, la sortie et l’état du composant et t est le temps discret.

Ainsi, en prenant le bénéfice de définir le comportement des composants comme des fonc-

tions de transfert causales, la définition d’un modèle de traces à partir de fonctions causales

nous permettra de montrer l’existence d’une coalgèbre finale dans la catégorie des coalgèbres

du foncteur H(Out×)In en imposant certaines conditions suffisantes sur la monade T. Cette

dernière est en effet utile pour définir les opérateurs d’intégration et rendre plus facile la preuve

des théorèmes tout-au-long de la thèse.

Cette représentation du comportement du système forme la première étape vers un cadre

unifié qui capte non seulement l’hétérogénéité des calculs usuels, mais aussi celle du temps (i.e.

le temps discret et continu). En effet, dans cette thèse, nous nous restreignons au cas du temps

discret pour lequel nous adresserons seulement l’hétérogénéité de formalismes utilisés pour la

modélisation des composants. Cependant, il y a d’autres travaux réalisés dans le cadre de thèse

de B. Golden [42] qui étendent notre cadre pour être en mesure de prendre en compte à la fois,

le temps continu et le temps discret en utilisant les techniques de l’analyse non standard.

2 - Contributions de la thèse 9

Opérateurs d’intégration

Nous proposons un ensemble d’opérateurs d’intégration pour construire de grands composants

à partir de plus petits. Nous définissons ainsi deux opérateurs d’intégration de base : le produit

cartésien et la rétroaction, et nous défendrons l’idée que les opérateurs d’intégration standards

tels que les opérateurs de la composition séquentielle, concurrente ou parallèle et le produit

synchronisé peuvent être obtenus par la composition de produit et de rétroaction. Cela nous

conduira à définir inductivement des opérateurs d’intégration plus complexes, dont la séman-

tique sera considérée comme des foncteurs partiels dans la catégories des composants. Ainsi, un

système sera construit d’une manière récursive et hiérarchique à l’aide de nos deux opérateurs

d’intégration de bases à partir de systèmes élémentaires.

Théorie de test de conformité générique

De la généricité du formalisme développé dans cette thèse, nous proposons de définir une

théorie du test de conformité générique pour les composants. Celle-ci sera de facto applicable

à l’ensemble des formalismes à base d’états, instances de notre cadre tels que ceux dédiés à

la génération des cas de tests. Il existe en effet plusieurs théorie du test de conformité dans la

littérature [39, 43, 44, 45, 46, 47] qui se différencient par la relation de conformité considérée

et les algorithmes de génération mis en place. Bien que la plupart de ces théories pourraient

être adaptées à notre formalisme, nous proposons ici d’étendre l’approche définie dans [44]

développée dans le cadre des IOLTS. L’intérêt de la théorie du test de conformité proposée

dans [44] est qu’elle est fondée sur la relation de conformité ioco qui a montré son adaptation

pour le test formel ainsi que pour la dérivation automatique de cas de test. De plus, les algo-

rithmes de génération proposés dans [44] sont simples dans leur implantation et efficaces dans

leur exécution.

Nous proposerons une technique du test de conformité basée sur la notion de l’objectif de

test. Les objectifs de test seront définis comme des sous-arbres de l’arbre de l’exécution con-

struit à partir de notre modèle de trace pour les composants. Les chemins dans ces sous-arbres

caractérisent les comportements à tester. Ensuite, nous définirons un algorithme de génération

de cas de tests à partir de l’objectif de tests comme [44]. Cet algorithme sera formalisé par un

ensemble de règles d’inférence. Chaque règle est dédiée pour gérer une observation du système

sous test (iut) ou une stimulation envoyée par le cas de test à l’iut. Ce processus de test produit

un verdict. Nous trouverons les verdicts Pass, Fail, Inconc et WeakPass.

Cette théorie du test de conformité générique constitue la première étape vers le test de sys-

tèmes informatiques complexes définis comme un assemblage d’un ensemble des composants.

Théorie de test d’intégration

Nous proposons aussi de définir une théorie du test d’intégration qui vise à tester un système en

supposant que ses composants sous-jacents ont déjà été testés séparément et sont corrects [30].

Le problème que nous adressons peut alors être vu comme suit. Si les composants d’un système

sont conformes à leurs spécifications, que pouvons nous conclure sur la conformité du système

par rapport à sa spécification ? Nous montrerons qu’une réponse positive à cette question ne

peut être obtenue sans aucune hypothèse sur les spécifications et les implémentations.

Renforcer la qualité des composants par utilisation de techniques de projection

Nous proposons une approche pour renforcer la qualité des composants en tenant compte de

leur implication dans le système global. L’idée sous-jacente consiste à montrer comment ren-

forcer la correction de chaque composant impliqué dans le système global, en générant des cas

de test plus appropriés pour eux. Ceci sera effectué en définissant un mécanisme de projection

10 CONTENTS

qui, à partir d’un comportement du système global, aidera à se concentrer sur les comporte-

ments de sous-systèmes qui sont activés dans l’exécution du système [48].

Chapter I

Introduction

This chapter provides the context of the thesis and gives the motivation of the research pre-

sented in it: what are complex software systems and how can they be modeled and tested?

It briefly introduces the "roadmap" for the chapters to follow by giving concepts and notions

needed to answer this question and then outlines the contributions and the structure of the

thesis.

1 Context

In spite of several decades of research, assuring the quality of software systems still rep-

resents a major and serious problem nowadays for the industry with respect to both results

and costs [1]. This thesis comes within the scope of a proposal centered on a generic unified

framework for both complex software systems modeling and testing.

In the following, we outline concepts and notions needed to achieve our goal.

1.1 System modeling

The work of this thesis proposes first to define a generic abstract complex formalism that

models software components as concrete coalgebras for some Set endofunctors. Before con-

cretely addressing the definition of this formalism, we will first succinctly explain:

1. What do we mean by components and complex systems?

2. The need of a generic formal description of component

3. Why use Barbosa’s component definition based on coalgebras and monads?

Components Components are receiving increasing attention as a level of design thanks to

the great advantages they offer: modularity, re-usability, cost-effective solution for increasing

heterogeneity and complexity, etc. Components are then designed, developed and validated

separately in order to be widely used.

Several definitions of a component have been proposed in literature. Szyperski defines com-

ponents as "binary units of independent production, acquisition, and deployment that interact

to form a functioning system" [2]. D’Souza and Wills define a component as "a reusable part of

software, which is independently developed, and can be brought together with other compo-

nents to build larger units. It may be adapted but may not be modified" [3]. Despite the lack of a

12 Chapter I Introduction

unifying definition of what a component is, the design community agrees that any component

definition should have the following characteristic properties [4]:

– It is a unit of encapsulation. It has internal state space, acting as the memory of the com-

ponent;

– It is abstract enough to encapsulate a number of services through a public interface. There

is no internal observable state, the only way to access its content is via its public interface;

– It persists and evolves in time, according to some given semantics;

– It can be deployed easily and independently;

– It is a unit of third-party composition, i.e. there is a possibility of interaction with other

components during the overall computation of the whole system;

– It is equipped with input and output observation universes to ensure the flow of data

during its execution.

Formal models of components The functionality of a component should then be defined at a

higher level than the implemented code. The suitable way to formally address components is to

consider them as an abstract representation omitting implementation details and only describ-

ing properties relevant to their functionalities. Such a representation is only made by specifying

how inputs drive changes in component states and how outputs are produced. We classically

talk about black box representation. Thus, the internal structure of a system (i.e. how it has been

implemented) is ignored, only the functional or behavioral view of the system (i.e. what its

requirements are) is considered. All possible communications between the system and the en-

vironment are then described via interface. An external observer can observe the system only

through this interface. Such an external observer’s view represents the complete input-output

behaviour of the system. From the point of view of the environment, a black box can be bet-

ter seen as a function achieving at a different time t (that can be discrete or continuous) some

given system functional requirement which makes the inputs In of the system correspond to its

outputs Out. This function depends on the current internal state s ∈ S of the system, and then

of the form y = F (x, s, t) where x, y and s are respectively the input, output and state of the

component under consideration, and t is an instant of time.

A environmental view of a system can therefore be represented in Figure I.1.

SIn(t) Out(t)

Figure I.1 – Black box view of a system

Complex systems So far we have seen that the component-based approach is considered a

cost-effective solution for increased modularity and re-usability of system designs. Black box

representations can cope with the increasing heterogeneity of components of different natures

1 - Context 13

disregarding underlying non-functional details of the components and their internal architec-

tures. This means the global behaviour of a complex system would be less difficult to study

when the underlying subsystems are considered as black box representations. In this way, a

powerful approach to developing complex software systems could be to describe them in a hier-

archical recursive way as interconnections of sub-systems (i.e. components). These sub-systems

are then integrated through architectural connectors that are powerful tools to describe systems

in terms of components and their interactions. Each subsystem can be then either a complex

system itself or simple and elementary enough to be handled entirely.

Hence, the basic idea for modeling complex systems is that, at a high-level of abstraction,

complex systems can be recursively decomposed into a set of subsystems, arriving at subsys-

tems that can be completely handled. Such a formal hierarchical description of a complex sys-

tem usually looks like the construction illustrated in Figure I.2.

C1 C2

op1

C11

C12
op2

C21

C22

C23

op3

Figure I.2 – Compositional view of complex system

Composition is then used for assembling different sub-systems and then forming larger

ones. Such a composition can be seen as an operation taking components as well as the inter-

active nature between them to provide a new more complex component. Hence, this recursive

representation of a complex system as a composition of elementary components using integra-

tion rules allows us to separate the realization of different components and subsystems, and

then makes the conception process more modular, i.e. the composition itself becomes a compo-

nent that can be further composed as if it were itself an atomic component.

Suitable unified view of systems Sub-systems from which complex systems are made, may

indeed be modeled using different specification formalisms depending especially on the sci-

entific disciplines and the model of computations used to specify the interaction between the

different elements of the system. At the moment, there are neither unified models nor unified

tools that can be used to deal with such systems in all their generality. Nevertheless, one can

observe that a common characteristic of sub-systems of most modern systems is that they can be

considered, from a theoretical point of view and at a higher level of abstraction, as state-based

14 Chapter I Introduction

components whose behaviour can only be observed along their interface. Hence, state-based

systems seem to be a natural formal representation of most concrete modern systems such as

digital hardware components, software programs and distributed systems. It turns out it is be-

coming more and more difficult to express these systems as algebraic representations i.e. in

terms of a set of complete constructions. Their characteristics, indeed, tend to be seen as ob-

servable entities rather than definable ones. Hence, the semantics of such systems is essentially

observational. All that can be captured in their evolution is their interaction with the environment,

that is to say, the possible input/output between them and the outside world. Inputs are indeed

the signals or data received by the system, and outputs are the signals or data sent from it. In

this setting, coalgebra theory and category theory provide all the necessary concepts to handle

abstractly the observable behaviour of such systems.

Coalgebraic approach to modeling systems Due to this observational view of systems, coal-

gebras are increasingly used as an appropriate abstract model of state-based dynamical systems,

looking for a unified definition of a model from which a great variety state-based models could

be deduced such as: transition systems, automata, process calculi and classes in object-oriented

languages [5, 6, 7, 8]. One of the major contributions in component coalgebraic modeling are

Barbosa’s works [9, 10, 11, 12, 13]. Coalgebras have been used as a semantic model for soft-

ware components for some endofunctor on Set. A component is then presented as an extended

Mealy machine parametrized by a monad T, as is customary in functional programing [14],

acting as a behaviour model. The monad T can indeed handle the different usual computa-

tional effects such as determinism, non-determinism, possible deadlock states, or exceptions

and many more [15, 16]. Barbosa’s approach will be the cornerstone of our modeling. We will

detail it in Section 1.2 of Chapter IV.

1.2 Validation and verification

Correctness and its importance With the increasing complexity of modern software systems,

verification and validation techniques are becoming more and more important. Ensuring the

functional correctness of a system’s behaviour is becoming one of the major challenges nowa-

days in view of dramatic consequences in terms of human lives, economic loss, ecological prob-

lems, etc. caused when the faulty behaviour of a system occurs. System failures are indeed

everywhere to the point that they are so familiar to us that we usually forget them. Some of

them have little impact in our daily life, for example, when our mobile phone is malfunctioning

or our video recorder reacts unexpectedly and wrongly to commands via the remote control.

However, other errors have a huge impact. In history, there is a long list of typical software

bugs that have caused catastrophes in terms of loss of human lives [17, 18] such as Therac-25,

or loss of money such as Ariane 5 crash (costs about 500 million US dollars) and Intel’s Pentium

floating-point division (a loss of about 500 million dollars), etc. All these examples make verifica-

tion and validation phases more expensive (in terms of time and money) than construction, in

most designs.

Testing vs verification To reduce, as much as possible, the risk that a system fails, and so

increase the level of confidence as well as decrease the gap between requirements specifying

the functions that a system is expected to perform and the real implementation of the system,

verification and validation techniques seem to be the best method. These techniques should be

implemented automatically. Manual techniques such as peer reviewing have shown their unsuit-

ability even impossibility in validating system functionalities as it is stated by Wolper in [49]:

1 - Context 15

"manual verification is at least as likely to be wrong as the program itself". On the other hand,

automatic techniques are widely used in practice and well-accepted in industrial fields.

Three important techniques are mainly used: formal proofs, model checking and testing.

Formal proofs, such as Hoare logic [19], consists in formally expressing the expected properties of

the system and proving that these properties are correct by deduction from a set of axioms and

inference rules. Model checking [20, 21] consists in automatically and algorithmically verifying

whether system properties such as the absence of deadlocks (described in some appropriate

logical formalism such as temporal logic) are satisfied by the system (described as a finite state

model). Testing [22, 23] consists in running the system under test by providing it well-chosen in-

put values (called tests), observing the value of its outputs, and then by comparing the observed

behaviour with that desired, deducing whether the system is correct or not.

When talking about these techniques, the question "which technique is more effective?" di-

rectly arises. This question can be answered according mainly to both characteristics and com-

plexity of the system under validation/verification. In general, verification and testing are best

considered as complementary techniques. In practice, it turns out that they complement each

other, and in most cases, there is a need to apply both to get the desired system quality. Indeed,

though formal proof techniques are based on formal methods and considered to establish sys-

tem correctness exhaustively, they are too hard and tedious to use in practice. In most cases,

they cannot be automatically implemented, and need human help that renders the proof po-

tentially incorrect. Though model checking intends to verify automatically that a system is free

from errors, a close look at reality, however, reveals that it has its own weakness as we state

below:

– it is only as good as the model of the system. In fact, it enables one to check exhaustively

the correctness of a model of the system, but not the real system itself. The fact that a

model has certain properties does not guarantee that the final realization also has the

same properties;

– only desired or well-chosen properties are checked: there is no guarantee of the complete-

ness of all system properties;

– it requires some expertise to be used (for example, some knowledge in logical temporal

formalisms);

– it is hard to be used for systems of realistic size;

– it is impossible to use it in some cases, for instance, when there is no formal model of the

system.

On the other hand, testing techniques can be applied directly to the real implementation,

contrary to model checking or formal proofs that are based on mathematical models rather

than on the real system. This advantage makes testing techniques more used in practice than

other techniques, especially when verification methods seem impossible to be used due to the

complexity of the system or its nature: there is no possibility to build a formal model of the

real system (e.g physics devices, or it is proprietary). However, testing can never be complete as

stated by Dijkstra’s in [24]: "Testing can only show the presence of errors, never their absence".

This is especially due to the too large set of all possible inputs to be submitted to the system.

For example, suppose that a calculator only does both addition and subtraction operations for

numbers ranging from 0 to 20. To test this calculator, it is required to execute both addition and

subtraction operations on all possible combinations of integers in this range. This will require

a total of Σ20
i=12i × 21i+1(= 2× 212 × 1−(42)20

1−42) executions. Then, assuming that testing is done

16 Chapter I Introduction

on a computer that will take 10−7s to input a subset of integers ranging from 0 to 20, execute a

calculator operation, and check if the output (i.e. result of the requested operation) is correct, the

testing execution process will take approximately 2× 212 × 1−(42)20

1−42 × 10−7s which is an order

of years.

Thus, neither verification (both mathematical proofs and model checking) nor testing appear

to be the perfect technique for proving the correctness of programs. They are often used as two

related complementary activities and guide each other.

In this thesis, we are interested in testing, more precisely in defining a testing theory. Our

reasons for focusing our attention on testing techniques to the detriment of verification ones are

twofold:

1. First of all, our ambition is to define a mathematical framework to model complex soft-

ware systems whose important characteristic is their large size. Yet, we have just seen that,

verification methods are limited in their use for such systems.

2. The second reason for our choice is more practical. Indeed, verification methods essen-

tially aim to prove that the systems verify a certain number of formal properties. These

formal properties are expressed in a logic. Then, to address verification in our framework,

we would have had to define a logic (temporal) over our formalism, and then establish a

certain number of properties of this logic such as defining a calculus and proving that this

latter is correct and complete, showing that the logic is adequate with respect to bisim-

ulation (i.e. every couple of bisimilar states satisfy the same set of properties), studying

conditions to preserve properties along integration operators, etc. However, all of this is

often a long-term job that is difficult to address at the same time as the formalism defini-

tion. Nevertheless, the definition of such a logic is primordial, it is therefore naturally a

part of future thesis work.

Software testing Software testing is a process which aims to strengthen the quality of systems

through experimentations with the intent of finding errors in them. It can be used to reveal

the presence of errors, but never their absence [22, 24, 25]. Many kinds of testing have been

proposed that can be mainly classified in accordance with the following three characteristics

(see Figure I.3):

– level of code accessibility: two testing techniques are commonly distinguished: structural

testing (also known as white box) [23] in which system code is examined as to whether it

works as expected, and functional testing (also known as black box) [26] in which system

functionalities are examined without requiring any knowledge of the internal structure of

the system.

– level of abstraction: three testing methods are commonly distinguished: unit testing in

which software or hardware components that cannot be subdivided into other compo-

nents are examined, integration testing in which a larger component built as a combination

of a set of basic components is examined, and system testing in which the complete system

is tested.

– aspects we want to test: there are different aspects used to test a system, for example con-

formance testing in which the behaviour of the implementation is tested to check whether it

conforms to the specified behaviour, robustness testing in which an implementation reacts

to unspecified, or "abnormal" environments, etc.

1 - Context 17

characteristics

accessibility

level of details

functionality

robustness

security

black box white box

unit

integration

system

Figure I.3 – Classification of testing techniques

Since our goal, in this thesis, is to verify the correctness of behaviour of component-based

systems, testing techniques we address here come then within the scope of both unit and inte-

gration functional testing based on conformance testing.

Conformance testing theory Conformance testing is a black box technique for checking cor-

rectness implementation against its specification by means of experimentations [27, 26]. It aims

to check if the observable behaviour of the system under test conforms to a specification with

respect to a particular conformance relation. The underlying idea consists in automatically gen-

erating test cases from a formal model a so-called specification of the system under test. These

test cases are then executed by an external tester on the real system, and based on observed re-

sults, a verdict is generated indicating if the system was successful or not on the test of interest

(or if the test was inconclusive).

Compositional testing As a matter of fact, the exponentially growing complexity and het-

erogeneity of today’s systems give rise naturally to difficulties even the impossibility, in some

cases, of using actual validation and verification methods in practice. It turns out important

aspects for software systems such as heterogeneity, decentralized and networked applications,

etc. are not well-supported by actual modeling and both verification and testing techniques.

This is especially due to the fact that these techniques are limited to scalability of the complex-

ity of actual software systems that are not only large but are also growing dramatically. As in a

state-based components approach, compositional reasoning approaches [28, 29, 30] about sys-

tem correctness is viewed as one of the most promising directions to bridge the gap between

the increasing complexity of systems and actual verification and testing method limits.

The underlying idea behind these emergent approaches is to use "divide-and-conquer" ap-

proaches consisting in breaking down the correction of a complex system into smaller tasks of

lower complexity that involve the correctness of its components. The conclusion for the whole

system correctness is then drawn by combining the results from the verification of the subtasks

18 Chapter I Introduction

following certain compositional reasoning rules without verifying the whole system.

On the first hand, compositional verification aims to infer global properties of complex sys-

tems from properties of their components. It then consists in verifying, given n components with

behaviour models M1, . . . ,Mn that satisfy local properties φ1, . . . , φn respectively, and op is

some composition behaviour operators, if the system op(M1, . . . ,Mn) resulting from the com-

position ofM1, . . . ,Mn will satisfy a global property φ. In this way, compositional verification

techniques avoid combinatorial explosion by decomposing systems into smaller subsystems to

which classical verification techniques can be directly applied.

In this sense, compositional testing theory aims to check whether the correctness of the

whole system C = op(C1, . . . , Cn) is established using the correctness of each components Ci

where op is the integration operator of interest. Hence, the problem of compositional testing can

be seen as follows: given implementation models iut1, . . . , iutn, specifications spec1, . . . , specn, an

integration operator op and a conformance relation rel such as iut1, . . . , iutn have been tested

to be rel-correct according to their specifications spec1, . . . , specn respectively, may we con-

clude that their composition op(iut1, . . . , iutn) also rel-correct to the integrated specification

op(spec1, . . . , specn)?

Since, in this thesis, we propose a compositional method for the testing of component-based

systems, we will only address the compositional testing approach.

2 Thesis overview

2.1 Thesis contributions

As stated in the introduction of this chapter, this thesis intends to contribute to two central

topics: "modeling" and "testing" complex software systems. It then consists of two main parts.

The first part, the modeling, intends to propose a generic unified framework from which most

standard state-based systems, especially those which are dedicated to test case generation, can

be deduced, and to define a minimalist set of operators to combine components. The second

part, the testing, intends to propose generic compositional testing aimed at being able to validate

complex software systems.

In particular, the contributions of this research work include:

Unifying formal framework for modeling state-based systems

Based on Barbosa’s approach [9, 31] for component modeling, we propose a formal generic uni-

fied framework for modeling state-based systems. Systems are then modeled as concrete coal-

gebras over the endofunctor H = T(Out ×)In on the category of sets where T is a monad,

and In and Out are two sets of elements which denote respectively inputs and outputs of the

component. Such coalgebraic models will allow us:

1. to abstract away computation situations such as determinism or non-determinism. In-

deed, monads have been introduced in [32, 14] to consider in a generic way a wide range

of computation structures such as partiality, non-determinism, etc. Hence, such a compo-

nent representation allows us to define components independently of any computation

structure.

2. to unify in a single framework a large family of state-based formalisms encompassing

most standard formalisms dedicated to conformance test generation such as Mealy au-

2 - Thesis overview 19

tomata [33, 34], Labeled Transition Systems (LTS) [35, 36], Input-Output Labeled Transi-

tion Systems (IOLTS) [37, 38, 39, 40], etc.

Unifying trace semantics of state-based systems

This way of modeling component behaviour allows us, following Rutten’s works [41], to define

a trace model over components by causal transfer functions. Such functions are dataflow trans-

formations of the form: y = F (x, q, t) where x, y and q are respectively the input, output and

state of the component under consideration, and t is discrete time.

Taking advantage of the definition of components behaviour as transfer functions, defining

a trace model from causal functions allows us to show the existence of a final coalgebra in

the category of coalgebras over Barbosa’s signature H = T(Out ×)In under some sufficient

conditions of the monad T. This final coalgebra is indeed useful when defining the integration

operators and makes easier theorem proofs throughout the thesis.

This representation of system behaviour then forms the first step towards a unified frame-

work that captures not only different usual computations, but also time heterogeneity (i.e. both

discrete and continuous times). Indeed, in this thesis we restrict ourselves to discrete time. Only

formalism heterogeneity and component nature are addressed. However, there is other current

work done in B. Golden’s thesis extending our framework to be able to take into account contin-

uous time using non-standard analysis [42].

Calculus of operators

We propose a calculus of standard operators used to build larger components from smaller ones.

We then define two basic integration operators, product and feedback, and defend the idea that

most standard integration operators such as sequential, concurrent and parallel composition

operators and synchronous product can be obtained by composition of product and feedback.

This will lead us to define inductively more complex integration operators, the semantics of

which will be partial functors over categories of components. Hence, a system will be built by a

recursive hierarchical process through these integration operators from elementary systems or

basic components.

Generic conformance testing theory

From the genericity of the formalism developed in this thesis, we propose to define a generic

conformance testing theory for components. This testing theory will be applicable de facto to

all state-based formalisms, instances of our framework. There are several conformance testing

theories in literature [39, 43, 44, 45, 46, 47] that differ by the considered conformance relation

and algorithms used to generate test cases. Although most of these theories could be adapted to

our formalism, we propose here to extend the approach defined in [44] in the context of IOSTS

formalism. The advantage of the testing theory proposed in [44] is that it is based on the confor-

mance relation ioco that received much attention by the community of formal testing because

it has shown its suitability for conformance testing and automatic test derivation. Furthermore,

test generation algorithms proposed in [44] are simple in their implementation and efficient in

their execution. Hence, test purposes will be defined as some particular subtrees of the execu-

tion tree built from our trace model for components. We will then define an algorithm which

will generate test cases from test purposes. As in [44], this algorithm will be given by a set

of inference rules. Each rule is dedicated to handle an observation from the system under test

iut or a stimulation sent by the test case to the iut. This testing process leads to a verdict about

implementation correctness with respect to its associated specification.

20 Chapter I Introduction

This generic conformance testing theory is the first step toward the testing of complex soft-

ware systems made of interacting components.

Compositional testing theory

We further propose to define a compositional testing theory that aims to test an integrated

system assuming that its underlying components have already been tested in isolation and are

correct [30]. The problem that we address can be seen as follows: if single components of a

system conform to their specifications, what can be said concerning conformance of the whole

system in accordance with its specification? We will show that a positive answer to this question

cannot be obtained without any assumption about both specifications and implementations.

Strengthening components quality by means of projection mechanism

We propose a component-based approach to strengthen the quality of components taking into

account their involvement in the global system that encapsulates them. The underlying idea

consists in showing how to re-enforce the correctness of each component involved in a global

system by generating suitable test cases for them. This will be done by defining a projection

mechanism that, from a behaviour of the global system, will help to focus on behaviours of

sub-systems that typically occur in the whole system [48].

2.2 Plan of the thesis

The rest of the thesis is split into three parts organized as follows.

Part I provides all theoretical notions we use in this thesis. It contains two chapters where we

introduce basic notions of both category and coalgebra theories.

In Chapter II we describe the different basic concepts and notions of category theory that

serves us as formal background in the remaining chapters.

In Chapter III we describe the basic concepts and notions of coalgebras that will be useful in

this thesis.

Part II is the core of the modeling part. It contains two chapters where we introduce a formal

framework to model and unify state-based systems, and a calculus of operators to combine

components in order to build larger components.

In Chapter IV we define a generic formal framework to define components and their trace

models by means of causal transfer functions. We also present some theoretical

results regarding the existence and uniqueness of a final model in the category

of components.

In Chapter V we describe the basic integration operators: cartesian product and both relaxed

and synchronous feedback as well as how to combine them to build more com-

plex integration operators. We also define the notion of a system that will be

the result of the composition of basic components using complex integration

operators.

Part III is the core of the testing part. It contains three chapters where we introduce a brief

overview of black-box conformance testing, our generic conformance testing for components

defined in Part II, and our compositional testing for component-based systems.

2 - Thesis overview 21

In Chapter VI we describe the formal testing background used in the remaining chapters of

the thesis. We then introduce the testing concepts presented in the international

standard IS-9646: "Conformance Testing Methodology and Framework" [50, 51]

and their formalization introduced in the setting of "Formal Methods in Con-

formance Testing" (FMCT) project [52].

In Chapter VII we present our generic conformance testing theory for components defined

in Chapter IV. The work presented in this chapter is mainly inspired from the

conformance testing theory developed in [44, 53]. In our theory of conformance

testing, behaviors of specifications and implementations under test are mod-

eled as components over the signature H = T(Out×)In, and the conformance

relation is defined as a partial inclusion of their traces. We also present an algo-

rithm for test case generation from the specification. This algorithm uses test

purposes to eliminate the part of the specification which is not of interest for

testing. The basic idea is to generate a finite computation tree from the specifi-

cation of the system whose set of paths embodies the set of all behaviours of the

specification. Test purposes are then used to tag a finite set of paths of interest

of testing in the finite computation tree. Thereby, test cases will be generated

by exploring the tagged finite computation tree starting from the initial state,

and switching between sending stimuli to the implementation and waiting for

output of the implementation according to certain inference rules as long as

a verdict is not reached. At the end of the chapter, we show both correctness

and completeness of generated test cases with respect to specifications and test

purposes.

In Chapter VIII we present a compositional method for the testing of component-based sys-

tems described in Part II. The main idea is to apply "divide-and-conquer" ap-

proaches to global behaviour of a system from behaviours of its subsystems

whose complexity is manageable. Instead of entirely testing the global system,

the compositional testing approach we propose first decomposes the system

under test into small subsystems and then tests each of them separately. The

size of a subsystem is then smaller than the size of the whole system, and thus

the risk of explosion of state space is significantly decreased.

We also propose a method for test purposes derivation for a given component

of an integrated system from the behaviours of the components that constitute

it. This last work is based on projection mechanisms that were first developed

in [48].

22 Chapter I Introduction

Part I

Theoretical preliminaries

25

We introduce in this part the basic concepts of both category and coalgebra theories which

will be useful throughout the thesis. We will rely on concrete examples to illustrate the expres-

sive power of these two theories in systems modeling. Our aim therefore is to simply show that

using these two theories, a unified formal framework for modeling state-based systems can be

provided. For more interested readers, we refer to [5, 6, 54, 55, 56, 57, 58].

26

Chapter II

Category theory

1 Category . 28

1.1 Category definition . 28

1.2 Constructions of categories . 29

1.3 Properties of arrows . 30

2 Universal properties . 31

2.1 Commutative diagrams . 31

2.2 Initial and terminal objects . 32

2.3 Product . 32

2.4 Coproduct . 33

2.5 Exponents . 34

3 Functors and natural Transformations . 36

3.1 Functors . 36

3.2 Natural transformations . 38

3.3 Heterogeneous Compositions . 40

4 Monads in category theory . 41

4.1 Definition . 42

4.2 A working example . 42

4.3 More examples . 44

4.4 Category of Kleisli . 46

Category theory is a branch of mathematics that was developed by MacLane and Barr [57, 58]

in 1940. Since its appearance, it has been used as a powerful tool allowing the generalization

of the concept of algebraic structures such as vectorial spaces, groups, topological spaces, etc.,

and the relations between them. In this chapter we describe the most fundamental concepts of

category theory that will be used to define our formal framework.

28 Chapter II Category theory

1 Category

1.1 Category definition

Definition 1.1 (Category) A category C consists of:

– A collection Obj(C) of objects;

– For each pair of objects A, B ∈ Obj(C), a collection Hom(A, B) of arrows (or morphisms or also

maps) f : A −→ B from A to B;

– A is the domain and B is the codomain of f : A −→ B;

– For each object A ∈ Obj(C), an identity arrow idA : A −→ A;

– For each pair of arrows f : A −→ B and g : B −→ C, a composite arrow g ◦ f : A −→ C.

These data have to satisfy the following laws:

– Associativity: if A
f
−→ B

g
−→ C

h
−→ D, then

(h ◦ g) ◦ f = h ◦ (g ◦ f)

– Identity composition: if f : A −→ B, then

f ◦ idA = idB ◦ f

Remark: in case of ambiguity, the operations of composition, the identities and the set of arrows

are denoted by the name of the corresponding category i.e. we write: idC, f ◦C g and HomC.

Example 1.1 As a concrete example, we consider a set of objects Obj = {A, B} and a set of arrows

Hom = { f : A −→ B, h : B −→ A, g : B −→ A, idA, idB} that are depicted in Figure II.1 (on the left

side) such that:

g ◦ f = h ◦ f = idA and f ◦ h = f ◦ g = idB

A B
f

g

h

idA idB C D E
f

m

idC

g

h

idD

idE

Figure II.1 – Examples of categories

These objects and arrows do not form a category. That is due to the fact that the property of associativity

is not verified: there are three arrows f1, f2 and f3 such that the couples (f1, f2) and (f2, f3) can be

composed and (f3 ◦ f2) ◦ f1 6= f3 ◦ (f2 ◦ f1). For example:

(h ◦ f) ◦ g = idA ◦ g

= g

h ◦ (f ◦ g) = h ◦ idB

= h

Similarly to above, it is not hard to check that the objects and arrows that are depicted in Figure II.1 (on

the right side) and satisfy (h ◦ f = g ◦ f = m) form a category.

1 - Category 29

Example 1.2 Table II.1 shows some mathematical structures that can be perceived as special types of

examples of categories. All of these examples are categories whose objects are sets with particular mathe-

matical structure and whose arrows are functions preserving that structure, so-called morphisms.

Category Objects Arrows

Set sets applications

Poset ordered sets monotone applications

Grp groups homomorphisms

Top topological spaces continuous applications

Vectk vectorial K-spaces linear applications

Table II.1 – Examples of categories

A category is small if its objects and arrows constitute sets; otherwise it is large.

1.2 Constructions of categories

In this subsection, we describe some usual constructions of categories.

Definition 1.2 (Subcategory) Let C and D be two categories. We say that C is a subcategory of D if:

– All the objects of C are objects of D: Obj(C) ⊆ Obj(D);

– All the arrows of C are arrows of D: for each pair of objects A, B ∈ Obj(C), HomC(A, B) ⊆

HomD(A, B);

– If A is an object of C then its identity idA in C is in D: for each object A ∈ C, idC
A = idD

A ;

– If f : A −→ B and g : B −→ C in C, then the composite in C f ◦ g is in D and is the composite

in D: f ◦C g = f ◦D g.

We say that C is a full subcategory of D if C is a subcategory of D such that for each pair of

objects A, B ∈ Obj(C), HomC(A, B) = HomD(A, B).

From any category C, it is possible to construct another category called dual of C by reversing

all the arrows. That is to say, the source and the target of each arrow of C have to be reversed.

Definition 1.3 (The dual of a category) Let C be a category. The dual (or opposite) of C, noted Cop,

is the category whose objects and arrows are the objects and arrows of C, but the domain and the codomain

of each arrow have been reversed. Then we have:

domain(f) = A in Cop if codomain(f) = A in C

codomain(f) = A in Cop if domain(f) = A in C

f = idA in Cop if f = idA in C

h = g ◦ f in Cop if h = f ◦ g in C

Example 1.3 If P is a poset, then the dual of the category P is the category determined by a poset Pop: if

(x, y) ∈ HomP, then (y, x) ∈ HomPop
. For instance, the dual of the poset (Z,≤) is (Z,≥).

30 Chapter II Category theory

1.3 Properties of arrows

One of the principle characteristics of the theory of categories is its powerful unifying con-

cepts across many branches of mathematics. This characteristic often leads to categorical defi-

nitions that do not involve the objects of a category in the sense that the property of one object

is entirely defined in terms of the external interactions of that object with other objects.

In the following, we give the categorical definitions of some concepts that are standard in

the set theory such as injectivity (monomorphism), surjectivity (epimorphism) and bijectivity

(isomorphism). These definitions will be only defined with the concept of arrows of a category,

without involving its objects (i.e. objects make no sense of such definitions).

Monomorphisms. A function f : X −→ Y in Set is injective if for any element y in Y, there is

at most one element x in X such that y = f (x). This concept of injective function can be easily

redefined in the category theory without using elements of X or Y. This is done by replacing

the elements of X by arbitrary arrows into X.

Definition 1.4 (Monomorphism) Let C be a category and f : X −→ Y be a arrow of C. We say that

f is a monomorphism (or monic) if for any object Z ∈ Obj(C) and any arrows g, h : Z −→ X ∈

HomC(Z, X): if f ◦ g = f ◦ h, then g = h.

Z X Y

h

g

f

We also say that f is left-cancellative.

Epimorphisms. A function f : X −→ Y in Set is surjective if for any element in Y, there is at

least one antecedent. Like injective functions, surjective functions can also only be redefined in

terms of arrows as follows:

Definition 1.5 (Epimorphism) Let C be a category and f : X −→ Y be a morphism of C. We say

that f is a epimorphism (or epic) if for any object Z ∈ Obj(C) and any arrows g, h : Y −→ Z ∈

HomC(Y, Z): if g ◦ f = h ◦ f , then g = h.

X Y Z
f

g

h

We also say that f is right-cancellative.

Isomorphism. The word "isomorphic" is usually used in mathematics to express distinction of

objects in form, but not in number. Before stating its categorical definition, we give the following

definition:

Definition 1.6 (Section and retraction) Let C be a category and f : X −→ Y ∈ HomC(X, Y):

– We say that an arrow r : Y −→ X is a section (or right inverse) of f , if f ◦ r = idY;

– We say that an arrow l : Y −→ X is a retraction (or left inverse) of f , if l ◦ f = idX .

2 - Universal properties 31

Definition 1.7 (Isomorphism) Let C be a category and f : X −→ Y be an arrow of C. We say that f

is an isomorphism if there exists an arrow g : Y −→ X ∈ HomC(Y, X) such that g is both a section

and a retraction of f i.e. :

f ◦ g = idY and g ◦ f = idX

X Y

X Y

idX

f

idY

f

g

A function f : X −→ Y in Set is bijective if for every element y ∈ Y, there is exactly one element

x ∈ X such that f (x) = y. Alternatively, a function f is bijective if and only if there exists

function f−1 : Y −→ X such that their compositions f−1 ◦ f = idY and f ◦ f−1 = idX . Then,

bijective functions in Set are obviously isomorphisms. However, a morphism which is both a

monomorphism and an epimorphism is not necessarily an isomorphism (it is a bimorphism)

unlike a bijection function which is both injective and surjective.

Example 1.4 The inclusion of Z into Q in the category of abelian groups Ab is both a monomorphism

and an epimorphism, but it is not isomorphism.

If there is such an isomorphism from X to Y, one often writes X ∼= Y.

2 Universal properties

Universal properties are the properties that ensure existence and uniqueness of a given con-

struction under some conditions. They are generally formalized as follows:

for any . . . there is a unique . . . such that . . .

2.1 Commutative diagrams

Categorical properties are often expressed in terms of commuting diagrams. Informally, a

diagram in a category C is an oriented graph whose nodes are labeled with objects of C and

whose edges are labeled with arrows in C in such a way that source and target nodes of an edge

are labeled with source and target objects of the labeling arrow.

Definition 2.1 (Category diagram) A diagram of a category C is an oriented graph G = (V, E)

where:

– V ⊆ Obj(C) and V has a finite cardinality;

– E is a set of directed edges. The edges of an objectX to an object Y are arrows from X to Y and are

finite in number.

Definition 2.2 (Commutative diagram) Let C be a category and G = (V, E) be a diagram in C.

– A path in G is a non-empty sequence of edges such that the target node of each edge is the source

node of the next edge in the sequence;

– G is said to commute if, for every pair of nodes X, Y ∈ V, all paths between them lead to the same

result by composition.

32 Chapter II Category theory

Hence, verifying in a category C that the diagram below is commutative is equivalent to

verifying that g2 ◦ f1 = f2 ◦ g1.

A B

C D

f1

f2

g1 g2

2.2 Initial and terminal objects

Definition 2.3 (Initial et terminal objects) Let C be a category. An object I of C is called initial if

there is exactly one arrow I −→ X for each object X of C. An object T of C is called terminal if there is

exactly one arrow X −→ T for each object X of C. An object that is both initial and terminal is called a

zero.

Proposition 2.1

1. If a category has an initial object, it is unique up to isomorphism.

2. If a category has a terminal object, it is unique up to isomorphism.

Note: The expression "up to isomorphism" means that if we have two constructions of such an

object, there is one and only way to convert one into the other and vice-versa.

Example 2.1 In Set, the initial object is the empty set while any singleton set is a final object. As already

stated, when reasoning at the level of a category C, its objects are abstracted away and their internal

structures are not available. Hence, equality between the objects of a category makes no sense, the real

criterion to distinguish them is the isomorphism. Then, objects that cannot be distinguished in such a

category are called isomorphic. For instance, the sets {Hello}, {1000}, {∗} or {Ok} are all isomorphic:

just renaming all elements of a set does not really give us another set. From this point of view, the symbol

1 = {∗} has been chosen to denote the isomorphism class of all singletons. In other words, 1 is the final

object in Set.

2.3 Product

Definition 2.4 (Product) Let C be a category. The product of two objects X, Y ∈ Obj(C) is a new

object X × Y ∈ Obj(C) with two projection morphisms π1 : X × Y −→ X and π2 : X × Y −→ Y

which are universal: for each pair of morphisms f : Z −→ X and g : Z −→ Y in C, there is a unique

morphism 〈 f , g〉 : Z −→ X×Y in C, making the following diagram commute 1:

X X×Y Y

Z

π1 π2

f g
〈 f , g〉

1. The dashed notation is used to express the uniqueness of morphisms.

2 - Universal properties 33

Proposition 2.2 Let C be a category. Let X, Y ∈ Obj(C). If A is an object of C, π1 : A −→ X and

π2 : A −→ Y two arrows of C, and (f , g) 7→ 〈 f , g〉 a function that associates to each pair of arrows

f : Z −→ X and g : Z −→ Y the arrow Z −→ A such that the following equations:

– π1 ◦ 〈 f , g〉 = f

– π2 ◦ 〈 f , g〉 = g

– 〈π1 ◦ π2〉 = idA

– 〈 f , g〉 ◦ ϕ = 〈 f ◦ ϕ, g ◦ ϕ〉

are satisfied for every objects Z and Z′, and for every arrows f : Z −→ X, g : Z −→ Y and ϕ : Z′ −→

Z, then (A, π1, π2) is a product of X and Y in C.

Example 2.2 The cartesian product of two sets X and Y is generally defined by:

X×Y = {(x, y) | x ∈ X and y ∈ Y}

This product can be easily redefined as an instance of the general notion of product of two objects of such a

category. It is therefore defined by a triplet (X×Y, π1, π2) such that π1 and π2 are projection functions

defined by:

π1 : X×Y −→ X π2 : X×Y −→ Y

(x, y) 7→ x (x, y) 7→ y

Given a set Z and two applications f : Z −→ X and g : Z −→ Y. It is not hard to see that there is a

unique function 〈 f , g〉 : Z −→ X × Y such that π1 ◦ 〈 f , g〉 = f , π2 ◦ 〈 f , g〉 = g, 〈π1 ◦ π2〉 = idX×Y

and 〈 f , g〉 ◦ h = 〈 f ◦ h, g ◦ h〉 : Z′ −→ X×Y where h : Z′ −→ X×Y.

The product does not only apply to sets, but also to functions. For functions f : X −→ X′

and g : Y −→ Y′, one has:

f × g : X× X′ −→ Y×Y′ given by (x, y) 7→ (f (x), g(x))

This can also be differently defined in terms of projection functions as follows: f × g = 〈 f ◦

π1, g ◦ π2〉. It is easily verified that the operation × on functions satisfies:

idX × idY = idX×Y and (f ◦ h)× (g ◦ k) = (f × g) ◦ (h× k)

Therefore, × applies both sets and functions, and preserves domains, identities and composi-

tion.

2.4 Coproduct

Every notion in category theory has its dual. Hence, the dual of product is coproduct.

Definition 2.5 (Coproduct) Let C be a category. The coproduct of two objects X and Y of Obj(C)

is a new object X + Y ∈ Obj(C) with two coprojection morphisms κ1 : X −→ X + Y and κ2 : Y −→

X + Y which are universal: for each pair of arrows f : X −→ Z and g : Y −→ Z in C, there is a unique

morphism [f , g] : X + Y → Z in C, making the following diagram commute:

X X + Y Y

Z

κ1 κ2

f g
[f , g]

34 Chapter II Category theory

Proposition 2.3 Let C be a category. Let X, Y ∈ Obj(C). If A is an object of C, κ1 : X −→ A and

κ2 : Y −→ A two arrows of C, and (f , g) 7→ [f , g] a function that associates to each pair of arrows

f : X −→ Z and g : Y −→ Z, the arrow A −→ Z such that the following equations:

– [f , g] ◦ κ1 = f

– [f , g] ◦ κ2 = g

– [κ1 ◦ κ2] = idA

– ϕ ◦ [f , g] = [ϕ ◦ f , ϕ ◦ g]

are satisfied for every objects Z and Z′, and for every arrows f : X −→ Z, g : Y −→ Z and ϕ : Z −→

Z′, then (A, κ1, κ2) is a coproduct of X and Y in C.

Example 2.3 The coproduct (or sum, or disjoint union) of two sets X and Y is generally defined by:

X + Y = {〈0, x〉 | x ∈ X} ∪ {〈1, y〉 | y ∈ Y}

The components 0 and 1 are useful to force this union to be disjoint. They can be considered as tags used

to recognize the elements of X and Y in X + Y. Like the cartesian product, the coproduct of two sets can

be seen as an instance of the general definition of coproduct described above. It is therefore defined by a

triple (X + Y, κ1, κ2) such that κ1 and κ2 are coprojection functions defined by:

κ1 : X −→ X + Y κ2 : Y −→ X + Y

x 7→ 〈0, x〉 Y 7→ 〈1, y〉

Given a set Z and two applications f : X −→ Z and g : Y −→ Z. It is not hard to verify that there is a

unique function [f , g] : X + Y −→ Z such that [f , g] ◦ κ1 = f , [f , g] ◦ κ2 = g, [κ1 ◦ κ2] = idX+Y and

h ◦ [f , g] = [h ◦ f , h ◦ g] : Z′ → X + Y where h : Z −→ Z′.

The coproduct of two functions f : X −→ X′ and g : Y −→ Y′ is f + g : X + X′ −→ Y + Y′

with:

(f + g)(u) =

{

〈0, f (x)〉 if u = 〈0, x〉

〈1, g(y)〉 if u = 〈1, y〉

This can also be differently defined in terms of coprojection functions as follows: f + g =

[κ1 ◦ f , κ2 ◦ g]. It is easy to verify that the operation + on functions preserves identities and

composition:

idX + idY = idX+Y and (f ◦ h) + (g ◦ k) = (f + g) ◦ (h + k)

2.5 Exponents

Definition 2.6 (Exponent) Let C be a category with products×. The exponent 2 of two objects X, Y ∈

Obj(C) is a new object YX ∈ Obj(C) with an evaluation morphism:

ev : YX × X −→ Y

such that: for each morphism (sometimes called currying) f : Z × X −→ Y in C, there is a unique

abstraction morphism ΛX(f) : Z −→ YX , making the diagram commute:

YX × X Y

Z× X

ev

ΛX(f)× idX f

2. The object YX is read: Y is exponent of X.

2 - Universal properties 35

Let us note here that the arrow ΛX : Z → YX forms the terminal object in a category whose

objects are the diagrams of the form:

A× X
f
−→ Y

and the arrows from an object A×X
f
−→ Y to an object B×X

g
−→ Y are the arrows ϕ : A −→ B

such that the following diagram commutes:

A× X Y

B× X

f

ϕ× idX g

Proposition 2.4 Let C be a category with products ×. Let X, Y ∈ Obj(C). If Z is an object of C, ev :

Z×X −→ Y an arrow of C and f 7→ ΛX(f) a function that associates to every arrow f : A×X −→ Y,

an arrow A −→ Z such that the following equations:

– ev ◦ (ΛX(f)× idX) = f

– ΛX(ev) = idZ

– ΛX(f) ◦ ϕ = ΛX(f ◦ (ϕ× idX))

are satisfied for every object A and B, and for every arrow f : A× X −→ Y and ϕ : B −→ A, then

(Z, ev) is an exponent of Y and X in C.

Example 2.4 Let us define the exponent of two sets X and Y as an instance of the general categorical

definition of exponents given above. So, given two sets X and Y, the set of functions from X to Y can

embody in the object YX . This set is defined by:

YX = { f | f : X −→ Y is a total function}

The evaluation function ev can be considered as the following application:

ev : YX × X −→ Y

(f , x) 7→ f (x)

which sends each pair (f , x) to f (x), the value of f for x.

Now, let us consider the function f : Z× X −→ Y and then define the abstraction function ΛX(f):

ΛX(f) : Z −→ YX

z 7→ (x 7→ f (z, x))

which sends z ∈ Z to the function x 7→ f (z, x) that maps x ∈ X to f (z, x) ∈ Y.

Let us verify that the exponent of two sets X and Y is defined by the triple (YX , ev, ΛX). For this, we

need to prove the following equations:

ev ◦ (ΛX(f)× idX) = f (II.1)

ΛX(ev) = idYX (II.2)

ΛX(f) ◦ ϕ = ΛX(f ◦ (ϕ× idX)) (II.3)

36 Chapter II Category theory

hold for every arrow f : Z× X −→ Y and ϕ : Z′ −→ Z.

For Equation II.1, one has: ev ◦ (ΛX(f)× idX)(z, x) = ev((x 7→ f (z, x)), x) = f (z, x)

For Equation II.2, one has: ΛX(ev)(f) = (x 7→ ev(f , x)) = f (x)

For Equation II.3, one has:

ΛX(f) ◦ ϕ(z′) = ΛX(f)(ϕ(z′)) = (x 7→ f (ϕ(z′), x))

and ΛX(f ◦ (ϕ× idX))(z
′) = (x 7→ f ◦ (ϕ× idX))(z

′, x) = (x 7→ f (ϕ(z′), x))

Thus, the exponent of two sets X and Y is defined by the triple (YX , ev, ΛX).

3 Functors and natural Transformations

3.1 Functors

The notion of functors has been defined as a generalization of functions in category theory.

Hence, functors are structure-preserving maps between categories. They transpose the objects

and arrows of a category to another one. A functor F from a category C to a category D then

associates to each object X ∈ Obj(C) an object Y ∈ Obj(D) and to each arrow f : X −→ Y ∈

HomC(X, Y) an arrow F(f) ∈ HomD(F(X), F(Y)), while preserving identity and composition

of arrows.

Definition 3.1 (Functor) Let C and D be two categories. A functor F : C −→ D consists of:

– A function Fo : Obj(C) −→ Obj(D), called object function, that associates to every object

X ∈ Obj(C), an object Fo(X) ∈ Obj(D) and

– A family of functions FX,Y : Hom(X, Y) −→ Hom(Fo(X), Fo(Y)) indexed by couples (X, Y) of

objects in Obj(C). FX,Y is called arrow function and associates to every arrow f : X −→ Y ∈

HomC(X, Y) an arrow FX,Y(f) : Fo(X) −→ Fo(Y) in HomD(Fo(X), Fo(Y)).

Both identity and composition properties have to be satisfied:

– For every object X ∈ Obj(C), FX,X(id
C
X) = idD

Fo(X);

– For every pair of morphisms f : X −→ Y and g : Y −→ Z, FX,Z(g ◦C f) = FY,Z(g) ◦D FX,Y(f).

A functor is called endofunctor if it maps a category to itself.

In the following, the indexes o and X,Y of Fo and FX,Y will be clarified when this is necessary in

order to avoid any complications.

Example 3.1 (Forgetful functors) Forgetful functors are functors which send objects of a category

to objects of another category by forgetting certain properties of objects. For example, the functor F :

Grp −→ Set which maps a group to its underlying set while forgetting its mathematical structure and

a group homomorphism to its underlying function of sets, is a forgetful functor.

Example 3.2 (Product, coproduct, exponent) The product × (respectively the coproduct +) defined

in Subsection 2.3 (respectively in Subsection 2.4) give rises to a functor × : Set× Set −→ Set, from

the product category (respectively the coproduct category) of Set × Set of Set with itself, to Set. The

exponent (defined in Subsection 2.5) is also a functor Setop × Set −→ Set which involves a dual

category for its first argument.

In the following, we give three examples of functors:

3 - Functors and natural Transformations 37

3.1.1 Powersets

The powerset functor P : Set −→ Set maps any set X to its powerset i.e. the set of all subsets

of X:

P(X) = {U | U ⊆ X}

and any function f : X −→ Y to the function:

P(f) : P(X) −→ P(Y)

U ⊆ X 7→ { f (x) | x ∈ U} = {y ∈ Y | ∃x ∈ X, f (x) = y ∧ x ∈ U}

The powerset operation is indeed a functor because it preserves identities and composition:

P(idX)(U) = {idX(x) | x ∈ U}

= {y ∈ X | ∃x ∈ X, idX(x) = y ∧ x ∈ U}

= {y ∈ X | ∃x ∈ X, x = y ∧ x ∈ U}

= {x ∈ X | x ∈ U}

= U

(P(g) ◦ P(f))(U) = {z ∈ Z | ∃y ∈ Y, g(z) = z, and ∃x ∈ X, f (x) = y and x ∈ U}

= {z ∈ Z | ∃y ∈ Y, g(f (x)) = z and x ∈ U}

= {z ∈ Z | ∃y ∈ Y, g ◦ f (x) = z and x ∈ U}

= P(g ◦ f)(U)

Finally, the finite powerset of a set X will be denoted by Pfin(X) = {U | U ⊆ X ∧ U finite}.

3.1.2 Free monoid

The free monoid functor Mon : Set −→ Set associates to any set X the set of all finite se-

quences over X (including the empty one):

Mon(X) = X∗ = {〈x0, x1, . . . , xn〉 | ∀0 ≤ i ≤ n, xi ∈ X}

and to any function f : X −→ Y the function:

Mon(f) = f ∗ : Mon(X) → Mon(Y)

〈x0, x1, . . . , xn〉 7→ 〈 f (x0), f (x1), . . . , f (xn)〉

3.1.3 Polynomial functors and Kripke polynomial functors

Polynomial functors are functors Set −→ Set built up inductively from simple basic func-

tors, using products, coproducts and exponents for forming new functors.

Definition 3.2 (Polynomial Functors) The class of polynomial functors is inductively defined as

the least collection of functors Set −→ Set satisfying the following clauses:

1. The identity functor id : Set −→ Set is a polynomial functor;

2. For any set K, the constant functor K : Set −→ Set is a polynomial functor. This functor maps

every set X to K, and every function f : X −→ Y to the identity idK : K −→ K;

3. If F1 and F2 are polynomial functors, then their product F1 × F2 is also a polynomial functor. This

functor 3 maps every set X to the product F1(X) × F2(X) and every function f to the product

F1(f)× F2(f);

3. See Sections 2.3, 2.4 and 2.5 for the definitions of product, coproduct and exponent respectively.

38 Chapter II Category theory

4. If F1 and F2 are polynomial functors, then their coproduct F1 + F2 is also a polynomial functor.

This functor maps every set X to the coproduct F1(X) + F2(X) and every function f to the product

F1(f) + F2(f);

5. For any set E, if F is a polynomial functor, then the exponent FE is also a polynomial functor. This

functor maps every set X to the exponent F(X)E and every function f : X −→ Y to the function

F(f)E = F(f)idE which maps h : E −→ F(X) to F(f) ◦ h : E −→ F(Y).

If we add both the power set functor and the free monoid functor, we obtain Kripke polynomial

functors:

Definition 3.3 (Kripke polynomial functors) The class of Kripke polynomial functors is the su-

perset of polynomial functors obtained by the rules defined in Definition 3.2, with two additional rules:

1. If F is a Kripke polynomial functor, then the powerset P(F) is also 4 Kripke. This functor maps

every set X to P(F(X)), and every function f to P(F(f)(X));

2. If F is a Kripke polynomial functor, then the free monoid Mon(F) is also Kripke polynomial functor.

This functor maps every set X to Mon(F(X)), and every function f to Mon(F(f)(X)).

Occasionally, for technical reasons, we will need to restrict ourselves to the finite Kripke polyno-

mial functors that are Kripke polynomial functors where all powersetsP() are finite powersets

Pfin().

3.1.4 The category of category

The category of category, noted Cat, has all small categories as objects and all functors be-

tween such categories as arrows. The composition of two functors F : A −→ B and G : B −→ C

is G ◦ F : A −→ C defined for any object A of A by G ◦ F(A) = G(F(A)) and for any arrow f

of A by G ◦ F(f) = G(F(f)).

3.2 Natural transformations

A natural transformation provides a way to transform one functor into another while re-

specting the structure of the categories involved. Given two parallel functors i.e. with the same

domain and codomain:

C D

F

G

For each object X in C, we can associate two objects F(X) and G(X) in D that should be the

source and the target of an arrow τX : F(X) −→ G(X) in D:

X

F(X)

G(X)

F

G

τX

Thus, we have a collection of arrows τX : F(X) −→ G(X) ∈ D, indexed by objects X ∈ Obj(C).

This collection is called a natural transformation from F to G. Hence, natural transformations

define morphisms between functors.

4. See Subsections 3.1.1 and 3.1.2 for the definitions of powerset and monoid respectively.

3 - Functors and natural Transformations 39

Definition 3.4 (Natural transformation) Let C, D be two categories. Let F, G : C −→ D be two

parallel functors between C and D. A natural transformation from F to G is a C-object indexed family

of morphisms in D τ = (τX)X∈obj(C) : F =⇒ G such that:

τY ◦ F(f) = G(f) ◦ τX

for every arrow f : X −→ Y in C.

X

Y

F(X)

G(X) F(Y)

G(Y)

C

D

f

F

G

τX

F(f)

τY
G(f)

F

G

Note: τX is called the component at X of the natural transformation τ.

Example 3.3 Consider the finite powerset functor Pfin : Set −→ Set and the free monoid functor

Mon : Set −→ Set. There is a natural transformation τ : Mon =⇒ Pfin that associates to every set X a

function τX : Mon(X) −→ Pfin(X) which is defined for every sequence 〈x0, x1, . . . , xn〉 ∈ Mon(X) by:

τX(〈x0, x1, . . . , xn〉) = {x0, x1, . . . , xn}

This operation is indeed natural because the following diagram commutes for any function f : X −→ Y:

X

Y

Mon(X)

Pfin(X)

Mon(Y)

Pfin(Y)f

Mon

Pfin

τX

Mon(f)

τY

Pfin(f)Mon

Pfin

That is to say, for each sequence 〈x0, x1, . . . , xn〉 ∈ Mon(X), one has:

(τY ◦Mon(f))(〈x0, x1, . . . , xn〉) = (Pfin(f) ◦ τX)(〈x0, x1, . . . , xn〉)

40 Chapter II Category theory

(τY ◦Mon(f))(〈x0, . . . , xn〉) = τY(Mon(f)(〈x0, . . . , xn〉)

= τY(〈 f (x0), . . . , f (xn)〉)

= { f (x0), . . . , f (xn)}

(Pfin(f) ◦ τX)(〈x0, . . . , xn〉) = Pfin(f)(τX(〈x0, . . . , xn〉))

= Pfin(f)({x0, . . . , xn})

= { f (x0), . . . , f (xn)}

3.3 Heterogeneous Compositions

3.3.1 Functor categories

Given three parallel functors: F, G and H from C to D and two natural transformations

between them: τ : F =⇒ G and τ′ : G =⇒ H such that for each X ∈ Obj(C), one has (τ ◦ τ′)X =

τX ◦ τ′X :

F(X) G(X) H(X)
τX τ′X

(τ′ ◦ τ)X

We can form a new category called functors category and noted CD having as objects all functors

from C to D and as arrows the natural transformations between those functors. It is obvious that

the composition of natural transformations is a natural transformation, that this composition is

associative, and that any identity natural transformation acts as a unit.

3.3.2 Heterogeneous compositions

Natural transformations may be composed with functors to get new natural transforma-

tions. Let C, D, C′ and D′ be categories, let F, F′ : C −→ D, G : C′ −→ C and G′ : D −→ D′ be

functors and let τ : F =⇒ F′ be a natural transformation as the following diagram shows:

C′ C D D′
G′

F

F′

G
τ

There are two ways to compose natural transformations and functors:

1. Composing G with τ leads to a new natural transformation from G ◦ F to G ◦ F′ that is

usually noted Gτ (not G ◦ τ) in order to distinguish it from the usual composition. This is

a composition of heterogeneous objects. It is not hard to see that Gτ makes the following

4 - Monads in category theory 41

diagram commute:

X

Y

(G ◦ F)(X)

(G ◦ F′)(X)
(G ◦ F)(Y)

(G ◦ F′)(Y)
f

G ◦ F

G ◦ F′

(Gτ)X

(G ◦ F)(f)

(Gτ)Y

(G ◦ F′)(f)G ◦ F

G ◦ F′

Let us note here that the functor G impacts only arrows. That is to say that the composition

is only made between the "arrow function" of F and the natural transformation τ.

2. Composing τ with G′ leads to a new natural transformation from F ◦G′ to F′ ◦G′ making

the following diagram commutes:

X

Y

(F ◦ G′)(X)

(F′ ◦ G′)(X)
(F ◦ G′)(Y)

(F′ ◦ G′)(Y)
f

F ◦ G′

F′ ◦ G′

(τG′)X

(F ◦ G′)(f)

(τG′)Y

(F′ ◦ G′)(f)F ◦ G′

F′ ◦ G′

Let us note here that the functor G′ impacts only on objects. That is to say the composition

is made between the natural transformation τ and the "object function" of G′. For this

reason, we write τG′ instead of τG′ (i.e. τ is indexed by G′).

4 Monads in category theory

Monads are a categorical tool that was first introduced in the 80′s by Moggi in order to de-

velop a categorical semantics of computations for programming languages [16, 15]. Later, in

the 90′s, monads received much attention from the community of functional programming lan-

guages because they have shown their suitability for sequentially combining computations into

more complex computations [32, 14]. They were then used to introduce aspects of imperative

programming languages such as input/output (I/O) operations, state updating, exceptions,

nondeterminism, etc., in functional programming languages. More precisely, they allow the ex-

plicit addition, to functional programming languages, of concepts which they lack such as side

effects. Consequently, monads can then sequentially build severals kinds of computation effects

such as non-determinism, partiality, exception, etc., flexibly.

42 Chapter II Category theory

4.1 Definition

Definition 4.1 (Monad) Let C be a category. A monad in C consists of an endofunctor T : C −→ C

equipped with two natural transformations η : 1 =⇒ T and µ : T ◦ T =⇒ T (with 1 : C −→ C is the

identity functor) which satisfy the conditions µ ◦ Tη = µ ◦ ηT = 1 and µ ◦ Tµ = µ ◦ µT:

T T ◦ T T

T

Tη ηT

µ

1 1

T ◦ T ◦ T T ◦ T

T ◦ T T

Tµ

µT

µ

µ

η is called the unit of the monad. Its components map objects in C to their naturally structured

counterpart. µ is the multiplication of the monad. Its components map objects with two levels

of structure to objects with only one level of structure. The first condition states that a doubly

structured object ηT(X)(x) built by η from a structured object x, is flattened by µ to the same

structured object as a structured object T(ηX)(x) made of structured objects built by η. The

second condition states that when flattening two levels of structure, we get the same result by

flattening the outer structure first (with µT(X)) or the inner structure first (with T(µX)).

In the following, we will often simply write T2 for T ◦ T and T3 for T ◦ T ◦ T.

4.2 A working example

Let us consider a monad built on the powerset functor P : Set → Set. For every set X,

the component ηX : X −→ P(X) of the unit of this monad has to build a set of elements

from an element of X. We can choose ηX : x 7→ {x} that maps every element x ∈ X to the

singleton {x}. On the other hand, for every set X, the component µX : P(P(X)) −→ P(X) of

the multiplication of this monad has to flatten a set of sets of elements of X into a set of elements.

In order to define µ, we need to understand the nature of P2(X). Indeed, P2 is the set of all

subsets not formed by elements of X, but by elements of P(X). There is a set with two levels

of nesting. For instance, x, y and z are elements of X, the sets {x, y}, {z} and {x} are elements

of P(X), and the sets {{x, y}, {z}} and {{x}} are elements of P2(X). The multiplication of the

monad simply consists in transforming a set of subsets of X into a set of X i.e. it flattens all

subsets of X into one set by omitting a nesting level. For instance:

µX({{x, y}, {z}}) = {x, y, z}

Formally, µ is defined by:

µ : P2(X) → P(X)

U 7→
⋃

u∈U
(u)

To check that η and µ are natural transformations, it is enough to show that the following dia-

grams commute.

4 - Monads in category theory 43

P(P(P(X))) P(P(X))

P(P(X)) P(X)

P(µX)

µP(X)

µX

µX

P(X) P(P(X)) P(X)

P(X)

P(ηX) ηP(X)

µX

1 1

The diagram depicted on the left side can be read as follows: given a set of three levels of paren-

theses, remove the inner parentheses, then the intermediate parentheses (that become inners

after the first operation), or remove the intermediate parentheses, then the inner parentheses

will get the same result. For example, for a set X = {x, y, z, t}, one has:

{{{x, y}, {z}}, {{t}}} {{x, y, z}, {t}}

{{x, y}, {z}, {t}} {x, y, z, t}

PµX

µP(X)
µX

µX

Similarly, the diagram depicted on the right side can be read as follows: given a set of elements

{x0, . . . , xn} of a set X, first return the singleton containing the set {x0, . . . , xn} (i.e. add a paren-

thesis from the outside to {x0, . . . , xn}) and then reduce the obtained singleton {{x0, . . . , xn}}

by µX , or first return the set {{x0}, . . . , {xn}} obtained after applying ηX to every element of

{x0, . . . , xn} and then reduce the obtained result {{x0}, . . . , {xn}} by µX will lead to the same

result which is {x0, . . . , xn}. For example, for a set X = {x, y, z}, one has:

{x, y, z} {{x}, {y}, {z}}

{x, y, z}

P(ηX)

µX
id

{{x, y, z}} {x, y, z}

{x, y, z}

ηP(X)

µX
id

Let us now verify that the above diagrams commute: given that for any morphism f : X −→ Y,

P(f) : P(X) −→ P(Y) is the morphism which maps each part of X to its image by f . We must

check that:

µ ◦ ηP = µ ◦ Pη = 1 (II.4)

µ ◦ µP = µ ◦ Pµ (II.5)

44 Chapter II Category theory

For Equation II.4, we have:

µX ◦ ηP(X) : P(X)
ηP(X)
−−−→ P(P(X))

µX
−→ P(X)

{x1, . . . , xi . . .} {{x1, . . . , xi . . .}} {x1, . . . , xi . . .}

µX ◦ P(ηX) : P(X)
P(ηX)
−−−→ P(P(X))

µX
−→ P(X)

{x1, . . . , xi . . .} {{x1}, . . . , {xi}, . . .}} {x1, . . . xi, . . .}

For Equation II.5, we have:

µX ◦ µP(X) : P3(X)
µP(X)
−−−→ P2(X)

µX
−→ P(X)

{{{x11},...{x1j},...},

{{x21},...{x2j},...},

... ... }

{{x11},...{x1j},...,

{x21},...{x2j}, ...

... ... }

{x1i ,x1j ,...,x2i ,x2j ,...}

µX ◦ P(µX) : P3(X)
P(µX)
−−−→ P2(X)

µX
−→ P(X)

{{{x11},...{x1j},...},

{{x21},...{x2j},...},

... ... }

{{x11,...x1j ,...}

{x21,...x2j ,...}

... ... }

{x1i ,x1j ,...x2i ,x2j ,...}

The powerset monad is usually used to model non-deterministic state machines by replacing

the target state of a transition by a set of possible target states. Intuitively, the unit η allows us

to add a non-deterministic behaviour to every state as a trivial non-determinism (with only one

possibility to choose). The multiplication µ allows us to obtain the successors of the successor

states of each state, abstracting away internal states:

s010

s01j

s01 s01m

s0 s0i

...
µ(s0)
=⇒

s0n s0n0

s0nk

s0nl

s010

s01j

s01m

s0

...

s0n0

s0nk

s0nl

4.3 More examples

We describe here a few usual monads.

4.3.1 Partial

The partial monad (or maybe, or also deadlock) is defined by the triplet (id + 1, η, µ) with:

4 - Monads in category theory 45

– id + 1 : Set −→ Set is the functor that maps a set X to (id + 1)(X) = X⊥ = X ∪ {⊥} and

that sends a function f : X −→ Y to a function :(id + 1)(f) : X ∪ {⊥} −→ Y ∪ {⊥} given

by:

⊥ 7→ ⊥ and x 7→ f (x)

where 1 is the singleton set whose only element is ⊥.

– For every X, the unit ηX : X −→ X⊥ is the canonical inclusion that maps every element

x ∈ X to itself;

– For every X, the multiplication µX : X⊥ −→ X⊥ is the application defined as follows:

µX : X⊥ → X⊥
⊥ 7→ ⊥

x 7→ x

The monad partial is usually used to model objects that evolve and can be interrupted or

disappear at any time. For example, systems that evolve by moving to successor states, and

for which we cannot guarantee whether their execution will be normally terminated. There is a

deadlock state in which the system runs in unsafe state. Then, the state space X is extended to

X⊥ by adding the special symbol ⊥ to signal explicitly deadlock states.

4.3.2 Ordered nondeterminism

The ordered nondeterminism (or sequence) is defined by the triplet (id∗, η, µ) with:

– id∗ : Set −→ Set is the functor that maps a set X to id∗(X) which is the set of all lists that

can be recursively formed with the elements of X and the usual list operations. As well,

the functor id∗ associates to a function f : X −→ Y a function:

id∗(f) : id∗(X) → id∗(Y)

[x0, . . . , xn] 7→ [f (x0), . . . , f (xn)]

– For every X, the unit is the singleton list constructor. It is an application ηX : X −→ id∗(X)

mapping every element x ∈ X to the list [x];

– For everyX, the multiplication µX : id∗(id∗(X)) −→ id∗(X) is the application that flattens

out a list of lists of elements in list of elements, by removing all inner "square brackets".

For example, it transforms [[x, y, z], [t]] into [x, y, z, t]. Formally, this application is defined

by:

µX : id∗(id∗(X)) → id∗(X)

[[x11, . . . , x1n1
], . . . , [xm1, . . . , xmnm]] 7→ [x11, . . . , x1n1

, . . . , xm1, . . . , xmnm]

The ordered nondeterminism monad is usually used in cases where there is a set of possibil-

ities ordered from a certain perspective, and that requires an exhaustive exploration of all these

possibilities. For example, a system that has possible input signals at any given time, and only

one of them has to be taken. Hence, this entails an ordered view of nondeterminism. A possi-

ble choice may be then "all inputs are possible", but their probability decreases (or increases)

depending on their lengths.

4.3.3 Exception

The exception monad is defined by the triplet (id + E, η, µ) with:

46 Chapter II Category theory

– id+ E : Set −→ Set is the functor that maps a set X to (id+ E)(X) = X ∪ E and a function

f : X −→ Y to (id + E)(f) = f + idE;

– For every X, the unit ηX : X −→ X ∪ E is the injective application maping every x ∈ X to

itself;

– For every X, the multiplication µX : (id + E)((id + E)(X)) −→ (id + E)(X) is the applica-

tion defined as follows:

µX : (id + E)((id + E)(X)) → (id + E)(X)

e 7→ e

x 7→ x

The exception monad is usually used to handle exceptions in many programming languages.

Programs may indeed terminate "abruptly" because of an exception. Then, from this point of

view, monads allow us to model computations that either normally succeed, moving to a suc-

cessor state from a given state, or fail raising an exception e ∈ E.

Note first that the partial monad can be seen as a particular instance of the exception monad.

It is enough to instantiate E with 1. Second, non-termination (deadlock state) is basically differ-

ent from exceptions. That is: once a computation is blocked, it blocks forever. There is no way to

get out of the deadlock state. However, using a suitable exception handler, normal termination

can be restored when a system "exceptionally" terminates.

4.4 Category of Kleisli

There is an alternative description of monads to represent computations: Kleisli triple. For-

mally, Kleisli triples are defined as follows:

Definition 4.2 (Kleisli triple) A Kleisli triple over a category C is a triple (T, η, ∗) where T :

Obj(C) −→ Obj(C) is an object mapping, ηX : X −→ TX is a Obj(C)-indexed mapping in X ∈

Obj(C), and ∗ is an operator that assigns to each function f : X −→ TY a function f ∗ : TX −→ TY

such that:

– η∗X = idTX ;

– f ∗ ◦ ηX = f for f : X −→ TY;

– g∗ ◦ f ∗ = (g∗ ◦ f)∗ for f : X −→ TY and g : Y −→ TZ.

From any Kleisli triple (T, η, ∗) over C, we can define a new category called Kleisli category and

noted KlT(C) [57].

Definition 4.3 (Kleisli category) Given a Kleisli triple (T, η, ∗) over C. The category of Kleisli

KlT(C) is defined as follows:

– The objects of KlT(C) are those of C;

– The morphisms X −→ Y from X to Y in KlT(C) are the morphisms X −→ TY from X to TY in

C;

– For every object X, the identity idX : X −→ X in KlT(C) is the morphism ηX : X −→ TX in C;

– For every pair of morphisms f : X −→ Y and g : Y −→ Z in KlT(C), the composite of g ◦ f :

X −→ Z in KlT(C) is defined in C as follows:

g ◦ f : X
f
−→ TY

Tg
−→ TTZ

µ
−→ TZ

4 - Monads in category theory 47

TTZ

TY TZ

X Y

g

µZ
Tg

f

It is not hard to see that the data of this definition form a category. Indeed, the following prop-

erties are verified:

– Compositionality of arrows: for each pair of arrows f : X −→ Y and g : Y −→ Z in

KlT(C), there is a composite arrow g ◦ f : X −→ Z in KlT(C). This property is ensured by

the operations of the monad T as shown in the last point of the above definition.

– Associativity of the composition: if X
f
−→ Y

g
−→ Z

h
−→ D, then (h ◦ g) ◦ f = h ◦ (g ◦ f).

To verify this property, it is enough to consider the following diagram in C, and show that

the two morphisms from X to TD coincide.

T3D

T2Z T2D

TY TZ TD

X Y Z D

Tµ

µµ

f

Tg

T2h

g

Th

g h

Example 4.1 (Rel Category) Consider the Rel category of sets and relations. Its objects are ordinary

sets, and its arrows X −→ Y are binary relations R ⊆ X × Y. The composition of two relations R1 :

X −→ Y and R2 : Y −→ Z is given by:

R2 ◦ R1 = {(x, z) ∈ X× Z | ∃y ∈ Y such that (x, y) ∈ R1 and (y, z) ∈ R2}

The Rel category can be obtained from the Set category as the Kleisli category KlT(C) for the monad

whose functor corresponds to powerset. Then, instantiating the monad T with the powerset monad P ,

the kleisli category KlP (Set) becomes equivalent to the Rel category. Indeed, a relation R ⊆ X× Y can

be seen as a function from X to P(Y). Then, given a function X −→ Y in Set, its corresponding in

KlP (Set) is the relation R f = {(x, y) | y = f (x)}. This lifting from Set to KlP (Set) is therefore done

via the functor Graph : Set −→ KlP (Set) which maps a set X to itself Graph(X) = X, and a function

f : X −→ Y to its graph relation Graph(f) = {(x, y) | y = f (x)} ⊆ X×Y.

E.Manes [59] has shown the equivalence between monads and Kleisli triples. Given a Kleisli triple

(T, η, ∗) the corresponding monad is (T, η, µ) where T is the endofunctor over C that extends

the function T and maps any function f : X −→ Y to (ηY ◦ f)∗, and the multiplication µX acts

48 Chapter II Category theory

as id∗TX for every set X. Conversely, given a monad (T, η, µ), the corresponding Kleisli triple is

(T, η, ∗) where T is the restriction of the endofunctor T to objects, and f ∗ = µY ◦ (T f) for every

function f : X −→ TY.

Chapter III

Coalgebras

1 Coalgebra definition . 50

1.1 Streams . 50

1.2 Mealy Machines . 51

1.3 Labeled Transition Systems (LTS) . 51

1.4 Input-Output Labeled Transition Systems (IOLTS) 52

2 Morphisms . 52

3 Bisimulation . 54

3.1 Stream . 55

3.2 Mealy machines . 55

3.3 Labeled transition systems . 55

4 Final coalgebras . 57

4.1 Streams . 58

4.2 Mealy machines . 60

4.3 Labeled transition systems . 61

4.4 More examples . 63

5 Co-induction . 64

5.1 Proof by bisimulation . 66

Coalgebra theory was first introduced in computer science during the 80′s by Arbib and

Ernest in [60, 61] as an abstract formalism for describing state-based systems such as automata

(in various forms) and transition systems. Later, coalgebra theory emerged, and rapidly became

a powerful tool in different areas of computer science. Indeed, during the 1990′s, a step in the

formalization of concepts of classes and objects in object-oriented programming was achieved

thanks to this theory [7, 8, 62, 63]. Since then, coalgebras have shown that they are suitable

mathematical structures to model and unify state-based dynamic systems. They provide a the-

oretical framework offering an excellent modeling tool whose effectiveness can describe a large

family of state-based systems and prove their properties. In fact, the characteristics of modern

systems viewed not from the point of view of how they are built, but of the results they pro-

duce, are hardly definable (or even simply not definable) by standard formalisms such as first

order or equational logic. From this point of view, the theory of coalgebras can be seen as the

dual of that of algebras. Then, algebras are used to build objects, by constructors, that are con-

sidered different if differently constructed. On the contrary, coalgebras are used to observe (or

decompose) objects, by observers (or destructors), that are considered different when they can

be distinguished by observation. So the difference between the two approaches is intuitively

50 Chapter III Coalgebras

expressed as follows: one shows the construction part of a system, the other shows the obser-

vation part of it. For example, given a set E, in the algebraic approach, finite lists over E can be

inductively constructed using the two operations: nil : 1 −→ E∗ and cons : E× E∗ −→ E∗. The

nil operation generates an empty list from nothing and the cons operation adds an element to

the list. However, the infinite lists over E cannot be built in this way. One can only observe their

elements. Hence, an infinite list can be thought of as a black box with a set of internal states S

and two operations obs : S −→ E and next : S −→ S that associate respectively to each state

s ∈ S an observation and its successor state.

1 Coalgebra definition

Coalgebras can be seen as an abstraction of dynamical and reactive systems, behaviours are

well described by transition functions (i.e. automata) of all kinds. A coalgebra consists 1 of a

set S of states equipped with a transition function α : S −→ FS where F : Set −→ Set is an

endofunctor on the category of sets, defining the signature of the coalgebra. Hence, α provides

the set of states S with some structures. Unlike algebraic operations that enable us to recursively

build complex objects from basic objects given by signatures, coalgebra operations are a means

to observe system states. More formally, we have:

Definition 1.1 (Coalgebra) Let F : Set −→ Set be a functor called signature functor. A coalgebra

for F, or F-coalgebra is any couple (S, α) where:

– S is a set whose elements are called states;

– α : S −→ FS is a mapping called transition function.

In the following, we give some classical examples of formalism semantics which can be

defined in terms of coalgebras.

1.1 Streams

Streams are used to model continuous input, behaviour of state-based systems, finite or infi-

nite sequences, etc. They are especially useful in modeling behaviour of dynamical systems. As

an example, consider a deterministic transition system with output [64] S that behaves as follows:

in state s, it either goes into the next state s′ of s, producing an output o as the "observable effect"

of the state transition, or it fails and then, its execution is terminated. Such a system is usually

considered as a black box which can produce outputs, by moving from one state to another.

The behaviour of such a system is called stream automata and consists of a set of internal states

S with two operations acting on the state space S:

obs : S −→ Out and next : S −→ S

The operation obs associates to every state s ∈ S the corresponding output o ∈ Out while the

operation next : S → S maps every state s ∈ S to a successor state s′ ∈ S. We distinguish two

cases:

– If the computation is infinite (the system is running forever), we consider this kind of

systems as coalgebras:

(S, 〈obs, next〉 : S→ A× S)

of the functor F defined by FX = A× X

1. Note that we restrict ourselves to the category of sets. Hence, we work with coalgebras for an endofunctor F on

the category of sets and functions.

1 - Coalgebra definition 51

– If the computation is finite (the execution is terminated), we consider this kind of systems

as coalgebras:

(S, 〈obs, next〉 : S→ A× (S ∪ {⊥}))

of the functor F defined by FX = A× (X + 1).

1.2 Mealy Machines

Mealy machines can be seen as stream automata, which also accept environment input. A

Mealy automata is indeed a deterministic automaton with inputs and outputs in which output

values are determined both by the current state and the input values [34, 33, 65]. It is usually

defined as consisting of a set S of states, a set In of input labels, a set Out of output labels,

an output function obs : S × In −→ Out associating an output to every state s depending on

its current input, and finally a transition function next : S × In −→ S mapping every state to

its successor state. Note the typical feature of state-based systems is that one can observe the

state space by means of functions with the state space as domain. In fact, Mealy automata are

naturally in coalgebraic setting because the state space S can be considered as a black box and

the functions obs and next can be combined using the cartesian product as a single function:

〈obs, next〉 : S× In −→ Out× S which can be also written, using the technique of currying, as a

single function with domain S:

〈obs, next〉 : S −→ (Out× S)In

Thus, Mealy automata are coalgebras:

(S, 〈obs, next〉 : S→ (Out× S)In)

of the functor F defined by FX = (Out× X)In.

1.3 Labeled Transition Systems (LTS)

A labeled transition system (LTS) is simply an automaton labeled by actions, and which has

no final state [66, 36]. Formally, it is a tuple (S, A, R) where S is a set of states, A = σ ∪ {τ}

is a set of observable actions Σ and unobservable 2 actions {τ} and R is the transition relation

between states. The relation R can be replaced by a function. Such a binary relation R ⊆ X × Y

whose domain is X and codomain is Y can indeed be commonly seen as a part of the cartesian

product X × Y. The relation R can be then written as a function sending every element of X to

a subset of the powerset P(A×Y) of A×Y. Thus, labeled transition systems are coalgebras:

(S, α : S→ P(A× S))

of the functor F defined by FX = P(A× S).

For technical reasons, another class of labeled transition systems called finitely branching

transition systems has been defined. Every finitely branching transition system is bounded. That

is for all state s ∈ S, the set

{(a, s′) | s
a
−→ s′} is finite

Such systems can be identified with coalgebras:

(S, α : S −→ Pfin(A× S))

where Pfin is the finite powerset functor.

2. τ is called internal action.

52 Chapter III Coalgebras

1.4 Input-Output Labeled Transition Systems (IOLTS)

Many variants of LTS, that make distinction between input and output actions, have been

introduced over the years 1990 in order to respond to technical testing requirements that we

will address later in Chapter VII. For instance, Input-Output Automata (IOA) [37], Input-Output

State Machines (IOSM) [38], Input-Output Transition Systems (IOTS) [27, 45], Input-Output Labeled

Transition Systems (IOLTS) [67]. These models are very similar theoretically. We then consider

modeling coalgebraically the IOLTS model since it is the most widely used for the purpose of

testing. Formally, an IOLTS is a variant of LTS, where the set of observable actions Σ is parti-

tioned into input and output actions i.e. Σ = Σ! ∪ Σ? ∪ {τ}. Classically, in order to distinguish

the input actions from the output actions, input actions (resp. output actions) are marked with

the symbol ? (respectively the symbol !). Similarly to LTSs, IOLTSs are coalgebras

(S, α : S −→ P((Σ? ∪ Σ! ∪ {τ})× S))

of the functor F defined by FX = P((Σ? ∪ Σ! ∪ {τ})× S).

2 Morphisms

The easiest way to describe the relation between the different coalgebras of a given functor

is via morphisms. A morphism from one coalgebra to another is an arrow between their state sets

which preserves coalgebraic structures. If (S, α) and (S′α′) are two coalgebras of a functor F, an

application h : S −→ S′ is a morphism of coalgebras if h transforms the states of S into those

of S′ and if F(h) transforms the transitions of S into those of S′ with respect to the following

constraint: if there is a transition tr between two states of S, then there must be a transition tr′

between the two corresponding states in S′.

Definition 2.1 (Morphisms of coalgebras) Let F : Set −→ Set be a functor. Let (S, α) and (S′, α′)

be two F-coalgebras. A morphism of coalgebras is a function h : S −→ S′ making the following

diagram commute i.e. α′ ◦ h = F(h) ◦ α.

S S′

F(S) F(S′)

h

F(h)

α α′

Now, let us consider a concrete example to better illustrate the notion of a morphism of coalge-

bras. Figure III.1 depicts two label transition systems LTS and LTS′ with the same set A = {a, b}

of labels. As one has already seen in Section 1.3, labeled transition systems are coalgebras of the

functor P(A×) with A as the set of labels. Then, LTS and LTS′ are respectively described as

coalgebras C = (S, α) and C ′ = (S′, α′) as shown in Table III.1.

The initial states of LTS and LTS are respectively s0 and s′0 that are drawn as circles with a thick

border.

A morphism from LTS to LTS′ is then a mapping h : S −→ S′ such that the above diagram

commutes i.e. F(h) ◦ α = α′ ◦ h where F(h) : P(A × S) −→ P(A × S′) is defined for each

U ⊆ A× S by:

F(h)(U) = {(a, h(s)) ∈ A× S′ | (a, s) ∈ U}

2 - Morphisms 53

s0

s1 s2

a a

b
b

s′0

s′1

a

b

Figure III.1 – Graphical representation of LTS and LTS′

❵
❵

❵
❵
❵

❵
❵
❵
❵
❵
❵
❵
❵
❵

Characteristics

Model
LTS LTS’

Set of labels A = {a, b} A = {a, b}

State space S = {s0, s1, s2} S′ = {s′0, s′1}

Transitions Function α : S −→ P({a, b} × S) α′ : S′ −→ P({a, b} × S′)

s0 7→ {(a, s1), (a, s2)} s′0 7→ {(a, s′1)}

s1 7→ {(b, s2)} s′1 7→ {(b, s′1)}

s2 7→ {(b, s2)}

Table III.1 – LTS and LTS′

In our example, h is the mapping depicted with dotted line in Figure III.1. It is defined as fol-

lows:

h(s0) = s′0 and h(s1) = h(s2) = s′1

In order to prove that h is a morphism from LTS to LTS′, it is enough to verify that the following

diagram is commutative:

{s0, s1, s2} {s′0, s′1}

P({a, b} × {s0, s1, s2}) P({a, b} × {s′0, s′1})

h

P(idA × h)

α α′

Hence, we must check that for each state s ∈ S, one has (α′ ◦ h)(s) = (P(idA × h) ◦ α)(s).

54 Chapter III Coalgebras

(α′ ◦ h)(s0) = α′(h(s0))

= α′(s′0)

= {(a, s′1)}

= P(idA × h)({(a, s1), (a, s2)})

= P(idA × h)(α(s0))

= (P(idA × h) ◦ α)(s0)

(α′ ◦ h)(s1) = α′(h(s1))

= α′(s′1)

= {(b, s′1)}

= P(idA × h)({(b, s2)})

= P(idA × h)(α(s1))

= (P(idA × h) ◦ α)(s1)

(α′ ◦ h)(s2) = α′(h(s2))

= α′(s′1)

= {(b, s′1)}

= P(idA × h)({(b, s2)})

= P(idA × h)(α(s2))

= (P(idA × h) ◦ α)(s2)

Let us note that F-coalgebras with morphisms between them constitute a category, which noted

CoAlg(F). Indeed, there is a forgetful functor CoAlg(F) −→ Set mapping a F-coalgebra (S, α)

to its state space S, and a F-morphism coalgebra h to itself.

3 Bisimulation

The notion of bisimulation was first introduced by Milner for the calculus of communicating

systems (CSS) language [35, 68], and it is usually defined as follows: a bisimulation between

two labeled transition systems (S, A, T) and (S′, A, T′) is a relation R ⊆ S × S′ such that for

every pair of states (s, s′) ∈ R, the two conditions are satisfied:

– For each transition (s, a, q) ∈ T, there is a state q′ ∈ S′ such that (s′, a, q′) ∈ T′ and (q, q′) ∈

R, and

– Symmetrically, for each transition (s′, a, q′) ∈ T′, there is a state q ∈ S such that (s, a, q) ∈ T

and (q, q′) ∈ R.

Given two states s ∈ S and s′ ∈ S′, s is bisimilar to s′, written s ∼ s′, if there is a bisimulation R

such that (s, s′) is in R.

This notion of bisimulation was redefined in terms of coalgebras as follows: Given a functor

F and two F-coalgebras (S, α) and (S′, α′). A relation R ⊆ S × S′ is a bisimulation between S

and S′ if there exists a coalgebra (R, γ : R −→ F(R)) such that the projections π1 : R −→ S and

π2 : R −→ S′ are morphisms of F-coalgebras.

S R S′

F(S) F(R) F(S′)

π1 π2

F(π1) F(π2)

α γ α′

We detail in the following some examples of bisimulation.

3 - Bisimulation 55

3.1 Stream

A bisimulation R ⊆ S× S′ between two automata streams (S, 〈obs, next〉 : S −→ A× S) and

(S′, 〈obs′, next′〉 : S′ −→ A× S′) is a coalgebra (R, γ : R −→ (A× R)) such that the function γ

has to satisfy the following propriety: for all pair of states (s, s′) ∈ S× S′, we have:

γ((s, s′)) = (a, (next(s), next(s′))) such that

obs(s) = obs(s′) = a

(next(s), next(s′)) ∈ R

In order to verify that R is a stream bisimulation between S and S′, we have to prove that

the projection π1 (respectively π2) is a morphism of coalgebras from (R, γ) to (S, 〈obs, next〉)

(respectively from (R, γ) to (S′, 〈obs′, next′〉)). Hence, we must check:

〈obs, next〉 ◦ π1 = F(π1) ◦ γ (III.1)

〈obs′, next′〉 ◦ π2 = F(π2) ◦ γ (III.2)

For Equation III.1, for each pair of states (s, s′) ∈ R, one has:

(〈obs, next〉 ◦ π1)((s, s′)) = 〈obs, next〉(π1((s, s′)))

= 〈obs, next〉(s)

= (obs(s), next(s))

(F(π1) ◦ γ)((s, s′)) = (F(π1)(γ((s, s′)))

= F(π1)(obs(s), (next(s), next′(s′)))

= (obs(s), next(s))

Similarly we obtain Equation III.2.

3.2 Mealy machines

A bisimulation between two Mealy automata:

(S, 〈obs, next〉 : S −→ (Out× S)In) and (S′, 〈obs′, next′〉 : S′ −→ (Out× S′)In)

is a coalgebra (R, γ : R −→ (Out× R)In) such that its transition function γ is defined for each

pair of states (s, s′) ∈ R and for each input i ∈ In by:

γ((s, s′), i) = (o, (next(s)(i), next′(s′)(i)))

where o = obs(s)(i) = obs′(s′)(i) and (next(s)(i), next′(s′)(i)) ∈ R.

3.3 Labeled transition systems

Two labeled transition systems are bisimilar if their labeling is equivalent, and their be-

haviour cannot be distinguished. A bisimulation R ⊆ S × S′ between two labeled transition

systems (S, α) and (S′, α′) over P(A×) where A is the set of labels, is a coalgebra

(R, γ : R −→ P(A× R))

where γ is the function defined for each pair of states (s, s′) ∈ R by:

γ((s, s′)) = {(a, (q, q′)) | (a, q) ∈ α(s), (a, q′) ∈ α′(s′) and (q, q′) ∈ R}

56 Chapter III Coalgebras

Let us illustrate this definition by a concrete example. Consider again the two labeled transition

systems LTS and LTS′ depicted in Figure III.1. In order to prove that LTS and LTS′ are bisimilar

we first have to choose an appropriate relation R and then to check that it is indeed a bisimula-

tion. Let us take the coalgebra (R, γ) with R = {(s0, s′0), (s1, s′1), (s2, s′1)} is a relation between S

and S′ and γ : R −→ P(A× R) is a function defined as follows:

γ((s0, s′0)) = {(a, (s1, s′1)), (a, (s2, s′1))} and γ((s1, s′1)) = γ((s2, s′1)) = {(a, (s2, s′1))}

and let us verify that the following diagram commutes:

{s0, s1, s2} {(s0, s′0), (s1, s′1), (s2, s′1)} {s′0, s′1}

P(A× S) P(A× R) P(A× S′)

π1 π2

P(A× π1) P(A× π2)

α γ α′

That is to say, for each pair of states (s, s′) ∈ R, one has:

(α ◦ π1)(s, s′) = (P(A× π1) ◦ γ)(s, s′) (III.3)

(α′ ◦ π2)(s, s′) = (P(A× π2) ◦ γ)(s, s′) (III.4)

For Equation III.3, for (s0, s′0) one has:

(α ◦ π1)(s0, s′0) = α(π1((s0, s′0)))

= α(s0)

= {(a, s1), (a, s2)}

(P(A× π1) ◦ γ)(s0, s′0) = (P(A× π1)(γ((s0, s′0)))

= P(A× π1)({(a, (s1, s′1)), (a, (s2, s′1))}

= {(a, s1), (a, s2)}

For (s1, s′1) one has:

(α ◦ π1)(s1, s′1) = α(π1((s1, s′1)))

= α(s1)

= {(b, s2)}

(P(A× π1) ◦ γ)(s1, s′1) = (P(A× π1)(γ((s1, s′1)))

= P(A× π1)({(b, (s2, s′1))}

= {(b, s2)}

For (s2, s′1) one has:

(α ◦ π1)(s2, s′1) = α(π1((s2, s′1)))

= α(s2)

= {(b, s2)}

(P(A× π1) ◦ γ)(s2, s′1) = (P(A× π1)(γ((s2, s′1)))

= P(A× π1)({(b, (s2, s′1))}

= {(b, s2)}

Similarly we obtain Equation III.4.

4 - Final coalgebras 57

4 Final coalgebras

In this section, we represent final coalgebras which play a central role in the theory of coal-

gebras. They provide in fact an abstract model of all possible behaviours of a system.

Definition 4.1 (Final coalgebra) Let F be a functor. A final F-coalgebra (Γ, π) is a F-coalgebra such

that for every F-coalgebra (S, α), there is a unique 3 coalgebra morphism beh : (S, α) −→ (Γ, π) such

that the following diagram commutes:

S Γ

F(S) F(Γ)

beh

F(beh)

α π

A final coalgebra, when it exits, contains every possible observable behaviour. It can be seen

as the maximal representation containing all possible observations of a system. Once the final

coalgebra for a functor F is defined, we can associate to any state s of an arbitrary F-coalgebra

its behaviour beh(s), that is a state of the final coalgebra which is bisimilar with it.

Theorm 4.1 (Gumm [56]) Let F be a signature functor. If F admits a final coalgebra (Γ, π), then for

every F-coalgebra (S, α), and for every state s ∈ S, there is a unique state u = beh(s) ∈ Γ such that u

and s are bisimilar.

Moreover, it has been shown that states of the final coalgebra coincide with behaviours. Then,

for any functor F, bisimilarity implies behavioural equivalence. We have the fundamental result:

Theorm 4.2 (Rutten and Turi [69]) Let F be a functor. Let (S, α) be an arbitrary F-coalgebra, let (Γ, π)

be the final F-coalgebra and let beh : S −→ Γ be the unique morphism from S to Γ. Then, for each pair of

states s, s′ ∈ S, one has:

s ∼S s′ =⇒ beh(s) = beh(s′)

This result then states that to show equality between two states, it is enough to show that they

are mapped to the same state in the final coalgebra.

In most cases, the unique existence of a final coalgebra (Γ, π) for a functor F is what one

needs to know. We focus precisely on the uniqueness of the morphism beh which maps a state

of an arbitrary F-coalgebra to its behaviour in Γ, rather than on the internal structure of the

space state Γ or the form of the transition function π. Hence, we are often interested in defining

final coalgebras without building their elements, ensuring their uniqueness up to isomorphism.

Theorm 4.3 (Lambek [70]) Let F be a functor. If F admits a final coalgebra π : Γ −→ F(Γ), then it is

necessary an isomorphism π : Γ
∼=
−→ F(Γ).

One class of functors for which a final coalgebra always exists is the class of finite Kripke

polynomial functors. As already mentioned, finite Kripke polynomial functors are endofunctors

of the category Set which include the identity functor, the constant functors, and are closed by

product, coproduct, exponent, and finite powerset.

3. The dotted notation is used to express the uniqueness of the morphism.

58 Chapter III Coalgebras

Theorm 4.4 Each finite Kripke polynomial functor Set −→ Set has a final coalgebra.

In the following, we describe some concrete examples of final coalgebras to become more

familiar with them. We refer to [71, 72, 73] for results on the existence and construction of final

coalgebras.

4.1 Streams

In this subsection, we describe the final coalgebra for stream automata. Assume we have a

state s ∈ S of such a stream automata (S, 〈obs, next〉 : S −→ A× S). Apply 〈obs, next〉 on s yields

an output obs(s) ∈ A as well as its successor state s′ ∈ S. In the same manner, 〈obs, next〉 can be

again applied on s′, and then produce a new couple (obs(s′), next(s′)) ∈ A× S. Hence, in this

way, we can get for each state s ∈ S, an infinite sequence of outputs:

(obs(s), obs(next(s)), obs(next(next(obs(s)))), . . .)

This sequence is formally obtained by the following definition:

Definition 4.2 (Observable behaviour of streams)

Let FX = A× X be a functor. Let C = (S, 〈obsC , nextC〉) be a F-coalgebra, let s be a state in S and let

n ∈ N. The observable behaviour of s is defined by:

(beh(s))(n) = obsC(nextn
C(s))

where nextn is inductively defined via:

next0
C(s) = s

nextn+1
C (s) = nextC(nextn

C(s))

The set of states Γ of the final coalgebra is then the set AN = { f : N → A} = {(ai)i∈N | ai ∈ A}

of all infinite sequences (ai)i∈N over A, and its transition function π is the cartesian product of

the two following functions:

〈head, tail〉 : AN → A× AN

(a0, a1, a2, . . .) 7→ (a0, (a1, a2, . . .))

which are defined for any function f : N −→ A as follows:

head(f) = f (0) and tail(f) = f ′ such that ∀n ∈ N, f ′(n) = f (n + 1)

Thus, everything we can possibly observe about a state s ∈ S is obtained via the function beh :

S −→ AN. It assigns to a state s ∈ S, the sequence of outputs beh(s) ∈ AN which is generated

on the unique path starting from s.

In order to prove that (AN, 〈head, tail〉 : AN −→ A× AN) is indeed a final coalgebra of the func-

tor FX = A× X, it suffices to show that the function beh : S −→ AN is the unique morphism

making the following diagram commute.

S AN

A× S A× AN

beh

idA × beh

〈obs, next〉 〈head, tail〉

In fact, it leads to two points:

4 - Final coalgebras 59

1. verify that beh is a morphism of coalgebras from S to AN;

2. verify that beh is the unique morphism from S to AN.

For the first point, we need to prove that for any s ∈ S, one has:

(head ◦ beh)(s) = (idA ◦ obs)(s) and (tail ◦ beh)(s) = (beh ◦ next)(s)

(head ◦ beh)(s) = head(beh(s))

= head((obs(s), obs(next(s)), obs(next(next(s))), . . .))

= obs(s)

= idA(obs(s))

= (idA ◦ obs)(s)

(tail ◦ beh)(s) = tail(beh(s))

= tail((obs(s), obs(next(s)), obs(next(next(s))), . . .)

= (obs(next(s)), obs(next(next(s))), . . .)

= beh(next(s))

= (beh ◦ next)(s)

We still have to show the second point. Let us assume that f : S −→ AN is also a morphism of

coalgebras which satisfies (head ◦ f = idA ◦ obs) and (tail ◦ f = f ◦ next), and then prove that

for any s ∈ S, one has beh(s) = f (s).

First of all, we need to define an auxiliary function tailn : AN −→ AN that takes a sequence

σ ∈ AN and returns the sequence σ′ ∈ AN containing all the elements after the index n in σ.

More formally, it is defined for any σ = (ai)i∈N ∈ AN and for any n ∈ N by:

tailn(σ) = (ai+n)i∈N

Proposition 4.1 For every morphism f : S −→ AN and for any n ∈ N, one has:

(f (s))(n) = obs(nextn(s)) (III.5)

Proof Let us assume f (s) = (a0, a1, a2, . . . , an, . . .). On one hand, we have:

head(tailn(f (s))) = head((an, an+1, . . .)) = an = (f (s))(n) (III.6)

On the other hand, since f is a morphism, we have tail ◦ f = f ◦ next which implies tailn ◦ f = f ◦ nextn.

Then, we have:

head(tailn(f (s))) = head(f (nextn(s))

= (idA ◦ obs)(nextn(s))

= obs(nextn(s))

(III.7)

Consequently, Equation III.5 is obtained as an equality between Equation III.6 and Equation III.7.

End

We have just proved that for any n ∈ N, (f (s))(n) = obs(nextn(s)). We have therefore beh(s) =

f (s). Thus, beh is the unique morphism of coalgebras from S to AN.

60 Chapter III Coalgebras

4.2 Mealy machines

Given a Mealy machine (S, 〈obs, next〉 : S× In −→ (Out× S)). Its observable behaviour (i.e.

a representation in which only inputs and outputs of the machine are involved) is obtained as

follows: assume we have a state s ∈ S and an input i ∈ In. Apply 〈obs, next〉 to s produces an

output obs((s, i)) ∈ Out and leads the machine state to its successor state next((s, i)) ∈ S. In the

same way, we can re-apply 〈obs, next〉 on next(s) for a new input i′ ∈ In, and then produces an

output obs((next(((s, i)), i′)) ∈ Out and the successor state next((next(((s, i)), i′))). Continuing

in this way 4, for each finite sequence of inputs (i0, i1, . . . , in), we can get a finite sequence of

outputs (o0, o1, . . . , on). Thus, everything we can observe about a state s ∈ S after receiving a

finite sequence of inputs σ ∈ In+ is obtained via the function beh(s) : In+ −→ Out+ which

assigns to any finite non-empty sequence of inputs (i0, i1, . . . , in) ∈ In+, the finite non-empty

sequence of outputs (o0, o1, . . . , on) ∈ Out+.

Definition 4.3 (Observable behaviour of Mealy machines) Let FX = (Out× X)In be a functor.

Let C = (S, 〈obsC , nextC〉) be a F-coalgebra, let s be a state in S and let (i0, i1, . . . , in) ∈ In+. The

observable behaviour of s after receiving (i0, i1, . . . , in) is defined by:

beh(s) = (obsC(next∗C(s)(i0)), obsC(next∗C(s)((i0, i1))), . . . , obsC(next∗C(s)((i0, i1, . . . , in)))

where the function next∗ is inductively defined via:

next∗C(s)(i) = nextC(s)(i)

next∗C(s)((i0, i1, . . . , in)) = next∗C(nextC(s)(i0))((i1, i2, . . . , in))

The set of states Γ of the final coalgebra is then the set

{φ | φ ∈ (Out+)
In+

} = {φ | φ : In+ −→ Out+}

and its transition function π is:

π : Γ× In → (Out× Γ)

(φ, i) 7→ 〈φ(i), φ′〉

where φ′ : In+ −→ Out+ is defined for each σ ∈ In+ by:

φ′(σ)(n) = φ(σ)(n + 1), ∀n ∈ N

Hence, the function π splits the elements of Γ into couples in (Out× Γ) as follows: let φ ∈ Γ and

i ∈ In:

– φ(i) is the output associated to the current state;

– φ′ : In+ −→ Out+ is the function which associates to every input sequence (i1, . . . , in) ∈

In+ the same sequence of outputs (o1, o2, . . . , on) that is obtained by the function φ when

the input sequence (i0, i1, i2, . . . , in) is applied to it.

φ φ′ φ′′ . . .
i0|o0 i1|o1

Rutten proposed in [41, 74] another way to define the final coalgebra of Mealy automata

using transfer functions. He showed that the set of all causal stream functions Γ = {F : Inω −→

Outω | F is causal} carries itself the structure of a Mealy coalgebra via the notions of initial

output and stream function derivative.

4. In+ denotes the set of finite non-empty sequences over In.

4 - Final coalgebras 61

Definition 4.4 (Derivative function) Let F : Inω −→ Outω be a transfer function. We define:

1. the initial output on input i ∈ In by F [i] = F (i.σ)(0) and

2. the derivative function on input i ∈ In by Fi : Inω −→ Outω with Fi(σ) = F (i.σ)
′

for any σ ∈ Inω chosen arbitrarily.

Let us now define the coalgebra (Γ, π) as follows:

– Γ = {F : Inω −→ Outω | F is causal};

– π : Γ× In −→ (Out× Γ) is the transition function defined for every F ∈ Γ and for every

i ∈ In by:

π(F)(i) = 〈F [i],Fi〉

Theorm 4.5 The Mealy machine (Γ, π) defined above is a final Mealy machine coalgebra: for every

Mealy machine (S, α) there is a unique homomorphism !α : S −→ Γ from (S, α) to (Γ, π).

Proof For every Mealy machine coalgebra (S, α), let us define !α : S −→ Γ which for every state s ∈ S,

associates the transfer function !α(s) : Inω −→ Outω which is defined for every s ∈ S, every σ ∈ Inω

and every k ∈ ω as follows:

!α(s)(σ(k)) = ok such that s0

σ(0)|o0
s1

σ(1)|o1
. . .

σ(k)|ok
sk+1

where there exists an infinite sequence of states s0, . . . , sk, sk+1 ∈ S and s0 = s.

It is not difficult to check that !α is causal, and that !α defined in this way is the unique homomorphism

making the diagram below commute.

S Γ

(Out× S)In (Out× Γ)In

!α

(idOut×!α)idIn

α π

End

4.3 Labeled transition systems

Consider again the finitely branching labeled transition systems that we previously de-

scribed as coalgebras (S, α : S −→ Pfin(A × S)) of the functor FX = Pfin(A × X) with A as

an alphabet of actions. By Theorem 4.3, the powerset functor P does not admit a final coalge-

bra. This is indeed due to Cantor’s theorem [75, 76] that states that, for any set X, its powerset

P(X) has a strictly greater cardinality than X itself. That means there is no bijection between

X and P(X) (there is in fact no injection from P(X) to X). However, by Theorem 4.4, the finite

powerset Pfin belonging to the class of polynomial functors, admits a final coalgebra.

In the following, we then describe the final coalgebra (Γ, π) of finitely branching labeled

transition systems. The state set Γ that we will note STA
∼ is the equivalence classes of so-called

synchronization trees over A, modulo bisimilarity. We can in fact look at the synchronization

trees [35] as transition systems without circuits whose states (or nodes) are represented implic-

itly and transitions (or arcs) carry labels of A. Intuitively, a synchronization tree is a representa-

tion that captures at once all possible behaviours of a system. It can be obtained by unfolding

62 Chapter III Coalgebras

s0

s1 s2

a0

a2

a1

a3

a0 a1

a3 a2

a3 a2 a0 a1

Figure III.2 – Example of a synchronization tree

the system starting from its initial state. The right part of Figure III.2 shows a labeled transition

system, while the left part shows its unfolding starting from the initial state s0 as a synchroniza-

tion tree.

Let us note some points:

– Synchronization trees have finite branches and eventually infinite paths. Many nodes (po-

tentially infinitely many) of the synchronization tree represent the same state of the origi-

nal labeled transition system: they correspond in fact to different visits to the state;

– Nodes of synchronization trees are represented implicitly (they are not labeled). Informa-

tion on nodes is not present in the behaviour;

– Two states which are bisimilar in the labeled transition systems are mapped to the same

synchronization tree in TSA
∼ because TSA

∼’s elements are equivalence classes modulo bisim-

ilarity ∼.

The transition function π : TSA
∼ −→ Pfin(A× TSA

∼) is the application splitting the synchroniza-

tion tree into its immediate subtrees as follows:

TSA
∼ −→ Pfin(A× TSA

∼)

t1 tn

a1 an

. . .

∼

7→ {(a1, [t1]∼), . . . , (an, [tn]∼)}

Now, to prove that (TSA
∼, π) is the final coalgebra, we need to verify the commutativity of the

following diagram:

S TSA
∼

Pfin(A× S) Pfin(A× TSA
∼)

beh

Pfin(idA × beh)

α π

4 - Final coalgebras 63

with beh is the function that associates to every state s ∈ S, the corresponding synchronization

tree beh(s) ∈ TSA
∼ as follows:

s

s1 sn. . .

a1 an
=⇒ beh(s) =

beh(s1) beh(sn)

a1 an

. . .

∼

It is straightforward to verify the commutativity of the above diagram.

4.4 More examples

We present here more examples of systems modeling in terms of coalgebras. For each sys-

tem, we give the corresponding functor as well as its final model without going into technical

details. 5

1. Finite stream over a set of labels A: is a coalgebra (S, α : S −→ (A × S) ∪ {⊥}) of the

functor FX = (A × X) + 1 where ⊥ is a state expressing the possibility of termination.

The final coalgebra is (A∞, π : A∞ −→ (A× A∞) ∪ {⊥}) where π is the function defined

for σ ∈ A∞ by:

π(σ) =

⊥ if σ = ǫ

(a, σ′) if σ = a.σ′

2. Binary tree over a set of labels A: is a coalgebra (S, α : S −→ ((A× S)× (A× S))∪ {⊥})

of the functor FX = ((A× X)× (A× X)) + 1. The final coalgebra is (Γ, π) where:

–

Γ = {φ : {0, 1}∗ → (A× A) ∪ {⊥} |

∀v ∈ {0, 1}∗, φ(v) ∈ {⊥} =⇒ (∀w ∈ {0, 1}∗, φ(v.w) = φ(v))}

is the set of all binary trees whose arcs are labeled with actions of A and whose branches

are eventually infinites

– π : Γ −→ ((A× Γ)× (A× Γ)) ∪ {⊥} is the function defined for any tree φ ∈ Γ by:

π(φ) =

⊥ if φ(ǫ) = ⊥

(〈a1, φ1〉, 〈a2, φ2〉) if φ(ǫ) = 〈a1, a2〉

with for i = 1, 2, φi is defined for v ∈ {0, 1}∗ by φi(v) = φ(ai.v).

3. Deterministic automata: is a coalgebra (S, α : S −→ {0, 1} × SA) of the functor FX =

{0, 1} × XA. The final coalgebra is (L, 〈oL, dL〉) where L = {L|L ⊆ A∗} is the set all

languages over the alphabet A, and 〈oL, dL〉 is the cartesian product of oL and dL that are

defined for a ∈ A and L ∈ L by:

oL(L) =

1 if ǫ ∈ L

0 otherwise
and dL(L)(a) = {v ∈ A∗ | a.v ∈ L}

5. A∞ = A∗ ∪ AN is the set of finite and infinite sequences of elements over A, ǫ denotes the empty sequence and

. : A∞ × A∞ −→ A∞) is the binary operation of concatenation.

64 Chapter III Coalgebras

4. Moore automata: is the coalgebra (S, α : S −→ Out× SIn) of the functor

FX = Out× XIn

The final coalgebra is (OutIn∗ , 〈head, tail〉 : OutIn∗ −→ Out× OutIn∗) where 〈head, tail〉 is

the function defined for φ : In∗ −→ Out ∈ OutIn∗ by:

〈head, tail〉(φ) = 〈φ(ǫ), φ′〉

with φ′ is the function defined for i ∈ In and σ ∈ In∗ by:

φ′(i)(v) = φ(i.σ)

5 Co-induction

Due to the fact that coalgebras are duals of algebras, definitions and results known from

universal algebra were dualized to the coalgebra theory such as coinduction principle which

we present in this section. The coinduction principle is the categorical dual of induction which,

in a categorical setting, refers to the use of the initiality principle for algebras. In fact, induc-

tion is used to build new data entities from data entities already constructed. On the contrary,

coinduction is used to observe potentially infinite data entities whose structure may contain

patterns that repeat infinitely. It does not tell us how to build objects, it tells us only what we

can observe on them. As mentioned in the previous section, once we know the final coalge-

bra (Γ, π) of a given functor F, we can use its finality to define functions into its carrier set Γ

and to prove properties. Hence, existence of final coalgebra allows us to define functions (it is

called coinduction definition principle) while its uniqueness allows us to prove properties of the

functions already constructed (it is called coinduction proof principle).

Example 5.1 (Definition of functions by coinduction) In this example, we define by coinduction,

the function merge : AN × AN −→ AN which builds a new sequence by interleaving the elements

of two sequences. For this, it is enough to verify that the function merge is a morphism of coalgebras

from an appropriate coalgebra with the same domain of merge i.e. AN × AN to the final coalgebra

(AN, 〈head, tail〉 : AN −→ A × AN) of the functor FX = A × X. Let us take a coalgebra whose

carrier set is AN × AN and whose transition function is αm : AN × AN −→ A× (AN × AN) defined

by:

∀(σ1, σ2) ∈ AN × AN, αm((σ1, σ2)) = (head(σ1), (σ2, tail(σ1)))

Now, by the conduction definition principle, we can directly conclude the existence of the morphism

merge : AN × AN −→ AN which makes the following diagram commute:

AN × AN AN

A× (AN × AN) A× AN

merge

idA ×merge

αm 〈head, tail〉

The fact that this diagram is commutative gives indeed:

head(merge((σ1, σ2)) = head(σ1) and tail(merge((σ1, σ2))) = (merge((σ2, tail(σ1))) (III.8)

as expected.

5 - Co-induction 65

Example 5.2 (Proof by coinduction) Let us consider a property of the function merge that is:

for any sequence σ ∈ AN, merge((odd(σ), even(σ))) = σ

and then prove it by conduction. For this, we first coinductively define two functions: odd : AN −→ AN

and even : AN −→ AN. The first one, maps each sequence σ ∈ AN to a new sequence odd(σ)

containing only elements of σ at odd positions and the second one maps each sequence to a new sequence

even(σ) containing only elements of σ at even positions. Similarly to merge, we define two coalgebras

O = (AN, αO : AN −→ A× AN) and E = (AN, αE : AN −→ A× AN)

of the functor FX = A× X where αO and αE are defined respectively for any sequence σ ∈ AN by: 6

αO(σ) = (head(tail(σ)), tail3(σ)) and αE (σ) = (head(σ), tail2(σ)))

AN AN AN AN

A× AN A× AN A× AN A× AN

odd

idA × odd

αO 〈head, tail〉

even

idA × even

αE 〈head, tail〉

Then, the commutativity of the above diagrams gives the two following equations: for any sequence σ ∈

AN:

head(even(σ)) = head(σ) and tail(even(σ)) = even(tail(tail(σ))) (III.9)

head(odd(σ)) = head(tail(σ)) and tail(odd(σ)) = odd(tail(tail(tail(σ)))) (III.10)

We can also easily prove that:

odd(σ)) = even(tail(σ)) and even(tail2(σ)) = odd(tail(σ)) (III.11)

Now, we need to show that the composite function

merge ◦ 〈even, odd〉 : AN −→ AN

and the identity function on AN are equal. It suffices then to prove that they are both morphisms for the

same coalgebra structure on AN. It is not difficult to see that the identity function idAN : AN → AN is

indeed a morphism of coalgebras from (AN, 〈head, tail〉) to (AN, 〈head, tail〉). We still have to show that

merge ◦ 〈even, odd〉 is also a morphism from AN to AN. For this, it is enough to show the commutativity

of the following diagram:

AN AN × AN AN

A× AN A× (AN × AN) A× AN

〈even, odd〉

idA × 〈even, odd〉

〈head, tail〉 αm

merge

idA ×merge

〈head, tail〉

idAN

6. The function tailn : AN −→ AN has been defined in the previous section for σ = (ai)i∈N ∈ AN and n ∈ N by

tailn(σ) = (ai+n)i∈N

66 Chapter III Coalgebras

This amounts to show that:

〈head, tail〉 ◦ (merge ◦ 〈even, odd〉) = (idA × (merge ◦ 〈even, odd〉)) ◦ 〈head, tail〉

This is proved for σ ∈ AN by:

head(merge(even(σ), odd(σ)))=head(even(σ)) see Equation III.8

=head(σ) see Equation III.9

tail(merge(even(σ), odd(σ))) =merge(odd(σ), tail(even(σ))) see Equation III.8

=merge(odd(σ), even(tail(tail(σ)))) see Equation III.9

=merge(even(tail(σ)), odd(tail(σ))) see Equation III.11

=merge(〈even, odd〉(tail(σ)))

=merge ◦ 〈even, odd〉)(tail(σ))

5.1 Proof by bisimulation

There is another alternative for proving properties. The underlying idea is that two states are

behaviourally equivalent if and only if they are bisimilar (see Theorem 4.2). This result indeed

gives rise to a proof method. Then, two states are equals if and only if they are contained in a

bisimulation relation.

Corollary 5.1 Two states s and s′ have the same behaviour if and only if there is a bisimulation R

such as (s, s′) ∈ R. For every bisimulation R on the final 7 coalgebra (Γ, π), one has R ⊆ ∆Γ where

∆Γ = {(s, s) | s ∈ Γ}. Equivalently, for all s and s′ in Γ, one has:

s ∼ s′ ⇐⇒ s = s′

Example 5.3 (Proof by bisimulation) Let us consider again the property:

∀σ ∈ AN, merge((odd(σ), even(σ))) = σ

proved in Example 5.2, and then prove it using the notion of bisimulation.

Our aim is to prove the equality:

merge(odd(σ), even(σ)) = σ

Then, we need a bisimulation R ⊆ AN × AN containing both sides of the equation. We take:

R = {(merge(odd(σ), even(σ)), σ) | σ ∈ AN}

Recall from Section 3 that a relation R ⊆ AN × AN is a bisimulation if the two projections π1 : R −→

AN and π2 : R −→ AN are morphisms of coalgebras from the coalgebra (R, γ) to (AN, 〈head, tail〉)

where γ is defined as follows:

γ : R −→ A× R

(σ1, σ2) 7→ (head(σ1), (tail(σ1), tail(σ2)))

By finality of AN, it is obvious to show that π1 and π2 are morphisms of coalgebras from

({(merge((odd(σ), even(σ))), σ)|σ ∈ AN}, γ) to (AN, 〈head, tail〉)

Then, one has merge((odd(σ), even(σ))) = σ.

7. Recall s and s′ define behaviours belonging to the final coalgebra.

5 - Co-induction 67

Example 5.4 Let aN and bN be two concrete infinite streams and let us show that merge(aN, bN) =

(ab)N. For this, we first define a relation R ⊆ AN × AN containing the following pairs:

(merge(aN, bN), (ab)N) and (merge(bN, aN), (ba)N)

R is a bisimulation if for any pair of streams (σ1, σ2) ∈ R, one has:

R((σ1, σ2)) =⇒

head(σ1) = head(σ2)

tail(σ1) = tail(σ2)

Consider the first pair (merge(aN, bN), (ab)N) of R, the only transition step of its left component is:

merge(aN, bN)
a
−→ merge(bN, aN)

whereas its right component can take the step:

(ab)N a
−→ (ba)N

Hence, the resulting pair (merge(bN, aN), (ba)N) is again in the relation R.

In the same manner, we can show that the resulting pair of the second pair (merge(bN, aN), (ba)N) is

(merge(aN, bN), (ab)N) which is in the relation R.

Consequently, R is a bisimulation. Corollary 5.1 tells us that R ⊆ ∆AN , proving then the equality:

merge(aN, bN) = (ab)N

68 Chapter III Coalgebras

Part II

Systems modeling framework

71

This part provides the first contribution of this thesis. It presents a formal abstract frame-

work for developing, in a compositional way, complex software systems viewed as component-

based systems. It intends to contribute to the following topics:

– The definition of a generic modeling of components. This will then enable us to unify

a wide family of state-based formalisms classically used to specify components, such as

Mealy machines [33, 34], labeled transition systems (LTS) [35] and input-output labeled

transition systems (IOLTS) [39, 40]. We will see that the generality of our formalization

will be obtained by taking into account various kinds of computation structures such as

non-determinism, partiality, etc. [16].

– The definition of a trace model over components using causal transfer functions [41, 74,

77] as is usual in control theory or physics when dealing with dynamic system modeling.

– The definition of a minimal and unified set of component integration operators able to

take into account the interaction semantics present in most modern systems. Such inte-

gration operators will be used to combine component behaviours that interact together in

order to build a larger system.

This part consists of two chapters. The first chapter introduces a generic unified coalgebraic

model of components enabling us to naturally describe a large family of state-based formalisms

as well as its trace model given as transfer functions. The second chapter introduces how com-

ponents can be composed to obtain systems. It presents two basic integration operators: cartesian

product and feedback, and shows that both seem sufficient to build most other standard operators

such as synchronous product and sequential, double sequential, concurrent and synchronous

parallel operators, by composition.

72

Chapter IV

Generic components

1 Components as coalgebras . 74

1.1 Motivation . 74

1.2 Components . 74

1.3 Genericity of component definition . 77

2 Component traces . 80

2.1 Transfer function . 80

2.2 Component Traces . 81

3 Results . 82

3.1 Final model . 83

3.2 Minimal component . 85

4 Conclusion . 88

This chapter presents a formal generic framework for developing basic components viewed

as state-based systems. As explained in the introduction, our formalization is based on Barbosa’s

components [9, 10, 11, 12, 13]. We then start, in Section 1, by introducing Barbosa’s definition of a

component as well as some explicative concrete examples. We further show that this component

definition is powerful enough to be a unified generic state-based formalism by providing some

basic examples. In Section 2 we define, by relying on the work proposed by Rutten in [41], a

trace model over components using causal transfer functions. The formalization of components

and their traces as coalgebras and transfer functions respectively, allows us to extend standard

results connected to the definition of a final component in Section 3. We show, over some as-

sumptions, the existence of a final model which will be useful to define the basic integration

operators in Chapter V. Finally, Section 4 concludes with some final remarks and an assessment

of the results.

74 Chapter IV Generic components

1 Components as coalgebras

1.1 Motivation

In a series of papers [9, 10, 11], Barbosa and his colleagues used the coalgebra theory to define

a generic notion of a state-based software component. In these works, a component was then

introduced as a generalized Mealy automaton in which the dependence between outputs and

both current state and inputs is relaxed from a strict deterministic, to encompass more complex

behaviours such as partiality, non determinism, etc. The reasons for using Barbosa’s definition

are twofold:

– It fits to the standard view of functional components that is, at a high level of abstraction,

components may be considered as black boxes that take inputs and provide appropriate

outputs. The behaviour of a component is then specified by describing how inputs drive

changes in component state and how outputs are produced.

– It is considered as an excellent modeling tool for representing several kinds of computa-

tional effects, such as: determinism, non-determinism and partiality, as well as abstractly

providing a unifying formal framework in which a great diversity of state-based for-

malisms used to describe dynamical systems behaviour, such as: Mealy machines [33,

34], Labeled Transition Systems (LTS) [35, 36], Input-Output Labeled Transition Systems

(IOLTS) [39, 40] can be naturally captured (see Section 1.2). This is due to the introduction

of monads in the component definition.

1.2 Components

Definition 1.1 (Components) Let In and Out be two sets denoting, respectively, the input and output

domains. Let T be a monad. A component C is a coalgebra (S, init, α) for the signature H = T(Out×

)In : Set −→ Set where init ∈ S is a distinguished element denoting the initial state of the component

C.

When the initial state init is removed, C is called a pre-component.

Barbosa further requires that the monad T should be strong [78]. That means T is equipped

with two natural transformations: τr : TX × Y −→ T(X × Y) and τl : X × TY −→ T(X × Y)

for any sets X and Y, called the right and left strength respectively, satisfying certain coherent

conditions [78]. This requirement is mainly supposed to be able to link in [13] computations

carried by T. For instance, when composing two components C1 and C2 over T(Out1 × S1) and

T(Out2 × S2) respectively, τr followed by τl allows the mapping of

T(Out1 × S1)× T(Out2 × S2) to TT((Out1 × S1)× (Out2 × S2))

This latter can then be flattened to T((Out1 × S1)× (Out2 × S2)) via µ.

We do not require that the monad T should be strong as it was assumed in the original definition

introduced in [13]. We rather assume the existence of two natural transformations η′ and η′−1

that we will present in Section 2. These two natural transformations will be useful not only

to link computations carried by T, like strong monads do, when composing components in

Chapter V but also to define a trace model over components in Section 2.

Example 1.1 (Coffee machine) We consider a simple example of a coffee machine M modeled by

the transition diagram shown in Figure IV.1. The behaviour ofM is the following: from its initial state

STDBY, when it receives a coin from the user, it goes into the READY state. Then, when the user presses

the “coffee” button, three cases are distinguished: (1)M serves a coffee to the user and goes back to the

1 - Components as coalgebras 75

STDBY state; (2)M serves a coffee to the user and goes to the FAILED state (for example, when there

is one cup in the machine); (3)M fails to deliver coffee to the user and so refunds him and goes to the

FAILED state. The only escape from the FAILED state is to have a repair.

This machine can be modeled as a componentM = (S, init, α) over the signature Pfin(Out×)In. The

state space is S = {STDBY, READY, FAILED} and init = STDBY. The sets of inputs and outputs are

In = {coin, coffee, repair} and Out = {abs, served, refund}. Finally, the transition function:

α : S −→ Pfin

(

{abs, served, refund} × S
){coin,coffee,repair}

is defined as follows:

α(STDBY)(coin) =
{

(abs, READY)
}

α(READY)(coffee) =
{

(served, STDBY), (served, FAILED), (refund, FAILED)
}

α(FAILED)(repair) =
{

(abs, STDBY)
}

STDBY READY

FAILED

coin|abs

coffee|served

coffee|served

coffee|refund

repair|abs

Figure IV.1 – Coffee machine

Example 1.2 (ATM) We consider a simple specification of a bank Automated Teller Machine (ATM)

M modeled by the transition diagram shown in Figure IV.2. The behaviour ofM is the following: from

its initial state s0, it is waiting either for a request for amount (the "amount" action) or a request for

bank account balance (the "check" action):

– if the user enters amount,M goes to s1. An internal test is then made to check whether the received

amount can be withdrawn (represented by the action τ). If there is enough money in the customer’s

account, the requested amount is withdrawn and the ATM returns to its initial state (the "cash"

action). If there is not enough money in the customer’s account, the withdraw operation fails and

an error message is displayed on the machine screen (the "screen" action).

– If the user asks for the amount of his/her account,M does an internal action and then notifies the

user by the amount (the "sold" action). It then returns back to its initial state s0.

This machine can be modeled 1 as a component M = (S, init, α) over the signature (Out×)In. The

state space is S = {s0, s1, s2, s3, s4} and init = s0. The sets of inputs and outputs are

In = {amount, check, sold, screen, cash, τ} and Out = {abs}

1. We deliberately omitted the abs action to make the representation easier. Hence, transitions are labeled with

(a|abs) are simply represented as transitions labeled with a.

76 Chapter IV Generic components

respectively. Finally, the transition function:

α : {s0, s1, s2, s3, s4} × {amount, check, sold, screen, cash, τ} −→
(

{abs} × {s0, s1, s2, s3, s4}
)

is defined as follows:

α(s0)(amount) = (abs, s1)

α(s0)(check) = (abs, s3)

α(s1)(τ) = (abs, s2)

α(s3)(τ) = (abs, s4)}

α(s2)(screen) = (abs, s0)

α(s2)(cash) = (abs, s0)

α(s4)(sold) = (abs, s0)

s0

s1

s2

s3

s4

amountcheck

ττ

cash

sceen

sold

Figure IV.2 – ATM component

Example 1.3 (Pedestrian crossing) A pedestrian crossing is a portion of a roadway where pedestri-

ans are permitted to cross the roadway. A typical view of a pedestrian crossing can be seen in Figure IV.3.

It consists of two essential parts: the road and the crosswalk. A pedestrian crossing system is then made

to avoid any interactions between pedestrians that want to cross the crosswalk and vehicles that want to

cross the road. A traffic light is then usually used to control pedestrian and vehicle flows at the crosswalk.

Such a typical traffic light consists of three colors: green, orange and red, and behaves as follows: in the

absence of any pedestrian request, the green color is illuminated. When a pedestrian wishes to cross the

road, he then pushes the request button that sends a signal to the traffic light system to change its illumi-

nation to an orange light to prepare to stop the vehicles. Then, it switches to a red light prohibiting any

vehicle flow at the road and yielding to the pedestrians. Once the crosswalk is free from pedestrians, the

traffic light receives a signal saying the road is free and thus the green color is again illuminated. In this

way, the traffic light system allows one to yield either to pedestrians or vehicles by repetitively making

the green-orange-red-green cycle.

Figure IV.3 – Pedestrian crossing

1 - Components as coalgebras 77

The traffic light system can be modeled as a componentM = (S, s0, αM) over the signature (Out×)In.

The state space is S = {s0, s1, s2, s3, s4}. The sets of inputs and outputs are:

In={stopLight, lightOk, abs} and Out={lightRed, lightOrange, lightGreen, pedestrianOk, abs}

Finally, the transition function:

αM : S −→ ({lightRed, lightOrange, lightGreen, pedestrianOk, abs} × S){stopLight,lightOk,abs}

is defined as follows:

αM(s0)(abs) = (lightGreen, s0)

αM(s0)(stopLight) = (lightGreen, s1)

αM(s1)(abs) = (lightOrange, s2)

αM(s2)(abs) = (lightRed, s3)

αM(s3)(abs) = (pedestrianOk, s4)

αM(s4)(lightOk) = (abs, s0)

The graphical diagram of this component is shown in Figure IV.4.

s0

s1

s2s3

s4

stoplight|lightGreen

abs|lightGreen

abs|lightOrange

abs|lightRed

abs|pedestrianOk

lightOk|abs

Figure IV.4 – Pedestrian crossing modeling

Definition 1.2 (Category of components) Let C and C ′ be two components over H = T(Out×)In.

A component morphism h : C −→ C ′ is a coalgebra homomorphism h : (S, α) −→ (S′, α′) such that

h(init) = init′.

We note Comp(H) (resp. PComp(H)) the category of components (resp. pre-components) over H.

This will be in the category of pre-components PComp(H), where we will show the existence

of a final model under some conditions (see Section 3).

1.3 Genericity of component definition

Definition 1.1 is generic enough to unify in a single framework a large family of formalisms

classically used to specify state-based systems [79]. We describe the most important of them in

three tables: Table IV.1, Table IV.2 and Table IV.3. Each table illustrates the possible models of

dynamic systems that can be framed as instances of our component definition depending on the

monad T. The first column consists of instances of the input set In, the second column consists

of instances of the output set Out, the third column introduces the possible coalgebraic models

78 Chapter IV Generic components

obtained by making a particular choice for In and Out, and the fourth column gives an example

of which dynamic system can be obtained.

Table IV.1 suggests a possible 2 taxonomy of coalgebras that can be obtained when T is the

identity functor id.

How to model it Resulting component Typical example

In Out

{} {abs} X −→ X run forever

{} set of actions Act X −→ X× Act infinite streams

set of inputs I {abs} X −→ X I systems with input

set of inputs I set of outputs O X −→ (X×O)I Mealy machines

Table IV.1 – The deterministic computational features

Table IV.2 suggests a possible taxonomy of coalgebras that can be obtained when T is the partial

functor (id + 1).

How to model it Resulting component Typical example

In Out

{} {abs} X −→ X + 1 systems with interruption run

{} set of actions Act X −→ (X× Act) + 1 finite streams

set of actions Act {abs} X −→ XAct + 1 systems with input

set of inputs I set of outputs O X −→ (X×O)I + 1 partial Mealy machines

Table IV.2 – The partial computational features

Table IV.3 suggests a possible taxonomy of coalgebras that can be obtained when T is the pow-

erset functor P .

How to model it Resulting component Typical example

In Out

{} {abs} X −→ P(X)

{} action set Act X −→ P(Act× X) LTS as in Milner’s CSS

action set Act {abs} X −→ P(X)Act LTS as in process algebra

input set I output set O X −→ P(O× X)I extended Mealy machines

input set I output set O
X −→

P(({!} ×O) ∪ {abs!} × X)({?}×I)∪{abs?}
IOLTS

Table IV.3 – The non-deterministic computational features

2. abs, abs? and abs! are particular fresh action, input action and output action denoting the lack of reaction, input

and output respectively.

1 - Components as coalgebras 79

To completely define IOLTS, we need to impose the supplementary property on the transi-

tion function α : S −→ P(Out× S)In:

∀i ∈ In, ∀s ∈ S, (o, s) ∈ α(s)(i) =⇒ either i = abs? or o = abs!

to express that input and output are mutually exclusive. This construct of α means that one can

define three kinds of transition depending on the label that is allowed to appear in it.

– Input-kind: the transition can only be labeled by input action, that is i|abs!;

– Output-kind: the transition can only be labeled by output action, that is abs?|o;

– Internal-kind: the transition is labeled by abs?|abs!.

Therefore, a transition can be labeled by input or output 3 actions, but never both.

Each of these instances leads to obvious algorithms that transform each of previous models

into components according to Definition 1.1. Let us illustrate this for IOLTS models.

Definition 1.3 (IOLTS as component) Let Σ = Σ? ∪ Σ! ∪ {τ} be an alphabet of actions. Let H =

P(Out×)In be the signature associated to IOLTS where

In = ({?} × Σ?) ∪ {abs?} and Out = ({!} × Σ!) ∪ {abs!}

The transformation of an IOLTS over IOLT S(Σ) into a component over H is the application:

φ : IOLT S(Σ) −→ Comp(H)

that maps an IOLTSM = (Q, q0, Σ, Tr) to a component 4 C = (S, s0, α) as follows:

– S = Q and s0 = q0;

– α : S× In −→ P(Out× S) is the function defined by the following rules:

s
a
−→Tr s′ and a ∈ Σ?

〈abs!, s′〉 ∈ α(s)(?a)

s
a
−→Tr s′ and a ∈ Σ!

〈!a, s′〉 ∈ α(s)(abs?)

s
τ
−→Tr s′

〈abs!, s′〉 ∈ α(s)(abs?)

We illustrate this transformation with a simple example shown in Figure IV.5.

IOLTS M

?i

!oτ

associated component φ(M)

?i|abs!

abs? |!oabs? |abs!

Figure IV.5 – Transformation of an IOLTS into a component over P(Out× _)In

3. Our transformation of an IOLTS into our framework is inspired from the works done by M. Phalippou in his

thesis [38], that transform an IOLTS into finite state machine.
4. IOLT S(Σ) denotes the set of input-output labeled transitions systems over the alphabet Σ.

80 Chapter IV Generic components

2 Component traces

As shown in Table IV.1, Mealy automata with input set In and output set Out are coalgebras

of the functor F : Set −→ Set defined by F(X) = (Out × X)In. For a coalgebraic modeling

of Mealy automata, Rutten in [41] defined 5 the final coalgebra of F (i.e. the set of all possible

observable behaviours) as causal stream functions (traditionally called transfer functions). Hence,

it is shown in [41, 74] that the final coalgebra of F is isomorphic to the set of all causal functions

from the set of infinite input sequences to the set of infinite output sequences equipped with the

operations of initial output and stream function derivative. In this section, similarly to Rutten’s

work, we show that the observable behaviour of our components can also be characterized by

causal functions mapping infinite input sequences to infinite output sequences.

2.1 Transfer function

In the following, we note ω the least infinite ordinal, identified with the corresponding

hereditarily transitive set.

Definition 2.1 (Dataflow) A dataflow over a set of values A is a mapping σ : ω → A. The set of all

dataflows over A is noted Aω.

Definition 2.2 (Derivative dataflow) Let σ be a dataflow over a set A. The dataflow σ′ derivative of

σ is defined by: ∀n ∈ ω, σ′(n) = σ(n + 1).

For every a ∈ A, let us note a.σ the dataflow σ defined by:

σ(0) = a and ∀n ∈ ω \ {0}, σ(n) = σ(n− 1)

Hence, σ = σ(0).σ′.

Transfer functions will be used to describe the observable behaviour of components. They can

be seen as dataflow transformers satisfying the causality condition as this is classically done in

control theory and physics for modeling dynamic systems [80], that is the output data at index

n only depends on input data at indexes 0, . . . , n.

Definition 2.3 (Transfer function) Let In and Out be two sets denoting, respectively, the input and

output domains. A function F : Inω −→ Outω is a transfer function if, and only if it is causal, that is:

∀n ∈ ω, ∀σ1, σ2 ∈ Inω, (∀m, 0 ≤ m ≤ n, σ1(m) = σ2(m)) =⇒ F (σ1)(n) = F (σ2)(n)

Causal transfer functions and the notion of transfer function derivative were first introduced

by Raney in [77]. Raney’s [77] also showed that both composition of two causal transfer functions

and the derivative of a causal transfer function are again causal.

Example 2.1 The function F : {0, 1}ω −→ {0, 1}ω defined for every σ ∈ {0, 1}ω and every k ∈ ω by

F (σ)(k) =
(

k

∑
i=0

σ(i)
)

mod 2

is the transfer function that takes a sequence of bits σ ∈ {0, 1}ω and checks at each step k whether it has

received an odd number of "ones". It then returns 0 if the number of "ones" is even, and 1 otherwise. In

Example 3.1, we will define the component that implements it.

5. See Chapter III, Subsection 4.2 for more explanations for Rutten’s work.

2 - Component traces 81

2.2 Component Traces

To associate behaviours to components by transfer functions, we have to require the exis-

tence of two natural transformations η′ : T =⇒ P and η′−1 : P =⇒ T such that η′−1 ◦ η′ = idT

where P is the powerset functor. Indeed, from a component (S, α), we need to “compute”

for an infinite input sequence σ ∈ Inω all the outputs o after going through any sequence of

states (s0, . . . , sk) such that sj is obtained from sj−1 by σ(j− 1). However, we do not know how

to characterize sj with respect to α(sj−1)(σ(j − 1)) because nothing ensures that elements in

α(sj−1)(σ(j− 1)) are (output, state) couples. Indeed, the monad T may yield a set with a struc-

ture different from Out× S. The mapping η′Out×S maps back to this structure. η′−1
Out×S is useful

for going back to T when defining final models.

Most monads used to represent computation situations satisfy the above condition. For in-

stance, for the monad T : P , both η′S and η′−1
S are the identity on sets. For the functor T : id + 1,

η′S associates the singleton {s} to any s ∈ S and the empty set to ⊥, and η′−1
S associates the state

s to the singleton {s} and ⊥ to any other subset of S which is not a singleton. Let us observe

that given a monad T, the couple (η′, η′−1) when it exists, is not necessarily unique. Indeed,

for the monad T = id, η′S can still be defined as s 7→ {s}. However, η′−1
S is not unique. Indeed,

any mapping η′−1
S that associates the singleton {s} to s, and every subset of S which is not a

singleton to a given s′ ∈ S, satisfies η′−1
S ◦ η′S = idS.

Hence, in the following, given a signature T(Out×)In, we will assume given a couple (η′, η′−1)

such that η′−1 ◦ η′ = id.

In the following, we note η′Out×S(α(s)(i))|1 (resp. η′Out×S(α(s)(i))|2) the set composed of all

first arguments (resp. second arguments) of couples in α(s)(i).

Let us now associate behaviours to components by their transfer functions. Let us consider

a state s ∈ S of such a component C = (S, α) over T(Out×)In. Applying α to s after receiving

an input i1 ∈ In yields a set η′Out×S(α(s)(i1)) of couples (output|successor state). Similarly, after

receiving a new input i2 ∈ In, we can repeat this step for each state s′ ∈ η′Out×S(α(s)(i1))|2 and

form another set of couples (output|successor state). Thus, we get for each infinite sequence of

inputs 〈i1, i2, . . .〉 ∈ Inω, a set of infinite sequences of outputs 〈o1, o2, . . .〉 ∈ Outω. All we can

possibly observe about a state s ∈ S is obtained in this way. More formally, this leads to:

Definition 2.4 (Component behaviour) Let C = (S, init, α) be a component over T(Out×)In. The

behaviour of a state s of C, noted behC(s) is the set of transfer functions F : Inω −→ Outω that

associate to every σ1 ∈ Inω a dataflow σ2 ∈ Outω such that there exists an infinite sequence of couples

(o1, s1), . . . , (ok, sk), · · · ∈ Out× S satisfying:

∀j ≥ 1, (oj, sj) ∈ η′Out×S(α(sj−1)(σ1(j− 1)))

with s0 = s, and for every k < ω, σ2(k) = ok+1.

Hence, C’s behaviour is the set behC(init).

Example 2.2 The behaviour behM(s0) of the coffee machineM presented in Example 1.1 is defined by

all the functions

Fσ : {coin, coffee, repair}ω −→ {abs, served, refund}ω

where σ = n1.n′1.n2.n′2 . . . ni.n
′
i · · · ∈ Nω defined by

Fσ : (coin.coffee)n1 .(coin.coffee.repair)n′1 . . . (coin.coffee)ni .(coin.coffee.repair)n′i . . .

7→

82 Chapter IV Generic components

(abs.served)n1 .(abs.refund.abs)n′1 . . . (abs.served)ni .(abs.refund.abs)n′i . . .

where

(coin.coffee)0 = (coin.coffee.repair)0 = (abs.served)0 = (abs.refund.abs)0 = ǫ (the empty word).

Hence, the transfer function that would remain in the loop between the states STDBY and READY could

be defined by any function Fσ with σ = n1.0.n2.0 . . . ni.0 . . .

In the context of our work, we will need to use finite traces. Finite traces are finite sequences

of couples (input|output) defined as follows :

Definition 2.5 (Component finite traces) Let F ∈ behC(init) be a trace of a component C. Let

n ∈ N. The finite trace, noted F|n , of length n associated to F is the whole set of the finite sequence

〈i0|o0, . . . , in|on〉 such that there exists x ∈ Inω where for every j, 0 ≤ j ≤ n:

– x(j) = ij

– and F (x(j)) = oj

Hence, Trace(C) =
⋃

F∈behC (init)

⋃

n∈N

F|n defines the whole set of finite traces over C.

Taking advantage of having generically defined components, and having shown that most

state-based formalisms are instances of Definition 1.1, by Definition 2.4, we can associate to

them semantics from causal functions. We have formally presented in Section 1.2 the mapping

φ : IOLT S(Σ) −→ Comp(H) that defines how an IOLTS can be transformed in our frame-

work (see Definition 1.3). Similarly, we define another transformation φt allowing us to make

the link between the set of traces of an IOLTS modelM and its associated component φ(M) in

our framework.

Definition 2.6 LetM ∈ IOLT S(Στ) be an IOLTS and tr ∈ Trace(M). Let φ(M) ∈ Comp(H)

be its associated component. The transformation of Trace(M) into Trace(φ(M)) is the function:

φt(M) : Trace(M) −→ Trace(φ(M))

which is inductively defined as follows:

– for every 6 trace tr = ǫ ∈ trace(M), φt(tr) = ǫ;

– for every trace tr =?i ∈ trace(M), φt(tr) =?i|abs!;

– for every trace tr =!o ∈ trace(M), φt(tr) = abs?|!o;

– for every trace tr = τ ∈ trace(M), φt(tr) = abs?|abs!;

– for every trace tr = a1 . . . an ∈ trace(M) with a ∈ Στ , φt(tr) = φt(a1) . . . φt(an).

Corollary 2.1 For any IOLTSM, φt(M) is bijective, i.e. Trace(φ(M)) = φt(Trace(M)).

3 Results

Following Rutten’s works [74, 41], this trace model can be computed. This first requires the

existence of a final model in the category PComp(H). As usual, this terminal model can be

obtained under some conditions on the cardinality of the set yielded by the mapping behC for

every component C = (S, α) ∈ PComp(H).

6. ǫ stands for the empty trace.

3 - Results 83

3.1 Final model

The condition we need to obtain the existence of a final model is the following:

Assumption: we suppose that for every pre-component C = (S, α) over a signature H = T(Out×)In,

and for every s ∈ S, the cardinality of behC(s) is less than a cardinal κ.

This assumption allows us then to define a coalgebra (Γ, π) over H and to show that it is final

in PComp(H).

– Γ = P≤κ({F : Inω −→ Outω | F is causal})

– for every F ∈ Γ and for every i ∈ In, π(F)(i) = η′−1
Out×Γ

(Π) where:

Π =
{

(o, F′o) | o ∈
⋃

F∈F

(F (i.x)(0)) and,

F′o = {F (i.x)
′ | F (i.x)(0) = o and F ∈ F},

for x ∈ Inω chosen arbitrarily
}

Let us note here that using F′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ F} instead of F′ =

{F (i.x)′ | F ∈ F} in the definition of (Γ, π) allows us to keep the computational effects car-

ried by the monad T. This is done by linking the output o to the derivative function set F′ i.e.

the derivative function set is not only linked to the input i but also to the output associated to i.

This construction of the set F′ is useful to prove that (Γ, π) is final in PComp(H).

F

F′o1

F′oj

F′on

.

.

.

i|o1

i|oj

i|on

Theorm 3.1 Let H = T(Out×)In be a signature such that for every pre-component C = (S, α) over

H, and for every s ∈ S, |behC(s)| ≤ κ. Then, the coalgebra (Γ, π) is final in PComp(H).

Proof Let (Γ, π) be as stated, and let C = (S, α) ∈ PComp(H) be an arbitrary component. We

have to show that there exists a unique homomorphism of components S → Γ. For this, let us take the

behaviour mapping behC : S −→ Γ (see Definition 2.4) which for every s ∈ S associates a finite set of

transfer functions F = {F : Inω −→ Outω | F is causal} ∈ Γ. We have to prove that it is the unique

homomorphism making the following diagram commute.

S× In Γ× In

T(Out× Γ)T(Out× S)

behC × idIn

α π

T(idOut × behC)

84 Chapter IV Generic components

We first prove the commutation.

First of all, it is easy to see that the following properties are satisfied:

∀ f , f : S −→ S′, ∀X ∈ T(S) : T(f)(X) = η′−1
S′ ◦ P(f) ◦ η′S(X) (IV.1)

∀s ∈ S, i ∈ In and ∀(o, s′) ∈ η′Out×S(α(s)(i))

behC(s
′) = behC(s)

′
o = {F (i.x)

′ | F (i.x)(0) = o and F ∈ behC(s)}

(IV.2)

∀i ∈ In, s ∈ S and behC(s) ∈ Γ,

η′Out×S(α(s)(i))|1 = {F (i.x)(0) | F ∈ behC(s)}

(IV.3)

Hence, let s ∈ S, i ∈ In and x ∈ Inω be arbitrary. We have to prove that:

(T(idOut × behC) ◦ α)(s)(i) = (π ◦ (behC × idIn))(s)(i)

(T(idOut × behC) ◦ α)(s)(i)

= T(idOut × behC)(α(s)(i))

= η′−1
Out×Γ

(P(idOut × behC)(η
′
Out×S(α(s)(i)))) Property IV.1

= η′−1
Out×Γ

({(o, behC(s
′)) | (o, s′) ∈ η′Out×S(α(s)(i))}) Property IV.2

= η′−1
Out×Γ

{

(o, behC(s)
′
o) | o ∈ η′Out×S(α(s)(i))|1 and ,

behC(s)
′
o = {F (i.x)

′ | F (i.x)(0) = o and F ∈ beh(s)}
}

Property IV.3

= η′−1
Out×Γ

{

(o, behC(s)
′
o) | o ∈ F ∈ behC(s)(F (i.x)(0)) and ,

behC(s)
′
o = {F (i.x)

′ | F (i.x)(0) = o and F ∈ behC(s)}
}

Definition of π

= π((behC(s), i))

= π(behC × idIn)(s)(i)

= (π ◦ (behC × idIn))(s)(i)

Next we have to prove uniqueness. In order to prove this last point, we need to prove the following lemma:

Lemma 3.1 For every component homomorphism f : S −→ Γ, for every x ∈ Inω and for every s ∈ S

we have:

(f (s)(x))′ = { f (s′)(x′) | s′ ∈ η′Out×S(α(s)(x(0)))|2}

where x′ is the derivative of x.

3 - Results 85

Proof

(f (s)(x))′ =
{

(o1, o2, . . . , ok, . . .)′ | ∃s0, s1, . . . , sk, · · · ∈ S

such that s = s0, 〈o1, s1〉 ∈ η′Out×S(α(s0)(x(0)))

and ∀2 ≤ j ≤ k− 1, (oj, sj) ∈ η′Out×S((sj−1)(x(j− 1))),

and ok ∈ η′Out×S(α((sk)(x(k)))|1)
}

=
{

(o2, . . . , ok, . . .) | ∃s1, . . . , sk, · · · ∈ S

such that s1 ∈ η′Out×S(α(s0)(x(0)))|2
and ∀2 ≤ j ≤ k− 1, sj ∈ η′Out×S(α((sj−1)(x(j− 1))))|2 ,

and ok ∈ η′Out×S(α(sk)(x(k)))|1

}

= { f (s1)(x′) |s1 ∈ η′Out×S(α(s0)(x(0))|2}

= { f (s′)(x′) |s′ ∈ η′Out×S(α(s)(x(0))|2}

End

Now, let us assume that g : S→ Γ is also a homomorphism of components. Let us show that the relation

R ⊆ Pκ(Outω)×Pκ(Outω) defined as:

R = {〈g(s)(x), beh(s)(x)〉 | s ∈ S, x ∈ Inω, g(s)(x) = beh(s)(x)}

is a bisimulation.

It can be shown by coinduction on x ∈ Inω, that for all s ∈ S we have:

g(s)(x) = beh(s)(x)

The initial set outputs of g(s)(x) and beh(s)(x) agree, since at the initial input x(0) of x, we have:

g(s)(x)(0) = η′Out×S(α(s)(x(0))|1 = beh(s)(x)(0)

(g(s)(x))′ = (g(s)(x(0).x′))′ = {g(s′)(x′) | s′ ∈ η′Out×S(α(s)(x(0)))|2} Lemma 2

(beh(s)(x))′ = (beh(s)(x(0).x′))′ = {beh(s′)(x′) | s′ ∈ η′Out×S(α(s)(x(0)))|2} Lemma 2

Hence the function derivatives sets are also R-related, and we conclude that R is a bisimulation.

End

3.2 Minimal component

A final model of the functor F = T(Out×)In provides an abstract model of all possible

behaviours of its F-coalgebras. Hence, in practice, it cannot be handled as a whole, but we can

construct the minimal part of it (minimality refers to the cardinality of the state set) for every

state s ∈ S of a F-coalgebra C = (S, α). This is done by computing the smallest subcoalgebra

in (Γ, π) containing behC(s). More generally, given a subset F ∈ Γ of causal functions, we can

compute the smallest subcoalgebra in (Γ, π), noted 〈F〉, containing F. This coalgebra is called

the coalgebra generated by F in (Γ, π) in [5].

This construction will be useful to us to define our composition operators (see Chapter V).

86 Chapter IV Generic components

Definition 3.1 (Component generated by F) Let (Γ, π) be the final model over H = T(Out×)In.

Let F ∈ Γ. The component 〈F〉 generated by F in (Γ, π) is the component (〈F〉, F, α〈F〉) defined as

follows:

– F is the initial state,

– 〈F〉 is the set of transfer function sets inductively defined as follows:

– 〈F〉0 = {F}

– 〈F〉j=
{

G′ | ∃G ∈ 〈F〉j−1, ∃i ∈ In, ∃o ∈ Out, o ∈
⋃

F∈G

F (i.x)(0)

and G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G},

for x ∈ Inω chosen arbitrarily
}

Hence, 〈F〉 =
⋃

j<ω

〈F〉j

– α〈F〉 : 〈F〉 × In → T(Out× 〈F〉) is the mapping which for every G ∈ 〈F〉, and for every input

i ∈ In associates η′−1
Out×〈F〉

(Π′) where Π′ is the set:

Π′ =
{

(o, G′o) | o ∈
⋃

F∈G

(F (i.x)(0)) and,

G′o = {F (i.x)
′ | F (i.x)(0) = o and F ∈ G},

for x ∈ Inω chosen arbitrarily
}

It is easy to notice that both components C = (S, init, α) and 〈behC(init)〉 share the same trace

semantics i.e. Trace(C) = Trace(〈behC(init)〉)) = behC(init). (see Definition 2.4).

s

s1 sn

. . .

s in the component C

i1|o1 in |on

=⇒

behC (s)

behC (s)
′
o1

= behC (s1) behC (s)
′
on = behC (sn)

i1|o1 in |on

. . .

behC (s) in the component Γ

From the finality of (Γ, π), the component 〈F〉 generated by F in (Γ, π) can be built by a re-

peated computation of derivative sets starting from F. The state of 〈F〉 therefore contains all

derivative sets of F and may eventually not be finite. In the following we will be only interested

in component 〈F〉 with finite state spaces.

Example 3.1 (Minimal component) For a better understanding of the definition of a minimal compo-

nent, we consider an example of binary Mealy machineM modeled by the transition diagram shown on

Figure IV.6. This machineM is considered as a componentM = ({s0, s1, s2}, s0, α) over the signature

({0, 1} ×){0,1} where the transition function:

α : {s0, s1, s2} −→ ({0, 1} × {s0, s1, s2})
{0,1}

is defined as follows:
{

α(s0)(0) = (0, s2)

α(s0)(1) = (1, s1)

{

α(s1)(0) = (1, s1)

α(s1)(1) = (0, s2)

{

α(s2)(0) = (0, s2)

α(s2)(1) = (1, s1)

3 - Results 87

s0

s1

s2

0|1

0|0

1|1

0|0

1|0

1|1

Figure IV.6 – Binary Mealy automaton

It is not difficult to see that applying Definition 2.4 to the initial state s0 leads to the minimal set of

transfer functions behM(s0) = {F1} where F1 : {0, 1}ω −→ {0, 1}ω is the transfer function of

Example 2.1 i.e. the one defined for every σ ∈ {0, 1}ω and for every k ∈ ω by:

F1(σ(k)) =
(k

∑
i=0

σ(i)
)

mod 2

Now to compute the minimal component 〈behM(s0)〉, we need to compute all derivative sets of trans-

fer functions starting from behM(s0). With a simple computing, we can conclude that the state of

〈behM(s0)〉 consists of two states: {F1} and {F2} where F2 : {0, 1}ω −→ {0, 1}ω is the transfer

function defined for every σ ∈ {0, 1}ω and for every k ∈ ω by:

F2(σ(k)) = 1−
(k

∑
i=0

σ(i)
)

mod 2

Computing further derivative sets will not yield any new transfer functions sets. Thus, 〈behM(s0)〉 is

the component ({F1,F2}, {F1}, αbehM(s0)
) where:

αbehM(s0)
: {{F1}, {F2}} −→ ({0, 1} × {{F1}, {F2}})

{0,1}

is the transition function defined as follows:

αbehM(s0)
({F1})(0) = (0, {F1})

αbehM(s0)
({F1})(1) = (1, {F2})

αbehM(s0)
({F2})(0) = (1, {F2})

αbehM(s0)
({F2})(1) = (0, {F1})

and can be then depicted as:

0|0 0|11|1

1|0

88 Chapter IV Generic components

4 Conclusion

The contribution of this chapter is threefold: first, it shows the effectiveness of Barbosa’s coal-

gebraic definition of components in unifying in a single framework a wide variety of state-based

formalisms such as Mealy automata [33, 34], Labeled Transition Systems [35, 36] and Input-

Output Labeled Transition Systems [39, 40] by using a suitable choice of computation structures

introduced by the monad T [16, 15]. Second, this way of modeling the behaviour of components

allows us, following Rutten’s works [41, 74], to define a trace model over components by causal

transfer functions [77]. Such functions are dataflow transformations of the form: y = F (x, s, t)

where x, y and s are respectively the input, output and state of the component under considera-

tion, and t stands for discrete time. This representation of system behaviour forms the first step

towards a unified framework that will capture not only different usual computations, but also

time heterogeneity (i.e. both discrete and continuous times). Indeed, in this thesis, we restrict

ourselves to discrete time. However, there are other current works extending our framework

to be able to take into account continuous time using non-standard analysis [81]. Third, defin-

ing a trace model from causal functions (which is the main contribution of this chapter) allows

us to show the existence of a final coalgebra in the category of coalgebras over a signature

T(Out ×)In under some sufficient conditions on the monad T. Final coalgebras are indeed

important because their existence is the key of co-induction, a powerful reasoning principle in

coalgebraic theory. Such a final minimal component model will be the cornerstone of defining

how components are combined to define larger components in the following chapter.

Chapter V

Integration of components

1 Basic integration . 90

1.1 Cartesian product . 90

1.2 Feedback . 90

2 Complex operators . 99

2.1 Sequential composition . 100

2.2 Double sequential composition . 102

2.3 Synchronous product . 104

2.4 Concurrent composition . 105

2.5 Synchronous parallel composition . 106

3 Systems and compositionality . 108

3.1 Systems . 108

3.2 Examples . 109

3.3 Compositionality . 118

4 Related works . 123

5 Conclusion . 125

So far in this part we have seen that the easiest way to model complex systems is to de-

scribe them as compositions of simpler systems, being considered as coalgebraic components.

In this chapter, we explain how to define a larger component by composition of multiple com-

ponents using integration operators. Many different integration operators have been defined

and studied in the literature such as sequential composition, double sequential composition,

synchronous product, concurrent composition or synchronous parallel composition. Here, we

will show that most of them can be obtained by a composition of two basic integration oper-

ators, namely: cartesian product and feedback. In Section 1, we will then define these two basic

operators for building larger components from simpler ones. In Section 2, we will define more

complex operators by composition of our basic integration operators. Finally, in Section 3, we

will define how systems can be built over these complex operators defined in Section 2 and will

give some concrete system examples.

90 Chapter V Integration of components

1 Basic integration

1.1 Cartesian product

The cartesian product is a composition where both components are executed simultaneously

when triggered by a pair of input values (see Figure V.1).

Definition 1.1 (Cartesian product ⊗) Let H1 = T(Out1 ×)In1 and H2 = T(Out2 ×)In2 be two

signatures. Let H = T((Out1 × Out2)×)(In1×In2) be the signature resulting from the product of H1

and H2. Let us define the cartesian integration functor:

⊗ : Comp(H1)× Comp(H2) −→ Comp(H)

(
(S1, α1)In1−→

Out1−→ ,
(S2, α2)In2−→

Out2−→) 7→
(S, α)In1×In2−→

Out1×Out2−→

as follows: ∀C1 = (S1, init1, α1) ∈ Comp(H1), ∀C2 = (S2, init2, α2) ∈ Comp(H2),

⊗((C1, C2)) = (S, init, α)

where:

– S = S1 × S2 is the set of states,

– init = (init1, init2) is the initial state,

– α : S× (In1 × In2) −→ T((Out1 ×Out2)× S) is the mapping defined as follows: ∀i = (i1, i2) ∈

In1 × In2 and (s1, s2) ∈ S:

α((s1, s2))(i) = η′−1
(Out1×Out2)×S

{

((o1, o2), (s
′
1, s′2))|(o1, s′1) ∈ η′Out1×S1

(α1(s1)(i1)) and

(o2, s′2) ∈ η′Out2×S2
(α2(s2)(i2))

}

C1

C2

In1 Out1

In2 Out2

In1 × In2 Out1 ×Out2

Figure V.1 – Cartesian product

1.2 Feedback

A component with feedback has directed cycles, where an output from a component is fed

back to affect an input of the same component (see Figure V.2). That means the output of a com-

ponent in any feedback composition depends on an input value that in turn depends on its own

output value. The feedback operator is then a composition where some outputs of a component

1 - Basic integration 91

are linked to its inputs i.e. some outputs can be fed back as inputs. In order to obtain a model

which fits our component definition, we need to take into account the computational effects

of the monad T. This monad impacts both the evolution of component states and the observa-

tion of its outputs. Therefore, the feedback link between outputs and inputs carries part of the

structure imposed by T to the inputs. For instance, with the monad built on P for modeling

non-determinism, the feedback may bring non-determinism to the inputs of the component.

state OutIn

Figure V.2 – Illustration of a system with feedback

We introduce feedback interfaces for defining correspondences between outputs and inputs

of components. A feedback interface also allows us to keep only the inputs and the outputs that

are not involved in feedback thanks to component-wise projections πi and πo:

Definition 1.2 (Feedback interface) Let H = T(Out×)In be a signature. A feedback interface

over H is a triplet I = (f , πi, πo) where:

– f : In×Out −→ In is a function such that:

∀(i, o) ∈ In×Out, f (f (i, o), o) = f (i, o)

– πi : In −→ In′ and πo : Out −→ Out′ are surjective mappings 1 such that:

∀(i, o) ∈ In×Out, πi(i) = πi(f ((i, o)))

The mapping f allows us to specify how components are linked and which parts of their inter-

faces are involved in the composition process. Both mappings πi and πo can be thought of as

extensions of the hiding connective found in process calculi [82]. Thereby, the feedback interface

enables encapsulation by making the internal interactions made in the scope of the component

invisible. Such an encapsulation helps to separate both the internal behaviour and the interac-

tion of a component from the external interaction with the global system, and thus deals with

the interaction between components independently of the behaviour of individual components.

Two kinds of feedback operators are usually distinguished: relaxed feedback and synchronous

feedback. The first kind means that in a reaction, the output is not simultaneous with the input.

This relaxed feedback composition depends on the previous output and the current input. The

second kind means that the reaction of a system takes no observable time [83]. Systems produce

their outputs synchronously with their inputs. More precisely, at some reaction r, the output of

system S in r must be available to its inputs in the same reaction r.

Definition 1.3 (Relaxed feedback ←֓) Let H = T(Out×)In be a signature and I = (f , πi, πo) be

a feedback interface over H. Let us note H′ = T(Out′ ×)In′ . Let C = (S, s0, α) be a component over H.

Let us define for every x ∈ Inω, the set Θx whose elements are couples (x̄, yx̄) ∈ Inω ×Outω inductively

defined from an infinite sequence of states (s0, s1, . . . , sk, . . .) of S as follows:

1. i.e component-wise projections

92 Chapter V Integration of components

– x̄(0) = x(0) and yx̄(0) ∈ η′Out×S(α(s0)(x(0)))|1
– ∀n, 0 < n < ω,

– x̄(n) = f (x(n), yx̄(n− 1))

– yx̄(n) ∈ η′Out×S(α(sn)(x̄(n)))|1
– and sn ∈ η′Out×S(α(sn−1)(x̄(n− 1)))|2

Then, the operation of relaxed feedback over I , ←֓ I : Comp(H) −→ Comp(H′) associates to

every component C = (S, s0, α) over H, the component (〈F〉, F, α〈F〉) over H′ where F is the set of

transfer functions F : In′ω −→ Out′ω, each one defined by F (x′) = y′ where there exists x ∈ Inω such

that there exists (x̄, yx̄) ∈ Θx satisfying

∀i < ω, x′(i) = πi(x̄(i)) and y′(i) = πo(yx̄(i))

Definition 1.3 calls for some comments. We want to build a component that hides the relaxed

feedback of a component C. As one can see in Figure V.3, the relaxed feedback component ←֓ I
(C) is given as a set of transfer functions, each one mapping an infinite sequence of inputs x′ ∈

In′ω to an infinite sequence of outputs y′ ∈ Out′ω. The outputs are then hidden from any state s

Cπif πox(n)x′(n) y′(n)

yx̄(n−1)

←֓ I(C)

Figure V.3 – Relaxed feedback composite: ←֓ I(C)

that are fed back as inputs to the successor of s. The result is a component with input and output

sets In′ and Out′ respectively. This is done by means of the feedback interface I = (f , πi, πo).

Let us suppose that the current state of C at the nth reaction is sn ∈ S and the current external

input is x(n) ∈ In, then let us compute both new input x′(n) ∈ In′ and output y′(n) ∈ Out′

when C is triggered by x(n). First, by f , we compute the input x̄(n) = f (x(n), yx̄(n−1)). Then,

x̄(n) becomes the new input of C. Indeed, component C reacts by updating its state to sn+1 and

producing an output yx̄(n). In this way, the output of C at the nth reaction is given by relying on

the previous output yx̄(n−1) and the current input x(n). Second, by means of πi and πo, we hide

both input and output involved in the feedback, and then produce the input x′(n) = πi(x̄(n))

and the output y′(n) = πo(ȳ(n)) of the relaxed feedback component ←֓ I(C).

Proposition 1.1 ←֓ I : Comp(H) −→ Comp(H′) is a functor.

Proof It only remains for us to make a correspondence between homomorphisms in Comp(H) and

homomorphisms in Comp(H′). Let f : C1 −→ C2 be an homomorphism in Comp(H). Then, let us

define ←֓ I(f) :←֓ I(C1) −→←֓ I(C2) where ←֓ I(Ci) = (〈Fi〉, Fi, α〈Fi〉
) for i = 1, 2 as follows:

– ←֓ I(f)(F1) = F2

– for every j, 0 < j < ω, for every G′ ∈ 〈F1〉
j, we know by definition that there exists

G ∈ 〈F1〉
j−1, i ∈ In and o ∈ Out such that :

1 - Basic integration 93

– o ∈
⋃

F∈G

(F (i.x)(0))

– G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G}

for x ∈ Inω chosen arbitrarily. It is sufficient to write down

←֓ I(f)(G′) =
{

F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈←֓ I(f)(G)
}

f being a morphism on coalgebras, we can easily show that ←֓ I(f)(G′) is nonempty.

Let us finish by showing that ←֓ I(f) preserves identities and compositions.

For identities, let C ∈ Comp(H), ←֓ I (C) = 〈F〉, and let us prove by induction on the structure of F

that ←֓ I(idC) = id←֓ I (C).

– Basic Step: By definition of ←֓ I(idC), one has ←֓ I(idC)(F) = F = id←֓ I (C)(F)

– Induction Step: let G′ ∈ 〈F〉j+1. We know by definition of G′ that there exists G ∈ 〈F〉j, i ∈ In

and o ∈ Out such that o ∈
⋃

F∈G

(F (i.x)(0)) and G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G}

for x ∈ Inω chosen arbitrarily. Then, by definition of ←֓ I(idC) one has:

←֓ I(idC)(G
′) =

{

F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈←֓ I(idC)(G)
}

by induction hypothesis

=
{

F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈ id←֓ I(C)(G)
}

by definition of id←֓ I(C)

=
{

F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈ G

}

by hypothesis

= G′

= id←֓ I(C)(G
′)

For preservation of composition. Let f1 : C1 −→ C2 and f2 : C2 −→ C3 be two homomorphisms in

Comp(H). Let ←֓ I (f1) : 〈F1〉 −→ 〈F2〉 and ←֓ I (f2) : 〈F2〉 −→ 〈F3〉 their associated homomor-

phisms in Comp(H′) where ←֓ I(C1) = 〈F1〉, ←֓ I(C2) = 〈F2〉 and ←֓ I(C3) = 〈F3〉.

Let us then prove by induction on the structure of F that ←֓ I(f2 ◦ f1) =←֓ I(f2)◦ ←֓ I(f1).

– Basic Step: By definition of ←֓ I(f2 ◦ f1), one has

←֓ I(f2 ◦ f1)(F1) = F3 by definition of ←֓ I(f2)

= ←֓ I(f2)(F2) by definition of ←֓ I(f1)

= ←֓ I(f2)(←֓ I(f1)(F1))

= ←֓ I(f2)◦ ←֓ I(f1)(F1)

– Induction Step: let G′1 ∈ 〈F1〉
j+1. We know by definition of G′1 that there exists G1 ∈ 〈F1〉

j,

i ∈ In and o ∈ Out such that o ∈
⋃

F1∈G1

(F1(i.x)(0)) and G′1 = {F1(i.x)
′ | F1(i.x)(0) =

o and F1 ∈ G1} for x ∈ Inω chosen arbitrarily. By definition of ←֓ I (f1), we also know that

←֓ I(f1)(G
′
1) =

{

F ′1(i.x)
′ | F ′1(i.x)(0) = o and F ′1 ∈←֓ I(f1)(G1)

}

.

Let us denote by the set
{

F ′1(i1.x1)
′ | F ′1(i1.x1)(0) = o1 and F ′1 ∈←֓ I(f1)(G1)

}

by G′2. This set

belongs to 〈F2〉. Then, we know by definition of G′2 that ∃G2 ∈ 〈F2〉 such that G2 =←֓ I(f1)(G1),

94 Chapter V Integration of components

o ∈
⋃

F2∈G2

(F2(i.x)(0)) and G′2 = {F2(i.x)
′ | F1(i.x)(0) = o and F2 ∈ G2}. By definition of

←֓ I(f2), we know that ←֓ I(f2)(G
′
2) =

{

F ′2(i.x)
′ | F ′2(i.x)(0) = o and F ′2 ∈←֓ I(f2)(G2)

}

.

Now, we have that

←֓ I(f2)◦ ←֓ I(f1)(G
′
1) = ←֓ I(f2)(←֓ I(f1)(G

′
1))

= ←֓ I(f2)(G
′
2)

=
{

F ′2(i.x)
′ | F ′2(i.x)(0) = o and F ′2 ∈←֓ I(f2)(G2)

}

=
{

F ′2(i.x)
′ | F ′2(i.x)(0) = o and F ′2 ∈←֓ I(f2)(←֓ I(f1)(G1))

}

=
{

F ′2(i.x)
′ | F ′2(i.x)(0) = o and F ′2 ∈←֓ I(f2)◦ ←֓ I(f1)(G1)

}

by induction hypothesis

=
{

F ′2(i.x)
′ | F ′2(i.x)(0) = o and F ′2 ∈←֓ I(f2 ◦ f1)(G1)

}

= ←֓ I(f2 ◦ f1)(G
′
1)

End

Example 1.1 (Syracuse’s sequence)

Syracuse’s sequence is a finite or infinite sequence of integers n0, n1, n2, . . . , ni, . . . generated 2 as fol-

lows: for any i ∈ N∗

ni+1 7→

ni/2 i f ni ≡ 0 (mod 2)

3ni + 1 otherwise

This sequence starts with any positive integer n, and produces at each step either half of itself (i.e. n/2) if

it is even or three times itself plus one (i.e. 3n + 1) if it is odd. We can easily see that any output ni pro-

duced at the ith step is linked to the input at the (i + 1)th i.e. ni will be considered as the input at the next

step. Then, there is a relaxed feedback. Figure V.4 shows the component that can be considered as a struc-

tural model of the Syracuse sequence. When a new positive integer n is available, it is directly available as

an input of the component C that produces it as output. If n is even, n is sent to the component DivideBy2

which produces as an output (n/2). If n is odd, n is sent to the component MultipleBy3Plus1 which

produces as an output (3n + 1). Both outputs of DivideBy2 and MultipleBy3Plus1 are linked to the

component ∆ which is considered as a unit delay allowing time to pass.

This sequence can be modeled in our framework as a component S = (S, init, α) over the functor

(N∗ ×)({⊥}×N∗)∪N∗

where:

– init is the initial state;

– S = {si | i ∈ N∗} ∪ {init} is the set of states;

– α : S× (({⊥} ×N∗)} ∪N∗) −→ N∗ × S is defined as follows:

α(init)(k) = (k, sk) for every k ∈ N∗

and

α(sk)((⊥, k)) =

(k/2, sk/2) if k ≡ 0 (mod 2)

(3k + 1, s3k+1) otherwise

2. N∗ = N \ {0}

1 - Basic integration 95

C

DivideBy2

MultipleBy3Plus1

∆n0

n

parity testing

yes

no

Figure V.4 – Syracuse’s sequence component

Thus, the inputs are either:

– of the form i where i stands for the initial input received from the environment (i.e. the integer for

which we compute its associated Syracuse sequence). For instance, α(init)(10) = (10, s10) states

that the component starts running by receiving from the environment an input value 10 and goes

to state s10 while producing the output value 10.

– or pair of input values (⊥, i) where ⊥ is the external input value received from the environment 3

and i is the input value feeding back from the output. For instance, α(s10)((⊥, 10)) = (5, s5)

expresses that the component receives no value from the environment and the input value 10 feeding

back from the output and goes to state s5 while producing the output value 5.

Starting with the initial state init, one gets for example the following execution:

init
3|3

s3

(⊥, 3)|10
s10

(⊥, 10)|5
s5

(⊥, 5)|16
s16

(⊥, 16)|8
s8

(⊥, 8)|4
s4

(⊥, 4)|2
s2

(⊥, 2)|1
s1 (V.1)

Let us now compute the Syracuse’s feedback component. We need to compute a transfer function that

takes an input value n0 and computes its associated Syracuse sequence. For this, we have to hide both

the input and output values involved in the feedback. Taking Sequence V.1, one needs to hide the output

values 3, 10, 5, 16, 8, 4 and 2 in (⊥, 3), (⊥, 10), (⊥, 5), (⊥, 16), (⊥, 8), (⊥, 4), (⊥, 2) that are fed back as

inputs. This can be obtained by applying the relaxed feedback operator ←֓ I on S where I = (f , πi, πo)

is the feedback interface defined as follows:

– f : {⊥} ×N∗ −→ {⊥} ×N∗ is the identity on {⊥} ×N∗;

– πi is the function defined as follows:

πi : N∗ ∪ ({⊥}, N∗) → N∗ ∪ {⊥}

n 7→ n

(⊥, n) 7→ ⊥

– πo : N∗ −→ N∗ is the identity function on N∗.

Thus, the input-output feedback sequence computed from Sequence V.1 is the following:

〈3|3,⊥|10,⊥|10,⊥|5,⊥|16,⊥|8,⊥|4,⊥|2,⊥|1〉

Hence, it becomes clear that ←֓ I (S) is equal to the component 〈F〉 with F as the set containing

the unique transfer function F : (N∗ ∪ {⊥})ω −→ N∗ω defined for every input sequence σ ∈

3. We require that the environment provides an artificial input ⊥ to make the component react.

96 Chapter V Integration of components

(N∗ ∪ {⊥})ω and for every k ∈ ω as follows:

F (σ)(k) =

σ(k) i f σ(k) 6= ⊥

{

(F (σ)(k− 1))/2 i f F (σ)(k− 1) is even

(3×F (σ)(k− 1)) + 1 i f F (σ)(k− 1) is odd
otherwise

The synchronous feedback is more difficult to define because it requires the existence of an

instantaneous fixpoint (i.e. defined at the same time and not deferred by one unit). This gives

rise to the notion of well-formed feedback composition.

Definition 1.4 (Well-formed feedback composition) Let H = T(Out×)In be a signature. Let C be

a component over H and I = (f , πi, πo) be a feedback interface over H. We say that the synchronous

feedback composition C over I is well-formed if, and only if for every state s ∈ S and every x ∈ Inω:

there exists y ∈ Outω such that for every n < ω, y(n) ∈ η′Out×S(α(s)(f (x(n), y(n))))|1

We illustrate the last definition with the following example:

Example 1.2 (Well-formed composition) Consider two components C1 = ({s1, s2}, s1, α1) and C2 =

({q1, q2}, q1, α2) over the signature

({T, F} ×){T,F}

with the transition function α1 (respectively α2) graphically drawn on the left side (respectively on the

right side) of Figure V.5. There is then a feedback composition for C1 and a feedback composition for C2

s1 s2

T|F

F|F

F|T

T|T

(a) Well-formed feedback composition of C1

q1 q2

T|F

F|F

F|T

T|F

(b) Ill-formed feedback composition of C2

Figure V.5 – Examples of feedback composition

because both outputs T and F are fed back as inputs of C1 and C2. These compositions are considered

to have a zero-delay feedback loop. Let us consider the component f : In× Out −→ In of the interface

feedback I = (f , πi, πo) as the "and" logic operator. More formally, f : {T, F} × {T, F} −→ {T, F} is

defined as follows:

f ((i, o)) =

F if i = F or o = F

T otherwise

The composition of the component C1 is well-formed. This is due to the fact that for every state s ∈

{s1, s2} and for every input sequence x ∈ {T, F}ω there exists an output y ∈ {T, F}ω such that for

every n, n < ω, y(n) ∈ α1(s)(f (x(n), y(n))). More precisely 4, one has:

4. We deliberately used α1(s)(f (x(n), y(n))) instead of η′(α1(s)(f (x(n), y(n))))|1 for sake of simplicity because η′

considered here stands for the identify.

1 - Basic integration 97

– F ∈ α(s1)(f (F, F))

– F ∈ α(s1)(f (T, F))

– T ∈ α(s2)(f (F, T))

– T ∈ α(s2)(f (T, T))

On the other hand, the feedback composition of C2 is not well-formed. Indeed, similarly, as just shown

above for s1, one gets a fixed point in state q1 for both input F and T. But, there is no fixed point in

state q2 i.e. given an input sequence x ∈ {T, F}ω, there is no output sequence y(n) ∈ {T, F}ω such

that y(n) ∈ α2(q2)(f (x(n), y(n)))). In fact, if we attempt to choose x(n) = F, then C2 may stay in

state q2 and its output may be the same as the fed back input T (T ∈ α2(q2)(f (F, T))). If we attempt to

choose x(n) = T, then C2 may go either to state q1 and its output is not the same as the fed back input

T (T 6∈ α2(q2)(f (T, T)), or to stay in state q2 and its output is not the same as the fed back input F

(F 6∈ α2(q2)(f (T, F))).

Hence, systems with feedbacks not well-formed (called ill-formed) will be rejected. They are

considered to be unstable and insecure systems.

Definition 1.5 (Synchronous feedback) Let H = T(Out×)In be a signature and I = (f , πi, πo)

be a feedback interface over H. Let us note H′ = T(Out′ ×)In′ . Let us define for every x ∈ Inω, the set

Θx of output sequences y ∈ Outω defined from an infinite sequence of states (s0, s1, . . . , sk, . . .) of S as

follows:

∀n, 0 ≤ n < ω, (y(n), sn+1) ∈ η′Out×S(α(sn)(f (x(n), y(n)))) (by hypothesis, C’s feedback composi-

tion being well-formed over I , such y exists)

Then, the operation of synchronous feedback over I is the partial mapping

	I : Comp(H) −→ Comp(H′)

that associates to every component C = (S, s0, α) over H whose feedback composition is well-formed, the

component (〈F〉, F, α〈F〉) over H′ where F is the set of transfer functions F : In′ω −→ Out′ω, each one

defined by F (x′) = y′ where there exists x ∈ Inω s.t. there exists y ∈ Θx satisfying

∀i, i < ω, x′(i) = πi(x(i)) and y′(i) = πo(yx(i))

Proposition 1.2 	I : Comp(H) −→ Comp(H′) is a partial functor only defined for component C

whose the synchronous feedback composition over I is well-formed.

Proof The proof is noticeably similar to the proof given for ←֓ I .

End

Example 1.3 Consider again the component C1 shown in Figure V.5a and let us built the composite

component that hides the feedback, as suggested by the last definition. We then choose the component

f : In×Out −→ In as the "and" operator, πi and πo as the identities on In and Out respectively.

The function F : {T, F}ω −→ {F, T}ω defined for every x ∈ {T, F}ω and for every k, 0 ≤ k < ω, by:

F (x)(k) =

F i f k is even

T otherwise

is the unique transfer function that can be defined using our synchronous feedback definition. Indeed,

both associated outputs to each input x ∈ {T, F} from s1 are F, and both associated outputs to each

98 Chapter V Integration of components

x ∈ {T, F} from s2 are T. Then the feedback composite 	I (C) over the signature I is the component

(〈{F}〉, {F}, α〈{F}〉) where the set of states 〈{F}〉 is obtained by a repeated computation of derivative

starting from {F}. The states of 〈{F}〉 then contain the set of all derivative functions of F that are F

and F ′ where F ′ : {T, F}ω −→ {F, T}ω is the function defined for every x ∈ {T, F}ω and for every

k, 0 ≤ k < ω, by:

F ′(x)(k) =

T i f k is even

F otherwise

Note that computing further derivative sets will not yield any new transfer functions sets.

This then leads to the following component 〈{F}〉:

q0 q1

T,F|F

T,F|T

We can also define the feedback in terms of its argument as concrete coalgebras, as done for

the product in Definition 1.1, and not on behaviours as done in Definition 1.3 and Definition 1.5.

For the synchronous feedback, this leads to:

Definition 1.6 (Synchronous feedback 	c) Let H=T(Out×)In be a signature and I = (f , πi, πo)

be a feedback interface over H. Let us note H′ = T(Out′ ×)In′ . The operation of synchronous 5

feedback over I is the partial functor 	c
I : Comp(H) −→ Comp(H′) that associates to every com-

ponent C = (S, init, α) over H whose the feedback composition over I is well-formed, the component

C ′ = (S′, init′, α′) over H′ such that:

– S′ = S

– init′ = init;

– α′ : S′ −→ T(Out′ × S′)In′ is the transition mapping defined by:

∀s′1 ∈ S′, ∀i′ ∈ In′, α′(s′1)(i
′) = η′−1

Out′×S′
(Π) where Π is the set:

Π=
{

(o′, s′2) | ∃i ∈ In, ∃o ∈ Out, (o, s′2) ∈ η′Out×S(α(s
′
1)(f (i, o))), πi(i) = i′ and πo(o) = o′

}

Relaxed feedback can be defined similarly. Definition 1.5 and Definition 1.6 are equivalent. In-

deed, it is obvious to check that

beh	c
I (C)

(init′) = beh	I (C)(F) = F

Although, 	c
I is defined more uniformly with product ⊗ because both are defined as concrete

coalgebras, the interest of 	I (resp. ←֓ I) is that the resulting component is the minimal one.

This will allow easier compositionality proofs such as those given in Section 3.3 and Section 1.1

of Chapter VIII.

5. The exponent c in 	c
I is to express that feedback is defined in terms of its argument as concrete coalgebras.

2 - Complex operators 99

2 Complex operators

As previously explained, both cartesian product and feedback operators depend mainly on

the component structure. However, when modeling systems, there is not only a need to specify

component structure, but also some requirements for the input and output sets. On one hand,

there is a need to make some component actions private and therefore inaccessible or hidden

to the environment. To make this possible, our framework has to offer an operation to do that.

This operator is classically called hiding 6. Hidding aims to delimit the scope of both input and

output sets. Let us observe that this operator can be naturally defined in terms of the feedback

operator by taking the elements f , πi and πo of the feedback interface I as follows:

– f : In×Out −→ In is the mapping defined by (i, o) 7→ i;

– πi : In −→ {abs} ∪ In \ In′ is the mapping defined by:

πi(i) =

{

i if i ∈ In \ In′

abs otherwise

– πo : Out −→ {abs} ∪Out \Out′ is the mapping defined by:

πo(o) =

{

o if o ∈ Out \Out′

abs otherwise

In the following, we denote by C[hin, hout] a component C over T(Out×)In in which In and Out

are restricted using hin and hout where hin and hout stand for πi and πo respectively.

On the other hand, we need another operation that allows us to rename component actions.

This is useful when components have a common behavioural pattern and can be seen as spe-

cific instances of a generic component. We then define an operation called renaming 7 aiming

to rename inputs and outputs of components. The renaming operation is defined as a pair of

bijective functions

rin : In −→ In′ and rout : Out −→ Out′

that maps each i ∈ In to an element i′ ∈ In′ (respectively, each o ∈ Out to an element o ∈ Out′).

We denote by C]rin ,rout a component C over T(Out×)In in which In and Out are renamed using

rin and rout.

Definition 2.1 (Complex operator) The set of complex operators, is inductively defined as follows:

– is a complex operator of arity 1;

– op is a complex operator of arity n and (rin, rout) is a renaming couple, then (rin, rout)(op) is a

complex operator of arity n;

– if op1 and op2 are complex operators of arity n1 and n2 respectively, then op1 ⊗ op2 is a complex

operator of arity n1 + n2;

– if op is complex operator of arity n and I is a feedback interface, then 	I(op) is a complex operator

of arity n;

– if op is complex operator of arity n and I is a feedback interface, then ←֓ I (op) is a complex

operator of arity n.

6. also known as restriction operation.
7. also known as relabeling operation.

100 Chapter V Integration of components

To show that both cartesian product and feedback operators are expressive enough to de-

fine, by composition, standard composition operators, we explain in this section how sequen-

tial, double sequential, concurrent and synchronous parallel compositions, and synchronous

product can be obtained by their composition. Hence, the definition of the feedback interface

I = (f , πi, πo) is rather wide and abstract in the sense that each suitable choice of f , πi and πo

gives a particular semantic to the feedback composition and then a way of defining the global

and final reaction of the composition of a set of components.

Before defining these operators in our framework, let us note two important points:

– there seems to be no consensus on the terminologies used to describe composition oper-

ators. For instance, sequential composition is introduced as "cascade composition" in [84,

85] and "1-way-cascade" in [86], the synchronous parallel composition is called "syn-

chronous composition" in [87] and does not have the same semantic as "interleaving par-

allel composition" introduced in [86]. The cartesian product where the set of inputs are

considered as disjoint is called "synchronous side-by-side composition" in [85]. The con-

current composition is called "asynchronous side-by-side composition" in [85], and there

are many other examples. Therefore, we prefer to choose the terminology the best adapted

to our framework, and give the informal definition of each operator before giving its for-

mal definition to avoid any confusing terminology. Further technical details about the

different kinds of composition presented in the following can be found in textbooks such

as [84, 85, 88].

– The symbol abs is previously used to express the absence of component reaction when

modeling IOLTS as components. Here, it is also useful for building complex components.

Hence, the sets In1 and In2 (respectively, Out1 and Out2) may include some special action,

denoted by abs, in order to allow components to stutter 8. For instance, if the input action

is (abs, i2) with i2 6= abs, the reaction of the composite consists only of the reaction of

the second component (i.e. the composite behaves like the second component). Double

stuttering corresponds to the input (abs, abs) with the following additional requirement

that, for any s ∈ S1 × S2, η′(Out1×Out2)×S
(α(s)((abs, abs))) = {((abs, abs), s)}. We will see

later in this section that this can be useful for building larger components from smaller

ones using composition. This is of interest if we want to take into account a reaction of the

composite with only one of the components that reacts.

2.1 Sequential composition

The sequential composition (called also cascade composition, or series composition), denoted by

C = ⊲((C1, C2)), of two components C1 and C2 corresponds to a composition where both com-

ponents C1 and C2 are interconnected side-by-side and the output of one is the input of the other.

Figure V.6 illustrates this kind of composition.

A reaction of C consists then of a reaction of both C1 and C2, where C1 reacts first, produces its

outputs, and then C2 reacts. That is to say, when C1 is triggered by an input i from the environ-

ment, C1 executes i and the produced output is fed to C2. A requirement for this composition

to be defined is that Out1 has to be included into In2 (Out1 ⊆ In2). This ensures that any output

produced by C1 is an acceptable input to C2.

This kind of composition can be naturally defined in our framework using both the feedback

operator and the cartesian product by:

⊲((C1, C2)) = ⊖I ((C1 ⊗ C2)) (V.2)

8. stutter indicates that no progress of the component execution is made.

2 - Complex operators 101

C1 C2In1 Out2

Figure V.6 – Sequential composition

where I = (f , πi, πo) is the feedback interface defined for every (i, i′) ∈ In1 × In2 and (o, o′) ∈

Out1 ×Out2 as follows:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

and ⊖ stands for ←֓ or 	 depending on whether we want a relaxed or instantaneous sequential

composition. For the first sequential composition, the output o produced from the component

C1 after triggering by an input i takes some observable time to feed to the component C2. In this

case, ⊲ will be denoted by ⊲r. For the second one, the output o produced from the component

C1 after triggering by an input i is directly fed to the input of the component C2. In this case, ⊲

will be denoted by ⊲s.

Note that in both cases there is a causality dependency; that is, the outputs of C1 can affect the

behaviour of C2 i.e. sequential composition entails an ordering of the component reactions.

As already mentioned, our synchronous feedback operator 	 is only applied to systems

whose composition is well-formed. Therefore, applying this operator to the cartesian product

⊗((C1, C2)) of two components C1 and C2 requires that the composition of ⊗((C1, C2)) is well-

formed.

Theorm 2.1 Let H1 = T(Out1 ×)In1 and H2 = T(Out2 ×)Out1 be two signatures such that Out1⊆

In2. Let I = (f , πi, πo) be the feedback interface defined for every (i, i′) ∈ In1 × In2 and every (o, o′) ∈

Out1 ×Out2 as follows:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

Let C1 ∈ Comp(H1) and C2 ∈ Comp(H2). Then the feedback composition of ⊗((C1, C2)) is

well-formed.

Proof Let C1 = (S1, α1) ∈ Comp(H1), C2 = (S2, α2) ∈ Comp(H2) and C = ⊗((C1, C2)) = (S, α)

be the cartesian product of C1 and C2. Let us show that the synchronous feedback composition of C is

well-formed. For this, let (s1, s2) ∈ S be a state in S and (i1, i2) be an input in In1 × In2 and then show

that there exists an output (o1, o2) ∈ Out1 ×Out2 such that:

(o1, o2) ∈ η′(Out1×Out2)×S(α((s1, s2))(f ((i1, i2), (o1, o2))))|1 (1)

i.e. by the definition of f (o1, o2) ∈ η′(Out1×Out2)×S
(α((s1, s2))((i1, o1)))|1

(i1, i2) ∈ In1 × In2, then there exists an output o1 ∈ η′Out1×S1
(α1(s1)(i1))|1 . We also know that o1 is an

input of C2 since Out1 ⊆ In2. Hence, there exists an output o2 ∈ η′Out2×S2
(α2(s2)(o1))|1 . We can now

conclude that (i1, o1) is an input of C and there exists an output (o1, o2) of C such that:

(o1, o2) ∈ η′(Out1×Out2)×S(α((s1, s2))((i1, o1)))|1

Consequently, (1) is verified.

End

102 Chapter V Integration of components

Let us explain now how the synchronous sequential composition of two components can

be obtained with our modeling. Two components C1 and C2 are sequentially interconnected by

linking the output of C1 to the input of C2. This interconnection is made without taking time

(i.e. instantaneously). Suppose that at the nth reaction the input action of C = ⊲s((C1, C2)) is

x(n) = (i1n, i2n), the state is sn = (s1n, s2n) (s1n is the state of component C1 and s2n is the

state of component C2). There is an output action y(n) = (o1n, o2n) ∈ η′Out×S(sn)(f (x(n), y(n))|1
because the feedback composition of C is well-formed. Then, f ((i1n, i2n), (o1n, o2n)) becomes the

new input action of C. This is equal to (i1n, o1n) according to the definition of I . This means

i1n becomes the input of C1 and the output action o1n of C1 becomes the input of C2 at the nth

reaction. Then, component C1 (resp. C2) reacts by updating its state to s1(n+1) (resp. to s2(n+1))

and producing an output action o1n (resp. o2n). Finally, to omit outputs that are involved in the

feedback, we use πi and πo. Hence, at any reaction n, πi((i1n, i2n)) = i1n and πo((o1n, o2n)) =

o2n.

2.2 Double sequential composition

The double sequential composition, denoted by C =⊲⊳ ((C1, C2)), of two components C1 and C2

is a composition in which the system can be triggered either by an input of C1 and then feeds

the output produced to C2 or by an input of C2 and then feeds the output produced to C1 (see

Figure V.7).

C1

In1

Out1

⊲⊳ C2

In2

Out2

C

(In1 ∪ In1) \ (Out1 ∪Out2)

Out1 ∪Out2

Figure V.7 – Double sequential composition

In our framework, this kind of composition can be obtained by modifying the cartesian product

to be able to express not only the component reaction of the form (i1, i2)/(o1, o2) but also those

of the form (i2, i1)/(o2, o1) while keeping the sequential feedback interface I as defined in Sec-

tion 2.1. In other words, we extend the cartesian product operator⊗ to an operator⊗e taking as

input the set (In1 × In2) ∪ (In2 × In1) and as output the set (Out1 ×Out2) ∪ (Out2 ×Out1). This

operator can be naturally expressed using both the sequential operator ⊲s and the cartesian

product ⊗ as follows:

⊗e((C1, C2)) = ⊲s(⊲s(C0,⊗(C1, C2)), C
′
0) (V.3)

where:

– C0 = ({init0}, init0, α0) is the component over the signature

T((In1 × In2)×)(In1×In2)∪(In2×In1)

where α0 is the transition mapping defined by: ∀(i, i′) ∈ (In1 × In2) ∪ (In2 × In1)

α0(init0)(i, i′) =

((i, i′), init0) if (i, i′) ∈ In1 × In2

((i′, i), init0) otherwise

2 - Complex operators 103

– C ′0 = ({init′0}, init′0, α′0) is the component over the signature

T((Out1 ×Out2) ∪ (Out2 ×Out1)×)(Out1×Out2)

where α′0 is the transition mapping defined by: ∀(o, o′) ∈ Out1 ×Out2

α′0(init′0)(o, o′) =

((o, o′), init′0) if (o, o′) ∈ (Out1 ∩ In2)×Out2

((o′, o), init′0) if (o, o′) ∈ Out1 × (Out2 ∩ In1)

C1

In1

Out1

⊗e C2

In2

Out2

C

(In1 × In2) ∪ (In2 × In1)

(Out1 ×Out2) ∪ (Out2 ×Out1)

Figure V.8 – Extended cartesian product ⊗e

Now, it is expected that ⊲⊳ (C1, C2) should be 	I(⊗e(C1, C2)) with I as the sequential feedback

interface, however this is not the case due to the fact that the feedback composition of⊗e(C1, C2)

over the sequential interface I is not necessarily well-formed. Indeed, ⊗e(C1, C2) may take an

input (i1, i2) for which there is no output (o1, o2) that feeds back as input to ⊗e(C1, C2). For

instance, when i1 ∈ In1 ∩ Out2 and i2 ∈ In2 \ Out1. To cope with this problem, it suffices to

replace the set of inputs of ⊗e(C1, C2) by

((In2 \Out2)× (In2 ∩Out1)) ∪ ((In2 \Out1)× (In1 ∩Out2))

instead of (In1 × In2) ∪ (In2 × In1), and define C0 over the signature

T((In1 × In2)×)((In1\Out2)×(In2∩Out1))∪((In2\Out1)×(In1∩Out2))

where α0 is the transition mapping defined by:

∀(i, i′) ∈ ((In1 \Out2)× (In2 ∩Out1)) ∪ ((In2 \Out1)× (In1 ∩Out2))

α0(init0)((i, i′)) =

((i, i′), init0) if (i, i′) ∈ (In1 \Out2)× (In2 ∩Out1)

((i′, i), init0) otherwise

Figure V.9 illustrates a simple example of the application of the extended cartesian product.

Hence, it is easy to see that the synchronous feedback composition of ⊗e((C1, C2)) is well-

formed. Thus, the double sequential composition is defined by:

⊲⊳ ((C1, C2) =	I(⊗e(C1, C2)) (V.4)

with I is the sequential feedback interface.

104 Chapter V Integration of components

⊗e

a|b e|m b|c d|e (a,b)|(b,c) (d,e)|(e,m)

Figure V.9 – Example: illustration of ⊗e

C1

In1

Out1

⊛ C2

In2

Out2

C

In1 ∪ In2

Out1 ×Out2

Figure V.10 – Synchronous product

2.3 Synchronous product

The synchronous product, denoted by C = ⊛((C1, C2)), of two components C1 and C2 cor-

responds to a composition where both components C1 and C2 are executed independently or

jointly, depending on the input. Hence, C1 and C2 are simultaneously executed when triggered

by a joint input i that belongs to both inputs set of C1 and C2 (see Figure V.10).

This kind of product can also be naturally expressed in terms of the synchronous feedback

operator and the cartesian product (see Figure V.11) as follows:

⊛((C1, C2)) = ⊲s(C0, (C1 ⊗ C2)) (V.5)

where C0 = ({init0}, init0, α0) is the component over the signature

T((In1 × In2)×)In1∪In2

where α0 is the transition mapping defined by: ∀i ∈ In1 ∪ In2

α0(init0)(i) =

((i, i), init0) if i ∈ In1 ∩ In2

((i, abs), init0) if i ∈ (In1 \ In1 ∩ In2)

((abs, i), init0) otherwise

C0

C1

C2

In1 ∪ In2
Out1 ×Out2

Figure V.11 – Synchronous product: ⊛((C1, C2)) = ⊲s(C0, (C1 ⊗ C2))

2 - Complex operators 105

2.4 Concurrent composition

The concurrent composition, denoted by C = ⊕((C1, C2)), of two components C1 and C2 cor-

responds to a composition where both components C1 and C2 are executed independently or

jointly, depending on the input received from environment. It combines both choice and paral-

lel compositions, in the sense C1 and C2 can be simultaneously executed when triggered by a

pair of inputs (i1, i2) (i1 belongs to inputs set of C1 and i2 belongs to inputs set of C2), or sepa-

rately when triggered by an input i: if i ∈ In1, then C1 is executed and the reaction of C is that of

C1, otherwise C2 is executed and the reaction of C is that of C2. Figure V.12 illustrates this kind

of composition.

C1

In1

Out1

⊕ C2

In2

Out2

C

In1 ∪ In2 ∪ In1 × In2

Out1 ∪Out2 ∪Out1 ×Out2

Figure V.12 – Concurrent composition

This kind of composition can also be naturally expressed in terms of the synchronous feedback

operator and the cartesian product (see Figure V.13) as follows:

⊕((C1, C2)) = ⊲s(⊲s(C0, (C1 ⊗ C2)), C
′
0) (V.6)

where

– C0 = ({init0}, init0, α0) is the component over the signature

T((In1 × In2)×)In1∪In2∪In1×In2

where α0 is the transition mapping defined by: ∀i ∈ In1 ∪ In2 ∪ In1 × In2

α0(init0)(i) =

(i, init0) if i ∈ In1 × In2

((i, abs), init0) if i ∈ In1

((abs, i), init0) otherwise

– C ′0 = ({init′0}, init′0, α′0) is the component over the signature

T((Out1 ∪Out2 ∪Out1 ×Out2)×)Out1×Out2

where α′0 is the transition mapping defined by: ∀o = (o1, o2) ∈ Out1 ×Out2

α′0(init′0)(o) =

(o1, init′0) if o ∈ Out1 × {abs}

(o2, init′0) if o ∈ {abs} ×Out2

(o, init′0) otherwise

106 Chapter V Integration of components

C0

C1

C2

C ′0In1 ∪ In2 ∪ In1 × In2 Out1 ∪Out2 ∪Out1 ×Out2

Figure V.13 – Concurrent composition: ⊕((C1, C2)) = ⊲s(⊲s(C0, (C1 ⊗ C2)), C
′
0)

2.5 Synchronous parallel composition

The synchronous parallel composition, denoted by C = ⊙((C1, C2)), of two components C1 and

C2 is a composition in which both C1 and C2 are executed independently or jointly depending

on the input, in such a way that each input action received by C from the environment consists

exclusively of an input action of either C1 or C2 i.e. there is no common input action for C1 and

C2. Indeed, when the global system receives an input which is supposed to be an input action

of C1, C1 reacts by producing an output. If that output does not belong to the input set of C2, the

reaction of the global system consists only of the reaction of C1. Otherwise, the output produced

is directly fed to C2 and the reaction of the global system consists of the reaction of both C1 and

C2 (one falls into the same composition as the sequential 9 composition). In the same manner,

when the global system receives an input supposed to be an input action of C2, C2 reacts by

producing an output. If that output does not belong to the input set of C1, the reaction of the

global system consists only of the reaction of C2. Otherwise, the output produced is directly

fed to C1 and the reaction of the global system consists of the reaction of both C1 and C2 (see

Figure V.14).

C1

In1

Out1

Out1 ∩ In2

Out2 ∩ In1

C2

In2

Out2

C

In1 ∪ In2 \Out1 ∪Out2

Out1 ∪Out2 \ In1 ∪ In2

Figure V.14 – Synchronous parallel composition

This kind of composition can be seen as a general composition embodying both the synchronous

and parallel (or interleaving parallel) aspects of composition. On one hand, it is synchronous

in the sense that all common actions between C1 and C2 are synchronized. That means each

output of C1 that is fed as input of C2 (i.e. Out1 ∩ In2) and each output of C2 that is fed as in-

put of C1 (Out2 ∩ In1) are hidden (i.e. synchronized). They are not observable from the outside.

On the other hand, it is parallel in the sense that both components C1 and C2 are considered

autonomous, that is to say, a component may produce an output o regardless of whether o is

specified as an input of the other component.

This kind of operator is not easy to be formally defined in our framework without any spe-

cial treatment. In fact, it is not clear how the global reaction of the integrated system is given

9. Note it is easy to see that the double sequential composition is a particular case of the synchronous parallel

composition.

2 - Complex operators 107

when outputs produced by C1 (respectively C2) are unspecified in C2 (respectively C1). Never-

theless, let us observe that if the concurrent composition operator ⊕ is extended to an operator

⊕e taking as inputs not only the set In1 ∪ In2 ∪ In1× In2, but also the set In2× In1, and modifying

the sequential feedback signature to deal with cases where component outputs are not fed back

as inputs, we do not have that problem.

C1

In1

Out1

⊕e C2

In2

Out2

C

(In1 \Out1) ∪ (In2 \Out2) ∪ ((In1 ∩Out2)× (In2 ∩Out1)) ∪ ((In2 \Out1)× (In1 ∩Out2))

Out1 ∪Out2 ∪Out1 ×Out2 ∪Out2 ×Out1

Figure V.15 – Extended concurrent composition ⊕e

Let us first define the extended concurrent operator ⊕e. Similarly as ⊕, ⊕e can also be nat-

urally expressed in terms of the synchronous feedback operator and the cartesian product as

follows:

⊕e((C1, C2)) = ⊲s(⊲s(C0, (C1 ⊗ C2)), C
′
0) (V.7)

where

1. C0 = ({init0}, init0, α0) is the component over the signature

T((In1 × In2)×)(In1\Out2)∪(In2\Out1)∪((In1\Out2)×(In2∩Out1))∪((In2\Out1)×(In1∩Out2))

where α0 is the transition mapping defined by:

∀i ∈ (In1 \Out2)∪ (In2 \Out1)∪ ((In1 \Out2)× (In2 ∩Out1))∪ ((In2 \Out1)× (In1 ∩Out2))

α0(init0)(i) =

((i1, i2), init0) if i = (i1, i2) ∈ ((In1 \Out2)× (In2 ∩Out1))

((i2, i1), init0) if i = (i1, i2) ∈ ((In2 \Out1)× (In1 ∩Out2))

((i, abs), init0) if i ∈ (In1 \Out2)

((abs, i), init0) otherwise

2. C ′0 = ({init′0}, init′0, α′0) is the component over the signature

T((Out1 ∪Out2 ∪ (Out1 ×Out2) ∪ (Out2 ×Out1))×)Out1×Out2

where α′0 is the transition mapping defined by: ∀o = (o1, o2) ∈ Out1 ×Out2

α′0(init′0)(o) =

(o1, init′0) if o ∈ Out1 × {abs}

(o2, init′0) if o ∈ {abs} ×Out2

(o, init′0) if o ∈ Out1 ×Out2

((o2, o1), init′0) otherwise

Figure V.16 illustrates a simple example of the application of the extended concurrent operator.

108 Chapter V Integration of components

a|b b|c

⊕e

(a,b)|(b,c)

(a) Cas 1: synchro-

nization left-right

b|c a|b

⊕e

(a,b)|(b,c)

(b) Cas 2: synchro-

nization right-left

a|b c|d

⊕e

a|b c|d

(c) Cas 3: parallel

composition

Figure V.16 – Example: illustration of ⊕e

In this way, the synchronous parallel composition is defined in our framework as:

⊙(C1, C2) =	I (⊕e(C1, C2)) (V.8)

with I = (f , πi, πo) is the feedback interface defined:

∀i ∈ (In1 \Out2)∪ (In2 \Out1)∪ ((In1 \Out2)× (In2 ∩Out1))∪ ((In2 \Out1)× (In1 ∩Out2)) and

o ∈ Out1 ∪Out2 ∪ (Out1 ×Out2) ∪ (Out2 ×Out1) as follows:

f (i, o) =

i if i ∈ (In1 \Out2) ∪ (In2 \Out1)

(i1, o1) with i = (i1, i2) and o = (o1, o2) otherwise

3 Systems and compositionality

3.1 Systems

Complex operators for basic components yield larger components that we will call systems.

However, it is not always possible to yield a component for a complex operator from any set

of basic components passed in arguments. Indeed, for a complex operator of the form 	I(op),

according to the component C resulting from the evaluation of op, the interface I has to be

defined over the signature of C and the feedback over C has to be well-formed over I . This

leads up to the following definition:

Definition 3.1 (Systems) Let C be a set of components. The set of systems over C is inductively

defined as follows:

– for any C ∈ C, a component over a signature H, (C) = C is a system over H and is defined

for C;

– if (rin, rout)(op) is a complex operator of arity n, then for every sequence (C1, . . . , Cn) of compo-

nents with (S, init, α)) = op(C1, . . . , Cn) is over T(Out ×)In, then (rin, rout)op(C1, . . . , Cn)

3 - Systems and compositionality 109

is the component (S′, init′, α′) over T(rout(Out) ×)rin(In) such that: S′ = S, init′ = init and

∀s′ ∈ S′, ∀i′ ∈ rin(In)

η′−1(α′(s′)(i′))|1 = rout(η
′−1(α(s′)(r−1

in (i′)))|1 and η′−1(α′(s′)(i′))|2 = η′−1(α(s′)(r−1
in (i′))|2

– if op1 ⊗ op2 is a complex operator of arity n = n1 + n2, then for every sequence

(C1, C2, . . . , Cn1
, Cn1+1, . . . , Cn)

z of components in C with each Ci over Hi = T(Oi ×)Ii , if both op1 and op2 are defined for

C1, C2, . . . , Cn1
and Cn1+1, . . . , Cn respectively, then op1⊗ op2(C1, . . . , Cn) = op1(C1, . . . , Cn1

)⊗

op2(Cn1+1, . . . , Cn) is a system over H = T(∏n
i=1 Oi ×)∏

n
i=1 Ii and op1 ⊗ op2 is defined for

(C1, . . . , Cn), else op1 ⊗ op2 is undefined for (C1, . . . , Cn);

– if 	I(op) is a complex operator of arity n, then for every sequence (C1, . . . , Cn) of components in

C, if op is defined for (C1, . . . , Cn) with S = op(C1, . . . , Cn) is over H, I is a feedback interface

over H and the feedback composition of S is well-formed, then 	I (op)(C1, . . . , Cn) =	I (S)

is a system over H′ and 10 	I (op) is defined for (C1, . . . , Cn), else 	I (op) is undefined for

(C1, . . . , Cn);

– if ←֓ I(op) is a complex operator of arity n, then for every sequence (C1, . . . , Cn) of components in

C, if op is defined for (C1, . . . , Cn) with S = op(C1, . . . , Cn) is over H and I is a feedback interface

over H, then ←֓ I(op)(C1, . . . , Cn) =←֓ I(S) is a system over H′ and 11 ←֓ I(op) is defined for

(C1, . . . , Cn), else ←֓ I(op) is undefined for (C1, . . . , Cn).

From Proposition 1.1 and Proposition 1.2, it is not difficult to see that any complex operator

op of arity n defines a partial functor from Comp(H1)× · · · × Comp(Hn) −→ Comp(H).

3.2 Examples

In the following, we present some concrete examples illustrating our framework.

Example 3.1 (Encoder/decoder) An encoder/decoder is usually used to guarantee certain charac-

teristics (for example, error detection) when transmitting data across a link. A simple example of such an

encoder/decoder is represented in Figure V.17. It consists of two parts:

– An encoder that takes in an incoming bit sequence and produces an encoded value which is then

transmitted on the link. This encoder is considered as a component E = ({s0, s1}, s0, α1) where

the transition function α1 : {s0, s1} −→ ({0, 1} × {s0, s1})
{0,1} is graphically shown in the left

of Figure V.17.

– A decoder that takes the values from the link and produces the original value. This decoder is

considered as a component D = ({q0, q1}, q0, α2) where the transition function α2 : {q0, q1} −→

({0, 1} × {q0, q1})
{0,1} is graphically shown in the right of Figure V.17.

Let us now construct the encoder/decoder as a composition of the encoder and the decoder by means of the

sequential composition over a synchronous feedback. First of all, let us apply the sequential composition

⊲s(⊗(E ,D)) over the synchronous feedback interface I defined for every (i, i′) ∈ In1× In2 and (o, o′) ∈

Out1 ×Out2 by:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

We first define the cartesian product C = ⊗((E ,D)) of E and D. It is easy to see that C is a well-formed

feedback composition over I . Let us check this for (s0, q0), we then have:

10. H′ is the signature of the synchronous feedback.
11. H′ is the signature of the relaxed feedback.

110 Chapter V Integration of components

s0 s1

0|0 0|1
1|1

1|0

{0, 1}ω

{0, 1}ω

q0 q1

0|0 1|0
1|1

0|1

{0, 1}ω

{0, 1}ω

Figure V.17 – Encoder (on the left) and Decoder (on the right)

– (0, 0) ∈ η′(αC((s0, q0))(f ((0, 0), (0, 0))))|1
– (1, 1) ∈ η′(αC((s0, q0))(f ((1, 1), (1, 1))))|1
– (0, 0) ∈ η′(αC((s0, q0))(f ((0, 1), (0, 0))))|1
– (1, 1) ∈ η′(αC((s0, q0))(f ((1, 0), (1, 1))))|1

Then, we can apply the synchronous feedback operator 	I on C. This leads to a minimal component

〈{F}〉 where F : {0, 1}ω −→ {0, 1}ω is the transfer function defined for every x ∈ {0, 1}ω and every

k, 0 ≤ k < ω, by:

F (x)(k) = x(k)

Let us explain how F was obtained using a running example. For this, let us consider the bit sequence

(01)ω, and try to find a bit sequence y ∈ {0, 1}ω satisfying:

∃(s0, . . . , sk, . . .) ∈ S | ∀n, 0 ≤ n < ω, y(n) ∈ η′Out×S(α(sn)(f (x(n), y(n))))|1

Let us suppose that the current state and the current input are the initial state s(n) = (s0, q0) and

x(n) = (0, 0) respectively. There is a y(n) = (0, 0) such that:

(0, 0) ∈ η′(αC((s0, q0))(f ((0, 0), (0, 0))))

That is to say, the component C reacts by updating its state to (s0, q0) and producing the output (0, 0).

More precisely, the output of E becomes the input of D. So, we can conclude that the input of the en-

coder/decoder is π1(0, 0) = 0 and its output is πo(0, 0) = 0.

Suppose next that the current input is (1, 1). Again, there is a y(n) = (1, 1) such that

(1, 1) ∈ η′(αC((s0, q0))(f ((1, 1), (1, 1))))

That is to say, the component C reacts by updating its state to (s1, q1) and producing the output (1, 1).

So, we can conclude that the input of the encoder/decoder is π1(1, 1) = 1 and its output is πo(1, 1) = 1.

Hence, the composite machine alternates states on each reaction and produces the output bit sequence

(01)ω for the input bit sequence (01)ω.

Finally, the minimal component 〈{F}〉 that represents F is given by:

s 0|01|1

3 - Systems and compositionality 111

Example 3.2 The purpose of this example is to shed light on how new components can be built hier-

archically from elementary basic components involving various integration operators. The example is a

simple model of a system that checks whether two gates are well-closed (respectively well-opened) when

they receive an order to close (respectively to open). It consists of three parts: a controller C, two gates

G1 and G2 and a special component O testing behaviour of G1 and G2. When the controller receives an

order to close the gates (i.e. when "close" button is pressed), it sends to G1 and G2 a signal "close" which

is simultaneously placed to G1 and G2. Hence, each one produces either a "closed" signal or fails to do

so. We assume reactions of G1 and G2 are instantaneous, i.e. they take no time to be closed or opened.

Then, O does nothing if both G1 and G2 are well-closed or opened, and raises an alarm otherwise. It can

be thought of as a checker of closing 12 and opening gates.

The global model S of this system is then built from three basic components:

Controller C: it produces a signal "close" when the close button is pressed and a signal "open" when the

open button is pressed (see Figure V.18). Both "close" and "open" signals are supposed to be submitted

simultaneously to G1 and G2.

In our framework, C is specified as the coalgebra C = ({closed, opened}, closed, αC) over the signature

({close, open} ×){buttonO,buttonC} where

αC : {closed, opened} × {buttonO, buttonC} −→ ({close, open} × {closed, opened})

is defined as follows:
{

αC(closed)(buttonC) = (close, opened)

αC(opened)(buttonO) = (open, closed)

buttonO

buttonC close

open

closed opened

buttonC|close

buttonO|open

Figure V.18 – Controller system C

Gate system G: it behaves as follows: when it receives the "close" signal from C, it closes and when it

receives the "open" signal from C, it opens. Figure V.19 illustrates that behaviour.

In our framework, G is specified as the coalgebra G = ({down, up, fail}, up, αG) over the signature

Pfin({closed, opened, abs} ×){close,open} where

αG : {down, up, fail} × {close, open} −→ Pfin({closed, opened, abs} × {up, down, fail})

is defined as follows:

{

αG(up)(close) = {(closed, down), (abs, fail)}

αG(down)(open) = {(opened, up)}

12. For sake of the simplicity, we suppose that no error has occurred when closing the gates.

112 Chapter V Integration of components

close

open

closed

opened

up down

fail

close|closed

open|opened

close|abs

Figure V.19 – Gate system G

Now, using our renaming operation, G1 and G2 can be seen as instances of the gate component G. Then,

G1 = G]r1 in ,r1out
and G2 = G]r2 in ,r2out

where both r1in and r2in are identities on {close, open} and r1out

and r2out are defined as follows:

r1out : {opened, closed} → {opened1, closed1}

opened 7→ opened1

closed 7→ closed1

r2out : {opened, closed} → {opened2, closed2}

opened 7→ opened2

closed 7→ closed2

Checker system O: it receives the outputs of G1 and G2 and raises an alarm if there is a gate that is not

completely closed.

In our framework, O is specified as the following transfer function:

FO : {closed1, abs} × {closed2, abs} −→ {alarm, abs}

(o, o′) 7→

{

abs i f (o, o′) = (closed1, closed2)

alarm otherwise

Now, the global model S is given as a hierarchical composition of C,G1,G2 and O. G1 and G2 are a syn-

chronous product composition, since their set inputs are the same, that together define a new component

B = ⊛(G1,G2) = ({b0, b1, b2, b3, b4}, b0, αB) over the signature

Pfin({(opened1, opened2), (closed1, closed2), (closed1, abs), (abs, closed2), (abs, abs)} ×){close,open}

where αB is defined as follows:
{

αB(b0)(close) = {((closed1, closed2), b1), ((abs, abs), b2), ((closed1, abs), b3), ((abs, closed2), b4)}

αB(b1)(open) = {((opened1, opened2), b0)}

Figure V.20 illustrates graphically the component B.

Then, B and O are a sequential composition since B’s outputs are included into O’s inputs. This leads

to a new component K = ⊲s(B,O) = ({k0, k1, k2}, k0, αK) over the signature

Pfin({abs, alarm} ×){close,open}

where αK is defined as follows:

αK(k0)(close) = {(abs, k1), (alarm, k2)}

αK(k1)(open) = {(abs, k0)}

3 - Systems and compositionality 113

closeopen

(closed1, closed2) (opened1, opened2) (closed1, abs) (abs, closed2) (abs, abs)

b0b1 b2

b3

b4

close|(closed1, closed2)

open|(opened1, opened2)

close|(abs, abs)

close|(closed1, abs)

close|(abs, closed2)

Figure V.20 – Synchronous product B = ⊛(G1,G2) of G1 and G2

Figure V.21 illustrates the component K.

open

close

abs

alarm

k0k1 k2

close|abs

open|abs

close|alarm

Figure V.21 – Sequential composition K = ⊲s(B,O) of B and O

Hence, the global system S can be given as a sequential composition of the controller C and K. Thus,

S is the component S = ⊲s(C,K) = ({s0, s1, s2}, s0, αS) over the signature Pfin({abs, alarm} ×

){buttonC,buttonO} where αS is defined as follows:

αS (s0)(buttonC) = {(abs, s1), (alarm, s2)}

αS (s1)(buttonO) = {(abs, s0)}

Figure V.22 illustrates the component S .

buttonC

buttonO

abs

alarm

s0s1 s2

buttonC|abs

buttonO|abs

buttonC|alarm

Figure V.22 – Sequential composition S = ⊲s(C,K) of C and K

114 Chapter V Integration of components

Consequently, the global system S consists of

⊲s(C,⊲s(⊛(G1,G2),O))

The two basic components G1 and G2 are composed together using the synchronous product and the

resulting component B = ⊛(G1,G2) is composed sequentially withO. Finally, the basic component C is

composed sequentially with the result of the second composition K = ⊲s(C,B).

Example 3.3 (Pedestrian crossing again) We have presented in Example 1.3 the "traffic light sys-

tem"M that constitutes the first part of the "pedestrian crossing system". In this example, we first

consider the other part of the pedestrian crossing that is the "crosswalk system" and then show the

pedestrian crossing global system obtained as a synchronous parallel composition of these two parts.

s′0 s′1

s′2

s′3

pedestrianOk|pedestrainGreen

request|stopLight

abs|pedestrianRed

abs|lightOk

Figure V.23 – Model of a crosswalk, to be composed in a synchronous parallel composition with

the traffic light model of Figure IV.4

The crosswalk system consists of two colored lights (see Figure IV.3): green and red. Illumination of the

green light means that the road is vehicle-free and so pedestrians can cross safely. Illumination of the

red light means there is a flow of vehicles at the road and so the pedestrians cannot cross. Such a typical

crosswalk systemM′ can be modeled by the transition diagram shown in Figure V.23. The behaviour of

M′ is the following: from its initial state s′0, when the pedestrian pushes the request button to request

the green light,M′ receives the request and goes to the s′1 state. Then, it emits a signal to the traffic light

systemM to stop the flow of vehicles while going to the s′2 state. When it receives the confirmation signal

from the traffic light system, it illuminates the green light and sets in the pending state s′4. Once the road

is free of pedestrians, it illuminates the red light and sends a signal to the traffic light system to allow the

vehicles to pass.

We model the crosswalk system as a component M′ = (S′, s′0, αM′) over the signature (Out′ ×)In′

with S′ = {s′0, s′1, s′2} is the state space, In′ = {request, pedestrianOk, abs} is the set of inputs and

Out′ = {stopLight, lightOk, pedestrianGreen, pedestrianRed, abs} is the set of outputs. The transi-

tion function:

αM′ : S′ −→ ({stopLight, lightOk, pedestrianGreen, pedestrianRed, abs} × S′){request,pedestrianOk,abs}

is defined as follows:

αM′(s
′
0)(request) = (stopLight, s′0)

αM′(s
′
0)(pedestrianOk) = (pedestrianGreen, s′1)

αM′(s
′
1)(abs) = (pedestrianRed, s′2)

αM′(s
′
2)(abs) = (lightOk, s′0)

3 - Systems and compositionality 115

The pedestrian crossing model S can be seen as a composition of the crosswalk component M′ and

the traffic light component M, in which the "stopLight" action, the "pedestrianOk" action and the

"lightOk" action are hidden as one can see in Figure V.24. The behaviour of S is then obtained as

the synchronous parallel composition ⊙((M′,M)) of the individual componentsM′ andM. Output

actions of one component that are in the input set actions of another component are synchronized i.e. the

"stopLight", "pedestrianOk" and "lightOk" actions.

s′0

s′1

s′2

s′3

pedestrianOk

| pedestrianGreen

request|stopLight

abs|pedestrianRed

abs|lightOk

s0

s1

s2

s3

s4
stoplight|lightGreen

abs|lightGreen

abs|lightOrange

abs|lightRed

abs|pedestrianOk

lightOk|abs

stopLight

PedestrianOk

lightOk

pedestrianRed

request

pedestrianGreen

lightGreen

lightOrange

lightRed

Figure V.24 – Pedestrian crossing modeling

Applying then the synchronous parallel composition ⊙ defined in Section 2.5 onM′ andM leads to a

component over the signature

{PedestrianRed, PedestrianGreen, lightGreen, lightRed, lightOrange, abs} ×){request,abs}

whose transition function is illustrated in Figure V.25.

s0 s1

s2s3s4

s5

request|lightGreen

abs|lightGreen

abs|lightOrange

abs|lightRedabs|pedestrianGreen

abs|pedestrianRed

abs|abs

Figure V.25 – ⊙(M′,M)

116 Chapter V Integration of components

Example 3.4 (Level crossing) We consider a simplified model of a level crossing. This model mainly

consists of three parts: a single track railroad, a train, three detectors: "approach", "entry" and "exit" to

detect the position of the train during its crossing of the road and the barrier. Figure V.26 illustrates a

typical view of these elements.

Figure V.26 – Level crossing

The behaviour of the global system of the level crossing is the following: when the "approach" detector

detects an approaching train, it sends a signal to the barrier in order to go down. Once the train enters

into the security zone, the "entry" detector detects the presence of the train and then sends a signal to the

controller. Finally, once the train is crossed the railroad, the "exit" detector detects the train and sends a

signal to the barrier in order to go back up. The model considered here does not take into consideration

the errors produced during both the barrier raising and lowering in order to avoid any complications. It

focuses only on safety properties such as "there is a train in the security zone while the barrier is not

completely closed".

The system of the level crossing as it is explained above, is then built from two basic components:

A controller C that produces a signal "close" when a train approaches, a signal "entry" when a train

enters into the security zone and a signal "open" when a train exits the railroad. Both "close" and "open"

signals are supposed to be submitted to the barrier. The controller is supposed to raise an alarm if there is

a train in the security zone and the barrier is not completely closed.

In our framework, C is specified as the coalgebra C = ({in, out, preparing, alarm, safe}, out, αC) over

the signature

({close, open, alarm, abs} ×){approach,exit,entry,closed}

where αC : {in, out, preparing, alarm, safe} × {approach, exit, entry, closed} −→

({close, open, alarm, abs} × {in, out, preparing, alarm, safe})

is defined as follows:

αC(out)(approach) = (close, preparing)

αC(preparing)(closed) = (abs, safe)

αC(preparing)(entry) = (alarm, alarm)

αC(safe)(entry) = (abs, in)

αC(in)(exit) = (open, out)

3 - Systems and compositionality 117

out

preparing

safealarm

in

approach|close closed|abs

entry|alarm

entry|absexit|open

approach

entry

exit

closed

close

alarm

open

Figure V.27 – Controller system C

Figure V.27 illustrates graphically the behaviour of the controller.

A barrier system B that behaves as follows: when it receives the "close" signal from C, it begins to lower

and when it receives the "open" signal from C, it begins to rise. We assume that the opening of the barrier

is done instantaneously to make the example representation simple.

In our framework, B is specified as the coalgebra B = ({up, closing, down}, up, αB) over the signature

({closed, abs} ×){close,open,abs} where

αB : {up, closing, down} × {close, open, abs} −→ ({closed, abs} × {up, closing, down})

is defined as follows:

αB(up)(close) = (abs, closing)

αB(closing)(abs) = (closed, down)

αB(down)(open) = (abs, up)

Figure V.28 illustrates graphically the behaviour of B.

up

closing

down

close|abs abs|closed

open|abs

close

open

closed

opened

Figure V.28 – Barrier system B

Now, the model S of the level crossing system is given as a synchronous parallel composition defined in

Section 2.5 of C and B. This leads to a new component

S = ⊙(C,B) = ({s0, s1, s2, s3, s4}, s0, αS)

118 Chapter V Integration of components

over the signature:

({alarm, abs} ×){approach,entry,exit,abs}

where

αS : {s0, s1, s2, s3, s4} × {approach, entry, exit, abs} −→

({alarm, abs} × {s0, s1, s2, s3, s4})

is defined as follows:

αS (s0)(approach) = (abs, s1)

αS (s1)(entry) = (alarm, s3)

αS (s1)(abs) = {abs, s2)

αS (s2)(entry) = (abs, s4)

αS (s4)(exit) = (abs, s0)

s0

s1

s2

s3

s4

approach|abs abs|abs

entry|alarm

entry|absexit|abs

approach

entry

exit

alarm

Figure V.29 – Crossing level global model S

3.3 Compositionality

An important question we must address concerns compositionality: is the behaviour of a

system the composition of its components’ behaviours? In our framework, this will be ex-

pressed as follows: let op be a complex operator of arity n, C1, . . . , Cn be n components and

C = op(C1, . . . , Cn), then

behC(init) = op(behC1
(init1), . . . , behCn

(initn)) (V.9)

where init (resp. initi, i = 1, . . . , n) is the initial state of C (resp. Ci) and op is the adaptation of op

on sets of transfer functions. Before establishing Equation V.9, we first need to define complex

operators op on behaviours. Components’ behaviours being sets of transfer functions, op has to

be defined on a set of transfer functions. Moreover, it has to respect the same induction structure

as op. We first have to adapt the cartesian product and the feedback on components’ behaviours.

Definition 3.2 (Cartesian product on behaviours ⊗ f)

Let H1 = T(Out1 ×)In1 and H2 = T(Out2 ×)In2 be two signatures. Let Γ1 and Γ2 be two sets of

transfer functions over H1 and H2 respectively. Then, Γ1 ⊗ f Γ2 is the set:

Γ1 ⊗ f Γ2 = {F1 ×F2 | F1 : In1
ω −→ Out1

ω,F2 : In2
ω −→ Out2

ω}

It is obvious to prove that the cartesian product of two transfer functions is a transfer function.

3 - Systems and compositionality 119

Definition 3.3 (Relaxed feedback on transfer function) Let H = T(Out×)In be a signature and

I = (f , πi, πo) be a feedback interface over H. Let F : Inω −→ Outω be a transfer function. Let us

define for every x ∈ Inω, the couple (x̂, yx̂) ∈ Inω ×Outω by induction on ω as follows:

– x̂ = x(0) and yx̂(0) = F (x)(0)

– ∀n, 0 < n < ω, x̂(n) = f (x(n), yx̂(n− 1)), yx̂(n) = F (x)(n) where x ∈ Inω is any dataflow

such that ∀j ≤ n, x(j) = x̂(j).

Then, ←֓ I f
(F) : In′ω −→ Out′ω is the mapping that associates to x′ ∈ In′ω, y′ ∈ Out′ω such that there

exists x ∈ Inω satisfying:

∀i < ω, x′(i) = πi(x̂(i)) and y′(i) = πo(yx̂(i))

Let us observe that Definition 3.3 is noticeably similar to Definition 1.3 except that the choice

of yx̂(n) is unique in Definition 3.3 because directly giving by the transfer function F .

←֓ I f
(F) needs some conditions on projections πi and πo to be a transfer function. Indeed, πi

and πo are surjective but by no means they are supposed to be injective. This can then question

the causality conditions of ←֓ I f
(F). Imposing πi and πo to be injective would lead to condition

which is too strong (πi and πo would then be bijective) and which is seldom satisfied (e.g.

the sequential composition defined in Section 2.1). Here, we propose a weaker condition that is

satisfied by most of the integration operators based on feedback (all those defined in this thesis).

Assumption 1: ∀x1, x2 ∈ Inω, ∀j, j ≤ n, πi(x1(j)) = πi(x2(j)) =⇒

πo(F (x1)(0)) = πo(F (x2)(0)) if j = 0

πo(F (f (x1(j),F (x̂1)(j− 1))) = πo(F (f (x2(j),F (x̂2)(j− 1))) otherwise

Proposition 3.1 ←֓ I f
(F) : In′ω −→ Out′ω is a transfer function.

Proof Let F : Inω −→ Outω be a transfer function over H and ←֓ I f
(F) : In′ω −→ Out′ω be the

function defined in Definition 3.3. Let x′1, x′2 ∈ In′ω be two inputs dataflows for ←֓ I f
(F) and let us

prove that if for every n, 0 ≤ n ≤ ω, x′1(n) = x′2(n), then ←֓ I f
(F)(x′1(n)) =←֓ I f

(F)(x′2(n)).

By induction over ω:

– Basic Step: n = 0

By definition, x′1, x′2 ∈ In′ω, then there exists x1, x2 ∈ Inω such that x′1(0) = πi(x1(0)) and

x′2(0) = πi(x2(0)), and ←֓ I f
(F)(x′1(0)) = πo(F (x1(0))). By hypothesis, since x′1(0) =

πi(x1(0)) and x′2(0) = πi(x2(0)), then πi(x1(0)) = πi(x2(0)). Then, by Assumption 1, we

have that πo(F (x1)(0)) = πo(F (x2)(0)). Hence, ←֓ I f
(F)(x′1(0)) = πo(F (x2(0))) which by

definition equals to ←֓ I f
(F)(x′2(0)).

– Induction Step:

By definition of ←֓ I f
(F)(x′1(n + 1)), we know there exists (x̂1,F (x̂1)) ∈ Inω × Outω such

that ∀k, 1 ≤ k ≤ n + 1, x′1(k) = πi(x̂1(k)) and ←֓ I f
(F)(x′1(k)) = πo(F (x̂1)(k)) where

x̂1(k) = f (x(k),F (x̂1)(k− 1)).

By definition of ←֓ I f
(F)(x′2(n + 1)), we know there exists (x̂2,F (x̂2)) ∈ Inω × Outω such

that ∀k, 1 ≤ k ≤ n + 1, x′2(k) = πi(x̂2(k)) and ←֓ I f
(F)(x′2(k)) = πo(F (x̂2)(k)) where

x̂2(k) = f (x(k),F (x̂2)(k− 1)).

120 Chapter V Integration of components

By hypothesis, we know that ∀k, 0 ≤ k ≤ n, x′1(k) = x′2(k) =⇒←֓ I f
(F)(x′1(k)) =←֓ I f

(F)(x′2(k)). It remains to prove that if x′1(n+ 1) = x′2(n+ 1), then ←֓ I f
(F)(x′1(n+ 1)) =←֓ I f

(F)(x′2(n + 1)).

Since ∀k, 1 ≤ k ≤ n + 1, x′1(k) = πi(x̂1(k)), x′2(k) = πi(x̂2(k)) and x′1(k) = x′2(k), then by

Assumption 1, ∀k, 1 ≤ k ≤ n + 1. πo(F (x̂1)(n + 1)) = πo(F (x̂2)(n + 1)). This last result

then yield ←֓ I f
(F)(x′1(n + 1)) =←֓ I f

(F)(x′2(n + 1)).

End

Definition 3.4 (Well-formed feedback composition for transfer function) Let I = (f , πi, πo) be

a feedback interface over a signature H. Let F : Inω −→ Outω be a transfer function. The synchronous

feedback composition of F over I is well-formed if, and only if

∀x ∈ Inω, (∀n < ω, x̂(n) = f (x(n),F (x)(n))) =⇒ F (x̂) = F (x)

Definition 3.5 (Synchronous feedback for transfer functions) Let I = (f , πi, πo) be a feedback

interface over a signature H. Let F : Inω −→ Outω be a transfer function. 	I f
(F) : In′ω −→ Out′ω is

the mapping that associates to x′ ∈ In′ω, y′ ∈ Out′ω such that there exists x ∈ Inω satisfying

∀i < ω, x′(i) = πi(f (x(i),F (x)(i))) and y′(i) = πo(F (f (x(i),F (x)(i))))

Similarly to ←֓ I f
(F), 	I f

(F) is a transfer function if the following assumption is satisfied by

F .

Assumption 2: ∀x1, x2 ∈ Inω, ∀j, j ≤ n,

πi(x1(j)) = πi(x2(j)) =⇒ πo(F (f (x1(j),F (x1)(j))) = πo(F (f (x2(j),F (x2)(j)))

Proposition 3.2 	I f
is a transfer function.

Proof The technical proof is noticeably similar to the proof given for ←֓ I f
.

End

Let us note that both Assumption 1 and Assumption 2 are satisfied by all operators defined

in this thesis that use the feedback operator. Indeed, if we take the sequential operator, we can

see that these assumptions are verified according to the underlying feedback. This is also true

for all other complex operators defined by the sequential operator.

Definition 3.6 (Feedback on behviours) Let Γ be a set of transfer functions over a signature H =

T(Out×)In. Then, ⊙Γ is the set of transfer functions:

⊙Γ = {⊙F | F : Inω −→ Outω}

where ⊙ is either ←֓ I f
or 	I f

.

Complex operators can be easily extended to behaviours by replacing in Definition 2.1, the

symbols ⊗, ←֓ I and 	I by ⊗ f , ←֓ I f
and 	I f

, respectively. In the following, given a complex

operator on components we will note op its equivalent on behaviours.

Similarly, Definition 3.1 can be easily extended to complex operators on behaviours by re-

placing each component Ci by a set of transfer functions Γi, and ⊗, ←֓ I and 	I by ⊗ f , ←֓ I f
and

	I f
, respectively.

3 - Systems and compositionality 121

Theorm 3.1 (Compositionality) Let op be a complex operator on components of arity n. Let C1, . . . , Cn

be n components. If C = op(C1, . . . , Cn), then

behC(init) = op(behC1
(init1), . . . , behCn

(initn))

Proof In order to prove this theorem, we need to prove the following lemmas:

Lemma 3.1 Let C1 and C2 be two components over H1 = T(Out1 ×)In1 and H2 = T(Out2 ×)In2 .

Let C = ⊗(C1, C2) be the product component over H = T((Out1 ×Out2)×)In1×In2 . Then we have:

behC1⊗C2
((init1, init2)) = behC1

(init1)⊗ f behC2
(init2)

Proof By definition, behC1⊗C2
((init1, init2)) contains all the transfer functions F : (In1 × In2)

ω −→

(Out1 ×Out2)
ω that associates to every (x1, x2) ∈ In1 × In2, a (y1, y2) ∈ Out1 ×Out2 such that there

exists an infinite sequence ((o11, o21), (s11, s21)), · · · ∈ (Out1 ×Out2)× (S1 × S2) satisfying:

∀j ≥ 1, ((o1j, o2j), (s1j, s2j)) ∈ η′(Out1×Out2)×(S1×S2)
(α((s1j−1, s2j−1))(x1(j− 1), x2(j− 1)))

with (s10, s20) = (init1, init2), and for every k < ω, yi(k) = oi for i = 1, 2.

Hence, for i = 1, 2, there exists an infinite sequence (oi1, si1), · · · ∈ Outi × Si satisfying

∀j ≥ 1, (oij, sij) ∈ η′Outi×Si
(αi(sij−1)(xi(j− 1)))

We can then define a transfer function Fi : xi 7→ yi. Hence F = F1 ⊗ f F2 and then

F ∈ behC1
(init1)⊗ f behC2

(init2)

By following the same reasoning, we can show that given

Fi ∈ behCi
(initi),F1 ⊗ f F2 ∈ behC1⊗C2

((init1, init2))

End

Lemma 3.2 Let C ′ be a component over H = T(Out′ ×)In′ and C =←֓ I (C
′) be a component over

H = T(Out ×)In. Let I = (f , πi, πo) where f : In′ × Out′ −→ In′, πi : In′ −→ In and πo :

Out′ −→ Out be a feedback interface. Then we have:

beh←֓ I (C ′)(init) =←֓ I f
(behC ′(init′))

where init is the initial state of C =←֓ I(C
′).

Proof Le F ∈ beh←֓ I (C ′)(init). By definition, F associates to x′ ∈ Inω, y′ ∈ Outω (when such y′

exists) such that there exists x ∈ In′ω and (x̂, yx̂) ∈ In′ω ×Out′ω satisfying

∀i < ω, x′(i) = πi(x̂(i)) and y′(i) = πo(yx̂(i))

By definition of x̂ and yx̂, there exists an infinite sequence (init′, s′1, . . . , s′k, . . .) ∈ S′ such that:

– x̂ = x(0) and yx̂(0) ∈ η′
Out′×S′

(α′(init′)(x̂(0))

– ∀n, 0 < n < ω, x̂(n) = f (x(n), yx̂(n− 1)), yx̂(n) ∈ η′
Out′×S′

(α′(s′n)(x̂(n))).

122 Chapter V Integration of components

Hence, we can extract a transfer function F ′ that associates to x̂, yx̂ such that ←֓ I f
(F ′) = F , and then

←֓ I f
(F ′) ∈←֓ I f

(behC ′(init′)).

To prove the other inclusion, we can follow the same reasoning.

End

Lemma 3.3 Let C ′ be a component over H = T(Out′×)In′ and C =	I(C
′) be a component over H =

T(Out×)In. Let I = (f , πi, πo) where f : In′ ×Out′ −→ In′, πi : In′ −→ In and πo : Out′ −→ Out

be a feedback interface. Then we have:

beh	I (C ′)(init) =	I f
(behC ′(init′))

where init is the initial state of C =	I(C
′).

Proof The technical proof is noticeably similar to the proof given for ←֓ I .

End

Now, Theorem 3.1 is proven by induction on the structure of op as follows:

– Basic Step: op is of the form . Its equivalent for sets of transfer functions is also defined by

(Γ) = Γ. The conclusion is then obvious.

– Induction Step: Three cases have to be considered

– op = ⊗(op1, op2) with arity of op1 is n1, arity of op2 is n2 and n1 + n2 = n

By induction hypothesis, we have:

(1) behop1(C1,...,Cn1
)(init) = op1(behC1

(init1), . . . , behCn1
(initn1

)) where init is the initial

state of op1(C1, . . . , Cn1
).

(2) behop2(Cn1+1,...,Cn)(init′) = op2(behCn1+1
(initn1+1), . . . , behCn

(initn)) where init′ is the

initial state of op2(Cn1+1, . . . , Cn).

and by the definition of both op1 and op2, we have

(3) op2(Cn1+1, . . . , Cn) and op2(C
′
n1+1, . . . , C ′n) are components.

Then, ((1) + (2) + (3) + Lemma 3.1 implies that

behop1(C1,...,Cn1
)⊗op2(Cn1+1,...,Cn)((init, init′)) =

op1(behC1
(init1), . . . , behCn1+1

(initn1
))⊗ f op2(behCn1+1

(initn1+1), . . . , behCn
(initn))

– op is of the form ←֓ I(op′) and is of arity n.

Let C1, . . . , Cn be n components such that C ′ = op′(C1, . . . , Cn). By induction hypothesis,

behC ′(init′) = op′(behC1
(init1), . . . , behCn

(initn)). It remains to prove that

beh←֓ I (C ′)(init) =←֓ I f
(behC ′(init′))

where init is the initial state of C =←֓ I(C
′). This last point is naturally proved by Lemma 3.2.

– op is of the form 	I(op′) and is of arity n.

Let C1, . . . , Cn be n components such that C ′ = op′(C1, . . . , Cn). By induction hypothesis,

behC ′(init′) = op′(behC1
(init1), . . . , behCn

(initn)). It remains to prove that

beh	I (C ′)(init) =	I f
(behC ′(init′))

where init is the initial state of C =	I(C
′). This last point is naturally proved by Lemma 3.3.

End

4 - Related works 123

4 Related works

In this section, we present a brief overview of contributions which are technically close to

our approach, by discussing the difference between the problematics addressed by those con-

tributions and those addressed by our approach. There are several coalgebraic works in the

literature which regard the combination of components using some sort of integration mecha-

nism. The closet to our work is the set of integration operators proposed by Barbosa in [9, 31].

Four component integration operators have been proposed to reason about component-based

designs: pipeline "series" operator, external choice operator, parallel composition and concur-

rent operator. These operators are defined as special functors in some bicategory of components.

The pipeline operator is similar to our synchronous sequential operator ⊲r. The external choice

operator corresponds to a composition where both components C1 and C2 are executed inde-

pendently, depending on the input submitted to the integrated component: when interacting

with the composed system, the environment will be allowed to choose either C1 or C2 inputs,

but not both. Input then triggers the corresponding component (i.e. C1 or C2), producing the

associated output. This operator is then similar to our synchronous product ⊛ when the inter-

section of input sets In1 and In2 is the empty set. The parallel composition is embodied in the

cartesian product, and finally the concurrent operator is similar to the operator defined in Sec-

tion 2.4. Thus, Barbosa’s operators can be all deduced from our two basic operators by choosing

the suitable and the minimal combination of them. In this setting, our approach offers advan-

tages relative to [9, 31], that is it makes larger systems as a composition of only two operators,

rather than as a combination of a set of separated operators. This makes it easier to reason about

system functionalities in the sense that every correct property under these basic operators is also

a correct property under other complex operators. This yields general theorems that are true of

all operators defined in our frameworks, and thus it is not required to be re-proved every time

for a new operator described as a combination of our basic operators: the proofs of results done

on our basic operators are made once and for all.

Meng in [89] redefined Barbosa’s operators to combine two components C1 and C2 over the

signatures (Out1 × T(Out2 ×)In) and (Out′1 × T′(Out′2 ×)In′) respectively. Hence, the differ-

ence between Meng’s and Barbosa’s work is the form of the functor over which components are

defined, and the possibility of combining components with different computational models (i.e.

T and T′), rather than using a single monad.

In this chapter, we have also shown how to define larger systems by composing subsystems

from two basic integration operators: product and feedback. This led us to inductively define

a set of complex operators (see Definition 2.1), the semantics of which are partial functors on

categories of components. This part can then be compared to works in [90, 91]. Indeed, from a

set of complex operators we can easily generate an algebraic signature that can be seen as an FP-

theory L over a basic set of sorts S ⊆ Set× Set where for (In, Out) ∈ S, In and Out denote input

and output sets, respectively, and operations are complex operators (a monad T is supposed

identical for every couple (In, Out) in the FP-theory L). Outer models can then be defined along

the functor C : L −→ Cat that associates to any couple (In, Out) the category Comp(H) with

H = T(Out×)In and to any operator the partial functor defined in Definition 2.1. Finally, inner

models are defined by the natural transformation X : 1 =⇒ C where 1 is the constant functor

that associates to any S ∈ L the trivial object category 1, which to any couple (In, Out) associates

the final object in Comp(H) and to any complex operator op, the mapping on behaviours noted

[[op]] in [90, 91] that contains op semantics on both components and transfer functions.

The difference between our works and those mentioned above is that we have defined in-

tegration operations by composing two basic operators: product and feedback. The objective

was then to demonstrate a set of general properties on these integration operators such as the

124 Chapter V Integration of components

results of compositionality (see Theorem 3.1), by showing that these properties are valid for the

product and feedback and are preserved by composition.

Hence, Theorem 3.1 is similar to Theorem 4.7 in [91] at least in these goals to establish a

generic result of compositionality independent of a given integration operator.

There is a long list of other works addressing components composition without involving

coalgebraic denotations. It is difficult to collect them all; however, the common basis of most of

them is that the system is described as a structural decomposition into components (or subsys-

tems) by separating the notion of component behaviour and that of interaction (or communica-

tion) between components, which is considered essential to overcome system design complex-

ity [2, 3, 92]. Approaches based on so-called model of computations, such as [92, 93, 94, 95, 96, 97],

have been proposed to connect all components of the system globally. Roughly speaking, a

model of computation can be seen as a set of primitive rules that govern the interactions be-

tween the components of a system. Such rules should explicitly encompass (1) the global be-

haviour of a system during its execution (e.g. cyclic, reactive, concurrent or sequential way);

(2) the communication protocol used to allow the system to interact with its environment (e.g.

rendezvous, message passing, exchange events) and (3) the data format that can be used dur-

ing communication (e.g. events, queries, flux). These approaches suffer from the disadvantage

that the semantics of the model of computations used and the interactions between them are

given implicitly, which makes it hard or even impossible to incorporate, beyond modeling and

simulation, other techniques such as testing and verification.

Other approaches have been proposed for describing component behaviour and their coor-

dinations, such as [98, 99, 100]. Reo [98] is a coordination language for the composition of dis-

tributed software components and services based on connectors. Primitive connectors such as

synchronous channels or FIFO queues are structured to build complex component connectors

which exhibit complex behaviours. A number of formal models describing the behaviour of Reo

connectors and their composition exists, for instance models based on constraint automata [101]

or models based on coalgebraic denotations [102]. Thus, algebraic reasoning and simulation are

supported for analysis. Reo does not focus on component behaviour, it presents components

only by their interfaces. In this way, Reo’s components can be seen as transfer functions taking

input data at given moments and providing its associated output, and Reo’s connectors as re-

lations between a couple of an input data stream and a time stream (Inω, TSω) and a couple of

an output data stream and a time stream (Outω, TSω). Thereby, associating time to component

dataflows makes Reo’s connectors rich, where by imposing suitable timing constraints on them,

many styles of communication can be obtained such as synchronous, asynchronous, bounded,

unbounded, lossy, lossless, etc. Thus, Reo’s connector can be thought of as the sequential oper-

ator defined in Section 2.1, which does not only make components connection synchronously,

but also encompasses other connection aspects such as asynchronous, unbounded, etc. Hence,

by extending In and Out of the 13 signature T(Out×)In with a complex data structure, Reo’s

connectors would be embodied in our framework.

[99, 100] provides a formal composition framework for describing based-component sys-

tems with heterogeneous interactions. This framework is known as BIP: B stands for Behaviour,

I for Interaction and P for Priority. Thus, as its name indicates, a BIP model (or component) is

composed of three layers: a layer defines the behaviour of the component encoded as transition

systems extended with variables, a layer defines the connectors (i.e. the interactions) between

components executed via communication ports and a layer defines priority rules which reduce

non-determinism between interactions. BIP’s models can be composed to yield larger models.

This is done using a binary composition operator on components which is supposed to com-

13. Extension of the signature T(Out×)In over which components are defined with data structure is a part of our

future work.

5 - Conclusion 125

pose layers separately. This means that when composing two components C1 and C2, their cor-

responding layers are composed indifferently and separately: C1’s behaviour is composed with

C2’s, C1’s interactions are composed with C2’s, and C1’s priority rules are composed with C2’s.

Furthermore, BIP is able to ensure correctness-by-construction for essential system properties

such as mutual exclusion, deadlock freedom and progress. It also enables formal verification.

Such a representation of components and connectors allows BIP to provide multitude hetero-

geneous interactions such as rendezvous and broadcast communication mechanisms. We be-

lieve that these styles of communications would be described in our framework, by extending

the component signature T(Out×)In with complex data structure (for instance, rendez-vous

style can be embodied in sequential communication, broadcast in sequential following by syn-

chronous product).

5 Conclusion

In this chapter, we have proposed a generic framework for modeling complex modern sys-

tems viewed as state-based systems. We have shown how a basic component (see Chapter IV,

Definition 1.1) can be combined with another by means of some integration operators to yield a

bigger, more complicated component. We have then defined two generic integration operators

for combining the behaviour of components: an extended version of the well-known cartesian

product, and the feedback operator. The feedback operator relies on three mappings: a map-

ping f to specify how components are linked and which parts of their interfaces are involved

in the composition process, and two mappings πi and πo that allow us to hide inputs and

outputs involved in the feedback composition process and thus help both encapsulation and

compositionality. We have shown that other integration operators such as the sequential op-

erator, the double sequential operator, the synchronous product, the concurrent operator and

the synchronous parallel composition operator can be considered as compositions of these two

basic operators by a suitable choice of f , πi and πo. In this setting, we can see both the carte-

sian product and the feedback operator as two patterns from which other integration operators

can be deduced as sequences of composition patterns. These patterns can also be used to build

larger patterns. Our two basic operators are then minimal operators used to derive operators

representing an interaction between components by choosing a suitable and a minimal combi-

nation. Such a combination is given according to the semantic that we want to associate to the

integration operator of interest i.e. how the components communicate and share their actions.

Hence, the objective is to demonstrate a set of general properties on these integration operators

such as the results of compositionality, by showing that these properties are valid for the prod-

uct and the feedback and are preserved by composition. Thereby, every correct property under

the basic operators is also a correct property under complex operators.

126 Chapter V Integration of components

Part III

Validation of component-based

systems by testing

129

This part provides the second main contribution of this thesis. It presents a formal compo-

sitional theory for testing complex-software systems viewed as component-based systems. Our

approach in the first part was to define a generic formalism dedicated to modeling systems,

generally state-based formalisms. The work proposed here can then be seen as a proposal for a

generic theory of conformance testing. It intends to contribute to the following topics:

– The development of a conformance testing approach enabling us to ensure correctness of

the components defined in Chapter IV. This approach is mainly inspired from the theory

of conformance testing developed by A. Touil and al. in [44, 53].

– The definition of a compositional testing framework enabling us to ensure the correctness

of systems obtained as an assembling of a set of components, as was shown in Chapter V.

The underlying idea consists in establishing correctness of the global system by using

correctness of each component.

– The definition of a framework enabling us to strengthen the correctness of each compo-

nent involved in a global system, by choosing suitable test purposes for them. The under-

lying idea is to use a projection mechanism, as in [48], to identify from any trace tr of the

global system, the trace of any component involved in tr. These projected traces can be

then seen as test cases that should be tested on individual components.

This part consists of three chapters. The first one presents an overview of the conformance

testing theory. The second one introduces our conformance testing theory allowing us to test

components separately. The third one is devoted to defining our compositional testing approach

based on projection mechanisms.

130

Chapter VI

Conformance testing theory: a

general overview

1 Formal Method in Conformance Testing . 132

1.1 General principle . 132

1.2 The meaning of conformance . 133

1.3 Formal framework for conformance testing 134

Conformance testing [27, 26] is a technique for checking the functional correctness of an im-

plementation with respect to its specification by means of experiments on the implementation.

It consists in deriving test cases algorithmically from a system specification, executing them

on the real system and finally making sure that the latter behaves correctly by comparing its

outputs with those required in the specification.

A common methodology and framework for the specification and execution of conformance

testing for implementations of standard communication protocols such as ISO protocols, ISDN

protocols, etc. was proposed by the International Organization for Standardization (ISO). This

methodology is known as the international standard IS-9646: "Conformance Testing Methodology

and Framework" [50, 51]. The goal of the standard IS-9646 originally was to unify the process

of developing methods for conformance testing between protocols or open systems intercon-

nection (OSI) and their specifications. But, it has rapidly turned out that this standard can also

be suitable to test reactive systems [103, 104]. It is consequently now considered as the basis

of conformance testing where it allows us to define how to specify conformance tests and to

provide guidance to developers of test systems.

Nevertheless, the standard IS-9646 is limited in practice to automatized testing due to the

absence of a formal description of its elements. Concepts are indeed written in natural language

which makes the automation of the conformance testing process hard. Hence, this limitation ac-

tivated the research and development of a formal framework, in which conformance testing

concepts, such as conformance requirement, conformance meaning, correctness of an imple-

mentation, test cases, test execution, verdict, etc. were defined in a formal setting. This led to

a joint project between ISO and the International Telecommunication Union (ITU) called "Formal

Methods in Conformance Testing" (FMCT) [52]. This project was the main topic of Tretmans’s

thesis [27] whose goal was the formalization of the testing methodology IS-9646, giving a formal

interpretation to most concepts in this standard.

132 Chapter VI Conformance testing theory: a general overview

In this chapter, we outline the main concepts of conformance testing which are introduced in

the standard IS-9646, and formalized by Tretmans in [27]. These concepts will be the theoretical

background of formal testing, which serves us as a fundamental basis to define our method for

automatic generation of abstract 1 tests for generic components.

1 Formal Method in Conformance Testing

1.1 General principle

The process of conformance testing consists mainly of three phases that are shown in Fig-

ure VI.1.

Specification

System under Test

Suite of abstract tests

Suite of executable tests

Tester Verdicts

test generation

conforms to ?

abstract tests implementation

observes

stimulates

Figure VI.1 – Conformance testing process

The first phase is called test generation (or test derivation) and consists in deriving test cases

algorithmically from a formal description of the system’s behaviour using an algorithm of test

case generation. A collection of generated test cases is called a test suite. Test cases are indeed

not directly executable on the implementation because they are developed at some abstract level

independently of any implementation of the system. Thus, they are called abstract tests. The sec-

ond phase is known as test implementation and consists in transforming the generated test cases

during the first phase into concrete tests which therefore can be run on the real system. In fact,

a mechanism that maps abstract tests to concrete ones is needed. This mechanism is usually

referred to as an adapter. The last phase is called test execution and consists in executing concrete

tests on a particular implementation. The underlying idea is to provide test cases to the imple-

mentation and then observe its outputs which should be compared with the expected outputs

indicated in the test case. If the outputs do not match the specified outputs, a verdict Fail is

assigned to the test indicating non-conformance between the implementation and the specifi-

cation. Otherwise, a verdict Pass is assigned to the test indicating the conformance between the

implementation and the specification (only for the submitted test case).

1. It is important to notice that all concepts introduced in this chapter are given at a generic level, i.e. they are

independent of any particular formal method.

1 - Formal Method in Conformance Testing 133

Note that in this thesis, we will not talk about the phase of test implementation. In fact, as the

test cases generated from the first phase are abstract, they must be then made concrete before

executing them on the implementation. As well, when a test is executed, outputs from the im-

plementation, being concrete, tests have to be transformed into abstract tests before comparing

them with the expected outputs that are specified in the abstract test cases. We will not focus on

this phase, and as you will see in the next section, we consider implementations as black boxes

in order to deal with them by a formal reasoning.

1.2 The meaning of conformance

1.2.1 Specification model

A formal specification describes system behaviour using a specialized description formalism.

In general, it is a formal representation that captures the properties of a system precisely and

unambiguously.

In the following part of this section, to be independent of any specification formalism, we will

note SPECS the set of all possible formal specifications independently of any formalism, and

spec a specification belonging to SPECS.

1.2.2 Implementation model

An implementation under test generally consists of a combination of hardware and software.

It usually has physical connectors or interfaces to communicate with its environment. As pre-

viously, we will note the set of all possible implementations by IMPS and an implementation

(for instance Java program or hardware components) belonging to IMPS by iut. An implementa-

tion is then a concrete executable object we cannot deal with it by a formal reasoning. The only

way to observe its behaviour is to interact via its interfaces, submitting inputs and observing

outputs. Hence, a formal description for such an implementation is needed to build a confor-

mance testing theory whose aim is to check whether the behaviour of a real implementation

is correct with respect to a formal specification. Hence, every implementation iut ∈ IMPS has

to be modeled by a formal object miut called a model of iut. The universe of the models of all

implementations under test is denoted by MODS. Consequently, we have the following testing

hypothesis [105]:

∀iut ∈ IMPS, ∃miut ∈ MODS, ∀i ∈ In, Out(iut, i) = Out(miut, i)

where Out(iut, i) (respectively Out(miut, i)) is the output yielded by iut (respectively miut) for

the input i.

Note that it is not assumed that the model of an implementation is known, only its existence

is required.

1.2.3 Conformance relation

The theory of conformance testing defines the conformance of an implementation to a spec-

ification thanks to conformance relations. The objective of these relations is to provide a way to

specify conformance of an implementation with its specification. Several kinds of relations have

been proposed according to both test purposes and application domains. For instance, models

described by specialized description languages such as LOTOS [106] or SDL [107], or those

directly described as operational formalisms such as finite state machine or labeled transition

systems have different implementation relations embodying the conformance.

134 Chapter VI Conformance testing theory: a general overview

The conformance is formally expressed as a relation between the class of implementations

IMPS and the class of specifications SPECS. This relation, the so-called implementation relation, is

denoted by imp ⊆ MODS× SPECS and expressed as follows:

An implementation iut ∈ IMPS is in conformance to a specification spec ∈ SPECS if the existing

model miut ∈ MODS of iut is imp-related to spec, i.e. iut conforms to spec iff miut imp spec.

A specification can have many implementations conforming to it and then many conforming

implementation models. The different relations between IMPS, MODS and SPECS are depicted

in Figure VI.2. For a specification spec ∈ SPECS and an implementation relation imp, one has

the set Iiut ⊆ IMPS of all implementations that can be modeled by models in Miut ⊆ MODS.

Therefore, Iiut represents the set of all implementations that implement the specification spec

correctly according to imp, and Miut represents the set of all models that conform to spec in

MODS. Thus, Miut is given by {m ∈ MODS | m imp spec}. Hence, an implementation iut ∈ IMPS

conforms to the specification spec ∈ SPECS if it is modeled by miut belonging to the set Miut,

and the model miut implements spec according to the implementation relation imp.

SPECS

spec

MODS
Miut

miut

IMPS

Iiut

iut

to be implemented in conformance modeled by

imp

Figure VI.2 – Relations between IMPS, MODS and SPECS

1.3 Formal framework for conformance testing

1.3.1 Test execution

The behaviour of an implementation under test iut ∈ IMPS is checked by means of test

experiments on it: we choose an appropriate input and submit it to the iut. Then, we observe

the reaction of the iut and compare it with the one expected in its specification spec ∈ SPECS.

This comparison gives rise to a verdict about the correctness of the concrete implementation

iut with respect to the specification spec. A specification of each such experiment is called a test

case. The set of all possible test cases is denoted by TESTS and a test case belonging to TESTS

by tc.

When specifications are written in formal languages, test cases can then be generated au-

tomatically using algorithms for test case derivation from the specification. Given an imple-

mentation relation imp and an implementation under test iut ∈ IMPS, an algorithm of test case

generation then provides a set of test cases TC ⊆ TESTS for a specification spec ∈ SPECS of iut.

1 - Formal Method in Conformance Testing 135

This process of derivation of tests is known as test case generation. An execution of a test case is

then the process of stimulating an implementation under test iut ∈ IMPS by:

– executing the specified test events of a test case tc ∈ TESTS;

– observing the produced reactions from the given iut;

– generating a test verdict based on these reactions.

We define exec(tc, iut) as the concrete execution of a test case on a real implementation lead-

ing to a subset of observations. Now, to continue our formal reasoning, we need to formalize

exec(tc, iut), then we introduce the observation function:

obs : TESTS×MODS −→ P(OBS)

where OBS denotes the domain of all possible observations from the iut.

This function computes, for each test case tc ∈ TESTS and each concrete implementation

under test iut ∈ IMPS modeled by miut ∈ MODS, the observations in OBS that result from exe-

cuting tc on iut i.e. a subset of observations O ⊆ OBS. Hence, obs(tc, miut) models the execution

of test cases exec(tc, iut) formally.

Each observation obtained after a test execution is assigned to a verdict which may vary

depending on the test case tc. This gives rise to a function:

verdicttc : OBS −→ {Fail, Pass}

A Fail verdict means that a non-conformance between the implementation iut and its specifi-

cation spec is detected (the behaviour of the implementation observed by the tester is not the

one expected in the specification). A Pass verdict means that the implementation iut behaves in

conformance to the specification spec for the given observation i.e. for the executed test case. 2

1.3.2 Test case properties

So far we have only seen how test cases are generated from specification and how they are

executed on implementations. But, we have not studied the coherence between both notions of

test cases execution and conformance applied to an implementation under test and its formal

specification. For this purpose, two properties have to be studied: correctness and completeness.

– Correctness: this property states that if an implementation iut is in conformance to a spec-

ification spec then it passes all generated tests.

– Completeness: this property states that if the implementation passes all generated test

cases, then it conforms to its specification.

Intuitively the correctness property is achievable for practical testing. It allows us to ensure

the conformance of an implementation with respect to its specification, but it may not be able to

detect implementations that are not in conformance to a specification. That is because some non-

conforming implementations may pass the set of test cases. On the contrary, the completeness

property allows us to exactly distinguish between all conformant and non-conformant imple-

mentations. However since a test is not exhaustive, this means we cannot reach the set of all

tests generated from the specification, this property is only achievable in theory.

In order to formalize the property of correctness and completeness, we introduce the follow-

ing two notations:

2. There exist another verdicts. For instance, the inconclusive verdict, noted Inconc, that is used if the implementa-

tion iut behaves correctly according to the specification spec, but its responses do not satisfy the test purpose.

136 Chapter VI Conformance testing theory: a general overview

– passes: means that an implementation iut modeled by miut ∈ MODS passes a test case tc

successfully. This is formalized by:

iut passes tc =def verdict(obs(tc, miut)) = Pass

– f ails: means that an implementation iut modeled by miut ∈ MODS does not pass a test

case tc. This is a situation of failure.

iut f ails tc =def ¬(iut passes tc)

These notions can be extended to a set of test cases TC ⊆ TESTS as follows:

iut passes TC =def ∀tc ∈ TC, iut passes tc

iut f ails TC =def ∃tc ∈ TC, iut f ails tc

Definition 1.1 (Correctness and Completeness) Let iut ∈ IMPS be an implementation and spec ∈

SPECS be its specification. Let TC be a set of generated test cases. Then we have:

– TC is correct if:

∀iut ∈ IMPS, iut imp spec =⇒ iut passes TC

– TC is complete if:

∀iut ∈ IMPS, iut imp spec ⇐⇒ iut passes TC

The following table describes the required elements for conformance testing:

Physic elements implementation iut ∈ IMPS

test case execution exec(tc, iut)

Formal elements specification spec ∈ SPECS

implementation model miut ∈ MODS

implementation relation imp ⊆ MODS× SPECS

test case tc ∈ TESTS

observations OBS

execution model of test case obs : TESTS×MODS −→ P(OBS)

verdict verdicttc : OBS −→ {Fail, Pass}

Assumptions test hypothesis miut models iut

obs(tc, miut) models exec(tc, iut)

Table VI.1 – Conformance testing elements

Chapter VII

Testing of components

1 Conformance relation . 138

1.1 Specification model . 138

1.2 Implementation model . 138

1.3 Conformance . 139

2 Finite computation tree . 144

2.1 Formal definition . 144

2.2 Unfolding algorithm . 146

3 Test Purpose . 149

4 Test generation guided by test purposes . 150

4.1 Preliminaries . 153

4.2 Inferences rules . 154

4.3 Example . 156

4.4 Properties . 158

5 Instantiating of the approach . 161

In this chapter, we develop a formal theory of conformance testing which allows us to test

our components defined in the first part of this thesis. The work presented here is mainly in-

spired by the formal testing theory developed by A. Touil et al. in [44, 53]. In our conformance

testing theory, behaviours of specifications and implementations under test are considered as

coalgebras of the functor T(Out×)In presented in Chapter IV. The conformance relation we

consider is an adapted version of the well-known relation ioco proposed in [46], and that is de-

fined as a partial inclusion of implementation traces into specification ones. Our work uses the

notion of a test purpose as it was defined in [44, 53]. In [44, 53], a test purpose provides an

operative way to extract test cases by selecting from the specification model, described 1 as an

IOSTS, the functionalities that we want to test. This is done by relying on a symbolic execution

technique. In our approach, since we do not handle data but just values in both In and Out, we

use a simple unfolding technique to define our test purposes instead of a symbolic execution

technique. Then, our test purposes are directly derived from specifications using unfolding and

marking algorithms, and look like labeled trees capturing all specification traces for a given

length. We also propose in this chapter a test case generation algorithm as in [44, 53]. The un-

derlying idea consists in choosing a possible input i and submitting it to the implementation

under test, and then observing the outputs produced from it and compare them with the possi-

ble outputs in the specification. Hence, the only way to observe the reaction of the system under

1. IOSTS stands for Input-Output Symbolic Transition system. It is a variant of IOLTS including and handling

explicitly the data system [44, 53].

138 Chapter VII Testing of components

test is through sequences of simulations-observations. In other words, systems under test are

considered as black boxes. In this sense, we are in a testing framework similar to both [44, 53]

and [39, 108].

1 Conformance relation

In this section, we examine how we can define the conformance of the implementation of

a component to its specification. In order to compare the behaviour of the implementation to

the specification, we need to consider both as components over a same signature. However, the

behaviour of the implementation is unknown and can only be observed through its interface.

We therefore need a conformance relation between what we can observe on the implementation

and what the specification allows.

To define the conformance between the implementation iut and its specification spec, a for-

mal relation of conformance between iut and spec is classically given between the models of iut

and spec. However, the specification spec of a system is the formal description of its behaviour.

On the contrary, the implementation iut of a system is an executable component, which is con-

sidered as a black box [109, 110]. Hence, modeling iut requires some assumptions that we state

in the following.

1.1 Specification model

The conformance testing is a black-box test technique i.e. it is only based on a description

of system functionalities in terms of its inputs and outputs. Such a description does not make

reference to the internal structure of a system under test. It only contains the desired behaviours

that stand only for what the system should do, not how it is done. Then, the first step to define

conformance testing theory is to give a specification model of the system in which both its input

and output are well represented and the internal behaviour is not considered. Furthermore, this

specification model has to make clear the difference between the input and the output of the

system due to the fundamental role of this distinction in practical testing process [27, 37, 38,

45, 67]. Indeed, the inputs are the actions used by the tester to stimulate the system under test

while the outputs are the expected reactions observed after the stimulation. From this point of

view, our components defined over the signature T(Out ×)In give answers to these testing

requirements where they explicitly differentiate input and output actions.

Definition 1.1 (Specification model) A specification of a system S is modeled as a component

spec = (S, init, α) over a signature T(Out×)In.

1.2 Implementation model

An implementation iut is commonly a reactive program intending to interact permanently

with its environment. During the test process, it is assumed that the source code of the imple-

mentation is not available and null knowledge about it is provided. That means it is considered

a black box [109, 110], whose internal structure cannot be directly accessed. We interact with it

through its interface, by providing inputs to stimulate it and observing its behaviour through its

outputs. Then, to be able to treat the implementation iut, we make the following two assump-

tions about it:

1. The implementation iut can be modeled as a coalgebra (S′, init′, α′) over the signature

T(Out′ ×)In′ with In ⊆ In′ and Out ⊆ Out′ (In and Out are the input and output sets of

1 - Conformance relation 139

the specification respectively). This assumption is imposed to allow the specification spec

to accept all responses of the implementation.

We also denote by iut the coalgebra modeling the implementation to avoid any excessive

denotations;

2. The iut is input-enabled, i.e. at any state, it must produce answers for all inputs provided

by the environment.

The following definition formalizes these two assumptions:

Definition 1.2 (iut model) Let spec be a specification over T(Out ×)In. A system under test or

implementation of spec is a component (S′, init′, α′) over the signature T(Out′ ×)In′ where α′ is

considered as a total function:

∀(s′, i′) ∈ S′ × In′, ∃(o′, s′′) ∈ Out′ × S′ such that (o′, s′′) ∈ η′
Out′×S′

(α(s′)(i′))

and In ⊆ In′ and Out ⊆ Out′.

1.3 Conformance

1.3.1 An overview

The notion of conformance is usually based on the comparison between the behaviour of a

specification and an implementation using a conformance relation. The goal of this relation is

to specify what the conformance of an implementation is to its specification. Several kinds of

relations have been proposed in the literature. They differ mainly in both the formalism used to

model system behaviour and the testing aspects considered. Let us informally review some of

them.

The original conformance testing relation proposed for finite state machines (FSM) is de-

fined as the testing equivalence of states whose goal is to determine the equivalence of two

machines [111]. Two state machines are said to be equivalent if they produce exactly the same se-

quence of outputs when offered the same sequence of inputs. There is a list of other conformance

relations that can be found in the literature. The definitions of these relations depend mainly on

the underlying properties of the finite state machines we use. Table VII.1 reviews some of them

without going into details. For more detailed explanations, see [112, 113, 114, 115].

Relation Informal definition Properties

Equivalence ∼= equality of traces set complete deterministic, or

complete nondeterministic

Quasi Equiva-

lence ⊒

for each input sequence of spec, spec

and iut produce the same output se-

quences

deterministic or

nondeterministic

Reduction ≤ trace inclusion complete nondeterministic

Quasi reduction� for each input sequence of spec, iut pro-

duces only output sequences of spec

nondeterministic

Table VII.1 – Examples of conformance relations

It turns out that the conformance relations to test state equivalence are too strong, in prac-

tice, for conformance testing. There is a number of common assumptions (e.g. specification is

140 Chapter VII Testing of components

strongly connected, minimized or complete) that are usually made in the literature to make test

processes at all possible [111, 65, 116, 117]. Test generation algorithms based on them are also

expensive in time and memory [65, 111, 118, 119, 120, 121], contrary to test cases generation tech-

niques for inclusion relations (e.g. reduction and quasi reduction relations) [112, 113, 114, 115].

The test relations proposed for labeled transition systems (LTS) are usually equivalence and

preorder relations relying on the notion of observable behaviours. Many works have been done

on establishing the relations between LTSs. The relation trace preorder ≤tr requires the inclusion

of sets of traces. That means an implementation iut may show only behaviour which is specified

in the specification. The testing preorder≤te [122, 123] means that if the implementation iut makes

a trace which corresponds to a computation of iut after which no more action is possible, then

the specification spec has to make the same trace. The conf [124] is a variant of ≤te in which

all possible observations (i.e. Σ∗) are restricted to only traces contained in the specification.

In other words, it requires that the implementation behaves according to a specification, but

allows behaviours on which the specification puts no constraint. The refusal preorder ≤r f [125]

is a variant of ≤tr. The main difference between them is that ≤r f is able to detect possible

deadlock states i.e. states from which the system cannot go further. This is done by extending

the definition of a labeled transition system with refusal transitions.

Testing methods for LTS models are based on symmetric communication between the sys-

tem and its environment. Both environment and system actions are indeed treated in the same

way. There is no notion of input or output. However, it turns out such a classification of actions

into inputs and outputs leads to a closer link to testing process reality [27, 37, 38, 45, 67]. This

is due to the fact that outputs (respectively inputs) have to be considered as actions that are ini-

tiated by, and under control of the system (respectively that are initiated by, and under control

of the environment). That distinction between input and output actions then has a fundamental

role in testing practice in which the tester chooses an input action i, provides it to the imple-

mentation under test, and then observes output actions produced by the implementation after

i. We refer to the state of arts of the thesis [38, 126, 127] as well as to the articles [40, 128] for

further details.

Hence, most of the relations based on LTS have been extended to IOLTS models. Both the

testing preorder ≤te and the refusal preorder ≤r f were redefined to allow to take into account

inputs and outputs of systems [46, 129]. The con f relation was also adapted for the IOLTS mod-

els, and called iocon f [40, 46]. Indeed, the relation iocon f is similar to con f , but distinguishes

inputs from outputs, and restricts all possible observations to the traces of the specification. It

checks only whether a given implementation does what it should do, without regard to unspec-

ified behaviours. The implementation then has the freedom to do more that what is specified.

The relation ioco [40, 46] is similar to ioconf, but it uses suspension traces (i.e. traces generated

from suspension models whose quiescence 2 is specified) instead of proper traces (i.e. traces

generated from models whose quiescence is not handled) to check the conformance between iut

and spec. There are many other types of relations [68, 82, 130].

The relations conf, ioconf and ioco have received much attention by the community of for-

mal testing because they have shown their suitability for conformance testing and automatic

test derivation [40]. The reason is that the objective of conformance testing is mainly to check

whether the implementation behaves as required by the specification i.e. to check if the imple-

mentation does what it should do. Hence, a conformance relation has to allow implementations

not only to do what is specified, but also to do more than what is specified (for instance, when

2. The word "quiescence" is used to refer to blocking situations in states.

1 - Conformance relation 141

an annoyed user hits or kicks the coffee machine, or does other strange things that we are not

usually considered in the specification). This requirement of testing conformance is well satis-

fied by conf, ioconf and ioco contrary to other relations [68, 122, 123, 125, 130] that require testing

behaviours that are not in the specification i.e. the implementation does not have the freedom

to produce outputs for any input not considered in the specification.

Since we are dealing with components with input and output and quiescence is implicitly

defined in our component models, we choose ioco and extend it to fit our framework taking into

account that other relations previously presented could also have been defined in our frame-

work. There are several extensions to ioco according to both the transition system type and the

aspect considered to be tested. For instance, sioco for symbolic transition systems [43], sioco for

input-output symbolic transition systems [47], tioco for timed labeled transition systems [131],

cspio for CSP process algebra [132], dioco for distributed systems [133], uicoco for hybrid sys-

tem [134], etc.

1.3.2 Definition

We redefine the ioco conformance testing relation that we will call here cioco 3 in terms of

components as defined in Chapter IV. We make some modifications to the original definition of

ioco to fit our component definition. That is, after each trace tr of a specification spec, instead of

considering that the possible outputs of the corresponding implementation iut after executing

tr on it is a subset of the possible outputs of spec, we consider that the corresponding imple-

mentation iut, after executing tr on it and then submitting any input i of the specification to it,

does not produce outputs that are not allowed by spec.

The formal definition of cioco uses the following definition:

Definition 1.3 (Out after (tr, i)) Let C be a component over T(Out×)In. Let tr be a finite trace of C

and i ∈ In. The set of the possible outputs for input i after executing tr on C is:

Out(C after (tr, i)) = {o | tr.〈i|o〉 ∈ Trace(C)}

Hence, the relation cioco is formally redefined in terms of coalgebras as follows:

Definition 1.4 (cioco) Let spec be the component over the signature T(Out×)In and iut be the com-

ponent over T(Out′ ×)In′ such that iut satisfies the assumptions stated in Definition 1.2. cioco is

defined as follows:

iut cioco spec⇐⇒ ∀tr ∈ Trace(spec), ∀i ∈ In, Out(iut after (tr, i)) ⊆ Out(spec after (tr, i))

Example 1.1 Consider the specification spec of the coffee machine illustrated in Figure IV.1 and three

implementations under test iut1, iut2 and iut3 depicted in Figure VII.1a, Figure VII.1b and Figure VII.1c

respectively. Then, one has:

– (iut1 cioco spec) as after executing any finite trace of spec on iut, the outputs of iut1 are included

into the outputs of spec, when any specified input of spec is submitted to iut. For instance, after

the finite trace tr = 〈coin|abs, coffee|served, coin|abs〉 of spec, for the "coffee" input, one has:

Out(iut1 after (tr, coffee)) = {served, refund}

⊆

Out(spec after (tr, coffee)) = {served, refund}

3. c for component

142 Chapter VII Testing of components

– ¬(iut2 cioco spec). This is because the output ”refund” from the state FAILED of iut2 after the

finite trace 〈coin|abs, coffee|refund〉 is not allowed by spec when iut2 receives the input "repair"

(see the red transition repair|refund), while the specification only allows the output abs:

Out(iut2 after (〈coin|abs, coffee|refund〉, repair)) = {refund}

*

Out(spec after (〈coin|abs, coffee|refund〉, repair)) = {abs}

– ¬(iut3 cioco spec). This is because the output abs of iut3 after the trace 〈coin|abs〉 is not allowed

by the specification spec when iut3 receives the input "coffee" (see the red transition coffee|abs):

Out(iut3 after (〈coin|abs〉, coffee)) = {served, refund, abs}

*

Out(spec after (〈coin|abs〉, coffee)) = {served, refund}

STDBY READY

FAILED

coin |abs

coffee |served

coffee |refundrepair |abs

(a) Implementation iut1 in conformance to the specifica-

tion spec

STDBY READY

FAILED

coin |abs

coffee |served

coffee |refundrepair|refund

(b) Implementation iut2 not in conformance to the

specification spec

STDBY READY

FAILED

IDLE

coin |abs

coffee |served

coffee |refund

coffee |abs

repair |abs

(c) Implementation iut3 not in conformance to the specification

spec

Figure VII.1 – Illustration of cioco

1 - Conformance relation 143

Our definition of the relation cioco is generic enough to encompass the different ioco relations

defined in formalisms instances of our framework. Let us show that for IOLTS formalism.

First of all, let us recall the formal definition of ioco in the context of IOLTS model:

Definition 1.5 (ioco) Let spec be an IOLTS and iut be an input complete IOLTS, where the alphabets

of iut and spec are compatible, i.e. Σ!
spec ⊆ Σ!

iut and Σ?
spec ⊆ Σ?

iut then:

iut ioco spec =def ∀tr ∈ Trace(spec), Out(iut after tr) ⊆ Out(spec after tr)

where given an IOLTSM = (S, init, Στ , Tr),

– Trace(M) =
{

(a0, . . . , an) | ∃(s0, . . . , sn+1) ∈ S with s0 = init and si
ai−→ si+1, i ≤ n

}

– Out(M after tr) is defined for σ ∈ Trace(M) by
{

o | σ.o ∈ Trace(M) and o ∈ Σ!
M

}

By using the transformation defined in Definition 1.3 of Chapter IV, we have the following

proposition:

Proposition 1.1 LetM1 andM2 be two suspension IOLTSs. Let φ(M1) and φ(M2) be the compo-

nents obtained after transformingM1 andM2 in our framework. Then, we have:

M1 iocoM2 iff φ(M1) cioco φ(M2)

Proof

=⇒

Let (M1 iocoM2), tr ∈ Trace(φ(M2)), i an input of φ(M2) and o ∈ Out(φ(M1) after (tr, i)) and

let us prove that o ∈ Out(φ(M2) after (tr, i)).

o ∈ Out(φ(M1) after (tr, i)) implies that tr.〈i|o〉 ∈ Trace(φ(M1)). By Corollary 2.1 (in Chapter IV),

we have that tr.〈i|o〉 ∈ φt(Trace(M1)). Then,

∃tr′.a ∈ Trace(M1) | tr.〈i|o〉 = φt(tr
′).φt(a) (VII.1)

Similarly, tr ∈ Trace(φ(M2)) implies that tr′ ∈ Trace(M2).

Since M1 ioco M2, then a ∈ Out(M2 after tr′). That amounts to say tr′.a ∈ Trace(M2). Thus,

φt(tr′.a) ∈ φt(Trace(M2)). Hence, by Corollary 2.1 (in Chapter IV) and Equation VII.1, we can con-

clude that tr.〈i|o〉 ∈ Trace(φ(M2)). Consequently, o ∈ Out(φ(M2) after (tr, i)).

⇐=

Let (φ(M1) cioco φ(M2)), tr ∈ Trace(M2) and o ∈ Out(M1 after tr) and let us prove that o ∈

Out(M2 after tr).

o ∈ Out(M1 after tr) implies that tr.o ∈ Trace(M1) and tr ∈ Trace(M2). Then, φt(tr).φt(o) ∈

φt(Trace(M1)) and φt(tr) ∈ φt(Trace(M2). By Corollary 2.1 (in Chapter IV), we have then that

φt(tr).〈abs?|o〉 ∈ φ(Trace(M1)) and φt(tr) ∈ Trace(φ(M2)). But we know by hypothesis that

(φ(M1) cioco φ(M2)), then o ∈ Out(φ(M2) after (φt(tr), abs?)). That implies φt(tr).〈abs?|o〉 ∈

Trace(φ(M2)). Then, by Corollary 2.1 (in Chapter IV) we have that φt(tr).〈abs?|o〉 ∈ φt(Trace(M2)).

Hence, by applying φ−1
t , tr.o〉 ∈ (Trace(M2)). Consequently, we have that o ∈ Out(M2 after tr).

End

Similarly to iocon f , verifying that a Mealy machine implementation iut quasi-reduction 4 a

Mealy machine specification spec is not the same as checking whether cioco holds for the com-

ponents resulting by instancing iut and spec in our framework. Figure VII.2 shows a counterex-

ample: the implementation iut conforms to the specification spec w.r.t. quasi-reduction, that is be-

cause for all input sequences of spec, iut’outputs are allowed by spec. For instance, after the input

4. See Table VII.1 for quasi-reduction definition.

144 Chapter VII Testing of components

sequence 〈i1, i2, i3, i4〉, the output o5 of iut is specified. On the other hand, iut does not conforms

to spec w.r.t. cioco. That is because, after the trace 〈i1|o1, i2|o3, i3|o4〉, there exists an input i4 such

that Out(iut after (〈i1|o1, i2|o3, i3|o4〉, i4) = {o6} * Out(spec after (〈i1|o1, i2|o3, i3|o4〉, i4) = {o5}.

s0

s1

s2 s3

s4 s5

s6 s7

spec

i1|o1

i2|o2 i2|o3

i3|o4 i3|o4

i4|o5 i4|o6

q0

q1

q2

s4

s6

iut

i1|o1

i2|o3

i3|o4

i4|o5

Figure VII.2 – Counter example for quasi-reduction

2 Finite computation tree

A component C = (S, init, α) over the signature T(Out×)In can be unfolded into a tree.

Intuitively, this tree contains all the information about the possible executions of the component

C. It will form the cornerstone of the definition of test purposes in Section 3.

2.1 Formal definition

In this subsection, we define the finite computation tree of a component C which captures

all its finite traces.

Definition 2.1 (C-paths) Let C = (S, s0, α) be a component over T(Out×)In. A C-path is defined

by two finite sequences of states and inputs (s0, . . . , sn) and (i0, . . . , in−1) such that:

∀j, 1 ≤ j ≤ n, sj ∈ η′Out×S

(

α(sj−1)(ij−1)
)

|2

Definition 2.2 (Finite computation tree of component) Let (S, s0, α) be a component over the sig-

nature T(Out×)In. The finite computation tree of depth n of C, noted FCT(C, n), is the coalgebra

(SFCT , s0
FCT , αFCT) defined by:

– SFCT is the whole set of C−paths

– s0
FCT is the initial C−path 〈s0, ()〉

– αFCT is the mapping which for every C−path 〈(s0, . . . , sn), (i0, . . . , in−1)〉 and every input i ∈ In

associates η′−1
Out×SFCT

(Γ) where Γ is the set:

Γ =
{

(

o, 〈(s0, . . . , sn, s′), (i0, . . . , in−1, i)〉
)

| (o, s′) ∈ η′Out×S

(

α(sn)(i)
)

}

2 - Finite computation tree 145

In this definition, SFCT is the set of the nodes of the tree. s0
FCT is the root of the tree. Each node

is represented by the unique C-path 〈(s0, . . . , sn), (i0, . . . , in−1)〉 which leads to it from the root:

s0
i0−→ s1

i1−→ . . .
in−2
−−→ sn−1

in−1
−−→ sn

αFCT gives, for each node p and for each input i, the set of nodes Γ that can be reached from p

when the input i is submitted to the component.

Example 2.1 Figure VII.3 gives the finite computation tree of depth 4 of the coffee machineM whose

specification is shown in Figure IV.1.

p0

p1

p2 p3 p4

p5 p6
p7

p8 p9 p10 p11 p12

p0 = 〈STDBY, ()〉

p1 = 〈(STDBY, READY), coin〉

p2 = 〈(STDBY, READY, FAILED), (coin, coffee)〉

p3 = 〈(STDBY, READY, STDBY), (coin, coffee)〉

p4 = 〈(STDBY, READY, FAILED), (coin, coffee)〉

p5 = 〈(STDBY, READY, FAILED, STDBY), (coin, coffee, repair)〉

p6 = 〈(STDBY, READY, STDBY, READY), (coin, coffee, coin)〉

p7 = 〈(STDBY, READY, FAILED, STDBY), (coin, coffee, repair)〉

p8 = 〈(STDBY, READY, FAILED, STDBY, READY), (coin, coffee, repair, coin)〉

p9 = 〈(STDBY, READY, STDBY, READY, STDBY), (coin, coffee, coin, coffee)〉

p10 = 〈(STDBY, READY, STDBY, READY, FAILED), (coin, coffee, coin, coffee)〉

p11 = 〈(STDBY, READY, STDBY, READY, FAILED), (coin, coffee, coin, coffee)〉

p12 = 〈(STDBY, READY, FAILED, STDBY, READY), (coin, coffee, repair, coin)〉

coin|abs

coffee|served
coffee|served

coffee|refund

repair|abs coin|abs repair|abs

coin|abs coffee|served
coffee|served

coffee|refund coin|abs

Figure VII.3 – Finite computation tree for the coffee machine

It is easy to notice that a component C and its finite computation tree FCT(C) share the same

trace semantics i.e. Trace(C) = Trace(FCT(C)). It is therefore equivalent to study a component

or its finite computation tree in the context of our work.

146 Chapter VII Testing of components

2.2 Unfolding algorithm

In this subsection, we show that Definition 2.2 is computable by showing how to build a tree

FCT(C) algorithmically that captures all the possible finite computation paths of the component

C = (S, s0, α) over the signature H = T(Out×)In. This tree can be thought of as a data structure

representing the component computations obtained after a finite unfolding of C. Starting from

the initial state s0 of C, a tree t containing all the elementary paths is built by running a depth-

first search (DFS) as well as a set H(C) containing the heads (i.e. the first explored state) of all

elementary circuits which exist in C. To be more accurate, we assign a unique name to each

explored state and we also maintain the original state in C for every explored state in H(C). The

FCT(C) is therefore built recursively by binding to t in every state in H(C), the tree obtained by

applying the depth-first search to its original state in C. This means that if the component has a

circuit, then its unfolding is an infinite tree. To prevent this algorithm from running indefinitely

(the unfolding contains infinitely many visits to each state), we can enrich it with the option

of specifying the maximum time to go through the circuit. Briefly, unfolding the component

using this algorithm gives rise to a tree that contains isomorphic subtrees, describing redundant

computations, and each state can be reached via a unique execution from the initial state. It

allows us to capture all possible behaviours of the component at once. If we need to examine

a subset of the behavior of the system, then we use a stopping (or coverage) criteria which

determines the maximum number of passes through each circuit of C.

Hence, our mechanism of unfolding can be described by two algorithms. The first one, called

Enumerate, is a simple depth-first search that gives rise, as results, to the tree containing all the

elementary paths of C, and the first explored state of every circuit existing in C. The second

algorithm, called Unfolding, allows one to construct recursively the entire computation tree

taking into account how many times we go through every circuit of C.

Algorithm 1: Enumerate(C, (S′, init′, α′), s, LS, HC, P)

while ∃i ∈ In, (o, s′) ∈ Out× S | (o, s′) ∈ η′(α(s)(i)) do

nb′ ← GiveNumber(s′);

Add(S′, nb′);

α′(init′)(i)← α′(init′)(i) ∪ η′−1({(o, nb′)});

if Color(s′) = W or R then

Push(P, s′);

ModifyColor(LS, s′, G);

Enumerate(C, (S′, nb′, α′), s′, LS, HC, P);

else Add(HC, (s′, nb′));

Pop (P);

ModifyColor(LS, s, R);

return ((S′, init′, α′), HC)

Proposition 2.1 Enumerate runs in Θ(mN) while Unfolding in Θ(mNnbn) with:

– m is the number of states of the component to be unfolded;

– N is the cardinality of the input set In;

– nb is the number of circuits detected in C;

– n is the number of passes of the algorithm through each circuit.

Proof

2 - Finite computation tree 147

Algorithm 2: Unfolding(C, s, n)

input : a component C = (S, init, α) over T(Out×)In, a state s ∈ S and positive number

n

output: a finite tree FCT(C, n) containing all paths of C outgoing from s. Each one of these

paths does not go through more n circuit

initialization ;

(S′, init′, α′)← CreateEmptyComponent();

LS← CreateEmptyListOfColoredStates();

P← CreateEmptyStack();

HC ← CreateEmptyListOfStateState();

Push(P, s);

for state ∈ S do
Add(LS, (state, W))

nb← GiveNumber(s);

init′ ← nb;

Add(S′, nb);

ModifyColor(LS, s, G);

(S′, α′), HC ← Enumerate(C, (S′, α′), s, LS, HC, P);

if n == 1 then
return (S′, init′, α′))

else

for (x, nb) ∈ HC do

(S′′, init′′, α′′)← Unfolding(C, x, n− 1);

nb← init′′;

S′ ← S′ ∪ S′′;

α′(y)(i) 7→

{

α′(y)(i) i f y ∈ S′

α′′(y)(i) otherwise

148 Chapter VII Testing of components

Enumerate: Let T(m) be the number of elementary operations 5 necessary to enumerate all elementary

paths of a component C over T(Out×)In whose state number is m. We can easily see that Enumerate

satisfies the following recurrence:

T(m) =

3 + 8× N i f m = 1

3 + 8× N + T(m− 1) otherwise

To guess at a solution, let’s try unrolling the recurrence, by substituting it into itself as follows:

T(m) = T(m− 1) + 3 + 8× N

T(m− 1) = T(m− 2) + 3 + 8× N

...

T(m− (m− 2)) = T(1) + 3 + 8× N

Then, T(m) satisfies the recurrence:

T(m) = m(3 + 8× N)

Consequently, Enumerate runs in Θ(mN).

Unfolding: Let T(n) be the number of elementary operations necessary to unfolding a component C over

T(Out×)In with n as the number of times that the algorithm goes through each circuit in C. We can

easily see that Unfolding satisfies the following recurrence:

T(n) =

9 + m + m× N i f n = 1

(9 + m + m× N) + 6× nb× T(n− 1) otherwise

To guess at a solution, let’s try unrolling the recurrence, by substituting it into itself as follows:

T(n) = 6× nb× T(n− 1) + 9 + m + m× N

T(n− 1) = 6× nb× T(n− 2) + 9 + m + m× N

...

T(n− (n− 2)) = 6× nb× T(1) + 9 + m + m× N

Then, T(n) satisfies the recurrence:

T(n) = (9 + m + m× N)
n

∑
i=0

(6× nb)i

Consequently, Enumerate runs in Θ(mNnbn).

End

Example 2.2 Figure VII.4 shows a graphical representation of a component C (on the left side) and

its unfolding FCT(C, 2) as a finite computation tree (on the right side). Unfolding(C, init, 2) calls

Enumerate which in turn returns a tree t containing all the elementary paths of C (t is colored red)

as well as the set containing the couple (s1, 5). s1 is the first state involved in the circuit (s1s2s3s1) and

5 is the node associated to s1 in FCT(C, 2). Since we intend to build a tree of depth 2, then Unfolding

glues in 5 the tree t′ (colored blue) built by unfolding C in s1.

5. Operations such that Add,∪, GiveNumber, etc. are considered as elementary operations i.e. they run in Θ(1).

3 - Test Purpose 149

s0

s1 s2

s3
s4

a0

a1

a2
a3

a4

0

1

23

4

5

6 7

8

9

a0

a1a4

a2

a3

a4 a1

a2

a3

Figure VII.4 – Example of finite computation tree

3 Test Purpose

As previously mentioned, our model of a specification is described as a coalgebra over

T(Out×)In. Such a model usually contains a growth of exponential states which makes the

testing process difficult even impossible to be implemented. To cope with this problem, test pur-

poses can be used. A test purpose is a description of the part of the specification that we want

to test and for which test cases are to be generated. In other words, it narrows down the model

of the specification into smaller ones from which test cases are later generated. In [39, 135], test

purposes are described independently of the model of the specification. Then, a synchronous

product is done between the test purpose and the specification in order to keep only the paths

accepted by the specification. In [44, 53], test purposes are deduced from the specification by

construction. More precisely, a test purpose is considered as a finite symbolic subtree of the

symbolic execution tree generated from a specification IOSTS using a symbolic execution tech-

nique. Then, leaves of this tree are labeled by accept and intermediate nodes are labeled by skip

(states leading to states from which it is possible to go to accepting states). All other nodes of

the tree not belonging to the test are then labeled by a special label ⊙.

In order to guide the test derivation process in our approach, we prefer, as in [44, 53], to

describe test purposes by selecting the part of the specification that we want to explore. We

therefore build the finite computation tree FCT(C) of the component C, and consider a test

purpose as a tagged finite computation tree of the specification. The leaves of the FCT which

correspond to paths that we want to test are tagged accept. All internal nodes on such paths are

tagged skip, and all other nodes are tagged ⊙.

In summary, these labels in trees serve either to accept, or to reject the behaviours of speci-

fications as follows: a path that is a part of the test purpose is called path purpose and noted X .

The last node of the path in question is tagged accept. All other nodes of this path are tagged

150 Chapter VII Testing of components

skip. They correspond to the fact that it is still possible to transmit additional input i to the im-

plementation and receive its output o to reach an accepted node. Finally, all other nodes that are

not part of X are tagged ⊙.

Definition 3.1 (Test Purpose) Let FCT(C, n) be the finite computation tree of depth n associated to a

component C. A test purpose TP for C is a mapping TP : SFCT −→ {accept, skip,⊙} such that:

– there exists a C−path p ∈ SFCT such that TP(p) = accept

– if TP(〈(s0, . . . , sn), (i0, . . . , in−1)〉) = accept, then:

∀j, 1 ≤ j ≤ n− 1, TP(〈(s0, . . . , sj), (i0, . . . , ij−1)〉) = skip

– TP(〈s0, ()〉) = skip

– if TP(〈(s0, . . . , sn), (i0, . . . , in−1)〉) = ⊙, then:

TP(〈(s0, . . . , sn, s′n+1, . . . , s′m), (i0, . . . , in−1, i′n, . . . , i′m−1)〉) = ⊙

for all m > n and for all (s′j)n<j≤m and (i′k)n≤k<m

In order to build a test purpose on a finite computation tree, we choose the leaves of the tree

that we accept as correct finite behaviours and tag them with accept. We then tag every node

which represents a prefix of an accepted behaviour with skip. The other nodes, which lead to

behaviours that we do not want to test, are tagged with ⊙.

Note a test purpose can be characterized by one path purposeX , two path purposesX , even

all the finite computation tree.

In the following, we use the notation TP to refer to an arbitrary test purpose.

Example 3.1 From the finite computation tree FCT(M, 4) shown in Figure VII.3, one defines three test

purposes:

TP1: this test purpose allows us to ignore the behaviours of M related to failure and repair and

to concentrate on its interaction with a user. When the machine fails, we reach node p4, p5 or p11

which are tagged with ⊙. This indicates that we are not interested in further behaviour from these

nodes. p2, p9 and p10 are tagged with accept because they are nodes corresponding to the expected

behaviour. All nodes leading from the root p0 to these nodes are tagged with skip.

TP2: this test purpose describes the behaviours ofM where it delivers coffee and goes into a blocked

state. When the machine fails after delivering coffee, we only reach node p5 which we tag with

accept. Then, p0, p1 and p2 are tagged skip and all other nodes are tagged with ⊙.

TP3: this test purpose describes the behaviours ofM where it fails to deliver coffee to the user but

refunds him. When the machine refunds the user and goes into a blocked state, we reach node p4

or p11 which we tag with accept. Then, p0, p1, p3 and p6 are tagged skip and all other nodes are

tagged with ⊙.

4 Test generation guided by test purposes

Conformance testing is based on a conformance relation between the component modeling

the implementation iut and the component denoting the specification spec. The conformance

relation we use is cioco, which requires that the iut’s outputs are among the outputs allowed by

spec for every specified input sequence. A test execution is then the process of feeding the iut

with a test case, observing its response and giving some test verdicts.

4 - Test generation guided by test purposes 151

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

coin|abs

coffee|served
coffee|served

coffee|refund

repair|abs

coin|abs

repair|abs

coin|abs

coffee|served

coffee|served

coffee|refund

coin|abs

skip

skip

accept

skip
⊙

⊙

skip

⊙

⊙

accept

accept

⊙

⊙

(a) Test purpose TP1 with three path purposes X

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

coin|abs

coffee|served
coffee|served

coffee|refund

repair|abs

coin|abs

repair|abs

coin|abs

co
ffe

e|
se

rv
ed

coffee|served

coffee|refund

coin|abs

skip

skip

skip

⊙
⊙

accept

⊙

⊙

⊙

⊙

⊙
⊙

⊙

(b) Test purpose TP2 with one path purpose X

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

coin|abs

coffee|served
coffee|served

coffee|refund

repair|abs

coin|abs

repair|abs

coin|abs

co
ffe

e|
se

rv
ed

coffee|served

coffee|refund

coin|abs

skip

skip

⊙
skip

accept

⊙

skip

⊙

⊙

⊙

⊙
accept

⊙

(c) Test purpose TP3 with two path purposes X

Figure VII.5 – Test purposes of the coffee machine

152 Chapter VII Testing of components

There exist several different techniques to generate test cases systematically from a speci-

fication in such a way these test cases can distinguish correct implementations, and incorrect

ones. These techniques differ by both specification model and conformance relation used for

testing. They can be classified in two main categories: random techniques and techniques guided

by test purposes. Random techniques, such as in [46, 27], are used to generate test cases based

on non-deterministic choices. This is done by exploring the specification randomly and select-

ing new actions until a certain user-defined bound on steps is reached, or no match is found

between the outputs of the implementation and of the specification. Techniques guided by test

purposes, such as in [39, 44], are based on the definition of a test purpose which is used to allow

the tester to select a property to be tested. In [39], a test case can be generated by computing the

synchronized product of the specification and the test 6 purpose. In [44], test cases are gener-

ated from a finite symbolic tree obtained according to a test purpose which can be either chosen

manually by the user or computed automatically by means of inclusion 7 criteria.

Similarly to [44], we propose an approach for test case selection according to a test purpose.

The advantage of the testing theory proposed in [44] is that it is based on the conformance rela-

tion ioco that we adopt in our framework and as previously stated, has received much attention

by the community of formal testing thanks to its suitability for both conformance testing and

automatic test derivation. Furthermore, test generation algorithms proposed in [44] are simple

in their implementation and efficient in their execution.

Figure VII.6 illustrates graphically the elements of the approach. A test case is generated

from the finite computation tree FCT(spec) of a specification spec enriched with a test purpose

TP. It is considered as a sequence of input-output actions built progressively by interacting

with the implementation iut, and which examines one of the behaviours of the specification

spec selected by the test purpose TP (i.e. the last node of the path is tagged accept). The under-

lying idea to building such a sequence is the following: we choose an input action i according

to the interactions with the iut previously computed and the set of reachable states that can

lead to accepting states of TP. Then, the reaction (output) o received from the implementation

is compared to the specified ones, and depending on the result of this comparison, our algo-

rithm continues its computation, or stops by generating a verdict. We therefore distinguish four

verdicts:

– Fail: means that the output o does not match the specification, and then the interaction

sequence does not form the trace of any path purpose. Hence, the goal of the test case is

not reached;

– Pass: means that no observable difference between the specification and the implementa-

tion is detected;

– Inconc: means that no error is detected but, the test purpose is not achieved;

– WeakPass: means that the implementation behaves correctly but, due to the fact of non-

deterministic specification, we are not sure whether the test purpose has been achieved.

6. Test purposes are usually supposed to be given by an expert.
7. It is stated in [44], that inclusion criterion can be used to answer industrial needs where engineers are not always

able to define which behaviour they want to test.

4 - Test generation guided by test purposes 153

Specification Finite computation tree

Test purpose: tagged

finite computation tree
Algorithm

Pass,

Fail,

Inconc,

WeakPass

Implementation

Unfolding

next input

check output offer output

observe output

Test purpose

Figure VII.6 – General view of the algorithm

4.1 Preliminaries

In this section, we introduce some notations and definitions that will be used in describing

our algorithm for generating conformance tests for components.

As mentioned above, a test case is a sequence generated by a test purpose TP interacting

with iut. This is denoted by:

[ev0, ev1, . . . , evn|V]

where for all j ∈ [0, . . . , n], evj = i|o is an elementary input-output with i ∈ In, o ∈ Out and

V ∈ {Fail, Pass, Inconc, WeakPass}.

We note stimobs(i|o) the output o from iut when stimulating it with input i.

In order to compute the set of reachable states that lead to accept states after a given input-

output sequence, we define a current set of states denoted by CS that contains a subset of the

states of the test purpose. It is initialized to the initial state of TP. We also introduce three func-

tions to help explore TP by selecting paths that lead to accept states:

– Next(CS, ev) is the set of directly reachable states from the current set of states CS after

executing ev;

– NextSkip(CS, ev) is the set of states in Next(CS, ev) which are labeled by skip;

– NextPass(CS, ev) is the set of states in Next(CS, ev) which are labeled by accept.

More formally, these three sets are defined as follows:

154 Chapter VII Testing of components

Definition 4.1 Let TP : SFCT −→ {accept, skip,⊙} be a test purpose for a component C, ev = 〈i|o〉

an event, and S′ a subset of SFCT :

– Next(S′, ev) =
⋃

s′∈S′
({s | (o, s) ∈ η′Out×SFCT

(αFCT(s
′)(i))});

– NextSkip(S′, ev) = Next(S′, ev)
⋂

TP(S′)|skip
;

– NextPass(S′, ev) = Next(S′, ev)
⋂

TP(S′)|accept
.

with TP(S′)|tag
= {s′ ∈ S′ | TP(s′) = tag}

4.2 Inferences rules

We define our test case generation algorithm as a set of inferences rules. Each rule states that

under certain conditions on the next observation of output action from iut or the next stimula-

tion of iut by an input action, the algorithm either performs an exploration of the other states of

TP, or stops by generating a verdict.

We structure these rules as

CS

Results
cond(ev)

where

– CS is a set of current states;

– Results is either a set of current states or a verdict;

– cond(ev) is a set of conditions including stimobs(ev).

Each rule must be read as follows:

Given the current set of states CS, if cond(ev) is satisfied, then the algorithm may achieve a step of

execution, with ev as input-output elementary sequence.

This algorithm can be seen as an exploration of the finite computation tree starting from the

initial state. It switches between sending stimuli to the implementation and waiting for output

of the implementation according to the inference rules as long as a verdict is not reached. We

distinguish two kinds of inference rules : exploring rules and diagnosis rules. The first kind is

applied to pursue the computation of the sequence as long as Result is a set of states. The second

kind leads to a verdict and stops the algorithm.

Algorithm iut

stimobs(i0|o0)

stimobs(ij |oj)

stimobs(in |on)

Figure VII.7 – Communication between the iut and the algorithm

4 - Test generation guided by test purposes 155

Rule 0 Initialization rule 8:
{s0

FCT}

Rule 1 Exploration of other states: the emission o after a stimulation by i on the iut is compat-

ible with the test purpose but no accept is reached.

CS

Next(CS, ev)
stimobs(ev), NextSkip(CS, ev) 6= ∅, NextPass(CS, ev) = ∅

Rule 2 Generation of the verdict Fail: the emission from the iut is not expected with regards to

the specification.

CS

Fail
stimobs(ev), Next(CS, ev) = ∅

Rule 3 Generation of the verdict Inconc: the emission from the iut is specified but not compat-

ible with the test purpose.

CS

Inconc
stimobs(ev),

Next(CS, ev) 6= ∅,

NextSkip(CS, ev) = NextPass(CS, ev) = ∅

Rule 4 Generation of the verdict Pass: all next states directly reachable from the set of current

set are accept ones.

CS

Pass
stimobs(ev), NextPass(CS, ev) = Next(CS, ev), Next(CS, ev) 6= ∅

Rule 5 Generation of the verdict WeakPass: some of the next states are labelled by accept, but

not all of them.

CS

WeakPass
stimobs(ev),

NextPass(CS, ev) ⊂ Next(CS, ev),

NextPass(CS, ev) 6= ∅

8. This rule is involved only once when starting the algorithm.

156 Chapter VII Testing of components

Let us note that three forms of ev are distinguished: i|o, i|ǫo and ǫi|o. Hence, each of these

rules except rule 0 can be used in several ways according to the form of ev:

– stimobs(ev = i|o) means o is produced by iut when it is stimulated with i;

– stimobs(ev = i|ǫo) means the stimulation of iut with i does not produce any output;

– stimobs(ǫi|o) means o is produced spontaneously by iut.

These possibilities for ev therefore give rise to a generic algorithm that can be applied to a wide

variety of state-based systems ([46, 39, 65]) by choosing the appropriate monad T and input and

output sets.

4.3 Example

We illustrate the algorithm previously proposed with concrete examples. We consider the

test purposes TP1 and TP2 defined in Figure VII.5a and Figure VII.5b respectively, and show

how test cases can be obtained by applying the rules presented in Section 4.2. Let us first recall

that the algorithm uses the following notation:

CS
event

rule
CS′

where:

– event denotes the current element of the considered trace, and is of the form input|output;

– rule stands for the rule applied to get the next set of states CS′.

Test cases for TP1

Fail To get the verdict Fail, we consider the following trace:

[coin|abs, coffee|served, coin|refund
∣

∣

∣
Fail]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs

rule 1
CS1 = {p1}

coffee|served

rule 1
CS2 = {p2, p3}

CS2

coin|refund

rule 2
Fail

The verdict Fail is due to the following equality:

Next(CS2, coin|refund) = ∅

Inconc To get the verdict Inconc, we consider the following trace:

[coin|abs, coffee|served, coin|abs, coffee|refund
∣

∣

∣
Inconc]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs

rule 1
CS1 = {p1}

coffee|served

rule 1
CS2 = {p2, p3}

4 - Test generation guided by test purposes 157

CS2

coin|abs

rule 1
CS3 = {p6}

coffee|refund

rule 3
Inconc

The verdict Inconc is due to the following two equalities:

– Next(CS3, coffee|refund) = {p11} 6= ∅

– NextPass(CS3, coffee|refund) = NextSkip(CS3, coffee|refund) = ∅

Pass To get the verdict Pass, we consider the following trace:

[coin|abs, coffee|served, coin|abs, coffee|served
∣

∣

∣
Pass]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs

rule 1
CS1 = {p1}

coffee|served

rule 1
CS2 = {p2, p3}

CS2

coin|abs

rule 1
CS3 = {p6}

coffee|served

rule 4
Pass

The verdict Pass is due to the following equality:

NextPass(CS3, coffee|served) = Next(CS3, coffee|served), Next(CS3, coffee|served) 6= ∅

WeakPass To get the verdict WeakPass, we consider the following trace:

[coin|abs, coffee|served
∣

∣

∣
WeakPass]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs

rule 1
CS1 = {p1}

coffee|served

rule 5
WeakPass

The verdict WeakPass is due to the two equalities:

– NextPass(CS1, coffee|served) ⊂ Next(CS1, coffee|served)

– NextPass(CS1, coffee|served) = {p2} 6= ∅

Test cases for TP2

Fail To get the verdict Fail, we consider the following trace:

[coin|abs, coffee|served, repair|refund
∣

∣

∣
Fail]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs

rule 1
CS1 = {p1}

coffee|served

rule 1
CS2 = {p2, p3}

CS2

repair|refund

rule 2
Fail

The verdict Fail is due to the following equality:

Next(CS2, repair|refund) = ∅

158 Chapter VII Testing of components

Inconc To get the verdict Inconc, we consider the following trace:

[coin|abs, coffee|served, coin|abs
∣

∣

∣
Inconc]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs

rule 1
CS1 = {p1}

coffee|served

rule 1
CS2 = {p2, p3}

CS2

coin|abs

rule 3
Inconc

The verdict Inconc is due to the following two equalities:

– Next(CS2, coin|abs) = {p6} 6= ∅

– NextPass(CS2, coin|abs) = NextSkip(CS3, coin|abs) = ∅

Pass To get the verdict Pass, we consider the following trace:

[coin|abs, coffee|served, repair|abs
∣

∣

∣
Pass]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs

rule 1
CS1 = {p1}

coffee|served

rule 1
CS2 = {p2, p3}

CS2

repair|abs

rule 4
Pass

The verdict Pass is due to the following equality:

NextPass(CS2, repair|abs) = Next(CS2, repair|abs), Next(CS2, repair|abs) 6= ∅

WeakPass There is no test cases ending by the verdict WeakPass for TP2.

4.4 Properties

A test case informs us of the conformance of the implementation to its specification. The

non-existence of a Fail verdict leads to a conformance, and any non-conformance should be

detected by a test case ending by a Fail verdict. In order to study the coherence between the

notion of conformance applied to an implementation under test and its specification, and the

notion of a test case generated by our algorithm, we denote by CS and EV respectively the

whole set of current state sets and the whole set of input-output elementary sequences used

during the application of the set of inference rules on an implementation iut according to a test

purpose TP. We then introduce a transition system whose states are the sets of current states

and four special states labeled by the verdicts. Two states are linked by a transition labeled by

an input-output elementary sequence. This transition system is formally defined as follows:

Definition 4.2 (Execution) Let TP be a test purpose for a specification spec, let iut be an implemen-

tation, let CS be the whole set of current state sets and let EV be the whole set of input-output ele-

mentary sequences. Then, the execution of the test generation algorithm on iut according to TP

denoted by TS(TP, iut) (see its explanation in Section 4.2) is the coalgebra (STS, αTS) over the signature

()EVdefined by:

4 - Test generation guided by test purposes 159

– STS = CS ∪ V where V is the set whose elements are Fail, Pass, Inconc and WeakPass;

– αTS is the mapping which for every CS ∈ CS and for every ev ∈ EV is defined as follows:

αTS(CS)(ev) =

Next(CS, ev) if NextSkip(CS, ev) 6= ∅, NextPass(CS, ev) = ∅

Fail if Next(CS, ev) = ∅

Inconc if NextSkip(CS, ev) = NextPass(CS, ev) = ∅

and Next(CS, ev) 6= ∅

Pass if Next(CS, ev) = NextPass(CS, ev)

and Next(CS, ev) 6= ∅

WeakPass if NextPass(CS, ev) Next(CS, ev)

and NextPASS(CS, ev) 6= ∅

With this definition, test cases are sets of possible traces which can be observed during an exe-

cution of TS(TP, iut), and lead to a verdict state.

Definition 4.3 (Test cases) Let TS(TP, iut) = (STS, αTS) be the execution of the test generation al-

gorithm on iut according to TP. A test case for TP is a sequence [ev0, . . . , evn|V] for which there is a

sequence of states s0, . . . , sn ∈ CS with ∀j, 0 ≤ j < n, sj+1 = αTS(sj)(evj), and there is a verdict state

V ∈ V such that V = αTS(sn)(evn).

We note st(TP, iut) the set of all possible test cases for TP.

We can now introduce the notation:

vdt(TP, iut) = {V | ∃ev0, . . . , evn, [ev0, . . . , evn|V] ∈ st(TP, iut)}

Theorm 4.1 (Correctness and completeness) For any specification spec and any iut:

– Correctness: If iut conforms to spec, then for any test purpose TP, Fail 6∈ vdt(TP, iut).

– Completeness: If iut does not conform to spec, then there exists a test purpose TP such that

Fail ∈ vdt(TP, iut).

Proof

Proof of the correctness: Let spec = (S, s0, α) be a specification over a signature H = T(Out×)In

and FCT = (SFCT , s0
FCT , αFCT) be its finite computation tree. Let us prove the correctness using the

contraposition principle. This means that to prove:

if iut conforms to spec, for any test purpose TP, Fail 6∈ vdt(TP, iut).

we have to prove:

if there exists a test purpose TP such that Fail ∈ vdt(TP, iut), then

iut does not conform w.r.t cioco to spec.

160 Chapter VII Testing of components

More precisely, according to the definition of cioco, we have to prove that:

there exists a finite trace tr ∈ Trace(FCT), an input i ∈ In such that

Outiut(iut after (tr, i)) * OutFCT(FCT after (tr, i))

This is proved by the following proposition:

Proposition 4.1 If there exists a test purpose TP such that [i0|o0, . . . , in|on|Fail] ∈ st(TP, iut), then:

1. 〈i0|o0, i1|o1, . . . , in−1|on−1〉 ∈ Trace(FCT).

2. in ∈ In

3. on ∈ Outiut(iut after (〈i0|o0, . . . , in−1|on−1〉, in)).

4. on 6∈ Outspec(spec after (〈i0|o0, . . . , in−1|on−1〉, in)).

First of all, let us denote 〈i0|o0 . . . in−1|on−1〉 by 〈ev0 . . . evn−1〉.

Proof of (1).

In order to show that the sequence 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT), we are going to reason on

the way of computation of this sequence by using the inference rules. First of all, let TS(TP, iut) be

the execution of the test generation algorithm and st(TP, iut) be the set of generated test cases. Since

[i0|o0, . . . , in|on|Fail] ∈ st(TP, iut), then

there exists ∀j, 0 ≤ j < n, Sj ∈ CS such that S0 = {s0
TS}, Sj+1 = αTS(Sj)(evj) and

Fail = αTS(Sn)(evn)

Hence, for every j, 0 ≤ j < n, Sj+1 which equals to Next(Sj, evj) is not empty by Definition 4.2. Hence,

by Definition 4.1, for every j, 0 ≤ j < n, every state belonging into Sj+1 is a state of FCT. This means

that for every j, 0 ≤ j < n, every state s ∈ Sj is related to a state s′ ∈ Sj+1 by evj. Then, the sequence

〈ev0 . . . evj . . . evn−1〉 ∈ Trace(FCT).

Proof of (2).

We have proved above that 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT) and Sn 6= ∅.

We have that [i0|o0 . . . in|on|Fail] ∈ st(TP, iut) i.e. submitting the input in to the implementation under

test will produce the output on that is not specified in FCT(C). Then, it is clear that i ∈ In is an input of

FCT(spec).

Proof of (3).

It is obvious because [i0|o0, i1|o1, . . . , in|on|Fail] ∈ st(TP, iut).

Proof of (4).

We know that 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT) and Sn 6= ∅. We have that [i0|o0 . . . in|on|Fail] ∈

st(TP, iut) i.e. applying in|on has to lead to a Fail verdict. This means that αTS(Sn)(in|on) = Fail.

Hence by Definition 4.2, Next(Sn, in|on) has to be empty. But we know that Next(Sn, in|on) ⊆ SFCT .

Hence, 〈i0|o0, . . . , in−1|on−1, in|on〉 does not belong to Trace(FCT).

Proof of the completeness : Let spec = (S, s0, α) be a specification over a signature H = T(Out×)In

and FCT = (SFCT , s0
FCT , αFCT) be its finite computation tree. Let us prove that the completeness holds.

5 - Instantiating of the approach 161

For this, let us assume that iut does not conform to spec and let us prove that there exists a test purpose

TP such that there exists [ev0, . . . , evn|Fail] ∈ st(TP, iut).

First of all, iut does not conform to spec. According to the definition of cioco, there exists a trace tr =

〈ev0 . . . evn−1〉 ∈ Trace(FCT) and an input i ∈ In such that

Outiut(iut after (tr, i)) * OutFCT(FCT after (tr, i))

i.e. there exists an output o′n of iut such that

– o′n ∈ Outiut(iut after (tr, in));

– o′n 6∈ OutFCT(FCT after (tr, in)).

That means:

〈ev0, . . . , evn−1, in|o
′
n〉 ∈ Trace(iut) (VII.2)

and

〈ev0, . . . , evn−1, in|o
′
n〉 6∈ Trace(FCT) (VII.3)

Since in ∈ In, then there also exists an output on such that on ∈ OutFCT(FCT after (tr, in)) i.e.

〈ev0, . . . , evn−1, in|on〉 ∈ Trace(FCT) (VII.4)

Let us denote 〈in|on〉 by evn and 〈in|o′n〉 by ev′n.

Now, let us denote by TP a test purpose of FCT such that there exists a state s ∈ SFTC such that s belongs

to the set of reachable states from the initial state of FCT after executing the trace 〈ev0 . . . evn−1evn〉 on

FCT, and TP(s) = accept i.e. 〈ev0 . . . evn−1evn〉 forms a path of TP. Let us prove that there exists

[ev0 . . . evn−1ev′n|Fail] ∈ st(TP, iut). For this, it is enough to show that

∃(Sj)0≤j≤n such that ∀j, 0 ≤ j < n, Sj+1 = αTS(Sj)(evj) ∈ CS and Fail = αTS(Sn)(ev′n)

We have that 〈ev0 . . . evn−1〉 ∈ Trace(FCT), then, for every j, 0 ≤ j < n, Sj exists because for every

j, 1 ≤ j < n, αTS(Sj)(evj) = Next(Sj, evj) and S0 = {s0
FCT}. Thus, what remains is to prove that

there is a verdict state Fail such that Fail = αTS(Sn)(evn).

By Equation VII.3, 〈ev0 . . . ev′n〉 6∈ Trace(FCT) and by Equation VII.2 〈ev0 . . . evn〉 ∈ Trace(iut),

hence Next(Sn, ev′n) = ∅, and consequently αTS(Sn)(evn) = Fail.

End

5 Instantiating of the approach

From the genericity of our framework, the testing technique proposed in this chapter, can

also be applicable to any-state formalisms which are instances of our framework. Figure VII.8

illustrates the different steps to generate correct test cases for any model instance of our frame-

work.

First, we define the function φ which transforms the model in which a specification is given (for

example, an IOLTS or Mealy automaton) into our framework. This function has to be bijective

to allow us to go back to the original formalism. This transformation is illustrated on the left side

in Figure VII.8. Second, we need to prove the equivalence between the conformance relation rel

used between iut and spec and the cioco defined on their images φ(iut) and φ(spec). Third, we

apply our proposed algorithm for test case derivation on φ(spec) to generate correct test cases.

Finally, we transform the obtained test cases into test cases described in the original formalism.

Hence, testing systems, whose specification models can be viewed as instances of our compo-

nent definition, require us to define the bijective transformation φ and to prove that the follow-

ing property holds:

iut rel spec ⇐⇒ φ(M1) cioco φ(M2)

162 Chapter VII Testing of components

Models

spec

iut

Components

φ(spec)

φ(iut)

φ

φ

Models Components

iut rel spec φ(iut) cioco φ(spec)

Correct test cases

⇔

O
u

r
al

go
ri

th
m

Tr
an

sf
or

m
te

st
ca

se
s

Figure VII.8 – Instantiating of the algorithm

Chapter VIII

Integration Testing

1 Compositional testing . 164

1.1 Compositional testing with cioco . 164

1.2 Compositionality for cartesian product 168

1.3 Compositionality for feedback operators 168

1.4 Compositionality for complex operator 172

2 Test purposes for sub-systems . 173

2.1 Sub-systems and projection . 174

2.2 System-based test purposes . 175

3 Related works . 177

In Chapter VII, we have shown how component implementations are tested to be cioco-

correct to their component specifications separately. This is classically known as unitary testing.

The present chapter intends to validate the complex systems made by assembling a set of state-

based components. This is classically known as compositional testing (or component based testing).

Due to the growing complexity of the space state of the complex systems, it is difficult even

impossible to use the black-box testing approach that we proposed in Chapter VII. Therefore,

there is a need to systematically derive test cases based on the structure of the complex system.

We believe that it is natural and easier to test a system by testing only its subsystems.

Hence, in this chapter we intend to contribute in two ways:

1. By defining a compositional testing approach. The main idea is to test an integrated sys-

tem assuming that its underlying components have already been tested in isolation and

are correct [30]. The operators used to compose components are assumed to be well-

implemented and to preserve their specifications. Thus, the problem of compositional

testing that we address can be seen as follows: if single components of a system con-

form to their specifications, can we conclude that the whole system is in conformance to

its specification? As a consequence of positive answer to this question, we can test the

global system by testing in isolation its components that may be done at various steps of

development and potentially developed by different teams.

2. By strengthening the quality of components by taking into account their involvement in

the global system that encapsulates them. The main idea consists in showing how to

strengthen the correctness of each component involved in a global system, by choosing

suitable test purposes for them. This will be done by defining a projection mechanism

that, from a behaviour of the global system, will help to generate test purposes capturing

behaviours of sub-systems that typically occur in the whole system [48].

164 Chapter VIII Integration Testing

In Section 1, we study the compositional testing problem in our framework by explaining

and formalizing this problem. In Section 2, we study the projection mechanism by showing

how to define test purposes from global behaviour of a system and how to project them on any

sub-system of it. Finally, in Section 3, comparisons with existing works close to our modeling

framework will be done.

1 Compositional testing

Compositional testing consists in testing communicating components that have been tested

separately. It aims to guarantee the correctness of the integration of a set of components S =

op(C1, . . . , Cn) from the correctness of each components Ci in isolation where op is the integra-

tion operator of interest. Thus, such a compositional testing theory provides a way to test the

integrated system only by testing its sub-systems i.e. there is no need to re-test its conformance

correction. It is formally expressed as follows:

Given implementation models iut1, . . . , iutn and their specifications spec1, . . . , specn

∀i, 1 ≤ i ≤ n, (iut1 rel spec1), . . . , (iutn rel specn) =⇒ op(iut1, . . . , iutn) rel op(spec1, . . . , specn)

where rel and op denote the conformance relation and the integration operator of interest respectively.

Hence, once this property is verified, the correctness of the integrated system is obtained from

the correctness of the individual components. To test the integrated system, it is not necessary

to consider it as a whole, but it is enough to consider its sub-systems and test them separately.

Indeed, the contraposition of this property is the following:

¬
(

op(iut1, . . . , iutn) rel op(spec1, . . . , specn)
)

=⇒ ∃i, 1 ≤ i ≤ n,¬(iuti rel speci)

Thus, by looking at this new property, we can easily see that non-correctness of the integrated

system under test op(iut1, . . . , iutn) implies that at least one of its components iut1, . . . , iutn is

incorrect. In other words, that means to test op(iut1, . . . , iutn), it suffices to test iut1, . . . , iutn in

isolation.

1.1 Compositional testing with cioco

In this subsection, we study the compositional testing problem in our framework. Then, we

intend to address the following question:

Given that the components C1, . . . , Cn over the signatures

H1 = T(Out1 ×)In1 , . . . , Hn = T(Outn ×)Inn respectively, are cioco-correct 1 separately, may we

conclude that their integration C = op(C1, . . . , Cn) using a complex operator 2 op is also cioco-correct?

The response to this question amounts to first addressing both for cartesian product and feed-

back operator, and then by showing cioco correctness is stable for its composition. Hence, in this

following we intend to give answers to the following three questions:

Question 1:

Given (iutk cioco speck) for k = 1, 2,

is it the case of ⊗(iut1, iut2) cioco ⊗(spec1, spec2)?

1. For instance using our conformance testing approach defined in Chapter VII.
2. See Chapter V, for the definition of a complex operator.

1 - Compositional testing 165

Question 2:

Given (iut cioco spec), is it the case of ←֓ I(iut) cioco ←֓ I(spec)?

Question 3:

Given (iut cioco spec), is it the case of 	I(iut) cioco 	I(spec)?

In the following subsections we will show that the answer to Question 1 is positive without

imposing any conditions i.e. cioco is naturally compositional for the cartesian product. However,

the answer to both Question 2 and Question 3, in general, is negative. To a get positive answer,

the specification should be input-enabled. In other words, compositionality does not hold for

cioco with respect to the feedback operators, unless the specification model is input-enabled.

Without this condition, even if both iut1 and iut2 are cioco-correct, the resulting implementation

obtained by means of feedback operators may not be.

Example 1.1 To illustrate our compositional testing, we consider two components 3 of a coffee machine:

a "money component"M that handles the inserted coins and "drink component" D that produces

the drinks.

Figure VIII.1 illustrates the architecture of these two components.

Money component Drink component

makeT

error

makeC
coinC

refund

coinT

coffee

preparing

tea

Figure VIII.1 – Architecture of a coffee machine in components

We use the following specifications and implementations ofM and D:

Money component specification specM:

when it receives a coffee coin "coinC" (resp. a tea coin "coinT") from the user, it gives an order "makeC"

(resp. "makeT") to the drink component D to make coffee (resp. tea).

Drink component specification specD :

when it receives the order "makeC" (resp. "makeT") to make coffee (resp. tea) from the money component

M, if there is nothing wrong during the drink preparation process, it directly delivers the coffee (resp.

tea) to the user, or else it sends an error message to the money component in order to refund the user.

3. This example is inspired from the example presented in [30].

166 Chapter VIII Integration Testing

Money component implementation iutM:

it behaves as the money component 4 specification specM, but in addition it does some extra function-

alities, that is if an error occurs during the drink preparation process, it refunds the inserted coin to the

user.

Drink component implementation iutD :

it behaves exactly as the drink component specification specD .

In our framework, specM, iutM, specD and iutD are modeled as follows:

– specM is the coalgebra ({q0}, q0, α1) over the signature

({makeC, makeT} ×){coinC,coinT}

where α1 is depicted in Figure VIII.2a.

– iutM is the coalgebra ({q′0, q′1}, q′0, α′1) over the signature

({makeC, makeT, refund} ×){coinC,coinT,error}

where α′1 is depicted in Figure VIII.2c.

– specD is the coalgebra ({s0, s1, s2, s3, s4}, s0, α2) over the signature

({error, tea, coffee, preparing} ×){makeC,makeT}

where α2 is depicted in Figure VIII.2b.

– iutD is the coalgebra ({s′0, s′1, s′2, s′3, s′4}, s′0, α′2) over the signature

({error, tea, coffee, preparing} ×){makeC,makeT}

where α′2 is depicted in Figure VIII.2d.

The componentsM and D may communicate separately (for instance D may execute the transition

labeled with abs|coffee while M does nothing) or jointly in synchronization (for instance when M

execute the transition labeled with coinC|makeC,M receives instantaneously the output makeC and

then produces the output coffee). Then, the suitable composition ofM andD is the synchronous parallel

composition ⊙ defined in Chapter V, Section 2.5.

As far as the compositional testing is concerned, we have that

(iutM cioco specM) and (iutD cioco specD)

Our goal is to know if this is enough to ensure whether the global implementation ⊙(iutM, iutD)

is in conformance with respect to cioco to the global specification ⊙(specM, specD). Hence, to test

⊙(iutM, iutD), it suffices to test if (iutM cioco specM) and (iutD cioco specD). An answer to this

question is given later in this chapter.

4. For the sake of readability, input completeness (implementations) are not depicted in Figure VIII.2c and Fig-

ure VIII.2d.

1 - Compositional testing 167

q0

coinC|makeC

coinT|makeT

(a) money

component

specification

specM

s0

s1 s2

s3

s4

makeC|preparing makeT|preparing

abs|error abs|error

abs|coffee abs|tea

abs|errormakeC,makeT|abs

(b) drink component specification specD

q′0

q′1

coinC|makeC

error|refund

(c) money compo-

nent implementa-

tion iutM

s′0

s′1 s′2

s′3

s′4

makeC|preparing makeT|preparing

abs|error abs|error

abs|coffee abs|tea

abs|errormakeC,makeT|abs

(d) drink component implementation iutD

Figure VIII.2 – Illustration of cioco’s compositionality

168 Chapter VIII Integration Testing

1.2 Compositionality for cartesian product

We show here that cioco is naturally preserved by the cartesian product.

Theorm 1.1 Let H1 = T(Out1 ×)In1 and H2 = T(Out2 ×)In1 be two signatures.

Let H = T((Out1×Out2)×)In1×In2 be the cartesian product interface for H1 and H2. Let iutj, specj ∈

Comp(Hj) for j = 1, 2 and ⊗((iut1, iut2)), ⊗((spec1, spec2)) ∈ Comp(H). Then, we have:

iut1 cioco spec1

iut2 cioco spec2

=⇒ ⊗((iut1, iut2)) cioco ⊗ ((spec1, spec2))

Proof Let us assume that:

(iut1 cioco spec1) and (iut2 cioco spec2)

and let us then prove that:

⊗((iut1, iut2)) cioco ⊗ ((spec1, spec2))

Let us use the contradiction principle. For this, let us assume that

¬(⊗((iut1, iut2)) cioco ⊗ ((spec1, spec2)))

i.e. there exists a finite trace tr = 〈(i1, i′1)|(o1, o′1), . . . , (in, i′n)|(on, o′n)〉 ∈ Trace(⊗((spec1, spec2)))

and (i, i′) ∈ In1 × In2 such that there exists an output (o, o′) ∈ Out1 × Out2 among the outputs

obtained after executing (tr, (i, i′)) on ⊗((iut1, iut2)) not belonging to the ones obtained after executing

(tr, (i, i′)) on ⊗((spec1, spec2)).

Now, we have tr = 〈(i1, i′1)|(o1, o′1), . . . , (in, i′n)|(on, o′n)〉 ∈ Trace(⊗((iut1, iut2))). According to the

cartesian product definition, it is easy to show that the two traces:

tr1 = 〈i1|o1, . . . , in|on〉 ∈ Trace(iut1) and tr2 = 〈i′1|o
′
1, . . . , i′n|o

′
n〉 ∈ Trace(iut2)

are respectively the traces involved in iut1 and iut2 to obtain tr. We also know by hypothesis that tr1 ∈

Trace(spec1) and tr2 ∈ Trace(spec2).

Since (o, o′) ∈ Out(⊗((iut1, iut2)) after (tr, (i, i′))) and tr1 and tr2 are used to obtain tr, then o ∈

Out(iut1 after (tr1, i)) and o′ ∈ Out(iut2 after (tr2, i′)). Similarly, o 6∈ Out(spec1 after (tr1, i))

and o′ 6∈ Out(spec2 after (tr2, i′)) because (o, o′) 6∈ Out(⊗((spec1, spec2)) after (tr, (i, i′))) and

tr1 and tr2 are used to obtain tr. Hence, there exists a trace tr1 ∈ Trace(spec1), an input i of spec1

and an output o ∈ Out1 such that o ∈ Out(iut1 after (tr1, i)) and o 6∈ Out(spec1 after (tr1, i))

(respectively there exists a trace tr2 ∈ Trace(spec2), and input i′ of spec2 and an output o′ ∈ Out2

such that o′ ∈ Out(iut2 after (tr2, i′)) and o′ 6∈ Out(spec2 after (tr2, i′))). Indeed, this means that

¬(iut1 cioco spec1) and ¬(iut2 cioco spec2). Hence, we have a contradiction with our hypothesis.

End

1.3 Compositionality for feedback operators

We show here that the compositionality of cioco for both synchronous and relaxed feedback

operators cannot be obtained without any assumptions made on both specifications and imple-

mentations.

We first give an example that illustrates the assumptions required to obtain the compositionality

of cioco with respect to the feedback operators.

1 - Compositional testing 169

Example 1.2 Figure VIII.3 shows two implementation models iut1 and iut2 that have been tested to be

cioco-correct according to their respective specification models spec1 and spec2. It is easy to see that

(iut1 cioco spec1) and (iut2 cioco spec2)

q0

q1

q2

s0

s1

s2 s3

spec1iut1

i1|o1

i2|o1 i2|o2

i1|o1

i2|o1

(a) iut1 cioco spec1

q′0

q′1

q′2 q′3

spec2iut2

s′0

s′1

s2

o1|o3

o2|o4

o1|o3

o1|o5 o2|o4

(b) iut2 cioco spec2

Figure VIII.3 – Counterexample of compositionality

Let us now compose sequentially iut1 with iut2 and spec1 with spec2, but first let us recall the feedback

operator over the synchronous sequential interface I = (f , πi, πo) defined in Chapter V, Section 2.1.

Then, I = (f , πi, πo) is the feedback interface defined for every (i, i′) ∈ In1 × In2 and (o, o′) ∈ Out1 ×

Out2 as follows:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

Now, using the cartesian product and the feedback operator over the synchronous sequential inter-

face I = (f , πi, πo) defined above, the global implementation iut =	I (⊗(iut1, iut2)) can do the

trace 〈i1|o3, i2|o5〉. Thus, o5 ∈ Out(iut after (〈i1|o3〉, i2)) whereas the global specification spec =	I

(⊗(spec1, spec2)) can do the trace 〈i1|o3〉 in such a way o5 6∈ Out(spec after (〈i1|o3〉, i2)). Hence, we

can see that iut does not conform to spec according to cioco.

This counterexample shows that the feedback operators may give rise to a global imple-

mentation that does not conform to its global specification, even if the local implementations

conform to their local specifications. This is because the conformance relation cioco does not put

any constraint on the traces that are not specified in the specification. It allows implementations

to do what they want with the unspecified states. Observe that if the specification specifies for

any input what the allowed outputs are, then we do not have this problem. Hence, to cope with

this problem, we assume that specifications are input-enabled as in [30]. That is to say, all states

of a specification spec accept all input actions of spec, and for each state s of spec and each input

the function α is defined (α is a total function). Then, we have the following theorem for the

compositionality for our feedback operators:

Theorm 1.2 Let H = T(Out×)In be a signature. Let I = (f , πi, πo) be a relaxed feedback interface.

Let Cj = (Sj, αj) ∈ Comp(H) such that each Cj are input-enabled for every j = 1, 2. Then, we have:

C1 cioco C2 =⇒ ←֓ I(C1) cioco ←֓ I(C2) (VIII.1)

170 Chapter VIII Integration Testing

C1 cioco C2 =⇒ 	I(C1) cioco 	I(C2) (VIII.2)

Proof We first need to prove the following lemma:

Lemma 1.1 Consider two components C1 and C2, then we have:

1. Trace(C1) ⊆ Trace(C2) implies (C1 cioco C2)

2. If C2 is input-enabled, then (C1 cioco C2) implies Trace(C1) ⊆ Trace(C2).

Proof

1. Let tr = 〈i1|o1, . . . , in|on〉 be a finite trace of C2, i an input of C2 and o ∈ Out(C1 after (tr, i))

and let us prove that o ∈ Out(C2 after (tr, i)).

o ∈ Out(C1 after (tr, i)) implies tr′ = tr.〈i|o〉 = 〈i1|o1, i2|o2, . . . , in|on, i|o〉 ∈ Trace(C1). Since

Trace(C1) ⊆ Trace(C2), then tr′ ∈ Trace(C2). Thus, o ∈ Out(C2 after (tr, i)), and consequently,

Out(C1 after (tr, i)) ⊆ Out(C2 after (tr, i))

The result then follows from the definition of cioco.

2. By induction on the structure of a trace tr of C1. Let tr = 〈i1|o1, . . . , in|on〉 ∈ Trace(C1).

– Basic Step: tr = 〈〉 is empty trace.

tr = 〈〉 ∈ Trace(C2) trivially holds.

– Induction Step: Let us write tr as concatenation of two finite traces as follows:

tr = 〈i1|o1, i2|o2, . . . , in−1|on−1〉 · 〈in|on〉

tr ∈ Trace(C1) implies on ∈ Out(C1 after (〈i1|o1, . . . , in−1|on−1〉, in)). Since C2 is input-

enabled, in is inevitably an input of C2 at any state s. By induction hypothesis, we have

〈i1|o1, . . . , in−1|on−1〉 ∈ Trace(C2) and on ∈ Out(C1 after (〈i1|o1, . . . , in−1|on−1〉, in))

then on ∈ Out(C2 after (〈i1|o1, . . . , in−1|on−1〉, in)) because C1 cioco C2.

Thus 〈i1|o1, . . . , in−1|on−1, in|on〉 ∈ Trace(C2). Consequently, Trace(C1) ⊆ Trace(C2).

End

Let us now prove the first point of Theorem 1.2. According to Lemma 1.1, we have to prove:

Trace(C1) ⊆ Trace(C2) =⇒ Trace(←֓ I(C1)) ⊆ Trace(←֓ I(C2))

For this, let us use the proof by induction on the length of a finite trace tr of Trace(←֓ I (C1)). Let

tr = 〈i0|o0, . . . , in|on〉 be a finite trace of ←֓ I(C1).

– Basic Step: tr = 〈〉 is empty trace.

tr = 〈〉 ∈ Trace(←֓ I(C2)) trivially holds.

1 - Compositional testing 171

– Induction Step: Let us write tr as concatenation of two finite traces as follows:

tr = 〈i0|o0, i1|o1, . . . , in−1|on−1〉 · 〈in|on〉

tr ∈ Trace(←֓ I (C1)) implies, according to the relaxed feedback definition (see Chapter V, Defi-

nition 1.3), that there exists an input sequence x and a couple (x̄, yx̄) inductively defined from a

finite sequence of states (s0, s1, . . . , sn) of S1 as follows:

– x̄(0) = x(0) and yx̄(0) ∈ η′Out×S1
(α1(s0)(x(0)))|1

– ∀j, 0 < j ≤ n, x̄(j) = f (x(j), yx̄(j − 1)), yx̄(j) ∈ η′Out×S1
(α1(sj)(x̄(j)))|1 and sj ∈

η′Out1×S1
(α1(sj−1)(x̄(j− 1)))|2

and ∀j, 0 ≤ j ≤ n, πi(x̄(j)) = ij and πo(yx̄(j)) = oj.

By induction hypothesis,

〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(←֓ I(C2)) because 〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(←֓ I(C1))

Then, similarly to the above, there exists an input sequence x′ and a couple (x̄′, yx̄′) inductively

defined from a finite sequence of states (s′0, s′1, . . . , s′n) of S2 as follows:

– x̄′(0) = x′(0) and yx̄′(0) ∈ η′Out×S2
(α2(s

′
0)(x′(0)))|1

– ∀j, 0 < j ≤ n − 1, x̄′(j) = f (x′(j), yx̄′(j − 1)), yx̄′(j) ∈ η′Out×S2
(α2(s

′
j)(x̄′(j)))|1 and

s′j ∈ η′Out×S2
(α2(s

′
j−1)(x̄′(j− 1)))|2

and ∀j, 0 ≤ j ≤ n− 1, πi(x̄′(j)) = ij and πo(yx̄′(j)) = oj.

Since Trace(C1) ⊆ Trace(C2), 〈i0, . . . , in〉 is inevitably an input sequence of C2.

Then, η′Out×S2
(α2(s

′
n)(f (in, yx̄′(n− 1)))|1 is well defined.

Now, we know that

η′Out×S1
(α1(sn)(f (x(n), yx̄(n− 1))))|1 ⊆ η′Out×S2

(α2(s
′
n)(f (in, yx̄′(n− 1)))|1

This is because Trace(C1) ⊆ Trace(C2). This implies that

yx̄(n) ∈ η′Out×S2
(α2(s

′
n)(f (in, yx̄′(n− 1))))|1

Hence according to the relaxed feedback definition, 〈i1|o1, . . . , in−1|on−1, in|on〉 ∈ Trace(←֓ I
(C2)). Consequently, Trace(←֓ I(C1)) ⊆ Trace(←֓ I(C2)).

Let us now prove the second point of Theorem 1.2. According to Lemma 1.1, we have to prove:

Trace(C1) ⊆ Trace(C2) =⇒ Trace(I(C1)) ⊆ Trace(I(C2))

For this, let us use the proof by induction on the length of a finite trace tr of Trace(I(C1)).

Let tr = 〈i0|o0, . . . , in|on〉 be a finite trace of 	I(C1).

– Basic Step: tr = 〈〉 is empty trace.

tr = 〈〉 ∈ Trace(I(C2)) trivially holds.

– Induction Step: Let us write tr as concatenation of two finite traces as follows:

tr = 〈i0|o0, i1|o1, . . . , in−1|on−1〉 · 〈in|on〉

tr ∈ Trace(I (C1)) implies, according to the synchronous feedback definition (see Chapter V,

Definition 1.5), that there exists an input sequence x, an output sequence y and a finite sequence

of states (s0, s1, . . . , sn) of S1 such that:

∀j, 0 ≤ j ≤ n, (y(j), sj+1) ∈ η′Out1×S1
(α1(sj)(f (x(j), y(j))))

172 Chapter VIII Integration Testing

and ∀j, 0 ≤ j ≤ n, πi(x(j)) = ij and πo(y(j)) = oj.

By induction hypothesis,

〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(I(C2)) because 〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(I(C1))

Then, similarly to the above, there exists an input sequence x′, an output sequence y′ and a finite

sequence of states (s′0, s′1, . . . , s′n) of S2 such that:

∀j, 0 ≤ j ≤ n, (y′(j), s′j+1) ∈ η′Out2×S2
(α2(s

′
j)(f (x(j)′, y(j)′)))

and ∀j, 0 ≤ j ≤ n− 1, πi(x(j)′) = ij and πo(y(j)′) = oj.

Since Trace(C1) ⊆ Trace(C2), 〈i0, . . . , in〉 is inevitably an input sequence of C2. Then,

η′Out2×S2
(α2(s

′
n)(f (in, y(n)))|1 is well defined

Now, since Trace(C1) ⊆ Trace(C2), we have that:

η′Out1×S1
(α1(sn)(f (x(n), y(n))))|1 ⊆ η′Out2×S2

(α2(s
′
n)(f (in, y(n)′))|1

Thus, y(n) ∈ η′Out2×S2
(α2(s

′
n)(f (in, y(n))))|1 . Hence according to synchronous feedback defini-

tion, 〈i1|o1, . . . , in|on〉 ∈ Trace(I(C2)). Consequently, Trace(I(C1)) ⊆ Trace(I(C2)).

End

1.4 Compositionality for complex operator

Theorem 1.1 and Theorem 1.2 obviously lead to the following theorem:

Theorm 1.3 Let op be a complex operator of arity n. Let C1, . . . , Cn, C ′1, . . . , C ′n be components such that:

∀i, 1 ≤ i ≤ n, Ci cioco C ′i , then one has op(C1, . . . , Cn) cioco op(C ′1, . . . , C ′n).

Proof By induction on the the structure of the complex operator op d’arity n.

– Basic Step:

op is of the form . The property mentioned in Theorem 1.3 trivially holds.

– Induction Step: we distinguish the following cases:

1. op = ⊗(op1, op2) with arity of op1 is n1, arity of op2 is n2 and n1 + n2 = n

by induction hypothesis and the definition of both op1 and op2, we have:

(1) op1(C1, . . . , Cn1
) cioco op1(C

′
1, . . . , C ′n1

)

and both op1(C1, . . . , Cn1
) and op1(C

′
1, . . . , C ′n1

) are components;

(2) op2(Cn1+1, . . . , Cn) cioco op2(C
′
n1+1, . . . , C ′n)

and both op2(Cn1+1, . . . , Cn) and op2(C
′
n1+1, . . . , C ′n) are components.

Then, (1) + (2) + Theorem 1.1 implies that

op = ⊗(op1(C1, . . . , Cn1
), op2(Cn1+1, . . . , Cn))

cioco

op = ⊗(op1(C
′
1, . . . , C ′n1

), op2(C
′
n1+1, . . . , C ′n))

2 - Test purposes for sub-systems 173

2. op =	I (op′) by induction hypothesis and the definition of op′, we have:

(∗) op′(C1, . . . , Cn) cioco op′(C ′1, . . . , C ′n) and both op′(C1, . . . , Cn) and op′(C ′1, . . . , C ′n) are

components;

Then, (∗) + Theorem 1.2 implies that

op =	I(op′(C1, . . . , Cn)) cioco op =	I(op′(C ′1, . . . , C ′n))

3. op =←֓ I (op′) by induction hypothesis and the definition of op′, we have:

(∗) op′(C1, . . . , Cn) cioco op′(C ′1, . . . , C ′n) and both op′(C1, . . . , Cn) and op′(C ′1, . . . , C ′n) are

components;

Then, (∗) + Theorem 1.2 implies that

op =←֓ I(op′(C1, . . . , Cn)) cioco op =←֓ I(op′(C ′1, . . . , C ′n))

End

By Theorem 1.3, we directly have that sequential, double sequential, synchronous parallel

and concurrent compositions as well as synchronous product are compositional for cioco.

Example 1.3 (Continue Example 1.1) As an example of compositional testing, we have considered in

Example 1.1 the moneyM and drink D components, where we have also shown that iutM cioco specM
and iutD cioco specD . Here, the question is

if ⊙(iutM, iutD) cioco ⊙ (specM, specD)?

Our first attempt to answer this question is to check if the assumptions imposed in Theorem 1.3 are

satisfied. Observe that neither specM nor specD are input-enabled. Hence, Theorem 1.3 fails to hold

the compositinality of cioco for the components M and D. However, it is easy to see that the global

implementation iut = ⊙(iutM, iutD) can do the trace

tr = 〈coinC|preparing, abs|coffee, coinC|preparing, abs|refund〉

Thus,

refund ∈ Out(iut after (〈coinC|preparing, abs|coffee, coinC|preparing〉, abs))

whereas the global specification spec = ⊙(specM, specD) can also do the trace

〈coinC|preparing, abs|coffee, coinC|preparing〉

in such a way

refund 6∈ Out(spec after (〈coinC|preparing, abs|coffee, coinC|preparing〉, abs))

Hence, we can see that iut does not conform to spec according to cioco.

2 Test purposes for sub-systems

In this section, we propose an approach to testing components that are typically involved

in the whole system by defining dedicated test purposes for them, from the global behaviour

of the whole system. Such test purposes are given in an accurate way by defining a projection

174 Chapter VIII Integration Testing

mechanism taking a global behaviour p of the whole system and keeping only the part of p

being activated in the sub-system that we want to test. Thus, our method for generating test

purposes from the global system specification helps to generate good relevant unit test cases to

test individual components.

The objective of the approach we propose here is to make component testing more efficient

by focusing on the way components are used in global systems. Indeed, as the number of test

case combinations is often huge, testing components in isolation would cause test cases impor-

tant for the global system to be overlooked. As an illustration, let us consider an over simplified

system that computes grade averages.

graphical interface calculator
makeOperation

RequestOperation response

A typical design view of this system consists of two sub-systems:

– an "user interface" I that helps the user to make various operations on grades;

– a "calculator" C that receives operation commands from the user, performs the requested

operation, and reports back to the user.

Now, testing the component C separately may lead to the consideration of test cases involving

arithmetic operations which are irrelevant to computing student grade averages as subtraction,

multiplication, square root, etc. This may cause test cases of interest to the system to be missed,

i.e. test cases only bringing into play addition and division for grades ranging from 0 to 20. Then,

by making a projection of this behaviour on calculator component C, we intend to generate a

test purpose that guides the test derivation process of C by only testing operations needed to

compute grade averages.

We show here how a trace of a system can be projected on its components. Such projected

traces will be the cornerstone to define test purposes dedicated to test components separately.

Hence, those test purposes will capture behaviours of sub-systems that typically occur in the

whole system. This will be done by combining projection mechanisms and execution mecha-

nisms to generate system computation trees.

2.1 Sub-systems and projection

We introduce the definition of a sub-system involved in a given system. This intuitively

allows us to characterize the set of all basic sub-systems from which the global system can be

built.

Definition 2.1 (Sub-systems) Let S = op(C1, . . . , Cn) be a system over a signature H. The set of

sub-systems of S , noted Sub(S), is inductively defined on the structure of op as follows:

– if op = , then Sub(S) = {S};

– if op = op1 ⊗ op2 with op1 and op2 of arity n1 and n2 respectively (i.e. n = n1 + n2), then

Sub(S) = {S} ∪ Sub(op1(C1, . . . , Cn1
)) ∪ Sub(op2(Cn1+1, . . . , Cn));

2 - Test purposes for sub-systems 175

– if op =	I(op′), then Sub(S) = {S} ∪ Sub(op′(C1, . . . , Cn));

– if op =←֓ I(op′), then Sub(S) = {S} ∪ Sub(op′(C1, . . . , Cn)).

For any finite trace tr of a finite computation tree of S and a sub-system sys of S , we charac-

terize the set of finite traces tr↓sys
of sys involved in tr.

Definition 2.2 (Projection of a finite trace) Let S = op(C1, . . . , Cn) be a system over a signature

H = T(Out ×)In. Let sub ∈ Sub(S) be a sub-system of S over H′ = T(Out′ ×)In′ . Let tr =

〈i1|o1, i2|o2, . . . , im|om〉 ∈ Trace(S). The projection of tr on sub, denoted by tr↓sub
, is the subset of

Trace(sub) inductively defined as follows:

– if op = , then tr↓sub
= {tr};

– if op = op1 ⊗ op2 with op1 and op2 of arity n1 and n2 respectively (i.e. n = n1 + n2), then 5:

tr↓sub
=

is the projection of 〈i1|1 |o1|1
, i2|1 |o2|1

, . . . , im |1
|om |1
〉

on sub if sub ∈ Sub(op(C1, . . . , Cn1
))

is the projection of 〈i1|2 |o1|2
, i2|2 |o2|2

, . . . , im |2
|om |2
〉

on sub otherwise

– if op =	I (op′) with I = (f , πi, πo), then tr↓sub
=

⋃

tr′∈tr↓
S′

tr′↓sub
where S ′ = op′(C1, . . . , Cn)

and

tr↓S′ =
{

〈i′1|o
′
1, . . . , i′m|o

′
m〉 | ∀j, 1 ≤ j ≤ m,

∃sj ∈ S′, o′j ∈ η′
Out′×S′

(αS ′(sj)(f (i′j, o′j)))|1

ij = πi(i
′
j) and oj = πo(o′j)

}

2.2 System-based test purposes

In this subsection, we adapt the notion of test purpose presented in Chapter VII, Section 3

to test, from a global behaviour of a system, the behaviour of its involved sub-systems and then

we guide the component testing intelligently by taking into account the way components are

used in systems. Thus, taking a behaviour p of a system S , we intend to define test purposes

that are able to test the behaviour pi of each sub-system Si ∈ Sub(S). We identify therefore for

each sub-system all its finite paths that are involved in constructing the whole behaviour of S .

We first define the finite computation tree of a subsystem sub of a global system S which

captures all its finite traces:

Definition 2.3 (Finite computation tree) Let S be a system over T(Out×)In. Let sub ∈ Sub(S) be

a subsystem of S over T(Out′ ×)In′ . The finite computation tree of sub generated by S of depth

less than n, noted FCT(sub, n) is the coalgebra (SFCT , s0
FCT , αFCT) defined by:

– s0
FCT = 〈〉

– SFCT is the whole set of finite traces defined as follows:

– s0 = {〈〉}

– ∀j, 1 ≤ j ≤ n, sj= {tr′.〈i|o〉 | ∃tr′ ∈ sj−1, ∃i ∈ In′, ∃o ∈ Out′, ∃tr ∈ Trace(S)

such that tr′.〈i|o〉 ∈ tr↓sub
}

5. a|i is the projection of the n-tuple a on ith argument.

176 Chapter VIII Integration Testing

Hence, SFCT =
⋃

0≤j≤n
si

– αFCT : SFCT × In′ −→ T(Out′ × SFCT) is the mapping which for every 〈i0|o0, . . . , im|om〉 ∈

SFCT and every input i ∈ In′ associates η′−1
Out′×SFCT

(Π) where Π is the set:

Π = {(o, 〈i0|o0, . . . , im|om, i|o〉) | ∃o ∈ Out′, ∃tr ∈ Trace(S) such that

〈i0|o0, . . . , im|om, i|o〉 ∈ tr↓sub
}

In this definition, SFCT is the set of the nodes of the tree. s0
FCT is the root of the tree. Each node

is represented by the unique finite trace 〈i0|o0, . . . , im|om〉 (m ≤ n). αFCT gives, for each node p

and for each input i, the set of nodes Π that can be reached from p when the input i is submitted

to the component.

〈〉

〈i0|o0〉

〈ik |ok〉

.

.

.

. . .

. . .

.

.

.

〈i0|o0, . . . , i1m |o1m〉

〈i0|o0, . . . , im′m |om′m〉

〈i0|o0, . . . , ikm |okm〉

〈i0|o0, . . . , ik′m′ |ok′m′ 〉

.

.

.

i0|o0

ik |ok

i1m |o1m

ikm |okm

im′m |om′m

ik′m′ |ok′m′

Definition 2.4 (Test Purpose) Let S be a system over a signature H = T(Out ×)In. Let sub ∈

Sub(S) be a sub-system of S over H′ = T(Out′ ×)In′ and FCT(sub, n) = (S, s0, α) its finite compu-

tation tree generated by S . Let tr be a finite trace of S such that its length is less than n. Let tr↓sub
be the

projection of tr on sub. A test purpose TP for tr and sub is a mapping TP : SFCT −→ {accept, skip,⊙}

such that:

– for every node p = 〈i0|o0, . . . , im|om〉 ∈ tr↓sub
, TP(p) = accept;

– if TP(〈i0|o0, . . . , im|om〉) = accept, then:

∀j, 0 ≤ j ≤ m, TP(〈i0|o0, . . . , ij−1|oj−1〉) = skip

– TP(〈〉) = skip

– if TP(〈i0|o0, . . . , ik|ok〉) = ⊙, then:

TP(i0|o0, . . . , ik|ok, i′k+1|o
′
k+1, . . . , i′k′ |o

′
k′〉) = ⊙

for all k < k′ ≤ n and for all (i′l)k≤l<n ∈ In′ and (o′l)k≤l<n ∈ Out′.

In order to build a test purpose for a finite behaviour projection tr↓sub
on a sub-system sub,

we identify all finite paths of its finite computation tree FCT whose traces embody tr↓sub
and

we tag them with accept. We then tag every node which represents a prefix of an accepted

behaviour with skip. The other nodes, which lead to behaviours that we do not want to test, are

tagged with ⊙.

3 - Related works 177

Example 2.1 Let us consider a finite trace

tr = 〈coinC|preparing, abs|coffee, coinC|preparing, abs|coffee, coinC|preparing, abs|coffee〉

of the coffee machine obtained by a synchronous parallel composition of the money componentM and the

drink componentD whose specifications are illustrated in Figure VIII.2a and Figure VIII.2b respectively,

and then, from it, build a test purpose dedicated to test the behaviour of the drink component D.

First, we build the finite computation FCT(D, 6) tree of D generated by ⊙(specM, specD) that we

represent in Figure VIII.4. Second, we compute the projection of tr on D

tr↓D = {〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeC|preparing, abs|coffee〉}

This corresponds intuitively to three requests for making coffee to the component drink D without any

error occurring. A test purpose TP for this behaviour would then concentrate on the delivering of coffee

and ignore the behaviours ofD related both to errors whenD fails and to tea delivering. Hence, each state

of FCT(D, 6) reachable after tr↓D is tagged with accept. Then, p15 is only tagged with accept because

it is the unique leaf which corresponds to an expected behaviour. All nodes leading from the root p0 to

this node p15 are tagged with skip (i.e p0, p1, p3, p5, p8 and p11). Finally, all other states are tagged with

⊙.

Thus, testing of D is re-enforced as far as the coffee delivering is concerned: only behaviours related to

correct coffee delivering process are chosen and then sub-system behaviours that are not activated in the

global system are not tested. This allows us to restrict the test domain to the one under consideration.

3 Related works

In this section, we present a brief overview of contributions which are technically close to our

proposal, but which focus on various aspects of compositional testing, as well as on component-

based ones. We discuss the differences between problematics addressed by those contributions

and those addressed by our approach.

The component-based systems testing framework proposed in [30] is closer technically to

our compositional testing approach. In this paper, the authors address compositionality for ioco

conformance relation. Both specification and implementation component models are consid-

ered as LTSs. Parallel composition and hiding operators are used to combine LTS models. The

parallel composition of two LTSs S1 and S2 consists in synchronizing their actions: when both

S1 and S2 are ready to engage in the same action a, there is a transition in the composed LTS

which carries the action a; when one of them is ready to engage in an action not shared with the

other one, it may evolve independently and the reaction of the composed LTS consists only of

the reaction of the LTS that reacts. The hiding operator consists in hiding the common or syn-

chronized actions by replacing them by an internal action τ, and then restricting observability

of internal actions. It has been proved that the conformance testing ioco is only compositional

with respect to parallel composition and hiding when specifications and implementations are

assumed input-enabled.

Among the works concerning compositional testing as it was defined in [30] and which were

adopted in our framework, we can mention the work proposed by Sampaio in [136]. In this pa-

per the authors extend the testing theory defined in the setting of CSP process algebra whose

conformance relation cspio is an adapted version of ioco to CSP formalism [132], to be able to

address compositional testing proposed by Tretmans in [30]. Indeed, it has been shown that cspio

is compositional not only for parallel composition ‖ and hiding operator / but also for other

CSP’s composition operators such that deterministic and nondeterministic choices, by assum-

ing that input completeness of the specification is in the same alphabet of the implementation.

178 Chapter VIII Integration Testing

p0

p2p1

makeC|preparing makeT|preparing

p3 p4

abs|coffee

abs|error

abs|tea abs |error

p5 p6 p7

makeC|preparing
makeT |preparing

makeC,makeT

p8 p9 p10

abs|coffee abs |error

abs|tea abs |error
abs |error

p11 p12
p13 p14

makeC|preparing makeT |preparing
makeC,makeT makeC,makeT

p15 p16 p17 p18
p19 p20

abs|coffee abs |error abs|tea abs |error abs |error abs |error

skip

skip ⊙

skip
⊙

skip ⊙
⊙

skip ⊙
⊙

skip ⊙
⊙ ⊙

accept ⊙ ⊙ ⊙
⊙ ⊙

p0 = 〈〉

p1 = 〈makeC|preparing〉

p2 = 〈makeT|preparing〉

p3 = 〈makeC|preparing, abs|coffee〉

p4 = 〈makeC|preparing, abs|error〉

p5 = 〈makeC|preparing, abs|coffee, makeC|preparing〉

p6 = 〈makeC|preparing, abs|coffee, makeT|preparing〉

p7 = 〈makeC|preparing, abs|error, {makeC, makeT}〉

p8 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee〉

p9 = 〈makeC|preparing, abs|error, makeC|preparing, abs|error〉

p10 = 〈makeC|preparing, abs|error, {makeC, makeT}, abs|error〉

p11 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeC|preparing〉

p12 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeT|preparing〉

p13 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|error, {makeC, makeT}〉

p14 = 〈makeC|preparing, abs|error, {makeC, makeT}, abs|error, {makeC, makeT}〉

p15 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeC|preparing, abs|coffee〉

p16 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeC|preparing, abs|error〉

p17 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|error, makeT|preparing, abs|tea〉

p18 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeT|preparing, abs|error〉

p19 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|error, {makeC, makeT}, abs|error〉

p20 = 〈makeC|preparing, abs|error, {makeC, makeT}, abs|error, {makeC, makeT}, abs|error〉

Figure VIII.4 – Test purpose of the drink component

3 - Related works 179

In [48], the authors propose to test each component of a system in isolation by generating

accurate test purposes for them from the global specification of the system and assuming that

the specification of every component in the system is available. They use the input-output sym-

bolic transition systems (IOSTS) as the behavioural model of components and both synchro-

nized product and hiding operator in order to compose components. Then, the authors propose

to derive test purposes for a given component C of the system S from a global behaviour of S .

This is done by defining an adequate projection mechanism that allows them to project sym-

bolic behaviour of S on its components. Those projected behaviours are then considered good

behaviours to be tested on sub-systems. Thus, they are used to build test purposes.

In [86, 87], Petrenko and al. see the compositional testing problem differently from our ap-

proach and those presented in [30, 136]. They address the following question: "how to design

a component that when combined with a known part of the system, called the context, has to satisfy a

given overall specification?" To answer this question, the authors of [86, 87] specify the behaviour

of components as finite state machines and the interactions between components by means of

two operators: synchronous composition and parallel composition (or asynchronous composi-

tion). Then, they associate a class of languages to finite state machines that allow them to define

equations over languages. Such a behaviour modeling is made to be the cornerstone of testing

complex systems in context. In this setting, the above question is expressed formally by the

following equation over FSM languages

(C op X) rel spec

where C models the context, spec models the global specification, X is unknown, op stands for

a composition operator and rel for a conformance relation. It has been proved that the largest

solution of this language equation is given by the language S = C op spec when op stands for

both parallel composition or synchronous composition and rel stands for languages inclusion

⊆. As previously mentioned, finite state machines and operators used to compose them can be

defined in our framework. Then, to extend their results to our framework, it still need to define

a class of languages accepted by Barbosa’s components. To do that, we can take advantage of the

work done in [137] that generalize the classical notion of regular expression to coalgebras over

polynomial functors.

In [138], the authors extend the so-called assume-guarantee reasoning [28] used in model

checking areas as a means to cope with the state explosion problem of compositional testing.

They then proposed to test each component of a system separately, while taking into account

assumptions about the context of the component. They use the input-output labeled transition

systems as behavioural models of components and the parallel composition ‖ to compose com-

ponents. The conformance relation used in this approach is the ioco relation. The underlying

idea behind this approach is to check that, given a assumption A about the environment in

which the components are supposed to operate, such that iut2 ioco A and (iut1 ‖ A) ioco spec

then (iut1 ‖ iut2) ioco spec. The authors showed that this property holds if the assumption A is

input-enabled. This approach then requires the specification spec to be given as a single model

rather than a set of components unlike our approach. They do not impose input-completeness

of specifications which gives them an advantage with respect to our result.

180 Chapter VIII Integration Testing

Chapter IX

Conclusion

1 Summary . 181

2 Future research . 181

In this chapter, we conclude this thesis by describing the main objectives of the work, the

goals we have achieved and the direction of future work.

1 Summary

Building correct systems has been the most difficult challenge for engineers and still contin-

ues to be so nowadays, due to the fact of growing system complexity and size. In this thesis, we

explained the importance of component-based models to meet this challenge, and proposed an

unified framework for both modeling and reasoning about the correctness of component-based

systems formally. Hence, this thesis has been placed in the area of both modeling and testing of

component-based systems.

We then defined a formalism based on Barbosa’s component definition [9, 31]. For this for-

malism, a trace semantics from causal functions was proposed as is usually done in control the-

ory and dynamic systems design. The resulting formalism is then generic enough to subsume a

large family of state-based formalisms. A number of theoretical results were also obtained. First,

in order to deal with large systems, we defined the notion of an integration operator as the com-

position of two basic operators: the product and feedback. We then showed the generic results

of compositionality independently of a given integration operator. We also obtained results re-

lated to the construction of a final object in the category of components. Taking advantage of

the genericity of the formalism, we then defined both conformance and compositional testing

theories, which by definition can be applied to any formalism instance of our framework.

2 Future research

The main direction of our work can be categorized according to the following:

– The proposed formalism is just an initial proposal of formalism to model complex sys-

tems. For its application in concrete cases, experience is needed in the case of real size

systems. Another goal is to give a mathematical framework for a discipline, called systems

182 Chapter IX Conclusion

engineering, that has been fully tried and tested in the modeling of modern industrial sys-

tems, but has not been well-formalized. This will first require that we extend the formal-

ism to take into account components heterogeneity (software, hardware, human) which is

mainly characterized by how inputs are handled to provide observable outputs (i.e. dis-

cretely or continuously). In the context of B. Golden’s thesis [42], he defines a formalism

which is abstract enough to unify, by using non-standard analysis techniques, different

time treatments of components. On the contrary, systems considered in [42] are determin-

istic. The idea is then to try to combine our approach with that of [42].

– In systems engineering, mainly two kinds of operators play a crucial role in defining sys-

tems:

1. Integration operators

2. Abstraction/simulation operators.

The first kind of operators has been widely discussed in this thesis, but not the second.

Both abstraction and simulation operators aim to structure systems at many levels of de-

scription, from the most abstract to the most concrete until realization. These operators are

classically brought together into only one which is similar to the operator of refinement

classically used in software engineering [139, 140].

– It would be interesting to take data and not just values In and Out, into account. In order

to do that, we first have to extend the signature over which components are defined by

data. This would be done by replacing both inputs In and outputs Out sets with data

structure specified using equational and algebraic specifications. This would lead us to

extend our algorithms for test case generation. This extension will naturally be based on

symbolic evaluation techniques as it has been done in [44, 53]. This will also require us to

first extend our conformance relation cioco to sicoco [43].

– It would be interesting to address compositional verification in our framework. In order

to do that, we would first have to define a logic (temporal) under our formalism, and

then establish a certain number of properties on this logic such as defining a calculus and

proving that it is correct and complete, showing that the logic is stable with respect to

bisimulation, studying preservation of properties along integration operators, etc.

List of Figures

1 Représentation du système par une boîte noire 2

2 vue compositionnelle d’un système complexe . 3

3 Classification des techniques de test . 5

4 Illustration du test de conformité . 7

I.1 Black box view of a system . 12

I.2 Compositional view of complex system . 13

I.3 Classification of testing techniques . 17

II.1 Examples of categories . 28

III.1 Graphical representation of LTS and LTS′ . 53

III.2 Example of a synchronization tree . 62

IV.1 Coffee machine . 75

IV.2 ATM component . 76

IV.3 Pedestrian crossing . 76

IV.4 Pedestrian crossing modeling . 77

IV.5 Transformation of an IOLTS into a component over P(Out× _)In 79

IV.6 Binary Mealy automaton . 87

V.1 Cartesian product . 90

V.2 Illustration of a system with feedback . 91

V.3 Relaxed feedback composite: ←֓ I(C) . 92

V.4 Syracuse’s sequence component . 95

V.5 Examples of feedback composition . 96

V.6 Sequential composition . 101

V.7 Double sequential composition . 102

V.8 Extended cartesian product ⊗e . 103

V.9 Example: illustration of ⊗e . 104

V.10 Synchronous product . 104

V.11 Synchronous product: ⊛((C1, C2)) = ⊲s(C0, (C1 ⊗ C2)) 104

V.12 Concurrent composition . 105

V.13 Concurrent composition: ⊕((C1, C2)) = ⊲s(⊲s(C0, (C1 ⊗ C2)), C
′
0) 106

V.14 Synchronous parallel composition . 106

V.15 Extended concurrent composition ⊕e . 107

V.16 Example: illustration of ⊕e . 108

V.17 Encoder (on the left) and Decoder (on the right) 110

V.18 Controller system C . 111

V.19 Gate system G . 112

184 LIST OF FIGURES

V.20 Synchronous product B = ⊛(G1,G2) of G1 and G2 113

V.21 Sequential composition K = ⊲s(B,O) of B and O 113

V.22 Sequential composition S = ⊲s(C,K) of C and K 113

V.23 Model of a crosswalk, to be composed in a synchronous parallel composition

with the traffic light model of Figure IV.4 . 114

V.24 Pedestrian crossing modeling . 115

V.25 ⊙(M′,M) . 115

V.26 Level crossing . 116

V.27 Controller system C . 117

V.28 Barrier system B . 117

V.29 Crossing level global model S . 118

VI.1 Conformance testing process . 132

VI.2 Relations between IMPS, MODS and SPECS . 134

VII.1 Illustration of cioco . 142

VII.2 Counter example for quasi-reduction . 144

VII.3 Finite computation tree for the coffee machine 145

VII.4 Example of finite computation tree . 149

VII.5 Test purposes of the coffee machine . 151

VII.6 General view of the algorithm . 153

VII.7 Communication between the iut and the algorithm 154

VII.8 Instantiating of the algorithm . 162

VIII.1 Architecture of a coffee machine in components 165

VIII.2 Illustration of cioco’s compositionality . 167

VIII.3 Counterexample of compositionality . 169

VIII.4 Test purpose of the drink component . 178

List of Tables

II.1 Examples of categories . 29

III.1 LTS and LTS′ . 53

IV.1 The deterministic computational features . 78

IV.2 The partial computational features . 78

IV.3 The non-deterministic computational features . 78

VI.1 Conformance testing elements . 136

VII.1 Examples of conformance relations . 139

186 LIST OF TABLES

Bibliography

[1] S. A. Slaughter, D.E. Harter, and M. S. Krishnan. Evaluating the cost of software quality.

Commun. ACM, 41:67–73, August 1998.

[2] C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM Press and

Addison-Wesley, New York, NY, 1998.

[3] D.F. D’Souza and Al.C. Wills. Objects, Components, and Frameworks with UML: The Cataly-

sis(SM) Approach. Addison-Wesley Professional, October 1998.

[4] H. Jifeng, L. Xiaoshan, and L. Zhiming. Component-based software engineering. In

Dang Van Hung and Martin Wirsing, editors, ICTAC, volume 3722 of Lecture Notes in

Computer Science, pages 70–95. Springer, 2005.

[5] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249(1):3–

80, October 2000.

[6] B. Jacobs and J. Rutten. A tutorial on coalgebras and coinduction. EATCS Bulletin, 62:222-

259, 1997.

[7] H. Reichel. An approach to object semantics based on terminal co-algebras. Mathematical

Structures in Computer Science, 5(2):129–152, 1995.

[8] B. Jacobs. Objects and classes, co-algebraically. In Object Orientation with Parallelism and

Persistence, pages 83–103, 1995.

[9] L.S. Barbosa. Towards a calculus of state-based software components. Journal of Universal

Computer Science, 9(8):891–909, August 2003.

[10] L.S. Barbosa and J.N. Oliveira. State-based components made generic. Electronic Notes

in Theoretical Computer Science, 82(1):39 – 56, 2003. CMCS’03, Coalgebraic Methods in

Computer Science (Satellite Event for ETAPS 2003).

[11] L.S Barbosa and S. Meng. Generic components. Proceedings of First APPSEM-II Workshp,

March 2003.

[12] L.S Barbosa. Components as processes: An exercise in coalgebraic modeling.

FMOODS2000 - Formal Methods for Open Object-Oriented Distributed Systems, pages 397–

417, Sptembre 2000.

[13] L.S. Barbosa. Components as coalgebras. PhD thesis, Departamento de Informática Escola

de Engenharia Universidade do Minho, 2001.

[14] P. Wadler. Monads for functional programming. In M. Broy, editor, Program Design Calculi,

NATO ASI Series. Springer Verlag, 1993.

[15] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth An-

nual Symposium on Logic in computer science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE

Press.

[16] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92,

1991.

188 BIBLIOGRAPHY

[17] R. Hower. Software quality assurance and testing resource center. 1996-2011. Available

at http://www.softwareqatest.com/.

[18] CNET. 10 great bugs of history. 2000. Available at

http://www.bus.tu.ac.th/usr/angsana/IS301-1-42/Outline/greatbug.htm.

[19] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, October 1969.

[20] E. M. Clarke and E. A Emerson. Design and synthesis of synchronization skeletons using

branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, London, UK,

1982. Springer-Verlag.

[21] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in cesar.

In Proceedings of the 5th Colloquium on International Symposium on Programming, pages 337–

351, London, UK, 1982. Springer-Verlag.

[22] G. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York, NY, USA, 1979.

[23] B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York, NY,

USA, 1990.

[24] E.W. Dijkstra. Notes on structured programming. pages 1–82, 1972.

[25] Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard Glossary of Software

Engineering Terminology. 1990.

[26] B. Beizer. Black-box testing: techniques for functional testing of software and systems. John

Wiley & Sons, Inc., New York, NY, USA, 1995.

[27] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis, University of Twente,

Enschede, The Netherlands, 1992.

[28] E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proceedings of

the Fourth Annual Symposium on Logic in computer science, pages 353–362, Piscataway, NJ,

USA, 1989. IEEE Press.

[29] E. Chang, Z. Manna, and A. Pnueli. Compositional verification of real-time systems. In

Proc. 9’th IEEE Symp. On Logic In Computer Science, pages 458–465. IEEE Computer Society

Press, 1994.

[30] H.M. van der Bijl, A. Rensink, and G.J. Tretmans. Compositional testing with ioco. In

A. Petrenko and A. Ulrich, editors, Formal Approaches to Software Testing (FATES), volume

2931 of Lecture Notes in Computer Science, pages 86–100, Berlin, 2004. Springer Verlag.

[31] S. Meng and L.S. Barbosa. Components as coalgebras: the refinement dimension. Theor.

Comput. Sci.(TCS), 351(2):276–294, 2006.

[32] P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, pages

461–493, 1992.

[33] S. Eilenberg. Automata, Languages and Machines, volume C. Academic Press, New York,

1978.

[34] G. H. Mealy. A method for synthesizing sequentiel circuits. Bell Systems Techn. Jour., 1955.

[35] R. Milner. A calculus of communicating systems. Springer-Verlag New York, Inc, secaucus,

NG, USA, 1982.

[36] S. Brookes and A. W. Roscoe. An Improved Failures Model for Communicating Processes.

NSF-SERC Seminar on Concurrency, Pittsburgh, July 1984. Springer Lecture Notes in Computer

Science(LNCS) 197., pages 281–305, 1985.

BIBLIOGRAPHY 189

[37] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI Quarterly,

2:219–246, 1989.

[38] M. Phalippou. Relations d’implementation et hypothèses de test sur des automates à entrées et à

sorties. Thesis, Université de Bordeaux I, Septembre 1994.

[39] T. Jéron C. Jard. TGV: theory, principles and algorithms. International Journal on Software

Tools for Technology Transfer, 7(4):297–315, August 2005.

[40] J. Tretmans. Conformance testing with labelled transition systems : Implementation rela-

tions and test generation. Computer networkss and ISDN systems, 29(1):49–79, 1996.

[41] J. Rutten. Algebraic specification and coalgebraic synthesis of mealy machines. Technical

Report SEN-R0514, Centrum voor Wiskunde en Informatica (CWI), 2005.

[42] M. Aiguier, B. Golden, and D. Krob. Modeling of complex systems: A minimal-

ist and unified semantics for heterogeneous integrated systems. Technical report,

2011. Submitted to the journal "Applied Mathematics and Computation" - Available at

http://www.lix.polytechnique/fr/golden/., 2011.

[43] L. Frantzen, J. Tretmans, and T.A.C. Willemse. A Symbolic Framework for Model-Based

Testing. In K. Havelund, M. Núñez, G. Rosu, and B. Wolff, editors, Formal Approaches to

Software Testing and Runtime Verification – FATES/RV 2006, number 4262 in Lecture Notes

in Computer Science, pages 40–54. Springer, 2006.

[44] C. Gaston, P. Le Gall, N. Rapin, and A. Touil. Symbolic execution techniques for test

purpose definition. In M. Uyar, A.Y. Duale, and M..A. Fecko, editors, TestCom, volume

3964 of LNCS, pages 1–18. Springer, 2006.

[45] J. Tretmans. Testing labeled transition systems with inputs and outputs. In The 8th Inter-

national Workshop on Protocol Test Systems, pages 461–476, Ervy, France., 1995. In Cavalli,

A. and Budkowski, S., editors,.

[46] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software -

Concepts and Tools, 17(3):103–120, 1996.

[47] V. Rusu, L.d. Bousquet, and T. Jéron. An approach to symbolic test generation. In IFM

’00: Proceedings of the Second International Conference on Integrated Formal Methods, pages

338–357, London, UK, 2000. Springer-Verlag.

[48] A. Faivre, C. Gaston, and P. Le Gall. Symbolic model based testing for component ori-

ented systems. In A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp, editors, Test-

Com/FATES, volume 4581 of Lecture Notes in Computer Science, pages 90–106. Springer,

2007.

[49] P. Wolper. Verification: Dreams and Reality. Inaugural lecture of the

course "The algorithmic verification of reactive systems", online available at

http://www.montefiore.ulg.ac.be/ pw/cours/francqui.html.

[50] ISO. Information technology, Open Systems Interconnection. International standard IS 9646,

ISO, Geneve, 1991.

[51] ISO/IEC JTC1/SC21 N6201. Information Retrieval, Transfer and Management for OSI, Formal

Methods in Conformance Testing, working draft. Project 1.21.54 (Arles ouput). ISO, June 1991.

[52] ISO/IEC. ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8.Proposed ITU-T Z.500 and Committee

Draft on Formal Methods in Conformance Testing. CD 13245-1. ISO -ITU-T, Geneve, 1996.

[53] A. Touil. Exécution symbolique pour le test de conformité et le test de raffinement. Doc-

torat de l’université EVRY-VAL-d’ESSONNE, 6 décembre 2006.

190 BIBLIOGRAPHY

[54] B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observations. Book

draft, 2005.

[55] D. Pattinson. An introduction to the theory of coalgebras, 2003. Lecture Notes, Second

North American Summer School on Logic, Language and Information.

[56] H.P Gumm. Elements of the general theory of coalgebras. Notes of lectures given at LU-

ATCS’99:Logic, Universal Algebra, Theoretical Computer Science, Johannesburg, 1999.

[57] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Math-

ematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.

[58] M. Barr and C. Wells, editors. Category theory for computing science, 2nd ed. Prentice Hall

International (UK) Ltd., Hertfordshire, UK, UK, 1995.

[59] E.G. Manes. Algebraic theories. 26 of Graduate Texts in Mathematics, 1976.

[60] M. Arbib and E. Manes. Machines in a category. Journal of Pure and Applied Algebra, 19:9–

20, 1980.

[61] M. Arbib E. Manes. Algebraic approaches to program semantics. Springer-Verlag New York,

Inc., New York, NY, USA, 1986.

[62] P. Aczel. Non-Well-Founded Sets. CSLI, Stanford, CA, 1988.

[63] P. Aczel. Final universes of processes. Mathematical Foundations of Programming Semantics,

802:1–28, 1994.

[64] G. D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,

Aarhus University, Aarhus, 1981.

[65] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines—a

survey. Proceedings of the IEEE, 84(8), August 1996.

[66] A. Arnold and M. Nivat. Comportements de processus. In Colloque AFCET, Les mathéma-

tiques de l’Informatique, 1982.

[67] T. Jéron. Contribution à la génération automatique de tests pour les systèmes réactifs. Habilita-

tion à diriger les recherches, Université de Rennes 1, March 2004.

[68] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1989.

[69] J. Rutten and D. Turi. On the foundations of final semantics: Non-standard sets, metric

spaces, partial orders. In Proceedings of the rex workshop on semantics: foundations and ap-

plications, volume 666 of lecture notes in Computer Science, pages 477–530. Springer-Verlag,

1998.

[70] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive

domain equations. SIAM J. Comput., 11(4):761–783, 1982.

[71] J. Worrell. On the final sequence of a finitary set functor. Theor. Comput. Sci., 338(1-3):184–

199, 2005.

[72] P. Aczel and N.P. Mendler. A final coalgebra theorem. In Category Theory and Computer

Science, pages 357–365, London, UK, 1989. Springer-Verlag.

[73] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comput. Sci., 114(2):299–

315, 1993.

[74] H. H. Hansen, D. Costa, and J. J. M. M. Rutten. Synthesis of mealy machines using deriva-

tives. Electr. Notes Theor. Comput. Sci. (ENTCS), 164(1):27–45, 2006.

[75] P.J Cameron. Sets, Logic and categories. Undergraduate Mathematics. Springer, 1999.

BIBLIOGRAPHY 191

[76] D van Dalen, H.C. Doets, and H. de Swart. Sets: Naive, Axiomatic and Applied. Number

106. Pure and applied Math. Pergamum Press, 1978.

[77] G.N Raney. Sequential functions. Journal of the (ACM), 5(2):177–180, April 1958.

[78] H. Wolff. Monads and monoids on symmetric monoidal closed categories. Archiv der

Mathematik, 24:113–120, 1973. 10.1007/BF01228184.

[79] B. Kanso, M. Aiguier, F. Boulanger, and A. Touil. Testing of abstract components. In

A. Cavalcanti, D. Déharbe, M. Gaudel, and J. Woodcock, editors, ICTAC, volume 6255 of

Lecture Notes in Computer Science, pages 184–198. Springer, 2010.

[80] E.D. Sontag. Mathematical control theory: deterministic finite dimensional systems (2nd ed.).

Springer-Verlag New York, Inc., New York, NY, USA, 1998.

[81] B. Golden M. Aiguier and D. Krob. Modeling of complex systems: A minimalist and

unified semantics for heterogeneous integrated systems. 2011. Technical report, Ecole

Polytechnique, Available at http://www.lix.polytechnique.fr/ golden/.

[82] C. A. R. Hoare and C. A. R. Hoare. Communicating sequential processes. Communications

of the ACM, 21:666–677, 1985.

[83] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.

In Proceedings of the IEEE, pages 1270–1282, 1991.

[84] E.A. Lee and P. Varaiya. Structure and interpretation of signals and systems. Addison-Wesley,

2003.

[85] E.A. Lee and S.A. Seshia. Introduction to Embedded Systems - A Cyber-Physical Systems Ap-

proach. Lee and Seshia, 1 edition, 2010.

[86] N. Yevtushenko, T. Villa, R.K. Brayton, A. Petrenko, and A.L. Sangiovanni-Vincentelli.

Sequential synthesis by language equation solving. In International Workshop on Logic and

Synthesis.

[87] A. Petrenko and N. Yevtushenko. Solving asynchronous equations. In Proceedings of the

FIP TC6 WG6.1 Joint International Conference on Formal Description Techniques for Distributed

Systems and Communication Protocols (FORTE XI) and Protocol Specification, Testing and Ver-

ification (PSTV XVIII), FORTE XI / PSTV XVIII ’98, pages 231–247, Deventer, The Nether-

lands, The Netherlands, 1998. Kluwer, B.V.

[88] C.G. Cassandras and S. Lafortune. Introduction to discrete event systems. SpringerLink

Engineering. Springer Science+Business Media, 2008.

[89] S. Meng and B.K. Aichernig. A coalgebraic calculus for component based systems. In

Proceedings of FACS’03, Workshop on Formal Aspects of Component Software, Satellite Workshop

of the FM, September 2003.

[90] I. Hasuo, B. Jacobs, and A. Sokolova. The microcosm principle and concurrency in coal-

gebras, 2007. preprint, available from http://www.cs.ru.nl/ ichiro/papers. I. HASUO, B.

JACOBS, AND A. SOKOLOVA, 2008.

[91] I. Hasuo, C. Heunen, B. Jacobs, and A. Sokolova. Coalgebraic components in a many-

sorted microcosm. In Conference on Algebra and Coalgebra in Computer Science, pages 64–80,

2009.

[92] J. R. Burch, R.Passerone, and A.L. Sangiovanni-vincentelli. Overcoming heterophobia:

Modeling concurrency in heterogeneous systems. In Int. Conf. on Application of Concur-

rency to System Design, 2001.

[93] E.A Lee Jie Liu Xiaojun Liu J. Ludvig S. Neuendorffer S. Sachs J. Eker, J.W. Janneck and

Yuhong Xiong. Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE,

192 BIBLIOGRAPHY

Special Issue on Modeling and Design of Embedded Software, Volume 91(1), Page(s): 127 - 144,

Jan 2003.

[94] C. Brooks and E.A. Lee. Ptolemy ii - heterogeneous concurrent model-

ing and design in java. February 2010. Poster presented at the 2010,

href="http://www.eecs.berkeley.edu/BEARS" Berkeley EECS Annual Research Sympo-

sium (BEARS).

[95] C. Hardebolle and F. Boulanger. Modhel’x: A component-oriented approach to multi-

formalism modeling. Models in Software Engineering - Workshops and Symposia at MoDELS

2007, Nashville, TN, USA, September 30 - October 5, 2007, Reports and Revised Selected Papers,

5002/2008:247–258, June 2008.

[96] C. Hardebolle and F. Boulanger. Multi-formalism modelling and model execution. Inter-

national Journal of Computers and their Applications (IJCA), 2009.

[97] A. Jantsch. Models of embedded computation. In Embedded systems handbook. CRC Press,

2005.

[98] F. Arbab. Reo: a channel-based coordination model for component composition. Mathe-

matical. Structures in Comp. Sci., 14:329–366, June 2004.

[99] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time systems in BIP. In 4th

IEEE International Conference on Software Engineering and Formal Methods (SEFM06), Pune,

pages 3–12, september 2006.

[100] G. Gößler and J. Sifakis. Composition for component-based modeling. Sci. Comput. Pro-

gram., 55(1-3):161–183, 2005.

[101] F. Arbab, C. Baier, J. J. M. M. Rutten, and M. Sirjani. Modeling Component Connectors In

Reo By Constraint Automata. Science of Computer Programming, 61:75 – 113, 2006.

[102] F. Arbab and J. Rutten. A coinductive calculus of component connectors. In Martin Wirs-

ing, Dirk Pattinson, and Rolf Hennicker, editors, Recent Trends in Algebraic Development

Techniques, volume 2755 of Lecture Notes in Computer Science, pages 34–55. Springer Berlin

/ Heidelberg, 2003.

[103] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. Automated test and oracle generation for

smart-card applications. In International Conference on Research in Smart Cards (e-Smart’01),

Volume 2140 of LNCS, pages 58–70, 2001.

[104] H. Kahlouche, C. Viho, and M. Zendri. Hardware testing using a communication protocol

conformance testing tool. In In The International Work-shop on Tools and Algorithms for

Construction and Analysis of Systems. (TACAS ’99), March 1999.

[105] G. Bernot. Testing against formal specifications: A theoretical view. In S. Abramsky and

T. Maibaum, editors, TAPSOFT ’91, volume 494 of Lecture Notes in Computer Science, pages

99–119. Springer Berlin / Heidelberg, 1991.

[106] ISO/IEC. LOTOS-a formal description technique based on the temporal ordering of ob-

servational behaviour. In Technical Report 8807, International Organization for Standards -

Information Processing Systems - Open Sys- tems Interconnection, 1988.

[107] IUT-T. Recommendation Z-100. specification and description language (SDL). In Technical

report, 1994.

[108] L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on symbolic specifi-

cations. (3395):1–15, 2005.

[109] G. Bernot. Testing against formal specifications: A theoretical view. In TAPSOFT’91: Proc.

of the Intl. Joint Conference on Theory and Practice of Software Development, Vol. 2, pages 99–

119, London, UK, 1991. Springer-Verlag.

BIBLIOGRAPHY 193

[110] J. Tretmans. A formal approach to conformance testing. In Proceedings of the IFIP

TC6/WG6.1 Sixth International Workshop on Protocol Test systems VI, pages 257–276, Am-

sterdam, The Netherlands, 1994. North-Holland Publishing Co.

[111] D. Lee and M. Yannakakis. Testing finite-state machines: State identification and verifica-

tion. IEEE Transactions on Computers, 43:306–320, 1994.

[112] A. Petrenko and N. Yevtushenko. Conformance tests as checking experiments for partial

nondeterministic fsm. In W. Grieskamp and C. Weise, editors, FATES, volume 3997 of

Lecture Notes in Computer Science, pages 118–133. Springer, 2005.

[113] A. Petrenko and N. Yevtushenko. Testing from partial deterministic fsm specifications.

IEEE Trans. Comput., 54:1154–1165, September 2005.

[114] A. Petrenko, R. Petrenko, R. Groz, and S. Boroday. Confirming configurations in efsm

testing. IEEE Transactions on Software Engineering, 30:2004, 2004.

[115] C. Bourhfir, R. Dssouli, and E.M. Aboulhamid. Automatic test generation for efsm-based

systems. Technical report, 1043.

[116] F. C. Hennie. Fault detecting experiments for sequential circuits. In FOCS’64, pages 95–

110, 1964.

[117] M. Yannakakis and D. Lee. Testing finite state machines. In STOC, pages 476–485. ACM,

1991.

[118] G. Gönenç. Conformance testing methodologies and architectures for osi protocols. chap-

ter A method for the design of fault detection experiments, pages 368–375. IEEE Com-

puter Society Press, Los Alamitos, CA, USA, 1995.

[119] A. Gill. Introduction to the theory of finite-state machines. McGraw-Hill, New York, 1962.

[120] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans. Softw.

Eng., 4:178–187, May 1978.

[121] W. Chung and P. Amer. Improved on UIO sequence generation and partial UIO se-

quences. Testing, and Verification, XII, Lake Buena Vista, June 1992.

[122] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Com-

puter Science (TCS), 34(1–2):83–133, nov 1984.

[123] R De Nicola. Extensional equivalence for transition systems. Acta Inf., 24:211–237, April

1987.

[124] E. Brinksma. A theory for the derivation of tests. Proc. 8th Int. Conf. Protocol Specification,

Testing, and Verification (PSTV VIII), pages 63–74, 1988.

[125] I. Phillips. Refusal testing. Theor. Comput. Sci., 50(3):241–284, 1987.

[126] E. Zinovieva. Symbolic Test Generation for Reactive Systems with Data. PhD thesis,

IRISA/INRIA Rennes, France, November 2004.

[127] A. W. Heerink. Ins and Outs in Refusal Testing. PhD thesis, University of Twente, Enschede,

May 1998.

[128] E. Brinksma and J. Tretmans. Testing transition systems: An annotated bibliography. In

F. Cassez, C. Jard, B. Rozoy, and M.D. Ryan, editors, MOVEP, volume 2067 of Lecture Notes

in Computer Science, pages 187–195. Springer, 2000.

[129] J. Tretmans. Testing techniques. 2002.

[130] R. Langerak. A testing theory for LOTOS using deadlock detection. In E. Brinksma,

G. Scollo, and C.A. Vissers, editors, Protocol Specification, Testing and Verification (PSTV),

pages 87–98. North-Holland, 1989.

194 BIBLIOGRAPHY

[131] L. Briones and E. Brinksma. A test generation framework for quiescent real-time systems.

In IN FATES 04, pages 64–78. Springer-Verlag GmbH, 2004.

[132] S. Nogueira, A. Sampaio, and A. Mota. Guided Test Generation from CSP Models. In

Proceedings of the 5th international colloquium on Theoretical Aspects of Computing, pages 258–

273, Berlin, Heidelberg, 2008. Springer-Verlag.

[133] A. W. Heerink and G. J. Tretmans. Refusal testing for classes of transition systems with

inputs and outputs. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors,

Proceedings of the IFIP TC6 WG6.1 Joint Intl. Conf. on Formal Description Techniques for Dis-

tributed Systems and Communication Protocols (FORTE X) and Protocol Specification, Testing

and Verification (PSTV XVII), volume 107 of IFIP Conference Proceedings, pages 23–38, Lon-

don, 1997. Chapman & Hall.

[134] M. van Osch. Hybrid input-output conformance and test generation. In Klaus Havelund,

Manuel Núñez, Grigore Rosu, and Burkhart Wolff, editors, Formal Approaches to Software

Testing and Runtime Verification, volume 4262 of Lecture Notes in Computer Science, pages

70–84. Springer Berlin / Heidelberg, 2006.

[135] J.C Fernandez, C. Jard, T. Jéron, L. Nedelka, and C. Viho. Using on-the-fly Verification

Techniques for the Generation of Test Suites. Research Report RR-2987, INRIA, 1996.

[136] A. Sampaio, S. Nogueira, and A. Mota. Compositional verification of input-output con-

formance via csp refinement checking. In ICFEM ’09: Proceedings of the 11th International

Conference on Formal Engineering Methods, pages 20–48, Berlin, Heidelberg, 2009. Springer-

Verlag.

[137] M. Bonsangue, J. Rutten, and R. Silva. A kleene theorem for polynomial coalgebras. In In

Foundations of Software Science and Computational Structures, 12th International Conference,

FOSSACS 2009, volume 5504 of LNCS, pages 122–136, 2009.

[138] L. Briones, C. Pasareanu, and D. Giannakopoulou. Assume-guarantee reasoning with

ioco testing relation. In ICTSS, November 2010.

[139] J.A. Goguen and R.M. Burstall. Institutions: abstract model theory for specification and

programming. J. ACM, 39:95–146, January 1992.

[140] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–281,

1972. 10.1007/BF00289507.

	Contexte général
	Modélisation d'un système
	Validation et vérification

	Contributions de la thèse
	Introduction
	Context
	System modeling
	Validation and verification

	Thesis overview
	Thesis contributions
	Plan of the thesis

	I Theoretical preliminaries
	Category theory
	Category
	Category definition
	Constructions of categories
	Properties of arrows

	Universal properties
	Commutative diagrams
	Initial and terminal objects
	Product
	Coproduct
	Exponents

	Functors and natural Transformations
	Functors
	Powersets
	Free monoid
	Polynomial functors and Kripke polynomial functors
	The category of category

	Natural transformations
	Heterogeneous Compositions
	Functor categories
	Heterogeneous compositions

	Monads in category theory
	Definition
	A working example
	More examples
	Partial
	Ordered nondeterminism
	Exception

	Category of Kleisli

	Coalgebras
	Coalgebra definition
	Streams
	Mealy Machines
	Labeled Transition Systems (LTS)
	Input-Output Labeled Transition Systems (IOLTS)

	Morphisms
	Bisimulation
	Stream
	Mealy machines
	Labeled transition systems

	Final coalgebras
	Streams
	Mealy machines
	Labeled transition systems
	More examples

	Co-induction
	Proof by bisimulation

	II Systems modeling framework
	Generic components
	Components as coalgebras
	Motivation
	Components
	Genericity of component definition

	Component traces
	Transfer function
	Component Traces

	Results
	Final model
	Minimal component

	Conclusion

	Integration of components
	Basic integration
	Cartesian product
	Feedback

	Complex operators
	Sequential composition
	Double sequential composition
	Synchronous product
	Concurrent composition
	Synchronous parallel composition

	Systems and compositionality
	Systems
	Examples
	Compositionality

	Related works
	Conclusion

	III Validation of component-based systems by testing
	Conformance testing theory: a general overview
	Formal Method in Conformance Testing
	General principle
	The meaning of conformance
	Specification model
	Implementation model
	Conformance relation

	Formal framework for conformance testing
	Test execution
	Test case properties

	Testing of components
	Conformance relation
	Specification model
	Implementation model
	Conformance
	An overview
	Definition

	Finite computation tree
	Formal definition
	Unfolding algorithm

	Test Purpose
	Test generation guided by test purposes
	Preliminaries
	Inferences rules
	Example
	Properties

	Instantiating of the approach

	Integration Testing
	Compositional testing
	Compositional testing with cioco
	Compositionality for cartesian product
	Compositionality for feedback operators
	Compositionality for complex operator

	Test purposes for sub-systems
	Sub-systems and projection
	System-based test purposes

	Related works

	Conclusion
	Summary
	Future research

	Bibliography

