
HAL Id: tel-00660236
https://theses.hal.science/tel-00660236

Submitted on 16 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling for Reliability : complexity and Algorithms
Fanny Dufossé

To cite this version:
Fanny Dufossé. Scheduling for Reliability : complexity and Algorithms. Other [cs.OH]. Ecole normale
supérieure de lyon - ENS LYON, 2011. English. �NNT : 2011ENSL0635�. �tel-00660236�

https://theses.hal.science/tel-00660236
https://hal.archives-ouvertes.fr

No d’ordre : — No attribué par la bibliothèque : ——–

- ÉCOLE NORMALE SUPÉRIEURE DE LYON -
Laboratoire de l’Informatique du Parallélisme

THÈSE

en vue d’obtenir le grade de

Docteur de l’Université de Lyon - École normale supérieure de Lyon

Spécialité : Informatique

au titre de l’École Doctorale Informatique et Mathématiques

présentée et soutenue publiquement le 6 septembre 2011 par

Fanny Dufossé

Scheduling for Reliability :
Complexity and Algorithms

Directeur de thèse : Yves ROBERT
Co-encadrante de thèse : Anne BENOIT

Après avis de : Arnold ROSENBERG Rapporteur
Jean-Michel FOURNEAU Rapporteur

Devant la commission d’examen formée de :

Anne BENOIT Membre
Jean-Michel FOURNEAU Rapporteur
Alain GIRAULT Membre
Claire HANEN Membre
Yves ROBERT Membre
Arnold ROSENBERG Rapporteur

Acknowledgements

I would first thanks my two reviewers, Jean-Michel Fourneau and Arnold Rosenberg, for their work,
my committee chairman, Claire Hanen, and Alain Girault for joining my thesis committee. They pro-
vided me with insightful remarks and interesting research directions.

I particularly would like to thank my advisors, Anne Benoit and Yves Robert, for their numerous
advices and lessons. Thank you for taking so much time and energy for teaching me the work of a
researcher, and particularly how to write scientific papers.

I finally would like to thanks my family and my friends for their support throughout my PhD. Thank
you for providing me encouragements, advices and some chocolate.

ii

Contents

1 Introduction 1

2 Mapping filtering streaming applications 7
2.1 Introduction . 7
2.2 Related work . 10
2.3 Problems without communication cost . 10

2.3.1 Framework . 11
2.3.2 Homogeneous platforms . 11
2.3.3 Heterogeneous platforms . 16

2.4 Problems with communication costs on homogeneous platforms 22
2.4.1 Plans . 23
2.4.2 Communication models . 24
2.4.3 Operation lists . 26
2.4.4 Illustrative Example . 29
2.4.5 Period minimization . 31
2.4.6 Latency minimization . 41

2.5 Problems on a linear heterogeneous platform . 47
2.5.1 Framework . 47
2.5.2 Period minimization . 50
2.5.3 Latency minimization . 51

2.6 Conclusion . 55

3 Reliability and performance optimization of pipelined real-time systems 57
3.1 Introduction . 57
3.2 Framework . 58

3.2.1 Application model . 58
3.2.2 Platform model . 59
3.2.3 Interval mapping . 59
3.2.4 Failure model . 60
3.2.5 Replication model . 61
3.2.6 Multiprocessor mapping problem . 61

3.3 Related work . 61
3.4 Evaluation of a given mapping . 62
3.5 Complexity results for homogeneous platforms . 65

3.5.1 Reliability optimization . 65
3.5.2 Reliability/period optimization . 66
3.5.3 Reliability/latency optimization . 66

iii

iv CONTENTS

3.5.4 Integer linear program . 69
3.5.5 Allocation of intervals to processors . 70

3.6 Complexity results for heterogeneous platforms . 71
3.7 Heuristics . 74

3.7.1 Computation of the intervals . 74
3.7.2 Allocation of processors to intervals . 75

3.8 Experiments . 76
3.8.1 Experiments on homogeneous platforms . 76
3.8.2 Experiments on heterogeneous platforms . 77

3.9 Conclusion . 78

4 Scheduling parallel iterative applications on volatile resources 81
4.1 Introduction . 81
4.2 Related work . 83
4.3 Problem Definition . 84

4.3.1 Application Model . 84
4.3.2 Platform Model . 84
4.3.3 Scheduling Model . 85
4.3.4 Problem Statement . 86

4.4 Off-line complexity . 86
4.5 Computing the expectation . 88

4.5.1 Expected execution time . 88
4.6 On-line heuristics . 90

4.6.1 Rationale . 90
4.6.2 Random heuristics . 91
4.6.3 Greedy heuristics . 91

4.7 Experiments . 93
4.8 Conclusion . 95

5 Scheduling parallel iterative coupled applications on volatile resources 97
5.1 Introduction . 97
5.2 Framework . 98

5.2.1 Application . 98
5.2.2 Configuration . 98
5.2.3 Execution scenario . 99
5.2.4 Example . 100

5.3 Off-line complexity . 100
5.3.1 Fixed resource number . 101
5.3.2 Flexible resource number . 101
5.3.3 Polynomial instances . 102

5.4 Computing the expectation of a workload . 104
5.4.1 Probability of success and expected cost of a computation 105
5.4.2 Probability of success and expected cost of a communication 106

5.5 On-line heuristics . 107
5.5.1 Pro-active criteria . 108
5.5.2 Greedy-coupled heuristics. 108
5.5.3 Greedy-indep heuristics. 110

CONTENTS v

5.6 Experiments . 111
5.6.1 Experimental results . 112

5.7 Conclusion . 115

6 Conclusion and perspectives 117
6.1 Conclusion . 117
6.2 Perspectives . 118

A Bibliography 121

B Publications 127

vi CONTENTS

Chapter 1

Introduction

Since the advent of the first computers, processor speed has continually increased. However, users
have always pursued their quest for more computing power than the fastest sequential machine can
provide, and this computing power can only be provided through parallel solutions. Computations are
split into smaller tasks that are executed on a platform composed of many processors. Research issues
in this area mainly deal with the problems of splitting a given application into several tasks, and of
allocating these tasks onto processors. These problems are referred to as scheduling problems.

A scheduling problem is generally composed of an application model, a platform model, a set of
rules to allocate tasks to processors, and one or more criteria for comparing possible executions. Classi-
cal scheduling problems usually target execution time (or latency) minimization as unique objective [15].
A schedule indicates the execution graph, the allocation of tasks to processors, and for any processor, the
order of execution of all tasks allocate on this processor and the dates of beginning and of completion
of these tasks. The task graph of a schedule is the graph describing for any task, the set of tasks from
which it receives data, and the set of tasks to which it sends its outputs. In most cases, execution dates
can be deduced from the allocation and the execution order of the tasks. These two informations are
referred to as a mapping. Tasks may have dependencies, and one speaks of a dependence graph that has
to be scheduled. All the dependence constraints have to be enforced in the execution graph. Because the
dependencies have to be respected, only some tasks can be executed at a given time-step, while others
have to wait for some output. This considerably increases the difficulty of the scheduling problem. It
is well known that simple instances of this classical optimization problem are already NP-hard, even in
the context of same speed processors.

A classical scheduling problem concerns data stream applications. Streaming applications are widely
used to model multimedia applications or real time data processing [83, 41]. Such applications are clas-
sically modeled by workflows. A workflow is given by a task graph: a weighted directed acyclic graph
(DAG), with nodes representing tasks, and edges modeling first-in-first-out channels. Each data set is
input into the graph using input channel(s) and the outputs are produced on the output channel(s). Con-
secutive data sets continually flow through these applications. The problem of scheduling a workflow
graph on a platform is widely studied [21, 75, 84]. Many criteria can be considered: in addition to the
latency minimization, a typical objective is the throughput maximization, (or equivalently the period
minimization, where the period is defined as the inverse of the throughput). The period is the interval
of time between the completions of two consecutive data sets. Other criteria can be considered, such as
energy consumption, or reliability of the computations. A well-studied subclass of these applications is
that of linear chains of tasks, or linear workflows [73, 74].

The task graph of a workflow has a huge impact on its possible schedules. It is therefore interesting
to consider a similar model with the possibility to choose the structure of the execution graph. The

1

2 CHAPTER 1. INTRODUCTION

model of filtering applications [16, 71] is a variant to workflows where the schedule has to decide the
order of execution of tasks and the execution graph. In this model, each task modifies the size of its
input data by a fixed ratio, increasing or decreasing the size of data. This ratio is named the selectivity
of the task. Moreover, the execution time of a task is proportional to its input size. Therefore, the set
of predecessors of a task affects its execution time. As for workflows, a precedence graph is given, but
other edges can be added to this graph to obtain an execution graph, with the only constraint that this
graph remains acyclic. A filtering application with a given execution graph is equivalent to a workflow.

As for the application, the target platform needs to be carefully described. A platform model provides
the speed of processors, the communication model and potentially some other properties of processors
(energy consumption, reliability, data storage capacity,...). It can also describe a hierarchy between pro-
cessors. All processors can be considered independently, but the model can assume a master-worker
paradigm: the master ’decides’ for the schedule, and communicates with workers, and workers receive
tasks, execute them, and transmit the outputs of tasks to the master. We generally consider that the pro-
cessors of the platform are fully connected, with links of homogeneous bandwidth capacity. It means
that any pair of processors is connected, or that all processors are connected to a same switch. We con-
sider both homogeneous and heterogeneous platforms, that means platforms of same speed processors
or with processors of different speeds.

An important issue of platform models concerns communications. Modern processors are multi-port
and can simultaneously communicate with many processors. However, the whole communication pro-
cess is not parallel. For example, even in a multi-port processor, the communications with the network
use a single device, namely the network card. Then the one-port model [12] and the bounded multi-port
[47] model both make sense. The multi-port considers that bandwidths of all ports of the processor are
independent. We generally consider that a multi-port processor can communicate with another proces-
sor during a computation, where a one-port processor is not able to overlap these two operations. We
assume that the time needed to send a message from one processor to another is directly proportional to
the size of the message. More precise models propose an affine function for the communication time,
but for large enough messages, a linear function is adequate. The communication time is then the ratio
of the size of the message and the bandwidth of the processor. For master-worker platforms, we can
suppose that the master has a larger bandwidth than the workers.

In the previous models, we consider that the platform is dedicated to a single user. But many or-
ganizations propose to end-users to offer CPU time on computers of volunteers during idle times, to
the benefit of research projects. Such a model, named a desktop grid [13, 19], is characterized by its
instability. A computing resource can be removed or slowed down at any time by its owner.

Such platform model highlights the problem of reliability of processors. Even on classical platforms,
processors are subject to different types of failures. The two main failure types are transient and fail-
stop failures. Transient failures correspond to arithmetic/software errors or recoverable hardware faults
(power loss). These failures are considered as instantaneous: a transient failure only impacts the current
task (if any) on the concerned processor. Transient failures are the most common failures in modern
processors [62]. Communications, as computations, are subject to such failures. Unlike transient fail-
ures, when a fail-stop failure occurs, the concerned processor fails down, and remains unavailable for an
undetermined interval of time.

In order to provide efficient schedules for reliability, failure occurrences need to be modeled by
realistic probability laws. Concerning transient failures, a realistic model uses Poisson law, which means
that we consider that the failure rate per time unit is constant. Modern fail-silent hardware components
have a failure rate around 10−6 per hour. This law does not take into account the aging of processors.
Unlike transient failures, fail-stop failures are modeled with discrete time. A classical probability model
for fail-stop failures is the Markov process. It supposes that the state at next time slot only depends on

3

the current state. In practice, the Markov assumption is not valid in real life traces (the history of states
in real life platforms). More accurate distribution models are used to simulate processor behavior, as
Weibull distributions or Pareto distributions [88].

For a given application model and a given platform model, many mapping rules can make sense.
Three types of mappings are generally studied: general mappings, interval mappings and one-to-one
mappings. In a general mapping, each task can be allocated on each processor, independently of its
predecessors and successors. Then, a schedule needs to order the tasks computed on a same processor
and the communications between processors. A one-to-one mapping allocates at most one task by
processor. The schedule trivially results from the mapping. The interval mapping is only defined for
linear applications. In this model, the chain of tasks is split in intervals that are allocated one by one to
processors. As in one-to-one mappings, the schedule trivially results from the mapping.

The possible schedules are compared with one or more criteria: period, latency, reliability, and so on.
We consider here many multi-criteria problems. Different methods can be used to study such problems:

1. The lexicographic ordering [33]: The criteria are ordered, and the best solution is the best for first
criterion, the best for second criterion with respect to the previous rule, and so on.

2. The aggregate objective approach [87]: A real function is requested with input all criteria of the
problem. We obtain a single criterion that is for each solution the value of this function. In most
cases, this function is linear.

3. The ε-constraints [57]: a main objective is selected, and a bound is decided for any other criterion.
The optimal solution is the best one for the first criterion, meeting the bounds for the other ones.

4. The Pareto optimality [65]: This method gives all Pareto optimal solutions. A solution S1 Pareto
dominates a solution S2 if for any criterion c, solution S1 is better than solution S2 for criterion c.
Then, a solution S is Pareto optimal if no other solution Pareto dominates solution S.

The first three methods give Pareto optimal solutions. The first one however only provides few ones,
while any Pareto optimal solution can be obtained with methods 2 and 3, with the appropriate aggregate
function or the appropriate bounds. In the lexicographic ordering method, only one criterion is con-
sidered as really interesting. The aggregative method consists in transforming a multi-criteria problem
into a mono-criterion one. All criteria are considered in the aggregate function, but the importance and
the difference of the different criteria cannot appear clearly in a single function, all the less in a linear
function. Therefore, for our problems, the ε-constraints method is the more natural approach, and we
use it in most cases. A bound on all criteria except one describes the minimum accepted result, and the
optimal solution is the solution meeting the previous bounds, that minimizes the last criterion.

In the following, we detail the structure and contribution of this work. This thesis is composed of
four main chapters.

Mapping filtering streaming applications

The schedule of a filtering application consists of an execution graph and a mapping of tasks onto
processors. Our study addresses the problem of one-to-one mapping filtering applications on homoge-
neous and heterogeneous platforms. The optimization criteria are the period and the latency.

In a first part, we consider the problem on homogeneous and heterogeneous platforms, without
communication costs, to optimize period, latency or both criteria. For each variant on homogeneous
platforms, we present an optimal polynomial time algorithm, and for each variant on heterogeneous
platform, we prove its NP-completeness, and its inapproximability unless P = NP .

In a second part, three communication models are described: a bounded multi-port model with over-
lap, and two one-port models without overlap, respecting the order of data set, or not. These models are

4 CHAPTER 1. INTRODUCTION

applied to homogeneous platforms with one-to-one mappings. With these models, for a fixed mapping,
computing the best execution dates becomes difficult. Scheduling a filtering application with fixed exe-
cution graph is equivalent to scheduling a workflow. We prove the NP-completeness of some variants of
this problem. We also present NP-completeness proofs for all variants of the problem of computing the
best execution graph.

This study is finally extended to general mappings on linear heterogeneous platforms. The execution
order of tasks can be fixed or not, with arbitrary costs or with costs proportional to the inverse of proces-
sors speed, and with or without communication costs. The variant with a fixed order of tasks correspond
to an interval mapping problem. The complexity of all variants are established.

Reliability and performance optimization of pipelined real-time systems

In a classical failure model, a given computation is successful with a certain probability. This model
is similar to the filtering model, with success probability replacing selectivity. In order to increase the
reliability of computations, we use duplication: many processors execute the same computations, so that
if one of these processors fails, the computation can continue on the other ones. We consider, in this
study, linear workflows with interval mappings: the chain of tasks is split into intervals, and each interval
is allocated to one or many processors. A processor computes at most one interval. Communications
are transmitted using routing operations: all output communications of a given interval are transmitted
to a same processor which sends it to processors that compute the next interval as soon as the first
communication is completed. Because of the bandwidth capacity of this routing processor, the number
of communications in parallel, and therefore the number of replications of a given interval is bounded.

Linear time algorithms are described to compute the expected period and the expected latency of a
given mapping. Three criteria are considered in this study: period, latency and reliability. The com-
plexity of mono-criterion and multi-criteria problems is given for homogeneous and heterogeneous plat-
forms. A greedy algorithm is described to optimally allocate a given set of intervals on a homogeneous
platform. Two heuristics are described and compared on homogeneous and heterogeneous platforms.

Scheduling parallel iterative applications on volatile resources

Transient failures are the most common failures in classical modern grids. We study the mapping
of iterative applications on this platform model: at each iteration, a set of identical tasks is executed.
Then, a synchronization of processors occurs, and a new iteration begins. A set of data is needed
for any task, and all tasks execute the same program. In this chapter, we consider independent tasks.
Processors can be up, down or reclaimed by their owners. When failing, a processor loses all data and
program. If it becomes reclaimed, its computation and communication are interrupted until it is up
again. We use a three-state Markov chain to model the state of processors. This chapter first studies
the complexity of the off-line problem. We prove the NP-completeness of this problem and provide an
inapproximability result. Closed-form formulas are established for the probability of success of a task
on a processor, and its expected completion time. Heuristics are provided to solve the on-line problem,
and their performances are assessed through extensive simulations.

Scheduling parallel coupled iterative applications on volatile resources

The same model is extended to tightly coupled tasks: all tasks have to progress at same speed. If
some tasks are not allocated, no computation can be done. If some tasks are allocated on a reclaimed
processor, all tasks are interrupted until all concerned processors become available again. If some pro-
cessor computing at least one task fails, then all executed work for the current iteration is lost. These

5

constraints make the computation more unreliable than in the previous study. The NP-completeness
of the off-line problem is proved, and optimal algorithms are provided for some polynomial particular
instances. In this new setting of tightly coupled tasks, we cannot consider the probability of success
of tasks independently. A polynomial-time approximation scheme is provided to compute the probabil-
ity of success of a schedule, and its expected completion time. Heuristics are provided and compared
through simulations.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Mapping filtering streaming applications

2.1 Introduction

Pipelined workflows are often used to model streaming applications, such as video and audio en-
coding and decoding, digital signal processing (DSP) applications, etc. [21, 75, 84]. A workflow graph
contains several nodes, and these nodes are connected to each other using first-in-first-out channels.
Data is input into the graph using input channel(s) and the outputs are produced on the output chan-
nel(s). Since this model represents a large class of important applications, the problem of mapping and
scheduling these applications on distributed platforms is well studied in the literature. The goal is to
map each node onto some processor so as to optimize some scheduling objectives. Since data continu-
ally flow through these applications, typical objectives of the scheduler are throughput maximization (or
equivalently period minimization, where the period is defined as the inverse of the throughput) and/or
latency (also called response time) minimization [77, 80, 78, 79, 10, 83].

This chapter addresses a related problem of mapping and scheduling applications where each node
may filter data, i.e., increase or decrease the size of its input data set by a fixed ratio. This problem
models query optimization over web services [71, 16]. In the query optimization problem, as in the
pipelined workflow problem, we have a collection of various services that must be applied on a stream
of consecutive data sets. As with workflows, we have a graph with nodes (the services) and precedence
edges (dependence constraints between services), with data flowing continuously from the input node(s)
to the output node(s). We aim at one-to-one mappings, that means that any processor will compute at
most one task. The goal is to map each service onto a processor, or server, so as to optimize the same
objectives as before (period and/or latency).

The problem is made more difficult due to the following problems. First, services can filter the
data by a certain amount, according to their selectivity. Consider a service Ci with selectivity σi: if
the incoming data is of size δ, then the outgoing data will be of size δ × σi. The initial data is of
size δ0. We see that the data is shrunk by Ci (hence the term “filter”) when σi < 1 but it can also be
expanded if σi > 1. Second, the filtering affects the computation costs of each service. Each service
Ci has an absolute cost wi, which represents time needed to process a data set of size δ0 with a server
of speed 1. Therefore, the cost of the service on a server Su of speed su is Ci,u = wi/su. But the real
cost of computation is proportional to the actual size of the input data, which may have been shrunk or
expanded by the predecessors ofCi in the mapping. Therefore, if the predecessors ofCi shrink or expand
the data set by the factor of σ, the size of input data set into Ci is σ × δ0 and the time to execute this
data set when service Ci is mapped onto server Su is σ × Ci,u. Third, and most important, as opposed
to the pipelined workflow problem, the solution is allowed to add additional edges to the precedence
graph. Note that we consider that the set of processors is fully interconnected. Intuitively, for services

7

8 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

of selectivities less than 1, we can consider that any service removes some lines of the original file, and
the result file is the intersection of the lines kept by all services. Then, the order of execution of these
services has no impact on the result. Adding additional edges to the precedence graph does not change
the result of the application and can modify the execution time of schedules.

For example, consider two arbitrary services Ci and Cj . If there is a precedence constraint from Ci
to Cj , we need to enforce it. But if there is none, meaning that Ci and Cj are independent, we may still
introduce a (fictitious) edge, say from Cj to Ci, in the mapping, meaning that the output of Cj is fed as
input to Ci. If the selectivity of Cj is small (σj < 1), then it shrinks each data set, and Ci will operate
on data sets of reduced volume. As a result, the cost of Ci will decrease in proportion to the volume
reduction, potentially leading to a better solution. Basically, there are two ways to decrease the final
cost of a service: (i) map it on a fast server; and (ii) map it as a successor of a set of services with small
selectivities.

As already pointed out, period and latency are both very important objectives. The inverse of the
period (the throughput) measures the aggregate rate of processing of data, and it is the rate at which
data sets can enter the system. The latency is the time elapsed between the beginning and the end of
the execution of a given data set, hence it measures the response time of the system to process the data
set entirely. Minimizing the latency is antagonistic to minimizing the period, and tradeoffs should be
found between these criteria. Efficient mappings aim at the minimization of a single criterion, either the
period or the latency, but they can also use a bi-criteria approach, such as minimizing the latency under
period constraints (or the converse). The main objective of this work is to assess the complexity of the
previous optimization problems, with identical servers or with different-speed servers, with and without
communication costs, in the case of one-to-one or general mappings. All our hypotheses are those of
Srivastava et al. [70, 71, 16].

In general, we have to organize the execution of the application by assigning a server to each service
and by deciding which service will be a predecessor of which other service (therefore building an exe-
cution graph, or plan), with the goal of minimizing the objective function. The edges of the execution
graph must include all the original dependence edges of the application. We are free to add more edges
if it decreases the objective function. Note that the selectivity of a service influences the execution time
of all its successors, if any, in the mapping. For example if three services C1, C2 and C3 are arranged
along a linear chain, as in Figure 2.1, then the cost of C2 is σ1w2 and the cost of C3 is σ1σ2w3. If Ci
is mapped onto Si, for i = 1, 2, 3, then the period is P = max

(
w1
s1
, σ1w2

s2
, σ1σ2w3

s3

)
, while the latency

is L = w1
s1

+ σ1w2
s2

+ σ1σ2w3
s3

. Here, we also note that selectivities are independent: for instance if C1

and C2 are both predecessors of C3, as in Figure 2.1 or in Figure 2.2, then the cost of C3 becomes
σ1σ2w3. In term of probabilities, it means that, for a given line of a data file, the probability to be kept
by C1 is independent of the probability to be kept by C2. With the mapping of Figure 2.2, the period
is P = max

(
w1
s1
, w2
s2
, σ1σ2w3

s3

)
, while the latency is L = max

(
w1
s1
, w2
s2

)
+ σ1σ2w3

s3
. We see from the

latter formulas that the model neglects the cost of joins when combining two services as predecessors of
a third one. Indeed, we make the hypothesis that the cost of join operations is negligible in front of the
service costs, similarly to [71, 16].

While the computation of the period and latency of a given mapping is easy in a model without com-
munication cost, it turns out surprisingly difficult when adding such costs into the story. The mapping
does not determine the execution completely in this case. For example, in Figure 2.3, we do not know if
service C1 will send the result of its computation first to C2 or to C4, and in which order C5 will receive
its data. The orchestration of the communications has a dramatic impact on the value of the period and
latency. Suppose that the value of all computation costs is 4, and that each communication cost is 1. In
this case, the path C1 → C2 → C3 → C5 is longer than the path C1 → C4 → C5. In order to reach the

2.1. INTRODUCTION 9

C2
cost: δ0w1

C1

cost: σ1δ0w2 cost: σ1σ2δ0w3

C3

Data size: δ0 σ1σ2δ3 σ1σ2σ3δ0σ1δ0

Figure 2.1: Chaining services.

C1 cost: w1

σ2

σ1

σ1σ2
σ1σ2σ3

C2 cost: w2

1

1

C3 cost: σ1σ2w3

Figure 2.2: Combining selectivities.

out
in

C1

C2 C3

C5

C4

Figure 2.3: Example with communications.

optimal period, we will thus have to “share” the idle time between C1, C4 and C5, or to execute other
operations during this idle time. For each communication Ci → Cj , we have to find a time-step that is
well suited for both source and sink processors. We come back to this example in Section 2.4.4.

In this chapter, we identify three realistic communication cost models. The first two models sequen-
tialize the operations of a given processor, while the third model allows for communication/computation
overlap, and for (a limited number of) simultaneous sends or receives per processor. In all cases, the plan
cannot reduce to the execution graph any longer. A complete description of the mapping now requires
an operation list, which provides the time-steps at which each computation and communication begins
and ends. Communication costs induce an additional level of difficulty: given an execution graph, it is
impossible without the operation list to determine how to orchestrate the operations so as to achieve the
best period and latency. Indeed, we prove in Section 2.4 that in most cases, the problem of computing
the optimal operation list for a given plan is NP-complete.

In this chapter, we establish several new and important complexity results about the evaluation prob-
lems (given the mapping, determine best period or latency) and the optimization problems (determine
optimal mapping):

– For the model without communication cost, the evaluation problems are easy. We introduce an
optimal polynomial algorithm for the latency minimization problem on a homogeneous platform.
This result nicely complements the corresponding result for period minimization, that was shown
to have polynomial complexity in [71]. We also show the polynomial complexity of the bi-criteria
problem (minimizing latency while not exceeding a threshold period). Moving to heterogeneous
resources, we prove the NP-completeness of both the period and latency minimization problems,
even for independent services. Therefore, the bi-criteria problem also is NP-complete in this case.
Furthermore, we prove that there exists no constant factor approximation algorithms for these
NP-hard problems unless P=NP.

– For the models with communication costs, our main result is that computing the period or the
latency in all these models turns out to be difficult. First, the optimization problems are all NP-
hard on homogeneous machines, while they are polynomial when we do not model communi-
cation [71, 16]. Therefore, modeling communication costs explicitly has a huge impact on the

10 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

difficulty of mapping filtering services. In addition, and quite unexpectedly, the evaluation prob-
lems (given a plan, find the optimal operation list) also are of combinatorial nature. Finally, the
choice of the communication model has a tremendous impact on the values that can be achieved.
Many of our results and counter-examples apply to regular workflows (without selectivities), and
should be of great interest to the whole community interested in scheduling streaming applica-
tions.

– We extend the results of [70] in another important direction: we investigate the situation where
servers are no longer independent but instead where they are ordered along a linear chain of
precedence. We exhibit polynomial algorithms for problems with totally ordered tasks and proof
of NP-completeness for problem with free order of tasks and arbitrary costs of tasks on processors.
In the case of proportionnal costs of tasks, optimization of period is proved NP-complete and
optimization of latency is proved polynomial.

The rest of this chapter is organized as follows. Section 2.2 is devoted to a survey of related work.
We study the optimization problems without communication cost in Section 2.3. Next we present the
different models of communication costs and corresponding complexity results in Section 2.4. Then
Section 2.5 is devoted to problems with general mappings on a linear platforms. Finally we give some
conclusions and perspectives in Section 2.6.

2.2 Related work

The main application of filtering services is query optimization over web services [70, 71, 16], an
increasingly important application with the advent of Web Service Management Systems [31, 60]. Note
that the approach also applies to general data streams [5] and to database predicate processing [18, 46].

In [71, 16], the authors consider the case where the web services should be mapped one-to-one
onto identical servers without communication cost. Section 2.3 extends this model to heterogeneous
platforms, and introduces the latency as criterion. Section 2.4 presents realistic communication models
for this platform model and studies the mapping and scheduling problems of filtering application in this
context.

In [70], the authors target the problem of mapping filtering application on a linear chain of processors
of increasing speed. In Section 2.5, speed of processors is no more increasing. We also extend the
results of [70] in another important direction: we investigate the situation where services are no longer
independent but instead where they are ordered along a linear chain of precedence. In this case, both
services and processors are arranged according to a fixed prescribed order. This problem is the extension
of the well known chains-to-chains problem [61] to the case where nodes have a selectivity, and it has
a great practical significance because linear dependence chains are ubiquitous in workflow applications
(see [73, 74]).

In [1], the authors consider a set of jobs characterized by a certain success probability and a reward.
The resulting problem is similar to our problem, but they maximize the reward while we minimize the
cost. They present a polynomial algorithm in the case of a single server, and they prove that the problem
becomes NP-complete when considering 2 servers.

2.3 Problems without communication cost

In this section, we study the complexity of the problems on homogeneous or heterogeneous plat-
forms without any communication cost. First, we formally state the optimization problems, and then we
present complexity results for homogeneous platforms and for heterogeneous platforms.

2.3. PROBLEMS WITHOUT COMMUNICATION COST 11

2.3.1 Framework

As stated above, the target application A is a set of services (or filters, or queries) linked by prece-
dence constraints. We write A = (F ,G) where F = {C1, C2, . . . , Cn} is the set of services and
G ⊂ F × F is the set of precedence constraints. If G = ∅, we have independent services. A service Ci
is characterized by its cost wi and its selectivity σi.

For the computing resources, we have a set S = {S1, S2, . . . , Sp} of servers. In the case of ho-
mogeneous platforms, servers are identical while in the case of heterogeneous platforms, each server
Su is characterized by its speed su. Let δ0 be the size of input data. We always assume that there are
more servers available than services (hence n ≤ p), and we search a one-to-one mapping, or allocation,
of services to servers. The one-to-one allocation function alloc associates to each service Ci a server
Salloc(i).

We also have to build a graph G = (C, E) that summarizes all precedence relations in the mapping.
The nodes of the graph are couples (Ci, Salloc(i)) ∈ C, and thus define the allocation function. There
is an arc (Ci, Cj) ∈ E if Ci precedes Cj in the execution. There are two types of such arcs: those
induced by the set of precedence constraints G, which must be enforced in any case, and those added
to reduce the objective function. Ancestj(G) denotes the set of all ancestors 1 of Cj in G, but only
arcs from direct predecessors are kept in E . In other words, if (Ci, Cj) ∈ G, then we must have Ci ∈
Ancestj(G) 2. The graph G is called a plan. Given a plan G, the execution time of a service Ci is

Cexec(i) = δ0 ×
(∏

Cj∈Ancesti(G) σj

)
× wi

salloc(i)
. We note L(i) the completion time of service Ci with

the plan G, which is the length of the path from an entry node to Ci, where each node is weighted with
its execution time. The period P is defined as the interval between the completion of consecutive data
sets. With this definition, the system can process data sets at rate 1/P (the throughput). In steady state,
a new data set enters the system every P time units, and several data sets can be processed concurrently
within the system. The latency (or response time) is the time needed to execute a single data set entirely.
We can formally define the period P and latency L of a plan G in this model without communication
cost:

P(G) = max
(Ci,Salloc(i))∈C

Cexec(i) and L(G) = max
(Ci,Salloc(i))∈C

L(i).

We can scale all costs as wk ← δ0 × wk, allowing us to set δ0 = 1 without loss of generality.
In the following, we study three optimization problems: (i) MINPERIOD: find a plan G that mini-

mizes the period; (ii) MINLATENCY: find a plan G that minimizes the latency; and (iii) BICRITERIA:
given a bound on the period K, find a plan G whose period does not exceed K and whose latency is
minimal. Each of these problems can be tackled, (a) either with an arbitrary precedence graph G (case
PREC) or with independent services (case INDEP); and (b) either with identical servers (su = s for all
servers Su, homogeneous case HOM), or with different-speed servers (heterogeneous case HET). For
instance, MINPERIOD-INDEP-HOM is the problem of minimizing the period for independent services
on a homogeneous platform while MINLATENCY-PREC-HET is the problem of minimizing the latency
for arbitrary precedence constraints on a heterogeneous platform.

2.3.2 Homogeneous platforms

We investigate first the optimization problems with homogeneous resources. The problem MINPE-
RIOD-PREC-HOM (minimizing the period with precedence constraints and identical resources) was

1. The ancestors of a service are the services preceding it, and the predecessors of their predecessors, and so on.
2. Equivalently, G must be included in the transitive closure of E .

12 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

shown to have polynomial complexity in [71, 16]. We show that the problem MINLATENCY-PREC-
HOM is polynomial too. Because the algorithm is quite complicated, we start with an optimal algorithm
for the simpler problem MINLATENCY-INDEP-HOM. Although the polynomial complexity of the latter
problem is a consequence of the former, it is insightful to follow the derivation for independent services
before dealing with the general case. Finally, we propose optimal algorithms for BICRITERIA-INDEP-
HOM and BICRITERIA-PREC-HOM.

Latency

We describe here optimal algorithms for MINLATENCY-HOM, starting with the case INDEP and
then generalizing to the PREC case.

Algorithm 1 tackles the case INDEP. The idea is to schedule services step by step by increasing order
of costs. At each step, the remaining service of lower cost is scheduled so as to minimize its completion
time, considering the selectivities of services already scheduled. Theorem 2.1 states that this algorithm
is optimal for problem MINLATENCY-INDEP-HOM.

Algorithm 1: Optimal algorithm for MINLATENCY-INDEP-HOM.
Data: n independent services with selectivities σ1, ..., σp ≤ 1, σp+1, ..., σn > 1, and ordered costs

w1 ≤ · · · ≤ wp
Result: a plan G optimizing the latency
G is the graph reduced to node C1;1
for i = 2 to n do2

for j = 0 to i− 1 do3
Compute the completion time Lj(Ci) of Ci in G with predecessors C1, ..., Cj ;4

end5
Choose j such that Lj(Ci) = mink{Lk(Ci)};6
Add the node Ci and the edges C1 → Ci, . . . , Cj → Ci to G;7

end8

Theorem 2.1. (Independent services) Algorithm 1 computes the optimal plan for MINLATENCY-
INDEP-HOM in time O(n2).

Proof. We show that Algorithm 1 verifies the following properties:
– (A) L(1) ≤ L(2) ≤ · · · ≤ L(p);
– (B) ∀i ≤ n, L(i) is optimal.

Because the latency of any planG′ is the completion time of its last node (a nodeCi such that ∀Cj , L′(i) ≥
L′(j)), property (B) shows that L(G) is the optimal latency. We prove properties (A) and (B) by induc-
tion on i: for 1 ≤ i ≤ n, we prove that L(i) is optimal, and that for 1 ≤ i ≤ p, L(1) ≤ L(2) ≤ · · · ≤
L(i).

For i = 1, C1 has no predecessor in G, so L(1) = w1. Suppose that there exists G′ such that
L′(1) < L(1). If C1 has no predecessor in G′, then L′(1) = w1 = L(1). Otherwise, let Ci be a
predecessor of C1 in G′ such that Ci has no predecessor itself. L′(1) > wi ≥ w1. In both cases, we
obtain a contradiction with the hypothesis L′(1) < L(1). So L(1) is optimal.

Suppose that for a fixed i ≤ p, L(1) ≤ L(2) ≤ · · · ≤ L(i−1) and ∀j < i, L(j) is optimal. Suppose
that there exists G′ such that L′(i) is optimal. Let Ck be the predecessor of Ci of greatest cost in G′. If
wk > wi, we can choose in G′ the same predecessors for Ci than for Ck, thus strictly reducing L′(i).

2.3. PROBLEMS WITHOUT COMMUNICATION COST 13

However, L′(i) is optimal. So, we obtain a contradiction and wk ≤ wi. Thus,

L′(i) = L′(k) +
(∏

Cj∈AncestL′(i) σj

)
wi

≥ L′(k) +
(∏

j≤k σj

)
wi by definition of Ck

≥ L(i) by construction of G.

Therefore, since L′(i) is optimal by hypothesis, we have L′(i) = L(i).

Suppose now that L(i) < L(i − 1). Then, Ci−1 is not a predecessor of Ci in G. We construct G′′

such that all edges are the same as in G except those oriented to Ci−1: predecessors of Ci−1 will be the
same as predecessors of Ci. We obtain

L′′(i− 1) = maxk≤j L(k) +
∏
k≤j σkwi−1 by construction of node Ci−1

≤ maxk≤j L(k) +
∏
k≤j σkwi = L(i)

However, L(i − 1) is optimal, and so L(i − 1) ≤ L′′(i − 1) ≤ L(i), which leads to a contradiction.
Therefore, L(1) ≤ L(2) ≤ · · · ≤ L(i).

At this point, we have proved that the placement of all services of selectivity smaller than 1 (services
C1, . . . , Cp) is optimal, and that L(1) ≤ L(2) ≤ · · · ≤ L(p). We now proceed with services Cp+1

to Cn.

Suppose that for a fixed i > p, ∀j < i, L(j) is optimal. For all k > p, we have

maxj≤k L(j) +
∏
j≤k σj × wi = maxkj=p L(j) +

∏k
j=1 σj × wi

≥ L(p) +
∏
j≤k σj × wi

> L(p) +
∏
j≤p σj × wi

This relation proves that in G, service Ci has no predecessor of selectivity strictly greater than 1.
Suppose that there exists G′ such that L′(i) is optimal. Let Ck be the predecessor of Ci in G′ of greatest
cost. Then Ancesti(G′) ∈ {1, k} and, similarly for the case i ≤ p, we obtain L′(i) ≥ L(i), and thus
L(i) is optimal.

�

Algorithm 2 generalizes the principles of Algorithm 1 in the model PREC. In this algorithm, at
each step, the task scheduled is the one that can be scheduled with minimum possible completion time.
Theorem 2.2 states its optimality.

14 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Algorithm 2: Optimal algorithm for MINLATENCY-PREC-HOM.
Data: n services, a set G of dependence constraints
Result: a plan G optimizing the latency
G is the graph reduced to the node C of minimal cost with no predecessor in G;1
for i = 2 to n do2

// At each step we add one service to G, hence the n− 1 steps;3
Let S be the set of services not yet in G and such that their set of predecessors in G is included in G;4
for Cj ∈ S do5

for Ck ∈ G do6
Compute the set S′ minimizing the product of selectivities among services of latency less7
than L(k), and including all predecessors of Cj in G (using an algorithm from [16], whose
execution time is O(n3));

end8
Let Sj be the set that minimizes the latency of Cj in G and Lj be this latency;9

end10
Choose a service Cj such that Lj = min{Lk, Ck ∈ S};11
Add to G the node Cj , and ∀Ck ∈ Sj , the edge Ck → Cj ;12

end13

Theorem 2.2. (General case) Algorithm 2 computes the optimal plan for MINLATENCY-PREC-HOM

in time O(n6).

Proof. Let A = (F ,G) with F = {C1, C2, . . . , Cn) be an instance of MINLATENCY-PREC-HOM. Let
G be the plan produced by Algorithm 2 on this instance, and services are renumbered so that Ci is the
service added at step i of the algorithm. Then we prove by induction on i that L(1) ≤ L(2) ≤ ... ≤
L(n), andG is optimal for L(i), 1 ≤ i ≤ n. In the following, we say that a plan is valid if all precedence
edges are included. The plan G is valid by construction of the algorithm.

By construction, C1 has no predecessors in G. Therefore, L(1) = w1. Let G′ be a valid plan such
that L′(1) is optimal. If C1 has no predecessors in G′, then L′(1) = L(1). Otherwise, let Ci be a
predecessor of C1 which has no predecessors in G′. G′ is valid, thus Ci has no predecessors in G. And
by construction of G, we have w1 ≤ wi. Therefore, L′(1) ≥ wi ≥ w1 = L(1). Since L′(1) is optimal,
L(1) = L′(1) and thus L(1) is optimal.

Suppose that for a fixed i ≤ n, we have L(1) ≤ L(2) ≤ ... ≤ L(i− 1), and ∀j < i, L(j) is optimal.
Let us prove first that L(i− 1) ≤ L(i). If Ci−1 is a predecessor of Ci, then the result is true. Otherwise,
and if L(i− 1) > L(i), then Ci would have been chosen at step i− 1 of the algorithm (line 11) instead
of Ci−1, which leads to a contradiction. It remains to prove that L(i) is optimal. Let us consider a valid
plan G′ such that L′(i) is optimal.
(i) Suppose first that Ci has at least one predecessor Cl with l > i in G′. For such predecessors, at
least one of them has its own set of predecessors included in {C1, ..., Ci−1}. Let Ck be the service of
maximal latency L′(k) of the previous set of predecessors. Thus, k > i and the set of predecessors of
Ck in G′ is included in {C1, ..., Ci−1}. Since G′ is a valid plan, the set of predecessors of Ck in G is
included in {C1, ..., Ci−1}. Then, we prove that the value LCk computed at line 9 of the algorithm at
step i verifies LCk ≤ L′(k) (see Property A below). Then L(i) ≤ LCk ≤ L′(k) ≤ L′(i).
(ii) If the set of predecessors of Ci in G′ is included in {C1, ..., Ci−1}, then we can prove that L′(i) ≥
LCi = L(i), where LCi is the value computed at step i (see Property B below).
In both cases (i) and (ii), since L′(i) is optimal, we have L(i) = L′(i), thus proving the optimality of
L(i). It remains to prove the two assumptions concerning values of LC (properties A and B).

Proof of Properties A and B. Let Ck be a service with k ≥ i (k > i for Property A, k = i for
Property B). Let G′ be a valid plan such that the set of predecessors of Ck is included in {C1, ..., Ci−1}.

2.3. PROBLEMS WITHOUT COMMUNICATION COST 15

Then we prove that L′(k) ≥ LCk , where LCk is the value computed at step i of the algorithm. Let
S = {Cu1 , ..., Cul} be the set of predecessors of Ck in G′. Let S′ be the set of services that are either
in S, or predecessor of a service of S inG. Let us show that

∏
Ci∈S σi ≥

∏
Ci∈S′ σi. Let S1 be the set of

predecessors of Cu1 inG, S2 the set of predecessors of Cu2 inG not in S1∪{Cu1} and for all i Si the set
of predecessors of Cui in G not in

⋃
j<i Sj ∪ {Cui1 , ..., Cui−1}. Suppose that for one of the sets Si, the

product of selectivities
∏
Cj∈Si σj is strictly greater than one. Then S1∪ ...∪Si−1∪{Cui1 , ..., Cui−1} is

a valid subset for Cui because G′ is a valid plan and the product of selectivities on this subset is strictly
smaller than the product of selectivities of the predecessors of Cui in G. This is in contradiction with
the optimality of the set of predecessors of Cui chosen at line 7 of the algorithm. This proves that for
all i,

∏
Cj∈Si σj ≤ 1. In addition, for all j < i, L(j) is optimal. Hence the latency of Ck in G with S′

as predecessor is smaller or equal to its latency in G′, which proves that L′(k) ≥ LCk .
Thus, for 1 ≤ i ≤ n,L(i) is optimal, and therefore the plan computed by Algorithm 2 is optimal. �

Algorithm 3: Optimal algorithm for BICRITERIA-INDEP-HOM.
Data: n services with selectivities σ1, ..., σp ≤ 1, σp+1, ..., σn > 1, ordered costs w1 ≤ · · · ≤ wp,

and a maximum period K
Result: a plan G optimizing the latency with a period less than K
G is the graph reduced to node C1;1

if w1 > K then2

return false;3

end4

for i = 2 to n do5

for j = 0 to i− 1 do6

Compute the completion time tj of Ci in G with predecessors C1, ..., Cj ;7

end8

Let S = {k|wi
∏

1≤l≤k σl ≤ K};9

if S = ∅ then10

return false;11

end12

Choose j such that tj = mink∈S{tk};13

Add the node wi and the edges C1 → Ci, . . . , Cj → Ci to G;14

end15

Bi-criteria problem

In the following, we prove the polynomial complexity of problems BICRITERIA-INDEP-HOM and
BICRITERIA-PREC-HOM.

The following algorithms use the same principles that Algorithms 1 and 2 with adding a constraint
of the execution time of services.

Theorem 2.3. Problem BICRITERIA-INDEP-HOM is polynomial and of complexity at most O(n2).
Problem BICRITERIA-PREC-HOM is polynomial and of complexity at most O(n6).

Proposition 2.1. Algorithm 3 computes the optimal latency for a bounded period with independent
services (problem BICRITERIA-INDEP-HOM).

16 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Algorithm 4: Optimal algorithm for BICRITERIA-PREC-HOM.
Data: n services, a set G of dependence constraints and a maximum period K
Result: a plan G optimizing the latency
G is the graph reduced to the node C of minimal cost with no predecessor in G;1
if c > K then2

return false;3
end4
for i = 2 to n do5

// At each step we add one service to G, hence the n− 1 steps;6
Let S be the set of services not yet in G and such that their set of predecessors in G is included in G;7
for Cj ∈ S do8

for Ck ∈ G do9
Compute the set S′ minimizing the product of selectivities among services of latency less10
than L(k), and including all predecessors of Cj in G (using an algorithm from [16], whose
execution time is O(n3));

end11
Let Sj be the set that minimizes the latency of Cj in G with a period bounded by K, Lj be this12
latency and Pj be the computation time of C with the set of predecessors Sj ;

end13
if {Ck, Ck ∈ S and Pj ≤ K} = ∅ then14

return false;15
end16
Choose a service Cj such that LC = min{LCk , Ck ∈ S and Pj ≤ K};17
Add to G the node Cj , and ∀Ck ∈ Sj , the edge Ck → Cj ;18

end19

Proof. The proof is similar to that of Theorem 2.1. We restrain the choice of services that can be
assigned: we can only consider those whose cost, taking the combined selectivity of their predecessors
into account, is small enough to obtain a computation time smaller than or equal to K. If there is
no choice for a service, then it will be impossible to assign the next services either, and there is no
solution. �

Proposition 2.2. Algorithm 4 computes the optimal latency for a bounded period (problem BICRI-
TERIA-PREC-HOM).

Proof. The proof is similar to that of Theorem 2.2. We restrain the choice of sets that can be assigned as
set of predecessors: we can only consider those whose product of selectivities is small enough to obtain
a computation time smaller than or equal to K for the service considered. If there is no possible set for
every possible services, then the bound on the period cannot be respected. �

2.3.3 Heterogeneous platforms

We investigate now the optimization problems with heterogeneous resources. We show that both
period and latency minimization problems are NP-hard, even for independent services. Thus, bi-criteria
problems on heterogeneous platforms are NP-hard. We also prove that there exists no approximation
algorithm for MINPERIOD-INDEP-HET with a constant factor, unless P=NP.

2.3. PROBLEMS WITHOUT COMMUNICATION COST 17

Period

In the following, we show that the problem MINPERIOD-INDEP-HET is NP-complete. The fol-
lowing property was presented in [71] for homogeneous platforms, and we extend it to different speed
servers.

Proposition 2.3. Let (F ,S) be an instance of the problem MINPERIOD-INDEP-HET. We suppose that
σ1, σ2, · · · , σp < 1 and σp+1, · · · , σn ≥ 1. Then the optimal period is obtained with a plan as in
Figure 2.4.

Cp+1

Cλ(3)Cλ(1)

Cn

Cλ(2) Cλ(p)

Figure 2.4: General structure for period minimization.

Proof. Let G be an optimal plan for this instance. We will not change the allocation of services to
servers. Hence, in the following,Ci denotes the pair (Ci, Su), with Su the server assigned toCi inG. Let
i, j ≤ p (recall that p is the largest index of services whose selectivity is smaller than 1). Suppose thatCi
is not an ancestor of Cj and that Cj is not an ancestor of Ci. Let A′k(G) = Ancestk(G)∩ {C1, ..., Cp}.
Informally, the idea is to add the arc (Ci, Cj) to G and to update the list of ancestors of each node (in
particular, removing all nodes whose selectivity is greater than or equal to 1). Specifically, we construct
the graph G′ such that:

– for every k ≤ p such that Ci /∈ Ancestk(G) and Cj /∈ Ancestk(G), Ancestk(G′) = A′k(G);
– for every k ≤ p such that Ci ∈ Ancestk(G) or Cj ∈ Ancestk(G),

Ancestk(G′) = A′k(G) ∪A′i(G) ∪A′j(G) ∪ {Ci, Cj};
– Ancesti(G′) = A′i(G);
– Ancestj(G′) = A′j(G) ∪A′i(G) ∪ {Ci};
– for every k > p, Ancestk(G′) = {C1, ..., Cp}.
In G′, Ci is a predecessor of Cj and for all p < k ≤ n, Ck has no successor. Also, because Ci and

Cj were not linked by a precedence relation in G, G′ is always a DAG (no cycle). In addition, for every
node Ck of G, we have Ancestk(G′) ⊃ A′k(G) = Ancestk(G) ∩ {C1, ..., Cp}. This property implies:

C ′exec(k) =
wk
su
×

∏
Cl∈Ancestk(G′)

σl ≤
wk
su
×

∏
Cl∈A′k(G)

σl ≤
wk
su
×

∏
Cl∈Ancestk(G)

σl ≤ Cexec(k).

Hence, P(G′) ≤ P(G) (recall that P(G) denotes the period of G). Because G was optimal, P(G′) =
P(G), and G′ is optimal too. By induction we construct a plan with the structure of Figure 2.4. �

We point out that only the structure of the plan is specified by Proposition 2.3. There remains to
find the optimal ordering of services C1 to Cp in the chain (this corresponds to the permutation λ in
Figure 2.4), and to find the optimal assignment of services to servers.

Theorem 2.4. MINPERIOD-INDEP-HET is NP-hard.

18 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Proof. Consider the decision problem associated to MINPERIOD-INDEP-HET: given an instance of the
problem with n services and p ≥ n servers, and a bound K, is there a plan whose period does not
exceed K? This problem obviously is in NP: given a bound and a mapping, it is easy to compute the
period, and to check that it is valid, in polynomial time.

To establish the completeness, we use a reduction from RN3DM, a special instance of Numerical
3-Dimensional Matching that has been proved to be strongly NP-complete by Yu [85, 86]. Consider the
following general instance I1 of RN3DM: given an integer vectorA = (A[1], . . . , A[n]) of size n, does
there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (2.1)

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1A[i] = n(n + 1), otherwise we know that
the instance has no solution. Then we point out that Equation (2.1) is equivalent to

∀1 ≤ i ≤ n, λ1(i) + λ2(i) ≥ A[i]

⇐⇒ ∀1 ≤ i ≤ n,
(

1
2

)λ1(i)−1 × 2A[i]

2λ2(i)
≤ 2

(2.2)

We build the following instance I2 of MINPERIOD-HET with n services and p = n servers such that
wi = 2A[i], σi = 1/2, si = 2i and K = 2. The size of instance I1 is O(n log(n)), because each A[i]
is bounded by 2n. In fact, because RN3DM is NP-complete in the strong sense, we could encode I1 in
unary, with a size O(n2), this does not change the analysis. We encode the instance of I1 with a total
size O(n2), because the wi and si have size at most O(2n), hence can be encoded with O(n) bits each,
and there are O(n) of them. The size of I2 is polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2 has a solution. Assume first that I1 has a
solution. Then we build a plan which is a linear chain. Service Ci is at position λ1(i), hence is filtered
λ1(i) − 1 times by the previous services, and it is processed by server Sλ2(i), matching the cost in
Equation (2.2).

Reciprocally, if we have a solution to I2, then there exists a linear chain G with period 2. Let λ1(i)
be the position of service Ci in the chain, and let λ2(i) be the index of its server. Equation (2.2) is
satisfied for all i, hence Equation (2.1) is also satisfied for all i: we have found a solution to I1. This
completes the proof. �

The proof also shows that the problem remains NP-complete when all service selectivities are iden-
tical.

Proposition 2.4. For any K > 0, there exists no K-approximation algorithm for MINPERIOD-INDEP-
HET, unless P=NP.

Proof. Suppose that there exists a polynomial algorithm that computes a K-approximation of this prob-
lem. We use the same instance I1 of RN3DM as in the proof of Theorem 2.4: given an integer vector
A = (A[1], . . . , A[n]) of size n ≥ 2, does there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such
that ∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i]. We can suppose that 2 ≤ A[i] ≤ 2n for all i and that∑n

i=1A[i] = n(n+ 1), otherwise we know that the instance has no solution.
Let I2 be the instance of our problem with n services with, for 1 ≤ i ≤ n, wi = (2K)A[i]−1,

σi = 1
2K , si = (2K)i and P = 1. The only optimal solutions are the chains such that the service Ci

is placed in position λ1(i) in the chain, and it is processed by server Sλ2(i), where (λ1, λ2) is a solution
of I1. In any other solution, there is a service whose computation cost is larger than P = 1. In addition,
all computation costs are integer power of 2K. That means that in any other solution, the period is

2.3. PROBLEMS WITHOUT COMMUNICATION COST 19

greater or equal to 2K. Hence the only K-approximations are the optimal solutions. If a polynomial
algorithm finds such a solution, we can compute the permutations λ1 and λ2 and solve I1 in polynomial
time. This contradicts the hypothesis P 6= NP . �

Latency

In the following, we first show that the optimal solution of MINLATENCY-INDEP-HET has a partic-
ular structure. We then use this result to derive the NP-completeness of the problem.

Definition 2.1. Given a plan G and a vertex v = (Ci, Su) of G, (i) v is a leaf if it has no successor
in G; and (ii) di(G) is the maximum length (number of links) in a path from v to a leaf. If v is a leaf,
then di(G) = 0.

Proposition 2.5. Let C1, ..., Cn, S1, ..., Sn be an instance of MINLATENCY. Then, the optimal latency
can be obtained with a plan G such that, for any couple of nodes of G v1 = (Ci1 , Su1) and v2 =
(Ci2 , Su2),

1. if di1(G) = di2(G), v1 and v2 have the same predecessors and the same successors in G;

2. if di1(G) > di2(G) and σi2 ≤ 1, then wi1/su1 < wi2/su2;

3. all nodes with a service of selectivity σi > 1 are leaves (di(G) = 0).

Proof. Let G be an optimal plan for this instance. We will not change the allocation of services to
servers, so we can design vertices of the graph as Ci only, instead of (Ci, Su). We want to produce a
graph G′ which verifies Proposition 2.5.

Property 1. In order to prove Property 1 of the proposition, we recursively transform the graph G,
starting from the leaves, so that at each level every nodes have the same predecessors and successors.

For every vertex Ci of G, we recall that di(G) is the maximum length of a path from Ci to a leaf
in G. Let Ai = {Cj | dj(G) = i}. A0 is the set of the leaves of G. We denote by Gi the subgraph
A0 ∪ ... ∪ Ai. Note that these subgraphs may change at each step of the transformation, and they are
always computed with the current graph G.
• Step 0. Let wi = maxCj∈A0 wj . Let G′ be the plan obtained from G by changing the predecessors

of every service in A0 such that the predecessors of a service of A0 in G′ are exactly the predecessors of
Ci inG. LetBi be the set of predecessors ofCi inG and letCj ∈ Bi be the predecessor ofCi of maximal
completion time. The completion time of a service C` of G−A0 does not change: L′(`) = L(`). And,
for each service Ck in A0,

L′(k) = L′(j) +
(∏

C`∈Bi σ`

)
× wk

≤ L′(j) +
(∏

C`∈Bi σ`

)
× wi

≤ L′(i) = L(i)

Therefore, ∀Ck ∈ A0, L
′(k) ≤ L(i). Since for Ck /∈ A0, L

′(k) ≤ L(k), and since G was optimal
for the latency, we deduce that G′ is also optimal for the latency. This completes the first step of the
modification of the plan G.
• Step i. Let i be the largest integer such that Gi verifies Property 1. If Gi = G, we are done since

the whole graph verifies the property. Let Ci′ be a node such that Li(i′) = maxk Li(k). Note that these
finish times are computed in the subgraph Gi, and thus they do not account for the previous selectivities
in the whole graph G. Let Cj be an entry node of Gi (no predecessors in Gi) in a path realizing the
maximum time Li(i′), and let C` be the predecessor in G of Cj of maximal finish time L(`). Then G′ is

20 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

the plan obtained from G in changing the predecessors of every service of Ai such that the predecessors
of a service of Ai in G′ are the predecessors of Cj in G. For Ck ∈ G \Gi, we have L′(k) = L(k). Let
Ck be a node of Gi. We have:

L′(k) = L′(`) +
(∏

Cm∈Ancestj(G′) σm

)
× Li(k)

≤ L(`) +
(∏

Cm∈Ancestj(G) σm

)
× Li(i′)

≤ L(G)

and L(G) is optimal. So, L(G′) = L(G).
• Termination of the algorithm. Let Ck be a node of G. If Ck is a predecessor of Cj in G or if

Ck ∈ Gi, then dk(G′) = dk(G). Otherwise, every path from Ck to a leaf in G has been removed in G′,
so dk(G′) < dk(G). This proves that

∑
j dj(G) ≥

∑
j dj(G

′).
- If, at the end of step i,

∑
j dj(G) =

∑
j dj(G

′), then Gi+1 verifies Property 1, and we can go to
step i+ 1.

- However, if
∑

j dj(G) >
∑

j dj(G
′), some leaves may appear since we have removed successors

of some nodes in the graph. In this case, we start again at step 0.
The algorithm will end because at each step, either the value

∑
j dj(G) decreases strictly, or it is

equal but i increases. It finishes either if there are only leaves left in the graph at a step with i = 0, or
when we have already transformed all levels of the graph and Gi = G.
Property 2. Let G be an optimal graph for latency verifying Property 1. Suppose that there exists a pair
(Ci, Su) and (Cj , Sv) such that di(G) > dj(G), σJ ≤ 1, and wi/su > wj/sv. Let G′ be the graph
obtained by removing all the edges beginning and ending by (Cj , Sv) and by choosing as predecessors
of (Cj , Sv) the predecessors of (Ci, Su) in G and as successors of Cj the successors of Ci in G. Since
σj ≤ 1, the cost of successors can only decrease. The other edges do not change. L(G′) ≤ L(G) and G
is optimal, so G′ is optimal and Property 1 of Proposition 2.5 is verified. We can continue this operation
until Property 2 is verified.
Property 3. The last property just states that all nodes of selectivity greater than 1 are leaves. In fact,
if such a node Ci is not a leaf in G, we remove all edges from Ci to its successors in the new graph G′,
thus only potentially decreasing the finish time of its successor nodes. Indeed, a successor will be able
to start earlier and it will have less data to process. �

Lemma 2.1. Let C1, ..., Cn, S1, ..., Sn be an instance of MINLATENCY-HET such that for all i, wi and
si are integer power of 2 and σi ≤ 1

2 . Then the optimal latency is obtained with a plan G such that

1. Proposition 2.5 is verified;

2. for all nodes (Ci1 , Su1) and (Ci2 , Su2) with di1(G) = di2(G), we have wi1
su1

=
wi2
su2

.

Proof. Let G be a plan verifying Proposition 2.5. Suppose that there exists a distance to leaves d such
that the nodes at this distance do not respect Property 2 of Lemma 2.1. LetA be the set of nodes (Ci, Su)
of maximal ratio wi

su
= c with di(G) = d and A′ be the set of other nodes at distance d. Let w′ be the

maximal ratio wj
sv

of nodes (Cj , Sv) ∈ A′. Since w′ < w and w,w′ are integer power of 2, we have
w′ ≤ w

2 .
We construct the plan G′ such that:
– for any node (Ci, Su) /∈ A, Ancesti(G′) = Ancesti(G);
– for any node (Ci, Su) ∈ A, Ancesti(G′) = Ancesti(G) ∪A′.
The completion time of nodes of A′ and of nodes of distance strictly greater than d in G does not

change. Let Td be the completion time of the service (Ck, Sv) at distance d + 1 of maximal ratio wk
sv

.
Let (Ci, Su) be a pair of A. Let σ =

∑
Cj∈Ancesti(G) σj . Then we have

2.3. PROBLEMS WITHOUT COMMUNICATION COST 21

Ti(G
′) = Td + σ × c′ + σ × (

∑
Cj∈A′ σj)× c

≤ Td + σ × c
2 + σ × 1

2 × c
≤ Td + σ × c
≤ Ti(G)

This proves that the completion time of the services of A does not increase between G and G′. The
completion time of services of distance smaller than d does not increase because their sets of predeces-
sors do not change. G is a graph corresponding to Proposition 2.5, that means it obtains the optimal
latency; and the latency of G′ is smaller or equal to the latency of G. We can conclude that G′ is optimal
for latency.

We obtain by this transformation an optimal plan G′ for latency with strictly fewer node pairs that
do not correspond to the property of Lemma 2.1 than in G. In addition, G′ respects properties of
Proposition 2.5. By induction, we can obtain a graph as described in Lemma 2.1. �

Theorem 2.5. MINLATENCY-INDEP-HET is NP-hard.

Proof. Consider the decision problem associated to MINLATENCY-HET: given an instance of the prob-
lem with n services and p ≥ n servers, and a boundK, is there a plan whose latency does not exceedK?
This problem obviously is in NP: given a bound and a mapping, it is easy to compute the latency, and to
check that it is valid, in polynomial time.

To establish the completeness, we use a reduction from RN3DM. Consider the following general
instance I1 of RN3DM: given an integer vector A = (A[1], . . . , A[n]) of size n, does there exist two
permutations λ1 and λ2 of {1, 2, . . . , n} such that ∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i]?

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1A[i] = n(n + 1), otherwise we know
that the instance has no solution. We build the following instance I2 of MINLATENCY-HET such that
wi = 2A[i]×n+(i−1), σi =

(
1
2

)n, si = 2n×(i+1), and K = 2n − 1.
The size of instance I1 is O(nlog(n)), because each A[i] is bounded by 2n. The new instance I2

has size O(n × (n2)), since all parameters are encoded in binary. The size of I2 is thus polynomial in
the size of I1. Now we show that I1 has a solution if and only if I2 has a solution.

Suppose first that I1 has a solution λ1, λ2. We place the services and the servers on a chain with
service Ci on server Sλ1(i) in position λ2(i) on the chain. We obtain the latency

L(G) =
∑

i
wi

sλ1(i)
∗
(

1
2n

)λ2(i)−1

=
∑

i 2A[i]×n+(i−1)−n×(λ1(i)+1)−n×(λ2(i)−1)

=
∑

i 2(A[i]−λ1(i)−λ2(i))×n+(i−1)

=
∑n

i=1 2i−1

= 2n − 1

This proves that if I1 has a solution then I2 has a solution.
Suppose now that I2 has a solution. LetG be an optimal plan that respects properties of Lemma 2.1.

Let (Ci1 , Su1), (Ci2 , Su2) be two distinct nodes of G. Let a1 and a2 be two integers such that wi1su1
= 2a1

and wi2
su2

= 2a2 . The rest of the Euclidean division of a1 by n is equal to i1 − 1, and the rest of the
Euclidean division of a2 by n is equal to i2 − 1. Since both nodes are distinct, i1 6= i2 and we can
conclude that wi1su1

6= wi2
su2

. The ratios cost/speed are all different and G verifies properties of Lemma 2.1.
As a result, G is a linear chain.

22 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Let λ1, λ2 be two permutations such that for all i, the serviceCi is in position λ2(i) on the server Sλ1(i).
We want to achieve a latency strictly smaller than 2n, and thus for every node (Ci, Sλ1(i)),

2A[i]×n+(i−1)−n×(λ1(i)+1)−n×(λ2(i)−1) < 2n

⇐⇒ 2(A[i]−λ1(i)−λ2(i))×n+(i−1) < 2n

⇐⇒ A[i]− λ1(i)− λ2(i) ≤ 0

This proves that λ1, λ2 is a valid solution of I1. Thus, I1 has a solution if and only if I2 has a solution,
which concludes the proof. �

Proposition 2.6. For any K > 0, there exists no K-approximation algorithm for MINLATENCY-
INDEP-HET, unless P=NP.

Proof. Suppose that there exists a polynomial algorithm that computes a K-approximation of this prob-
lem. Let I1 be an instance of RN3DM: given an integer vectorA = (A[1], . . . , A[n]) of size n ≥ 2, does
there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that ∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i]?

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1A[i] = n(n + 1), otherwise we know
that the instance has no solution.

Let I2 be the instance of our problem with n services such that:
– ∀i, wi = (2K)A[i]×n2+(i−1);
– ∀i, σi = (1

2K)n
2
;

– ∀i, si = (2K)n
2×(i+1);

– P = (2K)n − 1.
We showed in the proof of Lemma 2.1 that any optimal solution of such an instance has the structure

of a chain. The optimal solutions are chains where the service Ci is associated Sλ1(i) in position λ2(i),
with (λ1, λ2) is a solution of I1. In any other solution, there is a service with computation cost greater
or equal to (2K)n

2
, that means that the latency obtained is L ≥ (2K)n

2
. If there exists an algorithm that

computes in polynomial time aK-approximation of this problem, on this instance, it finds in polynomial
time the optimal solution. We can compute in polynomial time λ1 and λ2 from this solution, and then
solve I1. That means that we can solve in polynomial tima RN3DM. However, RN3DM is NP-complete.
This contradicts the hypothesis P 6= NP , and concludes the proof. �

Summary

For any problem described in this section, the theoretical complexity is proved. An optimal algorithm
is provided for any polynomial problem, and for any NP-complete problem, a proof of complexity is
provided, and the approximation problem is solved.

Surprisingly, the complexity only depends on the platform type. All problems on homogeneous
platforms are polynomial, and all problems on heterogeneous platforms are NP-complete. Therefore,
the next section, considering the scheduling problems of filtering services with communication costs,
is only targeting homogeneous platforms. Indeed, all problems on heterogeneous platforms are NP-
complete, even without communication cost.

2.4 Problems with communication costs on homogeneous plat-
forms

In this section, we present complexity results on homogeneous platforms with communication costs.
We first detail the informations needed to detail a schedule in this context (Section 2.4.1), the commu-

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 23

nication models (Section 2.4.2) and the constraints of these models on the operation lists, that is the
list of execution dates of any communication and any computation (Section 2.4.3). An example is de-
tailed in Section 2.4.4. Then, the complexity of computing the optimal period or latency of a given
execution graph, and the complexity of finding the optimal plan is studied for the period minimization
in Section 2.4.5 and for the latency in Section 2.4.6.

2.4.1 Plans

We present here the informations needed to fully describe a schedule in the context of communi-
cation modeling. As in Section 2.3, the target application A is a set of services linked by precedence
constraints. We write A = (F ,G) where F = {C1, C2, . . . , Cn} is the set of services and G ⊂ F × F
is the set of precedence constraints. The target machine is a homogeneous platform with p servers (or
processors) of same speed s. All servers are connected to each other by communication links of equal
bandwidth bw. The cost for transmitting a data of size δ is δ

bw .
We have to build a plan PL = (EG ,OL), where EG = (C, E) is an execution graph that summarizes

all precedence relations in the mapping, and OL is an operation list that captures the occurrence of each
computation and each communication. We deal with the operation lists later, after having described the
communication models. As for the execution graph EG = (C, E), the nodes in C are the services in F
and input/output nodes.

For each service Ck in F , let Sin(k) be the set of its direct predecessors in EG , and let Sout(k) be
the set of its direct successors. Entry nodes are nodes Ck such that Sin(k) = ∅; for each of them we add
an input node to C to model input from the outside world. Similarly, for each exit node Ck in C (with
Sout(k) = ∅), we add an output node to C. We define:

Cin(k) =
δ0

bw

∑
Ci∈Sin(k)

 ∏
Cj∈Ancesti(EG)

σj

 ;

Ccomp(k) =

 ∏
Cj∈Ancestk(EG)

σj

× δ0 × wk
s

;

Cout(k) =
δ0

bw
× |Sout(k)| ×

 ∏
Cj∈Ancestk(EG)

σj

× σk.
Here, Cin(k) is a lower bound of the time needed to receive input data from all the predecessors

of Ck. The input data from each predecessor Ci is of size δ0 ×
∏
Cj∈Ancesti(EG) σj , hence it requires

δ0
bw ×

∏
Cj∈Ancesti(EG) σj time units for communication from Ci. We add the communication costs from

all the parents (immediate predecessors) to get the total incoming communication time Cin(k). This
lower bound may not be met because of idle times due to server synchronizations for the communica-
tions. However, we have not yet specified in which order the different communications take place. This
specification requires discussion of communication models. We discuss variations of both one-port [12]
and multi-port models [47] in Section 2.4.2.

The outgoing communication lower bound Cout(k) is defined similarly, except that the outgoing
communication to each (immediate) successor is of same size. Finally, Ccomp(k) is the execution time
of Ck on the server, with the appropriate size factor involving the selectivities of all its ancestors. We as-
sume that each service without successor in the execution graph performs a single output communication
(this models returning the results to the outside world).

24 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

As in Section 2.3, we scale all service computation costs as wk ← bw × wk
s , allowing us to set

δ0 = bw = s = 1. At the end of the computation, we can scale the computed period and latency by the
factor δ0

bw to obtain the actual values.

2.4.2 Communication models

We present here the various communication models. We first present the general overview and
then we formally state the constraints and the rules of the three models. We present only an informal
description of the models. Detailed formulas are provided in Section 2.4.3.

With overlap. In the first model, we assume full overlap of communications and computations,
where each server can receive, compute and send (independent) data simultaneously. This model, de-
noted as OVERLAP, calls for multi-port communications: many incoming (resp. outgoing) communica-
tions can take place at the same time, sharing the incoming (resp. outgoing) bandwidth, provided that
the total communication capacity of the server is never exceeded. Independent computations take place
in parallel to these communications. In this model, the server may operate concurrently on different
consecutive data sets: while receiving input for a given data set, it can execute computations for some
older data set and sends output for some even older data set. We define execution time Cexec(k) of a
service/server pair Ck as the maximum execution time of the send, receive and compute operations of
its service:

Cexec(k) = max{Cin(k), Ccomp(k), Cout(k)}.

In the overlap model, the lower bound on the period is the maximum of the quantities Cexec(k) over
all services Ck:

P = max
1≤k≤n

Cexec(k).

Given an execution graph, it turns out that we can generate an order of communications and computa-
tions that achieves this lower bound in the multi-port model: see Section 2.4.3. Note that the problem
of determining the optimal plan is still NP-hard, and therefore, the period minimization problem is dif-
ficult. See Section 2.4.3 for a complete list of the resource constraints that need to be satisfied for the
OVERLAP model.

Without overlap. In the models without overlap, a server performs communications and computa-
tions sequentially (instead of in parallel). This is typical of an execution with single-threaded programs
and (one-port) serialized communications. Despite its apparent simplicity, the model calls for two vari-
ants.

– INORDER– In the first variant, called INORDER, each server completely processes a data set
before starting the execution of the next one; it receives incoming communications for data set
number, say, i, one after the other; then it executes the computations for this data set, and then it
sends the output data to all its successors, one communication after the other. Only after complet-
ing this whole set of operations can the processing of data set i+ 1 be started (with the incoming
communications).

– OUTORDER– In this second variant, we allow for out-of-order execution, namely starting some
operation (say, an incoming communication) for data set i + 1 (or even i + j, j ≥ 2) while still
processing data set i.

From an architectural point of view, we emphasize that the INORDER and OUTORDER variants may
be overly pessimistic, as modern processors are capable of some internal parallelism. However, both
operation modes correspond to blocking send/receive MPI primitives [68], and servers may encounter

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 25

idle time due to the synchronizations in both models. Nevertheless, we expect less idle time for the
OUTORDER model than for the INORDER model, due to the additional schedule flexibility of the former
model. Both variants lead to a lower bound on the computation cost for server/service Ck:

Cexec(k) = Cin(k) + Ccomp(k) + Cout(k).

As before, a lower bound on the period is the maximum of the execution times. But unlike the OVERLAP

model with multi-port communications, this lower bound cannot always be reached: see the example
in Section 2.4.4. Note that the multi-port model is more flexible: since it permits sending data to many
other servers simultaneously, orchestrating the communications in the multi-port model is an easier task
than for the one-port model. We refer to Section 2.4.3 for a list of resource constraints to be enforced
for each model. We emphasize that there is no closed-form formula for the period with the INORDER

and OUTORDER models, which we believe is a new and surprising observation.

Latency. We have just seen that models have a strong impact on the computation of the period. This
is also true for the latency (or response time), but to a lesser extent. The overlap/no-overlap distinction is
no longer meaningful for optimizing this criterion. Indeed, we can always fully serialize the processing
of each data set and minimize the execution time, or makespan, when processing a unique data set. In
other words, we delay the processing of the next data set until the current one is completely executed,
this suppresses all resource conflicts. With such a strategy, the period is equal to the latency, which in
turn is equal to longest path from an input node to an output node in the plan. However, the choice
between one-port or multi-port communications does have an impact on the latency. This is illustrated
by the example presented in Section 2.4.4.

Other variants. Altogether, we have three models, one multi-port model with overlap and two one-
port variants without overlap; the precise constraints that need be enforced are detailed in Section 2.4.3.
We note that other models can be introduced, for instance one-port communications with computa-
tion/communication overlap. However, we believe that we address the most realistic combinations: on
single-threaded machines it is hard to avoid doing everything sequentially, and on multi-threaded ma-
chines, we can execute computations and (several) communications concurrently. Another possibility
is to consider preemptive models where communication and/or computation can be interrupted, and the
bandwidth of communication can vary during the communication. Such preemptive models are beyond
the scope of this chapter.

We point out that the effective difference between one-port and multi-port communications is not
obvious: in most cases, the optimal solution for the multi-port model obeys the one-port constraints.
In Section 2.4.4, we present examples of plans were the optimal latency and period for the multi-port
model are strictly smaller than the optimal ones for the one-port model.

Characterizing solutions. In the following, we study two optimization problems: (i) MINPE-
RIOD-COMMMODEL: find a plan PL = (EG ,OL) that minimizes the period; and (ii) MINLATEN-
CY-COMMMODEL: find a plan PL = (EG ,OL) that minimizes the latency with COMMMODEL the
considered communication model.

For each problem instance, independently of the model and of the objective function, the solution in-
cludes the execution graph EG that describes the set Ancesti for each service Ci. But this graph alone
does not give enough information to compute the schedule, i.e., the moment at which each operation
takes place. We also need the complete list of the time-steps at which every communication or compu-
tation begins and ends. In this chapter, we only consider cyclic schedules, that is, schedules that repeat

26 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

for each data set. Therefore, the description of the operation list is polynomial (actually, quadratic) in
the number of services.

Formally, we define the operation list OL as follows:
– For each serviceCi, BeginCalcn(i) is the time-step where the computation ofCi on data set number
n begins, and EndCalcn(i) is the time-step where this computation ends.

– For each edge Ci → Cj in the plan, BeginCommn
(i,j) is the time-step where this communication

involving data set number n begins, and EndCommn
(i,j) is the time-step where this communica-

tion ends.
– The schedule starts at time-step 0 with the data set number 0, and we impose a cyclic behavior of

period λ:
BeginCalcn(i) = BeginCalc0

(i) + λ× n for each service Ci;
EndCalcn(i) = EndCalc0

(i) + λ× n for each service Ci;
BeginCommn

(i,j) = BeginComm0
(i,j) + λ× n for each communication Ci → Cj ;

EndCommn
(i,j) = EndComm0

(i,j) + λ× n for each communication Ci → Cj .

For every model, we have rules that must be satisfied by the operation list in order to have a valid sched-
ule. These rules ensure that no resource constraint or model assumption is violated. For instance, in the
INORDER model, EndComm(j, k)n < BeginComm(i, j)n+1 for all services i, j, k and all data sets,
since all work for one data set must be done before starting work on another data set. See Section 2.4.3
for the complete list of rules.

Note that all models are non-preemptive: once initiated, a communication or a communication can-
not be interrupted. Also, communications are synchronous, and the bandwidth assigned to a given
communication remains the same during its whole execution (this is not really a restriction for the one-
port model but it is an important one for the multi-port model). With the operation list we can define the
period and the latency of a plan PL:

– the period is P = λ;
– the latency is L = max{EndComm0

(i,j)|Ci → Cj ∈ E}.
Remember that output nodes execute a communication to the outside world, so that the longest path

for data set number 0 ends by one such communication.

2.4.3 Operation lists

Given a plan PL = (EG ,OL), the operation list OL defines the beginning and completion times of
the computation of each service Ci (values BeginCalc0

(i) and EndCalc0
(i) for data set 0), and of each

communication Ci → Cj for each edge in the plan (values BeginComm0
(i,j) and EndComm0

(i,j) for
data set 0). The whole operation is cyclic and repeats every λ time-steps for a new data set.

Let Bi (resp. Ei) be the remainder of the Euclidian division of BeginCalc0
(i) (resp. EndCalc0

(i))
by λ. Similarly, let B(i,j) (resp. E(i,j)) be the remainder of the Euclidian division of BeginComm0

(i,j)

(resp. EndComm0
(i,j)) by λ.

Let PL = (EG ,OL) be a plan for an instance A = (F ,G).
Recall that Ccomp(i) =

(∏
Ck∈Ancesti(EG) σk

)
wi is the computation cost for Ci in the execution graph.

Let δ(i, j) =
(∏

Ck∈Ancesti(EG) σk

)
be the cost of the communication from Ci to Cj whenever it exists.

For consistency, note that Cin(j) =
∑

Ci∈Sin(j) δ(i, j).
All models are non-preemptive: once initiated, a communication or a communication cannot be

interrupted. Also, communications are synchronous, and the bandwidth assigned to a given communi-

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 27

cation remains the same during its whole execution (this is not really a restriction for the one-port model
but it is an important one for the multi-port model).

One-port without overlap. A valid operation list for the models INORDER and OUTORDER

should respect the following constraints:
– For each node Ci, EndCalc0

(i) = BeginCalc0
(i) + Ccomp(i) (computation time).

– For each edge Ci → Cj , EndComm0
(i,j) = BeginComm0

(i,j) + δ(i, j) (communication time).
– For each node Ci, for each edge pair Cj → Ci and Ck → Ci,

– EndComm0
(j,i) ≤ BeginComm0

(k,i) or
– EndComm0

(k,i) ≤ BeginComm0
(j,i).

This is the one-port constraint: for any service, two incoming communications for a same data set
do not occur at the same time.

– For each node Ci, for each edge pair Ci → Cj and Ci → Ck,
– EndComm0

(i,j) ≤ BeginComm0
(i,k) or

– EndComm0
(i,k) ≤ BeginComm0

(i,j).
This is the counterpart for outgoing communications.

– For each node Ci, for each edge Cj → Ci, EndComm0
(j,i) ≤ BeginCalc0

(i).
For any service, all incoming communications for a given data set are completed before the be-
ginning of the computation.

– For each node Ci, for each edge Ci → Cj , EndCalc0
(i) ≤ BeginComm0

(i,j).
For any service, the computation is completed before the beginning of outgoing communications.

For the INORDER model, we add the following constraint: for each node i, for each edge pair
Cj → Ci and Ci → Ck,

EndComm0
(i,k) ≤ BeginComm1

(j,i) = BeginComm0
(j,i) + λ (2.3)

Constraint (2.3) states that outgoing communications for a data set are completed before the beginning
of incoming communications for the next data set.

A B

A B

Case 1

Case 2

λ0

Figure 2.5: Cases for the OUTORDER model.

For the OUTORDER model, things get more complicated. We replace constraint (2.3) by the follow-
ing set of constraints (see Figure 2.5):

– We forbid that an incoming communication and a computation take place at same time:
for each edge Ci → Cj ,

– B(i,j) ≤ E(i,j) ≤ Bj ≤ Ej (case 2, A = Ci → Cj and B = Cj) or

28 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

– Bj ≤ Ej ≤ B(i,j) ≤ E(i,j) (case 2: A = Cj and B = Ci → Cj) or
– E(i,j) ≤ Bj ≤ Ej ≤ B(i,j) (case 1: A = Cj and B = Ci → Cj) or
– Ej ≤ B(i,j) ≤ E(i,j) ≤ Bj (case 1: A = Ci → Cj and B = Cj).

– We forbid that an outgoing communication and a computation take place at same time:
for each edge Ci → Cj ,

– B(i,j) ≤ E(i,j) ≤ Bi ≤ Ei (case 2: A = Ci → Cj and B = Ci) or
– Bi ≤ Ei ≤ B(i,j) ≤ E(i,j) (case 2: A = Ci and B = Ci → Cj) or
– E(i,j) ≤ Bi ≤ Ei ≤ B(i,j) (case 1: A = Ci and B = Ci → Cj) or
– Ei ≤ B(i,j) ≤ E(i,j) ≤ Bi (case 1: A = Ci → Cj and B = Ci).

– We forbid that two different outgoing communications happen at the same time:
for each edge pair Ci → Cj and Ci → Ck,

– B(i,j) ≤ E(i,j) ≤ B(i,k) ≤ E(i,k) (case 2: A = Ci → Cj and B = Ci → Ck) or
– B(i,k) ≤ E(i,k) ≤ B(i,j) ≤ E(i,j) (case 2: A = Ci → Ck and B = Ci → Cj) or
– E(i,j) ≤ B(i,k) ≤ E(i,k) ≤ B(i,j) (case 1: A = Ci → Ck and B = Ci → Cj) or
– E(i,k) ≤ B(i,j) ≤ E(i,j) ≤ B(i,k) (case 1: A = Ci → Cj and B = Ci → Ck).

– We forbid that an incoming and an outgoing communications happen at the same time:
for each edge pair Ci → Cj and Ck → Ci,

– B(i,j) ≤ E(i,j) ≤ B(k,i) ≤ E(k,i) (case 2: A = Ci → Cj and B = Ck → Ci) or
– B(k,i) ≤ E(k,i) ≤ B(i,j) ≤ E(i,j) (case 2: A = Ck → Ci and B = Ci → Cj) or
– E(i,j) ≤ B(k,i) ≤ E(k,i) ≤ B(i,j) (case 1: A = Ck → Ci and B = Ci → Cj) or
– E(k,i) ≤ B(i,j) ≤ E(i,j) ≤ B(k,i) (case 1: A = Ci → Cj and B = Ck → Ci).

– We forbid that two different incoming communications happen at the same time:
for each edge pair Cj → Ci and Ck → Ci,

– B(j,i) ≤ E(j,i) ≤ B(k,i) ≤ E(k,i) (case 2: A = Cj → Ci and B = Ck → Ci) or
– B(k,i) ≤ E(k,i) ≤ B(j,i) ≤ E(j,i) (case 2: A = Ck → Ci and B = Cj → Ci) or
– E(j,i) ≤ B(k,i) ≤ E(k,i) ≤ B(j,i) (case 1: A = Ck → Ci and B = Cj → Ci) or
– E(k,i) ≤ B(j,i) ≤ E(j,i) ≤ B(k,i) (case 1: A = Cj → Ci and B = Ck → Ci).

Case 1

Case 2

Case 3

t
O λ

Figure 2.6: Cases for the OVERLAP model.

Multi-port with overlap. For the OVERLAP model, the servers can execute many incoming (outgo-
ing) communications simultaneously. Bandwidth is shared between concurrent communications. Any
communication on a server is assigned some ratio of the available bandwidth. This ratio does not change
during the communication, hence the execution time of the communication is the cost of the commu-

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 29

nication multiplied by its bandwidth ratio. At any time, the sum of the ratios used should not exceed
bw = 1.

We define the set of incoming communications to Ci, that are beginning or in progress at time t +
k × λ for k large enough (see Figure 2.6): Aiin(t) = {j ∈ Sin(i)|B(j,i) ≤ t < E(j,i) (case 1) or E(j,i) ≤
B(j,i) ≤ t(2) (case 2) or t < E(j,i) ≤ B(j,i) (case 3)}.

Similarly for outgoing communications from Ci at time t+ k × λ, Aiout(t) = {j ∈ Sout(i)|B(i,j) ≤
t < E(i,j) (case 1) or E(i,j) ≤ B(i,j) ≤ t(2) (case 2) or t < E(i,j) ≤ B(i,j) (case 3)}.

The operation list is valid if:
– For all node i, EndCalc0

(i) = BeginCalc0
(i) + Ccomp(i) (computation cost).

– For each node Ci and for each edge Cj → Ci,

∑
k∈Aiin(B(j,i))

δ(k, i)

EndComm0
(k,i) − BeginComm0

(k,i)

≤ 1

(incoming communications do not exceed the bandwidth);

∑
k∈Aiin(B(j,i))

δ(j, k)

EndComm0
(j,k) − BeginComm0

(j,k)

(outgoing communications do not exceed the bandwidth).
– For each edge Ci → Cj ,

EndComm0
(i,j) ≤ BeginCalc0

(j) and EndCalc0
(i) ≤ BeginComm(i,j)

(for a given data set, incoming communications are completed before the computation, which
itself is completed before outgoing communications).

2.4.4 Illustrative Example

We work out the example presented in the introduction to better understand the three models. Con-
sider an instance with 5 services, all of which have cost 4 and selectivity 1, without dependence con-
straints. Let the execution graph EG be the graph presented in Figure 2.3.

Latency. We start with the latency because it is simpler. Assume first one-port communications,
hence the INORDER or OUTORDER models. As mentioned earlier, there is no difference between these
models for computing the latency; in both cases we have to minimize the length of the longest path in
the graph. If the first data set enters the graph at time t = 0, then the computation of service C1 is
completed at time 5. Then the computation of C2 begins at time 6 if C1 sends to C2 at time 5 before
sending to C4 at time 6. The computation of C3 begins at time 11. The computation of C4 begins at
time 7 and completes at time 11. Then, the communication between C4 and C5 can be done at time 12.
In the meantime, C3 completes its computation at time 15. Then, the computation of C5 can begin at
time 16 and is completed at time 20. With the last communication of C5, this leads us to a latency of 21,
which is the optimal value for the one-port model.

This execution scheme is presented in Figure 2.7. With multi-port communications we cannot
achieve a better latency for this example, so we derive the same solution.

30 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

C1

C2

C3

C4

C5

in Calc 2 4

1 Calc 3

2 5

1 5

4 3 out

5 10
15 20

Calc

Calc

Calc

Figure 2.7: Optimal execution scheme for the latency.

Period. Looking at the above operation list, we can obtain a period P = 5 for the OVERLAP model:
if we keep the same list and only change λ = 21 into λ = 5, we have no resource conflict. In fact
we can achieve a period of 4 for the OVERLAP model, and this is clearly optimal as each computation
has cost 4. To do so, we modify the following in the operation list: λ = 4, BeginComm0

(4,5) = 12,
and EndComm0

(4,5) = 13. For example, between time 5 and 9, server C1 receives data set number 3,
computes the data set number 2, and sends data set number 1 to C2 and C4. The resulting execution
scheme is presented in Figure 2.8.

C1

C2

C3

C4

C5

in Calc 2 4

1 Calc 3

2 5

1 5

4 3 out

5 10
15 20

Calc

Calc

Calc

Figure 2.8: Optimal execution scheme for the period with the OVERLAP model.

For the OUTORDER model, the minimum possible period is 7, since server C5 has two incoming
communications of length 1, one computation of length 4 and one outgoing communication of length 1
(we get the same bound withC1). This value cannot be obtained for serviceC5 with the current operation
list: the receive of data from C4 for data set 1 (at time 12 + 7 = 19) coincides with its computation
for data set 0. In order to achieve a period 7, we must move the idle time to “less loaded servers.” For
example, we can set BeginComm0

(4,5) = 14, and BeginCalc0
(4) = 8. We keep BeginComm0

(1,4) = 6,
so that there is an idle time between the end of this communication and the beginning of the computation.
C4 has another idle time at the end of this computation at time 12, and the cycle resumes for data set 1
at time 13 = 6 + 7 = BeginComm1

(1,4). The resulting execution scheme is presented in Figure 2.9.
For the INORDER model, we have the same lower bound for the period as for the OUTORDER

model, namely 7. With the previous operation list, we obtain a period 10 because of the cost of C5: the
beginning of the receive for data set 1 has to wait for the end of the send of data set 0. This difference
of 3 between 7 and 10 corresponds to the idle time between the end of the receive from C4 and the
beginning of the receive from C3, which is the difference of the lengths of the path C1 → C4 → C5 and
of the path C1 → C2 → C3 → C5. This idle time can be reduced by sharing it between C1, C4 and

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 31

C1

C2

C3

C4

C5

in Calc 2 4

1 Calc 3

2 5

1 5

4 3 out

5 10
15 20

Calc

Calc

Calc

Figure 2.9: Optimal execution scheme for the period with the OUTORDER model.

C5 as follows. The time spent in computations and communications is 7 for C1, 6 for C4 and 7 for C5

respectively. The optimal solution is to give an idle time 2
3 for C1, 1 + 2

3 for C4 and 2
3 for C5. We obtain

the following values: BeginComm0
(1,4) = 6 + 2

3 ,EndComm0
(1,4) = 7 + 2

3 , BeginCalc0
(4) = 7 + 2

3 ,
EndCalc0

(4) = 11 + 2
3 , BeginComm0

(4,5) = 13 + 1
3 , and EndComm0

(4,5) = 14 + 1
3 . The other values

do not change. We obtain a period 23
3 , which the reader may find surprising! The resulting execution

scheme is presented in Figure 2.10.

C1

C2

C3

C4

C5

in Calc 2 4

1 Calc 3

2 5

1 5

4 3 out

5 10
15 20

Calc

Calc

Calc

6 + 2
3 13 + 1

3

Figure 2.10: Optimal execution scheme for the period with the INORDER model.

In this example, with the same operation list, we obtain three different periods for the three different
models. More interestingly, the optimal period is different for each model, and is obtained with a
different operation list.

2.4.5 Period minimization

In this section, we study two problems related to period computation and minimization. First we
address the following problem: given an execution graph, what is the complexity of determining the
operation list that leads to the best period? We provide a polynomial algorithm for the OVERLAP model,
and show that the problem is NP-hard for the INORDER and OUTORDER models. Then we address
the general optimization problems MINPERIOD-OVERLAP, MINPERIOD-INORDER and MINPERIOD-
OUTORDER: what is the complexity of determining the plan whose period is optimal? We show that
these three problems are NP-hard. We conclude this section by providing particular polynomial instances
of the period optimization problems.

32 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Optimal period for a given execution graph

Theorem 2.6. Given an execution graph, the problem of computing the operation list that leads to
the optimal period has polynomial complexity with the OVERLAP model but is NP-hard with the OUT-
ORDER and INORDER models.

The proof of Theorem 2.6 is given by Propositions 2.7, 2.8 and 2.9.

Proposition 2.7. Given an execution graph, the problem of computing the operation list that leads to
the optimal period has polynomial complexity with the OVERLAP model.

Proof. Consider an execution graph EG for an applicationA = (F ,G). Let T = max1≤k≤n{Cexec(k)}.
This value is a lower bound for period, and we prove that it can be met.

For each communication of size t, we assign to this communication a fraction t/T of the available
bandwidth at the sender/receiver pair. That means that all communications will execute during T time-
steps. For any server, the sum of the bandwidth ratios of incoming communications does not exceed 1,
by definition of T . The same holds for outgoing communications. By definition of T , the computation
time of each server also fits within the period.

We have not yet specified which data sets are operated upon by the different servers. But the previous
discussion shows that every server can repeat its operations every T time-units without conflict. If
suffices to let the first data set traverse the execution graph greedily: each communication is performed
as soon as possible, and each computation is performed as soon as all the necessary data (all incoming
communication) is available. We then repeat this scheme for every data set every T time units, and we
obtain an operation list of period T . �

Proposition 2.8. Given an execution graph, the problem of computing the operation list that leads to
the optimal period is NP-hard with the INORDER model.

Proof. We consider the associated decision problem and show that is NP-complete: given an application
A = (F ,G), an execution graph EG for this application, and a bound K, does there exist an operation
list for EG such that the period does not exceed K? This problem is obviously in NP: given A, EG
and an operation list, we have the period λ and check whether it does not exceed K. To establish
completeness, we use a reduction from RN3DM [86]. We consider an instance I1 of this problem: given
an integer vector A = (A[1], . . . , A[n]) of size n ≥ 2, does there exist two permutations λ1 and λ2 of
{1, 2, . . . , n} such that:

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (2.4)

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1A[i] = n(n + 1), otherwise we know that
the instance I1 has no solution. We associate to I1 an instance I2 with 2n+ 5 independent services, all
of selectivity 1, and whose costs are as follows:

– w1 = w2n+5 = n and w2n+3 = w2n+4 = 2n+ 1;
– w2i = 2n+ 1 for 1 ≤ i ≤ n+ 1 and w2i+1 = 2n+ 1−A[i] for 1 ≤ i ≤ n;
– σi = 1 for 1 ≤ i ≤ 2n+ 5.

The execution graph is represented in Figure 2.11. Finally, we let K = 2n + 3. The size of I2 is
obviously linear in the size of I1.

Intuitively, we note that service C1 has many successors and C2n+5 many predecessors. We need
the ordering of the associated communications to compute the optimal period for this execution graph.
We now show that I1 has a solution if and only if I2 has a solution.

Suppose first that I1 has a solution λ1, λ2. We compute the following operation list for I2: C1

first communicates with C2n+4. Then services C2, C4, . . . , C2n are fed in the ordering given by λ1.

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 33

C2n+4

C2
C3

C4 C5

C2n+3
C2n+2

in
C2n+5

out

C1

Figure 2.11: Graph G.

Finally C2n+4 is the last service to receive data from C1. Receptions by C2n+5 are done in the order C1,
C2(n−λ2(1))+3, . . . , C2(n−λ2(n))+3, C2n+3. With this orchestration, owing to Equation (2.4), the period
is 2n+ 3.

Suppose now that I2 has a solution. For a data set k, suppose that the computation of C2n+2 begins
at time i and that the computation of C2n+4 begins at time j. For services C1, C2n+2 and C2n+4, the
sum of the costs of communications and of computations is equal to 2n + 3. That means that there is
no idle time for the associated servers. Hence at time i − 1 (resp. j − 1), there is a communication
between servers C1 and C2n+2 (resp. C2n+4) for data set k. Hence service C1 sends the result of its
computation for data set k between time-steps i− 1 and j or between time-steps j − 1 and i. Therefore,
|j− i|+ 1 ≤ n+ 2. For services C2n+3, C2n+4 and C2n+5, the sum of the costs of communications and
of computations is equal to 2n+3. That means that there is no idle time for the associated servers. Hence
the computation of data set k on C2n+3 and C2n+4 are completed at time i + 4n + 3 and j + 2n + 1
respectively. C2n+5 receives the corresponding data from C2n+3 and C2n+4 at time i + 4n + 3 and
j+ 2n+ 1 respectively. Then service C2n+5 receives the data for the computation of data set k between
time i+ 4n+ 1 and j+ 2n. Hence |(i+ 4n+ 3)− (j+ 2n+ 1)|+ 1 = |(i− j) + 2n+ 2|+ 1 ≤ n+ 2.
We obtain j − i = n + 1. As a consequence, for 1 ≤ i ≤ n, the communication from C1 to C2i is
done between time j and j +n and the communication between C2i+1 and C2n+5 is done between time
j + 2n+ 2 and j + 3n+ 2. Let λ1 be the ordering of communications from C1 to services C2, ..., C2n

and λ2 be the permutation such that n+ 1− λ2 is the ordering of communication from C3, ..., C2n+1 to
C2n+5. We obtain

∀i, λ1(i) + (2n+ 1) + 1 + (2n+ 1−A[i]) + λ2(i) = 4n+ 3
⇐⇒ ∀i, λ1(i) + λ2(i) = A[i].

This completes the proof. �

Proposition 2.9. Given an execution graph, the problem of computing the operation list that leads to
the optimal period is NP-hard with the OUTORDER model.

Proof. Consider the associated decision problem: given an application A = (F ,G), an execution graph
EG for this application, and a bound K, is there an operation list whose period does not exceed K? The
problem is obviously in NP: givenA, EG and an operation list, we have the period λ and check whether
it does not exceed K.

The NP-completeness is obtained by reduction from 2-PARTITION. Let I1 be an instance of 2-
PARTITION that is NP-complete in the strong sense: given a set {a1, ..., an}, does it exist a subset I of
A such that

∑
ai∈I ai = 1

2

∑
1≤i≤n ai = A. We construct an instance I2 with 2n+ 2 services:

34 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

– w1 = An2 − n and σ1 = 1;
– ∀1 ≤ i ≤ n,w2i = An2 − 1 and σ2i = An2;
– ∀1 ≤ i ≤ n,w2i+1 = 0 and σ2i+1 = ai

A ;
– w2n+2 = 0 and σ2n+2 =

∏
1≤i≤n

1
ain2 ;

– K = 2An2 + 1;
– the plan EG is the graph presented in Figure 2.12.
The size of I2 is polynomial in the size of I1.

C1

C2
C3

C2n

C2n+1

C2n+2

Figure 2.12: Plan EG .

Suppose that I1 has a solution I . Then, for any dataset k, on C1, we first receive data, then compute
dataset k, then send result, first a service C2i with ai ∈ I , then a service C2j , with aj /∈ I , and then the
remaining outgoing edges in any order. On services C2i with ai ∈ I , we receive, then compute and then
send dataset k, before receiving datas for dataset k+ 1. On services C2i with ai /∈ I , we receive dataset
k, send dataset k−1, then compute dataset k. The service C2i+2 receive first datas of dataset k−1 from
services C2i+1 with ai ∈ I in the order of emission from C1 to C2i, then comput in time 0 result of this
dataset, then send result of this computation, and then receive dataset k + 1 from C2i+1 with ai /∈ I in
order of emission from C1 to C2i with ai /∈ I . With the associated operation list, we obtain a latency
λ = K. That means that I2 has a solution.

Suppose that I2 has a solution. Let I be the set integers ai, 1 ≤ i ≤ n such that the execution
on C2i is in order, that means that for any dataset k, the emission of k to C2i+1 is completed before
reception of dataset k + 1 from C1. Let t be the time of the end of the computation of C1 for dataset
k. For any value i with ai ∈ I , the communication between C1 and C2i begin between time t and
t + n + 1 and is completed between t + 1 and t + n + 2. It can be no idle time on C2i, that means
that the communication from C2i+1 to C2i+2 begin between t + An2 + 1 and t + n + An2 + 2 and is
completed between time t+ 2An2 + 1 and t+n+ 2An2 + 2. That means that the communication from
C2i+2 to C2n+2 is done between time t+ 2An2 + 1 and t+ n+ 3An2 + 2. That means that for dataset
k − 1, this communication is done between time t+ 1 and t+An2 + n+ 2. For same reasons, for any
value i with ai /∈ I , the communication from C2i+2 to C2n+2 is done between time t + An2 + 1 and
t+n+2An2 +2. That means that the sum S1 of communication costs from services Ci, i ∈ I to C2n+2,
that means

∑
ai∈I ain

2, is S1 ≤ An2 + n + 1 and this sum is a multiple of n2, that means S1 ≤ An2

and the sum S2 of communication costs from services Ci, i /∈ I to C2n+2, that means
∑

ai /∈I ain
2, is

S2 ≤ An2 + n+ 1 and this sum is a multiple of n2, that means S2 ≤ An2. That means
∑

ai∈I ai ≤ A
and

∑
ai /∈I ai ≤ A. That proves that I is a solution to I1

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 35

This concludes the proof. �

We should point out that Theorem 2.6 holds for regular streaming applications (without selectivities).
This is an important and new result in that context.

Computing the optimal period

We now address the complexity of the period minimization problem for the three models. Recall
that the plan consists of both the execution graph and the operation list. As it turns out, computing
the optimal execution graph is NP-complete for all three period minimization problems. Therefore,
even though we can compute the operation list for the OVERLAP model in polynomial time, the overall
problem for computing a plan which minimizes the period is NP-complete.

On a positive note, we derived the following result on the structure of the optimal execution graph:
for any instance of MINPERIOD-* without dependence constraints, and using any of the three models,
there exists an optimal plan whose execution graph is a forest. This “structural” result reduces the search
of optimal execution graphs. Still, all minimization problems are NP-hard.

In the optimal plan for period without communication cost, one only processor has to send data
to all services of selectivity more than one. This means that in a model with communication cost,
the computation time of this service is strongly increased by communications. This explains why the
optimal algorithm without communication cost is no more optimal with communication costs.

Proposition 2.10. For any instance of MINPERIOD-* without dependence constraints, and using any
of the three models, there exists an optimal plan whose execution graph is a forest.

Proof. For this proof, for any execution graph EG = (C, E), we define the number of added predeces-
sors of a vertex v ∈ C as na(v) = 0 if v has zero or one direct predecessor, and as na(v) = p − 1
if v has p ≥ 2 direct predecessors. We also define the number of added predecessors of EG as
na(EG) =

∑
v∈C na(v).

Let I be an instance of MINPERIOD-*. Let EG be the execution graph of an optimal plan for this
instance which has the minimal number of added predecessors. Suppose that EG is not a forest. Let C
be a service of minimal depth with at least direct predecessors. Let C1, C2 be two of these predecessors.

Suppose first that C1 and C2 have no common predecessor. Let P1 and P2 the paths from an entry
node to C1 and from an entry node to C2. There are unique by construction of C. Let Σ1 be the product
of selectivities on P1 and Σ2 the product of selectivities on P2. If Σ1 ≥ 1 (resp. Σ2 ≥ 1), we can
remove the edge C1 → C (resp. C2 → C): this will decrease the product of selectivities for C as well
as the output communication cost of C1 (resp.C2). If Σ1 < 1 and Σ2 < 1, let C ′2 be the root of the
path P2. C ′2 is an entry node of G by construction of P2. If we remove the edge C1 → C and add an
edge C1 → C ′2, the product of selectivities for C does not change, and the product of selectivities for
the services of P2 decreases. These two operations strictly decrease the number of added predecessors
of the graph EG and does not increase the period. This contradicts the hypothesis that EG is a optimal
graph for the period with a minimal number of added predecessors.

Suppose now that C1 and C2 have common predecessors. Let C ′1 (resp. C ′2) be the predecessor of
C1 (resp. C2) of minimal depth such that C ′1 (resp. C ′2) is not a predecessor of C2 (resp. C1). Let C ′

be the direct predecessor of C ′1 and C ′2. Let P1 (resp. P2) be the path from C ′1 (resp. C ′2) to C1 (resp.
C2). Let Σ1 be the product of selectivities on P1 and Σ2 the product of selectivities on P2. If Σ1 ≥ 1
(resp. Σ2 ≥ 1), we can remove the edge C1 → C (resp. C2 → C): this will decrease the product of
selectivities for C as well as the output communication cost of C1 (resp.C2). If Σ1 < 1, we can remove
the edge C1 → C and add an edge C1 → C ′2. The product of selectivities for C does not change, and

36 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

the product of selectivities for the services of P2 decreases. These two operations strictly decrease the
number of added predecessors of the graph EG and does not increase the period, a contradiction.

We can conclude that an optimal execution graph for the period whose number of added predecessors
is minimal, necessarily is a forest. �

Theorem 2.7. Problems MINPERIOD-* without dependence constraints are all NP-hard.

The proof of Theorem 2.7 is given by Propositions 2.11, 2.12 and 2.13.

Proposition 2.11. The problem MINPERIOD-OVERLAP without dependence constraints is NP-hard.

Proof. We consider the associated decision problem and show that is NP-complete: given n services
without dependence constraints and a bound K, is there a plan whose period does not exceed K? This
problem is obviously in NP: given a plan, that is an execution graph together with an operation list, we
are given the period, and we can check that the operation list is valid in polynomial time. To establish
the completeness, we use a reduction from RN3DM [86]. Consider an instance I1 of RN3DM: given
an integer vector A = (A[1], . . . , A[n]) of size n, does there exist two permutations λ1 and λ2 of
{1, 2, . . . , n} such that ∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i]? We can suppose that 2 ≤ A[i] ≤ 2n for all i
and that

∑n
i=1A[i] = n(n+1), otherwise we know that the instance has no solution. We associate to I1

an instance I2 of RN3DM with 3n services without dependence constraints. For convenience we denote
these services as C1,i, C2,i, and C3,i for 1 ≤ i ≤ n. We let K = 3

2 . Service costs and selectivities are
the following:

– ∀i, w1,i = K, w2,i = K × 2
b+1 and w3,i = K

a2
× γ−A[i];

– ∀i, σ1,i = σ2,i = a× γi and σ3,i = K
b2

.
Here, a, b and γ are rational numbers such that

– 2n

√
3
4 < a < b < 2n

√
3,2
4 with 2n × a ∈ N and 2n × b ∈ N;

– 1 < γ < n

√
b
a with 2n × γ ∈ N.

We have a < b < 1 and γ ≤ 2, so their numerators are bounded by 2n+1. Altogether, a, b and γ can be
represented with O(n) bits, which is polynomial in the size O(n) of I1 (we have n services). But we
need to prove that we can find such numbers. For a fixed n, we can find two rational numbers a and b

with denominator 2n if the function f(n) = 2n

√
3,2
4 −

2n

√
3
4 − 2 ∗ 2−n is positive. We have

f ′(n) = − ln(3,2
4) 1

2n2 × 2n

√
3,2
4 + ln(3

4) 1
2n2

2n

√
3
4 + 2 ln(2)−n

∼ (ln(3
4)− ln(3,2

4)) 1
2n2 < 0

We obtain that f tends to 0 as n tends to +∞, and that f ′ is negative for n big enough. This proves that
there exists n0 such that ∀n > n0, f(n) > 0. This gives the existence of a and b for n large enough.

Now we have a and b rational numbers with denominator 2n and both smaller than 1. Then, in worst
case, 1 < γ < n

√
2n

2n−1 . Let g(n) = n

√
2n

2n−1 − 1− 2−2n. Then

g′(x) = 2
n√2n−1

(ln(2n−1)
n2 − ln(2)2n

n(2n−1)) + 2 ln(2)2−2n

= 2
n√2n−1

(ln(2)
n + ln(1−2−n)

n2 − ln(2)
n(1−2−n)

) + 2 ln(2)2−2n

∼ 2
n√2n−1

(ln(2)
n − 2−n

n2 − ln(2)
n (1 + 2−n)) + 2 ln(2)2−2n

∼ 2
n√2n−1

(−2−n

n2 − ln(2)
n 2−n) + 2 ln(2)2−2n

∼ − 2
n√2n−1

× ln(2)
n 2−n < 0

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 37

This proves the existence of γ for n big enough.

Finally, all costs and selectivities are rational numbers whose numerators and denominators are of
the order at most O(2n

2
), hence the size of I2 is polynomial in the size of I1.

C3,n

in out
C1,λ1(n)

C2,λ2(n)

C3,1

C3,2

C2,λ2(1)

C2,λ2(2)C1,λ1(2)

C1,λ1(1)in

in out

out

Figure 2.13: Instance I2.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a
solution λ1, λ2. We prove that the plan whose execution graph is represented in Figure 2.13 is a solution
of I2. For all i, j,w1,i = K and σi×C2,j ≤ 2b

b+1 ×K ≤ K since b < 1. In addition, all communication
costs are less than one and K > 1, then all services C1,i and C2,i respect the bound on the period. For
any i, the incoming communication volume to C3,i is less thanK. The outgoing communication volume
is at most maxj{σ1,j} ×maxj{σ2,j} × w3,i = b × b × K

b2
= K. Concerning the computation of C3,i,

we obtain a cost

Ccomp(3, i) = σ1,λ1(i)σ2,λ2(i)w(3,i)

= a2γλ1(i)+λ2(i) × K
a2
× γ−A[i]

= K

We conclude that this plan is a valid solution of I2.

Suppose now that I2 has a solution. We prove that there exists λ1 and λ2 such that this solution has
the plan of Figure 2.13. For all i, w2,i = K × 2

b+1 > P since b < 1 and w3,i = K
a2
× γ−A[i] ≥ K

a2
> K.

That means that these services cannot be entry nodes in a solution. For all i, j, σ1,i×w3,j ≥ a× K
a2
a2

b2
≥

K a
b2
> K since a

b2
> 1. That means that in a solution, C3,i has at least 2 predecessors. Suppose that

there exist i, j such that C3,i is predecessor of C3,j . The outgoing communication of C3,i is at least:
a2n × K2

b4
≥ 9

4b2
×K > K. We obtain a contradiction. Suppose that there exists a service C1,i or C2,i

with at least two direct successors. Then the outgoing communication of this service has a cost at least
2a2 > 3

2 = K. This proves that the services C3,i are arranged on n independent chains of length at
least 3. In addition, the services C2,i cannot be entry nodes of the plan. This proves that the plan of the
solution has the structure of Figure 2.13. Let λ1, λ2 be two permutations such that the predecessors of
the service C3,i are C1,λ1(i) and C2,λ2(i).

38 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

The computation cost of each service C3,i is smaller than K:

∀i Ccomp(3, i) ≤ K
⇐⇒ ∀i P × γλ1(i)+λ2(i)−A[i] ≤ K
⇐⇒ ∀i γλ1(i)+λ2(i)−A[i] ≤ 1
⇐⇒ ∀i λ1(i) + λ2(i)−A[i] ≤ 0
⇐⇒ ∀i λ1(i) + λ2(i)−A[i] = 0

Altogether, we have proven that I1 has a solution. This concludes the proof. �

Proposition 2.12. The problem MINPERIOD-OUTORDER without dependence constraints is NP-hard.

Proof. We consider the associated decision problem and show that is NP-complete: given n services
without dependence constraints and a bound K, is there a plan whose period does not exceed K?
As before, this problem is obviously in NP. To establish the completeness, we use a reduction from
RN3DM [86]. Consider an instance I1 of RN3DM: given an integer vectorA = (A[1], . . . , A[n]) of size
n, does there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that ∀1 ≤ i ≤ n, λ1(i)+λ2(i) =
A[i]? We can suppose that 2 ≤ A[i] ≤ 2n for all i and that

∑n
i=1A[i] = n(n+ 1), otherwise we know

that the instance has no solution.
Let xi = yi = n− i and zi = A[i] for 1 ≤ i ≤ n, and let α = (1+2−n). We construct the following

instance I2 of our problem. We have a set F = {C0, C
x
1 , . . . , C

x
n, C

y
1 , . . . , C

y
n, Cz1 , . . . , C

z
n} of 3n + 1

services. Each service Csi , where s ∈ {x, y, z} has a selectivity of σsi and the computation cost of wsi .
Here is how we pick the selectivities and the computation costs for the services.

1. Let m = 2n. For n enough big, we have αm < (1 + ε), where ε = 1/(2n).
2. ComputeK = (1+ε)/(εαm). Note thatK = (1+ε)/(εαm) > (1+ε)/(1.5ε) > 2n/1.5 > n+2

for n ≥ 7, since αm < (1 + ε) < 1.5.
3. For the first service, we set selectivity σ0 = 1/(αm(1 + ε)) and w0 = K − 1 − nσ0. This is

feasible, since w0 = K − 1 − nσ0 > n + 2 − n + 1 = 1. Therefore, the computation cost is
always positive.

4. For services Cxi , where 1 ≤ i ≤ n, we set the selectivity such that σxi = αxi . Therefore,
1 < σxi < 1 + ε. We pick wxi = K/σ0 − σxi − 1. Again, the computation cost is positive.

5. For the next n services Cyi where 1 ≤ i ≤ n we set selectivity σyi = (1 + ε)αyi so that 1 + ε <
σyi < (1 + ε)2. Similarly, choose wyi = K/(σ0(1 + ε))− 1− σyi .

6. For the next n services, Czi for 1 ≤ i ≤ n, we pick wzi and σzi such that 1 + σzi +wzi = αziK and
set σzi = (1 + 2ε).

The size of I2 is clearly polynomial in the size of I1.
We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has

a solution with permutations a and b. Then, we prove that I2 has a solution of the form shown in
Figure 2.14. C0 appears first, and has n outgoing links that input into services Cx1 through Cxn . All
other services just have one output. For 1 ≤ i ≤ n, the output of service Cxi goes to service Cyλ1(i) and
the output of service Cyλ1(i) goes into the input of service Czλ2(i). We now prove that the period of this
mapping is exactly K.

1. The period of the first service C0 is 1+wo+nσ0 = 1+K−1−nσ0 +nσ0 = K, by construction.
2. The period of services Cxi is σ0(1 + wxi + σxi) = σ0(1 +K/σ0 − σxi − 1 + σxi) = K.
3. The next n services are generated using the values from set Y . The period of service Cyλ1(i) for

all 1 ≤ i ≤ n is σ0σ
x
i (1 + wyλ1(i) + σyλ1(i)) = σ0σ

x
i (1 +K/(σ0(1 + ε))− 1− σyλ1(i) + σyλ1(i)) =

σ0σ
x
iK/(σ0(1 + ε)) < K, since σxi < (1 + ε).

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 39

C0

Cx
λ1(2)

Cy
λ2(n)Cx

λ1(n)

Cy
λ2(1)

Cy
λ2(2)

Cz
1

Cz
2

Cz
n

Cx
λ1(1)

out

out

out

in

Figure 2.14: Structure of the optimal execution graph.

4. The period of service fλ2(i) for all 1 ≤ i ≤ n is

P = σ0σ
x
i σ

y
λ1(i)(1 + wzλ2(i) + σzλ2(i))

= σ0.α
xi(1 + ε)αyλ1(i) .Kαzλ2(i)

= σ0α
2n(1 + ε)K

=
1

(1 + ε)α2n
α2n(1 + ε)K

= K

We now prove that if we have a solution to I2, then we have a solution to I1. Say we have a mapping
of services with period is at most K.

Observation. C0 must appear first in the mapping, and all other services must come after C0.

Proof. If a service Csi , s ∈ {x, y, z} is not after C0, its period is at least 1+wsi +σsi , since the selectivity
of all other services is greater than 1.

1. For services Cxi , the period is at least 1 + wxi + σxi = K/σ0 > K, since σ0 < 1.
2. For servicesCyi , we have period 1+wyi +σyi = K/(σ0(1+ε)) > K since σ0 = 1/((1+ε)α2n) <

1/(1 + ε).
3. For services Czi , we have 1 + σzi + wzi > Kα2n > K by definition.

�

Observation. By construction, we know that for the period to be less than K, C0 can have at most n
outgoing communications.

Observation. All of C0’s outgoing links go directly into Cx1 through Cxn .

Proof. We know that wxi = K/σ0 − σi − 1. Assume for the sake of contradiction that Cxi is after some
service Csj , s ∈ {x, y, z}. Then the period of Cxi is σ0σ

s
j (1 + wxi + σxi) = σ0σ

s
j (K/σ0) > K since all

σsj > 1. �

Observation. Each of these services Cx1 through Cxn can have at most one outgoing branch.

Proof. IfCxi had two branches, the period would be σ0(1+wxi +2σxi) = σ0(1+K/σ0−1−σxi +2σxi) =
K + σ0σ

x
i > K. �

40 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Observation. The outgoing branches from Cx1 through Cxn go into distinct services Cy1 through Cyn, not
necessarily in order.

Proof. Assume for contradiction that we can put serviceCsj , s ∈ {y, z} betweenCxk andCyi . The period
of Cyi is σ0σ

x
kσ

s
j (1 + wyi + σyi) > σ0(1 + ε)(1 + K/(σ0(1 + ε)) − 1 − σyi + σyi) = K, since σxk > 1

and σsj > (1 + ε). �

Observation. Again, these services Cy1 through Cyn can have only one outgoing edge.

Proof. If they have 2 edges and if service Cxk precedes this service Cyi , their period is

P = σ0σ
x
k(1 + wyi + 2σyi)

> σ0(K/(σ0(1 + ε)) + σyi)

> K/(1 + ε) + σ0(1 + ε)

= K/(1 + ε) +Kε(1 + ε)/(1 + ε)2

= K.

�

Observation. Finally, all of the services Czi are on these outgoing n edges.

Therefore, the structure of the graph to get a period of K is exactly as is shown in the figure.
Let us consider the service Czk , which is chained after services Cxi and Cyj . The period of service Czk

is

σ0σ
x
i σ

y
j (1 + wzk + σzk) ≤ K

σ0.α
xi(1 + ε)αyjKαzk ≤ K

σ0(1 + ε)Kα(xi+yj+zk) ≤ K

σ0(1 + ε)α(xi+yj+zk) ≤ 1

1

(1 + ε)α2n
(1 + ε)α(xi+yj+zk) ≤ 1

α(xi+yj+zk) ≤ α2n

xi + yj + zk ≤ 2n

Since all the sums are less than or equal to 2n and
∑n

i=1A[i] = n(n + 1), all sums have to be equal
to 2n. Because xi + yj + zk = 2n ⇔ i + j = A[k], we have a solution to I1. This concludes the
proof. �

Proposition 2.13. The problem MINPERIOD-INORDER without dependence constraints is NP-hard.

Proof. We use the same reduction as for Proposition 2.13, because the optimal operation list fulfilled
the constraints of the INORDER model. �

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 41

Restriction to chains

For the period minimization problem with communication costs, there exists an optimal plan that is a
forest. This means that the complexity of the latter problem is the same when restricting to forest-shaped
execution graphs. In this section, we establish the polynomial complexity of the period minimization
problem when restricting to chains. Note that in this case, the three models of communication costs are
equivalent.

Proposition 2.14. The problem MINPERIOD-* when restricting to linear chain execution graphs is
polynomial for all models.

Proof. On a chain of servers, the models INORDER and OUTORDER are equivalent: they lead to the
same value of the period. Consider an optimal execution graph EG for either model. Let Ci → Cj be
two successive services. We suppose that

max{1 + wi + σi, σi(1 + wj + σj)} ≤ max{1 + wj + σj , σj(1 + wi + σi)}

otherwise we can exchange their positions. Let w′k = 1 + wk + σk for all k. If σi, σj ≤1, we have
w′i ≤ w′j , and if σi, σj ≥ 1, then we have σi

w′i
≤ σj

w′j
and the only remaining case is σi < 1 and σj > 1.

Therefore the problem can be solved by the following greedy algorithm: place services of selectivity
less than 1 by increasing value of w′k, and then have them followed by services of selectivity at least 1
arranged by increasing value of σk

w′k
.

Similarly, for the model OVERLAP, we can suppose that

max{1, wi, σi, σiwj , σiσj} ≤ max{1, wj , σj , σjwi, σjσi}

Let w′k = max{1, wk} for all k. Then we see that max{w′i, σiw′j} ≤ max{w′j , σjw′i}. We obtain the
same greedy algorithm as above with the new value of w′k. �

2.4.6 Latency minimization

This section is the counterpart of Section 2.4.5 for the latency. First we address the following prob-
lem: given an execution graph, what is the complexity of determining the operation list that leads to the
best latency? This problem turns out to be NP-hard for all models (while determining the best period
was polynomial for the OVERLAP model). The general optimization problems MINLATENCY-* are all
NP-hard. We conclude this section by providing the complexity of the problems where we restrict the
execution graph to be a chain or a forest.

Optimal latency for a given execution graph

As for the optimization of the period, the latency of a plan depends upon the operation list. We prove
in this section that the computation of the optimal latency for a given execution graph is NP-hard for the
three models.

Theorem 2.8. Given an execution graph, the problem of computing the optimal operation list that leads
to the optimal latency is NP-hard for the three models.

The proof of Theorem 2.8 is given by Propositions 2.15, 2.16 and 2.17.

Proposition 2.15. Given an execution graph, the problem of computing the optimal operation list that
leads to the optimal latency is NP-hard for the model OUTORDER.

42 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Proof. We consider the associated decision problem: given an application A = (F ,G), an execution
graph EG for this application, and a bound K, does it exist an operation list for EG such that the
latency does not exceed K? This problem is obviously in NP: given A, EG and an operation list, we
can compute max{EndComm0

(i,j)| Ci → Cj ∈ E} and check whether this value does not exceed K.
The NP-completeness is obtained by reduction from RN3DM. Let I1 be an instance of RN3DM:

given an integer vector A = (A[1], . . . , A[n]) of size n, does there exist two permutations λ1 and λ2 of
{1, 2, . . . , n} such that ∀1 ≤ i ≤ n, λ1(i) +λ2(i) = A[i]? We can suppose that

∑n
i=1A[i] = n(n+ 1),

otherwise we know that the instance has no solution. We associate to I1 an instance I2 with n+2 services
C0 to Cn+1, without dependence constraints, all of selectivity 1, and whose costs are as follows:

– w0 = wn+1 = 1;
– wi = B[i] = n−A[i] + n2 for 1 ≤ i ≤ n.

We let K = n + 4 + n2. The execution graph is a fork-join plan EG represented in Figure 2.15. The
size of the instance I2 is linear in the size of the instance I1.

C2

C1

Cn

Cn+1
outin C0

Figure 2.15: The fork-join execution graph.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a
solution λ1, λ2. Then for 1 ≤ i ≤ n, the services Ci are fed in the order λ1 and the receptions are done
in the order n + 1 − λ2. For service Ci, the computation begins at time 2 + λ1(i) and is completed at
time 2 + λ1(i) + B[i]. There remain λ2(i) communications to do when the service Ci sends its data to
service Cn+1. So the final latency is at least l(i) = λ1(i)+B[i]+λ2(i)+4 for any i. In fact, we see that
the latency L is equal to equal to maxi l(i). Hence L ≤ maxi λ1(i) + B[i] + λ2(i) + 4 = n+ 4 + n2.
That proves that I2 has a solution.

Suppose now that I2 has a solution. Let λ1 be the sending order from C0 and λ2 be a permutation
such that n+ 1− λ2 is the order of receptions by Cn+1. For service Ci, the computation begins at time
2+λ1(i) and is completed at time 2+λ1(i)+B[i]. There remain λ2(i) communications to do when the
service Ci send its data to service Cn+1. So the final latency L is at least l(i) = λ1(i) +B[i] +λ2(i) + 4
for all i, and we haveL ≤ K =≤ n+4+n2. Hence λ1(i)+B[i]+λ2(i) ≤ n+n2, or λ1(i)+λ2(i) ≤ A[i]
for all i. Summing up, we see that all these inequalities are in fact equalities, hence a solution to I1

3. �

Proposition 2.16. Given an execution graph, the problem of computing the optimal operation list that
leads to the optimal latency is NP-hard for the model INORDER.

Proof. We use the same reduction as for Proposition 2.15, because the optimal operation list fulfilled
the constraints of the INORDER model. �

3. Note that we did not define λ in I2. As pointed out before, we can always enforce a period λ equal to L = K to avoid
any resource conflict.

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 43

Proposition 2.17. Given an execution graph, the problem of computing the optimal operation list that
leads to the optimal latency is NP-hard for the model OVERLAP.

Proof. This proof uses the reduction in the proof of Proposition 2.15. Let I1 be an instance of RN3DM.
Let I2 be the instance associated to I1 by this proof. Let EG be the execution graph presented in
Figure 2.15. A valid solution for the model OUTORDER is valid for the model OVERLAP. We show
the converse: for any valid solution involving multi-port communications, there is a solution involving
only one-port communications and whose latency is at least as good. Intuitively, when there is a single
predecessor common to several nodes, the best is to feed these nodes sequentially. Sharing the bandwidth
would only delay the first communications without accelerating the other ones.

Suppose that there exists a valid operation list OL1 for OVERLAP on instance I2. Let λ1 be the
completion order of the communications from C0. We construct an operation list OL2 such that all
communications are still done in the order λ1 but their assigned bandwidth ratios are now all equal to
1 (which means that the communications are done sequentially in OL2). For 1 ≤ i ≤ n, the commu-
nication C0 → Ci is completed not later in OL2 than in OL1: if it is the λ1(i)-th communication, it is
completed at least at time λ1(i) after the end of the computation of C0 in OL1, and this value is obtained
in OL2.

Let λ2 be the reverse order of the beginning of the communications to Cn+1 in OL1. In OL2, we
execute these communications in the order n+ 1− λ2 with bandwidth ratio 1. The time needed for the
the last i sends in OL2 is not larger in OL1, because it is equal to i in OL2 and at least this value in OL1.

In this plan, a valid operation list for the model OVERLAP is therefore valid for the model OUT-
ORDER with the hypothesis λ ≥ max{EndComm0

(i,j)| Ci → Cj ∈ E}. This concludes the proof. �

Algorithm 5: Computation of the latency on a tree.
Data: tree T
Result: latency L
if T is restricted to a leaf Ci then1

L = wi2

else3

Let T1, ..., Tk be the subtrees of the children of the root C0 of T ;4

for i = 1 to k do Compute the optimal latency Li of the subgraph Ti;5

Let σ be a permutation such that Lσ(1) ≤ ... ≤ Lσ(k);6

Let Cj be the root of T ;7

Let L = 1 + w0 + σ0 ×max1≤i≤k{(k − i+ 1) + Lσ(i)};8

end9

Proposition 2.18. Algorithm 5 computes in time O(n log(n)) the optimal latency of a plan whose exe-
cution graph is a tree.

Proof. First we note that for tree-shaped execution graph, all models are equivalent with respect to the
latency: as explained in the proof of Proposition 2.17, one-port communications are always dominant.

For any node, the algorithm feeds the subtrees by non-increasing latency, which is clearly optimal.
�

As for the period (Theorem 2.6), we point out that Theorem 2.8 holds for regular streaming applica-
tions (without selectivities). Again, this is an important and new result in that context.

44 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Computing the optimal latency

In this section, we address the complexity of the latency minimization problem for the three models.
Note here that the fact that finding the operation list given an execution graph is NP-complete does not
automatically imply that the problem of finding the plan is NP-complete. For example, the optimal
plan may always consists of a simple execution graph for which the operation list can be computed in
polynomial time. Therefore, in order to prove that the latency minimization problem is NP-complete, we
have to argue that either (i) computing the execution graph that minimizes latency is NP-complete (as we
did for the period minimization proofs) or (ii) that the plans that minimize latency contain the “difficult”
execution graphs that do not allow us to compute the best operation list easily. In this instance, we prove
the following result using the second option.

In Algorithm 1, we use the following property: the completion time of a service does not depend on
the number of other successors of its direct predecessors. This is no more true in a model with commu-
nication cost: for a processor with many successors, we have to schedule the outgoing communications.
Then, Algorithm 1 is not optimal in a model with communication costs

Theorem 2.9. Problems MINLATENCY-OVERLAP, MINLATENCY-OUTORDER and MINLATENCY-
INORDER without dependence constraints are all NP-hard.

The proof of Theorem 2.9 is given by Propositions 2.19, 2.20 and 2.21.

Proposition 2.19. The problem MINLATENCY-OUTORDER without dependence constraints is NP-
hard.

Proof. We consider the associated decision problem: given a period L, is there a mapping of latency less
thanL? The problem is obviously in NP: given aA, EG and OL, we can compute max{EndComm0

(i,j)|
Ci → Cj ∈ E} and check wether this value does not exceed K.

The NP-completeness is obtained by reduction from RN3DM, a special instance of 3-dimensional
matching. Let I1 be an instance of RN3DM: given an integer vectorA = (A[1], . . . , A[n]) of size n ≥ 2,
does there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that ∀1 ≤ i ≤ n, λ1(i) + λ2(i) =
A[i]? We can suppose that 2 ≤ A[i] ≤ 2n for all i and that

∑n
i=1A[i] = n(n+ 1), otherwise we know

that the instance has no solution. We construct an instance I2 with n+ 2 services as follows:
– one service F (where F stands for fork) with cost wf and selectivity σf both equal to 1

20n ;
– n services Ci, 1 ≤ i ≤ n, with cost wi = 10n−A[i] and selectivity σi = σ = 1− 1

2n ;
– one service J (where J stands for join) with cost wj = 1 and selectivity σj = 200n2 − 1.

Given this construction, we ask whether this set of services can be arranged to obtain a latency at most
K = 1

2 + 10nσn + 1
20n . The size of I2 is clearly polynomial in the size of I1.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a
solution with permutations λ1 and λ2. Then, we prove that I2 has a solution whose plan is a fork-
join graph with F as the source, having the n services Ci as its children, and J being the final node,
successor of all the n services Ci. The services Ci are fed in order λ1 and the reception are done in
order n + 1 − λ2. For service Ci, the computation begins at wf + σfλ1(i) = σfλ1(i) + 1

20n and is
completed at wf + σf (λ1(i) + wi). There remain λ2(i) communications of size σfσ ≤ σf to execute
when service Ci sends its data to final service J . The start-up time of J is bounded by maxi l(i), where
l(i) = wf+σf (λ1(i)+wi+σλ2(i)) ≤ wf+σf (λ1(i)+10n−A[i]+λ2(i)) = wf+σf (10n) = 1

2 + 1
20n .

Hence this plan achieves a latency at most 1
2 + 1

20n + σfσ
n(wj + σj) = 1

2 + 10nσn + 1
20n = K. This

proves that I2 has a solution.
We now prove that if we have a solution to I2, then we have a solution to I1. Say we have a mapping

of services with latency at most K. Note that σn < σ < 1. Note also that 0.7 > σn > 1
2 for all n,

2.4. PROBLEMS WITH COMMUNICATION COSTS ON HOMOGENEOUS PLATFORMS 45

because the sequence un =
(
1− 1

2n

)n is non-decreasing (and converges to 1√
(e)

, where e is the base of

the natural logarithm). As a consequence, we have K < 1/2 + 7n.
We show that the plan necessarily is a fork-join. We make some preliminary observations:
– if one service Ci has no predecessor, then the latency is at least wi + σ ≥ wi ≥ 8n > K
– if service J has no predecessor, then the latency is at least wj + σj = 200n2 > K
– if service J is a direct successor of service F , then the latency is at least wf + σf (wj + σj) ≥

10n > L

So we know that F is a predecessor of all nodes and that the predecessors of J include F and at least
one of the Ci. Assume (by contradiction) that we have exactly k < n services Ci in the list of the
predecessors of J . The latency obtained this way is at least Lk:

Lk = wf + σf (min(wi) + σk(wj + σj) ≥
1

20n
+

1

20n

(
8n+ σk200n2

)
.

We derive Lk −K ≥ 10n(σk − σn)− 1
10 . But

σk − σn ≥ σn−1 − σn = σn−1(1− σ) ≥ σn(1− σ) ≥ 1

2

1

2n
=

1

4n
.

Hence Lk −K ≥ 10n
4n −

1
10 > 0, the desired contradiction, and J is a successor of all other services.

There remains to show that each service Ci is a direct successor of F to obtain the fork-join plan.
But if two services Ci and Cj were serialized, the latency would be at least L′, where

L′ = wf + σf (min(wi) + σmin(wi) + σn(wj + σj).

We get L′ −K ≥ 1
20n8n(1 + σ)− 1

2 . But σ > 3
4 since n ≥ 2 hence L′ −K > 0, again a contradiction.

Now that we have the fork-join plan, we assume that the services Ci are fed in order λ1 and the
reception are done in order n + 1 − λ2. For service Ci, the latency is at least l(i) = wf + σf (λ1(i) +
wi + σλ2(i)) and we must have l(i) ≤ 1

2 + 1
20n for all i. We have the following case analysis:

– If for some i we had λ1(i) + λ2(i) > A[i], then λ1(i) + λ2(i) ≥ A[i] + 1 (because we deal with
integers) and we would derive l(i) = wf + σf (10n+ λ1(i) + λ2(i)− A[i] + (σ − 1)λ2(i)) and
l(i)− 1

2 −
1

20n ≥ σf (1− λ2(i)
2n) > 0, a contradiction.

– If for some i we had λ1(i) + λ2(i) < A[i], then by symmetry we would have some i′ such that
λ1(i′) + λ2(i′) > A[i′]. This is because

∑
i λ1(i) + λ2(i) = n(n + 1) =

∑
iA[i]. Using i′ we

obtain a contradiction as above.
– We conclude that λ1(i) + λ2(i) = A[i] for all i, hence a solution to I1.

This concludes the proof. �

Proposition 2.20. The problem MINLATENCY-INORDER without dependence constraints is NP-hard.

Proof. We use the same reduction as for Proposition 2.19, because the optimal operation list fulfilled
the constraints of the INORDER model.

�

Proposition 2.21. The problem MINLATENCY-OVERLAP without dependence constraints is NP-hard.

Proof. The reasoning for the proof of Proposition 2.17 can be applied to Proposition 2.19, because the
optimal plans have the same structure. �

46 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Restriction to forests and chains

We discuss here the complexity of latency minimization problems when the mappings are restricted
to forests and chains. In such cases, the latency does not depend of the communication cost model.

Proposition 2.22. The problem MINLATENCY-* when restricting to plans whose execution graphs are
linear chains is polynomial for all models.

Proof. Let EG be an optimal chain for the latency. Suppose that Ci is the direct predecessor of Cj . We
have

1 + wi + σi + σiwj ≤ 1 + wj + σj + σjwi
⇐⇒ 1−σi

1+wi
≥ 1−σj

1+wj

We obtain the following greedy algorithm : order the services by decreasing values 1−σi
1+wi

. �

Proposition 2.23. The problem MINLATENCY-* when restricting to plans whose execution graphs are
forests is NP-hard for all models.

Proof. We consider the associated decision problem: given a latencyK, is there a plan with an execution
graph that is a forest of latency less than K? We have proved in Subsection 2.4.6 that for an execution
graph that is a forest we can compute the optimal operation list for the latency in polynomial time. That
means that the problem is in NP.

The NP-completeness is obtained by reduction from 2-Partition [34]. Let I1 be an instance from
2-Partition: given an integer set X = {x1, ..., xn}, does there exist a subset I such that

∑
xi∈I xi =

1
2

∑
xj∈X xj? Let xM = maxxi∈X{xi}, S =

∑
xj∈X xj , β = A−S

2A+S and A > 4
3n3nβn × x3

M . We
construct an instance I2 with n+ 1 services such that:

– ∀i ≤ n,wi = xi
A ;

– ∀i ≤ n, σi = 1− xi
A + β

x2i
A2 ;

– wn+1 = 2A+S
2A−2S ;

– σn+1 = 1;
– K = wn+1 − 3S2

8A(A−S) +
n3nβnx3M

A3 .
The size of I2 is polynomial in the size of I1.
We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a

solution I . We place the services of I in a chain, as predecessors of Cn+1 in any order. The remaining
services are placed in parallel without any predecessor. Their latency is smaller than 1 and K > 1. That
means that I2 has a solution if and only if the latency L of wn+1 is smaller than K. Suppose that the
services in I are placed in the order C ′1, ..., C

′
k−1 along the chain, and let Cn+1 = C ′k. We have:

L =
∑

i<k

∏
j<i σ

′
jw
′
i +
∏
j<k σ

′
jwn+1

≤
∑

i<k
x′i
A (1−

∑
j<i

x′j
A + 3nβn(xMA)2)

+wn+1(1−
∑

i<k
x′i
A + β

∑
i<k(

x′i
A)2 +

∑
i<k(

x′i
A)2 + 2

∑
i<j<k

x′ix
′
j

A2 + 3nβn
x3M
A3)

≤ wn+1 +
∑

i<k
x′i
A (1− wn+1) +

∑
i<k(

x′i
A)2wn+1(β + 1) +

∑
i<j<k

x′ix
′
j

A2 (2wn+1 − 1) + n3nβn
x3M
A3

≤ wn+1 +
∑

i<k x
′
i(

−3S
2A(A−S)) +

∑
i<k x

′
i
2(3

2A(A−S)) +
∑

i<j<k x
′
ix
′
j(

1
A(A−S)) + n3nβn

x3M
A3

≤ wn+1 + (3
2A(A−S))(−S

∑
i<k x

′
i +
∑

i<k x
′
i
2 + 2

∑
i<j<k x

′
ix
′
j) + n3nβn

x3M
A3

≤ wn+1 + (3
2A(A−S))(S2 −

∑
i<k x

′
i)

2 − (3
2A(A−S))S

2

4 + n3nβn
x3M
A3

≤ K

2.5. PROBLEMS ON A LINEAR HETEROGENEOUS PLATFORM 47

Then, the instance I2 has a solution.
Suppose now that I2 has a solution. Let L be the latency of Cn+1 and I be its set of predecessors.

The plan is a forest, which means that the services of I are chained. We prove as in the previous
computation that

L ≥ (K + (
3

2A(A− S)
)(
S

2
−
∑
i∈I

x′i)
2)− 2n3nβn

x3
M

A3

By hypothesis, we have L ≤ K. Hence:

(3
2A(A−S))(S2 −

∑
i∈I x

′
i)

2) ≤ 2n3nβn
x3M
A3

⇐⇒ (S2 −
∑

i∈I x
′
i)

2 ≤ 4n3nβn
x3M (A−S)

3A2

By construction of A, we have 4n3nβn
x3M (A−S)

3A2 ≤ 4n3nβn
x3M
3A < 1. This proves that

(S2 −
∑

i∈I x
′
i)

2 = 0. Then I is a valid solution for the instance I1. This concludes the proof. �

Summary

We have identified in this section three realistic communication models and we have addressed the
following problems:

– Given an execution graph, what is the complexity of computing the period and the latency?
– What is the complexity of the general period or latency minimization problem?
Sections 2.3 and 2.4 give a complete set of complexity results on all variants of the one-to-one

mapping problem of filtering services. In [70], the problem of scheduling filtering applications was
studied in the case of linear platforms. In the next section, we extend results of this paper to several
variants of the problem.

2.5 Problems on a linear heterogeneous platform

In this section, we extend the results of [70] in another important direction: we investigate the situ-
ation where services are no longer independent but instead where they are ordered along a linear chain
of precedence. In this case, both services and processors are arranged according to a fixed prescribed
order. This problem is the extension of the well known chains-to-chains problem [61] to the case where
nodes have a selectivity, and it has a great practical significance because linear dependence chains are
ubiquitous in workflow applications (see [73, 74] and the references therein).

We first describe the different variants of this problem studied in this section. Then, we prove the
complexity of all this variants.

2.5.1 Framework

This section is devoted to a precise statement of these optimization problems.
The basic network topology that we consider is a linear chain of m processors S1, ..., Sp. Processor

Su can only send data to Su+1, for 1 ≤ u ≤ p − 1. This corresponds to a hierarchical network, where
S1 is the processor acquiring the data. Processor Sp is at the top of the hierarchy, and outputs the tuples
of each data set that were processed through all services.

We define below the different variants of the problem.

48 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Service ordering

The more flexible problem is the case with no precedence constraints as in [70]: services are inde-
pendent, and they can be applied on the data in any order. This problem is called Free ordering.

We also consider the case in which services are totally ordered along a linear dependence chain:
there is a precedence constraint from Ci to Ci+1 for 1 ≤ i ≤ n−1. We note this problem as the Ordered
instance.

Service costs

The cost of executing a service depends (i) upon the processor it is assigned to and (ii) upon the
combined selectivity of its predecessors. As for (i), each service has a different cost on each processor:
the execution of service Ci on processor Su takes time Ci,u. These costs may be arbitrary, or in some
cases they take the form Ci,u = wi

su
: they are proportional to an amount of work wi required by the

service, and inversely proportional to the speed su of the processor. In the latter case, two different
services have the same execution time ratios on two different processors; proportional costs are also
called uniform costs in the scheduling literature [15]. As for (ii), the cost of executing a service is
modified by all its predecessors: if pred(Ci) denotes the set of all predecessors of Ci in the mapping,
then its execution cost on processor Su is

(∏
Cj∈pred(Ci)

σj

)
× wi,u. Basically, we see there are two

ways to decrease the final cost of a service: (i) map it on a server that executes it fast; and (ii) map it as
a successor of services with small selectivities.

The execution of service Ci on processor Su takes a time Ci,u. In the most general instance, these
costs are Arbitrary.

However, for uniform machines, costs Ci,u take the form Ci,u = wi
su

, where wi is the amount of
work required by the service, and su is the speed of processor Su. We refer to such costs as Proportional
costs.

Communication costs

We consider two models of platforms, with or without communication costs. For the model with
communication costs, we use the same framework as [70]. They consider a model without computa-
tion/communication overlap: a server cannot compute some data and communicate with another server
at the same time, these actions are serialized.

Let Fu denote the set of services that are mapped on processor Su. Let PREDu be the set of services
mapped on processors Sv before Su:

PREDu = {Cj | ∃v < u, alloc(Cj) = Sv}

Equivalently, PREDu =
⋃u−1
v=1 Fv. Finally, let Gu denote the set of services that are mapped before Su,

plus those mapped onto Su:
Gu = PREDu ∪ Fu

The communication cost between servers Su and Su+1 is given by the value

Ccomm(u) = l(u)×
∏

Cj∈Gu

σj

where l(u) is the inverse of the bandwidth of the link from Su to Su+1. Indeed, the output of Su is
filtered by all services mapped before Su, and by those mapped on Su, it is thus the set Gu. We take

2.5. PROBLEMS ON A LINEAR HETEROGENEOUS PLATFORM 49

into account the cost Ccomm(0) of input for processor S1 and the cost Ccomm(p) of output for processor
Sm. The corresponding bandwidths l(0) and l(p) corresponds to the communication links between the
platform and the external world (the user).

The model with communication costs is denoted by Cost and the model without by NoCost.

Objective function

As Sections 2.3 and 2.4, the criteria considered are the period and the latency. The context of chain
of tasks however simplifies the formula used to computes this criteria.

Formally, we define the period and the latency using Fu, PREDu, and Gu, which correspond to the
sets of services mapped on, before, and up to Su respectively. Note that PREDu ⊂ pred(Cj) ⊂ Gu
for each service Cj ∈ Fu: pred(Cj), the predecessors of Cj , are all services mapped onto preceding
processors, plus those mapped on Su before Cj . To simplify notations, suppose that services in Fu
are placed in order C1 → C2 → ... → Ck. We obtain the following computation cost Ccomp(u) for
processor Su:

Ccomp(u) =

 ∏
Cj∈PREDu

σj

 k∑
i=1

i−1∏
q=1

σq

× Ci,u
For a model without communication cost, Ccomp(u) is the cycle-time of processor Su. The period is

P = max
1≤u≤p

{Ccomp(u)}

and the latency is

L =

p∑
u=1

Ccomp(u)

For a model with communication cost, we need to take into account Ccomm(u). Since we consider
a model with no overlap, computations and communications are serialized and we obtain a period

P = max
1≤u≤p

{Ccomm(u− 1) + Ccomp(u) + Ccomm(u)}

and a latency

L = Ccomm(0) +

p∑
u=1

(Ccomp(u) + Ccomm(u))

Taxonomy of problems

The taxonomy of problems differs of that of the previous sections because of the number of param-
eters used. We denote each problem by Obj −XY Z, where:

– Obj = MINPERIOD|MINLATENCY denotes the objective function.
– X = O|F denotes the service ordering (Ordered or Free);
– Y = P |A denotes the service costs (Proportional or Arbitrary);
– Z = C|N denotes the communication costs (Cost or NoCost);
For instance, MINPERIOD-FAC is the problem of minimizing the latency with no precedence con-

straints between services, arbitrary service costs, and with communication costs.
In addition, * denotes any instance of the problem, thus MINLATENCY-F** denotes the problem

of minimizing the latency with no precedence constraints between services, for any kind of service and
communication costs.

50 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

2.5.2 Period minimization

In this section we prove the NP-completeness of problems MINPERIOD-F** (all problems with free
ordering), and we present a polynomial algorithm for problems MINPERIOD-O** (all problems with
fixed ordering).

Free ordering

Theorem 2.10. All problems MINPERIOD-F** are NP-hard.

Proof. We show that MINPERIOD-FPN is NP-hard. All other problems are more difficult instances
since Proportional is a particular case of Arbitrary, and NoCost a particular case of Cost.

The proof is straightforward. Consider the associated decision problem: given a period K, is there
a mapping whose period does not exceed K? The problem is obviously in NP: given a period and a
mapping, it is easy to check in polynomial time whether it is valid or not. The NP-completeness is
obtained by reduction from 2-PARTITION [34]. Let I1 be an instance of 2-PARTITION: given a set
X = {x1, ..., xn}, does there exist a subset I such that

∑
xi∈I xi = 1

2

∑
xj∈X xj? We construct the

instance I2 with n services and 2 servers such that:
– ∀1 ≤ i ≤ n, σi = 1
– ∀1 ≤ i ≤ n,wi = xi
– s1 = s2 = 1
– K = 1

2

∑
xj∈X xj

The size of I2 is polynomial in the size of I1. Suppose that I1 has a solution I . We construct alloc such
that: ∀i, alloc(i) = 1 ⇐⇒ xi ∈ I . Then, the period of the mapping isP = max{

∑
xi∈I xi,

∑
xi /∈I xi},

that means P = K. Then, I2 has a solution.
Suppose now that I2 has a solution. Let I = {xi|alloc(Ci) = S1}. By hypothesis, we have∑
xi∈I xi ≤ K and

∑
xi /∈I xi = 2K −

∑
xi∈I xi ≤ K. We can conclude that

∑
xi∈I xi = 1

2

∑
xj∈X xj .

Then, I1 has a solution. This concludes the proof. �

Fixed ordering

Theorem 2.11. Algorithm 6 computes the optimal mapping for problem MINPERIOD-OAC in time
O(m× n3).

Proof. Let I be an instance of MINPERIOD-OAC. We prove by induction that for any pair (i, j), the
value P (i, j) returned by Algorithm 6 is the optimal period on the instance Ii,j restricted to the last i
services and the last j servers. Moreover, alloc(i, j, .) is the corresponding allocation function.

First, we compute the values P (0, j) and P (i, 1) for 1 ≤ j ≤ m and 1 ≤ i ≤ n. In these cases,
there is only one possible mapping: for P (0, j), there are no services to map; for P (i, 1), all services
must be mapped onto the last server. Thus the computed period is optimal.

Now we consider the placement of the remaining services. Suppose that for all j′ < j and for all i,
P (i, j′) is optimal. Then we show that P (i, j) also is optimal. We define, for all 0 ≤ r ≤ i, f(r) as the
period obtained by placing the r first services on server m− j + 1 and the other services optimally onto
the next servers. We prove that the minimum of the values f(r) is the optimal value for P (i, j). Let
alloc∗ be an allocation of the last i services on the last j servers and P ∗ be the period of this mapping.
Let S = {i | alloc∗(i) = p − j + 1}, and k = |S|. Let P ′ be the period on alloc∗ for the last i − k

2.5. PROBLEMS ON A LINEAR HETEROGENEOUS PLATFORM 51

Algorithm 6: Optimal algorithm for MINPERIOD-OAC.

Data: n services of selectivities σ1, ..., σn,
p servers with a matrix of costs C, and
a vector of communication costs l
Result: a mapping G optimizing the latency
P (0, 1) = l(p− 1) + l(p);
for j = 2 to p do

P (0, j) = max{l(p− j) + l(p− j + 1), P (0, j − 1)};
for i = 1 to n do

P (i, 1) = l(p− 1) + Cn−i+1,p+
σn−i+1(P (i− 1, 1)− l(p− 1));
∀1 ≤ k ≤ i, alloc(i, 1, n− k + 1) = p;

for j = 2 to p do
for i = 1 to n do
∀ 0 ≤ r ≤ i, f(r) = max{l(p− j)+∑r

q=1

∏q−1
u=1 σn−i+uCn−i+q,p−j+1+∏r

u=1 σn−i+ul(p− j + 1),∏r
u=1 σn−i+uP (i− r, j − 1)};

k = argmin1≤r≤i{f(r)};
P (i, j) = f(k);
∀1 ≤ q ≤ k,

alloc(i, j, n− i+ q) = p− j + 1;
∀n− i < q < n− i+ k,

alloc(i, j, q) = alloc(i− k, j − 1, q)

services on the last j − 1 servers. By the hypothesis, P ′ ≥ P (i− k, j − 1) and

P (i, j)≤max{l(j) +
∑

i′∈S
∏
q∈S,q<i′ σq × Ci′,p−j+1

+
∏
q∈S σql(j + 1),

∏
q∈S σqP (i− k, j − 1)}

≤max{l(j) +
∑

i′∈S
∏
q∈S,q<i′ σq × Ci′,p−j+1

+
∏
q∈S σql(j + 1),

∏
q∈S σqP

′}
≤P ∗

Since this is true for any mapping leading to a period P ∗, P (i, j) is the optimal period. We can conclude
that P (n, p) is the optimal period for instance I. �

Corollary 2.1. Problems MINPERIOD-O** have polynomial complexity.

Corollary 2.2. Problems MINPERIOD-O** have polynomial complexity.

Proof. The most difficult problem of MINPERIOD-O** is MINPERIOD-OAC, which is polynomial due
to Theorem 2.11. �

2.5.3 Latency minimization

In this section, we present a polynomial algorithm for problems MINLATENCY-O** (fixed ordering)
and we prove the NP-completeness of problems MINLATENCY-FA*. Recall that problems MINLA-

52 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

TENCY-FP* are showed to be polynomial in [70]. With arbitrary costs instead of proportional costs, the
problem becomes NP-hard, even in the absence of communications.

Fixed ordering

We derive an optimal algorithm for problems MINLATENCY-OAN and MINLATENCY-OAC. The
algorithm for MINLATENCY-OAN (without communications) is presented only because it is simpler to
understand than the algorithm for MINLATENCY-OAC (with communications). The complexity is the
same for both cases.

Algorithm 7: Optimal algorithm for MINLATENCY-OAN.

Data: n services of selectivities σ1, ..., σn ≤ 1 and p servers with a matrix of costs C
Result: a mapping G optimizing the latency
for j = 1 to p do

L(0, j) = 0;
for i = 1 to n do

L(i, 1) = Cn−i+1,p + σn−i+1L(i− 1, 1);
∀1 ≤ k ≤ i, alloc(i, 1, n− k + 1) = p;

for j = 2 to p do
for i = 1 to n do
∀ 0 ≤ l ≤ i, f(l) =∑l

i′=1

(∏i′−1
q=1 σn−i+q

)
Cn−i+i′,p−j+1+(∏l

q=1 σn−i+q

)
L(i− l, j − 1);

k = argmin0≤l≤i{f(l)};
L(i, j) = f(k);
∀1 ≤ q ≤ k,

alloc(i, j, n− i+ q) = p− j + 1;
∀k < q ≤ i, alloc(i, j, n− i+ q) = alloc(i− k, j − 1, n− i+ q);

Theorem 2.12. Algorithm 7 computes the optimal mapping for problem MINLATENCY-OAN in time
O(n3m).

Proof. Let I be an instance of MINLATENCY-OAN. We prove by induction that for any pair (i, j), the
value L(i, j) returned by Algorithm 7 is the optimal latency on the instance Ii,j restricted to the last i
services and the last j servers. Moreover, alloc(i, j, .) is the corresponding allocation function.

First, we compute the values P (0, j) and P (i, 1) for 1 ≤ j ≤ m and 1 ≤ i ≤ n. In these cases,
there is only one possible mapping: either there are no services to map, or all services must be mapped
onto the last server. Thus the computed latency is optimal.

Suppose that for all j′ < j and for all 1 ≤ i ≤ n, L(i, j′) is optimal. Then we prove that for all i,
L(i, j) also is the optimal latency. Let alloc∗ be an allocation of the last i services on the last j servers
and L∗ be the latency of this mapping. Let S = {i | alloc∗(i) = p− j + 1}, and k = |S|. Let L′ be the
latency on alloc∗ for the last i−k services on the last j−1 servers. By hypothesis, L′ ≥ L(i−k, j−1),
and
L(i, j) ≤ f(k)

2.5. PROBLEMS ON A LINEAR HETEROGENEOUS PLATFORM 53

≤
∑

i′∈S
∏
q∈S,q<i′ σq × Ci′,p−j+1

+(
∏
q∈S σq)L(i− k, j − 1)

≤
∑

i′∈S
∏
q∈S,q<i′ σq × Ci′,p−j+1 + (

∏
q∈S σq)L

′

≤ L∗
Since this is true for any mapping leading to a latency L∗, L(i, j) is the optimal latency. We can

conclude that L(n, p) is the optimal latency for instance I. �

Algorithm 8: Optimal algorithm for MINLATENCY-OAC.

Data: n services of selectivities σ1, ..., σn, p servers with a matrix of costs C and a vector of
communication cost l

Result: a mapping G optimizing the latency
for j = 1 to p do

L(0, j) =
∑p

j′=p−j+1 l(j′);

for i = 1 to n do
L(i, 1) = l(p− 1) + Cn−i+1,p + σn−j+1(L(i− 1, 1)− l(p− 1));
∀1 ≤ k ≤ i, alloc(i, 1, n− k + 1) = p;

for j = 2 to p do
for i = 1 to n do
∀ 0 ≤ l ≤ i, f(l) =

l(p− j + 1) +
∑l

i′=1

(∏i′−1
q=1 σn−i+q

)
Cn−i+i′,p−j+1 +

(∏l
q=1 σn−i+q

)
L(i− l, j − 1);

k = argmin0≤l≤i{f(l)};
L(i, j) = f(k);
∀1 ≤ q ≤ k,

alloc(i, j, n− i+ q) = p− j + 1;
∀k < q ≤ i, alloc(i, j, n− i+ q) = alloc(i− k, j − 1, n− i+ q);

Theorem 2.13. Algorithm 8 compute the optimal mapping for problem MINLATENCY-OAC in time
O(n3p).

Proof. The proof is similar to that for Theorem 2.12. We merely add communication costs in the equa-
tions. �

Free ordering

This section is devoted to assessing the most difficult complexity result of this chapter: the NP-
completeness of latency minimization with arbitrary costs, even without taking communications into
account. This important result closes the open question raised in [70].

Theorem 2.14. Problem MINLATENCY-FAN is NP-complete.

Proof. We consider the associated decision problem: given a latency K, is there a mapping of latency
less than K? The problem is obviously in NP: given a latency and a mapping, it is easy to check in
polynomial time whether it is valid or not.

The NP-completeness is obtained by reduction from 2-PARTITION [34], as in Theorem 2.10, but
the reduction is quite involved. Let I1 be an instance from 2-PARTITION: given a setX = {x1, ..., xn},

54 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

does it exist a subset I such that
∑

xi∈I xi = 1
2

∑
xj∈X xj? Let xM = maxxi∈X{xi}, S =

∑
xj∈X xj ,

β = A−S
2A+S and A > 4

3n3n × x3
M . We construct the instance I2 with n + 1 services and 3 servers such

that:
– ∀i ≤ n,Ci,1 = xi

A

– ∀i ≤ n,Ci,2 = 3
(

3A
A−xM

)n
– ∀i ≤ n,Ci,3 = 0

– ∀i ≤ n, σi = 1− xi
A + β

x2i
A2

– Cn+1,1 = Cn+1,3 = 3
(

3A
A−xM

)n
– Cn+1,2 = 2A+S

2A−2S
– σn+1 = 1

– K = Cn+1,2 − 3S2

8A(A−S) +
n3nβnx3M

A3

The size of I2 is polynomial in the size of I1: the greatest value in I2 is A and log(A) is linear in n.
Suppose that I1 has a solution I . We place the services Ci with i ∈ I in any order as a linear chain

on server S1. Then, Cn+1 is placed on S2, and finally the remaining services are placed on S3. The cost
of the services on S3 is null; that means that the latency L of the system is the latency of Cn+1. Let
k = |I|, and for 1 ≤ i ≤ k, let c′i be the cost of the i-th service of I on the chain on server S1, and let σ′i
be its selectivity.

L=
∑

i≤k
∏
j<i σ

′
jc
′
i +
∏
j≤k σ

′
jCn+1,2

≤
∑

i≤k
x′i
A (1−

∑
j<i

x′j
A + 3nβn(xMA)2)

+Cn+1,2(1−
∑

i≤k
x′i
A + β

∑
i≤k(

x′i
A)2 +

∑
i≤k(

x′i
A)2

+2
∑

i<j≤k
x′ix
′
j

A2 + 3nβn
x3M
A3)

≤Cn+1,2 +
∑

i≤k
x′i
A (1− Cn+1,2)

+
∑

i≤k(
x′i
A)2Cn+1,2(β + 1)

+
∑

i<j≤k
x′ix
′
j

A2 (2Cn+1,2 − 1) + n3nβn
x3M
A3

≤Cn+1,2 +
∑

i≤k x
′
i(

−3S
2A(A−S)) +

∑
i≤k x

′
i
2(3

2A(A−S))

+
∑

i<j≤k x
′
ix
′
j(

1
A(A−S)) + n3nβn

x3M
A3

≤Cn+1,2 + (3
2A(A−S))(−S

∑
i≤k x

′
i

+
∑

i≤k x
′
i
2 + 2

∑
i<j≤k x

′
ix
′
j)

+n3nβn
x3M
A3

≤Cn+1,2 + (3
2A(A−S))(S2 −

∑
i≤k x

′
i)

2 − (3
2A(A−S))S

2

4

+n3nβn
x3M
A3

≤K

Then, the instance I2 has a solution.
Suppose now that I2 has a solution. By construction of Cn+1,1 and Cn+1,3, we can see that the

service Cn+1 has to be mapped onto S2 in the solution of I2. Similary, there can be no service Ci
(i ≤ n) on S2. Let L be the latency of Cn+1 and I be its set of predecessor. Suppose that there is a
service Ci with i ∈ I on S2, we have the latency Li of Ci such that

Li ≥ 3
(

A
A−xM

)n
×
∏
i≤n σi

> 3
> K

2.6. CONCLUSION 55

This proves that all the services of I are mapped on S1. We prove as in the previous computation that

L ≥ K +

(
3

2A(A− S)

)(
S

2
−
∑
i∈I

x′i

)2

− 2n3nβn
x3
M

A3

By construction of A, we have

4n3nβn
x3
M (A− S)

3A2
≤ 4n3nβn

x3
M

3A
< 1.

This proves that (S2 −
∑

i∈I x
′
i)

2 = 0. Then I is a valid solution for the instance I1. This concludes the
proof. �

Corollary 2.3. Problem MINLATENCY-FAC is NP-complete.

Summary

In this section, we have assessed the complexity of all considered variants of the problem of mapping
filtering services on linear heterogeneous platforms. Table 2.2 summarizes the complexity of all problem
instances.

2.6 Conclusion

In this chapter, we have explored the problem of mapping filtering streaming applications on large-
scale homogeneous and heterogeneous platforms. As in previous literature, we have essentially re-
stricted the study to one-to-one mappings.

In a simplified model without communication cost, we have exhibited polynomial time algorithms
for latency and period optimization problems on homogeneous platforms, and we have proved the NP-
hardness of these problems on heterogeneous platforms. Then we have identified three natural and
realistic communication models, with and without communication/computation overlap, and with one-
port or bounded multi-port communications. We have addressed the following problems:

– Evaluation: given an execution graph, what is the complexity of computing the period or the
latency?

– Optimization: what is the complexity of the general period or latency minimization problem?
Table 2.1 summarizes the complexity results for one-to-one mappings. We have been able to provide

the complexity of all the optimization problems, thereby providing solid theoretical foundations for the
study of filtering streaming applications. The evaluation of the optimal period for a given graph is
polynomial with the OVERLAP model, and NP-complete for the two other models, and the evaluation of
the optimal latency for a given graph is NP-complete with the three communication cost models. These
results apply to regular workflow applications, which broadens the scope and significance of our results
to quite a large applicative framework.

The results on linear platforms are summarized in Table 2.2. The ordered variant (O*), that corre-
sponds to an interval mapping of a chain of tasks on a linear platform, is polynomial for both period and
latency minimization. With free order of task and general mapping, the period minimization is NP-hard,
when the latency minimization is polynomial when cost of tasks are proportional to speed of processors,
and NP-complete with arbitrary costs.

Altogether, this chapter provides a comprehensive overview of the additional difficulties induced by
heterogeneity and communication costs. In the future, we plan to explore models that allow preemp-
tion. This would require to carefully assess the cost of interruptions. Another important extension of

56 CHAPTER 2. MAPPING FILTERING STREAMING APPLICATIONS

Mapping already given Optimization problem
Period Latency Period Latency

Hom. without comm. Polynomial Polynomial Polynomial Polynomial

Het. without comm.
Polynomial Polynomial NP-hard NP-hard

Inapproximable Inapproximable

Hom. with comm.
OVERLAP: Polynomial NP-hard NP-hard NP-hard
Other models: NP-hard

Table 2.1: Complexity results for one-to-one mappings.

model MINPERIOD MINLATENCY

Linear applications Polynomial Polynomial
General applications
with proportional costs

NP-hard Polynomial

General applications
with arbitrary costs

NP-hard NP-hard

Table 2.2: Complexity results for linear platforms.

this work would be to tackle bi-criteria problems with communication costs. In addition, we plan to
search for approximation algorithms and lower bounds, or at least efficient heuristics, for all NP-hard
problem instances. Allowing some services to be replicated would allow to decrease the period of the
mappings, while data-parallelizing some other services would allow to decrease both period and latency.
To the best of our knowledge, such extensions, which are well-known and widely used in the context of
classical pipelined workflows, have never been addressed for filtering services. This is an interesting but
algorithmically challenging direction to explore.

Chapter 3

Reliability and performance optimization of
pipelined real-time systems

3.1 Introduction

Filtering applications studied in the previous chapter are a generalization of the workflow model.
The selectivity value of a task corresponds to its probability of success. We consider in this chapter the
problem of linear workflow reliability.

Pipelined real-time systems are commonly found in assembly lines and are subject to strict depend-
ability and real-time constraints. They consist of a chain of tasks executing on a distributed platform.
Each task is a block of code with a known amount of work to be processed. The role of the first task
of the chain is to acquire some data set from the environment (thanks to sensor drivers), to process it,
and finally to transmit its result to the second task. Each subsequent task receives its input data from
its immediately preceding task, processes it, and transmits its result to its immediately successor task,
except the last task that transmits it to the environment (thanks to actuator drivers).

Tasks are assigned to processors of the platform using an interval mapping, which groups consecu-
tive tasks of the linear chain and assigns them to the same processor. Interval mappings are more general
than one-to-one mappings, which establish a unique correspondence between tasks and processors; they
are very useful for reducing communication overheads, not to mention the many situations where there
are more tasks than processors and where interval mappings are mandatory. The key performance-
oriented metrics to determine the best interval mapping are the period and the latency. The period is
the time interval between the beginning of the execution of two consecutive data sets. Equivalently, the
inverse of the period is the throughput, which measures the aggregate rate of processing of data. The
latency is the time elapsed between the beginning and the end of the execution of a given data set; hence,
it measures the response time of the system for processing the data set entirely. Minimizing the latency
is antagonistic to minimizing the period, and trade-offs should be found between these two criteria.

Besides real-time constraints, expressed as an upper bound on the period and/or the latency, pipelined
real-time systems must also satisfy crucial dependability constraints, which are expressed as a lower
bound on the reliability of the mapping. Increasing the reliability is achieved by replicating the inter-
vals on several processors. Augmenting the replication level (defined as the average number of times
each interval is replicated) is good for the reliability, but bad for the period and latency, because less
processors will be available for executing the intervals of tasks. We thus have three antagonistic criteria:
reliability, period, and latency.

We evaluate the reliability of a single task mapped onto a processor according to the classical model
of Shatz and Wang [67], where each hardware component (processor or communication link) is fail-

57

58 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

silent and is characterized by a constant failure rate per time unit λ: the reliability of a task of duration
d is therefore e−λd. For an interval of several tasks mapped onto a single processor, we just have to
sum up the task durations, hence obtaining e−λD, where D is the sum of the interval’s task durations.
For a mapping with replication, we compute the reliability by building the Reliability Block Diagram
(RBD) [56, 7] corresponding to this mapping. Here we face the delicate issue that computing the relia-
bility is exponential in the size of the mapping (or equivalently the size of the RBD). To solve this issue,
we insert routing operations in the mapping to guarantee that the RBD is by construction serial-parallel,
therefore allowing us to compute its reliability in linear time.

The models are detailed in Section 3.2 and we discuss related work in Section 3.3.
Our contribution is multifold. In Section 3.4, we show how to compute the different objectives (reli-

ability, expected and worst-case latency, and expected and worst-case period) for a given multiprocessor
mapping.

Then, we derive complexity results for homogeneous platforms in Section 3.5. We prove that:

1. computing a mono-criterion mapping that optimizes the reliability is polynomial (Section 3.5.1);

2. optimizing both the reliability and the period remains polynomial (Section 3.5.2);

3. the problem of optimizing both the reliability and the latency is NP-complete (Section 3.5.3);

4. the problem of assigning processors for a given partition of the chain of task in intervals is poly-
nomial (Section 3.5.5).

Moreover, for homogeneous platforms, a linear program is provided to solve the problem of optimization
of reliability for given bounds on period and latency in Section 3.5.4.

For heterogeneous platforms, we prove that the mono-criterion problem of optimizing the reliability
is NP-complete, and hence all the multi-criteria mapping problems that include the reliability in their
criteria are also NP-complete (Section 3.6).

We provide heuristics in Section 3.7 for the more general problem of optimizing the reliability un-
der constraints on period and latency on a heterogeneous platform, and we conduct experiments on
homogeneous and heterogeneous platforms to assess their performance (Section 3.8).

Finally, we state some concluding remarks and future research directions in Section 3.9.

3.2 Framework

In this section, we detail the application model, the platform model, the failure model, and the
replication model. We end with the formal definition of the mono- and multi-criteria multiprocessor
mapping problems.

3.2.1 Application model

An application is a chain of n tasks C = (τi)1≤i≤n. Each task τi is a block of code that (1) receives
its input from its predecessor τi−1, (2) computes a known amount of work, (3) and produces an output
data set of a known size. Therefore, each task τi is represented by the pair (wi, oi), where wi is the
amount of work and oi is the output data size. By convention, on = 0 because τn emits its result directly
to the environment through actuator drivers. Specifying the size of the input data set required by a
task is not necessary since, by definition of a chain, it is equal to the size of the output data set of its
immediately preceding task. Figure 3.1 shows an example of a chain composed of n tasks.

Executing τi on a processor of speed s takeswi/s units of time. Transmitting the result of τi on a link
of bandwidth b takes oi/b units of time. Knowing the values wi and oi is not a critical assumption since

3.2. FRAMEWORK 59

τ1
o1 o2

τ2 τn
on−1

Figure 3.1: Example of a chain of n tasks.

worst-case execution time (WCET) analysis has been applied with success to real-life processors actually
used in embedded systems. In particular, it has been applied to the most critical existing embedded
system, namely the Airbus A380 avionics software running on the Motorola MPC755 processor [30, 69].

3.2.2 Platform model

The target platform consists of p processors connected by point-to-point communication links. We
note P the set of processors: P = (Pu)1≤u≤p. We assume that communication links are homogeneous:
this means that all links have the same bandwidth b. On the contrary, each processor Pu may have a dif-
ferent speed su. Such platforms correspond to networks of workstations with plain TCP/IP interconnects
or other LANs.

In order to derive a realistic communication model, we assume that the number of outgoing point-to-
point connections of each processor is limited toK. A given processor is thus capable of simultaneously
sending messages to (and receiving messages from) K other processors. Indeed, there is no physical
device capable of sending, say, 100 messages to 100 distinct processors, at the same speed as if it was
a single message. The output bandwidth of the sender’s network card would be a limiting factor. Our
assumption of bounded multi-port communications [48] is reasonable for a large range of platforms,
from large-scale clusters to multi-core System-on-Chips (SoCs).

In addition, we assume that communications are overlapped with computations, that is, a processor
can compute the current instance of task τi and, in parallel, send to another processor the result of the
previous instance of τi. This model is consistent with current processor architectures where a SoC can
include a main processor and several communication co-processors.

3.2.3 Interval mapping

The chain of tasks is executed repeatedly in a pipelined manner to achieve a better throughput.
As a consequence, mapping the chain on the platform involves dividing the chain into m intervals of
consecutive tasks, and assigning each processor to a unique interval. This technique is known as interval
mapping. Figure 3.2 shows an example of a division of a chain of tasks into m intervals.

21 5 76 13 3534 42

I1 I2
o5 o13

Im
o33

Figure 3.2: A chain of tasks divided into m intervals.

In a mapping without replication, each interval is assigned to a single processor. If the number of
processors is greater than the number of tasks, then each interval can be of size one (that is, one task
per interval), but this is rarely the case for real-life systems. Furthermore, having many small intervals

60 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

is likely to decrease the period and the failure probability, but it will also increase the communication
costs, and hence the latency: thus a trade-off is to be found.

In a mapping with replication, each interval is assigned to several processors. Replication is crucial
to increase the reliability of the system [35].

For each 1 ≤ j ≤ m, the interval Ij is the set of consecutive tasks between indices fj and lj .
Moreover, f1 = 1, ∀2 ≤ j ≤ m, fj = lj−1 + 1, and lm = n. The amount of work processed by Ij is
therefore Wj =

∑
τi∈Ij wi =

∑lj
i=fj

wi. The size of the output data set produced by interval Ij is that
of its last task, that is, olj .

3.2.4 Failure model

Both processors and communication links can fail, and they are fail-silent. Classically, we adopt the
failure model of Shatz and Wang [67]: failures are transient and the maximal duration of a failure is
such that it affects only the current operation executing onto the faulty processor, and not the subsequent
operations (same for communication links); this is the “hot” failure model. Besides, the occurrence of
failures on a processor (same for a communication link) follows a Poisson law with a constant param-
eter λ, called its failure rate per time unit. Modern fail-silent hardware components can have a failure
rate around 10−6 per hour.

Since communication links are homogeneous, we note λ` their identical failure rate per time unit.
Concerning the processors, we note λu the failure rate per time unit of the processor Pu, for each Pu
in P .

Moreover, failure occurrences are statistically independent events. Note that transient failures are
the most common failures in modern processors, all the more when processor voltage is lowered to
reduce the energy consumption, because, in that case, even very low energy particles are likely to create
a critical charge leading to a transient failure [90].

The reliability of a system measures its continuity of service. It is defined as the probability that
it functions correctly during a given time interval [4]. According to our model, the reliability of the
processor P (resp. the communication link L) during the duration d is r = e−λd, where λ is the failure
rate per time unit of P or L. Conversely, the probability of failure of the processor P (resp. the commu-
nication link L) during the duration d is f = 1− r = 1− e−λd. Hence, the reliability of the task τi on
processor Pu is:

ru,i = e−λu wi / su . (3.1)

Accordingly, the reliability of the interval I mapped on the processor Pu is:

ru,I = e−λuWj / su =
∏
τi∈I

ru,i . (3.2)

Equations (3.1) and (3.2) show that platform heterogeneity may come from two factors: (i) processors
having different speeds, and (ii) processors having different failure rates. We say that the platform
is homogeneous if all the processors have the same speed s and the same failure rate λ (hence the
reliability and the execution time of an interval no longer depends on the processor it is assigned to, and
we use in this case the notation ri instead of ru,i in Equation (3.1)); otherwise, we say that the platform
is heterogeneous.

Finally, we let rcomm,i = e−λ` oi / b denote the reliability of the i-th communication.

3.3. RELATED WORK 61

3.2.5 Replication model

We use spatial redundancy to increase the reliability of a system: in other words, we replicate the
intervals on several processors. Figure 3.3 shows an example of mapping by interval with spatial redun-
dancy: the interval I1 is mapped on the processors {P1, P2, P3}, the interval I2 is mapped on the proces-
sors {P4, P5}, and so on until the interval Im, which is mapped on the processors {Pp−1, Pp}. Concern-
ing the communications, the data-dependency ol1 is mapped on the point-to-point links {L14, L15, L24, L25, L34, L35},
and so on.

P1

P2

P3

P4

P5 Pp

I1

ol1 ol2
I2 Im

olm−1

Pp−1

Figure 3.3: An example of interval mapping.

To increase the reliability, each processor of a given interval communicates with each processor of
the next interval. Specifically, for any 1 ≤ j ≤ m − 1, all the processors executing interval Ij send
their result to all the processors executing the next interval Ij+1. Because of the bounded number K
of possible communications (see Section 3.2.2), the maximum number of replicas per interval is also
limited to K.

3.2.6 Multiprocessor mapping problem

We study several variants of the multiprocessor interval mapping problem. The inputs of the problem
are a chain of n tasks C = (τi)1≤i≤n, a hardware platform of p processors P = (Pu)1≤u≤p, and a
bound K on the maximal number of replications for each interval of tasks. The output is an interval
mapping of C onto P , that is, a distribution of C into m intervals and an assignment of each interval
to at most K processors of P , such that each processor executes only one interval. Each variant of the
mapping problem optimizes a different set of criteria among the following:

– the reliability,
– the expected input-output latency,
– the worst-case input-output latency,
– the expected period,
– the worst-case period.

3.3 Related work

Several papers have dealt with workflow applications the dependence graph of which is a linear
chain. The pioneering papers [73, 74] investigate bi-criteria (period, latency) optimization of such work-

62 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

flows on homogeneous platforms. An extension of these results to heterogeneous platforms is provided
in [10, 11].

All the previous papers deal with fully reliable platforms. In our previous work [9], we studied the
(reliability, latency) mapping problem with fail-silent processors. The model in [9] is quite different,
and much more crude, than the one of this chapter: each processor has an absolute probability of failing,
independent of task durations, and the faults are unrecoverable. To the best of our knowledge, we
are not aware of other published work on optimizing linear workflows for reliability. However, many
papers have dealt with a directed acyclic graph (DAG) instead of a pipelined workflow, be it a fully
general DAG [25], a linear chain [66], or even independent tasks [50, 66]. The closest to our present
work is [66]: it contains a short section on linear chains, with a mono-criterion dynamic programming
algorithm for optimizing the reliability, which is similar to our Algorithm 9 (see Section 3.5.1).

Finally, the specific problem of bi-criteria (length, reliability) multiprocessor scheduling has also
been addressed in [24, 3, 40, 63, 36, 37] for general DAGs of operations, but except [3, 36, 37], these
papers do not replicate the operations and have thus a very limited impact on the reliability. Moreover,
none of them consider chains of tasks and interval mappings, and therefore they attempt to minimize the
length of the mapping without distinguishing between the period and the latency (the latter one being
equivalent to the schedule length).

3.4 Evaluation of a given mapping

In this section, we detail the computation of the different objectives (reliability, expected and worst-
case latency, and expected and worst-case period) for a given mapping. We compute the reliability of a
mapping by building its reliability block diagram (RBD) [56, 7]. Formally, a RBD is an acyclic oriented
graph (N,E), where each node of N is a block representing an element of the system, and each arc
of E is a causality link between two blocks. Two particular connection points are its source S and its
destination D. An RBD is operational if and only if there exists at least one operational path from S
toD. A path is operational if and only if all the blocks in this path are operational. The probability that a
block be operational is its reliability. By construction, the probability that a RBD is operational is equal
to the reliability of the system that it represents.

In our case, the system is the multiprocessor interval mapping, possibly partial, of the application
on the platform. A mapping is partial if not all intervals have been mapped yet, but of course those
intervals that are mapped are such that all their predecessors are also mapped. Each block of the RBD
represents an interval Ij placed on a processor or a data-dependency olj between the two intervals Ij
and Ij+1 placed on a communication link. The reliability of a block is therefore computed according to
Equation (3.2).

Computing the reliability in this way assumes that the occurrences of the failures are statistically
independent events (see Section 3.2.4). Without this hypothesis, the fact that some blocks belong to
several paths from S to D makes the computation of the reliability very complex. Concerning hardware
faults, this hypothesis is reasonable, but this would not be the case for software faults [52].

The main drawback of this approach is that the computation of the reliability is, in general, exponen-
tial in the size of the RBD. When the schedule is without replication, the RBD is serial (i.e., there is a
single path from S to D) so the computation of the reliability is linear in the size of the RBD. But when
the schedule is with replications, the RBD has no particular form, so the computation of the reliability
is exponential in the size of the RBD. The reason is that processors are heterogeneous: the completion
dates of a given interval on its assigned processors are different, so the reception dates by the processors
of the next interval are different. This is true even when the application is a chain of intervals rather than

3.4. EVALUATION OF A GIVEN MAPPING 63

a general graph. See Figure 3.4 for an illustration, where the RBD corresponding to the mapping has no
specific form.

I1/P1

I1/P2

S

I2/P3

I2/P4

D

ol1/L13

ol1/L14

ol1/L24

ol1/L23

I1

ol1
I2

P1

P2

P3

P4

Figure 3.4: A mapping of two intervals (I1 and I2) on four processors (P1 to P4) and its RBD which
has no particular form.

One solution for computing the reliability of the mapping of Figure 3.4 involves enumerating all the
minimal cut sets of its RBD [51]. A cut set in a RBD is a set of blocksC such that there is no path from S
to D if all the blocks of C are removed from the RBD. A cut C is minimal if, whatever the block that is
removed from it, the resulting set is not a cut anymore. It follows that the reliability of a minimal cut set
is the reliability of all its blocks put in parallel. The reliability of the mapping can then be approximated
by the reliability of the alternative RBD composed of all the minimal cut sets put in sequence. Because
this RBD is serial-parallel, this computation is linear in the number of minimal cut sets. The problem
is that, in general, the number of minimal cuts is exponential in the size of the RBD [51].

For this reason, we follow the approach of [36] and we insert routing operations between the in-
tervals to make sure that the RBD representing a mapping is always serial-parallel, therefore making
tractable the computation of the reliability. This is illustrated in Figure 3.5, where a routing operation
R has been mapped on processor P5 and the RBD corresponding to the mapping is serial-parallel; as
a consequence, the reliability of this mapping can be computed in a linear time w.r.t. the number of
intervals.

Routing operations can be mapped on any processor. For instance, in the RBD of Figure 3.5,R could
have been mapped on P1 instead of P5, therefore avoiding the need for the communication (ol1/L15).
Also, routing operations are assumed to be executed in 0 time units [36]. As a consequence, for any
processor Pu, the reliability of the block (R/Pu) is 1.

As we have advocated, inserting routing operations yields the huge advantage of making the relia-

64 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

R/P5

I1/P1

I1/P2

S

I2/P3

I2/P4

D

ol1/L15

ol1/L25

ol1/L53

ol1/L54

Figure 3.5: The serial-parallel RBD obtained from the same mapping as in Figure 3.4 but with an
additional routing operation R.

bility computation linear in time. This comes at a cost in the execution time of the system because of
the increased number of communications. For instance, in Figure 3.5, ol1 is transmitted twice before
reaching I2. However, it has been shown in [36] that the overhead incurred by the routing operations is
reasonable (only +3.88 % on average).

For an interval I of weight W mapped on the subset of processors PI , let ec be its expected time of
computation, and let wc be its worst-case execution time (by the slowest processor of PI). Assume that
the processors in PI are ordered according to their speed, from the fastest P1 to the slowest Pt: that is,
∀1 ≤ u < t, we have su ≥ su+1. Then, the expected and worst-case execution times of I on PI are:

ec(I,PI) = W×

∑t
u=1

(
1
su
ru,I

∏u−1
v=1 (1− rv,I)

)
1−

∏t
u=1(1− ru,I)

; (3.3)

wc(I,PI) =
W

st
. (3.4)

Equation (3.3) sums up, for each Pu, the case where the first u−1 fastest processors fail, and the u-th one
is successful. Then, for a mapping (I1,P1), . . . , (Im,Pm), the expected latency EL and the expected
period EP are:

EL =
m∑
i=1

ec(Ii,Pi) +
oi
b

; (3.5)

EP = max

{
max

1≤i≤m

{oi
b

}
, max

1≤i≤m
ec (Ii,Pi)

}
. (3.6)

The worst-case latencyWL and the worst-case periodWP are defined similarly, but with the worst-
case cost of intervals (Equation (3.4)) instead of the expected cost (Equation (3.3)):

WL =

m∑
i=1

wc(Ii,Pi) +
oi
b

; (3.7)

WP = max

{
max

1≤i≤m

{oi
b

}
, max

1≤i≤m
wc (Ii,Pi)

}
. (3.8)

Finally, thanks to the routing operations, the reliability of the mapping (I1,P1), . . . , (Im,Pm) is:

r =

t∏
i=1

1−
∏
Pu∈Pi

(1−rcomm,i−1×ru,Ii×rcomm,i)

 . (3.9)

Equation (3.9) above is computed according to the generic form of the RBD of Figure 3.5. To
account for the fact that the first interval I1 has no incoming communication, we just set o0 = 0, hence
rcomm,0 = 1. The same occurs for the outgoing communication of the last interval Im. Finally, routing
operations do not appear in Equation (3.9) since their reliability is always equal to 1.

3.5. COMPLEXITY RESULTS FOR HOMOGENEOUS PLATFORMS 65

3.5 Complexity results for homogeneous platforms

In this section, we provide optimal polynomial algorithms for the mono-criterion reliability opti-
mization problem, and then for the bi-criteria (reliability, period) optimization problem. Then, we prove
the NP-completeness of the bi-criteria (reliability, latency) optimization problem. We provide an integer
linear program to solve the tri-criteria problem and a polynomial time algorithm to optimally allocate
processors for a given partition of the chain of tasks in intervals. Note that on homogeneous platforms,
the expected latency and worst-case latency are the same. This also holds true for the expected period
and worst-case period.

3.5.1 Reliability optimization

We present a mono-criterion polynomial-time algorithm that maximizes the reliability of a given
chain of tasks on a given homogeneous platform. Algorithm 9 is a dynamic programming algorithm. It
is a simplified version of Algorithm 10 for bi-criteria (reliability, period) optimization, which we present
in the next section.

Algorithm 9: Optimal algorithm for reliability optimization on fully homogeneous platforms.
Data: a number p of fully homogeneous processors of failure rate λ, a list A of n tasks of

sizes wi, and a maximal number K of replications
Result: a reliability r
for k = 1 to min{K, p} do1

2

F (1, k) = 1− (1− rcomm,0×r1×rcomm,1)k ;

end3

F (0, 0) = 1;4

for i = 1 to n do5

F (i, 0) = 0;6

end7

for i = 2 to n do8

for k = i to p do9

10

F (i, k) = max
1≤j<i,1≤q≤min{K,k}

{
F (j, k−q)×1−

(
1−rcomm,j−1×

∏
j≤l≤i

rl×rcomm,i

)q} ;

end11

end12

r = max1≤q≤p F (n, q);13

Theorem 3.1. Algorithm 9 computes in time O(n2p2) the optimal mapping for reliability optimization
on fully homogeneous platforms.

66 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

Proof. In this algorithm, F (i, k) is the optimal reliability when mapping the first i tasks on k processors,
and it is computed iteratively with the dynamic programming procedure. �

3.5.2 Reliability/period optimization

We now present a bi-criteria (reliability, period) polynomial-time algorithm that optimizes the relia-
bility of a mapping given a bound on the period. Recall that, for homogeneous platforms, the worst-case
period and the expected period are the same.

Theorem 3.2. Algorithm 10 computes in time O(n2p2) the optimal mapping for reliability optimization
on fully homogeneous platforms, when a bound on the period is given.

Proof. In this algorithm, F (i, k) is again the optimal reliability when mapping the first i tasks on k
processors. The dynamic programming procedure of Algorithm 9 has been modified to account for the
period bound. �

Finally, we observe that the converse problem, namely optimizing the period when a bound on the
reliability is enforced, is polynomial too. We can simply perform a binary search on the period and
repeatedly execute Algorithm 10 until the optimal value is found.

3.5.3 Reliability/latency optimization

We now prove the NP-completeness of the bi-criteria (reliability, latency) optimization problem on
homogeneous platforms. As for the period, there is no difference between the worst-case latency and
the expected latency on such platforms.

Theorem 3.3. The problem of optimizing the reliability on homogeneous platforms, with a bound on the
latency, is NP-complete.

Proof. Consider the associated decision problem: given a homogeneous platform, a chain of tasks, a
bound K on the number of replications, a reliability r, and a latency L, does there exist a mapping
whose reliability is at least r and whose latency is at most L? This problem is obviously in NP: given a
mapping, it is easy to compute its reliability and latency, and to check that it is valid in polynomial time.

To establish the completeness, we use a reduction from 2-PARTITION (instance I1): given a set
A of n numbers a1, . . . , an, does there exist a subset A′ ⊂ A such that

∑
a∈A′ a =

∑
a/∈A′ a. Let

T = 1
2

∑
a∈A a. Let amin = min1≤i≤n{ai} and amax = max1≤i≤n{ai}. We build the following

instance I2 of our problem with 3n+ 1 tasks and 6n identical processors:
– K = 2 and λ = 10−810−na−3n

max;
– s = b = 1 (unit processor speed and link bandwidth);
– B = 1

2amin

(
n
4 + na2

max + T + 2
)
;

– ∀1 ≤ i ≤ n, w3i−2 = B, w3i−1 = 1
2 and w3i = ai;

– w3n+1 = B;
– ∀1 ≤ i ≤ n, ri = e−λwi and rcomm,i = 1;
– ∀1 ≤ i ≤ n, o3i−2 = 0, o3i−1 = ai and o3i = 0;
– L = (n+ 1)B + n

2 + 3T ;

3.5. COMPLEXITY RESULTS FOR HOMOGENEOUS PLATFORMS 67

Algorithm 10: Optimal algorithm for reliability optimization on fully homogeneous platforms,
when a bound on the period is given.

Data: a number p of fully homogeneous processors of failure rate λ, a list A of n tasks of
sizes wi, a maximal number K of replications, and an upper-bound P on the period

Result: a reliability r
for k = 1 to min{K, p} do1

if max
(
o0
b ,

w1
s ,

o1
b

)
≤ P then2

3

F (1, k) =
(

1−(1−rcomm,0×r1×rcomm,1)k
)

;

else4

F (1, k) = 0;5

end6

end7

for i = 1 to n do8

F (i, 0) = 0;9

end10

for i=2 to n do11

for k=i to p do12

13

F (i, k) = max
1≤j<i,1≤q≤min{K,k}

{
F (j, k−q)×1−

(
1−rcomm,j×

∏
j<l≤i

rl×rcomm,i

)q
|max

(
oj
b
,

∑i
v=j+1wv

s
,
oi
b

)
≤ P

}
;

end14

end15

r = max1≤q≤p F (n, q);16

68 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

– it follows that the reliability of the mapping is

r =
(

1− (1− e−λB)2
)n+1

×

1− λ2(
n

4
+
∑

1≤i≤n
a2
i + T)− λ4×22n(amax + 1)n

 .

The size of instance I2 is polynomial in the size of I1. We now show that I1 has a solution if and
only if I2 has a solution. Suppose first that I1 has a solutionA′. Then we propose the following solution
for I2:

– all intervals are replicated 2 times;
– any task of size B make up an interval;
– for all 1 ≤ i ≤ n, if ai ∈ A′, then T3i−1 and T3i are assigned to two different intervals, else they

constitute one single interval.
This yields the following costs for the latency:
– the sum of computation costs does not depend of the mapping: (n+ 1)B + n

2 + 2T ;
– for each ai ∈ A′, we add a communication cost ai.
We thus obtain a latency L = (n+ 1)B+ n

2 + 3T . Concerning the reliability, it is the product of the
reliability of all intervals:

– the reliability of intervals of size B is (1−(1−e−λB)2);
– for each ai ∈ A′, the product of the reliability of the two intervals for tasks T3i−1 and T3i−1 is

(1−(1−e−
λ
2)2)(1−(1−e−λai)2), which is greater than (1− λ2

4)(1−λ2a2
i);

– for each ai /∈ A′, the reliability of the interval for tasks T3i−1 and T3i−1 is (1−(1−e−λ(ai+
1
2

))2),
which is greater than 1−λ2(ai+

1
2)2.

We thus obtain, for the product of all these reliabilities,

r′ = (1− (1− e−λB)2)n ×∏
ai∈A′(1− (1− e−

λ
2)2)(1− (1− e−λai)2) ×∏

a−i/∈A′

(
1−

(
1− e−λ(ai+

1
2)
)2
)

≥ (1− (1− e−λB)2)n ×∏
ai∈A′(1−

λ2

4)(1− λ2a2
i) ×∏

a−i/∈A′(1− λ2(ai + 1
2)2)

≥ (1− (1− e−λB)2)n ×(
1−λ2

(
n
4 +
∑

1≤i≤n a
2
i +T

)
−λ422n(amax+1)n

)
Suppose now that I2 has a solution. The exponent in the reliability bound implies that any interval is

replicated at least 2 times, and the bound on replication is 2. This means that all intervals are replicated
exactly 2 times. Suppose that one of the tasks of size B is computed together with another task in the

3.5. COMPLEXITY RESULTS FOR HOMOGENEOUS PLATFORMS 69

same interval. This yields the bound on reliability:

r′ < (1− (1− e−λB)2)n(1− (1− e−λ(B+amin))2)

< (1− (1− e−λB)2)n+1× 1−λ2(B+amin)2

1−λ2B2(1−λB
2

)2

< (1− (1− e−λB)2)n+1(1− λ2(B + amin)2)

(1 + λ2B2(1− λB
2)2 + 2λ4B4(1− λB

2)4)

< (1− (1− e−λB)2)n+1×(1− 2λ2Bamin + 7λ4B4)

< r

This means that any task of size B makes up an interval. Let A′ be the set of values i such that T3i−1

and T3i are not in the same interval. We obtain the following formulas:
– For the reliability:

r ≤ (1− (1− e−λB)2)n ×∏
ai∈A′(1− (1− e−

λ
2)2)(1− (1− e−λai)2) ×∏

ai /∈A′

(
1−

(
1− e−λ(ai+

1
2)
)2
)

≤ (1− (1− e−λB)2)n ×∏
ai∈A′(1−

λ2

4 (1− λ
4)2)(1− λ2a2

i (1− λai)2 ×∏
ai /∈A′(1− (λ2 + λ2

4 + λ2ai)(1− λ
2 (ai + 1

2))2)

≤ 1− λ2(n4 +
∑

1≤i≤n a
2
i +

∑
ai /∈A′ ai) + λ310na3n

max

– For the latency:

(n+ 1)B +
n

2
+
∑
ai∈A′

ai + 2T ≤ (n+ 1)B +
n

2
+ 3T

This means
∑

ai /∈A′ ai ≤ T and
∑

ai∈A′ ai ≤ T . Hence, A′ is a solution for I1. This concludes the
proof. �

We conclude that, on homogeneous platforms, the bi-criteria (reliability, period) problem is polyno-
mial, while the bi-criteria (reliability, latency) problem is NP-complete. As a consequence, the tri-criteria
(reliability, period, latency) problem is NP-complete too.

It is striking, and somewhat unexpected, that the bi-criteria (reliability, period) problem is easier
than the (reliability, latency) one. The intuition for this difference is the following: when the period
bound is given, we know once and for all which processors are fast enough to be enrolled for a given
interval. Therefore, the mapping choices are local. On the contrary, the computation of the latency
remains global, and its final value, including communication costs, depends upon the choices that will
be made further on.

3.5.4 Integer linear program

In this section, we show how to derive an integer linear program (ILP) to solve the following prob-
lem: given an instance with n tasks and p homogeneous processors, bounds P on period and L on
latency, compute the most reliable schedule respecting both bounds. Despite its high computation com-
plexity, this ILP will be used on small problem instances to assess the absolute performance of the
heuristics (see Section 3.8).

70 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

The ILP has O(n2 × p) variables: for 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ min(p,K), ai,j,k = 1 if the
interval τi, ..., τj is allocated onto k processors, and ai,j,k = 0 otherwise. The objective function is the
logarithm R of the reliability, which we want to maximize.

We list below the constraints that need to be enforced.
– Each task τi is included in exactly one interval:

∀1 ≤ i ≤ n,
∑

1≤j≤i

∑
i≤k≤n

∑
1≤`≤p

ai,j,` = 1 .

– At most p processors are used: ∑
1≤i≤j≤n

∑
1≤k≤K

k × ai,j,k ≤ p .

– The latency bound is enforced:∑
1≤i≤j≤n

∑
1≤k≤K

1

s
(
∑
i≤`≤j

w`)× ai,j,k ≤ L .

– The period bound is enforced:

∀1 ≤ i, j ≤ n, 1

s
(
∑
i≤`≤j

w`)×
∑

1≤k≤K
ai,j,k ≤ P ;

∀1 ≤ i, j ≤ n, oj ×
∑

1≤k≤K
ai,j,k ≤ P .

Finally, the objective function is to maximize the logarithm of the reliability R:

R =
∑

1≤i≤j≤n

K∑
k=1

log
(

1− (1− exp
λ
s

∑j
l=i wl)k

)
× ai,j,k .

3.5.5 Allocation of intervals to processors

In this section, we consider that the partition into intervals is given, and we search for the best
allocation of these intervals across the processors. This sub-problem is used in particular while designing
heuristics in Section 3.7.

Once the intervals are fixed, since the platform is homogeneous, the period and latency are fixed. The
allocation of processors only impacts the reliability. We derive below an optimal algorithm, ALGO-ALLOC,
which assigns processors to intervals in order to maximize the reliability. The main idea is to allocate
processors one by one to intervals, and the current interval is chosen so as to maximize the reliability.

The algorithm ALGO-ALLOC is the following:
– initially, we allocate one processor on each interval;
– then, while there remains an un-allocated processor and an interval replicated less than K times,

we allocate a new processor on the interval whose ratio

reliability with one more replica processor
current reliability

is maximal.

3.6. COMPLEXITY RESULTS FOR HETEROGENEOUS PLATFORMS 71

We prove below the optimality of this algorithm.

Theorem 3.4. Given a partition into intervals, Algorithm ALGO-ALLOC maximizes the reliability of
the allocation.

Proof. Let I1 → · · · → Ii be the chain of intervals, where Wj (resp. oj) is the computation cost (resp.
communication cost) of interval Ij , for 1 ≤ j ≤ i. Moreover, let kj be the number of processors
allocated to interval Ij by Algorithm ALGO-ALLOC, and let k′j be the number of such processors in an
optimal solution.

First, note that if i×K ≤ p, ALGO-ALLOC allocates K processors per interval, and this is optimal,
i.e., ∀1 ≤ j ≤ i, kj = k′j = K. Otherwise, all processors are allocated in both solutions, since it is
always increasing reliability to replicate an interval once more, i.e.,

∑i
j=1 kj =

∑i
j=1 k

′
j = p.

Indeed, for 2 ≤ k ≤ K, consider the increase in reliability when assigning a k-th processor to
interval Ij :

Rk,j =
reliability of Ij with k processors

reliability of Ij with k − 1 processors
.

We obtain Rk,j =
1−αkj

1−αk−1
j

, with αj = 1 − exp−λ
Wj
s . Note that this value is independent of the

allocation of the other intervals. We derive:

Rk+1,j −Rk,j =
(1−αk+1

j)(1−αk−1
j)−(1−αkj)2

(1−αkj)(1−αk−1
j)

=
2αkj−α

k+1
j −αk−1

j

(1−αkj)(1−αk−1
j)

≤ 0 .

by convexity of the function x→ αx. The ratio Rk,j is thus decreasing with k.
Now suppose that there exist two values j1 and j2 with kj1 < k′j1 and kj2 > k′j2 . To simplify

notations, assume that j1 = 1 and j2 = 2, hence k1 < k′1 and k2 > k′2. Consider the iteration of
ALGO-ALLOC during which the (k′2 + 1)-th processor is added to interval I2. At that point, there were
k∗ ≤ k1 processors assigned to I1. By construction of ALGO-ALLOC, since interval I2 is chosen, we
have Rk′2+1,2 ≥ Rk∗+1,1. Also, Rk∗+1,1 ≥ Rk′1,1 because k∗ ≤ k1 < k′1 and Rk,1 is decreasing with

k. We thus have
Rk′2+1,2

Rk′1,1
≥ 1: but this latter quantity is the variation of the global reliability when

reassigning one processor from I1 to I2. Hence the allocation (k′1 − 1, k′2 + 1, k′3, ..., k
′
i) is at least as

reliable as the original optimal allocation (k′1, k
′
2, k
′
3, ..., k

′
i), and therefore they are both optimal.

After a finite number of such reassignments, we obtain the allocation of ALGO-ALLOC, thereby
establishing its optimality. �

3.6 Complexity results for heterogeneous platforms

In this section, we prove the NP-completeness of the mono-criterion reliability optimization problem
on heterogeneous platforms.

Theorem 3.5. The problem of optimizing the reliability on heterogeneous platforms is NP-complete.

72 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

Proof. Consider the associated decision problem: given a heterogeneous platform, a chain of tasks, a
bound on the number K of replications, and a reliability r, does there exist a mapping of reliability at
least r? This problem is obviously in NP: given a reliability and a mapping, it is easy to compute the
reliability and to check that it is valid in polynomial time.

To establish the completeness, we use a reduction from 3-PARTITION. Consider the following gen-
eral instance I1 of 3-PARTITION: given 3n numbers a1, . . . , a3n and a number T such that

∑
1≤j≤3n aj = nT ,

does there exist n independent subsets B1, . . . , Bn of {a1, . . . , a3n} such that for all 1 ≤ i ≤ n,∑
aj∈Bi aj = T ?

We build the following instance I2 with n tasks and p = 3n processors:
– λ = 10−8

nT 2 ;
– K = 3;
– γ = 1 + 1

2(T−1) ;

– ∀1 ≤ i ≤ n,wi = 1/n (all tasks have cost 1/n);

– ru,i = e−λu
wi
su ;

– rcomm,i = 1;
– ∀1 ≤ u ≤ 3n, λu = λ ∗ γau and su = 1;
– it follows that the reliability of the mapping is r =

(
1− λ3γT

)n.
The size of I2 is polynomial in the size of I1. We show that I1 has a solution if and only if I2 has a

solution.

Suppose first that I1 has a solution B1, . . . , Bn. We propose the following solution for I2:
– we have one interval per task;
– the i-th task is replicated three times and allocated to the set of processors {Pu | u ∈ Bi}.
We obtain the following reliability for task i:

1−
∏(

1− e−λγai
)
≥ 1−

∏
(λγai) ≥ 1− λ3γT ,

Hence, the overall reliability is r ≥ (1− λ3γT)n.

Suppose now that I2 has a solution. We first show that the optimal mapping consists of n intervals,
one per task, each replicated three times. Suppose that we know the number of intervals in the optimal
mapping. There are at most n intervals, and we have enough processors to replicate all of them three
times, and this increases the reliability. We conclude that all intervals will be replicated three times.
Suppose now that one of these intervals contains t > 1 tasks. There are enough processors to split this
interval into t single-task intervals, each replicated three times. Let r1 be the reliability of the original
interval with t tasks, and rt the reliability of the same tasks assigned to t intervals replicated three times.
By hypothesis of optimality, we have:

r1 ≥ rt
⇒ e−λγt ≥ 1− (1− e−λγT)t

⇒ λγt− 1
2 (λγt)2 ≤ (λγT)t because λγT ≤ 1

⇒ λγ2− 1
2 (λγ2)2 ≤ (λγ2)2 because γT−1 ≤ 2

⇒ λγ2 ≤ 3
2 (λγ2)2

⇒ λγ2 ≥ 2
3

⇒ 4λ ≥ 2
3

3.6. COMPLEXITY RESULTS FOR HETEROGENEOUS PLATFORMS 73

However, λ ≤ 10−8, which contradicts the hypothesis. This means that, in the optimal solution, any
task constitutes an interval.

Let, for all i, Bi = {aj | Ti mapped on Pj}. We obtain the following reliability:

r =
∏

1≤i≤n
(1−

∏
aj∈Bi

(1− e−λγai)) ≥ (1− λ3γT)n.

Suppose that, for a value i,
∑

aj∈Bi aj 6= T . Then,

r ≤
∏

1≤i≤n(1−
∏
aj∈Bi(λγ

ai − 1
2 (λγai)2))

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj ∏
aj∈Bi(1−

1
2λγ

ai))

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj (1− λ
2

∑
aj∈Bi γ

aj))

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj (1− 3λ
2 γ

T))

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj + 3λ4

2 γ
T+

∑
aj∈Bi

aj)

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj)(1 +
3λ4

2 γ
T+

∑
aj∈Bi aj

1−λ3γ

∑
aj∈Bi aj

)

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj)(1 +
3λ4

2 γ4T

1−λ3γ3T)

≤ (1 +
3λ4

2 γ4T

1−λ3γ3T)n×
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj)

By hypothesis, we have
∑

aj∈Bi aj 6= T for a value i. Then by convexity,∏
1≤i≤n

(1− λ3γ
∑
aj∈Bi

aj
) ≤

(1− λ3γT)n−2×(1− λ3γT−1)×(1− λ3γT+1) .

By hypothesis, we have:

(1− λ3γT)n ≤ r

≤ (1 +
3λ4

2 γ4T

1−λ3γ3T)n(1− λ3γT)n−2

(1− λ3γT−1)(1− λ3γT+1)

⇒ (1− λ3γT)2 ≤ (1 +
3λ4

2 γ4T

1−λ3γ3T)n

(1− λ3γT−1)(1− λ3γT+1)

≤ (1 +
3λ4

2 γ4T

1−λ3γ3T)n(
(1− λ3γT)2 − λ3γT−1(γ − 1)2

)
⇒ (1− λ3γT)2 ×

(
(1 +

3λ4

2 γ4T

1−λ3γ3T)n − 1

)
≥

(
(1 +

3λ4

2 γ4T

1−λ3γ3T)n − 1

)
×
(
λ3γT−1(γ − 1)2

)
⇒ (1− λ3γT)2 ≥

(
(1 +

3λ4

2 γ4T

1−λ3γ3T)n − 1

)−1
(1 +

3λ4

2 γ4T

1−λ3γ3T)nλ3γT−1(γ − 1)2

≥ 1+ 3λ4

4 nγ4T

3λ4

4 nγ4T
λ3γT−1(γ − 1)2

≥ 1+ 3λ4

4 nγ4T

3λnγ3T+1(T−1)2

However, 3λnγ3T+1(T − 1)2 ≤ 1 and 1 + 3λ4

4 nγ4T ≥ 1. This contradicts the hypothesis. Then, if
{B1, . . . , Bn} corresponds to a solution of I2, we have

∑
aj∈Bi aj = T for 1 ≤ i ≤ n. This shows that

B1, . . . , Bn is a solution for I1, which concludes the proof. �

74 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

Because mono-criterion reliability optimization is already NP-complete, all multi-criteria problems
with period or latency or both, are also NP-complete on heterogeneous platforms.

3.7 Heuristics

In this section, we present two heuristics to compute schedules for the multi-criteria problem dis-
cussed above. Since we consider several criteria, each heuristic algorithm returns, for a given problem
instance, several possible schedules. In the experiments of Section 3.8, both the period and the latency
are bounded and, for each instance and each heuristic, we select, in the set of computed solutions, the
schedule having the best reliability while still meeting the bounds on period and latency.

Each heuristic consists of two steps: in a first step, the chain of tasks is divided into intervals, and
in the second step, the processors are allocated to these intervals. We present the algorithms used in the
two steps by the two heuristics.

3.7.1 Computation of the intervals

We consider two possible ways to compute the intervals. In both cases, we first decide the number
of intervals used, and then we compute intervals according to this value. We can thus compute a set of
intervals for any possible number of intervals.

In the first heuristic, we try to minimize the latency. Thus, for i intervals, we select the intervals
yielding the i− 1 smallest communication costs. More precisely, for i intervals, we consider the output
communication costs of all tasks except the last one. Let u1 < · · · < ui−1 be the i − 1 smallest
communication costs. Then, the first interval contains tasks τ1 to τu1 , the second interval contains tasks
τu1+1 to τu2 , and so on; the last interval contains tasks τui−1+1 to τn. This heuristic, denoted HEUR-L,
is presented in Algorithm 11.

Algorithm 11: Heuristic HEUR-L for the computation of the intervals.
Data: n tasks of sizes wi and of output communication cost oi, a maximal number K of

replications and a number i of intervals
Result: a set of intervals
Sort in array A the n− 1 first tasks in increasing order of output communication cost;
Sort the i− 1th first tasks of A in increasing order of placement in the chain;
The first interval contains tasks from τ1 to τA[1];
for j = 2 to i− 1 do

The jth interval contains tasks from τA[j−1]+1 to τA[j];
end
The last interval contains tasks from τA[i−1]+1 to τn;

In the second heuristic, we try to minimize the period. We thus try to obtain intervals which are as
identical as possible in size. We use a dynamic programming algorithm to compute the optimal period
in the homogeneous case. More precisely, let F (j, k) be the optimal period that can be obtained by
grouping the j first tasks into k intervals. The initialization is F (j, 1) = max{

∑
l≤j wl, oj}, and the

recurrence writes:

3.7. HEURISTICS 75

∀k ≥ 2, ∀j ≤ k,

F (j, k) = min
1≤j′<j

max

F (j′, k − 1),
∑
j′<l≤j

wl, oj

 .

This heuristic, denoted HEUR-P, is presented in Algorithm 12.

Algorithm 12: Heuristic HEUR-P for the computation of the intervals.
Data: n tasks of size wi and of output communication cost oi, a maximal number K of

replications and a number i of intervals
Result: a set of intervals
for j = 1 to n do

F (j, 1) = (max{
∑

l≤j wl, oj}, 1);
end
for k = 1 to i do

for j = 1 to n do
Let j′ be the value that minimize the function
x→ max

{
fst(F (x, k − 1)),

∑
x<l≤j wl, oj

}
;

F (j, k) =
(

max
{
fst(F (j′, k − 1)),

∑
j′<l≤j wl, oj

}
, j′
)

;

end
end
Let I be an array of size i;
j = n;
k = i;
while j ≥ 1 do

I[k − 1] = j;
j ← snd(F (j, k));

end
for j = 1 to i− 1 do

The jth interval contains tasks τI[j−1]+1 to τI[j];
end
The last interval contains tasks τI[i−1]+1 to τn;

Both heuristics produce min{n, p} possible divisions in intervals of the chain of tasks. It remains to
allocate processors to these intervals. This is presented in the next section.

3.7.2 Allocation of processors to intervals

As presented in Section 3.5.5, Algorithm ALGO-ALLOC allocates processors optimally to inter-
vals in the homogeneous case. We use a variant of algorithm ALGO-ALLOC in the general case
with a bound P on the period: at the beginning of the algorithm, in increasing order of value λu

su
,

a processor is allocated to the longest possible interval that has no processor allocated to it. Then,
step by step, on the remaining processors, processor Pu is allocated to the interval of greatest value(reliability with this processor

reliability at current step

)
among the intervals Ij such that Wj

su
≤ P . This corresponds to algo-

rithm ALGO-ALLOC: we first allocate the more reliable processors, and we do not allocate a processor
to an interval if the associated computation time exceed the bound on period.

76 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

3.8 Experiments

This section reports experimental results assessing the performance of the heuristics HEUR-P and
HEUR-L. In the homogeneous case, these heuristics are compared with the optimal solution computed
with the integer linear program presented in Section 3.5.4. The heuristics are developed in C/C++ and
the integer linear program is implemented with CPLEX [20]. The reader can find the corresponding
source code at [26].

3.8.1 Experiments on homogeneous platforms

To measure the performance of the HEUR-P and HEUR-L heuristics, we randomly generated work-
flow applications. For 15 tasks and 10 processors, we randomly generated values of communication
and computation costs for 100 different chains of tasks. Then, for any reasonnable bounds on period
and latency, we compute, for the integer linear program and for both heuristics, the number of solutions
found within these bounds, and the average ratio of the optimal reliability (integer linear program) and
the reliability of the heuristics; we count 0 for instances without any solution.

We set the processor speeds to s = 1 computation per time unit, and computation costs of tasks are
randomly chosen in the interval [1, 100]. The bandwidth is set to b = 1, and communication costs are
randomly chosen in the interval [1, 10]. The failure rate per time unit of processors (resp. communication
links) are set to λp = 10−6 (resp. λ` = 10−5) per time unit. These values are realistic for modern fail-
silent hardware components, where the unit of time is the hour [8].

With these values, 100 problem instances are generated with 10 processors and a chain of 15 tasks.
The maximum number of replication is fixed toK = 3. The reasonable period values are found between
70 and 140 time units, and latency between 500 and 1000 time units.

In Figure 3.6, the latency is bounded by 750, and the bound on period is chosen in the inter-
val [50, 500]. For higher values of period, neither the ILP program nor the heuristics are able to solve the
problem instance. The value selected for the bound on the latency corresponds to the minimum value
such that approximately half of the instances can be solved when there are no constraints on the period.
The HEUR-P heuristic finds solutions for most of the instances which have a solution, except for average
values of period (100 ≤ P ≤ 200), and for high values (P > 400). Concerning the HEUR-L heuristic,
it finds fewer solutions than HEUR-P for low and average values of the period (P ≤ 400), but it obtains
more results than HEUR-P and as many as the ILP program for high values of the period.

To summarize these results, the HEUR-P heuristic obtains good results in most cases, even though
it does not consider latency, hence leading to poorer results when the period is not constrained at all.
However, the HEUR-L heuristic becomes efficient for high values of the period, since it focuses on the
latency criterion. In contrast, HEUR-L seems to be less efficient than HEUR-P, since it obtains fewer
results for reasonable problem instances with a bound on the period.

In Figure 3.7, we bound the period by P = 250, while the bound on the latency is chosen in the
interval [500, 1100]. The reason is that no solutions are found when either L < 500 or L > 1100. In
this case, almost all existing solutions are found by both heuristics for low values of latency. For higher
values of latency, HEUR-P remains efficient, while HEUR-L becomes less efficient. Even without any
bound on the latency, HEUR-L fails to find some of the solutions. This can be explained by the fact
that there are more tasks than processors in the instances that we consider (15 tasks and 10 processors).
Since HEUR-L does not consider the size of intervals (but only the cost of communications), for some
instances, even with the maximum number of intervals (10 with the instances considered), it can happen
that an interval is too large and exceeds the bound on the period.

In Figures 3.6 and 3.7, we have compared the performances of both heuristics HEUR-L and HEUR-P

3.8. EXPERIMENTS 77

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 s

ol
ut

io
ns

Bound on latency

opt
greedyL
greedyP

Figure 3.6: Number of
solutions for L = 750.

 0

 20

 40

 60

 80

 100

 0 250 500 750 1000 1250 1500

N
um

be
r

of
 s

ol
ut

io
ns

Bound on latency

opt
greedyL
greedyP

Figure 3.7: Number of
solutions for P = 250.

 0

 20

 40

 60

 80

 100

 150 200 250 300 350

N
um

be
r

of
 s

ol
ut

io
ns

Bound on latency

opt
greedyL
greedyP

Figure 3.8: Number of
solutions for L = 3P .

for any bound on the period with an average fixed latency, and any bound on the latency with an average
fixed period. In the last experiment, we consider the case of a linear relationship between the value of
period and the value of latency. In Figure 3.8, the period is taken in interval [150, 350], and we fix the
latency to be L = 3P . In this case, almost all solutions are found by both heuristics, whatever the bound
on period. Note that in most cases, HEUR-P is slightly more efficient than HEUR-L, which confirms our
previous observations.

We have not presented reliability results in this experiment, but we focused on the number of solu-
tions found, given a period and a latency. Indeed, the low number of tasks makes the computation very
reliable for any schedule: the reliability is always either very close to one, or equal to zero when no
solution is found. In practice, experimental results give a reliability of 1 in type double, which means
that the real value of the reliability is equal to 1 with an error of the order of 10−15.

3.8.2 Experiments on heterogeneous platforms

On heterogeneous platforms, we were no longer able to use the ILP to compute the optimal solution.
However, we have performed several experiments with a larger number of tasks and processors: we
generated one random application with 50 tasks and 75 processors. The processor speeds were randomly
chosen in the interval [1, 100], while their failure rates per time unit where randomly chosen between
10−6 and 10−8.

78 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

We have computed the optimal solutions of heuristics HEUR-P and HEUR-L for any reasonable
values for the bounds on period and latency: the period was chosen between 50 and 400 time units,
while the latency was chosen between 3600 and 5000 time units. Figure 3.9 plots in 3D the values
of reliability computed for such values of period and latency, for both heuristics. For an enhanced
readability, Figure 3.10 details the results obtained by HEUR-P alone, while Figure 3.11 focuses on
HEUR-L alone.

From these figures, we first note that the bound on the latency does not impact the result. How-
ever, when the bound on the period is increased, we can find more reliable schedules. Once again, the
supremacy of HEUR-P is demonstrated: not only does this heuristic find more solutions than HEUR-L,
but it also finds more reliable schedules.

 100
 150

 200
 250

 300
 350

 400

 3500

 3600

 3700

 3800

 3900

 4000

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

re
lia

bi
lit

y

HeurL
HeurP

period

latency

re
lia

bi
lit

y

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

Figure 3.9: Reliability in the heterogeneous case.

3.9 Conclusion

We have addressed problems related to the mapping of linear workflows on homogeneous and het-
erogeneous distributed platforms. The main goal was to optimize the reliability of the mapping through
task replication, while enforcing bounds on performance-oriented criteria (period and latency). We
derived a comprehensive set of NP-hardness complexity results, together with optimal algorithms for
polynomial instances. Altogether, these results provide a solid theoretical foundation for the study of
multi-criteria mappings of linear workflows. Another contribution of this chapter is the introduction
of a realistic communication model that nicely accounts for the inherent physical limitations on the
communication capabilities of state-of-the-art processors.

3.9. CONCLUSION 79

Communication failures have been incorporated in the model through routing operations, which
guarantee that evaluating the system reliability remains computationally tractable. An interesting future
research direction would be to investigate whether it is feasible to remove this routing procedure, and
accurately approximate the reliability of general systems (non serial-parallel).

On homogeneous platforms, an integer linear program is presented to solve the problem of maximiz-
ing the reliability with bounds on period and on latency, while polynomial-time heuristics are derived
for the most general problems. We have proposed two heuristics: HEUR-L that attempts to minimize the
latency and HEUR-P that attempts to minimize the period. Our experiments demonstrate the efficiency
of the heuristics, and the supremacy of HEUR-P in most cases.

Another direction for future work involves the design of heuristics for even more difficult prob-
lems that would mix performance-related criteria (period, latency) with several other objectives, such as
reliability, resource costs, and power consumption.

 50
 100

 150
 200

 250
 300

 350
 400

 3500

 3600

 3700

 3800

 3900

 4000

 0.99

 0.992

 0.994

 0.996

 0.998

 1

re
lia

bi
lit

y

HeurP

period

latency

re
lia

bi
lit

y

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

Figure 3.10: Reliability in the heterogeneous case for HEUR-P.

80 CHAPTER 3. RELIABILITY AND PERFORMANCE OPTIMIZATION OF PIPELINED REAL-TIME SYSTEMS

 50 100 150 200 250 300 350 400

 3500

 3600

 3700

 3800

 3900

 4000

 0.99

 0.992

 0.994

 0.996

 0.998

 1

re
lia

bi
lit

y

HeurL

period

latency

re
lia

bi
lit

y

 0.9945

 0.995

 0.9955

 0.996

 0.9965

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

Figure 3.11: Reliability in the heterogeneous case for HEUR-L.

Chapter 4

Scheduling parallel iterative applications on
volatile resources

4.1 Introduction

In the previous chapter, we studied a reliability problem, considering only transient failures. Even
if fail-stop failures are less common than transient failures on classical grids, fail-stop failures are an
important issue in some special models of platforms. The desktop grids are particularly sensible to such
failures.

We study the problem of efficiently executing parallel applications on platforms that comprise
volatile resources. More specifically we focus on iterative applications implemented using the master-
worker paradigm. The master coordinates the computation of each iteration as the execution of a fixed
number of independent tasks. A synchronization of all tasks occurs at the end of each iteration. This
scheme applies to a broad spectrum of scientific computations including, but not limited to, mesh based
solvers (e.g., elliptic PDE solvers), signal processing applications (e.g., recursive convolution), and im-
age processing algorithms (e.g., stencil algorithms). We study such applications when they are executed
on networked processors whose availability evolves over time, meaning that each processor alternates
between being available for executing a task and being unavailable.

Solutions for executing master-worker applications, and in particular applications implemented with
the Message Passing Interface (MPI), on failure-prone platforms have been developed (e.g., [29, 23,
54, 14]). In these works, the focus is on tolerating failures caused by software or hardware faults.
For instance, a software fault will cause the processor to stall, but computations may be restarted from
scratch or be resumed from a saved state after rebooting. A hardware failure may keep the processor
down for a long period of time, until the failed component is repaired or replaced. In both cases, fault-
tolerant mechanisms are implemented in the aforementioned solutions to make faults transparent to the
application execution.

In addition to failures, processor volatility can also be due to temporary interruptions. Such inter-
ruptions are common in volunteer computing platforms [13] and desktop grids [19]. In these platforms
processors are contributed by resource owners who can reclaim them at any time, without notice, and
for arbitrary durations. A task running on a reclaimed processor is simply suspended. At a later date,
when the processor is released by its owner, the task can be resumed without any wasted computation. In
fact, fault-tolerant MPI solutions were proposed in the specific context of desktop grids [14], to accom-
modate for such interruptions. While mechanisms for executing master-worker applications on volatile
platforms are available, our focus is on scheduling algorithms for deciding which processors should run
which tasks and when.

81

82 CHAPTER 4. SCHEDULING PARALLEL ITERATIVE APPLICATIONS ON VOLATILE RESOURCES

At a given time a (volatile) processor can be in one of three states: UP (available), DOWN (crashed
due to a software or hardware fault), or RECLAIMED (temporarily preempted by owner). Accounting
for the RECLAIMED state, which arises in desktop grid platforms, complexifies scheduling decisions.
More specifically, since before going to the DOWN state a processor may alternate between the UP
and RECLAIMED states, the time needed by the processor to compute a given workload to completion
is difficult to predict. A way to make such prediction tractable is to assume that state transitions obey
a Markov process. The Markov (i.e., memoryless) assumption is popular because it enables analytical
derivations. In fact, recent work on desktop grid scheduling has made use of this assumption [17]. Un-
fortunately, the memoryless assumption is known not to hold in practice. Several authors have reported
that the durations of availability intervals in production desktop grids are not sampled from exponential
distributions [59, 82, 49]. There is no true consensus regarding what is a “good” model for availability
intervals defined by the elapsed time between processor failures, let alone regarding a model for the
durations of recoverable interruptions. Note that some authors have attempted to model processor avail-
abilities using (non-memoryless) semi-Markov processes [64]. Faced with the lack of a good model
for transitions between the UP , DOWN , and RECLAIMED states, and not knowing whether such a
model would be tractable or not, for now we opt for the Markovian model. The goal of this work is to
provide algorithmic foundations for scheduling iterative master-worker applications on processors that
can fail or be temporarily reclaimed. A 3-state Markovian model allows us to achieve this goal, and the
insight from our results should provide guidance for dealing with more complex, and hopefully more
realistic, stochastic models of processor availabilities. The transition probabilities for a real-life platform
can be determined using traces. For example, for a given processor Pq, knowing that the ressource is
UP at time t, the probability that it remains UP will be computed as the number of occurences of two
successives UP states, divided by the number of UP states during all time slots described by the trace
of this ressource.

A unique aspect of this work is that we account for network bandwidth constraints for communica-
tion between the master and the workers. More specifically, we bound the total outgoing communication
bandwidth of the master while ensuring that each communication uses a reasonably large fraction of this
bandwidth. The master is thus able to communicate simultaneously with only a limited number of
workers, sending them either the application program or input data for tasks. This assumption, which
corresponds to the bounded multi-port model [48], applies to concurrent data transfers implemented with
multi-threading. One alternative is to simply not consider these constraints. In this case, a scheduling
strategy could enroll a large (and vastly suboptimal) number of processors to which it would send data
concurrently each at very low bandwidth. Another alternative is to disallow concurrent data transfers
from the master to the workers. In this case, the bandwidth capacity of the master may not be fully ex-
ploited, especially for workers executing on distant processors. We conclude that considering the above
bandwidth constraints is necessary for applications that do not have extremely low communication-to-
computation ratios. It turns out that the addition of these constraints makes the problem dramatically
more difficult at the theoretical level, and thus complicates the design of practical scheduling strategies.

The specific scheduling problem under consideration is to maximize the number of application it-
erations that are successfully completed before a deadline. Informally, during each iteration, we have
to identify the “best” processors among those that are available (e.g., the fastest, the likeliest to remain
available, etc.). In addition, since processors can become available again after being unavailable for
some time, it may be beneficial to change the set of enrolled processors even if all enrolled processors
are available. We thus have to decide whether to release enrolled processors, to decide which ones should
be released, and to decide which ones should be enrolled instead. Such changes come at a price: the
application program file must be sent to newly enrolled processors, which consumes some (potentially
precious) fraction of the master’s bandwidth.

4.2. RELATED WORK 83

Our contributions are the following. First, we assess the complexity of the problem in its off-line
version, i.e., when processor availability behaviors are known in advance. Even with this knowledge,
the problem is NP-hard, and cannot be approximated within a factor 8/7. Next, relying on the Markov
assumption for processor availability, we provide a closed-form formula for the expectation of the time
needed by a worker to complete a set of tasks. This formula is at the heart of several heuristics that aim
at giving priority to “reliable” resources rather than to “fast” ones. In a nutshell, when the task size is
very small in comparison to the expected duration of an interval between two consecutive processor state
changes, “classical” heuristics based upon the estimated completion time of a task perform reasonably
well. But when the task size is no longer negligible with respect to the expected duration of such an
interval, it is mandatory to account for processor reliability, and only those heuristics building upon such
knowledge are shown to achieve good performance. Altogether, we design a set of heuristics, which
we thoroughly evaluate in simulation. The results provide insights for selecting the best strategy as a
function of processor state availability versus task duration.

This chapter is organized as follows. Section 4.2 discusses related work. Section 4.3 describes the
application and platform models. Complexity results for the off-line study are given in Section 4.4;
these results do not rely on any assumption regarding stochastic distribution of resource availability. In
Section 4.5, we describe our 3-state Markovian model of processor availability, and we show how to
compute the expected time for a processor to complete a given workload. Heuristics for the on-line
problem are described in Section 4.6, some of which use the result in Section 4.5 for more informed
resource selection. An experimental evaluation of the heuristics is presented in Section 4.7. Section 4.8
concludes with a summary of our findings and perspectives on future work.

4.2 Related work

There is a large literature on scheduling master-worker applications, or applications that consist
of a sequence of iterations where each iteration can be executed in master-worker fashion [6, 44, 55].
In this work we focus on executions on volatile resources, such as desktop resources. The volatility
of desktop or other resources is well documented and characterizations have been proposed [59, 82,
49]. Several authors have studied the master-worker (or “bag-of-tasks”) scheduling problem in the face
of such volatility in the context of desktop grid computing, either at an Internet-wide scale or within
an Enterprise [53, 89, 27, 2, 17, 28, 81, 45]. Most of these works propose simple greedy scheduling
algorithms that rely on mechanisms to pick processors according to some criteria. These processor
selection criteria include static ones (e.g., processor clock-rates or benchmark results), simple ones
based on past host behavior [53, 27, 28], and more sophisticated ones based on statistical analysis of
past host availability [81, 45, 2, 17]. In a global setting, the work in [89] includes time-zone as a
criterion for processor selection. These criteria are used to rank processors, but also to exclude them
from consideration [53, 27]. The work in [17] is particularly related to our own in that it uses a Markov
model of processor availability (but without accounting for preemption). Most of these works also
advocate for task replication as a way to cope with volatile resources. Expectedly, injecting task replicas
is sensible toward the end of application execution. Given the number of possible variants of scheduling
algorithms, in [28] the authors propose a method to automatically instantiate the parameters that together
define the behavior of a scheduling algorithm. Works published in this area are of a pragmatic nature,
and few theoretical results have been sought or obtained (one exception is the work in [32]).

A key difference between our work and all the above is that we seek to develop scheduling algorithms
that explicitly manage the master’s bandwidth. Limited master bandwidth is a known issue for desktop
grid computing [58, 76, 43] and must therefore be addressed even though it complexifies the scheduling

84 CHAPTER 4. SCHEDULING PARALLEL ITERATIVE APPLICATIONS ON VOLATILE RESOURCES

problem. To the best of our knowledge no previous work has made such an attempt.

4.3 Problem Definition

In this section, we detail our application and platform models, describe the scheduling model, and
provide a precise statement of the scheduling problem.

4.3.1 Application Model

We target an iterative application in which iterations entail the execution of a fixed number m of
same-size independent tasks. Each iteration is executed in a master-worker fashion, with a synchroniza-
tion of all tasks at the end of the iteration. A processor is assigned one or more tasks during an iteration.
Each task needs some input data, of constant size Vdata in bytes. This data depends on the task and the
iteration, and is received from the master. Such applications allow for a natural overlap of computation
and communication: computing for the current task can occur while data for the next task (of the same
iteration) is being received. Before it can start computing, a processor needs to receive the application
program from the master, which is of size Vprog in bytes. This program is the same for all tasks and
iterations.

4.3.2 Platform Model

We consider a platform that consists of p processors, P1, . . . , Pp, encompassing with this term com-
pute nodes that contain multiple physical processor cores. Each processor is volatile, meaning that its
availability for computing application tasks varies over time. More precisely, a processor can be in one
of three states: UP (available for computation), RECLAIMED (temporarily reclaimed by its owner),
or DOWN (crashed and to be rebooted). We assume that the master, which implements the scheduling
algorithm, executes on a host that is always UP (otherwise a simple redundancy mechanism such as
primary back-up [39] can be used to ensure reliability of the master). We also assume that the mas-
ter is aware of the states of the processors, e.g., via a simple heart-beat mechanism [72]. Processor
availabilities evolve independently, and all state transitions are allowed, with the following implications:

– When a UP or RECLAIMED processor becomes DOWN , it loses the application program, all
the data for its assigned tasks, and all partially computed results. When it later becomes UP it has
to acquire the program again before executing tasks;

– When a UP processor becomes RECLAIMED , its activities are suspended. However, when it
becomes UP again it can simply resume task computations and data transfers.

We discretize time so that the execution occurs over a sequence of discrete time slots. We assume
that task computations and data transfers all require an integer number of time slots, and that processor
state changes occur at time-slot boundaries. We leave the time slot duration unspecified. The time slot
duration that achieves a good approximation of continuous time varies for different applications and
platforms.

The temporal availability of Pq is described by a vector Sq whose component Sq[t] ∈ {u, r, d}
represents its state at time-slot t. Here u corresponds to the UP state, r to the RECLAIMED state, and
d to the DOWN state. Vector Sq is unknown before executing the application.

Processor Pq requires wq time-slots of availability (i.e., UP state) to compute a task. If all wq values
are identical, then the platform is homogeneous. We model communications between the master and
the workers using the bounded multi-port communication model [48]. In this model, the master can
initiate multiple concurrent communications, each to a different worker. Each communication is allotted

4.3. PROBLEM DEFINITION 85

a bandwidth fraction of the master’s network card, and the sum of all fractions cannot exceed the total
capacity of the card. This model is enabled by popular multi-threaded communication libraries [38].
We consider that the master can communicate up to bandwidth BW (we use the term “bandwidth”
loosely to mean maximum data transfer rate). Communication to each worker is performed at some
fixed bandwidth bw. This bandwidth can be enforced in software or can correspond to same-capacity
communication paths from the master’s processor to each other processor. We define ncom = BW/bw as
the maximum number of workers to which the master can send data simultaneously (i.e., the maximum
number of simultaneous communications). For simplicity, we assume ncom to be an integer. Let nprog
be the number of processors receiving the application program at time t, and ndata be the number of
processors receiving the input data of a task at time t. Given that the bandwidth of the master must not
be exceeded, we have

nprog + ndata ≤ ncom = BW/bw.

Let Pq be a processor engaged in communication at time t, for receiving either the program or input
data. In both cases, it does this with bandwidth bw. Hence the time for a worker to receive the program
is Tprog = Vprog/bw, and the time to receive the data is Tdata = Vdata/bw.

4.3.3 Scheduling Model

Let config(t) denote the set of processors enrolled for computing the m application tasks in an
iteration, or configuration, at time t. Enrolled processors work independently, and execute their tasks
sequentially. While a processor could conceivably execute two tasks in parallel (provided there is enough
available memory), this would only delay the completion time of the first task, thereby increasing the
risk of not completing it at all due to volatile availability. The scheduler assigns tasks to processors and
may choose a new configuration at each time-slot t. Let Pq be a newly enrolled processor at time t, i.e.,
Pq ∈ config(t + 1) \ config(t). Pq needs to receive the program unless it already received a copy of
it and has not been in the DOWN state since. In all cases, Pq needs to receive data for a task before
computing it. This holds true even if Pq had been enrolled at some previous time-slot t′ < t but has been
un-enrolled since: we assume any received data is discarded when a processor is un-enrolled. In other
words, any input data communication is resumed from scratch, even if it had previously completed. Note
that a processor that is un-enrolled keeps the application program until it eventually goes to the DOWN
state.

If a processor becomes DOWN at time t, the scheduler may simply use the remaining UP proces-
sors in config(t) to complete the iteration, or enroll a new processor. Even if all processors in config(t)
are in the UP state, the scheduler may decide to change the configuration. This can be useful if a more
desirable (e.g., faster, more available) but un-enrolled processor has just returned to the UP state. Re-
moving an UP processor from config(t) has a cost: partial results of task computations, partial task
data being received, and previously received task data are all lost. Note, however, that results obtained
for previously completed tasks are not lost because already sent back to the master. Due to the possibil-
ity of a processor leaving the configuration (either due to becoming DOWN or due to a decision of the
scheduler), the scheduler enforces that task data is received for at most one task beyond the one currently
being computed. In other terms, the processor does not accumulate task data beyond that for the next
task. This is sensible so as to allow some overlap of computation and communication while avoiding
wasting bandwidth for data transfers that would be increasingly likely to be redone from scratch.

86 CHAPTER 4. SCHEDULING PARALLEL ITERATIVE APPLICATIONS ON VOLATILE RESOURCES

4.3.4 Problem Statement

The scheduling problem we address in this work is that of maximizing the number of successfully
completed application iterations before a deadline. Given the discretization of time, the objective of the
scheduling problem is then to maximize the number of successfully completed iterations within some
integral number of time slots, N . In the off-line case (see Section 4.4), if an efficient algorithm can be
found to solve this problem, then, using a binary search, an efficient algorithm can be designed to solve
the problem of executing a given number of iterations in the minimum amount of time.

4.4 Off-line complexity

In this section, we study the off-line complexity of the problem. This means that we assume a priori
knowledge of all processor states. In other words, the value of Sq[j] is known in advance, for 1 ≤ q ≤ p
and 1 ≤ j ≤ N . The problem turns out to be difficult: even minimizing the time to complete the
first iteration with same-speed processors is NP-complete. We also identify a polynomial instance with
ncom = +∞, which highlights the impact of communication contention. For approximation questions,
we take into account incomplete instances: if p tasks have been executed in the current time slot, then
for the current iteration we consider that a part pn is completed. Without this assumption, the problem is
inapproximable.

For the off-line study, we can simplify the model and have only two processor states, UP (also
denoted by u) and RECLAIMED (also denoted by r). Indeed, suppose that processor Pq is DOWN
for the first time at time-slot t: Sq[t] = d. We can replace Pq by two 2-state processors Pq′ and Pq′′
such that: 1) for all j < t, Sq′ [j] = Sq[j] and Sq′′ [j] = r, 2) Sq′ [t] = Sq′′ [t] = r, and 3) for all j > t,
Sq′ [j] = r and Sq′′ [j] = Sq[j]. In this way, we remove a DOWN state and add a two-state processor. If
we do this modification for each DOWN state, we obtain an instance with only UP or RECLAIMED
processors. In the worst case, the total number of processors is multiplied byN , which does not affect the
problem’s complexity (polynomial versus NP-hard). Let OFF-LINE denote the problem of minimizing
the time to complete the first iteration, with same-speed processors:

Theorem 4.1. Problem OFF-LINE is NP-hard.

Proof. Consider the associated decision problem: given a number m of tasks, of computing cost w and
communication cost Tdata, a program of communication cost Tprog, and a platform of p processors, with
availability vectors Sq, a bound ncom on the number of simultaneous communications, and a time limit
N , does there exist a schedule that executes one iteration in time less than N? The problem is in NP:
given a set of tasks, a platform, a time limit and a schedule (of communications and computations), we
can check the schedule and compute its completion time with polynomial complexity.

x̄4

C6C5C4C3C2C1

x1
x̄1

x2
x̄2
x3
x̄3
x4

Figure 4.1: Instance I2 in proof of NP-completeness of OFF-LINE.

The (surprisingly difficult to establish) proof follows from a reduction from 3SAT. Let I1 be an
instance of 3SAT : given a set U = {x1, ..., xn} of variables and a collection {C1, ..., Cm} of clauses,
does there exist a truth assignment of U? We suppose that each variable is present in at least one clause.

4.4. OFF-LINE COMPLEXITY 87

We construct the following instance I2 of the OFF-LINE problem with m tasks and p = 2n proces-
sors: ncom = 1, Tprog = m, Tdata = 0, wi = w = 1, N = m(n + 1) and ∀i ∈ [1, n], ∀j ∈ [1,m],
1) if xi ∈ Cj then S2i−1[j] = u else S2i−1[j] = r, 2) if x̄i ∈ Cj then S2i[j] = u else S2i[j] = r, 3)
S2i[mi + j] = S2i−1[mi + j] = u and 4) ∀k ∈ [1, n], i 6= k, S2k−1[mi + j] = S2k[mi + j] = r. The
size of I2 is polynomial in the size of I1. Figure 4.1 illustrates this construction for I1 = (x̄1 ∨ x3 ∨
x4) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3 ∨ x̄4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x4), with white
meaning UP and grey meaning RECLAIMED .

Suppose that I1 has a solution A with, for all j ∈ [1, n], xj = A[j]. For any i ∈ [1,m], there exists
at least one true literal ofA inCi. We pick one arbitrarily. Let xj be the associated variable. Then during
time-slot i, if A[j] = 1, processor P2i−1 will download (a fraction of) the program, while if A[j] = 0,
processor P2i will download it. During this time-slot, no other processor communicates with the master.
Then, for all i ∈ [1, n]:

– if A[j] = 1, between mi + 1 and m(i + 1), P2i−1 completes the reception of the program and
then executes as many tasks as possible, P2i stays idle

– if A[j] = 0, then P2i−1 is idle and P2i completes downloading its copy of the program and
computes as many tasks as possible.

For all i ∈ [1, 2n], let Li be the number of communication time-slots for processor Pi between time-slots
1 and m. By the choice of the processor receiving the program at any time-slot t ∈ [1,m], if A[i] = 0,
then L2i−1 = 0 and L2i = 1, else L2i = 0 and L2i−1 = 1 . Let, for all i ∈ [1, n], p(i) = 2i − A[i].
Then, for all i ∈ [1, n], between time mi + 1 and m(i + 1), Pp(i) is available and Pp(i)+2A[i]−1 is idle.
Pp(i) completes receiving its program at the latest at timemi+Tprog−Lp(i) = m(i+1)−Lp(i) and can
execute Lp(i) tasks before being reclaimed. Overall, the processors execute X =

∑n
i=1 Lp(i) tasks. For

any j ∈ [1,m], by construction there is exactly one processor downloading the program during time-slot
j. Consequently, X = m, and thus I2 has a solution.

Suppose now that I2 has a solution. As ncom = 1, for all i ∈ [1, n], processors P2i−1 and P2i receive
the program during at most m time slots before time m. After time m, processors P2i−1 and P2i are
only available between time mi + 1 and m(i + 1). Then, at time N , the sum S of the time-slots spent
in receiving the program on processors P2i−1 and P2i is S ≤ 2m. This means that at most one of these
processors can execute tasks before time N . Among P2i−1 and P2i, let p(i) be the processor computing
at least one task if any, and if no one execute a task, any of these processors. If neither P2i−1 nor P2i

computes any task, let p(i) = 2i. Let A be an array of size n such that if p(i) = 2i − 1, then A[i] = 1
else A[i] = 0. We will prove that all clauses of I1 are satisfied with this assignment. Without loss
of generality we assume that no communication is made to a processor that does not execute any task.
Suppose that for i ∈ [1,m], a processor Pj with j = p(k) receives a part of the program during time-slot
i. Then, by definition of the function p, either A[k] = 1 and xk ∈ Ci, or A[k] = 0 and x̄k ∈ Ci. This
means that assignment A satisfies clause Ci. Let X be the number of true clauses with assignment A.
For all i ∈ [1, 2n], we define Li as the number of communication time-slots for processor Pi between
times 1 and m. Then, X ≥

∑n
j=1 Lp(i). In addition, processor Pp(i) completes the reception of the

program at the latest at time m(i+ 1)− Li, and then computes at most Li tasks before being reclaimed
at time m(i + 1). Overall, the processors compute m tasks. Then,

∑n
j=1 Lp(i) ≥ m, and X ≥ m.

Consequently, all clauses are satisfied by A, i.e., I1 has a solution, which concludes the proof. �

Proposition 4.1. Problem OFF-LINE cannot be approximated within 8
7 − ε for all ε > 0.

Proof. MAXIMUM 3-SATISFIABILITY cannot be approximated within 8
7 − ε for all ε > 0 [42].

The result is immediate for problem OFF-LINE by construction of the proof of Theorem 4.1. �

Now we show that the difficulty of problem OFF-LINE is due to the bound ncom: if we relax this

88 CHAPTER 4. SCHEDULING PARALLEL ITERATIVE APPLICATIONS ON VOLATILE RESOURCES

bound, the problem becomes polynomial.

Proposition 4.2. OFF-LINE is polynomial when ncom = +∞, even with different-speed processors.

Proof. Consider a strategy that sends the program to processors as soon as possible, at the beginning
of the execution. Then, task by task, it greedily assigns the next task to the processor that can termi-
nate its execution the soonest; this is the classical MCT (Minimum Completion Time) strategy, whose
complexity is m× p.

To show that this strategy is optimal, let S1 be an optimal schedule, and S2 a MCT schedule. Let
T1 and T2 be the associated completion times. We aim at proving that T2 = T1. We first modify the
schedule S1 as follows. Suppose that processor Pq begins a computation or a communication at time
t, and that it is available but idle during time-slot t − 1. Then, we can shift forward the operation and
execute it at time t − 1 without breaking any rules and without increasing the completion time of the
current iteration. We repeat this modification as many times as possible, and finally obtain a schedule
S′1 with completion time T ′1 = T1. Assume now that Pq executes i tasks under schedule S′1 and j under
S2. The first min{i, j} tasks are executed at the same time by S′1 and by S2. Suppose that T2 > T1.
Consider S2 right before the allocation of the first task whose completion time is t > T1. At this time, at
least one processor Pq0 has strictly fewer tasks in S2 than in S′1. We can thus allocate a task to Pq0 with
completion time t ≤ T1. The MCT schedule should have chosen the latter allocation, and we obtain a
contradiction. The MCT schedule S2 is thus optimal. �

The MCT algorithm is not optimal if ncom < +∞. Consider an instance with Tprog = Tdata = 2,
two tasks (m = 2) and two identical processors (p = 2, wq = w = 2). Suppose that ncom = 1, and that
S1 = [u, u, u, u, u, u, r, r, r] and S2 = [r, u, u, u, u, u, u, u, u]. The optimal schedule computes both
tasks in time 9 as follow: stay idle for one time-slot and then send the program and data to P2. However,
MCT executes the first task on P1, and is thus not optimal.

4.5 Computing the expectation

In this section, we first introduce a Markov model for processor availability, and then show how to
compute the expected execution time of a processor to complete a given workload and the probability
of success of its computations. Both these quantities will guide the design of some on-line heuristics in
Section 4.6.

4.5.1 Expected execution time

The availability of processor Pq is described by a 3-state recurrent aperiodic Markov chain, defined
by 9 probabilities: P (q)

i,j , with i, j ∈ {u, r, d}, is the probability for Pq to move from state i at time-

slot t to state j at time-slot t + 1, which does not depend on t. We denote by π(q)
u , π(q)

r and π(q)
d the

limit distribution of Pq’s Markov chain (i.e., steady-state fractions of state occupancy for states UP ,
RECLAIMED , and DOWN). This limit distribution is easily computed from the transition probability
matrix, and π(q)

u + π
(q)
r + π

(q)
d = 1.

When designing heuristics to assign tasks to processors, it seems important to take into account the
expected execution time of a processor until it completes all tasks assigned to it. Indeed, speed is not the
only factor, as the target processor may well become RECLAIMED several times before executing all
its scheduled computations. We develop an analytical expression for such an expectation as follows.

Consider a processor Pq in the UP state at time t, which is assigned a workload that requires W
time-slots in the UP state for completing all communications and/or computations. To complete the

4.5. COMPUTING THE EXPECTATION 89

workload, Pq must be UP during another W − 1 time-slots. It can possibly become RECLAIMED
but never DOWN in between. What is the probability of the workload being completed? And, if it is
completed, what is the expectation of the number of time-slots until completion?

Definition 4.1. Knowing that Pq is UP at time-slot t1, let P(q)
+ be the conditional probability that it

will be UP at a later time-slot, without going to the DOWN state in between. Formally, knowing that
Sq[t1] = u, P (q)

+ is the conditional probability that there exists a time t2 such that Sq[t2] = u and
Sq[t] 6= d for t1 < t < t2.

Definition 4.2. Let E(q)(W) be the conditional expectation of the number of time-slots required by Pq
to complete a workload of size W knowing that it is UP at the current time-slot t1 and will not become
DOWN before completing this workload. Formally, knowing that Sq[t1] = u, and that there existW−1
time-slots t2 < t3 < · · · < tW , with t1 < t2, Sq[ti] = u for i ∈ [2,W], and Sq[t] 6= d for t ∈ [t1, tW],
E(q)(W) is the conditional expectation of tW − t1 + 1.

Lemma 4.1. P (q)
+ = P

(q)
u,u +

P
(q)
u,rP

(q)
r,u

1−P (q)
r,r

.

Proof. The probability that Pq will be available again before crashing is the probability that it remains
available during the next time-slot, plus the probability that it becomes RECLAIMED and later returns
to the UP state before crashing. We obtain that

P
(q)
+ = P (q)

u,u + P (q)
u,r

(
+∞∑
t=0

(P (q)
r,r)t

)
P (q)
r,u ,

hence the result. �

Theorem 4.2. E(q)(W) = W + (W − 1)× P
(q)
u,rP

(q)
r,u

1−P (q)
r,r

× 1

P
(q)
u,u(1−P (q)

r,r)+P
(q)
u,rP

(q)
r,u

.

Proof. To execute the whole workload, Pq needs W − 1 additional time-slots of availability. Conse-
quently, the probability that Pq successfully executes its entire workload before crashing is (P

(q)
+)W−1.

The key idea to prove the result is to consider E(q)(up), the expected value of the number of time-
slots before the next UP time-slot of Pq, knowing that it is up at time 0 and will not become DOWN in
between:

E(q)(up) =
P

(q)
u,u +

∑
t≥0(t+ 2)P

(q)
u,r (P

(q)
r,r)tP

(q)
r,u

P
(q)
+

.

To compute E(q)(up), we study the value of

A =
∑
t≥0

(t+ 2)P (q)
u,r (P (q)

r,r)tP (q)
r,u =

P
(q)
u,rP

(q)
r,u

P
(q)
r,r

∑
t≥0

(t+ 2)(P (q)
r,r)t+1 =

P
(q)
u,rP

(q)
r,u

P
(q)
r,r

g′(P (q)
r,r)

with g(x) =
∑

t≥0 x
t+2 = x2

1−x . Differentiating, we obtain g′(x) = x(2−x)
(1−x)2

and

A =
P

(q)
u,rP

(q)
r,u

P
(q)
r,r

× P
(q)
r,r (2− P (q)

r,r)

(1− P (q)
r,r)2

.

90 CHAPTER 4. SCHEDULING PARALLEL ITERATIVE APPLICATIONS ON VOLATILE RESOURCES

Letting z =
P

(q)
u,rP

(q)
r,u

P
(q)
u,u(1−P (q)

r,r)
, we derive

E(q)(up) =
1 + z

(2−P (q)
r,r)

(1−P (q)
r,r)

1 + z
= 1 +

z

(1− P (q)
r,r)(1 + z)

We then conclude by noting that E(q)(W) = 1 + (W − 1)× E(q)(up). �

4.6 On-line heuristics

4.6.1 Rationale

In this section, we propose heuristics to address the on-line version of the problem. Conceptually,
we can distinguish three main classes of heuristics:
Passive heuristics that conservatively keep current processors active as long as possible: the current

configuration is changed only when one of the enrolled processors becomes DOWN .
Dynamic heuristics that may change configuration on the fly, while preserving ongoing work. More

precisely, if a processor is engaged in a computation, it finishes it; if it is engaged in a commu-
nication, it finishes it together with the corresponding computation. But otherwise, tasks can be
freely reassigned among processors, whether already enrolled or not. Intuitively, the idea is to
benefit from, say, a fast and reliable resource that has just become UP , while not risking losing
part of the work already completed for the current iteration.

Proactive heuristics that would allow for the possibility of aggressively terminating ongoing tasks, at
the risk for an iteration to never complete.

In our model, the dynamic strategy is the most appealing. Since tasks are executed one by one and
independently on each processor, using a passive approach by which all m tasks are assigned once and
for all without possible reassignment does not make sense. A proactive strategy would have little impact
on the time to complete the iteration unless the last tasks are assigned to slow processors. In this case,
these tasks should be terminated and assigned to faster processors, which could have significant benefit
when m is small. A simpler and popular solution is to use only dynamic strategies but to replicate these
last tasks on one or more hosts in the UP state, canceling all remaining replicas when one of them
completes. Concerning communications, the priority is given to one replica by task. Task replication
may seem wasteful, but it is a commonly used technique in desktop grid environments in which resources
are plentiful and often free of charge. While never detrimental to execution time, task replication is more
beneficial when m is small.

In all the heuristics described hereafter, a task is replicated whenever there are more processors in
the UP state than there are remaining tasks to execute. We limit the number of additional replicas of
a task to two, which has been used in previous work [53] and works well in our experiments (better
performance than with only one additional replica, not significantly worse performance than with more
additional replicas). For simplicity, we describe all our heuristics assuming no task replication, but it
is to be understood that there are up to 3m tasks (instead of m) distributed by the master during each
iteration; the m original tasks are given priority over replicas, which are scheduled only when room
permits.

All heuristics assign tasks to processors (that must be in the UP state) one-by-one, until m tasks
are assigned. More precisely, at time slot t, there are enrolled processors that are currently active, either
receiving some message, or computing a task, or both. Let m′ be the number of tasks whose communi-
cation or computation has already begun at time t. Since ongoing activities are never terminated, there

4.6. ON-LINE HEURISTICS 91

remainm−m′ tasks to assign to processors. The objective of the heuristics is to decide which processors
should be used for these tasks.

The dynamic heuristics below fall into two classes, random and greedy. Most of these heuristics rely
on the assumption that processor availability follows a Markov process, as discussed in Section 4.5.

4.6.2 Random heuristics

The heuristics described in this section use randomness to select which processor, among the ones
that are in the UP state, will execute the next task. The simplest heuristic, RANDOM, assigns the next
task to a processor picked randomly using a uniform probability distribution. Going beyond RANDOM,
it is possible to assign a weight to processor Pq, in a view to giving larger weight to more “reliable”
processors. Processors are picked with a probability equal to their normalized weights. We propose four
ways of defining these weights:

1. Long time UP : the weight of Pq is P (q)
u,u, the probability that Pq remains UP , hence favoring

processors that stay UP for a long time.
2. Likely to work more: the weight of Pq is P (q)

+ , the probability that Pq will be UP another
time slot before crashing (see Section 4.5), hence favoring processors with high probability of
becoming UP again before crashing.

3. Often UP : the weight of Pq is π(q)
u , the steady-state fraction of time that Pq is UP , hence favoring

processors that are UP more often.
4. Rarely DOWN : the weight of Pq is (1 − π(q)

d), hence favoring processors that are DOWN less
often.

We call the corresponding heuristics RANDOM1, RANDOM2, RANDOM3, and RANDOM4. For each of
these four heuristics Pq’s weight can be divided by wq, attempting to account for processing speed as
well as reliability. We thus obtain four additional variants, designed by the suffix ’W’.

4.6.3 Greedy heuristics

We propose four general heuristics, each of which can be enhanced to account for network con-
tention.

MCT (Minimum Completion Time)

Assigning a task to the processor that can complete it the soonest is the optimal policy in the offline
case without network contention (Proposition 4.2). We apply MCT here as follows. For each processor
Pq we compute Delay(q), the delay before Pq finishes its current activities, and after which it could be
enrolled for one of the m − m′ remaining tasks to be scheduled. In addition to processors finishing
ongoing work, other processors could need to receive all or part of the program. Because of processors
becoming RECLAIMED , we cannot exactly compute Delay(q). As a first approach, we estimate it
assuming that Pq remains in the UP state and that there is no network contention whatsoever. We then
greedily assign each of the remaining m−m′ tasks to processors, picking each time the processor with
the smallest task completion time. More formally, for each processor Pq, let nq be the number of tasks
already assigned to it (out of the m−m′ tasks), and let CT (Pq, nq) be the estimation of its completion
time:

CT (Pq, nq) = Delay(q) + Tdata + max(nq − 1, 0) max(Tdata, wq) + wq . (4.1)

MCT assigns the next task to processor Pq0 , where q0 = ArgMin{CT (Pq, nq + 1)} .

92 CHAPTER 4. SCHEDULING PARALLEL ITERATIVE APPLICATIONS ON VOLATILE RESOURCES

MCT with contention – The estimated completion time in Equation 4.1 does not account for network
contention (caused by the master’s limited network capacity). Because of the overlap between commu-
nications and computations, it is difficult to predict network traffic. Instead, we use a simple correcting
factor, and replace Tdata by

⌈
nactive
ncom

⌉
Tdata, where nactive denotes the number of active processors, i.e.,

those processors that have been assigned one or several of the m − m′ tasks. The nactive counter is
initialized to zero and is incremented when a task is assigned to a newly enrolled processor. The intu-
ition is that this counter measures the average slowdown encountered by a worker when communicating
with the master. This estimation is simple but pessimistic since all scheduled communications do not
necessarily take place simultaneously. We derive the new estimation:

CT (Pq, nq) = Delay(q) +
⌈
nactive
ncom

⌉
Tdata + max(nq − 1, 0) max(

⌈
nactive
ncom

⌉
Tdata, wq) + wq (4.2)

We call MCT∗ the version of the MCT heuristic that uses the above definition of CT (Pq, nq).
Expected MCT – Given a workload (i.e., a number of needed time-slots of computation) CT (Pq, nq),
Theorem 4.2 gives the value of E(q)(CT (Pq, nq)), the expected number of time-slots needed for Pq to
be UP during CT (Pq, nq) times-slots without becoming DOWN in between. Using this expectation as
the criterion for selecting processors, and depending on whether the correcting factor on Tdata is used,
we obtain one new version of MCT and one new version of MCT∗, which we call EMCT and EMCT∗,
respectively.

LW (Likely to Work)

We build heuristics that consider the probability that a processor Pq, which is UP , will be UP again
at least once before becoming DOWN . This probability, P (q)

+ , is given by Lemma 4.1. We assign the
next task to processor Pq0 with the highest probability of being UP for at least the estimated number of
needed time-slots to complete its workload, before becoming DOWN :

q0 = ArgMax
{

(P
(q)
+)CT (Pq ,nq+1)

}
.

Therefore, we first estimate the size W of the workload and then the probability that a processor will
be in the UP stateW time-slots without becoming DOWN in between. Using Equation 4.2 instead of
Equation 4.1, one obtains the LW∗ heuristic.

UD (Unlikely Down)

Here, we estimate the number N of time-slots needed for a processor to complete its workload,
knowing that it can become RECLAIMED . Then we compute the probability that it will not become
DOWN for N time-slots. Given that Pq starts in the UP state, the probability that it does not go to the
DOWN state during k time-slots is:

P
(q)
UD(k) =

[
1 1

]
.

[
P

(q)
u,u P

(q)
u,r

P
(q)
r,u P

(q)
r,r

]k−1

.

[
1
0

]
.

We approximate this expression by forgetting the state of Pq after the first transition:

P
(q)
UD(k) = (1− P (q)

u,d)

1−
P

(q)
u,dπ

(q)
u + P

(q)
r,d π

(q)
r

π
(q)
u + π

(q)
r

k−2

.

4.7. EXPERIMENTS 93

We use this value with k = E(q)(CT (Pq, nq + 1)). UD assigns the next task to the processor Pq0 that
maximizes the probability of not becoming DOWN before the estimated number of time-slots needed
for it to complete its workload, counting the time-slots spent in the RECLAIMED state:

q0 = ArgMax{P (q)
UD(E(q)(CT (Pq, nq + 1)))} .

Using Equation 4.2 instead of Equation 4.1, one obtains the UD∗ heuristic.

4.7 Experiments

We have evaluated the heuristics described in the previous section using a discrete-even simulator
for the execution of application on volatile resources (The simulator is publicly available at http://
graal.ens-lyon.fr/~fdufosse/changing_platforms.tar.gz). The simulator takes
as input values for all the parameters listed in Section 4.3, and it assumes that temporal processor avail-
ability follows a Markov process.

For the simulation experiments, rather than fixing N , the number of time-slots, we instead fix the
number of iterations to 10. The quality of an application execution is then measured by the time needed
to complete 10 iterations, or makespan. This equivalent problem is simpler to instantiate since it does
not require choosing meaningful N values, which would depend on the application and platform char-
acteristics. We have executed all heuristics presented above for several problem instances. For each
problem instance we compute the degradation from best (dfb) of each heuristic, i.e., the percentage rel-
ative difference between the makespan achieved by the heuristic and that achieved by the best heuristic,
all for that particular instance. A value of zero means that the heuristic is best for the instance. We
use this metric because makespans vary widely between instances depending on processor availability
patterns. We also count how often, over all instances, each heuristic is the (or tied with the) best one, so
that we can report on numbers of wins for each heuristics.

All our experiments are for p = 20 processors. The Markov chain that characterizes processor Pq’s
availability is defined as follows. We uniformly pick a random value between 0.90 and 0.99 for each
P

(q)
x,x value (for x = u, r, d). We then set P (q)

x,y to 0.5×(1−P (q)
x,x), for x 6= y. An experimental scenario is

defined by the above and by three parameters: n, the number of tasks per iteration, ncom, the constraint
on the master’s communication bandwidth, and the wmin parameter, which is used as follows. For each
processor Pq, we pick wq uniformly between wmin and 10 × wmin. Tdata is set to wmin, meaning that
the fastest possible processor has a computation-communication ratio of 1. Tprog is set to 5 × wmin,
meaning that downloading the program takes 5 times as much time as downloading the data for a task.
We define experimental scenarios for each of the possible instantiations of (n, ncom, wmin) given the
values shown in Table 4.1. We must emphasize that our goal here is not to instantiate a representative
model for a desktop grid and application, but rather to create arbitrary but simple synthetic experimental
scenarios that will highlight inherent strengths and weaknesses of the heuristics.

For each possible instantiation of the parameters in Table 4.1, we create 247 random experimental
scenarios as described above. For each experimental scenario, we run 10 trials, varying the seed of
the random number generator used to determine Markov state transitions. We compute average dfb
values for each heuristic based over these 10 trials, for each experimental scenarios. The total number
of generated problem instances is 4× 3× 10× 247× 10 = 296, 400.

Table 4.2 shows average dfb and number of wins results, averaged over all experimental scenarios
and sorted by increasing dfb values, i.e., from best to worst. In spite of the averaging over all problem
instances, the trends are clear. All four MCT algorithms perform best, followed closely behind by the
UD, and then the LW algorithms. The random algorithms perform significantly worse. Regarding these

http://graal.ens-lyon.fr/~fdufosse/changing_platforms.tar.gz
http://graal.ens-lyon.fr/~fdufosse/changing_platforms.tar.gz

94 CHAPTER 4. SCHEDULING PARALLEL ITERATIVE APPLICATIONS ON VOLATILE RESOURCES

Table 4.1: Parameter values for Markov experiments.

parameter values
p 20
n 5, 10, 20, 40
ncom 5, 10, 20
wmin 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 4.2: Results over all problem instances

Algorithm Average dfb #wins
EMCT 4.77 80320
EMCT∗ 4.81 78947
MCT 5.35 73946
MCT∗ 5.46 70952
UD∗ 7.06 42578
UD 8.09 31120
LW∗ 11.15 28802
LW 12.74 19529
RANDOM1W 28.42 259
RANDOM2W 28.43 301
RANDOM4W 28.51 278
RANDOM3W 31.49 188
RANDOM3 44.01 87
RANDOM4 47.33 88
RANDOM1 47.44 36
RANDOM2 47.53 73
RANDOM 47.87 45

algorithms, one can note that, expectedly, biasing the probability that a processor Pq is picked by wq is
a good idea (i.e., RANDOMxW always outperforms RANDOMx). The other differences in the definitions
of the random algorithms do not lead to significant performance differences. On average on all problem
instances, EMCT algorithms have makespans 10% smaller than the MCT algorithms, which shows that
taking into account the probability of state changes does lead to improved performance.

To provide more insight than the overall averages shown in Table 4.2, Figure 4.2 plots dfb results
averaged for distinct wmin values, shown on the x-axis. We present only results for the four MCT
heuristics and for those heuristics that do account for network contention (i.e., with a ∗), and leave
out the random heuristics. Note that increasing wmin amounts to scaling the unit time, meaning that
availability state transitions occur more often during the execution of a task. In other words, the right
hand side of the x-axis in Figure 4.2 corresponds to more difficult problem instances. Indeed, the larger
wmin, the higher the probability that a task’s processor experiences a state transition. Therefore, as
wmin increases, it becomes increasingly important to estimate the negative impacts of the DOWN and
RECLAIMED states: the most powerful processor may no longer be the best choice if it has a higher
probability of going into the states RECLAIMED or DOWN . The two EMCT algorithms take into
account the probability that a processor enters the RECLAIMED state. We see that they overtake
the MCT algorithms when wmin becomes larger than 3. The UD and LW algorithms also take into

4.8. CONCLUSION 95

Table 4.3: Results for contention-prone experiments

Communication times ×5

Algorithm Average dfb
EMCT∗ 3.87
MCT∗ 4.10
UD∗ 5.23
EMCT 6.13
UD 6.42
MCT 7.70
LW∗ 8.76
LW 10.11

Communication times ×10

Algorithm Average dfb
UD∗ 2.76
UD 3.20
EMCT∗ 3.66
LW∗ 4.02
MCT∗ 4.22
LW 4.46
EMCT 8.02
MCT 15.50

account the probability that a processor goes DOWN . UD heuristics consistently outperform their LW
counterparts. Also, UD (slightly) overtakes EMCT as soon as wmin = 7. We conclude that when
the probability of state transitions rises one must use heuristics that explicitly take into account that
processors can go in the states RECLAIMED and DOWN .

In our results, we do not see much difference between the original versions of the heuristics and the
versions that try to account for network contention, i.e., the heuristics that have a ‘∗’ in their names. Part
of the reason may be that, as stated in Section 4.6.3, the correcting factor used to account for contention
is a very coarse approximation. However, our experimental scenarios correspond to compute-intensive
executions, meaning that processors typically spend much more time computing than communicating.
We ran a set of experiments for n = 20, ncom = 5, and wmin = 1, but with Tdata = 5wmin and
Tprog = 25wmin, i.e., with communication times 5 times larger than those in our base set of experimental
scenarios. Results averaged over 100 such “contention-prone” experimental scenarios (each of which is
ran for 10 trials) are shown in the left-hand side of Table 4.3. The right-hand side shows similar results
for communication that are 10 times larger than those in our base set of scenarios. These results confirm
that, as the scenario becomes more communication intensive, those algorithms that account for network
contention outperform their counterparts.

4.8 Conclusion

In this chapter, we have studied the problem of scheduling master-worker iterative applications on
volatile platforms in which hosts can experience failures or be temporarily reclaimed by their owners.
A unique aspect of our work is that we model the fact that communication between the master and the
workers is subject to a bandwidth constraint, e.g., due to the limited capacity of the master’s network
card. In this context we have made a theoretical contribution by characterizing the computational com-
plexity of the off-line problem, which turns out to be NP-hard. Interestingly, without any bandwidth
constraint, the problem becomes solvable in polynomial time. We have then proposed several on-line
scheduling heuristics. By assuming a Markov model of processor availability, we were able to derive
a closed-form formula for the expectation of the time needed by a volatile worker to complete a set
of tasks. Some of our heuristics use this expectation for making scheduling decision (namely EMCT,
EMCT*, UD, UD*). Some heuristics also use a contention-correcting factor as a way to account for the
constraint on the master’s bandwidth (namely EMCT*, LW*, UD*). The evaluation of our heuristics
in simulation has led to the following conclusions:

– Our failure-aware heuristics deliver better performance than classical heuristics when the proba-
bility that a task is subject to processor state transitions becomes non negligible;

96 CHAPTER 4. SCHEDULING PARALLEL ITERATIVE APPLICATIONS ON VOLATILE RESOURCES

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

mct

mct*

emct

emct*

ud*

lw*

Figure 4.2: Averaged dfb results vs. wmin.

– Our contention-correcting factor improves performance on contention-prone platforms, and does
not degrade performance otherwise;

– Our EMCT* heuristic delivers overall good performance, leading to a 10% reduction over the
makespans achieved by MCT, the optimal algorithm for the contention-free offline case;

– EMCT* is outperformed by UD* in scenarios that exhibit very large state transition probabilities
when compared to task duration, or a highly contented network.

The studied model only consider completely independent tasks. In many iterative applications, tasks
have dependencies or need to communicate during its executions. Then, a new model has to be studied
with more communications between tasks.

Chapter 5

Scheduling parallel iterative coupled
applications on volatile resources

5.1 Introduction

This chapter deals with the problem of mapping tightly-coupled iterative applications onto volatile
platforms. This work is a follow-on of the previous chapter, where we have addressed the deployment
of iterative applications composed of independent tasks onto volatile platforms. The coupling of the
application tasks induces new and challenging problems: one still needs to select resources that are either
fast and/or reliable, but in addition these resources must be simultaneously available for the execution to
make any progress.

As in the previous chapter, we envision a typical scientific iterative application. The master par-
allelizes the execution of the iterations across available processors. Each iteration corresponds to the
execution of a fixed number of tasks, and there is a synchronization (or checkpoint) at the end of each
iteration, before proceeding to the next one. However, while in the previous chapter all tasks were
assumed to be independent, here we assume that all tasks are tightly coupled and keep exchanging in-
formation throughout the iteration. Note that these two generic models cover the two extreme points of
the parallelization spectrum, and are representative of a very large class of scientific applications.

The platform model considered here is the same as in the previous chapter. We assume that the
master can enroll a set of volatile computing workers. We use a model of availability with states UP ,
DOWN and RECLAIMED . We bound the total outgoing communication capacity of the master, which
is able to communicate simultaneously with only a limited number of workers, sending them either the
application program or task data files. Given the application and platform models, and given a total
execution time allotted to the application, the goal is to derive mapping strategies that maximize the
expected number of iterations that will be successfully executed within the available time interval.

The major contribution of the chapter is twofold: on the theoretical side, we assess the complexity
of the problem in its off-line version, i.e., when processor states are known in advance. Even with the
global knowledge of resource availability, the problem is NP-hard: the communication bound forces
combinatorial trade-offs between keeping former resources active, and enrolling new ones. On the
practical side, we design a set of on-line heuristics which we thoroughly evaluate and compare using
extensive simulations, based upon random parameters.

The chapter is organized as follows. Section 5.2 is devoted to a precise statement of the application
and platform models. Complexity results for the off-line study are reported in Section 5.3. In Section 5.4,
we describe our 3-state Markovian model of processor availability, and we show how to approximate
the expected time for a processor to complete a given workload. Heuristics for the on-line problem

97

98CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

are detailed in Section 5.5. An experimental evaluation of these heuristics is conducted in Section 5.6.
Finally, we give some conclusions and perspectives in Section 5.7.

5.2 Framework

In this section, we discuss the application and platform models in full details.

5.2.1 Application

As in the previous chapter, we target a scientific application that performs successive iterations.
Each iteration corresponds to the execution of a fixed number m of tasks. There is a synchronization (or
checkpoint) at the end of each iteration, before proceeding to the next one. Before being able to perform
any computation, a processor needs:

– the program, of size Vprog, which is the same for all tasks and iterations
– the input data for each task, of constant size Vdata, but that depends upon each task and iteration.
Unlike the previous case, the m same-size tasks steadily communicate throughout the iteration. All

the m tasks of an iteration are executed concurrently, within the same time interval, and at the pace of
the slowest resource. At any time slot of computation, execution of all tasks progress and the same ratio
of each task is executed. If one processor computing some task fails, all the work executed for current
iteration is lost, and computations of tasks have to be restarted. If one processor of current configuration
is preempted, the computation of all tasks is interrupted. A given processor may well execute several
tasks. There is no possible overlap between data reception and current computations. We can consider
that an iteration consists in two step: a step of communication, and a step of computations.

We are given a numberN of time-slots, and the objective is to compute as many iterations as possible
within these time-slots. To simplify things, each task is executed within an integer number of time-slots.
The length of a time-slot depends on the application/platform pair (see below), and can vary from a few
minutes to a couple of days.

5.2.2 Configuration

Let config(t) denote the set of enrolled processors, or configuration, at time t. If one of the proces-
sors crashes, all partial work done so far for the current iteration is lost, and the scheduler must select
another set of processors to resume the iteration from scratch. But even if all processors in config(t) are
UP , the scheduler may well decide to change the configuration, for instance because a desirable (i.e.,
fast and/or reliable) processor just returned to the UP state. Changing configuration is a risky decision,
because all partial work done so far is lost when a configuration change occurs, be it due to a processor
crash or to a new resource selection. This is because allm tasks are executed concurrently in this model,
so they all start, and eventually terminate, at the same time.

Similarly, the impact of a resource being reclaimed is important, because the whole configuration
stalls until the resource eventually becomes UP again.

To summarize notations so far, we have:
– the time line is discretized into N time-slots
– m tasks are executed to complete each iteration of the application
– p processors may be enrolled; any processor Pq needs wq time-slots to execute a task and its state

vector Sq gives its state at each time-slot
– Tprog is the number of time-slots needed to send the program (of size Vprog) to a processor
– Tdata is the number of time-slots needed to send the data of a task (of size Vdata) to a processor

5.2. FRAMEWORK 99

– ncom is the maximum number of processors that the master can communicate with (sending either
program or input data) at each time-slot

– config(t) is the configuration (i.e., the set of enrolled processors) at time-slot t

The objective is to assign tasks to processors so as to achieve the largest possible number of iterations
within the N time-slots. Note that for the off-line study, if an efficient algorithm can be found to solve
the previous problem, then, using binary search, an efficient algorithm can be designed to solve the
problem of executing a given number of iterations in the minimum amount of time.

5.2.3 Execution scenario

To complete an iteration, enrolled processors must progress concurrently throughout the computa-
tions. But one resource may be assigned several tasks and execute them in parallel, if it has enough
memory to do so. Formally, each processor Pq has a bound µq on the maximum number of tasks that it
can execute simultaneously. We assume that

∑p
q=1 µq ≥ m, otherwise the problem has no solution. We

derive the following conditions:

– The m tasks are mapped onto k ≤ m processors Pq. Each enrolled Pq is assigned xq tasks,
where

∑k
q=1 xq = m. Because the tasks must proceed in locked steps, the execution progresses

at the pace of the slowest resource. Hence the computation of an iteration requires maxq(xqwq)
time-slots of concurrent computations (not necessarily consecutive, because of reclaiming).

– To be able to compute their tasks, the k enrolled processors must have received the program and
all necessary data. More precisely:
– Each resource Pq must receive the program, unless it has received it at some previous time-slot,

and has not be DOWN since that time-slot
– In addition, each resource Pq must receive xq data messages (one per task) from the master.

This requires xqTdata time-slots if the master is available, and more if the master serves other
processors (recall that the master cannot be simultaneously involved in more than ncom concur-
rent communications, be they program or data messages).

Note that the computation can start at a time-slot t only if each of the k enrolled resources has the
program and the data of all its allocated tasks, and has remained UP or RECLAIMED since receiving
these messages. All processors must remain simultaneously UP from time-slot t up to time-slot t +
maxq(xqwq) + t′ − 1 for some t′: there must be maxq(xqwq) time-slots with all enrolled processors
being simultaneously UP , and there may be t′ time-slots with one or more processors RECLAIMED
in between (and the other UP). If this is the case, the iteration is validated, and the scheduler can start
enrolling processors and sending tasks for the next iteration. Only those processors that have received
the program and stayed UP or RECLAIMED since that reception, need not to receive it again.

Changing configuration The scheduler may choose a new configuration at each time-slot t. Let
Pq be a new enrolled resource at that point, i.e., Pq ∈ config(t+ 1) \ config(t). Pq needs to receive the
program unless it already has a copy of it and has not been DOWN since its reception. In all cases, Pq
need to receive the task data before starting to compute: this accounts for xq messages. This holds true
even if Pq had been enrolled at some previous time-slot t′ < t, but also had been un-enrolled in between.
In other words, an interrupted communication is resumed from scratch if the processor fails down, or if
it was receiving task data, and it has been removed of the configuration.

100CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

5.2.4 Example

Consider an instance withm = 5 tasks and p = 5 heterogeneous processors with ∀1 ≤ i ≤ 5, wi = i.
We suppose that ncom = 2, Tprog = 2 and Tdata = 1. The state of processors is given in Figure 5.1
where colors have the following meaning: white means UP , grey means RECLAIMED and black
means DOWN .

P

P

D D

P D

D D C

C

C

C

CI

I

II

I

C

I I

IIIP5

P1

P2

P3

P4

Figure 5.1: Example of execution of an iteration.

In the executed schedule, two tasks are assigned to processors P2 and P3, and the last one to P4. This
means a work load of 4 time slots on P2, 6 time slots on P3 and 4 time slots on P4. Then, the computation
in this configuration need 6 time slots of computations, and during each time slot of computation, 1/6
of each task is executed.

The configuration is selected at time slot 1. At this time, P1 and P5 are not UP , so they cannot be
selected in the configuration.

The communication step of this iteration is executed between time slot 1 and time slot 6. At time
slot 1, the 3 processors selected can receive data, but because of bandwidth constraints, P3 remains idle.
In Figure 5.1, P means receiving the program, D means receiving the data of some task, and I means
idle.

The computation step of the iteration is executed between time slot 7 and 14. At time slot 9, P2

is preempted, and the computation is interrupted with half of the computation of each task completed.
When P2 becomes available again, P3 has been preempted and the computation cannot restart. When P3

becomes available again, P2 and P4 are UP , and the computation continues. If one of this processor had
fail at time slot 14, all the computation would have been lost and a new step of communication would
have starts. After time slot 14, a synchronization between processors is executed, and a new iteration
can start at time slot 15.

5.3 Off-line complexity

In this section, we study the off-line complexity of the problem. This means that we assume the a
priori knowledge of all processor states throughout the execution. In other words, the values Sq[j] are
all known in advance, for 1 ≤ q ≤ p and 1 ≤ j ≤ N .

For the off-line study, we can simplify the model and have only two processor states, UP (also
denoted by 1) and RECLAIMED (also denoted by 0). Indeed, suppose that processor Pq is DOWN
for the first time at time-slot t: Sq[t] = −1. We can replace Pq by two 2-state processors Pq′ and Pq′′
such that:

5.3. OFF-LINE COMPLEXITY 101

– for all j ≤ t, Sq′ [j] = Sq[j] and Sq′′ [j] = 0
– for all j ≥ t, Sq′ [j] = 0 and Sq′′ [j] = Sq[i]

In this way, we remove a value −1 and add a two-state processor. If we do this modification for each
value−1, we obtain an instance with only UP or RECLAIMED processors. In the worst case, the total
number of processors is multiplied by N , which does not affect the problem complexity (polynomial
versus NP-hard).

In this section we show that the simplest off-line and deterministic versions of the problem are NP-
hard. More precisely, the following two instances are both NP-hard:

– with Tprog = Tdata = 0, µq = µ = 1, and wq = w (no communications, identical processors
capable of executing a single task)

– with Tprog = Tdata = 0, µq = +∞, andwq = w (no communications, identical processors capable
of executing an arbitrary number of tasks)

Unlike Chapter 4, it has no sense to consider incomplete iterations for approximations. While the
computation of tasks is not completed, all work currently done can be lost at next time slot. As mini-
mizing the time to complete the first iteration with same-speed processors is NP-complete, the problem
is inapproximable unless P=NP.

5.3.1 Fixed resource number

Without communications, if we use identical processors with wq = w and µq = µ = 1, we have
to enroll m processors to complete an iteration. Then the problem reduces to finding w time-steps such
that there exist m processors that are simultaneously UP during all these w time-steps. We call this
problem OFF-LINE-COUPLED (µ = 1).

Theorem 5.1. Problem OFF-LINE-COUPLED (µ = 1) is NP-hard.

Proof. The decision problem associated to OFF-LINE-COUPLED (µ = 1) writes: given a value w and
p state vectors Sq, can we find m processors that are simultaneously UP during at least w time-steps?
This problem clearly belongs to NP: them×w sub-matrix is a certificate of polynomial (and even linear)
size.

For the completeness, we use a reduction from ENCD, the Exact Node Cardinality Decision prob-
lem [22]. Let I1 be an instance of ENCD: given a bipartite graph G = (V ∪W,E) and two integers
a and b such that 1 ≤ a ≤ |V | and 1 ≤ b ≤ |W |, does there exist a bi-clique with exactly a nodes in
V and b nodes in W ? Recall that a bi-clique C = U1 ∪ U2 is a complete induced sub-graph: U1 ⊂ V ,
U2 ⊂W , and for every u1 ∈ U1, u2 ∈ U2, the edge (u1, u2) ∈ E.

We construct the following instance I2 of OFF-LINE-COUPLED (µ = 1): we let p = |V | and
N = |W |. Resource Ri (which corresponds to vertex vi ∈ V) is UP at time-step j (which corresponds
to vertex wj ∈ W) if and only if (vi, wj) ∈ E. Finally we let m = a and w = b. The size of the
instance I2 is linear in the size of the instance I1. We show that I1 has a solution if and only if I2 does.
Suppose first that I1 has a solution C = U1 ∪ U2. We select the corresponding U1 processors and the
same U2 time-steps. Because we have a clique, each resource is UP at each time-step, hence I2 has a
solution. Suppose now that I2 has a solution. The corresponding sub-matrix translates into a bi-clique
with a nodes in V and b nodes in W , hence a solution to I2. �

5.3.2 Flexible resource number

Without communications, if we use identical processors with wq = w and µq = µ = +∞ (in fact
µ = m is enough), the task assignment problem is less constrained. Either we findm processors that are

102CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

simultaneously UP during w time-steps, or we find dm2 e processors that are simultaneously UP during
2w time-steps, or again we find dm3 e processors that are simultaneously UP during 3w time-steps, and
so on. We call this problem OFF-LINE-COUPLED (µ = +∞).

Theorem 5.2. Problem OFF-LINE-COUPLED (µ =∞) is NP-hard.

Proof. We use the same instance I1 of ENCD as in the proof of Theorem 5.1. We construct the following
instance I2 of OFF-LINE-COUPLED (µ = +∞): we let p = |V | and N = 2|W | + 1. Resource Ri
(which corresponds to vertex vi ∈ V) is UP at time-step j ≤ N (which corresponds to vertex wj ∈W)
if and only if (vi, wj) ∈ E. All processors are up at each step j such that |W | + 1 ≤ j ≤ N . Finally
we let m = a and w = b + |W | + 1. Intuitively, this amounts to add |W | + 1 new vertices in W
which are interconnected to every vertex in V . The size of the instance I2 is linear in the size of the
instance I1. We show that I1 has a solution if and only if I2 does. Suppose first that I1 has a solution
C = U1 ∪ U2. We select the corresponding U1 processors and the same U2 time-steps, plus the last
|W | + 1 time-steps. We have w = b + |W | + 1, hence I2 has a solution. Suppose now that I2 has a
solution. The corresponding sub-matrix translates into a bi-clique with x processors and y time-steps.
If x < m then at least one processor executes two tasks per iteration, and we need 2w times-steps to
perform an iteration. But 2w > N , what is a contradiction. Hence x = m and y = K. At most |W |+ 1
of the UP time-steps are greater than |W |, hence at least b of them are smaller than or equal to |W |: this
leads to a solution to I2. �

5.3.3 Polynomial instances

Remark. Consider a problem instance without preemption, i.e. with processors either UP or DOWN .
Some instances are polynomial, which do not contradict the above results because they are particular
when we transform them into UP -RECLAIMED instances as explained in the beginning of the previous
chapter.

The first particular case is without programs: Tprog = 0. Then the problem is polynomial: (i)
we complete iterations as soon as possible; (ii) for any possible beginning and completion times of
an iteration, we check if the processors which are UP during the whole can complete the iteration
(complexity: O(N2) or O(N ×Wmax)).

The second polynomial case is with unbounded communications: ncom = +∞. Any processor
receives the program as soon as possible at the beginning and after failing down. Just as before, (i)
we complete iterations as soon as possible; (ii) for any possible beginning and completion times of an
iteration, we check if the processors which are UP during the whole time interval can complete the
iteration; now this includes the time to receive data (complexity: O(N2) or O(N ×Wmax)).

Lemma 5.1. The problem without preemption with ncom = 1 and m = 1 in the homogeneous case is
polynomial.

Proof. To solve this particular case, we use a dynamic programming algorithm that computes recursively
the value M(t, Tcomm, Pi). It corresponds to the maximal possible number of iterations executed in the
t first time slots with the last tasks executed on Pi with on the last processors Tcomm time slots available
for receiving the program. More precisely, suppose that processor Pi has successively executed many
iteration, since a first reception of a first reception of a task data started at time slot t′. Between time
slots t′ and t, Pi has received task data, executed tasks and potentially has been idle some time slots.
Then, Tcomm is the number of time slots between t′ and t during which Pi was computing some task, or
was idle. These can be used by another processor to receive the program, while the remaining time, Pi
was receiving task data, and no other communication with the master was possible.

5.3. OFF-LINE COMPLEXITY 103

We denote T tf (i) the first time slot UP of Pi before t, that means the minimum value t′ such that
at any time slot between t′ and t, Pi is in state UP (∀T tf (i) ≤ t′ ≤ t,Si[t′] = 1). We have to consider
many cases to compute M(t, Tcomm, Pi).

In the fist case, the first iteration is executed on Pi (or no previous iteration interacts with these
ones) and the last iteration is completed at time slot t. Then, Pi executes the n-th iteration at time
T tf (i) + Tprog + n× (Tdata + w) and with Tcomm = n× w. Then, T tf (i) + Tprog + n× (Tdata + w) ≤ t

and n ≤ b t−T
t
f (i)−Tprog

Tdata+w
c. Finally, M(t, Tcomm, Pi) = b t−T

t
f (i)−Tprog

Tdata+w
c if Tcomm ≤ b

t−T tf (i)−Tprog

Tdata+w
c × w,

and 0 otherwise.
In the second case, the last iteration executed without Pi was computed by Pj and the reception

of the program by Pi was completely overlapped by the computations on Pj . Let t′ < t be the time
slot of completion of the last iteration on Pj . Then, if n is the number of iteration executed on Pi, n ×
(Tdata+w) ≥ t−t′. Then,M(t, Tcomm, Pi) = M(t′, Tprog, Pj)+b t−t′

Tdata+w
c if Tcomm ≤ b t−t′

Tdata+w
c×w. In

addition, Pi was available early enough to receive entirely the program before t′, while Pj was executing
iterations. Then, in this interval, Pj has executed Tprog time slots of computations, and (dTprog

w e−1)×Tdata

time slots of communications. Then t′ − T t′f (i) ≥ Tprog + (dTprog
w e − 1)× Tdata

In the last case, the last iteration executed without Pi was computed by Pj and Pi had not completed
the reception of the program at the end of this computation. Let t′ be the time slot of the last iteration
on Pj . Let T ′ be the number of time slots of reception of the program that Pi was able to do before
t′. Then, M(t, Tcomm, Pi) = M(t′, T ′, Pj) + b t−t

′−(Tprog−T ′)
Tdata+w

c if Tcomm ≤ b t−t
′−(Tprog−T ′)
Tdata+w

c × w.
As in the previous case, Pi was available early enough to receive T ′ time slots of the program, then
t′ − T t′f (i) ≥ T ′ + (dT ′w e − 1)× Tdata

Then, in this three cases, we obtain this same formula:

max
Pj 6=Pi
t′≥T tf (i)

0≤T ′≤Tprog

{
M(t′, T ′, Pj) +

⌊
t− t′ − (Tprog − T ′)

Tdata + w

⌋}
if Tcomm ≤ b t−t

′−(Tprog−T ′)
Tdata+w

c × w
if t′ − T tf (i) ≥ T ′ + (dT ′w e − 1)× Tdata

The first case correspond to T ′ = 0, the second one to T ′ = Tprog, and the last one to 0 < T ′ < Tprog.
Then, we obtain the following formula:
If t = 0, then M(t, Tcomm, Pi) = 0.
If Si[t] = 0, then M(t, Tcomm, Pi) = M(t− 1, Tcomm − 1, Pi). Otherwise:

M(t, Tcomm, Pi) =

max


max Pj 6=Pi

t′≥T tf (i)

0≤T ′≤Tprog

{
M(t′, T ′, Pj) +

⌊
t−t′−(Tprog−T ′)

Tdata+w

⌋} if Tcomm ≤ b t−t
′−(Tprog−T ′)
Tdata+w

c × w
if t′ − T tf (i) ≥ T ′ + (dT ′w e − 1)× Tdata

M(t− 1, Tcomm − 1, Pi)


We do not consider the possibility that Pi receives the program during the computation on two different
processors (for example on Pj and then on Pk). If Pi was able to receive some data before any reception
by Pk, then Pi would have been a better choice than Pk to execute tasks after Pj , and if Pj has completed
the communication during communications on Pk, it could have start an iteration at soon as it complete
its reception.

�

Lemma 5.2. The particular case without preemption with Tprog = 0 is polynomial.

104CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

Proof. As Tprog = 0, the iterations are independent: completing each iteration as fast as possible is
optimal. Iteration by iteration, we compute the values F (Tbegin, Tend), that are equal to 1 if the iteration
can be executed with beginning the computations at time slot Tbegin and completing the computations at
time slot Tend. In the other case, F (Tbegin, Tend) = 0.

The algorithm to decide the value of F (Tbegin, Tend), is the following:

Algorithm 13: Computation of F (Tbegin, Tend)

Data: an instance, a time slot T of beginning of the iteration and Tbegin and Tend
Result: F (Tbegin, Tend)
Let S be the set of processors available between time slots Tbegin and Tend;
For all Pu ∈ S, Pu became available at Tu(1) ≤ Tbegin and fail at Tu(2) ≥ Tend;
We order the processors of S in decreasing order of Tu(1);
foreach processor Pu do

Let nt =
⌊
Tend−Tbegin

wu

⌋
;

nt is the maximal number of tasks that Pu can execute between Tbegin and Tend;
if It remains some available time slots between T and Tbegin to receive data then

Give the maximal number nd data as possible with respect with nd ≤ nt;
Receive the task data as late as possible;

end
if All tasks are executed then

Return 1;
end

end
Return 0;

It remains to compute for all possible values of Tbegin and Tend, the minimal Tend such that it exists
a value Tbegin with F (Tbegin, Tend) = 1.

�

5.4 Computing the expectation of a workload

In this section, we show how to compute the expected execution time of a processor to complete a
given workload on a given configuration.

As in Chapter 4, the availability of processor Pq is described by a 3-state recurrent aperiodic Markov
chain, defined by 9 probabilities: P (q)

i,j , with i, j ∈ {u, r, d}, is the probability for Pq to move from state

i at time-slot t to state j at time-slot t+ 1, which does not depend on t. We denote by π(q)
u , π(q)

r and π(q)
d

the limit distribution of Pq’s Markov chain (i.e., steady-state fractions of state occupancy for states UP ,
RECLAIMED , and DOWN). This limit distribution is easily computed from the transition probability
matrix, and π(q)

u + π
(q)
r + π

(q)
d = 1.

When designing heuristics to assign tasks to processor sets, it seems important to take into account
the expected execution time of that processor set until it completes all tasks assigned to it or its probabil-
ity of success. Indeed, speed is not the only factor, as the target processors need to be UP simultaneously
to make any progress. Some of them may well become RECLAIMED several times while others are
UP , thereby delaying the completion of all their scheduled computations. We develop an analytical
expression for such an expectation as follows.

5.4. COMPUTING THE EXPECTATION OF A WORKLOAD 105

5.4.1 Probability of success and expected cost of a computation

Consider a set S of processors, all in the UP state at time 0. This set is assigned a workload that
requiresW time-slots in the UP state for completing all computations. To complete the workload, all the
processors in S must be simultaneously UP during anotherW−1 time-slots. They can possibly become
RECLAIMED (thereby freezing the execution) but never DOWN in between. What is the probability
of the workload being completed? And, if it is successfully completed, what is the expectation of the
number of time-slots until completion?

Definition 5.1. Knowing that all processors in a set S are UP at time-slot t1, let P(S)
+ be the probability

that they all will be UP simultaneously at a later time-slot, without any of them going to the DOWN

state in between. Formally, knowing that ∀Pq ∈ S, Sq[t1] = u, P (S)
+ is the probability that there exists

a time t2 > t1 such that

∀Pq ∈ S, Sq[t2] = u and Sq[t] 6= d for t1 < t < t2

Definition 5.2. Let E(S)(W) be the conditional expectation of the number of time-slots required by a
set of processors S to complete a workload of size W knowing that all processors in S are UP at the
current time-slot t1 and none will become DOWN before completing this workload. Formally, knowing
that Sq[t1] = u, and that there exist W − 1 time-slots t2 < t3 < · · · < tW , with t1 < t2, Sq[ti] = u for
i ∈ [2,W], and Sq[t] 6= d for t ∈ [t1, tW], E(S)(W) is the conditional expectation of tW − t1 + 1.

Theorem 5.3. It is possible to numerically approximate the values of P (S)
+ and E(S)(W) up to an

arbitrary precision ε in fully polynomial time.

Proof. Consider a set S of processors, all available at time slot 0. Consider the probability P (S)
+ (t) that

all these processors are simultaneously UP again for the first time at time t. This means that for all
0 < t′ < t, there exists at least one processor RECLAIMED at time t′. Also, none of the processors in
S goes DOWN between 0 and t.

Let P (q)

u
t→u

be the probability that a processor Pq that was UP at time 0 is UP again at time t, without

having been DOWN in between, and let P (S)

u
t→u

=
∏
Pq∈S P

(q)

u
t→u

. For each processor Pq, the value P (q)

u
t→u

can be computed by considering its transition matrix raised to the power t, knowing that the initial state
is UP . We form the product to compute P (S)

u
t→u

. We derive that

P
(S)
+ (t) = P

(S)

u
t→u
−
∑

0<t′<t

P
(S)
+ (t′)× P (S)

u
t−t′→ u

.

The probability P (S)
+ that all the processors in S will be simultaneously UP again at some point,

before the first failure of any of them, is

P
(S)
+ =

∑
t>0 P

(S)
+ (t)

=
∑

t>0 P
(S)

u
t→u
−
∑

0<t′<t P
(S)
+ (t′)× P (S)

u
t−t′→ u

=
∑

t>0 P
(S)

u
t→u
−
∑

t>0 P
(S)
+ (t)×

∑
t′>0 P

(S)

u
t′→u

Let Eu(S) =
∑

t>0 P
(S)

u
t→u

. Suppose that all processors are UP at time slot 0. Let At the ran-
dom variable that is equal to 1 if all processors are UP at time slot t without that ant processor goes
DOWN in between. Then E(At) = P

(S)

u
t→u

. By linearity of the expectation, we have E(
∑

0≤t′≤tAt′) =

106CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

∑
0≤t′≤t P

(S)

u
t′→u

. Suppose that, in set S, at least one processor has a nonzero probability of going

DOWN . Then, limt→∞
∑

0≤t′≤t P
(S)

u
t′→u

converges. We can conclude that E(
∑

t>0At) =
∑

t>0 P
(S)

u
t→u

.

Then,Eu(S) is the expected number of time slots with all processors UP , before one of these processors
fails. Then, P (S)

+ = Eu(S)−Eu(S)×P (S)
+ , from which we derive that P (S)

+ = Eu(S)
1+Eu(S) if , in set S, at

least one processor has a nonzero probability of going DOWN . Otherwise, P (S)
+ = 1.

We now consider the expected time E(S)(W) to execute W time slots of computation, conditioned
by the fact that no processor in S will fail. The first time slot of computation is done at t = 0. Let E(S)

c

be the expected time of the next time slot of computation. Then,

E
(S)
c =

∑
t>0 t× P

(S)
+ (t)

=
∑

t>0 t× P
(S)

u
t→u
− t×

(∑
0<t′<t P

(S
+ (t′)× P (S)

u
t−t′→ u

)
=

∑
t>0 t× P

(S)

u
t→u
−
(∑

t>0 P
(S)
+ (t)

)
×
(∑

t′>0(t+ t′)P
(S)

u
t′→u

)

Let A(S) =
∑

t>0 t × P
(S)

u
t→u

. Then, E(S)
c = A(S) − E

(S)
c × Eu(S) − P

(S)
+ × A(S). Then,

E
(S)
c =

A(S)
(

1−P (S)
+

)
1+Eu(S) and E(S)(W) = 1+(W−1)E

(S)
c

(P
(S)
+)W−1

.

We now explain how we numerically approximate the values of Eu(S) and A(S). Let ε be the
desired precision. Consider for some value T the difference between Eu(S) and

∑
0<t<T P

(S)

u
t→u

. We

have P (S)

u
t→u

=
∏
Pq∈S P

q

u
t→u

and P q
u
t→u

the probability that a processor that was UP at time 0 is UP at

time t without having been DOWN . For a processor Pq ∈ S, let Mq =

[
P

(q)
u,uP

(q)
u,r

P
(q)
r,uP

(q)
r,r

]
. Then, P q

u
t→u

=

(M t
q)[0, 0]. We obtain P q

u
t→u

= µ(λq1)t + ν(λq2)t with µ, ν ≥ 0, µ + ν = 1 and λq1 > λq2 eigenvalues

of Mq. Then, P q
u
t→u
≤ (λq1)t. We obtain P (S)

u
t→u
≤
(∏

Pq∈S λ
q
1

)t
and

∑
t≥T P

(S)

u
t→u
≤
(∏

Pq∈S λ
q
1

)T
×

1
1−
∏
Pq∈S λ

q
1
. Let Λ =

∏
Pq∈S λ

q
1. We obtain that T > ln(ε(1−Λ))

ln(Λ) implies Eu(S)−
∑

0<t<T P
(S)

u
t→u
≤ ε.

Thus, we can compute in polynomial time an approximation of Eu(S) at ε in polynomial time.

Similarly, we obtainA(S)−
∑

0<t<T t×P
(S)

u
t→u
≤ ε as soon as ΛT

(
T

1−Λ + Λ
(1−Λ)2

)
≤ ε. Therefore

A(S) can be approximated with precision ε in polynomial time. �

5.4.2 Probability of success and expected cost of a communication

The same study cannot be conducted concerning communication costs because of the constraint
ncom. The expected cost of a communication is then estimated as follows. Let S be a set of enrolled
processors. For any processor Pi ∈ S, let ni be the number of time slots of communications needed on
this processor to receive the program and all the data of its allocated tasks. Suppose first |S| ≤ ncom. In
this particular case, the communication task on each processor can be estimated precisely. On processor
Pi, it corresponds to a computation of cost ni executed on Pi. We obtain an expected time on Pi,
Ei = E(Pi)(ni). We then estimate the expected communication time of the current configuration to

E(S)
comm = max

Pi∈S
{E(Pi)(ni)} .

5.5. ON-LINE HEURISTICS 107

With |S| ≥ ncom, the estimation of the communication time is more complicated. In this case, we
estimate the communication time as follows:

E(S)
comm = max

Pi∈S

{
max
Pi∈S

{
E(Pi)(ni)

}
,

∑
Pi∈S ni

ncom

}
This value is used to estimate the probability of success of the communication. We define P (Pi)

ND (t)
the probability that processor Pi that was UP at time t′ does not fail down between time slot t′ and t′+t.
The probability of success is then estimated as

P (S)
comm =

∏
Pi∈S

P
(Pi)
ND (E(S)

comm) .

This values does not take into account the time needed after the end of all communications to obtain
that processors become UP simultaneously. The probability of success of an iteration is estimated
by multiplying the probability of success of the communications and the probability of success of the
computations.

5.5 On-line heuristics

In this section, we propose heuristics to address the on-line version of this scenario. This scenario
is more challenging than the previous one, because (i) enrolled processors only make progress in the
execution during those time-slots where they are all UP simultaneously; and (ii) the execution advances
at the pace of the slowest resource. Hence its seems very unlikely that strategies based on the minimum
completion time of individual resources would turn out efficient.

Conceptually, we can envision two main strategies:

Passive. Passive heuristics conservatively keep current processors active as long as possible. In other
words, the current configuration is changed only when one of the enrolled processors becomes
DOWN .

Proactive. Proactive heuristics allow for a complete reconfiguration, possibly terminating ongoing work
if a better configuration is determined. The possibility of terminating current tasks makes it pos-
sible for an iteration to never complete.A criterion must be derived to decide whether and when
such aggressive reconfiguration is worthwhile.

We first propose passive heuristics, and then move to more complex proactive versions. A major dif-
ficulty for the latter is the design of a good criterion to decide whether it is worth terminating the current
configuration. We proposed several possible criteria and evaluate them experimentally in Section 5.6.

Before going into further details, here follows a summary of the main design rules, together with an
intuitive explanation of each one:

– A configuration change is required when one enrolled resource fails. Remember that all previ-
ously executed work is lost. However, a processor which has already received one or several
communications can reuse them if the scheduler reassigns tasks to it.

– As already pointed out, we have both passive and proactive heuristics. Passive heuristics change
the current configuration only when required by a processor crash, while proactive heuristics may
change anytime, based upon some evaluation criterion.

– In pro-active heuristics, a heuristic and a criterion are selected. At any time slot, if a new configu-
ration is computed with the selected heuristic. Then, this new configuration is compared with the
current one according to the selected criterion. If the new configuration is better than the current

108CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

one according to this criterion, a reconfiguration is done and tasks are allocated according to the
new configuration. In the other case, the execution continue on the current configuration for an
additional time slot, and this operation is executed again.

As in the previous section, all heuristics assign tasks to processors (that must be in the UP state)
one-by-one, until m tasks are assigned. The objective of the heuristics is to decide which processors
should be used for these tasks.

5.5.1 Pro-active criteria

We propose three criteria to decide whether and when to execute a reconfiguration.

The probability of success of the iterations The probability of success of a new iteration is
computed as described in Section 5.4. Concerning the current configuration, if the communication is
in progress, the values of remaining time-slots needed to complete the communications ni are updated
according to the communication done, and if the computation is started, the value W of the workload is
modified according to the work done.

At any time slot, the configuration selected is the more reliable one. For an heuristic H, the corre-
sponding pro-active heuristic is denoted P-H.

The expected completion time In this case, we select the fastest configuration at any time slot.
As in the previous case, at any time slot, the expected cost of the current configuration is recalculated
according to the work already done.

For an heuristic H, the corresponding pro-active heuristic is denoted E-H.

The yield This two first criteria does not make a link between reliability and speed of configurations.
The first criterion could select slow processors, and the second one unreliable configurations. We use
the yield as criterion taking the two parameters into account. The yield is the expected value of the
inverse of the global execution time of the current iteration. We estimate this value as follows: For a
given configuration of probability of success P , in expected time E, on an iteration running for t time
slots, the yield is estimated as

Y =
P

E + t
.

The configuration selected is the one that maximize the estimated yield. For an heuristic H, the
corresponding pro-active heuristic is denoted Y-H.

Concerning the heuristics, one difficulty is to find the best configuration for one of this criterion.
Two classes of heuristics are proposed to solve this problem. In greedy-indep heuristics, the values of
probability of success and expected time are computed processor by processor as if tasks were indepen-
dent. The greedy-coupled heuristics allocate task by task according to some criterion, even if this choice
is not optimal.

The dynamic heuristics below fall into two classes, greedy-indep and greedy-coupled. Most of these
heuristics rely on the assumption that processor availability follows a Markov process, as discussed in
Section 5.4.

5.5.2 Greedy-coupled heuristics.

The greedy-coupled heuristics aim to find good configurations for a selected criterion, selected
among pro-active criteria. However, as tasks are assigned one-by-one, the computed configurations

5.5. ON-LINE HEURISTICS 109

are not optimal for this criterion.

IP (Incremental:Probability of success)

This heuristic aims configurations with good probability of success. A un-allocated task is assigned
on a processor such that the probability of success of assigned tasks is maximal, without taking into
account the speed of this processor.

More precisely, considering a set S of processors with at least on task, We compute for any pro-
cessor Pq the probability of success of the computation: PS(q) = PS∪Pq(W) with W the maximum
computation cost on a task of S ∪ Pq if an additional task is schedule on Pq. We assign the next task to
processor Pq0 with q0 = ArgMax

{
PS(q)

}
.

IE (Incremental:Expected completion time)

In this case, we look for fast configurations, without considering its reliability. A un-allocated task
is assigned on the processor that minimized the expected execution time of the iteration.

More precisely, considering a set S of processors with at least on task, We compute for any pro-
cessor Pq the expected completion time of the computation with an additional task on Pq: let mp the
communication time for processor Pp. The communication time is set to
T qcomm = max{maxS∪Pq{mp}, 1

ncom

∑
S ∪ Pq{mp}} The expected computation time T qcomp is com-

puted using results of Section 5.4 We assign the next task to processor Pq0 with
q0 = ArgMin {T qcomm + T qcomp}.

IY (Incremental:Expected yield)

This heuristic use as criterion the yield of configurations. A new task is allocated on the processor
that maximized the yield of the configuration.

Formally, considering a set S of processors with at least on task, We compute for any processor Pq
the expected yield of the computation with an additional task on Pq: Let PS(q) the probability computed
for heuristic IP, TS(q) the expected time computed for heuristic IE and t the time spent since the begin-
ning of the current iteration. We assign the next task to processor Pq0 with q0 = ArgMax

{
PS(q)
t+TS(q)

}
.

IAY(Incremental:Expected apparent yield)

The yield take into account the time spent on the current iteration. It could seems interesting to only
consider the future work and the remaining completion time in stead of the global execution time. The
apparent yield is estimated by

AY =
P

E

In this heuristic, we consider the apparent yield.
Formally, considering a set S of processors with at least on task, We compute for any processor Pq

the expected yield of the computation with an additional task on Pq: Let PS(q) the probability computed
for heuristic IP, TS(q) the expected time computed for heuristic IE. We assign the next task to processor
Pq0 with q0 = ArgMax

{
PS(q)
TS(q)

}
.

110CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

5.5.3 Greedy-indep heuristics.

We aim to propose heuristics that compute the expected cost on each processor independently of the
other processors. This corresponds to the model of Chapter 4. We then re-use heuristics of this chapter.
We describe again heuristics for reminder.

MCT (Minimum Completion Time)

For each processor Pq we compute Delay(q), the delay before Pq finishes its current activities if no
other processor was used. We then greedily assign each of the remaining m −m′ tasks to processors,
picking each time the processor with the smallest task completion time. More formally, for each proces-
sor Pq, let nq be the number of tasks already assigned to it (out of them−m′ tasks), and let CT (Pq, nq)
be the estimation of its completion time:

CT (Pq, nq) = Delay(q) + nq(Tdata + wq) . (5.1)

MCT assigns the next task to processor Pq0 , where q0 = ArgMin{CT (Pq, nq + 1)} .
MCT with contention – The estimated completion time in Equation 5.1 does not account for network
contention (caused by the master’s limited network capacity) during the communication step. Here, we
use a simple correcting factor, and replace Tdata by

⌈
nactive
ncom

⌉
Tdata, where nactive denotes the number of

active processors, i.e., those processors that have been assigned one or several of the m−m′ tasks. We
derive the new estimation:

CT (Pq, nq) = Delay(q) + nq

(⌈
nactive

ncom

⌉
Tdata + wq

)
. (5.2)

We call MCT∗ the version of the MCT heuristic that uses the above definition of CT (Pq, nq).
Expected MCT – Given a workload (i.e., a number of needed time-slots of computation) CT (Pq, nq),
Theorem 5.3 gives the value of E(q)(CT (Pq, nq)), the expected number of time-slots needed for Pq to
be UP during CT (Pq, nq) times-slots without becoming DOWN in between. Using this expectation as
the criterion for selecting processors, and depending on whether the correcting factor on Tdata is used,
we obtain one new version of MCT and one new version of MCT∗, which we call EMCT and EMCT∗,
respectively.

LW (Likely to Work)

We build heuristics that consider the probability that a processor Pq, which is UP , will be UP again
at least once before becoming DOWN . This probability, P (q)

+ , is given in Chapter 4 and corresponds to
P

(S)
+ with S = {Pq} as defined in proof of theorem 5.3. We assign the next task to processor Pq0 with

the highest probability of being UP for at least the estimated number of needed time-slots to complete
its workload, before becoming DOWN :

q0 = ArgMax
{

(P
(q)
+)CT (Pq ,nq+1)

}
.

Therefore, we first estimate the size W of the workload and then the probability that a processor will
be in the UP stateW time-slots without becoming DOWN in between. Using Equation 5.2 instead of
Equation 5.1, one obtains the LW∗ heuristic.

5.6. EXPERIMENTS 111

UD (Unlikely Down)

Here, we estimate the number N of time-slots needed for a processor to complete its workload,
knowing that it can become RECLAIMED . Then we compute the probability that it will not become
DOWN for N time-slots. Given that Pq starts in the UP state, the probability that it does not go to the
DOWN state during k time-slots is:

P
(q)
UD(k) =

[
1 1

]
.

[
P

(q)
u,u P

(q)
u,r

P
(q)
r,u P

(q)
r,r

]k−1

.

[
1
0

]
.

We approximate this expression by forgetting the state of Pq after the first transition:

P
(q)
UD(k) = (1− P (q)

u,d)

1−
P

(q)
u,dπ

(q)
u + P

(q)
r,d π

(q)
r

π
(q)
u + π

(q)
r

k−2

.

We use this value with k = E(q)(CT (Pq, nq + 1)). UD assigns the next task to the processor Pq0 that
maximizes the probability of not becoming DOWN before the estimated number of time-slots needed
for it to complete its workload, counting the time-slots spent in the RECLAIMED state:

q0 = ArgMax{P (q)
UD(E(q)(CT (Pq, nq + 1)))} .

Using Equation 5.2 instead of Equation 5.1, one obtains the UD∗ heuristic.

5.6 Experiments

We have evaluated the heuristics described in the previous chapter using the same simulator that
in the previous section, (available at http://graal.ens-lyon.fr/~fdufosse/changing_
platforms.tar.gz).

As in Chapter 4, the quality of an application execution is measured by the time needed to com-
plete 10 iterations, or makespan. We have executed all heuristics presented above for several problem
instances. For each problem instance, we compute the degradation from best (dfb) of each heuristic and
we count how often, over all instances, each heuristic is the (or tied with the) best one, so that we can
report on numbers of wins for each heuristics. We also compute the standard deviation of the dfb values,
and we count the number of solutions at less than 30% of the optimal makespan.

The instances for the experiments are largely similar to those of the previous chapter. All our exper-
iments are for p = 20 processors. For each processor Pq, we uniformly pick a random value between
0.90 and 0.99 for each P (q)

x,x value (for x = u, r, d). We then set P (q)
x,y to 0.5× (1− P (q)

x,x), for x 6= y. An
experimental scenario is defined by the above and by three parameters: n, the number of tasks per itera-
tion, ncom, the constraint on the master’s communication bandwidth, and the wmin parameter. For each
processor Pq, we pick wq uniformly between wmin and 10× wmin. Tdata is set to wmin and Tprog is set
to 5×wmin. We define experimental scenarios for each of the possible instantiations of (n, ncom, wmin)
given the values shown in Table 5.1.

For n = 5, we create 10 random experimental scenario for each possible instantiations of (ncom, wmin)
given the values shown in Table 5.1. For each experimental scenario, we run 10 trials, varying the seed of
the random number generator used to determine Markov state transitions. The total number of generated
problem instances for this first experiment is 3000.

The results of this first set of experiment is presented in table 5.2. The heuristics are sorted by average
degradation from best. The 10 best heuristics for this criteria are then used to a larger experiment, for
each values (n, ncom, wmin) given the values shown in Table 5.1.

http://graal.ens-lyon.fr/~fdufosse/changing_platforms.tar.gz
http://graal.ens-lyon.fr/~fdufosse/changing_platforms.tar.gz

112CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

Table 5.1: Parameter values for Markov experiments.

parameter values
p 20
n 5, 10
ncom 5, 10, 20
wmin 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

5.6.1 Experimental results

Results for n = 5. Table 5.2 presents the experimental results of all described heuristics for 5 tasks,
sorted by average degradation from best.

The first result of this table is the high values of standard deviations. For any heuristic, this value is
higher than the degradation from best, and in some cases, it is more than twice as large than this value
(for example heuristics Y-IAY, Y-IY or P-IAY). In most cases, the apparent yield is involved in higher
values, but all heuristics have a high standard deviation. The coupled property of the application make
the computation very sensitive to failures and unavailability. The apparent yield seems to particularly
generate unreliable solutions.

This experiment model however has close similarities with the experiments of Chapter 4. All heuris-
tics described in the previous chapter are used here. The main difference in both results concerns the
heuristics MCT and EMCT. For any variant, both results were close in Chapter 4 and however are very
different in this case: Heuristic EMCT and its variants are significantly better in this model.

This experiment shows a clear trend for the best results. The expected completion time is the best
pro-active criteria, and IE is one of the more efficient heuristics. Heuristics Y-IE and P-IE have the
best average degradation from best, with approximately 30%. Heuristics E-IAY and E-IY are a little
less efficient for this criteria, but are more often the best heuristic in a simulation with more than 20%
of best results. Heuristic E-IAY seems to be the best compromise between this average degradation
from best and number of best result. It has however a relatively high standard deviation in comparison
with the three other considered heuristics, as all variants of heuristic IAY. We can notice that for any
variants, heuristic IAY is better than heuristic IY for the average degradation from best, the number of
best results and the number of results with a degradation from best at less than 30%.

This four heuristics are all considering the expected computation time of a computation as a main
criteria to select configurations. In practice, three variants of heuristic IE are in the first five heuristics for
average degradation from best and, for most of the heuristics, the variant with the expected completion
time as pro-active criterion is the most efficient variant. Therefore, the first intuition is that the heuristic
E-IE should be very efficient. In practice, the experimental results show that this intuition is wrong and
this heuristic has low results, with on average a computation cost two times longer than the optimal, less
than 10% of winning instances, and a high standard deviation. In particular, this heuristic has very high
execution times for experiments where the fastest processor is unreliable. For similar reasons, heuristics
P-IP and Y-IY have low performance.

Algorithm Average dfb #wins #good rate stdv

Y-IE 31.73 17.84 63.05 39.34
P-IE 33.11 16.54 61.90 40.22
E-IAY 34.39 23.49 65.50 54.77
E-IY 43.58 20.30 59.85 66.75
IE 49.04 10.26 63.05 51.30
IAY 55.03 8.85 54.46 78.32

5.6. EXPERIMENTS 113

IY 69.02 6.28 48.10 92.75
E-IP 75.67 15.09 45.54 100.06
E-EMCT∗ 84.10 9.18 40.45 132.24
E-LW 94.08 12.16 39.96 119.80
E-LW∗ 94.08 12.16 39.96 119.80
E-UD∗ 94.54 12.86 39.74 119.55
E-UD 97.35 12.34 39.33 123.98
E-EMCT 99.26 5.24 33.01 146.39
E-MCT∗ 107.24 8.10 35.95 195.38
Y-MCT∗ 108.22 10.00 41.86 245.04
P-MCT∗ 108.43 10.00 41.56 244.88
IP 110.86 4.57 35.02 139.20
E-IE 112.06 9.74 34.91 245.57
EMCT∗ 117.99 3.64 36.21 170.18
Y-IAY 122.91 19.33 54.46 414.19
LW∗ 128.16 3.64 30.37 151.34
LW 129.85 3.61 30.37 152.49
EMCT 134.12 1.60 28.92 182.31
UD∗ 137.84 3.61 30.93 158.62
UD 139.01 3.49 30.33 159.42
Y-IY 139.99 15.87 48.10 445.53
P-IAY 154.23 16.36 49.55 525.96
Y-UD∗ 157.81 9.29 30.93 265.64
Y-UD 161.32 8.88 30.33 273.22
Y-LW∗ 169.86 9.48 30.37 311.94
Y-LW 169.86 9.48 30.37 311.94
Y-EMCT∗ 171.15 7.43 36.21 487.99
P-UD∗ 178.35 8.51 28.96 305.94
P-UD 180.83 8.14 28.77 308.63
P-IY 181.55 13.31 40.19 549.40
Y-IP 182.56 12.01 35.02 469.33
P-EMCT∗ 188.02 7.47 34.72 540.64
Y-EMCT 189.66 4.16 28.92 503.38
MCT∗ 190.32 1.93 41.86 340.63
E-MCT 190.36 1.71 14.01 255.80
Y-MCT 194.49 2.34 18.25 360.79
P-MCT 195.52 2.23 17.73 360.65
P-LW∗ 196.02 8.96 28.92 363.72
P-LW 196.02 8.96 28.92 363.72
P-EMCT 204.75 4.05 27.58 547.80
P-IP 221.83 11.49 33.23 594.46
MCT 325.17 0.56 18.25 471.36

Table 5.2: Comparison of heuristics performance with 5 tasks

Comparison of the 10 best heuristics. The 10 best heuristics for the average degradation from
best in the previous experiment are the following: Y-IE, P-IE, E-IAY, E-IY, IE , IAY, IY, E-IP,

114CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

E-EMCT∗ and E-LW.
Only two of these heuristics are not considering the expected execution time as a main criteria:

heuristics IAY and IY. This two heuristics are efficient in term of average degradation from best, but
have low results in term of best results. They obtain the lower value of these 10 heuristics for this
criterion.

We first present a general Table 5.2 presenting the results on the global experiment, then Tables 5.3
and 5.4 respectively present the results in the experiment with 5 and 10 tasks.

In the previous experiment, we considered that the heuristic E-IAY was a good compromise between
average degradation from best and number of best heuristic of an instance. This is true for heuristic of 5
tasks, but for 10 tasks, this heuristic is the best one for both criteria.

Heuristics Y-IE and P-IE however obtain good results in experiments with 10 tasks. We notice that
in this last experiment, if heuristic Y-IE has a smaller average degradation from best than heuristic P-IE,
it has a lower number of best results.

Algorithm Average dfb #wins #good rate stdv

Y-IE 33.06 17.76 69.71 40.33
P-IE 34.48 16.66 68.02 41.34
E-IAY 35.26 24.83 71.37 55.80
E-IY 45.44 20.38 64.22 69.38
IE 51.40 10.81 69.71 59.83
IAY 59.32 8.46 70.12 93.12
IY 74.69 6.02 63.08 106.61
E-IP 77.08 15.41 49.51 103.19
E-EMCT∗ 92.23 8.63 43.14 164.71
E-LW∗ 92.80 12.65 44.65 123.30

Figure 5.2: General results for the 10 best heuristics

Algorithm Average dfb #wins #good rate stdv

Y-IE 32.30 17.69 70.44 40.21
P-IE 33.83 16.36 68.67 41.19
E-IAY 35.34 23.74 70.99 56.98
E-IY 44.10 20.48 64.86 67.89
IE 47.59 11.33 70.44 50.82
IAY 57.57 9.18 69.66 96.75
IY 71.02 6.63 63.67 108.21
E-IP 73.82 15.68 50.17 98.56
E-EMCT∗ 87.23 9.32 44.80 162.71
E-LW 90.68 12.82 45.07 119.19

Figure 5.3: Results with 5 tasks for the 10 best heuristics

Finally, the heuristics IAY and IY had already few best results with 5 tasks. This values further
decrease in the experiment with 10 tasks.

5.7. CONCLUSION 115

Algorithm Average dfb #wins #good rate stdv

E-IAY 34.83 31.20 73.60 48.23
Y-IE 37.48 18.20 65.40 40.98
P-IE 38.31 18.40 64.20 42.21
E-IY 53.32 19.80 60.40 77.59
IAY 69.62 4.20 72.80 67.90
IE 73.74 7.80 65.40 97.15
E-IP 96.20 13.80 45.60 127.04
IY 96.29 2.40 59.60 96.62
E-LW 105.30 11.60 42.20 145.12
E-EMCT∗ 121.64 4.60 33.40 175.99

Figure 5.4: Results with 10 tasks for the 10 best heuristics

5.7 Conclusion

This chapter is a follow-on of Chapter 4. The platform model is the same, but the application model
differs. While tasks were independent in the previous chapter, they are now tightly coupled. This
modification makes the computations more sensitive to failures. With this model, a single failure of one
processor can annihilate a long on-going computation on many processors.

We have proved the NP-completeness of the off-line problem and provided optimal algorithms for
polynomial particular instances. By assuming a Markov model of processors availability, we have pro-
posed polynomial time approximation schemes to compute the expected completion time of a computa-
tion and its probability of success. The heuristics of Chapter 4 have been adapted to this new application
model, and new heuristics were derived from the probability results. For any heuristic, pro-active vari-
ants were derived, using as criteria the expected completion time, the probability of success and the
expected yield of the platform.

The simulations have shown that for each heuristic, performance varies to a great extent from one
experiment to another. As a result, all heuristics have high standard deviations. However a few set of
heuristics was significantly better than the others, and in particularly, heuristic E-IAY has good average
performance for small instances, and is clearly better than the other heuristics for larger ones. We
conclude that maximizing the apparent yield seems to be the best approach, particularly in a proactive
setting.

116CHAPTER 5. SCHEDULING PARALLEL ITERATIVE COUPLED APPLICATIONS ON VOLATILE RESOURCES

Chapter 6

Conclusion and perspectives

6.1 Conclusion

In this thesis, we have explored many scheduling problems with reliability as main criterion. We
aimed at proving the theoretical complexity of the various instances, and for NP-complete problems, at
finding approximation results and providing heuristics. In the following we detail our contributions.

Mapping filtering streaming applications

Our first contribution is a theoretical study on the problem of mapping filtering streaming applica-
tions on homogeneous and heterogeneous platforms.

First, we have considered one-to-one mappings. In a simplified model without communication cost,
we have exhibited polynomial time algorithms for latency and period optimization problems on homo-
geneous platforms, and we have proved the NP-hardness of these problems on heterogeneous platforms.
Proofs of the inapproximability of these instances (unless P = NP) were provided. Then we have iden-
tified three natural and realistic communication models, with and without communication/computation
overlap, and with one-port or bounded multi-port communications. We have been able to provide the
complexity of all the optimization problems under study.

Then, we have extended this work to general mappings on heterogeneous linear platforms. We
have dealt with different instances for period and latency optimization problems, with proportional or
arbitrary computation costs, and without or with communication costs.

All these results have been published in [92, 93, 94, 91].

Reliability and performance optimization of pipelined real-time systems

In this chapter, whose published version is [96], we have addressed problems related to the mapping
of linear workflows on homogeneous and heterogeneous distributed platforms. The main goal was to
optimize the reliability of the mapping through task replication, while enforcing bounds on performance-
oriented criteria (period and latency). We derived a comprehensive set of NP-hardness complexity re-
sults, together with optimal algorithms for polynomial instances. Altogether, these results provide a
solid theoretical foundation for the study of multi-criteria mappings of linear workflows. Another con-
tribution of this chapter is the introduction of a realistic communication model that nicely accounts for
the inherent physical limitations on the communication capabilities of state-of-the-art processors.

On homogeneous platforms, an integer linear program has been presented to solve the problem
of maximizing the reliability with bounds on period and on latency, while polynomial-time heuristics

117

118 CHAPTER 6. CONCLUSION AND PERSPECTIVES

were derived for the most general problems. We have proposed two heuristics: HEUR-L that attempts
to minimize the latency and HEUR-P that attempts to minimize the period. Our experiments have
demonstrated the efficiency of the heuristics, and the supremacy of HEUR-P in most cases.

Scheduling parallel iterative applications on volatile resources

This study has addressed the problem of scheduling iterative applications with independent tasks
on desktop grids. Processors are subject to failures and are likely to be reclaimed by their owners. We
have modeled communications by considering bandwidth constraints in a master-worker schedule. Data
needed by tasks were divided in data common to all tasks, and individual data specific for any task. This
work has been published in [97].

In this context, we have studied the theoretical complexity of the off-line problem. We have provided
a proof of NP-completeness and an inapproximability result for the general problem, as well as an
algorithm for a polynomial particular instance.

The on-line study of this problem has assumed a Markov behavior of processors states. Closed-
form formulas were given to compute the expected computation times and probabilities of success of
computations.

A set of heuristics was provided based on random decisions, or on the different theoretical formulas
obtained using the Markov assumption. A large set of simulations with the Markov model was used to
compare these heuristics.

Scheduling parallel iterative coupled applications on volatile resources

This chapter extends the previous results to tightly coupled tasks. In this case, tasks have to progress
at same speed. This constraint makes the schedule more challenging. A single failure of one processor
can annihilate a long on-going computation on many processors. As in the previous chapter, the off-line
problem has been theoretically studied. NP-completeness was proved for instances with and without
contention constraints. Optimal algorithms were provided for some polynomial instances.

Closed-form formula could not be presented for probability results, contrarily to the previous chap-
ter. However, polynomial-time approximation schemes were provided for expected computation times
and success probabilities. The yield could only be imprecisely estimated. A variant to the yield, named
apparent yield, was considered. Instead of considering the expected execution time of the whole itera-
tion, it only considers, at each time-step the expected remaining time until the end of the computations.

A set of heuristics was provided, some coming from the previous chapter, and others based on prob-
ability results. Pro-active variants were generated based on the previous heuristics, and configuration
changes were conducted according to various criteria. Simulations were used to compare these heuris-
tics.

6.2 Perspectives

These studies can be extended by many way. In the following, for any chapter, many directions are
provided for future work, and some general perspectives are then detailed.

Mapping filtering streaming applications

In the first chapter, a complete set of complexity results was presented for all the instances. How-
ever, few approximation results were provided for NP-complete instances. Many problems for one-to-

6.2. PERSPECTIVES 119

one mappings and general mappings should be studied, aiming at approximation results. In addition,
designing an integer linear program would also be interesting for these instances.

In [100], greedy heuristics have been derived for one-to-one mappings without communication costs,
and compared to the optimal solution. The latter was computed using an integer linear program. The
goal was to evaluate the respective impacts of the different parameters of the problem. These heuristics
should be adjusted for the different communication models, and more elaborate heuristics should be
derived.

For polynomial instances, many criteria can be studied in addition to period and latency. We could
for example take into account the reliability of computations or the energy consumption.

Reliability and performance optimization of pipelined real-time systems

In this part, we have considered the optimization of the reliability in the scheduling problem of linear
workflows. The communications were transmitted through routing operations. This communication
model makes the computation of success probability simpler. A theoretical study should be conducted
without this hypothesis. In addition, this chapter has only considered linear workflows. The problem
could be extended to general workflows.

As in the previous chapter, approximation results were incomplete and should be extended. An inte-
ger linear program should be searched for the problem on heterogeneous platforms. Two heuristics were
proposed and compared using simulations. A larger set of heuristics could be proposed and compared
to the currently available ones.

The probability law has not considered the aging of processors. This criterion, however, influences
the occurrences of transient failures. A more accurate probability law, taking into account this aging,
could be considered.

Scheduling parallel iterative applications on volatile resources

The main weakness of this study is the low accuracy of the Markov hypothesis for modeling real life
traces. More realistic probabilistic models have been proposed. These probabilistic distributions should
be used to generate new formula for expected time and success probability of computations, and new
heuristics should be proposed and compared with the ones presented here, all this using real life traces.
However, real life traces and distribution models often only handle only two states UP and DOWN .

In the set of provided heuristics, some only considered an estimation of the execution time, and
others only aimed an estimation of the probability of success. A criterion merging these two objectives
could be derived, with expected good complexity results for both small and large instances. The yield of
the platform could be an interesting criterion, under the condition of being able to provide a closed-form
formula for its value. A study of the two state model, with only available and down processor states,
should be considered with both an on-line and off-line approach.

Scheduling parallel iterative coupled applications on volatile resources

In this study, contrarily to the previous chapter, the off-line study has not led to any approximation
result. It would be interesting to derive some approximation result, or some integer linear program, for
this model.

As above, more accurate distribution laws could be used to compare the heuristics, and to propose
new ones. Pareto distribution and Weibull distribution are usually considered as the more appropriate,
however they are heavy-tail distributions, and the resulting standard deviations are distorted by extreme

120 CHAPTER 6. CONCLUSION AND PERSPECTIVES

values. In such a model with large standard deviation, even for the Markov distribution, the consistency
of simulation results would be difficult to assess.

The estimation of the yield given in this chapter is not accurate. A closed-form formula or an ap-
proximation value would be desirable. New heuristics could result from such a formula or approximated
value. Finally, as in the previous chapter, a study of the two state model, with only available and down
processor states, should be undertaken.

General perspectives

In this thesis, the main method used to improve schedule reliability is replication. However, this
approach is very expensive in CPU resource and in energy consumption. The criterion of energy con-
sumption could be accounted for, in all the previous studies, in addition to reliability. This would enable
us to obtain more realistic schedules in term of costs. A preliminary work [98] has been conducted in this
area. However, this work only aims at minimizing the energy consumption, without taking reliability
into account.

Many other methods can be used to increase the reliability of schedules, as checkpointing or mi-
gration. Such methods could be applied to our different models, and compared to our results using
replication, in term of reliability and of energy consumption.

These three methods (replication, checkpointing, migration) are however not conflicting. We could
address problems aiming at optimizing the reliability, using any combination of these methods. The
respective advantages and drawbacks of each method would be assessed and compared, with the goal of
establishing complexity and probability results, and of providing optimal algorithms, approximations or
efficient heuristics.

Appendix A

Bibliography

[1] Alessandro Agnetis, Paolo Detti, Marco Pranzo, and Manbir S. Sodhi. Sequencing unreliable
jobs on parallel machines. Journal of Scheduling, 2008.

[2] Cosimo Anglano, John Brevik, Massimo Canonico, Dan Nurmi, and Rich Wolski. Fault-aware
scheduling for Bag-of-Tasks applications on Desktop Grids. In Proceedings of Grid Computing,
pages 56–63, 2006.

[3] Ismail Assayad, Alain Girault, and Hamoudi Kalla. A bi-criteria scheduling heuristics for dis-
tributed embedded systems under reliability and real-time constraints. In International Confer-
ence on Dependable Systems and Networks, DSN’04, pages 347–356, Firenze, Italy, June 2004.
IEEE.

[4] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, January 2004.

[5] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer Widom.
Adaptive ordering of pipelined stream filters. In SIGMOD’04: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pages 407–418. ACM Press, 2004.

[6] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphael Couturier. Parallel Iterative Algorithms:
From Sequential to Grid Computing. Chapman and Hall/CRC Press, 2007.

[7] Harlod S. Balaban. Some effects of redundancy on system reliability. In National Symposium on
Reliability and Quality Control, pages 385–402, Washington (DC), USA, January 1960.

[8] Massimo Baleani, Alberto Ferrari, Leonardo Mangeruca, Maurizio Peri, Saverio Pezzini, and
Aalberto Sangiovanni-Vincentelli. Fault-tolerant platforms for automotive safety-critical appli-
cations. In International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES’03, San Jose (CA), USA, November 2003. ACM.

[9] Anne Benoit, Veronika Rehn-Sonigo, and Yves Robert. Optimizing latency and reliability of
pipeline workflow applications. In HCW’08, the 17th Heterogeneity in Computing Workshop.
IEEE Computer Society Press, 2008.

[10] Anne Benoit and Yves Robert. Mapping pipeline skeletons onto heterogeneous platforms. Jour-
nal of Parallel and Distributed Computing, 68(6):790–808, 2008.

[11] Anne Benoit and Yves Robert. Complexity results for throughput and latency optimization of
replicated and data-parallel workflows. Algorithmica, 57(4):689–724, 2010.

121

122 APPENDIX A. BIBLIOGRAPHY

[12] Prashanth B. Bhat, Cauligi S. Raghavendra, and Viktor K. Prasanna. Efficient collective commu-
nication in distributed heterogeneous systems. Journal of Parallel and Distributed Computing,
63:251–263, 2003.

[13] BOINC: Berkeley Open Infrastructure for Network Computing. http://boinc.berkeley.
edu.

[14] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak, Cecile Ger-
main, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic Magniette, Vincent Neri,
and Anton Selikhov. Mpich-v: toward a scalable fault tolerant mpi for volatile nodes. In Proceed-
ings of the 2002 ACM/IEEE conference on Supercomputing, Supercomputing 2002, pages 1–18,
Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[15] Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd
edition, 2001.

[16] Jen Burge, Kamesh Munagala, and Utkarsh Srivastava. Ordering pipelined query operators with
precedence constraints. Research Report 2005-40, Stanford University, November 2005.

[17] EunJoung Byun, SungJin Choi, MaengSoon Baik, JoonMin Gil, ChanYeol Park, and ChongSun
Hwang. MJSA: Markov job scheduler based on availability in desktop grid computing environ-
ment. Future Generation Computer Systems, 23(4):616–622, 2007.

[18] Surajit Chaudhuri and Kyuseok Shim. Optimization of queries with user-defined predicates. ACM
Transactions on Database Systems, 24(2):177–228, 1999.

[19] Andrew A. Chien, Brad Calder, Stephen Elbert, and Karan Bhatia. Entropia: Architecture and
performance of an enterprise desktop grid system. Journal of Parallel and Distributed Computing,
63:597–610, 2003.

[20] CPLEX. ILOG CPLEX: High-performance software for mathematical programming and opti-
mization. http://www.ilog.com/products/cplex/.

[21] DataCutter Project: Middleware for Filtering Large Archival Scientific Datasets in a
Grid Environment. http://www.cs.umd.edu/projects/hpsl/ResearchAreas/
DataCutter.htm.

[22] Milind. Dawande, Pinar Keskinocak, Jayaminathan M. Swaminathan, and Sridhar Tayur. On
bipartite and multipartite clique problems. Journal of Algorithms, 41:388–403, 2001.

[23] Josemar Rodriguez de Souza, Eduardo Argollo, Angelo Duarte, Dolores Rexachs, and Emilio
Luque. Fault tolerant master-worker over a multi-cluster architecture. In Proceedings of ParCo
2005, pages 465–472. NIC Series, Vol. 33, 2006.

[24] Atakan Dogan and Füsun Özgüner. Matching and scheduling algorithms for minimizing execu-
tion time and failure probability of applications in heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems, 13(3):308–323, March 2002.

[25] Jack Dongarra, Emmanuel Jeannot, Erik Saule, and Zhiao Shi. Bi-objective scheduling algo-
rithms for optimizing makespan and reliability on heterogeneous systems. In ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 280–288. ACM Press, 2007.

[26] Fanny Dufossé. Source Code for the Heuristics. http://graal.ens-lyon.fr/
~fdufosse/filters/.

[27] Trilce Estrada, David Flores, Michela Taufer, Patricia Teller, Andre Kerstens, and David Ander-
son. The Effectiveness of Threshold-Based Scheduling Policies in BOINC Projects. In Proceed-
ings of e-Science’06, 2006.

http://boinc.berkeley.edu
http://boinc.berkeley.edu
http://www.ilog.com/products/cplex/
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm
http://graal.ens-lyon.fr/~fdufosse/filters/
http://graal.ens-lyon.fr/~fdufosse/filters/

123

[28] Trilce Estrada, Olac Fuentes, and Michela Taufer. A distributed evolutionary method to design
scheduling policies for volunteer computing. ACM SIGMETRICS Performance Evaluation Re-
view, 36(3):40–49, 2008.

[29] Graham E. Fagg and Jack Dongarra. FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applica-
tions in a Dynamic World. In Proceedings of the 7th EuroPVM/MPI, pages 346–353. Springer-
Verlag, 2000.

[30] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael Schmidt,
Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm. Reliable and precise WCET determi-
nation for a real-life processor. In International Workshop on Embedded Software, EMSOFT’01,
volume 2211 of LNCS. Springer-Verlag, 2001.

[31] Daniela Florescu, Andreas Grunhagen, and Donald Kossmann. Xl: A platform for web services.
In CIDR 2003, First Biennial Conference on Innovative Data Systems Research, 2003.

[32] Noriyuki Fujimoto and Kenichi Hagihara. Near-Optimal Dynamic Task Scheduling of Indepen-
dent Coarse-Grained Tasks onto a Computational Grid. In Proceedings of the 32nd International
Conference on Parallel Processing (ICPP’2003), 2003.

[33] Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvari. Multi-criteria reinforcement learning, 1998.

[34] Michael R. Garey and David S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[35] Felix Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous environ-
ments. ACM Computing Surveys, 31(1):1–26, March 1999.

[36] Alain Girault and Hamoudi Kalla. A novel bicriteria scheduling heuristics providing a guaranteed
global system failure rate. IEEE Transactions on Dependable and Secure Computing, 6(4):241–
254, December 2009.

[37] Alain Girault, Eric Saule, and Denis Trystram. Reliability versus performance for critical appli-
cations. Journal of Parallel and Distributed Computing, 69(3):326–336, March 2009.

[38] William Gropp. MPICH2: A New Start for MPI Implementations. In PVM/MPI, page 7, 2002.

[39] Rachid Guerraoui and André Schiper. Software-Based Replication for Fault Tolerance. IEEE
Computer, 30:68–74, 1997.

[40] Mourad Hakem and Franck Butelle. A bi-objective algorithm for scheduling parallel applica-
tions on heterogeneous systems subject to failures. In Rencontres Francophones du Parallélisme,
RENPAR’06, Perpignan, France, October 2006.

[41] Stephen L. Hary and Füsun Özgüner. Precedence-constrained task allocation onto point-to-point
networks for pipelined execution. IEEE Trans. Parallel and Distributed Systems, 10(8):838–851,
1999.

[42] Johan Håstad. Some optimal inapproximability results. In STOC ’97, pages 1–10. ACM, 1997.

[43] Haiwu He, Gilles Fedak, Bing Tang, and Franck Cappello. BLAST Application with Data-Aware
Desktop Grid Middleware. In Proceedings of CCGrid, pages 284–291, 2009.

[44] Abdelsalam Heddaya and Kihong Park. Mapping parallel iterative algorithms onto workstation
networks. In HPDC’94, pages 211 –218, 1994.

[45] Eric Heien, David Anderson, and Kenichi Hagihara. Computing Low Latency Batches with Unre-
liable Workers in Volunteer Computing Environments. Journal of Grid Computing, 7(4):501–518,
2009.

124 APPENDIX A. BIBLIOGRAPHY

[46] Joseph M. Hellerstein. Predicate migration: Optimizing queries with expensive predicates. In
Proceedings of the ACM SIGMOD Conference on Management of Data, pages 267–276, 1993.

[47] Bo Hong and Viktor K. Prasanna. Bandwidth-aware resource allocation for heterogeneous com-
puting systems to maximize throughput. In Proceedings of the 32nd International Conference on
Parallel Processing (ICPP’2003). IEEE Computer Society Press, 2003.

[48] Bo Hong and Viktor K. Prasanna. Adaptive allocation of independent tasks to maximize through-
put. IEEE Transactions on Parallel and Distributed Systems, 18(10):1420–1435, 2007.

[49] Bahman Javadi, Derrick Kondo, Jean-Marc Vincent, and David Anderson. Mining for Statistical
Models of Availability in Large-Scale Distributed Systems: An Empirical Study of SETI@home.
In Proceedings of the 17th MASCOTS, 2009.

[50] Emmanuel Jeannot, Erik Saule, and Denis Trystram. Bi-objective approximation scheme for
makespan and reliability optimization on uniform parallel machines. In Euro-Par, volume 5168
of Lecture Notes in Computer Science, pages 877–886. Springer, 2008.

[51] Paul A. Jensen and Mandell Bellmore. An algorithm to determine the reliability of a complex
system. IEEE Transactions on Reliability, 18:169–174, November 1969.

[52] John C. Knight and Nancy G. Leveson. An experimental evaluation of the assumption of indepen-
dence in multi-version programming. IEEE Transactions on Software Engineering, 12(1):96–109,
1986.

[53] Derrick Kondo, Andrew A. Chien, and Henri Casanova. Resource Management for Rapid Appli-
cation Turnaround on Enterprise Desktop Grids. In Proceedings of SC’04, 2004.

[54] Troy Leblanc, Rakhi Anand, Edgar Gabriel, and Jaspal Subhlok. VolpexMPI: An MPI Library
for Execution of Parallel Applications on Volatile Nodes. In Proc. of EuroPVM/MPI 2009, pages
124–133. Springer-Verlag, 2009.

[55] Arnaud Legrand, Helene Renard, Yves Robert, and Frederic Vivien. Mapping and load-balancing
iterative computations on heterogeneous clusters with shared links. IEEE Transactions on Parallel
and Distributed Systems, 15:546–558, 2004.

[56] David Lloyd and Myron Lipow. Reliability: Management, Methods, and Mathematics, chapter 9.
PH, 1962.

[57] George Mavrotas. Effective implementation of the [epsilon]-constraint method in multi-objective
mathematical programming problems. Applied Mathematics and Computation, 213(2):455 – 465,
2009.

[58] Christopher Moretti, Timothy Faltemier, Douglas Thain, and Patrick Flynn. Challenges in Exe-
cuting Data Intensive Biometric Workloads on a Desktop Grid. In Proceedings of PCGrid, 2007.

[59] Daniel Nurmi, John Brevik, and Rich Wolski. Modeling Machine Availability in Enterprise and
Wide-area Distributed Computing Environments. In Proceedings of Europar, 2005.

[60] Mourad Ouzzani and Athman Bouguettaya. Query processing and optimization on the web. Dis-
tributed and Parallel Databases, 15(3):187–218, 2004.

[61] Ali Pinar and Cevdet Aykanat. Fast optimal load balancing algorithms for 1D partitioning. Jour-
nal of Parallel and Distributed Computing, 64(8):974–996, 2004.

[62] Michele Pizza, Lorenzo Strigini, Andrea Bondavalli, and Felicita Di Giandomenico. Optimal
discrimination between transient and permanent faults. In In Third IEEE International High-
Assurance Systems Engineering Symposium, pages 214–223, 1998.

125

[63] Paul Pop, Kåre Poulsen, Viacheslav Izosimov, and Petru Eles. Scheduling and voltage scaling for
energy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In International
Conference on Hardware-Software Codesign and System Synthesis, CODES+ISSS’07, Salzburg,
Austria, October 2007. ACM.

[64] Xiaojuan Ren, Seyong Lee, Rudolf Eigenmann, and Saurabh Bagchi. Prediction of Resource
Availability in Fine-Grained Cycle Sharing Systems Empirical Evaluation. Journal of Grid Com-
puting, 5(2):173–195, 2007.

[65] Günter Rudolph. On a multi-objective evolutionary algorithm and its convergence to the pareto
set. In proceedings of the 5th IEEE conference on evolutionary computation, pages 511–516.
IEEE Press, 1998.

[66] Erik Saule and Denis Trystram. Analyzing scheduling with transient failures. Information Pro-
cessing Letters, 109(11):539–542, 2009.

[67] Sol M. Shatz and Jia-Ping Wang. Models and algorithms for reliability-oriented task-allocation
in redundant distributed-computer systems. IEEE Transactions on Reliability, 38(1):16–26, April
1989.

[68] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra. MPI the
complete reference. The MIT Press, 1996.

[69] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu, Guillaume Borios, and Reinhold
Heckmann. Computing the worst case execution time of an avionics program by abstract inter-
pretation. In International Workshop on Worst-case Execution Time, WCET’05, pages 21–24,
Mallorca, Spain, July 2005.

[70] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. Operator placement for in-network
stream query processing. In PODS’05: Proceedings of the 24th ACM Symposium on Principles
of Database Systems, pages 250–258. ACM Press, 2005.

[71] Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani. Query optimiza-
tion over web services. In VLDB ’06: Proceedings of the 32nd International Conference on Very
Large Data Bases, pages 355–366. VLDB Endowment, 2006.

[72] Paul Stelling, Cheryl DeMatteis, Ian Foster, Carl Kesselman, Craig Lee, and Gregor von
Laszewski. A fault detection service for wide area distributed computations. Cluster Computing,
2(2):117–128, 1999.

[73] Jaspal Subhlok and Gary Vondran. Optimal mapping of sequences of data parallel tasks. In
PPoPP’95, pages 134–143. ACM Press, 1995.

[74] Jaspal Subhlok and Gary Vondran. Optimal latency-throughput tradeoffs for data parallel
pipelines. In SPAA’96, pages 62–71. ACM Press, 1996.

[75] Kenjiro Taura and Andrew A. Chien. A heuristic algorithm for mapping communicating tasks on
heterogeneous resources. In Heterogeneous Computing Workshop, pages 102–115. IEEE Com-
puter Society Press, 2000.

[76] Toshiaki Toyama, Yoshito Yamada, and Katsumi Konishi. A Resource Management System for
Data-Intensive Applications in Desktop Grid Environments. In Proceedings of PDCS, 2006.

[77] Nagavijayalakshmi Vydyanathan, Umit Catalyurek, Tashin Kurc, P. Saddayappan, and Joel Saltz.
An approach for optimizing latency under throughput constraints for application workflows on
clusters. Research Report OSU-CISRC-1/07-TR03, Ohio State University, Columbus, OH, Jan-
uary 2007. Short version appears in EuroPar’2008.

126 APPENDIX A. BIBLIOGRAPHY

[78] Nagavijayalakshmi Vydyanathan, Umit Catalyurek, Tashin Kurc, P. Saddayappan, and Joel Saltz.
Toward optimizing latency under throughput constraints for application workflows on clusters. In
Euro-Par’07, LNCS 4641, pages 173–183. Springer Verlag, 2007.

[79] Nagavijayalakshmi Vydyanathan, Umit Catalyurek, Tashin Kurc, P. Saddayappan, and Joel Saltz.
A duplication based algorithm for optimizing latency under throughput constraints for stream-
ing workflows. In Proceedings of the 37th International Conference on Parallel Processing
(ICPP’2008), pages 254–261. IEEE Computer Society Press, 2008.

[80] Nagavijayalakshmi Vydyanathan, Umit Catalyurek, Tashin Kurc, P. Saddayappan, and Joel Saltz.
Optimizing latency and throughput of application workflows on clusters. Research Report OSU-
CISRC-4/08-TR17, Ohio State University, Columbus, OH, April 2008.

[81] Joshua Wingstrom and Henri Casanova. Probabilistic Allocation of Tasks on Desktop Grids. In
Proceedings of PCGrid, 2008.

[82] Rich Wolski, Daniel Nurmi, and John Brevik. An analysis of availability distributions in condor.
In Proceedings of the IPDPS Workshop on Next-Generation Software, 2007.

[83] Qishi Wu, Jinzhu Gao, Mengxia Zhu, Nageswara S.V. Rao, Jian Huang, and Sitharama S. Iyengar.
Self-adaptive configuration of visualization pipeline over wide-area networks. IEEE Transactions
on Computers, 57(1):55–68, 2008.

[84] Qishi Wu and Yi Gu. Supporting distributed application workflows in heterogeneous computing
environments. In 14th International Conference on Parallel and Distributed Systems (ICPADS).
IEEE Computer Society Press, 2008.

[85] Wenci Yu. The two-machine flow shop problem with delays and the one-machine total tardiness
problem. PhD thesis, Technishe Universiteit Eidhoven, June 1996.

[86] Wenci Yu, Han Hoogeveen, and Jan Karel Lenstra. Minimizing makespan in a two-machine
flow shop with delays and unit-time operations is NP-hard. Journal of Scheduling, 7(5):333–348,
2004.

[87] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and Quan Z Sheng.
Quality driven web services composition. In Proceedings of the 12nd international conference
on World Wide Web, WWW ’03, pages 411–421, New York, NY, USA, 2003. ACM.

[88] Hongyu Zhang. On the distribution of software faults. IEEE Transactions on Software Engineer-
ing, 34:301–302, March 2008.

[89] Dayi Zhou and Virginia Lo. Wave Scheduler: Scheduling for Faster Turnaround Time in Peer-
based Desktop Grid Systems. In Proceedings of the 11th JSSPP Workshop, 2005.

[90] Dakai Zhu, Rami Melhem, and Daniel Mossé. The effects of energy management on reliabil-
ity in real-time embedded systems. In International Conference on Computer Aided Design,
ICCAD’04, pages 35–40, San Jose (CA), USA, November 2004.

Appendix B

Publications

Articles in international refereed journals and book chapter

[91] Kunal Agrawal, Anne Benoit, Fanny Dufossé, and Yves Robert. Mapping filtering streaming
applications. Algorithmica, 2010.

Articles in international refereed conferences

[92] Anne Benoit, Fanny Dufossé, and Yves Robert. Filter placement on a pipelined architecture. In
11th Workshop on Advances in Parallel and Distributed Computational Models APDCM 2009.
IEEE Computer Society Press, 2009.

[93] Anne Benoit, Fanny Dufossé, and Yves Robert. On the complexity of mapping pipelined filtering
services on heterogeneous platforms. In IPDPS’2009, the 23rd IEEE International Parallel and
Distributed Processing Symposium. IEEE Computer Society Press, 2009.

[94] Kunal Agrawal, Anne Benoit, Fanny Dufossé, and Yves Robert. Mapping filtering streaming
applications with communication costs. In 21st ACM Symposium on Parallelism in Algorithms
and Architectures SPAA 2009. ACM Press, 2009.

[95] Anne Benoit, Bruno Gaujal, Fanny Dufossé, Matthieu Gallet, and Yves Robert. Computing the
throughput of probabilistic and replicated streaming applications. In 22nd ACM Symposium on
Parallelism in Algorithms and Architectures SPAA 2010. ACM Press, 2010.

[96] Anne Benoit, Fanny Dufossé, Alain Girault, and Yves Robert. Reliability and performance op-
timization of pipelined real-time systems. In International Conference on Parallel Processing,
page 20, 2010.

[97] Henri Casanova, Fanny Dufossé, Yves Robert, and Frédéric Vivien. Scheduling parallel iterative
applications on volatile resources. In IPDPS’2011, the 25th IEEE International Parallel and
Distributed Processing Symposium. IEEE Computer Society Press, 2011.

[98] Guillaume Aupy, Anne Benoit, Fanny Dufossé, and Yves Robert. Brief announcement: Reclaim-
ing the energy of a schedule, models and algorithms. In 23rd ACM Symposium on Parallelism in
Algorithms and Architectures SPAA 2011. ACM Press, 2011.

Research reports

[99] Anne Benoit, Fanny Dufossé, and Yves Robert. Mapping filter services on heterogeneous plat-
forms. Research Report RR-2008-19, LIP, ENS Lyon, June 2008.

127

128 APPENDIX B. PUBLICATIONS

[100] Anne Benoit, Fanny Dufossé, and Yves Robert. On the complexity of mapping pipelined filtering
services on heterogeneous platforms. Research Report RR-2008-30, LIP, ENS Lyon, October
2008.

[101] Kunal Agrawal, Anne Benoit, Fanny Dufossé, and Yves Robert. Mapping Filtering Streaming
Applications With Communication Costs. Research Report RR-2009-06, LIP, ENS Lyon, Febru-
ary 2009.

[102] Anne Benoit, Fanny Dufossé, Matthieu Gallet, Bruno Gaujal, and Yves Robert. Computing the
throughput of probabilistic and replicated streaming applications. Research Report RR-7182,
INRIA, January 2010.

[103] Henri Casanova, Fanny Dufossé, Yves Robert, and Frédéric Vivien. Scheduling Parallel Iterative
Applications on Volatile Resources. Research Report RR-2010-31, LIP, ENS Lyon, October
2010.

[104] Anne Benoit, Fanny Dufossé, Alain Girault, and Yves Robert. Reliability and performance opti-
mization of pipelined real-time systems. Research Report RR-7509, INRIA, January 2011.

[105] Guillaume Aupy, Anne Benoit, Fanny Dufossé, and Yves Robert. Reclaiming the energy of a
schedule: models and algorithms. Research Report RR-7598, INRIA, April 2011.

Résumé :
Les travaux présentés dans cette thèse portent sur le placement et l’ordonnancement d’applications de
flots de données. On se place dans le contexte de plates-formes instables, composées de processeurs
sujets à des pannes.
Dans une première partie, on considère un type particulier d’applications de flots de données : les ser-
vices filtrants. Un service filtrant est une tâche qui modifie la taille du fichier qu’elle doit traiter. Dans
ce contexte, on veut obtenir rapidement le résultat de chaque calcul (et donc minimiser la latence) et
traiter autant de calculs que possible par unité de temps (et donc minimiser la période). On néglige
d’abord les coûts de communications. On considère alors les problèmes uni-critères et bi-critères sur
des plates-formes homogènes et hétérogènes. Puis plusieurs modèles de communications sont proposés,
et leur impact sur l’ordonnancement d’un ensemble de service filtrant est étudié. On considère enfin
l’ordonnancement d’un tel calcul sur une chaîne de processeurs. La complexité de chaque variante de ce
problème est démontrée.
Le comportement d’un service filtrant est comparable à celui d’un calcul effectué sur un processeur
non fiable : certains résultats vont être calculés, et d’autres seront perdus. On considère donc le modèle
de panne le plus fréquemment rencontré parmi les processeurs modernes : les pannes transitoires. Ce
type de panne perturbe le fonctionnement d’un processeur pendant un très court laps de temps. Ces
pannes sont souvent occasionnées par des baisses de tension électrique. On considère que ces pannes
sont instantanées, et ne perturbent que le calcul en cours. On veut donc effectuer un calcul à la fois
fiable, et efficace. Trois critères sont donc considérés : la période, la latence et la probabilité de succès du
calcul. La probabilité d’apparition de pannes est supposée constante au cours du temps. La complexité de
chaque variante de ce problème est démontrée. Nous proposons deux heuristiques, dont les performances
respectives sont comparées expérimentalement.
Si les pannes transitoires sont les pannes les plus fréquemment rencontrées sur des grilles de calculs clas-
siques, certains types de plates-formes de calcul rencontrent d’autres types de défaillances. Les grilles
de volontaires, en particulier, sont extrêmement instables. Les grilles de volontaires sont des ensembles
de machines que des propriétaires mettent à disposition tant qu’ils ne les utilisent pas. Chaque machine
peut donc à tout moment être éteinte par son propriétaire. Sur ce type de plate-forme, on veut exécuter
des calculs iteratifs : Une application iterative est un ensemble de tâches qui doit être exécuté à plusieurs
reprises. Toutes les tâches sont exécutées, puis les processeurs se synchronisent, et on exécute à nouveau
les tâches, et ainsi de suite. Deux variantes de ce problème sont considérées : une application constituée
de tâches indépendantes, ou des tâches couplées, devant être calculées ensemble et au même rythme.
Dans chaque cas, le problème est d’abord étudié théoriquement, puis des heuristiques sont proposées, et
leur performances sont comparées.

Mots-clés :
Application de flots de données, optimisation multi-critères, programmes linéaires, plate-
formes hétérogènes, heuristiques, complexité, fiabilité, grille de volontaires, pannes transi-
toires.

Abstract:
This thesis deals with the mapping and the scheduling of workflows. In this context, we consider unre-
liable platforms, with processors subject to failures.
In a first part, we consider a particular model of streaming applications : the filtering services. In this
model, each task impacts the size of its input data by a fixed ratio, increasing or decreasing the size
of data. In this context, we aim to obtain the result of any computation as soon as possible (what
means minimize the latency), and execute as many computations as possible par time unit(what means
minimize the period). We first neglect communication costs. In this model, we study the mono-criterion
and the multi-criteria scheduling problems on homogeneous and heterogeneous platforms. Then, many
communication models are described, and their impact on scheduling problems of a filtering application
is studied. Finally, we consider the scheduling problem of such an application on a chain of processors.
The theoretical complexity of any variant of this problem is proved.
This filtering property can model the reliability of processors.The results of some computations are
successfully computed, and some other ones are lost. We consider the more frequent failure types :
transient failures. Such failure impacts a processor during a very short period of time. Such problem
can be caused by a power loss. We consider that transient failures are instantaneous and only influence
the current computation. Therefor, we aim efficient and reliable schedules. Three criteria are considered
: the period, the reliability and the probability of success of computations. The probability of failures
occurrences is supposed constant over time. The complexity of any variant of this problem is proved.
Two heuristics are proposed and compared using using simulations.
Even if transient failures are the most common failures in classical grids, some particular type of plat-
form are more concerned by other type of problems. In particular, desktop grids are especially unstable.
In desktop grid, users offer idle time of its personal computer. At any time, processors can be turned
off. In this context, we want to execute iterative applications : An iterative application is a set of tasks
that have to be executed several times. All tasks are executed, then a synchronization occurs, after this
synchronization, tasks are executed again, and so on. Two variants of this problem are considered: ap-
plications of independent tasks, and applications where all tasks need to be executed at same speed. In
both cases, the problem is first theoretically studied, then heuristics are proposed and compared using
using simulations.

Keywords:
Streaming applications, multicriteria optimization, linear programs, heterogeneous plate-
forms, heuristics, complexity results, reliability, desktop grids, transient failures.

	1 Introduction
	2 Mapping filtering streaming applications
	2.1 Introduction
	2.2 Related work
	2.3 Problems without communication cost
	2.3.1 Framework
	2.3.2 Homogeneous platforms
	2.3.3 Heterogeneous platforms

	2.4 Problems with communication costs on homogeneous platforms
	2.4.1 Plans
	2.4.2 Communication models
	2.4.3 Operation lists
	2.4.4 Illustrative Example
	2.4.5 Period minimization
	2.4.6 Latency minimization

	2.5 Problems on a linear heterogeneous platform
	2.5.1 Framework
	2.5.2 Period minimization
	2.5.3 Latency minimization

	2.6 Conclusion

	3 Reliability and performance optimization of pipelined real-time systems
	3.1 Introduction
	3.2 Framework
	3.2.1 Application model
	3.2.2 Platform model
	3.2.3 Interval mapping
	3.2.4 Failure model
	3.2.5 Replication model
	3.2.6 Multiprocessor mapping problem

	3.3 Related work
	3.4 Evaluation of a given mapping
	3.5 Complexity results for homogeneous platforms
	3.5.1 Reliability optimization
	3.5.2 Reliability/period optimization
	3.5.3 Reliability/latency optimization
	3.5.4 Integer linear program
	3.5.5 Allocation of intervals to processors

	3.6 Complexity results for heterogeneous platforms
	3.7 Heuristics
	3.7.1 Computation of the intervals
	3.7.2 Allocation of processors to intervals

	3.8 Experiments
	3.8.1 Experiments on homogeneous platforms
	3.8.2 Experiments on heterogeneous platforms

	3.9 Conclusion

	4 Scheduling parallel iterative applications on volatile resources
	4.1 Introduction
	4.2 Related work
	4.3 Problem Definition
	4.3.1 Application Model
	4.3.2 Platform Model
	4.3.3 Scheduling Model
	4.3.4 Problem Statement

	4.4 Off-line complexity
	4.5 Computing the expectation
	4.5.1 Expected execution time

	4.6 On-line heuristics
	4.6.1 Rationale
	4.6.2 Random heuristics
	4.6.3 Greedy heuristics

	4.7 Experiments
	4.8 Conclusion

	5 Scheduling parallel iterative coupled applications on volatile resources
	5.1 Introduction
	5.2 Framework
	5.2.1 Application
	5.2.2 Configuration
	5.2.3 Execution scenario
	5.2.4 Example

	5.3 Off-line complexity
	5.3.1 Fixed resource number
	5.3.2 Flexible resource number
	5.3.3 Polynomial instances

	5.4 Computing the expectation of a workload
	5.4.1 Probability of success and expected cost of a computation
	5.4.2 Probability of success and expected cost of a communication

	5.5 On-line heuristics
	5.5.1 Pro-active criteria
	5.5.2 Greedy-coupled heuristics.
	5.5.3 Greedy-indep heuristics.

	5.6 Experiments
	5.6.1 Experimental results

	5.7 Conclusion

	6 Conclusion and perspectives
	6.1 Conclusion
	6.2 Perspectives

	A Bibliography
	B Publications

