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vi INTRODUCTION

This dissertation is made up of two disjoint parts. In the first part, we
introduce a generalization of the Laplace operator to Finsler geometry and start
its study. In the second part we concentrate on the study of periodic orbits of
Anosov flows in 3-manifolds.

Finsler Geometry and Laplacian

Finsler geometry has always been in the shadow of Riemannian geometry.
Yet it was introduced by Riemann himself in his famous 1854 “habilitationss-
chrift” in Gottingen. Riemann realized that the minimal condition to obtain an
integral notion of length on a manifold was to equip the tangent bundle with a
family of norms. Unfortunately, Minkowski’s work on convex geometry was still
40 years away, and the norms not obtained from a scalar product were not well
understood. Riemann abandoned the general case with these words:

Die Untersuchung dieser allgemeinern Gattung wiirde zwar keine

wesentlich andere Principien erfordern, aber ziemlich zeitraubend
sein und verhéltnissméssig auf die Lehre vom Raume wenig neues
Licht werfen, zumal da sich die Resultate nicht geometrisch aus-
driicken lassen; [101]
The investigation of this more general kind would require no really
different principles, but would take considerable time and throw little
new light on the theory of space, especially as the results cannot be
geometrically expressed’;

It was only in 1918 that, under the direction of Carathéodory, Paul Finsler
studied the general case during his Ph.D. [57] and laid the basis of this theory.
Nowadays, Finsler geometry is relatively well understood but many Rieman-
nian problems still await their Finsler equivalent. One problem that came up
frequently in the past years was the development of global analytical tools.

In Riemannian geometry, the Laplace-Beltrami operator on a Riemannian
manifold has long held its place as one of the most important objects in geo-
metric analysis. Among the reasons is that, its spectrum, while being physically
motivated, shows an intriguing and intimate connection with the global geom-
etry of the manifold.

In the first part of this dissertation, I introduce a dynamical generalization
of the Laplace operator to Finsler geometry. Note that it is not the first gen-
eralization; Bao and Lackey [15], Shen [102] and Centore [36] all gave different
definitions. But as the Laplace—Beltrami operator admits several equivalent def-
initions, it is not very surprising that generalizations of different definitions give
different operators. We will see that ours produces a linear, elliptic, symmet-
ric, second-order differential operator and is sufficiently simple to allow explicit
computations of spectra. I also hope that the reader will be convinced that our
definition is natural.

Geodesic flow and Hilbert form

Let us start by introducing the main notions used here.

1. Translated by William Kingdon Clifford [40]
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A Finsler metric on a manifold M is a smooth collection of strongly convex,
not necessarily symmetric, norms F(x,-) on each tangent space T,M; here,
strongly convex means that the Hessian of F?(z,-) is positive definite. Note
that, as a norm is uniquely defined by its unit ball, we can also think of a Finsler
structure has a collection of open convex set on each tangent space containing,
but not centered at, 0 and such that the boundary of each convex set has a
definite positive Hessian. This strong convexity assumption might seem a bit
odd, but it is often necessary, for instance to obtain an equation of geodesics.

This notion of Finsler metric is probably the most common one, but unfor-
tunately also the most restrictive. In particular Hilbert geometries, which have
known a renewed interest in the past few years, are not included in this defini-
tion: Hilbert metrics are only C° out of the zero section. But in this dissertation
as often, a regularity at least C? is necessary. However, the smooth Finslerian
world is still much wider than the Riemannian one and rich in new phenomena
(see for instance [78] and [41] or the survey [3]).

There are many classical examples of Finsler metrics. A class that will play
a central role in this dissertation are the Randers metrics. These metrics have
many interests: they are physically motivated [95] and come up in many different
domains [11]. Moreover, they constitute one of the simplest classes of Finsler
metrics: they are just obtained by adding a differential 1-form to a Riemannian
metric, rendering their study tractable.

Our approach to Finsler geometry is due to Patrick Foulon: He introduced
[59] several tools that allow the study of the geometry via its dynamics, instead
of using connections and local coordinates, hence eliminating one of the most
common criticisms of Finsler geometry, i.e., too many indices.

The cornerstone of our study will therefore be the geodesic flow. Geodesic
flows traditionally live on the unit tangent bundle of the manifold; however, in
order to compare geodesic flows of different Finsler metrics, we will always see
them in the homogenized tangent bundle:

HM = (TM ~ {0}) /R*.

Another central object of our study is the Hilbert form A associated with a
Finsler metric; It is a differential 1-form on H M, obtained by taking the vertical
derivative of the Finsler metric. Thanks to the strong convexity hypothesis, it
is contact, i.e., if n is the dimension of M, then A AdA"~! is a volume on HM.
The link between A and the Finsler metric that will be most helpful to us is the
following;:

The Hilbert form A entirely determines the dynamics of the Finsler metric:
If we write X for the vector field generating the geodesic flow, then X is the
Reeb field of A, i.e., it is defined by the following equations:

AX)=1
ixdA =0
Foulon’s philosophy is to study Finsler geometry only via X, A and objects
built from them.
Finsler—Laplacian

As we already mentioned, there are several equivalent definitions for the
Laplace-Beltrami operator (see for instance [66]). Historically, it was defined
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on C? functions on R” as:

82
AJG) = 550

and this definition can be extended from R"” to a Riemannian manifold by taking
the x; to be normal coordinates at p for the Riemannian metric. An intrinsic
definition is given by taking the divergence of the gradient. And finally, the
Hodge Laplacian, acting on differential forms, is defined by dd + dd where § is
the co-differential.

We can see right now why different generalizations of this operator to the
Finslerian context could give very different operators. Consider the definition
given by the divergence of the gradient: The divergence of a vector field is
defined by taking the Lie derivative of a given volume; so it is not specifically
Riemannian. The gradient is not either: it is just the derivative of a function
seen as an element of the tangent, instead of the co-tangent. So an identification
between T'M and its dual T*M gives a gradient. And there is such a canonical
identification given by a Finsler metric: the Legendre transform (see 1.2 for
the definition). However, the difference with the Riemannian case is that the
Legendre transform is in general not linear. Hence, generalizing the Laplace
operator via this method gives a non-linear operator. It was done by Shen [102]
but as natural and interesting as it is, it is not what we were looking for in a
Laplacian.

Bao and Lackey [15] gave a generalization of the Hodge Laplacian and Cen-
tore [35] built an operator such that harmonic functions verify the mean value
property.

All these definitions rely on the choice of a volume on the manifold, which
can be a problem as there are several candidates in Finsler geometry (see for
instance [5, 29]).

In this dissertation, we generalize the historical definition. The problem is
that there is no good notion of orthogonality in Finsler geometry, so we cannot
directly apply the Riemannian definition. Before explaining our definition, let
us start with a remark:

If f is a function on R? and cy(t) the ray from 0 making an angle 6 with the
z-axis, then, a direct and easy computation shows that:

27 d? - a2f 82f
[ gmreo)]| a-x(Go+To)

This simple remark gives the idea for our generalization: instead of taking
the sum of derivatives along orthonormal directions, we can consider an average
over all directions! But to be able to consider an average, we need to find a
measure for it, i.e., a solid angle naturally associated with a Finsler metric.

As the Hilbert form A is a contact form, there is a truly canonical volume
form associated with a Finsler metric, but only on HM, and not on M as in
the Riemannian case.

If we denote by w: HM — M the canonical projection and by VHM :=
ker dr the set of vectors tangent to the fibers H, M, then a (solid) angle is given
by a nowhere-vanishing form on VHM. To obtain a natural notion of angle, we
can just split the canonical volume A A dA"~! into an angle and a volume form
on the base manifold, normalizing in order to get back the euclidean angle:




ix
Proposition. Let (M, F) be a Finsler metric. There exists a unique volume
form QF on M and an (n—1)-form of' on HM that is nowhere zero on VHM

and such that:
o ATrQF = AndA™E,

/ of = vOlEual (Sn7 1 )
H, M

And we can define our Finsler-Laplace operator:

and, for all z € M,

Definition. Let (M, F) be a Finsler metric. For f € C*(M) and x € M, we
set

MRS = oty [, i )| of©),

2
em,m dt t=0

where c¢ is the geodesic leaving x in the direction £ € H M.
And we obtain exactly what we hoped for:

Theorem A. Let (M,F) be a Finsler metric. Then AY is a second-order
differential operator. Furthermore:

(i) AT is elliptic,
(ii) AT is symmetric, i.e., for any f,g € C>(M),

/ FATg—gATFQF =0,
M

(iii) AT coincides with the Laplace—Beltrami operator when F is Riemannian.

As we will see (in section 2.1), the proof of this result is made very simple
thanks to our definition.

Let us also point out the following consequence of (i) and (ii): AT is unitarily
equivalent to a Schridinger operator.

The proof of this last point is based on the following (known) result, which
is of particular interest for us:

Proposition. Let (M, g) be a closed Riemannian manifold and w a volume form
on M. There exists a unique second-order differential operator A, ., on M with
real coefficients such that its symbol is the dual metric g*, it is symmetric with
respect to w and zero on constants.

If a € C°(M) is such that w = av,, where v, is the Riemannian volume, then
for o € C*°(M):

1
Ngwp=Ayp— ;(Vg&, Va2>.

The symbol of an elliptic second-order differential operator always gives a
Riemannian (co)-metric. So the above proposition tells us that our Finsler—
Laplace operator is uniquely determined by its symbol and the volume QF.
This leads to a few remarks:

First, there are far more Finsler metrics than pairs (Riemannian metric,
volume), so there are many Finsler metrics sharing the same Laplacian. So
our Finsler—Laplace operator cannot carry as much information as the metric
it comes from. But this can be seen as an interesting source of questions: For
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instance, does sharing the same Laplacian implies that the metrics share some
geometrical or dynamical properties?

The operators A, ., are called weighted Laplacians and were introduced by
Chavel et Feldman [38] and by Davies [47]. They have been under much study
since then (see for instance [71] or [42]) and it seems natural to ask whether we
could get a better understanding of them via the study of our Finsler—-Laplacian
or vice-versa.

Which takes us to our last remark: Can we obtain every weighted Laplacian
as a Finsler—Laplacian? As there are more Finsler metrics than pairs (Rieman-
nian metric, volume), we conjecture that the answer is positive.

On surfaces, we prove that it is indeed the case, and that it is enough to
consider Randers metrics to obtain every pair. Unfortunately, our proof is
based on the local expression we obtained for Randers surfaces and it cannot
be generalized as such.

Energy and spectrum

As expected from a Laplacian, on compact manifolds our operator admits

a discrete spectrum. We give the two classical proofs; the first is just the

application of the general theory of unbounded elliptic symmetric operators.

The second, via the Min-Max method, is more interesting for a future study of

the spectrum. It relies on the introduction of the following energy associated
with AF:

n

volgucl (Snf 1 )

With this energy, we generalize several classical Riemannian results. First,
we prove that harmonic functions are always obtained as minima of the energy.
Second, we study how the energy varies inside a conformal class and show that
it is invariant when n = 2, which allows us to show:

E(u) = / Lx (7u)[2 A A dA™
HM

Theorem B. Let (X, F) be a Finsler surface. If f: ¥ "R and Fr=¢elF.
Then,
AFr = e2IAT

Explicit representation and computation of spectrum

In order to prove, even to ourself, that our operator was worth studying,
we felt that it was essential to give examples. Indeed, the fact that we manage
to obtain explicit spectral data for Finslerian metrics is for us an asset of our
operator.

But computing spectra is a daunting task, even in the Riemannian case.
Indeed, the full spectra of the Laplace—Beltrami operator is known only for the
model spaces H', R™ and S™ and some of their quotients. In order to have any
chance of computing a spectrum, we looked for Finsler metrics with constant
flag curvature (the flag curvature is the generalization to Finsler geometry of
the sectional curvature, see [48, 14]). But note that model spaces do not exist in
Finsler geometry; for any R, there is an infinite number of non-isometric Finsler
metrics of constant flag curvature R. Another problem is having actual examples
of constant curvature metrics on closed manifold. Among known examples, we
chose to study the ones that seem to us to be most interesting and manageable.
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If the flag curvature is negative and the manifold is compact, then a theorem
of Akbar-Zadeh [2] implies that the Finsler structure is in fact Riemannian (this
is still true for compact locally symmetric Finsler metrics [62]).

In the same article, Akbar-Zadeh showed that a simply connected compact
manifold endowed with a metric of positive constant flag curvature is a sphere
(see also [94] for the pinched curvature case). But from a metric standpoint,
things get much more exciting: Bryant [27, 28] constructed a two-parameter
family of (projectively flat) metrics of constant curvature 1 on the 2-sphere.
Previously, Katok [78] had constructed a family of one-parameter deformations
of the standard metric on S? in order to obtain examples of metrics with only
a finite number of closed geodesics. This example was later generalized and
studied by Ziller [111]. Rademacher [94] proved that the Katok—Ziller metrics
on the 2-sphere have constant flag curvature. Note that Foulon [58] has a proof
that Katok—Ziller metrics on any space have constant flag curvature.

These metrics were the perfect candidate for us. They are dynamically
interesting and they admit adequate explicit formulas (see [94] for the sphere
and Proposition 3.2.2 in general) making them somewhat easier to study. In
the case of the 2-sphere, we obtain an approximation of the spectrum as well as
the following;:

Theorem C. For a family of Katok-Ziller metrics F. on the 2-sphere, if A1(g)
is the smallest non-zero eigenvalue of —AF=, then:

8

ME)=2-22= T
1(e) © T Solgr. (S2)

(1)

Note that this result exhibits a family of Finslerian metrics realizing what
is known to be the maximum for the first eigenvalue of the Laplace-Beltrami
operator on S? [72]. We unfortunately do not yet know whether this is also a
maximum in the Finsler setting.

Finally as Katok—Ziller metrics also exists on tori, we studied them and
obtained their spectrum. Note that the flat case does not lead to new opera-
tors. Indeed, for any locally Minkowski structure on a torus, we show that the
Finsler-Laplace operator is the same as the Laplace—Beltrami operator associ-
ated with the symbol metric (see Remark 3.2.5). It is nonetheless interesting to
do the computations as this gives some insight, shows some limits of what can be
expected from this operator and proves once again that computations are feasi-
ble. For instance, we will see that there is no Poisson formula linking the length
spectrum of the Finsler metric and the spectrum of the Finsler-Laplacian. Fi-
nally, if we one day want to obtain topological bounds on the spectrum, we will
first have to understand these easy examples.

Negative curvature, spectrum and geometry at infinity

The world of negative curvature is immensely rich in terms of the interactions
between geometry, dynamics, ergodic theory and the spectrum of the Laplacian.
__Let M be a closed Riemannian manifold of strictly negative curvature and
M its universal cover. M admits a visual boundary M (co0) carrying (at least)
three natural class of measures:

— The Liouville measure class, obtained by projecting Lebesgue measures

on unit spheres to the boundary along geodesic rays;
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— The Patterson-Sullivan measure class v,;
— The harmonic measures ., which can be obtained as the measures solving
the Dirichlet problem at infinity, i.e., if f € CY(M(00)), then

ulz) = /E o FEa©

is the unique function that verifies A¥u = 0 on M and u(z) — f(§) when

Kaimanovich [75] showed that there exists a convex isomorphism between
the cone of Radon measures on 9%M := M(oo) X M(oo) ~ {diag} invariant by
71 (M) and the cone of Radon measures on HM invariant by the geodesic flow.
Via this correspondence, we can obtain the Patterson—Sullivan measures from
the Bowen—Margulis measure.

It is also known that all these measure classes are ergodic with respect to
the action of the fundamental group on M (oo) (each measure in a measure class
is w1 (M)-quasi-invariant, so ergodicity can be defined as usual).

In the case of constant curvature, these three classes are equal. Katok [79]
and Ledrappier [84] showed that, on surfaces, if any of these two classes co-
incides, then the metric has constant curvature. In higher dimensions, if the
harmonic and Patterson—Sullivan measures coincides, then the universal cover
of the manifold is a symmetric space [24].

Ledrappier obtained his regularity theorem as a corollary of a more general
result, valid in any dimension: v, = u, if and only if \; = h2/4, where \; is
the bottom of the essential spectrum of —Af" and h the topological entropy.

As we introduced a Finsler-Laplacian, it was tempting to try to adapt the
above results to our case. Indeed, if F' is negatively curved, then the geodesic
flow is again contact Anosov ([60]) and, if F' is reversible, then M is Gromov-
hyperbolic. So M also admits a visual boundary, which naturally carries the
Liouville measure class and the Patterson—Sullivan measure class (see [44]). We
studied existence of harmonic measures.

One general method to solve the Dirichlet problem at infinity and obtain
harmonic measures is via potential theory. Martin [86] constructed a boundary
associated to a pair (M, AF). If the Martin boundary is reduced to its minimal
part and if it is homeomorphic to the visual boundary, then we can deduce the
existence of harmonic measures. Ancona [6] identified the Martin and the visual
boundaries for a very general class of elliptic operators on Gromov-hyperbolic
spaces.

We prove that our operator satisfies the conditions for Ancona’s theorem.
Furthermore, we show that the identification between the Martin and the visual
boundary is Holder-continuous as in the Riemannian case. This allows us to
copy the work of Ledrappier [83] to show ergodic properties of the harmonic
measures:

Theorem D. Let (M, F) be a closed, negatively curved, reversible Finsler man-
ifold, M its universal cover and Lo the family of harmonic measures on M(oo);
we have the following properties:

(i) The harmonic measure class {1} is ergodic for the action of w1 (M) on
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(ii) For any x € M, there exists a weight f: M — R, such that the mea-
sure fl, @ g is ergodic for the action of w1 (M) on 0>M.

111) There exists a unique measure u on HM, ergodic with respect to the
1
geodesic flow, such that its image under Kaimanovitch correspondence is

fha @ pa.

Rigidity results however are still out of reach.
Finally, note also that we do obtain a dynamical upper bound for the bottom
of the spectrum of —AF":

Theorem E. Let (M, F) be a closed, negatively curved, (not necessarily re-
versible) Finsler n-manifold and (M, F') its universal cover. If A1 is the bottom
of the essential spectrum of —AT and h the topological entropy, then,

Al S T
And we have a topological lower bound, without curvature assumptions,
thanks to a generalization of a theorem of Brooks [26]:

Theorem F. Let (M, F) be a closed (not necessarily reversible) Finsler mani-
fold and (M, F) its universal cover. If Ay is the bottom of the essential spectrum
of —AF'. Then,

A1 =0 ifand only if m;(M) is amenable.

Angle and co-angle: Finsler geometry and its Hamiltonian
counter-part

As our generalization of the Laplace operator relies essentially on the angle
af’, we briefly studied it. For instance, we show that we can recognize when a
Finsler surface is Riemannian just by looking at the angle.

Now, recall that o is obtained by splitting the canonical volume form
A A dA™"L. But looking on the co-tangent side, we can see that there are
other canonical volume forms: Indeed, a Finsler metric F': TM — RT uniquely
determines an Hamiltonian F*: T*M — R™T via the Legendre transform. T M
is a symplectic manifolds and hence admits a canonical volume d\", where X is
the Liouville 1-form. Finally, in the same manner that we obtain the Hilbert
form A, we can obtain a one-form B on H*M, the homogenized co-tangent
bundle, naturally associated with F*. The one-form B is also a contact form
and therefore B A dB™~! is a canonical volume form on H*M.

Fortunately, all these volumes are pretty simply linked together: A/\cl:ﬁl”_1 is
the pull-back of BAdB™ ! by the Legendre transform of F. And, if #: T*M —
H*M is the canonical projection, then 7#*B A dB"~! = X A d\"71/(F*)" (see
section 1.2).

We can carry out the construction of our angle form on the homogenized co-
tangent bundle, by splitting BAdB"~! into a volume form on M and a co-angle
BF. We show that 8% is the push-forward of af" via the Legendre transform and
that the volume on M is the same. This proves that carrying the construction
of our Finsler—Laplace operator on the co-tangent gives the same operator.
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The study of the symplectic side is often very interesting. For instance, we
can remark that the volume QF that we obtain is the Holmes-Thompson volume
(see section 1.5). More surprisingly, we show that a Finsler metric is uniquely
determined by its volume and its co-angle 3" (Corollary 1.3.12).

Skewed R-covered Anosov flows

Anosov ([10]) managed to extract from geodesic flows in negatively curved
manifolds the minimal condition giving their hyperbolicity. Since then, Anosov
flows became an immense source of wonder in dynamical systems. In the second
part of this dissertation, we concentrate on a “topologically nice” kind of Anosov
flows on 3-manifolds and study their periodic orbits.

Thierry Barbot and Sergio Fenley started studying Anosov flows via their
transverse geometry and we follow their lead. The main objects under study
here are the orbit space and the leaf spaces: If ¢' is an Anosov flow on a 3-
manifold M, M its universal cover and ¢ the lifted flow, then the orbit space
of ¢t is defined as M quotiented out by the relation “being on the same orbit
of ¢!”, and the stable (resp. unstable) leaf space is M quotiented out by the
relation “being on the same weak stable (resp. weak unstable) leaf of ¢'.”

For Anosov flows on 3-manifolds, the orbit space is always homeomorphic to
R? [16, 55], but in general the leaf spaces are non-Hausdorff. An Anosov flow is
called R-covered if one (and hence both, see [16, 55]) of its leaf space is home-
omorphic to R. Fenley and Barbot proved that if a stable leaf of ¢! intersects
every unstable leaves, then ¢’ is a suspension of an Anosov diffeomorphism. So
the interesting case is the other one and Fenley called these flows skewed.

It is fairly easy to see that the geodesic flow of a negatively curved (Finsler
or Riemannian) surface is a skewed R-covered Anosov flow. A recent result
by (again) Barbot and Fenley [20] in fact shows that it is (topologically) the
only one on Seifert-fibered space. But if you stop controlling the topology,
many non-algebraic examples exist (geodesic flows and suspension of Anosov
diffeomorphisms are called algebraic Anosov flows because they are topologically
conjugate to the action of a one-parameter group on a quotient I'\G/ K, where
G is a Lie group, K a compact Lie subgroup and I' a discrete subgroup acting
co-compactly on G/K, see [108]).

In [55], Fenley produced a wealth of skewed R-covered Anosov flows on
atoroidal, not Seifert-fibered 3-manifolds. Remark also that the construction
of Foulon and Hasselblatt [63] leads to non-algebraic flows which are contact,
hence skewed R-covered (see [19]).

Hyperbolic manifolds and isotopy class

When the manifold is atoroidal and not Seifert-fibered, so for instance hy-
perbolic, skewed R-covered have a surprising quality: every periodic orbit is
freely homotopic to infinitely many other ones. This is in sharp contrast with
the geodesic flow case where free homotopy classes are trivial.

We got interested in the following question: given a periodic orbit, what can
we say about its isotopy class? In order to underline its interest, let us rephrase
this question. Given a periodic orbit, its free homotopy class gives us a collection
of topologically equivalent embedding of S, i.e., knots, in a three-manifold. So
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are these knots different? Here we understand “different” in the traditional sense
of knot theory.

Note that the questions about the type of knots that one can obtain from
periodic orbits of flows are not new, and very interesting (the reader can consult
Ghys’ article on this subject [68]).

In collaboration with Sergio Fenley, we showed that all orbits in a free ho-
motopy class are isotopic. If the answer is a bit disappointing, the way we
obtain this result is quite interesting and opens some new questions. Thurston
[107], Calegari [32] and Fenley [56] proved that there exist pseudo-Anosov flows
constructed from the geometry of some R-covered foliations. We obtain the
isotopy between the periodic orbits of ¢! by pushing them via a well-chosen
pseudo-Anosov flow.

Embedded cylinders and periodic orbits

An isotopy between periodic orbits creates an immersed cylinder, so we
specialized our study to when we can obtain an embedded cylinder between two
periodic orbits.

By adapting results of Barbot [20], we showed that the existence of embedded
annuli between orbits is essentially linked to the action of the fundamental
group on the orbit space. Moreover, we can once again use the tools given by
Thurston’s work on R-covered foliations.

We show that there exist some periodic orbits that cannot be joined to any
other by an embedded cylinder. In a forthcoming paper with S. Fenley, we will
show that the “co-cylindrical classes” are always finite.

Structure of this dissertation

In Chapter 1, we introduce the necessary notions for the study of Finsler
geometry via its dynamic and recall a number of results. We also present the
symplectic side and the main properties of the Legendre transform. Readers
familiar with these topics should start in Section 1.3 where we introduce the
angle of and the co-angle 3" (Propositions 1.3.5 and 1.3.7). We then study
some properties of these angles and remark that the volume QF is the Holmes-
Thompson volume.

Chapter 2 is the core of this work, it introduces the Finsler-Laplace oper-
ator (Definition 2.1.1) and proves Theorem A. It then introduces the energy
(Definition 2.2.4) and proves that the spectrum can be obtained via the Min-
Max principle (Theorems 2.2.11 and 2.2.13). The Chapter closes with the proof
that, in dimension 2, the Finsler-Laplace operator is still (almost) a conformal
invariant (Theorem 2.3.1).

In Chapter 3 we study examples. We show that we can obtain a local coor-
dinates expression of our operator for Randers surfaces (Proposition 3.1.3). We
then use that expression to show that every weighted Laplacian on surfaces can
be obtained from a Randers metric (Proposition 3.1.6). We then specialize to
Katok—Ziller metrics on the sphere and the torus, giving explicit spectral data
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(Theorems 3.2.6, 3.2.9 and Corollary 3.2.8).

In Chapter 4, we finally concentrate on the link between the Laplacian and
the geodesic flow in negative curvature. We start by showing Theorem E (Propo-
sition 4.2.1) and Theorem F (Theorem 4.2.6). We then introduce some of the
potential theory needed for Ancona’s theorem (section 4.3) and prove that the
homeomorphism between the Martin and visual boundary is Holder (Theorem
4.3.22). We show that Ancona’s theorem applies to our operator and deduce
that the Dirichlet problem at infinity still admits a unique solution (Corollary
4.4.2). We finish the first part by generalizing Ledrappier’s proof that harmonic
measures are ergodic (Theorem 4.5.2).

Chapter 5 constitutes the second part of this dissertation. We start by
recalling a number of results of Barbot and Fenley on Anosov flows, then the
work of Thurston, Calegari and Fenley on R-covered foliations. We then show
that homotopic orbits are isotopic (Theorem 5.3.3). We start the study of “co-
cylindrical” classes and relate it to the action of the fundamental group on the
universal circle.
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Cette thése comporte deux parties distinctes, la premiére traite d’un nouvel
opérateur de Laplace en géométrie de Finsler et la seconde de I’étude de certains
types de flots d’Anosov dans des variétés atoroidales.

Géomeétrie de Finsler et laplacien

La géométrie de Finsler a toujours été le parent pauvre de la géométrie
riemannienne. Elle fut pourtant introduite par Riemann lui-méme lors de sa
fameuse “habilitationsschrift” de 1854. En effet, Riemann réalisa que la condition
minimale pour introduire une notion de longueur sur une variété était d’avoir
une famille continue de normes sur chaque espace tangent. Malheureusement,
la géométrie convexe de Minkowski était encore distante d’au moins 40 ans et
les normes ne provenant pas d’un produit scalaire n’étaient pas encore bien
comprises. Riemann s’éloigna donc du cadre général, disant :

« Die Untersuchung dieser allgemeinern Gattung wiirde zwar

keine wesentlich andere Principien erfordern, aber ziemlich zeitraubend
sein und verhéltnissméssig auf die Lehre vom Raume wenig neues
Licht werfen, zumal da sich die Resultate nicht geometrisch aus-
driicken lassen »[101]
L’¢tude de ce cadre plus général ne nécessite pas de principes réelle-
ment différents, mais prendrait un temps considérable et n’apporterait
peu ou pas d’éclairage nouveau sur la théorie de l’espace, d’autant
plus que les résultats ne peuvent étre exprimés géométriquement?

1l fallut donc attendre 1918 pour que, sous 'impulsion de Carathéodory, Paul
Finsler étudie dans sa thése [57] ce cas général et jette ainsi les bases de la
théorie qui porte aujourd’hui son nom.

La géométrie de Finsler est désormais assez bien connue, mais nombre de
questions résolues en géométrie riemannienne attendent encore un équivalent
finslérien. Depuis plusieurs années, I'une des questions récurrentes en géométrie
de Finsler est le développement d’outils d’analyse globale généralisant ceux de
géométrie riemannienne.

L’opérateur de Laplace—Beltrami est sans doute le plus important de ces
objets, et ce pour de multiples raisons. Son spectre en particulier joue un role
essentiel ; il est la preuve d’une connexion complexe et intrigante entre le lapla-
cien et la géométrie de la variété qui le porte. Dans la premiére partie de cette
thése, j’introduis une généralisation de l'opérateur de Laplace-Beltrami aux
métriques de Finsler. Ce n’est pas la premiére fois que ceci est fait, Bao et
Lackey [15], Centore [36] et Shen [102] ont chacun proposé des généralisations.
Il n’est pas trés étonnant qu’il en soit ainsi : 'opérateur de Laplace—Beltrami ad-
met plusieurs définitions équivalentes, mais des extensions de chaque définition
peuvent donner des résultats bien différents dans le cadre finslérien. Nous es-
pérons convaincre le lecteur que notre construction est naturelle et suffisamment
simple pour pouvoir obtenir des données spectrales.

Flot géodésique et forme de Hilbert

Avant de continuer, il semble important de rappeler les notions utilisées ici.

2. Traduction par 'auteur
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Une métrique de Finsler sur M sera pour nous la donnée d’une famille
de normes fortement convezes F(x,-) sur chaque espace tangent T, M, variant
de maniére lisse ; par fortement convexe, on entend que le hessien de F?(z,-)
est défini positif. Nous ne nous restreignons cependant pas au cas des normes
symeétriques, c’est-a-dire celles vérifiant F'(z, —v) = F(z,v). De maniére équiva-
lente, une métrique de Finsler est obtenue par la donnée d’une famille d’ouverts
convexes (contenants mais pas nécessairement centrés en 0) sur chaque espace
tangent, variant réguliérement et telle que le bord de chaque convexe soit &
hessien défini positif : ce convexe-la est la boule unité de la norme. Notons que
nous utilisons cette condition de forte convexité car elle permet par exemple
d’avoir une équation des géodésiques.

Cette notion de métrique de Finsler est sans doute la plus répandue, mais
aussi la plus restrictive. Par exemple, les géométries de Hilbert, qui ont connu un
regain d’intérét ces derniéres années, ne sont en général que C° hors de la section
nulle. Malheureusement, une régularité au moins C? est souvent nécessaire pour
le calcul variationnel et sera indispensable dans cette thése. Malgré tout, le
monde finslérien lisse reste néanmoins bien plus vaste que le monde riemannien
et riche en phénoménes nouveaux (voir [78] ou [41] ou [3] par exemple).

Parmi les métriques de Finsler, les métriques de Randers sont un cas parti-
culiérement intéressant pour de multiples raisons. D’abord, elles sont obtenues
en ajoutant une 1-forme différentielle & une métrique riemannienne, et sont donc
parmi les plus simples des métriques non-riemanniennes. Mais surtout, elles ap-
paraissent naturellement dans de nombreux domaines des mathématiques ainsi
qu’en physique ou en biologie [11]. Elles constitueront donc une famille d’exem-
ples privilégiés au cours de cette thése.

L’approche que nous utilisons pour étudier la géométrie de Finsler est due &
Patrick Foulon [59]. Il développa un certain nombre d’outils permettant 1’étude
de la géométrie de maniére intrinséque via sa dynamique au lieu de ’étudier via
des connections et les calculs en coordonnées locales qui I’accompagnent.

L’objet essentiel ici sera donc le flot géodésique associé & F, qui vit na-
turellement sur le fibré en sphére unité T'M. Cependant, pour pouvoir étudier
différents flots sans changer d’espace, il sera plus intéressant de voir les flots
géodésiques dans le fibré homogéne

HM = (TM ~ {0}) /R*.

Un autre élément incontournable pour notre étude est la forme de Hilbert A,
une 1-forme différentielle sur H M canoniquement associée a F. Grace a la forte
convexité de F, A est une forme de contact : si n est la dimension de M,
AN dA™ ! est une forme volume sur HM.

Si ’on note X le champ de vecteur engendrant le flot géodésique de F, alors
X est le champ de Reeb de A, c’est-a-dire qu’il est uniquement déterminé par
les équations suivantes :

AX) =1
ixdA =0

Toute notre étude est uniquement basée sur la forme de Hilbert A, le flot
géodésique X et des objets obtenus a partir de A et X.
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Finsler—laplacien

En géométrie riemannienne, il y a plusieurs définitions équivalentes pour
Popérateur de Laplace (voir [66] par exemple) : la plus évoluée est sans doute
Iopérateur de Hodge—Laplace agissant sur les formes différentielles ; pour I'opéra-
teur de Laplace—Beltrami sur les fonctions, la plus synthétique est donnée par
la divergence du gradient ; vient enfin la plus “basique”, la définition historique,
qui exprime le laplacien d’une fonction en un point p comme

0% f
Afp) =2 a—x%(p),
3
ol x; sont des coordonnées normales au point p pour la métrique riemannienne
considérée.

Notons que Bao et Lackey [15] développérent une généralisation de la pre-
miére définition et Shen [102] une généralisation de la seconde. Nous nous atta-
chons & étendre la définition historique. Centore [36] ne généralise pas vraiment
la définition du laplacien, mais plutot la propriété que les fonctions harmoniques
vérifient la propriété de la moyenne. Nous montrerons au cours de cette thése
que tout ces opérateurs sont différents, mais on peut remarquer tout de suite
que l'opérateur de Shen ne se situe pas dans la méme catégorie. En effet, son
opérateur est non-linéaire car la généralisation du gradient a la géométrie de
Finsler n’est pas linéaire.

Le probléme pour généraliser le laplacien historique est que la notion d’ortho-
gonalité n’est pas adaptée & la géométrie de Finsler. L’idée pour obtenir un
opérateur de Laplace est alors de faire une moyenne des dérivées secondes dans
toutes les directions, au lieu de ne considérer que des directions orthogonales.
Reste alors & définir ce que veut dire moyenne dans ce cas : nous devons intro-
duire une mesure d’angle af" en chaque point, associée naturellement & notre
métrique de Finsler.

L’existence d’un angle en géométrie de Finsler n’est pas évident. Cependant,
comme A est une forme de contact, il existe un volume sur H M canoniquement
associé a une métrique de Finsler. De 14, il n’y a qu’un pas pour définir un angle
naturel, il suffit de considérer la famille de mesures conditionnelles sur les fibres
H,.M et de normaliser de telle maniére que ’aire des fibres soit I'aire d’une
sphére unité euclidienne :

Proposition. Soient (M, F') une variété de Finsler, m: HM — M la projection
canonique et VHM := kerdr le fibré vertical. Il existe une unique forme volume

QOF sur M et une (n — 1)-forme différentielle o sur HM, ne s’annulant pas
sur VHM, telle que :

o AT QF = ANdA™TE,
et, pour tout x € M,
/ of = volgua(S"1)
HoM
Nous pouvons alors définir notre opérateur de Finsler-Laplace :

Définition. Soit (M, F) une variété de Finsler. Pour f € C*(M) et x € M,
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on pose

N0 J—— /5 CL ety af(e),

volgual (S"71) Jecr,m dt? t=0
ot c¢ est la géodésique partant de x dans la direction & € Hy M.
Et nous obtenons exactement ce que ’on voulait :

Théoréme A. Soit (M, F) une variété de Finsler. L opérateur AT est un opéra-
teur différentiel du second ordre qui, de plus, vérifie :

(i) AT est elliptique ;
(ii) AT est symétrique, i.e., pour f,g € C(M),

/ FAF g~ gAFfQF = 0;
M

(iii) lorsque F est une métrique riemannienne, A coincide avec 'opérateur
de Laplace—Beltrami.

Il est & noter que la preuve de ce résultat est trés facile grace a la définition
de AF.
Nous rappelons aussi la conséquence suivante de (i) et (ii) : AF est unitairement
équivalent a un opérateur de Schrédinger.

La preuve de ce dernier point est essentiellement basée sur le résultat (connu)
suivant, qui est particuliérement intéressant pour nous :

Proposition. Soient (M, g) une variété riemannienne fermée et w une forme
volume sur M. Alors, il existe un unique opérateur différentiel du second ordre
@ coefficients réels Ay, sur M qui est symétrique par rapport ¢ w, nul sur les
constantes et dont le symbole est donné par la métrique duale g*.

De plus, sia € C*(M) est telle que w = a’v,, ot v, est le volume riemannien,
alors pour ¢ € C>*°(M) :

1
Dgup =A% — = (Ve, Va?).

Rappelons que le symbole d’un opérateur elliptique du second ordre donne
toujours une (co)-métrique riemannienne, donc en appliquant le résultat ci-
dessus, nous pouvons remarquer que I’opérateur que nous introduisons est unique-
ment déterminé par son symbole et le volume Q7. On se doit ici de faire quelques
remarques.

Premiérement, il y a beaucoup plus de métriques de Finsler que de cou-
ples (métrique riemannienne, forme volume), donc il y a forcément beaucoup de
métriques de Finsler ayant le méme laplacien. Cela peut-étre pris soit comme un
inconvénient, car notre opérateur n’est pas aussi fin que 'opérateur de Laplace—
Beltrami, soit comme une belle source de questions : par exemple, les métriques
ayant le méme laplacien partagent-elles des propriétés géométriques ou dy-
namiques ? Nous espérons que le lecteur préférera, comme nous, cette seconde
interprétation.

Les opérateurs A, ., sont appelés laplaciens & poids et furent introduits par
Chavel et Feldman [38] et par Davies [47]. Ils ont depuis été beaucoup étudiés
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(voir par exemple [71] ou [42]) et il est naturel de se demander s’il serait parfois
intéressant de passer par la géométrie de Finsler pour les étudier ou inversement
d’étudier notre opérateur a travers eux.

Ceci nous ameéne & notre derniére remarque : peut-on obtenir tous les lapla-
ciens & poids via une métrique de Finsler 7 Comme nous avons déja vu qu’il y a
beaucoup plus de métriques de Finsler que de couples (métrique riemannienne,
forme volume), nous sommes tentés de conjecturer que la réponse est positive.

Nous montrons d’ailleurs que c’est le cas pour les surfaces et qu’il suffit alors
de considérer des métriques de Randers. Malheureusement, notre preuve est
basée sur ’expression locale que nous obtenons pour les surfaces de Randers, il
est donc impossible de la généraliser en 1’état.

Spectre et Energie

Comme attendu d’un laplacien qui se respecte, 'opérateur de Finsler—Laplace
sur les variétés compactes admet un spectre discret. Nous donnons les deux
preuves classiques de ce résultat. La premiére est juste I’application de la théorie
générale des opérateurs linéaires non-bornés, elliptiques et symétriques. La sec-
onde approche, par la méthode du Min-Max, est plus intéressante pour une
future étude du spectre; elle repose sur I'introduction d’une énergie associée a
l'opérateur :

B(u) = %/ \Lx (m*u)> A A dA™ L,
volgual (S™™1) Jum
Avec cette énergie, nous généralisons plusieurs résultats riemanniens. Premiére-
ment, nous montrons que les fonctions harmoniques sont obtenues comme minima
de I’énergie (ce résultat est d’ailleurs une étape essentielle dans la méthode du
Min-Max). Deuxiémement, nous étudions comment varie 1’énergie lorsque ’on
considére une classe conforme de métriques de Finsler. Nous montrons :

Proposition. Soient (M, F') une variété de Finsler de dimensionn, f: M o=,
R et Fy = e/ F. Soit E; l'énergie associée a Fy. Alors, pour tout w € H* (M),

n

E [ (n—2)f L * 2A dAn_l.
f(u) VOlEucl (Sn_l) /HMe ( X7 u) A

En particulier, lorsque n = 2, I’énergie est un invariant conforme.

Et en déduisons une généralisation du résultat riemannien classique :

Théoréme B. Soient (X, F') une surface de Finsler, f: X iRt Fr=¢elF.
Alors
AFr = e AR,

Représentation locale et calcul de spectres

Un nouvel opérateur, aussi naturel soit-il, n’est intéressant que s’il est étudi-
able. Pour nous, cela veut dire que ’on doit étre en mesure de produire des ex-
emples purement finglériens o ’on arrive & déterminer un spectre. La méthode
du Min-Max mentionnée plus haut est bien utile d’'un point de vue théorique,
ou pour obtenir des majorations, mais pour obtenir une formule explicite du
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spectre, la seule méthode éprouvée reste le calcul en coordonnées. Mais avant
de se lancer téte baissée dans des exemples, il faut d’abord déterminer lesquels
ont une chance d’aboutir.

Méme pour 'opérateur de Laplace—Beltrami, calculer le spectre est une tache
extrémement ardue; les seuls exemples complétement connus sont les espaces
modéles H", R™ et S™ ainsi que certains de leurs quotients. Or, il n’y a pas
d’espaces modéles en géométrie de Finsler : en effet, pour tout R, il existe une
infinité de métriques finslérienne non isométriques a courbure constante R. Nous
avons donc étudié, parmi ces métriques a courbure constante, celles qui nous
apparaissent intéressantes et abordables.

En courbure négative, un théoréme d’Akbar-Zadeh [2] (voir aussi [62] pour
le cas localement symétrique) montre que, sur les variétés fermées, les seules
structures ayant une courbure constante sont en fait riemanniennes.

En courbure positive, Akbar-Zadeh [2] prouva que le revétement universel
était toujours une sphére (voir aussi [94] pour la preuve en courbure pincée).
D’un point de vue métrique, les choses deviennent plus intéressantes : Bryant
[27, 28] construisit une famille & deux paramétres de métriques (projectivement
plates) & courbure constante égale a 1 sur S?. Bien avant cela, Katok [78] avait
construit une famille & un parameétre de déformation de la métrique standard
sur la sphére. Ziller [111] étudia la géométrie de ces exemples et les généralisa
a d’autres espaces. L’intérét majeur de ces exemples et la raison méme de leur
invention, est que 'on obtient des métriques (de Finsler) sur S™ aussi proches
de la métrique standard que l’on veut, mais n’ayant qu’un nombre fini d’or-
bites périodiques. Rademacher [94] prouva que les métriques de Katok—Ziller
sur la sphére sont aussi a courbure constante égale & 1 en remarquant qu’elles
coincidaient avec des exemples qu’avait indépendamment construit Shen [103].
Notons que P. Foulon [58] a une preuve du fait que toutes les constructions de
Katok-Ziller sont & courbure constante, quel que soit ’espace.

Ces métriques sont pour nous parfaites : elles admettent une écriture explicite
assez facile (voir [94] pour la sphére et la proposition 3.2.2 en général), ce qui
est bien utile pour nos calculs, et sont extrémement intéressantes d’un point de
vue dynamique. Nous obtenons une approximation du spectre ainsi que :

Théoréme C. Soit F. la famille de métriques de Katok—Ziller sur S?. La plus
petite valeur propre non nulle de —A™= est :

8

9 9.2 _
A(e) =2—2¢ volgr. (57)"

Ce résultat, en plus de prouver qu’il est possible d’obtenir explicitement des
valeurs propres pour des métriques de Finsler, exhibe un phénoméne nouveau.
Pour les métriques riemanniennes sur la sphére, Hersch [72] démontra que le
bas du spectre était majoré par 87 /vol(S?), 1’égalité n’étant réalisée que pour
la métrique standard. Ici, nous avons un exemple d’une famille & un paramétre
réalisant le maximum riemannien. Nous ne savons malheureusement pas encore
si c¢’est aussi un maximum dans le cas des métriques de Finsler. Notons que la
preuve de Hersch repose sur le fait qu’il n’y a qu’une seule classe conforme de
meétriques riemanniennes sur la sphére et ne peut donc malheureusement pas se
généraliser telle quelle.

Les métriques de Katok—Ziller peuvent aussi étre construites sur les tores
et nous calculons le spectre pour ces exemples. Les opérateurs obtenus ne sont
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toutefois pas nouveaux dans ces cas-la. En effet, nous montrons que pour toute
métrique de Finsler localement Minkowskienne sur un tore, c’est-a-dire telle
que la norme de Finsler ne dépend (localement) pas du point sur la variété,
lopérateur de Finsler—Laplace associé est donné par le laplacien de son symbole.
Le calcul du symbole suffit donc pour déterminer le spectre. Il est cependant
intéressant d’étudier ces exemples car ils permettent de comprendre certaines
limites de notre opérateur ; par exemple, nous ne pourrons pas espérer avoir un
lien aussi direct qu’en géométrie riemannienne entre le spectre des longueurs
et le spectre du laplacien. En outre, s’il on veut un jour obtenir des bornes
topologiques pour le spectre, il faudra d’abord le faire sur ces exemples.

Courbure négative, spectre et géométrie a I’'infini

La courbure négative est sans doute la plus intéressante d’un point de vue
de linteraction entre géométrie, dynamique, théorie ergodique et spectre du
laplacien. .
Soit M une variété riemannienne fermée & courbure négative et M son revéte-
ment universel. M admet une frontiére a 'infini M (c0), supportant naturelle-
ment trois classes de mesures :
— les mesures de Liouville, elles sont obtenues en projetant la mesure de
Lebesgue a l'infini le long de rayons géodésiques ;

— les mesures de Patterson—Sullivan v, ;

— les mesures harmoniques i, ce sont les mesures solutions du probléme de
Dirichlet & I'infini. Plus précisément, si f € C°(M(o00)), alors

ulz) = /6 e Ea(©

est I'unique fonction vérifiant AFu = 0 sur M et u(z) — f(&) quand

Kaimanovitch [75] démontra qu'’il existe un isomorphisme convexe entre le
cone des mesures de Radon sur 92M := M(oo) X M(oo) ~ {diag} invariantes
par w1 (M) et le cone des mesures de Radon sur HM invariante par le flot
géodésique. Via ce résultat on peut obtenir les mesures de Patterson—Sullivan &
partir de la mesure de Bowen—Margulis.

1l est aussi connu que chaque classe de mesures ci-dessus est ergodique par
rapport & 'action du groupe fondamental.

Si la courbure est constante, ces trois classes de mesures coincident. Des
résultats de Katok [79] et Ledrappier [84] montrent que, en dimension 2, dés que
deux mesures coincident, la métrique doit étre & courbure constante. Ledrappier
obtient ce résultat de rigidité comme corollaire du résultat suivant : en dimension
quelconque, v, = i, si et seulement si A\; = h?/4, ott \; est le bas du spectre
du laplacien et h est ’entropie topologique du flot géodésique. Dans ce cas, G.
Besson, G. Courtois et S. Gallot [24] prouvérent que la variété est un espace
symétrique.

1l est tentant de chercher & adapter ces résultats & notre cas. En effet, si F'
est une métrique & courbure négative sur une variété compacte M, alors le flot
géodésique est encore Anosov ([60]) et si, de plus, F' est réversible, le revétement

universel est Gromov-hyperbolique ([50]). M admet donc aussi une frontiére
visuelle et les mesures de Liouville et de Patterson-Sullivan sont définies de la
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méme maniére. Je me suis donc intéressé & ’existence des mesures harmoniques
pour 'opérateur de Finsler—Laplace.

Une méthode générale pour obtenir des mesures harmoniques est via la
théorie du potentiel. On construit la frontiére de Martin pour le couple (]T] ,AF)
puis on montre que cette frontiére est homéomorphe a la frontiére visuelle. An-
cona [6] prouva un théoréme trés général identifiant la frontiére de Martin a
la frontiére visuelle, pour une large classe d’opérateurs elliptiques sur une var-
iété Gromov-hyperbolique. Nous montrons que son théoréme s’applique & notre
opérateur, et en déduisons l’existence de mesures harmoniques. En fait, nous
montrons que ’homéomorphisme entre la frontiére de Martin et la frontiére
visuelle est Holder régulier (en généralisant [9]). Ceci nous permet d’utiliser
les travaux de Ledrappier [83] pour montrer que les mesures harmoniques ont
toujours les mémes propriétés ergodiques :

Théoréme D. Soient (M, F') une variété de Finsler fermée a courbure négative
et ug la famille de mesures harmoniques sur M(oo) Les propriétés suivantes
sont vérifiées :
(i) la classe des mesures harmoniques {u,} est ergodique pour action de
T (M) sur M(0) ;
(1i) pour tout x € M, il existe un poids f: 92M — R, telle que la mesure
iz ® pg est ergodique pour Uaction de m (M) sur GQM,'
(111) il existe une unique mesure i sur HM , ergodique pour le flot géodésique,
telle que son image par la correspondence de Kaimanovitch soit f, ® .

Notons que dans le (i), les mesures ., sont seulement quasi-invariantes, mais
k) :LL )
que 'on peut définir “ergodique” de la méme maniére.
Les résultats de rigidité, eux, restent encore hors de portée.
Finalement, notons aussi que nous obtenons une borne supérieure pour le
bas du spectre en courbure négative :

Théoréme E. Soient (M, F') une variété de Finsler fermée & courbure négative,
AF Dopérateur de Finsler-Laplace sur le revétement universel de M et Ay le bas

du spectre de —AF. On a
)\1 < BV

ot n est la dimension de M et h lentropie topologique du flot géodésique de
(M, F).

Nous obtenons aussi une borne inférieure topologique, et sans condition de
courbure, grace & une généralisation d’un résultat de Brooks [26] :

Théoréme F. Soient (M, F) est une variété de Finsler compacte et Ay le bas
du spectre de —AF. Alors,

A1 =0 sietseulement si w1 (M) est moyennable
Angle et co-angle : la géométrie de Finsler et son pendant

hamiltonien

Notre généralisation de 'opérateur de Laplace repose entiérement sur la
définition de 1’angle o', nous nous sommes donc attachés & I'étudier un mini-
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mum. Par exemple, dans le cas des surfaces, nous montrons comment 1’on peut
reconnaitre qu’une métrique est riemannienne a son angle.

Rappelons que 'angle o est obtenu en décomposant le volume canonique
AANdA™ ! sur HM entre une partie verticale et une partie provenant de la base.
Mais en considérant le coté symplectique, on voit qu’il existe un autre volume
canoniquement associé a F'.

En effet, il est maintenant bien connu qu’une métrique de Finsler F': TM —
R détermine uniquement un hamiltonien F*: T*M — R et que 'on passe de
I'un & Pautre via la transformée de Legendre. T* M est une variété symplectique
et admet donc un volume canonique dA™, ou A est la 1-forme de Liouville. De
plus, de la méme maniére que ’on obtient la forme de Hilbert A, on peut obtenir
une 1-forme B sur H*M associée & F*, ot H* M est I’homogénéisé de T*M. La
forme B est aussi de contact et nous avons donc une forme volume B A dB™~!
sur H*M.

Heureusement, tous ces volumes sont liés assez simplement. Si I'on note
7: T*M — H*M la projection canonique, alors #*B = \/F* et donc #*B A
dB"~t = AAdA\""1/(F*)". Enfin, la transformée de Legendre permet de passer
de ANdA™1 & BAdB™! (voir section 1.2).

De la méme maniére que 'on a obtenu o, on obtient un co-angle ¥~ en
décomposant le volume B A dB"~ !, et la transformée de Legendre permet de
passer de o a ¥,

Considérer le coté symplectique est souvent intéressant pour 1’étude de la
géométrie de Finsler. Cela nous permet de remarquer que le volume QF appa-
raissant dans la décomposition de AAdA™ ! est le volume de Holmes-Thompson.
Plus surprenant, nous montrons aussi qu’une métrique de Finsler est unique-
ment déterminée par son co-angle et son volume.

Flots d’Anosov alignables en biais

Anosov [10] parvint & extraire des flots géodésiques en courbure négative
les conditions minimales nécessaires & leur comportement hyperbolique. Depuis,
les flots d’Anosov forment une source virtuellement inépuisable de questions en
théorie des systémes dynamiques.

J’étudie, dans la seconde partie de ma thése, des questions topologiques liées
aux orbites périodiques de certains flots d’Anosov en dimension trois.

Mes travaux se basent sur I’étude, initiée par Thierry Barbot et Sergio Fenley,
de la géométrie transverse des flots d’Anosov. Les principaux objets d’intérét
sont alors I’espace des orbites ainsi que les espaces des feuilles : si ¢’ est un flot
d’Anosov sur une 3-variété compacte M, I’espace des orbites est défini comme
le revétement universel M quotienté par la relation “étre sur la méme orbite” et
Pespace des feuilles (in)stables comme M quotienté par la relation “étre sur la
méme feuille (in)stable”.

Si I’espace des orbites est toujours homéomorphe & R?, les espaces des feuilles
ne sont en général pas Hausdorff. Un flot d’Anosov est dit alignable si ses espaces
des feuilles sont homéomorphes & R, ce qui en fait des flots topologiquement
sympathiques. Barbot prouva que, s’il existe un relevé d’une feuille stable inter-
sectant toutes les feuilles instables, alors un flot alignable est topologiquement
conjugué 4 une suspension d’un difféomorphisme d’Anosov. Les autres flots sont
appelés flots alignables en biais et sont ’objet de notre étude.
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Il est assez facile de remarquer que le flot géodésique d’une surface & cour-
bure négative est un flot alignable en biais, et c’est d’ailleurs topologiquement, le
seul sur les fibrés de Seifert, (& revétement fini prés, voir [20]). Mais lorsque 1’on
considére des 3-variétés plus générales de nombreux exemples non algébriques
existent. (Les flots géodésiques ainsi que les suspensions de difféomorphisme
d’Anosov sont appelés flots d’Anosov algébriques car ils sont topologiquement
conjugués & l'action d’un groupe & un paramétre sur un quotient du type
IN\G/K, ou G est un groupe de Lie, K un sous-groupe de Lie compact et "
un sous-groupe discret agissant de maniére cocompact sur G/ K, voir [108]).

Fenley [55] fat le premier & construire de tels exemples, mais remarquons
que la construction de Foulon et Hasselblatt [63] en produit aussi.

Cas des variétés hyperboliques

Lorsque la variété est atoroidale et n’est pas un fibré de Seifert, ces flots ont
une particularité remarquable : chaque orbite périodique est librement homotope
& une infinité d’autres orbites. Ceci est aux antipodes du flot géodésique sur une
surface hyperbolique o1 il n’y a au plus qu’une orbite périodique dans une classe
d’homotopie libre. (Une telle géodésique existe pour toute classe d’homotopie
libre dans 71 (X), mais pas pour toute classe dans m (HX)).

Nous nous sommes intéressés a la question suivante : étant donnée une classe
d’homotopie libre d’orbites périodiques, que peut-on dire sur la classe d’isotopie ?
Pour souligner l'intérét de cette question, nous nous permettons de la para-
phraser : une classe d’homotopie libre donne une collection infinie de plonge-
ments homotopiquement équivalents de S', c’est-a-dire une collection de noeuds,
dans une 3-variété ; ces noeuds sont-il différents au sens de la théorie des noeuds
classique ?

Notons que les questions sur les types de noeuds formés par des orbites pério-
diques de flots ne sont pas nouvelles, mais trés intéressantes (voir par exemple
les travaux de Ghys [68]).

En collaboration avec Sergio Fenley, nous prouvons que toutes les orbites
homotopes sont en fait aussi isotopes. Méme si la réponse peut étre un peu
décevante, la maniére d’obtenir cette isotopie est intéressante : on pousse chaque
orbite par un flot pseudo-Anosov obtenu, grace aux travaux de Thurston [107],
par la géométrie des feuilletages stables et instables.

Cylindres plongés et orbites périodiques

Une isotopie entre deux orbites créant un cylindre immergé, on peut s’in-
téresser & quand apparait un cylindre plongé entre deux orbites. En adaptant
des résultats de Barbot [18, 20], on peut montrer que cette question dépend
essentiellement de ’action du groupe fondamental sur ’espace des orbites, et on
peut & nouveau se ramener 3 ’utilisation des objets définis par Thurston sur les
feuilletages.

Nous montrons qu’il existe des orbites périodiques ne pouvant étre reliées
& aucune autre par un cylindre plongé. Dans une prochaine publication avec
S. Fenley, nous montrerons qu’en général, il n’y a qu’un nombre fini d’orbites
pouvant, étre reliées de cette maniére dans une classe d’homotopie libre.
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Structure de la thése

Le chapitre 1 introduit d’abord les notions nécessaires & 1’étude de la géométrie
de Finsler via sa dynamique, et rappelle un certain nombre de résultats. Nous
développons aussi le point de vue symplectique et la transformée de Legendre.
Le lecteur averti peut commencer la lecture directement & la section 1.3, dans
laquelle nous introduisons 1’angle of (proposition 1.3.5) ainsi que son pendant
dans Pespace cotangent ¥ (proposition 1.3.7). Puis nous étudions quelques
propriétés de ces angles et remarquons que le volume QF est le volume de
Holmes-Thompson (section 1.5).

Le chapitre 2 est le cceur de ce travail. Nous y introduisons ’'opérateur
de Finsler-Laplace (définition 2.1.1) et y prouvons le théoréme A. Nous intro-
duisons ensuite ’énergie associée (définition 2.2.4) et montrons que le spectre
peut étre obtenu grace a I’énergie par la méthode du Min-Max (théorémes 2.2.11
et 2.2.13). Enfin, nous utilisons ’énergie pour généraliser la preuve que l'opéra-
teur de Laplace est, & un poids prés, un invariant conforme en dimension 2
(théoréme 2.3.1).

Le chapitre 3 se concentre sur des exemples. Nous montrons d’abord que
I’on peut obtenir relativement aisément une expression en coordonnées locales
de lopérateur de Finsler—Laplace pour les surfaces de Randers (proposition
3.1.3). Cela nous permet d’ailleurs de montrer que tous les laplaciens & poids
sur les surfaces peuvent étre obtenus comme le Finsler—laplacien d’une métrique
de Randers (proposition 3.1.6). Nous étudions ensuite le cas des métriques de
Katok—Ziller sur le tore et la sphére, exhibant leur spectre dans le premier cas
(théoréme 3.2.6) et une approximation de celui-ci dans le second ainsi que le
théoréme C (théoréme 3.2.9 et corollaire 3.2.8).

Le chapitre 4 s’attaque au lien entre le laplacien et le flot géodésique en cour-
bure négative. Nous prouvons les théorémes E (proposition 4.2.1) et F (théoréme
4.2.6). Nous introduisons ensuite les outils nécessaires & I’énoncé du théoréme
d’Ancona sur ’homéomorphisme entre la frontiére de Martin et la frontiére vi-
suelle et prouvons que cette homéomorphisme est Holder régulier (théoréme
4.3.22). Nous montrons ensuite que nous pouvons appliquer le théoréme d’An-
cona a notre opérateur (théoréme 4.4.1) et en déduisons ’existence de solutions
au probléme de Dirichlet a l'infini (corollaire 4.4.2). Enfin, nous généralisons la
preuve de Ledrappier [83] sur les propriétés ergodiques des mesures harmoniques
(théoréme 4.5.2).

Le chapitre 5 constitue la seconde partie de cette thése. Nous commencons
par rappeler les résultats de Barbot et Fenley dont nous avons besoin sur les flots
d’Anosov, puis les travaux de Thurston, Calegari et Fenley sur les feuilletages.
Nous montrons ensuite que toutes les orbites homotopes sont isotopes (théoréme
5.3.3). Nous terminons par I’étude des classes “co-cylindriques” et leurs liens avec
I’action du groupe fondamental sur le cercle universel associé.
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4 CHAPTER 1. DYNAMICAL FORMALISM

1.1 Definitions

We will explain here the formalism that we will use in this dissertation
regarding Finsler geometry, following in that respect the work introduced by
Patrick Foulon in [59].

1.1.1 Notations

For the readers’ convenience, we will start with a list of notations that will

be used throughout this text but defined later:

In this dissertation, we only consider orientable manifolds.

_ If M is a manifold, 7'M is its tangent bundle and 7™ M its co-tangent bundle.
TM (resp. T*M) is the tangent (resp. co-tangent) bundle minus the zero
section. HM and H*M are the (co)-homogenized bundles.

pv: ITM — M

Py T*M — M

:TM — HM

cT*M — H*M

cHM — M

cH*M — M

Lp:TM — T*M the Legendre transform.

{p: HM — H*M the Legendre transform on the homogeneous bundles.

If « is a p-form on a manifold (where p can be equal to 0), then da is the
exterior derivative of . Otherwise, if f: M — N is a map between manifolds,
df: TM — TN is the differential of the map.

VHM = kerdr.

Lz stands for the Lie derivative of the vector field Z.

In all of this dissertation, an * in superscript (resp. subscript) of a map will
mean the pull-back (resp. the push-forward) of the following object.

Ny 3

1.1.2 Finsler metric and geodesic flow

Let M be a smooth manifold of dimension n, there are several definitions
of Finsler metric in the literature, we will use what is probably the most com-
mon and, unfortunately, the most restrictive of smooth, strongly convex Finsler
structure:

Definition 1.1.1. A smooth Finsler metric on M is a continuous function
F: TM — RY that is:

1. C™ except on the zero section,

2. positively homogeneous, i.e., F(x, \v) = AF(z,v) for any X\ > 0,
3. positive-definite, i.e., F(x,v) > 0 with equality iff v=0,

O%F?
0v;0v;
If, for any (x,v) € TM, F(xz,—v) = F(z,v), then we say that F is reversible.

4. strongly convex, i.e., ( ) is positive-definite.
,J

A Finsler metric can be thought of as a smooth family {1, } of strongly convex
sets containing 0 in each tangent space T, M, or equivalently as a smooth family
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of Minkowski norms. If the convex sets are always ellipsoids centered at 0 then
the Finsler metric is called Riemannian.

Some examples of Finsler metrics include for instance smooth and strongly
convex deformations of Riemannian metrics. In [95], G. Randers introduced
the following: take g a Riemannian metric on M, 6 a 1-form on M and define
F := /g + 0. If § has norm less than 1, then F is a Finsler metric (see [14]).
Randers metrics are an important particular example of Finsler structures: they
are the simplest kind of non-Riemannian metrics, arise a lot in physics and have
been widely studied. Note that Randers metrics are never reversible.

Under our conditions, it can be shown that F' defines a distance on M by:
for x,y € M,

d(z,y) = inf /0 Fle(t), e(t))dt,

where ¢ runs over all C!-by-part paths such that ¢(0) = z and ¢(1) = y. Note
that for a non-reversible Finsler metric, the distance function will not be sym-
metric.

In the definition, the positive homogeneity condition is necessary to ensure
that changing the parametrization of a curve does not change its length and the
third point assures us that a constant path does not have positive length. The
last requirement is not as self-explanatory as the others, but asking for F' to be
convex in the second variable implies that the length structure is lower semi-
continuous which, in turns, implies that the length of a rectifiable path computed
with d is the same as its “integral length” computed with the formula above
(see [29]). Using this distance, we can define geodesics as curves that locally
minimize the distance and hence a geodesic flow on the unit tangent bundle.
Note that our stronger assumption for convexity is necessary for our purpose, for
instance to obtain geodesics as solutions of a second-order differential equation,
or equivalently, so that the Hilbert form A, defined below, is a contact form.

The right place to study dynamical objects (by this, we mean objects linked
to the geodesic flow) seems to be the unit tangent bundle. However, in order to
study flows associated to different Finsler metrics without having to change the
space, we study everything on the homogenized tangent bundle:

HM =TM/RY.

We write 7: TM — HM and m: HM — M for the canonical projections.
Remark that the fibers of 7 defines a canonical distribution on T'H M, called the
vertical distribution V. HM. It is the set of vectors in T"H M that are tangent to
a fiber of 7, or equivalently, VHM := Ker dr.

Hilbert form

To a Finsler metric F', we can canonically associate a 1-form A on H M, called
the Hilbert form, in the following manner: for (z,§) € HM and Z € T(, ¢\ HM,
choose v € Ty M such that r(z,v) = (z,€) and set

Ar6)(Z) = lim F(z,v+edn(Z)) - F(z,v)

e—0 S

(1.1)

The homogeneity of F' implies that the definition of A does not depend on the
choice of v. Note that we can also define the vertical derivative of F': it is the
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I-form d,F: TM — T*T M such that, for any (z,v) € TM and Z € T(, ,\TM,

dyFly oy (2) i= lim 80 EAPZ)) = F(,0)

e—0 S

And we clearly have
dyF =r*A.

Theorem 1.1.2 (Hilbert, ..., Foulon [59]). A is a contact form, i.e., ANdA™*
is a volume form on M. Furthermore, if X denotes its Reeb field, then X
generates the geodesic flow for F.

Recall that a Reeb field is uniquely determined by the following two equa-
tions:

{A(X) =1 (1.2)

ixdA=0

Sketch of proof. Proving that A is contact can be done in local coordinates,
using that F'is strongly convex and 1-homogeneous, via the Euler formula. To
prove the affirmation about the Reeb field, we just have to remark that equation
1.2 is a very nice way to write the Euler-Lagrange equations. O

Remark 1.1.3. This implies that the canonical volume A A dA™! is invariant
by the flow, i.e.,

Lx (ANdA™™) =0. (1.3)

The Reeb field X is a second order differential equation, as defined in [59],
ie.,

Definition 1.1.4. A vector field X on HM is called a second order differential
equation if the following diagram commutes:

THM =~ TM —"> HM
Id
HM

There is an easy and very useful lemma about second order differential equa-
tions:

Lemma 1.1.5. If X1, X5 are two second order differential equations on HM,
then there exists a function m: HM — R and a vertical vector fieldY € VHM
such that

Proof. By definition, r o dm o X; = r o dmw o X5, so there exists m: HM — R
such that dm o X7 = mdm o Xs,80 X1 —mXos e VHM. O
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1.1.3 Dynamical derivative and Jacobi endomorphism

Foulon defined many objects associated with a geodesic flow, hence generaliz-
ing some Riemannian concepts, like curvature, in a purely intrinsic way, without
requiring any of the connections in Finsler geometry. However, we do not wish
to introduce those objects at length (or at all), because it is already done (both
in French and English) in the following articles: [59, 60, 61, 48, 49, 50, 46].
Moreover we will not use that much of this machinery, at least directly. In [48]
in particular, the reader can find much about the link between Foulon’s defini-
tions and their Riemannian (or connection-obtained, Finsler) equivalent. In [46]
or [45], Mickaél Crampon even generalizes these methods to Hilbert geometry
(so to some Finsler metric with very low regularity). However, as we do need
some results further on, we introduce the bare minimum.

There exists a C'°°-linear operator Hx : VHM — THM, called the horizon-
tal endomorphism such that, if we set hx HM := Hx(VHM), we have:

THM =VHM ®hxHM &R - X.

We write Id = p, + pr, + px for the associated projections.
Note that this decomposition generalizes the classical vertical/horizontal de-
composition in Riemannian geometry. Let us also state the following easy fact:

Lemma 1.1.6. Let Z € T(, ¢yHM such that dr(Z) = (x,v) € TM. Let A € R
such that Z = AX + h+Y, then

A< F(z,v), with equality iff r(x, &) = (x,v).

Proof. As Ais zeroon HxHM ®VHM, we have A(Z) = \. Now, let u € T, M
such that r(z,u) = (z,§), then

A(Z) = lim ! (F(z,u+edn(Z)) — F(z,u))

e—=0 ¢

e—=0 ¢

< lim 1 (F(z,u) +eF(x,v) — F(x,u)),

where the last line is obtained by convexity of F, giving us that A < F(x,v).
The equality condition comes from the fact that F' is strongly, hence strictly,
convex. |

There exists a first-order differential operator Dx defined on the space of C!
vector fields on HM, called the dynamical derivative associated with X. The
splitting THM = VHM ©hx HM ®R- X is invariant by Dx and for any vector
fieldY: HM — VHM

Hx(Y) = —=[X,Y]+ Dx(Y) (1.5)

In the following, uppercase letters will refer to vector fields.

The space HM comes naturally equipped with a Riemannian metric g such
that g(X,X) = 1, the above splitting of THM is orthogonal and, for any
y1,y2 € Vo) HM, if we choose Y7,Y5 any extensions of y; and y» to vertical
vector fields, then

9(y1,y2) = dA([X, Y2], Y1). (1.6)
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Furthermore, g is compatible with Dx, i.e., Lxg(Y1,Y2) = g(DxY1,Y2) +
g(Y1,DxY5). g is called the vertical metric.

There exists a C™-linear operator RX: THM — THM, called the Jacobi
endomorphism or curvature endomorphism. It is defined by:

R¥(X) =0, R¥(Y)=p,([X,Hx(Y)), R*(h)=Hx(p,[X h). (L7)

1.1.4 Cartan’s structure equations

Let X be a surface and F' a Finsler metric on it, there is a way to generalize
Cartan’s structure equations to this Finsler setting using Foulon’s formalism.
Foulon never published the proof, A. Reissmann did it in a not easily available
preprint [100], so we provide his proof. Note that Bryant [27, 28] gives the same
result using a different presentation.

Proposition 1.1.7 (Cartan’s structure equations). Let (Z, F') be a Finsler sur-
face. Let Y' be the unique vertical vector field such that g(Y',Y’) = 1 and
h = Hx(Y') € hxHM. If we write k for the function on HY such that
RX(Y'") = kY', then we have the following relations:

[X,Y'] = —h,
[X,h] = kY,
[Y',h] = =X +aY’ + bh,

where a,b: HM — R satisfies Lxb = a and Lxa + bk — Ly:k = 0.
Note that Y’ is unique because we consider only orientable manifold.

Proof. Let start out by computing [X,Y’]. As g(Y',Y’) = 1 and Dx is com-
patible with g, we have:

0=Lx (g(Y',Y")) = 29(DxY",Y").

Hence DxY’ and Y’ are orthogonal, but Dx leaves V HY. invariant, so DxY’ =
0 which yields, by equation (1.5):

h=—[X,Y].

Now let us compute the three projections of [ X, h].

First recall that ker A coincides with hx HYX ® VHY. and that A is invariant
by X. So the equality Lx(A(h)) = (LxA)(h) + A([X, h]) yields A([X,h]) =0,
hence the projection of [X, h] along X is null.

By definition (see [59]), Dxh = pn([X,h]) and applying the same argu-
ment used on Y’ above shows that Dxh = 0. And finally, again by definition,
RX(Y) = po (X, Hx (V).

We are left with [Y”, h]. By choice of Y, we have that dA([X,Y’],Y’) =1,
so dA(Y’,h) = 1. Now,

dA(Y',h) = Ly: (A(h)) = Ln (A(Y")) = A([Y", h]) = =A([Y", h]),

so the projection of [Y”, h] along X is —1 and projecting on the horizontal and
vertical distributions shows that there exist two real-valued functions a and b
on HY. such that [Y', h] = —X 4+ aY’ + bh.
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We finish by proving the assertions about the Lie derivatives of a and b.
They follow from Bianchi identity. Indeed, we have

[X,[Y',R]] = [X, =X + aY’ + bh]
=a[X,Y'|+ (Lxa)Y' +b[X,h]+ (Lxb)h
= —ah+ (Lxa)Y' +bRX(Y') + (Lxb)h,
[h, [X, Y]] =0,
Y, [h,X]] = [Y,—R*(Y")]
= —(Ly k) (Y'),

So writing that [ X, [Y', h]] + [h, [X,Y']] + [Y, [k, X]] = 0 yields:
(7(1 + be) h+ (an + bk — Ly/k) Y’ =0.

This implies that Lxb =a and Lxa + bk — Ly'k = 0.

Proposition 1.1.8. b is identically zero if and only if F' is Riemannian.

Proof. Suppose that b = 0. Remark that, as L xb = a, we immediately get that
a=0.

Denote by x, the flow generated by Y’, take x € ¥ and choose a point
ug € HyX. We set v(s) := dr (X, (uo)), by construction, we have F(v(s)) =1
and so v is a parametrization of the unit circle F~1(1) at x. The goal is to show
that v parametrizes an Euclidean circle.

We start by computing © = %; By definition, we have

= lim ! (CZX_8 (X

Y, XD oy = 1 xore () ~ X (o))

therefore, using that mo y_. =,

o1
dﬂ- ([YI7X]XS(’U,U)) = hm - (dﬂ- o dX*E (XX3+£(UU)) - dﬂ- (XXS(UU)))

e—=0 ¢
o1
= lim = (u(s + &) — v(s))

= 0.

So, by Cartan’s structure equations, we get that © = dm(h). Similar compu-
tations shows that © = dr ([Y”, h]). Applying dr to the last of the structure
equations shows that:

¥ = —v 4+ b. (1.8)

So assuming that b is identically null gives us a differential equation for which
every integral curves are Euclidean circles. Hence, F' comes from a quadratic
form.

Now assume that F' is Riemannian. Recall (see [59]) that in that case, for
any u in H,Y%, dm, is an isometry from (R-X @ hx HY), equipped with the
vertical metric g, onto T,3. Thus, by the above computations, v is orthogonal
to v and F'(v) = 1, taking the derivative shows that v is orthogonal to ©, which,
by equation (1.8) yields that b = 0. O
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1.2 Cotangent space and Legendre transform

In this section, we will recall the construction of the Legendre transform
associated to a Finsler metric and the dual Finsler metric. The Legendre trans-
form gives a natural diffeomorphism between the tangent and the cotangent
bundles. The construction is well-known in Finsler geometry and even better
known in the Hamiltonian context as is the dual Finsler metric, but some of
the results proved below might be less well-known. We also try to give intrinsic
proofs whenever we can.

Definition 1.2.1. We define the dual Finsler metric F*: T*M — R by: for
(,p) € T"M,

F*(x,p) = sup{p(v) | v € T, M such that F(x,v) = 1}. (1.9)

Remark 1.2.2. F* is a Finsler co-metric, that is, it verifies the same conditions
as in Definition 1.1.1 but on the cotangent.

Definition 1.2.3. The Legendre transform L : TM — T*M associated with
F is defined by Lr(x,0) = (2,0) and, for (z,v) € TM and u € T:M,
1d_,
Lr(z,v)(u) == —F*(z,v+ tu) . (1.10)
2 dt —o
As F? is 2-homogeneous, we have that L is 1-homogeneous, so we can
project Lp to the homogenized bundles. Set H*M := T”‘M/]R:r and write
Lrp: HM — H*M for the projection.
We can also construct ¢z via the Hilbert form A; As A is zero on VHM =
ker drr, for any (z,€) € HM, the linear function (dm(y¢))s (Aze)) : TM — R
is well define and taking its class in H*M gives {p. Remark that Lp(z,v) =
F(z,v)(dTr(z,0)) (AT(W,)). Considering directly £z, instead of L, can be quite
helpful sometimes.

Proposition 1.2.4. We have the following properties:
1. F=F*oLlp

2. Lp is a diffeomorphism, L is a bijection from TM to T*M and a diffeo-
morphism out of the zero section.

3. The following diagram commutes:

M —— H*M
% X
M Lp Lr M
X /

j)”M—T>HM

Proof. We start with 1.: Let (z,v) € TM, then F*oLp(z,v) = sup{Lp(z,v)(u) |
F(z,u) = 1}. Now, for any u such that F(x,u) = 1, we choose Z € T).(, ., HM
such that dn(Z) = (z,u) and we have

EF(Z"U)(U’) = F(zﬂv)Ar(m,v)(Z) < F(z,v)F(z,u) - F(SC,’U),
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with equality iff 7(x,v) = r(z,u) (by Lemma 1.1.6). This implies that F* o
Lr(z,v) = F(z,v).

For 2., several things are already clear; The unique pre-image of 0 by L
is 0, {r and L are as smooth as F' out of the zero section and finally, ¢ is
bijective iff L is, so we will prove injectivity or surjectivity for one of them and
it will imply it for the other.

The injectivity is given by Lemma 1.1.6; Indeed, suppose that there exist
&1,& € HpM distinct and p € R such that (dn). A, ¢,y = p(dm)w A e,)- Let
uy,ug € TpM such that r(z,u;) = (z,&) and F(z,u;) = 1, then, by Lemma
1.1.6,

1= (dm)«Ag,e)(u1) = p(dm)s A g, (u1) < p,
and switching u; and ug gives p < 1.

To prove surjectivity; take p € T*M and set u = F*(z,p). Let v, € T, M
such that F(z,v,) =1 and p(v,) = p, i.e., v, is the vector realizing the supre-
mum in equation (1.9) and write (x,&p) := r(z,vp).

Let h € (hxHM), ¢y and w = dm(h), we claim that p(w) = 0.

Assume the claim for a moment and recall that dm(, ) is a bijection from
(hxHM &R - X)(x,gp) to T, M. So, for any u € T, M, there are A and h such
that u = Adn(X (x,&p)) + dm(h), that is, u = Av, + w. Therefore

p(u) = Ap(vp) = A = pu(dm) s Az g,) (Avp + w) = p(dm) A g, (u)
and the surjectivity would be proven. So we just need to prove the claim.
Let h € (hxHM), . ) and set c(t) := %}%. By definition of v,,
v (c(t)|,_, = 050

0= %pelt)

. dﬁ(h) A(z,ﬁp)(h)vp
-P <F(:C,vp+td7r(h)) FQ(ZC,’UP—I—thF(h))) '

t=0

As A(y¢,)(h) =0, we get that p(dr(h)) = 0, which proves our claim.

Now, writing L in local coordinates, we can easily see that its Jacobian is given
0%F?

by | ——— and as this matrix is non-degenerate, Lr is a local diffeomor-
81}1-81;]- i

phism, hence a global one because it is bijective.

Finally, the fact that the diagram commutes is trivial. [l

Definition 1.2.5. We set B := (E;l)* A, it is a contact form and we write X*
for its Reeb field.

Lemma 1.2.6. The following diagram commutes:

TH*M “Z~ 70—~ HM
TX*/
ot

H*M

Note also that the projection by p of the integral curves of X* are geodesics of
the metric on M.
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Proof. As B = ({z')" A and X* is the Reeb field of B, we have that X* =
(¢z1), X (just verify that B ((¢z"), X) = 1 and 1(2;1)*XdB = 0), and since
Tolp = m, we get that the projections to M of the integral curves of X* are
the same as those of X, which proves the second affirmation.

As X* = (¢z"), X, we can rewrite it as X o (7' = d(;' o X*, and X being a
second order differential equation, we get that

E;l:rodﬂoXo€;1:rodﬂodﬁgloX*:rodﬁoX*.
O

Lemma 1.2.7. Let H: T*M — R be a Finsler co-metric, then we can define
H*:TM — R by:

H*(z,v) = sup{p(v) | p € Ty M such that H(z,p) = 1}.

H* satisfies the following properties:
1. H* is a Finsler metric.
2. If F is a Finsler metric, then F** = F.
3. We define the Legendre transform associated with H, Ly: T*M — T M,
by

1 d
Ly (x,p1)(p2) := 5 EHQ(SCJH +tp2) )
t=0

where we identified TM and T**M . It is a diffeomorphism out of the zero
section. Furthermore, if F' is a Finsler metric then Lp« o Lp = Idry and
EF 9] EF* = IdT*M.

4. H=H*oLg.

Proof. We do not prove the first point nor the third one, as we will not use it
in this dissertation. Note also that the proof of 4. is the same as in Proposition
1.2.4. The only thing we will use later is 2., so we prove it:

Set F'(z,v) := sup{p(v) | p € T;M such that F*(z,p) = 1}, we want to
show that F’ = F, by homogeneity, it suffices to show it on the F-unit circle.
Let v € T, M such that F(z,v) = 1.

First, if we set p := Lp(z,v) € TFM then, by definition, we have p(v) =
F(z,v) = F*(z,p) =1, so F'(z,v) > F(x,v).

Now, if we take py such that F*(x,py) = 1 and po(v) = F'(z,v), again by
definition

F'(z,v) = po(v) < F*(x,po) = 1 = F(x,v).

O

The following result was communicated to us by P. Foulon and might be al-
ready known to others, however, we are not aware of the existence of a published
proof and hence give one:

Theorem 1.2.8 (Foulon [58]). Any Finsler metric on M defines the same
contact structure on H*M . That is, if F' is a Finsler metric on M and B =
(f;l)* A, the distribution ker B C TH*M 1is independent of F'. Furthermore, if
we denote by X\ the Liouville form on T*M, we have

A

B = — 1.11
PB= (111)
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and
AN AN

#*BAdB"! =
(£

(1.12)

Proof. We will start by showing equation (1.11). First recall the definition of the
Liouville form: for any (z,p) € T*M, A, ) = podpjas, where pips: T*M — M
is the base point projection. In order to show that 7*B = %,
that their pull-back by Lg coincides.

we will prove
On one hand, as # o Lp = 1 o £p, we have:

B =1r"YsB=r"A=d,F,

and on the other hand,

o AN LA LpA
FA\F*) F*ofLr F

Now let us compute Lz \: For (z,v) € TM and Z € T(, ., T M,

(ﬁ;‘)‘)(m,v) (2) = ALp(aw) (ALF(Z))
= Lr(z,v) odpjp 0 dLp(Z)
= Lp(x,v) odpp(Z)
1d
= §EF2 (z,v + tdpj(2))
= F(m, ’U)dUF(z’U)(Z).

And we proved equation (1.11). Once we have that, the uniqueness of the
contact structure is trivial.
For the last equality, we have:

d\  ANdF*
dB = di*B = — — 27
r T F* (F*)Q

Therefore #*dB" "1 = (@)"*1 + A A (Something), so:

*

AAd\L AA AL

PBAdB" = + A A XA (Something) =
(F)m (F)m

O

Corollary 1.2.9. If B and By correspond to two Finsler metrics F' and F},
then there exists a function f: H*M — R such that By = fB.

Proof. By equation (1.11),

hence the result. O
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1.3 Angle and volume in Finsler geometry

We will give here a definition of a solid angle in Finsler geometry, i.e., a
volume form on each H,M naturally associated with the Finsler metric. Even
if the construction seems to be known, this angle does not appears as such in
the literature, at least to the best of the knowledge of the author. We will also
construct a similar solid “co-angle”, i.e., a volume form on each H}M.
Simultaneously to the angle, the construction gives a volume form on M, we
will show that this volume is the Holmes-Thompson volume for Finsler geometry
[73].

There are already several different angles defined in Finsler geometry. We
did not however try to compare known Finsler angles to this new one, making
just a quick address to that problem in section 1.4.

1.3.1 Construction

As we have seen in section 1.1, the only truly canonical volume associated
with F is given by AAdA"~!. We are going to split this volume on H M into a
volume on the base manifold M and a volume on each fibers H, M in a canonical
way. From now on, we will assume that M is oriented and will only consider
volumes preserving the orientation.

The construction is in two steps; First,

Lemma 1.3.1. Let w be a volume form on M, then there exists a (n—1)-form
o on HM such that

a* Am*w = ANdA™L,
Moreover, the value taken by a® on VHDM is uniquely determined.

Proof. The existence of some a® is straightforward, we just complete a n-form
m*w into a (2n — 1)-form A A dA™ L.

The uniqueness is given by the following. Let Y7,...,Y,,-1 € VHM be (n — 1)
linearly independent vertical vector fields, then Y7,...,Y,—1, X, [X,Y1],...,
[X,Y,,—1] are linearly independent (see [59, Theorem IL.1]). Therefore, we must
have:

. ANdA™T (Yl,. e Y1, X, [X,Yl],.. -,[X,Yn—l])

“(Y1,...,Y,—
o (Yy,..., Y1) ™w (X, [X,Y1], .., [X, Yu_1])

O

Note that o does give us a notion of solid angle, despite its non-uniqueness:

Lemma 1.3.2. For any w, the integral

l‘”(z):/HMo/‘) (1.13)

does not depend on the choice of o®.

Proof. Follows from the fact that the forms o are the same on VHM. |
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Secondly, in order to have a reasonable notion of angle, we wish the volume
of the fibers to be constant. To coincide with the Riemannian case we take this
constant to be the volume of a Euclidean sphere. It turns out that this condition
is realized for a unique volume form on M, hence giving a really natural way to
associate a pair angle/volume with a Finsler metric:

Lemma 1.3.3. There exists a unique volume form QF on M such that, Vo € M,
1% () = volgu (S .
Moreover, if w is any volume on M, then QF is given by:

@
g R 1.14
UOlEucl (Snil) Y ( )

Before getting on to the proof, let us state the following remark which has
some interest of its own and will be needed afterwards:

Remark 1.3.4. If W’ is another volume form on M, preserving the orientation,
and f: M — R such that w’ = fw. Then,

o AT (fw) =l A frtw = ANdA™TE

And so, for any Yy,...,Y, e VHM,

1
iy, ... dy,af® = Ziy iy, a”. (1.15)

f

Proof of Lemma 1.3.3. Let ¢, = volgyuc (S”_l) and ) = Kw, then the remark

Cn

shows that, on VHM, of = &a“. Which in turns yield:

ZQ$=/ 049:/ o - On / ¥ = c,.
(@) HoM oM () () Ja,m

The uniqueness is also straightforward. O

We can summarize the construction in the following:

Proposition 1.3.5. There exists a unique volume form QF on M and a (n—1)-
form of on HM, never zero on VHM, such that:

o ATFQF = ANdAMTY (1.16)

and, for all x € M,
/ af’ = volgua (S"1) (1.17)
H.M

Remark 1.3.6. Let us emphasize again that of' is not unique, only its restriction
to VHM, which is what we need to have a solid angle.

We will see later (section 1.5) that Qf is in fact the well-known Holmes-
Thompson volume.
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1.3.2 Coangle

Taking the Hamiltonian point of view, we can see that the volume BAdB" !
on H*M is as canonical as A A dA™~ !, so we could have carried out the above
construction on the homogenized cotangent bundle H*M. The exact same steps
gives the following:

Proposition 1.3.7. There exists a unique volume form QF on M and a (n—1)-
form BE" on H*M, never zero on VH*M := ker d#, such that:

B A7 Q" = BAdB™ T, (1.18)

and, for all x € M,
/ B = volgua(S™H). (1.19)
H

M

Fortunately for our claim of “natural” angle and volume associated with F
there is a relationship between our two constructions:

Proposition 1.3.8. Recall that {p: HM — H*M denote the Legendre trans-
form. Then

of =of"
of = 035"
where the second equality holds on VHM .

In the sequel, when the metric is clear from the context, we will often forget
the superscript when writing o, 87~ or QF.

Proof. First, note that
ANA™Y = 0% (B AdB™Y) = 05 (5F* A WQF) s (ﬂF) AR (QF) .
As #olp = 7 we have that (57" (QF) = 7*QF" | which yields

ANdA™Y = 0585 A QFT

It remains to show that the length of the fibers for £%3"" are equal to volgya (S"7?)
as the uniqueness part in Proposition 1.3.5 would then prove the claim. By the
change of variables formula and the definition of 8, we have for any = € M

/ 0" =/ B =/ B = volgya (S"71) . O
Ho M Cp (Ho M) H*M

*
x

1.3.3 Angle and conformal change

Here we will show two properties relating our angle and conformal change
of Finsler metrics. The first says that the angle and coangle are invariant under
conformal change, which is natural. The second is more surprising; the coangle
determines the conformal class of a Finsler metric, therefore a Finsler metric is
uniquely determined by a coangle and a volume form on the manifold.
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Proposition 1.3.9. Let (M, F') be a Finsler manifold, f: M oz, R, Fy =efF,
ayf, By and Qf the angle, co-angle and volume form of Fr. Then ay = o on
VHM, By = on VH*M and Q2 = enf Q.

Proof. Using the definition of the Hilbert form, we immediately have A; = e/ A,
1o)
Ap NdAYH = e ANdAMTY

Let w be a volume form on M. Let af and af be the two (n—1)-forms defined
by af Am*w = AANdA™ " and o, AT*w = Ap AdA}T!. We have,
ap, AW = e A mrw.

From there we get that, for any Y7,...,Y,.1 € VHM:

iy, ...ty , (@p AT'w) = a% (Y1,..., Y1) miw,
iy, -ty _, (a“}%f A ﬁ*w) =ap (Y1,..., Y1) 7w,
therefore:
ap, (Y1, Y1) miw = e o (Y,..., Y1) T w,

which leads to:
Oé%f (Yl, ey Ynfl) = e”foa% (Yl, ey Ynfl) .

And we deduce that, for any =z € M,

w _ nf(x w
/ aFfief()/ o,
H,M H,M

The two volume forms Q and 2y on M associated with ' and F} are given by
(see equation (1.14)):

fH A{O[Ui;f fH MaLFd'
Qp = HM T and Q= e
Cn Cn

Which yields:
Qp =eQ. (1.20)

Using the definition of ay and equation (1.20), we obtain:
oy AT = ap ATQ = Ap A dA’;_l =eANdAY = e a AT
Which in turns implies that, for any Y7,...,Y,_1 € VHM, we have
a,....Y 1) =ar(Y1,..., Y1)
Applying the following lemma will prove the claim about the co-angles. [l
Lemma 1.3.10. If Fy = el F, then lp = lp,.

Proof. Recall (see Section 1.2) that for (z,£) € HM, {p(x,€) is given by the
class in Hy M of A, ¢) seen as an element of T;M. Now Ay = el A, therefore,
Ay and Ay (a,¢) BT€ in the same class. Hence (p = {F,. O
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Proposition 1.3.11. Let 8 and (1 be coangles associated with two Finsler
metrics F' and Fy. If B and 51 are equal on VH* M, then there exists a positive
function f on M such that F; = fF.

Proof. By equation (1.12), we have that BAdB"~! = (?—1:) By AdB}™!, where

*

% is seen as a function on H*M, we call it f for the moment, note that f is
positive.

Using the definition of coangle, we have that:
BAT* Q= f"B1 AT*Q1 = fPBAT* Q4.

Now, applying iy, . ..iy,_, to both sides, for every Y1,...,Y,_1 € VH*M, shows
that we must have 7*Q = f*7*Qy. That is, f must be constant on the fibers.
Hence, we can see f as a function on M. And, as f = ?—1:, we get, Iy = fF*,
with f: M — R. So F} and F* differs by a conformal change. From there, it is
easy to deduce it for F; and F*:

Recall that F;* = F} (see Lemma 1.2.7), therefore:

Fi(z,v) = sup{p(v) | p € Ty M such that Fy(x,p) =1}
= sup{p(v) | p € Ty M such that f(z)F*(z,p) =1}
= [(2)F(z,v).
O

Corollary 1.3.12. A Finsler metric F' is uniquely determined by the two forms
BF and QF.

Note that this corollary gives an interesting characterization of a Finsler met-
ric. However, given two such forms, we did not try to give conditions implying
that they come from a Finsler metric even so it is an interesting question.

Remark that it would seem natural to have the above proposition also true
for angles (instead of coangles). Unfortunately, we do not know if that is the
case. One thing is sure: it is not, as it might seem, a direct consequence of
Proposition 1.3.11: If & = «ay, we just have 8 = (¢ of}ll)* (B), but we have
not yet found a reason to believe that having the same angle would implie that
the Legendre transforms are the same.

1.4 Angles in dimension two

In dimension 2, a solid angle is the same thing as a traditional angle, in
this section, we quickly go over a few properties of our angle. It is not aimed
to be anything like a thorough study of the angle, more of a quick overlook of
some questions that at once came to our mind. First, we study the relationship
between this angle and another that is traditionally used in Finsler geometry,
then we state some easy properties of the rotation generated by this angle.

1.4.1 A characterization of Riemannian surface

Recall that there is a canonical Riemannian metric g on VHM given by:

9(y1,y2) = dA([X,Y2], Y1),
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where Y7 and Ys are vertical vector fields such that Y;(z,v) = y;. This defines a
distance function on each H,Y, that is: an angle. Note that this gives an angle
in any dimension, not just a solid angle as our of .

Even though the presentation of this metric was given by P. Foulon, the

angle that it defines was known well before him, because it turns out that this

2F2
vertical metric is the same as the one obtained by considering ( 3 > .
V0V i

Our goal in this section is to show that of is in general very different from
the angle obtained via the vertical metric, we will show even more: In dimension
2, if those angles coincides at a point, then the Finsler metric is Riemannian at
that point.

Proposition 1.4.1. Let Y be the vertical vector field such that o (Y) =1 and
Y' € VHY such that g(Y',Y') =1. Let c: HM — R, such that Y’ = cY.
If c is constant on the fibers, then F is Riemannian.

Proof. If ¢ is constant on the fibers, then
ANiydA =iy (ANdA) = a(Y) 7" Q = cn™Q

can be projected to M, therefore Ly (A Aiy:dA) = 0. And a direct computa-

tion gives Ly~ (A A\ iy/dA) = AALy (iy/dA), we deduce that Ly (’Ly/dA) is null

on VHM @ hx HM. In particular, if h = HX(Y’), then Ly (iy-dA) (h) = 0.
Using Cartan’s structure equations (Proposition 1.1.7), we have:

Ly (iy+dA) (h) = iy (diy-dA) (h)
— d(iydA) (h,Y")
= Ly, (iy+dA(Y")) — Ly (iy+dA(h)) — iy-dA ([, Y])
= —Ly' (Ly A(h) = Ly A(Y') — A([H,Y"])) — dA([h,Y'],Y)
= Ly (—A(X — aY' — bh)) — dA (X — aY’ — bh, Y")
— Ly/(1) — dA(—bh,Y")
— _bdA([X,Y],Y)
= —b.

So b = 0, which is equivalent to F' being Riemannian (by Proposition 1.1.8). O

1.4.2 Rotations and reversibility

Proposition 1.4.2. Let (X, F) be a Finsler 2-manifold. There exists a unique
vertical vector field Y: HY. — VHY such that a(Y) = 1. The one-parameter
group 0° generated by Y is such that ¥V(z,&) € HY, t € R,

{7‘( (0" (2,€)) ==

027 (2,€) = (2,€) (20

Proof. Take a non-degenerate vertical vector field Y7 and set Y := Y7/ (Y1).
Uniqueness is due to the fact that V HY is 1-dimensional.

As Y is a non-degenerate smooth vector field, it generates a one-parameter
group 6%, and the first part of (1.21) follows from the fact that Y is vertical.
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The second claim follows from the fact that the length of the fibers is taken
to be 2m:
If we set # € &, for any & € H, %, t — 0%(x, &) gives a parametrization of H,X.
Let T(;¢) € RY be the period of 7 (x,£) it is easy to see that this period does
not depends on §. Indeed, if &;,& € H, X, there exists ¢ < T\, ¢,) such that
0 (z,&1) = (v, &), therefore

HT(mygl)(xaé-Q) - eT(mwgl) (et($,§1)) - 9t+T(I'£1)(:Ea£1) - et(‘ragl) - (:L'a§2)7

80 T{z¢,) 1s also a period for {&. Now, as the length of the fibers is 27, we can
see that the period must be 27:

27r:/Hm§:/OTIa(9'(t))dt=/OTIa(Y)dtz/OTIdt:T

Therefore, for any (z,€) € HY, %™ (2,€) = (,€). O

The first question that sprang to our mind about this rotation is its link
with the reversibility of the metric. We prove here something that seems very
natural: if the metric is reversible, then rotating a vector by 7 gives its opposite.
Note that this is not a characterization of reversible metrics. Indeed, as we will
see in the proof, if we write s: HM — HM such that s(z,£) = (x,—¢), the
only thing we need is that s*a = a.

Proposition 1.4.3. Let (3, F) be a Finsler 2-manifold. If F is reversible and
(z,€) € HY, then
0" (x,&) = (x,=¢&) . (1.22)
Proof. Let s: TS — TY, (z,v) — (z,—v) be the local symmetry.
If F is reversible, then s*d, F' = —d, F: for (z,v) € TY and Z € T(; ,)T%,

s (dﬂF)(Lv) (Z) = dyFly,—v)(ds Z)

1
=lim — (F(z,—v + edw ods Z) — F(x, —v))

e—=0 €
1
= lgr(l); (F(z,v—edn Z) — F(z,v))

= —dyF(3.0)(Z).

Now, if we also denote by s the symmetry on HY, we have shown that s*A =
—A. Therefore s* (A A dA) = AANdA and, using the definition of the angle form,
we obtain s*a = a.

s is a diffeomorphism of HY, so for € ¥ and U C H,Y. measurable, the change

of variable formula gives
/ st = / a, (1.23)
U s(U)

if ¢ € H,Y and U is one interval from & to —¢, then H,X = U U s (U) and

e e e e

Recall that there exists o such that U = {0%(¢) | t € [0,t0]}, so

to tU
7T—/Oé—/ Qe (¢ Ht )dt / dt = tg,
0

therefore —¢§ = 0™ (¢ O
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1.5 QF is the Holmes-Thompson volume

Contrarily to Riemannian geometry, there is no canonical volume in Finsler
geometry. We do not go into the reason for that as it is very well explained
in [29]. There is however a certain number of “natural” volumes that has come
up in convex geometry (see [29, 5]), among them the most studied ones are the
Busemann-Hausdorff and the Holmes-Thompson volumes.

The Busemann-Hausdorff volume ([30]) is obtained by considering a Finsler
manifold as a metric space and taking its Hausdorff measure, but Alvarez-Paiva
and Berck [4] showed that despite its naturality, it might not be the “good” one.

The Holmes-Thompson volume ([73]) comes from the symplectic structure
of the co-tangent bundle of a manifold. Recall that, if A\ denotes the Liouville
form on T*M, then d) is the canonical symplectic form on T*M and (d\)" /n!
is the Liouville volume. Now the Holmes-Thompson volume Volgr associated
with a Finsler metric F' is defined by: Let U a Borel set on M and B*U :=
{(z,p) € T*M | pjps(z,p) €U, F*(x,p) <1} CT*M, then:

Volgr(U) = i/ (d)\)”, (1.24)
U

€n n!

where €, is the volume of the unit ball in the Euclidean space E™.
Remark that, if we denote by S* M the co-tangent sphere bundle, i.e., the subset
of T*M given by (F*)~1(1), then an application of Stokes Theorem shows that:

1 AA (AN
VOIHT(U) = —/ /\(7)
S*U

€n n!

We can now prove that QF corresponds to Volgr: For U a Borel set in M,
an application of Fubini (see lemma 2.1.11) gives:

1 1
o — = F/\ﬁ‘*Qin/ BAdB™ L.
/U vOlEual (S"il) H*U g vOlgual (S"il) U

Now, by Theorem 1.2.8, we have that #* BAdB" ! = %, and 7: T*M —

H*M is a diffeomorphism when restricted to S*M. So, by the change of variable
formula, we obtain:

AN (dN)" _
/ BAdB"—lz/ B/\dB"—lz/ (7)712/ AA(dN)" L
U #(S*U) ssv (F¥) S*U

Therefore,

1 _ nle
o= — — M@ = —— Vol = (n—1)!Vol .
/U volgua (S™71) /sw M) VOlEyel (S”_I)VO arl)=(n ( ) V)o #r(l)
1.25

So we proved the following:
Proposition 1.5.1. Let F' be a Finsler metric on a n-manifold, then

QF = (n—1)!Volgr.
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Before moving on, we wish to make a few remarks:

First, we could get rid of the constant by considering A A dA"~!/(n — 1)!
instead of just AAdA™ !, However our aim was never to study this volume and
so we felt that adding this constant would unnecessarily weigh on the redaction.
Indeed, almost everything in this dissertation is invariant under a change of
volume by a constant, the only exception being the actual computation of the
volume of a Finsler manifold. However, our only actual computation of volume
is in dimension two.

Second, we must admit that until very recently, we wrongly believed that QF
was different from the Holmes-Thompson volume. Hence in this dissertation,
we prove every claim we make about this volume even so they are probably
classical results.

Finally and on a side note, it is interesting that the Holmes-Thompson is
very well-known, but that the naturally associated angle does not seem to have
been studied, so we hope that we repair at least a little that injustice.
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2.1 A natural Finsler—Laplace operator

2.1.1 Definition

In this section we will introduce our generalization of the operator of Laplace—
Beltrami, and begin by recalling its different equivalent definitions in Rieman-
nian geometry:

The “historic” Laplacian on R" is defined as

i

So, given a Riemannian metric g, at any point p, we can choose normal coordi-
nates and use the above expression. For generic local coordinates (z1,...,z,),
where the metric reads g = [g;;], the local expression becomes:

1 0 0
ars - L0 <@gw_) .
\/detg a.%'l G:I:j

A possibly more agreeable, coordinate-free expression for the Laplacian is:
ALB f = div(Vf),

where V f is the gradient for g of f and div is the divergence operator (see, for
instance, [66]).

Finally, the Hodge—Laplace operator gives an expression for the Laplacian on
differential forms (see [66] or [110]).

The use of the Laplace operator is gigantic, exhibiting deep links between
its spectral data and the geometry of the manifold carrying it (for a proof
of this affirmation, the reader can consult, for a start, [21, 22, 37] and then
move forward on to the thousands of articles on this subject). Hence, giving a
generalization of this operator to the Finslerian context is of great importance,
especially if we manage to construct one having the same kind of behavior.

There have already been several generalizations of the Laplace operator [15,
36, 102], each starting from a different definition of the Laplace-Beltrami and
obtaining different operators. This can be seen either as a drawback or a new
source of interest for Finsler geometry. Indeed, it is not uncommon that when we
try to broaden a definition, what was equivalent turns out not to stay this way,
often yielding some important insight in the process. And this is particularly
true of Finsler geometry, as the history of Finslerian connections, for instance,
proves.

Bao and Lackey [15] gave a generalization of the Hodge-star, allowing them
to define a Finslerian Hodge-Laplace operator. Shen [102] gave the very natural
generalization of div (V) to Finsler metrics. Indeed, the gradient of a function
is just its derivative seen as an element of the tangent space, i.e. its pullback
by the Legendre transform. So clearly this is not just Riemannian. But note
however that for Finsler metrics, the Legendre transform is in general not lin-
ear, so Shen’s Laplacian is not linear. Remark also that to define a divergence,
one needs to choose a volume form on the manifold and, as we have already
mentioned, there is no canonical volume in Finsler geometry. Finally, Centore



2.1. FINSLER-LAPLACIAN 25

[36] did not use directly one of the above definitions, but the fact that harmonic
functions satisfy the mean-value property and designed an operator in order to
keep that property. Here, once again, his definition relies on the choice of one
volume.

Our approach for a generalization relies on the first definition, as the sum of
the second derivatives in orthonormal directions. As there is no good notion of
orthogonality in Finsler geometry, we consider instead the average of the second
derivatives in every direction. The average being taken with respect to the angle
we introduced in section 1.3. More precisely, we introduce:

Definition 2.1.1. Let F be a Finsler metric on a n-manifold M. We define
the Finsler—Laplace operator, denoted AT, by

n *
AF f(z) = W/HmML%((W far,

for every x € M and every f: M — R (or C) such that the integral exists.

As we will see in the next section, the constant ﬁ(sn,l) is chosen so that
AF is the Laplace-Beltrami operator when F is Riemannian.

Remark 2.1.2. Note that we can define a Laplace-like operator in this fashion
for any contact form on a homogenized bundle HM. We have not pursued the
study of this more general kind. However, it should be clear that everything
that still makes sense in this more general context would stay true.

It is already clear from the definition that A¥ is a linear differential operator
of order two. It also verifes the following:

Theorem 2.1.3. Let F be a Finsler metric on M, then AT is a second-order
differential operator, furthermore:

(i) AT is elliptic,

(ii) AF is symmetric, i.e., for any f,g € C5°(M),

/ fAFg—gAF FQF = 0.
M

(iii) Therefore, AF" is unitarily equivalent to a Schrédinger operator.
(iv) AY coincides with the Laplace-Beltrami operator when F is Rieman-
nian.

Remark that our definition of Laplace operator could be applied with any
angle. However, to obtain a symmetric operator, we fundamentally rely on the
fact that of” and QF comes from the volume AAdA"™ ™!, which is invariant by the
geodesic flow. So, in order to get an operator satisfying the above conditions,
the only choice we really made was to ask for the volume of each fiber to be
constant with respect to af'.

We split the proof of the theorem in the next four sections. Note that all the
proofs are surprisingly easy, which is, in my opinion, an asset of this operator.

2.1.2 The Riemannian case

We start by proving Theorem 2.1.3 (iv).
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Proposition 2.1.4. Let g be a Riemannian metric on M, F' = /g, AT the
Finsler—Laplace operator and A9 the usual Laplace—Beltrami operator. Then,

AF = A9,

Proof. We will compute both operators in normal coordinates for g and show
that they coincides.

Let p € M and z1,...,z, normal coordinates around it. Denote by v1,...,v,
their canonical lift to T, M. For f: M — R, the Laplace—Beltrami operator is
0% f
A9 = —=(p).
f(p) S (p)

The first step to compute the Finsler—Laplace operator is to compute the
Hilbert form A and the geodesic flow X. In order to write A, we identify HM
with TP M and coordinates on H,M are then given by the v;’s with the condition

VI = 1. i

The vertical derivative of F' at p is d,F), = de So A, =v; dzt and

dA, = dv; A dz'. Hence X(p,-) = via%i' Indeed, we just need to check that
Ap (Xp) =1 and (ixdA), = 0: both equalities follow from > (v;)* = 1.
Let f: M — R, then
* f
L%( (7T f) (p,’U) - vivjm(pa ’U),

so, the Finsler-Laplace operator is:

0% f
AF :__JL__/ 0.
f(p) VOlEucl §n—1 HyM viv; & azzazj (p)
And the proof follows from the next two claims. O

Claim 2.1.5. For all i # j,

/ vivj o =0
HyM

Proof. H,M is parametrized by HyM = {(v1,...,v,) | v; € [-1,1]}.
A parity argument then yields the desired result. O

Claim 2.1.6. For any 1 <i<mn,

9 volgue S 1
vy = ———
H,M n

Proof. As the v;’s are symmetric by construction, we have that for any i # j,

/' ﬁa:/‘ 2a.
H, M Hy,M

n/ Ufa: g / v?a:/ E U?a:/ la =volg,qS* ! O
H,M H,M HyM H, M
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2.1.3 Ellipticity
We now prove Theorem 2.1.3 (i).

Proposition 2.1.7. AF: 0% (M) — C>(M) is an elliptic operator. The sym-
bol o is given by

"
volgucl (Snf 1 )

or(&1,&) = /H MLX(W*%)LX(?T*W)QF

for &1,8 € TEM, where p; € C*°(M) such that ¢;(x) =0 and dp; , = &;.

Remark 2.1.8. If we identify the unit tangent bundle T' M with the homogenized
tangent bundle HM and write again o for the angle form on T'M, then the
symbol is given by

n

F = )& (v) af (v
oF(€1,6) = )[@M“ 62 (v) o ()

VOlgyer (SP1

for &1,& € T M.

The symbol of an elliptic second-order differential operator is a non-degenerate
symmetric 2-tensor on the cotangent bundle, and therefore defines a Rieman-
nian metric on M. This gives one more way to obtain a Riemannian metric
from a Finsler one. Let A be the Laplace—Beltrami operator associated with
the symbol metric, then A" — A is a differential operator of first order, so is
given by a vector field Z on M. The Finsler—Laplace operator therefore is a
Laplace—Beltrami operator together with some “drift” given by Z. We will later
see that our operator is in fact characterized by its symbol and the symmetry
condition (section 2.1.5).

Proof. To show that A is elliptic at p € M, it suffices to show that for each
¢: M — R such that ¢(p) = 0 and dyp|, is non-null, and for u: M — Rt we
have AT (¢%u)(p) > 0 unless u(p) = 0.

We first compute L3 (7*¢%u):

L% (7*¢®u) = Lx (2n*puLx (7*¢) + m*¢*Lx (7*u)),
=21 u (Lx (7°¢))? + 2n* puL’ (7*¢)
+4n* oLy (1*¢) Lx (7*u) + 2m* 0> L% (7*u) .

Evaluating at (p,&) € HM, we obtain,

L (7¢u) (p,€) = 2u(p) (Lx7*¢)” (p, ).
Therefore,

AF(QOQU)(I?) = W /HPM 2u(p) (LXW*QDP a,

2u(p)n / 2
= Lxn* a > 0. O
volgyel (S™71) pM( XTY)
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2.1.4 Symmetry

We have an hermitian product defined on the space of C'"*° complex functions
with compact support on M by

(f.9) = /Mf@c)@sﬂ

So we can now prove Theorem 2.1.3 (ii).

Proposition 2.1.9. AF is symmetric for (-,-) on C§°(M), i.e., for any f,g €
C§° (M), we have:

(ATf,9) = (f,AFg).
Remark 2.1.10. The proof of this result is remarkably simple due to our choice
of angle form and volume. Indeed, as a A 7*(Q is the canonical volume on HM,
it is invariant by the geodesic flow (i.e., Lx(a A 7*Q) = 0) which is the key to
the computation.

In order to prove the proposition, we first need a Fubini-like result. It is
certainly known, but as it appears to us that it would take less time to do it
than try to look for a reference in the literature, we provide the proof below.

Lemma 2.1.11. Let f : HM — C be a continuous, integrable function on HM .

We have,
/ </ f(z,-) a> Q= fanm Q. (2.1)
M \JH, M HM

Proof. In the following, we will write f,: H,M — C for f(z,-).

Let {U,} be a trivializing open covering for = : HM — M, i.e., there exists S
such that, for every a, there exists an homeomorphism ¢,: HU, = 71 (U,) —
U, x S. Moreover, for every x € Uy, pq(z,dot): H,M = H,U, — S is also an
homeomorphism.

Let {¢4} be a partition of unity subordinated to {U,}, we have

/M </1LIIMfIO‘)Q;/Ua%(z) </HIMfIO‘>Q'

Let z € U,, we set af = (gaa(x,~)’1)*o¢, it is a (n — 1)-form on S, but, by
definition of ¢,, af does not depends on z, just on a, so we write a® := a2. We

hav
T [ aw(f a)an [ aw(f )

Then applying Fubini’s Theorem (see, for instance, [23]) gives:

[ ([)a]_ssire

Now, we have ¢Xa® A = a A 7%, hence we get:

/ @afaAQ:/ wafa AT Q.
UaxS HU,
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Summing over a, we finally obtain:

[y e)o=5 [ s (], s)a=X [, mranes

:/HM<Z<pa>fa/\ﬂ' Q= fanT* Q.

o HM

We can now proceed with the

Proof of Proposition 2.1.9. Let f,g: M %, C and set Cp =

- n
volgucl (S" -1 ) .

AF = [ gATfQ
(AT f,g) /Mg s

=cn /My (/HM Li((w*f)a) 0
=cp /M (/HIMFgLﬁ((w*f)a) Q

:cn/ T gLk (1" f) a A T*Q,
HM

where the last equality follows from the preceding lemma. As a A7*Q = A A
dA"! we can write

(AT f,9) =cn /HMngLi(w*f)AAdAn—l.

Now,
Lx (m*gLx(m*fYANdA" ") = 7ogL% (n* f)ANdA" !
+ Lx (7 g)Lx(m* f)ANdA™ ' + 7T5gLx (n* f)Lx (AN dA™Y).
The last part of the above equation vanishes because of (1.3). We also have:
Ly (m*gLx (" fYANdA™ ") =d (ixmgLx (" f)ANdA" ).
Hence

n

F —
<A fa g> - VOlEucl (Snfl)

l/ d(ixﬂ'_*ng(ﬂ'*f)A/\dAnil)
HM
— Lx(m*g)Lx(n*f)ANdA™ ],

As M is closed, HM is closed and applying Stokes Theorem gives (2.2), thus
proving the claim.
O

In the proof we obtained a Finsler version of Green’s formulas:
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Proposition 2.1.12. 1. For any f,g € C*°(M), we have:
-n
volgye (S*1)

(AF ) = | @RI nAnda (2
HM

2. Let U be a submanifold of M of the same dimension and with boundaries.
Then for any f € C>°(U), we have:

F F _ n * n—1
/UA fQ 77V01Eucl ) /BHU Lx(n*f)dA (2.3)

2.1.5 A characterization of Af

The following results were explained to us by Yves Colin de Verdiére and
are probably well known to many people. However, they might not be known
to everyone and are quite interesting so we provide them with the proofs.

Lemma 2.1.18. Let (M, g) be a closed Riemannian manifold and w a volume
form on M. There ezists a unique second-order differential operator Ay ., on M
with real coefficients such that its symbol is the dual metric g*, it is symmetric
with respect to w and zero on constants.

Ifa € C®(M) is such that w = a®v,, where v, is the Riemannian volume, then
for ¢ € C°(M):

1
Aguip = A= —(Ve, Va?).

Before getting on to the proof, this result deserves a few remarks:

— We have seen above that, to a Finsler metric, we can associate a volume
and a Riemannian metric via the symbol of the Finsler—Laplace operator.
This Lemma, tells us that conversely a volume together with a Riemannian
metric gives a Laplace-like operator. So, going back to the problem of
finding a “good” Laplacian in Finsler geometry, whenever you associate a
volume together with a Riemannian metric to a Finsler metric, by this
lemma, you can declare that you obtained a Finsler—Laplace operator.
The difference then between a “good” and a “bad” operator seems to me
to be the definition of the operator and the links that can be made between
this operator and the geometry of the manifold. I hope the reader will be
convinced that our operator should deserve the former qualification.

— As there are many more Finsler metrics than pairs (volume/Riemannian
metric), this lemma, shows that many Finsler metrics will share the same
Finsler-Laplacian.

— A related question raised by Yves Colin de Verdiéres was to determine the
range of pairs (volume/Riemannian metric) that can be obtained from a
Finsler metric. We prove that we get everything in the case of surfaces
(Proposition 3.1.6), but we do not know the general answer.

— The operators of the type A, ,, seem to have been introduced by Chavel
and Feldman [38] and Davies [47]. They are called weighted Laplace oper-
ators and have been quite widely studied (see, for instance [71]).

— Up to now we only considered our operators to act on C*°(M). In the next
section, for the purpose of spectral theory, we will start considering them
as unbounded operators on L?(M,w). By considering the Friedrich exten-
sion, the above result stays true replacing “symmetric” by “self-adjoint”
(we recall the definitions in the Appendix 2.A).
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Proof. Tt is evident from the definition of Ay, that it is zero on constant, that
its symbol is g* and that for ¢, € C>°(M),

/M PAgwp w = /M 9" (dp, dyp) w = /M PAg Y w

Let us now prove the uniqueness. Let A; and Ay be two second-order
differential operators such that they are null on constants and have the same
symbol. This implies that there exists a smooth vector field Z on M such that
Al — AQ = Lz.

Now, suppose that both operators are symmetric with respect to w. We get,
Jy Lz —pLzpw = 0 for any ¢,9p € C(M). And taking ¢ = 1 yields
f v Lzpw =0.

But, if Z is not zero, it is easy to construct a function ¢ € C°(M) such
that Lz¢ > 0 in any open set that does not contain a singular point of Z. So
by continuity, Z must be null. O

An important consequence of this lemma is that any symmetric, elliptic
linear second order operator is unitarily equivalent to a Schrédinger operator.

Proposition 2.1.14. Let A, ., v, and a be as above. Define U: L* (M,w) —
L? (M,v,) by Uf = af. Then UA, U™t = A9 +V is a Schridinger operator
with potential V = alg a7t

Remark 2.1.15. This fact shows that the spectral theory of our operator restricts
to the theory for Schrédinger operators such that the infimum of the spectrum
is zero.

Proof. Tt suffices to show that UA, ,U~! — V is symmetric with respect to w,
null on constants and has g* for symbol, because then Lemma 2.1.13 proves
the claim. It is clearly null on constants and the symmetry property is obvious
by construction. Let © € M and ¢ € L? (M,v,) be such that ¢(z) = 0 and
dy, # 0. We have

(UAg U™ = V) @*(2) = algu(p®a™)(2) = Agu(@®)(@).  (24)
Therefore the symbol of (UA,,, U~ — V) is the same as that of Ay, O

2.1.6 Relation to other Laplacians

We did not pursue the study of the comparison between this Finsler—Laplace
operator and those introduced before by Bao and Lackey [15] and Centore [36].
However, we can make the following easy remark.

Suppose that L is a second-order differential operator on a closed manifold,
null on constants and symmetric with respect to two volumes 2; and 25, then
Q; is a constant multiple of Q5. Indeed, if we write Q5 = 1, then for any

function g,
0=/ Lgm:/ (Lg)fszl:/ gLf i,
M M M

hence Lf =0, so, if M is closed, f = cst.

So an easy way to see that our Finsler—Laplace operator is different from
Centore’s is by remarking that his operator is symmetric with respect to the
Busemann-Hausdorff volume and applying the above remark.
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2.2 Spectral theory

Most of the results of this section follows from the general theory of elliptic,
symmetric operator on compact manifolds. However, we felt that for the con-
venience of the reader as well as for the interest of the results it was worthwhile
to give the proofs. Hence we either reproduced or adapted the proofs to our
special case.

2.2.1 The space H'!

In order to deal with the spectral theory of our operator, we will stop seeing
it as acting on C*° functions but as an unbounded operator on L?(M). We
collected in appendix 2.A the basic definitions and the main results that we
need.

We start by defining a very useful functional space. Let C§° (M) be the space
of smooth functions with compact support on M (so that if M is boundaryless,
then the second condition is empty). Consider the following inner product on

Ce(M):
(u, v)1 :/ qu+/ Lx (7*u) Lx (7*v) AANdA™?
M HM

and denote by ||-||1 the associated norm.

Definition 2.2.1. We let H'(M) be the completion of C$°(M) with respect to
the norm || - ||, -

Remark 2.2.2. Using the Riemannian metric given by the symbol of the Lapla-

cian, we have:
(u,v)1 :/ qu+/ VuVo ).
M M

Note also that we do not use the classical notations of H*(M) and Hg(M) for
the completion of respectively C*° (M) and C§°(M). But as our main focus will
later be closed manifolds, we did not feel it worth introducing two notations.

H'(M) is a Sobolev space and we have the following embedding result (see
[90, Lemma 3.9.3]):

Theorem 2.2.3 (Rellich—-Kondrachov). If M is compact with smooth boundary,
then HY(M) is compactly embedded in L*(M).

The Finsler-Laplace operator is an unbounded operator on L?(M) with
domain in H*(M).

2.2.2 Energy integral and Rayleigh quotient
Definition 2.2.4. For any function u € H'(M), we define the Energy of u by:

n * 2 —1
Eu) = ———— L ANdA™ 2.5
(1) = oy [, V() (25)
and the Rayleigh quotient by
E
R(u) : () (2.6)
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Remark 2.2.5. The energy as well as the Rayleigh quotient can also be defined
using the cotangent setting, i.e. for any u € H'(M), we have

n

Eu) = volgya (S™1)

/ |Lx~ (7*u))* BAdB" ™,
*M

where B = ({')*A and X* is its Reeb field (see Chapter 1).
The Energy we defined is naturally linked to the Finsler—Laplace operator:

Theorem 2.2.6. u € H*(M) is a minimum of the energy if and only if u is
harmonic, i.e., AF(u) = 0.

Remark 2.2.7. When M is closed, this just proves that the only harmonic func-
tions are constant. But this result stays true without restrictions on the manifold
and is therefore fundamental when used on manifolds with boundaries.

Proof. Letu,v € H'(M) we want to compute %E(ertu). Let ¢,, =
we have

___n
volgyc (S*—1)?

E(w+tu)=c, / (Lx7*v)? + 2tLxm vLxm*u +t* (Lxm*u)® AAdA" Y,

HM
(2.7)
therefore,

d
pn (E(v + tu))

‘t:()

20n/ Lxm*vLxm*u AN dA™ L,
HM

and, applying the Finsler—Green formula (Proposition 2.1.12, note that u €
H'(M) implies that u|gps = 0 hence the Finsler-Green formula applies without
modifications even when M has a boundary), we obtain:

d
B+ tw),_, = 2/ uAFp QF
t B HM

So, if v is harmonic, then it is a critical point of the energy, and (2.7) shows
that it must be a minimum. Conversely, if v is a critical point, then for any
u € HY (M), (AFv,u) = 0, which yields Ay = 0. O

2.2.3 Spectrum
Theorem 2.2.8. Let M be a compact manifold and F o Finsler metric on M.

1. The set of eigenvalues of —AF consists of an infinite, unbounded sequence
of non-negative real numbers g < A\ < Ao < ....

2. Each eigenvalue has finite multiplicity and the eigenspaces corresponding
to different eigenvalues are L? (M, ))-orthogonal.

3. The direct sum of the eigenspaces is dense in L? (M,Q) for the L?-norm
and dense in C* (M) for the uniform C*-topology.

For the convenience of the reader, we will give the adaptation to this special
case of the two classical proofs of Riemannian geometry (see, for instance [21]).
The first one uses the whole machinery of the theory of unbounded operators,
the second one uses the min-max principle and is, in my opinion, more agreeable.

Before starting the proof, we wish to recall one special characteristic of
elliptic operator (see, for instance [90, Theorem 3.9.1]):
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Theorem 2.2.9 (Elliptic Regularity theorem). Let L be an elliptic operator
on a smooth manifold M. If s € H'(M) is such that Ls € C> (M), then
s€C>®(M).

One classical problem of partial differential equations is, given a differential
operator L on M and a smooth function w, to find a smooth function u such that
Lu = w and u verifying some additional conditions on the boundary of M if it
exists. Finding solutions to this problem is generally hard, but can sometimes be
simplified by weakening the expected regularity of u. These solutions are called
weak solutions. Now, if the operator is elliptic, then finding weak solutions is
sufficient due to the above regularity theorem! This technique of finding weak
solutions is applied in the following proofs. (We did not wish to go into any
detail about weak/classical solutions as it is not the main concern here and it
can be found in many books on PDEs, see for instance [69, 104].)

Proof of Theorem 2.2.8: first method. —AF" is a positive, symmetric operator,
so its Friedrich extension § exists (see Theorem 2.A.9). § is a closed, positive,
self-adjoint operator, so its spectrum is in R™. Now take any u not in RT, by
definition, the resolvent R, := (§ — pId) is a bounded operator from L?(M)
onto the domain of § which is H'. By Rellich-Kondrachov Theorem, the embed-
ding H'(M) < L?(M) is compact, so R,, is a compact operator. Therefore, by
the classical result on the spectrum of compact operators (see for instance [99,
Theorem VI.16]), we deduce that § has an infinite, unbounded, discreet spec-
trum. Finally, as —AF is elliptic, so is §, hence all its eigenfunctions are smooth
(by the elliptic regularity theorem) and so are in the domain of —A*". [l

The following proof is classical for the Laplace-Beltrami operator (and stays
true in a much wider setting, see [97]). Here, we adapted the proof given in [21].

Proof of Theorem 2.2.8: The Min-Maz method. Let
p1 = inf{R(u) : uwe H'(M), / lu|?Q # 0}.
M

As R(u) > 0, pq exist. Using the Rellich-Kondrachov theorem, we show that
from a sequence u,, € H'(M) such that R(u,) tends to ui, we can extract a
subsequence converging in £2(M) to a function in H'(M). Therefore, p; is
realized on H'(M). Define E; as all v € H'(M) such that R(v) = y; or v = 0.
The second step of the proof is to show that F; is an eigenspace for AF.

Claim 2.2.10. We have the following characterization:

veEE & Yuc HY M), (uv), = (ﬂ +1) (u,v). (2.8)

Cn

Proof of Claim. The implication from right to left is trivial, just take u = v, so
we focus on the other implication.

Choose any v € Eq,u € H(M) and t € R sufficiently small, we have R (v + tu) >
R(v) = 1, so the derivative at ¢ = 0 of the function ¢ — R (v + tu) is zero. We

denote ¢, := ﬁ(s"ﬂ’ direct computation gives:
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Lxv)® + 2tLxvLxu+ o(t) AN dA™!
Sy %+ 2tuv + o(t) Q

(/ (Lxv)? + 2tLxvLxu + oft) A/\dA"_l)
HM

R (v +tu) :canM(

Cn

IR

v <1 - IM%/M 2tuv Q+o(t)) ,

Lxv)? ANdA™ !
= R(v) + 2t o (— Jins (Exv) / uv )
M

v Q Sy v Q
+ / Lx’ULXu A A dAn_l) + O(t),
HM
2t

= R(v) + T oa (—p(u,v) + en ((u,0), = (u,0))) + o(t).

So writing that the term in ¢ is 0 yields the characterization (2.8). O

Claim 2.2.10 shows first that F; is a vector space. Furthermore, as the ||.||;-
norm and the ||.|-norm are proportional on Ej, using once more the Rellich-
Kondrachov theorem, it shows that the balls of E; are compact in L?(M), so
FE); is finite dimensional.

Using the Finsler-Green formula (proposition 2.1.12), we can rewrite equa-
tion (2.8) as

veE & Yuec H' (M), (Av,u)g = —pui(u,v)o, (2.9)

that is, an element of E; is a weak solution of the closed eigenvalue problem,
for the eigenvalue 1. So the elliptic regularity theorem yields that F4 is inside
C>(M), and that all the weak solutions are in fact classical solutions.

To get the next eigenvalue, set H; (resp. L;) the orthogonal complement of E*
with regard to ||.||1 (resp. ||.||) and we define

po = inf{R(u) : v € Hy,u # 0}.

Claim 2.2.10 shows that H; C Li, and these spaces are closed in H'(M) and
L?(M) respectively. So, the inclusion H; C L; is closed and we can apply
the same arguments to show that us is attained, and that the space of func-
tions Fy that realizes this minimum is the eigenspace for ps. By definition,
w2 > p1. Redoing the previous steps, we construct a sequence of eigenvalues
0 < p1 < p2 < ps... together with a sequence of associated, mutually or-
thogonal, finite dimensional subspaces of H(M), Ey, Es,.... The sequence is
necessarily infinite because H'(M) is infinite dimensional and the E; are only
finite dimensional.

To finish the proof of the first part of the theorem, we must show that
the sequence {u;} is unbounded. If it was bounded by a real number pu, we
could take an infinite sequence {¢;} of orthonormal functions in L?(M) such
that R(¢;) < u for every i (just take a L2-orthonormal basis of every E;’s),
50 ||¢i]l1 < p+ 1, and as the inclusion H(M) < L?(M) is compact we would
obtain a subsequence of orthonormal functions which converges in L?(M), which
is absurd. |
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The advantage of the above proof is that it gives an actual expression for
eigenvalues. Let us summarize it in the following:

Theorem 2.2.11 (Min-Max principle). If M is a compact manifold, then the
first eigenvalue of —AF is given by

Xo = inf {R(u) | u € H'(M)},

and its eigenspace Eq is the set of functions realizing the above infimum. The
following eigenvalues are given by

A = inf {R(u)

k-1
u € ﬂ Ef‘} ,
i=1
where their eigenspaces Ey are given by the set of functions realizing the above

infimum.

Remark 2.2.12. In particular, if M is closed, the first non-zero eigenvalue is

A\ = inf{R(u) | u € H' (M), /Mu Q= 0}.

The Min-Max principle admits another formulation:

Theorem 2.2.13 (Min-Max principle (bis)). Let M be a compact manifold and
A\ the k™ -eigenvalue (counted with multiplicity) of —AT', then

Ak = inf sup R(u), (2.10)

Vi ue Vi

where the infimum is taken over all the k-dimensional subspaces of H (M) when
M is closed, and k + 1-dimensional when M has a non-empty boundary.

Proof. The proof given in [21] applies without any modifications. O

When M is non-compact, we do not have such a nice spectra. However, we
still have the following;:

Proposition 2.2.14. The infimum of the essential spectrum of —AF on a non-
compact manifold is given by:

A = inf{R(v) | v € H'(M)}. (2.11)

Proof. This result is a consequence of the Friedrich extension (see Theorem
2.A.9). O

2.3 Behavior under conformal change

As for the Laplace—Beltrami operator, the Energy allows us to give a simple
proof that the Laplacian is a conformal invariant only in dimension 2.

Theorem 2.3.1. Let (X, F) be a Finsler surface, f: X "R and Fyp=¢lF.
Then,
AFr = e 2T AF.
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We first prove the following result:

Proposition 2.3.2. Let (M, F) be a Finsler manifold of dimensionn, f: M o=,
R and Fy = e/ F. Set E; the Energy associated with Fy. Then, for u € H* (M)

E¢(u) = cn/ e (Lyxr*u)® ANdA™ Y,
HM

_ n
where ¢, = Yolpma &1 -
In particular, when n = 2 the Energy is a conformal invariant.

Proof. The subscript f indicates that we refer to the object associated with the
Finsler metric Fy. Xy is a second-order differential equation, so (see Lemma
1.1.5) there exists a function m: HM — R and a vertical vector field Y such
that

Xp=mX+Y.

We have already seen (in section 1.3.3) that A; = e/ A and that Ay A dA’;_l =
e ANdA™ L. Using A (Xf) = 1 and that V HM is in the kernel of A we have

l=efAmX +Y)=e/mA(X)=e'm.
Now,
Ef(u):cn/ (foﬁ*u)Q Af/\dA?il,

HM

= Cn / (LmX+Y7r*u)2 enf AN dx‘ln_l7
HM

=c, / et (mLx7m*u+ Ly7r*u)2 ANdA™ME
HM

As w is a function on the base and Y is a vertical vector field, Lyn*u = 0. So
the preceding equation becomes:

E¢(u) = Cn/ e™'m? (Lxm*u)® ANdA™ Y,
HM
= cn/ e(n=2f (Lxﬂ'*u)2 ANdAM L. O
HM

Proof of Theorem 2.3.1. Let u,v € H' (3), we have already shown (Theorem
2.2.6) that: < (E(v+ tu)),_, = —2 Jx uAFv Q.

The conformal invariance of the Energy yields: for u,v € H! (X)

72/uAFvQ:72/uAFvaf:72/e2quFva,
b b b

where we used Q; = €2fQ (see equation (1.20)) to obtain the last equality. We
can re-write this last equality as: for u,v € H! ()

(AF = 2T AFT) v u) = 0, (2.12)

which yields the desired result. [l



38 CHAPTER 2. FINSLER-LAPLACE OPERATOR

2.A Unbounded operators and the Friedrich ex-
tension

We give here a quick presentation of unbounded operators and the results
that we used above. We refer to [76] or to the series of books [99, 96, 98, 97] for
the details and the proofs.

2.A.1 Some basic definitions
Let H be a Hilbert space and (-, ) its scalar product.

Definition 2.A.1. An unbounded operator L is a linear map from a dense
linear subspace of H, called the domain of L and denoted by D(L), into H. L,
is an extension of L if D(Ly1) D D(L) and if L1y = Ly for any ¢ € D(L).

Definition 2.A.2. An unbounded operator L is called closed if its graph T'(L)
is closed in H x H. The graph of L is the set of pairs:

I'(L) :=={(¢, Ly) | v € D(L)"brace C H x H.
L is called closable if there exists a closed extension of L.

Definition 2.A.3. Let L be a closed unbounded operator on H and D(L) its
domain. A complex number X is said to be in the resolvent set for L if L — \1d
is a bijection from D(L) to H such that its inverse is bounded. We denote the

resolvent set of L by p(L), and Ry(L) := (L — AId)™" is called the resolvent of
L.
The set o(L) := C ~ p(L) is the spectrum.

The point spectrum consists of those elements in the spectrum which are
eigenvalues.

2.A.2 The Friedrich extension

Definition 2.A.4. Let L be an unbounded operator on H. Let D(L*) be the
set of ¢ € H for which there exists a 1» € H such that

(Lp,¢) = (p;¥), for p€ D(L).
For any such ¢ € D(L*), we set L*p := . L* is called the adjoint of L.

Note that we always have D(L) C D(L*), this will provide the difference
between being symmetric and self-adjoint:

Definition 2.A.5. L is called symmetric if L* is an extension of L, i.e., if for
¢, € D(L)

(L, o) = (¢, Lep).
L is called self-adjoint if L = L*, i.e., if L is symmetric and D(L) = D(L*).

There are many criteria to determine whether a symmetric operator is self-
adjoint (see [99]) however we do not recall them as we will not use them directly.
Indeed, for the operator studied in this thesis there exists a self-adjoint extension
called the Friedrich extension (see below Theorem 2.A.9). But, before stating
that result, we will need some more definitions.
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Definition 2.A.6. L is called semi-bounded if there exists a positive constant
C such that (L, v) > —C||v||? for all b € D(L).

When C can be taken to be 0, then we say that L is positive.

Definition 2.A.7. An unbounded quadratic form q on H is a bilinear form
q: D(q) x D(q) — R, where D(q) is a dense linear subspace of H. It is called
symmetric if q(p, V) = q(¢, @) for any p,v € D(q) and semi-bounded if there
exists a positive constant C' such that q(, ) > —C||¢||* for all v» € D(L).

As we defined an extension of an unbounded operator, we define in the same
manner an extension of a quadratic form.
To a symmetric operator L, we can naturally associate a symmetric quadratic
form, just by letting qr.(p,v¥) = (p, L) for any ¢,¢» € D(L). For bounded
operators, Riesz lemma gives a one-to-one correspondence, but this is not always
true for unbounded quadratic forms.

Definition 2.A.8. Let q be a semi-bounded quadratic form, q(1,v) > —C||v||?
for all+p € D(L). It is called closed if D(q) is complete under the norm:

[¥llc+r = Va@,v) + (C + D[]

A semi-bounded quadratic form q is called closable if there exists a closed ex-
tension q of q

Theorem 2.A.9 (Friedrich extension). Let L be a symmetric semi-bounded
operator and let q(p, ) := (L, ) for ¥, € D(L). Then q is a closable
quadratic form, its closure § is the quadratic form associated with a self-adjoint
operator L. L is the unique self-adjoint extension of L with domain in D(q).
Furthermore, the lower bound of its spectrum is the lower bound of q.

Proof. See, for instance, [96, Theorem X.23] or [76, p. 325{f.] O
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In this chapter, we give explicit representations for our Finsler—Laplace op-
erator. We start with general Randers metrics on surfaces and then give explicit
spectra for some Katok-Ziller metrics.

3.1 Finsler—Laplace operator for Randers metrics

3.1.1 Some generalities on Randers metrics

Among the classical examples of non-Riemannian Finsler metrics, the Ran-
ders metrics play an important role, arise naturally in physics ([95]) and have
been widely studied. Let us give the definition:

Let g be a Riemannian metric on M and 6 a 1-form on M, define, for

(x,v) €eTM
F(2,v) = \/gz(v,v) + 0z (v).

If the norm of 6§ with respect to g is strictly less than one, than F is a Finsler
metric (see [14]) and it is called a Randers metric.
Note that Randers metrics are never reversible if they are not Riemannian.

One advantage of Randers metrics in our case is that it is particularly easy
to compute the volume and angle forms.

Proposition 3.1.1. Let denote by Q, ag and X the volume form, angle form
and geodesic flow associated with the Riemannian metric g. We have

Qf = Qg
of = (1 +7°0(X0)) o

Remark 3.1.2. The above result holds in general whenever a Finsler metric F'
differs from a reversible Finsler metric Fy by a 1-form 6.

The fact that the Holmes-Thompson volume for Randers metrics is equal to the
Riemannian volume is already known (see for instance [39]) but maybe not very
widely.

Proof. By definition of A (see Chapter 1), for any (z,£) € HM and Z €
T(z,e)HM , we have

A(z E)(Z) — lim FO (‘TaU +€d7T(Z)) — FO (QC,’U) +59I (dﬂ'(Z))
’ e—=0 c

From now on we will write 6 instead of 7%6 as it will simplify notations and
hopefully not lead to any confusion. Using this notation, we have: A = Ay + 6
and therefore dA = dAg + df.

Note that dA"~! = dAj ™" 4+ T where T is a (2n — 2)-form. So, as df is a 2-form
null on VAHM, and for Y1,Ys € VHM, iy,iy,dAo = 0, T can be given at most
n — 2 vertical vectors, i.e., if Y7,...Y,_1 € VHM, then iy, ...iy, ,7 = 0. Now
this implies that the top-form AAT is null, hence AANdA" ™1 = (A0+9)AdAg_1.
As AANdA™ ! and Ag A dAg*1 are both volume forms, there exists a function
A such that A A dA™™ 1 = XAy A dA~". We have

ixo(ANdA™™ ) = (14 60(X))dA; ™" = MdAF ™,
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therefore A =1 + 6(X).

Let of% be defined by af? A 71*Qg = AAdA™ ! (it exists by Lemma 1.3.1).
We have a0 A*Qy = AAy /\dAg_1 = Ao A Qp, hence af? and Aoy coincide
on VHM. It is then immediate (see Section 1.3.1) that

fH M(l + o(XO))QO
Q — @
volgye (S™1)

0-

As the metric g is Riemannian, it is reversible, therefore [, , 6(Xo)ap must
be zero. Hence 2 = Qg and o = (1 4 8(Xo))o- O

With our knowledge of the angle and volume forms for Randers metrics, we
can give a more explicit expression of our Finsler-Laplace operator. Indeed,
recall that there exists a function m : HM — R and a vertical vector field
Yy such that X = mXy + Y, (because X and X are second-order differential
equations, see section 1.1.2).

As 1= A(X) = mA(Xo)+mb(Xp), we get that m = (1+60(X,)) L. Hence,
we can rewrite the Fingler—Laplace operator as:

F _ n 1 2 *
A" f(p) = volpea (571 </HPM T G(XO)LXO(W f) ao

,LXU (Q(XO)) 7LY0 (Q(XO)) .
+/HPM< (+0(X0)? | (1+0(X0))? ) Lo (7" f) a0> . (3.1)

We agree that this formula does not represent a great improvement compared
to the definition. However, note that the symbol of AT is determined only by
the first integral, so to obtain a coordinate expression, we can just compute the
symbol and then use the formula in Lemma 2.1.13 and traditional Riemannian
local expressions.

A particularly easy case arises from Randers metrics that are also Minkowsky
metrics (see Remark 3.2.5).

3.1.2 The symbol of the Laplacian on Randers surfaces

This part is unfortunately a quite heavy computational section, but our
justification for doing so is two-fold.

First, we want to compute explicitly the symbol for any Randers metric on
a surface to prove that it can be done by hand. Furthermore, this expression
indicates what kind of Riemannian metric we can expect to come from a Randers
metric via the symbol of its Finsler-Laplacian.

Which brings us to our second goal: We give an answer, in the case of
2-dimensional manifolds, to the question of which pairs (Riemannian metric,
volume) can be obtain from a Finsler metric via the Finsler-Laplacian (see
section 2.1.5).

Proposition 3.1.3. Let I' = /g + 0 be a Randers metric on a 2-dimensional
manifold, (z,y) be normal coordinates for g at p, (c:5(p)) be the symbol at p of



44 CHAPTER 3. EXPLICIT REPRESENTATIONS AND SPECTRA

AF. We write 0 = 0,dx + 0,dy and T := @ = |T|e*. We have:

! 1- VIZTP
011(p) = ——=—== |1+ cos(2 —_— 3.2
v 1—||9||2< " M(H 1—||9||2>> .

1 1—+/1—19]?
092 =———1|1—cos(2 _ 3.3
VS TTE ( 2 <1+\/1— ||9||2>> )

= 2220 (1= g
=10 \1+Vi=T0l?)”

where ||0]] is the norm of 6 with respect to the Riemannian metric g.

Remark 3.1.4. One interest of this result is that it shows that for a given Rie-
mannian metric g, no two Randers metrics F' = /g + 0 gives the same symbol,
hence the same Laplacian. We can also obtain a full coordinate expression of
the Laplacian for Randers surfaces by using the formula given in Lemma 2.1.13,
however, I doubt that it would yield much information in the general case, so I
have not done it.

So now, given a couple (ggoal; {2goat) OUr aim is to give a condition for the
existence of a Randers metric F' = /g + 0 such that oF = Qgoal and, if we
denote by g, the dual of the symbol of AF, then g, = ggoar-

We remark that the above local expression of the symbol already gives a condi-
tion on the volumes;

Corollary 3.1.5. Let F' = /g + 0 be a Randers metric on a 2-manifold, and
go the dual of the symbol of AF. Then

2
VIZTOE (14 VI=Tol?)
Q9 = QF.
4

Using this result, we see that the norm of 6 is uniquely determined by the
quotient %L;, and so, a first condition to get a positive answer to the above
question is that the quotient %L:l can be realized by the norm of a 1-form.

A trivial counter-example would be to take any geoal on the 2-sphere and
Qgoal to be a constant multiple of 29¢>=!, as we cannot have a 1-form on the
sphere with constant norm we get a negative answer to our question.

However, this question was spurred by the fact that A" = A, o (where Ay o
is defined in Lemma 2.1.13) and the question was really “can we obtain every
second-order, elliptic, symmetric operator that are zero on the constants from
a Finsler—Laplace operator?”.

But, again from Lemma 2.1.13, it is clear that A, o = Ay ko for any con-
stant K > 0, so we should not be too upset about not being able to get all the
possible {)z0a1 but just one in each constant multiple class.

So in order to answer our question, we will have to reconstruct a Randers
metric just from the information given by a Riemannian metric of the form
obtained in Proposition 3.1.3.

We described the 1-form 0 by its norm and a certain angle ¢, which depends
on the normal coordinates we chose. Now, suppose that on a contractible set
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U, we are given two smooth functions k: U — RT and ¢: U — [0,27], a
Riemannian metric g and a preferred choice of coordinates (z,y). With this
information, we can construct a 1-form 6 such that its norm for g is k£ and such
that ¢ is the angle computed in the (unique) normal coordinates (z™,y™) for
g such that z" and z are collinear. In other words, to reconstruct 6 from its
norm k and angle ¢ what we really need is a Riemannian metric and a vector
field that is not zero when k is not zero. This remark is all we need to prove
the following;:

Proposition 3.1.6. Let g1 be a Riemannian metric on a 2-manifold M and Q)
a volume form on M. Denote by pu: M — R the function such that Q9 = Q.
Let K := sup u, suppose that either M is contractible and K < oo or that M is
compact. Then there exists a Randers metric F' such that Q = KQF and g, is
the dual of the symbol of AT .

Remark 3.1.7. The proof we give is entirely based on the coordinate expression
we obtained before, but it would be much more interesting to have a coordinate-
free proof in order to generalize it to any dimension.

We now get on to the proofs.

Proof of Proposition 3.1.3. Equation (3.1) shows that the symbol of F' at p is
obtained by computing:

1 1
= 7L2 * )

In normal coordinates (x,y,6) at p on HM, it is easy to check that

0 ., 0
(Xo)p = cos 9£ + sin Oa—y,

(Ap)p = cosfdx + sin Ody,
(Ao AdAg)p = —dO Adz A dy.

Therefore we can write, ag = df, 0 (Xo) = 0, cos0 + 0, sin6 and L (7*f) =
cos? 9% + sin? 9§Tfy + 2 cos@sin@%gy. Hence the symbol at p is:

1 [ cos? 0
- 4o
o (p) 71'/0 1+46,cos0+0,sinf "’

sin® 6

1 27
=— do
o22(p) T /0 146, cos0+0,sinf "’

1 [ cos 0 sin 0
—— do.
o12(p) 77/0 1+ 6, cosb+0,sind

Unfortunately, lack of knowledge on my part associated with Maple’s unhelpfull-
ness prevented me to give a computerized computation, therefore I give below
the by-hand computations proving the proposition (and would strongly advise
the reader to skip the next two pages).
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Computation of 095: Recall that T = @ and let R := % and
z = e we have:

022:/51 1+Tz+Re1iz 4

(2% (Zzl))dei/ 24 —22241
g1 Tz4 4 23 + Rz? =

We are going to apply the Residue Theorem, hence we must found the zeros of
the polynomial Tz* + 2% + Rz? and compute the residues.

T+ 22+ R =Tz (2 —27) (2 — 2), (3.5)

where

1 /TATPE | 141 4T]
z = .
2T

z = 5

2T
As we had chosen the 1-form @ with a norm strictly less than 1, we have 4|T'|? =
02 + 95 < 1,s0 z~ and 2z are well-defined reals. Furthermore, as 6 is non-null,
24 —22°

75:}% inside the

|z=| > 1, so z~ is not inside the unit disc. The poles of Ty

unit disc are then 0 and z*. As

2 —922241 22 2

TzA+ 234+ R22 T(z—27)(z2—2%Y) T(z—27)(z—2T)

we get:

e (F= 5=

)
Res.+ ((ZZ)Q(ZZﬂ) = Z+EZ,, (3.7)
)

1 1

Resz+ (22 (Z — Zi) (z — ZJF) - (Z+)2 (Z+ . Z_) (38)
1 _ 2T+ 27

Resg (212 (Z—Z_)(Z—z+)> - (z+ — 2 )2 (3.9)

Then, using the Residue Theorem, we obtain,

[ ——
aT(z—27)(z—27) T 2zt -2’
/- LR A
gt T(z—z7)(z—2T)" T zt—27"’

1 _ 2im 1 2T+ 27
/51 T22(z—27) (z—z*)dz T <(z+)2 (2 —27) * (z+ — z_)2> ,

and the sum of these three integrals gives oaa:

2% (z+)2 2 1 2T+ 27
— _ . (38.10
72 =07 <z+ AN * (1) (2t — 27) " (z+ —27)° (3.10)
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To simplify a bit the above equation, note that

— 2 +
2T = 7%5 2tz = %, 2t—2" = @ and (z+)2 =— (Z ;R) .
So
— 1 1 + 2 + - 2 Z+Z_ 2 1 N B
Uzzﬁm<<((z) 2)(zz)+<z+> Stttz
_ 7L 1 1 1\ 4 _ 27 +_o—\2 2
= oT (ZJFZ*)Q 2t — - ((Z ) (Z ) 2(2’ z ) +(z ))

R ((f)2 (1+ﬁ> 2)
bt (- 5) )
(o2 (05

We define ¢ as the argument of 7" so that,

o1 1—1T? R ;
Z_i + | | n _:672190.

T = 2opere M7

Hence:

1 i [(~14+T—|TP 4.
Ogy = ——= o 2iv [ 2TV ) (14 et9) )
- TW( ( . (14 et)

L, o) (14 Tt VTP
= COS .
IR IR Y 2[T2

Using that ||0|> = 4|T|? = (1 —/1- 4|T|2) (1 +1- 4|T|2) gives the for-
mula (3.3).
Computation of o11: Using the above notations, we have

T 2+ 22241
o = —— — 5 aZz.
H A Jor Tz + 23 + RZ2

We need to compute the residues at 0 and zT of (z—z*??z—z*)’ (z—z*f(z—z*) and

m. The values of this residues are given by equations (3.6) to (3.9),
so, applying once again the Residue Theorem, we get:

—2i2 [ (z*)? 2 1 2t 42
011 = + + + .

AT \zt =27 2zt —27 (Gt (et—27) (et—2)°

Then, as above, we re-write this formula to have something that behaves well
when |T'| tends to 0. By doing the same transformations as in the case of 092,
we obtain:



48 CHAPTER 3. EXPLICIT REPRESENTATIONS AND SPECTRA

o111 = %ﬁ ((Z+)2 <1+ ﬁ) +2> N

simplifying once again, we get:
_ b T (T +R
TN o Ao T2 T
1 R
2,/1—|TJ? ( ( T) ( ))
1 _ 14+ 11— |T|2 .
e 1+et%) ],
2/1—|T]? < ( 2|AP]? H )

1 1 2o (24 = VI—4ATP?
= — COS )
VI-|T? 21T ?) ITI2

that we can re-write as (3.2).

Computation of o15: The now usual transformations gives:

9 1 / 22 N 1 d
o12 = — z.
2 21T Jgr (z—2T) (z—27)  22(z—2%)(2—27)

The residues we need are given by the formulas (3.6), (3.8) and (3.9), so we
obtain:

201?1( (z+)? B 1 REAEES )
T\ = GV -2) o)

_om GO
T (2t —27) (zt27) )

Simplifying in the same fashion as above yields:

i T s+ R T\?
2012 = —= I ;
T 1—4|T? T R

i ( 1+ \/W _2w> (1— etiv)

V1—A4[TP]? 2|T e
in (2 -1 1—4|T)?
__sin(2y) (H + | |>_

VI AT Ak
O

We gave local expression of ¢ in normal coordinate for g, now we generalize
it to any local coordinates, and by the same occasion, we prove Corollary 3.1.5:

Lemma 3.1.8. Let F' = \/g+ 0 and g, be the dual of the symbol of AF. Let
lg| := det g, then we have:

VTP (14 VI TP)”

4

90| = lgl,
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Now let (z,y) be local coordinates on M and write g = [gi;] and go = [goyi5] in
this basis. Then:

Ju ((1+~/1||9 ) + 11612 cos( 2(p)>
gam%(lwl—new) + 11017 (~gr2 cos(2¢) + v Tglsin(2¢))
2 1 —2¢%
22 (14 VT=TOP) -+ 101 <79”9” 52 cos(2) + 222V 17 'g'sin@so))

go;11

9322
g11 g11

where ¢ is given in Proposition 3.1.8, computed in the normal coordinates for

. < € g12
g given by ,—

x+my>
Vo oIl Yl

Proof. If F' = ,/g+0, then, according to Proposition 3.1.3, in normal coordinates
at p for g, we have:

o] = 7
ol=——
b(1 + b)?’
where b := /1 — ||0]|2. Hence, switching from normal coordinates to any coor-
dinates gives the claim and therefore Corollary 3.1.5 because it is well known

that the volume form of a Riemannian metric is given by the square-root of its
determinant.

Note that (z™,y") = g2 g11y> are normal coordi-

(m"mm“ el

g
Vo =
0 lgl )

nates for g; Let

T .=

we have that T (2", y") = (z,y) and ‘TT = [g;;].
Now, as g, = o*, in the normal coordinate (2™, y™) at p, we have, using Propo-
sition 3.1.3:

(p) = (1+b)% — (1 — %) cos(2¢) (1 —v?)sin(2¢p)
9e\P) =} (1 — b?) sin(2¢) (140)% + (1 — b2) cos(2p)
and "T'g,(p)T gives g, in the (z,y) coordinates. O

Proof of Proposition 8.1.6. Let g1 and Q be respectively a Riemannian metric
and a volume form on a 2-manifold M. Let p: M — R* be the function such

that Q9 = pQ, we write K := sup,¢,; (), by hypothesis K is finite, and set
I p

poi= 4=
We chlgose a smooth vector field Z on M such that it is non-zero on p/~1{1}.
Such a vector field exists by hypothesis, indeed, either M is contractible and
we can take Z to be never zero, or M is supposed to be compact, which force
w'~1{1} to be non-empty.

Now our goal is to construct a Riemannian metric g and a 1-form 6 such that g;
is obtained from the Randers metric I' = ,/g + 6 via the symbol of the Finsler—
Laplace operator and 2 = +QF.
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We set b: M — ]0,1] to be the unique function such that
b(l I b)2 _ M/? ,
such a b exists, and is smooth, by definition of p/'.
At any point z € /' ~1{1}, we set g(z) := g1(z) and 0, = 0.

Now, take z ¢ p/~1{1} and choose local coordinates (x,%) around z such that
Z(z) and 6%& are collinear (such coordinates exist as p/~1{1} is closed).

In order to avoid too much subscript clutter, we write g = [ Z Z} ] in the

(z,y) coordinates.
In those coordinates, we define g(z) by:

( ) 4
Jgi1i\z) \=m — =
(140b)°
4o — (1 — b?)Yuw—?
g12(z) := —
(1+10) .
s [ 4v—(1—p?) Y
dw — 2(1 — b%) 2( T
Z) =
922( ) (1 +b)2

Remark that it implies that

Viuw —v? = ' /Jg]
du = g11(2) (1 +b)°
40 = gia(2) (1+0)” + (1= 0)/Ig(2)]
4w = goa(2) (1 + ) +2(1 — (ﬁ)M

911(2)

where again we wrote |g| = g11(2)g22(2) — g12(2)?. Only the first equation is

not evident, but the computation can be done by hand or plugging ¢(z) in your
favorite formal computation program.

By Lemma 3.1.8, the second system of equations shows that ¢1(z) = ¢,(2)
where g, is the dual symbol coming from the Randers metric F, = \/g(z) + 6.,
where 6, is defined by [|6.(|2 = 1 — b(2)* and @(z) = 7/4, i.e., 0. is Ly 0 Z(z)
rotated (for the metric g) by m/2. Moreover, Qf = Q9 because F is Randers,

b(1— b)?
4

and Q9 = Q9. By our choice of b, we have

Q=09 = Ky/'Q,
so QF = KQ as wanted.

For the moment, given any point z and local coordinates (x,y) around z
(satisfying the above condition with respect to Z) we constructed a scalar prod-
uct g(z) on T, M and an element 6, of TM which verifies our conclusion. But
in order to be done, we still need to show two things; First the definitions of
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g(z) and 0, must be independent of the local coordinates we choose, and once
we have that, it remains to be shown that everything is smooth.

Let us prove the independence of g(z) from the coordinates (z,y):
For any z € u/~'{1} there exists only one local coordinate system (z",y")

that is normal for g; at z and such that Z(z) is collinear to 52 _- In these
coordinates, g(z) := [g;;(2)] is given by
n 4
z) = ——
911(2) 1+ b)g
n (1 — b2)
z)i=—-——
915(2) A1+ b)z
. 442(1— 0?2k
932(2) = 2 =
(1+0)

A transformation from (2™, y™) to (z,y) is given by

u(2) —Uiz()z)
T. = 0 Vi@uG R
Julo)

and to get the independence, we just need to verify that

" 911 (2)  gia(2) | 911(2)  g12(2)
T o) o) ]T ‘[gu@) g22(2)

This is easily done, even by hand.
So g is well defined and as 0 just depends on g, b and Z, it is also well-defined.

We are left with the smoothness issue, which is easy, indeed, b is a smooth
function because p’ is, so g is also smooth because of how we defined it, and
finally as 6 depends just on g, b and Z, all of which are smooth, it is smooth.

O

3.2 Finsler-Laplacian and spectral data for Katok—
Ziller metrics

When we started studying this Finsler—Laplace operator, one of our first
goals was to show that it was “usable”, that is, that we could take purely Fins-
lerian examples and compute the spectrum and the eigenfunctions.

However, computing spectral data is a daunting task even in the Rieman-
nian case. Indeed, past the three model spaces R", S and H" and some of their
quotients, we do not know any full spectra of a Laplace—Beltrami operator. So,
in order to have any chance of success, we wanted to start with some equivalent
of a Finsler model space, but as this does not exist, we settled for just constant
flag curvature, preferably on surfaces.

Akbar-Zadeh [2] showed that any closed surface endowed with a Finsler met-
ric of constant negative flag curvature is in fact Riemannian. On the 2-sphere
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however, the Finsler case is richer, Bryant [27, 28] constructed a 2-parameter
family of such metrics. Katok previously [78], had constructed a 1-parameter
family of Finsler metric on the sphere which later turned out to be of constant
flag curvature 1 (see [94]).

We chose to study Katok’s examples for several reasons, the main being its
dynamical interest. Indeed, they were constructed to give examples of metrics
on the 2-sphere with only a finite number of closed geodesics at a time when it
was thought impossible. Furthermore, the construction method was generalized
by Ziller [111] and so we use these metrics to give examples of spectral data in
the torus case. Lastly, these metrics admits a quite agreeable explicit expression
compared to the above mentioned Bryant’s examples (see Proposition 3.2.2 and
compare to equation (12.7.4) on p.346 of [14]). We recall the construction, in
a slightly more general context than in [111], as well as some other properties
below.

3.2.1 Construction

Let M be a closed manifold and F, a smooth Finsler metric on M. We
suppose furthermore that M admits a Killing field V, i.e., V is a vector field
on M such that the one-parameter group of diffeomorphisms that it generates
are isometries for Fj. Katok-Ziller examples are constructed in the Hamiltonian
setting.

Recall that the Legendre transform L, : TM — T M associated with Fy is
a diffeomorphism out of the zero section and that Hy := Fj o Eal :T*"M — R
is a Finsler co-metric (see section 1.2).

We consider T*M as a symplectic manifold with canonical form w. Any
function H : T*M — R give rise to an Hamiltonian vector field Xy defined by

dH(y) = w (Xu,y), forally € TT*M.

We define Hy : T*M — R by

and, for sufficiently small e, we set
HE = HO + EHl.

H_ is smooth of the zero-section, homogeneous of degree one, and also strongly
convex for sufficiently small e, therefore, the Legendre transform L. : T*M —
T M associated to %H? is a global diffeomorphism, so we can state the

Definition 3.2.1. The family of generalized Katok-Ziller metrics on M asso-
ciated to Fy and V is given by

F.=H.oL]*

Katok, in his first example took Fj to be the standard Riemannian metric
on S™ and showed that some of these metrics had only a finite number of closed
geodesics. Ziller [111] then showed that for e irrational, there was in fact n
closed geodesics for n even and n — 1 for n odd. In general, Bangert and Long
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[13] showed that every non-reversible Finsler metric on S? has at least 2 closed
geodesics. The minimal number of closed geodesics is still unknown in higher
dimension.

As we will use local coordinates formulas for the Katok-Ziller metrics on
the torus and the sphere, we can state the general formula in local coordinates
when Fj is Riemannian. The computations of this metrics in local coordinates
is probably not new (see Rademacher [94] for the expression on the sphere) and
was communicated to us in this more general form by Foulon.

Proposition 3.2.2 (Foulon [58]). Let Fy = /g be a Riemannian metric on M,
V' a Killing field on M, and F. the Katok-Ziller metric associated. Then

Proof. Let x € M, we choose the normal coordinates (£;) on T, M, so that we
have F§ (x,&) = > &2, We will write p for an element of 77 M, and p’ will be
the associated coordinates. As Fjy is Riemannian, we have

Hy (2,p) = |lpll = /D _ (")

Fo(0,€) = V(6,8 (1= 29 (V1) + 29 (V.€) g (V,€)

H_ is then given by

HE (xvp) = HO (:C,p) + EIfl (zap)
= [lpll + & V),

and if we set .
L.=d, <§H§) :T*M — TM,

we have

F:(2,6) = Heo L7 (2,6).
In order to compute F;, we will first compute L., recall that 8%1- represents a
vector basis of T, M;

0 (1 0]

L. (zﬂp) = Gpi <_H62> Oxs
2

2 e 9

[ ol + el 1Y) + 5 61V

. 0
= (p' +¢||p||Vi (1+— V)—.
v+l ) o1 ") 5

Using that H. (z,p) = F: (L. (z,p)) and setting Fr = u, we obtain:

Ioll+< 1) = = (Il (0 4+ %9 (14 72 61 )

—(lpll+ V) e (0 + 234) 5 )

1=F,
(u +eV; 8%)

0
2 .
V) +elll) + 2V 01| 5
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Let £ = L. (z,p), we have obtained that:
§=Fe(0,8) (uteV),

where this equality must be understood coordinate by coordinate. Therefore,

(ulV) = €V —elvii,

P (2,6)
and

1€117 = F2Z (2,8) [[lull* +2¢ (ulV) + ||V ]?]

= F2 (x,¢) {1 + 25% —222|VI> + €2||V)?| .

And we are led to solve:
F2 (2,8) (1= *||VI]?) + 2 (¢|V) F. (z,€) — ||€]]> =0,

which yields:

_ e+ \/52 (V) + (1= 2|V]12) [[€]?

felod) - VP)

O

Before getting on to the examples, we want to point out the following prop-
erty of those Katok-Ziller examples:

Theorem 3.2.3 (Foulon [58]). The flag curvatures of the family of Katok-Ziller
metrics are constant.

3.2.2 On the Torus

Let T be a n-dimensional torus, g a flat metric on T and V a Killing field
for g. Let F. be the associated Katok—Ziller metric, we have:

Proposition 3.2.4. There exists a (unique) Riemannian metric o. such that
AFe = A=,

Proof. This result follows from the fact that all the objects involved are invariant
by translations, hence independent of the point on the torus. Indeed, V is a
Killing field on T and so is translation invariant. From Proposition 3.2.2, we
deduce that F. is independent of the base point on the torus, which yields, via
equation (3.1) and Proposition 3.1.1 that both the symbol ¢. and the volume
QF: are constant on T. Now, recall (see Lemma 2.1.13) that Af* = A7 —
L (V9p,V7a?), where a is the function such that Qf* = a?Q°. So as a is
constant, V?a? = 0 and we get the result. O

Remark 3.2.5. The above result of course holds for any “Minkowsky-Randers
space” (i.e., a Randers metric depending only on the tangent vector and not
on the base-point on the manifold) and we could therefore use what is known
on the Riemannian spectrum on subsets of R™ to obtain the Finsler—Laplace
spectrum of these spaces.
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We give below the actual computation of the Finsler—Laplace operator for
Katok—Ziller metrics on the 2-torus to get an idea of how the Katok—Ziller
transformation actually acts on the spectrum. This could be obtained by doing
the right change of variables in the formula of Proposition 3.1.3, however, direct
computations are not far longer and were already typed, therefore that is how
we proceed.

An example in dimension two

We set T = R?/Z?, (z,y) (global) coordinates on T and (&;,&,) local coor-
dinates on T, T. Let € < 1, the Katok-Ziller metric on T associated with the

standard metric and the Killing field V = 2 is given by:

Fae, i) = 7= (@ + (1 - D) - &),

Theorem 3.2.6. The Laplace operator, in local coordinates, is given by

2 (1-¢?) 2 0?
Fo _ J—e2 4 9
A 1—}—\/1—52( ! Eax2+8y2)

and the spectrum is the set of X(,.q), (p,q) € Z*, given by:

2(1—¢g?

Recall that for any flat Riemannian tori, the Poisson formula gives a link
between the eigenvalues of the Laplacian and the length of the periodic orbits.
In the case at hand we lose this relationship, as there is a priori no link between
the length of the periodic geodesics for the Finsler metric and the length of the
closed geodesics in the isospectral torus.

Proof. Vertical derivative and coordinate change.
In the local coordinates (z,y,&s,&,) on TT we have:

1
dyFe = 1_—&_2 (fxd:c + fydy)v

where

fm =

L —¢ and f,:= S :
NCENEEE CRRTEE

We choose a local coordinate system (x,y,0) on HT where 6 is determined by

cost = f,+e

fy
V1—¢g?’

As the Hilbert form A is the projection on HT of the vertical derivative of F,

we have:
((cos@ —¢)dr ++/1—¢€?sin Qdy) .

sinf =

A=

1—¢2?
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Liouville volume and angle form.

We have:
1A = —— (fsinGdG/\dqu V1-e2 cos(@)d@/\dy)
— &
3
1 2
A/\dA<1 2) (=14 ecos)dd Adx Ady.
— &

Therefore a = (1 — e cos(0)) db.

Geodesw flow.
Let X = X, -2 —|—Xy 35 +Xo 2 5p be the geodesic flow, equation (1.2) is equivalent
to:

Xo=0
sin(6 \/17520059Xy70
(cos(0) —e) X, 1 —e2sin(0) X, =1 — &

Hence X, = —=5 - cos(6), X, = —A=="_in(f) and Xy = 0.

1—e cos(0) 1— acos(é)
The Laplacian.

The;econd Lie derivative of X is L% = X2 BBZ + X7 66y2 + X Xy 52
pe

1 82
A == X2a0— XQ— / X. X
7r<HS O‘ax2+/ o2 T O‘aa)

As X, and X, are of different parity (in ) we have [,, ¢ X, X o = 0. Hence

1 02 0?
AE —— X2 — X2
™ ( H,S =Y e + oy? )

amay So, for

Direct computation gives:

3
1—¢?)2
Xﬁa:%ri( ,
H,S L+v1—¢g?
1— 2
X2a =27 c

s 1+v1—e2
Therefore, the Finsler—Laplace operator is given by
3
2(1-¢%)2 9? N 2(1-¢?) 92
1+V1—e2022 141 —e20y*

g _

The spectrum.
To compute the spectrum we consider Fourier series of functions on T.
Any function f € C°°(T) can be written as:

f(z,y) = Z C(ﬂq)e?m(mﬂy)
(p,q)€Z?
and we are led to solve:

AP FENf= Y e [—477 (ap® +bg%) + A] X7 T =0 (3.11)
(p,g)€z?
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where
2(1-22)"? L 202
a=———-— an =7
1+v1—¢g2 1++v1—¢2
2
Now, for any (p,q) € Z?, A\, ) = 47 fﬁ/% (V1 —e2p? + ¢?) is a solution
to (3.11). O

3.2.3 On the 2-Sphere

Let S2~{N,S} = {(¢,0) | ¢ €10, [, 0 € [0,27]} be polar coordinates on the
sphere minus the poles, and take (¢, 6;&,4,8p) the associated local coordinates
on T'S? \ {N,S}. All the formulas afterwards can be extended by taking ¢ = 0
and ¢ = 7 for the North and South poles.

The Katok—Ziller metrics associated with the standard metric and the Killing

field V = sin(¢)% are given by:

1
Fe(0:0:60.80) = =5 s

(/=5 () & 4501 - esin? (00 )
Theorem 3.2.7. The Finsler—Laplace operator on (S, F.) is given by:

2
14 4/1 —e2sin’(¢) [Sin%qﬁ)

+ (1 - e2sin®(¢)) (%2 + ij((z; <52 sin?(¢) + /1 — &2 sin2(¢)) a%] . (3.12)

By computing the Laplacian associated with the symbol metric, we can
remark that this Laplacian is not a Riemannian Laplacian, contrarily to the flat
torus case above. Hence the question of it being isospectral to a Riemannian
Laplacian becomes non-trivial, but we do not know the answer.

Recall that the spectrum of the Laplace—Beltrami operator on S? is {—I(l +
1) | I € N} and that an eigenspace is spanned by functions Y, with m € Z
such that —I < m < [. These functions are called spherical harmonics and are
defined by:

3 92

FEi 2—
A= 062

(1 —£?sin®(¢))

Y™ (¢,0) := e P (cos(9)) ,

where P/™ is the associated Legendre polynomial.

We can see clearly from formula (3.12) that when ¢ tends to 0 we obtain the
usual Laplace—Beltrami operator on S2, we will therefore look for eigenfunctions
close to the spherical harmonics. It turns out that the Y™ are eigenfunctions
of A% for any e, which yields:

Corollary 3.2.8. The smallest non-zero eigenvalue of —A* is

8w

M=2-22= T
! c volgr. (S?)

(3.13)

It is of multiplicity two and the eigenspace is generated by Y* and Yl_l.
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The fact that we have the above formula for A\; is quite interesting; first,
it shows us that there do exist relationships between some geometrical data
associated with a Finsler metric (here the volume) and the spectrum of the
Finsler-Laplace operator. Secondly, recall the following result:

Theorem (Hersch [72]). For any Riemannian metric g on S,

\ < 8T
"= ol (S?)

Furthermore, the equality is realized only in the constant curvature case.

So the Katok—Ziller metrics on S? give us a continuous family of metrics
realizing that equality! We do not know however whether this is a Finslerian
maximum or not.

Note that we also have Af=Y? = —2Y. However, the Y;™ with [ > 2 are
no longer eigenfunctions of Af=. This is probably related to the breaking of the
symmetries that the Katok—Ziller metrics induce.

In the following, if m happens to be greater than I, we set ¥;” = 0. We denote
by (-,-) the inner product on L? (SQ) defined by:

(f.9) = /O% /OW fgsin(¢)dedo.

Theorem 3.2.9. Let f be an eigenfunction for Af= and ) its eigenvalue. There
exist unique | and m in N, 0 <m <[, such that f = aY)™ +bY,”™ + g, where
g uniformly tends to 0 with €, and

2

m 3(1-1)
S@I—T) (MHH (2z+3))

3L(1-1) P+l-1
2@I=1) (” (2z+3)(2z1))

A=—l(1+1)+¢*

+o(e?). (3.14)

Note that the Katok—Ziller transformation gets rid of most of the degeneracy
of the spectrum. If ¢ # 0, the eigenvalues are at most of multiplicity two, and
are of multiplicity 21 + 1 if ¢ is zero.

We can state even more on the multiplicity of eigenvalues. Define ¥: S? — S2
by
\Il(d)a 9) = (7T - d)a 79)

Theorem 3.2.7 implies that A= is stable by ¥ i.e., for any g, (Afeg) o ¥ =
AF= (goW). Soif f is an eigenfunction for A then f o W also. Therefore, either
the subspace generated by f is stable by ¥ or ) is of multiplicity at least (and
hence exactly) two.

Remark 3.2.10. When ¢ > 0, F; is not preserved by W.

Proof of Theorem 3.2.7

This proof follows the same lines as Theorem 3.2.6, the computations being
more involved and a bit lengthy. We just give the main steps.
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Vertical derivative and change of coordinates.

Set g (¢,0;&4,&0) = (1 — €2 sin2(¢)) 53) +sin?(¢)¢2. We have

OF, OF,
dyF, = 8—§¢d¢ + 8—§9d9
OF. & OF. _ 1 osin®(¢) . )
where 8§¢—\/g_€and 8&9_15251112((15)( N esin®(¢) |.

From now on we consider the local coordinates 3 € [0, 27] on H(d,,@)SQ, defined
by,

cos(yp) = §osin(9)
Ve
sin(y) = /1 — £2sin’(¢) b0
Ve
Hilbert form and Liouville volume. )
As in the above coordinates, we have g?s = % and ZFE _
¢ 1 — e2sin(g) Co

v
1 — £2sin?(¢)

associated to F; is given by

(sin(¢) cos(¢)) — esin®(¢)), we deduce that the Hilbert form A

1 — e2sin®(¢) (1d6 + fadf)
with f; = 1/1 — £2sin(¢) sin(zp) and fo = sin(¢) cos(1p) — e sin?(¢). In order to
simplify the computations, note that f; is odd in 1, fo is even and they do not
depend on 6. The exterior derivative of A is given by:

_ ; df1 Jfa
dA = T an’(0) (awdq/)/\ddﬂr awd1/)/\d9+f3d¢/\d9>

where

(2_{; =1/1 —e2sin?(¢) cos(v)),

G =~ sin(o)sin0)

_ cos(v)) — 2e sin(¢) + €2 sin?(p) cos(v))
fa = cos(¢) 1—¢2 sin2(¢) '
Now, we have A A dA = by ( 1o +f26f1)d1/) Adp A df and
—N5¢ 9 4 f2 5y 91 — sin(¢)1/1 — 2 sin?(¢) (1 — esin(¢) cos(v)). Therefore
ANdA = sin(é) (1 — esin(¢) cos(y)) d Adp Adf.  (3.15)

(1—e2 sin2(¢))3/2

We can now use the construction of the angle form (see Section 1.3.1). Let
o’ be the 1-form associated to the volume d¢ A df on S?, on VHS? we have

. 1 of, . o
‘T (1—¢2 sin2(¢)) (fl o ) 87/1) w
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If we denote by I(p) the length for o/ of the fiber above a point p € S? we obtain

I(p) :/H,,sz o

1 (L Of af1)
- 9z f YT gy,
(1—e2 sin2(¢))2 /0 <f1 o / oY v

= 2 3 Sin(¢)a

(1 —e2sin®(¢))?
where we used again that

9 d
f1a—{z - f2a—{; — sin(@)y/1 — £2 sin®() (=1 + £ sin(¢) cos()) .

As a = 2=/ we obtain:
i(p)

a = (1 —esin(¢) cos(v))) dip. (3.16)

Geodesic flow.
Let X = Xw% + Xg% + X¢a% be the geodesic flow of F.. As X is the Reeb
field of A, we can use equations (1.2) to determine X. We have:

e ((on om o,
0"Xd’4_1—e2sin2<¢><( R L S

+ (- + 2,52 d¢>,
and
v
1 — £2sin?(¢)

The above equations give the system:

1=AX)= (f1Xg + f2Xp).

of1 ofr
(9’1/)X¢+ (9’1/)X9_0
dfa
X Xyp—22 =
¢f3+ waw 0
0f1
- X Xyp—t =
of3+ rm 0
f1Xy + f2Xg =1 — e%sin?(p)

Which yields:

1 — 2 sin?(¢) cos(1)
sin(¢) 1 — esin(¢) cos(¢))’

_ — £2gin? Sin("/})
Xg = m 1 — esin(g) cos(eh)’

1 cos(¢) cos(¢)) — 2e sin(¢) + €2 sin? () cos(v))
1— 2sin(g) sin(¢) 1 — esin(¢) cos(y) '

X =

Xy =
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The Finsler—Laplace operator.
Let f: S? — R. We start by computing L% 7* f.
As -2 (7*f) = 0 and X does not depend on 6 we get:

oY
2 0% f 0% f 0% f 0Xg Of
2 —_
LX f X@ 062 +X0X¢6¢69 +X¢X0896¢+X¢ a¢ 89
0Xs0f 20 . 0Xgdf . 0X,0f
+ Xy +X¢a¢2 Xy—— 90 69+X¢ 9y aqﬁ

9 0

Since we are only interested in | H,5° L% fa, we can use the parity properties
(with respect to ) of the functions Xy, X, and X, (which are respectively
even, odd and even) to get rid of half of the above terms. We obtain:

AFE —_ 2 / 2
mATf(p) HSQ 892 . a¢2

X, %) of
*/Hsz (Xw o0 %06 )Y o

Direct computation (with a little help from Maple) yields:

AP _ 2(1—e? sin2(¢))% > Lo 1—e?sin’(¢) 9%
sin?(¢) (1 +4/1 — 2 sin® (qb)) 062 14 4/1 — e2sin’(e) 9¢?

2 cos(o) 9 _ 1 — /1 — £2gin2 9

Sn(0) Ty g2 sin”(¢) Ry

This concludes the proof of Theorem 3.2.7.

Proof of Theorem 3.2.9

We state the following property of spherical harmonics that will be useful in
later computations:

Proposition 3.2.11. Let | € N, and m € Z, such that |m| < I, then the
associated Legendre polynomial P/™ (cos(¢)), denoted here by P™, is a solution
to the equation:

OB cos(9) OF"
0> sin(¢) 0¢
They verify (see [1, formulas 8.5.8 to 8.5.5]):

+ (l(l +1)— %) pm =0, (3.17)

(21— 1) cos(@) By = (1 — m) B + (1 +m — 1) B, (3.182)
sin(¢) 8a¢m = lcos(¢)P™ — (I +m)P™,, (3.18hb)

. 1 _
sin(@)P" = 5 (Pt = Pt (3.18¢)
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The spherical harmonics are an orthogonal Hilbert basis of L? (SQ) and their
norm is given by:

" = (3.19)

We can now proceed with the proof. Take f an eigenfunction of Afs and
A the associated eigenvalue. As the ¥;™ form an Hilbert basis of L? (SQ), there
exist a;" such that:

+oo
=320 amv”,

1=0 |m|<I

where the convergence is a priori in the L2-norm. The elliptic regularity theorem
implies that f € C® (SQ), therefore the convergence above is uniform. So

AFef = Z;_:Og Z|m\gl a* Afey™.
Let I, m be fixed, the equation (A%= f, V™) = \(f,Y;™) yields:

+oo
Aaf' [P =0 Y ap (v AR, (3.20)
k=0 |n|<k

Claim 3.2.12. For any l,m we have:

APV = 11+ Y

52

(1 +24/1 —¢2 sin2(¢)) 1(1—1)sin’(¢)Y;™
<1 +4/1— €2 sin2(¢>)>
+ (2m? (1 — %sin®(9))) V™ + 2% <1 +24/1 — g2 sin2(¢)) e

2

—2(+m)(l+m—1) (1 +24/1—e2 sin2(¢)) v, | (3.21)
Proof. By the formula (3.12) for A, we have:
F.yrm 2 1 2 2 3 2y m
APy — (1 2sin(9)F (—m)Y,
14 4/1 —e2sin?(¢) L5 ()

2

+eim? ((1 — &2 sin2(¢)) %le

OO (i) 1 ) %p)] ,
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Applying first equation (3.17) and then equation (3.18b), we get

e

Afey™ = 2 [mQ ! (1 —e?sin®(¢))* V™

/1 22 (@) sin® (¢)
L eimt (;‘;S_((z)) <1 + 262 sin* (@) + m) %pl

— (1 - £%sin*(¢)) (l(l+ 1)- sin? > lm)

2
14+ 4/1 —e2sin’(¢)

+ (—1 +2e%sin’(¢) + \/m) l:jj((z)) l

l+m [(l—m l+m—1
e e Y Y, ) |
sin?(¢) (21—1l Ty 12>

And after a bit of rearranging, we get

1424/1 —e2sin®(¢
1(1—1)sin(¢)Y;™

<1+\/1—€251n >
2m? (1 —e%sin’(¢)) .. 12+m 17 1424/1—e2sin®(¢) g

—\2 20+ 1
<1+ 1€2Sin(¢)> <1+\/1€281H )
14+ 24/1 —e2sin?(¢

5V

(1+ 1—5251n2(¢))

which gives our claim after some more simplifications. |

2

(1 - £2sin%(g)) (-z(z +1)+ SHZZW (1 /1 —e2 sin2(¢))) y;m

AFeY™ = (1 +1)Y™ + &2

+

)

21 +m)(l +m —

Using the claim, equation (3.20) becomes:

—+o0
Aa" [P =) gy, ATy,
k=0

Now, we can use an expansion of A™Y,™ in powers of e.
Claim 3.2.13. For any l,m, we have:

810+1)
4

m? 3 (Il +1)+m?) 3 1
— V™4 = ) :
+<2 + 1 " SUAm) I+ m - YT + 0 (%)

AFY™ = I+ 1)Y, sin?(¢)Y;™

(3.22)
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The claim follows once again from a straightforward computation.
Using this second claim and the orthogonality of the spherical harmonics, equa-
tion (3.20) now reads:

(1 +1)

Aa! [V P = =11+ Da [V + o (sin®(9)Y,", V™)

m? 31+ 1) +m?)
o Ym2
+< 5 T 20+ 1 Iy

+Y aj'e’ [w@in%w@”, Sﬁm>+§(k+m)(k+m—1)<Yk”i2, V") 40 (e7).

4
k£l

(3.23)

Claim 3.2.14. There is at most one | such that = is bounded independently

of €. l

Proof. Equation (3.23) shows that, if —I is bounded as ¢ tends to 0, then A
1

tends to —I(l 4+ 1), therefore we can have only one such . O

Let [ be given by the previous claim, (3.23) reduces to:

e |3l(l+1), . ,
A=—=l(l+1)+ =7 sin“(¢)Y;™, Y™
m2 3(l(l+1)+m2)
Ym2 2 .
+<2+ T Y| + o0 (%)

Some more computations (using equations (3.18c), (3.19) and the orthogonality
of the spherical harmonics) give:
(sin®()Y,™, V™) _ PP +1—1+m’
12 @A) -1

So that:

BI+1) P+1—1+m?
2 (201+3)(20-1)

. <m2 3(1(z+1)+m2)>

A=—1(+1)+¢?

2 20+1

+o(e?). (3.24)

From this equation, we deduce:

L_ s bounded

Claim 3.2.15. There can only be one m such that # or —
l 1

independently of €.
Proof. Otherwise, we would find two different coefficients in €2 for A. |
We sum up what we proved: There exist unique I,m € N, a,b € C and
g: S? — C such that:
f=aY"+bY " +g
Furthermore, for any p € S2, |g(p)| tends to 0 with e and the associated eigen-
value verifies equation (3.24). That is, we proved Theorem 3.2.9.
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First eigenvalue and volume
We finish by proving Corollary 3.2.8. Recall:
Corollary 3.2.8. The smallest non-zero eigenvalue of —ATe is

8

AN =222 = —".
! c volg (S?)

It is of multiplicity two and the eigenspace is generated by Yi' and Yl_l.

Proof. Computation using either (3.21) or directly Theorem 3.2.7 gives A= Y}! =
(—242e2)Y; and APy = (—242e2)Y; L. Tt also yields A Y? = —2Y, now
Theorem 3.2.9 shows that the eigenfunctions for the first (non-zero) eigenvalue
must live in the vicinity of the space generated by Y}, Y} and Yfl, therefore
)\1 =2 252.

Now using equation (3.15) we get that the Finsler volume form for (S2, F.)

sin(g)

is

0f = df A de.
(1—e? sin? (¢))3/2
So A
2\ 7I8
VOIQ (S ) = 1 —62.
Hence,
8w
AN =—.
' Volg (S2)
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Chapter 4

Spectrum and geometry at
infinity

67
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Our focus here will be the study of the links between the Finsler—Laplace op-
erator and the dynamics or geometry for Finsler metrics with negative curvature
(in the sense of equation (1.7)).

In Riemannian manifolds of negative curvature, there are (at least) three
natural classes of measures on the boundary at infinity: the Liouville (or vi-
sual) measure class, which is obtain by pushing the Lebesgue measure on unit
spheres to the boundary via the geodesic flow; the Patterson-Sullivan measure
class, which can be obtain from the Bowen-Margulis measure via Kaimanovich
correspondence (see [75]); and the Harmonic measure class which is linked to
the Laplace—Beltrami operator in a way that we will explicit later.

In the case of surfaces we have a famous rigidity phenomenon: when two of
those classes are equivalent, it forces the Riemannian metric to be of constant
curvature (this is due to Katok [79, 77] and Ledrappier [84]).

In higher dimensions, Ledrappier [84] showed that equality between the Har-
monic and Patterson-Sullivan classes is equivalent to \; = %2, where A is the
bottom of the spectrum of A and h is the topological entropy. In [24], G. Besson,
G. Courtois and S. Gallot proved that A\; = %2 implies that the manifold is a
symmetric space.

When we started studying the Finsler—Laplace operator in negative curva-
ture, our goal was to generalize some of (or get counter-examples to) the above
results. Unfortunately, this is still out of reach. The first difficulty we stum-
bled upon was the existence of harmonic measures associated with our Finsler—
Laplace operator. Many papers prove their existence for the Riemannian case,
or even for weighted Laplace operator (see the remark after Lemma, 2.1.13) when
the symbol is of negative curvature, but none, to my knowledge, was made for
our more general case. However, Ancona gives in [6] a very general theorem
that implies existence of harmonic measures.

Sections 4.3 and 4.4 are devoted to the statement of Ancona’s theorem and
the proof that it applies to our case. But before, we start by recalling some
geometrical and dynamical properties of negatively curved Finsler manifolds
and use it to give an upper bound for the first eigenvalue of the Finsler—Laplace
operator in terms of topological entropy.

If not stated otherwise, in this chapter, M is a closed manifold of dimension
n endowed with a Finsler metric of negative curvature F' and M is a fixed
universal cover of M endowed with the lifted Finsler metric F'.

4.1 Negatively curved Finsler manifolds

Manifolds of Finsler negative curvature enjoys many of the same dynamical
and geometrical features of the Riemannian ones, we will recall here two of
those.

4.1.1 Gromov-hyperbolicity

Egloff, in his Ph.D Thesis [48] (the reader can also refer to [50] as it is
available on-line contrarily to his dissertation), studied the Finsler equivalent
of Cartan Hadamard manifolds that he called uniform Finsler Hadamard man-
ifolds.
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Note that in Egloff’s definition, uniform refers to a control of the quadratic

2 72 .
forms (%), not to a control of the curvature. We do not enter into more
)

details as, for us, uniform Finsler Hadamard manifolds will just be the universal
cover of a closed manifold of non-positive curvature. Such manifolds are in
particular homeomorphic to R™ and Egloff studied the property of the Finsler
distance and the existence of a visual boundary, he proved:

Theorem 4.1.1 (Egloff [50]). Let M be a uniform Finsler Hadamard manifold
of strictly negative curvature, then M is Gromov-hyperbolic.

Remark 4.1.2. Note that Egloff only studied reversible metrics, as is normally
the case in metric geometry, however Fang and Foulon [51] proved that the
same theorem holds for non-reversible metric (with an appropriate definition of
Gromov-hyperbolicity).

We very briefly recall some facts about Gromov-hyperbolic spaces. Proofs,
better explanations and much more can be found in [43] or [67].

Let (V,d) be a complete, locally compact, geodesic (i.e., there exists at least
one distance-minimizing curve between two points), simply connected metric
space.

Let z,a,b € V, the Gromov product at x of a and b is defined as

1
{av b}I = 5 (d(aa JS) + d(zﬂ b) - d(a’ﬂ b)) )
V is called Gromou-hyperbolic if there exists § > 0 such that, for any z,a,b,c € V.

min ({a, b}, {a,c}ts) < 4.

If we want to make explicit the constant §, we say that V' is §-hyperbolic.

The Gromov product is very useful, but unfortunately it is hard (at least
for me) to get an insight of what being Gromov-hyperbolic represents using the
above definition. An equivalent definition uses geodesic triangles:

V' is Gromov-hyperbolic if there exists a 6 > 0 such that for any geodesic
triangle (a,b,c) C V, any side is contained in the d-neighborhood of the union
of the remaining sides.

A Gromov-hyperbolic space admits a boundary at infinity V' (c0): one way
to define it is to take equivalent class of geodesic rays; if O € V is a base point,
two geodesic rays 71, v2: RT — V issuing from O are equivalent if d(v1 (£),v2(t))
stays bounded for any ¢t € RT.

Consider the elements in V' as endpoints of geodesic rays starting at O and
endow the set of all rays with the uniform convergence on compact topology.
Then V := V U V(00) with the quotient topology is compact, V is a dense
open set in V and OV = V(o). This boundary is traditionally called the visual
boundary of V and is independent of the base point O.

Using only the Gromov product, we can also define a boundary, which turns
out to be homeomorphic to the visual boundary. The advantage of this presen-
tation is that it comes naturally equipped with a metric:

Fix a base point O € V. A sequence (z,) in V is a Gromov-sequence if
{zi,z;}0 = +o0 when i,j — 4+00. Two Gromov-sequences (z,) and (y,) are
equivalent if {z;,y;}0 — 400 when i — +00. Then the set of equivalent class
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of Gromov-sequences is the Gromov boundary of V.
For &, € V(o0), we define the Gromov product of £ and 7 by:

{5; 77}0 := inf lﬁg}gg{an; bn}Ov

where the infimum is taken over all the sequences a, converging to £ and b,
converging to 7.
We can now describe the metric on the boundary: let € > 0 and set, for any
§,m € V(c0),
pe(&,m) = e~cl&mo,

Unfortunately, p. does not yet verify the triangle inequality, but can be slightly
altered in order to do so. A chain between &,n € V(co) is a finite sequence
£=2¢&,&,...,& =nin V(oco) and we write C¢ , for the set of chains between
¢ and n. Let ¢ = (§,&1,...,&) € Cep, define:

n—1
pe(c) :== Zpe(§i7§i+1)a
1=0
da,e(§,m) == inf{pc(c) | ¢ € Cep}.

Proposition 4.1.3. If ¢ > 0 is chosen such that e < /2, then dg. is a
distance on V(00), compatible with the above topology.
Furthermore,

(3 —26“)pe(&,m) < de.e(€,m) < pe(€,m).

We call dg,. a Gromov metric on V(co).

The proof of the above proposition is given in Chapter 7 of [67].
Remark that the boundary of a Gromov-hyperbolic space admits a Holder
structure (see [43, Chapitre 11]).

4.1.2 Geodesic flow and entropy

As is the case in Riemannian geometry, negatively curved Finsler metrics
gives hyperbolic dynamics:

Theorem 4.1.4 (Foulon [60]). The geodesic flow of a negatively curved Finsler
manifold is a (contact) Anosov flow.

We give the precise definition of an Anosov flow and some of its basic prop-
erties in the second part of this dissertation (see Section 5.1.1), for the moment,
just recall that it is uniformly hyperbolic, i.e., in the tangent space there exist
one direction of (uniform) exponential expansion and one direction of (uniform)
exponential shrinking.

Let h denote the topological entropy associated with the geodesic flow of
F (see, for instance [80] for the equivalent definitions). Manning [85] proved
that the topological entropy for the geodesic flow of Riemannian metric of non-
positive curvature is the same as the volume entropy, i.e., the exponential growth
of the volume of balls. It turns out that this is still true for Finsler metric:
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Theorem 4.1.5 (Egloff [49]). Let (M, F) be a compact Finsler manifold and h
the topological entropy of the geodesic flow. Let x € M and B(R) be the ball of
radius R centered at x, and set

Then, h > hyo. Furthermore, if F' is of non-positive curvature, then
h = hyor.

Note that Egloff proved the above result with another volume form, however
as M is compact there exists a constant controlling the ratio of two different
volumes, and this constant disappears when we consider exponential growth.

Note that Egloff [49] also showed, using the Anosov property, that the visual
boundary of M admits a Holder structure with a constant depending on the
Lyapunov exponents.

4.2 Bounds for the first eigenvalue

We denote by A\; the infimum of the essential spectrum of —AF. Recall that
it is given by the infimum of the Rayleigh quotient (see Proposition 2.2.14).

4.2.1 A dynamical upper bound

As in the Riemannian case, we have an upper bound for A; depending only
on the dimension of the manifold and the topological entropy of the geodesic
flow.

Proposition 4.2.1. If M is of dimension n and h is the topological entropy,
then )
h

Al S TLZ
Remark 4.2.2. This bound is far less sharp then in the Riemannian case, where
we have )\{“em < h? /4. The additional n appears in the proof because we don’t
know how to control locally the Finsler metric. It would be interesting to decide
whether we could improve this bound to the Riemannian one or if there exist
Finsler metrics with h%/4 < A\; < nh?/4.

The proof follows the Riemannian one and is based on the following:

Claim 4.2.3. Let 29 € M and p(x) := d(zo, x), then exp(—sp(x)) is in LQ(M)
for any s > %

Proof. By Theorem 4.1.5, we have that:

1 ~
h= lim —1 0fr .
R—EEOOR & (/B(R) )

Therefore, if s > £, exp(—sp(z)) is in L2(M). O
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Proof of Proposition 4.2.1. Our goal is to find an upper bound for the Rayleigh
quotient of e~*7(*), We have

Lx7* exp(—sp)(x,§) = —s (Lx7"p) (x,§) exp(—sp()).

So, using Fubini,

| esspanaa = [ 2 ([ (ment ) o) exn(-2sp(one
HM zeM ¢eH, M

To deduce the proposition, we just have to bound fgeH M(L;ﬁr*p(x,f)f&

because \; is the infimum of the Rayleigh quotient. Since |Lx7*p(z,§)| < 1,

we have:

\ < n s? [57 exp(—2sp) fHIMaQ
1

~ volgya (S"71) lexp(—sp)]?
< ns?

4.2.2 A topological lower bound

In this section we do not need the negative curvature assumption.

Bounds on A; can be given by bounds for the Laplace-Beltrami operator
associated with the symbol of A

Proposition 4.2.4. Let g, be the Riemannian metric on M given by the dual
of the symbol of AY, A% its associated Laplace—Beltrami operator and \i(c)
the infimum of the spectrum of —A?. Then, if we let a € COO(M) such that
OF = a9, we have:

sup, .7 @(z)

inf__g7a()

inf_ 57 a(x)

Sup, 37 a(z)’

> A1 > Ai(0) (4.1)

)\1 (0‘)
Remark 4.2.5. As a is a m(M)-invariant function and M is compact, a is
bounded so the above makes sense.
Proof. Recall once again that

Lxm*f)> ANdA™!
Ji 12r ’

where the infimum is taken over all the functions in H*(M). We will prove the
lower bound, the proof for the upper bound follows the same lines.

* 2 n—1 __ * 2 F F
/HM(LXﬂf) ANdA _/zez\?(/HmM(LXW N« )Q

- /JWinQF
M

> [19sI20 int (o)
M zeM

A, = inf Jori (
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Therefore, for any f € H*(M),

[z (Lxm* f)? AN dA™! - [V 1209 infxeﬁa(:c).
[ £20r I v O sup, 57 @(x)

Hence the result. O

We do not know much about lower bounds for A;(o) because we do not
know anything on the metric g,, but Brooks [26] gave a purely topological
condition for it to be strictly positive. Using the above proposition leads to a
generalization of Brooks theorem to the Finsler—Laplace operator:

Theorem 4.2.6. \; =0 if and only if m (M) is amenable.

Proof. This is a direct application of the proposition together with the main
result of [26]. O

4.3 Harmonic measures and the Martin Bound-
ary

We are going to leave Finsler geometry for a bit, to give some basics about
potential theory. As an introduction, we recall how harmonic measures are
obtained in Riemannian geometry. .

Given a Riemannian metric g on M, one way to construct the harmonic
measure associated with a point x € M is by defining the measure of a Borel set
U C M(c0) as the probability for a Brownian motion for g leaving « to end in U.
In Riemannian geometry, Brownian motion can be thought of in two ways. One
is as the limit of a random walk, the other as the diffusion associated with the
Laplacian. We don’t know how to generalize the first approach to our Finsler
setting, without losing all the Finslerian information, but the second approach
comes in fact from the more general theory of elliptic equations and hence will
apply in our context.

A related way of viewing harmonic measures is given via solutions to the Dirich-
let problem at infinity; if M is a Cartan—-Hadamard manifold of bounded, strictly
negative scalar curvature, we have the following result:

Theorem 4.3.1 (Anderson [8], Sullivan [106]). Let f € CO(M(c<)). There
ezists a unique function uy € C°°(M) such that:

Aur =0 on M
(4.2)

up(z) = f(&§) whenx —¢§, € M(oo)

Now, to define the harmonic measures: take z in M , there exists a positive
linear functional on C°(M (00)) given by f +— us(z). This defines a probability

measure i, on M(co) which is the harmonic measure at .
Furthermore, the solution to the Dirichlet problem at infinity is given by:

up(z) = /5 o (@) (4.3)
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We wish to extend this construction to our Finsler—Laplace operator. One
way to prove Theorem 4.3.1 (see [8, 9, 7]), is to study the Martin Boundary
associated with A and show that the harmonic functions are given by equation
(4.3) where p, is a measure on the Martin boundary. Ancona [6, 7] showed
that this methods works for a very general class of elliptic operators, requiring
no Riemannian setting, but just assumptions on the operator and Gromov-
hyperbolicity.

The redaction of the next section has been a (possibly failed) challenge for
me; my main goal was to present Ancona’s theorem (Theorem 4.3.16 below),
but in order to make it somewhat understandable, we need a good deal of back-
ground which is, if my personal example is significant, not in the usual toolbox
of the average student in Finsler geometry or dynamical systems. Therefore,
I tried to include some of the basics I learned on potential theory but not too
much for space and time issues. I also tried to give the proofs that seems to me
to be important for the understanding of this theory, while using only the tools
I introduce. So all in all, the resulting redaction is probably disappointing for
many reasons but I hope that it gives a reasonable idea of the theory used to
prove Ancona’s result and to obtain harmonic measures.

4.3.1 Some potential theory and the Martin Boundary

In this section, we will recall the construction of the Martin compactification
of M, our main reference is [6], but if you want to get back to the roots, see
[86].

The Green function

We start out by recalling some definitions. In the following, L will be a
second-order uniformly elliptic differential operator, we will furthermore always
suppose that L is self-adjoint with respect to some volume form 2 on M, even
if this is not necessary for the general theory.

Recall that an operator is elliptic if, for any local coordinates, the symbol
of L is a positive-definite matrix. It is uniformly elliptic if the positivity of the
symbol is uniform, i.e., there exists a constant ¢ depending only on L, such that,
if (o) is the symbol of L in a local chart, then Y ojjz;2; > ¢> a?.

Definition 4.3.2. Let U C M.
— A L-harmonic function on U is a C? function such that Lu =0 on U.
— A relatively compact open set V is called (Dirichlet-)regular if for any
f € C(OV) there exists a unique function u € C(V) harmonic on V and
such that uw = f on OV.
— If V is a regular open set and x € V, we denote by pY the harmonic

measure at x relatively to V. That is, the only Borel measure such that,
for any f € C(0V),

Hf () = /W F©)dpy (€) (4.4)

18 harmonic on V.
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— A function u : U =] — 00, +o0] is L-superharmonic on U if u is lower
semi-continuous and if for any reqular set V.CC U, u> HY on V.

— A superharmonic function s is non-degenerate on U if for any V CC U
reqular, sy is harmonic.

— A function u is a L-potential on U if u > 0, superharmonic on U and
such that any L-harmonic function on U smaller than u is non-positive.

Remark 4.3.3. A C? function is superharmonic if and only if Lu < 0.

Harmonic functions enjoys the following fundamental property:

Proposition 4.3.4 (Harnack’s principle). Let U be a domain of M, then for
any p € U, the set of functions {u | u L — harmonic, positive on U, u(p) = 1}
is compact for the topology of uniform convergence on compact subsets of U.

Proposition 4.3.5 (Harnack’s inequality). Let u be a harmonic function on a
bounded domain U of M, then there exists a constant ¢ such that

sup u(z) < ¢ inf u(x). (4.5)
zelU zeU

Another fundamental piece of the theory is the maximum (or minimum)
principle:

Proposition 4.3.6 (Lninimum principle). Let U be a bounded domain in M
and u € C?>(U) N C°(U) such that Lu < 0. If u(y) > 0 for every y € U, then
u(z) >0 onU.

Note that there exists also a global version:

Proposition 4.3.7. Suppose that u is a potential on M, harmonic outside
a closed set I' and continuous on OF. If s is a non-negative superharmonic
function on M such that s > u on OF, then s > u on M \ F.

To get on with potential theory, we need to assume that the operator P =
L— % admits a fundamental solution: the heat kernel of L.

Definition 4.3.8. The heat kernel of L is a positive function p(z,y,t) defined
on M x M x R, identically null when t < 0, continuous for t > 0 and z # vy,
C? with respect to iy, C' in t and such that:

1. For any fized x € M,
Pp(z,,-) =0 onM xR~ {(x,0)}. (4.6)

2. For any bounded continuous function f on M,

lim p(z,y,t) f(y) Qy = f(2). (4.7)
yeM

Such a function always exists for a uniformly elliptic operator with uniform
Holder continuous coefficients. See, for instance, [65] for the construction using
the parametrix method in R™, or [12] for a diffusion approach on manifolds. For
an approach more specifically adapted to the case we will be interested in in the
next sections, the reader can consult [70, 71].
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Definition 4.3.9. The Green function of L is defined, for (z,y) € M x M, by

+oo
G(z,y) = /0 p(xz,y,t)dt. (4.8)

Remark 4.3.10. When G is not identically infinite, then for any fixed z, G(z, -)
is a L-potential.
Note also that, if L is self-adjoint, then G(z,y) = G(y, x).

The following result gives us a characterization of when the Green function
is not identically infinite:
Theorem 4.3.11 ([6], Théorémes 1 and 13). The following propositions are
equivalent:

1. There exist xo,yo in M such that G(zg,yo) < oo.

2. G is finite and continuous on M x M ~ {x =y} and, for x € M, G(x,-)
is a C? L-harmonic function on M ~ {x}.

3. There exists a strictly positive L-potential on M.
4. There exists a superharmonic, non-degenerate, non-negative function on

M which is not L-harmonic.

In the following, L will be assumed to satisfy one of the above equivalent
properties.

Martin Compactification
Let O € M be fixed, for z € M, let

G(z,y)

W)= G o)

(4.9)

We say that a sequence (x,,) converging to infinity in M converges to a Martin
point if (K ) is pointwise convergent. By the Harnack principle (see Proposi-
tion 4.3.4) any sequence converging to infinity admits a subsequence converging
to a Martin point and if we denote by K¢ the function associated to a Martin
point £, then K is a non-negative harmonic function such that K¢(O) = 1.

By definition, we say that two sequences define the same Martin point if
and only if the limit functions are the same. We will therefore often think of
¢ and K¢ as the same thing. We write MM for the set of Martin points and

N = M UMDM. We define on M the following metric: for z,2’ € M

plz,z’) = sup |K.(y) — Ko (y)l, (4.10)
yEB(O,l)

where B(0O,1) C M is the ball of center O and radius 1.

Proposition 4.3.12 (Martin [86]). M equipped with the metric p is a complete,
compact space for which MODM is the boundary and M the interior. Furthermore,
the topology induced on M coincides with its natural topology.

M is called the (L-)Martin compactification of M.
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Proof. The fact that p is a metric is straightforward from the definition.

Both topologies coincide on M: If x € M and x,, is a sequence that converges
to x (for the distance on M), then by continuity of the Green function, p(x, ;)
also tends to zero. .

MM is compact: Let &, be a sequence of points in MM and !, a sequence
of points converging to &,. Choose K, a sequence of compact sets such that
Ky+1 D K,, and M = UK,,. Write y,, for a point in the sequence z¢, outside of
K,, and such that p(yn, &) < % Then y, is a sequence that leaves all compacts
of M, therefore admits a subsequence converging to a Martin point £ and by
construction, p(&,,&) tends to zero.

M is compact: If x,, is a sequence in M , then either there is a subsequence that
stays in a compact of M, or there is a subsequence that leaves every compact
of M and there is a subsequence converging to a Martin point, or, finally, there
is a subsequence staying in MM and we apply the previous fact.

M is open inside M with boundary MM: this is obvious. O

Let H4 be the convex cone of positive L-harmonic functions and K := {u €
Hy | u(O) = 1} the subset of normalized L-harmonic functions. K is a base of
H,, it is a convex set and we denote by E its extremal points. An harmonic
function u such that u/u(O) is in E is called minimal. v is minimal iff u does
not dominate any other harmonic function apart from multiples of itself (see
[86])-

Theorem 4.3.13 (Martin [86]). For any u € E, there exists a Martin point &
such that K¢ = u.

The proof can be found, for instance, p. 31 of [6].

The Martin boundary does not in general coincides with £, but the following
result shows the importance of the case when MM is reduced to its minimal
part.

Proposition 4.3.14. For any u € Hy, there ezists a unique positive and finite
Borel measure ji,, on E such that, for x € M,

uw) = || Kewhdpa ) (4.11)

Remark 4.3.15. If the Martin boundary is reduced to £, then any harmonic
function is obtained as the integral of the K. over MM, it is not quite the
expression (4.3) that we are ultimately looking for, but it is getting closer.

Proof. The existence is given by Choquet’s theorem and the uniqueness follows
from the fact that C is a base of a cone H; which is a lattice (see [92, Chapter
10]). O

4.3.2 Ancona’s Theorem

In [7], Ancona shows that for an operator of the form L = A+ (B, V), where
A and V comes from a Riemannian metric of bounded negative curvature with
B satisfying certain conditions, then the Martin boundary is homeomorphic to
the visual one.



78 CHAPTER 4. SPECTRUM AND GEOMETRY AT INFINITY

In our case, we do not know whether the Riemannian metric we obtain from
the symbol is of negative curvature, and hence cannot apply directly this result.
However, the proof Ancona gives stay true for a generic Gromov-hyperbolic
space with a suitable elliptic operator and he presents it in the general setting
in [6].

Theorem 4.3.16 (Ancona). Let M be a Gromov-hyperbolic space and L a self-

adjoint elliptic operator, denote by d(-,-) the distance on M. Suppose that L
verifies:
There exist strictly positive constants rg, T, c1, and cy such that

(H1) Vm € M, there exists a function 6 : B(m,ro) — R™, such that Va,y €
B(m,rg) ,we have:

ey Hd(z,y) < [|0(x) — 0(y)]| < cad(z,y)

(H2) Yz, € M and Y0 < t < 7 the Green function g; relative to B(xg,ro) of
the operator L + t1d satisfies: Ya,y € B(xo,r0/2)

a1 < ge(z,y)

. T
gt(‘ray) < ca, zf d(.’L‘,y) > >

T
(H3) There exists e, 0 < ¢ < %, such that ¥Vt < 2e, L + tId admits a Green
function Gy on M.

Then the Martin compactification ofM 1s homeomorphic to MU M(oo) and
the Martin boundary MM is reduced to its minimal_part. Furthermore, if we
have chosen a base point O and denote by K¢ € MM the harmonic function
corresponding to £ € M(oo), then the application (§,x) — K¢(x) is continuous
on M(co) x M.

Remark 4.3.17. Ancona proves also that, given the above conditions on L, the
Green function tends to zero on the boundary: there exist constants ¢ > 0 and
a > 0, depending on L, such that, for any x,y € M, if d(z,y) > 2,

G(z,y) < ce” @),

The main point in the proof is to give an estimate for the Green function of
L:

Theorem 4.3.18 (Ancona, Theorem 6.1 of [6]). If M is a Gromov-hyperbolic
manifold and L verifies the conditions (H1), (H2) and (H3), then, for any
geodesic segment [x, z] in M and any point y on it satisfying min (d(z,y),d(y, z)) >
1, there exists a constant ¢ > 0 depending only on L and the & given by the
Gromov-hyperbolicity such that the Green function G of L verifies:

c_lG(y,x)G(z,y) < G(z,2) < Gy, x)G(z,y).

Note that this theorem contains in fact two results: one, hard and gen-
eral, giving estimates of the Green function along what Ancona calls ¢-chain
(Theorem 5.2 of [6]) and one, easier, showing that when your space is Gromov-
hyperbolic you obtain ¢-chain by following geodesics.

Assuming this result, we can start the:
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Sketch of proof of Theorem 4.3.16. Ancona splits his proof into three steps:

— Choose a base point O € M, let £ € M(c0) and v: RT — M a geodesic
ray issuing from O and ending in . Set x; := v ((j +1)0) and V; :=
{zeM| {z,z;}0 > jé} where ¢ is a constant coming from the Gromov-
hyperbolicity. For z € M, recall that K,(y) := G(z,y)/G(z,0), then,
using Theorem 4.3.18, we can deduce that there exists a constant ¢ such
that, for any z € V11 and y € M \Vj:

Ky, (y) < Ka(y) < Koy (y). (4.12)

Now take a sequence (z,) in M converging to ¢ € M(oo) and such that
K, converges to an harmonic function h, i.e., the sequence (z,) is a
Martin point. By Gromov-hyperbolicity, V; is a base of neighborhood of ¢
(we can deduce that from the characterization of the visual boundary via
the Gromov-compactification, see section 4.1.1). So, we can deduce that
foerQandyEM\I/j:

Ky, (y) < hy) < Ky, (y).

Note that as a conclusion to that first step, we proved the following: If h
is an harmonic function corresponding to a Martin point (z,) which, as a
sequence in M, converges to & € M(oo) Then, for any &' # £ € 1\7(00),
there exists a neighborhood V' of ¢ such that h is bounded above by a
multiple of K, on M NV. Using the Harnack principle, we can deduce
that h is bounded by a multiple of G(-, 0), with a constant depending on
the point &' .

— Now define H¢ the cone of non-negative L-harmonic functions on M that
are bounded above by a multiple of G(-,0) in a neighborhood of any
¢ eM (00) different from . Ancona proves that for any h € H, the
following holds: for any j > 2 and y € M~ Vi,

T2 h(O) Ky, (y) < h(y) < h(0) Ky, (y)-
From this we deduce that for any h, h’ € H¢ and any y € M, we have
¢ h(O)N (y) < W (0)h(y) < R(O)N (y),

that is, any element of #, is bounded by a multiple of any other (non-zero)
elements.

— Recall that in the first step we showed that H¢ is not reduced to zero,
now the second step induces that #¢ is one-dimensional. Indeed, take two

strictly positive elements h,h’ € H¢ and set A := sup{g,(é’/)) 1y € M}

By definition, A\h' — h € Hg, but, by our choice of A\, Ah’ — h cannot be
bounded below by a multiple of h’. We set K, the unique element of H,
such that K¢(O) = 1.

Given a point £ € M(co) and any sequence (z,) in M converging to &, by
equation (4.12) and the Harnack principle, we know that (K., ) must converge
simply and the third step shows that the limit must be K¢. Moreover K¢ is
minimal because if u is a positive harmonic function bounded above by K¢, then
u is in He, so if u(O) =1 then u = K¢. So we constructed an application from
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M (<) to the minimal part of MM.

Let &, & be two distinct points in M(oo), then K¢ # K¢ . Indeed, otherwise
we would have shown that K¢ is bounded above by a multiple of G(-,O) on all

of M(oo) and therefore on all of M. Hence G(-,0) would be bounded below
by a positive harmonic function, which is impossible because y — G(y, O) is a
potential.

So our application M(oo) — MM is injective, and we have everything to see
that it is also surjective: take a Martin sequence (z,) such that K, converges

to h, there exists a subsequence that converges to an element £ € M(c0) so
h = K¢ and therefore (z,,) must converge to &. O

Remark 4.3.19. Note that the proof gives the following characterization of K¢:
it is the only harmonic function such that K¢(O) = 1 and that is bounded by
a multiple of G(-,0) in a neighborhood of every point in M(oo) ~ {¢}. The
second condition really gives a meaning to “K¢ is zero on M (o) ~ {€}.

Some corollary of this result is that the Dirichlet problem at infinity for an
operator satisfying (H1) to (H3) as a unique solution. The proof is once again
copied from [6]. Note that it is also a direct transcription of the classical proof
of the Dirichlet Problem for the Euclidean disc via the Poisson integral formula
(see for instance [69]).

Theorem 4.3.20 (Dirichlet problem at infinity). Let (M, L) be as above and
L(1) = 0, then for any f € C(M(c0)), there ezists a unique u € C(M UM (c0))
such that w = f on M(oo) and Lu =0 on M.

Furthermore, if we choose a base point O on M, we can write:

ulz) = / K@) f(©)dul).
€M (c0)

Proof. Note that uniqueness is a direct consequence of the maximum principle.
With Ancona’s theorem, applying Proposition 4.3.14 to 1 shows that we
have a measure p on M (co0) such that

o) = [ Kelwydu(e),
geM(o0)
where we chose a base point O € M for the normalization of K¢. Now let

u(z) = /6 e, K@ @),

u is L-harmonic by definition, so we just need to prove that u(z) tends to f(&)
when z — £.
Let & € M(o0) and V' a neighborhood of &), we write:

() (&) = /~ Ke(2)(F(€)— F(€0))du(6)+ /V Ke(@)(F(€)— F(€0))du(c).

M (c0)\V

Now, for z in a smaller neighborhood of &y, K¢(x) is bounded above by a multiple
of G(x,0) (by the first step in the proof of Ancona’s Theorem), so the first part
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in the RHS of the above equation is small. The second part is easily seen to be
small because fﬁ(oo) Ke(x)dp(€) = 1, which proves the theorem. O

In fact, we can say more about the regularity of the identification between
the Martin and the visual boundary. Recall (Proposition 4.1.3) that there is a
natural metric on the boundary of a Gromov-hyperbolic space dg,, where € is

a small real depending only on 0, and that we have, for £, n € M(oo),
(3 —2e)e~ e < dg (¢,n) < e tEmo, (4.13)
Moreover, the boundary admits a Holder structure (see [43, chapter 11]).

Theorem 4.3.21. Let (1\7, L) satisfying the conditions of Theorem 4.3.16, there
erists a constant o > 0 depending on M and L such that the identification
MM — M(o0) is a-Holder.

Moreover, if we denote by K(O, z,£) the Poisson kernel normalized at O, for
any compact K C M, the application (O,xz,€) € K x K x M(oo) — K(O,x,¢§)
1s Holder-continuous.

The above result is a direct consequence of the following, more technical
result:

Theorem 4.3.22. Let (M, L) satisfying the conditions of Theorem 4.3.16 and
U an unbounded domain in M. Suppose that u and v are two harmonic functions
on U, continuous on U, and such that 1@0?\2(00) = UTnM(s0) = 0. Then the

quotient u/v has a C® extension to U N M(cc), where o depends on M and L.

As far as T know there is no published proof of that result in this generality,
however, the hard part is due to Ancona [7] and Anderson and Schoen [9], the
only personal contribution being the following lemma. Note also that there are
some closely related results of this generality: in [74], M. Izumi, S. Neshveyev
and R. Okayasu proves that the Martin kernel for a random walk on a hyperbolic
group is Holder continuous.

Lemma 4.3.23. Let v be a geodesic ray from O to a point & € M(oo), we
define A; := v(4id) and A} .= v((4i42)0). Let V; :={x € M | {z, A}}o > 4id}.
Let & and n be the two points in O (]Tj(oo) QVZ—), then

{&nto < (4G +1)4+2)0 + 170. (4.14)

—log(3 — 2 exp(ed))

Therefore, for i > 12 + ,
)

sup dg.(a,b) > e~ 8ied

a,beV;

Proof. First note that sup, ;v dg,e(a,b) > (3 — 2e9)e~l&mto (see equation
(4.13)), so proving equation (4.14) will indeed give us the result.

Now remark that, for any point pg on the geodesic (£,7), {£,7}o < d(O, po).
Indeed, if we take two sequences (a,) and (b,,) on (£,7) converging respectively
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to £ and 7, we have:

(&.n}o = lim %(d(an,0)+d(bn,0)—d(an,bn))

n—-+oo

. 1
< lim 5 (d(anaPO) + d(pOa O) + d(bnaPO) + d(pOa O) - d(ana bn))

n—-+oo

< d(pO’O)'

Let p := vN(&,n) (we take i big enough so that this intersection exists),
depending on the position of p, we have two possibilities:
— Either d(0,p) < d(0, AL) = (4i 4+ 2) which implies equation (4.14),
— or d(O,p) > d(O, A}). Then, pis in V; (because the part of v after 4; is
in V;), so we again have two possible cases;

— Either p ¢ V;4; and therefore d(O,p) < d(O, A;1+1) = 4(i + 1)é which
again implies equation (4.14),

- Or p € Vi4q, in that case, we know (using Scholie 3.1 of [6]) that
the geodesic ray [p,£) must pass no further than 176 from A}, ,, if
we denote by p’ the point realizing that distance, we have d(O,p’) <
1764+ d(O, Aj, ) = (4(i + 1) +2) 0 + 174, which ends the proof.

|

Proof of Theorem 4.3.22. Let &y be an interior point ofUﬂM(oo), O € U abase
point and «y a geodesic ray from O to &. Set A; := v(4id) and A, := v(4(i+2)0d),
where § > 0 _is given by the Gromov-hyperbolicity of M. Now we define
Vi={x € M| {z,A}o > 4id}, the V;’s form a basis of neighborhood of
& and are such that V;;; C V;. So for i big enough, V; C U.

Replacing their C;’s by V;, we can copy verbatim the proof of Theorem 6.2
of [9] and obtain that ¥ admits a radial extension ¢ to U and that there exists
a constant ¢; > 0, depending on § and L, such that

sup p(z) — inf_p(z) < cjp(0). (4.15)
1671' z€Vi

The only change that needs to be done is to use Ancona’s Harnack inequality at
infinity given by Theorem 5’ of [7], instead of the Harnack inequality Anderson
and Schoen uses. Theorem 5’ applies because (A;,V;) forms a ¢-chain (see the
proof of Theorem 6.1 in [6]).

Now, by Lemma 4.3.23 above, we have for ¢ > ¢, where ¢o depends only on
d (as e depends only on §),

sup e {@blo > o=8icd (4.16)
a,beV;

So putting together equations (4.15) and (4.16), we obtain that for y and 3’
sufficiently far from O, setting o := (1/8¢d)log(1/c1) > 0O:

o) — ey < [e~W22] " p(0).

This proves that the extension ¢ is in fact C. O
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Finally we can deduce Theorem 4.3.21 from Theorem 4.3.22 (see [9, Theorem
6.3]):

Proof of Theorem 4.3.21. Recall that, for £ € 1\7(00), the Poisson Kernel nor-
malized at O, K (O, -, &) is such that

G(z,yn)
0, = lim ———=
K(O.2.8) = 1. &6,y
where (y,) is a sequence converging to &, applying Theorem 4.3.22 to the
G(z,yn) gives that there exists a constant C' such that, for any = € B(O, 1)
and any distinct £, & € M(c0):

|K(O,1‘,§) - K(O,z,§/)| <C [dG(gagl)]a

which proves the theorem. O

4.4 Existence of Finsler—Laplace harmonic mea-
sures

We finally get back to Finsler geometry. Recall that M is the universal cover
of a closed manifold M and F'is a Finsler metric of negative flag curvature lifted
from M. N

From now on, we assume that F' is reversible, indeed Ancona’s Theorem
is proved only for symmetric distance. Note however, that Fang and Foulon
[61] showed that for irreversible Finsler metric of negative curvature, there exist
two boundary at infinity, one is given by following the geodesics into the future
and the other into the past. It seems very probable that if we consider a non-
symmetric distance and redo the steps of Ancona’s proof, we should obtain
identifications of the past and forwards boundaries with the Martin boundary by
taking the Poisson kernels K¢ along forward, respectively backwards, geodesics.
But if this is true it will remain a project for later (or for any interested reader).

Theorem 4.4.1. If (M, F) is a closed reversible Finsler manifold of strictly

negative curvature and (M F) its universal cover, then AF verifies the condi-
tions (H1) to (H3) of Theorem 4.3.16.

Before starting the proof, let us state the main corollary:

Corollary 4.4.2. There is a C* identification between the Martin and the visual

boundary of (M F) and the Dirichlet problem at infinity for AF admits a unique
solution.

That is, for any f € C(M()), there exists a unique u € C(M U M (<)) such
that u = f on M(c0) and AFu =0 on M.

Furthermore, for any x € M, there exists a measure p,, called the harmonic
measure for AT such that:

ulz) = L_ o o)
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Proof. The first part of the corollary is Theorem 4.3.21 and the second part is
Theorem 4.3.20, with du, = K¢(x)dp. O

Condition (H1) just means that M is of “bounded geometry” and it would
stay true for any uniform Finsler Hadamard manifold in Egloff’s sense. Condi-
tions (H2) and (H3) comes from the following:

Proposition 4.4.3. AF s coercive, i.e., there exists ¢ > 0 such that, for f €
cse,

/N(wa*f)QA/\dA”* > c/NfQQ.
HM M

Proof. By Theorem 4.2.6, we know that A; is strictly positive because 71 (M is
Gromov-hyperbolic, hence not amenable, and the characterization of A; as the
infimum of the Rayleigh quotient (see Proposition 2.2.14) shows that we can
take ¢ to be A\j. O

We can deduce (H3) from there (see [7, Lemma 2|, we recall the proof below):

Corollary 4.4.4 (Weak coercivity). There exists ¢, 0 < € < L, such that

~ — 27
Vt < 2e, AT +t1d admits a Green function Gy on M.

Remark 4.4.5. Recall that, as a weighted Laplace operator, there always exists
a heat kernel for AF (see for instance [71]) therefore we can apply Theorem
4.3.11 to decide whether a Green function exists.

Proof. Take € smaller than ¢/2, then for any ¢t < 2¢, L := AF 1+ ¢1d is still co-
ercive and therefore we have a coercive bilinear form ¢;, associated with L and

continuous on H&(M) Indeed, just set gz (u,v) :== — [7u (Aﬁv + tv) 0. We
will construct a L-superharmonic positive function s and use Theorem 4.3.11 to
conclude. .

Take a positive test function f € C§°(M), there exists (by Lax—Milgram theo-

rem) an s € Hg (M) such that, for any p € C§°(M),

qr(s,p) = /M S

Now s is positive, because if we let s~ := max{0, —s}, then ¢r(s7,s7) =
—qr.(s,s7) <0 (because of the above equation, using a suitable C'*° approxima-
tion of s7). As s is a weak solution of Ls = — f, s is superharmonic and we can

choose f so that s is strictly positive and Theorem 4.3.11 proves the claim. [

Lemma 4.4.6. There exist strictly positive constants ro, 7o, c1, and co such
that

(H1) Vm € M, there exists a function 6 : B(m,ro) — R™, such that Va,y €
B(m,rg) we have:

ey ld(z,y) < [|0(2) — 0(y)l| < c2d(,y)
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(H2) Vo € M and V0 <t < 7o the Green function g; relative to B(zg,ro) of
the operator AT +t1d satisfies: Y,y € B(wg,70/2)

c1 < gi(z,y)

. T
9t(z,y) < c2,  ifd(z,y) > ZO
Remark 4.4.7. These two conditions follow from the fact that M and AF are
well-adapted (in the terminology of Ancona [6]), i.e., that M verifies (H1) and
that the push-forwards of AF by @ have coefficients with Holder norms bounded
by uniform constants. The condition (H2) just means that the Green function

of AF should behave like a Green function of a uniformly elliptic operator on
R™,

Proof. For (H1), first remark that for any m € M , the exponential map at m is
a diffeomorphism from TmM to M. , and we can take § = exp,!. For any real
number rg, there exists a constant ¢ = ¢(rg) depending only on ry such that
(H1) is satisfied. ¢ exists by compactness of B(m,rq) and does not depend on
m by compactness of M.

¢o will be determined by the condition (H2), as long as we take co > ¢(r9).

Let 79 < A1 and fix 0 < tg < 79, let L := 6, (Aﬁ + to Id). L is a uniformly

elliptic operator on U = 6(B(xg,79)) with smooth bounded coefficients (by
compactness of M). Therefore (see, for instance [105, Théoréme 9.6] or Chapter
1 of [65], equations (6.12) and (6.13) in particular), L admits a Green function
g% and there exist two constants ¢; and ¢y (depending on the Holder norm of
the coefficients of L) such that, for u, v a bounded distance apart and a bounded
distance from OU we have g% (u,v) > ¢; and g¥(u,v) < ¢a. As g is the pullback
of g* by 0 and again using the compactness of M, we have a uniform control
on all those bounds and hence have proven our lemma. O

4.5 Ergodic property of harmonic measures

In this section, we will adapt ergodic results on the harmonic measures to our
case, the result and proof are based on Ledrappier’s work on harmonic measures
for negatively curved Riemannian manifolds in [83].

A measure class on a space V is a set {p, }cv indexed by V such that, for
any z € V, u, is a measure on V and for y € V, p, and p, are equivalent. All
the measures we consider are Radon measures. If a group I' acts on V', we say
that a measure class is invariant by I if, for x € V and v € T,

M-z = YVl

where 7.1, is defined by, for U C V measurable, v,u.(U) = p (v U).
Remark that if {y,} is an invariant measure class, then the measures u, are
quasi-invariant, that is, for any v € I', p, and v, pu, are equivalent.

For an invariant measure class (or a quasi-invariant measure), we can use
the traditional definition of ergodicity; An invariant measure class is ergodic if
for any measurable set U invariant under I', then U is either of measure (for
any (i, ) full or null.
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In this section, (M, F') is still a closed reversible Finsler manifold of negative
curvature, (M, F) its universal cover with the lifted metric. For Cany x € M, we
denote by i, the harmonic measure on M (co) associated to AT

Lemma 4.5.1. The harmonic measures {fi,} form a measure class invariant

by the action of w1 (M) on M(oo) Moreover, for x,y € M, the Radon-Nykodim
derivative of iy and [, is

iy ..
d/jy (5) - K(yﬂzaé)v

where © — K (y,x,£) is the Poisson Kernel normalized at y.

Proof. We can obtain the harmonic measure j, in the following way: Let O be
a point in M and K (O, z,§) the Poisson kernel normalized at O. If [ip is the
measure on M (co) such that

/ K(0,2.8)diio(€) = 1,
£EM (o0)

then fi, is such that, for any Borel set U C M (oo = [y K(O,z,&)du(¢).
From this we see that all the measures are equ1valent and that their Radon-
Nykodim derivative is given by

K(O,,¢)
K(0,y,8)’

Now recalling the characterization of K(O, -, &) given by the proof of Theorem

4.3.16 (see remark 4.3.19), we see that 1oL — = K(y,z,£); Indeed, x —

K(0,y,£)
gggzg is harmonic, normalized at y and such that it tends to zero when x

tends to £ # £. So we have

djis

djic .,

Using the fact_that the p, solves the Dirichlet problem at infinity, we get
that, for any 2 € M and f € C°(M (c0)),

/  F©)dpy = /  for(€)du, = /  Fd () (),
£eEM(o0) £EM (o0) nEM (oc0)

so we do have fiy., = Vufla- O

Let 7: HM — M(oo) be the application sending an element (z,v) € HM
to the point at infinity obtained as the limit of the geodesic ray leaving x in the
direction v. For any fixed z € M, 7, is an (Holder)-homeomorphism.

As the harmonic measures are mp(M)-invariant, we can define the spherical
harmonic measures {fi,,y € M} as measures on H,M by

fiy := pg © 75,

where § € M is any lift of y € M.
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Theorem 4.5.2. Let (M, F) and [i, be as before, we have the following prop-
erties:
(i) The harmonic measure class {1} is ergodic for the action of w1 (M) on

(i1) For any x € M, the product measure fi, ® fi, is ergodic for the action
of m (M) on 0*M := M (c0) x M(0o) \ diag.

(iii) There exists a unique @'-invariant measure p on HM such that the
family of spherical harmonics i, are a family of transverse measures.
Moreover, (HM, ¢t, i) is ergodic.

Note that, by the following result of Kaimanovich, which still holds in this
context, proving (iii) gives the theorem.

Theorem 4.5.3 (Kaimanovich [75]). There ezists a convex isomorphism be-
tween the cone of Radon measures on 92M and the cone of Radon measures on
HM invariant by ¢'.

Similarly, there ewists a convex isomorphism between the cone of Radon mea-
sures on 0°M invariant by 71 (M) and the cone of Radon measures on HM
invariant by ¢°.

So if we construct u, Kaimanovich correspondence shows that there exists
a weight f: 92M — R, such that the measure ffi, ® fi, is invariant by 1 (M)
(see [75]). And proving that u is ergodic for the flow proves that fr, ® fi, is
ergodic.

To prove (iii) of Theorem 4.5.2, it suffice to copy verbatim the proof of
Proposition 3 in [83] (using that our Poisson kernel is Holder continuous by
Theorem 4.3.21). we get:

Proposition 4.5.4. There exists a Hélder continuous function Fy on M such
that the spherical harmonic measures fi, can be chosen as a family of transverse
measures for the equilibrium state p of Fy.

But we know (see [25]) that an equilibrium state is ergodic so we have (iii).
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5.1 Definitions

5.1.1 Basics on Anosov flows

In all this part, we will be interested in Anosov flows on closed 3-manifolds,
but we can state the definition in any dimension:

Definition 5.1.1. Let M be a compact manifold and ¢': M — M a C' flow
on M. ¢! is called Anosov if there exists a splitting of the tangent space TM =
R X & E @ E“* preserved by D¢t and two constants a,b > 0 such that:

1. X is the generating vector field of ¢'.
2. For anyv € E*® and t > 0,

D" (v)| < be™"|v]].
3. For anyv € E" and t > 0,
D6~ ()| < be™"||v]].

In the above, ||-|| is any Riemannian or Finsler metric on M.

E*® (resp. E**) is called the strong stable distribution (resp. strong unsta-
ble distribution). It is a classical result ([10]) that E**, E** R - X & E** and
R - X & E"" are integrable, we denote by F*°, F“* F*® and F" the respec-
tive foliations and we call them the strong stable, strong unstable, stable and
unstable foliations.

In all the following, if x € M, then F*(x) (resp. F“(x)) is the leaf of the
foliation F* (resp. F*) containing .

Another kind of flow that will appear is a pseudo-Anosov flow. This type of
flows are the generalization of suspensions of pseudo-Anosov diffeomorphisms.
They should be thought of as an Anosov flow everywhere apart from a finite
number of periodic orbits where the stable and unstable foliations are singular.
For foundational works on pseudo-Anosov flows, see [87, 88, 89].

Definition 5.1.2. A flow ¥ on a closed 3-manifold M is called pseudo-Anosov
if it satisfies the following conditions:

— For each x € M, the flow line t — '(x) is C', not a single point, and
the tangent vector field is C°.

— There is a finite number of periodic orbits, called singular orbits, such that
the flow is smooth off of the singular orbits.

— The flow lines of ¥ are contained in two possibly singular 2-dimensional
foliations A° and A" satisfying: Outside of the singular orbits, the folia-
tions are not singular, they are transverse to each other and their leaves
intersect exactly along the flow lines of ¥'. A leaf containing a singularity
is homeomorphic to P x [0,1]/f where P is a p-prong in the plane and f
is a homeomorphism from P x {1} to P x {0}. We will always assume
that p > 3.

— In a stable leaf, all orbits are forward asymptotic, in an unstable leaf, they
are all backward asymptotic.
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In the definition of Anosov flow, we asked for ¢! to be at least C* but we
will only care about smooth (i.e., C*°) flows, the foliations however might not
be very regular.

We further assume that ¢ is transversally oriented, i.e., there exists an
orientation on M given by an orientation on each leaf of F° together with an
orientation on each leaf of F“*. Note that this hypothesis will be essential for
the description we give of skewed Anosov flows, for instance, in order to have an
orientation on the leaf spaces (to be defined below). However, it can be achieved
by taking the lift of the flow to a two-fold cover (four-fold if the manifold was
not orientable).

Both Sergio Fenley and Thierry Barbot — at the same time and indepen-
dently — started studying Anosov flow via their transversal geometry, that is
via studying the space of orbits. We will follow their lead and use their works
throughout this part. So some of the main objects of study here will be the
orbit and the leaf spaces that we define as follow:

Let M be the universal cover of M and 7: M — M the canonical projection.
The flow gﬁt and all the foliations lifts to M and we denote them respectively by
Pt, Fss, Fs, Fuu and Fu. Now we can define

— The orbit space of ¢t as M quotiented out by the relation “being on the

same orbit of ¢”. We denote it by O. .
— The stable (resp. unstable) leaf space of ¢' as M quotiented out by the
relation “being on the same leaf of F* (resp. f“)”. We denote them by
L2 and L* respectively.
Note that the foliations F* and F* obviously project to two transverse foliations
of O. We will keep the same notations for the projected foliations, hoping that
it will not lead to any confusion.

For (pseudo)-Anosov flows in 3-manifolds, the orbit space is always home-
omorphic to R? (see [17] and [55] for the Anosov case and [54] for the pseudo-
Anosov case). The leaf spaces £° and £L* however are in general non-Hausdorff
1-manifolds, but still connected and simply-connected. In this work, we are
specially interested in one particular case:

Definition 5.1.3. An Anosov flow is called R-covered if L° and L" are home-
omorphic to R.

Remark that to prove that a flow is R-covered, we just need to show that
one of the leaf space is homeomorphic to R:

Theorem 5.1.4 (Barbot [16], Fenley [55]). If L£* is Hausdorff, then L" is
Hausdorff and vice versa.

Let us also recall the following result of Verjovsky which is fundamental for
the following (and already used in the proof of the above mentioned results):

Proposition 5.1.5 (Verjovsky [109]). Let ¢' be an Anosov flow on a 3-manifold
M. Then:
1. Periodic orbits of ¢* are not null-homotopic.

2. Leaves of F* (resp. F") are homeomorphic to R2.
3. M is homeomorphic to R3,
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Verjovsky result is in fact more general; the above stays true (with obvious
modifications) for codimension one Anosov flows, i.e., Anosov flows such that
(say) the strong unstable foliation F“* is one-dimensional. In the same article,
Verjovsky also proved the following result:

Proposition 5.1.6. If ¢! is a codimension 1 Anosov flow, then any leaf of Fuu
intersects at most once a leaf of F*.

Note that this result does not tell you that there always is an intersection;
Indeed, we say that a R-covered flow is skewed if for every leaf L* € F*, there
exists a leaf L® of F* such that L* N L° = () and vice-versa. We have the
following;:

Theorem 5.1.7 (Barbot [17]). If ¢* is a R-covered flow on a 3-manifold M,
then either ¢! is skewed, or it is a topologically conjugated to a suspension of an
Anosov diffeomorphism.

An R-covered Anosov flow is always transitive (see [17, Theorem 2.5]), i.e.,
admits a dense orbit. If it is skewed, it is even more:

Proposition 5.1.8 (Barbot). A skewed R-covered Anosov flow is topologically
mizTing.

The proof is given in Remark 2.2 of [19], topologically mixing means that
given two open sets, there exists a time after which the image by the flow of one
set always intersects the other (see [80]).

In all the rest, we will be considering skewed R-covered Anosov flows. Note
that a geodesic flow of a negatively curved surface is a skewed R-covered Anosov
flow. More generally, any contact Anosov flow is skewed R-covered ([19])

Orbit space and fundamental group

It is easy to see that the action of the fundamental group of M on M projects
to the orbit and leaf spaces, we can even say a bit more about this action:

Proposition 5.1.9. Let ¢' be an Anosov flow on M.
1. The stabilizer by m (M) of a point in O, L% or L is either trivial or
cyclic.
2. If v € m (M) fizes a point O € O, then O is an hyperbolic fixed point of
5.
3. If y € m (M) fizes a point I € L% (or L"), then 1 is either an attractor or
a repeller for the action of ~y.

The proof can be found in [16] and holds once again for codimension 1
Anosov flow.
One fundamental remark of Fenley in [55] is the following:

Proposition 5.1.10 (Fenley). Let ¢' be a skewed, R-covered Anosov flow in a
3-manifold M. Then, there exist two functions n°: L° — L% and n*: LY — L*
that are monotonous, m (M)-equivariant and C*. Furthermore, n* o n° and
n® on" are strictly increasing and we can define n: O — O by

nio) =" (F*()) nn* (F*(0))
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Proof. Let L® € L%, define I := {L* € L* | L* N L* # Q}. I is an open,
connected subset in £° ~ R, hence Ol consists of 2 elements and, as ¢! is
transversally oriented, £° as a natural orientation, so we can set 7°(L*) to be
the largest element of 0I. n“ is defined in exactly the same fashion.

Monotonicity is trivial to check using the definition, as is the equivariance by
the fundamental group. The Holder continuity is done in [19]. O

Using this result, we can get a better picture of the space of orbits: Let
L(n®) = {(A\%,n%(X%)), A* € L5} C L5 x L* and T'(n*) := {(n“(A\*),\*), \* €
L%} C L x L* be the graphs of n® and n“ respectively. Then O is the subset
of £ x £ in between I'(n°) and T'(n*), and the foliations F* and F* in O are
just given by vertical and horizontal lines (see Figure 5.1).

Lv ("),

/ // 1—\(7]5)

£S

Figure 5.1: The space O seen in £° x L"

Free homotopy class of periodic orbits

In [55], Fenley constructed examples of skewed R-covered Anosov flow on
atoroidal, not Seifert-fibered spaces. So in particular, these flows are not geodesic
flows. It turns out that if you consider the free homotopy class of periodic orbits,
Fenley’s examples behave in a very different way:

Theorem 5.1.11 (Fenley [55]). If M is atoroidal and not Seifert-fibered, then
the free homotopy class of a periodic orbit of ¢' contains infinitely many distinct
periodic orbits.

For the geodesic flow of a negatively curved (Riemannian or Finsler) mani-
fold, it is a classical result ([82]) that there is at most one periodic orbit in a free
homotopy class (and exactly one geodesic for each element in the fundamental
group of the manifold).
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We give a sketch of proof of this result as it is useful for the understanding
of such flows.

Sketch of proof. Let o be a periodic orbit of M, and «a a lift to the universal
cover. There exists an element v € w1 (M) such that + leaves & invariant. For
any i € Z, n'(a) is also left invariant by v (by the previous proposition) and
hence its projection on M is a periodic orbit. Just by looking at the action of
on O we can deduce that n°(a@) and n*™!(a) have reverse directions (see figure
5.4).

Then, there is some work to show that, if v was the generator of the stabilizer
of a for the action of 71 (M), then it is the generator for any 7°(&). This proves
that 7% (a) are all freely homotopic.

Finally, using the topological assumptions, Fenley shows that the projections of
n? (&) to M are all distinct (otherwise, there would be a Z? in 71 (M)). O

_In the following, we will often abuse terminology and say that an orbit & of
¢! is periodic if its projection to M is periodic, or equivalently, if & is stabilized
by an element of the fundamental group.

Lozenges

In [55], Fenley introduced the notion of lozenges, which is a kind of basic
block in the orbit space and is fundamental to the study of (not only R-covered)
(pseudo)-Anosov flow.

Figure 5.2: A lozenge with corner «, 8 and sides A, B,C, D

Definition 5.1.12. A lozenge L in O is a subset of O such that (see Figure
5.2):
There exist two points o, f € L and four half leaves A C ]?S(oz), B C ]?“(oa),
CcC .7?5(5) and D C f“(ﬂ) verifying:

— For any \* € L5, M* N B # 0 if and only if \* N D # 0,

— For any A\ € LY XN A#0D if and only if \* NC # 0,

— A does not intersect D and B does not intersect C'.
Then,

L:={a,f}U{peO|F(p)NB#0, F'(p)NA#0}.
a and B are called the corners of L and A, B,C and D are called the sides.
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Note that in our definition, we do not count the sides as part of a lozenge,
but we do include the two corners.

Definition 5.1.13. A chain of lozenges is a union (finite or infinite) of lozenges
L; such that two consecutive lozenges L; and L;+1 always share a corner.

There are basically two configurations for consecutive lozenges in a chain:
either they share a side, or they don’t. The first case is characterized by the
fact that there exists a leaf intersecting the interior of both lozenges, while it
cannot happen in the second case (see figure 5.3)

(a) Lozenges sharing only cor- (b) Lozenges sharing sides
ners

Figure 5.3: The two types of consecutive lozenges in a chain

In the case at hand, lozenges and chain of lozenges are pretty nice:

Proposition 5.1.14 (Fenley [55]). Let ¢ be a skewed R-covered Anosov flow,
and C = JL; a chain of lozenges. Let p;—1 and p; be the two corners of L;,
then p; = n(pi—1). Furthermore, if p; is the shared corner with L;1, then the
union of the sides through p; of L; and Liy1 is F* (pi) UF (pi)- In other words,
consecutive lozenges never share a side. In particular, an (un)stable leaf cannot
intersect the interior of more than one lozenge in C.

Corollary 5.1.15. If L is a lozenge such that one of its corner is fixed by
an element v of m (M), then 7 stabilizes the whole lozenge and fix the other
corner.

Now, if we assume furthermore that M 1is atoroidal and not a Seifert-fibered
space, then we have:

— If C is a chain of lozenges with corners p; and if one corner is a peri-
odic orbit, then every corner is a periodic orbit, the set {m(p2;)} (resp.
{m(p2i+1)}) is in the free homotopy class of w(po) (resp. w(p1)) and C' is
stabilized by the deck transformation fizing the p;. .

— Conversely, if o is a periodic orbit of ¢* and & a lift to M, then & is a
corner of an infinite mazimal chain of lozenges C'. The stabilizer of C in
w1 (M) is generated by one element. We call the projection to M of all
the corners of C the double free homotopy class of «.
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Remark 5.1.16. The difference between the free homotopy class of a periodic
orbit and the double free homotopy class, is that in the latter, we forget about
the orientation of the curves.

Q42

Q41

Figure 5.4: The action of an element v € 7 (M) stabilizing a chain of lozenges

Proof. The first assertion is easy: if v stabilizes some corner then it stabilizes
the other corner because it is an image of the first one by a power of  and n
commutes with deck transformations. Now, this implies that 7 stabilizes every
side of L, hence stabilizes L.

The second assertion is a trivial application of the first one and the fact that
free homotopy classes are obtained by powers of 1) (see [55] or the sketch of proof
of Theorem 5.1.11).

Finally, the only hard part of the last assertion is that the stabilizer of C'
is some cyclic group. It amounts to the same thing as we already admitted in
the proof of Theorem 5.1.11, i.e., that the projections to M of the corners are
distinct. Indeed, the image by a deck transformation of a lozenge is a lozenge
and in particular it sends corner to corner. O

Note that Fenley obviously first studied these lozenges and obtained the
above results and then deduced Theorem 5.1.11, T hope the reader will forgive
the liberty I took with the order in which I present the results; my goal was not
to give complete proofs but merely an idea of what these flows look like.

Remark 5.1.17. Looking at the orientation of the sides of a lozenge, we can see
that they come in two different types:

Recall that the transverse orientability of ¢’ gives an orientation on each leaf
of 7% and F* seen in O, so any orbit defines two half stable leafs (positive and
negative) and two half unstable leafs. Now, let p be a corner of a lozenge L.
The sides of L going through p — call them A for the stable and B for the
unstable — could either be both positive, both negative, or of different signs.
It is quite easy to see that the stable (resp. unstable) side of the other corner
needs to have switched sign from B (resp. from A). So each lozenge could be
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of two types, either (+,+,—,—) or (+, —, —,+), but evidently, all the lozenges
of the same (transversally orientable) flow are of the same type ([55]).

In the sequel, we will consider flows such that lozenges are of the type
(4,4, —, —) (see figure 5.5a).

(a) A lozenge of type (+,4+,—,—) (b) A lozenge of type (+,—,—,+)

Figure 5.5: The two possible orientations of lozenges

5.1.2 Foliations and slitherings

We leave for a bit Anosov flows to digress about (R-covered) foliations.
Thurston in [107] introduced the following notion:

Definition 5.1.18. M slithers around the circle if there exists a fibration
s: M — St such that 7 (M) acts by bundle automorphism of s, i.e., an el-
ement v of w1 (M) sends a fiber s~1(x) to a possibly different fiber. s is called a
slithering.

A slithering s defines a foliation F(s) on M, just by taking the leaves to be
the projection on M of the connected components of s~!(z). Reciprocally, we
say that a foliation comes from a slithering if it is obtained in that way. It is im-
mediate that foliations coming from slitherings are R-covered. Here, R-covered
means that the leaf space of the foliation is R.

Recall that a taut foliation is a foliation that admits a closed transversal.
Note that the foliations we are interested in are always taut; A skewed R-covered
Anosov flow is transitive, so each strong leaf is dense (see [93]), hence, in order
to get a closed path transverse to the weak stable foliation, we can just follow
a strong unstable leaf until we are close to where we began and close it up in a
transverse way.

Candel managed to apply to taut foliations the classical uniformization theorem:

Theorem 5.1.19 (Candel’s Uniformization Theorem [34]). Let F be a taut
foliation on an atoroidal M, then there exists a Riemannian metric such that
its restriction to every leaf is hyperbolic.

Using the metric given by Candel’s uniformization theorem, we can define
a boundary at infinity for any leaf A of F that we denote by S1 ()\). Thurston
explained how to stitch those boundaries together to obtain a “universal cir-
cle” that takes into account the topological and geometrical information of the
foliation.
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Let us write £ for the leaf space of the foliation F.

Definition 5.1.20 (Universal circle). Let F be a R-covered taut foliation on an
atoroidal 3-manifold M. A universal circle for F is a circle S}, together with
the following data:

1. There is a faithful representation

Puniv: T1 (M) — Homeo™ (Sl )

2. For every leaf A off there is a monotone map
Uy: St — S ().

Moreover, the map

U: Sl XL By
defined by U(-,\) := Uy(-) is continuous.
Here, Eo = Uyer S (N) is given the largest topology such that the end-
point map e: T'F — E.., which associate the endpoint in SL(\) of a
geodesic ray defined by an element of the unit tangent bundle of the leaf
A, 1§ continuous.

3. For every leaf \ of]? and any v € w1 (M) the following diagram commutes:

Puniv(Y)
_—

SN —= 55 (v A)

This definition is taken from [32], note however that Calegari defines univer-
sal circles for any kind of taut foliations and hence needs a last condition that
is empty for R-covered foliations.

Theorem 5.1.21 (Thurston [107], Fenley [56], Calegari [31], Calegari and Dun-
field [33]). A foliation coming from a slithering defines a universal circle.

The different sources for this result are in fact different generalizations of
the original Thurston result.

Definition 5.1.22 (Regulating flow). 4 flow ¢* on M is said to be regulating
for F if Y is transverse to F and when lifted to the universal cover, any orbit
of Y intersects every leaf of F. In other words, we have a homeomorphism
between any orbit of ' and the leaf space of F.

The main result concerning slitherings is probably the following, but note
that Fenley and Calegari obtained that result for a larger class of foliations:

Theorem 5.1.23 (Thurston, Fenley, Calegari [31]). If F is a foliation coming
from a slithering on an atoroidal, aspherical closed 3-manifold M, then it admits
a pseudo-Anosov regqulating flow ': M — M.

Fenley proves even more about these pseudo-Anosov regulating flows:
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Theorem 5.1.24 (Fenley [52], [53]). Let F be a foliation coming from a slith-
ering on an atoroidal, aspherical closed 3-manifold M. Then, up to topological
conjugacy, there is only one requlating pseudo-Anosov flow t.

Furthermore, the orbit space of ' is a disc that admits S}, .. as a natural bound-
ary.

In order to have a better picture of the above results, let us describe very
roughly how these regulating pseudo-Anosov flows are obtained: The first step
is constructing a lamination of S! . . let us recall the definition,

univ?

Definition 5.1.25. Let (a,b), (¢c,d) be two pairs of points in S*, we say that
they intersect if (c,d) is contained in different components of S \ {a,b}.

Calegari [32] says that the two pairs are linked. We will justify later (Remark
5.4.4) why we use this name.

Definition 5.1.26. A lamination of S' is a closed subset of the set of unordered
pairs of distinct points in S’ with the property that no two elements of the
lamination intersect.

Now, the first (big) step towards Theorem 5.1.23 is:

Theorem 5.1.27 (Thurston, Fenley, Calegari). If F is a foliation coming from
a slithering on an atoroidal, aspherical closed 3-manifold M, then the associated
universal circle SY .. admits two laminations AL, which are preserved under

the natural action of w1 (M) on Sk .. .
While proving that result, they also construct two laminations /~\i~0f M
such that they are transverse, 1 (M )-invariant and the intersection of AT (or
A*) with a leaf of F is a geodesic (for the leaf-wise hyperbolic metric). The
regulating pseudo-Anosov flow is then obtained from A by “collapsing” the
complementary regions, thus obtaining two transverse singular foliations, and
taking the flow to be the line field generated by the intersection.
Note also that in our case, any laminations in M, m (M )-invariant and obtained
from the laminations AuiniV will give rise to a regulating pseudo-Anosov flow (see
[32, Chapter 9]).

5.2 Skewed R-covered Anosov Flows

One of the motivations of Thurston in [107] to study foliations coming from
slithering was Fenley’s examples. Indeed:

Proposition 5.2.1 (Thurston). Let ¢ be a skewed R-covered Anosov flow, then
the foliations F° and F“ come from slitherings.

Proof. Let C := L%/n* on® and w¢: L5 — C the projection. As £° is homeo-
morphic to R and n* o n® is a strictly increasing, continuous, m1 (M )-equivariant
function (by Proposition 5.1.10), we have that C is homeomorphic to S! and
that the action of w1 (M) on L£* descends to an action by bundle automorphism
on C. Hence we can define s°: M — C as the canonical projection from M to
L? then to C and it is clear that F° comes from the slithering s°.

The same thing applies for F*. |
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So a skewed R-covered Anosov flow comes with two slitherings and we can
apply the theory developed by Thurston. Note that those foliations are linked:

Proposition 5.2.2. A requlating flow for F* transverse to F* is also regulating
for F* and vice-versa.

Proof. Any lift of a(n) (un)stable leaf separates M in two connected compo-
nents, hence the result. O

Note that, when the skewed R-covered Anosov flow we consider is just a
geodesic flow on a negatively curved surface X, we have an obvious regulating
flow coming to mind; here, M corresponds to HX, so consider the flow that just
push vectors along the fibers, without moving the base point (in other words,
the flow generating rotations). It is clear that this flow is regulating. Now HY
is (not surprisingly) homeomorphic to R x ¥, where the first coordinate is given
by how much a vector is turned with respect to a fixed direction (taken as a
point on the visual boundary of ENJ) It turns out that we can always have this
kind of identification whenever we consider a skewed R-covered Anosov flow (see
also Figure 5.6):

Figure 5.6:  Using Proposition
5.2.3, we can represent ¢’ in the
following way: M is identified with
a solid cylinder where each hori-
zontal slice is a stable leaf. On
a stable leaf, the orbits of ¢' are
lines all pointing towards the same
point on the boundary at infinity
of the leaf. We represented a sta-
ble leaf, with some orbits on it, in
red. The blue curve represents the
point at infinity where orbits ends.
It is a way of seeing L£® “slithers”.
An unstable leaf now, represented
in green, is given by fixing the
(x,y)-coordinates (i.e., the points
that projects to the same point
on the universal circle) and taking
the lines pointing towards the blue
curve. Finally, the orbit of the reg-
ulating pseudo-Anosov flow ¥ are
vertical curves inside the cylinder
and stabilizes the foliation by ver-
tical straight lines on the bound-
ary.
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Proposition 5.2.3. Let ¢' be a skewed R-covered Anosov flow and ' a regu-
lating flow for both F° and F*“. Then, we can construct two continuous identi-
fications of the universal cover:

I: M — L x O(1), I": M — L% x O(1))
2 (F(@), 0" () o (F(), 0 (@)
where O(1)) is the orbit space of ¥?.

Proof. Injectivity and surjectivity is given by the definition of a regulating flow,
the continuity follows from the fact that F* is a foliation of M, 1! is transverse
to it and O(1) is homeomorphic to R?. O

Note that for any orbit of d;t, using the slithering given by F?, it is pos-
sible to “project” this orbit onto the universal circle. Indeed, an orbit deter-
mines two leaves L® € L% and L% € L%, then, using n%: £* — L% (defined in
Proposition 5.1.10), we get a pair of points (L®, n*(L")) in £° and this in turn
determines two distinct points in the universal circle. When we consider the
reciprocal image of this application, we obtain:

Lemma 5.2.4. Two distinct points on the universal circle define a (countable)
collection of orbits of ¢*.

Instead of giving a rigorous proof of that lemma, I would like to refer the
reader to figure 5.6: two points on S! . determine two vertical lines on the

outside of the cylinder, every time one of these lines intersects £°, we obtain
one orbit.

5.3 Isotopy and co-cylindrical class

The question that started our study of these kinds of Anosov flows was the

following:
Suppose you are given a skewed R-covered Anosov flow in a hyperbolic 3-
manifold M, any periodic orbit is freely homotopic to infinitely many other
orbits. In other words, we have a family of knots in M. Then are these knots
different? Here, we understand “different” in the sense of traditional knot the-
ory, i.e., two knots are equivalent if there exists an isotopy between them. And
if some of these knots are indeed different, can we say more about it? That is,
can we develop a kind of knot theory adapted to Anosov flows?

It turns out that there is no knot theory in that case, indeed we will show
below that any freely homotopic orbits are also isotopic.

We will also study a related question: among a free homotopy class, can
we say when two orbits are boundaries of an embedded cylinder? Indeed, an
isotopy between two orbits gives an immersed cylinder, so it seems natural to
wonder whether this can be made into an embedding. Furthermore, Barbot [18§]
(and later together with Fenley [20]) studied embeddings of tori in manifolds
equipped with an Anosov flow. This is in some sense the atoroidal equivalent.

The results in the following sections are joint work with Sergio Fenley and
will be published with full details later.
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5.3.1 Isotopy class of periodic orbits

Let us start by giving the definition of isotopy we will use here:

Definition 5.3.1. Two curves c¢1 and co in M are isotopic if there exists a
continuous application H: S* x [0,1] — M such that H(S',0) = ¢1, H(S',0) =
co and, for any t € [0,1], H(S',t) is an embedding of S* in M.

Among isotopic orbits, we define:

Definition 5.3.2. Two curves ¢ and co in M are co-cylindrical if there exists
an embedded annulus A in M such that DA = c¢1 U ca.

Note that this is not an equivalence relation as it is clearly non-transitive,
however, as we will see, its study is quite interesting.

Let us start by considering geodesic flows for a minute; In that case, the
question of isotopy is trivial (because there is, at most, one periodic orbit in a
free homotopy class). What is not trivial however is answering the following
question: given a periodic orbit «, is there an embedded torus in HY containing
a? If you suppose that « is simple, then the answer is clearly yes; Indeed, just
take {(z,v) € HY | © € w(«)}. If the orbit is non-simple however, it turns out
that there is no such embedded torus.

To my everlasting surprise, this kind of condition will stay true for any
skewed R-covered Anosov flow.

But before studying co-cylindrical classes, we can use the work of Thurston,
Fenley and Calegari to answer our first question and deduce that the isotopy
classes are the same as the double free-homotopy classes:

Theorem 5.3.3 (Barthelmé, Fenley). Let ¢' be a skewed R-covered Anosov
flow on a closed atoroidal, not Seifert fibered, 3-manifold. If ; is a double free
homotopy class of periodic orbits of ¢*, then all the ;s are isotopic.

sketch of proof. We are going to construct an isotopy between oy and ;. As
isotopy is an equivalence relation, it will show that all free homotopic orbits are
isotopic. _ B .

Let ¢' be a regulating flow for F* and F*, ap a lift of o to M and a7 =
n(ap). For any = € oy there exists a time T'(x) such that ¢ (z) € F*(a7).

Let C := {¢!(7(2)) | # € ap,0 <t < T(x)}. It is an immersed cylinder with
one boundary ag and the other one a closed curve on F*(ay). Let us call the
second boundary component .

Up to a C'! modification of 1*, we can show that there is only a finite number
of (transverse) intersections of ag with C. We can therefore find a continuous
time change W of ¢! such that, for some t; € R, of = ¥ (). As ¥t is a flow,
for any ¢ € [0,¢1], ¥¥(p) is an embedded S* in M.

We produced an isotopy from ag to Ui (ag). Now, ¥ (ay) is freely homo-
topic to o on the surface F*(«y), hence is isotopic. O

5.3.2 Co-cylindrical class

We will now show the link between having two co-cylindrical periodic orbits
and simple chain of lozenges, this is essentially based on Barbot’s work [18].
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In [18] (see also [20]) Barbot studied embedded torus in (toroidal) 3-manifolds
supporting skewed R-covered Anosov flows, showing that they could be put in
a quasi-transverse position (i.e., transverse to the flow, apart from along some
periodic orbits). We will use his work to obtain properties of embedded annulus:

Theorem 5.3.4. Let o and 3 be two orbits in the same free homotopy class,
choose coherent lifts & and 8, and denote by B(a, 8) the chain of lozenges be-
tween o and B
If o and B are co-cylindrical then B(&,E) is simple, i.e., if we denote by
(Qi)i=0...n. the corners of the lozenges in B(«, 5), with ag = o and o, = 5,
then

(m1(M) - &) N B(@, B) = {ai}.

Conversely, if B(&,B) s simple, then there exists an embedded annulus, called
a Birkhoff annulus, with boundary o U B.

Proof. Construction of an embedded Birkhoff annulus from a simple chain of
lozenges is done in [18], hence proving the converse part.

To prove that if & and /3 are co-cylindrical, then B(a, E) is simple, we have to

re-prove Lemma 7.6 of [18] (or equivalently step 1 of the proof of Theorem 6.10
of [20]) when, instead of having an embedded torus, we just have an embedded
cylinder. _
Let C be an embedded cylinder such that 9C = {«, 8} and C the lift of C in
M such that its boundary is on a and E Let us also denote by v € 71 (M) the
generator of the stabilizer of a&. Following [18], we can construct a embedded
plane CO in M such that

— Cy is vy-invariant,

— Cp contains all the a;,

- Co is transverse to qﬁt except along the aj,

— the projection of Cy to O is B(a, p).

Barbot’s trick to obtain such a plan is, for every lozenge in B(&,E), take a
simple curve ¢ from one corner of the lozenge to the other (for instance a; and
@;+1).- Then, lift ¢ to ¢ C M such that ¢ is transverse to ¢'. Now choose an
embedded rectangle R; in M such that R; is bounded by ¢, v - ¢, and the two
pieces of &; and ;11 between the endpoints of ¢ and v - ¢. Then define Cy as
the orbit under « of the unions of the rectangles R;.

From now on, we copy the proof of [20, Theorem 6.10, step 1].
Suppose that B(a, 3) is not simple. Then there exist a; and h € (M) such

that 0 := h - @; intersects the interior of B(a, E) Then 0 intersects Cp in a
single point p. Let 0" and 6~ be the two rays in ¢ defined by p. If we_denote
by V' the subset of M delimited by F*(a@) and ]-'5(6) and containing Cp, then

Co separates V in two components.

Claim 5.3.5. Either 0% or 0~ stays a bounded distance from Co.

Proof. Assume they don’t: for any R > 0, there exist points g, qE on §~,0"
such that d(¢3, Co) > R.

As 7T(Co) and C are freely homotopic, there exists Ry such that C is contained
in the Ry-neighborhood of CO. Then, for any R > 2Ry, any path in 1% joining
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two points ¢~ and ¢t such that d(¢*, qﬁ) < R must intersect C.

Now, 7(f) is freely homotopic to a curve in C, and as C is embedded in an
oriented manifold, it must be two-sided. So 7(#) is homotopic to a curve dis-
joint from C' (note that this is the only point where we use the fact that C is
embedded). Lifting it gives a homotopy from 6 to a curve 6; disjoint from C.
But homotopies move points a bounded distance away: there exists r > 0 such
that, for any R > 0, there are two points mf% on 6 such that d(mf}%, q}%) <.

Choose R > max{2Ry,r}, according to the above, the segment in 6; from mp,

to m}L2 must intersect C: contradiction. O

We assume that 67 stays a distance < a; from CA'B.

Let g € m (M) be the generator of the stabilizer of #. Choose a sequence
p; = g™ -p € 0. Let ¢; be a sequence in C~'0 such that d(g;,p;) < a1, up to
a subsequence, we can assume that 7(g;) converges and as w(a'vo) is compact,
we can even assume that 7(g;) is constant. Now, up to another subsequence,
we can assume that there are segments u; in V from p; to ¢; such that 7 (u;)
converges in M. Adjusting once again, we can assume that 7(u;) is constant for
big enough i. _

We consider the following closed curve in V: start by a segment in 67 from p;
to pk, k > i, then follow uy, then choose a segment in Cy from g, to ¢; and close
up along wu,. Since m(u;) = w(ug), this shows that there exists n € Z such that
9"(ai) = ax- _ N
Hence, for some n # 0, Cy is left invariant by ¢", which implies that B(a, ) is
also invariant by ¢g™. But ¢™-60 = 0, so g" leaves invariant a point in the interior
of a lozenge as well as the whole lozenge, which is impossible. O

Using the theorem, we can deduce the following property of co-cylindrical
class:

Proposition 5.3.6. If the co-cylindrical class of one orbit is finite, then all the
co-cylindrical classes in the same double free homotopy class are finite. More-
over, they all have the same cardinality.

Proof. This result just relies on the fact that the homeomorphism 7 of O, defined
by applying n* and n°® to respectively the unstable and stable leaf commutes
with the action of 71 (M).

Let «; be a double free homotopy class of periodic orbit. Suppose that «g has
k elements in its co-cylindrical class, then it implies that, for any coherent lift
a; of the «a;, the chain of lozenges B(ap, af) is non-simple. More precisely, we
have an element h € 71 (M) such that h - ap is in L(ai_1,ay), the lozenge with
corners a1 and ag. Indeed, recall that a; = n'(ap), so, if h-a; € L(ax_1,ak),
then

—_—

heag=h-n""(a;)=n"(h-&;) €n " (L(ar_1,a%)) = L(Qk_1—i, ar_s).
So ag and ay—; would not be co-cylindrical.
Then, for any i, h - @; € L(aj_144, arss), which proves that the number of

orbits co-cylindrical to «; is at most k, and again the same argument as above
shows that it is also at least k. O
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5.4 Action of the fundamental group on S} . and
co-cylindrical orbits

Thanks to Thurston’s work in [107] we know that the fundamental group of a
3-manifold admitting a R-covered foliation acts on the universal circle implying
many results about the type of group it can be, as we can see for instance in
[31, 33, 56]. There is a remarkable link between the existence of co-cylindrical
orbits and the action of 71 (M) on pairs of points in S}

univ*

Definition 5.4.1. Let (a™,a™) and (3%, 57) be two pairs of points in S .. .
We say that (a™,a~) and (3%,57) intersect if for some order on St . .= we
have:

a” < BT <at <t

We will say that (o™, ™) self-intersects if there exists h € w (M) such that
(at,a”) and (h-at h-a”) intersect.

Proposition 5.4.2. Let a be a periodic orbit of ¢*, & a lift to M and (at,a™)
the projection of & on S} . .

The co-cylindrical class of o is finite if and only if (o™, ™) self-intersects.

Proof. If the co-cylindrical of « is finite, then (by Theorem 5.3.4) the chain
of lozenges containing & is non-simple. So, there exists h € 71 (M) such that
h-& € L(qi, a;11). Projecting that lozenge to Sl ,, shows that (a™,a™) and
h-(a™, a™) intersect. Reciprocally, if there exists h € w1 (M) such that (a™,a™)
and h-(a, a7) intersect, then h-& € L(a;, ai;11) for some i. Hence, by Theorem
5.3.4, the co-cylindrical class of o must be finite. O

Let us announce the following result with Sergio Fenley, to be published
later:

Theorem 5.4.3 (Barthelmé, Fenley). Let (™, a™) be the projection on S,
of a periodic orbit @ of ¢', then (o™, a™) self-intersects.

The theorem is proved by seeing S. . as the boundary at infinity of the
orbit space of a regulating pseudo-Anosov flow 1! and using the transitivity of
such flows (Mosher [87], proved that any pseudo-Anosov flow on an atoroidal

manifold is transitive).

Remark 5.4.4. Suppose that (at,a™) self-intersects and denote by (a;) the
orbits in M projecting to (o™, a~) and o; = 7(&;) their projection to M. Then
for any ¢, there exists a j and a ¢ such that ¥'(a;) N a; # 0: by flowing one
orbit we get an actual intersection.

If we consider the geodesic flow case now, there is also a natural circle at
infinity: just take the visual boundary ¥(c0) and the fundamental group 71 (HX)
naturally acts on it. So for a pair (o™, a™) in 2(c0) to self-intersect in that case
means that the only geodesic in 3 such that a lift of it has endpoints (at,a™)
is non-simple. Hence in the geodesic flow case, there exist points on f](oo)
representing a periodic orbit that does not self-intersect, in contrast with the
atoroidal case we studied here.

As a corollary of Proposition 5.4.2 and Theorem 5.4.3, we obtain:
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Theorem 5.4.5 (Barthelmé, Fenley). Every co-cylindrical class is finite.

Note that it is still an open question whether a co-cylindrical class can be
non-trivial, we only know that some are:

Proposition 5.4.6. There exist periodic orbits of ¢* with trivial co-cylindrical
class.

Remark 5.4.7. For such an orbit, Proposition 5.3.6 shows that every other orbit
in the double free homotopy class must also have a trivial co-cylindrical class.

Proof. Let V be a flow box of ¢!, as ¢! is transitive, we can pick a long segment
of a dense orbit that e-fills V. Then, by the Anosov Closing lemma (see [80]),
we get a periodic orbit « that 2e-fills V. Now, choose = on one of the connected
components of a NV, if € was chosen small enough, then there must exist y
on another connected component of & NV such that there is a close path ¢
staying in V, starting at x going through the positive stable leaf of x then the
negative unstable leaf of y, then the negative stable leaf of y and finally close
up along the positive stable leaf of x. If we lift the path ¢ to the universal
cover of M and project it to the orbit space O, as V has no topology, we see
that the projection of the lift of ¥ must be inside the lozenge determined by the
lift of x (remember that we chose our flow so that the lozenges orientation is

(+,+, —, —), otherwise, we would have to modify our path ¢, see figure 5.5a).
Hence the lozenge is non-simple and therefore the co-cylindrical class of « is
trivial. O

5.4.1 Some open questions

I wanted to end this dissertation with a list of questions I have about skewed
R-covered Anosov flow, because even if a lot of things are known, thanks mostly
to T. Barbot and S. Fenley, the things that are unknown justify, at least in my
view, a continuation of their study.

Let’s start with the “topological” questions:

P. Foulon and B. Hasselblatt [63] have constructed contact Anosov flows
(i-e., Anosov flow preserving a contact form) on not Seifert-fibered spaces and
it seems very likely that their construction often yields hyperbolic manifolds.
Now, contact Anosov flows are skewed and R-covered (see [19]) and are the
“nicest” flows from a regularity point of view (see [64]). In [20], Barbot and
Fenley showed that skewed R-covered Anosov flows in Seifert-fibered spaces are
(up to a finite cover) topologically conjugated to a geodesic flow on a closed
surface. A natural question is then: Is a skewed R-covered Anosov flow on an
atoroidal manifold always topologically conjugate to a contact Anosov flow?

Indeed, it seems that the structure of M given by the regulating pseudo-
Anosov flow (see proposition 5.2.3) is very rigid, so can we use that to show
that ¢' is topologically contact? (See [19] for a definition.) And, from there,
can we get an actual topological conjugacy?

Given a continuous map s: R x H? — S? such that, for all t € R, s(t,")
is constant and for any x € H?, s(-,2) is strictly monotone, we can construct,
using figure 5.6, an Anosov flow on R x H2. Now suppose that we are given a
discreet group I' acting in a “good” way on R x HZ2, then is the quotient flow a
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contact Anosov flow? And if that is true, then, can we get all contact Anosov
flows on atoroidal 3-manifolds in this fashion?

Finally, there are a lot of ergodic theoretical questions for these flows:

A classical question (initiated by Bowen and Margulis) for Anosov flows is to
count the number of closed orbits of length less than R and find an asymptotic
equivalent when R gets big. In [91], Parry and Policott prove that this number
is asymptotic to ef*/hR where h is the topological entropy. Following them,
Katsuda and Sunada [81] answered the question of counting closed orbits inside
an homology class. So it seems natural to ask, in the case of skewed R-covered
Anosov flows on atoroidal manifolds, whether we can give an equivalent to the
number of closed orbits of length less than R inside a free homotopy class.

A somewhat related question (asked by M. Crampon) is the following: let «; be
the orbits in a free homotopy class of ¢!, denote by I; the length of «; and J,
the Dirac measure on «;. Let

Oa;
Hn = Z Ta
jil<n

(1) admits at least one weak limit y. Can we show that this limit is unique
and ergodic? If that is so, then what is the measure-entropy of u? Can we link
that entropy to the previous counting question?



Je ne sais pas le reste.
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Dans la premiere partie de cette these, nous introduisons une nouvelle généralisation de
'opérateur de Laplace en géométrie de Finsler. Cette opérateur est défini en intégrant le
long des fibres les dérivées directionnelles secondes d’une fonction par rapport a une
mesure d’angle que nous construisons. Nous obtenons un opérateur différentiel d’ordre
2, elliptique, symétrique, et qui admet une bonne théorie spectrale. Nous calculons
des exemples explicites de spectres pour des métriques de Katok-Ziller. En courbure
négative, nous prouvons, grace a un théoréme d’Ancona que la frontiere de Martin est
Hoélder-homéomorphe a la frontiere visuelle. Ceci nous permet de déduire I'existence et
I'ergodicité des mesures harmoniques pour cet opérateur.

Dans la seconde partie, nous étudions les flots d’Anosov en dimension 3 dont I'espace
des feuilles est homéomorphe a R. Lorsque la variété est hyperbolique, Thurston dé-
montra que le feuilletage (in)stable induit un flot “orthogonal” au premier. Nous utilisons
ce second flot pour étudier les classes d’isotopie d’orbites périodiques du flot d’Anosov,
ainsi que I'existence de cylindres plongés.
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