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Abstract

Diffusion magnetic resonance imaging (dIMRI) has made a significant breakthrough in neurological
disorders and brain research thanks to its exquisite sensitivity to tissue cytoarchitecture. How-
ever, as the water diffusion process in neuronal tissues is a complex biophysical phenomena at
molecular scale, it is difficult to infer tissue microscopic characteristics on a voxel scale from dMRI
data. The major methodological contribution of this thesis is the development of an integrated and
generic Monte Carlo simulation framework, ‘Diffusion Microscopist Simulator’ (DMS), which has
the capacity to create 3D biological tissue models of various shapes and properties, as well as to
synthesize dMRI data for a large variety of MRI methods, pulse sequence design and parameters.
DMS aims at bridging the gap between the elementary diffusion processes occurring at a micromet-
ric scale and the resulting diffusion signal measured at millimetric scale, providing better insights
into the features observed in dMRI, as well as offering ground-truth information for optimization
and validation of dMRI acquisition protocols for different applications.

We have verified the performance and validity of DMS through various benchmark experiments,
and applied to address particular research topics in dMRI. Based on DMS, there are two major
application contributions in this thesis. First, we use DMS to investigate the impact of finite diffu-
sion gradient pulse duration () on fibre orientation estimation in dMRI. We propose that current
practice of using long §, which is enforced by the hardware limitation of clinical MRI scanners, is
actually beneficial for mapping fibre orientations, even though it violates the underlying assump-
tion made in g-space theory. Second, we employ DMS to investigate the feasibility of estimating
axon radius using a clinical MRI system. The results suggest that the algorithm for mapping the

direct microstructures is applicable to dMRI data acquired from standard MRI scanners.

Keywords: Diffusion MRI; Monte Carlo simulation; MRI pulse sequence; Tissue model; Microstruc-

ture; Validation;
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Abstract (Francais)

L’imagerie par résonance magnétique de diffusion (IRMd) a fait une percée significative dans les
troubles neurologiques et les recherches sur le cerveau grace a son extraordinaire sensibilité a la
cytoarchitecture des tissus. Cependant, comme le processus de diffusion de I’eau dans les tissus
neuronaux est un phénomene biophysique complexe & 1’échelle moléculaire, il est difficile d’en
déduire les caractéristiques microscopiques des tissus a ’échelle du voxel, a partir des données
d’IRMd. La contribution méthodologique majeure de cette these est le développement d’un cadre
de simulation de type Monte Carlo intégré et générique, appelé ‘Diffusion Microscopist Simulator’
(DMS), qui permet d’élaborer des modeles de tissus biologiques tridimensionnels aux géométries
et propriétés variées et qui permet de synthétiser des données d’TRMd correspondantes pour une
grande variété d’IRM, de séquences d’impulsions et de parametres. L’outil DMS vise a combler le
fossé entre les processus de diffusion élémentaires, qui se produisent a une échelle micrométrique,
et le signal de diffusion résultant, mesuré a ’échelle millimétrique, qui offre un meilleur apergu
des caractéristiques observées dans 'TRMd, tout en offrant une information vérité terrain pour
I’optimisation et la validation des protocoles d’acquisition de 'IRMd pour différentes applications.

Nous avons vérifié les performances et la validité du simulateur a travers différents tests, et appli-
qué cet outil pour aborder des themes de recherche particuliers a 'TIRMd. Il y a deux contributions
majeures dans cette these. Tout d’abord, nous avons utilisé 'outil DMS pour étudier 'impact de
la durée d’impulsions de gradient de diffusion finies (§) sur I'estimation de l'orientation des fibres
par 'IRMd. Nous avons démontré que la pratique actuelle qui utilise un ¢ long, imposée par la
limitation physique des scanners d’IRM cliniques, est en fait bénéfique pour la cartographie des
orientations des fibres, méme si elle viole I’hypothéese sous-jacente faite dans la théorie de ’espace q.
Deuxiemement, nous avons employé le simulateur pour étudier la possibilité d’estimer le rayon des
axones en utilisant un systeme d’IRM clinique. Les résultats suggerent que la technique d’inférence
de la taille des axones reposant sur un modele analytique de la réponse IRM d’un axone au processus

de diffusion est applicable aux données d’TRMd acquises avec des scanners IRM standards.

Mots-clés: IRM de diffusion; Simulation Monte Carlo; Séquence IRM; Modele de tissu; Microstruc-

ture; Validation;
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Résumé

Préface

Pour I’étre humain, I’eau semble statique & 'oeil nu, cependant a 1’échelle microscopique les mo-
lécules d’eau apparaissent en état d’oscillation dynamique. Ce mouvement aléatoire de molécule,
appelé mouvement brownien, fut observé en 1827 par le botaniste Robert Brown a partir de grains
de pollen en suspension dans de I'eau [Brown (1828)]. Il devint alors évident que la diffusion molécu-
laire dans les liquides et les gaz est la conséquence de I’énergie thermique stockée par les molécules
[Einstein (1905)].

Imaginons que nous puissions marquer une molécule d’eau au sein d’un tissu cérébral et garder
la trace de son mouvement du a la diffusion. Nous pourrions alors constater que son parcours épou-
serait la forme de la géométrie des tissus cérébraux. Ceci permet d’appréhender le concept de base
de I'imagerie par résonance magnétique de diffusion (IRMd). Cette technique utilise le déplacement
microscopique naturel des molécules d’eau ayant lieu dans les tissus cérébraux de maniere a obtenir
une cartographique quantitative de parametres de la la microstructure du tissu cérébral. L’TRMd
utilise également les molécules d’eau comme un traceur endogene pouvant mettre en évidence des
détails microscopiques de ’architecture des tissus qu’ils soient sains ou pathologiques.

L’IRM de diffusion est apparue au milieu des années 1980 [Wesbey et al. (1984a,b); Le Bihan
et al. (1986)] et a est devenue au cours des 25 dernieres années un outil IRM incontourable pour
étudier le systéme nerveux central (CNS). Son application clinique est majeure pour le diagnostic
des troubles neurologiques, en particulier pour la prise en charge des patients atteints d’accidents
vasculaires cérébraux ou d’ischémies au stade aigu. L’TRMd est rapidement devenue un standard
pour I’étude des pathologies de la substance blanche (WM) grace a 'imagerie du tenseur de diffusion

(DTI) qui permet de révéler les anomalies structurelles des faisceaux de fibres la constituant,
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mais également grace aux remarquables cartographies de la connectivité cérébrale qu’elle permet
d’obtenir. [Basser et al. (1994a,b); Conturo et al. (1999); Mori et al. (1999); Basser et al. (2000);
Poupon et al. (2000)]. Sa capacité a révéler la connectivité anatomique reliant les différentes aires
du cerveau, de maniere non invasive et a 1’échelle du sujet, est apparue comme une découverte
majeure pour les neurosciences. Plus récemment, il a été démontré que 'IRMd pouvait également
étre utilisée pour établir directement les caractéristiques de la microstructure du cerveau [Alexander
(2008); Assaf et al. (2008)] ainsi que pour détecter les changements des tissus cérébraux associés a

Pactivité neuronale [Le Bihan et al. (2006)].

Motivations & Objectifs

IRM de Diffusion et Microstructure des Tissus - Un Probleme d’Echelle

Le principe de base de I'IRM de diffusion (IRMd) est d’observer les déplacements microscopiques
naturels des molécules d’eau ayant lieu dans les tissus cérébraux. Les molécules d’eau peuvent
alors étre utilisées comme un vecteur permettant de mettre en évidence les détails microscopiques
de I'architecture des tissus sains ou pathologiques. Il faut cependant garder a I'esprit que le signal
global observé a une résolution millimeétrique sur les images IRM résulte de l'intégration statistique
de toutes les distributions de déplacement microscopique des molécules d’eau présentes en chaque
voxel. Les processus complexes de diffusion ayant lieu dans un tissu biologique a I’échelle d’un voxel
sont souvent décrits par une mesure moyenne de leur mobilité: le Coefficient de Diffusion Apparent
(ADC) [Le Bihan et al. (1986)]. L’utilisation de I’ADC global pour représenter le processus de
diffusion permet de représenter les processus physiques ayant lieu a une échelle plus petite que
celle de la méthode d’acquisition. L’échelle la plus grande est imposée par des limites techniques
(par exemple 'TRM) tandis que ’échelle du théatre des processus biophysiques élémentaires est
déterminée par les phénomenes physiques a 1’échelle moléculaire. L’effet de lissage moyen di a
cette mise a 1’échelle nécessite un a priori sur la géométrie membranaire en chaque voxel, ce qui
rend difficile l'interprétation physique directe a partir de ce parametre global a moins que 1’on
puisse faire certaines hypotheses. L’ADC du cerveau est 2 a 10 fois plus petit que celle de 'eau
libre en solution aqueuse [Le Bihan (2003)]. La diminution de la diffusion de 1’eau dans le milieu
intra-cellulaire s’explique souvent par une viscosité importante, I’encombrement moléculaire et les
effets de restriction [Hazlewood et al. (1991)] tandis que 1’on explique la diminution de la diffusion
dans le milieu extra-cellulaire par les effets de tortuosité [Nicholson and Phillips (1981); Chen and

Nicholson (2000)]. L’effet de la diffusion restreinte peut, par exemple, étre évalué en changeant le
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temps de diffusion [Cooper et al. (1974); Latour et al. (1994)]car les déplacements des molécules
sont réduits lorsqu’elles atteignent les limites d’un espace clos. Le coefficient de diffusion décroit
alors artificiellement avec I’augmentation du temps de diffusion. De plus, les membranes des cellules
cérébrales ont tendance & entraver le processus de diffusion de I’eau (c’est la diffusion ’entravée’ par
opposition a la diffusion strictement 'restreinte’), et cela méme si les membranes sont perméables a
I’eau, que ce soit de maniere passive ou par le biais de transporteurs comme les canaux spécifiques
aquaporines tres abondants dans le cerveau [Amiry-Moghaddam and Ottersen (2003)]. Il apparait
clairement que la diffusion de I’eau dans les tissus, et particulierement dans le cerveau, n’est pas
libre et ne peut donc pas étre modélisée par une simple distribution gaussienne [Cohen and Assaf
(2002)]. De plus, ’'ADC ne dépend pas uniquement du coefficient de diffusion de la population de
molécules d’eau présente en chaque voxel mais également de parametres techniques expérimentaux
tels que la taille du voxel, le temps de diffusion ou le degré de sensibilité a la diffusion de 'image
(aussi appelé b-value [Le Bihan et al. (1986)]).

Bien que l'idée de déduire les détails de la microstructure des tissus a partir du signal de 'TIRMd
seul ne soit réalisable qu'uniquement dans des situations tres simples et spécifiques, la relation
entre PADC et les caractéristiques microscopiques spécifiques du tissu est actuellement objet de
recherches intensives. Certains groupes ont essayé de clarifier la maniére dont les caractéristiques
du tissu peut affecter le signal de 'TRMd [Beaulieu (2002); Kroenke and Neil (2004); Schwarcz et al.
(2004); Miller et al. (2007); Peled (2007); Wheeler-Kingshott and Cercignani (2009)]. Il a été proposé
plusieurs modeles théoriques [Stanisz et al. (1997)] dont un, par exemple, basé sur la combinaison
d’un compartiment extra-axonal pour lequel la diffusion serait entravée et d’un compartiment
intra-axonal pour lequel la diffusion serait restreinte [Assaf et al. (2004)]. Plusieurs groupes ont
également souligné I'importance du role de parametres dynamiques, tels que la perméabilité de la
membrane, les échanges aqueux [Kirger et al. (1988); Novikov et al. (1998); Chin et al. (2004)] et
les caractéristiques géométriques, tels que la distribution de la taille des cellules ou la distribution
des directions axonales/dendritiques [Novikov et al. (1998); van der Weerd et al. (2002); Yablonskiy
et al. (2003); Chin et al. (2004)]. II faut cependant garder & lesprit que tous ces modeles distincts
nécessitent de forts a priori sur la structure du tissu qui ne peuvent pas toujours correspondre a

une réalité biologique connue ou inconnue.

Simulations Monte Carlo de I'IRM de Diffusion

Pour déduire la relation entre la microstructure des tissus et le signal de 'IRMd, une autre approche

consiste & s’appuyer sur des simulations de type Monte-Carlo (MC) qui se sont révélées étre un
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outil puissant et flexible pour simuler les processus de diffusion dans un vaste panel de systeémes,
en particulier lorsque des solutions analytiques ne peuvent étre obtenues facilement, en raison
de la complexité du systéme [Lipinski (1990); Ford et al. (1998); Peled (2007); Alexander (2008);
Fieremans et al. (2008b); Balls and Frank (2009); Hall and Alexander (2009); Harkins et al. (2009);
Imae et al. (2009); Koch and Finsterbusch (2009); Alexander et al. (2010); Budde and Frank (2010);
Landman et al. (2010); Nilsson et al. (2010)]. Les approches analytiques qui prédisent le signal de
I'IRMd en utilisant I’équation de Bloch-Torrey, par exemple [Barzykin (1998)], doivent s’appuyer
sur des modeles de tissus biologiques et une séquence d’impulsions IRM simples (par exemple,
un gradient de diffusion avec une forme d’onde rectangulaire). Cependant, dans un cas réaliste,
la géométrie des tissus peut étre tres compliquée, de telle sorte qu’il n’existe pas une description
analytique adéquate. Parallelement, la difficulté pour dériver la solution du signal synthétique
de 'TRMd peut augmenter avec la complexité des séquences d’impulsions IRM et les formes du
gradient. L’avantage de 'approche MC est sa capacité a suivre les événements dynamiques dans
I’espace et le temps. Elle offre des possibilités pour étudier non seulement le mouvement Brownien
dans un environnement arbitraire, mais aussi n’importe quel modele d’interactions entre les spins
et les membranes. Ainsi, des données synthétiques d’IRMd générées en utilisant ’approche MC
peuvent étre appliquées a 1’étude des propriétés biologiques (par exemple, la taille des cellules, la
densité, la perméabilité des membranes, etc.), ainsi qu'a des mécanismes de diffusion de base dans
différents compartiments (par exemple, la présence d’attracteurs, la viscosité locale, les interactions
membranaires, etc.). Plus précisément, il peut étre adapté & 'examen des hypothéses mécanistiques
de divers scénarios dynamiques et modeles de tissus, tels que les attaques vasculaires cérébrales
ischémiques aigues ou l'activation neuronale et le gonflement des cellules, le cancer et la prolifération
cellulaire, ’ADC et I'anisotropie des fibres axonales dans les faisceaux de fibres complexes ou le

cortex [Le Bihan (2003)].

Modélisation des Tissus Biologiques

En principe, 'approche par simulation MC permet de simuler n’importe quel tissu avec beaucoup
de détails, pour tenir compte des différents types de processus de diffusion élémentaires et d’en
dériver le signal d’'TRMd correspondant, a condition que la puissance de calcul nécessaire soit
disponible. Comme la géométrie et ’organisation des microstructures biologiques sont extrémement
compliquées au niveau cellulaire (par exemple, la substance grise dans les tissus du CNS), la
difficulté se trouve dans la maniere de représenter les structures des tissus dans ’environnement de

simulation MC. Différents modeles géométriques ont été proposés pour simuler les structures des
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tissus dans des conditions physiologiques différentes: Hall et Alexander ont optimisé les parametres
pour la simulation MC de 'TRMd de faisceaux de fibres compactes et en état de gonflement [Hall and
Alexander (2009)]. Landman et al. ont développé un modele de ’axone fondé sur des maillages dans
le but d’étudier 'impact des fibres axonales endommagées [Landman et al. (2010)]. Budde et Frank
ont développé un modele beading des neurites permettant de valider 'importance de la morphologie
de la membrane cellulaire sur ’ADC [Budde and Frank (2010)]. Les simulations MC décrites
ci-dessus ont utilisé des cylindres pour simuler les faisceaux de fibres de la substance blanche.
Cependant, il a été démontré que 'TRMd a une haute sensibilité a la variation de la cytoarchitecture
des tissus [Flint et al. (2009)], il est donc également intéressant d’étudier le comportement de la
diffusion de I’eau dans le cortex cérébral et les noyaux gris centraux. Lipinski a réalisé la premiere
simulation de MC de la substance grise dans un environnement 2D simplifié composé de géométries
de tissus créées a partir des images numériques moyennées de préparations histologiques [Lipinski
(1990)]. Il est important de noter que pour des raisons techniques liées & la complexité des calculs,
la plupart des simulations MC ont été réalisées en 2D, bien que des simulations 3D seraient plus
réalistes pour les systemes biologiques. Balles et al. ont développé un systéeme de simulation 3D
efficace qui a la capacité d’effectuer des simulations a grande échelle de la diffusion de I’eau dans
des microstructures et une physiologie tissulaire complexes, mais cela uniquement pour simuler des

séquences PGSE d’TRMd conventionnelles [Balls and Frank (2009)].

L’Objectif

Cette these se consacre au développement et & ’application d’un simulateur de Monte-Carlo (MC)
de 'IRMd intégré et généralisé, ‘Diffusion Microscopist Simulator’ (DMS), et vise & (i) combler
I’écart entre les processus de diffusion élémentaires qui se produisent & une échelle micrométrique
et le signal de diffusion résultant mesuré a 1’échelle millimétrique, en offrant un meilleur apercu des
caractéristiques observées dans 'TRMd (par exemple, la variation de PADC et de I'anisotropie de
diffusion avec la distribution des tailles des cellules), et (ii) offrir des informations vérité terrain pour
loptimisation et la validation des séquences d’acquisition de 'IRMd pour différentes applications
(par exemple les techniques de tractographie, la modélisation biophysique locale du processus de

diffusion, et la microscopique par IRM de diffusion).

Alors que le développement d’un nouveau logiciel de simulation serait une tache énorme, une
question générale se pose naturellement - pourquoi ne pas travailler simplement sur un logiciel de

simulation existant? Ce qui suit est un résumé global de mon point de vue sur cette question:

Le premier probleme a souligner est que la simulation MC de 'TRMd est une technique large-
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ment répandue, adoptée par des scientifiques de domaines treés différents (par exemple les physiciens
de 'IRM, les biophysiciens, les biochimistes, les biologistes, etc.). Les spécificités propres & chaque
domaine d’application se retrouvent fortement au niveau des codes de calcul, et peuvent malheureu-
sement restreindre un code a ’application pour laquelle il avait été développé, ce qui rend souvent
compliqué 'adaptation d’un code existant pour d’autres études que celles prévues a l’origine. Par
conséquent, il nous a semblé intéressant de développer un cadre de simulation générique qui puisse
étre utilisé quel que soit le domaine d’application. Pour remplir cet objectif, le simulateur doit étre
facilement adaptable aux besoins spécifiques des utilisateurs. La réalisation d’une telle plateforme
de simulation MC de 'IRMd fut I'un des principaux objectifs de cette these. 11 doit étre égale-
ment rapide pour ne pas affecter la productivité des scientifiques. Atteindre des calculs de haute
performance implique un soin particulier au niveau des codes qui doivent étre optimisés et paral-
1élisé pour s’exécuter sur une grille de calcul qui permette d’atteindre les performances requises.
Enfin, ’ergonomie du simulateur doit étre pensée et le pipeline de simulation doit étre tel que tout
utilisateur puisse tres rapidement en comprendre son utilisation et s’approprier 'outil pour ses
propres besoins. Les points évoqués ci-dessus ont tres largement motivé cette these et conduit au
développement d’un nouvel outil de simulation du processus de diffusion, appelé DMS (pour Dif-
fusion Microscopist Simulator), dédié a I’étude et a la compréhension des mécanismes d’encodage

du phénomene biophysique sur le signal d’IRMd.

Organisation de cette these

Cette these est organisée en quatre parties et sept chapitres. La partie Introduction (chapitre
2) décrit les principes fondamentaux de 'IRM de diffusion (IRMd) et les techniques modernes
d’IRMd. Puis, la partie Méthodes (chapitres 3 et 4) développe la structure du simulateur DMS,
contribution méthodologique majeure de la these. Enfin, la partie Applications (chapitres 5 et 6)
présente les apports du simulateur dans le cadre d’applications spécifiques en IRMd. Le contenu et

les contributions de chaque chapitre sont décrits de maniere plus détaillée ci-dessous:

Part I. INTRODUCTION

Chapter 2: RMN et IRM de diffusion. Le chapitre 2 commence par un résumé de I’histoire
de la résonance magnétique nucléaire (RMN) en mettant 'accent sur 'TRM de diffusion, puis
se poursuit par les principes de base qui fondent la physique de 'TRMd nécessaires a la com-
préhension de cette these. Ensuite, ce chapitre offre un résumé des méthodologies existantes
en IRMd et introduit les derniéres avancées méthodologiques de 'TRMd qui permettent dé-

sormais de sonder la microstructure des tissus cérébraux et d’en mesurer les caractéristiques.
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Enfin, le chapitre 2 introduit I'TRM de diffusion fonctionnelle (IRMdf) qui repose sur I’ob-
servation des modifications structurelles intervenant au cours de l'activité cérébrale et qui
permettrait de détecter plus précocément cette activité que ne le permet I'imagerie BOLD

conventionnelle.
Part II. METHODES

Chapter 3: Simulateur du processus de diffusion ”"Microscopist” Le chapitre 3 décrit de
maniere détaillée I’élaboration et le développement méthodologique du Diffusion Microscopist
Simulator (DMS), outil intégré et générique dédié aux simulations Monte-Carlo du proces-
sus de diffusion et a la compréhension de I'TRMd. Le simulateur DMS est doté de deux
composants: un Simulateur Monte-Carlo et un Synthétiseur de données d’IRM. Le premier
composant est capable de générer des modeles de tissus tridimensionnels dotés de formes et de
propriétés variées, tandis que le deuxieme composant permet de synthétiser les signaux d’'TRM
de diffusion qui seraient obtenus & partir des modeéles géométriques précédents pour un large
panel de méthodes d’imagerie de diffusion, de types de séquence et de parametres de séquence.
Le chapitre expose la conception détaillée de I'outil et le role de ses divers composants, ainsi
que les méthodes mises en oeuvre pour obtenir un code efficace en termes computationnels
dans la perspective de simulations d’'TRMd & grande échelle. Un organigramme d’utilisation
type est présenté pour illustrer la préparation et I’exécution d’une simulation par I'outil DMS.
Ce chapitre se conclut par une discussion sur les avantages et inconvénients du simulateur.

La Fig. 1 illustre 'architecture et 'interface graphique du DMS proposée a l'utilisateur.

Chapter 4: Expériences fondamentales. Avant d’appliquer le DMS a I’étude de themes de re-
cherche spécifiques, le chapitre 4 présente certaines expériences de simulation basiques d’TRMd
afin de tester la robustesse et la performance du DMS. Quatre différents types d’expériences
ont été menés comme suit: (i) Multiple scattering diffusion imaging (MSDI). Pour des valeurs
de ¢ ou b suffisamment élevées, la taille et la forme des compartiments se traduisent par la
présence de pics de diffraction lorsque le signal de diffusion est mesuré en fonction du temps
de diffusion & I’aide d’une séquence de type Pulse Gradient Spin Echo (PGSE) (Fig. 2a). Nous
avons utilisé le DMS pour simuler le processus de diffusion de tissus virtuels doté des para-
metres structurels prédéfinis (diametres des cylindres), puis nous avons synthétisé le signal
d’TRMd correspondant au cas d’utilisation de séquences PGSE simple et double afin d’estimer
en aveugle les parametres des tissus dont la valeur a été fixée précédemment. (ii) Spectroscopie
de diffusion temporelle. Les méthodes d’ Oscillating Gradient Spin Echo (OGSE) permettent

d’explorer le processus de diffusion de ’eau a des échelles de temps de diffusion variées. A
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Figure 1: ”Diffusion Microscopist Simulator”. - (a) Le diagramme complet de modéli-

sation (b) Ergonomie de l'interface graphique.

haute fréquence, 'appoche OGSE devient sensible a des mouvements de tres faible amplitude,
a I'instar des déplacements s’opérant au sein des structures intracellulaires. Dans cette expé-
rience, le DMS a été utilisé pour étudier la dépendance de I’attenuation du signal pondéré en
diffusion en fonction de la forme des oscillations et de leur fréquence. (iii) Modéle tissulaire.

Le gonflement cellulaire a été proposé comme facteur principalement responsable de la chute
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Figure 2: Expériences fondamentales menées avec le simulateur DMS. - (a) Expé-
rience révélant le phénomene de diffusion-diffraction a travers 1'utilisation de séquence PGSE
et dPGSE. (b) Simulation d’embranchements de fibres faite avec le DMS servant de référence
a Iévaluation des algorithmes de tractographie streamline déterministe (haut) et probabiliste
(bas).

de PADC pour les accidents vasculaires cérébraux. Au cours de I’activation neuronale, il se

pourrait que les variations d’ADC résultent d’une combinaison entre effets du gonflement

cellulaire et modification de la perméabilité membranaire. Des simulations avec le DMS ont

été menées pour investiguer les variations de I’ADC en fonction de la taille des cellules et de

leur perméabilité. (iv) Modéles de diffusion locauz et applications au suivi (tracking) de fibres.

Nous avons utilisé le DMS pour créer des faisceaux virtuels de fibres de la substance blanche

présentant des configurations complexes comportant des croisements, des embranchements et

des configurations de fibres en éventail. Les données synthétiques d’'TRMd correspondant a

ces diverses configurations ont été générées pour différentes valeurs de rapport signal a bruit

(SNR), et nous avons démontré que ces jeux de données synthétiques se révelent tres utiles

pour évaluer les performances des algorithmes de reconstruction de diffusion et de tracking

de fibres (Fig. 2b).
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Part III. APPLICATIONS

Chapitre 5: Impact d’une impulsion de gradient de diffusion finie sur ’estimation de
P’orientation de fibres. Le chapitre 5 décrit la premiere seconde contribution majeure de
cette these et utilise a la fois le simulateur DMS poyr y répondre ainsi qu’un fantome de
diffusion physique pour corroborer les résultats - I'impulsion de gradient tres breve étant un
prérequis dans la théorie de l'espace q, Quel est limpact d’une impulsion de gradient de
diffusion de durée finie sur les modéles locaux de diffusion utilisés pour la cartographie des

orientations des fibres nerveuses en IRM de diffusion?

L’estimation précise des orientations des fibres nerveuses en chaque voxel est une étape es-
sentielle de la tractographie et un grand nombre de méthodes ont été proposées pour recons-
truire la fonction de distribution d’orientation a partir de I’échantillonnage en 3 dimensions
de Pespace ¢. Dans le formalisme de 1'espace ¢, de trés courtes impulsions de gradient (infi-
nitésimales) sont nécessaires pour reconstruire la véritable fonction de densité de probabilité
(PDF) des déplacements des spins. Cependant, sur les systémes d’imagerie par résonance
magnétique cliniques actuels, la durée de P'impulsion (§) est inévitablement finie du fait des
limitations de l'intensité des gradients atteignables. L’impossibilité de satisfaire la condition
d’impulsion de gradient courte (SGP) a souvent été source de critiques de ’approche basée
sur l’espace ¢ pour I'estimation des fonctions d’orientation des fibres. Cependant, I'effet d’un
long § sur le signal d’TRMd et sur la précision angulaire de 1'orientation estimée n’a pas encore

été pleinement caractérisé.

Sous I'approximation SGP, le codage en phase des spins est supposé se faire instantanément.
Le déplacement mesuré dans ’espace g correspond alors a la distance entre la position initiale
du spin lors de la premieére impulsion de gradient de diffusion et sa position finale au moment
de la seconde impulsion (Fig. 3(a) - gauche). Cependant, avec une durée d’impulsion § finie,
la particule est marquée avec une position donnée par le centre de masse de son trajet durant
Papplication de I'impulsion de gradient [Mitra and Halperin (1995)]. Ainsi, le déplacement
effectif réellement estimé correspond a la distance entre la position moyenne du spin pendant
la premiere impulsion de diffusion et sa position moyenne pendant la seconde impulsion
(Fig. 3(a) - droite). Pour des géométries restreintes, la position moyenne du spin pendant
chaque impulsion va avoir tendance a converger vers le centroide du compartiment restreint
(Fig. 3(a) - droite). Le déplacement estimé décroit donc lorsque d augmente, et par conséquent
Iatténuation du signal d’TRMd mesuré est réduite. A 1’échelle de temps d’une expérience

d’TRMd, la diffusion dans les fibres myélinisées de la substance blanche peut étre approximée
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comme restreinte dans les directions perpendiculaires & l'axe de la fibre (i.e. la direction
radiale), et libre le long de axe de la fibre (i.e. la direction axiale) [Assaf et al. (2004); Assaf
and Basser (2005)]. Dans ce cas, 'augmentation de ¢ devrait mener & une atténuation réduite
du signal de diffusion radial, sans changement dans le signal de diffusion axial. Ceci devrait
donc améliorer le contraste entre les directions des gradients de diffusion, et aussi augmenter
le rapport signal sur bruit pour toutes les images de diffusion, ces deux aspects étant utiles

pour estimer les orientations des fibres.

Dans ce chapitre, 'influence de la largeur finie des gradients de diffusion § sur le signal d’TRMd
mesuré comme fonction de la direction du gradient est décrite théoriquement et démontrée a
I’aide de simulations faites a partir du simulateur DMS, mais également a partir de fantomes
matériels de diffusion expérimentaux, et un modele de tissu biologique. Les résultats suggerent
que la pratique habituelle, due aux limitations de la machine, d’utiliser une longue durée §
pour l'imagerie de diffusion sur les scanners IRM humains cliniques, pourrait étre en fait
bénéfique dans l’estimation des orientations de fibres. Nous concluons donc que pour une
b-valeur donnée, l'allongement de § est avantageux pour estimer les orientations de fibres
pour deux raisons : premierement, cela conduit a une augmentation du signal de diffusion
dans le plan transverse a la fibre; deuxiémement, cela allonge la forme du profil de diffusion
mesuré, ce qui améliore le contraste du signal pour les différentes orientations de diffusion. Ce
contraste étant essentiel pour discriminer différentes directions de fibres, ceci est spécialement

bénéfique pour la détection des croisements de fibres. (Figs. 3(b)&(c)).

Chapter 6: Evaluation de la cartographie des rayons des fibres en utilisant 'TRM de
diffusion clinique. Le chapitre 6 concerne 1’étude de la deuxieme application du Simulateur
de Diffusion Microscopist (DMS) et se penche sur cette question en termes de microscopie
par IRM de diffusion - Est til possible d’estimer le calibre des fibres en utilisant un systeme

d’IRM clinique?

Les méthodes émergentes en microscopie par IRMd commencent a fournir des informations
quantitatives sur la taille des cellules, a I’échelle microscopique; ces nouvelles techniques ont
d’abord vu le jour sur des systémes IRM précliniques (méthodes ‘AxCaliber’ [Assaf et al.
(2004, 2008)] et QSI [Callaghan (1993); Cory and Garroway (1990)]) parce que nécessitant
de puissants gradients pour satisfaire I’exigence stricte d’une impulsion de gradient étroite,
et se sont focalisées sur la matiere blanche parce que les faisceaux de fibres présentent une
géomtrie cylindrique reposant sur peu de parametres et s’avérait donc facile & modéliser. Il

en est de méme s’agissant des techniques reposant sur les séquences de type OGSE [Stepisnik
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Figure 3: Dépendance du signal d’IRMd & la durée d’impulsion de gradient de
diffusion. - (a) Nous suggérons que le déplacement moyen de diffusion de ’eau dans un
environnement restreint va décroitre lorsqu’on utilise une durée d’impulsion longue (gauche:
0 court; droite: 0 long). (b) Représentation polaire du signal d’TRMd montrant Ueffet de ¢ et
sa dépendance & la b valeur. (c¢) Représentation polaire du signal d’TRMd montrant P'effet de

§ et sa dépendance vis-a-vis de la taille de la géométrie.
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(1993); Xu et al. (2009a,b)] nécessitant quant & elle un gradient puissant pour augmenter la
sensibilité et la résolution des measures en IRMd. A cause de ces conditions de sécurité et
de ces limites matérielles, un systeme a fort gradient ne peut pas étre installé sur une IRM
clinique. Quant & la méthode MSDI [Ozarslan and Basser (2008); Ozarslan et al. (2009);
Ozarslan (2009); Shemesh and Cohen (2008); Shemesh et al. (2009a,b, 2010a,b)], bien qu’elle
ait la possibilité de fournir des informations microscopiques a travers une séquence double
PGSE avec des gradients de plus faible puissance, cette méthode reste encore cantonnée au
stade de descriptions théoriques, de simulations, et d’études expérimentales sur des systemes
d’IRM précliniques. De plus, 'approche MSDI basée sur une séquence de type double PGSE
repose sur la connaissance a priori de 'orientation des fibres, ce qui reste possible s’agissant
de tres gros faisceaux tels que le corps calleux dont l'orientation est facilement détectable,
mais devient beaucoup plus difficile s’agissant par exemple de la connectivité sous corticale
encore peu connue et peu décrite dans la littérature. Une alternative a la méthode MSDI
utilise une séquence dotée d’un champ de gradients bipolaires & double impulsion, permettant
d’obtenir une estimation précise de la géométrie des pores (espaces intra et extra cellulaires)
au sein desquels s’opere le processus de diffusion [Shemesh et al. (2010a)]. Cependant, cette
séquence a multiple impulsions augmente considérablement le nombre de mesures requises
pour compenser le faible rapport signal sur bruit di & un temps d’écho tres long. Ainsi, elle
n’est pas applicable dans le cadre d’une application clinique ou le temps d’acquisition joue
un role important. De plus, les séquences a impulsion MSDI ne sont pas disponibles sur les

scanners IRM actuels car leurs versions logicielles ne sont pas encore commercialisées.

Plus récemment, Daniel Alexander a développé un cadre mathématique permettant d’opti-
miser les parametres d’acquisition d’une séquence PGSE standard et qui permet d’estimer
in vivo le diametre et la densité des fibres sans connaissances préalables sur 'orientation de
celles-ci [Alexander (2008); Alexander et al. (2010)]. Bien que cette méthode soit capable de
créer de fagon efficace un protocole d’imagerie de diffusion afin de mesurer la taille des cellules
ou encore le rayon des fibres du cerveau humain, des difficultés persistent quant a son utilisa-
tion pour des examens cliniques pour deux raisons. Premierement, la stratégie d’optimisation
est limitée a un rayon de fibre spécifique, alors que la substance blanche du cerveau humain
comporte un large éventail de fibres différentes avec des rayons allant de 1 & 10 um; deuxie-
mement, une forte valeur d’intensité de gradient (au minimuim 70 mT/m) est indispensable
pour garantir une estimation précise des fibres ayant un petit rayon alors que d’un autre coté

les scanners IRM cliniques ne sont équipés qu’avec des systemes de gradient standard dotés
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d’une amplitude maximale de 40 mT/m.

Ce chapitre, basé sur des simulations réalisées a partir de 'outil DMS, a pour but & la fois
d’analyser la faisabilité d’une cartographie des rayons de fibres de la substance blanche en
utilisant des scanners IRM cliniques standards, et également de déterminer 'influence des
parametres de la séquence de diffusion sur I'estimation du rayon de ces fibres. Nous avons
utilisé le simulateur DMS afin de réaliser des simulations de parcours aléatoires (méthode
de Monte-Carlo) issues de la diffusion des molécules d’eau dans un environnement doté de
fibres de différents rayons (Fig. 4(a)), et nous avons généré des données synthétiques de
diffusion en utilisant un jeu de protocoles PGSE standard connu pour étre comparable aux
capacités des systémes de gradient présents en clinique. (Fig. 4(b)). Les rayons des fibres
sont estimés grace a la méthode MCMC (Markov Chain Monte Carlo) dont ’algorithme
réalise un échantillonnage optimal de la distribution des parametres du modele (Fig. 4(c)).
Les simulations laissent & penser que le facteur de pondération en diffusion (c’est-a-dire dans
notre cas la b-value) et la sélection de I’échantillonnage dans I’espace ¢ ont une influence
importante dans la cartographie des rayons des fibres. Nos résultats fournissent une regle
générale permettant de parametrer les protocoles cliniques afin d’obtenir des informations sur
la microstructure du cerveau. Pour un temps d’acquisition acceptable de 30 minutes, nous
pouvons conlure que 'utilisation de trois ou quatre spheres échantillonnées dans 1’espace ¢
avec des valeurs de b-value modérées a hautes rend tout a fait possible I'identification des

rayons des fibres supérieurs a 2 pm.
Part IV. CONCLUSION

Chapter 7: Syntheése et conclusion. Le chapitre résume les résultats présentés dans cette these
et énumere les objectifs atteints. Les contributions apportées sont & nouveau listées et enfin

des recommandations et des futures directions sont examinées.

Contributions

La principale contribution méthodologique de cette these est le développement d’un outil générique
et puissant de simulation de Monte-Carlo du processus de diffusion dans le tissu cérébral: ‘Diffusion
Microscopist Simulator’ (DMS) qui a la capacité d’une part de créer des modeles de tissus biolo-
giques tridimensionnels de formes et propiétés différentes, et aussi de synthétiser des données d’TRM
de diffusion issues d’un large éventail de méthodes en IRM et de design de séquences parametrables.
le simulateur DMS a pour but de combler le fossé entre les processus de diffusion élémentaires qui

apparaissent a une échelle micrométrique et le résultat du signal de diffusion mesuré a une échelle
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Figure 4: Estimation des rayons de fibres a partir de données cliniques d’IRM de
diffusion. - (a) Simulation Monte-Carlo conduite & 'aide du simulateur DMS. (b) Séquences
de gradient spin echo (PGSE) congues pour les syntheses ’'TRMd. (c) Les rayons des fibres ont
été estimés grace a la méthode Markov-Chain Monte-Carlo qui échantillonne la distribution

des parametres du modele.

millimetrique, donnant ainsi un meilleur apergu des caractéristiques observées en IRMd, tout en
offrant une réelle information pratique utilisable pour I'optimisation et la validation de protocoles
d’TRMd pour de nombreuses applications.

Nous avons vérifié la performance et la validité du simulateur DMS a travers de nombreux
tests et expérimentations, et nous I’avons aussi utilisé dans des cas concrets de recherche en IRM
de diffusion. Deux contributions majeures ont été réalisées dans cette these a partir du simulateur
DMS. La premiere a consisté a 'investigation de 'impacte d’un gradient de diffusion de durée définie
(6) sur Pestimation de l'orientation des fibres en IRMd. Nous pensons que 'utilisation actuelle
d’un long §, qui est renforcé par la limitation matérielle sur les scanners cliniques, est actuellement
bénéfique pour la cartographie des orientations des fibres, bien que cela contredise I’hypothese
sous-jacente faite par la théorie de I'espace ¢q. La deuxieme contribution concerne 'utilisation du
simulateur afin d’analyser la faisabilité de ’estimation du rayon des axones dans le cadre d’IRM
clinique. Les résultats suggerent que l'algorithme qui cartographie les microstructures directes est
tout a fait applicable aux données issues d’IRM cliniques standards.

Ainsi, 'extension des simulations par ordinateur & des expérimentations réelles sur scanner a été
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le but des développeurs logiciels dans la communauté qui attendaient une situation ou 'interaction
entre les expérimentations et les simulations pouvait se réaliser en IRMd. Nous espérons que le
simulateur DMS s’avérera un outil puissant et utile & la compréhension des relations qui existent
entre les mécanismes de bases de 'TRMd aux niveaux des tissus du cerveau et également que cet
outil permettra d’améliorer de facon sensible la méthodologie des futures applications en IRM de

diffusion.
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Preface
1.1

Water appears stationary to the naked eye of human beings, whereas at a microscopic
scale water molecules are in a status of dynamic fluctuations. Such random translational motion of
molecules is a phenomenon termed Brownian motion, which was observed in 1827 by the well-known
botanist, Robert Brown, from the jiggling pollen granules suspended in water [Brown (1828)]. It
was not until 1905 that Albert Einstein revisited this phenomenon and published a theoretical
analysis of Brownian motion, it became clear that molecular diffusion in liquid or gas results from

the thermal energy carried by the molecules [Einstein (1905)].

Imagine for an instant if we could give a label to a water molecule in a brain tissue and keep track
of its diffusion-driven movement, we would find that the path is shaped by the tissue microstructures
of the brain. This establishes the basic idea of diffusion magnetic resonance imaging (AMRI) that
utilizes the microscopic natural displacements of water molecules that occur in brain tissues as
part of physical diffusion process to produce the MRI-based quantitative maps. In dMRI, water
molecules are thus utilized as a an endogenous tracer that can non-invasively reveal microscopic

details about tissue architecture, either normal or in a diseased state.

Diffusion MRI came into existence in the mid-1980s [Le Bihan et al. (1986); Wesbey et al.
(1984a,b)], and during the last 25 years, dMRI has been extraordinarily successful, particularly
in MRI of the central nervous system (CNS). Its major clinical domain of application has been
neurological disorders, especially for the management of patients with acute ischemic stroke. It is
also rapidly becoming a standard for white matter (WM) disorders, as diffusion tensor imaging
(DTI) can reveal abnormalities in WM fiber structure and provide outstanding maps of brain
connectivity [Basser et al. (1994a,b); Conturo et al. (1999); Mori et al. (1999); Basser et al. (2000);
Poupon et al. (2000)]. The ability to visualize anatomical connections between different parts of
the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for
neurosciences. More recently, it has been shown that dMRI could also be used to deliver direct
features of tissue microstructures [Alexander (2008); Assaf et al. (2008)], as well as to detect changes

in brain tissue structure associated with neuronal activation [Le Bihan et al. (2006)].

1 2 Motivation
@

Molecular diffusion is a multi-scale integrated process by which fluctuations in molec-

ular random motion at a microscopic scale can be inferred from observations at a larger scale
using statistical physical models, even though the individual molecular structure and pathway are

fully ignored [Le Bihan (2007)]. Owing to the microscopic length scale of diffusion in biological
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tissues, dMRI is an exquisitely sensitive tool to reveal tissue architecture unrecognizable through
the conventional MRI methods. However, it is important to keep in mind that the driving force
of dMRI is to monitor the diffusion-driven displacements of water molecules at a microscopic level
that is well beyond the usual MRI resolution. In other words, the overall signal observed in dMRI
images at a millimetric resolution, results from the integration, on a statistical basis, of all the mi-
croscopic displacement distributions of the water molecules present in this voxel. In consequence,
the complex diffusion processes that occur in a biological tissue on a voxel scale are often described
with a global, statistical parameter, the ‘apparent diffusion coefficient’” (ADC) [Le Bihan et al.
(1986)]. This parameterization of the diffusion process by a global ADC is intended to repre-
sent those physical processes that occur at scales smaller than the scales resolved by the method:
the large scale is imposed by technical limitations (e.g., hardware), while the actual scale of the
biophysical elementary processes is determined by physical phenomena at molecular scale. The
averaging and smoothing effect resulting from this scaling presumes some homogeneity in the voxel
and makes a direct physical interpretation out of the global parameter somewhat difficult, unless
some assumptions can be made.

This thesis dedicates to the development and application of an integrated and generalized dMRI
Monte Carlo (MC) simulation system, ‘Diffusion Microscopist Simulator’ (DMS), and aims at (i)
bridging the gap between elementary diffusion processes occurring at a micrometer scale and the
resulting diffusion signal measured at millimeter scale, providing better insights into the features
observed in dMRI (e.g. variation of ADC and diffusion anisotropy with cell size distribution); and
(ii) offering ground-truth information for optimization and validation of dMRI acquisition schemes
for different applications (e.g. fibre-tracking algorithm, diffusion local modeling, and diffusion
microscopy imaging).

While managing a new simulation software is an enormous task, a general question naturally
arises - why not straightforwardly work on an existing simulation program? The following is a
global summary of my viewpoint to this question:

The first issue to note is that dMRI MC simulation is a widespread technique adopted by sci-
entists of diverging fields (e.g. MR physicists, biophysicists, biochemists, biologists, etc.). Usually,
the differing concerns and techniques of scientists are reflected in their code bases which are tailored
to specific methods and problems in origin. For now, it is sufficient to mention that the bias of
some individual codes means it will be complicated to extend them with new algorithms for other
studies. Hence, it is evidence that it would be certainly beneficial to have a generic simulation
system for all scientists to use. To accomplish this purpose, it requires a platform that allows the

scientists in different fields to customize for certain research topics. Furthermore, importantly, the



new platform should enables the software developers to rapidly implement the new algorithms for
extensions. The realization of such a dMRI MC simulation platform is one of the major goals
of this thesis. Secondly, computation efficiency is required as it may affect the productivity of
the scientists who need to use the software. Reaching high performance computing involves the
procedure of codes profiling, optimization, and parallelization of the platform. Thirdly, practical
factors like workflow and data management need to be optimized to prevent scientists not only from
running replicated calculations but also from wasting an inordinate amount of efforts on tasks like
organizing data. And last, the command-line of the program is required to be clear and simple
for scientists to understand. Mysterious commands may actively discourage the scientists their
uses as well as restrict a powerful tool to a narrow subset of the community. In my opinion, the
reasons above has already substantially motivated this thesis to create a novel framework for dAMRI

simulations.

1 3 Outline
[ J

The thesis is organized in four parts and seven chapters. The Introduction part (Chap-

ter 2) describes the basic principles of dMRI and modern dMRI techniques. Then, the Methods
part (Chapter 3 & 4) describes the framework of DMS, the major methodological contribution
of the thesis. Finally, the Application part (Chapter 5 & 6) describes the contributions of DMS
for specific dMRI applications. An overview of the contents and contributions in each chapter is

described as follows:

Part I. INTRODUCTION

Chapter 2: Diffusion NMR and MRI. Chapter 2 begins with the reviews of the history and
evolution of diffusion NMR and MRI, followed by the background and basic principles of
dMRI physics needed to understand thesis. Then, this chapter gives a summary of current
dMRI methodologies and an introduction to the modern dMRI techniques aiming at imaging
microstructural features of brain tissues. Finally, the chapter introduces the hypothesis of

mapping neuronal activation using diffusion functional MRI (dfMRI).
Part II. METHODS

Chapter 3: Diffusion Microscopist Simulator. Chapter 3 describe the detail framework de-
sign and the methodological development of Diffusion Microscopist Simulator (DMS), which
has been put efforts to make it an integrated and generic tool for dAMRI MC simulations.

DMS is composed of a Monte Carlo Simulator and a MR Image Synthesizer. The former is
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able to generate 3D tissue models of various shapes and properties, while the latter is able to
synthesize diffusion MRI signals for a large variety of MRI methods, pulse sequence design
and parameters. The chapter describes the concept and function for the key components
of DMS, as well as the methods to achieve high computing efficiency for large-scale dMRI
simulations. After that, the working diagram is depicted to illustrate how to prepare and
execute a DMS simulation. The chapter ends with a discussion regarding to the pros and

cons of DMS framework.

Chapter 4: Benchmark Experiments. Before applying DMS to study specific research top-
ics, Chapter 4 demonstrates the basic dMRI simulation experiments in order to examine
the performance and validity of DMS. Five different kinds of experiments were performed as
follows: (i) Multiple scattering diffusion imaging. At sufficiently high ¢- or b-values, the size
and shape of tissue compartments will be reflected by the diffraction peaks in diffusion signal
decay obtained from the pulsed gradient spin echo (PGSE) experiments. We employed DMS
to run MC simulations in virtual tissues with predefined structural parameters, and then
generated synthetic diffusion signal decay based on a simulated single- and double-PGSE
pulse sequences to estimate the ground-truth tissue parameters. (ii) Temporal diffusion spec-
troscopy. The oscillating gradient spin echo (OGSE) methods have the capacity to probe
the water diffusion over various time scales. At high frequencies, for instance, the OGSE ap-
proach has the potential to detect changes over much smaller lengths, such as the intracellular
structures. In this experiment, DMS was utilized to investigate the dependency of diffusion
signal decay using OGSE sequences with different oscillating waveforms and frequencies. (iii)
Tissue characteristics and models. Cell swelling has been proposed to be a major factor
responsible for the drop of ADC in acute ischemic stroke. During neuronal activation, it
has been proposed that the variation of ADC rather results from the integrated effect of cell
swelling and cell membrane properties. DMS simulations were performed to investigate the
variations of ADC induced by cell sizes and membrane characteristics in this section. (iv) Dif-
fusion reconstruction model. We showed that DMS can be utilized to assess the performance
of diffusion models for the purpose of fibre orientation mapping. We analyzed the synthetic
dMRI data of crossing fibres that were generated via different fibre distributions (e.g. 90
and 60-degree crossing fibres) and pulse sequence parameters (e.g. b-value and signal-to-noise
ratio (SNR)). (v) Fibre-tracking application. We used DMS to create 3D virtual WM fibre
bundles with complex configurations including crossing, kissing, and branching fibres, which

were served as ground-truth information for evaluating the validity of fibre tractography.



The experiments (iv) and (v) demonstrated that these synthetic datasets were practical for

assessing the performance of diffusion reconstruction and fibre-tracking algorithms.
Part III. APPLICATIONS

Chapter 5: The Effect of Finite Diffusion Gradient Pulse on Fibre Orientation Esti-
mation. Chapter 5 describes the first particular application of DMS to address an important
question - as the narrow pulse is a prerequisite in g-space theory, what is the impact of finite
diffusion gradient pulse duration on local diffusion models aiming at mapping neural fibre

orientations in dAMRI?

An essential step for fibre-tracking is the accurate estimation of neuronal fibre orientations
within each imaging voxel, and a number of methods have been proposed to reconstruct the
orientation distribution function based on sampling 3D ¢-space. In the g-space formalism,
very short (infinitesimal) gradient pulses are the basic requirement to reconstruct the true
probability density function (PDF) of spin displacements. On current clinical MR systems,
however, the diffusion gradient pulse duration (§) is inevitably finite due to the limit on the
achievable gradient intensity. The failure to satisfy the short gradient pulse (SGP) require-
ment has been a recurrent criticism for fibre orientation estimation based on the g-space

approach.

In this chapter, the influence of a finite § on the dMRI signal measured as a function of
gradient direction is described theoretically and demonstrated through DMS simulations,
experimental diffusion phantoms, and a biological tissue model. The results suggest that the
current practice of using long ¢ for DW imaging on human clinical MRI scanners, which is
enforced by hardware limitations, might in fact be beneficial for estimating fibre orientations.
For a given b-value, the prolongation of § is advantageous for estimating fibre orientations
for two reasons: First, it leads to a boost in DW signal in the transverse plane of the fibre.
Second, it stretches out the shape of the measured diffusion profile, which improves the
contrast between DW orientations. This is especially beneficial for resolving crossing fibres,

as this contrast is essential to discriminate between different fibre directions.

Chapter 6: Evaluation of Fibre Radius Mapping Using Clinical Diffusion MRI. Chapter
6 is the second application study of DMS to look into the question in terms of microscopic

dMRI - is it possible to estimate the fibre calibers using clinical dMRI?

This chapter, based on DMS simulations, aims to assess the feasibility of mapping WM fibre

radii using the clinical MR scanners, as well as to investigate the influence of DW pulse se-
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quence parameters on the fibre radius estimation. We used DMS to perform random walk MC
simulations of water diffusion in virtual WM fibres with various radii, and generate synthetic
dMRI data using a set of conventional PGSE imaging protocols devised to be compatible
with the capabilities of the standard clinical gradient system. Fibre radii are estimated via
the procedure of Markov Chain Monte Carlo (MCMC) algorithm that samples the posterior
distribution of model parameters. Simulations suggest that the diffusion-sensitizing factor
(i.e. b-value) and the selection of the g-space sampling shell are important for fibre radius
mapping. Our results provide a general rule to set up clinical protocols for the purpose of
delivering microstructural information. Within a clinical acceptable acquisition time of 30
minutes, we conclude that using three to four ¢-space sampling shells with moderate to high

b-values is potentially feasible to identify fibre radii greater than 2 pm.
Part IV. CONCLUSION

Chapter 7: Summary and Conclusion. The chapter delineates the final summary of the results
presented in this thesis and the objective achieved. The original contributions of this thesis

are reiterated, and recommendations for future directions are discussed.

1 4 Original Contributions
[ J

The most significant original contribution of this thesis are (i) the development of
Diffusion Microscopist Simulator, a novel dAMRI MC simulation framework (Chapter 3); and (ii)
the demonstration (Chapter 4) and application (Chapter 5 & 6) that DMS has the potential to
address a wide class of issues in dMRI. Indeed the expanding of computer simulations to MR
experimentalists has been a goal of software developers in the community who have expected a
situation where the interplay between experiments and simulations will be an integral part of dMRI.
I hope that DMS will be considered as a reliable tool that help to advance the knowledge on the
relationship between the underpinning diffusion mechanism and dMRI in brain tissues, as well as

to substantially improve the dMRI methodology for further applications.
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2 1 Timeline of Diffusion MRI History
[ J

This section introduces a brief summary of the important events associated with the

evolution of dMRI.

1828 - Robert Brown, the Scottish botanist, is regarded as the first person who discovered that
the pollen grains suspended in water exhibited a rapid jitter motion under a microscope

[Brown (1828)].

1855 - Adolf Fick introduced the famous Fick’s law of molecular diffusion, which describes the

relationship between the diffusive flux and the concentration [Fick (1855)].

1905 - Albert Einstein inferred the random thermal motion of molecules from the kinetic-
molecular theory in the early 20th century, which was a period that a coherent description
of molecular diffusion emerged. Einstein derived an explicit relationship between the root-
mean-square (RMS) displacement of a diffusing particle in Brownian motion and the classical
diffusion coefficient formulated in Fick’s law [Einstein (1905)] (English translation in [Einstein

(1956)]).

1946 - Felix Bloch and Edward Purcell were awarded the 1952 Nobel Prize in Physics for
their development of new ways and methods for nuclear magnetic precision measurements.
Felix proposed the Bloch equations which determine the time evolution of nuclear magneti-
zation [Bloch (1946)]. Edward is credited for his independent discovery of nuclear magnetic

resonance in liquids and in solids [Purcell et al. (1946)].

1950 - Erwin Hahn proposed the concept of spin echo sequence which is found to be sensitive
to the diffusion effect. He reported that the signal attenuation of the spin echo was caused
by the dephasing of diffusing spins subjected to local magnetic field gradients arisen from the

inhomogeneous magnetic field [Hahn (1950)].

1954 - Herman Carr and Edward Purcell demonstrated that NMR spin echo could be sensi-
tized to diffusion according to Hahn’s observations and proposed the first diffusion-sensitizing
spin echo sequence. They extended Hahn’s spin echo sequence by applying a constant gradi-
ent thorough the sequence and developed a mathematical framework to estimate the diffusion

coefficient [Carr and Purcell (1954)].

1956 - H.C. Torrey mathematically integrated the effect of molecular diffusion and flow into

the original Bloch equation for magnetization using the magnetic flow approach. The Bloch

12
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equation that includes diffusion as a relaxation process is know as the Bloch-Torrey equation

[Torrey (1956)].

1965 - Edward Stejskal and John Tanner developed the theory and methodology of the pulsed
gradient spin echo (PGSE) sequence, which established the classical method in diffusion NMR,
and MRI. They also provided a solution to the Bloch-Torrey equations showing how the
magnitude and phase of the NMR signal is related to diffusivity, Stejskal and Tanner also
solved the Bloch-Torrey equation for the case of free, anisotropic diffusion in the principal

frame of reference [Stejskal and Tanner (1965)].

1973 - Paul Lauterbur is credited for the idea of adding extra magnetic fields gradients to
the static magnetic field, by which different parts of object will have different resonance
frequency according to the Larmor precession theory. This spatial information makes MR

imaging possible [Lauterbur (1973)].

1977 - Peter Mansfield is credited for the invention of a magnetic field gradient scheme termed
echo-planar imaging (EPI). This fast imaging technique greatly reduces the imaging time to
tens of milliseconds, and facilitates the development of dMRI that is inherently sensitive to

subject motion [Mansfield (1977)].

1984 - George Wesbey, together with Michael Moseley and Richard Ehman, initiated the field of
diffusion imaging by inserting the Stejskal-Tanner pulsed gradient into an imaging sequence to

measure the diffusion coefficient in structures seen in an MR image [Wesbey et al. (1984a,b)].

1985 - Denis Le Bihan published the first diffusion-weighted image using a whole-body MRI
system, showing that the intra-voxel incoherent motion of water molecules can be utilized as
a new contrast mechanism in MRI, particularly for the neurological applications [Le Bihan

and Breton (1985); Le Bihan et al. (1986)].

1990 - Michael Moseley demonstrated the first successful clinical application of dMRI in imag-

ing the ADC of the brain following ischemic strokes [Moseley et al. (1990a)].

1990 - David Cory and Allen Garroway developed the methodology of g-space analysis to
extract microstructural information. They demonstrated that the ¢-space method is possible

to estimate the pore size of the tissue sample [Cory and Garroway (1990)].

1991 - Paul Callaghan, a major contributor in the field of NMR microscopy, experimentally

demonstrated and provided an elegant theoretical interpretation of the diffusion-diffraction

13



phenomenon. Callaghan also provides an outstanding review of NMR microscopy from in-
troductory theory to the newest developments in techniques and instrumentation [Callaghan

(1993)].

1994 - Peter Basser, together with Denis Le Bihan, introduced the diffusion tensor imaging,
which provided a means to quantify the isotropic and anisotropic components of the diffusion

tensor and is the basis for AMRI fiber mapping and tractography [Basser et al. (1994a,b)].

2 2 Diffusion Physics - Brownian Motion and Fick’s Law
[ J

This section reviews how the probability density function and Einstein’s RMS distance
of molecular diffusion [Einstein (1956)] can be derived from the Fick’s law of diffusion proposed by
Adolf Fick in 1855. Fick’s first law, which relates the diffusion flux to the concentration difference

of the substance, in one-dimension is as following:

ac
J=-D%" (2.1)

where J is the diffusion flux, a measure of amount of substance flowing into a unit area during a
time interval; VC' is the concentration gradient; r is the position; and D is the diffusion coefficient.
According to Einstein relation, D explained by kinetic-theory relies on the temperature, viscosity
of the fluid, and the size of the diffusing particles:

kgT
D B

6mvry,

(2.2)

where kp is the Boltzmann’s contant; T is the absolute temperature; v is the viscosity of the
medium; and r, is the radius of the spherical particle. Fick’s second law, which is derived from
Fick’s first law and the conservation of mass, describes how the concentration changes with time

due to molecular diffusion as following:

(2.3)

B B or
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Assuming that the diffusion coefficient D to be a constant in the space (i.e. D is independent of

the coordinate or concentration), Eq. 2.3 can be formulated as below:
oC 0 oC 0%C
2 (p=)=p= 2.4
ot Or ( 8r> or? (24)

To solve Eq. 2.4, we assume that a total amount of diffusing particles, N,, is located at the origin
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(r = 0) at the beginning of diffusion (¢ = 0). According to the principle of mass conservation, the
total amount of particles (NN,) in the space surrounding the source position (r) at any time is a

constant:

oo
/ C(r,t)dnr?dr = N, (2.5)
0
where C(r,t) indicates the concentration field. The solution to the above equation is,

exp (—r?/4Dt)

C(’I", t) = NP (47TDt)3/2

(2.6)
The diffusion response for an instantaneous point source can be generalized to an arbitrary staring
position 79, staring time ¢o, and IV, Therefore, the generalized solution to Eq. 2.5 can be expressed

as below:
exp |—|r — ro\z /4D (t — to)}

[47D (t — to)]*/”

C(|r —rol,t —to) = N (ro,0) (2.7)

In addition, here again according to conservation of mass, the total mass (IV, in this case) is

conserved all the time. Hence,

2 C(rt)
/OO N, dr =1 (2.8)

The mass conservation principle given in Eq. 2.8 suggests that the integral, C(r,t)/N,, exhibits

the formal properties of a probability density function. Thus, the probability density function for

a generalized point source can be formulated based on Eq. 2.7 and Eq. 2.8, as following:

exp [— |r — 7"0|2 JAD (t — to)

PS (7“ | ’I“o,t | to) = (29)

[47D (t — to)]*/?

where Ps (r | ro,t | to) termed diffusion propagator is the conditional probability termed of finding
a single spin at position r from initial position r¢ after any diffusion time interval 7 = t — t;.
From Eq. 2.9, the 3D mean-squared displacement of free diffusion for a diffusing particle following

Brownian motion can be derived as below
(r*y =6Dr (2.10)

Eq. 2.10 states the relationship between the molecular displacement due to diffusion and the dif-
fusion equation, and for free diffusion, the mean-squared displacement changes linearly with time
[Einstein (1905)]. Later in Chapter 3, this equation will be employed to define the RMS distant of

the random walker (diffusing spin) in diffusion microscopist simulator.

15



2 3 Principles of Diffusion NMR
[ J

Edward Stejskal and John Tanner have introduced many innovations that form the
basis of the modern diffusion NMR, and MRI methods. Early in 1965, they have pioneered the
famous pulsed gradient spin echo (PGSE) experiment, which is still the basis of the modern diffusion
imaging technique nowadays. Furthermore, they also proposed the Fourier relationship between
the NMR signal and the spin displacement distribution following their PGSE experiments, which

has laid the foundation of ¢g-space theory in diffusion imaging [Stejskal and Tanner (1965)].

2.3.1 Stejskal-Tanner’s Pulsed Gradient Spin Echo Experiment

As excellent comprehensive reviews of the Stejskal-Tanner’s pulsed gradient spin echo experiments
have been done in recent years (see [Callaghan (1993)] and [Price (1997)] for more details), here
only a brief description relevant to this thesis will be presented. Stejskal and Tanner developed
the PGSE pulse sequence by replacing Carr and Purcell’s constant diffusion gradients with short
duration and equal magnitude gradient pulses. Hence, the PGSE sequence has a clear distinction
between the diffusion encoding time (i.e. pulse duration, ¢) and the diffusion time (A) [Stejskal
and Tanner (1965)]. Fig. 2.1 shows the diagram of a PGSE sequence. To correlate the NMR signal
with molecular diffusion, Torrey formulated the Bloch-Torrey equation by including an additional
term to the Bloch equation considering the magnetization transfer by diffusion [Torrey (1956)],

OM (r,t)
ot

(M. — Mok Myi+ M,j

=~M x B(r,t) —
YM > B(r,t) Ty T

+V(DVM) (2.11)

where M(r,t) = M, + M, + M, represents the macroscopic nuclear magnetization; + is the gyro-
magnetic ratio; r is the spatial position; T; and Ts are the spin-lattice and spin-spin relaxation
times, respectively. D is the diffusion tensor which is a 3 x 3 rank-2 matrix. Note that the orig-
inal Bloch-Torrey equation considers the case of isotropic diffusion which is described by a scalar
diffusion coefficient D, nevertheless it can be generalized using a tensor.

The solution for the Stejskal-Tanner’s PGSE sequence in the presence of water diffusion in an

anisotropic medium is given as [Stejskal and Tanner (1965)]

S(t) . 7i exn | — - ’ N 74l
5 exp( T2> p{ /O Et)TDE®)dt (2.12)
E(t) =~ /0 té(t’)dt’ (2.13)

where Sy is the amplitude of the initial transverse magnetization right after the /2 radiofrequency
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Figure 2.1: Stejskal-Tanner’s PGSE sequence diagram. - After an excitation RF
pulse (7 fqp), a pair of diffusion gradients (highlighted in red) are placed before and after the
refocusing RF pulse (7 f150). ¢ and A represent the pulse duration and separation of the two
diffusion pulses. G, Gp, and G are the slice selection, phase encoding, and readout gradients

respectively, and TE is the echo time of MRI signal.

pulse. For an isotropic medium, the signal at the echo time is give as

S(TE) _ | [T rm
S _e:cpl D/o k@) k(t )dt]

(2.14)
= exp(—bD)
where b-value is the diffusion sensitizing factor and defined as
TE _ .
b= / )T - k@t)dt (2.15)
0

For symmetric trapezoidal diffusion gradient pulses, b-value is given as [Basser et al. (1994a)]

3 2
b= ~2G2 [52 <A§+§0+5;>] (2.16)

where € is the gradient rise time, and the effective diffusion time (A.) is usually defined as A, =

A —§/3 [Blees (1994); Callaghan (1993); Callaghan et al. (1999)].

2.3.2 Q-space Formalism

This section reviews the basis of the g-space imaging method, which enables us to measure the

probability density function of diffusion displacement from a series of PGSE experiments without
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any prior assumption on the diffusion process. The accumulative phase shift for a single spin in

the present of magnetic field gradients is given as
t
B(t) = vBot + 7/ G{t')-r(t")at (2.17)
0

where the first term represents the phase shift due to the static magnetic field By, and the second
term is due to the effects of a magnetic field gradient. In a PGSE pulse sequence, for a diffusing
spin, the degree of phase accumulation owing to the applied gradient is proportional to the spin
displacement in the direction of the gradient. At the time when the spin echo is formed (i.e. the

echo time, TE), the net phase shift (¢) of one individual spin is therefore

o=

A

) A4S
/ G(t') -r(t')dt' — / G(t') - r(t')dt’] (2.18)

Note that the accrual spin phase depends on the its motion history during the time interval between
the two magnetic field gradients. For the static spin, the phase shifts due to the gradient pulses will
cancel out each other. For the diffusing spin, the spatial position r(t) is random and the net phase
shifts accumulated by individual nuclei with different Larmor frequencies will cause a reduction in

the transverse magnetization.

The g-space formalism requires that the diffusion gradient pulse duration in a PGSE sequence is
infinite short (i.e. § ~ 0), so that the diffusion distance under the diffusion gradient pulse duration
is substantially smaller than the pore size of the medium [Wang et al. (1995)]. Under this narrow

pulse approximation, the spin phase given in Eq. 2.17 is then
¢ =vGé(rg —r) (2.19)

where ry and r are the spin’s position at the first and second instantaneous gradient pulse, respec-
tively. For a given proton density p, the diffusion signal taking the diffusion propagator (Ps in

Eq. 2.9) into account is given as
S=25 // p(ro) Ps(r | ro, A)exp [ivGdo(rg — r)] drodr (2.20)

Assuming that R =rg — r, Eq. 2.20 can be reformulated as

S = So/ [/ p(ro)Ps (ro + R | ro, A) dro | exp (i7GOR) dR (2.21)

= SO/P(R,A)exp (ivyGéR) dR
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where P(R,A) expresses the average probability for a spin diffusing a distance R within a time
interval A. It is sensible to introduce the effects of the diffusion gradient pulses into the analysis

by defining the reciprocal spatial vector ¢ given as

Go
q= 727 (2.22)

Hence, Eq. 2.21 can be rewritten as

S(q,A) = /P(R7A)e:rp (i2mqR) dR 0.23)
2.23

=F {P(R,A)}

Following this Fourier relationship, a mathematical g-space analysis method was developed by
Cory and Garroway [Cory and Garroway (1990)] and by Callaghan [Callaghan (1993)]. They pro-
posed that at a sufficient A, the displacement probability function may relate to the size and
shape (e.g. spherical, cylindrical) of the compartment where diffusion occurs. These microstruc-
tural parameters will be reflected by the diffusion-diffraction peaks in the echo signal attenuation.
Therefore, the g-space imaging technique has the ability to reveal direct microstructures of the

biological tissues.

2 4 Diffusion MRI in Central Nervous System
[ J

For free diffusion, the displacement probability can be described by a 3D Gaussian
function, and the diffusion signal attenuation is monoexponential. In biological systems, the move-
ments of water molecules under typical diffusion time are interfered by many tissue components,
such as cell membranes, myelin sheaths, water contents and other macromolecules [Beaulieu (2002)].
In has been verified that the water diffusion is no longer Gaussian in biological tissues due to the
influence of these components [Cohen and Assaf (2002)]. For neuronal fibres, water diffusion are
hindered to a greater extent in a direction perpendicular to the axon axis than parallel to it be-
cause of the shape and the organization of the axonal fibres [Le Bihan et al. (1986); Le Bihan
(2003)]. Therefore, with an adequate model describing water diffusion behavior, it is possible to
estimate fiber directions and build the fibre connectivity map (i.e. the fibre tractography) of the
brain. This sections briefly reviews the dMRI in brain tissues and begins with diffusion-weighted
imaging (DWT). Then, the section describes diffusion tensor imaging (DTT), the first dMRI method
to delineate fibre orientations. And next, the section summarizes the high angular resolution dif-

fusion imaging (HARDI) techniques and different reconstruction algorithms aiming at resolving
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multiple fibre orientations at the regions of complex fibre configurations. At last, the section ends
with a brief summary of the fibre-tracking techniques which provide the opportunity to infer the

structural connectivity of human brains.

2.4.1 Diffusion-Weighted Imaging

In 1984, Wesbey, Moseley, and Ehman initiated the diffusion imaging technique and the measure-
ment of the diffusion coefficient by incorporated Stejskal-Tanner’s PGSE sequence with imaging
gradients [Wesbey et al. (1984a,b)]. In 1985, Le Bihan succeeded to acquire the first in vivo DWI
of a human brain using a whole-body MRI scanner, and introduced the notion of the diffusion-
sensitizing factor, b-value [Le Bihan et al. (1986)]. In 1990, Moseley discovered that DWT is highly
sensitive to brain ischemia from cat brain experiments, and the following studies also suggested
that the ADC drops significantly in the early stage of brain ischemia. DWI provides the chance
of early detection and offers the patient to receive medical treatments while brain tissue is still
salvageable. Therefore, the most important clinical discovery in DWI is Moseley’s finding that
DWTI could detect the effect of acute stroke [Moseley et al. (1990a,b)]. According to Eq. 2.14, the
scalar diffusion coefficient D can be estimated from a series of DW images with diffusion b-values
by linear regression methods. As DWI is not sufficient to characterize anisotropic diffusion which
naturally arises in biological tissues such as WM axons [Moseley et al. (1991)], ADC appears to be

a rotational dependent quantity.

2.4.2 Diffusion Tensor Imaging

In 1994 Basser proposed the diffusion tensor model to describe the orientation dependence of
diffusion signal [Basser et al. (1994b)]. Owing to water diffusion is a 3D random motion process,
water molecules in biological tissue may be interfered by local tissue architecture and hence result
in diffusion process which is not the same in all directions. The tensor model provides a systemic
analysis approach to characterize the magnitude of diffusion anisotropy in the 3D space, assuming
that the displacement distribution is Gaussian. The tensor model can be represented as a 3 x 3

matrix:

D=|D,, Dy, D,. (2.24)
Dzm Dzy Dzz

As the diffusion tensor D is a symmetric and positive definite matrix, it has six unknown coefficients

to be estimated. Hence, DTI requires at least six DW images and one reference image without
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diffusion weighting to perform tensor decomposition [Basser and Pierpaoli (1998)].

where ¢; is the eigenvector of its corresponding eigenvalue \; (i = 1,2,3). The largest eigenvalue A\;
gives the principal direction of the DT, ¢;, and the other two eigenvectors span the orthogonal plane
to it. Several rotationally invariant scalar measures have been defined based on this eigensystem
decomposition in the literature, and we will present those that have been referred to later in this

thesis: the mean diffusivity (MD) and the fractional anisotropy (FA) [Basser and Pierpaoli (1996)]:

Trace(D)  ADC, + ADC, +ADC. A+ X+ X3
3 B 3 B 3

B <A >)?
FA= \/;\/ S (2.27)

DTT is currently the most widespread framework for characterizing dMRI data and has been used in

MD =< \>=

(2.26)

a broad range of applications. The principle eigenvector 1 has been validated to be consistent well
with the directions of the major white matter fibre tracts. Based on this premise, numerous fibre-
tracking algorithms have been developed that rely on the DT model to deliver a reliable estimate
of the WM fibre orientations. The DT model delivers a good depiction of the fibre orientation
in regions where there is only one fiber population, whereas it fails in areas containing multiple
distinct fibre orientations (e.g. crossing and branching fibre tracts) [Wiegell et al. (2000)]. There
are two main reasons for this: (i) The DT model assumes that diffusion is purely Gaussian (i.e. free
diffusion), which is apparently not the case in biological tissues. (ii) the DT model can only have a
single orientation maximum, and is therefore unable to characterize a multiple orientation system.
However in practice, there are many brain regions containing multiple fibre orientations, and many
tracts will be affected by this problem at some point along their path. This problem may have a
considerable impact on the reliability of fibre tractography. Given that the orientations provided by
the tenor model are inadequate in such areas, it is necessary to implement the imaging techniques

that provide higher angular resolution.

2.4.3 High Angular Resolution Diffusion Imaging

Between the years 2000 and 2011, numerous methods have been proposed to map the orientations
of intravoxel incoherent fibres configurations, such as the crossing fibres. Since the main subject of

this thesis does not focus on the HARDI techniques, in this section we only give a brief summary
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Table 2.1: The HARDI techniques. (Abbreviations - DSI: diffusion spectrum imaging;
QBI: g-ball imaging; PAS-MRI: persistant angular structure MRI; DOT: diffusion orientation
transform; DPI: diffusion propagator imaging.)

s Sampling Gradient 2 . 2
Technique strategy il b-value (s/mm~) Scan time (min)
DSI Cartesian grid =200 = 6000 20-50
PA(SQ?\}IRI Single g-shell > 60 = 1009 10-20
DOT (= 3000 preferable)
CH?)I;I}’IED Multiple g-shells =200 > 6000 20-50
Mixture . = 1000
model Single g-shell Rt (= 3000 preferable) 10-20
Spherical g = 1000
deconvolution CHESRENE] =0 (= 3000 preferable) Lt

instead of covering all different approaches. Excellent reviews of the HARDI techniques can be

found in [Seunarine and Alexander (2009); Tournier et al. (2011)].

The HARDI method successfully deals with the issue and produces more reasonable results of
orientation estimation than DTI. These methods, which are different in their acquisition strategies
and reconstruction algorithms, can be broadly categorized into three main groups: those based on
the g-space principle [Assaf and Basser (2005); Jansons and Alexander (2003); Ozarslan (2009);
Tuch (2004); Wedeen et al. (2005); Descoteaux et al. (2011)], those relying on mixture models
[Hosey et al. (2005)], and those established from empirical observations [Tournier et al. (2004)].
Table 2.1 includes HARDI techniques commonly adopted to reconstruct complex fibre orientations.
Typically, there are three g-space sampling strategies in HARDI: (i) sampling the whole 3D ¢-space
Cartesian grid; (ii) sampling a single shell in the g-space; (iii) sampling multiple shells in the g-
space.

Multiple fibre orientation are usually estimated and visualized using the orientation distribution
function (ODF) or fibre orientation distribution (FOD), depending on the diffusion reconstruction
algorithm. The ODF of diffusion spectrum imaging (DSI), for instance, is defined as the integral
of PDF over the radial dimension [Lin et al. (2003); Wedeen et al. (2005); Yeh et al. (2008)]:

ODF(u) = /O " P(ra)rdr ~ /O " plrayrdr (2.28)

where 7,42, the upper limit of the integration, defined as the linear field-of-view of diffusion PDF,
which is equal to the reciprocal of the minimum g-value (gmin), i-€., "maz = Gnt,- ODF measures
the quantity of water molecules diffused along the unit vector, u. Fig. 2.2 illustrates an example

of in vivo DSI of a human brain (see Appendix A in Chapter 2.8 for the imaging parameters).

22



CHAPTER 2.

Figure 2.2: DSI of a human brain. - The figure originates from [Yeh et al. (2008)]. (a) DSI-
ODF were color-coded according to their orientations (red: superior-inferior; green: medial-

lateral; blue: anterior-posterior). (b) The Tj-weighted image showing the corresponding slice

location of (a). (c¢) DSI at the centrum semiovale. (d) DSI at brain stem.
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Table 2.2: A summary of fibre tracking algorithms.

Advantages Limitations

* Susceptible to the initialization of the
seeds

* Susceptible to the principal
directions in the presence of noise

* Less resistance to the false positive
fibres

* Simple and intuitive
Computationally efficient
* Producing Streamline

Deterministic

* Accounting for the uncertainty in the | | Fiah Samnutohs e

Z prinetpal dinegtion modeling approaches (Bayesian or
£ | Handling partial volume effect and others) £4app )
= better dealing with crossing fibres )
B : e : * Requiring a large number of seeds
= | * Efficient for probabilistic streamlines
= : & et * A large number of fibres to be
& | * Producing the quantitative g :
2 . handled in the post-processing step
connectivity score between regions
] " L]
2 | Symmetric tracking output Numerlcally challenging to robustly
@ : ; implement
2 | * Theoretically elegant and potential : .
3 . Ko 0 * Hard to interpret the geodesic
3 for new connectivity metrics

tracking output

* Global reconstruction of the
structural connectivity

Better fibre detection

* Better resolution to crossing fibres

* High computations required
* Numerically challenging to
implement and to avoid local minima

Global
optimization

In Fig. 2.2(c), DSI-ODF resolves the crossing fibers at the centrum semiovale, where has a clear
intersection between the corpus callosum and the corticospinal tract. In Fig. 2.2(d), DSI-ODF

differentiated the orientations of the corticospinal tract and the middle cerebellar peduncle.

2.4.4 Fibre Tracking Techniques

The diffusion reconstruction models provide local orientation information of fibres, the integration
of these information using so-called dMRI fibre tracking or tractography enables us to infer global
information about the WM connections [Mori and van Zijl (2002); Behrens et al. (2007)]. At the
present time, fibre tracking is the only non-invasive tool able to obtain information on the anatom-
ical connectivity in vivo of the brain WM. Fibre tracking is most commonly implemented using the
principal diffusion direction of the diffusion tensor. Many clinical MRI systems now include a fibre
tracking module available for radiologists and medical experts. However, as mentioned previously
in this chapter, an important limitation of the DT model is the Gaussian diffusion assumption,
which implies that there can only be a single fibre population per voxel. At the resolution of DTI
acquisitions, this is an important problem since it is known that many voxels have low anisotropy
index due to non-Gaussian diffusion coming from multiple fibres crossing, branching, fanning or
in a bottleneck. These are locations where we know that the DT model is unreliable. Thus, fibre
tracking algorithms based on the DT can follow false tracts due to DT profiles that are prolate or

can prematurely stop in regions of isotropic tensors. Hence, the existing DT-based tractography
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algorithms have been extended to HARDI-based techniques that better deal with fibre crossings.
Several fibre-tracking techniques based on HARDI data have been developed to infer the connectiv-
ity of human brain structures [Hagmann et al. (2006); Behrens et al. (2007); Hagmann et al. (2007,
2008); Wedeen et al. (2008); Chao et al. (2009); Descoteaux et al. (2009)]. While reviewing each of
those methods is beyond the scope of this thesis, a summary is given in Table 2.2 which includes
the pros and cons of four categories of tracking methods: deterministic, probabilistic, geodesic, and
global optimization algorithms. Detail descriptions of the algorithms can be found in [Ciccarelli

et al. (2008); Johansen-Berg and Behrens (2009); Hagmann et al. (2010); Lazar (2010)].

2 5 Microscopic Diffusion MRI
[ J

Recent significant advances in direct measures of tissue microstructure based on dMRI
data are greatly encouraging, and importantly, dMRI is currently the only non-invasive approach
that has the ability to estimate microstructure features, such as cell size, density, and membrane
permeability. These direct measures of tissue characteristics can be utilized as biomarkers to

monitor tissue status. This section gives a summary of microscopic dAMRI.

2.5.1 AxCaliber Diffusion MRI

Assaf developed AxCaliber to estimate the diameter distribution of fibre bundles using PGSE dMRI
[Assaf et al. (2008)]. The method employs a model of cylindrical axons to extract microstructure
parameters through fitting dMRI data. The WM axon model, also proposed by Assaf, is a com-
posite of hindered and restricted models (CHARMED) of water diffusion [Assaf et al. (2004)]. The
hindered part is regarded as extra-axonal diffusion modeled by a diffusion tensor, and the restricted

part is considered as intra-axonal diffusion characterized using g-space formalism. The general form

of CHARMED is expressed as

where f, and f, denote the fraction of hindered and restricted compartments (fy + f- = 1); Si
and S, are the normalized MR signal contributed from the hindered and restricted compartments.

The hindered compartment assumes that diffusion taking place in the extra-axonal space where
contains numerous neural cells has a 3D Gaussian distribution. Therefore, diffusion is characterized

by a diffusion tensor and, the hindered part of diffusion signal in Eq. 2.29 can be formulated as

Sh(q,A) = exp(—4n*(A - 3/8))q" Dq (2.30)
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The restricted part of diffusion signal employes the Fourier relationship between echo signal and

the diffusion probability density function, as described in Eq. 2.23, and therefore

Sr(g, A) = /// P(R,A)exp (i2mqR) dR (2.31)

In AzCaliber method, S, is further decoupled into the axial and transverse signal that correspond to
the diffusion signal parallel and perpendicular to the fibre axis [Assaf et al. (2008)]. The transverse
diffusion signal, as described in the g-space analysis by Callaghan [Callaghan (1993)], is fitted by
the analytical solution to estimate the radius of cylindrical fibres.

Note that the CHARMD model inherently assumes there is no exchange between the extra-
and intra-axonal compartments. The model of diffusion within axons as restricted appears to be
a valid approximation since the residence time of intracellular water has been estimated to be
greater than 500 ms [Quirk et al. (2003)], which is much longer than a typical diffusion time of
50-100 ms typically used for human studies. However, the extracellular residence time is about
100 ms, which means that the water molecules in the extra-axonal space might enter into the axons
during a dMRI experiment. Such effect on the MR signal of the two compartment (i.e. Sy, and S,.)
remains future investigations.

The possible limitation of AxCaliber for clinical MRI application is that it is rooted in the
g-space formalism using a PGSE sequence. It means that a prior knowledge about the axon orien-
tation is needed in order to acquire the axial and transverse dMRI signal for the restricted diffusion
compartment. It has been shown that the dMRI signal attenuation pattern may vary significantly
while the applied diffusion gradient is slightly deviated from the direction perpendicular to the fibre
axis [Avram et al. (2004)]. Even though it is possible to estimate fibre orientations by HARDI, it
is still difficult to apply AxCaliber to those axon fibres with more complex configurations, such as

curving or branching fibres.

2.5.2 Multiple Scattering Diffusion Imaging

Multiple scattering diffusion imaging (MSDI), as first introduced in 90’s by Cory [Cory and Gar-
roway (1990)], Callaghan [Callaghan (1993)], and Mitra [Mitra (1995)], is one of the most promising
methods that is feasible to extract microstructural information. More recently, MSDI has been re-
visited theoretically and experimentally by Ozarslan and Basser [Ozarslan and Basser (2007, 2008);
Ozarslan et al. (2009); Ozarslan (2009)], Shemesh [Shemesh et al. (2009a,b)], Komlosh [Komlosh
et al. (2007)], Koch and Finsterbusch [Finsterbusch and Koch (2008); Finsterbusch (2009, 2010);

Koch and Finsterbusch (2008, 2009)]. MSDI employs a generalized PGSE sequence which enables
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Figure 2.3: A double PGSE pulse sequence diagram. - (a) A standard double PGSE
pulse sequence for the MSDI experiments considered. The diffusion mixing time (Ths) is
defined as the beginning of the second and third DW gradients. Theoretically, the pair of DW
gradients (shown in the purple parentheses) can be extended with multiple concatenations
(i.e. multiple scattering). (b) ¢ and 6 are the azimuthal and polar angles respectively. The

orientations of G and G in (b) are varied for the angular double-PGSE experiment.

to characterize the microscopic anisotropy. Fig. 2.3 illustrates a typical double PGSE pulse se-
quence. MSDI can be employed to detect microscopic anisotropy based on diffusion-diffraction
pattern, which has been shown to be more sensitive to microstructures than the conventional sin-
gle PGSE approach. It has been verified that the g-value required to measure axon diameters
from the diffusion-diffraction patterns is lower using a double PGESE than a single PGSE pulse
sequence. Moreover, an angular double PGSE technique has been shown that microstructures can
be extracted at a low g-value, which considerably increases its potential application on clinical MRI

system in the future.

2.5.3 Temporal Diffusion Spectroscopy

The convectional PGSE methods measure at a relatively long time scale, where diffusing spins
usually experience multiple interactions with the substrate, resulting variations of spatial distance
to the typical cell dimensions. The oscillating gradient spin echo (OGSE) method, in which the
effective diffusion is linked to the oscillating frequency of the applied gradients, has the potential
to characterize the restriction effect from the cellular structures at much shorter diffusion time and
length scales. High frequency gradients are beneficial to distinguish the mechanism responsible for
the ADC measured in restricted systems, as they minimize effective diffusion times. The principle of
temporal diffusion spectroscopy stems from the analysis of spin diffusion in the frequency domain,

as proposed by Stepisnik and Callaghan [Stepisnik (1993); Callaghan and Stepisnik (1995)]. The
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Figure 2.4: An oscillating gradient spin echo sequence diagram. - An example OGSE
pulse sequence with cosine-modulated gradient waveform (highlighted in red) [Parsons et al.

(2003)] used for the temporal diffusion spectroscopy imaging.

relationship between the diffusion signal and the applied oscillating gradients is formulated as

—

S = Speap (—i /0 h F(w)ﬁ(w)ﬁ(w)dw) (2.32)

Flw) = /0 h { /0 t yé(t’)dt’] exp (iwt) dt (2.33)

where D(w) is the diffusion spectrum and F'(w) is the Fourier transform of the time integral of
gradient. Since the OGSE method enables to selectively probe the cellular geometry over several
length scales, it has the advantage over the conventional PGSE method that is relatively limited
to the time and length scale. It has been suggested in the literature that the OGSE method at a
sufficient oscillating frequencies has the potential to discriminate tissues that are merely different in
cell nuclear sizes [Xu et al. (2009b)]. This additional sensitivity suggests that the temporal diffusion
Spectroscopy technique may be significantly advantageous for characterizing tumors [Colvin et al.

(2008)].

2.5.4 Active Imaging

An active imaging algorithm in dMRI refers to the method that aims to optimize a dMRI protocol
for certain tissue microstructure parameters, such as cell size and density [Alexander (2008)]. As

proposed by Alexander, the active imaging paradigm constitutes four key procedures:
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Modeling - The first stage is to construct an adequate biological tissue model (e.g. CHARMED

model of WM axons) containing the features that may affect the dMRI measurements.

Sampling - The second stage is to determine and optimize the dMRI experimental protocol and
strategy (e.g. gradient sampling scheme and b-value) which can deliver the most information
on the tissue microstructures given the constraints on the capability of MRI system (e.g. the

maximum gradient intensity) and the acceptable scan time.

Fitting - The third stage is to fit the dMRI data, acquired using the imaging parameters optimized
in the second stage, with the tissue modeling created in the first stage to extract the model

parameters of tissue.

Validation - The last stage is to confirm the model parameters with the realistic biological data,

which may come from the histology or other imaging modality (e.g. optical imaging).

Note that the active imaging method, importantly, does not need a prior knowledge about the
fibre orientation for the purpose of fibre diameter mapping [Alexander et al. (2010); Zhang et al.
(2011)]. Hence, it is more practical for actual dMRI of human brains where fibre orientations
are generally unknown. Interestingly, recent studies based on the active imaging method suggests
that the optimal diffusion gradient waveform for microstructures diffusion imaging is rather an
oscillating gradient shape [Drobnjak et al. (2010)], which appears the link to the OGSE technique
that tends to increase the sensitivity to tissue microstructures by reducing the effective diffusion

time (i.e. higher oscillating frequencies).

2 6 Diffusion Functional MRI
[ )

Precise localization of neuronal activity has been reported using diffusion functional
MRI (dfMRI) in recent years [Darquié et al. (2001); Le Bihan et al. (2006); Le Bihan (2007); Flint
et al. (2009)], which has been demonstrated to response more directly to the neural activation than
the classical hemodynamic imaging method based on BOLD (Blood-Oxygen Level Dependent) MRI
signal [Ogawa et al. (1990)]. Recently advances in MRI hardware and signal-to-noise performance
of scanners have led to the observation that dMRI may be used to measure functional activation.
The general principle of dfMRI is rooted in the hypothesis that the variation of ADC following
brain activation is originated from the expansion of the polar membrane layer during activation-
induced cell swelling [Le Bihan (2007)]. As BOLD fMRI is an indirect measure of signal changes
due to the blood-oxygen level, there is usually a time delay between neuronal activation and blood

flow. On the contrary, dfMRI, which measures water diffusion changes in early biophysical events

29



Slow diffusion pool

extracellular
compartment

Intracellular
compartment

Fast diffusion pool Cell membrane

Figure 2.5: Conceptual biphasic water diffusion model. - The model proposed by Le
Bihan [Le Bihan (2007)] considers that the slow diffusion pool is made of a membrane-bound
layer where water molecules are trapped by the electrostatic forces of the cell membranes
and the associated cytoskeleton. The water molecules in the intra- and the extracellular

compartments forms the fast diffusion pool.

that occur in the activated neuronal cells, seems to be a method directly associated with the
brain activation process. The time resolution and spatial localization of dfMRI appears to be
advantageous. However, owing to the fact that the dMRI contrast comes from signal attenuation,
dfMRI signal typically required more measurements to increase the statistical reliability, especially
higher b-values are preferential to increase the sensitivity.

The principle of dfMRI is explained using a biexponential model by Le Bihan [Le Bihan (2007)].
The biexponential model, also termed two-compartment or biphasic model, ascribes the contribu-
tion of MR signal attenuation to the weighted sum of fast and slow water diffusion pool [Niendorf
et al. (1996); Peled et al. (1999); Clark and Bihan (2000); Maier et al. (2004)]. Assuming that

there is no or slow exchange between the two compartments, the formula is shown as follows:

% = Frexp(—bDy) + Fsexp(—bDy) (2.34)
0

where Fy + Fy, = 1. F and D were the model parameters that represented the volume fraction and
diffusion coefficient associated with the fast and slow diffusion phases. Le Bihan proposed that as
the nature of the cell membrane is structured by the charged proteins, water molecules may be
trapped by those hydration layers [Le Bihan (2007)]. Thus in this model, the slow diffusion pool
refers to a water layer trapped by the electrostatic forces of the protein membranes and associated
cytoskeleton. The polarity of the cell membrane and the cytoskeleton limit the movement of water
molecules in this layer, resulting in a lower diffusion coefficient around cell membranes. For the
remaining water molecules, whether in the intra- or the extracellular compartment, constitutes

the fast diffusion pool. Fig. 2.5 depicts the biphasic model of water diffusion described above.
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This model also explains that water mobility (or ADC) would be reduced through an increase in
the volume proportion of the slow diffusion pool due to the membrane expansion, such as during

activation-induced cell swelling [Le Bihan et al. (2006)] or cell proliferation [Le Bihan (2003)].

2 7 Discussion
[ ]

This chapter reviews the progression of dMRI from the diffusion physics, PGSE

method, and g¢-space theory to modern dMRI methodologies. Thanks to the efforts that have
been made by the researchers for many years, dMRI has indeed become a helpful tool for clini-
cal diagnosis and for studying neuroanatomy and brain function. However, knowledge about the
underlying biophysics that governs diffusion signal and relevant quantities remains debatable, as
dMRI techniques delineate tissue features through modeling a macroscopic ensemble-averaged dif-
fusion process. It is difficult to make inference on the characteristics of biological tissues from a
MRI experiment due to the limitation of the MRI resolution. This reflects the need to have a tool
which enables us to investigate the detail mechanism that governs diffusion signal and relevant
quantities, as well as to validate various algorithms (i.e. diffusion reconstruction and fibre-tracking

algorithms) implemented in dAMRI.

2 8 Appendix
[ J

A. DSI of a human brain. DSI data of a healthy subject was obtained using a 1.5 T GE Signa

EXCITE MRI scanner (GE Healthcare). Three oblique slices were acquired via a spin echo
diffusion EPI pulse sequence using a 3D cartesian grid of 515 g-space sampling points with the
following parameters: matrix size = 64 x64; voxel dimension = 3.6x3.6x3.6 mm?; repetition
time (TR) = 3,000 ms; TE = 139.2 ms; §/A = 47.8/56.0 ms. The maximum b and g-values

were 10,000 s/mm? and 79.5 mm~?! respectively. The scan time was around 26 min.
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3 1 Introduction
@

3.1.1 Diffusion MRI and Tissue Microstructures - A Scaling Issue

The driving force of diffusion MRI (dMRI) is to monitor microscopic, natural displacements of water
molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are
thus used as a probe that can reveal microscopic details about tissue architecture, either normal
or in a diseased state. One has to keep in mind, however, that the overall signal observed in
dMRI images at a millimetric resolution, results from the integration, on a statistical basis, of
all the microscopic displacement distributions of the water molecules present in this voxel. The
complex diffusion processes that occur in a biological tissue on a voxel scale are often described
with a global, statistical parameter, the Apparent Diffusion Coefficient (ADC) [Le Bihan et al.
(1986)]. This parameterization of the diffusion process by a global ADC is intended to represent
those physical processes that occur at scales smaller than the scales resolved by the method: the
large scale is imposed by technical limitations (e.g. MRI hardware), while the actual ‘theatre’
scale of the biophysical elementary processes is determined by physical phenomena at molecular
scale. The averaging, smoothing effect resulting from this scaling presumes some homogeneity
in the voxel and makes a direct physical interpretation out of the global parameter somewhat
difficult, unless some assumptions can be made. The ADC in the brain is 2 to 10 times smaller
than free water diffusion in an aqueous solution [Le Bihan (2003)]. High viscosity, macromolecular
crowding and restriction effects have been proposed to explain the water diffusion reduction in
the intracellular space [Hazlewood et al. (1991)], and tortuosity effects for water diffusion in the
extracellular space [Nicholson and Phillips (1981); Chen and Nicholson (2000)]. Restricted diffusion
effects, for instance, may be evaluated by changing the diffusion time [Cooper et al. (1974); Latour
et al. (1994)]: the displacements of the molecules become limited when they reach the boundaries
of closed spaces and the diffusion coefficient artificially goes down with longer diffusion times.
Furthermore cell membranes in the brain likely hinder the water diffusion process (‘hindered’
diffusion, as opposed to strictly ‘restricted’ diffusion), even if the membranes are permeable to
water, either passively or through transporters, such as the specific aquaporin channels which
have been found abundant in the brain [Amiry-Moghaddam and Ottersen (2003)]. Clearly water
diffusion in tissues, especially the brain, is not free and cannot be modeled by a single Gaussian
distribution [Cohen and Assaf (2002)]. Moreover, the ADC depends not only on the actual diffusion

coefficients of the water molecular populations present in the voxel, but also on experimental,
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technical parameters, such as the voxel size, the diffusion time or the degree of sensitization of the

images to diffusion (so-called b-value [Le Bihan et al. (1986)]).

Although the idea to infer tissue microstructure details from the dMRI signal alone is ill-
posed, except in very specific and simple situations, the relationship between the ADC and specific
tissue microscopic features is currently the object of intensive research. Some groups have tried
to clarify how tissue characteristics affect the dMRI signal [Beaulieu (2002); Kroenke and Neil
(2004); Schwarcz et al. (2004); Miller et al. (2007); Peled (2007); Wheeler-Kingshott and Cercignani
(2009)]. Theoretical models have been proposed [Stanisz et al. (1997)], for instance based on a
combination of extra-axonal water undergoing hindered diffusion and intra-axonal water undergoing
restricted diffusion [Assaf et al. (2004)]. Several groups have also underlined the important role
of dynamic parameters, such as membrane permeability and water exchange [Chin et al. (2004);
Kirger et al. (1988); Novikov et al. (1998)], and geometrical features, such as cell size distribution
or axons/dendrite directional distribution [Novikov et al. (1998); van der Weerd et al. (2002);
Yablonskiy et al. (2003); Chin et al. (2004)]. Noticeably, however, all those distinct models require
strong assumptions to be made about the tissue structure, which may not always match known or

unknown biological reality.

3.1.2 Diffusion MRI Monte Carlo Simulations

To infer the relationship between tissue microstructures and dMRI signal, another approach is to
rely on Monte Carlo (MC) simulations which have been shown to be a powerful and flexible tool
to mimic diffusion processes in a wide class of systems, especially when analytical solutions cannot
be obtained, due to the complexity of the system [Lipinski (1990); Ford et al. (1998); Peled (2007);
Alexander (2008); Fieremans et al. (2008b); Balls and Frank (2009); Hall and Alexander (2009);
Harkins et al. (2009); Imae et al. (2009); Koch and Finsterbusch (2009); Alexander et al. (2010);
Budde and Frank (2010); Landman et al. (2010); Nilsson et al. (2010)]. Analytical approaches
predicting the dMRI signal using the Bloch-Torrey equation, for instance [Barzykin (1998)], must
rely on oversimplified biological tissue model and simple MRI pulse sequence (e.g. rectangular
diffusion gradient waveform). However, in the realistic situation the tissue geometry can be very
complicated so that an adequate analytical description does not exist; meanwhile the difficulty
in deriving the solution to the synthetic dMRI signal may increase following the complexities of
MR pulse sequences and gradient shapes. The advantage of the MC approach is its ability to
track the dynamic events over space and time. It provides opportunities to investigate not only

the Brownian motion in an arbitrary environment, but also any models of interactions between
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spins and membranes. Hence, synthetic dMRI data generated using the MC approach can be
applied to study biological properties (e.g. cell size, density, membrane permeability, etc.), as well
as basic diffusion mechanisms in different compartments (e.g. presence of attractors, local viscosity,
membrane interactions, etc.). Specifically, it can be adapted to examine mechanistic hypotheses
for various dynamic scenarios and tissue models, such as acute ischemia or neuronal activation
and cell swelling, cancer and cell proliferation, ADC and axonal fibre anisotropy in complex fibre
bundles or cortex [Le Bihan (2003)]. Note that, importantly, the intrinsic challenge of the dMRI
MC approach is that it requires sufficient samples in order to ensure that the stability and reliability
of the simulation results. The computation will become more intensive when the system model is

more complicated or realistic.

3.1.3 Modeling Biological Tissues

In principle, the MC simulation approach has the potential to mimic any tissue with great details, to
account for different kinds of elementary diffusion processes and to derive the corresponding dMRI
signal, providing the necessary computing power is available. As the geometry and organization
of biological microstructures are extremely complicated at the cellular level (e.g. gray matter in
the CNS tissues), the difficulty turns into how to represent tissue structures in the MC simulation
environment. Various geometric models have been proposed to simulate tissue structures under
different physiological conditions: Hall and Alexander optimized the parameters for the dMRI MC
simulations in packed and swelling fibre bundles [Hall and Alexander (2009)]. Landman et al. de-
veloped a mesh-based axon model for diffusion simulations to study the impact of injured axonal
fibres [Landman et al. (2010)]. Budde and Frank developed a neurite beading model to validate the
importance of cell membrane morphology on ADC [Budde and Frank (2010)]. The MC simulations
described above utilized cylinders to mimic WM fibre bundles, while it is also interesting to inves-
tigate the behavior of water diffusion in cerebral cortex and deep brain nuclei, as evidence has been
shown that dMRI has the subtle sensitivity to the variation of tissue cytoarchitecture [Flint et al.
(2009)]. Lipinski carried out the first MC simulation in gray matter in a simplified 2D environment
with tissue geometries created by means of digital images captured from histological preparations
[Lipinski (1990)]. Noticeably, for technical reasons linked to computational complexity most MC
simulations have been performed in 2D, although 3D simulations would be more realistic to the
biological systems. Balls etal. developed an efficient 3D simulation system that has capability
of performing large-scale simulations on water diffusion in complicated microstructures and tissue

physiology, but only to simulate conventional PGSE dMRI experiments [Balls and Frank (2009)].
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3.1.4 The Ultimate Goal

In this chapter, we introduce a new MC simulation framework, Diffusion Microscopist Simulator
(DMS), which has the ability to generate 3D tissue models of various shapes and properties, as well
as to synthesize diffusion MRI signals for a large variety of MRI methods, pulse sequences design
and parameters. DMS aims at (i) to bridging the gap between elementary diffusion processes
occurring at a micrometer scale and the resulting diffusion signal measured at millimeter scale,
providing better insights into the features observed in dMRI (e.g. variation of ADC and diffusion
anisotropy with cell size distribution), and (ii) offering ground-truth information for optimization
and validation of dMRI acquisition schemes for different applications (e.g. fibre-tracking algorithm,

diffusion local modeling, and microscopic dMRI).

3 2 Programming Framework
[

DMS was developed in C++4 using an object-oriented design, and each algorithm had
been carefully profiled and optimized to achieve fast computations. Consequently, it naturally
outperforms the MC implementation that used Java, Python, or Matlab. DMS supports multi-
threading computations in order to perform large-scale simulations on water diffusion in complex
environment simultaneously using high temporal and spatial resolution. Works are undergoing to
combine with the Open Message Passing Interface library (Open MPI, http://www.open-mpi.org)
, which allows distributing the computation on a grid of computers (i.e. multi-processing) using

the MPI standard, to reach high complexity and performance simulations.

Fig. 3.1 illustrates the architectural blueprint of DMS, which constitutes two main parts: (i)
a random walk Monte Carlo simulator capable of simulating the diffusion of water molecules in
an arbitrary simulation environment; and (ii) an MR image synthesizer dedicated to create DW
images among various MR pulse sequences. The concept for the principle components shown in
Fig. 3.1 is described in the later sections. Fig. 3.2 illustrates the graphical user interface (GUI)
programmed using Python (http://www.python.org) and Qt (http://qt.nokia.com) for DMS to
facilitate its usage. The first generation of DMS will be available through a dedicated BrainVISA

toolbox made to the community that will be downloadable at http://brainvisa.info.

3 3 Monte Carlo Simulator
[ )

This section introduces the main features of DMS MC simulator, as show in the lower

part of Fig. 3.1.
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Figure 3.1: DMS: Unified modeling language (UML) diagram. - The UML diagram
describes the system’s framework by showing the attributes and relationships among classes.
An arrow starting with a diamond represents that a class has a pointer to the objective
class. The MR Image class, for example, needs to include one NMR sequence, which contains
four pulse sequences corresponding to the RF, slice selection, phase encoding, and frequency
encoding sequences while each of them may have several pulses (as denoted by a “*”). An

arrow without a diamond indicates that the class is inherited from an objective class.

3.3.1 Scene Modeler

This class contains the essential parameters including the dimension of the spatial space, the size
of spatial subvolumes (see Chapter 3.3.4), the temporal resolution (i.e. the simulation time step,
ts), the number of iteration (INy), and the global diffusion motion model in the entire space. When

the scene modeler is generated, it allows users to add cell membranes and diffusing particles into

the simulation space. In addition, it contains the functions for users to visualize the 3D rendering

results of dynamic cell membranes, particles and their motion trajectories.

3.3.2 Cell Membrane

Global Membrane Model

This class contains several features in order to capture the characteristics of neuronal cells. To

model various cell types with heterogeneous shapes and sizes, a mesh factory was developed to
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Figure 3.2: DMS: Graphical user interface. - A snapshot of the DMS GUI, which is

comprised of a control panel on the left and a visualization window on the right.

generate meshes using triangles as surface elements. Mesh factory is able to produce a network
of simple geometries such as ellipsoids, cylinders, and star-shape meshes in order to mimic neural
architecture including neurons, glial cells, axons, and astrocytes; meanwhile, it is also feasible
to construct bundles of fibres with arbitrary configurations, such as crossing, kissing, branching,
and bending fibres. Fig. 3.3 & 3.4 are two examples of axon models showing that DMS has the
capacity to simulate different fibre structures. Furthermore, since we incorporated a cell-membrane
mesh with a dynamic morphological evolution function, each vertex can move along an averaged
orientation of the normal vectors given by the adjacent polygons. The movement of the vertex
follows a predefined function, for example, a sine function in our current implementation. Thus it is
able to simulate sequential changes of tissue shapes including expansion, shrinkage, and deformation
to simulate different tissue status. Fig. 3.5 shows an example of an environment mimicking a neural
medium simulated via DMS. Movie animations of dynamic cell swelling in various views of this
figure can be found in Appendix A (Section 3.8).

The basic characteristics of cell-membrane layers including the permeability and the types of
particle-to-membrane interaction are fully adjustable. For the current DMS, the membrane perme-
ability is modeled using the transmission probability, and the particle-to-membrane interaction is
modeled by total reflection rule which means that the angle of incidence and reflection was identical

(i.e. elastic reflection) [Balls and Frank (2009); Hall and Alexander (2009); Landman et al. (2010)].
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Figure 3.3: DMS: Modeling beading axons. - (a) This figure originates from Budde and
Frank’s article [Budde and Frank (2010)], showing the extensive beading of axonal membranes.
(b

networks of axons (colored in blue and orange). (c¢) The 3D view of the beading axon model.

~

The geometric model of compact beading axons created by DMS, which contains two

@ (b)

Figure 3.4: DMS: Modeling bending axons. - (a) This figure originates from the website
of The University of Western Australia (http://www.lab.anhb.uwa.edu.au/mb140/), showing
a longitudinal section of the peripheral nerve fibres stained by H&E (hematoxylin and eosin).
(b) The geometric model of bending fibres shown in (a) modeled using DMS. (c¢) The 3D view
of the bending axon model.

Individual Membrane Model

Models describing specific cell membrane properties can be defined to the cell-membrane layers.
To simulate the hypothesis of the biphasic water diffusion model [Le Bihan (2007)], for instance,
we have implemented an efficient method for a particle to discover the closest cell-membrane layer
from it surroundings at each simulation iteration. While a diffusing particle (see Chapter 3.3.3
below) moves inside any of the polar membrane layer, its diffusion coefficient D is updated to that

of the associated cell membrane.
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t=50ms t=100ms

Figure 3.5: DMS: Modeling a realistic neural medium. - The figure in the middle is
the result of a micrograph obtained from brain biopsy, showing an ‘anaplastic astrocytoma’
where neoplastic glial cells are dyed using anti-GFAP immunostain (blue). We utilized DMS to
simulate this complex neural environment in 3D. Moreover, we incorporated each cell (colored
in red) with a dynamic vertex evolution function to simulate cell swelling, thus the cell sizes
were smallest at the beginning of MC simulation (t = 0 ms) and largest at the end (t =
100 ms). The diffusing particles and their motion trajectories were represented by dark blue
spheres and light blue curves. Note that for the purpose of visualization, the extracellular

space was exaggerated in this simulation.

3.3.3 Diffusing Particle

We modeled diffusing particles as random walkers. DMS allows for controlling the initial distri-
bution of particles, which can be (i) regulated by the intra- (f;) and extra-cellular (fo = 1 — f;)
fractions determined by users, (ii) randomly allocated in the simulation scene (i.e. f; is propor-
tional to the total cellular volume), or (iii) located at a specific region or location defined by users.
The particle positioning algorithm in DMS is applicable to any mesh-based geometry. Fig. 3.6 is
an example of different positioning methods. The root-mean-squared (RMS) displacement (r) of
a particle’s movement is scaled to its associated compartmental D and t; based on the Einstein

relation (see Eq. (2.10) in Chapter 2.2 for reference):

r = +/6Dt, (3.1)
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Figure 3.6: DMS: Initialization of particles’ positions. - DMS allows to control the ini-

tial position of diffusing particles (colored in blue) respecting to the cell membranes (colored in
pink). This figure shows a transverse view of the simulation space where cells membranes were
created using cylinders and particles were placed using (a) random distribution (b) intracelluar

initialization (c) extracelluar initialization.

The diffusing orientation is randomly chosen from a pre-allocated lookup table constructed with
uniformly distributed orientations using electrostatic repulsion algorithm [Jones et al. (1999)]. The
default orientation scheme consists of 4,000 independent directions, and the symmetric orientations
are included to avoid orientation inclination (i.e. a total of 8,000 orientations). For each simulation
step, the spatial positions of particles are updated subject to a series of possible interactions with
cell membranes (Chapter 3.3.2): (i) In accordance with the global membrane model, the particle
may penetrate through the interacting membrane respecting the membrane’s permeability, or move
following a certain particle-to-membrane interaction method. (ii) The diffusivity is updated based
on the individual membrane model. The model of biphasic diffusion pool, for instance, will change

the particle’s diffusivity into the local compartmental D [Le Bihan (2007)].

3.3.4 Spatial Subvolume

For each simulation run, DMS employed the computer memory to store the 3D lookup tables
that partitioned the global simulation space into a fine grid with a size of N, x Ny, X N, so
that each local subvolume contains a subset of diffusing particles, cell membranes, and triangle
meshes. Therefore, knowing a particle’s position (R), the time required searching and processing
any potential interaction can be dramatically decreased via the direct assess to the objective cell
membranes and polygons simply in the local spatial subvolume rather than the entire simulation

space. Fig. 3.7 illustrates the concept of the spatial subvolume.
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Figure 3.7: DMS: Spatial subvolumes. - To show the idea of spatial subvolume, a complex
geometry created by DMS is placed inside a simulation space partitioned into N, x N, x N,
=(a)1x1x1(b)3x3x3(c)5x5x5subvolumes. When the size of partition increases,
each subvolume contains a smaller number of mesh elements. The search for interactions
between diffusing particles and mesh polygons can then be restricted to individual subvolumes,

systematically increasing computing efficiency.

3 4 MR Image Synthesizer
[ ]

This section introduces the main features of DMS MR image synthesizer, as show in

the upper part of Fig. 3.1.

3.4.1 Spin
Global Spin System

The outputs of the Monte Carlo simulator are the particles’ motion information, which are imported
to the MR image synthesizer and endowed with spins, each of them storing its phase state calculated

using a discrete form of Eq. (2.17) as below

Nrg

o=7 3 (-G - Rt (3.2)

=0

In Eq. (3.2), Npg is the iteration count at TE (i.e. Nygp = TE/ts). For a given time point ¢;, where
t; = iXts, Nygrr(t;) is the accumulated count of refocusing RF pulses; C_j(tl) is the gradient vector
derived from the NMR sequence (see Chapter 3.4.2) considering the waveforms of all gradients

(i.e. both DW and MR spatial encoding gradients) applied along each principle gradient axis; and

R(t;) is obtained from the particle’s diffusion trajectory.

Individual Spin System

The particles’ motion information provides additional statistics relating to the cell membranes. For

the biphasic diffusion model [Le Bihan (2007)], we can segregate the global particles into fast and
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Table 3.1: DMS: NMR pulse sequences. (Abbreviations: G, gradient magnitude; SR,
gradient slew rate; Ty, mixing time; Ng p, number of DW gradient pairs; T, period; f (=1/T),
frequency of oscillation; Ngo, number of gradient oscillations)

NMR Sequence Gradient waveform Parameters

Single PGSE

(Stejskal and Tanner, 1965)
Stimulated-echo (STE)

(Tanner, 1970)

Bipolar STE

(Karlicek and Lowe, 1980)
Twice-refocused spin echo (TRSE)
(Reese et al., 2003)

Multiple PGSE

(Callaghan and Komlosh, 2002; Mitra, 1995)
Multiple STE

(Cory et al., 1990)

Bipolar double STE

(Shemesh et al., 2010a)

Oscillating gradient spin echo (OGSE)
(Does et al., 2003; Stepisnik, 1993)

G; Sg. 0; A; TE

rectangle; trapezoid

G; Sg; 8; A; Ty, Ngp; TE

G; Sg; 8; A; Ty TE

sine; double-sine; cosine | G; T (f); Ngo; TE

slow diffusing particles according to their fractions of residence time within the polar membrane
layer (i.e. the slow diffusion pool). Then, the spin phase for the two groups of particles can be
calculated individually using Eq. (3.2). This can decouple the dMRI signal contributions from the
fast and slow diffusion pools, and thus may help to investigate the impact of the polar membrane

layer.

3.4.2 NMR Sequence

DMS has potential in modeling a variety of MR pulse sequences by regulating the timings of
RF and gradient pulses. Table 3.1 summarizes the pulse sequences and adjustable parameters
available in DMS. Gradient shapes including rectangle, trapezoid, and oscillating waves have been
implemented, and can be extended to fit any design. Imaging gradients, e.g. slice selection, phase
encoding, and readout gradients, are selectable to be included in a NMR sequence. The minimum
echo time (TE,,;,) is automatically calculated according to the user-specified pulse sequence and
related parameters. The diffusion-sensitizing factor, i.e. b-value, is given by the discrete form of

Eq. (2.15) as
Nre

i=0
In Eq. (3.3), by, represents the b-value for the nth DW gradient orientation, and k,, is formulated

according to the Eq. (2.13) as following

balt) =7 Y GO, (3.4)
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MR Image Synthesizer
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Figure 3.8: DMS: Workflow. - DMS has two main stages to generate synthetic dMRI
data, (left) the random walk MC simulation of water diffusion and (right) the synthesis of
dMRI dataset.

3.4.3 MR Image

This class is created to integrate spins’ phases and to synthesize DW MR images. The noise model,
e.g. complex Gaussian noise with zero mean and standard deviation specified by users, can be added
to the synthesis data at both the real and imaginary channels. DW signal of any MR voxel, S(v),

is computed by performing the numerical integration using the following equation:

NP,PCv

S(v) = Sp(v) Z eI (3.5)

Vp,pCv
In Eq. 3.5, So(v) is the signal intensity without diffusion-weighting for the voxel v; ¢, is the
accumulated phase of the pth particle calculated using Eq. (3.2), and N, pc, is the amount of

particles located inside v at TE; 1 denotes the complex noise term.

3 5 Results and Discussion
[ ]

3.5.1 DMS Workflow

Fig. 3.8 illustrates the summary of DMS workflow. DMS has integrated several features to keep

the generality, nevertheless users simply need to execute two command-lines to run a complete
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Figure 3.9: DMS: Computing performance (I). - The MC simulation scene prepared
for assessing the function of spatial subvolumes. (a) The global view of the simulation envi-
ronment, where a network of spheres were built on a cubic lattice with a size of 15x15x15.
(b) A zoomed region showing the renderings of cells (the transparent red spheres), particles
(small blues spheres) and trajectories (light blue curves).

simulation, i.e. the MC simulation and the MR image synthesis. In the first stage, users need
to define the simulation parameters including the dimension of simulation space, N,, Ny, ts, D,
N, x Ny x N, cell membranes’ properties, and particles’ initial positions, while in the second
stage, users need to determine pulse sequence to dMRI data synthesis. Furthermore, the DMS GUI
shown in Fig. 3.2 is user friendly which removes the potential barrier associated with command-line

programs.

3.5.2 Computing Performance (I)

To evaluate the influence of spatial subvolume on computing time, we performed MC simulations
using different sizes of volume partitions. We placed a network of cells containing 15 x 15 x 15 mesh-
based spheres with a radius of 5 pm in a simulation space with a dimension of 150 x 150 x 150 pm.
The space was then partitioned by a grid volume with the size ranging 10 x 10 x 10 to 50 x 50 x 50.
For each grid size, MC simulations were repeated ten times using N, = 10%, Ny = 102, t, = 10
ps, and D = 0.001 mm?/s. All diffusing particles were initialized inside the restricted spheres
(i.e. intracellular diffusion) to ensure more particle-to-membrane interactions. The computer was
equipped with a 2.66 GHz Intel Core 2 Duo processor and a 4 GB 1067 MHz DDR3 memory. For
simplicity, the experiments were performed using a single thread. The results summarized in Table

3.2 showed that increasing the number of partitions effectively reduced the simulation time.
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Table 3.2: DMS: Improvement of computing efficiency by the spatial subvolume
method. The elapsed times were (mean + standard deviation) recorded for the MC simula-

tions using different dimensions of spatial subvolumes.

N x N, x N- 10 x 10 x 10 20 x 20 x 20 30 x 30 x 30 40 x 40 x 40 50 x 50 x 50

Elapsed Time (s)

973.15+0.19 25291 +0.12 121.21 £0.08 114.01 £+0.04 110.61 =0.07
(mean * std)

Although we did not try to optimize the dimension of spatial volume for DMS MC simulations,
we expect that the selection of the grid size relies on the resolution of the mesh element, the RMS
displacement of the diffusing particle, and the available computer’s memory. According to our
experiences, a grid size between 50 x 50 x 50 and 100 x 100 x 100 can produce a more reasonable

gain in time.

3.5.3 Computing Performance (II)

To evaluate the computing efficiency of DMS for a complete dMRI simulation, we performed a
basic dMRI simulation experiment on WM fibres using the same computer system in the previous
section (Chapter 3.5.2). We constructed a hexagonal array of 400 impermeable fibres with the
diameter, center spacing, and length of 10, 10.1, and 250 pm, respectively. Each fibre was formed
using a mesh-based cylinder with 40 triangles. The MC simulation parameters were: N, = 10%,
N; = 7,000, ts = 10 us, and D = 0.002 mm?/s. For the dMRI signal synthesis, we used a single
PGSE sequence with the following parameters: G = 40 mT/m, SR = 200 T/m/s, §/A/TE =
31.7/37.7/70 ms, b-value = 2,600 s/mm?, and a uniform DW gradient scheme of 100 orientations.
The experiments were repeated ten times. The average time requirements were 396.7 + 5.5 and
108.8 + 2.2 seconds for the MC simulations and MR image synthesis, respectively. Accordingly, we
conclude that DMS is able to complete a simulation within 10 minutes with a system complexity
of N, x Ny ~ 107, which can be already sufficient to generate a reliable DW dataset for basic
tissue configurations [Hall and Alexander (2009)]. However, it is still important to note that a high
performance computing system (e.g. a workstation or computer clusters) is required for simulations
at larger scales (i.e. finer resolution of tissue architecture, higher temporal resolution, larger amount

of diffusing particles, and more complicated particle-to-membrane interaction models).

3.5.4 Data Management

DMS separates the Monte Carlo simulation and MR image synthesis into two steps: (i) the MC

simulation stage processes particles’ motion and their interactions with tissue model; and (ii) the
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Fiber radius =5 um

Figure 3.10: DMS: Computing performance (II). - The MC simulation scene prepared
for assessing the computing time of DMS. (a) The transection view of the simulation environ-
ment, where a hexagonal network of cylinders were built. (b) A sagittal section of the fibres
showing the renderings of fibres (the transparent red cylinders), particles (light blues spheres)

and trajectories (purple curves).

MR image synthesis stage calculates phase information, which ‘converts’ diffusing particles into
spins. Since the latter requires particles’ motion trajectories for computing spins’ phase evolution,
the trajectories are stored on the hard drive at the end of the former stage. Although recording
all particles’ trajectories takes a considerable amount of disk space (usually tens to hundreds
gigabytes, depending on N, and Ny), it can be beneficial when the purpose is to synthesize many
DW datasets with various imaging pulse sequences and acquisition schemes. In this case, it may
be even inappropriate to repeat MC simulations in order to avoid variations. For example, if one
is interested in studying the impact of the oscillation frequency in an OGSE sequence, DMS loads
particles’ trajectories once from the hard drive, from which the spin phases can be obtained with

a variety of frequencies using Eq. (3.2).

The other challenge of saving the particles’ trajectories is that the system memory may not be
sufficient to perform a large-scale simulation using large numbers of particles (V) and iterations
(N7) at once. In addition, the mesh-based tissue geometries may occupy a great portion of memory
when the spatial subvolumes are built at a fine resolution. To address this problem, DMS utilizes a
mechanism that divides the process of Monte Carlo simulations into several sessions. Each session
contains a subset of particles that does not exceed the memory limit of the computer system.
The consequence drawback of this procedure is that it takes time to get access to the hard disk,
nevertheless, it can effectively enables the DMS software to run basic dAMRI MC simulations on a

computer with limited system memory.
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Summary
3.6

Diffusion MRI MC simulations have already been adopted to address several questions
in the community. Many elaborate simulation tools have been proposed to generate synthetic
dMRI dataset using MC simulation approach, however, they are usually designed for a particular
research topic. In this chapter, we describe the structure and the main components of DMS, which is
developed without prior intention to certain topics in dMRI. We believe that the generality of DMS
will enable the community to perform various dMRI simulation experiments and to address different
issues. To our understanding, DMS is the first integrated MC simulation software that possesses
the capability of performing simulations of dMRI using various tissue characteristics and NMR
pulse sequences. DMS is flexible to make extensions, and the current version is already applicable
to different topics in diffusion MRI, such as tissue modeling, diffusion physics, diffusion local
modeling, fibre tracking, diffusion pulse sequence optimization, and post-processing techniques. In
the following chapters, we will first use DMS to run basic experiments to examine its validity and
performance (Chapter 4), and then, we will apply DMS to study more specific questions (Chapter
5 & 6).
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4 1 Multiple Scattering Diffusion Imaging
[ J

We used DMS to simulate single PGSE dMRI experiments on virtual WM fibre bundles
as well as multiple scattering diffusion imaging (MSDI) experiments using a double PGSE sequence.
The purpose was to demonstrate that DMS can produce the comparative simulation results with

those well documented in the literature to validate the performance of DMS.

4.1.1 DMS Experimental Design

We employed DMS to create a simulation space (460x400x 1,000 ym?), where a bundle of straight
parallel impermeable fibres with a diameter and length of 19 and 1,000 pm were placed on a 24x24
hexagonal lattice using a center spacing of 19.1 ym. The WM fibers were modeled using cylinders
built by meshes using 40 polygons per cylinder. The size of the spatial subvolume (N, xN,xN)
was 160x160x20. We performed random walk MC simulations using N, = 5x10%, N; = 10°, and
ts = 5 us. The compartmental D of 2 x 1072 mm? /s was assumed to be identical in the intra- and
extra-cellular spaces. Synthetic dMRI datasets were then collected using a single (Fig. 2.1) and a
variant of double PGSE sequence with § = 2 ms, A = A; = Ay = 200 ms, and Tj; = 0 ms for
the double PGSE sequence illustrated in Fig. 4.1(b) [Shemesh et al. (2009a)]. A range of G (slew
rate (SR) = 5,000 T/m/s) from 0 to 1,200 mT/m with a 10 mT/m increment were applied for
the single PGSE, and G; = G5 from 0 to 600 mT/m with a 5 mT/m increment were used for the
double PGSE. The DW gradient was applied in a direction perpendicular to the fibre axis. Note
that this MSDI experiment reflected the case of a preclinical MR system.

We also used the same MC simulation data to investigate the influence of N, on the dMRI
signal synthesis. Simulated data was generated using N, varying from 10° to 5x10° for the single

PGSE sequence with the same parameters described above.

4.1.2 Results

Figs. 4.2(a-b) illustrated the organization and the 3D rendering of the MC simulation, and
Fig. 4.2(c) showed the results of DW signal attenuation obtained from the single and double
PGSE measurements. For comparison, the normalized signal decay was plotted against 2q for the
double PGSE. The first diffusion-diffraction trough was observed at a g-value of 655.7 cm™! for
both sequences, corresponding to an estimated fibre diameter of 18.6 (= 1.22x10* / 655.7) um
based on Callaghan theory [Callaghan (1993)]. Fig. 4.3 showed that the minimum dMRI signal
(i.e. the diffraction peak) increased almost an order of magnitude (from 1073 to 1072) while N,

was decreased from 5x10°% to 10°.
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Figure 4.1: The double PGSE pulse sequence and its variant. - (a) The standard
double PGSE. (b) The d-PGSE variant considered in the MSDI simulation experiments. Note

that the G; and G5 were superposed, resulting the mixing time effectively 0.
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Figure 4.2: Diffusion-diffraction patterns obtained from single and double PGSE
experiments. - (a) The transverse view of the hexagonal network of mesh-based cylindrical
fibres, which had a diameter of 19 ym. (b) A snapshot of the MC simulation scene illustrating
the zoomed area within the green square in (a), where the dark blue spheres and light blue
curves are the diffusing particles and their corresponding diffusion trajectories, respectively.
(c) The diffraction trough occurred at ¢ = 655.7 cm ™!, giving an estimated pore size (i.e. fibre
diameter) of 18.6 pum. The result was closed to the actual diameter of 19 pm used in the MC

simulations.

95



[
10 0o, T T T T T
.. *Np=5x10°
‘-..“"‘ ;
o, —
".,"" Np=4x10
"-.\ ~-Np=3x10°
4 “, “-Np=2x10°
10 A S .- s
\ Np=1x10
o ) .;g:ﬁ;i ]
< %, M,.a:z:' ]
“n A Y o
o o
5 T 7
g e »
10 ¢ e, s E
sgx ‘.,';!
, o
L
Tl
(3
10’3 | | I | . | . | . | | |

|
0 100 200 300 400 500 600 700 800 900 1000 1100

g(cm™

Figure 4.3: Effect of particle count on the synthetic dMRI signal. - While the

number of particles (IV,) decreased, the diffusion-diffraction trough became less obvious.

4.1.3 Discussion

MSDI is a generalized PGSE technique that has the capacity to explore compartment anisotropy,
pore size and shape at microscopic level via its sensitivity to small compartmental dimension
[Ozarslan and Basser (2008); Shemesh et al. (2010a,b)]. Microstructural information can be es-
timated from the ‘diffraction’ pattern of DW signal attenuation [Ozarslan and Basser (2007);
Shemesh et al. (2009b, 2010b)]. Ozarslan etal. [Ozarslan and Basser (2008)] and Shemesh et al.
[Shemesh et al. (2010a,b)] performed MSDI experiments using a double-pulsed-field-gradient se-
quence to explore compartment anisotropy, pore size and shape at microscopic level. Our MSDI
simulation results using a single PGSE sequence matched well to the theory proposed by Callaghan
[Callaghan (1993)], and the results using a double PGSE sequence were consistent with those shown
by Shemesh et al. [Shemesh et al. (2009a)]. These results support the validity of DMS.

As suggested by the results shown in Fig. 4.3, an adequate number of particles is necessary for
high ¢- or b-value dMRI experiments, which is consistent with the conclusion in [Balls and Frank
(2009); Hall and Alexander (2009)]. Furthermore, it is also understandable that the impact of N,
and Ny could be more evident following more complicated tissue configurations and models. In
such cases, the simulation system has to be able to perform large-scale simulations using parallel
computing technologies in order to generate reliable synthetic data within an acceptable simulation
time. According to the results in this section as well as those presented by [Hall and Alexander
(2009)], we will use an adequate combination of N,, (> 10°) and N (> 10%) to produce a reasonable
simulation complexity (i.e. N, x Ny) with a minimum order of 10® in the following benchmark

experiments.
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(a)

diameter = 1.96 um
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50 um

Figure 4.4: DMS simulation scene for the OGSE experiments. - (a) The transverse
view of the cubic network of cylindrical fibres with a diameter of 1.96 pum. (b) The renderings

of the MC simulation scene illustrating the zoomed area within the green square in (a).

4 2 Temporal Diffusion Spectroscopy
[

In this section, we demonstrated that DMS is able to simulate different kinds of OGSE
sequences for AMRI signal synthesis. This will make DMS a helpful tool to simulate temporal dif-
fusion spectroscopy experiments. Here we compared the results of diffusion echo signal attenuation

to the data demonstrated by Xu [Xu et al. (2009a)].

4.2.1 DMS Experimental Design

We followed the simulation proposed by Xu et al. [Xu et al. (2009a)] and extended it using different
oscillation waveforms and frequencies. We generated a simulation space (50x50x200 um?) where
straight parallel cylinders with 200 pm in length were placed on a 25x25 cubic lattice with the
spacing of 2.1 um to simulate a bundle of axons. Impermeable axonal membranes with a diameter of
1.96 pm similar to the size of human brain were built using meshes of 40 polygons per axon. Fig. 4.4
illustrated the MC simulation environment for this section. The size of the spatial subvolume
(NgyxNyxN,) was 50x50x50. We performed large-scale random walk MC simulations using N,
= 10%, N; = 6x10*, and t, = 1 us giving a RMS distance of 0.1 ym. The selection of N; and
ts produced a simulation interval of 60 ms, which was considered prior to the stage of MRI signal
synthesis by taking account of the typical TE used in the realistic dMRI experiments. (Note
that this strategy to determine N; and ¢, was also applied to the other benchmark experiments.)
The compartmental D of 2 x 1073 mm?/s was assumed to be identical in the intra- and extra-
cellular space. Synthetic dMRI datasets were then collected using cosine- (Fig. 4.5), sine- (Fig. 4.6),
and double-sine-modulated OGSE diffusion sequences (Fig. 4.7) [Does et al. (2003)] with a fixed

waveform duration of 20 ms, which resulted in a TE of 50.5 ms. For each gradient waveform, seven
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oscillating frequencies (f = 0.1/0.2/0.4/0.8/1.2/1.6/2.0 kHz) were used to study the frequency
dependency, giving a range of effective diffusion times (A.) from 37.5 to 0.125 ms. For each f, the
transverse dMRI signal was calculated at 11 b-values ranging from 0 to 500 s/mm? obtained by
varying the gradient amplitude G that was relevant to the gradient characteristics of the preclinical

MRI systems.

4.2.2 Results

In Figs. 4.5-4.7, the left column illustrated the profile of diffusion gradient at an oscillating frequency
of 0.2 kHz, and the right column showed the dMRI signal attenuation and its dependence on the
waveform and frequency. For each waveform, larger signal decay was observed at higher frequencies
of diffusion gradients, which implied that ADC was higher for a shorter A.. The results suggested
that a higher f was more sensitive to the fast diffusion compartment. These results were consistent

with those shown by Does et al. [Does et al. (2003)] and Xu et al. [Xu et al. (2009a)].

4.2.3 Discussion

The temporal diffusion spectroscopy enables investigation on water diffusion behavior at various
diffusion time scales (i.e. the temporal resolution) via the implementation of an OGSE sequence, by
which the sensitivity to dMRI measurements to tissue microstructure can be increased [Stepisnik
(1993)]. Xu etal. [Xu et al. (2009a)] has showed its potential to accurately provide the character-
istics of the tissue cytoarchitecture (e.g. intracellular structures) and obtain structural parameters
of the tissue sample, while Dose et al. has demonstrated the feasibility of ex vivo experiments. Our
DMS experiments showed the coherent results to their studies, and thus DMS may apply to further

OGSE simulations.

4 3 Tissue Characteristics and Models
[ ]

We used DMS to perform large-scale simulations to study the effect of cell swelling
and two-pool diffusion model [Le Bihan (2007)]. The synthetic dMRI data was analyzed using the
biexponential model as well as the diffusion tensor (i.e. monoexponential) method to estimate the

ADC.

4.3.1 DMS Experimental Design

We prepared ten simulation spaces with the same dimension of 100x100x100 pm?, where each

of them contained a hexagonal network of spherical cells with a total number of 9,200. For each

58



CHAPTER 4.

+f=0.1 kHz =f=0.2 kHz *-f=0.4 kHz ~ f=0.8 kHz ~ f=1.2kHz ~ f=1.6 kHz > f=2.0 kHz

1

Cosine-modulated OGSE (f = 0.2 kHz)
1000 . , . 0.9

G (mT/m)
S(b)/ So

0.7

. . i s
0 5 10 15 20 25 30 35 40 45 50
time (ms)

0 100 200 300 400 500
b-value (s/mm?)

Figure 4.5: DW signal decay of a cosine-modulated OGSE sequence. - (Left) The
cosine OGSE at an oscillating frequency (f) of 0.2 kHz. (Right) Plot of DW signal attenuation
against b-value at various f.
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Figure 4.6: DW signal decay of a sine-modulated OGSE sequence. - (Left) The
sine OGSE at an oscillating frequency (f) of 0.2 kHz. (Right) Plot of DW signal attenuation
against b-value at various f.
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Figure 4.7: DW signal decay of a double-sine-modulated OGSE sequence. - (Left)
The double-sine OGSE at an oscillating frequency (f) of 0.2 kHz. (Right) Plot of DW signal

attenuation against b-value at various f.
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Figure 4.8: DMS simulation of water diffusion in cells. - (a) A global view of the
simulation space which contains a hexagonal network of cells modeled by spheres (R = 2.58
pm). (b) A transverse section of (a) illustrating the arrangement of the cells (¢) A zoomed
region of (b) showing the rendering of cells (colored in pink), diffusing particles (small spheres
in deep blue) and their motion trajectories (curves in light blue).

simulation, cells had a specific radius (R) ranging from 2.40 to 2.58 pm and a fixed center spacing
of 5.2 pum. Thus, the simulation settings produced a range of ten intracellular volume fractions
(ie. f;) from 53.27 % to 66.18 %. For each cell size, two separate MC simulations were performed
(i.e. totally 20 MC simulations in this section). In the first part, a constant D of 1.2x1073 mm? /s
was assumed for the entire simulation space. In the second part, cell membranes’ properties were
characterized using the biphasic water diffusion model (see Fig. 2.5) that represented the slow
diffusion pool (Do = 0.4x107% mm?/s) by a membrane-bound layer. The region outside the
slow-diffusion layer was modeled as a fast diffusion pool (Df4st = 1.2x1072 mm?/s). The choices
of the diffusivities (D, Dgiow, Dfast) Were based on the values proposed in [Le Bihan (2007)]. The
global parameters used across the two MC simulations were: N, = 105, Ny = 15,500, and 5 = 5 us
resulting in the RMS distances of 0.19 and 0.11 um for the D4 and Doy, respectively. Here we

assumed that the cells were impermeable and the thickness of the slow-diffusion membrane layer
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Figure 4.9: Reduction of ADC following cell swelling and polar membrane layer.
- The ADC estimated from DT model for the case of constant diffusivity (red circle) and

two-pool diffusion model (blue cross).

was 40 nm on each side of the cell membrane. This is because that the model of water layer was
not only the bilayer membrane with phospholipids and proteins (~10 nm), the structuring effect
of cell membranes could be reinforced by the relatively thick and rigid matrix which extended a
few tens of nanometres on both sides of the membrane: the glycocalyx on the outside and the
cytoskeleton on the inside [Le Bihan (2007)]. Fig. 4.8 illustrated an example of the MC simulation
experiment considered in this section.

For each of the experiment described above, two noise-free synthetic dMRI datasets were col-
lected using a single PGSE sequence. First, DW signal along z-, y-, and z-axis were synthesized at
51 b-values linearly increased from 0 to 5,000 s/mm?, which were achieved by fixing §/A = 2/70.5
ms and varying G (SR = 5,000 T/m/s). The normalized diffusion signal attenuation along each
axis was then fitted using a biexponential function given by Eq. 2.34 in Chapter 2.6. Then, the
mean and standard deviation were calculated for the biexponential parameters derived from the
three axes. Second, the HARDI datasets were synthesized using a single shell ¢g-space sampling
scheme of 80 gradient orientations at a b-value of 1,000 s/mm?, where §/A = 21/27 ms, G = 40

mT/m, and SR = 200 T/m/s. The DT reconstruction was performed to estimate the ADC.

4.3.2 Results

Fig. 4.9 showed that the ADC decreased when the cell size increased. As expected, the imple-
mentation of a two-pool diffusion model resulted in a lower ADC. Table 4.1 and 4.2 summarized
the results of biexponential fitting parameters. For both cases, we found that when the cell size

became larger, Fy decreased continuously. An opposite trend was observed for F following the
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Table 4.1: Biexponential fitting parameters (mean (standard deviation)) for the

case of constant diffusivity.

R (um) 2.40 2.42 2.44 2.46 2.48 2.50 DESD, 2.54 2.56 2.58
F 0.5196 0.5054 0.4929 0.4805 0.4653 0.4537 0.4383 0.4243 0.4094 0.3960
7 1 00017) | (0.0009) | 0.0021) | (0.0012) | (0.0004) | (0.0016) | (0.0014) | (0.0024) | (0.0011) | (0.0014)
D 0.9333 0.9304 019195 0.9097 0.9053 0.8933 0.8901 0.8809 0.8697 0.8594
7100194y | 0.0237) | (0.0240) | (0.0294) | (0.0299) | (0.0306) | (0.0322) | (0.0337) | (0.0383) | (0.0442)
F 0.4810 4.4952 0.5076 0.5201 05353 0.5468 0.5623 0.5763 0.5913 0.6047
* 1 (0.0017) | (0.0009) | (0.0021) | (0.0013) | (0.0003) | (0.0016) | (0.0014) | (0.0024) | (0.0011) | (0.0014)
D 0.0083 0.0089 | 0.0090 | 0.0092 | 0.0100 | 0.0096 | 0.0102 | 0.0105 0.0109 0.0109
1 (0.0005) | (0.0003) | (0.0009) | (0.0004) | (0.0001) | (0.0003) | (0.0004) | (0.0005) | (0.0003) | (0.0003)
Unit for diffusivity: 10™ mm?/s
Table 4.2: Biexponential fitting parameters (mean (standard deviation)) for the
case of two-pool diffusion model.
R (um) 2.40 242 2.44 2.46 2.48 2.50 2559 2.54 2.56 2.58
F 0.5183 0.5063 0.4919 0.4812 0.4660 0.4526 0.4388 0.4246 0.4095 0.3962
71 0.0008) | (0.0010) | (0.0022) | (0.0011) | (0.0013) | (0.0005) | (0.0024) | (0.0022) | (0.0009) | (0.0019)
D 0.9151 0.9056 0.9005 0.8899 0.8835 0.8743 0.8676 0.8558 0.8465 0.8333
T 100209 | 0.0227) | (0.0242) | (0.0285) | (0.0261) | (0.0314) | (0.0313) | (0.0321) | (0.0391) | (0.0427)
F 0.4823 0.4943 0.5087 0.5194 0.5346 0.5481 0.5618 0.5761 0.5912 0.6045
* 1 (0.0008) | (0.0009) | (0.0021) | (0.0011) | (0.0013) | (0.0006) | (0.0023) | (0.0022) | (0.0009) | (0.0018)
D 0.0089 0.0091 0.0096 0.0093 0.0101 0.0100 0.0103 0.0107 0.0110 0.0110
* ] (0.0003) | (0.0004) | (0.0008) | (0.0003) | (0.0003) | (0.0002) | (0.0005) | (0.0005) | (0.0004) | (0.0005)

Unit for diffusivity: 10 mm?/s

cell swelling. Although a decrease in Dy and an increase in D, were observed when the cell size

increased, the values did not change much.

4.3.3 Discussion

For the experiments on cell swelling and two-pool diffusion model, overall we observed and verified

that cell swelling led to a drop of ADC, which was consistent with the previous findings on acute

ischemic stroke [Moseley et al. (1990b)] and neuronal activation [Le Bihan et al. (2006); Le Bihan

(2007); Flint et al. (2009)]. Based on the results obtained from the biexponential analysis, we found

that Dy and D, did not alter significantly following cell swelling. The results implied that the

variation of volume fractions F; and F, mainly drove the variations of diffusion signal attenuation.
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90 degrees 60 degrees
layer 1 layer 2 layer 1 layer 2

i<

Figure 4.10: Construction of crossing fibres by DMS - Each layer was build by two

fibre directions. Layer 1 and layer 2 overlapped each other to form crossing fibres, and different

densities between two populations can be obtained by controlling the number of overlapping.

Note that although we could already simulate the effect of polar membrane layer, the RMS distance
that we used (0.19 and 0.11 pm) was larger than the layer thickness of 0.04 pm assumed in the
literature [Le Bihan (2007)]. This may affect the results, especially when the diffusing particles are
closed to the cell membranes [Regan and Kuchel (2002)], and it will require a smaller ¢, to clarify
this issue. Works are undergoing to introduce more factors such as the membrane permeability to

perform more complex and realistic simulations.

4 4 Diffusion Reconstruction Model
[ )

In this section, we demonstrated that DMS is able to provide the ground-truth virtual
fibre configurations and the associated synthetic dMRI dataset for assessing the diffusion recon-

struction algorithms.

4.4.1 DMS Experimental Design

We used DMS to create two fibre bundles crossing at 90 and 60 degrees. Fig. 4.10 showed the
basic ‘layers’ to construct crossing fibres. For each case, we controlled the number of layers to
make the proportion between the two fibre directions equal to 1:1 and 1:2. The parameters for MC
simulations were: simulation space = 300x300x200 pm? for 90-degree crossing and 350 x240x 200
pm? for 60-degree crossing; the fibre diameter was fixed at 8 ym; N, xN,xN, = 100x100x100;
N, =2 x 10% Ny = 8,000; ts = 10 us; D = 2/3 x 10~* mm?/s (i.e. the value closed to the axial
diffusivity of WM fibre). HARDI datasets were synthesized using a grid volume that produced a
single slice image with an inplane resolution of 10x10 ym?. A PGSE sequence was used with G
=40 mT/m and SR = 200 T/m/s, and two b-values at 1,500 and 2,500 s/mm? were obtained by
tuning 6/A to 24.5/30.5 ms and 29.4/35.4 ms, respectively. A single shell g-space sampling scheme

containing 65 gradient orientations was used. Rician noise was added to the synthetic DWIs to
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Figure 4.11: Effect of spherical harmonic order on SDT-fODF. - SDT-fODF were
reconstructed for 90 and 60-degree crossing fibres using the harmonic order [ of 4, 6, and 8 (at
b = 2,500 s/mm? and SNR = 20).

produce three SNRs of 10, 20, and 40 measured on the non-diffusion-weighted image. Therefore, in
total 12 synthetic IMRI datasets were generated (2 crossing angles x 2 b-values x 3 SNRs). Note
that the simulations described above reflected what can be achieved on a clinical MRI system.
Synthetic dMRI data was analyzed using (i) the DT model to reconstruct the FA map [Basser
et al. (1994b)] and (ii) the sharpening deconvolution transform (SDT) to reconstruct the fibre
orientation distribution function (fODF) [Descoteaux et al. (2009)]. For the SDT analyses, first
we used the spherical harmonic order (1) of 4, 6, and 8 with the regularization factor being fixed
at 0.006 to assess the results of fODF. After that, we applied the optimal [ to study the effect of
b-value, SNR, and fibre density distribution. The results of fODF fields were color-coded according

to their orientations (red: left-right; green: anterior-posterior; green: inferior-superior).

4.4.2 Results

Fig. 4.11 showed that at b-value of 2,500 s/mm? and SNR of 20, using | = 4 was able to resolve 90-
degree crossing but became ambiguous for the 60-degree case. Using [ = 6 successfully differentiated

both 90 and 60-degree crossing fibres. Using | = 8 produced many false positive peaks of fODF
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Figure 4.12: Effect of b-value on fODF estimation. - The fODFs were reconstructed
using SDT for the 90- and 60-degree crossing fibres at b-values of 1,500 and 2,500 s/mm? (SNR
= 20 on the null image).

for both cases, which was not suitable for fibre orientation estimation. The results suggested that
[ = 6 was the optimal setting for the SDT method at b-value = 2,500 s/mm? for our crossing fibre
data. Hence, the remaining data were all analyzed using [ = 6.

Fig. 4.12 showed the dependence of fODF estimation on b-value for the 90- and 60-degree
crossing fibres. The SNR was 20 on the null image for both datasets. At a b-value of 1,500 s/mm?,
the two distinct fibre orientations were clearly resolved by SDT for the 90-degree crossing but were
less evident for the 60-degree crossing in some voxels. At a b-value of 2,500 s/mm?, the SDT-fODF
became sharp enough to distinguish both 90- and 60-degree crossing fibres.

Fig. 4.13 demonstrated the impact of noise level on fODF estimation, showing the results at
a b-value of 1,500 s/mm?. As expected, the results of fODFs were more homogenous at a higher

SNR. At a SNR of 10, although the two directions were still differentiated by SDT-fODF in some
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Figure 4.13: Effect of SNR on fODF estimation. - The fODFs were reconstructed using
SDT for the 90- and 60-degree crossing fibres at SNRs of 40 and 10 (b-value = 1,500 s/mm?).

voxels for both cases, they were deviated from the ground-truth directions.

Fig. 4.14 showed the results of fibre orientations mapping where the density ratio of the two
fibre bundles was 2:1 and SNR was 20. For both cases, the magnitude of fODF's along the direction
of fewer fibre number were lower than those in the other direction. For the 90-degree crossing, the
two distinct directions were still resolvable using SDT, at both 1,500 and 2,500 s/mm?2. For the
60-degree crossing, the direction of the fewer fibres were not identifiable in most voxels, and only

the horizontal direction (colored in red) was clearly observed.

4.4.3 Discussion

We demonstrated how DMS could provide the ground-truth datasets and apply to assess the dif-

fusion reconstruction algorithms. The example datasets of 90- and 60-degree fibre crossing were
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Figure 4.14: Effect of fibre density on fODF estimation. - The fODFs were recon-
structed using SDT for the 90- and 60-degree crossing fibres where the proportion between the
two fiber orientations were 2 to 1 (SNR = 20).

applicable to study the dependency of b-value (Fig. 4.12), SNR, (Fig. 4.13), and fibre populations
(Fig. 4.14). They can be further utilized to optimize the HARDI acquisition protocol and pulse
sequence for the purpose of fibre orientation estimation. Although the crossing fibres were only
created at two crossing angles and densities, DMS can be used to generate any other fibre configu-
rations (e.g. curving fibres). The dataset is also suitable for comparing and optimizing the diffusion

reconstruction models.

It is already well-known that the selection of b-value is crucial as it produces the diffusion
orientational contrast that is essential for mapping fibre directions [Cho et al. (2008)]. Although
we only evaluated two b-values, it is simple for DMS to synthesize dMRI data at several b-values.
Thus, this part will be extended to study the optimal g-space sampling scheme (e.g. a single shell

or multiple shells) and b-values for AMRI data acquisition in order to improve the accuracy of fibre
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orientation estimation.

The SNR issue is important since the image contrast of dMRI comes from signal attenuation.
In addition, a higher b-value is usually preferable due to the sensitivity to diffusion will increase,
however, it will also result in a worse SNR. Several noise removal techniques have been proposed to
improve the quality of DWIs and the related measures. DMS can be employed to generate DWIs
at various SNR levels to assess the performance of the noise correction as well as to help develop

novel denoising methods.

4 5 Fibre Tracking Application
[ J

In this section, we employed DMS to generate crossing, kissing, and branching WM

fibre bundles and then applied to evaluate the performance of fibre-tracking algorithms.

4.5.1 DMS Experimental Design

DMS was utilized to simulate three WM fibre configurations, namely crossing, kissing, and branch-
ing fibres, in separate simulation spaces with dimensions of 110x190x150, 110x190x150, and
200%210x 185 pum3, respectively (see Fig. 4.15). Each fibre had a diameter of 5 ym and no perme-
ability. The parameters for the MC simulations were: N, = 108, Ny = 8,000, t, = 10 us, and D
= 2x107% mm?/s. We utilized a conventional single PGSE pulse sequence to synthesize HARDI
data with the following sequence parameters: G = 40 mT/m, SR = 200 T/m/s, 6 = 34.75 ms,
A = 40.75 ms, TE = 80 ms, and b-value = 4,000 s/mm?. The parameters were chosen to comply
with a clinical MRI system. For each fibre configuration, dMRI images were synthesized using a
grid volume that produced a single slice image with an inplane resolution of 5x5 pym?. A uniform
HARDI sampling scheme consisted of 200 unique orientations created by an electrostatic repulsion
model [Jones et al. (1999)]. For each fibre configuration, we reconstructed the f{ODF using the SDT
with a spherical harmonic order of 6 and a regularization factor of 0.006 [Descoteaux et al. (2009)].
In addition, DT analysis was performed to obtain the FA map, which was utilized to create mask
images for fibre tracking. Both deterministic and probabilistic fibre tractography were obtained
via a streamline fibre-tracking algorithm, with a forward step increment of 1.25 pum (i.e. one-fourth
of the inplane resolution), an aperture angle of 30°, and 10 seeds per voxel [Basser et al. (2000);
Poupon et al. (2000); Perrin et al. (2005a)]. Note that although the anisotropic voxel dimension
was used for fibre tracking, it did not have any severe side effect on the results of fibre tractogra-
phy presented in this section. This was due to that the organization of the fibre geometries were

all placed on the plane of isotropic resolution, and thus the fibre-tracking evolution should not

68



CHAPTER 4.

e 200N

Figure 4.15: Simulated fibre configurations: crossing, kissing, and branching fibres

- DMS was utilized to create three fibre configurations typically observed in human brains.
Left column: crossing fibres; middle column: kissing fibres; right column: branching fibres. For
each case, two networks of fibres, colored in green and orange, were arranged in an interleaved
fashion. A subset of diffusing particles and their motion trajectories were illustrated by dark

blue spheres and light blue curves.

be affected by the anisotropic scale along the direction perpendicular to the plane containing the
fibres. Likewise, this was also the same case for the diffusion local reconstruction described in the

previous section.

4.5.2 Results

Fig. 4.16 showed the results of fODF and probabilistic tractography for crossing and kissing fibre
tracts. SDT gave different fODF patterns in the crossing and kissing fibres, and the streamline
probabilistic fibre tractography generated based on SDF-fODF can successfully differentiate fibres
pathways. Fig. 4.17 illustrated the results of fibre tracking using deterministic and probabilistic
methods. The deterministic fibre tractography resulted in ambiguous fibre tracts in the region
where the fibre tracts diverted into two different directions. The probabilistic fibre tractography

showed better correspondence with the simulated fibre configuration (i.e. the ground truth).
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Figure 4.16: The SDT-fODF and probabilistic fibre tractography. - The sharpening
deconvolution transform and the streamline probabilistic fibre-tracking algorithm were per-
formed on the synthetic dMRI datasets of crossing (left) and kissing (right) fibres. The fODF

were color-coded depending on orientations (red: left-right, green: top-down, blue: inferior-

superior). Fibre tractography was represented by cylinders colored in blue. Both of the fODF

and tractography were overlapped on the FA images.

4.5.3 Discussion

The ability of dMRI in noninvasively mapping fibre directions of human brain provides oppor-
tunities to study anatomical brain connectivity. To produce a reliable fibre tractography, there
are two essential steps. The first step is to accurately estimate local fibre orientations using an
adequate diffusion reconstruction algorithm, and the second step is to implement a robust fibre
tracking algorithm. Thus, assessment and validation of diffusion local modeling and fibre tracking
algorithms are important, and these evaluations require an appropriate model to serve as a ‘gold

standard.’

A biological tissue model that utilizes neuronal tracers, such as manganese-enhanced MRI,
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has been adopted to assess the validity of diffusion reconstruction model and fibre tractography
[Lin et al. (2001, 2003)]. The advantage of this technique is that it provides a realistic tissue
environment, however, it is less feasible to tune the structural or geometric parameters (e.g. fibre
curvature). Furthermore, WM structures are less complex in animal models, which cannot capture
all of the fibre configurations that exist in human brains, and thus it may not be sufficient to
evaluate the inherent limits of diffusion local models and fibre-tracking algorithms.

A physical phantom is able to provide ground-truth dMRI datasets acquired with a practical
MR experimental setting, meanwhile, it is more flexible than a biological tissue model in terms
of geometry design. However, it loses the characteristics of biological tissues, such as membrane
permeability and local viscosity. Several elaborate physical phantoms have been developed in the
community and can be broadly categorized into two types: the hollow capillary [Cho et al. (2008);
Lin et al. (2001, 2003); Shemesh et al. (2009a); Tournier et al. (2008)] and the synthetic fibre
[Fillard et al. (2011); Fieremans et al. (2008b,a); Perrin et al. (2005b); Poupon et al. (2008)]. The
advantage of the former is that it has a diameter closed to the scale of axonal fibres ( 10 pm)
and is able to capture the nature of intra- and extra-axonl diffusion, however, it is much less
feasible to manufacture complex configurations (e.g. bending fibres). On the contrary, the latter is
highly flexible to construct curving structures similar to WM fibres, whereas it has a greater size
in diameter (~20 pm) and is limited to simulate the extra-axonal compartment.

Numerical simulation have been typically chosen to generate synthetic DW datasets for the
assessment of diffusion local models and fibre-tracking algorithms [Tuch (2004); Hess et al. (2006);
Close et al. (2009); Descoteaux et al. (2009)], however, most of the numerical simulations typically
rely on a number of assumptions on tissue models and pulse sequences. The Gaussian mixture
model, for example, is commonly utilized to generate the DW signal for each compartment. Al-
though the tensor model provides a good approximation, the Gaussian assumption for the free
diffusion is not sufficient to model diffusion anisotropy observed in vivo tissues, which is generally
acknowledged to result from restrictions and hindrances to the free movements of water molecules
[Assaf et al. (2004)]. Furthermore, the underpinning mechanism of water diffusion in neural tissues
is actually even more complicated when the cell-membrane properties are considered [Le Bihan
(2007)].

A MC simulation system has the capacity to simulate biological characteristics, and thus it is
feasible to evaluate diffusion models and fibre-tracking algorithms at different level of complexity
(e.g. mixture fibre radii or cell membrane permeability). In addition, it removes most of the
assumptions inherently required by the numerical simulations. Although there are still several

parts to improve (e.g. modeling typical imaging artifacts such as cross-terms and eddy current),
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DMS is already applicable to simulate various configurations that can be found in WM structures

of human brains according to our simulation results.

4 6 Conclusion
[ )

DMS is general and flexible to synthesize MR data for arbitrary imaging environment

and conditions. The simulation tool is already applicable to address several issues in dMRI. DMS
provides a platform for the development, validation, and optimization of diffusion MRI modeling
and methodology, and we believe that it can be an essential tool for understanding of diffusion

mechanism.
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CHAPTER 5

The Effect of Finite Diffusion Gradient
Pulse Duration on Fibre Orientation
Estimation in Diffusion MRI
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5 1 Introduction
@

In Chapter 2.3.2, we have reviewed that in the g-space formalism [Callaghan (1993)],
the probability density function (PDF) of the displacement of water molecules can be obtained
by performing the Fourier transform (FT) of the DW signal acquired as a function of the wave
vector ¢ (Eq. (2.22) & (2.23)). The displacement PDF can be utilized to estimate the dimensions
of microstructures and interpret tissue states [Cohen and Assaf (2002)], and recent studies have
demonstrated the potential of g-space diffusion MRI in measuring axonal diameters [Alexander
et al. (2010); Assaf et al. (2008); Ong et al. (2008)]. However, the essential principle of the g-space
technique is only valid under the short gradient pulse (SGP) condition [Callaghan (1993)], which
means that a very strong gradient system is demanded in order to achieve sufficient resolution of the
spin displacement, i.e. to obtain a sufficiently high g-value. On current clinical MR systems, high
q or b-value requirement can be only achieved by the prolongation of § due to gradient intensity
constraints. Usually, § is close to A in order to minimize Ts-decay and to get better SNR in the
DW images. However this practice is detrimental for obtaining quantitative g-space measurements,
resulting in an underestimation of the actual compartment size [Bar-Shir et al. (2008); Caprihan
et al. (1996); Mitra and Halperin (1995); King et al. (1997)]. The effects of finite gradient pulse
widths on the estimated displacement PDF have been well described in literature using small
animal systems with dedicated gradient hardware to attain the essential requirement of the SGP
approximation [Bar-Shir et al. (2008); Mitra and Halperin (1995); King et al. (1997); Létt et al.
(2007); Lori et al. (2003)].

During the last 25 year, dMRI has become a valuable tool for the study of the human CNS.
Of particular interest is its potential for non-invasively mapping the pathways of neuronal fibre
bundles in the living brain, as it enables the possibility of inferring neuronal connectivity between
brain regions using fibre-tracking algorithms [Basser et al. (2000); Conturo et al. (1999); Mori
and van Zijl (2002)]. The reliability of brain connectivity information depends on the accuracy
of the fibre orientation estimates within each imaging voxel, which in turn is dependent on the
fibre orientation reconstruction method, the particular diffusion imaging parameters used, and the
quality of DW images. Several approaches have been developed for estimating fibre orientations
and DTT is the first and the most common method, which involves the application of a relatively
low diffusion weighting (i.e. b-value) to characterize diffusion anisotropy and infer the principal
orientation of the white matter tracts within each imaging voxel [Basser et al. (1994a,b); Basser
and Pierpaoli (1996)]. As described in Chapter 2.4.3, a number of methods have been proposed to

enable resolution of multiple fibre orientations within a voxel. Many of these methods are based
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on the g-space theory. Some of these methods rely on full 3D sampling of g-space using very large
b-values in order to perform the required 3D FT [Assaf and Basser (2005); Wedeen et al. (2005); Wu
and Alexander (2007)]. Other methods, while still based on g-space theory, make certain simplifying
assumptions to allow the 3D FT to be performed using a reduced dataset, and operate on the less
demanding HARDI acquisition strategy, with moderate to high b-values [Ozarslan et al. (2006);
Tuch (2004); Jansons and Alexander (2003); Descoteaux et al. (2007); Hess et al. (2006)]. Other
methods have also been proposed based on a mixture model rather than the g-space formalism
[Assaf et al. (2004); Behrens et al. (2007); Hosey et al. (2005, 2008); Tournier et al. (2004, 2007)].

Although the above g-space approaches can be utilized to successfully estimate complex fibre
directions, the failure to satisfy the SGP approximation has been a recurrent criticism. However,
the effect of a long § on the DW signal and the angular accuracy of the estimated orientation have
not been fully characterized. It has been suggested that using a finite § may enhance the MR signal
contrast between DW gradient orientations [Hall and Alexander (2006); Lin et al. (2003)], whereas
the underlying mechanism requires further clarification. In this chapter, we show that, while being
a deficiency in g-space applications to determine spin displacement, the application of a longer §
is actually beneficial for resolving fibre orientations, as it enhances both the DW signal and the
contrast between the DW encoding directions. We investigate the relationship between § and the
DW signal measured as a function of orientation for single fibre bundles under the same effective
diffusion time (A, = A —§/3) [Blees (1994); Callaghan (1993); Callaghan et al. (1999)] and TE for
a given b-value, using DMS simulations and two experimental phantoms, one consisting of water
capillaries, and the other consisting of an ex-vivo nerve preparation. In addition, we performed
QBI [Tuch (2004)] on both simulated (DMS) and experimental (water capillaries) crossing fibres

to demonstrate the benefits of using a long 4.

5 2 Hypothesis
[ J

Under the SGP approximation, the labelling and unlabelling of the spins is assumed to

take place instantaneously. The displacement measured in g-space then corresponds to the distance
from the initial position of the spin at the first DW gradient pulse to its final position at the second
DW gradient pulse (Figs. 5.1(a) & 5.2(a)). On the contrary, with a finite ¢, the particle is labelled
with a position given by the centre of mass of its path during the application of the gradient
pulse [Mitra and Halperin (1995)]. Therefore, the effective displacement that is actually estimated
corresponds to the distance between the spin’s average position during the first DW pulse and its
average position during the second DW pulse (Figs. 5.1(b) & 5.2(b)). In restricted geometries, the

average position of a spin during each DW pulse will tend towards the centroid of the restricted
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Figure 5.1: Spin trajectory in a free diffusion environment. - The centre of mass
position of the spin during each gradient pulse is indicated by the symbol “x”. (a) For a short
4, the encoding of the spin is assumed to occur immediately and gives a spin displacement,
r. (b) For a long §, the spin is labelled at the position of the centroid of its path during the
application of the diffusion gradient pulse, as shown in bold trajectories [Mitra and Halperin
(1995)]. The resultant displacement ' will be closed to r in a free diffusion environment and

thus similar diffusion signal decay will be observed.

(a) (b)

Figure 5.2: Spin trajectory in a restricted environment. - The centre of mass position
of the spin during each gradient pulse is indicated by the symbol “x”. (a) For short a §, the
encoding of the spin is assumed to occur immediately, which results in larger spin displacement,
as denote by r. (b) For a long 4, the spin is labelled at the position of the centroid of its path
during the application of the diffusion gradient pulse, as shown in bold trajectories [Mitra and
Halperin (1995)]. The resultant displacement " is decreased in a restricted environment and

thus less signal decay will be observed.
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(a)

Figure 5.3: DMS: Single fibre model. - (a) The single restricted fibre model considered
in the simulations of DMS. (b) A cross section of (a) illustrating the fibre geometry, diffusing

particles (blue spheres), and their motion trajectories (light blue curves).

compartment (Fig. 5.2(b)). Therefore, the estimated displacement decreases with increasing J, and
in consequence the measured DW signal attenuation is reduced. Over the timescale of the DW
experiment, the diffusion in myelinated WM fibres can be approximated as restricted in directions
perpendicular to the fibre axis (i.e. the radial direction), and free along the fibre axis (i.e. the axial
direction) [Assaf et al. (2004); Assaf and Basser (2005)]. In this case, increased ¢ should result
in reduced tranverse DW signal attenuation, with no change in the axial DW signal. This should
therefore improve the contrast between diffusion gradient directions, and also improve the overall

SNR of DW images, both of which are actually helpful to estimate fibre orientations.

5 3 Materials and Methods
[ )

This hypothesis described above (Chapter 5.2) was tested using single fibre phantoms
including DMS MC simulations, an MR water microcapillary phantom model, and excised rat sci-
atic nerves. Furthermore, we performed QBI [Tuch (2004)] to study the ¢ effect on fibre orientation

mapping using simulated and experimental diffusion phantoms.

5.3.1 DMS Experimental Design

To test our hypothesis that the application of a long § may be beneficial for fibre orientation
estimation, we began with the simulation approach using DMS, by which we simply created a
single restricted and impermeable cylinder to model a neuronal fibre. The initial positions of the

diffusing particles were randomly distributed completely inside the fibre. The global parameters
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used for the random walk MC simulations were as follows: N, = 10°, N; = 1.5x10%, t; = 1 um,
and D = 2x10~2 mm?/s, which produced a RMS distance of 0.1 um. Then, we used DMS to
simulated a PGSE sequence to study the effect of 4 on the dMRI signal acquired as a function
of orientation. We applied a § of 1/5/55 ms, and other parameters including A, (= 60 ms), TE,
b-value, and ¢-value were all kept constant in each condition. Note that we did not model the effect

of T5 relaxation and MR noise in either of the simulations in order to investigate the pure § effect.

In the first part of the simulation, we studied the dependence on b-value. The fibre diameter
was fixed at 5 ym, and b-values of 4,000 and 8,000 s/mm? were obtained by increasing the diffusion
gradient intensity. For each ¢, the noiseless DW signal was synthesized along a set of 360 uniformly
distributed gradient directions spanning the plane containing the fibre direction. In the second
part of the simulation, we studied the dependence on fibre diameter. Fibre diameters of 4 and 8
pm were studied using a fixed b-value of 5,000 s/mm?, with the same DW gradient scheme as for

the first simulation.

5.3.2 Microcapillary Phantom

A single fibre phantom was manufactured using plastic microcapillaries with inner and outer di-
ameter of 20 and 90 pm (flexible fused silica capillary tubing, Polymicro Technologies, Phoenix,
Arizona, USA) [Cho et al. (2008); Tournier et al. (2008); Yeh et al. (2008)]. Numerous capillaries
were compactly aligned in the same direction in a flat plastic holder. Fig. 5.4(a) shows the photo of
the single fibre phantom. A crossing fibre phantom was build by stacking two single fibre phantoms
shown in Fig. 5.4(a) onto each other. The whole phantom was immersed in water, shaken in order
to remove the bubbles and left for a period of days to ensure complete filling of the capillaries.

Fig. 5.4(b) shows a To-weighted image of a crossing fibre phantom for the case of 45° angle.

For the case of single fibre phantom (see Chapter 5.3.4 below for the case of crossing fibre
phantom), data were acquired using a 9.4 Tesla MR spectrometer (Bruker BioSpin, Ettlingen,
Germany) equipped with a micro-imaging gradient system, which gives a maximum intensity of
1,460 mT/m. The micro-imaging system enables high b-value and high g-space diffusion studies sat-
isfying the narrow pulse approximation, making investigations into the effects of various ¢ feasible.
DW datasets were acquired using a 2D-FT stimulated-echo diffusion sequence with the following
parameters: matrix size = 32x32, field-of-view (FOV) = 25x25 mm, slice thickness = 1.5 mm,
TR/TE = 2,300/80 ms, § = 2/12/36 ms, and A, = 100 ms. For each ¢, the b-value dependence
was investigated by varying G in accordance with §, to produce b-values of 1,000 and 4,000 s/mm?

corresponding to g-values of 16 and 32 mm™'. The DW gradient scheme consisted of 40 orienta-
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(a) (b)

Figure 5.4: Microcapillary diffusion phantom. - (a) the two placeholders containing the
plastic microcapillaries (the scale markings are in centimetres). (b) a Ta-weighted image of

the microcapillary phantom, for the case of a 45° crossing angle.

tions applied at 9° intervals in the plane containing the fibre direction. Image pairs with opposing
gradient directions were combined using geometric averaging to reduce imaging cross-term effects

[Neeman et al. (1991)].

5.3.3 Sciatic Nerve Phantom

The sciatic nerves were dissected from a healthy 8-month-old male Sprague-Dawley (SD) rat. Pre-
vious morphometric studies on sciatic nerves of SD rats performed using histological staining have
shown that the average inner and outer axonal diameters are around 4.9 and 7.3 pum respectively,
i.e. the myelin thickness is close to 1.2 pum [Wright and Nukada (1994)]. The animal was first
overdosed with an intraperitoneal injection of sodium pentobarbital (Sigma, USA) and then tran-
scardiatic perfusion was performed using 0.9 % isotonic saline in order to preserve the integrity
of neuronal cells. The sciatic nerves were extracted from both sides from the sciatic notch to the
knees (~1 cm in length) and aligned along the same direction. They were then immersed in 0.9
% isotonic saline for the imaging experiment, which was performed within 1 hour of the nerve
preparation. Animal preparation procedures were in accordance with the Guidelines for Care and
Use of Experimental Animals of the Laboratory Animal Centre in National Yang-Ming University.

DW datasets were collected using the 9.4 Tesla Bruker Spectrometer using the micro-imaging
gradient system. A PGSE diffusion sequence was used with the following parameters: matrix size
= 64x64, FOV = 7.5x7.5 mm, slice thickness = 6.5 mm, TR/TE = 3,600/94.6 ms, A, = 50

ms, 0 = 2/4/8/16/32 ms, The DW gradient intensity G was varied to obtain the same b-value
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under various 4, for b-values = 1,000/4,000/8,000/12,000 s/mm?. The DW encoding scheme of
36 gradient orientations applied at 10° intervals was used for data acquisition. As before, image
pairs with opposing gradient directions were combined using geometric averaging to reduce imaging

cross-term effects [Neeman et al. (1991)].

5.3.4 QBI of Crossing Fibre Phantoms

To evaluate the influence of § effect on mapping fibre directions, we collected ground-truth dMRI
datasets of 45° crossing fibres through DMS and the plastic microcapillary phantom described in
Chapter 5.3.2.

Synthetic dMRI data were generated via DMS. Two cylindrical fibre bundles with a diameter
of 10 pm intersecting at 45° were created, and MC simulations were performed using N, = 2x 10°,
N;=1.5x10%,t, =1 ps, and D = 2x1072 mm?/s. Synthetic diffusion signal was calculated using
a PGSE pulse sequence with A, = 60 ms, § = 1/5/55 ms, b-value = 5,000 s/mm?, SNR = 15. The
HARDI DW gradient scheme constituted 80 unique orientations generated using an electrostatic
repulsion model [Jones et al. (1999)], along with their opposite directions, for a total of 160 gradient
directions. The data syntheses were repeated 1,000 times for each §.

Experimental dMRI data of microcapillary phantom were acquired on the 9.4 Tesla Bruker
spectrometer using a 2D-FT stimulated echo sequence with the following parameters: matrix size
= 32x32, FOV = 24x24 mm, slice thickness = 3.2 mm, TR/TE = 2,300/80 ms, A, = 100 ms,
§ = 2/12/36 ms, and b-value = 4,000 s/mm?. The same HARDI sampling scheme composed of
160 gradient directions was used. As before, image pairs with opposing gradient directions were

combined using geometric averaging to reduce imaging cross-term effects [Neeman et al. (1991)].

5.3.5 Data Analysis

Single Fibre Phantom Data. The single fibre phantom data (i.e. Chapter 5.3.1, 5.3.2, and
5.3.3) are displayed using polar plots, showing the DW signal measured as a function of DW gradient
orientation under different values of §. The DW signal of each phantom data was normalized to

the null signal intensity (i.e. b ~ 0) for comparison.

Crossing Fibre Phantom Data. The crossing fibre data (i.e. Chapter 5.3.4) were reconstructed
using QBI [Tuch (2004)] to provide the ODF, with angular sampling resolution of 4° (16-fold
tessellated icosahedrons). To reduce the error caused by the discrete spherical sampling of ODF,
we randomly rotated the angular sampling scheme and computed the ODF 1,000 times for each

voxel [Cho et al. (2009)]. During each ODF calculation, we considered local maximum vectors of
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each ODF with lengths greater than 50 % of the peak ODF value as the potential fibre directions.
Finally, the mean of potential directions were regarded as the final fibre orientations. The quality

of the orientation estimation was assessed using:

1. Azimuthal and elevation angles. In voxels where QBI successfully distinguished two fibre
directions, we projected the two directions onto the azimuthal and elevation plane, and then

computed the mean and the standard deviation across voxels.

2. Success rate. The proportion of voxels within which the two main fibre directions could be

identified.

Results
h.4

5.4.1 Single Fibre Studies

The results obtained from the single fibre studies showed that the application of longer § resulted
in higher DW signal being measured along the radial directions, with little or no change along the
axis of the fibres (Fig. 5.5, 5.6, 5.7 & 5.8).

Figs. 5.5 & 5.6 are the results of DMS simulations. For a fixed fibre diameter of 5 pm, the
effect of a longer § was more evident at the higher b-value of 8,000 s/mm? (Fig. 5.5). The effect is
also more evident for larger axon diameters: the increase in DW signal in the radial direction was
more obvious for the 8 ym diameter fibre than for the 4 pum fibre, under the same b-value of 5,000
s/mm? (Fig. 5.6). Note the axial DW signal was very close to zero due to the almost complete
dephasing of the signal for unrestricted diffusion.

The results of the single fibre DW water microcapillary phantom are shown in Fig. 5.7. For
b-value = 1,000 s/mm?, the radial DW signal increased by 5.4 % and 16.4 % when § was increased
from 2 ms to 12 ms and 36 ms respectively. The effect was even greater at b-value = 4,000 s/mm?,
with increases of 29.8 % and 74.8 % respectively. In both cases, there were little or no changes in
axial DW signal.

The same trends were also observed in the rat sciatic nerve data (Fig. 5.8). At b-value of 1,000
s/mm?, the effect of increasing § was negligible. However, the effect could be readily observed at
b-values of 4,000 s/mm? and greater, with longer § leading to enhanced radial DW signal. The
effect of § became even more evident at the higher b-values of 8,000 and 12,000 s/mm?. Consistent
with the simulations and phantom experiments, the use of long  led to an overall increase in the

DW signal for a given b-value.
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from the water capillary phantom, using 4 = 2 (blue), 12 (green), and 36 (red) ms, with the
axial (fibre) axis oriented left-right (i.e. 0° and 180°). The results were obtained using two
b-values of 1,000 and 4,000 s/mm? while fixing TE = 80 ms. The internal diameter of the

plastic capillaries was 20 pm.

5.4.2 Crossing Fibre Studies

Figs. 5.9 & 5.10 show the plots of fibre orientation estimation obtained from the QBI-ODF recon-
struction of the crossing fibre data obtained from DMS simulations and microcapillary phantom
dMRI experiments. The estimated fibre orientations were projected onto the azimuthal and el-
evations planes for each voxel containing crossing fibres. Both the accuracy and precision were
increased using a longer §. The quantitative results are summarized in Tables 5.1 & 5.2. As sug-
gested by the experiments on the single fibre phantom, the results in the table show that applying a
longer § improves the precision of the estimated fibre orientations slightly, and improves the success
rate significantly. Consistent with previous studies [Tournier et al. (2008); Zhan and Yang (2006)],
a significant bias was found with QBI, with the separation between the two fibre orientations being

underestimated.

5 5 Discussion
[ )

In recent years, a variety of diffusion imaging techniques based on the g-space theory

have been proposed to map complex neuronal fibre architecture [Assaf et al. (2004); Assaf and

Basser (2005); Tuch (2004); Wedeen et al. (2005); Wu and Alexander (2007)], but the failure to
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Table 5.1: The fibre orientations of the two crossing fibre populations measured using QBI
from the DMS simulation data under various ¢ at b-value = 5,000 s/mm?. The To-decay was

not modeled for this simulation.

Fibre orientation 1 Fibre orientation 2
Azimuth Elevation Azimuth Elevation Success rate
6=1ms 35°+54°  0.1°+£25° 41.7° +4.6° -0.2°+2.3° 70 %
6=5ms 35°+4.6° 0.1°+23° 42.0° +3.6° -04°+2.1° 84 %
6=55ms 2.8°+29° 0.1°*+14° 424°+22° -0.3°+1.7° 91 %

Table 5.2: The fibre orientations of the two crossing fibre populations measured using QBI
from the microcapillary phantom data under various § using fixed TE of 80 ms at b-value =
4,000 s/mm?.

Fibre orientation 1 Fibre orientation 2
Azimuth Elevation Azimuth Elevation Success rate
0 =2ms 52244402 04°+209° 36.3°+11.0° 02°+2.7° 74 %
6=12 ms 42°+28° 0.1°+1.7° 40.0° +4.5° 0.6°+£2.0° 86 %
6=36ms 38°+18° 0.1°%£1.2° 40.6° £4.2° 0.5°+1.3° 90 %

meet the SGP approximation on clinical systems has been a recurrent criticism. In this chapter, we
show that rather than being a deficiency, the use of long ¢ is not a disadvantage for fibre orientation
estimation, since it provides a moderate boost in signal, and an increase in angular contrast due to
the differential radial/axial effect. We described the theory for the long § effect (Section 5.2), which
is supported by the simulations of DMS and dMRI experiments on microcapillary phantom and
animal models. While it is not possible to validate this effect using clinical MR, scanners due to the
limited gradient amplitude, our results imply that the current practice of using long ¢ for dMRI on
human clinical MR scanners, which is enforced by hardware limitations, may also be beneficial for
estimating fibre orientations. However, it is still important to note that this only applies to ODF
estimation; and that for true g-space displacement measurements, the narrow pulse approximation

is still required.

5.5.1 Impact of Ty-decay

In most clinical studies, as spin-echo sequences are typically used, the effect of To-decay is important
and may have a greater impact on the amount of signal available than the long ¢ effect. This can
be investigated by considering a PGSE diffusion sequence, assuming a Ts value for white matter
at 3T of 60 ms [Alexander and Barker (2005)]. Under the condition of constant A, and b-value,
the minimum TE values for § = 1/5/55 ms are 68.5/73.8/140.53 ms respectively. In this case,
the Ty effect clearly dominates over the ¢ effect. In other words, the increase in minimum TE

associated with a longer § leads to a reduction in the signal that is much greater than any increase
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Figure 5.9: Fibre orientation estimation of the crossing fibre DMS simulation
data. - (Crossing angle = 45°, b-value = 5,000 s/mm?). From top to bottom: § = 1, 5 and
55 ms. For all voxels contained in the fibre-crossing region, fibre orientations are projected
onto the azimuthal (z-axis) and elevation (y-axis) planes. The two directions are displayed by
“*7 and “-” symbols, and the black cross (x) and the black square () represent their mean

values.

associated with the longer DW pulse. However, under these conditions, the DW gradient amplitude
G increases as § decreases, since b = (YG6)?(A —§/3) and A, = A — §/3 is constant. In practice
the shortest achievable DW pulse duration would therefore be determined by the available gradient
strength. Under the more clinically relevant condition of constant (i.e. maximum available) DW
gradient amplitude G and constant b-value, a shorter ¢ leads to a marked increase in A., and hence

to a marked increase in minimum TE. In this case, a longer § is clearly optimal, leading to shorter
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values.

echo times as well as increased transverse DW signal. This suggests that the current practice of
using long DW pulse durations to minimize the diffusion time (and hence TE) is optimal for the
purpose of fibre orientation determination (for a given desired b-value). Furthermore, if the MR
system is capable of achieving higher gradient strengths, this should be used to shorten the TE in

order to obtain DW images with higher SNR.

5.5.2 Validity of Single Restricted Fibre Simulation

As shown in the simulation results in Fig. 5.5, there was remarkably little attenuation of the radial

DW signal under the application of a long § at both b-value 4,000 s/mm? and 8,000 s/mm?. Indeed,
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there was almost no signal decay with 6 = 55 ms. According to the Einstein equation (Eq. (2.10)),
with § = 55 ms the RMS displacement should be r = 25.7 pym, which is much greater than the
fibre diameter (5 pm); hence, during the application of the diffusion gradient pulse each spin will
have sufficient time to explore the entire restricted space and its effective position for both the
labelling and unlabelling will be very close to the central axis of the fibre. Since the resultant
spin displacements will be small, there will be almost no radial signal decay, even using a high b-
value of 8,000 s/mm?. This effect (i.e. the almost complete absence of transverse DW attenuation
with long ¢) is likely to be exaggerated in our simulation applied in this study, since (i) no extra-
axonal compartment is included in the model; and (ii) the axonal compartment is modeled as fully
restricted (this second point is also true of the water capillary phantom). Water molecules in the
extra-axonal compartment would presumably be more mobile, and their DW signal would therefore
be more strongly reduced. They would however contribute equally to the b = 0 signal (ignoring
any differences in Ty), leading to greater DW attenuation for the combined sample. However, if the
intra- and extra-axonal compartments can be assumed to be non-exchanging (see below), the DW
signal corresponding to the intra-axonal volume fraction is likely to exhibit this effect as suggested

by the simulations.

Likewise, membrane permeability is expected to lead to greater DW attenuation if the diffusion
time is comparable with the average lifetime of molecules within the intra-axonal compartment.
However, the intracellular water pre-exchange lifetime (or the residence time) in the rat brain has
been estimated to be greater than 500 ms [Quirk et al. (2003)], which is much longer than the
diffusion times of 50-100 ms that are typically used for human studies. Moreover, these measure-
ments were taken from deep gray matter structures; the equivalent lifetimes in myelinated white
matter are likely to be considerably longer due to the additional barrier imposed by the myelin
sheath. This suggests that modeling diffusion within axons as restricted is a valid approximation,
and this assumption has indeed been successfully used in other modeling frameworks (e.g. [Assaf

et al. (2004); Assaf and Basser (2005)]).

5.5.3 Inference of Finite § on Fibre Radius Estimation

The simulation results in Fig. 5.6 show the dependence on fibre diameter. Intuitively, the spin
displacements will be shorter along the radial direction of a completely restricted fibre with a
smaller diameter, which gives reduced DW signal attenuation. Similarly, a short § in a larger
diameter fibre results in greater DW signal attenuation. However, using a long § the DW signal

attenuation is similar for both fibre diameters studied. The present results therefore have interesting
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implications for the measurement of axonal diameters. The main determinant for the effect of DW
pulse duration is the size of the restricting compartment (i.e. axonal diameter) relative to the RMS
displacement over the timescale of the DW pulse duration. Assuming a diffusion coefficient D =
2x1073 mm?/s, the time required for the RMS displacement to exceed an axonal diameter r =
5 pm is approximately 2 ms, after which time the average position of the spins will tend towards
the central axis of the axon. This implies that for diffusion pulses much longer than 2 ms, the
radial signal will be independent of axonal radius for radii less than 5 pgm. This value is even
smaller for smaller radii, as it scales with 72: with » = 2 ym, § should be in the region of 300 us or
less. The smallest measurable axonal diameter is therefore determined by the shortest DW pulse
duration achievable. On the other hand, this also implies that if long diffusion gradient pulses are
used (as is the case in clinical diffusion MR imaging protocols), the DW signal intensity is largely
independent of the axonal fibre diameter (within the biologically relevant range). Interestingly,
this may indicate that indices that are sensitive to changes in the apparent radial diffusivity, such
as fractional anisotropy (FA), are unlikely to be sensitive to axonal diameters in a clinical setting

(i.e. when long d are used).

5.5.4 Validity of Microcapillary Phantom Model

The water capillary single fibre phantom study confirms that the application of a long ¢ results in
less signal attenuation than a short ¢, with all other imaging parameters fixed. The effect of § was
exaggerated using this model as the internal diameter of the plastic capillaries was 20 pm, which
is larger than the typical range for neuronal fibres of 1 to 10 pym. Nonetheless, this single fibre
phantom model provides an experimental demonstration of the physical phenomenon in a fully

restricted environment.

5.5.5 The ¢ Effect on Real Biological Tissues

The excised rat sciatic nerves were used to investigate the effect of long § on biological tissues.
As expected, the radial DW signal intensity decreased using a shorter ¢, with little or no changes
in the axial direction. The application of a long § ‘stretches’ the DW signal profile, thereby
increasing the angular contrast between the DW signals acquired along different directions. This is
beneficial for fibre orientation estimation as it provides improved discrimination between different
fibre orientations [Cho et al. (2008)]. It is interesting to note that as suggested by the simulations,
the attenuation of the DW signal in the radial direction when using a long ¢ is not affected by b-value

as strongly as might be expected, going from ~90 % at b = 1,000 s/mm? to ~60 % at b = 12,000
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s/mm?. Indeed, this is consistent with the previous suggestion of increased DW attenuation for the
extra-axonal compartment, with little or no DW attenuation for the intra-axonal compartment.
Unfortunately, this hypothesis cannot be tested with the results shown in the present chapter, and
further work (beyond the scope of this study) would be required to verify whether this is indeed

the case.

5.5.6 Inference of ¢-value

Note that in our single fibre studies, we investigated the J-effect against b-values rather than g¢-
values. For a fixed ¢-value, keeping the diffusion time A constant implies that the diffusion pulses
will actually be spaced closer together (for non-negligible §) than for the fixed b-value case (where
A, = A —§/3 is kept constant). This should result in an even greater effect of long § for the
constant g-value case. Therefore, the §-effect for fibre orientation estimation is applicable to both

b-value and g-value formulations.

5.5.7 Inference of finite § on clinical applications

To demonstrate that using long diffusion gradient pulses is actually beneficial for the purpose of
fibre orientation estimation, we performed QBI analyses on the simulated and the microcapillary
crossing fibre phantoms. We observe that using a long § can decrease the standard deviation of
the azimuthal and elevation angle, as well as increase the percentage success rate, as shown in
Tables 5.1 & 5.2 and Fig. 5.9 & Fig. 5.10. This may be due both to the increased overall signal
at long §, and the improved angular contrast. While the use of long § is therefore beneficial, it
should however be noted that these results also confirm the significant bias in the separation angle
previously reported for QBI [Zhan and Yang (2006); Tournier et al. (2008)].

For simplicity, in this chapter we only used the QBI reconstruction method to analyze the
HARDI data. However, we expect that a long d will also be beneficial for other diffusion imaging
approaches to discriminate crossing fibres. In diffusion spectrum imaging (DSI) [Lin et al. (2003);
Wedeen et al. (2005)] for example, although the finite ¢ is problematic for measuring microstructural
dimensions due to the underestimation of the extent of the spin propagator [Mitra and Halperin
(1995); Litt et al. (2007); Bar-Shir et al. (2008)], such effect may not be a drawback for mapping
fibre orientations. In general, since using a long 0 enhances the DW angular contrast and the
overall signal of DW images, it should also be beneficial for other diffusion techniques for fibre
orientation estimation.

In most clinical sites, § is already set to the longest possible in order to achieve the required
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b-value in the shortest TE [Alexander and Barker (2005)]. Here, we have shown that far from
being problematic, a long § may actually be beneficial for fibre orientation estimation, and thus for
fibre-tracking applications. Our results indicate that for most current DW MRI techniques to map
complex fibre architecture, which utilize intermediate to high b-values, the application of a long §

should not be considered a limitation for the purposes of fibre orientation estimation.

5 6 Conclusion
[ )

Due to MR hardware limitations, it is necessary for current DW acquisition protocols

on clinical scanners to use long § values. Although a longer ¢ is problematic for quantitative g-
space analyses, we have shown that it can actually enhance both the overall signal of DW images
and the contrast between DW gradient directions. We have demonstrated and validated this effect
through simulations and experiments, and the results support that a long § value is advantageous
for resolving crossing fibres and estimating their orientations. This effect is expected to be beneficial
for related post-processing methods including fibre-tracking applications and segmentation based

on diffusion data.
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6 1 Introduction
@

For current clinical application of dMRI, diffusion tensor imaging (DTT) is still the most
widespread method to characterize diffusion anisotropy for inferring the integrity and orientation
of the WM tracts [Basser et al. (1994b, 2000)]. However, DT indices such as the mean diffusivity
(MD) and fractional anisotropy (FA) (Eq. (2.26) & (2.27)) are the quantities describing water
diffusion behavior in biological tissues, which may not directly reflect the microstructure features
or conditions of biological tissues. That is, for instance, the FA values of the two groups of fibre
bundles may be equivalent (i.e. the same degree of diffusion anisotropy) although their diameters
are different [Shemesh et al. (2010c)]. In recent years, a number of elaborate microscopic dMRI
techniques have been proposed to directly probe microstructural characteristics of tissues, such as
cell size, fibre density, and membrane permeability. These direct measures of tissue properties can

be utilized as novel biomarkers to monitor tissue status.

The origin of microscopic dMRI can be referred to the g-space imaging (QSI) by which dMRI
can be utilized to probe the size of microstructures from the PGSE dMRI data (Chapter 2.3.2)
[Callaghan (1993); Cory and Garroway (1990)]. Ong et al. utilized the QSI principle to generate the
mean axon diameter maps of mice’s spinal cords, which were then validated using simulations and
histology [Ong et al. (2008)]. Assaf et al. developed ‘AxCaliber’ to estimate fibre diameter distribu-
tion by fitting the model of restricted and hindered water diffusion in the intra- and extra-axonal
space (Chapter 2.5.1) [Assaf et al. (2004, 2008)]. Ozarslan et al. and Shemesh et al. performed
MSDI experiments by employing a double-pulsed-field-gradient sequence to explore compartment
anisotropy, pore size and shape at microscopic level [Ozarslan and Basser (2008); Ozarslan et al.
(2009); Ozarslan (2009); Shemesh and Cohen (2008); Shemesh et al. (2009a,b, 2010a,b,c)]. Xu
et al. applied an OGSE sequence, which enables DW experiments at a high temporal resolution, to
increase the sensitivity of DW measurements to tissue microstructure [Stepisnik (1993); Xu et al.

(2009a,b)].

The advanced dMRI techniques described above are useful methodologies for imaging mi-
crostructures, however, it is difficult to implement these methods on the current clinical MR
scanners because of the following reasons: Both AxCaliber and QSI require adequate gradient
intensity in order to fulfill the narrow gradient pulse requirement; while OGSE needs high gradient
capability (e.g. strength and slew rate) to increase the sensitivity and resolution of dMRI mea-
surements. Owing to the safety consideration and hardware limitations, a high gradient system
cannot be installed on a clinical MRI system. As for MSDI, although it has the potential to deliver

microscopic information with lower gradient strengths via an angular double PGSE approach, at
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~R=4pm '

100 um

100 um

Figure 6.1: An example of the MC simulation environment for fibre radius map-
ping. - (Left) The transverse view of the simulation scene, which contained 625 mesh-based
cylinders. For each cylinder, the radius (R) and the length were 4 and 500 pm respectively.
(Right) A zoomed area within the square in the left column, illustrating the diffusing particles

(dark blue) and their motion trajectories (light blue).

the present time MSDI is limited to theoretical descriptions, simulations, and experimental studies
on preclinical MRI systems. In addition, the double-PGSE-based MSDI approach relies on a prior
knowledge on fibre orientations that are actually unknown for most of the neuronal pathways.
An alternative MSDI method utilizes a bipolar double-pulsed-field-gradient sequence, by which the
pore size and shape of randomly oriented porous media can be accurately estimated [Shemesh et al.
(2010a)]. However, this pulse sequence generally needs to increase the number of averaging in order
to compensate the low SNR caused by a very long TE. Thus, it is not suitable for clinical appli-
cation where the scan time has to be taken into account. Furthermore, the MSDI pulse sequences
are not available on the modern MRI scanners since they are not yet commercial packages.
Alexander developed an optimization framework for dAMRI experimental design on a conven-
tional PGSE pulse sequence, which allows in vivo estimate of fibre diameter and density without a
prior knowledge on fibre orientations [Alexander (2008); Alexander et al. (2010)]. The method is
able to effectively create the optimal dMRI protocols for measuring the cellular sizes or fibre radii
found in the human brains, nevertheless the difficulties still remain for clinical examinations in two
aspects. Firstly, the optimized imaging strategy is generated for a specific fibre radius, whereas the
WM of human brain covers a range of fibre diameter approximately from 1 to 10 um; secondly, a
high gradient intensity (at least 70 mT/m) is essential for accurate estimation of small fibre radii,
while common clinical MR scanners are equipped with a standard gradient system that has a max-
imum amplitude of 40 mT/m. Accordingly, the purpose of this study is to assess the possibility

of mapping fibre radii using standard clinical MRI scanners with the constraints on the gradient
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system capabilities, as well as to investigate the impact of dMRI parameters. Based on DMS, we
make efforts to translate the method of direct microstructure mapping to clinically feasible MRI
systems, respecting the hardware and safety constraints. The procedure for evaluation is as fol-
lowing, and the details are described in the Methods session: (a) DMS Monte Carlo simulations:
We performed large-scale Monte Carlo simulations of Brownian dynamics of water molecules in
3D spaces that contained axonal fibres with various sizes. (b) Clinical diffusion imaging protocols:
Based on a single PGSE pulse sequence, we designed a series of dMRI protocols conformed to
the capabilities of clinical MR systems. (¢c) DMS MR signal syntheses: A step-by-step MR signal
synthesizer was utilized to generate DW signal, which was determined by the trajectory of water
diffusion in (a) and the sequence parameters in (b). (d) Model parameter estimation: We applied
the method described in [Alexander (2008)] to extract tissue microstructural characteristics from

the synthetic DW datasets in (c).

6 2 Methods
[ ]

6.2.1 DMS: Monte Carlo Simulations

Random walk MC simulations were performed using DMS to simulate 3D water diffusion in a cubic
network of straight parallel impermeable fibres constructed by mesh-based cylinders. We created
four simulation environments with the same intracellular fraction (f; = 0.74), and each of them
contains 25x25 fibres with a specific radius R (= 1/2/4/6 pm). Fig. 6.1 illustrates an example
of the virtual WM tissue and the corresponding MC simulation. Each simulation run employed
N, = 10° and N; = 10* iterations to produce a system complexity of 10°, which ensured the
reliability of the synthetic dMRI signal [Alexander (2008); Hall and Alexander (2009); Alexander
et al. (2010)]. A constant diffusivity D of 2x1073 mm?/s was assumed to be equivalent in the
intra- and extra-axonal space, and a simulation time step t; of 10 us was chosen to give a suitable

RMS distance (r) of 0.32 pm.

6.2.2 Clinical Diffusion MRI Protocols

Table 6.1 summarizes a set of simulated PGSE dMRI protocols created to comply with the capa-
bilities of the standard clinical gradient system. To remain a clinically acceptable scan time within
half an hour, each protocol contained 120 DW acquisitions with different M and N combinations,

where M was the number of g-space sampling shells and N was the number of DW gradient orienta-
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Table 6.1: The design of simulated clinical dMRI protocols. (M: the number of g-space

sampling shells; N: the number of diffusion gradient orientations per shell.)

Protocol | M N 0 (ms) TE (ms) b-value (s/mm?)
1 4,8,12 70.5 80, 350, 800
2 3 40 8,16, 20 81.2 350, 1430, 2250
3 16, 20, 24 86.5 1430, 2250, 3250
4 4,8,12,16 75.8 80, 350, 800, 1430
5 4 30 8,12, 16,20 81.2 350, 800, 1430, 2250
6 12, 16, 20, 24 86.5 800, 1430, 2250, 3250
7 5 24 4,8,12,16, 20 81.2 80, 350, 800, 1430, 2250
8 8, 12,16, 20, 24 86.5 350, 800, 1430, 2250, 3250
9 6 20 4,8,12,16, 20, 24 86.5 80, 350, 800, 1430, 2250, 3250

tions per shell. We utilized a pair of trapezoidal waveforms to model DW gradients with amplitude
(@) and slew rate being fixed at 40 mT/m and 200 T/m/s respectively. The DW gradient pulse
duration (§) and separation (A) were varied simultaneously to keep a constant effective diffusion
time A, of 50 ms so as to reach adequate diffusion sensitizing factors (i.e. b-values) for short ds.
Note that all of the b-values employed in this study were all clinically achievable. In each imaging
protocol, the echo time (TE) was determined by the maximum § and its corresponding A. TE was
fixed within an imaging protocol in order to avoid the dependence on the precise knowledge of T
[Alexander (2008)]. A Ty of 70 ms typically found in WM at a 3T MR scanner was used. Fig. 6.2

is an example of the designed dMRI protocol illustrating the PGSE pulse sequence diagrams.

6.2.3 DMS: MR Signal Syntheses

Synthetic DW signal (5) is computed by performing the numerical integration using the following

equation:

N,
TE z
S = Soexp (_T2> E exp(jop) +1n (6.1)
p=1

Comparing to Eq. (3.5), Eq. (6.1) takes into account the To-decay, and ¢, is the accumulated phase

of the p-th particle calculated via a step-by-step spin phase integrator as follows:

2

b=~ 9 aG(t;) - R(t;)ts (6.2)

%

I
=

In Eq. (6.2), a is +1 before and -1 after the refocusing radiofrequency pulse for a single PGSE
pulse sequence. For a given time point t;, where t; = i X ts, C_j(tz) is the gradient vector derived
from the imaging protocol; and ﬁ(tl) is the particle’s spatial position obtained from its diffusion

trajectory (see Chapter 3.4 for references).
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P IR S mep————— S > b =1430 S/mmz

b =2250 s/mm?

———————————————— TE=86.5ms

b =3250 s/mm?
TE=86.5ms

Figure 6.2: An example of the designed dMRI protocol. - The figure illustrates

)

the pulse sequences of Protocol 3 in Table 6.1, where ‘rfgy’ and ‘rfigo’ are the excitation

and refocusing radiofrequency pulses respectively. Protocol 3 contained three g-space sampling
shells (M = 3) and each shell had 40 DW orientations (N = 40). For each PGSE sequence,
both A, and TE were fixed, and thus A increased simultaneously while a greater § was used,

which produced a larger b-value as well (from top to bottom).

6.2.4 Model Parameter Estimation

Parameter estimation was performed using the Markov Chain Monte Carlo (MCMC) method im-
plemented with a Rician noise model to sample the posterior distribution of model parameters
[Alexander (2008); Alexander et al. (2010)]. As described in [Alexander (2008)], the dependent
parameters of the simple axon model were the volume fraction of the intracellular space (i.e. f;),
the fibre radius and orientation, and the axial (D)) and transverse (D) apparent diffusion co-
efficient. We first analyzed the synthetic dMRI datasets using DT reconstruction [Basser et al.
(1994b)], from which the initial estimates for f;, D), and D, were obtained. Note that f; related
to the axon density and was initialized to the FA defined as the normalized standard deviation
of the eigenvalues calculated from the DT model (Eq. (2.27)) [Basser and Pierpaoli (1996)]. The
fibre direction (along z-axis) and radius (R) were initialized to the ground-truth values given in
the MC simulations. Rician noise was added to the DW signal taking into consideration for the
effect of varying TE between the protocols. The SNR was 50 on the null DW signal (i.e. G = 0)

at the longest TE of 86.5 ms. In the procedure of MCMC, the burn-in period, sampling interval,
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Table 6.2: Mean + standard deviations of the posterior distributions on R for the corre-

sponding dMRI protocol.

Protocol M R=1 pm R=2 pm R=4 pm R=6 pm
1 1.54 + 0.68 2.11 +£0.61 4.11 £0.68 5.70 £ 0.65

2 3 1.22 +0.44 1.78 £ 0.33 3.91+0.29 6.07 +0.58

s 1.02 = 0.31 1.86 =0.26 3.88+£0.33 591 +0.34
4 1.07 +0.50 1.93 +0.65 3.81+0.50 6.11 +0.41

5 4 1.17 £ 0.31 1.84 £0.53 3.93£0.48 6.11 £0.54
*o* 1.04 =027 1.78 £ 0.30 3.90+0.38 6.12 +£0.44

7 5 1.29 £ 0.35 1.95 +0.63 3.92+0.44 6.22 +0.43
*g* 0.96 + 0.32 1.79 £ 0.26 3.92+0.27 5.94 +0.41

9 6 1.14+0.37 1.69 + 0.47 3.91+0.35 6.00 +0.37

and sampling count were 10°, 10, and 102 respectively. The MCMC was repeated for 10 times to

collect 10® samples.

Results
0.3

6.3.1 Fibre Radius Estimates

Fig. 6.3 shows the histograms of R estimates derived from the posterior distribution for each true
radius R, and Table 6.2 summarizes the mean and standard deviation (o) of the distributions
for each case. Overall, all of the protocols accurately estimated large radii (R = 4 and 6 pm) but
produced bias for small radii, especially for R =1 pm; nevertheless, the fibres can be still recognized

as a small size.

6.3.2 Effect of b-value

For M = 3 (i.e. Protocol 1, 2, and 3), a consistent decrease in o was observed from Protocol 1 to
Protocol 3. The results showed that the precision of R estimate was better at high ¢- or b-values.
A similar finding was observed for M = 4: o tended to decrease from Protocol 4 that covered low
b-value range to Protocol 6 that utilized high b-values. Likewise for M = 5, Protocol 8 produced

a finer precision (i.e. lower o) than Protocol 7.

6.3.3 Effect of g-space Sampling Shells

To study the impact of the number of ¢g-space sampling shells (M), we compared the results between
Protocol 3 (M =3),6 (M =4),8 (M =5), and 9 (M = 6), as each of them had the highest

precision on R estimate for the corresponding M according to our results above. There were no
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Figure 6.3: Histograms of samples obtained from the MCMC posterior distribu-
tions on R. - (Red/green/blue/black: R = 1/2/4/6 pym).

significant differences between Protocol 3, 6, and 8; all of them showed less overlapping for small
radii estimation (R = 1 and 2 pm) and produced sharper distribution for larger radii. Protocol
9 could estimate large radii (R = 4 and 6 pm) but failed to distinguish small radii (R = 1 and 2

pm) and produced larger deviations.

6 1 Discussion
[ )

The microscopic AMRI technique provides valuable measures directly associated with

tissue characteristics. Before applying to a clinical MRI system and acquiring human brain data,

this chapter, based on computer simulations, was dedicated to investigate the potential of mi-
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croscopic dMRI for the clinical application. We utilized a simulation approach since it provided
insights into the mechanisms affecting the signal generation, which we may not be able to appre-
ciate by simply analyzing the real MR data. In addition, simulations allowed us to assess and
adapt pulse sequence parameters for understanding their impact on the microscopic imaging. As
the DMS enabled us to generate various DW imaging protocols for synthesizing dMRI datasets,
we put efforts to design a set of PGSE pulse sequences complied with the capacity of the stan-
dard clinical MR scanners in order to translate the methods of direct microstructure estimates to
clinically feasible systems.

In the work of [Alexander (2008)], cares have been taken to generate optimal experimental
protocols through a mathematical framework minimizing the variance on the parameter estimates
for the gradient systems capable of delivering up to 70 mT/m or 200 mT/m. In this study, we
designed dMRI respecting the limits of acquisition time, the hardware and safety constraints. First,
we kept the maximal gradient strength at 40 mT/m, a standard clinically imposed limit. Second,
the purpose of keeping A, at 50 ms was not only to boost the diffusion weighting (reflected in the
b-values), but also to approach the time scale where even the sparser restrictions (i.e. for the larger
cells) could be sensed by the overall ensemble of diffusing particles. Taking these two conditions
together, we proposed a set of PGSE protocols achievable within a clinically acceptable time of
around 30 minutes. Although the variance of the estimates deviated somewhat from its optimal
value, this study helped us to investigate the impact of each sequence parameter on fibre radius
estimation.

Synthetic DW signal can be derived from an analytical or a numerical model. As shown in
[Alexander (2008)], simulated DW signal was generated using an analytical expression for the
two-compartment system (i.e. the bi-Gaussian mixture model) [Niendorf et al. (1996); Clark and
Bihan (2000); Maier et al. (2004)], and the same model was implemented to sample the posterior
distributions on the parameter estimates. In this study, we replaced the dMRI signal generation
by a step-by-step signal synthesizer based on random walk MC simulations. Even though in the
limit of a very large number of particles (10° in our case) and of the Gaussian phase approximation
[Balinov et al. (1993)], the differences between the signals generated by the two techniques should
be negligible. Nevertheless, the random walk technique decoupled the signal generation part from
the signal estimation part. Thus, it should cancel any possible bias in the consequent MCMC
sampling on the parameter posterior distribution. Furthermore, any potential deviations from the
aforementioned statistical limits were taken into account.

In this study, we simulated a simple WM model using a single axonal size with a non-

exchangeable cell membrane. Further works are in the process of simulating more realistic WM
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fibres of human brains, such as in the presence of cell size distribution. Moreover, Zhang et al. have
showed the effect of fibre orientation dispersion may not be negligible as it will lead to an overes-
timation of the cell size [Zhang et al. (2011)]. Axonal membrane permeability should also have a
minor influence on mapping WM fibre diameter, although the exchange rate has been proposed to
be much slower in myelinated fibres [Quirk et al. (2003)]. In addition, according to the study in the
previous chapter (Chapter 5), we have shown that a long diffusion gradient pulse duration (i.e. a
finite ¢) may limit the resolution of fibre radius mapping, whereas the d-effect did not seem to be
evident in the results presented in this chapter. This may be due to that the Ts signal attenuation
had dominated impact over the § effect in our simulations, however it requires further clarifications
in the future.

According to our simulation results, we observed that b-value was a determinant for the fiber
radius estimation. This finding was consistent with the b-values derived from an optimization
procedure as demonstrated in [Alexander (2008); Alexander et al. (2010)], where the minimal b-
value was 500 s/mm?. Moreover, we found that introducing low b-values spread out the posterior
distribution of MCMC samples. This may be due to that lower b-values enhanced the sensitization
towards rapidly diffusing populations and thus, decreased the precision on more slowly moving
spins for encoding the size of restrictions. In summary, based on the diffusion signal synthesizer
of DMS and an MCMC sampler, we concluded the following: contrary to the scheme underpinned
by the equidistant strategy over a large range of g-values [Hansen and Vestergaard-Poulsen (2006);

Vestergaard-Poulsen et al. (2007)], sampling moderate to high g- or b-values may be more efficient.

6 5 Conclusion
@

Within a clinical acceptable acquisition time of 30 minutes, our simulation results

showed that using three or four shells with moderate to high b-values was able to deliver the
microstructure information using a clinical MR, scanner. This study comprises the algorithmic
and experimental development, and we believe that the results may advance significantly clinical
applications of microscopic dMRI as well as translate the quest for disease biomarkers directly to

the clinical practice.
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7 1 Summary of Contributions
[ J

This section summarizes the achievements of this thesis, which mainly fall into two

areas:

I. Methodological Contributions - This thesis has presented a new simulation framework, Dif-
fusion Microscopist Simulator, which is adaptable to study various dMRI research topics

(Chapter 3).

I1. Experimental Contributions - The performance and validity of DMS have been verified
through several benchmark experiments (Chapter 4). Based on DMS simulations, this thesis
has two major application contributions. In Chapter 5, we have validated that current prac-
tice of using long § is actually beneficial for mapping fibre orientations, even though it does
not satisfy the underlying assumption made in the g-space theory. In Chapter 6, we have
demonstrated that the microscopic dMRI has the potential to estimate axon radius using a

clinical MRI system.

7 2 Discussion on Future Works
[ )

This section summarizes the possible extension of DMS and recommendations for

future works.

7.2.1 Methodological Aspect

The first generation of DMS is already suitable for various applications, as demonstrated by our
benchmark experiments in Chapter 4 and research applications in Chapters 5 & 6. Owing to its
framework design, future extension of DMS is straightforward. The following are the ideas of

technical improvement for DMS:

I. 3D Mesh-based Reconstruction of Histological Images - The most difficult task in MC
simulations of dMRI is likely to be the construction of a 3D simulation scene that is compa-
rable to a biological environment. Neural tissues, for instance, contain different types of cells
with diverse sizes and shapes, such as glial cells, astrocytes, neuron bodies, axons, dendrites,
etc. Even for the WM fibres, tissue components such as cell nucleus, microfilament, micro-
tubule, or myelin sheath are often ignored in dMRI simulations owing to their complexity.
Mathematically modeling each cell type is not practical as the analytical expression for com-
plicated geometries may not exist. In addition, since cells are tightly packed together, i.e. the

space between cells are extremely narrow (at a nanometric scale), it is a great challenge to

110



CHAPTER 7.

represent those configurations in 3D.

The first generation of DMS can create various axon fibre configurations. The cross section of
an axon can be arbitrary shape and the axonal projection can be any curve in 3D. Therefore,
it is feasible to construct different axon conditions, such as axon beading [Budde and Frank
(2010)] or degeneration [Landman et al. (2010)] model. A network of axons, i.e. fibre bundles,
can be built by providing network coordinates, and thus DMS is able to create complex fibre
bundles such as crossing, kissing, and branching fibres, as demonstrated in Chapter 4.5. For
neuronal cells, however, it is much more difficult to construct randomly distributed but highly
compact cells. We are currently in the process of programming a fully automatic algorithm
to generate 3D meshes without overlapping in order to perform MC simulations in more

complicated neural media, such as those present in brain gray matter.

Another task in progress to build a realistic scene of biological tissue is to directly reconstruct
via 3D rendering of binary images scanned from a biological sample, for instance, using elec-
tron microscopy. An example is provided by Panagiotaki et al., who succeeded to construct
the tissue samples from confocal microscopy images [Panagiotaki et al. (2010)]. A poten-
tial technical difficulty of this approach comes from that the histological image is quite thin
(~tens nm) comparing to a reasonable spatial dimension for MC simulations (~hundreds
pm), and therefore it requires more than thousands of histological images which is a huge
amount of works for the preparation. The possible solution to this issue is to only model and
store a certain number of basic cell types from a small number of histological images. If it
is feasible to assume that the distribution of cell types is homogeneous for a specific brain
region, then we may fill the MC simulation space by repeatedly placing those basic cellular

structures via the automatic positioning algorithm described above.

II. Adaptive Spatial Subvolume - The spatial partition algorithm dividing the global space
into the spatial subvolumes has been implemented in DMS in order to increase the computing
speed. The algorithm uses a fine grid of the size N, x Ny, x N, decided by the user, without
any consideration of the density of polygon meshes. In the future, an adaptive partition
algorithm will be developed by taking the polygons’ distribution into account. It means that
a finer grid will be further applied to split the local subvolumes containing more polygons.
Likewise, for those containing fewer or no polygons will be merged with the neighboring
subvolumes. We expect that it will be helpful to increase the efficiency as well as to save the

memory consumption for the MC simulation.

III. Molecular Interactions - In physics, the origin of diffusion mixing comes from the collisions
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between molecules in liquids or gases. DMS is possible to model such particle-to-particle
(molecule-to-molecule) interaction. For this case, each diffusing particle will update its spatial
location following a series of interactions with the surrounding particles and membranes. A
specific spatial subvolumes can be also constructed to record particle’s locations so as to

process interactions with the neighboring particles.

A practical issue to implement the molecular interaction is that each particle is no longer an
independent object, and thus parallel processing via multi-threading or distribution on a grid
may not be carried out. Thus, it will result in a remarkable increase of the MC simulation

time.

IV. MRI Simulator - Stocker etal. have presented a MRI simulator that integrates with the
Bloch equation-based model of a spin system, which considers the influence of the off-
resonance effects, parallel receive and transmit, nonlinear gradient fields, and spatiotemporal
parameter variations at different levels to reflect modern MRI systems [Stocker et al. (2010)].
The MRI simulator is highly useful in many aspects, such as for the development of new
pulse sequences, the design of radiofrequency pulses, and the modeling of the MRI artifacts,

etc. However, their simulator does not take the diffusion term into consideration.

The current DMS simulates the dMRI echo signal by modeling the net dephasing caused by
water diffusion. In the future, DMS will be extended to model tissue properties including the
spin-lattice (T7) and spin-spin (T3) relaxation times, which can be assigned to each tissue
components according to their properties. The synthesis of overall MRI signal will combine
with the Bloch-Torrey equation to model the spin system (Eq. 2.11). This will enable us to
simulate and program, for instance, the new dMRI pulse sequences (e.g. MSDI and OGSE
methods) as well as the k-space readout strategies (e.g. segmented echo planar imaging) to
improve diffusion imaging. In addition, the artifacts that appear in the practical MR images,
such as the eddy current, cross-term effects, or magnetic field (i.e. Bg) inhomogeneities can
be modeled in order to improve the image quality. The MRI simulator would also be helpful
to understand the spin’s behavior and to design imaging strategy on the ultra-high field MRI

system.

V. GPU-based Computation - An inherent drawback of MC simulation methods to the analy-
ses of AMRI experiments is that a great number of diffusing particles and simulation iteration
count (i.e. N, and Ny) are necessary to reduce the statistical errors. Hall and Alexander [Hall
and Alexander (2009)] have proposed that, for a basic dAMRI MC simulation of human WM

fibres, typically the simulation complexity (= N, x N) has to be greater than 10%, for in-
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stance, using N, = 10° and N; = 10%. For dMRI simulations in biological microstructures,
the simulation time step (i.e. t5) has to be small enough to produce a RMS distance associ-
ated with tissue’s geometry. For the simulation of a cell membrane’s properties, for example,
the layer thickness of polar membrane interface is at nanometric scale [Le Bihan (2007)],
which requires a much smaller ¢; so as to reach adequate temporal resolution and prevent
from the jump RMS distance effect [Regan and Kuchel (2000)]. However, typical AMRI sim-
ulation timescales often span tens to hundreds of milliseconds, it results in a great increase
in Ny (= Nrg/ts for DMS). For those cases, a computer equipped with a high computing

performance facility is necessary to yield a reasonable simulation time.

Another approach that is possible to improve the computing efficiency for DMS algorithms is
to use graphics processing unit (GPU), which is particularly appropriate for parallel compu-
tations. The parallel structure of GPUs makes them more efficient than the general-purpose
CPUs for algorithms where large blocks of data are processed in parallel. Modern GPUs
enable several hundreds of threads to be launched simultaneously, and thus the computing
speed of GPU accelerated simulations can be considerably increased. A recent study has
demonstrated that the MC simulation of dMRI PGSE experiments may be accelerated by
up to three orders of magnitude [Waudby and Christodoulou (2011)]. Furthermore, impor-
tantly, the hardware (i.e. the video card) is easily available to install on desktop computers
and laptops. I expect that if DMS supports the GPU-based calculation in the future, it will

be helpful in several aspects as well as advance its usage.

7.2.2 Experimental and Application Aspect

I. Correlation Between Simulations and Experiments - The simulation method is usually
challenged by its intrinsic systematic bias due to the imperfect modeling of realistic con-
ditions. Compared to actual experiments, simulations are often considered as a simplified
system. So why is MC simulation important for diffusion MRI? MC simulation framework
is able to provide the details regarding particles’ motion as function of time. Thus, DMS
can be used to address specific question about the properties of a model system and parame-
ters, often more straightforwardly than experiments on the actual system. For many aspects
of biophysical mechanism, it is these details that are of interest (for instance, what is the
impact of cellular permeability on dMRI measures? Likewise, is it possible to measure the
membrane permeability by dMRI?). Of course, experiments play an essential role in validat-

ing the simulation methodology: comparisons of simulation and experimental data serve to
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test the accuracy of the results and to provide criteria for improving the modeling and the

methodology.

A significant aspect of simulation is that the features (e.g. cell membrane’s shape and prop-
erty) are completely under the control of users, so that the role of specific property can be
examined by altering its attribute. In dMRI, tissue modeling is the task of intensively research
in order to clarify the relationship between MRI signal and tissue microscopic characteris-
tics. Budde and Frank provide an excellent example of how simulations and experiments can
be complementary tools to study the impact of tissue property [Budde and Frank (2010)].
They constructed a biophysical model for beading axonal membranes, which was validated
by the histological evidence of biological nerve fibres, thus highlighting the significant impact
of morphological variations of axons on ADC. In their study, the role of simulation offers
the flexibility to adjust the magnitude of morphological variations of the axonal membranes,

while the role of dMRI experiment verifies the phenomenon in realistic biological conditions.

In the future, DMS will be further applied to investigate different tissue characteristics under
healthy and pathological states via cross validation between simulations and experiments.
This also reflects the benefit and the need of 3D rendering of histological images for the
reconstruction of tissue configuration, as described in the previous section (Chapter 7.2.1).
Although DMS simulations were mostly applied to simulate the tissues in the CNS system,
DMS has the potential to be broadly applied to different MRI research fields such as diffusion
in the porous media [Shemesh et al. (2010a)], the acinar tree of lung [Perez-Sanchez et al.

(2009)], ete.

II. Microscopic Diffusion MRI - In recent years, dMRI has had a variety of applications es-
pecially for the brain research, however, for the methodological aspect, the analysis of dAMRI
data seems to approach to a bottleneck in terms of delivering new information about tissue
properties. The microscopic dMRI has become a field of interest recently because of its ca-
pability of providing the quantities directly associated with tissue characteristics rather than

a depiction of tissue-related diffusion behavior given by the current dMRI methods.

One of the main purposes of DMS is to help invent and improve the dMRI methodology,
as well as to translate the microscopic dMRI methods onto the human MRI systems. The
advantage of DMS is that it is able to simulate a variety of MRI pulse sequences and param-
eters. In our benchmark experiments described in Chapter 4, we have already demonstrated
that DMS is versatile to simulate different kinds of microscopic dMRI methods (i.e. g-space

imaging based on the single PGSE, double PGSE sequences, and the temporal diffusion spec-
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troscopy based on the OGSE sequence). DMS is also a useful tool for the active imaging
paradigm (Chapter 2.5.4) [Alexander (2008)], since it can be applied to synthesize dMRI
data to evaluate the results of experimental design (e.g. the optimized gradient waveform for

the purpose of fibre diameter mapping [Drobnjak et al. (2010)]).

ITI. Biophysical Model of Diffusion - Novikov etal. have published a series of excellent ar-
ticles concerning the influence of medium and barriers on water diffusion via theoretical
descriptions and 2D simulations [Novikov and Kiselev (2010); Novikov et al. (2011)]. They
explain the relationship between the diffusion transport and the effect of permeable barriers,
which can be applied to a biological system to quantify the cell membrane permeability and
the surface area. These studies are of great help to understand the fundamental diffusion
physics in biological tissues. In the future, we will apply DMS to simulate 3D water diffusion
in biological systems of various properties, in order to understand the features measured by
dMRI. Indeed, the most constructive outcome of Diffusion Microscopist Simulator would be
its potential to investigate the biophysical mechanisms from the microscopic point of view.
Obviously, numerous questions remain without answers yet, nevertheless, the prospect of
clarifying the interrelationship between dMRI and the microscopic characteristics of brain

tissue is likely to be achievable in the future.
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