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Abstract

Dynamic relaxation (DR) is a numerical method introduced in 1965 by A.S. Day in the
book ”The Engineer”. From 1983, with the works presented by P. Underwood, it became
more and more used. Since then, many applications were found, and several authors
presented different improvements on the method in order to optimize the calculations.
Nowadays, its use is widely spread in fields as structural dynamics (particularly in form-
finding), geomechanics or biomechanics.

When using DR in numerical simulations, researchers followed two different paths in the
choice of a damping strategy for the oscillations: some used DR combined with a viscous
damping and others used DR combined with kinetic damping. However, it is difficult to
find comparisons between both methods to help deciding whether one is better than the
other for a particular application.

Focused in the field of form-finding of thin structures, the main objective of this thesis
is to make a contribution to the development of DR methods and a review of the existing
DR methods in order to compare them. Therefore, a scientific paper is presented in this
thesis comparing different DR methods with both kinetic and viscous damping in the case
of form-finding of inflatable structures. Also, another paper is detailed where an extension
for the DR method with kinetic damping is proposed.

Then, as an application for the studied DR methods, a contribution to the modelling
of inflatable lifejackets will be presented. The aim of this part of the work is to present
some contributions to the creation of a numerical tool permitting to test the functioning
of an inflatable lifejacket by means of Finite Elements calculations.

This work covers the creation of a parameterized mannequin, a rough characterization
of the involved technic textile, improvements in the numerical simulation of the inflation
of the lifejacket using the DR method, and also a fist approach to the water dynamics
and contact mechanics that will be involved in the final simulation.

Keywords: Form-finding, dynamic relaxation, viscous damping, kinetic damping, in-
flatable structures, inflatable lifejackets
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Résumé

La Relaxation Dynamique (RD) est une méthode numérique présentée en 1965 par A.S.
Day dans l’ouvrage ”The Engineer”. Depuis 1983, avec les travaux présentés par P. Under-
wood, la méthode est de plus en plus utilisée. Depuis ces travaux fondateurs, la méthode
de RD a trouvé de nombreuses applications, et plusieurs auteurs ont introduit différentes
améliorations de la méthode en cherchant l’optimisation des calculs. Désormais, son
utilisation s’est largement étendue aux domaines tels que la dynamique des structures
(particulièrement la recherche de forme), la geomécanique ou la biomécanique.

Dans le cadre de l’utilisation de la RD les chercheurs ont suivi deux chemins différents
pour le choix d’une stratégie d’amortissement des oscillations: certains ont utilisé la RD
combinée avec un amortissement visqueux et d’autres ont utilisé la RD combinée avec un
amortissement cinétique. Néanmoins, très peu de comparaisons entre ces deux méthodes
ont été exposées ayant par but d’aider à choisir l’une ou l’autre pour une application en
particulier.

Focalisés dans la recherche de forme de structures minces, le principal objectif de
cette thèse est d’apporter une contribution au développement des méthodes de RD par-
allèlement à une revue des méthodes existantes en vue de les comparer. Un premier article
scientifique est ainsi détaillé dans ce travail en comparant les différentes méthodes de RD
avec les deux types d’amortissement, cinétique et visqueux, pour le cas particulier de la
recherche de forme de structures gonflables. Puis un second papier est décrit, où une
extension pour la méthode de RD avec amortissement cinétique est proposée.

En tant qu’application des méthodes de RD étudiées, une contribution à la modélisation
des gilets de sauvetage gonflables est exposée. Le but de cette partie de la thèse est
d’introduire quelques contributions à la création d’un outil numérique permettant de
tester le fonctionnement d’un gilet de sauvetage gonflable en situation en utilisant la
méthode des Eléments Finis.

Ce travail comprend la création d’un mannequin paramétré, une caractérisation grossière
du textile technique impliqué, des améliorations concernant la simulation numérique du
gonflage du gilet en utilisant la méthode de RD, et finalement une première approche à
la dynamique de l’eau et la mécanique du contact qui seront présents dans la simulation
globale.

Keywords: Recherche de forme, relaxation dynamique, amortissement visqueux, amor-
tissement cinétique, structures gonflables, gilets de sauvetage gonflables
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Chapter 1

Introduction

1.1 Background and motivation

Numerical simulations using finite elements are widely used in the industry. They allow
to test all kind of products before their manufacturing in order to detect defects and
to prevent errors in the first stages of the design process. Also, numerical simulations
allow to optimize the design and operation conditions of all kind of devices or pieces, and
they have a particular interest when the behavior of the studied element is governed by
complex equations that cannot be solved by using analytical methods.

Nowadays, any competitive enterprise needs to use the numerical simulations on their
products or processes to predict and correct eventual problems that could appear. The
field of application of the numerical simulations is very wide, and it can go from the
simulation of a small piece of a mechanism to a large mechanical structure or even a
human organ in a biomedical application.

The most spread application of FE simulations is the design of products. They al-
low to virtually test prototypes, being therefore possible to leave for the final stage the
development and testing, once the ideal configuration has been numerically calculated.

Plastimo is an enterprise located in Lorient (France) that designs and manufactures all
kind of boating equipments. Among them, they also manufacture inflatable lifejackets,
with different buoyancy aids (100N, 150N and 275N).

Since July 1st, 1995, all lifejackets and buoyancy aids must comply with the European
Standards (CEN), to get the CE mark which testifies that the buoyancy aid has suc-
cessfully passed all the tests and that materials and fabrics used also comply with the
European standard. For 100N lifejackets, the normative to comply is EN395, EN396 is
for 150N lifejackets, and EN399 for 275N lifejackets.

The inflation of these lifejackets can be triggered in 3 ways:

• Oral inflation : Possible in all Plastimo’s lifejackets; this way allows the user to
”pump up”.

• Manual inflation : firing the CO2 gas cylinder is done by pulling a cord handle.

13



Figure 1.1: Inflatable lifejackets manufactured by Plastimo

• Automatic inflation : the lifejacket inflates automatically on immersion in the
water.

In the manufacturing of these lifejackets, Plastimo carries out tests to check if they work
adequately. For this, they set the lifejacket on a mannequin, and they drop it into a pool.
But they found that this is far from being a good testing procedure, mainly due to lack
of repeatability. This is because there are a lot of parameters that are impossible or very
difficult to control, such as the initial position when dropped into water, the morphology
(they just have one kind of mannequin), and so on... Also, it is an uncomfortable and
expensive test (because not only they waste a lifejacket; they also need to have access of
a pool, and several people carrying out the tests).

Due to all these reasons, they thought of carrying out the tests by means of a computer,
in a numerical simulation. This way, all parameters could be controlled, and any kind of
morphology could be, theoretically, made. Therefore, this is the context that motivated
this work.

Three kinds of lifejacket manufactured by Plastimo were mentioned. In this paper we
address the automatic one. This means that the person wearing it might be unconscious,
and due to this, he/she would not move by him/herself. In other case, the numerical
simulation would be more complex (and time consuming) and eventually not possible
since random movements cannot be predicted for any single person.

The idea of Plastimo is to be able to simulate all the testing procedure with the maxi-
mum number of parameters included and to check the good working of a certain conception
of lifejacket. The agents involved in the simulation will be: the mannequin, the inflatable
lifejacket and water. The simulation they intend to carry out includes the following steps
:

• The mannequin, fully parameterized (any morphology should be feasible), porting
an inflatable lifejacket, falls freely into water in a random position

• The mannequin reaches the water, and he is subjected to a water impact and hy-
drostatic/hydrodynamic forces

14



• The lifejacket inflates inside water in less than a specified maximum time

• The mannequin is expelled to the surface, with its airways upwards and outside the
water

Because there are several physical phenomena, such as the contact problem, the forces
created by the fluid, etc, the work must be divided in several parts. This work will focus
specially in the numerical simulation of the inflation. Also, the creation of a parameterized
mannequin, a rough characterization of the used technic textile and a first approach to
the water dynamics and the contact mechanics will be covered.

1.2 Industrial and academic objectives

The industrial objective, as indicated previously, is to finally obtain a tool that allows
to check the functioning of any kind of lifejacket being worn by any kind of person. It
is a very ambitious objective for a 3-year thesis, so all the possible advancements are
welcomed. It can set the basis for a future complete tool for simulating the whole process
of lifejackets’ testing.

It is important to remark that the final aim is not to obtain a numerical tool that re-
produces exactly the reality. That would be currently impossible, since the real conditions
of a person falling into water change if he/she feels stressed during the fall and reacts in
certain way, if there are a certain kind of waves, or if the person wears a particular brand
of boots, etc. The aim of the numerical tool is to allow to observe the tendencies in the
behavior of eventual different models of lifejackets, by keeping all the rest of the testing
conditions fixed. However, even if we are not trying to reproduce exactly the reality, we
try to include as many physical factors involved as possible. This way, the tool would
permit for example, to check how a modification in the lifejacket’s shape could affect the
final result.

This work can be considered as a continuation of the thesis work of Julien Troufflard
[1], who made an efficient tool to mesh and simulate the inflation of membrane structures.
He created a tool that is currently being used by Plastimo, serving to the dimensioning of
lifejackets. This tool had to be simple so Plastimo’s staff with a rough knowledge in finite
elements could use it. But while his aim was to create a tool usable in the industry, the
aim of this work is mainly academic but keeping in mind that the background is the look
for an industrial applicability: establishing the basis to create a more complex numerical
tool.

Besides the fact of contributing to the creation of a tool useful for the industry, there are
some interesting research possibilities, and we particularly focused on the improvement of
the simulation of membrane inflatable structures. The simulation of a lifejacket’s inflation
is probably the most time-consuming part on the global simulation. That is why it seemed
interesting to work on that point, by doing some research in that field.
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Nowadays, the field of form-finding of membrane structures is booming. There are
two main branches: the form-finding of structural membranes and the form-finding of
inflatable structures.

In the case of structural membranes, they are employed due to its lightness and/or
aesthetic characteristics in the façades of modern buildings, sports stadiums’ covers, etc...
(see figure 1.2 for some examples).

Figure 1.2: From left to right: Burj Al Arab Hotel in Dubai (with a textile façade); the
Beijing’s Water Cube; the Moses Mabhida stadium in Durban, South Africa; and the 2km
length textile-covered entrance to the EXPO in Shanghai 2010

Concerning the form-finding of inflatable structures, they are widely used in the military
and aerospace industry (temporary hangars for airplanes’ repairing, removable modules
for the ISS, etc, are some examples), pavilions for all kind of events, emergency sealing
of liquid’s pipes, and even in newer recent applications, as TensairityR© structures, with
architectural functions (see figure 1.3).

Figure 1.3: Sample TensairityR© applications. Left and center: parking cover (sources:
canobbio.com and tensinet.com); Right: deployable bridge (Source: Buildair)

All these applications are becoming more and more complex, and the need for fast
and efficient calculations is becoming more important. Troufflard, in his thesis work,
found it interesting to use a particular method called dynamic relaxation, that he showed
to be efficient and useful in the simulation on inflatable structures. However, his tool
was limited to a single dynamic relaxation method, only one type of finite element, only
an elastic behavior, and with the only final objective of finding the final form of the
inflated lifejacket. Therefore, this method still offered some paths to be explored and
fully exploited in order to improve it. This thesis work provides some new interesting
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improvements for a particular type of dynamic relaxation (where it is extended to any
type of element and any kind of behavior), and a comparison of several existing dynamic
relaxation methods. Actually, two scientific papers are issued from this work, detailing
this improvements.

1.3 Thesis overview

This thesis work covers the following work:
In chapter 2, the software Herezh++ used in our simulations will be presented. Then,

since it is an academic software (under development), a validation of an inflation calcula-
tion is showed: the calculation of the radius’ variation in the inflation of a sphere is made.
The sphere is meshed with different sizes of triangular membrane elements. To compare
it with theoretical results, an analytical study is made.

In chapter 3, the main contribution of this thesis work is presented: the improvements on
the dynamic relaxation method. First of all, the dynamic relaxation method is presented,
and then, the two issued papers are included. In the first one, two new proposals for
a type of dynamic relaxation are presented and validated, and in the second one, our
proposed methods are compared to other existing types of dynamic relaxation in several
case studies for the particular case of membrane structures.

In chapter 4, in order to check the validity of the model used for the fabric in simulations,
a 3D optic measuring is carried out during the inflation of a simple shape, by means of
two high speed cameras and an image correlation software. The result is compared with
the simulations made in our finite elements software.

In chapter 5, some experimental tests are made on the technic textile provided by
Plastimo, in order to characterize it and to roughly determine a law of behavior. There,
the microstructure of the material is observed, and different types of tensile tests are
carried out by means of a tensile test machine along the different orientations of the
technic textile.

In chapter 6, a detailed review of the creation of a parameterized mannequin in C++ is
presented. The software’s choice is reasoned and all the creation procedure is commented,
including the difficulties found and the limitations of the model. Then, some improvement
proposals are presented.

In chapter 7, we present the application of dynamic relaxation to the lifejacket manufac-
tured by Plastimo. Then, after a brief presentation of the contact mechanics in Herezh++,
the inflation of the lifejacket is made by dynamic relaxation and this inflation is combined
with contact against different surfaces.

In chapter 8, a first approach on water impact and hydrodynamic/hydrostatic forces
are shown. Hydrostatic pressure and hydrodynamic forces’ implementation in Herezh++
are presented and justified. A review of the literature concerning the water impact is also
presented.

Finally, in chapter 9, the general conclusions and perspectives are presented.
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Chapter 2

FE Software and validation

2.1 FE software

2.1.1 Introduction

In order to carry out all the simulations in this work, the academic C++ finite elements
software Herezh++ [18] will be used. For the pre- and post-processing, Gmsh [81] will be
also used, since Herezh++ allows to import/export the data particularly easily, in order
to work with it in Gmsh.

Herezh++ allows to work in large displacements and large deformations, with 1D, 2D or
3D elements, and with virtually any law of behavior (a set of laws is already implemented,
but more laws of behavior can be added: external procedures like Abaqus’ UMAT can be
used, and they can be coded in any language [2].

Concerning the calculation algorithms, several different algorithms are available in
Herezh++, and all along this work, two temporal advancement schemes will be used: the
Tchamwa-Wielgosz’ scheme [5], that will be used only in the validation of the inflation in
Herezh++ and when real dynamics are required (such as the calculations concerning wa-
ter, where obtaining real times is important), and the Centered Finite Differences scheme
(used within Dynamic Relaxation Algorithm). Both of them are explicit schemes, be-
cause this works covers the study of membrane structures, that are unstable, and implicit
algorithms would lead to divergence (this is further explained later on, in the papers).

2.1.2 Algorithms

2.1.2.1 Dynamic Relaxation: Centered Finite Differences (CFD)

The dynamic relaxation algorithm is based on the Centered Finite Differences (CFD)
method for the temporal advancement. This is a classic explicit method used in dynamic
calculations. We can write the general discretized vectorial equation of dynamics as:

[M ]Ẍn + [C]Ẋn + R(Xn, Ẋn) = 0 (2.1)
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where [M ] is the mass matrix, [C] is the explicit (like artificial) damping matrix,
Ẍn, Ẋn, and Xn are the acceleration, velocity and position of the nodes at the nth in-
crement, and R(Xn, Ẋn) represents the residual of internal and external forces, depending
only in the nodes’ positions. Also, the internal forces could include a viscous part (this
would be the case of a viscoelastic law of behavior, for example).

Given this equation, and supposing no C matrix acts (to simplify the presentation), the
CFD scheme would give the following approaches, in function of the time step ∆t:

Ẍn = −[M ]−1R(Xn, Ẋn)

Ẋn+ 1

2

= Ẋn− 1

2

+ ∆tẌn

Xn+1 = Xn + ∆tẊn+ 1

2

(2.2)

2.1.2.2 Tchamwa-Wielgosz

The Tchamwa-Wielgosz scheme is usually used when a filtering of the high frequencies
of vibration is convenient (in rapid dynamics, for example). We are not exactly in the
case of rapid dynamics, but the algorithm showed a good efficiency in our calculations.
A comprehensive review can be read in the references [3, 4, 5, 6] The algorithm can be
written as:

[M ]Ẍn+1 + Rint(Xn+1, Ẋn+1) = Rext(Xn+1, Ẋn+1)

Ẋn+1 = Ẋn + ∆tẌn

Xn+1 = Xn + ∆t Ẋn + Φ∆t2 Ẍn

(2.3)

where Φ is a parameter that controls the numerical damping of the high frequencies,
and it can go from 1 to ∞. A value of Φ = 1 makes this algorithm equivalent to the CFD
method. A value of Φ = 1.03 is typically used since the closer we are to 1, the closer we
are to a second order precision (typical of DFC). Thus, a value away from 1 makes the
precision decrease. a very big value can lead to a loss in the precision.

2.2 Validation

Since Herezh++ is an academic software under development, and since this thesis work is
focused in the form-finding of inflatable structures, it would be convenient in a first step
to present a validation of some example results obtained when calculating the inflation
of a simple known geometry. With this aim, we decided to calculate the inflation of a
sphere, since the final shape can also be easily calculated analytically.

For the validation, only the Tchamwa-Wielgosz scheme will be used. Our intention is
to validate the inflation calculations with an algorithm close to the real dynamics, that
is the case of Tchamwa-Wielgosz’ one. Concerning the validation when using a Dynamic
Relaxation algorithmn (based on CFD scheme), it will be presented in Chapter 3, in the
second paper.
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2.2.1 Geometry and calculation parameters

The mesh to be tested is a sphere (chosen because it is a geometry simple enough to be
able to obtain an analytical final result), which is going to be generated by means of Gmsh
using its graphical interface. For simplicity, the three possible symmetries in a sphere are
considered, modeling this way just an eighth of the sphere, as shown in the figure 2.1.
This allows to save calculation time while giving the same final results.

Figure 2.1: Eighth of sphere modeled in Gmsh

The chosen geometric and physical parameters of the sphere were the following (the
choices were made in order to be near to a lifejacket’s characteristics):

• Radius: r=300 mm

• Thickness: e=0.27 mm

• Density: ρ = 10−9 ton/mm3 = 1kg/dm3

• Young’s modulus: E=150, 600 and 3000 MPa (E, 4E and 20E)

• Poisson’s ratio: ν =0.41

For the validation to be achieved, different tests were made, by varying the elements’
size (to observe the impact of the discretization), the Young’s modulus (to observe the
influence of the material) and also the internal pressure (in order to test with different
deformations). Concerning the mesh elements’ size, four different sizes were tested. Also,
for each one of the meshes, three different Young’s moduli were used. And finally, for each
combination of mesh size and Young’s modulus, three different pressures were applied to
carry out the inflation. These applied pressures also comply with the order of magnitude
of pressure in inflatable lifejackets. The different combinations are shown in the table 2.1.
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Meshes (n◦ elements) Young’s modules (MPa) Pressures (MPa)

41 , 333, 3305, 13210

150
0.01
0.015
0.02

600
0.01
0.015
0.02

3000
0.01
0.015
0.02

Table 2.1: Different tests made

The calculation was made in explicit dynamics by means of the dissipative scheme of
Tchamwa-Wielgoz, with a φ = 1.3 (damping factor value that leads to a big damping).
Also, to try to reach faster a final equilibrium solution, a kinetic relaxation method was
employed, with an stopping criterion based on the static residual (the balance of internal
and external static forces) and a precision of 10−4 . The four different meshes can be
observed in the figure 2.2

Figure 2.2: View of the four different meshes employed in the simulations

2.2.2 Analytical calculation

For the theoretical calculation, we can be based on the simple expressions for the calcu-
lation of spherical pressure vessels presented by the Colorado State University [7]. From
that simple presented equations, we will carry out our own analytical development to
get to more complex expressions, considering large deformations and a decrease of walls’
thickness.

Slicing a sphere in a half and retaining one of the halves (e.g. the superior one), we
consider the forces applied on it :

• Internal pressure: The internal pressure P acts in the plane surface A = πr2
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corresponding to the circular cut of the sphere projected in the cutting plane; r
represents the sphere radius.

• Stress which counteract: The stress σrr counteracting the internal pressure acts
in the surface A = 2πre 1 being e the thickness of the sphere.

Knowing this, we can say:

P (πr2) = σrr(2πre) (2.4)

obtaining the value of the stress:

σrr =
Pr

2e
(2.5)

It is possible to cut the sphere in half using many different planes, but after each cut
the analysis would be the same; a spherical pressure vessel is under ”uniform stress”.

If we consider now the strain ǫrr in 3D for a Hooke’s behavior:

ǫrr =
1

E
(σrr − νσtt − νσhh) (2.6)

Since the values σrr and σtt are equivalent in the case of a sphere, and being σhh

negligible ( ≈ P, << σrr), we finally obtain for the strain :

ǫrr =
1 − ν

E

Pr

2e
(2.7)

At this point, we could calculate the volume of the sphere under pressure by considering
the deformation produced in it. The precision with which we would like to calculate the
new volume/radius depends on if we calculate considering small deformations or not, and
if thickness decreases or not. So we can distinguish four cases :

• Small deformation and constant thickness

• Large deformation and constant thickness

• Small deformation and variable thickness

• Large deformation and variable thickness

It is obvious that the most precise solution would be obtained with the last case, but
it may be interesting to make an analytical development of all the possible situations.

1We consider thin walls; otherwise the formule should be A = π((r + e/2)2 − (r − e/2)2)
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2.2.2.1 Small deformations. Constant wall thickness e

After the application of the internal pressure, the radius of the sphere changes from a
value r to a new bigger value r̂. So we can write, for small deformations (and constant
e):

r̂ − r

r
≈ (1 − ν)Pr

2eE
=⇒ r̂ = r

(

1 +
(1 − ν)Pr

2eE

)

(2.8)

And with that expression, given that we know all the parameters involved, it would be
possible to calculate the new radius, and consequently, the new volume.

2.2.2.2 Large deformations. Constant wall thickness ê

Here we use the Almansi strain to calculate the new radius. We use Almansi strain
because it’s the one implemented in Herezh++ along with Cauchy stress. Again, the new
one is denoted by r̂, and ê denotes the thickness after the deformation (after inflation,
the final thickness). We can write, being based in the equation 2.7 :

1

2

(

r̂2 − r2

r̂2

)

=
(1 − ν)P r̂

2êE
(2.9)

One can note that in the case of finite deformations, a specific choice of a measure of
deformation influences the result. Simplifying the expression 2.9, we obtain:

1 −
(r

r̂

)2

=
(1 − ν)P r̂

êE
=⇒ r

r̂
=

(

1 − (1 − ν)P r̂

êE

) 1

2

r̂

r
=

(

1 − (1 − ν)P r̂

êE

)− 1

2

so the radius r̂:

r̂ = r

(

1 − (1 − ν)P r̂

êE

)− 1

2

(2.10)

2.2.2.3 Small deformations. Variable wall thickness ê

When the sphere is under internal pressure, it inflates and its material stretches. This
deformation of the material leads to a narrowing of the walls, which could be important
in the final result (the resisting section decreases).

The new ”real” thickness ê (instead of the initial one e) can be calculated as following
for the case of small thickness.

Working in polar coordinates, we can say that the stress has the value

σrr =
Pr

2e
= σθθ (2.11)
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And considering this, we can obtain for the strain value

ǫzz =
1

E

(

P − νσrr − νσθθ
)

=
1

E
(P − 2νσrr) ≈ ê − e

e
(2.12)

being e the initial wall thickness and ê the final one. Simplifying this expression, and
replacing σrr for its value defined in equation 2.11, and knowing that e ≈ ê (since we are
in small deformations) :

ǫzz =
P

E

(

1 − 2νr

2e

)

=
ê − e

e
≈ P

E

(

1 − νr

e

)

(2.13)

This leads to :

∆e ≈ P

E
(e − νr) (2.14)

so we can estimate the new thickness by :

ê = e + ∆e = e +
P

E
(e − νr) (2.15)

2.2.2.4 Large deformations. Variable wall thickness ê

In this case, the analysis is similar to the previous one, but considering now Almansi
strain instead of the one for small deformations.

1

E

(

P − 2ν
P r̂

2ê

)

=
1

2

(

1 − e2

ê2

)

(2.16)

Simplifying to obtain a solution:

P

E

(

1 − 2νr̂

2ê

)

=
1

2
− 1

2

(e

ê

)2

1

2

(e

ê

)2

− Pνr̂

Ee

(e

ê

)

+

(

P

E
− 1

2

)

= 0 (2.17)

If we would like to solve this, we can make the change

x =
e

ê

we could solve the equation 2.17 simply as a second-order polynomial equation in a
single variable x :

x2 −
(

2Pνr̂

Ee

)

x +

(

2P

E
− 1

)

= 0

where x has the value :
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x =

2Pνr̂
Ee

±
√

(

2Pνr̂
Ee

)2 − 4
(

2P
E

− 1
)

2

So we obtain the new thickness e to use in the calculations as :

ê =
2 e

2Pνr̂
Ee

±
√

(

2Pνr̂
Ee

)2 − 4
(

2P
E

− 1
)

(2.18)

2.2.2.5 Calculation

After a first calculation in Herezh++ in the most unfavorable (in terms of precision)
conditions, i.e., the most simple mesh(41 elements), with the highest loading pressure (0.02
MPa) and the lowest Young’s modulus (150 MPa), it has been observed that deformation
is quite important. Due to this, for the theoretical calculation, we are going to use the
large deformations’ formulae.

Since deformations are large, the thickness of the wall will decrease (a priori) impor-
tantly, so we will calculate using the variable ê ’s theory. Due to the fact that the thickness
of the walls decreases as the radius increases, we cannot solve the problem just by solving
two equations separately, one for radius and another one for thickness. Instead of this, it
is necessary to solve a non-linear system of two equations, which are 2.9 and 2.17.

From these equations, the unknowns are ê and r̂. For solving the system, we use a
classical Newton’s method. We are interested only in r̂, but it is necessary to obtain the
ê in order to have it at each iteration to re-calculate the radius.

To solve the system, we used the software Scilab, by coding a short program that
calculates the solution by iterating the Newton’s method (see appendix A):

(Xi+1) = (Xi) + [K]−1(R)

where the stiffness matrix is :

[K] = −





r2

r̂3 − (1−ν)P
2êE

(1−ν)P r̂
2Eê2

−Pν
Eê

− e2

ê3 + Pνr̂
Eê2





and the residual vector is:

(R) =





1
2
− r2

2r̂2 − (1−ν)P r̂
2êE

e2

2ê2 − Pνr̂
Eê

+
(

P
E
− 1

2

)





The solutions obtained in the vector (X), corresponding to the final radius r̂ and the
final thickness ê are taken after reaching a certain indicated precision (10−12 for the
residual). We could observe that 4 iterations with the Newton-Raphson’s method were
enough to reach the desired precision.
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After calculating by Scilab for each one of the cases, the results are shown in the table
2.2:

E = 150 MPa

Pressure (MPa) Final radius r̂ (mm) Final thickness ê (mm)
0,01 307,1734 0,2617
0,015 311,3056 0,2576
0,02 315,8958 0,2533

E = 600 MPa

Pressure (MPa) Final radius r̂ (mm) Final thickness ê (mm)
0,01 301,6746 0,2679
0,015 302,5396 0,26692
0,02 303,4242 0,2659

E = 3000 MPa

Pressure (MPa) Final radius r̂ (mm) Final thickness ê (mm)
0,01 300,3292 0,2696
0,015 300,4948 0,2694
0,02 300,6612 0,2692

Table 2.2: Theoretical results of final radius and wall’s thickness after inflation
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2.2.3 Herezh++ calculation and comparison with analytical re-
sults

After making all the calculations in Herezh++, the results are given by two ways: the
first one, is the Gmsh format, with which we can observe visually the coherence of the
result (example shown in the figure 2.3. The second one, a .maple file from where it is
possible to obtain the numerical results.

Figure 2.3: Initial (blue) and final (red) shape of the sphere used in the finite elements
calculation, for the mesh of 3305 elements, with E=150MPa and P=0.02MPa

The idea for the validation is to compare the results obtained with Herezh++ to the
analytical results. We are just going to compare the final radius, because this is the main
parameter which will determinate the final volume of the sphere.

But first of all, it is necessary to make a remark concerning the meshes. We calculated
three different meshes to check the precision of each one, the influence of the number
of elements in the result of volume. To compare them, it is just necessary to calculate
theoretically the initial volume of the sphere with the radius of 300mm and extract from
a .maple file the initial volume calculated by Herezh++ before applying the loads (and
already multiplied by 8 to ”undo” the symmetries). Results are given in the table 2.3.

It is obvious and it can be observed in the results that the bigger the number of elements,
the better the precision. Also we can observe that the precision does not change a lot
after a certain number of elements. The fourth mesh has a huge number of elements, and
maybe with much less we could obtain a similar precision.

Since calculations were made for all four different meshes, to compare the final results
with the theory, we are going to present the results obtained with the finest mesh. Anyway,
it is logic to think that the best error possible in the calculations made by Herezh++ is
going to be bigger than the value of error in the initial volume.
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N◦ elements Theoretical vol (mm3) Calculated vol (mm3) Difference

41 1,13097e08 1,0913e08 -3,5050%
333 1,1310e08 1,1260e08 -0,4414%
3305 1,1310e08 1,1305e08 -0,0450%
13210 1,1310e08 1,1308e08 -0,0113%

Table 2.3: Precision of initial volume of the spheres depending on the mesh

For the case of the mesh with 13210 elements, the results compared to those analytically
calculated are shown in the table 2.4. There, we compare the radius increase from the
initial value (300mm) obtained analytically (theoretical) and by means of Herezh++, and
we show the difference in percentage between them.

E = 150 MPa

Pressure (MPa) Theoretical ∆r (mm) Calculated ∆r (mm) Difference
0,01 7,1734 7,1884 0,2095%
0,015 11,3056 11,3678 0,5501%
0,02 15,896 16,0738 1,1199%

E = 600 MPa

Pressure (MPa) Theoretical ∆r (mm) Calculated ∆r (mm) Difference
0,01 1,6746 1,6748 0,0112%
0,015 2,5396 2,5399 0,0146%
0,02 3,4242 3,4257 0,0436%

E = 3000 MPa

Pressure (MPa) Theoretical ∆r (mm) Calculated ∆r (mm) Difference
0,01 0,3292 0,3292 0,0187%
0,015 0,4948 0,4950 0,0373%
0,02 0,6612 0,6613 0,0199%

Table 2.4: Precision of initial volume of the spheres depending on the mesh

Seen these results, now we could ask ourselves if the choice of the most complex the-
oretical model (large deformations and variable thickness) was worth it. To answer this
question, we could compare these results to those of (for example) the simplest linear
case: small deformations and constant thickness.

If we compare the difference between theory and Herezh++ in the case of small defor-
mations and constant thickness (simple model) and the case of large deformations and
variable thickness (complex model), we obtain the results shown in table 2.5.

If we want to remark the importance of the mesh size in the final result, we can observe
the results in the table 2.6, which compares the ”best” and the ”worst” meshes (13210
and 41 elements, respectively).
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E = 150 MPa

Pressure (MPa) Difference complex model Difference simple model
0,01 0,2095% 9,6536%
0,015 0,5501% 15,6044%
0,02 1,1199% 22,5969%

E = 600 MPa

Pressure (MPa) Difference complex model Difference simple model
0,01 0,0112% 2,1886%
0,015 0,0146% 3,3212%
0,02 0,0436% 4,5123%

E = 3000 MPa

Pressure (MPa) Difference complex model Difference simple model
0,01 0,0187% 0,4457%
0,015 0,0373% 0,6795%
0,02 0,0199% 0,8781%

Table 2.5: Radius difference between Herezh++ and our analytical development for two
different models: a complex model and a simple model

2.2.4 Conclusions

It can be observed that results are quite good, the error is not very big in any case. In
the worst case (the most unfavorable conditions, i.e. the largest deformation, occurring
with E=150 MPa and P=0.02 MPa), the difference in the radius increase between theory
and Herezh++ is 1.12%. The radius increase corresponds to a deformation of ∆r/r =
16.074/300 = 0.0536 = 5.36%. Then, the biggest difference in deformation between theory
and simulation is 1.12% of a deformation of 5.36%, which makes a global difference of
0.012x0.0536=0.0006 (a quite good precision).

Also, it is remarkable that the choice of a complex model for the theory was important.
With a small Young’s modulus and a high internal pressure, the deformation is important
(around 16mm of radius increase). This originates a decrease of the walls’ thickness that
is not negligible (it goes from 0.27 to 0.253, a decrease of 6.3%). In the table 2.5 it can be
observed that, for the case of E=150 MPa and P=0.02 MPa, the difference in the radius
increase between theory and simulation is 1.12% with a complex theoretical model, and
22.6% with a simple model (small deformations and constant thickness).

Concerning the mesh, as we increase the number of elements we obtain, logically, a more
precise result (see table 2.6). In fact, since we cannot have a perfectly smooth sphere,
there will always be an error between the theoretical volume and the meshed sphere’s
volume. This can be one of the reasons of the difference between theory and simulation:
we start with an initial error due to the better or worse precision of the mesh. As it can
be seen in the table 2.2, even for the finest mesh (with 13210 elements), the difference
with theory in volume is 0.011%, error that means in radius a deviation of 0.003754%.
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E = 150 MPa

Pressure (MPa) Finest mesh errors Coarser mesh errors
0,01 0,2095% -2,2037%
0,015 0,5501% -2,1391%
0,02 1,1199% -1,7738%

E = 600 MPa

Pressure (MPa) Finest mesh errors Coarser mesh errors
0,01 0,0112% -1,4639%
0,015 0,0146% -1,7391%
0,02 0,0436% -1,9047%

E = 3000 MPa

Pressure (MPa) Finest mesh errors Coarser mesh errors
0,01 0,0187% -0,6193%
0,015 0,0373% -0,7821%
0,02 0,0199% -0,9001%

Table 2.6: Comparison of errors when using the finest mesh with those when using the
coarser mesh

Due to this, it is logical to think that we will find at the end of simulation at least this
difference with theory, and that is what happens and what we can see in the results.

Another possible thing which may cause de difference or error between the theory and
the simulation is the fact that the calculation made in Herezh++ is not exactly the same
that we made in the theory. In Herezh++ a thin-shell model is used, for which the
thickness’ variation is calculated from the compressibility modulus, the trace of the stress
and the relative variation of volume, which is different to the trace of the strain (used in
our theoretical calculations).
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Chapter 3

Dynamic Relaxation Method

3.1 Introduction

The dynamic relaxation (DR) is a numerical method usually used in the form-finding
of all kind of structures (tensegrity structures, membrane structures, shell structures...)
that consists in considering that the mass of the system is discretized and lumped in the
nodes; these nodes oscillate about the equilibrium position, and by introducing artificial
inertia and damping, the nodes come to rest in the static equilibrium position.

The fact of using artificial inertia and damping, makes the use of DR methods be
restrained to the cases where the only objective of the calculation is to obtain the final
equilibrium position of a structure, because the transient part will not be physical. How-
ever, the displacement path is close to a physical one, as it will be shown in this work.

In the literature, we can find DR methods using kinetic damping and DR methods
using viscous damping. The methodology of this two methods is different. In the case of
DR with kinetic damping, the kinetic energy of a structure is traced, and velocities
are reset to zero at each of the kinetic energy peaks (that are gradually smaller) until
the balance of internal and external forces is reached and the structure comes to rest;
therefore, the principle in this case is to try to optimize the mass matrix in order to
reach as fast as possible the kinetic energy peaks. On the other hand, when using DR
with viscous damping, the velocities are not so important; the main idea is to try to
damp as effectively as possible the oscillations, by searching an optimum viscous damping
coefficient.

The most commonly used damping method is the viscous damping. This method is
closer to the real behavior of the structures, since they behave as if they were somehow
viscous. The kinetic damping makes the structure evolve in a very different way.

Within the following sections, two scientific papers are presented. In the first paper
[15], we focus in the DR method with kinetic damping. There, we propose two different
formulations for the mass matrix that extent the range of applicability of the method to
any kind of element and any type of reversible behavior (instead of the previous limitation
of only triangular elements and elastic behavior); some case studies are shown to prove the
efficiency and reliability of both proposals. Also, we show in this paper that even if the
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transient part of the calculations is not ”physically real”, the DR can be implemented with
an incremental formulation, being this way able to carry out the calculations in several
loading steps where a static equilibrium is reached. Therefore, with an adequate definition
of the loading steps, DR can also provide the intermediate part of the calculations.

In the second paper, that has been recently submitted to the journal ”Mechanics Re-
search Communications”, we make a review of the existing DR methods up to the present
date, including DR methods with kinetic damping and DR methods with viscous damping.
After implementing several types of DR methods with viscous damping in our calculation
software Herezh++, we show a comparison of some of what we considered the most rel-
evant DR methods existing in the literature. We compare them in the particular case of
form-finding of membrane structures.

NOTE: Both full papers are included in the following sections. Also, in order to ease
their understanding and to clarify certain points, extra information not included in the
papers’ submission is added. This extra information is written in italics.
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3.2 Numerical study of dynamic relaxation with ki-

netic damping applied to inflatable fabric struc-

tures with extensions for 3D solid element and

non-linear behavior

J. Rodriguez, G. Rio, J.M. Cadou, J. Troufflard

Abstract: This work mainly deals with the numerical study of inflatable fabric struc-
tures. As implicit integration schemes can lead to numerical difficulties such as singular
stiffness matrices, explicit schemes are preferred. Since the final objective of this study is
to obtain the final shape of a structure, a dynamic relaxation (DR) method is used. These
methods allow us to obtain the final and stable shape of the inflatable fabric structures
without doing so many time increments, which is the case when using a classical explicit
integration method. Han and Lee (Computers and structures, 2003, 81, pp. 1677-1688)
proposed an extension of the DR method stated by Barnes (Computers and Structures,
1988, pp. 685-695) suitable for triangular elements and elastic behavior. There are two
main contributions in this paper. Firstly, we propose a modification of Han and Lee’s
method, allowing it to be used with any kind of membrane or solid finite elements and any
reversible behavior. Secondly, we propose to rewrite the expression initially introduced
by Barnes. Furthermore, these proposals are adapted for incremental loadings, allowing
this way to obtain the pseudo-equilibriums of the intermediate phases. Numerical exam-
ples from academic problems (rectangular and circular membranes) show the efficiency
and the reliability of proposed methods, with linear elasticity behavior, and also with a
non-linear incremental behavior and finite deformation states.

Keywords: Dynamic relaxation; kinetic damping; inflatable structures; form-finding

Published: Thin-Walled Structures, 2011. doi:10.1016/j.physletb.2003.10.071

3.2.1 Introduction

The simulation by the FE method of inflatable fabric structures, when a pressure load is
applied and an implicit scheme is used, can lead to severe instabilities due to the lack of
stiffness in the fabric. For instance, in certain cases the basic Newton-Raphson algorithm
cannot achieve a final convergence due to the swapping between several stable states.
Explicit time schemes overcome this difficulty, but they need a huge number of time steps
to obtain a realistic stable final shape. This occurs when using natural damping.

This is an usual issue in civil engineering (some examples are: geotechnical problems
[60], prestressed coated fabric membranes [41], achitectural structures [16], and space
inflatable structures [17]), and there have been several solutions proposed [21, 22, 23, 24,
25] by using dynamic relaxation methods.
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The classic form of the dynamic relaxation (see for example [28] or [29]) mainly is to use
an artificial viscosity to damp the movement, and to search for the critical damping value
(see [27] for a comprehensive review). However, among the existing dynamic relaxation
methods, we are interested in a different method; the one proposed by Barnes [30]. It
has been initially applied to the calculation of prestressed cable structures and further
extended by Han and Lee [21] to be used with triangular elements and a linear elastic
behavior. This method combines a kinetic damping (resetting the speed to zero at each
kinetic energy peak), often used in form-finding, and an optimization of the mass matrix
(proposed by Han and Lee).

One application of the method is thin fabric structures loaded by pressure, which are
notably unstable during loading due to the lack of flexion stiffness. The static final form
does depend on the inertial forces that act during the transient evolution. Considering
this, the right value of the mass is supposed to have no influence on its static final form.
In order to quickly reach the stable deformed state, we must first adapt the mass matrix
and then use kinetic damping. Kinetic damping has been successfully employed by several
authors (one example is [39]). A correct choice of the mass matrix leads to an optimal
convergence of the dynamic relaxation method.

In this paper, we will present two main formulations. Firstly, we propose an extension
of that Barnes-Han-Lee method. Secondly, we propose a general expression based on
the works of Barnes for the mass matrix calculus. The basis of this second expression
has already been proposed in previous papers (see Underwood [44] or Barnes [30]), but
to our knowledge, no systematic studies have been done concerning its applications for
simulation of the inflation of unstable structures. Both formulations can be used with
any reversible behavior, any type of membrane element and also solid elements. We show,
with numerical examples, their correct operation even when dealing with complex mesh
shapes or 3D elements. Our methods aim to find one solution when one or more solutions
exist (there can be several stable final shapes).

The reminder of this paper is broken into three main parts. In section 3.2.2, we first
explain the dynamic relaxation method that our work is based on. We then present two
methods for the formulation of the mass matrix. We propose an initial method based
on the formulation of Han and Lee and also propose an alternate method based on a
different formulation of the mass matrix. In section 3.2.3, we show several numerical case
studies and results of application of our proposals after implementing them in the software
Herezh++ [18]. Finally, in section 3.2.4, we briefly discuss our conclusions.

3.2.2 Dynamic Relaxation Method

3.2.2.1 Kinetic damping

Before presenting the dynamic relaxation method itself, we present the kinetic damping.

Kinetic damping method was firstly introduced by Cundall [32]. It consists in resetting
velocity to zero at each kinetic energy peak. This simple procedure has generally been
found to be stable and allowing a fast convergence [30]. When there is no external energy
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acting, there is just internal elastic energy to evolve towards the steady state position.
Velocities are reset to zero at each kinetic energy peak because the structure oscillates,

and the kinetic energy peaks are supposed to occur close to the static equilibrium position.
Then, the computation is restarted from the current configuration, but with zero initial
velocity. This procedure is continued until the structure comes progressively to a static
equilibrium position.

An example of application that will be presented and developed later on can be seen in
the Figure 3.1, where it can be observed in red the evolution of the kinetic energy and in
green the residual. There, we can see that the residual decreases significantly each time the
velocities are reset to zero, what means that the method is effective. However, it can also
be observed that the effectiveness is inferior at the end of the calculation, where kinetic
energy peaks are very small.

Figure 3.1: Kinetic energy and residual for a random DR calculation where kinetic damp-
ing has been applied

A detailed review of the implementation of kinetic damping can be read in the works of
Barnes [30, 36] or even in the thesis of Troufflard [1].

This damping method was implemented in the calculation software used in this thesis
(Herezh++) by including several parameters, that are detailed in the following:

Kinetic damping parameters implemented and used in Herezh++ Although the
kinetic damping principle is very simple, the numerical behavior of the calculations makes
it interesting to have the control of some parameters concerning the kinetic damping. In
this section, the input parameters used in Herezh++ are described. (NOTE: Unless if a
detailed description of the used parameters is wanted, this part can be skipped).

Kinetic damping does not have to be applied from the very beginning of the calculation.
To avoid it to start right at the beginning and thus avoiding taking into account eventual
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initial oscillations, a parameter can be defined to indicate since which iteration we need it
to start working:

nb_deb_test_amor_cinetique_ [iteration_number]

During a calculation, a high number of oscillations can appear. In order to avoid the
kinetic damping to act in all the ”fake” kinetic energy peaks, there is the possibility of
defining a parameter that indicates how many times the kinetic energy has to decrease in
order to allow to reset velocities to 0:

max_nb_decroit_pourRelaxDyn_ [number]

For the same reason of the eventual many oscillations, it might result advantageous not
to look at the kinetic energy at every single iteration, but calculating the average over a
bunch of iterations, and resetting to zero the velocities whenever a peak is reached in this
averaged value of kinetic energy. A parameter allows to indicate the number of iterations
considered to calculate the average (by default, if the parameter is omitted, its value is 1):

taille_moyenne_glissante_ [number_of_iterations]

It is difficult to determine with precision the peaks of kinetic energy, and a criterion can
be used to ensure a peak has been reached. For example, we can assume that the kinetic
energy has passed a peak whenever it diminishes after a peak a certain value. This value
can be a fraction of the last peak. In spite of that, a parameter is defined to indicate the
value of the fraction, that can be adjusted according to our interest:

test_fraction_energie_ [fraction_value]

When a calculation is near convergence, there can be a lot of small oscillations that
may not need the kinetic damping to accelerate the convergence. Due to this, and in
order to reduce the cost of calculation, there is a parameter which allows to deactivate the
kinetic damping. This parameter is a coefficient that multiplied by the last kinetic energy
peak gives the minimum acceptable kinetic energy to continue using the kinetic damping.
Kinetic damping is paused/stopped if Ek < coef × Epeak

k :

coef_arret_pourRelaxDyn_ [coefficient_value]

The same way the use of kinetic damping can be disabled at a certain moment, it can be
re-enabled if the calculation needs it. A coefficient can be defined so if it is multiplied by the
maximum kinetic energy peak, it gives the minimum kinetic energy that would reactivate
the kinetic damping. Kinetic damping is reactivated if Ek > coef × max(Epeak

k ):

coef_redemarrage_pourRelaxDyn_ [coefficient_value]
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To stop the calculation, we can consider a convergence criterion based on the displace-
ment of the structure, by checking the displacement between two iterations. Thus, we can
establish an inferior limit to ∆xτ→τ+∆τ with:

max_deltaX_pourRelaxDyn_ [minimum_displacement]

A parameter can be used to indicate the number of times the previous criterion has to
be verified to allow to stop the calculation:

nb_max_dX_OK_pourRelaxDyn_ [number]

Finally, another parameter can be used to indicate the number of passages into damping
from which the end is checked:

nb_deb_testfin_pourRelaxDyn_ [number]

Presented the parameters, if nothing is specified, the used parameters in all the calcula-
tions in this thesis are 1:

max_nb_decroit_pourRelaxDyn_ 1

# taille_moyenne_glissante_ 30

# test_fraction_energie_ 0.05

coef_arret_pourRelaxDyn_ 0

coef_redemarrage_pourRelaxDyn_ 0.0

max_deltaX_pourRelaxDyn_ 0.005

nb_max_dX_OK_pourRelaxDyn_ 10

nb_deb_testfin_pourRelaxDyn_ 250

3.2.2.2 Dynamic relaxation method

The problem that we need to solve, after discretization by FE, is:

[M ]Ẍ + R(X, Ẋ) = 0 (3.1)

where [M ] is the diagonal mass matrix; X, Ẋ, Ẍ are respectively the position, velocity
and acceleration of the nodes and R(X, Ẋ) is the residual of internal and external forces in
function of the position and velocity of nodes. The term [M ]Ẍ represents the generalized
expression of the acceleration forces. The method used to solve the problem in time is
based on the explicit centered finite differences method (CFD).

The calculation of equilibrium is always made in the final configuration, using the
Cauchy’s stress tensor.

In the case of a Hooke’s elastic law of behavior, Cauchy’s tensor is associated with
Almansi’s deformation measure. The deformation is calculated from the variation of the

1The # symbol means ”commented line”. Therefore, the two commented lines mean that we did not
use those two parameters in our calculations
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coordinates of the metric tensor associated to the material coordinates of the point in the
reference element (a comprehensive example of this calculus has been presented in [20]).
Then, the stress tensor is obtained by means of the formulae:

Spheric part :
trace(σ)

3
= K trace(ǫ) (3.2)

Deviatoric part : dev(σ) = 2 G dev(ǫ) (3.3)

In the case of the more complex material behavior: Hart-Smith, that we use in one of
our numerical examples, the tensor of left Cauchy-Green B is determined, using again the
coordinates of the metric tensor. Its invariants are then used to define the potential and
its different variations, needed for the calculation of Cauchy’s stress tensor [20].

For both of these behaviors, only the initial and final states are taken into account.

Since acceleration forces depend on the mass, the dynamic relaxation method proposed
by Barnes [36] uses an arbitrary mass term in order to improve the kinetic damping while
keeping the numerical stability. This mass matrix is obtained from the Courant-Friedrichs-
Lewy (CFL) condition [8] which gives the maximum ∆t. This limitation is given by:

∆t ≤ 2

ωmax

(3.4)

where ωmax is the maximum frequency of equation (3.1). This frequency can be expressed
by:

ωmax =
√

µ1 (3.5)

and µ1 represents the largest eigenvalue of the matrix [M ]−1[K]. In order to minimize
the computation time, ∆t must be chosen close to the limit indicated in (3.4). If [M ] is
chosen as a diagonal matrix, and if [K] = a[M ], then 2/a is a near upper bound on µ1

[16]. With µ1 ≈ 2/a, the maximum time step to remain in stability is:

∆tmax ≈
√

2a =

√

2
[Md]

[Kd]
(3.6)

Underwood [44] has found that a ∆t close to 1 is sufficient to ensure stability, and Lewis
[16] gives a brief reasoning of this choice. From the previous equations we obtain:

m ≥ ∆t2

2
kmax (3.7)

where kmax is the largest value of [Kd]. The eventual large displacements generated by
the external loads lead to a large variation of the stiffness, and thus of the eigenvalues of
[Kd]. Therefore, an exact calculation of the stiffness at each increment would be expensive
for the calculation, so an estimation of kmax is preferred.
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The dynamic relaxation method proposed by Barnes [30] uses an arbitrary mass term
in order to improve the kinetic damping while keeping the numerical stability. In the
previous studies, Barnes proposes a lumped mass matrix where the elements mi in the
diagonal are:

[mi] = λ
∆t2

2
[ki] (3.8)

where mi is the mass matrix at node i; ki represents the diagonal component of the
stiffness matrix in the principal direction; ∆t is arbitrarily chosen as 1; and λ is a conver-
gence parameter which is constant for the whole structure. The optimum mass matrix is
calculated by adjusting the parameter λ, that can be considered as a modifier of the size
of the time step.

The term kimax
can be decomposed in two parts: one part related to the material and

another one related to the geometry:

kimax
=

∑

(kmat + kgeo) (3.9)

For membrane elements, Han and Lee also proposed to choose the largest stiffness term
for the calculation of the mass term, and they stated, for CST (constant stress triangle)
elements, that the stress ki at a node i can be approximated as

kimax
=

∑

e

h

4Se
0

(

E

1 − ν2
+ σx + σy + σxy

)

(3.10)

where h is the thickness of the element e, Se
0 is the initial surface of the element e, and

σx, σy, σxy are the components of the stress tensor in an orthonormal basis associated to
the surface element. E and ν are the coefficients of the isotropic elastic Hooke’s behavior
law.

The time step is arbitrary, and for simplicity, its value in the formule 3.17 has been
chosen as 1. The consequence is that this time step does not appear directly in the
time-advance algorithm, but it does in the loading, boundary conditions and material’s
behavior.

In reference [42], the authors propose to suppress the surface term Se
0 in order to obtain

mass dimensions in equation 3.17. They show, particularly, that in this case the optimal
value of the coefficient λ is more stable, what is advantageous when it has to be defined.
The expression becomes then:

kimax =
∑

e

h

4

(

E

1 − ν2
+ σx + σy + σxy

)

(3.11)

In this work, we propose two ways to generalize the previous approaches, which we
define in the two following subsections.
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The first proposal is a generalization of the method proposed by Barnes-Han-Lee, where
the intention is to extend the applicability to all types of elements (not only triangular)
and to any kind of behavior (not just elastic). However, only reversible laws of behavior
are studied; more complex laws will be the subject of future research.

The second proposal is based in the works of Underwood [44]. These works are based in
the circle theorem of Gershgorin which permits to obtain an upper bound to the eigenvalue
”i” of the stiffness matrix [K] of the system [9]: ”Every eigenvalue of a matrix A lies in
at least one of the circles C1, ..., Cn, where Ci has its center at the diagonal entry aii and
its radius ri =

∑

j 6=i |aij| equal to the absolute sum along the rest of the row”. This second
method presents as a disadvantage that it needs at least the calculation of one stiffness
matrix, what implies the need to being able to calculate the tangent behavior. Generally, at
the beginning of the loading process, the evolution is mainly elastic, so a priori the stiffness
belonging to the tangent behavior should be enough if we consider that the material tends
to soften.

3.2.2.3 Proposal 1: extension of the formulation of Barnes-Han-Lee

Here we propose an extension of the previous formulation, on one side to other type of
elements and on other side to other material’s behavior. The aim is therefore to study
the feasability of this extension. Let us consider the following expression, which would
replace Han-Lee’s [21] :

kimax =
∑

e

le
4

(

αK + βµ + γ
Iσ

3
+

θ

2
σmises

)

(3.12)

Looking at the expression 3.10, the term E
1−ν2 can be considered as controlling the shape

changing or the element volume changing. It could be replaced by a linear combination
of the average compressibility modulus K and shear modulus µ, available for all elastic
and hyperelastic laws: αK + βµ.

Initially, parameters α and β can be chosen as α = β = 1, what leads to a magnitude
almost equal to the initial formule’s one (with the condition of a not very high compress-
ibility). For example, if ν = 0.3, we get: αK +βν ≈ 1.21E, while with Han-Lee’s formule
3.10 we obtain: E

1−ν2 ≈ 1.1E.

Concerning the second part of the equation 3.10 proposed by Han-Lee, the term σx +
σy + σxy can be considered as representing the stress state in the material (cumulating
the spheric and deviatoric parts). For our proposal, and in order to extent the use of
the formule to other geometries than triangular elements, we replace this term by an
invariants’ combination: γ Iσ

3
+ θ

2
σmises, where Iσ = σk

k is the trace of the Cauchy stress
tensor and σmises is the Mises stress. They represent respectively the intensity of the
spherical and the deviatoric parts of the stress tensor. These two quantities are tensor
invariants so they could be calculated for any type of element.

Therefore, the coefficient 1
3

is added so − Iσ

3
represents the spherical pressure, and the

coefficient 0.5 is added so 0.5σmises represents the amount of shear.
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The parameters α, β, γ and θ in the expression 3.18 permit to control the influence of
each entity. And finally, le represents a geometrical characteristic length, suitable for 2D
elements (thickness) and for 3D elements (cubic root of the volume).

Notice the presence of the stress terms, what implies that the mass matrix has to be
updated all along the calculation.

3.2.2.4 Proposal 2: Second formulation for the mass matrix

The second proposal refers to the theoretical elements proposed by the early work of
Underwood [44] by using the theorem of Gerschgorin which permits to obtain an upper
bound to the eigenvalue ”i” of the stiffness matrix ”K” of the system:

ρi 6
∑

j

|Kij| (3.13)

The mass matrix is then built to satisfy the stability condition with a unitary time step.

mi =
λ

2
MAX3

k=1

(

ρ3(i−1)+k

)

(3.14)

Unlike the physical masses, we can expect a variation of the mass matrix built this
way during the calculation. Given that on one side we choose the maximum value over
the 3 axes (loop over k in 3.14) and on the other side the stiffness of the initial material
behavior is generally more important than during deformation, it has been proved in
our simulations that the mass matrix calculated at the beginning was enough to ”guide”
the whole simulation, i.e. the update of the mass matrix along the calculation of our
simulations did not provoke any time gainings.

The method presents as a disadvantage that it needs at least the calculation of one
stiffness matrix, what implies the need of being able to calculate the tangent behavior.
Generally, at the beginning of the loading process, the evolution is mainly elastic, so a
priori the stiffness belonging to the tangent behavior should be enough if we consider that
the material tends to soften.

In order to make the calculations converge as fast as possible, the idea is to be as close
as possible to the critical time step. However, being too close to the critical time step
can eventually provoke instabilities and divergence. In the dynamic relaxation method
formulae, the time step ∆t is usually arbitrarily fixed to 1. However, the presence of
the parameter λ can be considered as a factor of this fixed time step. Its optimum
value cannot be determined a priori (we observed that it depends on the mesh geometry,
elements size, etc.). However, the relation (3.13) and the formule (2.4) of reference [44]
lead to a minimum theoretical value of λ for the second proposal: λ ≥ 0.5.

The range of values to find the optimum value of λ is different for each one of our
proposals, being this range much smaller in the case of the second proposal (around
0.5-0.7 for the proposal 2 vs. 5-15 for the proposal 1).
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3.2.2.5 Incremental scheme and convergence criterion

In the case of an incremental law of behavior, a priori not totally reversible, when the
loading leads to big deformation-stress final states, the final-form finding procedure in one
step is not correct anymore. The final state depends indeed on the loading path which in
the case of DR can be very different to the real path. A solution is to use an incremen-
tal loading procedure. Assuming that increments are small enough, the procedure then
guarantees a succession of points of static physical equilibrium that allows to be close to
the real response of the structure during the loading.

The convergence criterion in the steady state must comply with two points. In one
part, the structure must be in mechanical equilibrium, what we represent as a norm of the
residual of the static generalized forces -internal and external-, inferior to an instruction’s
value. In other part, in the case where the kinematic boundary conditions block the global
solid movements, we impose the final kinetic energy to be also inferior to an instruction
value, what also guarantees the equilibrium in the case where the generated stresses are
very low. In the practical, these conditions are applied under a relative form according
to:

Max

( ||Residual||∞
||Reactions||∞

,
Kinetic Energy

Internal Energy

)

6 ε (3.15)

where ε is the convergence criterion (the mentioned instruction value).

3.2.3 Numerical case studies

In this section, we will perform numerical case studies on the formulae 3.12 and 3.14. We
use the C++ academic finite elements software Herezh++ [18], and for the meshing and
postprocessing, we use the software Gmsh [66].

The numerical case studies in the section are described below:

• Firstly, we show how we can adapt the parameters of the first of our proposed
formulae to obtain an equivalent calculation to Han and Lee’s formulation. We also
compare it to our second formule using the classical test of inflation of a rectangular
cushion.

• Based on the same numerical test, we show that both of our proposed formulae
work with complex meshes, with different geometries, with different element types
and different interpolations.

• We demonstrate our proposed formulae working with meshes composed of 3D ele-
ments, using an inflate test of a rectangular cushion and a traction test of a partially
perforated plate.

• Finally, we explore how the formulae works when using a complex law of behavior.
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3.2.3.1 Equivalence between the formulation of Han and Lee and our pro-
posals

The objective in this section is to verify the equivalent calculation between the method
proposed by Hann and Lee, 3.10, modified by Troufflard [42] and our formulae 3.12 and
3.14. Notice that considering the term σxy in the formule 3.10 is problematic, because it
depends on the coordinates on which it is calculated. In our work, in order to suppress
this dependance, we propose to be situated in a stress eigenvector frame, which leads,
considering the plain stress hypothesis, to σxy = 0, σx + σy = trace(σ) and γ = 3 in
(3.10).

The solution permitting to determine the terms α and β is not unique. We keep:

α =
3(1 − 2ν)

2(1 − ν2)
, β =

1

1 − ν
being : K =

E

3(1 − 2ν)
, µ =

E

2(1 + ν)
(3.16)

In this case, relations 3.10 and 3.12 are identical, what shows that our first proposal
includes the former Han-Lee’s proposal.

The calculation is carried out in linear elasticity, E = 125MPa and ν = 0.41, which are
coherent with the parameters of behavior of a usual thin fabric. Concerning the expression
3.14, we use for this exemple a value of λ = 0.6 (we will discuss about this parameter
afterwards).

The first numerical test is a classical one, which has already been studied, for example,
in reference [22]: the inflation of a rectangular shaped cushion. It consists in two mem-
branes joined at their periphery, with dimensions 500mm × 500mm × 0.27mm. Due to
the symmetries, just 1/8 of the cushion is studied. The cushion is loaded with an instan-
taneous internal pressure of 0.015 MPa. The mesh is constituted of a ruled triangular
division, 25 × 25 → 625 elements.

Finally, the convergence criterion 3.50 is set to: ǫ = 1.e − 3.
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Figure 3.2: Inflation of squared cushion. Evolution of kinetic energy and residual of static
equilibrium in fonction of the number of iterations, for each one of the proposals
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The evolution of kinetic energy in fonction of the iteration number, Figure 3.2, shows
clearly the kinetic damping points (i.e. speeds reset to 0). Globally, the evolution for
both proposals is very close. Entering into detail, notice that the first maximum of
kinetic energy occurs a bit later in the case of the second proposal, but on the other hand,
the decrease’s gradient seems to be bigger for this second proposal. We can also notice
the regular diminution of the norm of static residual, quite similar for both methods, with
an important diminution at each kinetic damp.

3.2.3.2 Membranes: complex meshes

The aim of the second application is to validate our two proposals in the case of more
complex meshes. So we study 2D meshes, with triangular and quadrangular elements,
and with linear and quadratic interpolations. Also, two different qualities of mesh are
considered: a grid of 25× 25 elements and another one of 50× 50. The geometry and the
material behavior are identical to the first application, in the previous section. For the
first proposal, we use the parameters α = 0.9022557, β = 0.9022557, γ = 1, θ = 1.

For the different tested samples, we use the notation indicated in table 3.1. Thus, as
an example, the notation RL1 means: test made with a mesh with 25 × 25 Rectangular
elements, and using Linear interpolation.

T: Triangular elements R: Rectangular elements
L: Linear interpolation Q: Quadratic interpolation
1: Mesh of 25x25 2: Mesh of 50x50

Table 3.1: Notation

The figure 3.12 shows an example of inflated membrane. There, we can observe that
the method permits also to capture eventual wrinkles, local instabilities which can appear
during the inflation. We would like to remark that it is not the aim of this work to obtain
the best precision for the wrinkles. It is evident that, the smaller the mesh is, the more
we gain in wrinkles’ precision. But as told, the aim of this work is to obtain one among
all the possible solutions for the steady inflated state; we cannot assure that the obtained
wrinkles would have the same shape and would be placed in exactly the same position
than in reality. To assure that, further studies must be made.

For each geometry, the table 3.2 shows the obtained results with an optimum λ. Cal-
culations are made in an Apple computer (Processor: 2x2.93 GHz Quad-Core Intel Xeon,
Memory: 16 Go 1066 MHz DDR3) with just one processor .

Firstly, it can be observed that convergence is reached in all the cases. Particularly, the
quadratic interpolation does not induce a particular difficulty.

The number of needed iterations is slightly higher with the second proposal, but the
associated calculation times stay however smaller or equivalent, due to the fact that the
stiffness matrix is not recalculated at each iteration, unlike the proposal 1.
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Figure 3.3: Inflated squared cushion: representation of 1/8 of the cushion, displacement
isovalues

Proposal 1 Proposal 2

Mesh λopt Iterations Time [s] λopt Iterations Time [s]
TL1 (2028 dof) 10 546 14,1 0,6 565 13,8
TL2 (7803 dof) 10 923 101,5 0,7 1081 111,8
TQ1 (7803 dof) 13 1128 118,4 0,6 1185 119,8
TQ2 (30603 dof) 14 2158 943,3 0,7 2358 970,1
RL1 (2028 dof) 6 422 23,7 0,5 423 22,6
RL2 (7803 dof) 6 671 150,4 0,6 841 183,9
RQ1 (7803 dof) 10 1015 159,8 0,5 970 148,8
RQ2 (30603 dof) 9 1688 1085,6 0,5 1889 1552,1

Table 3.2: Inflation of 1/8 of cushion in just one loading step, for different meshes

The range of variation of the parameter λ, even if it is smaller than in the original
method of Barnes-Han-Lee, 3.10, it is still quite large for the proposal 1. This point is
important, because it imposes preliminary tests in the case of a full new mesh in order to
determine the optimum value for λ. In the case of the proposal 2, a value of 0.6 or 0.7
ensures a convergence near the optimal one in all the studied cases.

The increasing number of iterations seems to be proportional to the square root of the
number of dof, i.e., the mesh density.

3.2.3.3 Circular mesh

The third application concerns the inflation of a circular cushion, with a diameter or
400mm, where the mesh, Figure 3.4, includes both triangular and quadrilateral linear
elements. The other material, geometric, etc, characteristics are identical to the squared
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cushion’s ones, and also the methods.

Figure 3.4: Inflated circular cushion: displacement isovalues

The Table 3.3 shows that the number of necessary iterations for convergence is consistent
with those obtained for squared geometries. The mix of elements does not seem to alter
the convergence. The proposal 2 is here more interesting, because even with the same
previously used value of λ = 0.6, which is not the optimum, we obtain a very good
convergence.

Proposal 1 Proposal 2

Mesh λopt Iterations Time [s] Iterations Time [s]
Circular 10 2096 1068,3 λopt=0,4 1322 616,745
17856 dof λ=0,6 1703 792,6

Table 3.3: Inflation of a half of a circular cushion, with a mix of linear triangular and
quadrangular elements

We can also observe the presence of wrinkles in the solution. Analogously to a classic
explicit dynamic scheme, considering these instabilities does not seem to create a problem.
However, the process does not allow to control the choice of the bifurcated solution.

3.2.3.4 Meshes with 3D elements

We consider now the case of 3D elements. Two different types of simulations are studied:
a squared plate under a transversal load (pressure), and a partially perforated plate (just
called perforated plate in the rest of the paper for simplicity) under a load in the plane.
The thickness of both plates is 5mm.

The first case represents the version in 3D elements of the inflation previously stud-
ied, with also, in this case, a certain rigidity to flexion of the plate. In fact, to obtain
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Figure 3.5: 1/4 of 3D plate under pressure, result in one step: isovalues of Mises stress
(in MPa)

similar deformations, we use now a pressure of 0.08 MPa. While in the first case the
deformation-stress fields are quite homogeneous in the plane (not in the thickness), and
the displacements are important, in the second case, the presence of the partial hole
originates an important field gradient in the plane, and displacements are comparatively
smaller. Both classic interpolations, linear and quadratic are used, and also two types of
element: hexahedral and pentahedral. Both proposals give similar results, but just the
proposal 2 is shown here, with λ = 0.7.

Case Element type Elems. Dof It. Time [s]
Inflation Linear hexahedra 100 726 914 21.8
Inflation Quadr. hexahedra (27 pt) 100 3969 2687 520.2
Traction Linear pentahedra 2239 7200 1550 177.2
Traction Quadr. pentahedra (6 pt) 2239 31428 4140 2410

Table 3.4: Tests with 3D elements: meshes and results

The table 3.4 shows that in all cases the calculation converges, even if it is for large
deformations in the plane (Figure 3.6) or if it is for large transversal displacements in-
cluding flexion (Figure 3.5). In the case of quadratic hexahedra, the studied case consists
in a complete interpolation with 27 nodes and 27 integration points. A priori, this choice
permits to avoid the locking in flexion, and despite the fact of having just one element in
the thickness, the behavior in flexion is a priori correctly approximated. Obviously, this
is not the case for the mesh of linear hexahedra, where it would be necessary to correctly
approach the behavior in flexion, to include a higher number of elements in thickness
(just one used here), and at least a selective integration to avoid the locking. However,
we present both types of interpolation to show, on one side, that the algorithm converges
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in both cases, and on other part, that the calculation times are coherent between them
and with the previously obtained results.

For the case of the 3D inflation, considering the ratio of dof between the two meshes
(linear and quadratic): 5.46, and the ratio of integration points: 3.38 (=27/8), we obtain
a global ratio of around 5.46 × 3.38 = 18.45. If we compare this ratio with the ratio of
calculation times, 24.7, we can observe that, even if they are not equal, we are in the same
order of magnitude.

Concerning the traction tests on the perforated plate, the elements are pentahedra and
the global ratio between dof and between quadratic and linear pentahedra’s integration
points is around 13 (4.37 for the dof and 3 for the integration points), while the ratio of
calculation times is around 13.5. Thus, here also we observe coherent ratios.

Figure 3.6: Perfored plate, result in one step: Mises stress isovalues

3.2.3.5 Incremental calculations

In order to be able to use the method in the case of an incremental law of behavior,
we introduced an incremental version of the proposals 1 and 2. Actually, the dynamic
relaxation method is used here to find the steady state at the end of each loading step.
The method is thus analogous to a classic iterative one, with the difference that it does
not need the determination of a tangent evolution; but in return it needs a larger number
of iterations.

The different types of simulation 2D and 3D previously presented are studied consider-
ing 10 loading steps (increments). As an example, we present results for the proposal 2.
We observe that the method works out for all kind of elements. The Figure 3.7 presents
the evolution of the number of iterations versus the number of increment (loading step).
We observe coherent numbers with the one-step calculation. Notice that the number of
iterations -quite constant-, is less stable with the quadratic than with the linear elements.

The Figures 3.14 and 3.14 present the different steps of loading constituting the result
of the intermediate pseudo-steady states resulting of the multi-step loading (to improve
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Figure 3.7: Number of iterations vs Loading step, for the second proposal, and λ = 0.7

the clarity of the figures, not all the increments are shown).

Figure 3.8: Incremental inflation of a cushion, representation of 1/8 of the cushion, 2D
mesh

3.2.3.6 Complex law of behavior

The last part of the study is exploratory. It consists in observing the influence of a complex
law of behavior, preferably, incremental. For that, we consider the inflation of a squared
membrane, meshed with 3D quadratic hexahedral elements. The geometric dimensions
are 250mm×250mm×6mm, the mesh is constituted of a grid of 10×10×1 and the used λ
is 3 (bigger than before, to be sure to overcome nonlinearities). The loading is quasi-static,
so the speed effects are negligible. The material is considered an elastomer Vitton where
the law is modeled by assembling an additive hyperelastic stress and a stress hysteresis.
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Figure 3.9: Incremental inflation of a cushion, representation of 1/8 of the cushion, 3D
mesh

For more details of the law, see [19]. Just notice that the hyperelastic part is based in
the model of Hart-Smith: K = 2700 MPa and the deviatoric part coefficients: C1=0.067,
C2=0.402, C3=3.05. The hysteretical behavior is purely deviatoric and incremental and
can be seen as an infinite and continuous assembly of couples : a spring and a frictional
element in parallel. During a shear test, the slope at the origin is τ/γ = 4.59 MPa and
the saturation stress is τmax = 0.27 MPa.

Mesh λ Inc 1 Inc 2 Inc 3 Inc 4 Inc 5
3969 dof 3 32020 8470 6540 4730 2830

Inc 6 Inc 7 Inc 8 Inc 9 Inc 10
2910 970 2590 910 690

Table 3.5: Inflation of an elastomeric plate: Needed iterations per loading step

The calculation converges despite the complex behavior. We observe in the table 3.5 a
number of iterations much higher for the first increment, and then a big regular decreasing
of the number of iterations, in opposition to the case of linear elasticity. The reason is
that the weak initial stiffness of the material leads to a very big displacement at the first
increment. Then, the material rigidifies and the displacements per increment decrease
importantly. The observed evolution of the number of necessary iterations in function of
the loading step is therefore logical.

3.2.4 Conclusions and discussion

We presented two proposed formulae to extend Barnes-Han-Lee’s dynamic relaxation
method with kinetic damping. Barnes-Han-Lee’s method was limited to the particular
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case of linear triangular elements and elastic behavior. Our proposed formulae allow for
applications beyond the original limitations. This is our main contribution.

Furthermore, we have numerically demonstrated several other advantages of our for-
mulae. We showed our proposals are effective for 2D and 3D elements, with linear and
quadratic interpolation. We showed the formulae are compatible with an incremental
formulation, which minimizes the influence of the loading path. Our exploratory work
showed that the second proposal works with a complex incremental law of behavior.

We present dynamic relaxation with kinetic damping, using the incremental formula-
tion, as an useful alternative to the classic Newton’s method in the cases where instabilities
are found.

This work covered structural instabilities. In future work, the study will continue with
material instabilities.
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3.3 Comparison of several dynamic relaxation meth-

ods in the case of large displacements of mem-

brane structures

J. Rodriguez, G. Rio, J.M. Cadou

Abstract: In the field of form-finding, the dynamic relaxation (DR) method is widely
used. The classic form of DR uses an artificial viscosity to damp the movement. However,
some authors use a kinetic damping instead. Several authors have presented different im-
provements on both DR methods in the last years, but no comparisons between them can
be found in the case of membrane structures. The aim of this paper is to compare DR
with viscous damping and DR with kinetic damping, using several existing formulations,
and in the particular case of large displacements of membrane structures. Also, we pro-
pose two new formulations for the DR with kinetic damping.

Keywords: Dynamic relaxation; inflatable structures ; membrane structures; form-
finding

Published: Submitted to Mechanics Research Communications

3.3.1 Introduction

When doing simulations by the FE method, in certain cases the basic Newton-Raphson
algorithm cannot achieve a final solution due to instabilities like structural ones, which
lead to a singular stiffness or the swapping between several stable states. Usually, explicit
time schemes overcome this difficulty, but they need a huge number of time steps to obtain
a realistic stable final shape. This occurs when using natural damping. This issue has
been solved in several papers by using the method of Dynamic Relaxation (DR); some
examples are the works carried out by Han and Lee [21], Wu [22], Ramesh [23], Russell
[24] or Wood [25].

The DR method consists in considering that the mass of a structure is concentrated at
the nodes. Then, a static problem is converted into a dynamic problem by the application
of pseudo masses and viscous damping at the nodes. The static final form of the structure
does not have to depend on the inertial forces that act during the transient evolution.
Considering this, the mass is calculated so that the solution is achieved as fast as possible.
A correct choice of the DR method parameters leads this way to an optimal convergence
of the method.

The classic form of the dynamic relaxation uses an artificial viscosity to damp the
movement (a comprehensive review can be read in Reizaee-Pajand [26, 27], the LS-DYNA
theory manual by Hallquist [28], or the recent works of Joldes [29], for example). However,
this is not the only existing DR mehod. Another interesting proposal is the DR method
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introduced by Barnes [30], who combined the calculation of fictitious masses with a kinetic
damping instead of the viscous damping.

Therefore, there are two main ways of working with the DR method:

- Dynamic Relaxation combined with Kinetic Damping (KDR)
- Dynamic Relaxation combined with Viscous Damping (ordinary DR)

Some authors use KDR and some other authors use the oDR, but it is difficult to
find comparisons between both methods in the literature and it cannot be told a priori
whether a method is better than the other or not for a particular application. Therefore,
the aim of this paper is to compare both types of DR, and we focus the comparison in the
particular case of inflatable membrane structures. A first brief comparison between KDR
and some proposals of DR with viscous damping can be found in one of the latest works
of Reizaee-Pajand [31] in the case of tensegrity structures. Our intention is to extend
this comparison to large displacements in the domain of inflatable membrane structures.
These large displacements are, for instance, due to smooth boundary conditions, and they
can lead to an unstable final shape containing wrinkles.

In a first section, we will present the DR methods we will use. Then, we will present a
set of numerical results, starting by a validation of the implementation of the DR methods
in our calculation software and following by the comparison of all the methods in the case
of inflatable structures. This comparison includes the case of an incremental formulation.
We will end up commenting the extracted conclusions.

3.3.2 DR methods

3.3.2.1 DR with kinetic damping (KDR)

The kinetic damping method was firstly introduced by Cundall [32]. In this method, the
global kinetic energy of a structure is traced. When a structure is steady and immobile,
its kinetic energy is equal to zero and acceleration forces are null. The kinetic damping
method consists in resetting velocity to zero at each kinetic energy peak. This is done
because the structure oscillates, and the kinetic energy peaks are supposed to occur close
to the static equilibrium position. Then, the computation is restarted from the current
configuration, but with zero initial velocity. This procedure is continued until the structure
comes progressively to a static equilibrium position.

In our work, the calculation of equilibrium is always made in the final configuration,
using the Cauchy’s stress tensor and the Almansi’s deformation.

A comprehensive analysis of the DR with a kinetic damping has been presented by
Barnes [30]. He applied the KDR in the calculation of form-finding of prestressed cables
and membranes. Later on, several other examples can be found, such as the works of
Topping [33], who proposed an algorithm for parallel DR computation; Gosling [34] or
Wakefield [35], who applied the KDR to the calculation of structural membranes; Barnes
[36], in the calculation of tension structures; Adriaenssens [37], Domer [38] or more re-
cently Ali [39, 40], who studied tensegrity structures; Douthe [41], who applied it to
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the study of composite grid shells; Troufflard [42], who applied it to the form-finding of
inflatable structures; and also Han and Lee [21, 43], in a first paper to study the stabi-
lizing processes of unstable structures and then in another one to trace the post-buckling
equilibrium path of structures.

For the calculation of the mass matrix, we propose two methods, presented in the
following subsections.

Proposal 1: KDR1 The first proposed method is based on the works of Barnes [30]
and Hand and Lee [21]. Barnes worked with cable structures, and Han and Lee proposed
an expression to calculate the lumped pseudo-mass at each node i, improved later on in
reference [42]. The mass matrix was then calculated as:

mi = λ
∆t2

2
kimax

with kimax
=

∑

e

h

4

(

E

1 − ν2
+ σx + σy + σxy

)

(3.17)

being ”h” the thickness of the material, and E and ν the Young modulus and Poisson
ratio; ∆t is fixed to 1 and λ is an adjustable parameter used to avoid instability.

Based on this equation, we propose to use a different expression for kimax
in order

to extend its applicability to any type of membrane element and virtually any kind of
behavior:

kimax =
∑

e

le
4

(

αK + βG + γ
Iσ

3
+

θ

2
σmises

)

(3.18)

Looking at the expression (3.17), the part E
1−ν2 can be considered as controlling the

shape changing or the element’s volume changing. It can be replaced by a linear combi-
nation of the average compressibility modulus K and shear modulus G, usually available
for elastic and hyperelastic laws: αK + βG. Concerning the second part of the term
kimax

, (σx + σy + σxy) can be considered as representing the stress state in the material
(cumulating the spheric and deviatoric aspects). For our proposal, and in order to extend
the use of the formula for other geometry than triangular elements, we replace this term
by a combination of invariants: γ Iσ

3
+ θ

2
σmises, where Iσ = σk

k is the trace of the Cauchy
stress tensor and σmises is the Mises stress that represent the intensity of the spherical
and the deviatoric parts of the stress tensor, respectively. These two quantities are tensor
invariants and can be calculated independently of the type of element.

This first proposal includes Barnes and Han-Lee proposals.

Proposal 2: KDR The second proposal refers to the theoretical elements proposed by
the early work of Underwood [44] by using the circle theorem of Gershgorin which permits
to obtain an upper bound to the eigenvalue ”i” of the stiffness matrix ”K” of the system.
The mass matrix is then built to satisfy the stability condition with an unitary time step.
The stiffness in the normal direction of a flat membrane is null. In order to avoid a zero
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value for the virtual-mass in this direction we choose the maximum value over the 3 axes:

mi =
λ

2
MAX3

k=1

(

ρ3(i−1)+k

)

with ρi 6
∑

j

|Kij| (3.19)

Unlike the physical masses, we can expect a variation of the mass matrix built this way
during the calculation. Given that on one side we choose the maximum value over the 3
axes and on the other side the stiffness of the initial material behavior is generally more
important than during deformation, it has been proved in our simulations that the mass
matrix calculated at the beginning was enough to ”guide” the whole simulation, i.e. the
update of the mass matrix along the calculation of our simulations did not lead to any
improvement.

3.3.2.2 DR with viscous damping

This is the classic form of DR method; it has been used by multiple authors and it is also
used in some commercial FE softwares such as LS-DYNA [28]. Most of the references
using DR with viscous damping are based on the works of Underwood [44].

We can find examples of DR with viscous damping in several fields: Bardet [45] applied
it to the simulation of granular materials; Ramesh [23] studied plates and shallow shels;
Wood [25] or Hegyi [46] used it to calculate membranes; Joldes [29] applied DR with
viscous damping to biomechanical models; Kadkhodayan [47] combined a variant of this
method (DXDR) with a modified fictitious time (MFT) step; and many others, like Turvey
[48, 49], Salehi [50], Alshawi [51], Ghelli [52] or Kilic [53], who have found DR with viscous
damping suitable for their simulations.

Some authors have also worked with materials with complex laws of behavior: Oakley
[54], Zhang [55], Teng [56], Frieze [57], Kadkhodayan [58], Pasqualino [59] and Dang [60]
are some examples.

Finally, Rezaiee-Pajand [61, 27, 31, 62] has recently made a interesting review of most
of the references concerning the dynamic relaxation method, and he has also made con-
tributions that we will use in our numerical case studies.

In the case of DR with viscous damping, and considering a fixed time step (usually
arbitrary fixed to 1), two elements must be calculated: the mass matrix and the critical
damping coefficient (the damping factor that causes the structure to approach the static
position most rapidly). Several proposals for the calculation of both elements can be
found in the literature, and we will focus on those that have been presented as the most
interesting.

Most of the authors calculate the mass following the proposition of Underwood. How-
ever, some authors use alternative formulations: for example, Kommineny [63] uses the
diagonal terms of the linear stiffness matrix as diagonal coefficients of the diagonal ficti-
tious mass matrix; and Topping [33] uses the fictitious mass matrix proposed by Barnes
[30]. Other authors, like Dang [60], fix the mass matrix to its real value and adjust the
time step based on the changes in the element consistent tangent stiffness.
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Reminder of the Dynamic Relaxation Method presented by Underwood

Dynamic relaxation is based on the second-order Richardson method [10]. Then, we can
write the second order time dependent equation [44] the same way it has been previously
presented, but including in this case a viscous term:

MẌ + CẊ + P(X) = f(t) (3.20)

where X, Ẋ, Ẍ are the vectors displacement, velocity and acceleration, respectively. No-
tice that CẊ+P (X)−f(t) = R(X, Ẋ). To solve the problem in time, the explicit centered
finite differences method (CFD) is used. To preserve the explicit form of the CFD inte-
grator, the mass matrix M and the damping matrix C must be diagonal. For dynamic
relaxation, C is chosen with the form is: C = c ·M. So we can write:

MẌ + cMẊ + P(X) = f(t) (3.21)

The expressions used for the temporal derivatives are:

Ẋn+ 1

2 =
Xn − Xn−1

∆t
(3.22)

Ẍn =
Ẋn+ 1

2 − Ẋn− 1

2

∆t
(3.23)

Ẋn =
Ẋn+ 1

2 − Ẋn− 1

2

2
(3.24)

If we substitute the expressions (3.22), (3.23) and (3.24) in (3.21), we obtain2:

Ẋn+ 1

2 =
M/∆t − cM/2

M/∆t + cM/2
Ẋn− 1

2 +
f(tn) −P(Xn)

M/∆t + cM/2
(3.25)

Xn+1 = Xn + ∆t Ẋn+ 1

2 (3.26)

Simplifying the mass terms in the equation:

Ẋn+ 1

2 =
2 − c∆t

2 + c∆t
Ẋn− 1

2 +
2∆tM−1(f(tn) −P(Xn)

2 + c∆t
(3.27)

Xn+1 = Xn + ∆t Ẋn+ 1

2 (3.28)

Since matrix M is diagonal, we can write for each vector component:

ẋ
n+ 1

2

i =
2 − c∆t

2 + c∆t
ẋ

n− 1

2

i +
2∆t[f(tni ) − P (xn

i )]

mii(2 + c∆t)
(3.29)

2These formulae reproduce exactly the presented in Underwood’s work. The fact of including in the
formulation the inverse of the mass matrix as it is made in that paper could be discussed, but we are
only interested in the final resultant formulation, that we consider correct.
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xn+1
i = xn

i + ∆t ẋ
n+ 1

2

i (3.30)

There are now in these formulae three parameters that must be defined: the fictitious
mass matrix M, the damping coefficient c and the time step ∆t.

Concerning the time step; although there are also some authors like Kadkhodayan [47]
that use a modified ∆t applied to the calculation of truss structures and plate bending
(obtaining good improvements in the number of iterations), we will follow the suggestion
of Underwood [44]. The time step is ”coupled” with the mass. It is arbitrarily chosen as
1 and then the stability is managed by a good choice of the mass matrix.

Therefore, the parameters to calculate are the mass matrix and the damping coefficient.

Fictitious mass matrix

Fixed the time step, the mass matrix and the damping coefficient must be chosen in order
to guarantee the stability and good convergence of the iterations. We will present now the
different formulations implemented in Herezh++. Virtually any of the implemented mass
matrix formulations could be used with DR with kinetic or viscous damping.

Underwood’s proposal We will also use the fictitious mass proposed by Underwood
[44] based on Gerschgorin’s theorem, that having a mathematical basis, it is supposed to
have efficient results. Also it has been widely used by many authors, being effective for
many types of non-linear problems.

mii ≥
(∆t)2

4

∑

j

|Kij| (3.31)

where Kij are the elements of the global tangent stiffness matrix [K].

Rezaiee-Pajand’s proposal Another interesting formulation for the fictitious mass
matrix can be found in the work of Rezaiee-Pajand [27, 31], who, based on an error
analysis proposed the following formulation that he proved to be valid in several linear and
geometrically non-linear examples. He denotes it as mDR:

mii = max

[

(∆t)2

2
Kii,

(∆t)2

4

∑

j

|Kij|
]

(3.32)

where K represents again the global tangent stiffness matrix.

Mass matrix updates

Structural and eventual material non-linearities can produce changes in the stiffness of the
structure. In order to keep the stability, it could be necessary to update the fictitious mass
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matrix. Underwood proposes to use a criterion based on the perturbed apparent-frequency
error measure. The error is calculated with:

ǫ = max
ndof

i (ǫi) , ǫi =
(∆t)2

4

|∆Ẍi|
|∆Xi|

(3.33)

where ∆Ẍi is the variation of acceleration for the degree of freedom i, and ∆Xi is the
variation of the position. Then, ǫi is evaluated and, based on its value, the mass matrix is
eventually recalculated or the time step decreased. If ǫi is greater than one, it would mean
that the estimated upper-bound for the maximum apparent-frequency has been exceeded
and the mass matrix must be recalculated to keep the stability. The same way, if the value
of ǫi is much smaller than one, it would mean that we are being too conservative, and the
convergence could be improved. All this has also been implemented in Herezh++.

Damping coefficient

The critical damping coefficient is the damping factor that causes the structure to approach
the static position most rapidly. One possible solution (Dang [60]) to obtain this coefficient
would be to estimate it by doing an undamped run of the calculation to estimate the
highest frequency and then using the expression given by Biggs [11] for a 1-D system:
Ci = 2

√
Si Mi. However, this is not the common method used in the literature since it

would require the calculation to be launched twice. Other authors, as Papadrakakis [12]
propose an automatic identification of the parameters of DR. We will be based in the works
of Underwood. All the following estimators for the damping coefficient are implemented
in Herezh++ and have been used.

Underwood’s proposal Usually, the value of critical damping coefficient is estimated
by using the lowest frequency of the system. The following expression is used:

c = 2ω0 (3.34)

where ω0 is the lowest frequency of the system.
In order to find the vibration properties of a structure, the following matrix eigenvalue

problem must be solved:

KΦ = λMΦ (3.35)

The eigenvalues λn(≡ ω2
n) are the roots of the equation (it can be read, for example, in

Chopra [13]):

p(λ) = det(K− λM) = 0 (3.36)

where p(λ) is a polynomial of order ndof (number of degrees of freedom or the system).
Since this would be very expensive to calculate especially for large systems, other methods
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are preferred. Most of the authors use the Rayleigh method and so we do (some authors,
as Rezaiee-Pajand [31] propose to use the Stodola method, though).

If the equation (3.35) is multiplied by ΦT :

ΦTKΦ = ω2ΦTMΦ (3.37)

then, solving for ω2:

ω2 =
ΦTKΦ

ΦTMΦ
(3.38)

what is called Raileigh’s quotient. Therefore, if we apply this to our system to find an
approximation to its lowest frequency, we can write:

ω2
0 ≈ ∆XTK∆X

∆XTM∆X
(3.39)

In non-linear systems, since K it cannot be accessed to use it directly in the calculation,
it can be calculated as following (and this is the method implemented in our calculation
software):

K̄
n
ii =

∆Rn
i

∆t Ẋ
n− 1

2

i

(3.40)

where ∆Rn
i is the static residual and K̄

n
ii represents the diagonal estimators of the

directional stiffness.

Rezaiee-Pajand’s proposal Rezaiee-Pajand [27], from his error analysis of the DR,
proposes the following expression for the critical damping coefficient estimation:

c =
√

4ω2
0 − ω4

0 (3.41)

For the estimation of ω0, the lowest frequency of the structure, he proposes two different
methods: one based in Rayleigh’s quotient, exactly as shown in section 3.46, described in
Rezaiee-Pajand [27]; and another method, described in Rezaiee-Pajand [31], based on the
Stodola iterative process (previously explained, for example, by Clough [14]). The Stodola
method is more precise than Rayleigh method because it is an iterative method instead of
an estimation, but the cost of calculation can be much higher, since the inverse of the
stiffness matrix has to be calculated frequently. Due to this, the Stodola method has not
been implemented in Herezh++.
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Qiang’s proposal Qiang [64] is based on a minimization of the displacement error and
the use of Gerschgorin’s theorem to propose the equations to be satisfied :

mii =
∑

j

|kij(x
n)|

ω0 =
(xn)T K(xn)xn

(xn)TMxn

ch =
4
√

ω0

1 + ω0

h =
2√

1 + ω0

(3.42)

From these equation we can deduce his expression for the estimated critical damping:

c = 2

√

ω0

1 + ω0

(3.43)

Then, for the estimation of the lowest frequency ω0, he also proposes to use Rayleigh’s
quotient, as described in 3.46.

For our numerical examples and subsequent comparison, we implemented in our calcu-
lation software the classical formulation of Underwood and also the latest formulations of
Rezaiee-Pajand. We also implemented the formulation of Qiang for the critical damping
coefficient.

Implemented mass matrix formulations Denoting with Kij the elements of the
global tangent stiffness matrix [K], the proposals we implemented to calculate the mass
matrix with mi = λ∆t2

2
kimax

are:

Underwood [44] : kimax
=

∑

j

|Kij| (3.44)

Rezaiee-Pajand [27, 31] : kimax
= max

[

2 Kii,
∑

j

|Kij|
]

(3.45)

Implemented critical damping coefficient formulations Denoting with ω0 the
lowest frequency of a system, the proposals we implemented to calculate the critical
damping coefficient are:

Underwood [44] : c = 2ω0 (3.46)
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Rezaiee-Pajand [27, 31] : c =
√

4ω2
0 − ω4

0 (3.47)

Qiang [64] : c = 2

√

ω0

1 + ω0

(3.48)

The lowest frequency is calculated in all the cases with the Rayleigh’s quotient, that
Zhang [65] presented as the most advantageous method (being X the vector position):

ω2
0 ≈ ∆XTK∆X

∆XTM∆X
(3.49)

3.3.2.3 Notation

In order to establish an unambiguous notation for all the implemented methods, we will
keep consistent with the literature for the existing methods:

- Methods of DR with kinetic damping: KDR1 if our proposal 1 is used for the mass
term; KDR if our proposal 2 is used.

- Methods of DR with viscous damping: oDR when using formulae (3.44) and (3.46);
mDR when using (3.45) and (3.46); mdDR when using (3.45) and (3.47); uqDR
when using (3.44) and (3.48); and pqDR when using (3.45) and (3.48).

3.3.2.4 Incremental scheme and convergence criterion

The final state of a structure can depend on the loading path (this is the case when
using an incremental law of behavior, for example). But the loading path of DR can be
very different to the real path. A solution is to use an incremental loading procedure.
Assuming that increments are small enough, the procedure then guarantees a succession
of points of static physical equilibrium that allow to be close to the real response of the
structure during a quasi-static loading.

The convergence criterion we use in the calculations is the following, being ε the in-
struction value:

Max

( ||Static Residual||∞
||Static Reactions||∞

,
Kinetic Energy

Internal Energy

)

6 ε (3.50)

with ”static” referring to residual force without inertia and viscosity forces.

3.3.3 Numerical case studies

We will present in the following subsections a set of numerical case studies comparing the
different DR methods. We use the C++ academic finite elements software Herezh++ [18],
and for the meshing and postprocessing, we use the software Gmsh [66]. Calculations are
made on an Apple computer (Processor: 2x2.93 GHz Quad-Core Intel Xeon, Memory: 16
Gb 1066 MHz DDR3) with just one processor.
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Since the time step is arbitrarily fixed to 1, the control of the stability depends on the
parameter λ. This parameter has already been introduced in the field of DR by Barnes
and Han-Lee. If we consider for instance the formule (3.44) and we compare it with the
one presented by Underwood [44], we can deduce the relation between λ and the time
step: λ/2 = (∆t)2/4. This expression leads to a minimum theoretical value of λ = 0.5.
However, due to different approximations, a smaller value of λ could eventually be used.
The smaller λ is, the closer to the critical ∆t we are (and in consequence, the instability
is nearer).

Since the mass calculated for KDR1 is not based on Gerschgorin’s theorem as all the
other used DR methods, the range of values for λ is different and it has to be presented
separatedly.

In these particular case studies, the methods oDR, mDR and mdDR appeared to be
equivalent, giving exactly the same number of iterations in all the calculations, so their
results are presented altogether. The same happened for the methods uqDR and pqDR.

In the numerical case studies, we will firstly validate the implementation of the DR
methods and then we will compare the DR methods in three different parts: a first
part focusing the comparison in the study of squared and circular meshes with different
elements’ characteristics. Then, we will make a comparison in the case of an incremental
calculation and also when we vary the precision of the calculation. Finally, we will present
the comparison in the case of calculation of a complex geometry, as a benchmark.

3.3.3.1 Validation

Before carrying out all the calculations, we considered important to validate the imple-
mentation in Herezh++ of the different DR methods, in order to be sure that calculations
will be correct. For that, we made a calculation previously carried out by Wu [22] in or-
der to compare our results with his. It consists in the inflation of an airbag made of two
squared membranes joined along their perimeters.

As Wu indicates in the section 5.4 of his paper [22], the mesh size is 1x1 m. We
carried out the calculation with the finest mesh proposed in the paper: the one with
1600 (40x40) rectangular elements. As well as in his paper, the material properties were:
ρ = 2, 7 × 102 kg/m3, E = 7 × 104 Pa, ν = 0.3 and the thickness of the membrane
h = 1 × 10−5 m. A symmetry was considered and only the superior membrane was
calculated. A followed pressure P = 0.03Pa was applied to simulate the inflation. Since
in DR the transient path is false, we did not care about the time of application of the
pressure, we have just searched the final shape to compare them.

We made the calculations with both types of damping (kinetic and viscous). We present
results obtained with KDR (Figure 3.10) and mdDR (Figure 3.11). As we can observe
in both figures, the result is very close to Wu’s result (presented on the left side of each
figure).

It can be observed in the figures that displacements are very similar, and even though
Wu did not specified the precise values, we can see in the scales that they are almost the
same. For the maximum displacement (the top of the airbag), we obtained with both
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Figure 3.10: Comparison between the airbag calculated by Wu [22] (left) and the same
mesh calculated by us (right) using the KDR method

KDR and mdDR methods a value of 0.259 m, what is in concordance with the value
obtained by Wu and presented in his paper.

Figure 3.11: Comparison between the airbag calculated by Wu [22] (left) and the same
mesh calculated by us (right) using the mdDR method

We can also observe in the figures that even the distribution of wrinkles is also quite
similar. Since this is an unstable structure, wrinkles are not positioned exactly in the same
places (there is even a small difference between the result using kinetic damping and the
result using viscous damping), but they are in a good agreement with the literature.

Seen these results, we can confirm that our results are consistent.
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3.3.3.2 Squared and circular meshes: different types of elements and inter-
polation

We study here 2D squared meshes with triangular (T) and rectangular (R) elements
with linear (L) and quadratic (Q) interpolations, and also a circular mesh with a mix
of triangular and rectangular elements. We also make tests for two different qualities of
mesh: a grid of 25×25 elements (1) and another one of 50×50 (2). For the KDR1 method,
we use the parameters α, β, γ, θ = 1. The calculation is carried out in linear elasticity,
E = 125MPa and ν = 0.41, which are coherent with the parameters of behavior of a
usual thin fabric. As an example, the notation RL1 means: test made with a mesh with
25 × 25 Rectangular elements, and using Linear interpolation.

The numerical tests consist in the inflation of a squared or circular air bag. The air bags
consist in two membranes joined at their periphery, with dimensions 500mm× 500mm×
0.27mm in the case of the squared mesh, and diameter 400 mm for the circular one. Due
to the symmetries, just 1/8 of the squared air bag is studied (and 1/2 in the case of the
circular air bag). The air bag is loaded with an instantaneous internal pressure of 0.015
MPa. When it is not precised, the convergence criterion is set to: ε = 1 × 10−3

Figure 3.12: Field of displacement of an inflated squared air bag (left) and an inflated
circular air bag (right)

Since it would be very long to present all the results, we present the three most repre-
sentative (given their difference) calculations: for the cases TL1, RQ2 and circular mesh,
in Tables 3.6 and 3.7 3.

Added data: Tables 3.8 to 3.13 show all the results that were not presented in the
paper in the original submission to the journal Mechanics Research Communications.

3In all the presented tables, ”div” means divergence
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Table 3.6: Number of iterations in the calculation of meshes TL1 and RQ2 for each DR
method (squared meshes)

Table 3.7: Number of iterations in the calculation of the circular mesh for each DR method

Table 3.8: Number of iterations in the calculation of mesh TL2 for each DR method

3.3.3.3 Squared mesh in incremental calculations and calculations with dif-
ferent precisions

For this comparisons, we considered the mesh TL1; the pressure is applied following a
linear slope from 0 to 0.015 MPa and the calculation is made in 10 increments. The figure
3.13 (left) shows the number of iterations taken by each method for each increment. It
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Table 3.9: Number of iterations in the calculation of mesh TQ1 for each DR method

Table 3.10: Number of iterations in the calculation of mesh TQ2 for each DR method

Table 3.11: Number of iterations in the calculation of mesh RL1 for each DR method

Table 3.12: Number of iterations in the calculation of mesh RL2 for each DR method

can be seen that KDR1 and KDR appear to be much more efficient than oDR, mDR and
mdDR, specially at the beginning. Indeed, to be able to obtain the results for oDR, mDR
and mdDR, we had to increase the value of λ to avoid divergence, while with KDR1 and
KDR we could keep the minimum (optimum) value obtained in the previous case study.
We discard to present the results of uqDR and pqDR since the number of iterations is
much higher and it would difficult the visibility of the results’ plot.
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Table 3.13: Number of iterations in the calculation of mesh RQ1 for each DR method

Also, we compared the DR methods (in just one increment of calculation) in the case of
different precisions, and we observed that the DR methods using viscous damping need an
augmentation of λ to avoid divergence as we increase the precision, while the number of
required iterations remains similar in both methods. Figure 3.13 (right) shows the needed
λ for each kind of DR method (KDR or oDR,mDR,mdDR).

Figure 3.13: Number of iterations per increment (left) and needed λ for convergence
(right).

We can conclude in this subsection that the KDR appears to be advantageous for high
precision calculations and for incremental calculations.

3.3.3.4 Benchmark

As a benchmark, we have carried out a calculation with a random mesh without sym-
metries, in order to try to complicate the calculation to test the robustness of the DR
methods and to compare them in the case of a complex calculation: we looked for a mesh
that produced wrinkles, with angles, curves, no symmetries... The material properties are
the same than in the previous calculations. The geometry and the obtained results are
available in [67].

Once again it can be observed the clear advantage of DR methods when using kinetic
damping instead of viscous damping.
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Figure 3.14: Benchmark mesh (left) and inflated result (right): Mises isovalues [MPa]

Table 3.14: Number of iterations needed for each λ and DR method (benchmark mesh)

3.3.4 Conclusions and discussion

After the comparison we made between several DR methods with both kinetic and viscous
damping, we can conclude for our particular case studies:

- Both DR with viscous damping and kinetic damping allow to obtain the final static
state, with similar global numerical behavior.

- In the case of DR with viscous damping, a good choice of the critical damping coef-
ficient is very important. We could observe that Qiang’s proposal [64] is particularly
inefficient compared with Rezaiee-Pajand’s [27, 31] and Underwood’s [44] proposals.

- We obtain the same of number of iterations between the calculations with the origi-
nal proposal of Underwood [44] and the calculations with the modifications proposed
by Rezaiee-Pajand [27, 31].

- In the case of DR with viscous damping, if we increase the precision of a calculation,
we must increase λ to achieve the convergence, while in the case of KDR we can
increase the precision and keep a fix lambda. KDR is therefore advantageous in the
cases where a high precision is required.

- An advantage of DR with viscous damping against DR with kinetic damping is that
the number of iterations always increases regularly as λ increases.
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Added data: This conclusion can be observed looking at the results in the tables,
but in order to illustrate it better, we present some results in the figure 3.15

Figure 3.15: Needed number of iterations in function of lambda for KDR and oDR, for a
TL1 mesh (left) and a TL2 mesh (right)

- The optimum number of iterations appears to be usually when we use the minimum
possible λ, but it is not always the case (when this is not the case, the value of λ is
anyway close to the minimum one).

- Once identified the optimum λ, the KDR1 method is often the most efficient among
them all.

- When a mesh is complex (Benchmark) or when it is very unstable (incremental
calculations), the DR with kinetic damping appears to be more efficient than DR
with viscous damping.
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Chapter 4

3D measuring

4.1 Introduction

We showed in the previous chapter that the implementation made in Herezh++ of the
different dynamic relaxation methods allowed to make calculations with an incremental
loading (obtaining several points of static physical equilibrium). Therefore, and in the
context of the form-finding of inflatable fabric structures, we could try to make a com-
parison of the transient part of a real inflatable structure and its numerical simulation.

Thus, in this chapter, we will present some experimental measurements made all along
the inflation of an air bag made out of fabric. This fabric is the one used by Plastimo in
the manufacturing of their lifejackets and other security items. This enterprise provided
us with the air bag, consisting in two circular pieces of fabric welded together along their
perimeters (resulting an effective diameter of 400mm), and also disposing of a tube in his
bottom, where an air pump can be plugged to inflate it.

In his thesis works, Troufflard [1] had already made some measurements on this air
bag, but his objective was different. His aim was to measure the final inflated form, while
we are trying to measure the transient part. For his measurements, Troufflard used two
different devices:

Figure 4.1: Coordinate-measuring machine (left) and Aramis’ 3D optical system (right)
[Image sources: starequipment.net; uakroncivil.com]
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• A mechanical coordinate-measuring machine (figure 4.1, left): We discarded this
option for this thesis work due to several reasons. Firstly, it is a system mainly
conceived for rigid objects, because the probe needs to apply a certain pressure
in the object, and even if a maximum force can be defined, this would originate
deformations in the air bag’s surface, specially during the inflation due to the low
stiffness (further commented by Troufflard [1]). Then, the set-up of this machine
is very complex, the measuring process is very long, and the post-treatment of the
obtained data is also very complex. Finally, it is impossible to measure the transient
part; even if we inflated the air bag with different pressures and measured at each
one, at the lowest pressures the air bag wouldn’t be rigid at all, resulting impossible
to carry out the measuring.

• 3D measuring with the optical system Aramis[68] (figure 4.1, right): Aramis is a
digital image correlation software able to measure displacements and strains with-
out contact. This option was not suitable for this thesis work because the maxi-
mum shooting speed of the camera devices available in our laboratory was 2 im-
ages/second; and the inflation of the air bag is completed in around 1 second.
Therefore, the transient part could not be measured. However, the measuring sys-
tem would be appropriate if the shooting speed was faster, because it has the ad-
vantages of no needing a contact, high precision and also a relative ease of set-up
and post-treatment of the data.

Since the 3D optical measuring system was the most convenient, we decided to combine
the use of high-speed cameras (to take the pictures during the transient phase) and the
software Aramis (to calibrate the cameras and process the taken images).

4.2 Description of the devices used in the measuring

The set up for the 3D optical measuring is as shown in the following simplified scheme:
Therefore, the required devices included in the set-up are:

• A compressed air circuit that is connected to a pressure regulator (figure 4.3, left).
The regulator allows to control the pressure inside the air bag, and it also has a probe
to check the pressure. Any pressure value can be specified as a setpoint (up to the
limit of the pressure probe, 0.035 MPa). Since we were working with a fabric used
in inflatable lifejackets, and the air bag’s size is in the same order of magnitude than
them, we used a pressure setpoint in the same order of magnitude than inflatable
lifejackets’ one: 0.02 MPa. The air flow was set to a value that allowed the ballon
to be inflated in around 1 second.

• Two high-speed cameras (figure 4.3, right). The camera model is Photron Fastcam
SA5 [70]. Each one of these cameras is able to record at up to 1 million of images
per second. Thus, they are the correct device to take pictures during the transient
part. For our application, we have chosen a shooting speed that allowed to have
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Figure 4.2: 3D optical measuring set-up

clear pictures during the inflation (otherwise, the Aramis software wouldn’t be able
to process them); 125 images/second appeared to be enough, a good compromise
between luminosity, shooting speed and resolution. The objectives used in both
cameras were SIGMA AF-MF ZOOM LENS 24-70 mm F2.8 EX DG MACRO,
with a minimum focal distance of 40 mm. Since we needed to carry out a 3D
measurement, we synchronized two cameras by means of a manual TTL trigger,
since the timing is crucial at these recording speeds.

• Two light spots of 400 W pointing to the air bag (figure 4.3, right), since we needed
optimal light conditions for the images to be processed by Aramis. At high shooting
speeds, the aperture time is shorter, and then more light is needed to obtain a good
contrast in the pictures.

• The cameras were linked to a laptop, where they were controlled by means of the
interface software provided by Photron. Also, in that laptop, we disposed of the
software Aramis 6.1 for the image treatment.

• Finally, the air bag itself. To carry out the measurement with Aramis, the sample
must be prepared by painting it with a high-contrast stochastic pattern (see figure
4.3). We painted only the portion of the air bag visible by the cameras, since it
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is the only part that would be processed by Aramis. First, we applied a uniform
layer of white painting with a spray, and then, with another spray of black paint,
we made random (in size and position) black dots.

Figure 4.3: Pressure regulator, airbag, light spots and cameras for 3D measuring

4.3 System calibration and sample preparation

The first step when the Aramis software is going to be used is always to make a cali-
bration of the system [69]. For that, Gom1 provides different calibration objects (panels
and crosses). The choice of the calibration object depends on the size of the sample
to be measured. Here we found a first difficulty: the air bag is very big, and its large
displacements make the volume of the workspace (the volume inside which the measures
are made) very big. Thus, with our calibration objects, we were not able to calibrate
the system for such a large workspace. However, since the air bag is circular, and it is
supposed to be axisymmetric, we decided to measure only a portion of it.

The most appropriate would have been using a calibration cross, but the cameras were
not the ones provided by Gom with the Aramis system, but by Photron, and it appeared
to be impossible to calibrate the system with the cross. The reason was that the cameras’
maximal resolution is 1 Megapixel, and the crosses are quite big; therefore, if we distanced
the crosses enough to be entirely in the pictures, the small cameras’ resolution did not let
the Aramis software to ”distinguish” the calibration marks. Thus, we discarded the cross.
We calibrated with a calibration panel instead. More precisely, the panel of 135x108 mm,
the largest panel we had at the laboratory (see figure 4.4).

The workspace volume resulting is in the same order of magnitude of the panel’s indi-
cated dimensions. In order to calibrate the whole workspace we needed for the portion
of air bag, we had to displace the panel all over the area that the air bag could ”touch”

1Gom is the manufacturer of the Aramis system
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Figure 4.4: Air bag and calibration panel (left) and air bag with the stochastic pattern
already made (right)

during the calibration pictures. This could apparently lead to a bad calibration; however,
the calibration results were valid: a deviation of 0.027 pixels, while 0.04 pixels is the
maximum acceptable deviation for a correct measuring [69].

Concerning the selection of the portion to be measured, we took into account the
microstructure of the sample’s material (fabric). Fabric is made of a continuous length of
interlocked yarns. There are two perpendicular directions along which fibers are disposed:
warp and weft (see figure 4.5). The warp is the set of lengthwise yarns that are held in
tension on a frame or loom. The yarn that is inserted over-and-under the warp threads is
called the weft, woof, or filler [80]. Usually, the warp yarns are more tense than the weft
yarns, and as a consequence, the behavior of the fabric is not isotropic, but orthotropic.

Figure 4.5: Fabric yarns’ senses: warp and weft [Image source: en.wikipedia.org]
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Since different behavior was expected in the warp and the weft senses, we applied the
stochastic pattern to a portion superior to 90◦, that included the warp yarn and the weft
yarn passing by the the center of the air bag (determined by the manufacturer and marked
in the air bag). Thus, in the image processing we would be able to analyze the behavior
in both senses, and also at 45◦.

4.4 Limitations and objectives of the experimenta-

tion

This experimentation presented several difficulties that limited the possible exploitable
results:

• The only anchor point of the airbag was the tube placed in the center of its bot-
tom. This implies that during the inflation, the air bag can oscillate randomly in
any direction, with larger oscillations during the beginning of the inflation, where
there is no stiffness at all. These oscillations complicate the measurement of the
displacements, and they cannot be calculated with precision. This was the biggest
problem of the experimentation. No other anchor points could be made in order
to avoid limiting the displacements (without conceiving a new support for the air
bag): the diameter decreases during the inflation, and both layers of fabric move
away of each other. This makes that the only exploitable result was the curvature
of the air bag during the inflation.

• The large displacements of the air bag made it difficult to define the workspace
volume. The air bag could eventually exit the volume during part of the inflation if
a big oscillation was produced.

• Wrinkles appear during the inflation. Therefore, part of the stochastic pattern
”hides” at the end, what originates blanks in the treated data (in the figure 4.6,
they can be observed the surfaces ”readable” by Aramis at the beginning, in the
flat position, and at the end, in the inflated position and with wrinkles).

• The big size of the air bag added to the low resolution of the cameras, made it
impossible to measure with precision other than the global displacements.

• Finally, the initial position of the air bag was no completely flat, due to the lack
of stiffness of the fabric. The problem with this if we try to measure the global
displacements, is how to define the origin of coordinates, to mark the zero position.
The solution was to calculate the average plan of the surface at the initial stage
with the Aramis software, and use it as the reference plane. We placed the origin in
the center of the air bag. The average plan and the origin can be seen in the figure
4.7.
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Figure 4.6: Areas that can be processed by Aramis in the flat and in the inflated position

Due to all these constraints, we were conscious that the only exploitable results were to
obtain the global displacement of a portion of the superior fabric layer. This data could
be compared with the results of numerical simulations.

4.5 Numerical simulation

Since the only result we can exploit are the global displacements, a simulation was made
to obtain the displacement field. This numerical simulation was carried out in Herezh++
with the following parameters:

- The material properties were the provided by the fabric manufacturer: E = 125
MPa, ν=0.41, thickness = 0.27 mm, density = 900 kg/m3

- The calculation algorithm was dynamic relaxation with kinetic damping in the same
conditions as shown in the previous chapters.

- The element type used were shell elements. Even if in the research works of this
thesis we used membrane elements, here we looked for a more realistic result by
taking into account the flexion of the elements, particularly effective to obtain re-
alistic wrinkles (see work of Onate [126]). For that, we used the shell elements
implemented in Herezh++: SFE (Semi Finite Element), that are introduced in the
thesis of H. Laurent [71] (a review in english can be read in the paper [72]).

- Due to the existence of a symmetry, only the superior fabric layer was calculated.
The mesh had 111 192 dof, in order to obtain a realistic result.

- The load applied was a pressure of 0.02 MPa, applied following a slope during 1
second (this is the global time, serving for the advancement of the loading).
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Figure 4.7: Reference plan calculated with Aramis as the average position of all the
surfaces’ points.

The result of simulation can be seen in the figure 4.8. There, we observe that the
maximum vertical displacement is 96.4 mm.

Figure 4.8: Field of displacement of the air bag; simulation result (left) and full air bag
representation (right)

A priori, the results seem to be close to reality, since the general shape is similar, and
even the wrinkles’ distribution is also close to reality. Figure 4.9 shows both simulated
and real air bags, putting in evidence the similarities. We can observe the similarities:
big wrinkles (A) interspersed by medium-sized wrinkles (B) and small wrinkles (C). Also,
we can even observe the same deformation in the fabric at the limits of the big wrinkles
(D).

4.6 Measuring results

After treating the data recorded with the cameras in Aramis, the resulting displacements
with isolines can be observed in the figure 4.10:
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Figure 4.9: Field of displacement of the air bag; simulation result (left) and full air bag
representation (right)

Figure 4.10: Field of displacement of the air bag; two views of the experimental result

In the figure, we can observe that blanks appear where the wrinkles are located. This
is impossible to avoid, and it hinders the measurements (for example, we could think of
measuring the internal volume of the air bag, but it is not possible with so many blanks).
However, we can see that the displacement isolines are coherent and have the same allure
than in the numerical simulations (figure 4.8).

Also, we can see that the maximum vertical displacement of the air bag is 191.2 mm.
The value we had obtained in the numerical simulations was 96.4 mm for a half of the air
bag. Thus, if we consider the full numerical simulation of the air bag, the total maximum
displacement is 96.4 × 2 = 192.8, a value very close to the experimental value of 191.2.

As we explained at the beginning, we considered three directions to be studied: warp,
weft and 45◦. These senses were manually marked in the air bag to be able to identify
them during the post-processing of the images. Thus, we cut with a vertical plane along
each one of the senses, and they can be seen in the image 4.11.

Firstly, the blanks avoid to have the full cuts of all the senses. Then, concerning the
transient part, we could not be able to compare it analytically with the simulation, due
to the random oscillations of the air bag appearing during the inflation. This problem
is visible when we look at the evolution in time of a cut of the measured surface. Some
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Figure 4.11: Yarns’ senses as read in the images from Aramis: Warp (left), weft (right)
and 45◦ (center)

screen captures are showed in the figure 4.12, that shows the evolution of the cut made
at 45◦ (we show this one because it is the one with the least number of blanks). In that
sequence, we can see that the air bag does not inflate regularly, but inclined to one side,
making it impossible to do a direct comparison with the simulations.

However, we could observe another very interesting phenomenon. During the inflation,
the air bag did not inflate regularly: a big wrinkle appears in one side of the air bag and
propagates along the radius until a stage where it disappears and the inflation is continued
(see figure 4.13).

When we made the numerical simulation of the air bag using membrane elements,
the inflation was regular, a regular increase of the vertical displacement occurred in an
axisymmetric way. We thought this was somehow logic, because the wrinkle origin could
be due to its positioning, heterogeneities in the fabric, etc, and we found it logic that
simulations did not predict that. However, when we carried out the numerical simulation
using shell elements instead of membrane elements, this phenomenon appeared in the
results. It can be observed in the figure 4.14. However, this apparition of the wrinkle in
the simulation is still unstable and can be probably due to the irregularities in the mesh.

4.7 Conclusions

The multiple encountered difficulties (lack of an appropriate support that avoided os-
cillations, the blanks due to the wrinkles, etc) limited the exploitable results of the 3D
measuring experiments. However, some good results were found (mainly, the almost equiv-
alent vertical displacement, the similarities of both numerically simulated and measured
air bag, the similarities during the inflation). With these results we could not validate
the numerical simulations (including the transient part) but we could say the results are
coherent with what happens in reality.

For a better validation, a support should be conceived to properly anchor the air bag.
If this was done, probably the results would be exploitable.
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Figure 4.12: Captures of the air bag inflation sequence, showing the evolution of a cut at
45◦ (from the warp or weft sense)
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Figure 4.13: Captures of the air bag inflation sequence, where the apparition of a big
wrinkle can be observed

Figure 4.14: Captures of the air bag inflation sequence, where the apparition of a large
wrinkle can be observed
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Chapter 5

Tensile tests on fabric

5.1 Introduction

The secondary objective of this thesis work is to make a contribution to the modeling of
inflatable lifejackets. This modeling would suppose being able to make a simulation that
could eventually reduce the amount of real functioning tests (carried out with a physical
mannequin and a lifejacket’s prototype in a pool).

Concerning the inflation simulation of the lifejacket, in order to obtain realistic and
reliable results, the material properties need to be properly defined. The studied lifejackets
are made of a technic textile called TEXTANE A/B 210 (240g) XF. The lifejacket’s
manufacturer provided the following information about the technic textile:

- Young’s modulus: 125 MPa

- Poisson’s ratio: 0.41

- Fabric thickness: 0.27 mm

It might be obvious that these data are not enough to have a good description of the
material. With this information, the fabric is supposed to have an isotropic and perfectly
elastic behavior. However, this is a woven textile, and that fact suggests that there exists,
at least, an orthotropic behavior. Also, since the fabric has a polymer matrix to make
it watertight, it probably has a more complex behavior than perfect elasticity. We will
assume nevertheless that the thickness is constant all over the fabric, and with the value
indicated by the manufacturer.

The objective of this chapter is to observe the real behavior of the material by carrying
out different tensile tests.

5.2 Technic textile

The textile manufacturer has provided a data sheet (see Appendix B). Looking at this
data sheet, we can observe that this textile is composed of a PU matrix, an adhesive and
the woven fabric itself. Thus, the fact of having a polymeric matrix can give it different
properties than if it only had fabric.
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Also, observing the description of the fabric, we can see that there is a different average
”density” of yarns in the warp and weft senses. While in the warp sense there are 27
yarns/cm, in the weft sense there are only 21 yarns/cm. Usually, yarns in warp sense are
more tense by default (due to the way of manufacturing of fabric), what gives a higher
stiffness in the warp sense than in the weft sense; and if added to this there are more
yarns, the difference of stiffness should be even higher, what confirms that the material
must be orthotropic.

In order to have a better knowing of the used material, we used a microscope to obtain
a micrography (see figure 5.1). There, we could observe the different tension of the yarns
depending on the sense (warp yarns seem to be more ”straight” than weft ones). The
polymeric matrix can also be intuited in the gaps between the yarns. In the most zoomed
image, we can see that the yarns are composed of several fibers; there, it seems that there
are more fibers composing the weft yarns than the warp yarns, but it can be due to the
fact that, being more tense, the warp yarns have some of their fibers superposed. Thus,
the cross section of warp yarns would be more round than the cross section of weft yarns.

Figure 5.1: Micrography of the studied textile with different zooms (warp sense is in
vertical in both images).

Another phenomenon that we will neglect in our numerical simulations but that it
is worth to mention, concerns the variation of thickness occurring when stretching the
material (due to the crimp). Actually, our calculation software does consider the thickness
reduction (as we showed in the Validation chapter), but in this kind of fabric, the opposite
phenomenon could eventually occur: an increase of the thickness when it is stretched (see
figure 5.2). In our calculations, we will consider the provided thickness as good (0.27mm)
and we will consider that it can only be reduced when stretching it (implemented in
Herezh++). To take the crimp into account, we should model the material at a different
scale, what escapes our purposes.
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Figure 5.2: Figure showing the phenomenon of thickness increase when stretching

5.3 Tensile test preparation

Tensile strength is the most important property of a fabric. In almost every fabric devel-
opment and manufacturing, tensile properties are reported. Modulus, breaking strength
and elongation at break are widely used for quality control [73]. Among the different
types of fabric tensile tests, in this work we carried out the strip tensile tests, where a
narrow strip of fabric sample is used.

As suggested in the work of Quaglini [75], we carried out tests not only in the warp
and weft senses; also in an ”off-axis” direction, in which the specimen was aligned at 45◦

with respect to the warp direction (see figure 5.3).

500 mm

50 mm

Warp Weft

45°

Figure 5.3: Figure showing the different types of samples used in the tensile tests (left)
and the jaws used in the tensile test machine (right) (Source [1])

For the determination of the warp sense, we followed the proposition of the ”Handbook
of Weaving” [73] regarding to our micrography and the data sheet provided by the man-
ufacturer: ”If one set of yarns have ply in the fabric, it is usually the warp yarns. Warp
yarn needs to be stronger than the filling yarn due to heavy forces acting upon them. In
general, the warp density (ends/unit length) is more than the filling density (fillings/unit
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length). In the fabric, warp yarns are usually straighter than filling yarns since filling
yarns may have more tendency for bow and skewness.”

The samples were cut from a roll of textile provided by Plastimo, following the indica-
tions of the norm ISO 1421:1998(F) [76]. This norm indicates that each sample must be
50 mm ± 0.5 mm width, and a effective length (once the sample is placed in the jaws) of
200 mm ± 1 mm. Similar indications are provided in the work of Dauda [77]..

Therefore, samples were cut with size 500mm × 50mm so that once they were placed
in the rolling jaws (see figure 5.3) the sample dimensions respected the indications.

For the testing, a tensile machine was used along with a 3-spot measuring system (see
figure 5.4; an explanation can be read in the works of Thuillier [78] or the thesis of
Troufflard [1].

Figure 5.4: 3-spot local measuring system setup

We carried out different tests: break tests (sharp break [74]), tests with different speeds,
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cycles, cycles with relaxation time, etc. Tests were made at deformation speed ǫ = 10−1

and at ambient temperature (20 ◦C).

5.4 Results

Figures 5.5, 5.7 and 5.8 show the results of the different tests.
We can observe in figure 5.5 (left) the different behavior of the technic textile when

being solicited in the different considered directions. At 45◦ the stiffness is very low and
at least at the beginning this stiffness is probably due only to the polymeric matrix. A
very large elongation appears when the tensile test is done along this direction (see figure
5.6). Also, we could observe in the plots that the textile behaves as expected in the
warp and weft directions (being stiffener in the warp direction). In figure 5.5 (right) we
can see the good repeatability of the tests (only one example is shown): there, they are
represented 3 tests in the warp direction, and the most significative difference is a small
difference on the break elongation.
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Figure 5.5: Break test with different directions and deformation speed 10−1 (left) and
repeatability test in warp direction at the same speed (right)

In figure 5.7, two different loop tests are represented (single and multiple loops), where
we can appreciate the existence of a certain viscosity.

Finally, in figure 5.8, tests with relaxation times are presented. These tests were car-
ried out in order to have the possibility of an eventual identification of parameters for
introducing a complex law of behavior in the calculation software.

5.5 Conclusions and discussion

After the experimental observations, we can conclude several points:

• The technic textile has an anisotropic behavior, as expected. Thus, an implemen-
tation of a orthotropic law of behavior could be convenient to be closer to the real
behavior.
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Figure 5.6: Test in the off-axis sense (45◦)

• We could observe hyperelasticity and viscosity. However, in the common usage of
this textile in lifejackets, stresses and then deformations are not very high (peaks
of stress are in the order of 15 MPa), so the fact of considering hyperelasticity is
probably not very important. We could say the same about viscosity taking also into
account that the inflation of the lifejacket is relatively slow (in around 1 second).
But although the inflation phase is slow, the objective is to have final form after
a time quite long (typically several minutes), so a priori, after the relaxation of
viscosity.

• The observed hysteretic behavior could be important or not: if we consider that the
lifejackets are not supposed to inflate and deflate often (only when an emergency
occurs), we could neglect it. However, if the manufacturer makes periodic tests on
them (each year, for example), after a certain number of inflations/deflations, the
hysteresis could end being important.

All these points are only hypothesis, since there could be many other parameters in-
fluencing the real behavior of the technic textile in a common usage, for example, the
temperature: water’s temperature in the ocean is in a range from 0 to 38 ◦C, and the sun
can also act. High temperatures can lead to higher deformations and probably hypere-
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Figure 5.7: Loop tests for the different directions (left) and several loops tests (right)
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Figure 5.8: Tests to determine τ (left) and loops with relaxations for the different direc-
tions (right)

lasticity becomes important. Also, stresses can be different if the lifejacket is worn by a
man or a woman, for example.

Therefore, we can finally conclude that considering only an elastic behavior can be
not enough to describe the technic textile’s behavior under real usage conditions. It
could be interesting to introduce a more complex law of behavior including orthotropy,
hyperelasticity and hysteresis. However, if the aim is to have a base for comparing the
different lifejackets’ conceptions, this could be enough.
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Chapter 6

Human body model

6.1 Introduction

The objective in this section is to create a generic dummy, i.e., a human-shaped FE model
which would permit to carry out the different desired simulations porting the lifejacket.
Also, the model must allow to be able to easily modify its morphology in order to be able
to obtain an approximation to any kind of human body shape (man or woman, any height
and weight, etc). Another important requirement is simplicity: it must be a FE model
with a small number of elements, because calculations must be relatively fast.

Previous works were made at the LIMATB (Laboratoire d’Ingénierie des MATériaux
de Bretagne) with this subject. The first one was carried out by the student of IUP
of Lorient, Quentin Govignon, who created a very simple model with squared shapes.
Later on, Julien Troufflard [79] made a training work improving the dummy model, and
obtaining a model closer to reality. On this last work of Troufflard is inspired the present
work for the creation of the new and improved model.

In the literature, several human body models can be found, but no one match exactly
the present requirements of simplicity. Most of the works using a human body model
use it either for studying its kinematics and animation (mainly for virtual reality) or the
behavior of a precise body part (taking into account all the bones and muscles, and even
the internal organs). Some examples of human body modeling can be cited:

• Works focused in the kinematics or animation: For example, Multon [84]
focused on the motion of human body, studying the musculoskeletal system (loco-
motor system), as well as Nedel [85] did. Porcher Nedel [86] and Park [92] also
modeled the human body in order to make animations for virtual reality simula-
tions. Another example of human body modeling to study kinematics is the work of
Oliver [87]. Savenko [94] worked on an articulated figure for use in animation, and
Maciel [96] presented a model to represent joints in articulated bodies. Kayis [105]
presented a model with joints to integrate in simulations of environment design with
CATIA.

• Works focused in human body parts: Erdmann [88], for example, studied the
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trunk; Veeger [89] studied the upper extremities, taking also into consideration the
muscles; Zordan [90] studied the environmental interaction of the upper-body; Will-
inger [91] focused on the human head, including the brain; and Perez del Palomar
[99] studied, for example, the women’s breast deformation for pre-surgical planning.
Other kind of application is the work of Gourret [106], who studied the contact
deformations of human skin (studying particularly a finger’s model).

• Precise models of human body: In the group of works where the aim is to
obtain a human body model as precise as possible, several examples could be cited:
Dekker [93], for example, presents some techniques to digitalize the surface of a
human body in order to obtain a precise result; Allen [97] also presents the way
to obtain a precise human body model (see figure 6.1, right); Choi [98] works in
clothing simulation, where the body shape must be precise, but the study is focused
in the textile. Another field where precision is important is crash tests simulations:
Oshita [100], for example, presents studies involving the response of the human
body under impact loading conditions, and in his human body model he includes
the skeleton and even internal organs (see figure 6.1, left). Also, other precise models
can be found in the works of Delotte [104], who studied the crash test of a pregnant
woman, and Haug [107], who also studied cash and impact simulations. Also in the
field of crash simulations, Watanabe [103] proposed a human model, including the
skeleton.

Figure 6.1: Precise human body models presented by Oshita [100] (left) and Allen [97]
(right)

Therefore, the fact of not having an exact reference in the literature made it necessary
to create a new model under the required conditions.
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6.2 Software’s choice

To be able to make the calculations with Herezh++, it is necessary to dispose of a
Herezh++’s readable mesh file (in format .her). However, another format of mesh could
be generated and then converted to a .her file. In the LIMATB there are several available
3D modeling and meshing softwares that could be ”combined” with Herezh++, such as
Catia, Gmsh, Castem or Gid.

Using Catia might seem the most sensible choice for the modeling, because it is widely
used in the industry for the modeling of very complex mechanical parts and structures,
and it is probably the one that offers the greatest potential to obtain a realistic result.
However, the aim of Plastimo is to dispose of a simple and economic tool to make the
simulations. If Catia was used, Plastimo should dispose of some license, being those rather
expensive. The same could be told about Gid. However, Gmsh is a GPL (General Public
License) software that offered the needed requirements.

The software used by Troufflard [79] was Castem. But since both Castem and Gmsh
offered the same parameterization capabilities, Gmsh was chosen due to some advantages:
its use is very simple and easy, visualization and post-processing modules seemed to offer
more customization possibilities and were more ”user-friendly”, which is and advantage
for the enterprise. Also, the mesh’s conversion to a Herezh++ format is easy and precise
by using the Perl program ”msh2her.pl” developed by Gérard Rio.

6.3 Geometric considerations

For the dummy to have an industrial applicability, it must allow to vary parameters in
order to create any desired morphology, and the calculation time should be short enough
offering a reasonably realistic result (this implies a compromise between precision and a
not too large number of finite elements).

A human body presents rounded forms, which are complex to model. Taking the idea
from Troufflard’s work [79], the human body can be modeled progressively from feet to
head (or vice-versa) by means of a ellipse. If any cut is made in a human body (parallel
to the transverse plane, see Figure 6.2), the section can be approximated by an ellipse.
By placing different ellipses (with different dimensions) at different heights (as if trans-
verse plane was progressively displaced along its normal direction) the body model can
be created.

Controlling the sizes of the ellipses would allow to virtually give any shape to the human
body model. To parameterize the dimensions of the ellipses, four different parameters were
considered. To place the ellipses in a reference system, one of its axis was placed along
the x-axis, and the other one along the y-axis. Then, the different ellipses were placed
at different heights along the z-axis. Ellipses’ centers were placed in the intersection of
sagittal plane and coronal plane (see Figure 6.2).

Four parameters were required for a full parameterization: a semi-axis length from the
coronal plane (b1), a semi-axis length from the coronal plane in the negative sense (b2),
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Figure 6.2: Human anatomy planes [80]
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b2a1

Sagittal plane

a2

x
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Figure 6.3: Ellipse parameters

the shortest distance from the sagittal plane to the ellipse (a1), and the longest distance
from the sagittal plane to the ellipse (a2). Figure 6.3 represents these parameters. If we
consider the ellipse in figure 6.3 as if it was a footprint (the first created ellipse of the
body, the lowest one), we can observe that (b1) and (b2) would allow to model the bulges
of the body (forward and backward, respectively); (a2) would allow to control the width
of the body sections (being the most external part), and (a1) would allow to generate legs
and arms, that are not ”in contact” with the sagittal plane, but at a certain distance (a1)
from it.

Once the parameters were decided, the next step was to start the creation of ellipses
by means of an ensemble of perimetric points. Since the objective was to obtain an
industrially usable model, i.e., a model which would not take too much time to calculate,
perfectly smooth and rounded shapes are not possible. The greater the precision, the

96



longer the calculation time. Thus, it has been decided to create the ellipses with a contour
of not more than 12 or 15 points -nodes-, which would give a facetized result, but with
an acceptable precision.

Since the body was going to be parameterized, virtually any dimensions could be used
in its creation. The final size could be adjusted at the last stage of the creation procedure.

6.4 Development in Gmsh

The final model was not developed in Gmsh, but by means of a C++ program that
generated a mesh in a Gmsh-readable format (.msh). However, it was considered worthy
to comment in this section the experience and remarks observed when we tried to generate
the mesh directly in Gmsh.

Gmsh [81] is a software which permitted the model (the mesh) creation by three different
ways (at its 2.3.0 release). The first, and probably the easiest one was by using its graphical
interface. The problem is that this way does not allow to parameterize, and the result
would be a dummy with a given morphology (the chosen one when created) and without
any chance to easily change it, so a full reconstruction would be necessary to obtain
different body shapes.

Another possibility was to create the geometry by coding a .geo file, and after this,
by means of the graphical interface, using the automatic Gmsh’s meshing module to
obtain the desired dummy’s mesh (a .msh file) to use in calculations with Herezh++
(after converting it to .her format). This way seemed to be a priori a good idea. Even
though it was more complex than using the graphical interface directly, this way did let to
parameterize. The existing Gmsh .geo tutorials, showed that a scripting language could
be used to create the dummy geometry, and thanks to this it was possible to employ
small functions to automatize the geometry creation and also to introduce geometric
parameters. So this was at first the chosen way to carry out the dummy creation.

As mentioned before, the human body could be created just by placing several layers
of ellipses. So the idea was, firstly, to be able to create a parameterized ellipse. Then,
just by repeating it and changing the axes’ length and coordinates progressively, it was
possible to create the whole body. The aim was to create just the ”envelope” of the
body (necessary to calculate later its interactions with the lifejacket and with water).
Ellipses were created with twelve points along their perimeters, which gave an acceptable
precision, and this way calculations should not take too long.

The creation of this .geo file was not as intuitive as expected, because it was necessary
to define points, with these, lines, then surfaces and finally volumes. The problem was
that it was strictly necessary to respect the order of definition of all instances (the nodes
in a line or element, the lines in a surface, etc), being this order sometimes not evident,
and a small mistake would give as a result a non-sense mesh (with superposed elements,
for example), and there were no indicators pointing to the exact problematic point of the
code, so it was necessary to review the whole file and check if all was right. Several tries
were needed and it took a lot of time to create something valid.
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Beginning from a foot, part of a leg was created, and at this point it was a good idea
to check if the created mesh was satisfactory. But again results were not good (see figure
6.4). A ”random” mesh was obtained when Gmsh was asked to mesh it. We thought at
first that once given the envelope, Gmsh would be able to mesh the interior of the leg
with 3D elements. But we found that these elements were superposed ones to others.
Probably by spending time on it and with a lot of effort the correct parameters can be
used to define a good mesh, but this is not simple a priori.

Figure 6.4: Automatic mesh created by Gmsh

So, after these unexpected results, it has been concluded that this was not the correct
way to follow, and it has been decided to change the dummy creation procedure and start
to work with the a priori most complicated modeling way of Gmsh, but also the only one
which offers the total control of the created mesh: an .msh ASCII file.

This way of modeling consists in manually positioning each node (formulae are not used
anymore to automatically calculate nodes’ positions), and then manually defining each
element of the mesh. The result of this is directly the mesh file, and the use of a geometry
file (.geo) is not necessary. But the difficulty here was that the whole file consisted in just
numbers, and the parameterization in the file was not possible. So, finally, to get this
.msh file, it has been decided to create a C++ program which created it. This language
had also the advantage that the functions used in the .geo file could be easily adapted
to C++, because the code type was quite similar (but of course, C++ offers much more
capabilities). The software used for programming was Xcode 2.5 for MAC.

6.5 C++ programming and testing

Being our aim to manually create the mesh (defining all nodes and elements), it could be
asked why we didn’t create directly a .her file to use in the calculations. The answer is
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that, this way, by making a previous .msh file, it could be visualized in Gmsh, and if there
was some geometric mistake, it could be easily detected, just by looking at the model in
Gmsh’s graphical interface. However, if a .her file was directly created, there wouldn’t be
a way to check that the geometry has been correctly created, and the only indicator of a
problem would be an error in the calculation in Herezh++, and since this could be due
to several other factors, it was not appropriate to follow this way.

To generate the .msh file, the instructions in Gmsh’s website were followed [81], to
get to know the .msh file structure. Given that absolutely all elements were going to
be manually defined, the first decision to take was the type and number of elements to
employ, because this could not be easily changed later. Knowing that the main idea was
to create the body with the smallest possible number of elements, it has been decided to
use ellipses with just 12 points (nodes). And we have chosen exactly this number because
our idea of conception was to use volumetric quadratic hexahedron elements (see Figure
6.5), and this number of nodes fitted to use them.

Figure 6.5: Element type hexahedron, 27 nodes [81]

An advantage of this way of coding is also that it is not necessary to define all the lines
and all the surfaces to define a volumetric element (as it was required in the .geo file).
Here, to make the conversion to .her format, it is just necessary to define the nodes and
then, the volumetric elements.

Using this kind of element (6.5), and being the ellipse composed of twelve nodes, two
hexahedral quadratic elements need to be placed per layer. Also, even if joints were not
being considered yet, a ”small prevision” was made. The future idea at this point was to
use a ”frontal” hexahedron and a ”back” hexahedron, and in the case of joints (in those
places of the dummy), to define different laws of behavior for traction and compression
(different materials) for the two hexahedrons to block or permit the movements in the
desired senses. This will be better explained in the corresponding section.

Obviously, using such a small quantity of elements, to give the body a realistic shape
the elements could not preserve an hexahedral allure. However, although the elements
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were quite distorted in some model’s parts, it was checked that the calculation worked
anyway (what was not evident a priori). An example can be observed in figure 6.6, where
they can be seen the two hexahedral elements corresponding to the right ankle. Notice
that the visualization module in Gmsh only shows the facetized surfaces that do not allow
to appreciate the quadratic shapes.

Figure 6.6: Marked in red: hexahedral element corresponding to the rear (left) and frontal
(right) parts of the right ankle

The procedure to create the dummy was placing nodes with the desired elliptical shape.
To easily create the ellipses, several functions were created in C++ that automatically
placed the nodes. After having three consecutive layers of ellipses, it was possible to
define a volumetric hexahedral element (in figure 6.5 we can observe that three heights
are needed, at least). And repeating this, the dummy could be created adding layers or
”slices” composed by couples of two elements (frontal and rear).

To obtain a Gmsh mesh file, an element is defined by indicating: first of all, the type of
element (in this case hexahedron 27) and later, after a few other parameters concerning
the possibility of creating groups of elements, the nodes that compose the element. The
main difficulty in this element definition is to write correctly the nodes which compose it
by preserving the correct established order by Gmsh (following the image 6.5 extracted
from its website). To ensure that a mistake was not made, it is convenient to check in
Gmsh graphical interface right after the addition of a new layer. To be able to visualize
the mesh, it was enough to compile the C++ file, and execute the result, and a .msh file
was directly obtained.

During the mesh creation, we remarked that as important as defining the nodes in a
correct order, was the fact of respecting a certain orientation of the hexahedra.

In the model parts where the extremities ended (basically the trunk, neck and head),
four elements per slice were used, to keep a ”continuity”. At the shoulders, where the
arms should start to be created, an auxiliary ellipse was placed at around 45◦.

Finished the modeling, and in order to check that the mesh was properly parameterized,
a small modification test was made. The result of the test is showed in Figure 6.8, where
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three different kinds of morphology were created as an example showing some of the
capabilities of the parameterization.

Figure 6.7: (a) Base body shape, (b) fatter body, (c) woman’s body

Finally, the obtained model consists in a mesh with only 156 volumetric elements,
complying thus with the requirements of parameterization and fast calculation.

6.6 Dummy’s design improving

6.6.1 General dimensions

During the creation of the model, no attention was paid to the size of each body member,
but to the proportions. Since the created model is parameterized, dimensions can be
corrected when needed. The decision of giving the model the shape actually has was only
approximative, just looking if it presented a coherent morphology.

For giving it a more realistic shape, further studies should be made. For example, Baca
[101] proposed a procedure to determine anthropometric dimensions by image processing.
Also, it exists some anthropometric study in the literature, as the one from A.R. Tilley
[102], where a very complete information can be found about the sizes of the parts of the
human body, depending on the age and gender of the person, statistically calculated.
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6.6.2 Joints

Until here, the whole body could be somehow compared with a beam, but with a human
allure. However, even if the human to model is supposed to be unconscious and immobile,
the joints can allow a certain flexion. However, it is not easy to make a simple model
which gives as result the natural movements of human joints.

Looking back to the figure of the three planes in a human body (6.2), they could be
defined the different movements:

• Sagittal plane: The movements in this plane correspond to flexion/extension.
Flexion corresponds to a decrease in the angle between two segments, and vice-
versa.

• Coronal plane: Movements in this coronal plane are abduction, adduction en ra-
dial deviation. The abduction consists in the remoteness from the spine of a segment
(and vice-versa for the adduction). The radial deviation movements correspond to
wrist flexion towards the interior and exterior.

• Transverse plane: The movements in this plane are the internal and external
rotations. they correspond to a rotation to the interior or the exterior of the body.
For the arms, this movements are called pronation and supination.

Considered solutions

To model the joints, several methods have already been proposed in the works of Troufflard
[79]. The more realistic way to model the body would be to define a skeleton inside the
dummy. This would allow to have a 3D envelope to calculate external efforts applied to
the body that would be related to a second entity which limits the possible movements
of the dummy. To restrict the movements Troufflard [79] thought of defining energetic
parameters in the joints. He proposed to create just another mesh with 1-D, with just
articulated beams. Generally, rotations are defined around a center of rotation, and they
are decomposed according to the three planes sagittal, coronal and transverse. In order
to calculate these angles, they can be used, for example, the Euler angles. This method is
not applied for biomechanics; usually it is applied in other domains such as robotics. The
most common problem that could be found in the calculation of angles is the so called
”gimbal lock”, which occurs when two of the axes of rotation of are driven into the same
place, and the joint would loose a dimension of rotation. This loss of information would
end in singularities in calculations which would cause problems that could be found later
on.

Probably the most simple method would be to decompose the movements vectorially
and to calculate the angles between them. It could be fine to constrain directly the
movements defining particular relations that should be respected by the degrees of freedom
of certain nodes in the joints. The implantation of relationships between degrees of
freedom of nodes in Herezh++ is already made, so this could be a good choice. The
idea was that each joint is composed by two segments, mobiles one against each other
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by a center of rotation; and the movement between them would be governed by means
of relations between the degrees of freedom of certain nodes. The angles should stay in
an interval depending on the considered joint. The way to respect this interval could be
the introduction of energetic terms whose expression depends on the limit angles. Since
these energetic terms depend on the degrees of freedom, they would be considered for the
calculation of the stiffness matrix.

A first approach to these energetic terms was made by Troufflard [79] but the results
were not completely satisfying. The complex studies and time required to carry this out
forced us to discard this option. Even though this would probably be the best way, it is
not the objective of this work to model a real body with all its real movements, but to
model a body which behaves in a realistic way, and it is not necessary for it to be exactly
real.

Applied solution

The applied idea was to use a different material (softer) in the areas where joints are
supposed to be. During the fall into water, the dummy is considered inert. In this case,
the absence of resistance in joints could be modeled by a very flexible material, to permit
the body members to displace.

A material behavior would be used to define the physical properties of dummy’s body,
and another one would be used to define the behavior in the joints. The first point was
to choose the material behaviors. For the body, it could be a applied a material behavior
corresponding to the stiffness properties of a human bone, since they are the most rigid
component of the body. This is real concerning the stiffness of the body parts, but the
exterior ”skin” of the dummy would also have the properties of a bone, which is not very
appropriate. However, for what we look for in this work, it can be good enough, because
our interest lies in the global behavior, and not the local behavior. Searching in literature,
the properties of a human bone were found in a physics book by David Jou [82], and they
are the following:

• Young’s modulus : E = 16 GN/m2 in traction, and 9 GN/m2 in compression

• Tensile strength : 200 MN/m2

And for the material in the joints, properties can be chosen randomly with values, for
example, of 1/100 of the bones’ properties. Since there was not a reference, the used
properties were those that, after calculation, showed a coherent result in the movements
of the joints in simulations.

If a deeper study of the joints is made, there are some references for the human joints’
possible movements, as the book of Deborah Roche [83], which gives a detailed description
and images of all joints’ possible movements, also indicating where are the common limits
in a normal person. A compilation of the values taken as a reference are shown in the
table 6.1. This work doesn’t cover a study of the joints, but this can serve as a first
reference for a deeper study.
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Shoulder extension Ranges 5-25◦ less likely to have shoulder injuries
Shoulder flexion/extension A normal value for flexion is 180◦ and for ext 45◦

Shoulder abduction For abduction is 180◦ and for adduction 0◦

Shoulder int/ext rotation 90◦ for internal and 70◦ for external rotation
Elbow flexion A normal value is 145◦

Elbow extension A normal value for exbow extension is 0◦-10◦

Hip flexion A normal value for hip flexion is 125◦

Hip extension A normal value for extension is 10◦

Hip abduction A normal value for hip abduction is 45◦

Hip int/ext rotation For internal rotation 45◦ and 45◦ also for external
Knee flexion A normal value for knee flexion is 140◦

Knee extens/hyperextens A normal value for knee extension is 0◦-10◦

Ankle dorsiflex/plantarflex Normals are 45◦ and 20◦ for plantar and dorsiflexion

Table 6.1: Maximum angles in joint movements [83]

To define the emplacement of the joints, since the body mesh was composed of several
volumetric elements, and knowing that Herezh++ (among the parameters of its input
file) permits to associate a different material to each element independently, the method
to assign the materials was just choosing the elements (27 nodes hexahedrons) placed
where the joints are supposed to be, as it is shown in the figure 6.8 .

In the image, all the elements that compose dummy’s body are shown (just the external
faces are visible). Marked in yellow are the elements that have been assigned a different
(softer) material, corresponding to the different joints. As it can be observed in the
figure, they have been considered: ankles, knees, hip, shoulders, neck and wrists. Given
this configuration, a good material’s choice should give as a result a behavior coherent
with reality 1.

Once the joints were ”placed”, it was necessary to try the new configuration’s behavior.
For this, two different calculations have been carried out in Herezh++. The first one
corresponding to a dummy without considering the joints, and the second one considering
them. The same loading conditions, etc, have been applied, with the aim to compare the
behavior of the joints and to check if the new configuration of the joints behaved ”better”
than the initial one.

The loads chosen for both files were the same and random, just horizontal forces, and
applied as following:

• A horizontal force applied in the right hand, pointing backwards.

• A horizontal force applied in the left hand, pointing forward.

• A horizontal force applied in the right foot, pointing forward.

1Since we dispose of several integration points, we could also think of a different behavior for each one
of them, defining different stiffnesses
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Figure 6.8: Different joint elements in the dummy

• A horizontal force applied in the left foot, pointing backwards.

Since the joints’ material is softer, the biggest deformations should occur in the joints.
That is what we intended to check. After calculating the simulation in Herezh++, the
result could be seen in Gmsh post-processor. In the figure 6.9 they are represented the
displacement fields. As it can be observed, displacements are bigger in the case where
joints are considered. While displacements were limited by the rigid material in the first
case, in the new one, the softer material allowed to move the extremities (as it could
happen in reality).

Also, it can be observed a very large deformation in the right ankle, which could lead to
some problem in the calculation, but instead the calculation worked out normally. After
these results, no more improvements were made in the joints.

6.7 Conclusions and discussion

In this chapter, the procedure of creation of a human body model is presented. The aim
was to create a simple model, with a small amount of elements and fully parameterized.
The presented model has only 156 volumetric quadratic finite elements with 27 nodes
(that can be converted to linear elements with 8 nodes by means of Gmsh, obtaining
a simpler model that can be used for faster simulations), and all its dimensions can be
modified by means of five parameters introduced in the C++ program that generates the
mesh. Therefore, the requirements are fulfilled.
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Figure 6.9: Comparison between the model without modifying joints (left images) and
the model doing it (right images), in two different views

However, the model could be still improved. Concerning the parameterization, at this
stage, the ellipses’ dimensions must be modified individually. This allows a perfect control
of the final morphology, but it requires a certain time to get to the desired results. Some
kind of function could be added that allowed to modify the ellipses’ dimensions by body
parts, all at once, for example. Another possible improvement concerns the joints, where
a deep study of their behavior could be made, but it escaped the aim of this work.
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Chapter 7

Lifejacket modeling and contact
mechanics

7.1 Introduction

As an industrial application for the dynamic relaxation methods presented along this
thesis work, the simulation of the inflation of a commercial lifejacket manufactured by
Plastimo is carried out. Previously, we developed the needed tools (dynamic relaxation
method, fabric characterization, etc) and now we can apply all this studies to carry out
this complex simulation.

The inflation of the lifejacket occurs automatically when the mannequin enters into
water. At this moment, a CO2 gas cylinder discharges the gas inside it, permitting the
inflation (see figure 7.1).

Figure 7.1: Lifejackets manufactured by Plastimo, in their folded position and final in-
flated shape

This is a difficult simulation, because it implies large displacements in a short time (of
the order of tenths of second). A good mesh is very important to reach a good speed in
the computation convergence. Another difficulty will appear when the lifejacket will be
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worn by the mannequin, since contact mechanics is another complicated component of
the simulation.

7.2 Creation and meshing of the lifejacket model

Before taking into account the contact mechanics, we will carry out simulations with only
the lifejacket. Plastimo’s inflatable lifejackets are usually folded (for a higher comfort
for the user), but in this first approach, we will study the unfolded case. Therefore, the
simplest design of the lifejacket is just two layers of textile which are welded along their
perimeters.

Among the three types manufactured by Plastimo, the one of 150N (buoyancy aid)
will be considered in the first approach. The manufacturer provides a certain design for
the lifejackets exported from Catia. By means of a script created by Julien Troufflard
during his thesis works [1] (consisting in a code in Perl that given the geometry and some
parameters, meshes the model), a mesh in Gmsh format is obtained to view the resulting
mesh and a mesh in Herezh++ format to carry out the simulation.

The example result of using this code is the showed in the figure 7.2. The design
provided by the manufacturer is only the lifejacket’s contour. In the figure, they can be
observed two different images, corresponding the left one to a mesh with big-sized elements
(showed in order to ease the visibility of the mesh). The second image, corresponds to
the mesh used to calculate the inflation, with smaller elements, looking for precision in
the results. The mesh used in calculations is a mesh that has 31089 dof.

Figure 7.2: Mesh created by the code Perl developed by Julien Troufflard, and visualized
in Gmsh. Two mesh sizes, one where elements are clearly visible (left), and the one used
in the calculations of this chapter (right)
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Even though it is not possible to appreciate it in the figure, both layers of textile are
represented, but in the ”initial” position, they are supposed to be coincident.

7.3 Numerical simulation of inflation

Once the mesh is ready, the following step is to proceed with the calculation in Herezh++.
For this, in an input file, the calculation parameters will be defined.

Among the parameters, we need to define the material properties. In a first stage,
the tests will be made with an elastic behavior, following the properties indicated by the
manufacturer. The physical properties used in this approach were:

- Young’s modulus : 125 MPa
- Poisson’s ration : 0.4
- Density : 10−9 ton/mm3

- Thickness : 0.27 mm
- Pressure : 0.015 MPa
To simulate the CO2 cartridge’s gas, even not being exactly the same behavior, an

uniform pressure was applied in the internal faces of the lifejacket. The aim is to obtain
the final volume of the lifejacket, what would condition the buoyancy aid, and, finally,
its effectiveness. Therefore, we suppose the calculation has finished when the volume is
stable.

The result of the simulation can be seen in the figure 7.3 and a comparison with a real
lifejacket can be seen in the figure 7.4, where the displacement field is shown. There, it
can be seen that the result is very similar, being able even to capture eventual wrinkles
all over the lifejacket. For this example, linear triangular membrane elements were
used. The calculation times are in the order of 5 minutes to obtain this result (mesh with
around 30 000 dof; and calculation carried out with one processor in a 2.93 GHz, 16 GB
RAM Mac Pro).

Figure 7.3: Different views of the simulation result (displacement field is shown)
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Figure 7.4: Comparison between a real inflated lifejacket (left) and the field of displace-
ment resulting of the simulation (right)

Concerning the volume, that is probably the most important result of a simulation,
because it will condition the buoyancy aid, a value of around 20.6 L has been obtained.
We can observe in the figure 7.5 a comparison of the volume evolution when using KDR
or oDR methods, and also a comparison of kinetic energies on each case. We can observe
that the final volume is achieved faster with the KDR method, while the kinetic energy
presents much higher peaks; the oDR method appears to be more ”progressive” and
therefore closer to reality (what we had already remarked in the second paper presented).
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Figure 7.5: Volume (left) and kinetic energy (right) evolution when using KDR or oDR
methods

We also wanted to check if there was a difference in the volume when using shell (SFE)
instead of membrane elements (taking thus flexion into account). The resulting volume
when using SFE elements was 19.71 L, which means a difference of less than 5%. This
difference can be due to the different distribution of wrinkles over the lifejacket, being
less and bigger in the case of shell elements. This fact is in agreement with the works
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presented by Onate on shell elements [126]. We can observe this difference in the wrinkles
in the figure 7.6, where a more precise mesh has been used (242 712 dof).

Figure 7.6: Result of inflation when using membrane elements (left) and shell elements
(right)

7.4 Contact mechanics

Since the lifejacket will be worn by a mannequin while inflating, here we will include the
contact in the calculation. First of all, we will make a brief presentation of the contact
mechanics in Herezh++ and the parameters used in our calculations, and then some
numerical examples will be shown.

7.4.1 How contact is implemented

The contact method currently implemented in Herezh++ is the penalty method. Its
results are similar to Lagrange multipliers but with the advantage of not introducing
extra degrees of freedom. A disadvantage is the existence of a small penetration and the
need to ”calibrate” the penalty parameter.

In the penalty method, the so called ”master” and ”slave” surfaces are defined, and
when entering into contact, a reaction force appears, being this force bigger when the
penetration of slave surface into the master surface is also bigger. A penalty parameter
is defined, that can be interpreted as a spring stiffness in the contact interface between
the master and the slave surfaces [127].

Since the contact mechanics is a very complex problem, different parameters are imple-
mented in order to better control it and also to be able to optimize it. The parameters
included in Herezh++ are detailed in the following. Note that only the parameters that
are relevant for our calculations are mentioned, but some other are implemented. The
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figure 7.7 will be used as a support to illustrate them 1. There, ~X(t) and ~X(t + ∆t)
represent the position of a node belonging to a slave triangular element at two different
time steps and ~V represents the direction and velocity of the slave element approaching
to a curved master surface.

V
Xt

Xt+Δt

ΔX

Master

Slave

-e ereg reg
Gap

F

Boundary

X

Y

b

box

box’

(X1, Y1)

(X2, Y2)

Figure 7.7: Image displaying how the contact mechanics is considered in Herezh++, by
representing a 3-node slave element that enters in contact with a curved master surface
(left) and the gap-contact force curve (right)

The first step is the search for contact, that is a very time-consuming process. In order
to improve it, apart from being able to define the required precision for this process,
they can be defined the elements that are susceptible of entering into contact in master
and slave surfaces (by means of nodes’ references). Another implemented feature is the
possibility of defining a ”prelocalization box” (box′ in the figure), that consists in defining
an envelope around the master surface inside which is supposed to happen the contact.
Outside this envelope, contact is not considered. This envelope is generated as following.
Several steps are made in the master surface:

• In a first stage, the limits of each of the elements along each of the reference axis are
determined. For example, in the figure 7.7, for the considered master element, the
limits are Xmin = X1, Xmax = X2, Ymin = Y 1, Ymax = Y 2. Thus, a first envelope
box is defined.

1All kind of elements can be used in a contact problem; in the case of non-flat elements, the real
curved shape of the element is used
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• Then, since the slave element is moving at a speed ~V , it could happen that it
passes through the defined box into the master surface and, existing a contact, it
is not considered. In order to prevent this, the box is oversized. The maximum
possible displacement (depending on the speed and the time step) is added in all
the directions, obtaining a bigger envelope.

• In order to prevent unexpected problems, another parameter that can be manually
chosen is added, obtaining finally a new bigger envelope box′ (distanced a certain
value b from the original box), inside which the contact will be taken into account.

The idea of this envelope is that no contact will be searched out of it; only if the
contacting surfaces (master and slave) are inside the envelope, the contact will be taken
into account.

Once the contact has been detected inside the box′, the next step is determining the
penalty force. In Herezh++, for a penetration ∆ ~X this force is defined as:

~F = −αβ∆ ~X (7.1)

where αβ is the penalty parameter, being α an adjusting parameter accessible to the
user, ∆ ~X is the penetration, and β is a parameter that depends on the behavior of the
contacting bodies (for example, if the stiffness of the master body is higher, so will be
this parameter).

Notice that the penetration distance is determined differently than usual in commercial
codes. Instead of projecting the slave node in a direction perpendicular to the master sur-
face (the shortest distance), it is projected along the displacement direction (determined
by the velocity). Therefore, in the figure 7.7, they are represented the positions of the

slave node at a times t and at t + ∆t; and the resulting penetration ∆ ~X will be the used
to calculate the penalty force.

The parameter β is calculated as following (the method is the presented by LS-DYNA
[28]). There are two different cases: either the slave node impacts a solid element or it
impacts a surface element. In the case of impacting the surface Ae of a solid element of
volume Ve with a volumetric compressibility modulus Ke, a βbase is calculated as:

βbase =
Ke A2

e

Ve

In the case of impacting a shell element with a surface Ae with a volumetric compress-
ibility modulus Ke, βbase is calculated as:

βbase =
Ke Ae

max(distance between nodes)

Since ”hard” contact does not happen in the nature, but a smooth contact due to the
roughness of the surfaces, a regularized force-displacement curve has been implemented.
This curve starts at a certain distance ereg from the exterior of the master surface, and it
continues until a distance −ereg inside the master surface (see figure). This feature allows
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to have a more progressive evolution of the contact force. Another application for this
kind of contact could be the simulation of bodies coated with paint [128]. This curve is
defined in the following way from right to left according to the curve in figure 7.7 (right)
-e represents the gap between slave and master surfaces-:

• When e > ereg → β = 0

• When −ereg ≤ e ≤ ereg → β = βbase
(e−ereg)2

(ereg)2
, being this way βbase multiplied by a

value between 0 and 1.

• When e < −ereg → β = βbase

Finally, a ”detachment” of the slave surface from the master surface can eventually
happen. This is supposed to happen when one of the following two things occur (one of
them can be chosen by means of a parameter m): when the contact force becomes positive,
or when the contact force becomes positive and also the distance between master surface
and slave node is bigger than m × ereg.

Defined the mean parameters concerned in contact mechanics in Herezh++, we can
now define the parameters we used in our calculations where contact has been considered:

• α = 2

• ereg = 3mm

• Prelocalization box → Oversize box of 1.05

• Security value added to obtain the final distance b of box′ = 0.001

• Detachment → m = 1

7.4.2 Numerical examples of contact (validation tests)

The contact mechanics has be recently implemented, and in order to validate its correct
functioning, several numerical examples of different contact situations were carried out,
including the contact between two solids, and between membranes and solids.

First of all, the simplest test made was the contact between two solid hexahedron. For
example, in figure 7.8, it can be seen the contact between a fixed big hexahedron and a
small hexahedron to which it was applied a vertical descendent displacement, in order to
make it enter in contact with the flexible inferior one.

Then, to test the good functioning of contact when working with membrane structures,
the classical draping test was carried out (an example of this test can be found in [129])
with a membrane with lifejacket’s technic textile material properties see figure 7.9. Notice
that self-contact was not considered.

In order to consider the contact in the case of inflatable structures, a first test was made
consisting in an squared airbag that finds a rigid obstacle while inflating. This example
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Figure 7.8: Displacement field for a small hexahedron entering in contact with a flexible
hexahedron after being applied a vertical displacement

can be observed in figure 7.10. As usual, material properties of the membrane are those
of a lifejacket’s technic textile.

Finally, in order to test the contact in the case of the lifejacket’s model, a lifejacket’s
mesh was placed over a rigid cylinder, and it was attached by using three attachment
elements, with enough stiffness (randomly chosen) to hold the lifejacket when the contact
takes place (otherwise, the penalty forces together with the inflating pressure could eject
it far from the cylinder). The result can be seen in figure 7.11.

Since all these tests were carried out considering a deformable slave body in contact
with a non-deformable body, we tested the same test than the previous one (lifejacket and
cylinder) but with a deformable cylinder (with a low stiffness). Thus, we could observe
that the implemented contact can also work in the case of contact between two deformable
bodies. The result is shown in figure 7.12.

7.4.3 Application to the case of lifejacket and mannequin

After having checked the good functioning of contact in all the showed case studies,
a practical application of all the studied concepts (dynamic relaxation applied to the
inflation of a lifejacket, human body modeling and contact mechanics), we carried out the
inflation of a lifejacket while equipped by the created human body model.

One of the complicated aspects of this simulation is how to attach the lifejacket to the
mannequin, but the aim of this chapter is only to prove that all the developed concepts
work and can have a practical application; therefore, we attach the lifejacket in some
random points (but close to the used in reality) without trying to reproduce exactly the
reality. For that, it would be necessary to fold the lifejacket ”arms” and put them attached
close to each other, requiring this to consider self-contact.

In order to place the lifejacket on the mannequin, we just leave it fall under the effect
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Figure 7.9: Draping test carried out with membrane elements and technic textile’s mate-
rial properties

Figure 7.10: Contact test where an inflating air bag encounters a rigid obstacle

of gravity, and once this first stage of calculation has converged and the lifejacket is still
on the mannequin; a new calculation stage is done where some anchor points are defined
and fixed (so the lifejacket remains attached to the body) and the inflation pressure is
applied. As a result, we obtain a simulation of the inflation of the lifejacket being worn
by the mannequin. The different stages of this simulation can be seen in the figure 7.13.

A very interesting feature of this simulation is that it can allow to obtain, for example,
the stresses in the attachments and specially the reaction forces acting on the head of the
person, what can be a very important conception factor.

We can see the final state of the inflated lifejacket in the image 7.14; and if we set
the same scale for the Mises stress that we had previously had set for the simulation of
only the inflation of the lifejacket (figure 7.15), we can observe that the solicitations are
quite different within usage conditions compared to those obtained without considering
the mannequin porting it.
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Figure 7.11: Contact test consisting in the inflation of a lifejacket placed on a rigid portion
of cylinder and virtually attached to it

7.5 Conclusions and discussion

In this chapter, we proved the applicability of the presented dynamic relaxation methods
to the form-finding of a commercial inflatable lifejacket. Also, by using the created man-
nequin and considering the contact mechanics, we have been able to observe the different
behavior of the lifejacket when it is worn by a person. Therefore, some results that can
be very interesting for the conception phase in the industry can be observed here.

Taking the contact mechanics into account within the simulation of inflation of the
lifejacket is an important as well as difficult task, specially the management of the contact
parameters, but we proved that we succeeded on this.
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Figure 7.12: Contact test consisting in the inflation of a lifejacket placed on a deformable
portion of cylinder and virtually attached to it
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Figure 7.13: Simulation of the inflation of a commercial lifejacket inflating while worn by
a person
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Figure 7.14: Final form of the lifejacket when it is attached to the mannequin

Figure 7.15: Comparison of Mises stresses when the lifejacket is just inflated, and when
it is inflated being worn by the mannequin (Note: elements under stresses higher than 17
MPa are hidden)
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Chapter 8

Water modelling

8.1 Introduction

The numerical simulation of a mannequin that falls into water includes, obviously, a
component of fluid dynamics. However, fluid dynamics is a very wide field, and a deep
study of this part of the simulation could be the subject of a whole thesis itself.

The aim of this chapter is just to present a first approach to the study of the influence
of the forces acting on a body that falls freely into water.

In the context of a simulation to test the operation of a lifejacket worn by a person
that falls into water, a correct modeling of the hydrodynamic forces is the key to obtain a
realistic and reliable result, since there are several parameters that will be influenced by
these forces: the mannequin’s speed inside water, the depth it will reach, the lifejacket’s
inflation time, and finally (and as a result of all these parameters), the time needed for
the mannequin to get back to the water’s surface. However, it is not our aim to reproduce
exactly the reality. As it was indicated in the general introduction of this thesis, the aim
is to have a numerical tool that takes into account the approximative different physical
phenomena involved and that can serve to obtain tendencies of behavior of each conceived
lifejacket model.

A first work on the modeling of water forces had been presented by Troufflard [79].
To calculate the behavior of a body inside water, it would be necessary to determine the
efforts applied by the water by means of a fluid/structure interface. The usual procedure
for this is to define the fluid domain around the studied body. However, in this case the
simulation starts with the body outside the water, so it would be necessary to redefine the
fluid frontiers during the calculation, while the dummy is immersing into water, and that
would be very difficult. Also the needed calculation time using a fluid/structure interface
would be high. Finally, the developments to include this kind of interface in Herezh++
would be long.

Due to all this, it has been decided to calculate the efforts produced by water on each
of the finite elements’ external faces of the body. The idea is then to represent the
hydrostatic and hydrodynamic efforts by forces acting in the surface of the mannequin’s
mesh.
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The main difficulty of this task is that almost all the literature focuses in the pursuit
of reducing the hydrodynamic forces, and proposes and analyses mainly aerodynamic
shapes; but we could not find studies that could be directly exploitable for geometries
such as a lifejacket’s one. This means that in this first approach we can only propose
what we think is a good modeling of these efforts.

In the following sections, the different efforts that we considered to be relevant will be
presented: hydrostatic pressure, hydrodynamic forces and the force of impact with water.
Also, an introduction will be made to the concept of added mass.

8.2 Hydrostatic pressure

In equilibrium, at every point in a fluid, the hydrostatic pressure is given by the weight
per unit of area of the column of fluid above it, plus any eventual pressure acting on the
surface of the fluid.

Therefore, in our particular case study of a person who falls into water, this is the
force that will push the person upwards. Pressure acts perpendicularly to all the body’s
surfaces, but it is bigger in the surfaces that are deeper in the water. To justify this, let’s
apply Newton’s law for a body inside a fluid:

ρa = fpressure + fgravity + fviscous = −∇p + ρg + µ∇2V (8.1)

where ρ represents the fluid’s density, g represents the gravity, µ is the coefficient of
viscosity, and V and a represent velocity and acceleration, respectively.

If we forget about the speed and acceleration and we focus in the hydrostatic problem,
the equation (8.1) becomes:

∇p = ρg (8.2)

The general solution for this hydrostatic problem is [122]:

p2 − p1 = −
∫ 2

1

γdz (8.3)

where 1 and 2 are two points of the body’s surface, located at different heights z1 and
z2, respectively (see figure 8.1). P1 and P2 are the pressures at these points, and γ is the
specific weight of the fluid.

Considering that liquids are nearly incompressible, we can neglect density variations
(actually, water density increases only around 4.5% at the deepest part of the ocean).
With this assumption of constant density, we have then:

p2 − p1 = −γ(z2 − z1) ⇒ p2 = p1 − γ(z2 − z1) (8.4)

Since z2 is placed deeper than z1, being the free surface of water considered as the
reference of height, the term (z2 − z1) will be negative, and then −γ(z2 − z1) will be

122



1

2

P1

P2

Z2

Z1

ρ’

ρ

g

Figure 8.1: Scheme representing the parameters for the calculation of hydrostatic forces

positive, so p2 is always bigger than p1 and the resultant pressure on the body will push
it upwards.

The hydrostatic pressure has already been implemented in Herezh++. To define the
hydrostatic pressure, three parameters need to be defined:

• Specific weight. It is the result of multiplying the density and the gravitational
acceleration. The fluid studied in this work is water, but, even if slightly, its prop-
erties can vary depending on its temperature and salinity. Since the simulation of
our case study intends to consider sea water, in the literature we can find its spe-
cific weight, for example in the book from F. White [122] (see table 8.1). Thus, we
consider γ = 10.05 N/m3

• Position and orientation of fluid surface: Defined by means of a point belonging
to the surface and a normal vector. It could be even possible to define a function
instead of a point’s coordinates, what would allow to simulate waves, for example,
if the surface follows a sinusoidal movement.

• Application area: The external surface of the mannequin (what will be in contact
with water) must be referenced here1.

8.3 Hydrodynamic forces

Apart of the hydrostatic pressure, when a body is traveling at a speed V through a real
fluid initially still, it suffers from the fluid a resistance which opposes the movement.

1Herezh++ has a function to automatically create a reference that includes all the external surfaces
of a body
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Table 8.1: Table showing the specific weight of different fluids at 20 ◦C [122]

Newton concluded, in a qualitative study, that this resistance should be proportional to
ρSV 2, being ρ the density of the fluid, V the body’s speed, and S the projected frontal
surface [117].

This resistance offered by the fluid can be considered as a resultant force. The compo-
nent of this resultant force that is parallel to the free-stream velocity is called the drag
force. The drag is a flow loss and must be overcome if the body is to move against the
stream. Similarly, the lift force is the component of the resultant force that is perpen-
dicular to the free stream [121]. In our particular case study, these forces will tend to
decelerate the mannequin when it falls into water, and then, they will offer a certain
resistance for it to get back to the surface. As Newton suggested, these forces depend on
the velocity, so they will be more important during the fall.

The hydrodynamic forces and moments on the body are due to only two basic sources
(independently of the complexity of the morphology of the immersed body):

• Pressure distribution over the body surface

• Shear stress distribution over the body surface

The only mechanisms nature has for communicating force to a body moving through a
fluid are pressure and shear stress distributions on the body surface. Both pressure p and
shear stress τ have dimensions of force per unit area; p acts normal to the surface, and τ
acts tangential to the surface. Shear stress is due to the ”tugging action” on the surface,
which is caused by friction between the body and the fluid [119].

The different forces that can be found in a body which is displacing through a fluid are
shown in the figure 8.2.

The most important force is the form drag. The form drag or pressure drag, arises
because of the form of the object. Size and shape of the body are the most important
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Figure 8.2: Forces and moments on a body immersed in a uniform flow [122]

factors in form drag (the larger the apparent cross-section, the higher the drag). [123]
Form drag follows the drag equation:

FD =
1

2
ρV 2CDA

where:

• FD is the force of drag (force component in the direction of the flow velocity)

• ρ is the mass density of the fluid

• V is the velocity of the object relative to the fluid

• A is the reference area, and

• CD is the drag coefficient, a dimensionless constant

The reference area A is defined as the area of the orthographic projection of the object
on a plane perpendicular to the direction of motion. Due to this, A can be much larger
than the area of any cross section along any plane perpendicular to the direction motion.
Looking at the equation it can also be observed that the fluid drag increases with the
square of velocity.

In low speed flows, the drag coefficient should be a function of the body Reynolds
number

CD = f(Re)
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The Reynolds number is a function of the free-stream velocity V and a characteristic
length L of the body, usually the length parallel to the stream (we consider low Re
numbers in order to simplify the problem):

Re =
V L

v

Drag coefficients are defined by using a characteristic area A which may differ depending
upon the body shape:

CD =
drag

1
2
ρV 2A

The area A is usually one of three types:

• Frontal area, the body as seen from the stream; suitable for thick, stubby bodies,
such as spheres, cylinders, cars, missiles, projectiles, and torpedoes.

• Planform area, the body area as seen from above; suitable for wide, flat bodies such
as wings and hydrofoils.

• Wetted area, customary for surface ships and barges.

Theory of drag is weak and inadequate except for the flat plate. This is due to the flow
separation. Boundary-layer theory can predict the separation point but cannot accurately
estimate the pressure distribution in the separated region. The difference between the high
pressure in the front stagnation region and the low pressure in the rear separated region
causes a large drag contribution called pressure drag. This is added to the integrated
shear stress of friction drag of the body [122]:

CD = CD.press + CD.fric

Their relative contribution depends upon the body’s shape, especially its thickness.
Since the aim of this work is not to make an exhaustive study of the hydrodynamics in
the simulation, we will use the CD proposed by F. White [122], showed in the table 8.2.

It also can be observed that there is a different CD for each of the orientations of the
person in the flow (vertical or horizontal). In Herezh++, a solution to manage this could
be to compare the direction of the movement with the orientation of the body, and then
interpolate between the two available values to obtain the ”real” CD.

Concerning the lift force, analogous to drag force, can be defined as:

L =
1

2
ρV 2ACL (8.5)

where CL is the lift coefficient. Its value is the ”complementary” value of CD. For
example, looking at the values indicated in the table 8.2, if CD = 9ft2, then CL = 1.2ft2,
and vice-versa.
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Table 8.2: Drag of three-dimensional bodies in a turbulent flow [122]

The hydrodynamic loading has also been implemented in Herezh++, and it includes
both drag and lift forces, and also a force due to the shear (to use when this part is very
important, such as in the case of liquid polymers). The parameters to be defined are the
following:

• A reference for all the body’s external surfaces (similar to the case of hydrostatic
pressure).

• The drag coefficient CD

• The lift coefficient CL

• The fluid’s density

8.4 Added mass and impact force

Besides hydrostatic pressure and hydrodynamic forces, there are another phenomena that
could be considered, but that escape the aims of this work. One of this phenomena is the
added mass. Added mass is a concept used in hydrodynamic engineering, and it is applied
to objects accelerating through liquids, and is a direct link to how much the liquid resists
the acceleration (the objects inertia).

127



Explained with an example [110], we can imagine a box down into the sea. To be able
to move the box up and down, it is necessary to overcome both the water’s friction along
the sides of the box (drag; dependent on velocity), but it is also necessary to move the
water at the top and bottom of the box (added mass; dependent on acceleration). What
happens in practical terms is that when the box is moved down, a lump of water becomes
part of the object and moves with it, while water flows around the box and this enclosed
water. This enclosed water is called added mass, and it affects the inertia of the object.
If an object has a large body of added mass one needs to spend a much larger force to
achieve the same acceleration:

F1 = m1a1

F2 = (m1 + m2)a2

a1 = a2 => F2 = F1

(

1 +
m2

m1

)

where m1 is the object’s mass, and m2 is the added mass.
The size of the added mass (the enclosed area) depends much on the geometry of the

object. For example, a suction anchor will have a large added mass as it encloses much
water inside its bucket, while a streamlined object will have nearly zero added mass,
because there is little for the water to hold on to.

However, even if this effect could be have some importance in our case study, it would
require a long development to make a full study of added mass, and it might require
a fluid/structure interface, what escapes the aims of this work (simplicity and small
calculation times).

8.4.1 Impact force

Up to this point, only two forces were considered acting in the interaction between water
and the mannequin: the hydrostatic pressure and approximated hydrodynamic forces
(several assumptions are made to be able to use basic theoretical equations, such as
uniform fluid around the body, no losses due to bubbles, etc).

When we carried out the first simulations of an object falling into water in Herezh++,
we realized that the mannequin felt very deep into the water. This could be due to our
simplifications, but also to some important phenomenon or force that had not been taken
into account. It was not being considered another factor that might be important: the
impact of the body with water. This impact could generate important forces that could
change the ”initial conditions” when the body enters into water (a sudden deceleration
occurs, and then the velocity inside water would be inferior).

Studying this phenomenon is very complex and even if existing, we were not able to
find any works studying the efforts appearing when a person impacts with water. The
most similar works found were concerning naval engineering, to study the impact of ships’
forebody with water, phenomenon known in literature as slamming.
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The objective in this part is to find an estimation of these impact forces. We only
intend to find a force in the order of magnitude of the real one, and not precise values,
since it would be very long and complex, and also very time-consuming in the simulations,
all according to the existing literature.

8.4.1.1 Slamming

According to Constantinescu [114], the slamming phenomenon designs the impact that
takes place between a solid body and the free surface of water, being the interaction
duration very short. This impact is a highly non-linear and random phenomenon, and
it can depend on several impact conditions (direction, speed of impact, shape of the
body,...), among other phenomena which can occur (air traps, waves, etc).

The resultant hydrodynamic force of the slamming exhibits a characteristic time history.
While the drop velocity decays, causing a decrease of the slamming pressure, the wetted
area increases, creating an opposite effect. The force increases from its initial zero value
to a maximum hydrodynamic force F ∗ at a time t∗. Later, the velocity reduction effect
definitively prevails and the hydrodynamic force is progressively reduced to zero. The
resultant non-dimensional curve is shown in the figure 8.3.

Figure 8.3: Non-dimensional time history of the hydrodynamic force [112]

Slamming has been studied especially in naval hydrodynamics. Pioneering research
has been carried out by von Karman and Wagner. The first studies were interested on
the loads on seaplane floats. Later on, the slamming has been studied in ship design,
especially in the case of flat bottoms of large ships (such as oil tankers); and nowadays
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the interest concerns fast ships where light structures impact at high speed on the rough
sea with a high frequency of impacts emphasizing the fatigue damage to the materials
[112].

The main difficulty of the study of slamming lies in the fact that boundaries of the dif-
ferent domains (solid, fluid and air) are unknown in advance and they must be considered
as well as unknowns in the problem. We are not going that deep in this thesis, but it’s
worth mentioning and discussing some of the findings for possible future works.

First studies of slamming phenomenon The first studies of slamming lead to the
work of von Karman, who worked on a 2D model of a dihedral for simulating the pressure
exerted in the floats of hydroplanes during the water landing. He proposed the following
expression for the impact force [124]:

F =
v2

0cotβ

(1 + ρπd
2m

)3
ρπd

where m is the mass per length unit, β is the incidence angle, and v0 is the speed
just before the contact. Note that he took into account the added mass, by considering
that it should be included in the global formula (ma = 1

2
πρd2, with d being the wetted

half-length). Thus, the expression of the maximum pressure that he proposed was:

Pmax =
ρv2

0

2
πcotβ

where the first part (
ρv2

0

2
) represents the dynamic pressure corresponding to the speed

v0, the second part (πcotβ) is a theoretical factor. In his model, Von Karman neglected
the increase of the wetted surface, and it is suitable for big angles of incidence β.

While Von Karman is considered the pioneer in the study of slamming, Wagner is con-
sidered a reference. Wagner is the formulated a more realistic model for the hydrodynamic
impact theory, also suitable for small angles β. Opposite to Von Karman, Wager supposes
that the wetted surface and the added mass must be bigger during the impact.

Wagner studied the water impact on rigid two-dimensional bodies by approximating
the bodies with a flat plate and taking into account the water uprise on the body in a
simplified way. What he did was a linearization of both the wetted and free surface, that
are projected on the initial free surface at rest. Because of the blunt body approach, the
bodies are assumed to have small deadrise angles in the range of 4 up to 20 degrees [125].
When deadrise angles are smaller than 4 degrees, an air cushion is formed, which reduces
the pressure on the structure and as a result, Wagner theory overestimates the pressure
by a large margin [113]. In fact, Wagner’s model, in its original form, predicts both
infinite pressure and speed in the surroundings of the contact point. Some corrections
were proposed by other researchers to solve this problem in following works.

General assumptions in slamming phenomenon Usually, in the study of slamming,
due to the complexity of the problem, some basic assumptions are made at the beginning
of the impact:
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• Gravitational acceleration is negligible compared to the deceleration of the impacting
body. Therefore, gravity is often neglected.

• The acoustic pressure pac = ρcv is more important than hydrodynamic pressures
occurring. Consequently, the fluid can be considered as incompressible.

• Times are considered shorts, so the boundary layer, with a thickness e =
√

vt,
doesn’t have time enough to be developed (being ν the cinematic viscosity). The
fluid can be considered as perfect.

• The flow is irrotational in the beginning of the contact, and it stays similar in the
following.

• The thickness of the body is big enough to neglect superficial tension in the fluid
[113].

• In works where the sea is concerned, the volume of fluid is big enough to neglect the
border effects.

• Another consideration concerns the water jet in the moment of the impact. The
jet appearing in the impact of a body into water is neglected. This hypothesis is
admissible in the sense that the contribution of this jet to the efforts applied to the
impacting body are negligible. Also, just a little fluid is ejected in the jet. Anyway,
the ejection speed is very high, so from an energetic point of view, the jet should be
maybe taken into account [114]. In the case of this work, we are just interested in
the efforts applied on the body, so we consider this assumption as valid.

• Generally, slamming theories don’t consider the eventual existence of air in the im-
pact zone. But in reality, due to the small angles β it exists an air layer between the
body and the surface of water. The presence of prisoned air carries to a diminution
of the pressure level and decreases this way the negative effects of slamming. Conse-
quently, the presence of air has a very important role in these slamming phenomena.
According to the bibliography, the effects of air compression appear for very small β
angles. Wagner theory seems no be not valid in the case of β < 4◦ [114]. However,
some researchers, such as Bagnold [116], developed theories taking this effect into
account. His model supposes the existence of a layer of air, having a damping effect,
as shown in the figure 8.4

Recent works in slamming As mentioned previously, the studies of slamming be-
gun around 1931 with the works of Wagner. Even nowadays, works concerning this
phenomenon still study the 2D case, trying to find a fast way to calculate the pressure
distribution in the impact considering the variation of the wetted surface. The study of
the impact in 3D begins in the extension of Wagner’s work with axisymmetric bodies.
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Figure 8.4: Bagnold’s model [114]

These cases could be solved by two-dimensional theories of slamming. Some authors de-
veloped a 3D theory from the 2D model of Wagner. There is a classification for the study
of different categories of slamming of flat structures [114]:

• Impact type Wagner, for the penetration of inclined flat bottom. This kind of
slamming is typical in slow-speed ships.

• Impact type Bagnold, for a vertical penetration (β = 0). Important effects of
compressibility are observed in this case.

• Impact type Wagner for perpendicular entering (β = 0). Small effects of air com-
pressibility are observed. This kind of slamming is just observed for high-speed
ships

A bibliographic review shows that for the three-dimensional case, theoretical aspects are
far from being solved. The 3D analysis use 2D models empirically corrected (axisymmetric
models). This kind of solutions are needed because the numerical 3D simulations are still
limited by the huge deformations of fluid’s mesh [114].

Carcaterra and Ciappi [112] carried out impact tests in order to validate their analytical
model, using a rigid structure (dihedral angle β = 30◦). They measured the historical of
the effort during the impact and the elastic response of the system. To avoid tridimen-
sional effects, the geometric characteristics of the structure respected certain conditions.

Malleron [115], in his thesis work, uses the generalized Wagner model to precisely study
the impact of rigid sections of arbitrary shape sections (symmetrical or not) into a fluid
surface. This method allows to avoid the hypothesis of small angle established by Wagner.
But he still works with the 2D case, and he indicates that to extend the application to
three-dimensional bodies, the first task would be the study of axisymmetric bodies, which
would permit to simplify the problem just considering the generator defining the body.

Hydroelastic coupling in slamming The main difficulty of coupling is that the struc-
ture deformation must be calculated at the same time that the hydrodynamic problem
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unknowns (local loadings and wetted surface). So, even if the hydrodynamic model is
linearized, the problem keeps highly non-linear.

Calculations carried out by Malleron [115] indicate that while calculation times for
rigid bodies are made in around one minute, for hydroelastic bodies, they rise to the
order or hours. It is due to this that in the present work, as we told previously, we are
not interested in a ”deep” study of the hydrodynamics efforts.

Slamming applied to the mannequin’s simulation Seen the slamming phenomenon,
it can be thought that something similar occurs when a person impacts into water. Of
course, the complexity in the case of a human body shape is much higher. In most of the
slamming works, the case considered is two-dimensional, and even symmetrical. There
are just a few researchers who worked with three-dimensional models, but almost all of
them were axisymmetrical.

Also, all the seen works concerning slamming made some assumptions that are not
directly applicable to the case of the mannequin, such as a small incidence angle (β); in
our case, this angle is random, because the mannequin can fall in any position, and the
mesh elements can impact against water with any angle. It is also possible that due to the
complex body’s shape, they appear air traps, being the pressure distribution importantly
modified.

Since this work’s aim is not to make a detailed study of fluid mechanics of the fall
into water, but to seek for a trend in the simulation tests, the path to follow will be to
estimate an impact force based on the theoretical and experimental works found. Two
options matched our requirements of simplicity (in terms of ease of implementation in our
FE software) and were finally considered: von Karman’s proposal and Carcaterra’s one.
Von Karman’s has already been presented previously, and we will present Carcaterra’s
proposal in the following.

8.4.1.2 Impact force by Carcaterra [112]

Carcaterra considered a rigid-body impacting the water surface with a given initial veloc-
ity. He found that hydrodynamic force exhibited the characteristic time history shown in
the figure 8.3. His theoretical model was the shown in the figure 8.5.

where ζ is the depth (postivie downward), SF is the free water surface and SB the
water-body interface, and the angle β is assumed to be small.

In his analysis, Carcaterra, makes an analytical development and he obtains the maxi-
mum impact force F ∗ and the time t∗ when it occurs (see figure 8.5):

F ∗ = Fh(ζ
∗) =

(

5

6

)3
v2

0

tanβ

√

2π

5
ργ2m (8.6)

t∗ = t(ζ∗) =
16

15

√

2m

5πργ

tanβ

v0

(8.7)
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Figure 8.5: Sketch of the section and definition of the principal parameters [112]

and

ζ∗ =
15

16
v0t

∗ (8.8)

where ζ∗ is the depth at which the maximum occurs.

Finally, simple mathematics leads to F ∗t∗ = 20
81

mv0 ≈ 0.247mv0.

Also, Carcaterra proposed to use a suitable non-dimensional form of the hydrodynamic
load. Rewriting in terms of non-dimensional variables: t̃ = t/t∗, ζ̃ = ζ/ζ∗, F̃h = Fh/F

∗,
the hydrodynamic force takes the form below:

F̃ (t̃) =
81

20b

[

2

2 + ζ̃2/b

]3

ζ̃

ζ̃(t̃) = − 2
√

2γ/5Q1/3
+

Q1/3

√

2γ/5

Q(t̃) = 3at̃

√

8 + (3at̃)2

a =
√

2γ/5
16

15
, b =

5

2

(

15

16

)2

(8.9)

In the analysis made by Carcaterra, γ is constant and has a value γ = π/2. However,
more accurate investigations of this point show that this is accurate only when the deadrise
angle tends to zero.

With this non-dimensional equations, a single time history of the hydrodynamic force
is determined, being each possible impact case determined by suitably scaling the force
and time axes. The curve given by these equations is the one presented previously (8.3).
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8.5 Conclusions and discussion

Hydrostatic pressure and hydrodynamic forces have ben successfully implemented in
Herezh++ and the different simulations present that a body defined to be inside water
behaves in a way close to reality (results are not presented here since it can be appreciated
only in animations).

However, concerning the impact forces, we did not get to good results. Using either
formulae or Von Karman’s model could be a good choice because they seem easy to apply
them directly to our case (just by substituting parameters), but the necessary assumptions
in our case induce to think that maybe the result would be inexact: both Von Karman
and Carcaterra work in 2D, with a small deadrise angle, without considering air traps,
etc, and as mentioned previously this features could have a big influence in the impact
force. Also, a first approximation was tried to be made substituting the parameters in
the equations by ours, and the maximum force obtained was too high (order of tens of
kN).

Therefore, further studies and improvements must be made in this field. However, we
consider that the impact force is important only if we need to carry out a simulation
that reproduces reality, what is not the aim: the aim is to see the different behavior of
lifejackets’ concepts; and since most of the times the lifejacket is folded when the person
enters into the water, the behavior of the lifejacket can only be seen when the person
is already inside water. The simulation could be therefore started from this point: a
mannequin inside water, that can be placed at random chosen depths and orientations.
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Chapter 9

General conclusion and perspectives

9.1 Conclusions

The background of this work was the contribution to the creation of a numerical tool
usable in the industry that allowed to test the behavior of different inflatable lifejacket’s
models in their usage conditions, i.e., when a person falls into water and it inflates to
provide a buoyancy aid. With that objective in the background, several developments
where made in different fields of the simulation.

The main contribution of this thesis is made in the field of form-finding of inflatable
structures. Particularly, an exhaustive study of dynamic relaxation (DR) has been made.
Two scientific papers are presented on this subject; a first one where two new proposals of
dynamic relaxation with kinetic damping are made; and a second one where a comparison
of different dynamic relaxation methods in the field of form-finding of inflatable structures
is made (including our presented new proposals).

In the first paper, our first proposal was an extension of the DR method proposed by
Barnes, Han and Lee. The advantage of our proposal is the wider range of applicability:
while Barnes-Han-Lee proposed a DR method usable with triangular elements in elastic
behavior, we proposed a modification of their method that showed efficiency with any
kind of element (2D or 3D, with linear or quadratic interpolation) and any reversible
behavior. Also, using an incremental formulation, we proved that it could be an useful
alternative to the classic Newton’s method in the cases where instabilities are found. Our
second proposal was based on the works of Underwood and its efficiency and reliability
has also been proved.

In the second paper, our two proposals were compared with some relevant existing
methods in the literature (from the earlier works of Underwood to the latest developments
found in DR). Therefore, after a full review of the existing literature, we worked on several
case studies. Our proposals proved to have an efficiency similar to the existing methods,
and even better under certain conditions.

By means of an image correlation software (Aramis) and a simple inflatable air bag,
we made a rough comparison between the inflated final form of the real air bag and the
result of our simulations when using DR methods. Despite of the different limitations in
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the setup of the experimental 3D measuring, a good correlation between simulation and
reality has been shown.

Also, some tensile tests have been made on the technic textile used by Plastimo in the
manufacturing of their lifejackets. The aim was to observe the behavior of the technic
textile. In the different tests made, we could observe that an elastic behavior could
be not enough to describe the real behavior. We have put in evidence the existence of
hyperelasticity, viscosity and an orthotropic behavior.

In order to contribute to the creation of the numerical tool permitting to test the
behavior of the lifejackets’ conceptions, a parameterized human body model has been
created. The creation procedure in C++ has been described in detail. The aim was to
obtain a simple human model made with the lowest possible amount of finite elements
(in order to have fast calculations). The created model has only 156 elements that, by
means of some introduced parameters, can be given any shape, being virtually possible
to model any kind of human shape.

The simulation of the inflation of the commercial lifejacket has been presented. A
good correlation with the real final inflated lifejacket could be observed. The studied DR
methods have shown once again their correct functioning when dealing with a complex
shape. Also the contact mechanics in Herezh++ have been studied, carrying out the
simulation of different case studies, in order to test the good working. Finally, and as
the final application, we attached the lifejacket to the previously created mannequin, and
we carried out the inflation of the lifejacket. That simulation allowed to observe that the
stress distribution on the lifejacket is very different when it is worn by a person than when
it is just inflated. Having succeeded with this simulation proves that it is also possible to
approximate the reaction forces that the lifejacket exerts on the person wearing it.

Finally a first approach to water dynamics has been made. The hydrostatic pressure
and basic hydrodynamic forces already implemented in Herezh++ have been successfully
tested. We also introduced another different problem, that is the impact with water,
presenting a compendium of some relevant studies on it.

9.2 Perspectives

Academic perspectives

In the study on DR method, future research will be made in order to validate the pre-
sented DR proposals when using different complex laws of behavior (with non-reversible
behaviors e.g. elasto-plasticity, viscosity, etc). This is a work that we plan to do in a
short term.

Also, In the case of the 3D measuring, the limitations can be tried to be overcome,
by conceiving an appropriate support for the air bag. Better results can probably be
obtained in this case that allow to compare simulation and reality. The final aim would
be to compare the transient part of the inflation, by using the DR methods combined
with an incremental formulation (to obtain different stages of the inflation).
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We showed the complex behavior of the technic textile. Therefore, a complex be-
havior describing this could be implemented in Herezh++ in order to obtain simulation
results closer to the real behavior of the textile. Also, it could be a good idea to make
tests at different controlled temperatures, with the aim of checking the behavior under
the influence of higher temperatures. It is currently possible to model in Herezh++ a
visco-hyperelastic behavior with temperature-dependent parameters, what would proba-
bly improve the transient part of the simulation. In order to use this model, it would be
necessary only to identify the parameters.

A deeper study of water dynamics could be made, or even the possibility of doing
a coupling fluid-structure could be studied. However, this would make the simulations
considerably longer. This way, the impact force between the person and the water could
be probably better studied.

Industrial perspectives

We are currently working on tests that try to simulate the mannequin inside water wearing
the lifejacket that inflates, to observe its behavior and how it floats back to the surface.

The parameterized mannequin could be improved by studying the articulations in a
different way. Probably considering the modeling of an internal ”skeleton” that managed
the kinematics, so that the external surface of the body acted only as the ”interface”
with the environment. Another point to work in is the behavior of the mannequin. For
the moment, and approached behavior has been defined for it; however, on this behavior
depends the deformation of the mannequin with the lifejacket. It would be probably
interesting to have several different behaviors; a first one that concerns the most external
part of the mannequin that would allow to obtain realistic local deformations; then,
another layer of elements that would manage the global deformations. However, the aim
is not to obtain a very realistic mannequin, but a global behavior close to reality, and
locally exact in order to check the influence of the lifejacket on it.

Concerning the simulation of the lifejacket, a next stage of improvement could be the
integration of self-contact in the software with the aim of being able to fold the lifejacket
and therefore simulating its deployment.
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Annexes

Appendix A: Calculation of radius and thickness of a

inflated sphere by means of Scilab

//RADIUS AND THICKNESS RESOLUTION

//Variables initialization

r = 300;

nu = 0.41;

P = 0.01;

e = 0.27;

E = 150;

//The new radius after deformation will be denoted as r2 (initial value r)

r2 = r;

//The new thickness will be denoted as e2 (initial value e)

e2 = e;

//Definition of a epsilon for the error (looking for a good precision)

tol = 10**(-12);

//Definition of a maximum number of iterations (in case of divergence)

nmax = 100;

//Radius error verification variable initialisation

v1 = 1;

//Thickness error verification variable intialisation

v2 = 1;

//Counter initialisation

n = 0;

//Definition of the values X(i) initially:

Xi = [r ; e];
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//Definition of a vector to check the precision by the residual and

//initialization of the variable containing its maximum value

deltaXi = [0. ; 0.];

maxresidu = 1000000;

//Calculate all in this boucle. Do it while the error in radius and thickness

//is superior to our epsilon, the iteration number is inferior to the

//stablished max and the relative residual is superior to the specified

//tolerance

while (maxresidu > tol & v1 > tol & v2 > tol & n < nmax),

//Definition of rigidity matrix:

K = -[ ((r**2)/(r2**3))-((1-nu)*P)/(2*e2*E), ((1-nu)*P*r2)/(2*E*e2**2) ;

-(P*nu)/(E*e2), -e**2/e2**3 + (P*nu*r2)/(E*e2**2)];

//Calculation of the inverse of matrix K:

Kinv = inv(K);

//Definition of residual

R = [(1/2)-((r**2)/(2*r2**2))-((1-nu)*P*r2)/(2*e2*E) ;

((e**2)/(2*e2**2))-((P*nu*r2)/(E*e2))+(0.5*P/E - 1/2)];

//Calculation by Newton of the new values X(i+1) of radius and thickness:

deltaXi= Kinv*R;

Xi = Xi + deltaXi;

//Verification of precision using the values stored in vector Xi:

v1 = abs(deltaXi(1,1)/Xi(1,1));

v2 = abs(deltaXi(2,1)/Xi(2,1));

//Iteration number increment

n=n+1;

//Asignment of new values for radius and thickness to continue iterating

r2 = Xi(1,1);

e2 = Xi(2,1);

//Relative residual calculation for stopping criterion

maxresidu = abs (max(R))/r;
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end;

//Display of results:

disp(’Final solution of [r2; e2]:’);

Xi
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TEXTANE A/B 210 (240 g) XF 
Temporary data sheet 
 

product manufactured and tested in compliance with en 393÷396 and 399. “In any case, the above mentioned fabric remains subject 

to test and checks as requested for the verification of the strength of inflatable life jackets and personal buoyancy aids” 

 

1 - MATERIALS 

INNER COATING PU ether 100% (extrusion process) 

hydrolysis, low temperatures and 

hydrocarbons resistant 

low gas permeability 

weight   ≥ 110 g/m2 

ADHESIVE PU ether 100% (spreading process) 

hydrolysis, low temperatures and 

hydrocarbons resistant 

weight   ≥ 10 g/m2 

FABRIC Nylon 100% 

width 150±2 cm 

rubbing dry and wet ISO 105 X 12 1987 

minimum class 3  - test in process 

sea water resistance ISO 105 E02 1989 

minimum class 4 – test in process 

warp 

ends 27/cm ± 2 cm 

 

weft 

picks 21/cm ± 2 cm 

 

TOTAL WEIGHT  240 ± 7% g/m2 

 
2 - TECHNICAL DATA VALUES VALUES 

BREAKING STRENGTH 

ISO 1421 CRT 4.3.2.e 
warp 

≥ 1000 N/5cm 

weft 

≥ 750 N/5cm 

BREAKING STRENGTH 

WET 1 DAY ISO 1421 CRT 4.3.2.f 
warp 

≥ 850 N/5cm 

weft 

≥  600 N/5cm 

ELONGATION AT BREAK 

ISO 1421 CRT 4.3.2.g 
warp 

•  60% 
weft 

•  60% 

ELONGATION AT BREAK 

WET 1 DAY ISO 1421 CRT 4.3.2.h 
warp 

•  60% 
weft 

•  60% 

DOUBLE TONGUE TEAR 

ISO 4674 METHOD A1 
warp 

≥ 40 N 

weft 

≥ 36 N 

COATING ADHESION 

(RF WELD) FILM TO FILM ISO 2411 

 

≥ 150 N/5 cm 

 

COATING ADHESION 

(RF WELD) FILM TO FILM 

WET 14 DAYS - 70 C° ISO 2411 

 

≥ 50 N/5 cm 

 

RESISTANCE TO FLEXING ISO 7854 

METHOD A 

Test in process  

 
* Please note that listed values are “typical (average) values” 
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Via Massari Marzoli, 7 bis - Zona Industriale sud ovest - 21052 Busto Arsizio (VA) - Italy 

Tel. +39 0331 341913 - Fax +39 0331 341921 - info@solter.it 
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