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Abstract

Diffusion magnetic resonance imaging (dMRI) has made a significant breakthrough in neurological

disorders and brain research thanks to its exquisite sensitivity to tissue cytoarchitecture. How-

ever, as the water diffusion process in neuronal tissues is a complex biophysical phenomena at

molecular scale, it is difficult to infer tissue microscopic characteristics on a voxel scale from dMRI

data. The major methodological contribution of this thesis is the development of an integrated and

generic Monte Carlo simulation framework, ‘Diffusion Microscopist Simulator’ (DMS), which has

the capacity to create 3D biological tissue models of various shapes and properties, as well as to

synthesize dMRI data for a large variety of MRI methods, pulse sequence design and parameters.

DMS aims at bridging the gap between the elementary diffusion processes occurring at a micromet-

ric scale and the resulting diffusion signal measured at millimetric scale, providing better insights

into the features observed in dMRI, as well as offering ground-truth information for optimization

and validation of dMRI acquisition protocols for different applications.

We have verified the performance and validity of DMS through various benchmark experiments,

and applied to address particular research topics in dMRI. Based on DMS, there are two major

application contributions in this thesis. First, we use DMS to investigate the impact of finite diffu-

sion gradient pulse duration (δ) on fibre orientation estimation in dMRI. We propose that current

practice of using long δ, which is enforced by the hardware limitation of clinical MRI scanners, is

actually beneficial for mapping fibre orientations, even though it violates the underlying assump-

tion made in q-space theory. Second, we employ DMS to investigate the feasibility of estimating

axon radius using a clinical MRI system. The results suggest that the algorithm for mapping the

direct microstructures is applicable to dMRI data acquired from standard MRI scanners.

Keywords: Diffusion MRI; Monte Carlo simulation; MRI pulse sequence; Tissue model; Microstruc-

ture; Validation;
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Abstract (Français)

L’imagerie par résonance magnétique de diffusion (IRMd) a fait une percée significative dans les

troubles neurologiques et les recherches sur le cerveau grâce à son extraordinaire sensibilité à la

cytoarchitecture des tissus. Cependant, comme le processus de diffusion de l’eau dans les tissus

neuronaux est un phénomène biophysique complexe à l’échelle moléculaire, il est difficile d’en

déduire les caractéristiques microscopiques des tissus à l’échelle du voxel, à partir des données

d’IRMd. La contribution méthodologique majeure de cette thèse est le développement d’un cadre

de simulation de type Monte Carlo intégré et générique, appelé ‘Diffusion Microscopist Simulator’

(DMS), qui permet d’élaborer des modèles de tissus biologiques tridimensionnels aux géométries

et propriétés variées et qui permet de synthétiser des données d’IRMd correspondantes pour une

grande variété d’IRM, de séquences d’impulsions et de paramètres. L’outil DMS vise à combler le

fossé entre les processus de diffusion élémentaires, qui se produisent à une échelle micrométrique,

et le signal de diffusion résultant, mesuré à l’échelle millimétrique, qui offre un meilleur aperçu

des caractéristiques observées dans l’IRMd, tout en offrant une information vérité terrain pour

l’optimisation et la validation des protocoles d’acquisition de l’IRMd pour différentes applications.

Nous avons vérifié les performances et la validité du simulateur à travers différents tests, et appli-

qué cet outil pour aborder des thèmes de recherche particuliers à l’IRMd. Il y a deux contributions

majeures dans cette thèse. Tout d’abord, nous avons utilisé l’outil DMS pour étudier l’impact de

la durée d’impulsions de gradient de diffusion finies (δ) sur l’estimation de l’orientation des fibres

par l’IRMd. Nous avons démontré que la pratique actuelle qui utilise un δ long, imposée par la

limitation physique des scanners d’IRM cliniques, est en fait bénéfique pour la cartographie des

orientations des fibres, même si elle viole l’hypothèse sous-jacente faite dans la théorie de l’espace q.

Deuxièmement, nous avons employé le simulateur pour étudier la possibilité d’estimer le rayon des

axones en utilisant un système d’IRM clinique. Les résultats suggèrent que la technique d’inférence

de la taille des axones reposant sur un modèle analytique de la réponse IRM d’un axone au processus

de diffusion est applicable aux données d’IRMd acquises avec des scanners IRM standards.

Mots-clés: IRM de diffusion; Simulation Monte Carlo; Séquence IRM; Modèle de tissu; Microstruc-

ture; Validation;
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Résumé

Préface

Pour l’être humain, l’eau semble statique à l’oeil nu, cependant à l’échelle microscopique les mo-

lécules d’eau apparaissent en état d’oscillation dynamique. Ce mouvement aléatoire de molécule,

appelé mouvement brownien, fut observé en 1827 par le botaniste Robert Brown à partir de grains

de pollen en suspension dans de l’eau [Brown (1828)]. Il devint alors évident que la diffusion molécu-

laire dans les liquides et les gaz est la conséquence de l’énergie thermique stockée par les molécules

[Einstein (1905)].

Imaginons que nous puissions marquer une molécule d’eau au sein d’un tissu cérébral et garder

la trace de son mouvement dû à la diffusion. Nous pourrions alors constater que son parcours épou-

serait la forme de la géométrie des tissus cérébraux. Ceci permet d’appréhender le concept de base

de l’imagerie par résonance magnétique de diffusion (IRMd). Cette technique utilise le déplacement

microscopique naturel des molécules d’eau ayant lieu dans les tissus cérébraux de manière à obtenir

une cartographique quantitative de paramètres de la la microstructure du tissu cérébral. L’IRMd

utilise également les molécules d’eau comme un traceur endogène pouvant mettre en évidence des

détails microscopiques de l’architecture des tissus qu’ils soient sains ou pathologiques.

L’IRM de diffusion est apparue au milieu des années 1980 [Wesbey et al. (1984a,b); Le Bihan

et al. (1986)] et a est devenue au cours des 25 dernières années un outil IRM incontourable pour

étudier le système nerveux central (CNS). Son application clinique est majeure pour le diagnostic

des troubles neurologiques, en particulier pour la prise en charge des patients atteints d’accidents

vasculaires cérébraux ou d’ischémies au stade aigu. L’IRMd est rapidement devenue un standard

pour l’étude des pathologies de la substance blanche (WM) grâce à l’imagerie du tenseur de diffusion

(DTI) qui permet de révéler les anomalies structurelles des faisceaux de fibres la constituant,
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mais également grâce aux remarquables cartographies de la connectivité cérébrale qu’elle permet

d’obtenir. [Basser et al. (1994a,b); Conturo et al. (1999); Mori et al. (1999); Basser et al. (2000);

Poupon et al. (2000)]. Sa capacité à révéler la connectivité anatomique reliant les différentes aires

du cerveau, de manière non invasive et à l’échelle du sujet, est apparue comme une découverte

majeure pour les neurosciences. Plus récemment, il a été démontré que l’IRMd pouvait également

être utilisée pour établir directement les caractéristiques de la microstructure du cerveau [Alexander

(2008); Assaf et al. (2008)] ainsi que pour détecter les changements des tissus cérébraux associés à

l’activité neuronale [Le Bihan et al. (2006)].

Motivations & Objectifs

IRM de Diffusion et Microstructure des Tissus - Un Problème d’Echelle

Le principe de base de l’IRM de diffusion (IRMd) est d’observer les déplacements microscopiques

naturels des molécules d’eau ayant lieu dans les tissus cérébraux. Les molécules d’eau peuvent

alors être utilisées comme un vecteur permettant de mettre en évidence les détails microscopiques

de l’architecture des tissus sains ou pathologiques. Il faut cependant garder à l’esprit que le signal

global observé à une résolution millimètrique sur les images IRM résulte de l’intégration statistique

de toutes les distributions de déplacement microscopique des molécules d’eau présentes en chaque

voxel. Les processus complexes de diffusion ayant lieu dans un tissu biologique à l’échelle d’un voxel

sont souvent décrits par une mesure moyenne de leur mobilité: le Coefficient de Diffusion Apparent

(ADC) [Le Bihan et al. (1986)]. L’utilisation de l’ADC global pour représenter le processus de

diffusion permet de représenter les processus physiques ayant lieu à une échelle plus petite que

celle de la méthode d’acquisition. L’échelle la plus grande est imposée par des limites techniques

(par exemple l’IRM) tandis que l’échelle du théâtre des processus biophysiques élémentaires est

déterminée par les phénomènes physiques à l’échelle moléculaire. L’effet de lissage moyen dû à

cette mise à l’échelle nécessite un a priori sur la géométrie membranaire en chaque voxel, ce qui

rend difficile l’interprétation physique directe à partir de ce paramètre global à moins que l’on

puisse faire certaines hypothèses. L’ADC du cerveau est 2 à 10 fois plus petit que celle de l’eau

libre en solution aqueuse [Le Bihan (2003)]. La diminution de la diffusion de l’eau dans le milieu

intra-cellulaire s’explique souvent par une viscosité importante, l’encombrement moléculaire et les

effets de restriction [Hazlewood et al. (1991)] tandis que l’on explique la diminution de la diffusion

dans le milieu extra-cellulaire par les effets de tortuosité [Nicholson and Phillips (1981); Chen and

Nicholson (2000)]. L’effet de la diffusion restreinte peut, par exemple, être évalué en changeant le
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temps de diffusion [Cooper et al. (1974); Latour et al. (1994)]car les déplacements des molécules

sont réduits lorsqu’elles atteignent les limites d’un espace clos. Le coefficient de diffusion décrôıt

alors artificiellement avec l’augmentation du temps de diffusion. De plus, les membranes des cellules

cérébrales ont tendance à entraver le processus de diffusion de l’eau (c’est la diffusion ’entravée’ par

opposition à la diffusion strictement ’restreinte’), et cela même si les membranes sont perméables à

l’eau, que ce soit de manière passive ou par le biais de transporteurs comme les canaux spécifiques

aquaporines très abondants dans le cerveau [Amiry-Moghaddam and Ottersen (2003)]. Il apparait

clairement que la diffusion de l’eau dans les tissus, et particulièrement dans le cerveau, n’est pas

libre et ne peut donc pas être modélisée par une simple distribution gaussienne [Cohen and Assaf

(2002)]. De plus, l’ADC ne dépend pas uniquement du coefficient de diffusion de la population de

molécules d’eau présente en chaque voxel mais également de paramètres techniques expérimentaux

tels que la taille du voxel, le temps de diffusion ou le degré de sensibilité à la diffusion de l’image

(aussi appelé b-value [Le Bihan et al. (1986)]).

Bien que l’idée de déduire les détails de la microstructure des tissus à partir du signal de l’IRMd

seul ne soit réalisable qu’uniquement dans des situations très simples et spécifiques, la relation

entre l’ADC et les caractéristiques microscopiques spécifiques du tissu est actuellement l’objet de

recherches intensives. Certains groupes ont essayé de clarifier la manière dont les caractéristiques

du tissu peut affecter le signal de l’IRMd [Beaulieu (2002); Kroenke and Neil (2004); Schwarcz et al.

(2004); Miller et al. (2007); Peled (2007); Wheeler-Kingshott and Cercignani (2009)]. Il a été proposé

plusieurs modèles théoriques [Stanisz et al. (1997)] dont un, par exemple, basé sur la combinaison

d’un compartiment extra-axonal pour lequel la diffusion serait entravée et d’un compartiment

intra-axonal pour lequel la diffusion serait restreinte [Assaf et al. (2004)]. Plusieurs groupes ont

également souligné l’importance du rôle de paramètres dynamiques, tels que la perméabilité de la

membrane, les échanges aqueux [Kärger et al. (1988); Novikov et al. (1998); Chin et al. (2004)] et

les caractéristiques géométriques, tels que la distribution de la taille des cellules ou la distribution

des directions axonales/dendritiques [Novikov et al. (1998); van der Weerd et al. (2002); Yablonskiy

et al. (2003); Chin et al. (2004)]. Il faut cependant garder à l’esprit que tous ces modèles distincts

nécessitent de forts a priori sur la structure du tissu qui ne peuvent pas toujours correspondre à

une réalité biologique connue ou inconnue.

Simulations Monte Carlo de l’IRM de Diffusion

Pour déduire la relation entre la microstructure des tissus et le signal de l’IRMd, une autre approche

consiste à s’appuyer sur des simulations de type Monte-Carlo (MC) qui se sont révélées être un
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outil puissant et flexible pour simuler les processus de diffusion dans un vaste panel de systèmes,

en particulier lorsque des solutions analytiques ne peuvent être obtenues facilement, en raison

de la complexité du système [Lipinski (1990); Ford et al. (1998); Peled (2007); Alexander (2008);

Fieremans et al. (2008b); Balls and Frank (2009); Hall and Alexander (2009); Harkins et al. (2009);

Imae et al. (2009); Koch and Finsterbusch (2009); Alexander et al. (2010); Budde and Frank (2010);

Landman et al. (2010); Nilsson et al. (2010)]. Les approches analytiques qui prédisent le signal de

l’IRMd en utilisant l’équation de Bloch-Torrey, par exemple [Barzykin (1998)], doivent s’appuyer

sur des modèles de tissus biologiques et une séquence d’impulsions IRM simples (par exemple,

un gradient de diffusion avec une forme d’onde rectangulaire). Cependant, dans un cas réaliste,

la géométrie des tissus peut être très compliquée, de telle sorte qu’il n’existe pas une description

analytique adéquate. Parallèlement, la difficulté pour dériver la solution du signal synthétique

de l’IRMd peut augmenter avec la complexité des séquences d’impulsions IRM et les formes du

gradient. L’avantage de l’approche MC est sa capacité à suivre les événements dynamiques dans

l’espace et le temps. Elle offre des possibilités pour étudier non seulement le mouvement Brownien

dans un environnement arbitraire, mais aussi n’importe quel modèle d’interactions entre les spins

et les membranes. Ainsi, des données synthétiques d’IRMd générées en utilisant l’approche MC

peuvent être appliquées à l’étude des propriétés biologiques (par exemple, la taille des cellules, la

densité, la perméabilité des membranes, etc.), ainsi qu’à des mécanismes de diffusion de base dans

différents compartiments (par exemple, la présence d’attracteurs, la viscosité locale, les interactions

membranaires, etc.). Plus précisément, il peut être adapté à l’examen des hypothèses mécanistiques

de divers scénarios dynamiques et modèles de tissus, tels que les attaques vasculaires cérébrales

ischémiques aigues ou l’activation neuronale et le gonflement des cellules, le cancer et la prolifération

cellulaire, l’ADC et l’anisotropie des fibres axonales dans les faisceaux de fibres complexes ou le

cortex [Le Bihan (2003)].

Modélisation des Tissus Biologiques

En principe, l’approche par simulation MC permet de simuler n’importe quel tissu avec beaucoup

de détails, pour tenir compte des différents types de processus de diffusion élémentaires et d’en

dériver le signal d’IRMd correspondant, à condition que la puissance de calcul nécessaire soit

disponible. Comme la géométrie et l’organisation des microstructures biologiques sont extrêmement

compliquées au niveau cellulaire (par exemple, la substance grise dans les tissus du CNS), la

difficulté se trouve dans la manière de représenter les structures des tissus dans l’environnement de

simulation MC. Différents modèles géométriques ont été proposés pour simuler les structures des
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tissus dans des conditions physiologiques différentes: Hall et Alexander ont optimisé les paramètres

pour la simulation MC de l’IRMd de faisceaux de fibres compactes et en état de gonflement [Hall and

Alexander (2009)]. Landman et al. ont développé un modèle de l’axone fondé sur des maillages dans

le but d’étudier l’impact des fibres axonales endommagées [Landman et al. (2010)]. Budde et Frank

ont développé un modèle beading des neurites permettant de valider l’importance de la morphologie

de la membrane cellulaire sur l’ADC [Budde and Frank (2010)]. Les simulations MC décrites

ci-dessus ont utilisé des cylindres pour simuler les faisceaux de fibres de la substance blanche.

Cependant, il a été démontré que l’IRMd a une haute sensibilité à la variation de la cytoarchitecture

des tissus [Flint et al. (2009)], il est donc également intéressant d’étudier le comportement de la

diffusion de l’eau dans le cortex cérébral et les noyaux gris centraux. Lipinski a réalisé la première

simulation de MC de la substance grise dans un environnement 2D simplifié composé de géométries

de tissus créées à partir des images numériques moyennées de préparations histologiques [Lipinski

(1990)]. Il est important de noter que pour des raisons techniques liées à la complexité des calculs,

la plupart des simulations MC ont été réalisées en 2D, bien que des simulations 3D seraient plus

réalistes pour les systèmes biologiques. Balles et al. ont développé un système de simulation 3D

efficace qui a la capacité d’effectuer des simulations à grande échelle de la diffusion de l’eau dans

des microstructures et une physiologie tissulaire complexes, mais cela uniquement pour simuler des

séquences PGSE d’IRMd conventionnelles [Balls and Frank (2009)].

L’Objectif

Cette thèse se consacre au développement et à l’application d’un simulateur de Monte-Carlo (MC)

de l’IRMd intégré et généralisé, ‘Diffusion Microscopist Simulator’ (DMS), et vise à (i) combler

l’écart entre les processus de diffusion élémentaires qui se produisent à une échelle micrométrique

et le signal de diffusion résultant mesuré à l’échelle millimétrique, en offrant un meilleur aperçu des

caractéristiques observées dans l’IRMd (par exemple, la variation de l’ADC et de l’anisotropie de

diffusion avec la distribution des tailles des cellules), et (ii) offrir des informations vérité terrain pour

l’optimisation et la validation des séquences d’acquisition de l’IRMd pour différentes applications

(par exemple les techniques de tractographie, la modélisation biophysique locale du processus de

diffusion, et la microscopique par IRM de diffusion).

Alors que le développement d’un nouveau logiciel de simulation serait une tâche énorme, une

question générale se pose naturellement - pourquoi ne pas travailler simplement sur un logiciel de

simulation existant? Ce qui suit est un résumé global de mon point de vue sur cette question:

Le premier problème à souligner est que la simulation MC de l’IRMd est une technique large-
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ment répandue, adoptée par des scientifiques de domaines très différents (par exemple les physiciens

de l’IRM, les biophysiciens, les biochimistes, les biologistes, etc.). Les spécificités propres à chaque

domaine d’application se retrouvent fortement au niveau des codes de calcul, et peuvent malheureu-

sement restreindre un code à l’application pour laquelle il avait été développé, ce qui rend souvent

compliqué l’adaptation d’un code existant pour d’autres études que celles prévues à l’origine. Par

conséquent, il nous a semblé intéressant de développer un cadre de simulation générique qui puisse

être utilisé quel que soit le domaine d’application. Pour remplir cet objectif, le simulateur doit être

facilement adaptable aux besoins spécifiques des utilisateurs. La réalisation d’une telle plateforme

de simulation MC de l’IRMd fut l’un des principaux objectifs de cette thèse. Il doit être égale-

ment rapide pour ne pas affecter la productivité des scientifiques. Atteindre des calculs de haute

performance implique un soin particulier au niveau des codes qui doivent être optimisés et paral-

lélisé pour s’exécuter sur une grille de calcul qui permette d’atteindre les performances requises.

Enfin, l’ergonomie du simulateur doit être pensée et le pipeline de simulation doit être tel que tout

utilisateur puisse très rapidement en comprendre son utilisation et s’approprier l’outil pour ses

propres besoins. Les points évoqués ci-dessus ont très largement motivé cette thèse et conduit au

développement d’un nouvel outil de simulation du processus de diffusion, appelé DMS (pour Dif-

fusion Microscopist Simulator), dédié à l’étude et à la compréhension des mécanismes d’encodage

du phénomène biophysique sur le signal d’IRMd.

Organisation de cette thèse

Cette thèse est organisée en quatre parties et sept chapitres. La partie Introduction (chapitre

2) décrit les principes fondamentaux de l’IRM de diffusion (IRMd) et les techniques modernes

d’IRMd. Puis, la partie Méthodes (chapitres 3 et 4) développe la structure du simulateur DMS,

contribution méthodologique majeure de la thèse. Enfin, la partie Applications (chapitres 5 et 6)

présente les apports du simulateur dans le cadre d’applications spécifiques en IRMd. Le contenu et

les contributions de chaque chapitre sont décrits de manière plus détaillée ci-dessous:

Part I. INTRODUCTION

Chapter 2: RMN et IRM de diffusion. Le chapitre 2 commence par un résumé de l’histoire

de la résonance magnétique nucléaire (RMN) en mettant l’accent sur l’IRM de diffusion, puis

se poursuit par les principes de base qui fondent la physique de l’IRMd nécessaires à la com-

préhension de cette thèse. Ensuite, ce chapitre offre un résumé des méthodologies existantes

en IRMd et introduit les dernières avancées méthodologiques de l’IRMd qui permettent dé-

sormais de sonder la microstructure des tissus cérébraux et d’en mesurer les caractéristiques.
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Enfin, le chapitre 2 introduit l’IRM de diffusion fonctionnelle (IRMdf) qui repose sur l’ob-

servation des modifications structurelles intervenant au cours de l’activité cérébrale et qui

permettrait de détecter plus précocément cette activité que ne le permet l’imagerie BOLD

conventionnelle.

Part II. METHODES

Chapter 3: Simulateur du processus de diffusion ”Microscopist” Le chapitre 3 décrit de

manière détaillée l’élaboration et le développement méthodologique du Diffusion Microscopist

Simulator (DMS), outil intégré et générique dédié aux simulations Monte-Carlo du proces-

sus de diffusion et à la compréhension de l’IRMd. Le simulateur DMS est doté de deux

composants: un Simulateur Monte-Carlo et un Synthétiseur de données d’IRM. Le premier

composant est capable de générer des modèles de tissus tridimensionnels dotés de formes et de

propriétés variées, tandis que le deuxième composant permet de synthétiser les signaux d’IRM

de diffusion qui seraient obtenus à partir des modèles géométriques précédents pour un large

panel de méthodes d’imagerie de diffusion, de types de séquence et de paramètres de séquence.

Le chapitre expose la conception détaillée de l’outil et le rôle de ses divers composants, ainsi

que les méthodes mises en oeuvre pour obtenir un code efficace en termes computationnels

dans la perspective de simulations d’IRMd à grande échelle. Un organigramme d’utilisation

type est présenté pour illustrer la préparation et l’exécution d’une simulation par l’outil DMS.

Ce chapitre se conclut par une discussion sur les avantages et inconvénients du simulateur.

La Fig. 1 illustre l’architecture et l’interface graphique du DMS proposée à l’utilisateur.

Chapter 4: Expériences fondamentales. Avant d’appliquer le DMS à l’étude de thèmes de re-

cherche spécifiques, le chapitre 4 présente certaines expériences de simulation basiques d’IRMd

afin de tester la robustesse et la performance du DMS. Quatre différents types d’expériences

ont été menés comme suit: (i) Multiple scattering diffusion imaging (MSDI). Pour des valeurs

de q ou b suffisamment élevées, la taille et la forme des compartiments se traduisent par la

présence de pics de diffraction lorsque le signal de diffusion est mesuré en fonction du temps

de diffusion à l’aide d’une séquence de type Pulse Gradient Spin Echo (PGSE) (Fig. 2a). Nous

avons utilisé le DMS pour simuler le processus de diffusion de tissus virtuels doté des para-

mètres structurels prédéfinis (diamètres des cylindres), puis nous avons synthétisé le signal

d’IRMd correspondant au cas d’utilisation de séquences PGSE simple et double afin d’estimer

en aveugle les paramètres des tissus dont la valeur a été fixée précédemment. (ii) Spectroscopie

de diffusion temporelle. Les méthodes d’Oscillating Gradient Spin Echo (OGSE) permettent

d’explorer le processus de diffusion de l’eau à des échelles de temps de diffusion variées. A
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Figure 1: ”Diffusion Microscopist Simulator”. - (a) Le diagramme complet de modéli-

sation (b) Ergonomie de l’interface graphique.

haute fréquence, l’appoche OGSE devient sensible à des mouvements de très faible amplitude,

à l’instar des déplacements s’opérant au sein des structures intracellulaires. Dans cette expé-

rience, le DMS a été utilisé pour étudier la dépendance de l’attenuation du signal pondéré en

diffusion en fonction de la forme des oscillations et de leur fréquence. (iii) Modèle tissulaire.

Le gonflement cellulaire a été proposé comme facteur principalement responsable de la chute
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Figure 2: Expériences fondamentales menées avec le simulateur DMS. - (a) Expé-

rience révélant le phénomène de diffusion-diffraction à travers l’utilisation de séquence PGSE

et dPGSE. (b) Simulation d’embranchements de fibres faite avec le DMS servant de référence

à l’évaluation des algorithmes de tractographie streamline déterministe (haut) et probabiliste

(bas).

de l’ADC pour les accidents vasculaires cérébraux. Au cours de l’activation neuronale, il se

pourrait que les variations d’ADC résultent d’une combinaison entre effets du gonflement

cellulaire et modification de la perméabilité membranaire. Des simulations avec le DMS ont

été menées pour investiguer les variations de l’ADC en fonction de la taille des cellules et de

leur perméabilité. (iv) Modèles de diffusion locaux et applications au suivi (tracking) de fibres.

Nous avons utilisé le DMS pour créer des faisceaux virtuels de fibres de la substance blanche

présentant des configurations complexes comportant des croisements, des embranchements et

des configurations de fibres en éventail. Les données synthétiques d’IRMd correspondant à

ces diverses configurations ont été générées pour différentes valeurs de rapport signal à bruit

(SNR), et nous avons démontré que ces jeux de données synthétiques se révèlent très utiles

pour évaluer les performances des algorithmes de reconstruction de diffusion et de tracking

de fibres (Fig. 2b).
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Part III. APPLICATIONS

Chapitre 5: Impact d’une impulsion de gradient de diffusion finie sur l’estimation de

l’orientation de fibres. Le chapitre 5 décrit la première seconde contribution majeure de

cette thèse et utilise à la fois le simulateur DMS poyr y répondre ainsi qu’un fantôme de

diffusion physique pour corroborer les résultats - l’impulsion de gradient très brève étant un

prérequis dans la théorie de l’espace q, Quel est l’impact d’une impulsion de gradient de

diffusion de durée finie sur les modèles locaux de diffusion utilisés pour la cartographie des

orientations des fibres nerveuses en IRM de diffusion?

L’estimation précise des orientations des fibres nerveuses en chaque voxel est une étape es-

sentielle de la tractographie et un grand nombre de méthodes ont été proposées pour recons-

truire la fonction de distribution d’orientation à partir de l’échantillonnage en 3 dimensions

de l’espace q. Dans le formalisme de l’espace q, de très courtes impulsions de gradient (infi-

nitésimales) sont nécessaires pour reconstruire la véritable fonction de densité de probabilité

(PDF) des déplacements des spins. Cependant, sur les systèmes d’imagerie par résonance

magnétique cliniques actuels, la durée de l’impulsion (δ) est inévitablement finie du fait des

limitations de l’intensité des gradients atteignables. L’impossibilité de satisfaire la condition

d’impulsion de gradient courte (SGP) a souvent été source de critiques de l’approche basée

sur l’espace q pour l’estimation des fonctions d’orientation des fibres. Cependant, l’effet d’un

long δ sur le signal d’IRMd et sur la précision angulaire de l’orientation estimée n’a pas encore

été pleinement caractérisé.

Sous l’approximation SGP, le codage en phase des spins est supposé se faire instantanément.

Le déplacement mesuré dans l’espace q correspond alors à la distance entre la position initiale

du spin lors de la première impulsion de gradient de diffusion et sa position finale au moment

de la seconde impulsion (Fig. 3(a) - gauche). Cependant, avec une durée d’impulsion δ finie,

la particule est marquée avec une position donnée par le centre de masse de son trajet durant

l’application de l’impulsion de gradient [Mitra and Halperin (1995)]. Ainsi, le déplacement

effectif réellement estimé correspond à la distance entre la position moyenne du spin pendant

la première impulsion de diffusion et sa position moyenne pendant la seconde impulsion

(Fig. 3(a) - droite). Pour des géométries restreintes, la position moyenne du spin pendant

chaque impulsion va avoir tendance à converger vers le centröıde du compartiment restreint

(Fig. 3(a) - droite). Le déplacement estimé décroit donc lorsque δ augmente, et par conséquent

l’atténuation du signal d’IRMd mesuré est réduite. A l’échelle de temps d’une expérience

d’IRMd, la diffusion dans les fibres myélinisées de la substance blanche peut être approximée
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comme restreinte dans les directions perpendiculaires à l’axe de la fibre (i.e. la direction

radiale), et libre le long de l’axe de la fibre (i.e. la direction axiale) [Assaf et al. (2004); Assaf

and Basser (2005)]. Dans ce cas, l’augmentation de δ devrait mener à une atténuation réduite

du signal de diffusion radial, sans changement dans le signal de diffusion axial. Ceci devrait

donc améliorer le contraste entre les directions des gradients de diffusion, et aussi augmenter

le rapport signal sur bruit pour toutes les images de diffusion, ces deux aspects étant utiles

pour estimer les orientations des fibres.

Dans ce chapitre, l’influence de la largeur finie des gradients de diffusion δ sur le signal d’IRMd

mesuré comme fonction de la direction du gradient est décrite théoriquement et démontrée à

l’aide de simulations faites à partir du simulateur DMS, mais également à partir de fantômes

matériels de diffusion expérimentaux, et un modèle de tissu biologique. Les résultats suggèrent

que la pratique habituelle, due aux limitations de la machine, d’utiliser une longue durée δ

pour l’imagerie de diffusion sur les scanners IRM humains cliniques, pourrait être en fait

bénéfique dans l’estimation des orientations de fibres. Nous concluons donc que pour une

b-valeur donnée, l’allongement de δ est avantageux pour estimer les orientations de fibres

pour deux raisons : premièrement, cela conduit à une augmentation du signal de diffusion

dans le plan transverse à la fibre; deuxièmement, cela allonge la forme du profil de diffusion

mesuré, ce qui améliore le contraste du signal pour les différentes orientations de diffusion. Ce

contraste étant essentiel pour discriminer différentes directions de fibres, ceci est spécialement

bénéfique pour la détection des croisements de fibres. (Figs. 3(b)&(c)).

Chapter 6: Évaluation de la cartographie des rayons des fibres en utilisant l’IRM de

diffusion clinique. Le chapitre 6 concerne l’étude de la deuxième application du Simulateur

de Diffusion Microscopist (DMS) et se penche sur cette question en termes de microscopie

par IRM de diffusion - Est t’il possible d’estimer le calibre des fibres en utilisant un système

d’IRM clinique?

Les méthodes émergentes en microscopie par IRMd commencent à fournir des informations

quantitatives sur la taille des cellules, à l’échelle microscopique; ces nouvelles techniques ont

d’abord vu le jour sur des systèmes IRM précliniques (méthodes ‘AxCaliber’ [Assaf et al.

(2004, 2008)] et QSI [Callaghan (1993); Cory and Garroway (1990)]) parce que nécessitant

de puissants gradients pour satisfaire l’exigence stricte d’une impulsion de gradient étroite,

et se sont focalisées sur la matière blanche parce que les faisceaux de fibres présentent une

géomtrie cylindrique reposant sur peu de paramètres et s’avérait donc facile à modéliser. Il

en est de même s’agissant des techniques reposant sur les séquences de type OGSE [Stepisnik
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Figure 3: Dépendance du signal d’IRMd à la durée d’impulsion de gradient de

diffusion. - (a) Nous suggérons que le déplacement moyen de diffusion de l’eau dans un

environnement restreint va décroitre lorsqu’on utilise une durée d’impulsion longue (gauche:

δ court; droite: δ long). (b) Représentation polaire du signal d’IRMd montrant l’effet de δ et

sa dépendance à la b valeur. (c) Représentation polaire du signal d’IRMd montrant l’effet de

δ et sa dépendance vis-à-vis de la taille de la géométrie.
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(1993); Xu et al. (2009a,b)] nécessitant quant à elle un gradient puissant pour augmenter la

sensibilité et la résolution des measures en IRMd. A cause de ces conditions de sécurité et

de ces limites matérielles, un système à fort gradient ne peut pas être installé sur une IRM

clinique. Quant à la méthode MSDI [Ozarslan and Basser (2008); Ozarslan et al. (2009);

Ozarslan (2009); Shemesh and Cohen (2008); Shemesh et al. (2009a,b, 2010a,b)], bien qu’elle

ait la possibilité de fournir des informations microscopiques à travers une séquence double

PGSE avec des gradients de plus faible puissance, cette méthode reste encore cantonnée au

stade de descriptions théoriques, de simulations, et d’études expérimentales sur des systèmes

d’IRM précliniques. De plus, l’approche MSDI basée sur une séquence de type double PGSE

repose sur la connaissance a priori de l’orientation des fibres, ce qui reste possible s’agissant

de très gros faisceaux tels que le corps calleux dont l’orientation est facilement détectable,

mais devient beaucoup plus difficile s’agissant par exemple de la connectivité sous corticale

encore peu connue et peu décrite dans la littérature. Une alternative à la méthode MSDI

utilise une séquence dotée d’un champ de gradients bipolaires à double impulsion, permettant

d’obtenir une estimation précise de la géométrie des pores (espaces intra et extra cellulaires)

au sein desquels s’opère le processus de diffusion [Shemesh et al. (2010a)]. Cependant, cette

séquence à multiple impulsions augmente considérablement le nombre de mesures requises

pour compenser le faible rapport signal sur bruit dû à un temps d’écho très long. Ainsi, elle

n’est pas applicable dans le cadre d’une application clinique où le temps d’acquisition joue

un rôle important. De plus, les séquences à impulsion MSDI ne sont pas disponibles sur les

scanners IRM actuels car leurs versions logicielles ne sont pas encore commercialisées.

Plus récemment, Daniel Alexander a développé un cadre mathématique permettant d’opti-

miser les paramètres d’acquisition d’une séquence PGSE standard et qui permet d’estimer

in vivo le diamètre et la densité des fibres sans connaissances préalables sur l’orientation de

celles-ci [Alexander (2008); Alexander et al. (2010)]. Bien que cette méthode soit capable de

créer de façon efficace un protocole d’imagerie de diffusion afin de mesurer la taille des cellules

ou encore le rayon des fibres du cerveau humain, des difficultés persistent quant à son utilisa-

tion pour des examens cliniques pour deux raisons. Premièrement, la stratégie d’optimisation

est limitée à un rayon de fibre spécifique, alors que la substance blanche du cerveau humain

comporte un large éventail de fibres différentes avec des rayons allant de 1 à 10 µm; deuxiè-

mement, une forte valeur d’intensité de gradient (au minimuim 70 mT/m) est indispensable

pour garantir une estimation précise des fibres ayant un petit rayon alors que d’un autre côté

les scanners IRM cliniques ne sont équipés qu’avec des systèmes de gradient standard dôtés
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d’une amplitude maximale de 40 mT/m.

Ce chapitre, basé sur des simulations réalisées à partir de l’outil DMS, a pour but à la fois

d’analyser la faisabilité d’une cartographie des rayons de fibres de la substance blanche en

utilisant des scanners IRM cliniques standards, et également de déterminer l’influence des

paramètres de la séquence de diffusion sur l’estimation du rayon de ces fibres. Nous avons

utilisé le simulateur DMS afin de réaliser des simulations de parcours aléatoires (méthode

de Monte-Carlo) issues de la diffusion des molécules d’eau dans un environnement doté de

fibres de différents rayons (Fig. 4(a)), et nous avons généré des données synthétiques de

diffusion en utilisant un jeu de protocoles PGSE standard connu pour être comparable aux

capacités des systèmes de gradient présents en clinique. (Fig. 4(b)). Les rayons des fibres

sont estimés grâce à la méthode MCMC (Markov Chain Monte Carlo) dont l’algorithme

réalise un échantillonnage optimal de la distribution des paramètres du modèle (Fig. 4(c)).

Les simulations laissent à penser que le facteur de pondération en diffusion (c’est-à-dire dans

notre cas la b-value) et la sélection de l’échantillonnage dans l’espace q ont une influence

importante dans la cartographie des rayons des fibres. Nos résultats fournissent une règle

générale permettant de paramètrer les protocoles cliniques afin d’obtenir des informations sur

la microstructure du cerveau. Pour un temps d’acquisition acceptable de 30 minutes, nous

pouvons conlure que l’utilisation de trois ou quatre sphères échantillonnées dans l’espace q

avec des valeurs de b-value modérées à hautes rend tout à fait possible l’identification des

rayons des fibres supérieurs à 2 µm.

Part IV. CONCLUSION

Chapter 7: Synthèse et conclusion. Le chapitre résume les résultats présentés dans cette thèse

et énumère les objectifs atteints. Les contributions apportées sont à nouveau listées et enfin

des recommandations et des futures directions sont examinées.

Contributions

La principale contribution méthodologique de cette thèse est le développement d’un outil générique

et puissant de simulation de Monte-Carlo du processus de diffusion dans le tissu cérébral: ‘Diffusion

Microscopist Simulator’ (DMS) qui a la capacité d’une part de créer des modèles de tissus biolo-

giques tridimensionnels de formes et propiétés différentes, et aussi de synthétiser des données d’IRM

de diffusion issues d’un large éventail de méthodes en IRM et de design de séquences paramètrables.

le simulateur DMS a pour but de combler le fossé entre les processus de diffusion élémentaires qui

apparaissent à une échelle micrométrique et le résultat du signal de diffusion mesuré à une échelle
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Figure 4: Estimation des rayons de fibres à partir de données cliniques d’IRM de

diffusion. - (a) Simulation Monte-Carlo conduite à l’aide du simulateur DMS. (b) Séquences

de gradient spin echo (PGSE) conçues pour les synthèses d’IRMd. (c) Les rayons des fibres ont

été estimés grâce à la méthode Markov-Chain Monte-Carlo qui échantillonne la distribution

des paramètres du modèle.

millimètrique, donnant ainsi un meilleur aperçu des caractéristiques observées en IRMd, tout en

offrant une réelle information pratique utilisable pour l’optimisation et la validation de protocoles

d’IRMd pour de nombreuses applications.

Nous avons vérifié la performance et la validité du simulateur DMS à travers de nombreux

tests et expérimentations, et nous l’avons aussi utilisé dans des cas concrets de recherche en IRM

de diffusion. Deux contributions majeures ont été réalisées dans cette thèse à partir du simulateur

DMS. La première a consisté à l’investigation de l’impacte d’un gradient de diffusion de durée définie

(δ) sur l’estimation de l’orientation des fibres en IRMd. Nous pensons que l’utilisation actuelle

d’un long δ, qui est renforcé par la limitation matérielle sur les scanners cliniques, est actuellement

bénéfique pour la cartographie des orientations des fibres, bien que cela contredise l’hypothèse

sous-jacente fâıte par la théorie de l’espace q. La deuxième contribution concerne l’utilisation du

simulateur afin d’analyser la faisabilité de l’estimation du rayon des axones dans le cadre d’IRM

clinique. Les résultats suggèrent que l’algorithme qui cartographie les microstructures directes est

tout à fait applicable aux données issues d’IRM cliniques standards.

Ainsi, l’extension des simulations par ordinateur à des expérimentations réelles sur scanner a été
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le but des développeurs logiciels dans la communauté qui attendaient une situation où l’interaction

entre les expérimentations et les simulations pouvait se réaliser en IRMd. Nous espérons que le

simulateur DMS s’avérera un outil puissant et utile à la compréhension des relations qui existent

entre les mécanismes de bases de l’IRMd aux niveaux des tissus du cerveau et également que cet

outil permettra d’améliorer de façon sensible la méthodologie des futures applications en IRM de

diffusion.
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1.1 Preface

Water appears stationary to the naked eye of human beings, whereas at a microscopic

scale water molecules are in a status of dynamic fluctuations. Such random translational motion of

molecules is a phenomenon termed Brownian motion, which was observed in 1827 by the well-known

botanist, Robert Brown, from the jiggling pollen granules suspended in water [Brown (1828)]. It

was not until 1905 that Albert Einstein revisited this phenomenon and published a theoretical

analysis of Brownian motion, it became clear that molecular diffusion in liquid or gas results from

the thermal energy carried by the molecules [Einstein (1905)].

Imagine for an instant if we could give a label to a water molecule in a brain tissue and keep track

of its diffusion-driven movement, we would find that the path is shaped by the tissue microstructures

of the brain. This establishes the basic idea of diffusion magnetic resonance imaging (dMRI) that

utilizes the microscopic natural displacements of water molecules that occur in brain tissues as

part of physical diffusion process to produce the MRI-based quantitative maps. In dMRI, water

molecules are thus utilized as a an endogenous tracer that can non-invasively reveal microscopic

details about tissue architecture, either normal or in a diseased state.

Diffusion MRI came into existence in the mid-1980s [Le Bihan et al. (1986); Wesbey et al.

(1984a,b)], and during the last 25 years, dMRI has been extraordinarily successful, particularly

in MRI of the central nervous system (CNS). Its major clinical domain of application has been

neurological disorders, especially for the management of patients with acute ischemic stroke. It is

also rapidly becoming a standard for white matter (WM) disorders, as diffusion tensor imaging

(DTI) can reveal abnormalities in WM fiber structure and provide outstanding maps of brain

connectivity [Basser et al. (1994a,b); Conturo et al. (1999); Mori et al. (1999); Basser et al. (2000);

Poupon et al. (2000)]. The ability to visualize anatomical connections between different parts of

the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for

neurosciences. More recently, it has been shown that dMRI could also be used to deliver direct

features of tissue microstructures [Alexander (2008); Assaf et al. (2008)], as well as to detect changes

in brain tissue structure associated with neuronal activation [Le Bihan et al. (2006)].

1.2 Motivation

Molecular diffusion is a multi-scale integrated process by which fluctuations in molec-

ular random motion at a microscopic scale can be inferred from observations at a larger scale

using statistical physical models, even though the individual molecular structure and pathway are

fully ignored [Le Bihan (2007)]. Owing to the microscopic length scale of diffusion in biological
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tissues, dMRI is an exquisitely sensitive tool to reveal tissue architecture unrecognizable through

the conventional MRI methods. However, it is important to keep in mind that the driving force

of dMRI is to monitor the diffusion-driven displacements of water molecules at a microscopic level

that is well beyond the usual MRI resolution. In other words, the overall signal observed in dMRI

images at a millimetric resolution, results from the integration, on a statistical basis, of all the mi-

croscopic displacement distributions of the water molecules present in this voxel. In consequence,

the complex diffusion processes that occur in a biological tissue on a voxel scale are often described

with a global, statistical parameter, the ‘apparent diffusion coefficient’ (ADC) [Le Bihan et al.

(1986)]. This parameterization of the diffusion process by a global ADC is intended to repre-

sent those physical processes that occur at scales smaller than the scales resolved by the method:

the large scale is imposed by technical limitations (e.g., hardware), while the actual scale of the

biophysical elementary processes is determined by physical phenomena at molecular scale. The

averaging and smoothing effect resulting from this scaling presumes some homogeneity in the voxel

and makes a direct physical interpretation out of the global parameter somewhat difficult, unless

some assumptions can be made.

This thesis dedicates to the development and application of an integrated and generalized dMRI

Monte Carlo (MC) simulation system, ‘Diffusion Microscopist Simulator’ (DMS), and aims at (i)

bridging the gap between elementary diffusion processes occurring at a micrometer scale and the

resulting diffusion signal measured at millimeter scale, providing better insights into the features

observed in dMRI (e.g. variation of ADC and diffusion anisotropy with cell size distribution); and

(ii) offering ground-truth information for optimization and validation of dMRI acquisition schemes

for different applications (e.g. fibre-tracking algorithm, diffusion local modeling, and diffusion

microscopy imaging).

While managing a new simulation software is an enormous task, a general question naturally

arises - why not straightforwardly work on an existing simulation program? The following is a

global summary of my viewpoint to this question:

The first issue to note is that dMRI MC simulation is a widespread technique adopted by sci-

entists of diverging fields (e.g. MR physicists, biophysicists, biochemists, biologists, etc.). Usually,

the differing concerns and techniques of scientists are reflected in their code bases which are tailored

to specific methods and problems in origin. For now, it is sufficient to mention that the bias of

some individual codes means it will be complicated to extend them with new algorithms for other

studies. Hence, it is evidence that it would be certainly beneficial to have a generic simulation

system for all scientists to use. To accomplish this purpose, it requires a platform that allows the

scientists in different fields to customize for certain research topics. Furthermore, importantly, the
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new platform should enables the software developers to rapidly implement the new algorithms for

extensions. The realization of such a dMRI MC simulation platform is one of the major goals

of this thesis. Secondly, computation efficiency is required as it may affect the productivity of

the scientists who need to use the software. Reaching high performance computing involves the

procedure of codes profiling, optimization, and parallelization of the platform. Thirdly, practical

factors like workflow and data management need to be optimized to prevent scientists not only from

running replicated calculations but also from wasting an inordinate amount of efforts on tasks like

organizing data. And last, the command-line of the program is required to be clear and simple

for scientists to understand. Mysterious commands may actively discourage the scientists their

uses as well as restrict a powerful tool to a narrow subset of the community. In my opinion, the

reasons above has already substantially motivated this thesis to create a novel framework for dMRI

simulations.

1.3
Outline

The thesis is organized in four parts and seven chapters. The Introduction part (Chap-

ter 2) describes the basic principles of dMRI and modern dMRI techniques. Then, the Methods

part (Chapter 3 & 4) describes the framework of DMS, the major methodological contribution

of the thesis. Finally, the Application part (Chapter 5 & 6) describes the contributions of DMS

for specific dMRI applications. An overview of the contents and contributions in each chapter is

described as follows:

Part I. INTRODUCTION

Chapter 2: Diffusion NMR and MRI. Chapter 2 begins with the reviews of the history and

evolution of diffusion NMR and MRI, followed by the background and basic principles of

dMRI physics needed to understand thesis. Then, this chapter gives a summary of current

dMRI methodologies and an introduction to the modern dMRI techniques aiming at imaging

microstructural features of brain tissues. Finally, the chapter introduces the hypothesis of

mapping neuronal activation using diffusion functional MRI (dfMRI).

Part II. METHODS

Chapter 3: Diffusion Microscopist Simulator. Chapter 3 describe the detail framework de-

sign and the methodological development of Diffusion Microscopist Simulator (DMS), which

has been put efforts to make it an integrated and generic tool for dMRI MC simulations.

DMS is composed of a Monte Carlo Simulator and a MR Image Synthesizer. The former is
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able to generate 3D tissue models of various shapes and properties, while the latter is able to

synthesize diffusion MRI signals for a large variety of MRI methods, pulse sequence design

and parameters. The chapter describes the concept and function for the key components

of DMS, as well as the methods to achieve high computing efficiency for large-scale dMRI

simulations. After that, the working diagram is depicted to illustrate how to prepare and

execute a DMS simulation. The chapter ends with a discussion regarding to the pros and

cons of DMS framework.

Chapter 4: Benchmark Experiments. Before applying DMS to study specific research top-

ics, Chapter 4 demonstrates the basic dMRI simulation experiments in order to examine

the performance and validity of DMS. Five different kinds of experiments were performed as

follows: (i) Multiple scattering diffusion imaging. At sufficiently high q- or b-values, the size

and shape of tissue compartments will be reflected by the diffraction peaks in diffusion signal

decay obtained from the pulsed gradient spin echo (PGSE) experiments. We employed DMS

to run MC simulations in virtual tissues with predefined structural parameters, and then

generated synthetic diffusion signal decay based on a simulated single- and double-PGSE

pulse sequences to estimate the ground-truth tissue parameters. (ii) Temporal diffusion spec-

troscopy. The oscillating gradient spin echo (OGSE) methods have the capacity to probe

the water diffusion over various time scales. At high frequencies, for instance, the OGSE ap-

proach has the potential to detect changes over much smaller lengths, such as the intracellular

structures. In this experiment, DMS was utilized to investigate the dependency of diffusion

signal decay using OGSE sequences with different oscillating waveforms and frequencies. (iii)

Tissue characteristics and models. Cell swelling has been proposed to be a major factor

responsible for the drop of ADC in acute ischemic stroke. During neuronal activation, it

has been proposed that the variation of ADC rather results from the integrated effect of cell

swelling and cell membrane properties. DMS simulations were performed to investigate the

variations of ADC induced by cell sizes and membrane characteristics in this section. (iv) Dif-

fusion reconstruction model. We showed that DMS can be utilized to assess the performance

of diffusion models for the purpose of fibre orientation mapping. We analyzed the synthetic

dMRI data of crossing fibres that were generated via different fibre distributions (e.g. 90

and 60-degree crossing fibres) and pulse sequence parameters (e.g. b-value and signal-to-noise

ratio (SNR)). (v) Fibre-tracking application. We used DMS to create 3D virtual WM fibre

bundles with complex configurations including crossing, kissing, and branching fibres, which

were served as ground-truth information for evaluating the validity of fibre tractography.
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The experiments (iv) and (v) demonstrated that these synthetic datasets were practical for

assessing the performance of diffusion reconstruction and fibre-tracking algorithms.

Part III. APPLICATIONS

Chapter 5: The Effect of Finite Diffusion Gradient Pulse on Fibre Orientation Esti-

mation. Chapter 5 describes the first particular application of DMS to address an important

question - as the narrow pulse is a prerequisite in q-space theory, what is the impact of finite

diffusion gradient pulse duration on local diffusion models aiming at mapping neural fibre

orientations in dMRI?

An essential step for fibre-tracking is the accurate estimation of neuronal fibre orientations

within each imaging voxel, and a number of methods have been proposed to reconstruct the

orientation distribution function based on sampling 3D q-space. In the q-space formalism,

very short (infinitesimal) gradient pulses are the basic requirement to reconstruct the true

probability density function (PDF) of spin displacements. On current clinical MR systems,

however, the diffusion gradient pulse duration (δ) is inevitably finite due to the limit on the

achievable gradient intensity. The failure to satisfy the short gradient pulse (SGP) require-

ment has been a recurrent criticism for fibre orientation estimation based on the q-space

approach.

In this chapter, the influence of a finite δ on the dMRI signal measured as a function of

gradient direction is described theoretically and demonstrated through DMS simulations,

experimental diffusion phantoms, and a biological tissue model. The results suggest that the

current practice of using long δ for DW imaging on human clinical MRI scanners, which is

enforced by hardware limitations, might in fact be beneficial for estimating fibre orientations.

For a given b-value, the prolongation of δ is advantageous for estimating fibre orientations

for two reasons: First, it leads to a boost in DW signal in the transverse plane of the fibre.

Second, it stretches out the shape of the measured diffusion profile, which improves the

contrast between DW orientations. This is especially beneficial for resolving crossing fibres,

as this contrast is essential to discriminate between different fibre directions.

Chapter 6: Evaluation of Fibre Radius Mapping Using Clinical Diffusion MRI. Chapter

6 is the second application study of DMS to look into the question in terms of microscopic

dMRI - is it possible to estimate the fibre calibers using clinical dMRI?

This chapter, based on DMS simulations, aims to assess the feasibility of mapping WM fibre

radii using the clinical MR scanners, as well as to investigate the influence of DW pulse se-
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quence parameters on the fibre radius estimation. We used DMS to perform random walk MC

simulations of water diffusion in virtual WM fibres with various radii, and generate synthetic

dMRI data using a set of conventional PGSE imaging protocols devised to be compatible

with the capabilities of the standard clinical gradient system. Fibre radii are estimated via

the procedure of Markov Chain Monte Carlo (MCMC) algorithm that samples the posterior

distribution of model parameters. Simulations suggest that the diffusion-sensitizing factor

(i.e. b-value) and the selection of the q-space sampling shell are important for fibre radius

mapping. Our results provide a general rule to set up clinical protocols for the purpose of

delivering microstructural information. Within a clinical acceptable acquisition time of 30

minutes, we conclude that using three to four q-space sampling shells with moderate to high

b-values is potentially feasible to identify fibre radii greater than 2 µm.

Part IV. CONCLUSION

Chapter 7: Summary and Conclusion. The chapter delineates the final summary of the results

presented in this thesis and the objective achieved. The original contributions of this thesis

are reiterated, and recommendations for future directions are discussed.

1.4 Original Contributions

The most significant original contribution of this thesis are (i) the development of

Diffusion Microscopist Simulator, a novel dMRI MC simulation framework (Chapter 3); and (ii)

the demonstration (Chapter 4) and application (Chapter 5 & 6) that DMS has the potential to

address a wide class of issues in dMRI. Indeed the expanding of computer simulations to MR

experimentalists has been a goal of software developers in the community who have expected a

situation where the interplay between experiments and simulations will be an integral part of dMRI.

I hope that DMS will be considered as a reliable tool that help to advance the knowledge on the

relationship between the underpinning diffusion mechanism and dMRI in brain tissues, as well as

to substantially improve the dMRI methodology for further applications.

9
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2.1 Timeline of Diffusion MRI History

This section introduces a brief summary of the important events associated with the

evolution of dMRI.

1828 - Robert Brown, the Scottish botanist, is regarded as the first person who discovered that

the pollen grains suspended in water exhibited a rapid jitter motion under a microscope

[Brown (1828)].

1855 - Adolf Fick introduced the famous Fick’s law of molecular diffusion, which describes the

relationship between the diffusive flux and the concentration [Fick (1855)].

1905 - Albert Einstein inferred the random thermal motion of molecules from the kinetic-

molecular theory in the early 20th century, which was a period that a coherent description

of molecular diffusion emerged. Einstein derived an explicit relationship between the root-

mean-square (RMS) displacement of a diffusing particle in Brownian motion and the classical

diffusion coefficient formulated in Fick’s law [Einstein (1905)] (English translation in [Einstein

(1956)]).

1946 - Felix Bloch and Edward Purcell were awarded the 1952 Nobel Prize in Physics for

their development of new ways and methods for nuclear magnetic precision measurements.

Felix proposed the Bloch equations which determine the time evolution of nuclear magneti-

zation [Bloch (1946)]. Edward is credited for his independent discovery of nuclear magnetic

resonance in liquids and in solids [Purcell et al. (1946)].

1950 - Erwin Hahn proposed the concept of spin echo sequence which is found to be sensitive

to the diffusion effect. He reported that the signal attenuation of the spin echo was caused

by the dephasing of diffusing spins subjected to local magnetic field gradients arisen from the

inhomogeneous magnetic field [Hahn (1950)].

1954 - Herman Carr and Edward Purcell demonstrated that NMR spin echo could be sensi-

tized to diffusion according to Hahn’s observations and proposed the first diffusion-sensitizing

spin echo sequence. They extended Hahn’s spin echo sequence by applying a constant gradi-

ent thorough the sequence and developed a mathematical framework to estimate the diffusion

coefficient [Carr and Purcell (1954)].

1956 - H.C. Torrey mathematically integrated the effect of molecular diffusion and flow into

the original Bloch equation for magnetization using the magnetic flow approach. The Bloch
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equation that includes diffusion as a relaxation process is know as the Bloch-Torrey equation

[Torrey (1956)].

1965 - Edward Stejskal and John Tanner developed the theory and methodology of the pulsed

gradient spin echo (PGSE) sequence, which established the classical method in diffusion NMR

and MRI. They also provided a solution to the Bloch-Torrey equations showing how the

magnitude and phase of the NMR signal is related to diffusivity, Stejskal and Tanner also

solved the Bloch-Torrey equation for the case of free, anisotropic diffusion in the principal

frame of reference [Stejskal and Tanner (1965)].

1973 - Paul Lauterbur is credited for the idea of adding extra magnetic fields gradients to

the static magnetic field, by which different parts of object will have different resonance

frequency according to the Larmor precession theory. This spatial information makes MR

imaging possible [Lauterbur (1973)].

1977 - Peter Mansfield is credited for the invention of a magnetic field gradient scheme termed

echo-planar imaging (EPI). This fast imaging technique greatly reduces the imaging time to

tens of milliseconds, and facilitates the development of dMRI that is inherently sensitive to

subject motion [Mansfield (1977)].

1984 - George Wesbey, together with Michael Moseley and Richard Ehman, initiated the field of

diffusion imaging by inserting the Stejskal-Tanner pulsed gradient into an imaging sequence to

measure the diffusion coefficient in structures seen in an MR image [Wesbey et al. (1984a,b)].

1985 - Denis Le Bihan published the first diffusion-weighted image using a whole-body MRI

system, showing that the intra-voxel incoherent motion of water molecules can be utilized as

a new contrast mechanism in MRI, particularly for the neurological applications [Le Bihan

and Breton (1985); Le Bihan et al. (1986)].

1990 - Michael Moseley demonstrated the first successful clinical application of dMRI in imag-

ing the ADC of the brain following ischemic strokes [Moseley et al. (1990a)].

1990 - David Cory and Allen Garroway developed the methodology of q-space analysis to

extract microstructural information. They demonstrated that the q-space method is possible

to estimate the pore size of the tissue sample [Cory and Garroway (1990)].

1991 - Paul Callaghan, a major contributor in the field of NMR microscopy, experimentally

demonstrated and provided an elegant theoretical interpretation of the diffusion-diffraction
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phenomenon. Callaghan also provides an outstanding review of NMR microscopy from in-

troductory theory to the newest developments in techniques and instrumentation [Callaghan

(1993)].

1994 - Peter Basser, together with Denis Le Bihan, introduced the diffusion tensor imaging,

which provided a means to quantify the isotropic and anisotropic components of the diffusion

tensor and is the basis for dMRI fiber mapping and tractography [Basser et al. (1994a,b)].

2.2 Diffusion Physics - Brownian Motion and Fick’s Law

This section reviews how the probability density function and Einstein’s RMS distance

of molecular diffusion [Einstein (1956)] can be derived from the Fick’s law of diffusion proposed by

Adolf Fick in 1855. Fick’s first law, which relates the diffusion flux to the concentration difference

of the substance, in one-dimension is as following:

J = −D∂C
∂r

(2.1)

where J is the diffusion flux, a measure of amount of substance flowing into a unit area during a

time interval; ∇C is the concentration gradient; r is the position; and D is the diffusion coefficient.

According to Einstein relation, D explained by kinetic-theory relies on the temperature, viscosity

of the fluid, and the size of the diffusing particles:

D =
kBT

6πνrp
(2.2)

where kB is the Boltzmann’s contant; T is the absolute temperature; ν is the viscosity of the

medium; and rp is the radius of the spherical particle. Fick’s second law, which is derived from

Fick’s first law and the conservation of mass, describes how the concentration changes with time

due to molecular diffusion as following:

∂C

∂t
= − J

∂r
=

∂

∂r

(
D
∂C

∂r

)
(2.3)

Assuming that the diffusion coefficient D to be a constant in the space (i.e. D is independent of

the coordinate or concentration), Eq. 2.3 can be formulated as below:

∂C

∂t
=

∂

∂r

(
D
∂C

∂r

)
= D

∂2C

∂r2
(2.4)

To solve Eq. 2.4, we assume that a total amount of diffusing particles, Np, is located at the origin
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(r = 0) at the beginning of diffusion (t = 0). According to the principle of mass conservation, the

total amount of particles (Np) in the space surrounding the source position (r) at any time is a

constant: ∫ ∞
0

C(r, t)4πr2dr = Np (2.5)

where C(r, t) indicates the concentration field. The solution to the above equation is,

C(r, t) = Np
exp

(
−r2/4Dt

)
(4πDt)

3/2
(2.6)

The diffusion response for an instantaneous point source can be generalized to an arbitrary staring

position r0, staring time t0, and Np Therefore, the generalized solution to Eq. 2.5 can be expressed

as below:

C (|r − r0|, t− t0) = N (r0, t0)
exp

[
− |r − r0|2 /4D (t− t0)

]
[4πD (t− t0)]

3/2
(2.7)

In addition, here again according to conservation of mass, the total mass (Np in this case) is

conserved all the time. Hence, ∫ −∞
∞

C(r, t)

Np
dr = 1 (2.8)

The mass conservation principle given in Eq. 2.8 suggests that the integral, C(r, t)/Np, exhibits

the formal properties of a probability density function. Thus, the probability density function for

a generalized point source can be formulated based on Eq. 2.7 and Eq. 2.8, as following:

Ps (r | r0, t | t0) =
exp

[
− |r − r0|2 /4D (t− t0)

]
[4πD (t− t0)]

3/2
(2.9)

where Ps (r | r0, t | t0) termed diffusion propagator is the conditional probability termed of finding

a single spin at position r from initial position r0 after any diffusion time interval τ = t − t0.

From Eq. 2.9, the 3D mean-squared displacement of free diffusion for a diffusing particle following

Brownian motion can be derived as below

〈
r2
〉

= 6Dτ (2.10)

Eq. 2.10 states the relationship between the molecular displacement due to diffusion and the dif-

fusion equation, and for free diffusion, the mean-squared displacement changes linearly with time

[Einstein (1905)]. Later in Chapter 3, this equation will be employed to define the RMS distant of

the random walker (diffusing spin) in diffusion microscopist simulator.
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2.3 Principles of Diffusion NMR

Edward Stejskal and John Tanner have introduced many innovations that form the

basis of the modern diffusion NMR and MRI methods. Early in 1965, they have pioneered the

famous pulsed gradient spin echo (PGSE) experiment, which is still the basis of the modern diffusion

imaging technique nowadays. Furthermore, they also proposed the Fourier relationship between

the NMR signal and the spin displacement distribution following their PGSE experiments, which

has laid the foundation of q-space theory in diffusion imaging [Stejskal and Tanner (1965)].

2.3.1 Stejskal-Tanner’s Pulsed Gradient Spin Echo Experiment

As excellent comprehensive reviews of the Stejskal-Tanner’s pulsed gradient spin echo experiments

have been done in recent years (see [Callaghan (1993)] and [Price (1997)] for more details), here

only a brief description relevant to this thesis will be presented. Stejskal and Tanner developed

the PGSE pulse sequence by replacing Carr and Purcell’s constant diffusion gradients with short

duration and equal magnitude gradient pulses. Hence, the PGSE sequence has a clear distinction

between the diffusion encoding time (i.e. pulse duration, δ) and the diffusion time (∆) [Stejskal

and Tanner (1965)]. Fig. 2.1 shows the diagram of a PGSE sequence. To correlate the NMR signal

with molecular diffusion, Torrey formulated the Bloch-Torrey equation by including an additional

term to the Bloch equation considering the magnetization transfer by diffusion [Torrey (1956)],

∂M(r, t)

∂t
= γM ×B(r, t)− (Mz −M0)k

T1
− Mxi+Myj

T2
+∇(D∇M) (2.11)

where M(r, t) = Mx +My +Mz represents the macroscopic nuclear magnetization; γ is the gyro-

magnetic ratio; r is the spatial position; T1 and T2 are the spin-lattice and spin-spin relaxation

times, respectively. D is the diffusion tensor which is a 3 × 3 rank-2 matrix. Note that the orig-

inal Bloch-Torrey equation considers the case of isotropic diffusion which is described by a scalar

diffusion coefficient D, nevertheless it can be generalized using a tensor.

The solution for the Stejskal-Tanner’s PGSE sequence in the presence of water diffusion in an

anisotropic medium is given as [Stejskal and Tanner (1965)]

S(t)

S0
= exp

(
− t

T2

)
exp

[
−
∫ t

0

~k(t′)TD~k(t′)dt′
]

(2.12)

~k(t) = γ

∫ t

0

~G(t′)dt′ (2.13)

where S0 is the amplitude of the initial transverse magnetization right after the π/2 radiofrequency
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Figure 2.1: Stejskal-Tanner’s PGSE sequence diagram. - After an excitation RF

pulse (rf90), a pair of diffusion gradients (highlighted in red) are placed before and after the

refocusing RF pulse (rf180). δ and ∆ represent the pulse duration and separation of the two

diffusion pulses. GS , GP , and GR are the slice selection, phase encoding, and readout gradients

respectively, and TE is the echo time of MRI signal.

pulse. For an isotropic medium, the signal at the echo time is give as

S(TE)

S0
= exp

[
−D

∫ TE

0

~k(t′)T~k(t′)dt′

]

= exp(−bD)

(2.14)

where b-value is the diffusion sensitizing factor and defined as

b =

∫ TE

0

~k(t′)T · ~k(t′)dt′ (2.15)

For symmetric trapezoidal diffusion gradient pulses, b-value is given as [Basser et al. (1994a)]

b = γ2G2

[
δ2

(
∆− δ

3
+
ε3

30
+
δε2

6

)]
(2.16)

where ε is the gradient rise time, and the effective diffusion time (∆e) is usually defined as ∆e =

∆− δ/3 [Blees (1994); Callaghan (1993); Callaghan et al. (1999)].

2.3.2 Q-space Formalism

This section reviews the basis of the q-space imaging method, which enables us to measure the

probability density function of diffusion displacement from a series of PGSE experiments without
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any prior assumption on the diffusion process. The accumulative phase shift for a single spin in

the present of magnetic field gradients is given as

φ(t) = γB0t+ γ

∫ t

0

G(t′) · r(t′)dt′ (2.17)

where the first term represents the phase shift due to the static magnetic field B0, and the second

term is due to the effects of a magnetic field gradient. In a PGSE pulse sequence, for a diffusing

spin, the degree of phase accumulation owing to the applied gradient is proportional to the spin

displacement in the direction of the gradient. At the time when the spin echo is formed (i.e. the

echo time, TE), the net phase shift (φ) of one individual spin is therefore

φ = γ

[∫ δ

0

G(t′) · r(t′)dt′ −
∫ ∆+δ

∆

G(t′) · r(t′)dt′

]
(2.18)

Note that the accrual spin phase depends on the its motion history during the time interval between

the two magnetic field gradients. For the static spin, the phase shifts due to the gradient pulses will

cancel out each other. For the diffusing spin, the spatial position r(t) is random and the net phase

shifts accumulated by individual nuclei with different Larmor frequencies will cause a reduction in

the transverse magnetization.

The q-space formalism requires that the diffusion gradient pulse duration in a PGSE sequence is

infinite short (i.e. δ ∼ 0), so that the diffusion distance under the diffusion gradient pulse duration

is substantially smaller than the pore size of the medium [Wang et al. (1995)]. Under this narrow

pulse approximation, the spin phase given in Eq. 2.17 is then

φ = γGδ(r0 − r) (2.19)

where r0 and r are the spin’s position at the first and second instantaneous gradient pulse, respec-

tively. For a given proton density ρ, the diffusion signal taking the diffusion propagator (Ps in

Eq. 2.9) into account is given as

S = S0

∫∫
ρ(r0)Ps(r | r0,∆)exp [iγGδ(r0 − r)] dr0dr (2.20)

Assuming that R = r0 − r, Eq. 2.20 can be reformulated as

S = S0

∫ [∫
ρ(r0)Ps (r0 +R | r0,∆) dr0

]
exp (iγGδR) dR

= S0

∫
P (R,∆)exp (iγGδR) dR

(2.21)
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where P (R,∆) expresses the average probability for a spin diffusing a distance R within a time

interval ∆. It is sensible to introduce the effects of the diffusion gradient pulses into the analysis

by defining the reciprocal spatial vector q given as

q =
γGδ

2π
(2.22)

Hence, Eq. 2.21 can be rewritten as

S(q,∆) =

∫
P (R,∆)exp (i2πqR) dR

= F−1{P (R,∆)}
(2.23)

Following this Fourier relationship, a mathematical q-space analysis method was developed by

Cory and Garroway [Cory and Garroway (1990)] and by Callaghan [Callaghan (1993)]. They pro-

posed that at a sufficient ∆, the displacement probability function may relate to the size and

shape (e.g. spherical, cylindrical) of the compartment where diffusion occurs. These microstruc-

tural parameters will be reflected by the diffusion-diffraction peaks in the echo signal attenuation.

Therefore, the q-space imaging technique has the ability to reveal direct microstructures of the

biological tissues.

2.4 Diffusion MRI in Central Nervous System

For free diffusion, the displacement probability can be described by a 3D Gaussian

function, and the diffusion signal attenuation is monoexponential. In biological systems, the move-

ments of water molecules under typical diffusion time are interfered by many tissue components,

such as cell membranes, myelin sheaths, water contents and other macromolecules [Beaulieu (2002)].

In has been verified that the water diffusion is no longer Gaussian in biological tissues due to the

influence of these components [Cohen and Assaf (2002)]. For neuronal fibres, water diffusion are

hindered to a greater extent in a direction perpendicular to the axon axis than parallel to it be-

cause of the shape and the organization of the axonal fibres [Le Bihan et al. (1986); Le Bihan

(2003)]. Therefore, with an adequate model describing water diffusion behavior, it is possible to

estimate fiber directions and build the fibre connectivity map (i.e. the fibre tractography) of the

brain. This sections briefly reviews the dMRI in brain tissues and begins with diffusion-weighted

imaging (DWI). Then, the section describes diffusion tensor imaging (DTI), the first dMRI method

to delineate fibre orientations. And next, the section summarizes the high angular resolution dif-

fusion imaging (HARDI) techniques and different reconstruction algorithms aiming at resolving

19



multiple fibre orientations at the regions of complex fibre configurations. At last, the section ends

with a brief summary of the fibre-tracking techniques which provide the opportunity to infer the

structural connectivity of human brains.

2.4.1 Diffusion-Weighted Imaging

In 1984, Wesbey, Moseley, and Ehman initiated the diffusion imaging technique and the measure-

ment of the diffusion coefficient by incorporated Stejskal-Tanner’s PGSE sequence with imaging

gradients [Wesbey et al. (1984a,b)]. In 1985, Le Bihan succeeded to acquire the first in vivo DWI

of a human brain using a whole-body MRI scanner, and introduced the notion of the diffusion-

sensitizing factor, b-value [Le Bihan et al. (1986)]. In 1990, Moseley discovered that DWI is highly

sensitive to brain ischemia from cat brain experiments, and the following studies also suggested

that the ADC drops significantly in the early stage of brain ischemia. DWI provides the chance

of early detection and offers the patient to receive medical treatments while brain tissue is still

salvageable. Therefore, the most important clinical discovery in DWI is Moseley’s finding that

DWI could detect the effect of acute stroke [Moseley et al. (1990a,b)]. According to Eq. 2.14, the

scalar diffusion coefficient D can be estimated from a series of DW images with diffusion b-values

by linear regression methods. As DWI is not sufficient to characterize anisotropic diffusion which

naturally arises in biological tissues such as WM axons [Moseley et al. (1991)], ADC appears to be

a rotational dependent quantity.

2.4.2 Diffusion Tensor Imaging

In 1994 Basser proposed the diffusion tensor model to describe the orientation dependence of

diffusion signal [Basser et al. (1994b)]. Owing to water diffusion is a 3D random motion process,

water molecules in biological tissue may be interfered by local tissue architecture and hence result

in diffusion process which is not the same in all directions. The tensor model provides a systemic

analysis approach to characterize the magnitude of diffusion anisotropy in the 3D space, assuming

that the displacement distribution is Gaussian. The tensor model can be represented as a 3 × 3

matrix:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.24)

As the diffusion tensor D is a symmetric and positive definite matrix, it has six unknown coefficients

to be estimated. Hence, DTI requires at least six DW images and one reference image without
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diffusion weighting to perform tensor decomposition [Basser and Pierpaoli (1998)].

Dεi = λiεi (2.25)

where εi is the eigenvector of its corresponding eigenvalue λi (i = 1, 2, 3). The largest eigenvalue λ1

gives the principal direction of the DT, εi, and the other two eigenvectors span the orthogonal plane

to it. Several rotationally invariant scalar measures have been defined based on this eigensystem

decomposition in the literature, and we will present those that have been referred to later in this

thesis: the mean diffusivity (MD) and the fractional anisotropy (FA) [Basser and Pierpaoli (1996)]:

MD =< λ >=
Trace(D)

3
=
ADCx +ADCy +ADCz

3
=
λ1 + λ2 + λ3

3
(2.26)

FA =

√
3

2

√∑
i (λi− < λ >)

2∑
i λ

2
i

(2.27)

DTI is currently the most widespread framework for characterizing dMRI data and has been used in

a broad range of applications. The principle eigenvector ε1 has been validated to be consistent well

with the directions of the major white matter fibre tracts. Based on this premise, numerous fibre-

tracking algorithms have been developed that rely on the DT model to deliver a reliable estimate

of the WM fibre orientations. The DT model delivers a good depiction of the fibre orientation

in regions where there is only one fiber population, whereas it fails in areas containing multiple

distinct fibre orientations (e.g. crossing and branching fibre tracts) [Wiegell et al. (2000)]. There

are two main reasons for this: (i) The DT model assumes that diffusion is purely Gaussian (i.e. free

diffusion), which is apparently not the case in biological tissues. (ii) the DT model can only have a

single orientation maximum, and is therefore unable to characterize a multiple orientation system.

However in practice, there are many brain regions containing multiple fibre orientations, and many

tracts will be affected by this problem at some point along their path. This problem may have a

considerable impact on the reliability of fibre tractography. Given that the orientations provided by

the tenor model are inadequate in such areas, it is necessary to implement the imaging techniques

that provide higher angular resolution.

2.4.3 High Angular Resolution Diffusion Imaging

Between the years 2000 and 2011, numerous methods have been proposed to map the orientations

of intravoxel incoherent fibres configurations, such as the crossing fibres. Since the main subject of

this thesis does not focus on the HARDI techniques, in this section we only give a brief summary
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Table 2.1: The HARDI techniques. (Abbreviations - DSI: diffusion spectrum imaging;

QBI: q-ball imaging; PAS-MRI: persistant angular structure MRI; DOT: diffusion orientation

transform; DPI: diffusion propagator imaging.)

instead of covering all different approaches. Excellent reviews of the HARDI techniques can be

found in [Seunarine and Alexander (2009); Tournier et al. (2011)].

The HARDI method successfully deals with the issue and produces more reasonable results of

orientation estimation than DTI. These methods, which are different in their acquisition strategies

and reconstruction algorithms, can be broadly categorized into three main groups: those based on

the q-space principle [Assaf and Basser (2005); Jansons and Alexander (2003); Ozarslan (2009);

Tuch (2004); Wedeen et al. (2005); Descoteaux et al. (2011)], those relying on mixture models

[Hosey et al. (2005)], and those established from empirical observations [Tournier et al. (2004)].

Table 2.1 includes HARDI techniques commonly adopted to reconstruct complex fibre orientations.

Typically, there are three q-space sampling strategies in HARDI: (i) sampling the whole 3D q-space

Cartesian grid; (ii) sampling a single shell in the q-space; (iii) sampling multiple shells in the q-

space.

Multiple fibre orientation are usually estimated and visualized using the orientation distribution

function (ODF) or fibre orientation distribution (FOD), depending on the diffusion reconstruction

algorithm. The ODF of diffusion spectrum imaging (DSI), for instance, is defined as the integral

of PDF over the radial dimension [Lin et al. (2003); Wedeen et al. (2005); Yeh et al. (2008)]:

ODF (u) =

∫ ∞
0

P (ru)r2dr ∼
∫ rmax

0

P (ru)r2dr (2.28)

where rmax, the upper limit of the integration, defined as the linear field-of-view of diffusion PDF,

which is equal to the reciprocal of the minimum q-value (qmin), i.e., rmax = q−1
max. ODF measures

the quantity of water molecules diffused along the unit vector, u. Fig. 2.2 illustrates an example

of in vivo DSI of a human brain (see Appendix A in Chapter 2.8 for the imaging parameters).
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Figure 2.2: DSI of a human brain. - The figure originates from [Yeh et al. (2008)]. (a) DSI-

ODF were color-coded according to their orientations (red: superior-inferior; green: medial-

lateral; blue: anterior-posterior). (b) The T1-weighted image showing the corresponding slice

location of (a). (c) DSI at the centrum semiovale. (d) DSI at brain stem.
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Table 2.2: A summary of fibre tracking algorithms.

In Fig. 2.2(c), DSI-ODF resolves the crossing fibers at the centrum semiovale, where has a clear

intersection between the corpus callosum and the corticospinal tract. In Fig. 2.2(d), DSI-ODF

differentiated the orientations of the corticospinal tract and the middle cerebellar peduncle.

2.4.4 Fibre Tracking Techniques

The diffusion reconstruction models provide local orientation information of fibres, the integration

of these information using so-called dMRI fibre tracking or tractography enables us to infer global

information about the WM connections [Mori and van Zijl (2002); Behrens et al. (2007)]. At the

present time, fibre tracking is the only non-invasive tool able to obtain information on the anatom-

ical connectivity in vivo of the brain WM. Fibre tracking is most commonly implemented using the

principal diffusion direction of the diffusion tensor. Many clinical MRI systems now include a fibre

tracking module available for radiologists and medical experts. However, as mentioned previously

in this chapter, an important limitation of the DT model is the Gaussian diffusion assumption,

which implies that there can only be a single fibre population per voxel. At the resolution of DTI

acquisitions, this is an important problem since it is known that many voxels have low anisotropy

index due to non-Gaussian diffusion coming from multiple fibres crossing, branching, fanning or

in a bottleneck. These are locations where we know that the DT model is unreliable. Thus, fibre

tracking algorithms based on the DT can follow false tracts due to DT profiles that are prolate or

can prematurely stop in regions of isotropic tensors. Hence, the existing DT-based tractography
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algorithms have been extended to HARDI-based techniques that better deal with fibre crossings.

Several fibre-tracking techniques based on HARDI data have been developed to infer the connectiv-

ity of human brain structures [Hagmann et al. (2006); Behrens et al. (2007); Hagmann et al. (2007,

2008); Wedeen et al. (2008); Chao et al. (2009); Descoteaux et al. (2009)]. While reviewing each of

those methods is beyond the scope of this thesis, a summary is given in Table 2.2 which includes

the pros and cons of four categories of tracking methods: deterministic, probabilistic, geodesic, and

global optimization algorithms. Detail descriptions of the algorithms can be found in [Ciccarelli

et al. (2008); Johansen-Berg and Behrens (2009); Hagmann et al. (2010); Lazar (2010)].

2.5
Microscopic Diffusion MRI

Recent significant advances in direct measures of tissue microstructure based on dMRI

data are greatly encouraging, and importantly, dMRI is currently the only non-invasive approach

that has the ability to estimate microstructure features, such as cell size, density, and membrane

permeability. These direct measures of tissue characteristics can be utilized as biomarkers to

monitor tissue status. This section gives a summary of microscopic dMRI.

2.5.1 AxCaliber Diffusion MRI

Assaf developed AxCaliber to estimate the diameter distribution of fibre bundles using PGSE dMRI

[Assaf et al. (2008)]. The method employs a model of cylindrical axons to extract microstructure

parameters through fitting dMRI data. The WM axon model, also proposed by Assaf, is a com-

posite of hindered and restricted models (CHARMED) of water diffusion [Assaf et al. (2004)]. The

hindered part is regarded as extra-axonal diffusion modeled by a diffusion tensor, and the restricted

part is considered as intra-axonal diffusion characterized using q-space formalism. The general form

of CHARMED is expressed as

S(q,∆) = fh · Sh(q,∆) + fr · Sr(q,∆) (2.29)

where fh and fr denote the fraction of hindered and restricted compartments (fh + fr = 1); Sh

and Sr are the normalized MR signal contributed from the hindered and restricted compartments.

The hindered compartment assumes that diffusion taking place in the extra-axonal space where

contains numerous neural cells has a 3D Gaussian distribution. Therefore, diffusion is characterized

by a diffusion tensor and, the hindered part of diffusion signal in Eq. 2.29 can be formulated as

Sh(q,∆) = exp(−4π2(∆− 3/δ))qTDq (2.30)
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The restricted part of diffusion signal employes the Fourier relationship between echo signal and

the diffusion probability density function, as described in Eq. 2.23, and therefore

Sr(q,∆) =

∫∫∫
P (R,∆)exp (i2πqR) dR (2.31)

In AxCaliber method, Sr is further decoupled into the axial and transverse signal that correspond to

the diffusion signal parallel and perpendicular to the fibre axis [Assaf et al. (2008)]. The transverse

diffusion signal, as described in the q-space analysis by Callaghan [Callaghan (1993)], is fitted by

the analytical solution to estimate the radius of cylindrical fibres.

Note that the CHARMD model inherently assumes there is no exchange between the extra-

and intra-axonal compartments. The model of diffusion within axons as restricted appears to be

a valid approximation since the residence time of intracellular water has been estimated to be

greater than 500 ms [Quirk et al. (2003)], which is much longer than a typical diffusion time of

50-100 ms typically used for human studies. However, the extracellular residence time is about

100 ms, which means that the water molecules in the extra-axonal space might enter into the axons

during a dMRI experiment. Such effect on the MR signal of the two compartment (i.e. Sh and Sr)

remains future investigations.

The possible limitation of AxCaliber for clinical MRI application is that it is rooted in the

q-space formalism using a PGSE sequence. It means that a prior knowledge about the axon orien-

tation is needed in order to acquire the axial and transverse dMRI signal for the restricted diffusion

compartment. It has been shown that the dMRI signal attenuation pattern may vary significantly

while the applied diffusion gradient is slightly deviated from the direction perpendicular to the fibre

axis [Avram et al. (2004)]. Even though it is possible to estimate fibre orientations by HARDI, it

is still difficult to apply AxCaliber to those axon fibres with more complex configurations, such as

curving or branching fibres.

2.5.2 Multiple Scattering Diffusion Imaging

Multiple scattering diffusion imaging (MSDI), as first introduced in 90’s by Cory [Cory and Gar-

roway (1990)], Callaghan [Callaghan (1993)], and Mitra [Mitra (1995)], is one of the most promising

methods that is feasible to extract microstructural information. More recently, MSDI has been re-

visited theoretically and experimentally by Ozarslan and Basser [Ozarslan and Basser (2007, 2008);

Ozarslan et al. (2009); Ozarslan (2009)], Shemesh [Shemesh et al. (2009a,b)], Komlosh [Komlosh

et al. (2007)], Koch and Finsterbusch [Finsterbusch and Koch (2008); Finsterbusch (2009, 2010);

Koch and Finsterbusch (2008, 2009)]. MSDI employs a generalized PGSE sequence which enables
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Figure 2.3: A double PGSE pulse sequence diagram. - (a) A standard double PGSE

pulse sequence for the MSDI experiments considered. The diffusion mixing time (TM ) is

defined as the beginning of the second and third DW gradients. Theoretically, the pair of DW

gradients (shown in the purple parentheses) can be extended with multiple concatenations

(i.e. multiple scattering). (b) φ and θ are the azimuthal and polar angles respectively. The

orientations of G1 and G2 in (b) are varied for the angular double-PGSE experiment.

to characterize the microscopic anisotropy. Fig. 2.3 illustrates a typical double PGSE pulse se-

quence. MSDI can be employed to detect microscopic anisotropy based on diffusion-diffraction

pattern, which has been shown to be more sensitive to microstructures than the conventional sin-

gle PGSE approach. It has been verified that the q-value required to measure axon diameters

from the diffusion-diffraction patterns is lower using a double PGESE than a single PGSE pulse

sequence. Moreover, an angular double PGSE technique has been shown that microstructures can

be extracted at a low q-value, which considerably increases its potential application on clinical MRI

system in the future.

2.5.3 Temporal Diffusion Spectroscopy

The convectional PGSE methods measure at a relatively long time scale, where diffusing spins

usually experience multiple interactions with the substrate, resulting variations of spatial distance

to the typical cell dimensions. The oscillating gradient spin echo (OGSE) method, in which the

effective diffusion is linked to the oscillating frequency of the applied gradients, has the potential

to characterize the restriction effect from the cellular structures at much shorter diffusion time and

length scales. High frequency gradients are beneficial to distinguish the mechanism responsible for

the ADC measured in restricted systems, as they minimize effective diffusion times. The principle of

temporal diffusion spectroscopy stems from the analysis of spin diffusion in the frequency domain,

as proposed by Stepisnik and Callaghan [Stepisnik (1993); Callaghan and Stepisnik (1995)]. The
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Figure 2.4: An oscillating gradient spin echo sequence diagram. - An example OGSE

pulse sequence with cosine-modulated gradient waveform (highlighted in red) [Parsons et al.

(2003)] used for the temporal diffusion spectroscopy imaging.

relationship between the diffusion signal and the applied oscillating gradients is formulated as

S = S0exp

(
− 1

π

∫ ∞
0

~F (ω) ~D(ω)~F (ω)dω

)
(2.32)

~F (ω) =

∫ ∞
0

[∫ t

0

γ ~G(t′)dt′
]
exp (iωt) dt (2.33)

where D(ω) is the diffusion spectrum and F (ω) is the Fourier transform of the time integral of

gradient. Since the OGSE method enables to selectively probe the cellular geometry over several

length scales, it has the advantage over the conventional PGSE method that is relatively limited

to the time and length scale. It has been suggested in the literature that the OGSE method at a

sufficient oscillating frequencies has the potential to discriminate tissues that are merely different in

cell nuclear sizes [Xu et al. (2009b)]. This additional sensitivity suggests that the temporal diffusion

Spectroscopy technique may be significantly advantageous for characterizing tumors [Colvin et al.

(2008)].

2.5.4 Active Imaging

An active imaging algorithm in dMRI refers to the method that aims to optimize a dMRI protocol

for certain tissue microstructure parameters, such as cell size and density [Alexander (2008)]. As

proposed by Alexander, the active imaging paradigm constitutes four key procedures:
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Modeling - The first stage is to construct an adequate biological tissue model (e.g. CHARMED

model of WM axons) containing the features that may affect the dMRI measurements.

Sampling - The second stage is to determine and optimize the dMRI experimental protocol and

strategy (e.g. gradient sampling scheme and b-value) which can deliver the most information

on the tissue microstructures given the constraints on the capability of MRI system (e.g. the

maximum gradient intensity) and the acceptable scan time.

Fitting - The third stage is to fit the dMRI data, acquired using the imaging parameters optimized

in the second stage, with the tissue modeling created in the first stage to extract the model

parameters of tissue.

Validation - The last stage is to confirm the model parameters with the realistic biological data,

which may come from the histology or other imaging modality (e.g. optical imaging).

Note that the active imaging method, importantly, does not need a prior knowledge about the

fibre orientation for the purpose of fibre diameter mapping [Alexander et al. (2010); Zhang et al.

(2011)]. Hence, it is more practical for actual dMRI of human brains where fibre orientations

are generally unknown. Interestingly, recent studies based on the active imaging method suggests

that the optimal diffusion gradient waveform for microstructures diffusion imaging is rather an

oscillating gradient shape [Drobnjak et al. (2010)], which appears the link to the OGSE technique

that tends to increase the sensitivity to tissue microstructures by reducing the effective diffusion

time (i.e. higher oscillating frequencies).

2.6 Diffusion Functional MRI

Precise localization of neuronal activity has been reported using diffusion functional

MRI (dfMRI) in recent years [Darquié et al. (2001); Le Bihan et al. (2006); Le Bihan (2007); Flint

et al. (2009)], which has been demonstrated to response more directly to the neural activation than

the classical hemodynamic imaging method based on BOLD (Blood-Oxygen Level Dependent) MRI

signal [Ogawa et al. (1990)]. Recently advances in MRI hardware and signal-to-noise performance

of scanners have led to the observation that dMRI may be used to measure functional activation.

The general principle of dfMRI is rooted in the hypothesis that the variation of ADC following

brain activation is originated from the expansion of the polar membrane layer during activation-

induced cell swelling [Le Bihan (2007)]. As BOLD fMRI is an indirect measure of signal changes

due to the blood-oxygen level, there is usually a time delay between neuronal activation and blood

flow. On the contrary, dfMRI, which measures water diffusion changes in early biophysical events
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Figure 2.5: Conceptual biphasic water diffusion model. - The model proposed by Le

Bihan [Le Bihan (2007)] considers that the slow diffusion pool is made of a membrane-bound

layer where water molecules are trapped by the electrostatic forces of the cell membranes

and the associated cytoskeleton. The water molecules in the intra- and the extracellular

compartments forms the fast diffusion pool.

that occur in the activated neuronal cells, seems to be a method directly associated with the

brain activation process. The time resolution and spatial localization of dfMRI appears to be

advantageous. However, owing to the fact that the dMRI contrast comes from signal attenuation,

dfMRI signal typically required more measurements to increase the statistical reliability, especially

higher b-values are preferential to increase the sensitivity.

The principle of dfMRI is explained using a biexponential model by Le Bihan [Le Bihan (2007)].

The biexponential model, also termed two-compartment or biphasic model, ascribes the contribu-

tion of MR signal attenuation to the weighted sum of fast and slow water diffusion pool [Niendorf

et al. (1996); Peled et al. (1999); Clark and Bihan (2000); Maier et al. (2004)]. Assuming that

there is no or slow exchange between the two compartments, the formula is shown as follows:

S(b)

S0
= Ffexp(−bDf ) + Fsexp(−bDs) (2.34)

where Ff +Fs = 1. F and D were the model parameters that represented the volume fraction and

diffusion coefficient associated with the fast and slow diffusion phases. Le Bihan proposed that as

the nature of the cell membrane is structured by the charged proteins, water molecules may be

trapped by those hydration layers [Le Bihan (2007)]. Thus in this model, the slow diffusion pool

refers to a water layer trapped by the electrostatic forces of the protein membranes and associated

cytoskeleton. The polarity of the cell membrane and the cytoskeleton limit the movement of water

molecules in this layer, resulting in a lower diffusion coefficient around cell membranes. For the

remaining water molecules, whether in the intra- or the extracellular compartment, constitutes

the fast diffusion pool. Fig. 2.5 depicts the biphasic model of water diffusion described above.
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This model also explains that water mobility (or ADC) would be reduced through an increase in

the volume proportion of the slow diffusion pool due to the membrane expansion, such as during

activation-induced cell swelling [Le Bihan et al. (2006)] or cell proliferation [Le Bihan (2003)].

2.7 Discussion

This chapter reviews the progression of dMRI from the diffusion physics, PGSE

method, and q-space theory to modern dMRI methodologies. Thanks to the efforts that have

been made by the researchers for many years, dMRI has indeed become a helpful tool for clini-

cal diagnosis and for studying neuroanatomy and brain function. However, knowledge about the

underlying biophysics that governs diffusion signal and relevant quantities remains debatable, as

dMRI techniques delineate tissue features through modeling a macroscopic ensemble-averaged dif-

fusion process. It is difficult to make inference on the characteristics of biological tissues from a

MRI experiment due to the limitation of the MRI resolution. This reflects the need to have a tool

which enables us to investigate the detail mechanism that governs diffusion signal and relevant

quantities, as well as to validate various algorithms (i.e. diffusion reconstruction and fibre-tracking

algorithms) implemented in dMRI.

2.8 Appendix

A. DSI of a human brain. DSI data of a healthy subject was obtained using a 1.5 T GE Signa

EXCITE MRI scanner (GE Healthcare). Three oblique slices were acquired via a spin echo

diffusion EPI pulse sequence using a 3D cartesian grid of 515 q-space sampling points with the

following parameters: matrix size = 64×64; voxel dimension = 3.6×3.6×3.6 mm3; repetition

time (TR) = 3,000 ms; TE = 139.2 ms; δ/∆ = 47.8/56.0 ms. The maximum b and q-values

were 10,000 s/mm2 and 79.5 mm−1 respectively. The scan time was around 26 min.
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3.1 Introduction

3.1.1 Diffusion MRI and Tissue Microstructures - A Scaling Issue

The driving force of diffusion MRI (dMRI) is to monitor microscopic, natural displacements of water

molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are

thus used as a probe that can reveal microscopic details about tissue architecture, either normal

or in a diseased state. One has to keep in mind, however, that the overall signal observed in

dMRI images at a millimetric resolution, results from the integration, on a statistical basis, of

all the microscopic displacement distributions of the water molecules present in this voxel. The

complex diffusion processes that occur in a biological tissue on a voxel scale are often described

with a global, statistical parameter, the Apparent Diffusion Coefficient (ADC) [Le Bihan et al.

(1986)]. This parameterization of the diffusion process by a global ADC is intended to represent

those physical processes that occur at scales smaller than the scales resolved by the method: the

large scale is imposed by technical limitations (e.g. MRI hardware), while the actual ‘theatre’

scale of the biophysical elementary processes is determined by physical phenomena at molecular

scale. The averaging, smoothing effect resulting from this scaling presumes some homogeneity

in the voxel and makes a direct physical interpretation out of the global parameter somewhat

difficult, unless some assumptions can be made. The ADC in the brain is 2 to 10 times smaller

than free water diffusion in an aqueous solution [Le Bihan (2003)]. High viscosity, macromolecular

crowding and restriction effects have been proposed to explain the water diffusion reduction in

the intracellular space [Hazlewood et al. (1991)], and tortuosity effects for water diffusion in the

extracellular space [Nicholson and Phillips (1981); Chen and Nicholson (2000)]. Restricted diffusion

effects, for instance, may be evaluated by changing the diffusion time [Cooper et al. (1974); Latour

et al. (1994)]: the displacements of the molecules become limited when they reach the boundaries

of closed spaces and the diffusion coefficient artificially goes down with longer diffusion times.

Furthermore cell membranes in the brain likely hinder the water diffusion process (‘hindered’

diffusion, as opposed to strictly ‘restricted’ diffusion), even if the membranes are permeable to

water, either passively or through transporters, such as the specific aquaporin channels which

have been found abundant in the brain [Amiry-Moghaddam and Ottersen (2003)]. Clearly water

diffusion in tissues, especially the brain, is not free and cannot be modeled by a single Gaussian

distribution [Cohen and Assaf (2002)]. Moreover, the ADC depends not only on the actual diffusion

coefficients of the water molecular populations present in the voxel, but also on experimental,
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technical parameters, such as the voxel size, the diffusion time or the degree of sensitization of the

images to diffusion (so-called b-value [Le Bihan et al. (1986)]).

Although the idea to infer tissue microstructure details from the dMRI signal alone is ill-

posed, except in very specific and simple situations, the relationship between the ADC and specific

tissue microscopic features is currently the object of intensive research. Some groups have tried

to clarify how tissue characteristics affect the dMRI signal [Beaulieu (2002); Kroenke and Neil

(2004); Schwarcz et al. (2004); Miller et al. (2007); Peled (2007); Wheeler-Kingshott and Cercignani

(2009)]. Theoretical models have been proposed [Stanisz et al. (1997)], for instance based on a

combination of extra-axonal water undergoing hindered diffusion and intra-axonal water undergoing

restricted diffusion [Assaf et al. (2004)]. Several groups have also underlined the important role

of dynamic parameters, such as membrane permeability and water exchange [Chin et al. (2004);

Kärger et al. (1988); Novikov et al. (1998)], and geometrical features, such as cell size distribution

or axons/dendrite directional distribution [Novikov et al. (1998); van der Weerd et al. (2002);

Yablonskiy et al. (2003); Chin et al. (2004)]. Noticeably, however, all those distinct models require

strong assumptions to be made about the tissue structure, which may not always match known or

unknown biological reality.

3.1.2 Diffusion MRI Monte Carlo Simulations

To infer the relationship between tissue microstructures and dMRI signal, another approach is to

rely on Monte Carlo (MC) simulations which have been shown to be a powerful and flexible tool

to mimic diffusion processes in a wide class of systems, especially when analytical solutions cannot

be obtained, due to the complexity of the system [Lipinski (1990); Ford et al. (1998); Peled (2007);

Alexander (2008); Fieremans et al. (2008b); Balls and Frank (2009); Hall and Alexander (2009);

Harkins et al. (2009); Imae et al. (2009); Koch and Finsterbusch (2009); Alexander et al. (2010);

Budde and Frank (2010); Landman et al. (2010); Nilsson et al. (2010)]. Analytical approaches

predicting the dMRI signal using the Bloch-Torrey equation, for instance [Barzykin (1998)], must

rely on oversimplified biological tissue model and simple MRI pulse sequence (e.g. rectangular

diffusion gradient waveform). However, in the realistic situation the tissue geometry can be very

complicated so that an adequate analytical description does not exist; meanwhile the difficulty

in deriving the solution to the synthetic dMRI signal may increase following the complexities of

MR pulse sequences and gradient shapes. The advantage of the MC approach is its ability to

track the dynamic events over space and time. It provides opportunities to investigate not only

the Brownian motion in an arbitrary environment, but also any models of interactions between
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spins and membranes. Hence, synthetic dMRI data generated using the MC approach can be

applied to study biological properties (e.g. cell size, density, membrane permeability, etc.), as well

as basic diffusion mechanisms in different compartments (e.g. presence of attractors, local viscosity,

membrane interactions, etc.). Specifically, it can be adapted to examine mechanistic hypotheses

for various dynamic scenarios and tissue models, such as acute ischemia or neuronal activation

and cell swelling, cancer and cell proliferation, ADC and axonal fibre anisotropy in complex fibre

bundles or cortex [Le Bihan (2003)]. Note that, importantly, the intrinsic challenge of the dMRI

MC approach is that it requires sufficient samples in order to ensure that the stability and reliability

of the simulation results. The computation will become more intensive when the system model is

more complicated or realistic.

3.1.3 Modeling Biological Tissues

In principle, the MC simulation approach has the potential to mimic any tissue with great details, to

account for different kinds of elementary diffusion processes and to derive the corresponding dMRI

signal, providing the necessary computing power is available. As the geometry and organization

of biological microstructures are extremely complicated at the cellular level (e.g. gray matter in

the CNS tissues), the difficulty turns into how to represent tissue structures in the MC simulation

environment. Various geometric models have been proposed to simulate tissue structures under

different physiological conditions: Hall and Alexander optimized the parameters for the dMRI MC

simulations in packed and swelling fibre bundles [Hall and Alexander (2009)]. Landman et al. de-

veloped a mesh-based axon model for diffusion simulations to study the impact of injured axonal

fibres [Landman et al. (2010)]. Budde and Frank developed a neurite beading model to validate the

importance of cell membrane morphology on ADC [Budde and Frank (2010)]. The MC simulations

described above utilized cylinders to mimic WM fibre bundles, while it is also interesting to inves-

tigate the behavior of water diffusion in cerebral cortex and deep brain nuclei, as evidence has been

shown that dMRI has the subtle sensitivity to the variation of tissue cytoarchitecture [Flint et al.

(2009)]. Lipinski carried out the first MC simulation in gray matter in a simplified 2D environment

with tissue geometries created by means of digital images captured from histological preparations

[Lipinski (1990)]. Noticeably, for technical reasons linked to computational complexity most MC

simulations have been performed in 2D, although 3D simulations would be more realistic to the

biological systems. Balls et al. developed an efficient 3D simulation system that has capability

of performing large-scale simulations on water diffusion in complicated microstructures and tissue

physiology, but only to simulate conventional PGSE dMRI experiments [Balls and Frank (2009)].
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3.1.4 The Ultimate Goal

In this chapter, we introduce a new MC simulation framework, Diffusion Microscopist Simulator

(DMS), which has the ability to generate 3D tissue models of various shapes and properties, as well

as to synthesize diffusion MRI signals for a large variety of MRI methods, pulse sequences design

and parameters. DMS aims at (i) to bridging the gap between elementary diffusion processes

occurring at a micrometer scale and the resulting diffusion signal measured at millimeter scale,

providing better insights into the features observed in dMRI (e.g. variation of ADC and diffusion

anisotropy with cell size distribution), and (ii) offering ground-truth information for optimization

and validation of dMRI acquisition schemes for different applications (e.g. fibre-tracking algorithm,

diffusion local modeling, and microscopic dMRI).

3.2
Programming Framework

DMS was developed in C++ using an object-oriented design, and each algorithm had

been carefully profiled and optimized to achieve fast computations. Consequently, it naturally

outperforms the MC implementation that used Java, Python, or Matlab. DMS supports multi-

threading computations in order to perform large-scale simulations on water diffusion in complex

environment simultaneously using high temporal and spatial resolution. Works are undergoing to

combine with the Open Message Passing Interface library (Open MPI, http://www.open-mpi.org)

, which allows distributing the computation on a grid of computers (i.e. multi-processing) using

the MPI standard, to reach high complexity and performance simulations.

Fig. 3.1 illustrates the architectural blueprint of DMS, which constitutes two main parts: (i)

a random walk Monte Carlo simulator capable of simulating the diffusion of water molecules in

an arbitrary simulation environment; and (ii) an MR image synthesizer dedicated to create DW

images among various MR pulse sequences. The concept for the principle components shown in

Fig. 3.1 is described in the later sections. Fig. 3.2 illustrates the graphical user interface (GUI)

programmed using Python (http://www.python.org) and Qt (http://qt.nokia.com) for DMS to

facilitate its usage. The first generation of DMS will be available through a dedicated BrainVISA

toolbox made to the community that will be downloadable at http://brainvisa.info.

3.3
Monte Carlo Simulator

This section introduces the main features of DMS MC simulator, as show in the lower

part of Fig. 3.1.
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Figure 3.1: DMS: Unified modeling language (UML) diagram. - The UML diagram

describes the system’s framework by showing the attributes and relationships among classes.

An arrow starting with a diamond represents that a class has a pointer to the objective

class. The MR Image class, for example, needs to include one NMR sequence, which contains

four pulse sequences corresponding to the RF, slice selection, phase encoding, and frequency

encoding sequences while each of them may have several pulses (as denoted by a “*”). An

arrow without a diamond indicates that the class is inherited from an objective class.

3.3.1 Scene Modeler

This class contains the essential parameters including the dimension of the spatial space, the size

of spatial subvolumes (see Chapter 3.3.4), the temporal resolution (i.e. the simulation time step,

ts), the number of iteration (NI), and the global diffusion motion model in the entire space. When

the scene modeler is generated, it allows users to add cell membranes and diffusing particles into

the simulation space. In addition, it contains the functions for users to visualize the 3D rendering

results of dynamic cell membranes, particles and their motion trajectories.

3.3.2 Cell Membrane

Global Membrane Model

This class contains several features in order to capture the characteristics of neuronal cells. To

model various cell types with heterogeneous shapes and sizes, a mesh factory was developed to
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Figure 3.2: DMS: Graphical user interface. - A snapshot of the DMS GUI, which is

comprised of a control panel on the left and a visualization window on the right.

generate meshes using triangles as surface elements. Mesh factory is able to produce a network

of simple geometries such as ellipsoids, cylinders, and star-shape meshes in order to mimic neural

architecture including neurons, glial cells, axons, and astrocytes; meanwhile, it is also feasible

to construct bundles of fibres with arbitrary configurations, such as crossing, kissing, branching,

and bending fibres. Fig. 3.3 & 3.4 are two examples of axon models showing that DMS has the

capacity to simulate different fibre structures. Furthermore, since we incorporated a cell-membrane

mesh with a dynamic morphological evolution function, each vertex can move along an averaged

orientation of the normal vectors given by the adjacent polygons. The movement of the vertex

follows a predefined function, for example, a sine function in our current implementation. Thus it is

able to simulate sequential changes of tissue shapes including expansion, shrinkage, and deformation

to simulate different tissue status. Fig. 3.5 shows an example of an environment mimicking a neural

medium simulated via DMS. Movie animations of dynamic cell swelling in various views of this

figure can be found in Appendix A (Section 3.8).

The basic characteristics of cell-membrane layers including the permeability and the types of

particle-to-membrane interaction are fully adjustable. For the current DMS, the membrane perme-

ability is modeled using the transmission probability, and the particle-to-membrane interaction is

modeled by total reflection rule which means that the angle of incidence and reflection was identical

(i.e. elastic reflection) [Balls and Frank (2009); Hall and Alexander (2009); Landman et al. (2010)].
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Figure 3.3: DMS: Modeling beading axons. - (a) This figure originates from Budde and

Frank’s article [Budde and Frank (2010)], showing the extensive beading of axonal membranes.

(b) The geometric model of compact beading axons created by DMS, which contains two

networks of axons (colored in blue and orange). (c) The 3D view of the beading axon model.

Figure 3.4: DMS: Modeling bending axons. - (a) This figure originates from the website

of The University of Western Australia (http://www.lab.anhb.uwa.edu.au/mb140/), showing

a longitudinal section of the peripheral nerve fibres stained by H&E (hematoxylin and eosin).

(b) The geometric model of bending fibres shown in (a) modeled using DMS. (c) The 3D view

of the bending axon model.

Individual Membrane Model

Models describing specific cell membrane properties can be defined to the cell-membrane layers.

To simulate the hypothesis of the biphasic water diffusion model [Le Bihan (2007)], for instance,

we have implemented an efficient method for a particle to discover the closest cell-membrane layer

from it surroundings at each simulation iteration. While a diffusing particle (see Chapter 3.3.3

below) moves inside any of the polar membrane layer, its diffusion coefficient D is updated to that

of the associated cell membrane.
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Figure 3.5: DMS: Modeling a realistic neural medium. - The figure in the middle is

the result of a micrograph obtained from brain biopsy, showing an ‘anaplastic astrocytoma’

where neoplastic glial cells are dyed using anti-GFAP immunostain (blue). We utilized DMS to

simulate this complex neural environment in 3D. Moreover, we incorporated each cell (colored

in red) with a dynamic vertex evolution function to simulate cell swelling, thus the cell sizes

were smallest at the beginning of MC simulation (t = 0 ms) and largest at the end (t =

100 ms). The diffusing particles and their motion trajectories were represented by dark blue

spheres and light blue curves. Note that for the purpose of visualization, the extracellular

space was exaggerated in this simulation.

3.3.3 Diffusing Particle

We modeled diffusing particles as random walkers. DMS allows for controlling the initial distri-

bution of particles, which can be (i) regulated by the intra- (fi) and extra-cellular (fe = 1 − fi)

fractions determined by users, (ii) randomly allocated in the simulation scene (i.e. fi is propor-

tional to the total cellular volume), or (iii) located at a specific region or location defined by users.

The particle positioning algorithm in DMS is applicable to any mesh-based geometry. Fig. 3.6 is

an example of different positioning methods. The root-mean-squared (RMS) displacement (r) of

a particle’s movement is scaled to its associated compartmental D and ts based on the Einstein

relation (see Eq. (2.10) in Chapter 2.2 for reference):

r =
√

6Dts (3.1)
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Figure 3.6: DMS: Initialization of particles’ positions. - DMS allows to control the ini-

tial position of diffusing particles (colored in blue) respecting to the cell membranes (colored in

pink). This figure shows a transverse view of the simulation space where cells membranes were

created using cylinders and particles were placed using (a) random distribution (b) intracelluar

initialization (c) extracelluar initialization.

The diffusing orientation is randomly chosen from a pre-allocated lookup table constructed with

uniformly distributed orientations using electrostatic repulsion algorithm [Jones et al. (1999)]. The

default orientation scheme consists of 4,000 independent directions, and the symmetric orientations

are included to avoid orientation inclination (i.e. a total of 8,000 orientations). For each simulation

step, the spatial positions of particles are updated subject to a series of possible interactions with

cell membranes (Chapter 3.3.2): (i) In accordance with the global membrane model, the particle

may penetrate through the interacting membrane respecting the membrane’s permeability, or move

following a certain particle-to-membrane interaction method. (ii) The diffusivity is updated based

on the individual membrane model. The model of biphasic diffusion pool, for instance, will change

the particle’s diffusivity into the local compartmental D [Le Bihan (2007)].

3.3.4 Spatial Subvolume

For each simulation run, DMS employed the computer memory to store the 3D lookup tables

that partitioned the global simulation space into a fine grid with a size of Nx × Ny × Nz, so

that each local subvolume contains a subset of diffusing particles, cell membranes, and triangle

meshes. Therefore, knowing a particle’s position (~R), the time required searching and processing

any potential interaction can be dramatically decreased via the direct assess to the objective cell

membranes and polygons simply in the local spatial subvolume rather than the entire simulation

space. Fig. 3.7 illustrates the concept of the spatial subvolume.
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Figure 3.7: DMS: Spatial subvolumes. - To show the idea of spatial subvolume, a complex

geometry created by DMS is placed inside a simulation space partitioned into Nx ×Ny ×Nz
= (a) 1× 1× 1 (b) 3× 3× 3 (c) 5× 5× 5 subvolumes. When the size of partition increases,

each subvolume contains a smaller number of mesh elements. The search for interactions

between diffusing particles and mesh polygons can then be restricted to individual subvolumes,

systematically increasing computing efficiency.

3.4 MR Image Synthesizer

This section introduces the main features of DMS MR image synthesizer, as show in

the upper part of Fig. 3.1.

3.4.1 Spin

Global Spin System

The outputs of the Monte Carlo simulator are the particles’ motion information, which are imported

to the MR image synthesizer and endowed with spins, each of them storing its phase state calculated

using a discrete form of Eq. (2.17) as below

φ = γ

NTE∑
i=0

(−1)NπRF (ti) ~G(ti) · ~R(ti)ts (3.2)

In Eq. (3.2), NTE is the iteration count at TE (i.e. NTE = TE/ts). For a given time point ti, where

ti = i×ts, NπRF (ti) is the accumulated count of refocusing RF pulses; ~G(ti) is the gradient vector

derived from the NMR sequence (see Chapter 3.4.2) considering the waveforms of all gradients

(i.e. both DW and MR spatial encoding gradients) applied along each principle gradient axis; and

~R(ti) is obtained from the particle’s diffusion trajectory.

Individual Spin System

The particles’ motion information provides additional statistics relating to the cell membranes. For

the biphasic diffusion model [Le Bihan (2007)], we can segregate the global particles into fast and
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Table 3.1: DMS: NMR pulse sequences. (Abbreviations: G, gradient magnitude; SR,

gradient slew rate; TM , mixing time; NGP , number of DW gradient pairs; T, period; f (=1/T),

frequency of oscillation; NGO, number of gradient oscillations)

slow diffusing particles according to their fractions of residence time within the polar membrane

layer (i.e. the slow diffusion pool). Then, the spin phase for the two groups of particles can be

calculated individually using Eq. (3.2). This can decouple the dMRI signal contributions from the

fast and slow diffusion pools, and thus may help to investigate the impact of the polar membrane

layer.

3.4.2 NMR Sequence

DMS has potential in modeling a variety of MR pulse sequences by regulating the timings of

RF and gradient pulses. Table 3.1 summarizes the pulse sequences and adjustable parameters

available in DMS. Gradient shapes including rectangle, trapezoid, and oscillating waves have been

implemented, and can be extended to fit any design. Imaging gradients, e.g. slice selection, phase

encoding, and readout gradients, are selectable to be included in a NMR sequence. The minimum

echo time (TEmin) is automatically calculated according to the user-specified pulse sequence and

related parameters. The diffusion-sensitizing factor, i.e. b-value, is given by the discrete form of

Eq. (2.15) as

bn = ts

NTE∑
i=0

kn(ti)k
T
n (ti) (3.3)

In Eq. (3.3), bn represents the b-value for the nth DW gradient orientation, and kn is formulated

according to the Eq. (2.13) as following

kn(ti) = γ

t=ti∑
t=0

~G(t)ts (3.4)
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Figure 3.8: DMS: Workflow. - DMS has two main stages to generate synthetic dMRI

data, (left) the random walk MC simulation of water diffusion and (right) the synthesis of

dMRI dataset.

3.4.3 MR Image

This class is created to integrate spins’ phases and to synthesize DW MR images. The noise model,

e.g. complex Gaussian noise with zero mean and standard deviation specified by users, can be added

to the synthesis data at both the real and imaginary channels. DW signal of any MR voxel, S(v),

is computed by performing the numerical integration using the following equation:

S(v) = S0(v)

∣∣∣∣∣∣
Np,p⊂v∑
∀p,p⊂v

ejφp + η

∣∣∣∣∣∣ (3.5)

In Eq. 3.5, S0(v) is the signal intensity without diffusion-weighting for the voxel v; φp is the

accumulated phase of the pth particle calculated using Eq. (3.2), and Np,p⊂v is the amount of

particles located inside v at TE; η denotes the complex noise term.

3.5 Results and Discussion

3.5.1 DMS Workflow

Fig. 3.8 illustrates the summary of DMS workflow. DMS has integrated several features to keep

the generality, nevertheless users simply need to execute two command-lines to run a complete
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Figure 3.9: DMS: Computing performance (I). - The MC simulation scene prepared

for assessing the function of spatial subvolumes. (a) The global view of the simulation envi-

ronment, where a network of spheres were built on a cubic lattice with a size of 15×15×15.

(b) A zoomed region showing the renderings of cells (the transparent red spheres), particles

(small blues spheres) and trajectories (light blue curves).

simulation, i.e. the MC simulation and the MR image synthesis. In the first stage, users need

to define the simulation parameters including the dimension of simulation space, Np, NI , ts, D,

Nx × Ny × Nz, cell membranes’ properties, and particles’ initial positions, while in the second

stage, users need to determine pulse sequence to dMRI data synthesis. Furthermore, the DMS GUI

shown in Fig. 3.2 is user friendly which removes the potential barrier associated with command-line

programs.

3.5.2 Computing Performance (I)

To evaluate the influence of spatial subvolume on computing time, we performed MC simulations

using different sizes of volume partitions. We placed a network of cells containing 15×15×15 mesh-

based spheres with a radius of 5 µm in a simulation space with a dimension of 150× 150× 150 µm.

The space was then partitioned by a grid volume with the size ranging 10×10×10 to 50×50×50.

For each grid size, MC simulations were repeated ten times using Np = 104, NI = 103, ts = 10

µs, and D = 0.001 mm2/s. All diffusing particles were initialized inside the restricted spheres

(i.e. intracellular diffusion) to ensure more particle-to-membrane interactions. The computer was

equipped with a 2.66 GHz Intel Core 2 Duo processor and a 4 GB 1067 MHz DDR3 memory. For

simplicity, the experiments were performed using a single thread. The results summarized in Table

3.2 showed that increasing the number of partitions effectively reduced the simulation time.
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Table 3.2: DMS: Improvement of computing efficiency by the spatial subvolume

method. The elapsed times were (mean ± standard deviation) recorded for the MC simula-

tions using different dimensions of spatial subvolumes.

Although we did not try to optimize the dimension of spatial volume for DMS MC simulations,

we expect that the selection of the grid size relies on the resolution of the mesh element, the RMS

displacement of the diffusing particle, and the available computer’s memory. According to our

experiences, a grid size between 50× 50× 50 and 100× 100× 100 can produce a more reasonable

gain in time.

3.5.3 Computing Performance (II)

To evaluate the computing efficiency of DMS for a complete dMRI simulation, we performed a

basic dMRI simulation experiment on WM fibres using the same computer system in the previous

section (Chapter 3.5.2). We constructed a hexagonal array of 400 impermeable fibres with the

diameter, center spacing, and length of 10, 10.1, and 250 µm, respectively. Each fibre was formed

using a mesh-based cylinder with 40 triangles. The MC simulation parameters were: Np = 104,

NI = 7,000, ts = 10 µs, and D = 0.002 mm2/s. For the dMRI signal synthesis, we used a single

PGSE sequence with the following parameters: G = 40 mT/m, SR = 200 T/m/s, δ/∆/TE =

31.7/37.7/70 ms, b-value = 2,600 s/mm2, and a uniform DW gradient scheme of 100 orientations.

The experiments were repeated ten times. The average time requirements were 396.7 ± 5.5 and

108.8 ± 2.2 seconds for the MC simulations and MR image synthesis, respectively. Accordingly, we

conclude that DMS is able to complete a simulation within 10 minutes with a system complexity

of Np × NI ∼ 107, which can be already sufficient to generate a reliable DW dataset for basic

tissue configurations [Hall and Alexander (2009)]. However, it is still important to note that a high

performance computing system (e.g. a workstation or computer clusters) is required for simulations

at larger scales (i.e. finer resolution of tissue architecture, higher temporal resolution, larger amount

of diffusing particles, and more complicated particle-to-membrane interaction models).

3.5.4 Data Management

DMS separates the Monte Carlo simulation and MR image synthesis into two steps: (i) the MC

simulation stage processes particles’ motion and their interactions with tissue model; and (ii) the
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Figure 3.10: DMS: Computing performance (II). - The MC simulation scene prepared

for assessing the computing time of DMS. (a) The transection view of the simulation environ-

ment, where a hexagonal network of cylinders were built. (b) A sagittal section of the fibres

showing the renderings of fibres (the transparent red cylinders), particles (light blues spheres)

and trajectories (purple curves).

MR image synthesis stage calculates phase information, which ‘converts’ diffusing particles into

spins. Since the latter requires particles’ motion trajectories for computing spins’ phase evolution,

the trajectories are stored on the hard drive at the end of the former stage. Although recording

all particles’ trajectories takes a considerable amount of disk space (usually tens to hundreds

gigabytes, depending on Np and NI), it can be beneficial when the purpose is to synthesize many

DW datasets with various imaging pulse sequences and acquisition schemes. In this case, it may

be even inappropriate to repeat MC simulations in order to avoid variations. For example, if one

is interested in studying the impact of the oscillation frequency in an OGSE sequence, DMS loads

particles’ trajectories once from the hard drive, from which the spin phases can be obtained with

a variety of frequencies using Eq. (3.2).

The other challenge of saving the particles’ trajectories is that the system memory may not be

sufficient to perform a large-scale simulation using large numbers of particles (Np) and iterations

(NI) at once. In addition, the mesh-based tissue geometries may occupy a great portion of memory

when the spatial subvolumes are built at a fine resolution. To address this problem, DMS utilizes a

mechanism that divides the process of Monte Carlo simulations into several sessions. Each session

contains a subset of particles that does not exceed the memory limit of the computer system.

The consequence drawback of this procedure is that it takes time to get access to the hard disk,

nevertheless, it can effectively enables the DMS software to run basic dMRI MC simulations on a

computer with limited system memory.
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3.6 Summary

Diffusion MRI MC simulations have already been adopted to address several questions

in the community. Many elaborate simulation tools have been proposed to generate synthetic

dMRI dataset using MC simulation approach, however, they are usually designed for a particular

research topic. In this chapter, we describe the structure and the main components of DMS, which is

developed without prior intention to certain topics in dMRI. We believe that the generality of DMS

will enable the community to perform various dMRI simulation experiments and to address different

issues. To our understanding, DMS is the first integrated MC simulation software that possesses

the capability of performing simulations of dMRI using various tissue characteristics and NMR

pulse sequences. DMS is flexible to make extensions, and the current version is already applicable

to different topics in diffusion MRI, such as tissue modeling, diffusion physics, diffusion local

modeling, fibre tracking, diffusion pulse sequence optimization, and post-processing techniques. In

the following chapters, we will first use DMS to run basic experiments to examine its validity and

performance (Chapter 4), and then, we will apply DMS to study more specific questions (Chapter

5 & 6).
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3.8 Appendix

A. Supplementary data Supplementary data associated with this chapter can be found in the

online version.
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4.1 Multiple Scattering Diffusion Imaging

We used DMS to simulate single PGSE dMRI experiments on virtual WM fibre bundles

as well as multiple scattering diffusion imaging (MSDI) experiments using a double PGSE sequence.

The purpose was to demonstrate that DMS can produce the comparative simulation results with

those well documented in the literature to validate the performance of DMS.

4.1.1 DMS Experimental Design

We employed DMS to create a simulation space (460×400×1,000 µm3), where a bundle of straight

parallel impermeable fibres with a diameter and length of 19 and 1,000 µm were placed on a 24×24

hexagonal lattice using a center spacing of 19.1 µm. The WM fibers were modeled using cylinders

built by meshes using 40 polygons per cylinder. The size of the spatial subvolume (Nx×Ny×Nz)

was 160×160×20. We performed random walk MC simulations using Np = 5×105, NI = 105, and

ts = 5 µs. The compartmental D of 2× 10−3 mm2/s was assumed to be identical in the intra- and

extra-cellular spaces. Synthetic dMRI datasets were then collected using a single (Fig. 2.1) and a

variant of double PGSE sequence with δ = 2 ms, ∆ = ∆1 = ∆2 = 200 ms, and TM = 0 ms for

the double PGSE sequence illustrated in Fig. 4.1(b) [Shemesh et al. (2009a)]. A range of G (slew

rate (SR) = 5,000 T/m/s) from 0 to 1,200 mT/m with a 10 mT/m increment were applied for

the single PGSE, and G1 = G2 from 0 to 600 mT/m with a 5 mT/m increment were used for the

double PGSE. The DW gradient was applied in a direction perpendicular to the fibre axis. Note

that this MSDI experiment reflected the case of a preclinical MR system.

We also used the same MC simulation data to investigate the influence of Np on the dMRI

signal synthesis. Simulated data was generated using Np varying from 105 to 5×105 for the single

PGSE sequence with the same parameters described above.

4.1.2 Results

Figs. 4.2(a-b) illustrated the organization and the 3D rendering of the MC simulation, and

Fig. 4.2(c) showed the results of DW signal attenuation obtained from the single and double

PGSE measurements. For comparison, the normalized signal decay was plotted against 2q for the

double PGSE. The first diffusion-diffraction trough was observed at a q-value of 655.7 cm−1 for

both sequences, corresponding to an estimated fibre diameter of 18.6 (= 1.22×104 / 655.7) µm

based on Callaghan theory [Callaghan (1993)]. Fig. 4.3 showed that the minimum dMRI signal

(i.e. the diffraction peak) increased almost an order of magnitude (from 10−3 to 10−2) while Np

was decreased from 5×105 to 105.
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Figure 4.1: The double PGSE pulse sequence and its variant. - (a) The standard

double PGSE. (b) The d-PGSE variant considered in the MSDI simulation experiments. Note

that the G1 and G2 were superposed, resulting the mixing time effectively 0.

Figure 4.2: Diffusion-diffraction patterns obtained from single and double PGSE

experiments. - (a) The transverse view of the hexagonal network of mesh-based cylindrical

fibres, which had a diameter of 19 µm. (b) A snapshot of the MC simulation scene illustrating

the zoomed area within the green square in (a), where the dark blue spheres and light blue

curves are the diffusing particles and their corresponding diffusion trajectories, respectively.

(c) The diffraction trough occurred at q = 655.7 cm−1, giving an estimated pore size (i.e. fibre

diameter) of 18.6 µm. The result was closed to the actual diameter of 19 µm used in the MC

simulations.
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Figure 4.3: Effect of particle count on the synthetic dMRI signal. - While the

number of particles (Np) decreased, the diffusion-diffraction trough became less obvious.

4.1.3 Discussion

MSDI is a generalized PGSE technique that has the capacity to explore compartment anisotropy,

pore size and shape at microscopic level via its sensitivity to small compartmental dimension

[Ozarslan and Basser (2008); Shemesh et al. (2010a,b)]. Microstructural information can be es-

timated from the ‘diffraction’ pattern of DW signal attenuation [Ozarslan and Basser (2007);

Shemesh et al. (2009b, 2010b)]. Ozarslan et al. [Ozarslan and Basser (2008)] and Shemesh et al.

[Shemesh et al. (2010a,b)] performed MSDI experiments using a double-pulsed-field-gradient se-

quence to explore compartment anisotropy, pore size and shape at microscopic level. Our MSDI

simulation results using a single PGSE sequence matched well to the theory proposed by Callaghan

[Callaghan (1993)], and the results using a double PGSE sequence were consistent with those shown

by Shemesh et al. [Shemesh et al. (2009a)]. These results support the validity of DMS.

As suggested by the results shown in Fig. 4.3, an adequate number of particles is necessary for

high q- or b-value dMRI experiments, which is consistent with the conclusion in [Balls and Frank

(2009); Hall and Alexander (2009)]. Furthermore, it is also understandable that the impact of Np

and NI could be more evident following more complicated tissue configurations and models. In

such cases, the simulation system has to be able to perform large-scale simulations using parallel

computing technologies in order to generate reliable synthetic data within an acceptable simulation

time. According to the results in this section as well as those presented by [Hall and Alexander

(2009)], we will use an adequate combination of Np (≥ 105) and NI (≥ 103) to produce a reasonable

simulation complexity (i.e. Np × NI) with a minimum order of 108 in the following benchmark

experiments.
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Figure 4.4: DMS simulation scene for the OGSE experiments. - (a) The transverse

view of the cubic network of cylindrical fibres with a diameter of 1.96 µm. (b) The renderings

of the MC simulation scene illustrating the zoomed area within the green square in (a).

4.2
Temporal Diffusion Spectroscopy

In this section, we demonstrated that DMS is able to simulate different kinds of OGSE

sequences for dMRI signal synthesis. This will make DMS a helpful tool to simulate temporal dif-

fusion spectroscopy experiments. Here we compared the results of diffusion echo signal attenuation

to the data demonstrated by Xu [Xu et al. (2009a)].

4.2.1 DMS Experimental Design

We followed the simulation proposed by Xu et al. [Xu et al. (2009a)] and extended it using different

oscillation waveforms and frequencies. We generated a simulation space (50×50×200 µm3) where

straight parallel cylinders with 200 µm in length were placed on a 25×25 cubic lattice with the

spacing of 2.1 µm to simulate a bundle of axons. Impermeable axonal membranes with a diameter of

1.96 µm similar to the size of human brain were built using meshes of 40 polygons per axon. Fig. 4.4

illustrated the MC simulation environment for this section. The size of the spatial subvolume

(Nx×Ny×Nz) was 50×50×50. We performed large-scale random walk MC simulations using Np

= 106, NI = 6×104, and ts = 1 µs giving a RMS distance of 0.1 µm. The selection of NI and

ts produced a simulation interval of 60 ms, which was considered prior to the stage of MRI signal

synthesis by taking account of the typical TE used in the realistic dMRI experiments. (Note

that this strategy to determine NI and ts was also applied to the other benchmark experiments.)

The compartmental D of 2 × 10−3 mm2/s was assumed to be identical in the intra- and extra-

cellular space. Synthetic dMRI datasets were then collected using cosine- (Fig. 4.5), sine- (Fig. 4.6),

and double-sine-modulated OGSE diffusion sequences (Fig. 4.7) [Does et al. (2003)] with a fixed

waveform duration of 20 ms, which resulted in a TE of 50.5 ms. For each gradient waveform, seven
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oscillating frequencies (f = 0.1/0.2/0.4/0.8/1.2/1.6/2.0 kHz) were used to study the frequency

dependency, giving a range of effective diffusion times (∆e) from 37.5 to 0.125 ms. For each f , the

transverse dMRI signal was calculated at 11 b-values ranging from 0 to 500 s/mm2 obtained by

varying the gradient amplitude G that was relevant to the gradient characteristics of the preclinical

MRI systems.

4.2.2 Results

In Figs. 4.5-4.7, the left column illustrated the profile of diffusion gradient at an oscillating frequency

of 0.2 kHz, and the right column showed the dMRI signal attenuation and its dependence on the

waveform and frequency. For each waveform, larger signal decay was observed at higher frequencies

of diffusion gradients, which implied that ADC was higher for a shorter ∆e. The results suggested

that a higher f was more sensitive to the fast diffusion compartment. These results were consistent

with those shown by Does et al. [Does et al. (2003)] and Xu et al. [Xu et al. (2009a)].

4.2.3 Discussion

The temporal diffusion spectroscopy enables investigation on water diffusion behavior at various

diffusion time scales (i.e. the temporal resolution) via the implementation of an OGSE sequence, by

which the sensitivity to dMRI measurements to tissue microstructure can be increased [Stepisnik

(1993)]. Xu et al. [Xu et al. (2009a)] has showed its potential to accurately provide the character-

istics of the tissue cytoarchitecture (e.g. intracellular structures) and obtain structural parameters

of the tissue sample, while Dose et al. has demonstrated the feasibility of ex vivo experiments. Our

DMS experiments showed the coherent results to their studies, and thus DMS may apply to further

OGSE simulations.

4.3 Tissue Characteristics and Models

We used DMS to perform large-scale simulations to study the effect of cell swelling

and two-pool diffusion model [Le Bihan (2007)]. The synthetic dMRI data was analyzed using the

biexponential model as well as the diffusion tensor (i.e. monoexponential) method to estimate the

ADC.

4.3.1 DMS Experimental Design

We prepared ten simulation spaces with the same dimension of 100×100×100 µm3, where each

of them contained a hexagonal network of spherical cells with a total number of 9,200. For each
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Figure 4.5: DW signal decay of a cosine-modulated OGSE sequence. - (Left) The

cosine OGSE at an oscillating frequency (f) of 0.2 kHz. (Right) Plot of DW signal attenuation

against b-value at various f .

Figure 4.6: DW signal decay of a sine-modulated OGSE sequence. - (Left) The

sine OGSE at an oscillating frequency (f) of 0.2 kHz. (Right) Plot of DW signal attenuation

against b-value at various f .

Figure 4.7: DW signal decay of a double-sine-modulated OGSE sequence. - (Left)

The double-sine OGSE at an oscillating frequency (f) of 0.2 kHz. (Right) Plot of DW signal

attenuation against b-value at various f .
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Figure 4.8: DMS simulation of water diffusion in cells. - (a) A global view of the

simulation space which contains a hexagonal network of cells modeled by spheres (R = 2.58

µm). (b) A transverse section of (a) illustrating the arrangement of the cells (c) A zoomed

region of (b) showing the rendering of cells (colored in pink), diffusing particles (small spheres

in deep blue) and their motion trajectories (curves in light blue).

simulation, cells had a specific radius (R) ranging from 2.40 to 2.58 µm and a fixed center spacing

of 5.2 µm. Thus, the simulation settings produced a range of ten intracellular volume fractions

(i.e. fi) from 53.27 % to 66.18 %. For each cell size, two separate MC simulations were performed

(i.e. totally 20 MC simulations in this section). In the first part, a constant D of 1.2×10−3 mm2/s

was assumed for the entire simulation space. In the second part, cell membranes’ properties were

characterized using the biphasic water diffusion model (see Fig. 2.5) that represented the slow

diffusion pool (Dslow = 0.4×10−3 mm2/s) by a membrane-bound layer. The region outside the

slow-diffusion layer was modeled as a fast diffusion pool (Dfast = 1.2×10−3 mm2/s). The choices

of the diffusivities (D, Dslow, Dfast) were based on the values proposed in [Le Bihan (2007)]. The

global parameters used across the two MC simulations were: Np = 106, NI = 15,500, and ts = 5 µs

resulting in the RMS distances of 0.19 and 0.11 µm for the Dfast and Dslow, respectively. Here we

assumed that the cells were impermeable and the thickness of the slow-diffusion membrane layer
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Figure 4.9: Reduction of ADC following cell swelling and polar membrane layer.

- The ADC estimated from DT model for the case of constant diffusivity (red circle) and

two-pool diffusion model (blue cross).

was 40 nm on each side of the cell membrane. This is because that the model of water layer was

not only the bilayer membrane with phospholipids and proteins (∼10 nm), the structuring effect

of cell membranes could be reinforced by the relatively thick and rigid matrix which extended a

few tens of nanometres on both sides of the membrane: the glycocalyx on the outside and the

cytoskeleton on the inside [Le Bihan (2007)]. Fig. 4.8 illustrated an example of the MC simulation

experiment considered in this section.

For each of the experiment described above, two noise-free synthetic dMRI datasets were col-

lected using a single PGSE sequence. First, DW signal along x-, y-, and z-axis were synthesized at

51 b-values linearly increased from 0 to 5,000 s/mm2, which were achieved by fixing δ/∆ = 2/70.5

ms and varying G (SR = 5,000 T/m/s). The normalized diffusion signal attenuation along each

axis was then fitted using a biexponential function given by Eq. 2.34 in Chapter 2.6. Then, the

mean and standard deviation were calculated for the biexponential parameters derived from the

three axes. Second, the HARDI datasets were synthesized using a single shell q-space sampling

scheme of 80 gradient orientations at a b-value of 1,000 s/mm2, where δ/∆ = 21/27 ms, G = 40

mT/m, and SR = 200 T/m/s. The DT reconstruction was performed to estimate the ADC.

4.3.2 Results

Fig. 4.9 showed that the ADC decreased when the cell size increased. As expected, the imple-

mentation of a two-pool diffusion model resulted in a lower ADC. Table 4.1 and 4.2 summarized

the results of biexponential fitting parameters. For both cases, we found that when the cell size

became larger, Ff decreased continuously. An opposite trend was observed for Fs following the
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Table 4.1: Biexponential fitting parameters (mean (standard deviation)) for the

case of constant diffusivity.

Table 4.2: Biexponential fitting parameters (mean (standard deviation)) for the

case of two-pool diffusion model.

cell swelling. Although a decrease in Df and an increase in Ds were observed when the cell size

increased, the values did not change much.

4.3.3 Discussion

For the experiments on cell swelling and two-pool diffusion model, overall we observed and verified

that cell swelling led to a drop of ADC, which was consistent with the previous findings on acute

ischemic stroke [Moseley et al. (1990b)] and neuronal activation [Le Bihan et al. (2006); Le Bihan

(2007); Flint et al. (2009)]. Based on the results obtained from the biexponential analysis, we found

that Df and Ds did not alter significantly following cell swelling. The results implied that the

variation of volume fractions Ff and Fs mainly drove the variations of diffusion signal attenuation.
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Figure 4.10: Construction of crossing fibres by DMS - Each layer was build by two

fibre directions. Layer 1 and layer 2 overlapped each other to form crossing fibres, and different

densities between two populations can be obtained by controlling the number of overlapping.

Note that although we could already simulate the effect of polar membrane layer, the RMS distance

that we used (0.19 and 0.11 µm) was larger than the layer thickness of 0.04 µm assumed in the

literature [Le Bihan (2007)]. This may affect the results, especially when the diffusing particles are

closed to the cell membranes [Regan and Kuchel (2002)], and it will require a smaller ts to clarify

this issue. Works are undergoing to introduce more factors such as the membrane permeability to

perform more complex and realistic simulations.

4.4 Diffusion Reconstruction Model

In this section, we demonstrated that DMS is able to provide the ground-truth virtual

fibre configurations and the associated synthetic dMRI dataset for assessing the diffusion recon-

struction algorithms.

4.4.1 DMS Experimental Design

We used DMS to create two fibre bundles crossing at 90 and 60 degrees. Fig. 4.10 showed the

basic ‘layers’ to construct crossing fibres. For each case, we controlled the number of layers to

make the proportion between the two fibre directions equal to 1:1 and 1:2. The parameters for MC

simulations were: simulation space = 300×300×200 µm3 for 90-degree crossing and 350×240×200

µm3 for 60-degree crossing; the fibre diameter was fixed at 8 µm; Nx×Ny×Nz = 100×100×100;

Np = 2 × 106; NI = 8,000; ts = 10 µs; D = 2/3 × 10−4 mm2/s (i.e. the value closed to the axial

diffusivity of WM fibre). HARDI datasets were synthesized using a grid volume that produced a

single slice image with an inplane resolution of 10×10 µm2. A PGSE sequence was used with G

= 40 mT/m and SR = 200 T/m/s, and two b-values at 1,500 and 2,500 s/mm2 were obtained by

tuning δ/∆ to 24.5/30.5 ms and 29.4/35.4 ms, respectively. A single shell q-space sampling scheme

containing 65 gradient orientations was used. Rician noise was added to the synthetic DWIs to
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Figure 4.11: Effect of spherical harmonic order on SDT-fODF. - SDT-fODF were

reconstructed for 90 and 60-degree crossing fibres using the harmonic order l of 4, 6, and 8 (at

b = 2,500 s/mm2 and SNR = 20).

produce three SNRs of 10, 20, and 40 measured on the non-diffusion-weighted image. Therefore, in

total 12 synthetic dMRI datasets were generated (2 crossing angles × 2 b-values × 3 SNRs). Note

that the simulations described above reflected what can be achieved on a clinical MRI system.

Synthetic dMRI data was analyzed using (i) the DT model to reconstruct the FA map [Basser

et al. (1994b)] and (ii) the sharpening deconvolution transform (SDT) to reconstruct the fibre

orientation distribution function (fODF) [Descoteaux et al. (2009)]. For the SDT analyses, first

we used the spherical harmonic order (l) of 4, 6, and 8 with the regularization factor being fixed

at 0.006 to assess the results of fODF. After that, we applied the optimal l to study the effect of

b-value, SNR, and fibre density distribution. The results of fODF fields were color-coded according

to their orientations (red: left-right; green: anterior-posterior; green: inferior-superior).

4.4.2 Results

Fig. 4.11 showed that at b-value of 2,500 s/mm2 and SNR of 20, using l = 4 was able to resolve 90-

degree crossing but became ambiguous for the 60-degree case. Using l = 6 successfully differentiated

both 90 and 60-degree crossing fibres. Using l = 8 produced many false positive peaks of fODF
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Figure 4.12: Effect of b-value on fODF estimation. - The fODFs were reconstructed

using SDT for the 90- and 60-degree crossing fibres at b-values of 1,500 and 2,500 s/mm2 (SNR

= 20 on the null image).

for both cases, which was not suitable for fibre orientation estimation. The results suggested that

l = 6 was the optimal setting for the SDT method at b-value = 2,500 s/mm2 for our crossing fibre

data. Hence, the remaining data were all analyzed using l = 6.

Fig. 4.12 showed the dependence of fODF estimation on b-value for the 90- and 60-degree

crossing fibres. The SNR was 20 on the null image for both datasets. At a b-value of 1,500 s/mm2,

the two distinct fibre orientations were clearly resolved by SDT for the 90-degree crossing but were

less evident for the 60-degree crossing in some voxels. At a b-value of 2,500 s/mm2, the SDT-fODF

became sharp enough to distinguish both 90- and 60-degree crossing fibres.

Fig. 4.13 demonstrated the impact of noise level on fODF estimation, showing the results at

a b-value of 1,500 s/mm2. As expected, the results of fODFs were more homogenous at a higher

SNR. At a SNR of 10, although the two directions were still differentiated by SDT-fODF in some
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Figure 4.13: Effect of SNR on fODF estimation. - The fODFs were reconstructed using

SDT for the 90- and 60-degree crossing fibres at SNRs of 40 and 10 (b-value = 1,500 s/mm2).

voxels for both cases, they were deviated from the ground-truth directions.

Fig. 4.14 showed the results of fibre orientations mapping where the density ratio of the two

fibre bundles was 2:1 and SNR was 20. For both cases, the magnitude of fODFs along the direction

of fewer fibre number were lower than those in the other direction. For the 90-degree crossing, the

two distinct directions were still resolvable using SDT, at both 1,500 and 2,500 s/mm2. For the

60-degree crossing, the direction of the fewer fibres were not identifiable in most voxels, and only

the horizontal direction (colored in red) was clearly observed.

4.4.3 Discussion

We demonstrated how DMS could provide the ground-truth datasets and apply to assess the dif-

fusion reconstruction algorithms. The example datasets of 90- and 60-degree fibre crossing were
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Figure 4.14: Effect of fibre density on fODF estimation. - The fODFs were recon-

structed using SDT for the 90- and 60-degree crossing fibres where the proportion between the

two fiber orientations were 2 to 1 (SNR = 20).

applicable to study the dependency of b-value (Fig. 4.12), SNR (Fig. 4.13), and fibre populations

(Fig. 4.14). They can be further utilized to optimize the HARDI acquisition protocol and pulse

sequence for the purpose of fibre orientation estimation. Although the crossing fibres were only

created at two crossing angles and densities, DMS can be used to generate any other fibre configu-

rations (e.g. curving fibres). The dataset is also suitable for comparing and optimizing the diffusion

reconstruction models.

It is already well-known that the selection of b-value is crucial as it produces the diffusion

orientational contrast that is essential for mapping fibre directions [Cho et al. (2008)]. Although

we only evaluated two b-values, it is simple for DMS to synthesize dMRI data at several b-values.

Thus, this part will be extended to study the optimal q-space sampling scheme (e.g. a single shell

or multiple shells) and b-values for dMRI data acquisition in order to improve the accuracy of fibre

67



orientation estimation.

The SNR issue is important since the image contrast of dMRI comes from signal attenuation.

In addition, a higher b-value is usually preferable due to the sensitivity to diffusion will increase,

however, it will also result in a worse SNR. Several noise removal techniques have been proposed to

improve the quality of DWIs and the related measures. DMS can be employed to generate DWIs

at various SNR levels to assess the performance of the noise correction as well as to help develop

novel denoising methods.

4.5
Fibre Tracking Application

In this section, we employed DMS to generate crossing, kissing, and branching WM

fibre bundles and then applied to evaluate the performance of fibre-tracking algorithms.

4.5.1 DMS Experimental Design

DMS was utilized to simulate three WM fibre configurations, namely crossing, kissing, and branch-

ing fibres, in separate simulation spaces with dimensions of 110×190×150, 110×190×150, and

200×210×185 µm3, respectively (see Fig. 4.15). Each fibre had a diameter of 5 µm and no perme-

ability. The parameters for the MC simulations were: Np = 106, NI = 8,000, ts = 10 µs, and D

= 2×10−3 mm2/s. We utilized a conventional single PGSE pulse sequence to synthesize HARDI

data with the following sequence parameters: G = 40 mT/m, SR = 200 T/m/s, δ = 34.75 ms,

∆ = 40.75 ms, TE = 80 ms, and b-value = 4,000 s/mm2. The parameters were chosen to comply

with a clinical MRI system. For each fibre configuration, dMRI images were synthesized using a

grid volume that produced a single slice image with an inplane resolution of 5×5 µm2. A uniform

HARDI sampling scheme consisted of 200 unique orientations created by an electrostatic repulsion

model [Jones et al. (1999)]. For each fibre configuration, we reconstructed the fODF using the SDT

with a spherical harmonic order of 6 and a regularization factor of 0.006 [Descoteaux et al. (2009)].

In addition, DT analysis was performed to obtain the FA map, which was utilized to create mask

images for fibre tracking. Both deterministic and probabilistic fibre tractography were obtained

via a streamline fibre-tracking algorithm, with a forward step increment of 1.25 µm (i.e. one-fourth

of the inplane resolution), an aperture angle of 30◦, and 10 seeds per voxel [Basser et al. (2000);

Poupon et al. (2000); Perrin et al. (2005a)]. Note that although the anisotropic voxel dimension

was used for fibre tracking, it did not have any severe side effect on the results of fibre tractogra-

phy presented in this section. This was due to that the organization of the fibre geometries were

all placed on the plane of isotropic resolution, and thus the fibre-tracking evolution should not
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Figure 4.15: Simulated fibre configurations: crossing, kissing, and branching fibres

- DMS was utilized to create three fibre configurations typically observed in human brains.

Left column: crossing fibres; middle column: kissing fibres; right column: branching fibres. For

each case, two networks of fibres, colored in green and orange, were arranged in an interleaved

fashion. A subset of diffusing particles and their motion trajectories were illustrated by dark

blue spheres and light blue curves.

be affected by the anisotropic scale along the direction perpendicular to the plane containing the

fibres. Likewise, this was also the same case for the diffusion local reconstruction described in the

previous section.

4.5.2 Results

Fig. 4.16 showed the results of fODF and probabilistic tractography for crossing and kissing fibre

tracts. SDT gave different fODF patterns in the crossing and kissing fibres, and the streamline

probabilistic fibre tractography generated based on SDF-fODF can successfully differentiate fibres

pathways. Fig. 4.17 illustrated the results of fibre tracking using deterministic and probabilistic

methods. The deterministic fibre tractography resulted in ambiguous fibre tracts in the region

where the fibre tracts diverted into two different directions. The probabilistic fibre tractography

showed better correspondence with the simulated fibre configuration (i.e. the ground truth).
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Figure 4.16: The SDT-fODF and probabilistic fibre tractography. - The sharpening

deconvolution transform and the streamline probabilistic fibre-tracking algorithm were per-

formed on the synthetic dMRI datasets of crossing (left) and kissing (right) fibres. The fODF

were color-coded depending on orientations (red: left-right, green: top-down, blue: inferior-

superior). Fibre tractography was represented by cylinders colored in blue. Both of the fODF

and tractography were overlapped on the FA images.

4.5.3 Discussion

The ability of dMRI in noninvasively mapping fibre directions of human brain provides oppor-

tunities to study anatomical brain connectivity. To produce a reliable fibre tractography, there

are two essential steps. The first step is to accurately estimate local fibre orientations using an

adequate diffusion reconstruction algorithm, and the second step is to implement a robust fibre

tracking algorithm. Thus, assessment and validation of diffusion local modeling and fibre tracking

algorithms are important, and these evaluations require an appropriate model to serve as a ‘gold

standard.’

A biological tissue model that utilizes neuronal tracers, such as manganese-enhanced MRI,
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Figure 4.17: Differences between deterministic and probabilistic fibre tratography.

- Top row: fibre tracking using a deterministic approach. Bottom row: fibre tracking using a

probabilistic approach. fODF were colored in yellow. Center: the location of fibre tractography

on FA map.
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has been adopted to assess the validity of diffusion reconstruction model and fibre tractography

[Lin et al. (2001, 2003)]. The advantage of this technique is that it provides a realistic tissue

environment, however, it is less feasible to tune the structural or geometric parameters (e.g. fibre

curvature). Furthermore, WM structures are less complex in animal models, which cannot capture

all of the fibre configurations that exist in human brains, and thus it may not be sufficient to

evaluate the inherent limits of diffusion local models and fibre-tracking algorithms.

A physical phantom is able to provide ground-truth dMRI datasets acquired with a practical

MR experimental setting, meanwhile, it is more flexible than a biological tissue model in terms

of geometry design. However, it loses the characteristics of biological tissues, such as membrane

permeability and local viscosity. Several elaborate physical phantoms have been developed in the

community and can be broadly categorized into two types: the hollow capillary [Cho et al. (2008);

Lin et al. (2001, 2003); Shemesh et al. (2009a); Tournier et al. (2008)] and the synthetic fibre

[Fillard et al. (2011); Fieremans et al. (2008b,a); Perrin et al. (2005b); Poupon et al. (2008)]. The

advantage of the former is that it has a diameter closed to the scale of axonal fibres ( 10 µm)

and is able to capture the nature of intra- and extra-axonl diffusion, however, it is much less

feasible to manufacture complex configurations (e.g. bending fibres). On the contrary, the latter is

highly flexible to construct curving structures similar to WM fibres, whereas it has a greater size

in diameter (∼20 µm) and is limited to simulate the extra-axonal compartment.

Numerical simulation have been typically chosen to generate synthetic DW datasets for the

assessment of diffusion local models and fibre-tracking algorithms [Tuch (2004); Hess et al. (2006);

Close et al. (2009); Descoteaux et al. (2009)], however, most of the numerical simulations typically

rely on a number of assumptions on tissue models and pulse sequences. The Gaussian mixture

model, for example, is commonly utilized to generate the DW signal for each compartment. Al-

though the tensor model provides a good approximation, the Gaussian assumption for the free

diffusion is not sufficient to model diffusion anisotropy observed in vivo tissues, which is generally

acknowledged to result from restrictions and hindrances to the free movements of water molecules

[Assaf et al. (2004)]. Furthermore, the underpinning mechanism of water diffusion in neural tissues

is actually even more complicated when the cell-membrane properties are considered [Le Bihan

(2007)].

A MC simulation system has the capacity to simulate biological characteristics, and thus it is

feasible to evaluate diffusion models and fibre-tracking algorithms at different level of complexity

(e.g. mixture fibre radii or cell membrane permeability). In addition, it removes most of the

assumptions inherently required by the numerical simulations. Although there are still several

parts to improve (e.g. modeling typical imaging artifacts such as cross-terms and eddy current),
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DMS is already applicable to simulate various configurations that can be found in WM structures

of human brains according to our simulation results.

4.6
Conclusion

DMS is general and flexible to synthesize MR data for arbitrary imaging environment

and conditions. The simulation tool is already applicable to address several issues in dMRI. DMS

provides a platform for the development, validation, and optimization of diffusion MRI modeling

and methodology, and we believe that it can be an essential tool for understanding of diffusion

mechanism.
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5.1 Introduction

In Chapter 2.3.2, we have reviewed that in the q-space formalism [Callaghan (1993)],

the probability density function (PDF) of the displacement of water molecules can be obtained

by performing the Fourier transform (FT) of the DW signal acquired as a function of the wave

vector q (Eq. (2.22) & (2.23)). The displacement PDF can be utilized to estimate the dimensions

of microstructures and interpret tissue states [Cohen and Assaf (2002)], and recent studies have

demonstrated the potential of q-space diffusion MRI in measuring axonal diameters [Alexander

et al. (2010); Assaf et al. (2008); Ong et al. (2008)]. However, the essential principle of the q-space

technique is only valid under the short gradient pulse (SGP) condition [Callaghan (1993)], which

means that a very strong gradient system is demanded in order to achieve sufficient resolution of the

spin displacement, i.e. to obtain a sufficiently high q-value. On current clinical MR systems, high

q or b-value requirement can be only achieved by the prolongation of δ due to gradient intensity

constraints. Usually, δ is close to ∆ in order to minimize T2-decay and to get better SNR in the

DW images. However this practice is detrimental for obtaining quantitative q-space measurements,

resulting in an underestimation of the actual compartment size [Bar-Shir et al. (2008); Caprihan

et al. (1996); Mitra and Halperin (1995); King et al. (1997)]. The effects of finite gradient pulse

widths on the estimated displacement PDF have been well described in literature using small

animal systems with dedicated gradient hardware to attain the essential requirement of the SGP

approximation [Bar-Shir et al. (2008); Mitra and Halperin (1995); King et al. (1997); Lätt et al.

(2007); Lori et al. (2003)].

During the last 25 year, dMRI has become a valuable tool for the study of the human CNS.

Of particular interest is its potential for non-invasively mapping the pathways of neuronal fibre

bundles in the living brain, as it enables the possibility of inferring neuronal connectivity between

brain regions using fibre-tracking algorithms [Basser et al. (2000); Conturo et al. (1999); Mori

and van Zijl (2002)]. The reliability of brain connectivity information depends on the accuracy

of the fibre orientation estimates within each imaging voxel, which in turn is dependent on the

fibre orientation reconstruction method, the particular diffusion imaging parameters used, and the

quality of DW images. Several approaches have been developed for estimating fibre orientations

and DTI is the first and the most common method, which involves the application of a relatively

low diffusion weighting (i.e. b-value) to characterize diffusion anisotropy and infer the principal

orientation of the white matter tracts within each imaging voxel [Basser et al. (1994a,b); Basser

and Pierpaoli (1996)]. As described in Chapter 2.4.3, a number of methods have been proposed to

enable resolution of multiple fibre orientations within a voxel. Many of these methods are based
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on the q-space theory. Some of these methods rely on full 3D sampling of q-space using very large

b-values in order to perform the required 3D FT [Assaf and Basser (2005); Wedeen et al. (2005); Wu

and Alexander (2007)]. Other methods, while still based on q-space theory, make certain simplifying

assumptions to allow the 3D FT to be performed using a reduced dataset, and operate on the less

demanding HARDI acquisition strategy, with moderate to high b-values [Ozarslan et al. (2006);

Tuch (2004); Jansons and Alexander (2003); Descoteaux et al. (2007); Hess et al. (2006)]. Other

methods have also been proposed based on a mixture model rather than the q-space formalism

[Assaf et al. (2004); Behrens et al. (2007); Hosey et al. (2005, 2008); Tournier et al. (2004, 2007)].

Although the above q-space approaches can be utilized to successfully estimate complex fibre

directions, the failure to satisfy the SGP approximation has been a recurrent criticism. However,

the effect of a long δ on the DW signal and the angular accuracy of the estimated orientation have

not been fully characterized. It has been suggested that using a finite δ may enhance the MR signal

contrast between DW gradient orientations [Hall and Alexander (2006); Lin et al. (2003)], whereas

the underlying mechanism requires further clarification. In this chapter, we show that, while being

a deficiency in q-space applications to determine spin displacement, the application of a longer δ

is actually beneficial for resolving fibre orientations, as it enhances both the DW signal and the

contrast between the DW encoding directions. We investigate the relationship between δ and the

DW signal measured as a function of orientation for single fibre bundles under the same effective

diffusion time (∆e = ∆− δ/3) [Blees (1994); Callaghan (1993); Callaghan et al. (1999)] and TE for

a given b-value, using DMS simulations and two experimental phantoms, one consisting of water

capillaries, and the other consisting of an ex-vivo nerve preparation. In addition, we performed

QBI [Tuch (2004)] on both simulated (DMS) and experimental (water capillaries) crossing fibres

to demonstrate the benefits of using a long δ.

5.2 Hypothesis

Under the SGP approximation, the labelling and unlabelling of the spins is assumed to

take place instantaneously. The displacement measured in q-space then corresponds to the distance

from the initial position of the spin at the first DW gradient pulse to its final position at the second

DW gradient pulse (Figs. 5.1(a) & 5.2(a)). On the contrary, with a finite δ, the particle is labelled

with a position given by the centre of mass of its path during the application of the gradient

pulse [Mitra and Halperin (1995)]. Therefore, the effective displacement that is actually estimated

corresponds to the distance between the spin’s average position during the first DW pulse and its

average position during the second DW pulse (Figs. 5.1(b) & 5.2(b)). In restricted geometries, the

average position of a spin during each DW pulse will tend towards the centroid of the restricted
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Figure 5.1: Spin trajectory in a free diffusion environment. - The centre of mass

position of the spin during each gradient pulse is indicated by the symbol “?”. (a) For a short

δ, the encoding of the spin is assumed to occur immediately and gives a spin displacement,

r. (b) For a long δ, the spin is labelled at the position of the centroid of its path during the

application of the diffusion gradient pulse, as shown in bold trajectories [Mitra and Halperin

(1995)]. The resultant displacement r′ will be closed to r in a free diffusion environment and

thus similar diffusion signal decay will be observed.

Figure 5.2: Spin trajectory in a restricted environment. - The centre of mass position

of the spin during each gradient pulse is indicated by the symbol “?”. (a) For short a δ, the

encoding of the spin is assumed to occur immediately, which results in larger spin displacement,

as denote by r. (b) For a long δ, the spin is labelled at the position of the centroid of its path

during the application of the diffusion gradient pulse, as shown in bold trajectories [Mitra and

Halperin (1995)]. The resultant displacement r′ is decreased in a restricted environment and

thus less signal decay will be observed.
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Figure 5.3: DMS: Single fibre model. - (a) The single restricted fibre model considered

in the simulations of DMS. (b) A cross section of (a) illustrating the fibre geometry, diffusing

particles (blue spheres), and their motion trajectories (light blue curves).

compartment (Fig. 5.2(b)). Therefore, the estimated displacement decreases with increasing δ, and

in consequence the measured DW signal attenuation is reduced. Over the timescale of the DW

experiment, the diffusion in myelinated WM fibres can be approximated as restricted in directions

perpendicular to the fibre axis (i.e. the radial direction), and free along the fibre axis (i.e. the axial

direction) [Assaf et al. (2004); Assaf and Basser (2005)]. In this case, increased δ should result

in reduced tranverse DW signal attenuation, with no change in the axial DW signal. This should

therefore improve the contrast between diffusion gradient directions, and also improve the overall

SNR of DW images, both of which are actually helpful to estimate fibre orientations.

5.3
Materials and Methods

This hypothesis described above (Chapter 5.2) was tested using single fibre phantoms

including DMS MC simulations, an MR water microcapillary phantom model, and excised rat sci-

atic nerves. Furthermore, we performed QBI [Tuch (2004)] to study the δ effect on fibre orientation

mapping using simulated and experimental diffusion phantoms.

5.3.1 DMS Experimental Design

To test our hypothesis that the application of a long δ may be beneficial for fibre orientation

estimation, we began with the simulation approach using DMS, by which we simply created a

single restricted and impermeable cylinder to model a neuronal fibre. The initial positions of the

diffusing particles were randomly distributed completely inside the fibre. The global parameters
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used for the random walk MC simulations were as follows: Np = 105, NI = 1.5×105, ts = 1 µm,

and D = 2×10−3 mm2/s, which produced a RMS distance of 0.1 µm. Then, we used DMS to

simulated a PGSE sequence to study the effect of δ on the dMRI signal acquired as a function

of orientation. We applied a δ of 1/5/55 ms, and other parameters including ∆e (= 60 ms), TE,

b-value, and q-value were all kept constant in each condition. Note that we did not model the effect

of T2 relaxation and MR noise in either of the simulations in order to investigate the pure δ effect.

In the first part of the simulation, we studied the dependence on b-value. The fibre diameter

was fixed at 5 µm, and b-values of 4,000 and 8,000 s/mm2 were obtained by increasing the diffusion

gradient intensity. For each δ, the noiseless DW signal was synthesized along a set of 360 uniformly

distributed gradient directions spanning the plane containing the fibre direction. In the second

part of the simulation, we studied the dependence on fibre diameter. Fibre diameters of 4 and 8

µm were studied using a fixed b-value of 5,000 s/mm2, with the same DW gradient scheme as for

the first simulation.

5.3.2 Microcapillary Phantom

A single fibre phantom was manufactured using plastic microcapillaries with inner and outer di-

ameter of 20 and 90 µm (flexible fused silica capillary tubing, Polymicro Technologies, Phoenix,

Arizona, USA) [Cho et al. (2008); Tournier et al. (2008); Yeh et al. (2008)]. Numerous capillaries

were compactly aligned in the same direction in a flat plastic holder. Fig. 5.4(a) shows the photo of

the single fibre phantom. A crossing fibre phantom was build by stacking two single fibre phantoms

shown in Fig. 5.4(a) onto each other. The whole phantom was immersed in water, shaken in order

to remove the bubbles and left for a period of days to ensure complete filling of the capillaries.

Fig. 5.4(b) shows a T2-weighted image of a crossing fibre phantom for the case of 45◦ angle.

For the case of single fibre phantom (see Chapter 5.3.4 below for the case of crossing fibre

phantom), data were acquired using a 9.4 Tesla MR spectrometer (Bruker BioSpin, Ettlingen,

Germany) equipped with a micro-imaging gradient system, which gives a maximum intensity of

1,460 mT/m. The micro-imaging system enables high b-value and high q-space diffusion studies sat-

isfying the narrow pulse approximation, making investigations into the effects of various δ feasible.

DW datasets were acquired using a 2D-FT stimulated-echo diffusion sequence with the following

parameters: matrix size = 32×32, field-of-view (FOV) = 25×25 mm, slice thickness = 1.5 mm,

TR/TE = 2,300/80 ms, δ = 2/12/36 ms, and ∆e = 100 ms. For each δ, the b-value dependence

was investigated by varying G in accordance with δ, to produce b-values of 1,000 and 4,000 s/mm2,

corresponding to q-values of 16 and 32 mm−1. The DW gradient scheme consisted of 40 orienta-
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Figure 5.4: Microcapillary diffusion phantom. - (a) the two placeholders containing the

plastic microcapillaries (the scale markings are in centimetres). (b) a T2-weighted image of

the microcapillary phantom, for the case of a 45◦ crossing angle.

tions applied at 9◦ intervals in the plane containing the fibre direction. Image pairs with opposing

gradient directions were combined using geometric averaging to reduce imaging cross-term effects

[Neeman et al. (1991)].

5.3.3 Sciatic Nerve Phantom

The sciatic nerves were dissected from a healthy 8-month-old male Sprague-Dawley (SD) rat. Pre-

vious morphometric studies on sciatic nerves of SD rats performed using histological staining have

shown that the average inner and outer axonal diameters are around 4.9 and 7.3 µm respectively,

i.e. the myelin thickness is close to 1.2 µm [Wright and Nukada (1994)]. The animal was first

overdosed with an intraperitoneal injection of sodium pentobarbital (Sigma, USA) and then tran-

scardiatic perfusion was performed using 0.9 % isotonic saline in order to preserve the integrity

of neuronal cells. The sciatic nerves were extracted from both sides from the sciatic notch to the

knees (∼1 cm in length) and aligned along the same direction. They were then immersed in 0.9

% isotonic saline for the imaging experiment, which was performed within 1 hour of the nerve

preparation. Animal preparation procedures were in accordance with the Guidelines for Care and

Use of Experimental Animals of the Laboratory Animal Centre in National Yang-Ming University.

DW datasets were collected using the 9.4 Tesla Bruker Spectrometer using the micro-imaging

gradient system. A PGSE diffusion sequence was used with the following parameters: matrix size

= 64×64, FOV = 7.5×7.5 mm, slice thickness = 6.5 mm, TR/TE = 3,600/94.6 ms, ∆e = 50

ms, δ = 2/4/8/16/32 ms, The DW gradient intensity G was varied to obtain the same b-value
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under various δ, for b-values = 1,000/4,000/8,000/12,000 s/mm2. The DW encoding scheme of

36 gradient orientations applied at 10◦ intervals was used for data acquisition. As before, image

pairs with opposing gradient directions were combined using geometric averaging to reduce imaging

cross-term effects [Neeman et al. (1991)].

5.3.4 QBI of Crossing Fibre Phantoms

To evaluate the influence of δ effect on mapping fibre directions, we collected ground-truth dMRI

datasets of 45◦ crossing fibres through DMS and the plastic microcapillary phantom described in

Chapter 5.3.2.

Synthetic dMRI data were generated via DMS. Two cylindrical fibre bundles with a diameter

of 10 µm intersecting at 45◦ were created, and MC simulations were performed using Np = 2×105,

NI = 1.5×105, ts = 1 µs, and D = 2×10−3 mm2/s. Synthetic diffusion signal was calculated using

a PGSE pulse sequence with ∆e = 60 ms, δ = 1/5/55 ms, b-value = 5,000 s/mm2, SNR = 15. The

HARDI DW gradient scheme constituted 80 unique orientations generated using an electrostatic

repulsion model [Jones et al. (1999)], along with their opposite directions, for a total of 160 gradient

directions. The data syntheses were repeated 1,000 times for each δ.

Experimental dMRI data of microcapillary phantom were acquired on the 9.4 Tesla Bruker

spectrometer using a 2D-FT stimulated echo sequence with the following parameters: matrix size

= 32×32, FOV = 24×24 mm, slice thickness = 3.2 mm, TR/TE = 2,300/80 ms, ∆e = 100 ms,

δ = 2/12/36 ms, and b-value = 4,000 s/mm2. The same HARDI sampling scheme composed of

160 gradient directions was used. As before, image pairs with opposing gradient directions were

combined using geometric averaging to reduce imaging cross-term effects [Neeman et al. (1991)].

5.3.5 Data Analysis

Single Fibre Phantom Data. The single fibre phantom data (i.e. Chapter 5.3.1, 5.3.2, and

5.3.3) are displayed using polar plots, showing the DW signal measured as a function of DW gradient

orientation under different values of δ. The DW signal of each phantom data was normalized to

the null signal intensity (i.e. b ∼ 0) for comparison.

Crossing Fibre Phantom Data. The crossing fibre data (i.e. Chapter 5.3.4) were reconstructed

using QBI [Tuch (2004)] to provide the ODF, with angular sampling resolution of 4◦ (16-fold

tessellated icosahedrons). To reduce the error caused by the discrete spherical sampling of ODF,

we randomly rotated the angular sampling scheme and computed the ODF 1,000 times for each

voxel [Cho et al. (2009)]. During each ODF calculation, we considered local maximum vectors of
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each ODF with lengths greater than 50 % of the peak ODF value as the potential fibre directions.

Finally, the mean of potential directions were regarded as the final fibre orientations. The quality

of the orientation estimation was assessed using:

1. Azimuthal and elevation angles. In voxels where QBI successfully distinguished two fibre

directions, we projected the two directions onto the azimuthal and elevation plane, and then

computed the mean and the standard deviation across voxels.

2. Success rate. The proportion of voxels within which the two main fibre directions could be

identified.

5.4 Results

5.4.1 Single Fibre Studies

The results obtained from the single fibre studies showed that the application of longer δ resulted

in higher DW signal being measured along the radial directions, with little or no change along the

axis of the fibres (Fig. 5.5, 5.6, 5.7 & 5.8).

Figs. 5.5 & 5.6 are the results of DMS simulations. For a fixed fibre diameter of 5 µm, the

effect of a longer δ was more evident at the higher b-value of 8,000 s/mm2 (Fig. 5.5). The effect is

also more evident for larger axon diameters: the increase in DW signal in the radial direction was

more obvious for the 8 µm diameter fibre than for the 4 µm fibre, under the same b-value of 5,000

s/mm2 (Fig. 5.6). Note the axial DW signal was very close to zero due to the almost complete

dephasing of the signal for unrestricted diffusion.

The results of the single fibre DW water microcapillary phantom are shown in Fig. 5.7. For

b-value = 1,000 s/mm2, the radial DW signal increased by 5.4 % and 16.4 % when δ was increased

from 2 ms to 12 ms and 36 ms respectively. The effect was even greater at b-value = 4,000 s/mm2,

with increases of 29.8 % and 74.8 % respectively. In both cases, there were little or no changes in

axial DW signal.

The same trends were also observed in the rat sciatic nerve data (Fig. 5.8). At b-value of 1,000

s/mm2, the effect of increasing δ was negligible. However, the effect could be readily observed at

b-values of 4,000 s/mm2 and greater, with longer δ leading to enhanced radial DW signal. The

effect of δ became even more evident at the higher b-values of 8,000 and 12,000 s/mm2. Consistent

with the simulations and phantom experiments, the use of long δ led to an overall increase in the

DW signal for a given b-value.
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Figure 5.5: The δ effect on the DW signal and the dependency on b-value: DMS

simulations. - Polar plots of the normalized DW signal obtained from the single fibre DMS

simulation data using δ = 1/5/55 ms, shown in blue/green/red respectively. The angles noted

on the plots were determined from the direction of the simulated fibre and the DW gradient

orientations. Two b-values of 4,000 and 8,000 s/mm2 were applied while using a fixed fibre

diameter of 5 µm.

Figure 5.6: The δ effect on the DW signal and the dependency on fibre diameter:

DMS simulations. - Polar plots of the normalized DW signal obtained from the single fibre

DMS simulation data using δ = 1/5/55 ms, shown in blue/green/red respectively, with the

axial (fibre) axis oriented left-right (i.e. 0◦ and 180◦). The fibre diameter was set at 4 µm and

8 µm while applying a fixed b-value of 5,000 s/mm2.
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Figure 5.7: The δ effect on the DW signal and the dependency on b-value: micro-

capillary phantom. - Polar plots of the DW signal normalized to the b=0 signal, obtained

from the water capillary phantom, using δ = 2 (blue), 12 (green), and 36 (red) ms, with the

axial (fibre) axis oriented left-right (i.e. 0◦ and 180◦). The results were obtained using two

b-values of 1,000 and 4,000 s/mm2 while fixing TE = 80 ms. The internal diameter of the

plastic capillaries was 20 µm.

5.4.2 Crossing Fibre Studies

Figs. 5.9 & 5.10 show the plots of fibre orientation estimation obtained from the QBI-ODF recon-

struction of the crossing fibre data obtained from DMS simulations and microcapillary phantom

dMRI experiments. The estimated fibre orientations were projected onto the azimuthal and el-

evations planes for each voxel containing crossing fibres. Both the accuracy and precision were

increased using a longer δ. The quantitative results are summarized in Tables 5.1 & 5.2. As sug-

gested by the experiments on the single fibre phantom, the results in the table show that applying a

longer δ improves the precision of the estimated fibre orientations slightly, and improves the success

rate significantly. Consistent with previous studies [Tournier et al. (2008); Zhan and Yang (2006)],

a significant bias was found with QBI, with the separation between the two fibre orientations being

underestimated.

5.5 Discussion

In recent years, a variety of diffusion imaging techniques based on the q-space theory

have been proposed to map complex neuronal fibre architecture [Assaf et al. (2004); Assaf and

Basser (2005); Tuch (2004); Wedeen et al. (2005); Wu and Alexander (2007)], but the failure to
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Figure 5.8: The δ effect on the DW signal and the dependency on b-value: sciatic

nerve model. - The results were obtained from the rat sciatic nerve phantom using δ =

2/4/8/16/32 ms (colored in blue/green/red/yellow/grey) and a range of b-values from 1,000

s/mm2 to 12,000 s/mm2. A T2-weighted image of the sciatic nerves is shown in the top left

panel, with the regions of interest from which the signal was measured highlighted in light

blue circles.
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Table 5.1: The fibre orientations of the two crossing fibre populations measured using QBI

from the DMS simulation data under various δ at b-value = 5,000 s/mm2. The T2-decay was

not modeled for this simulation.

Table 5.2: The fibre orientations of the two crossing fibre populations measured using QBI

from the microcapillary phantom data under various δ using fixed TE of 80 ms at b-value =

4,000 s/mm2.

meet the SGP approximation on clinical systems has been a recurrent criticism. In this chapter, we

show that rather than being a deficiency, the use of long δ is not a disadvantage for fibre orientation

estimation, since it provides a moderate boost in signal, and an increase in angular contrast due to

the differential radial/axial effect. We described the theory for the long δ effect (Section 5.2), which

is supported by the simulations of DMS and dMRI experiments on microcapillary phantom and

animal models. While it is not possible to validate this effect using clinical MR scanners due to the

limited gradient amplitude, our results imply that the current practice of using long δ for dMRI on

human clinical MR scanners, which is enforced by hardware limitations, may also be beneficial for

estimating fibre orientations. However, it is still important to note that this only applies to ODF

estimation; and that for true q-space displacement measurements, the narrow pulse approximation

is still required.

5.5.1 Impact of T2-decay

In most clinical studies, as spin-echo sequences are typically used, the effect of T2-decay is important

and may have a greater impact on the amount of signal available than the long δ effect. This can

be investigated by considering a PGSE diffusion sequence, assuming a T2 value for white matter

at 3T of 60 ms [Alexander and Barker (2005)]. Under the condition of constant ∆e and b-value,

the minimum TE values for δ = 1/5/55 ms are 68.5/73.8/140.53 ms respectively. In this case,

the T2 effect clearly dominates over the δ effect. In other words, the increase in minimum TE

associated with a longer δ leads to a reduction in the signal that is much greater than any increase
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Figure 5.9: Fibre orientation estimation of the crossing fibre DMS simulation

data. - (Crossing angle = 45◦, b-value = 5,000 s/mm2). From top to bottom: δ = 1, 5 and

55 ms. For all voxels contained in the fibre-crossing region, fibre orientations are projected

onto the azimuthal (x-axis) and elevation (y-axis) planes. The two directions are displayed by

“*” and “-” symbols, and the black cross (×) and the black square (�) represent their mean

values.

associated with the longer DW pulse. However, under these conditions, the DW gradient amplitude

G increases as δ decreases, since b = (γGδ)2(∆− δ/3) and ∆e = ∆− δ/3 is constant. In practice

the shortest achievable DW pulse duration would therefore be determined by the available gradient

strength. Under the more clinically relevant condition of constant (i.e. maximum available) DW

gradient amplitude G and constant b-value, a shorter δ leads to a marked increase in ∆e, and hence

to a marked increase in minimum TE. In this case, a longer δ is clearly optimal, leading to shorter
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Figure 5.10: Fibre orientation estimation of the crossing fibre microcapillary phan-

tom data. - (Crossing angle = 45◦, b-value = 4,000 s/mm2). From top to bottom: δ = 2, 12

and 36 ms. For all voxels contained in the fibre-crossing region, fibre orientations are projected

onto the azimuthal (x-axis) and elevation (y-axis) planes. The two directions are displayed by

“+” and “-” symbols, and the black cross (×) and the black square (�) represent their mean

values.

echo times as well as increased transverse DW signal. This suggests that the current practice of

using long DW pulse durations to minimize the diffusion time (and hence TE) is optimal for the

purpose of fibre orientation determination (for a given desired b-value). Furthermore, if the MR

system is capable of achieving higher gradient strengths, this should be used to shorten the TE in

order to obtain DW images with higher SNR.

5.5.2 Validity of Single Restricted Fibre Simulation

As shown in the simulation results in Fig. 5.5, there was remarkably little attenuation of the radial

DW signal under the application of a long δ at both b-value 4,000 s/mm2 and 8,000 s/mm2. Indeed,
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there was almost no signal decay with δ = 55 ms. According to the Einstein equation (Eq. (2.10)),

with δ = 55 ms the RMS displacement should be r = 25.7 µm, which is much greater than the

fibre diameter (5 µm); hence, during the application of the diffusion gradient pulse each spin will

have sufficient time to explore the entire restricted space and its effective position for both the

labelling and unlabelling will be very close to the central axis of the fibre. Since the resultant

spin displacements will be small, there will be almost no radial signal decay, even using a high b-

value of 8,000 s/mm2. This effect (i.e. the almost complete absence of transverse DW attenuation

with long δ) is likely to be exaggerated in our simulation applied in this study, since (i) no extra-

axonal compartment is included in the model; and (ii) the axonal compartment is modeled as fully

restricted (this second point is also true of the water capillary phantom). Water molecules in the

extra-axonal compartment would presumably be more mobile, and their DW signal would therefore

be more strongly reduced. They would however contribute equally to the b = 0 signal (ignoring

any differences in T2), leading to greater DW attenuation for the combined sample. However, if the

intra- and extra-axonal compartments can be assumed to be non-exchanging (see below), the DW

signal corresponding to the intra-axonal volume fraction is likely to exhibit this effect as suggested

by the simulations.

Likewise, membrane permeability is expected to lead to greater DW attenuation if the diffusion

time is comparable with the average lifetime of molecules within the intra-axonal compartment.

However, the intracellular water pre-exchange lifetime (or the residence time) in the rat brain has

been estimated to be greater than 500 ms [Quirk et al. (2003)], which is much longer than the

diffusion times of 50-100 ms that are typically used for human studies. Moreover, these measure-

ments were taken from deep gray matter structures; the equivalent lifetimes in myelinated white

matter are likely to be considerably longer due to the additional barrier imposed by the myelin

sheath. This suggests that modeling diffusion within axons as restricted is a valid approximation,

and this assumption has indeed been successfully used in other modeling frameworks (e.g. [Assaf

et al. (2004); Assaf and Basser (2005)]).

5.5.3 Inference of Finite δ on Fibre Radius Estimation

The simulation results in Fig. 5.6 show the dependence on fibre diameter. Intuitively, the spin

displacements will be shorter along the radial direction of a completely restricted fibre with a

smaller diameter, which gives reduced DW signal attenuation. Similarly, a short δ in a larger

diameter fibre results in greater DW signal attenuation. However, using a long δ the DW signal

attenuation is similar for both fibre diameters studied. The present results therefore have interesting
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implications for the measurement of axonal diameters. The main determinant for the effect of DW

pulse duration is the size of the restricting compartment (i.e. axonal diameter) relative to the RMS

displacement over the timescale of the DW pulse duration. Assuming a diffusion coefficient D =

2×10−3 mm2/s, the time required for the RMS displacement to exceed an axonal diameter r =

5 µm is approximately 2 ms, after which time the average position of the spins will tend towards

the central axis of the axon. This implies that for diffusion pulses much longer than 2 ms, the

radial signal will be independent of axonal radius for radii less than 5 µm. This value is even

smaller for smaller radii, as it scales with r2: with r = 2 µm, δ should be in the region of 300 µs or

less. The smallest measurable axonal diameter is therefore determined by the shortest DW pulse

duration achievable. On the other hand, this also implies that if long diffusion gradient pulses are

used (as is the case in clinical diffusion MR imaging protocols), the DW signal intensity is largely

independent of the axonal fibre diameter (within the biologically relevant range). Interestingly,

this may indicate that indices that are sensitive to changes in the apparent radial diffusivity, such

as fractional anisotropy (FA), are unlikely to be sensitive to axonal diameters in a clinical setting

(i.e. when long δ are used).

5.5.4 Validity of Microcapillary Phantom Model

The water capillary single fibre phantom study confirms that the application of a long δ results in

less signal attenuation than a short δ, with all other imaging parameters fixed. The effect of δ was

exaggerated using this model as the internal diameter of the plastic capillaries was 20 µm, which

is larger than the typical range for neuronal fibres of 1 to 10 µm. Nonetheless, this single fibre

phantom model provides an experimental demonstration of the physical phenomenon in a fully

restricted environment.

5.5.5 The δ Effect on Real Biological Tissues

The excised rat sciatic nerves were used to investigate the effect of long δ on biological tissues.

As expected, the radial DW signal intensity decreased using a shorter δ, with little or no changes

in the axial direction. The application of a long δ ‘stretches’ the DW signal profile, thereby

increasing the angular contrast between the DW signals acquired along different directions. This is

beneficial for fibre orientation estimation as it provides improved discrimination between different

fibre orientations [Cho et al. (2008)]. It is interesting to note that as suggested by the simulations,

the attenuation of the DW signal in the radial direction when using a long δ is not affected by b-value

as strongly as might be expected, going from ∼90 % at b = 1,000 s/mm2 to ∼60 % at b = 12,000

93



s/mm2. Indeed, this is consistent with the previous suggestion of increased DW attenuation for the

extra-axonal compartment, with little or no DW attenuation for the intra-axonal compartment.

Unfortunately, this hypothesis cannot be tested with the results shown in the present chapter, and

further work (beyond the scope of this study) would be required to verify whether this is indeed

the case.

5.5.6 Inference of q-value

Note that in our single fibre studies, we investigated the δ-effect against b-values rather than q-

values. For a fixed q-value, keeping the diffusion time ∆ constant implies that the diffusion pulses

will actually be spaced closer together (for non-negligible δ) than for the fixed b-value case (where

∆e = ∆ − δ/3 is kept constant). This should result in an even greater effect of long δ for the

constant q-value case. Therefore, the δ-effect for fibre orientation estimation is applicable to both

b-value and q-value formulations.

5.5.7 Inference of finite δ on clinical applications

To demonstrate that using long diffusion gradient pulses is actually beneficial for the purpose of

fibre orientation estimation, we performed QBI analyses on the simulated and the microcapillary

crossing fibre phantoms. We observe that using a long δ can decrease the standard deviation of

the azimuthal and elevation angle, as well as increase the percentage success rate, as shown in

Tables 5.1 & 5.2 and Fig. 5.9 & Fig. 5.10. This may be due both to the increased overall signal

at long δ, and the improved angular contrast. While the use of long δ is therefore beneficial, it

should however be noted that these results also confirm the significant bias in the separation angle

previously reported for QBI [Zhan and Yang (2006); Tournier et al. (2008)].

For simplicity, in this chapter we only used the QBI reconstruction method to analyze the

HARDI data. However, we expect that a long δ will also be beneficial for other diffusion imaging

approaches to discriminate crossing fibres. In diffusion spectrum imaging (DSI) [Lin et al. (2003);

Wedeen et al. (2005)] for example, although the finite δ is problematic for measuring microstructural

dimensions due to the underestimation of the extent of the spin propagator [Mitra and Halperin

(1995); Lätt et al. (2007); Bar-Shir et al. (2008)], such effect may not be a drawback for mapping

fibre orientations. In general, since using a long δ enhances the DW angular contrast and the

overall signal of DW images, it should also be beneficial for other diffusion techniques for fibre

orientation estimation.

In most clinical sites, δ is already set to the longest possible in order to achieve the required

94



CHAPTER 5.

b-value in the shortest TE [Alexander and Barker (2005)]. Here, we have shown that far from

being problematic, a long δ may actually be beneficial for fibre orientation estimation, and thus for

fibre-tracking applications. Our results indicate that for most current DW MRI techniques to map

complex fibre architecture, which utilize intermediate to high b-values, the application of a long δ

should not be considered a limitation for the purposes of fibre orientation estimation.

5.6
Conclusion

Due to MR hardware limitations, it is necessary for current DW acquisition protocols

on clinical scanners to use long δ values. Although a longer δ is problematic for quantitative q-

space analyses, we have shown that it can actually enhance both the overall signal of DW images

and the contrast between DW gradient directions. We have demonstrated and validated this effect

through simulations and experiments, and the results support that a long δ value is advantageous

for resolving crossing fibres and estimating their orientations. This effect is expected to be beneficial

for related post-processing methods including fibre-tracking applications and segmentation based

on diffusion data.
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6.1 Introduction

For current clinical application of dMRI, diffusion tensor imaging (DTI) is still the most

widespread method to characterize diffusion anisotropy for inferring the integrity and orientation

of the WM tracts [Basser et al. (1994b, 2000)]. However, DT indices such as the mean diffusivity

(MD) and fractional anisotropy (FA) (Eq. (2.26) & (2.27)) are the quantities describing water

diffusion behavior in biological tissues, which may not directly reflect the microstructure features

or conditions of biological tissues. That is, for instance, the FA values of the two groups of fibre

bundles may be equivalent (i.e. the same degree of diffusion anisotropy) although their diameters

are different [Shemesh et al. (2010c)]. In recent years, a number of elaborate microscopic dMRI

techniques have been proposed to directly probe microstructural characteristics of tissues, such as

cell size, fibre density, and membrane permeability. These direct measures of tissue properties can

be utilized as novel biomarkers to monitor tissue status.

The origin of microscopic dMRI can be referred to the q-space imaging (QSI) by which dMRI

can be utilized to probe the size of microstructures from the PGSE dMRI data (Chapter 2.3.2)

[Callaghan (1993); Cory and Garroway (1990)]. Ong et al. utilized the QSI principle to generate the

mean axon diameter maps of mice’s spinal cords, which were then validated using simulations and

histology [Ong et al. (2008)]. Assaf et al. developed ‘AxCaliber’ to estimate fibre diameter distribu-

tion by fitting the model of restricted and hindered water diffusion in the intra- and extra-axonal

space (Chapter 2.5.1) [Assaf et al. (2004, 2008)]. Ozarslan et al. and Shemesh et al. performed

MSDI experiments by employing a double-pulsed-field-gradient sequence to explore compartment

anisotropy, pore size and shape at microscopic level [Ozarslan and Basser (2008); Ozarslan et al.

(2009); Ozarslan (2009); Shemesh and Cohen (2008); Shemesh et al. (2009a,b, 2010a,b,c)]. Xu

et al. applied an OGSE sequence, which enables DW experiments at a high temporal resolution, to

increase the sensitivity of DW measurements to tissue microstructure [Stepisnik (1993); Xu et al.

(2009a,b)].

The advanced dMRI techniques described above are useful methodologies for imaging mi-

crostructures, however, it is difficult to implement these methods on the current clinical MR

scanners because of the following reasons: Both AxCaliber and QSI require adequate gradient

intensity in order to fulfill the narrow gradient pulse requirement; while OGSE needs high gradient

capability (e.g. strength and slew rate) to increase the sensitivity and resolution of dMRI mea-

surements. Owing to the safety consideration and hardware limitations, a high gradient system

cannot be installed on a clinical MRI system. As for MSDI, although it has the potential to deliver

microscopic information with lower gradient strengths via an angular double PGSE approach, at

98



CHAPTER 6.

Figure 6.1: An example of the MC simulation environment for fibre radius map-

ping. - (Left) The transverse view of the simulation scene, which contained 625 mesh-based

cylinders. For each cylinder, the radius (R) and the length were 4 and 500 µm respectively.

(Right) A zoomed area within the square in the left column, illustrating the diffusing particles

(dark blue) and their motion trajectories (light blue).

the present time MSDI is limited to theoretical descriptions, simulations, and experimental studies

on preclinical MRI systems. In addition, the double-PGSE-based MSDI approach relies on a prior

knowledge on fibre orientations that are actually unknown for most of the neuronal pathways.

An alternative MSDI method utilizes a bipolar double-pulsed-field-gradient sequence, by which the

pore size and shape of randomly oriented porous media can be accurately estimated [Shemesh et al.

(2010a)]. However, this pulse sequence generally needs to increase the number of averaging in order

to compensate the low SNR caused by a very long TE. Thus, it is not suitable for clinical appli-

cation where the scan time has to be taken into account. Furthermore, the MSDI pulse sequences

are not available on the modern MRI scanners since they are not yet commercial packages.

Alexander developed an optimization framework for dMRI experimental design on a conven-

tional PGSE pulse sequence, which allows in vivo estimate of fibre diameter and density without a

prior knowledge on fibre orientations [Alexander (2008); Alexander et al. (2010)]. The method is

able to effectively create the optimal dMRI protocols for measuring the cellular sizes or fibre radii

found in the human brains, nevertheless the difficulties still remain for clinical examinations in two

aspects. Firstly, the optimized imaging strategy is generated for a specific fibre radius, whereas the

WM of human brain covers a range of fibre diameter approximately from 1 to 10 µm; secondly, a

high gradient intensity (at least 70 mT/m) is essential for accurate estimation of small fibre radii,

while common clinical MR scanners are equipped with a standard gradient system that has a max-

imum amplitude of 40 mT/m. Accordingly, the purpose of this study is to assess the possibility

of mapping fibre radii using standard clinical MRI scanners with the constraints on the gradient
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system capabilities, as well as to investigate the impact of dMRI parameters. Based on DMS, we

make efforts to translate the method of direct microstructure mapping to clinically feasible MRI

systems, respecting the hardware and safety constraints. The procedure for evaluation is as fol-

lowing, and the details are described in the Methods session: (a) DMS Monte Carlo simulations:

We performed large-scale Monte Carlo simulations of Brownian dynamics of water molecules in

3D spaces that contained axonal fibres with various sizes. (b) Clinical diffusion imaging protocols:

Based on a single PGSE pulse sequence, we designed a series of dMRI protocols conformed to

the capabilities of clinical MR systems. (c) DMS MR signal syntheses: A step-by-step MR signal

synthesizer was utilized to generate DW signal, which was determined by the trajectory of water

diffusion in (a) and the sequence parameters in (b). (d) Model parameter estimation: We applied

the method described in [Alexander (2008)] to extract tissue microstructural characteristics from

the synthetic DW datasets in (c).

6.2 Methods

6.2.1 DMS: Monte Carlo Simulations

Random walk MC simulations were performed using DMS to simulate 3D water diffusion in a cubic

network of straight parallel impermeable fibres constructed by mesh-based cylinders. We created

four simulation environments with the same intracellular fraction (fi = 0.74), and each of them

contains 25×25 fibres with a specific radius R (= 1/2/4/6 µm). Fig. 6.1 illustrates an example

of the virtual WM tissue and the corresponding MC simulation. Each simulation run employed

Np = 105 and NI = 104 iterations to produce a system complexity of 109, which ensured the

reliability of the synthetic dMRI signal [Alexander (2008); Hall and Alexander (2009); Alexander

et al. (2010)]. A constant diffusivity D of 2×10−3 mm2/s was assumed to be equivalent in the

intra- and extra-axonal space, and a simulation time step ts of 10 µs was chosen to give a suitable

RMS distance (r) of 0.32 µm.

6.2.2 Clinical Diffusion MRI Protocols

Table 6.1 summarizes a set of simulated PGSE dMRI protocols created to comply with the capa-

bilities of the standard clinical gradient system. To remain a clinically acceptable scan time within

half an hour, each protocol contained 120 DW acquisitions with different M and N combinations,

where M was the number of q-space sampling shells and N was the number of DW gradient orienta-
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Table 6.1: The design of simulated clinical dMRI protocols. (M : the number of q-space

sampling shells; N : the number of diffusion gradient orientations per shell.)

tions per shell. We utilized a pair of trapezoidal waveforms to model DW gradients with amplitude

(G) and slew rate being fixed at 40 mT/m and 200 T/m/s respectively. The DW gradient pulse

duration (δ) and separation (∆) were varied simultaneously to keep a constant effective diffusion

time ∆e of 50 ms so as to reach adequate diffusion sensitizing factors (i.e. b-values) for short δs.

Note that all of the b-values employed in this study were all clinically achievable. In each imaging

protocol, the echo time (TE) was determined by the maximum δ and its corresponding ∆. TE was

fixed within an imaging protocol in order to avoid the dependence on the precise knowledge of T2

[Alexander (2008)]. A T2 of 70 ms typically found in WM at a 3T MR scanner was used. Fig. 6.2

is an example of the designed dMRI protocol illustrating the PGSE pulse sequence diagrams.

6.2.3 DMS: MR Signal Syntheses

Synthetic DW signal (S) is computed by performing the numerical integration using the following

equation:

S = S0exp

(
−TE
T2

) ∣∣∣∣∣∣
Np∑
p=1

exp(jφp) + η

∣∣∣∣∣∣ (6.1)

Comparing to Eq. (3.5), Eq. (6.1) takes into account the T2-decay, and φp is the accumulated phase

of the p-th particle calculated via a step-by-step spin phase integrator as follows:

φ = γ

NTE∑
i=0

α~G(ti) · ~R(ti)ts (6.2)

In Eq. (6.2), α is +1 before and -1 after the refocusing radiofrequency pulse for a single PGSE

pulse sequence. For a given time point ti, where ti = i × ts, ~G(ti) is the gradient vector derived

from the imaging protocol; and ~R(ti) is the particle’s spatial position obtained from its diffusion

trajectory (see Chapter 3.4 for references).
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Figure 6.2: An example of the designed dMRI protocol. - The figure illustrates

the pulse sequences of Protocol 3 in Table 6.1, where ‘rf90’ and ‘rf180’ are the excitation

and refocusing radiofrequency pulses respectively.Protocol 3 contained three q-space sampling

shells (M = 3) and each shell had 40 DW orientations (N = 40). For each PGSE sequence,

both ∆e and TE were fixed, and thus ∆ increased simultaneously while a greater δ was used,

which produced a larger b-value as well (from top to bottom).

6.2.4 Model Parameter Estimation

Parameter estimation was performed using the Markov Chain Monte Carlo (MCMC) method im-

plemented with a Rician noise model to sample the posterior distribution of model parameters

[Alexander (2008); Alexander et al. (2010)]. As described in [Alexander (2008)], the dependent

parameters of the simple axon model were the volume fraction of the intracellular space (i.e. fi),

the fibre radius and orientation, and the axial (D‖) and transverse (D⊥) apparent diffusion co-

efficient. We first analyzed the synthetic dMRI datasets using DT reconstruction [Basser et al.

(1994b)], from which the initial estimates for fi, D‖, and D⊥ were obtained. Note that fi related

to the axon density and was initialized to the FA defined as the normalized standard deviation

of the eigenvalues calculated from the DT model (Eq. (2.27)) [Basser and Pierpaoli (1996)]. The

fibre direction (along z-axis) and radius (R) were initialized to the ground-truth values given in

the MC simulations. Rician noise was added to the DW signal taking into consideration for the

effect of varying TE between the protocols. The SNR was 50 on the null DW signal (i.e. G = 0)

at the longest TE of 86.5 ms. In the procedure of MCMC, the burn-in period, sampling interval,
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Table 6.2: Mean ± standard deviations of the posterior distributions on R for the corre-

sponding dMRI protocol.

and sampling count were 105, 103, and 102 respectively. The MCMC was repeated for 10 times to

collect 103 samples.

6.3 Results

6.3.1 Fibre Radius Estimates

Fig. 6.3 shows the histograms of R estimates derived from the posterior distribution for each true

radius R, and Table 6.2 summarizes the mean and standard deviation (σ) of the distributions

for each case. Overall, all of the protocols accurately estimated large radii (R = 4 and 6 µm) but

produced bias for small radii, especially for R =1 µm; nevertheless, the fibres can be still recognized

as a small size.

6.3.2 Effect of b-value

For M = 3 (i.e. Protocol 1, 2, and 3), a consistent decrease in σ was observed from Protocol 1 to

Protocol 3. The results showed that the precision of R estimate was better at high q- or b-values.

A similar finding was observed for M = 4: σ tended to decrease from Protocol 4 that covered low

b-value range to Protocol 6 that utilized high b-values. Likewise for M = 5, Protocol 8 produced

a finer precision (i.e. lower σ) than Protocol 7.

6.3.3 Effect of q-space Sampling Shells

To study the impact of the number of q-space sampling shells (M), we compared the results between

Protocol 3 (M = 3), 6 (M = 4), 8 (M = 5), and 9 (M = 6), as each of them had the highest

precision on R estimate for the corresponding M according to our results above. There were no
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Figure 6.3: Histograms of samples obtained from the MCMC posterior distribu-

tions on R. - (Red/green/blue/black: R = 1/2/4/6 µm).

significant differences between Protocol 3, 6, and 8; all of them showed less overlapping for small

radii estimation (R = 1 and 2 µm) and produced sharper distribution for larger radii. Protocol

9 could estimate large radii (R = 4 and 6 µm) but failed to distinguish small radii (R = 1 and 2

µm) and produced larger deviations.

6.4 Discussion

The microscopic dMRI technique provides valuable measures directly associated with

tissue characteristics. Before applying to a clinical MRI system and acquiring human brain data,

this chapter, based on computer simulations, was dedicated to investigate the potential of mi-
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croscopic dMRI for the clinical application. We utilized a simulation approach since it provided

insights into the mechanisms affecting the signal generation, which we may not be able to appre-

ciate by simply analyzing the real MR data. In addition, simulations allowed us to assess and

adapt pulse sequence parameters for understanding their impact on the microscopic imaging. As

the DMS enabled us to generate various DW imaging protocols for synthesizing dMRI datasets,

we put efforts to design a set of PGSE pulse sequences complied with the capacity of the stan-

dard clinical MR scanners in order to translate the methods of direct microstructure estimates to

clinically feasible systems.

In the work of [Alexander (2008)], cares have been taken to generate optimal experimental

protocols through a mathematical framework minimizing the variance on the parameter estimates

for the gradient systems capable of delivering up to 70 mT/m or 200 mT/m. In this study, we

designed dMRI respecting the limits of acquisition time, the hardware and safety constraints. First,

we kept the maximal gradient strength at 40 mT/m, a standard clinically imposed limit. Second,

the purpose of keeping ∆e at 50 ms was not only to boost the diffusion weighting (reflected in the

b-values), but also to approach the time scale where even the sparser restrictions (i.e. for the larger

cells) could be sensed by the overall ensemble of diffusing particles. Taking these two conditions

together, we proposed a set of PGSE protocols achievable within a clinically acceptable time of

around 30 minutes. Although the variance of the estimates deviated somewhat from its optimal

value, this study helped us to investigate the impact of each sequence parameter on fibre radius

estimation.

Synthetic DW signal can be derived from an analytical or a numerical model. As shown in

[Alexander (2008)], simulated DW signal was generated using an analytical expression for the

two-compartment system (i.e. the bi-Gaussian mixture model) [Niendorf et al. (1996); Clark and

Bihan (2000); Maier et al. (2004)], and the same model was implemented to sample the posterior

distributions on the parameter estimates. In this study, we replaced the dMRI signal generation

by a step-by-step signal synthesizer based on random walk MC simulations. Even though in the

limit of a very large number of particles (105 in our case) and of the Gaussian phase approximation

[Balinov et al. (1993)], the differences between the signals generated by the two techniques should

be negligible. Nevertheless, the random walk technique decoupled the signal generation part from

the signal estimation part. Thus, it should cancel any possible bias in the consequent MCMC

sampling on the parameter posterior distribution. Furthermore, any potential deviations from the

aforementioned statistical limits were taken into account.

In this study, we simulated a simple WM model using a single axonal size with a non-

exchangeable cell membrane. Further works are in the process of simulating more realistic WM
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fibres of human brains, such as in the presence of cell size distribution. Moreover, Zhang et al. have

showed the effect of fibre orientation dispersion may not be negligible as it will lead to an overes-

timation of the cell size [Zhang et al. (2011)]. Axonal membrane permeability should also have a

minor influence on mapping WM fibre diameter, although the exchange rate has been proposed to

be much slower in myelinated fibres [Quirk et al. (2003)]. In addition, according to the study in the

previous chapter (Chapter 5), we have shown that a long diffusion gradient pulse duration (i.e. a

finite δ) may limit the resolution of fibre radius mapping, whereas the δ-effect did not seem to be

evident in the results presented in this chapter. This may be due to that the T2 signal attenuation

had dominated impact over the δ effect in our simulations, however it requires further clarifications

in the future.

According to our simulation results, we observed that b-value was a determinant for the fiber

radius estimation. This finding was consistent with the b-values derived from an optimization

procedure as demonstrated in [Alexander (2008); Alexander et al. (2010)], where the minimal b-

value was 500 s/mm2. Moreover, we found that introducing low b-values spread out the posterior

distribution of MCMC samples. This may be due to that lower b-values enhanced the sensitization

towards rapidly diffusing populations and thus, decreased the precision on more slowly moving

spins for encoding the size of restrictions. In summary, based on the diffusion signal synthesizer

of DMS and an MCMC sampler, we concluded the following: contrary to the scheme underpinned

by the equidistant strategy over a large range of q-values [Hansen and Vestergaard-Poulsen (2006);

Vestergaard-Poulsen et al. (2007)], sampling moderate to high q- or b-values may be more efficient.

6.5 Conclusion

Within a clinical acceptable acquisition time of 30 minutes, our simulation results

showed that using three or four shells with moderate to high b-values was able to deliver the

microstructure information using a clinical MR scanner. This study comprises the algorithmic

and experimental development, and we believe that the results may advance significantly clinical

applications of microscopic dMRI as well as translate the quest for disease biomarkers directly to

the clinical practice.
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7.1 Summary of Contributions

This section summarizes the achievements of this thesis, which mainly fall into two

areas:

I. Methodological Contributions - This thesis has presented a new simulation framework, Dif-

fusion Microscopist Simulator, which is adaptable to study various dMRI research topics

(Chapter 3).

II. Experimental Contributions - The performance and validity of DMS have been verified

through several benchmark experiments (Chapter 4). Based on DMS simulations, this thesis

has two major application contributions. In Chapter 5, we have validated that current prac-

tice of using long δ is actually beneficial for mapping fibre orientations, even though it does

not satisfy the underlying assumption made in the q-space theory. In Chapter 6, we have

demonstrated that the microscopic dMRI has the potential to estimate axon radius using a

clinical MRI system.

7.2
Discussion on Future Works

This section summarizes the possible extension of DMS and recommendations for

future works.

7.2.1 Methodological Aspect

The first generation of DMS is already suitable for various applications, as demonstrated by our

benchmark experiments in Chapter 4 and research applications in Chapters 5 & 6. Owing to its

framework design, future extension of DMS is straightforward. The following are the ideas of

technical improvement for DMS:

I. 3D Mesh-based Reconstruction of Histological Images - The most difficult task in MC

simulations of dMRI is likely to be the construction of a 3D simulation scene that is compa-

rable to a biological environment. Neural tissues, for instance, contain different types of cells

with diverse sizes and shapes, such as glial cells, astrocytes, neuron bodies, axons, dendrites,

etc. Even for the WM fibres, tissue components such as cell nucleus, microfilament, micro-

tubule, or myelin sheath are often ignored in dMRI simulations owing to their complexity.

Mathematically modeling each cell type is not practical as the analytical expression for com-

plicated geometries may not exist. In addition, since cells are tightly packed together, i.e. the

space between cells are extremely narrow (at a nanometric scale), it is a great challenge to
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represent those configurations in 3D.

The first generation of DMS can create various axon fibre configurations. The cross section of

an axon can be arbitrary shape and the axonal projection can be any curve in 3D. Therefore,

it is feasible to construct different axon conditions, such as axon beading [Budde and Frank

(2010)] or degeneration [Landman et al. (2010)] model. A network of axons, i.e. fibre bundles,

can be built by providing network coordinates, and thus DMS is able to create complex fibre

bundles such as crossing, kissing, and branching fibres, as demonstrated in Chapter 4.5. For

neuronal cells, however, it is much more difficult to construct randomly distributed but highly

compact cells. We are currently in the process of programming a fully automatic algorithm

to generate 3D meshes without overlapping in order to perform MC simulations in more

complicated neural media, such as those present in brain gray matter.

Another task in progress to build a realistic scene of biological tissue is to directly reconstruct

via 3D rendering of binary images scanned from a biological sample, for instance, using elec-

tron microscopy. An example is provided by Panagiotaki et al., who succeeded to construct

the tissue samples from confocal microscopy images [Panagiotaki et al. (2010)]. A poten-

tial technical difficulty of this approach comes from that the histological image is quite thin

(∼tens nm) comparing to a reasonable spatial dimension for MC simulations (∼hundreds

µm), and therefore it requires more than thousands of histological images which is a huge

amount of works for the preparation. The possible solution to this issue is to only model and

store a certain number of basic cell types from a small number of histological images. If it

is feasible to assume that the distribution of cell types is homogeneous for a specific brain

region, then we may fill the MC simulation space by repeatedly placing those basic cellular

structures via the automatic positioning algorithm described above.

II. Adaptive Spatial Subvolume - The spatial partition algorithm dividing the global space

into the spatial subvolumes has been implemented in DMS in order to increase the computing

speed. The algorithm uses a fine grid of the size Nx ×Ny ×Nz decided by the user, without

any consideration of the density of polygon meshes. In the future, an adaptive partition

algorithm will be developed by taking the polygons’ distribution into account. It means that

a finer grid will be further applied to split the local subvolumes containing more polygons.

Likewise, for those containing fewer or no polygons will be merged with the neighboring

subvolumes. We expect that it will be helpful to increase the efficiency as well as to save the

memory consumption for the MC simulation.

III. Molecular Interactions - In physics, the origin of diffusion mixing comes from the collisions
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between molecules in liquids or gases. DMS is possible to model such particle-to-particle

(molecule-to-molecule) interaction. For this case, each diffusing particle will update its spatial

location following a series of interactions with the surrounding particles and membranes. A

specific spatial subvolumes can be also constructed to record particle’s locations so as to

process interactions with the neighboring particles.

A practical issue to implement the molecular interaction is that each particle is no longer an

independent object, and thus parallel processing via multi-threading or distribution on a grid

may not be carried out. Thus, it will result in a remarkable increase of the MC simulation

time.

IV. MRI Simulator - Stöcker et al. have presented a MRI simulator that integrates with the

Bloch equation-based model of a spin system, which considers the influence of the off-

resonance effects, parallel receive and transmit, nonlinear gradient fields, and spatiotemporal

parameter variations at different levels to reflect modern MRI systems [Stöcker et al. (2010)].

The MRI simulator is highly useful in many aspects, such as for the development of new

pulse sequences, the design of radiofrequency pulses, and the modeling of the MRI artifacts,

etc. However, their simulator does not take the diffusion term into consideration.

The current DMS simulates the dMRI echo signal by modeling the net dephasing caused by

water diffusion. In the future, DMS will be extended to model tissue properties including the

spin-lattice (T1) and spin-spin (T2) relaxation times, which can be assigned to each tissue

components according to their properties. The synthesis of overall MRI signal will combine

with the Bloch-Torrey equation to model the spin system (Eq. 2.11). This will enable us to

simulate and program, for instance, the new dMRI pulse sequences (e.g. MSDI and OGSE

methods) as well as the k-space readout strategies (e.g. segmented echo planar imaging) to

improve diffusion imaging. In addition, the artifacts that appear in the practical MR images,

such as the eddy current, cross-term effects, or magnetic field (i.e. B0) inhomogeneities can

be modeled in order to improve the image quality. The MRI simulator would also be helpful

to understand the spin’s behavior and to design imaging strategy on the ultra-high field MRI

system.

V. GPU-based Computation - An inherent drawback of MC simulation methods to the analy-

ses of dMRI experiments is that a great number of diffusing particles and simulation iteration

count (i.e. Np and NI) are necessary to reduce the statistical errors. Hall and Alexander [Hall

and Alexander (2009)] have proposed that, for a basic dMRI MC simulation of human WM

fibres, typically the simulation complexity (= Np × NI) has to be greater than 108, for in-
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stance, using Np = 105 and NI = 103. For dMRI simulations in biological microstructures,

the simulation time step (i.e. ts) has to be small enough to produce a RMS distance associ-

ated with tissue’s geometry. For the simulation of a cell membrane’s properties, for example,

the layer thickness of polar membrane interface is at nanometric scale [Le Bihan (2007)],

which requires a much smaller ts so as to reach adequate temporal resolution and prevent

from the jump RMS distance effect [Regan and Kuchel (2000)]. However, typical dMRI sim-

ulation timescales often span tens to hundreds of milliseconds, it results in a great increase

in NI (= NTE/ts for DMS). For those cases, a computer equipped with a high computing

performance facility is necessary to yield a reasonable simulation time.

Another approach that is possible to improve the computing efficiency for DMS algorithms is

to use graphics processing unit (GPU), which is particularly appropriate for parallel compu-

tations. The parallel structure of GPUs makes them more efficient than the general-purpose

CPUs for algorithms where large blocks of data are processed in parallel. Modern GPUs

enable several hundreds of threads to be launched simultaneously, and thus the computing

speed of GPU accelerated simulations can be considerably increased. A recent study has

demonstrated that the MC simulation of dMRI PGSE experiments may be accelerated by

up to three orders of magnitude [Waudby and Christodoulou (2011)]. Furthermore, impor-

tantly, the hardware (i.e. the video card) is easily available to install on desktop computers

and laptops. I expect that if DMS supports the GPU-based calculation in the future, it will

be helpful in several aspects as well as advance its usage.

7.2.2 Experimental and Application Aspect

I. Correlation Between Simulations and Experiments - The simulation method is usually

challenged by its intrinsic systematic bias due to the imperfect modeling of realistic con-

ditions. Compared to actual experiments, simulations are often considered as a simplified

system. So why is MC simulation important for diffusion MRI? MC simulation framework

is able to provide the details regarding particles’ motion as function of time. Thus, DMS

can be used to address specific question about the properties of a model system and parame-

ters, often more straightforwardly than experiments on the actual system. For many aspects

of biophysical mechanism, it is these details that are of interest (for instance, what is the

impact of cellular permeability on dMRI measures? Likewise, is it possible to measure the

membrane permeability by dMRI?). Of course, experiments play an essential role in validat-

ing the simulation methodology: comparisons of simulation and experimental data serve to
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test the accuracy of the results and to provide criteria for improving the modeling and the

methodology.

A significant aspect of simulation is that the features (e.g. cell membrane’s shape and prop-

erty) are completely under the control of users, so that the role of specific property can be

examined by altering its attribute. In dMRI, tissue modeling is the task of intensively research

in order to clarify the relationship between MRI signal and tissue microscopic characteris-

tics. Budde and Frank provide an excellent example of how simulations and experiments can

be complementary tools to study the impact of tissue property [Budde and Frank (2010)].

They constructed a biophysical model for beading axonal membranes, which was validated

by the histological evidence of biological nerve fibres, thus highlighting the significant impact

of morphological variations of axons on ADC. In their study, the role of simulation offers

the flexibility to adjust the magnitude of morphological variations of the axonal membranes,

while the role of dMRI experiment verifies the phenomenon in realistic biological conditions.

In the future, DMS will be further applied to investigate different tissue characteristics under

healthy and pathological states via cross validation between simulations and experiments.

This also reflects the benefit and the need of 3D rendering of histological images for the

reconstruction of tissue configuration, as described in the previous section (Chapter 7.2.1).

Although DMS simulations were mostly applied to simulate the tissues in the CNS system,

DMS has the potential to be broadly applied to different MRI research fields such as diffusion

in the porous media [Shemesh et al. (2010a)], the acinar tree of lung [Perez-Sanchez et al.

(2009)], etc.

II. Microscopic Diffusion MRI - In recent years, dMRI has had a variety of applications es-

pecially for the brain research, however, for the methodological aspect, the analysis of dMRI

data seems to approach to a bottleneck in terms of delivering new information about tissue

properties. The microscopic dMRI has become a field of interest recently because of its ca-

pability of providing the quantities directly associated with tissue characteristics rather than

a depiction of tissue-related diffusion behavior given by the current dMRI methods.

One of the main purposes of DMS is to help invent and improve the dMRI methodology,

as well as to translate the microscopic dMRI methods onto the human MRI systems. The

advantage of DMS is that it is able to simulate a variety of MRI pulse sequences and param-

eters. In our benchmark experiments described in Chapter 4, we have already demonstrated

that DMS is versatile to simulate different kinds of microscopic dMRI methods (i.e. q-space

imaging based on the single PGSE, double PGSE sequences, and the temporal diffusion spec-
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troscopy based on the OGSE sequence). DMS is also a useful tool for the active imaging

paradigm (Chapter 2.5.4) [Alexander (2008)], since it can be applied to synthesize dMRI

data to evaluate the results of experimental design (e.g. the optimized gradient waveform for

the purpose of fibre diameter mapping [Drobnjak et al. (2010)]).

III. Biophysical Model of Diffusion - Novikov et al. have published a series of excellent ar-

ticles concerning the influence of medium and barriers on water diffusion via theoretical

descriptions and 2D simulations [Novikov and Kiselev (2010); Novikov et al. (2011)]. They

explain the relationship between the diffusion transport and the effect of permeable barriers,

which can be applied to a biological system to quantify the cell membrane permeability and

the surface area. These studies are of great help to understand the fundamental diffusion

physics in biological tissues. In the future, we will apply DMS to simulate 3D water diffusion

in biological systems of various properties, in order to understand the features measured by

dMRI. Indeed, the most constructive outcome of Diffusion Microscopist Simulator would be

its potential to investigate the biophysical mechanisms from the microscopic point of view.

Obviously, numerous questions remain without answers yet, nevertheless, the prospect of

clarifying the interrelationship between dMRI and the microscopic characteristics of brain

tissue is likely to be achievable in the future.
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Comptes-Rendus de l’ Académie des Sciences 301(15), 1109–12. [13]

Le Bihan, D., E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet: 1986, ‘MR imaging of
intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders’. Radiology
161(2), 401–7. [xv, xvi, xvii, 4, 5, 13, 19, 20, 36, 37]

Le Bihan, D., S. Urayama, T. Aso, T. Hanakawa, and H. Fukuyama: 2006, ‘Direct and fast detection of
neuronal activation in the human brain with diffusion MRI’. Proc Natl Acad Sci USA 103(21), 8263–8.
[xvi, 4, 29, 31, 62]

Lin, C. P., W. Y. Tseng, H. C. Cheng, and J. H. Chen: 2001, ‘Validation of diffusion tensor magnetic
resonance axonal fiber imaging with registered manganese-enhanced optic tracts’. NeuroImage 14(5),
1035–47. [72]

Lin, C.-P., V. J. Wedeen, J.-H. Chen, C. Yao, and W.-Y. I. Tseng: 2003, ‘Validation of diffusion spec-
trum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms’.
NeuroImage 19(3), 482–95. [22, 72, 79, 94]

Lipinski, H. G.: 1990, ‘Monte Carlo simulation of extracellular diffusion in brain tissues’. Phys Med Biol
35(3), 441–7. [xviii, xix, 37, 38]

Lori, N. F., T. E. Conturo, and D. L. Bihan: 2003, ‘Definition of displacement probability and diffusion
time in q-space magnetic resonance measurements that use finite-duration diffusion-encoding gradients’.
J Magn Reson 165(2), 185–95. [78]

121



BIBLIOGRAPHY

Maier, S. E., S. Vajapeyam, H. Mamata, C.-F. Westin, F. A. Jolesz, and R. V. Mulkern: 2004, ‘Biexpo-
nential diffusion tensor analysis of human brain diffusion data’. Magn Reson Med 51(2), 321–30. [30,
105]

Mansfield, P.: 1977, ‘Multi-planar image formation using NMR spin echoes’. J Phys C 10, 55–58. [13]

Miller, K. L., D. P. Bulte, H. Devlin, M. D. Robson, R. G. Wise, M. W. Woolrich, P. Jezzard, and T. E. J.
Behrens: 2007, ‘Evidence for a vascular contribution to diffusion FMRI at high b value’. Proc Natl Acad
Sci USA 104(52), 20967–72. [xvii, 37]

Mitra, P. P.: 1995, ‘Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion
measurement’. Physical Review B 51(21), 15074–15078. [26]

Mitra, P. P. and B. I. Halperin: 1995, ‘Effects of finite gradient-pulse widths in pulsed-field-gradient
diffusion measurements’. J Magn Reson A 113, 94–101. [xxiv, 78, 79, 80, 94]

Mori, S., B. J. Crain, V. P. Chacko, and P. C. van Zijl: 1999, ‘Three-dimensional tracking of axonal
projections in the brain by magnetic resonance imaging’. Ann Neurol 45(2), 265–9. [xvi, 4]

Mori, S. and P. C. M. van Zijl: 2002, ‘Fiber tracking: principles and strategies - a technical review’. NMR
Biomed. 15(7-8), 468–80. [24, 78]

Moseley, M., J. Kucharczyk, H. Asgari, and D. Norman: 1991, ‘Anisotropy in diffusion-weighted MRI’.
Magn Reson Med 19, 321–26. [20]

Moseley, M. E., Y. Cohen, J. Mintorovitch, L. Chileuitt, H. Shimizu, J. Kucharczyk, M. F. Wendland, and
P. R. Weinstein: 1990a, ‘Early detection of regional cerebral ischemia in cats: comparison of diffusion-
and T2-weighted MRI and spectroscopy’. Magn Reson Med 14(2), 330–46. [13, 20]

Moseley, M. E., J. Kucharczyk, J. Mintorovitch, Y. Cohen, J. Kurhanewicz, N. Derugin, H. Asgari, and
D. Norman: 1990b, ‘Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and
magnetic susceptibility-enhanced MR imaging in cats’. AJNR Am J Neuroradiol 11(3), 423–9. [20, 62]

Neeman, M., J. P. Freyer, and L. O. Sillerud: 1991, ‘A simple method for obtaining cross-term-free images
for diffusion anisotropy studies in NMR microimaging’. Magn Reson Med 21(1), 138–143. [83, 84]

Nicholson, C. and J. Phillips: 1981, ‘Ion diffusion modified by tortuosity and volume fraction in the
extracellular micorenvrionment of the rat cerebellum’. J Physiol 321, 225–57. [xvi, 36]

Niendorf, T., R. M. Dijkhuizen, D. G. Norris, M. van Lookeren Campagne, and K. Nicolay: 1996, ‘Bi-
exponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted
imaging’. Magn Reson Med 36(6), 847–57. [30, 105]

Nilsson, M., E. Alerstam, R. Wirestam, F. Staohlberg, S. Brockstedt, and J. Latt: 2010, ‘Evaluating the
accuracy and precision of a two-compartment Kärger model using Monte Carlo simulations’. J Magn
Reson 206(1), 59–67. [xviii, 37]

Novikov, D. S., E. Fieremans, J. H. Jensen, and J. A. Helpern: 2011, ‘Random walks with barriers’. Nature
physics 7(6), 508–514. [115]

Novikov, D. S. and V. G. Kiselev: 2010, ‘Effective medium theory of a diffusion-weighted signal’. NMR
Biomed. 23(7), 682–97. [115]

Novikov, E. G., D. van Dusschoten, and H. V. As: 1998, ‘Modeling of self-diffusion and relaxation time
NMR in multi-compartment systems’. J Magn Reson 135(2), 522–8. [xvii, 37]

Ogawa, S., T. Lee, A. R. Kay, and D. W. Tank: 1990, ‘Brain magnetic resonance imaging with contrast
dependent on blood oxygenation’. Proc Natl Acad Sci USA 87, 9868–72. [29]

Ong, H. H., A. C. Wright, S. L. Wehrli, A. Souza, E. D. Schwartz, S. N. Hwang, and F. W. Wehrli: 2008,
‘Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging:
simulation and experimental studies’. NeuroImage 40(4), 1619–32. [78, 98]

Ozarslan, E.: 2009, ‘Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR’.
J Magn Reson 199(1), 56–67. [xxvii, 22, 26, 98]

122



BIBLIOGRAPHY

Ozarslan, E. and P. J. Basser: 2007, ‘MR diffusion - ”diffraction” phenomenon in multi-pulse-field-gradient
experiments’. J Magn Reson 188(2), 285–94. [26, 56]

Ozarslan, E. and P. J. Basser: 2008, ‘Microscopic anisotropy revealed by NMR double pulsed field gradient
experiments with arbitrary timing parameters’. J Chem Phys 128(15), 154511. [xxvii, 26, 56, 98]

Ozarslan, E., N. Shemesh, and P. J. Basser: 2009, ‘A general framework to quantify the effect of restricted
diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments’. J
Chem Phys 130(10), 104702. [xxvii, 26, 98]

Ozarslan, E., T. M. Shepherd, B. C. Vemuri, S. J. Blackband, and T. H. Mareci: 2006, ‘Resolution of
complex tissue microarchitecture using the diffusion orientation transform (DOT)’. NeuroImage 31(3),
1086–103. [79]

Panagiotaki, E., M. Hall, H. Zhang, B. Siow, M. Lythgoe, and D. Alexander: 2010, ‘High-fidelity meshes
from tissue samples for diffusion MRI simulations’. Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2010 pp. 404–411. [111]

Parsons, E., M. Does, and J. Gore: 2003, ‘Modified oscillating gradient pulses for direct sampling of the
diffusion spectrum suitable for imaging sequences’. Magnetic resonance imaging 21(3-4), 279–285. [28]

Peled, S.: 2007, ‘New perspectives on the sources of white matter DTI signal’. IEEE Trans Med Imaging
26(11), 1448–55. [xvii, xviii, 37]

Peled, S., D. Cory, S. Raymond, D. Kirschner, and F. Jolesz: 1999, ‘Water diffusion, T2, and compart-
mentation in frog sciatic nerve’. Magn Reson Med 42(5), 911–918. [30]

Perez-Sanchez, J. M., I. Rodriguez, and J. Ruiz-Cabello: 2009, ‘Random Walk Simulation of the MRI
Apparent Diffusion Coefficient in a Geometrical Model of the Acinar Tree’. Biophysj 97(2), 656–664.
[114]

Perrin, M., C. Poupon, Y. Cointepas, B. Rieul, N. Golestani, C. Pallier, D. Rivière, A. Constantinesco, D. L.
Bihan, and J. F. Mangin: 2005a, ‘Fiber tracking in q-ball fields using regularized particle trajectories’.
Inf Process Med Imaging 19, 52–63. [68]

Perrin, M., C. Poupon, B. Rieul, P. Leroux, A. Constantinesco, J.-F. Mangin, and D. Lebihan: 2005b,
‘Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner’. Philos Trans
R Soc Lond, B, Biol Sci 360(1457), 881–91. [72]

Poupon, C., C. A. Clark, V. Frouin, J. Régis, I. Bloch, D. L. Bihan, and J. Mangin: 2000, ‘Regularization
of diffusion-based direction maps for the tracking of brain white matter fascicles’. NeuroImage 12(2),
184–95. [xvi, 4, 68]

Poupon, C., B. Rieul, I. Kezele, M. Perrin, F. Poupon, and J.-F. Mangin: 2008, ‘New diffusion phantoms
dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models’.
Magn Reson Med 60(6), 1276–83. [72]

Price, W.: 1997, ‘Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational
diffusion: Part 1. Basic theory’. Concepts Magn Reson 9(5), 299–336. [16]

Purcell, E., H. Torrey, and R. Pound: 1946, ‘Resonance absorption by nuclear magnetic moments in a
solid’. Physical Review 69, 37. [12]

Quirk, J. D., G. L. Bretthorst, T. Q. Duong, A. Z. Snyder, C. S. Springer, J. J. H. Ackerman, and J. J.
Neil: 2003, ‘Equilibrium water exchange between the intra- and extracellular spaces of mammalian
brain’. Magn Reson Med 50(3), 493–9. [26, 92, 106]

Regan, D. G. and P. W. Kuchel: 2000, ‘Mean residence time of molecules diffusing in a cell bounded by
a semi-permeable membrane: Monte Carlo simulations and an expression relating membrane transition
probability to permeability’. Eur Biophys J 29(3), 221–7. [113]

Regan, D. G. and P. W. Kuchel: 2002, ‘Simulations of molecular diffusion in lattices of cells: insights for
NMR of red blood cells’. Biophysical Journal 83(1), 161–71. [63]

123



BIBLIOGRAPHY

Schwarcz, A., P. Bogner, P. Meric, J.-L. Correze, Z. Berente, J. Pál, F. Gallyas, T. Doczi, B. Gillet, and J.-
C. Beloeil: 2004, ‘The existence of biexponential signal decay in magnetic resonance diffusion-weighted
imaging appears to be independent of compartmentalization’. Magn Reson Med 51(2), 278–85. [xvii,
37]

Seunarine, K. K. and D. C. Alexander: 2009, Multiple fibers: beyond the diffusion tensor. In Diffusion
MRI: from quantitative measurement to in vivo neuroanatomy (Editors: Timothy E J Behrens and H
Johansen-Berg). 55-72. Elsevier. [22]

Shemesh, N. and Y. Cohen: 2008, ‘The effect of experimental parameters on the signal decay in double-
PGSE experiments: Negative diffractions and enhancement of structural information’. J Magn Reson
195(2), 153–161. [xxvii, 98]

Shemesh, N., E. Ozarslan, T. Adiri, P. J. Basser, and Y. Cohen: 2010a, ‘Noninvasive bipolar double-
pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented,
inhomogeneous porous media’. J Chem Phys 133(4), 044705. [xxvii, 56, 98, 99, 114]

Shemesh, N., E. Özarslan, A. Bar-Shir, P. J. Basser, and Y. Cohen: 2009a, ‘Observation of restricted
diffusion in the presence of a free diffusion compartment: Single- and double-PFG experiments’. J Magn
Reson 200(2), 214–225. [xxvii, 26, 54, 56, 72, 98]
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