
HAL Id: tel-00660427
https://theses.hal.science/tel-00660427

Submitted on 16 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Test generation and animation based on object-oriented
specifications
Matthias Krieger

To cite this version:
Matthias Krieger. Test generation and animation based on object-oriented specifications. Other
[cs.OH]. Université Paris Sud - Paris XI, 2011. English. �NNT : 2011PA112299�. �tel-00660427�

https://theses.hal.science/tel-00660427
https://hal.archives-ouvertes.fr

Test Generation and Animation

Based on Object-Oriented Specifications

Thèse

présentée et soutenue publiquement le 9 décembre 2011 par

Matthias P. Krieger

pour l’obtention du Doctorat de l’université Paris-Sud

Jury

Bernhard Rumpe, RWTH Aachen, Rapporteur

Catherine Dubois, Ecole Nationale Supérieure d’Informatique pour l’Industrie et
l’Entreprise (ENSIIE), Rapporteur

Burkhart Wolff, Université Paris-Sud, Directeur de Thèse

Christine Paulin-Mohring, Université Paris-Sud, Examinatrice

Bruno Marre, Commissariat à l’Energie Atomique et aux Energies Alternatives
(CEA), Examinateur

Laboratoire de Recherche en Informatique
Université Paris-Sud 11

Abstract

The goal of this thesis is the development of support for test generation and
animation based on object-oriented specifications. We aim particularly to take
advantage of state-of-the-art satisfiability solving techniques by using an appro-
priate representation of object-oriented data. While automated test generation
seeks a large set of data to execute an implementation on, animation performs
computations that comply with a specification based on user-provided input data.
Animation is a valuable technique for validating specifications.

As a foundation of this work, we present clarifications and a partial formal-
ization of the Object Constraint Language (OCL) as well as some extensions in
order to allow for test generation and animation based on OCL specifications.

For test generation, we have implemented several enhancements to HOL-
TestGen, a tool built on top of the Isabelle theorem proving system that generates
tests from specifications in Higher-Order Logic (HOL). We show how SMT solvers
can be used to solve various types of constraints in HOL and present a modu-
lar approach to case splitting for deriving test cases. The latter facilitates the
introduction of splitting rules that are tailored to object-oriented specifications.

For animation, we implemented the tool OCLexec for animating OCL spec-
ifications. OCLexec generates from operation contracts corresponding Java im-
plementations that call an SMT-based constraint solver at runtime.

Keywords: Test generation, Animation, Model execution, UML, OCL, SAT
solvers, Isabelle/HOL

iii

iv

Acknowledgements

I would like to thank many people who provided valuable support during the
years in which I was working on this thesis.

My thesis advisor Burkhart Wolff took plenty of time to give me advice,
guided me through difficult times and allowed me some freedom for pursuing my
own research interests. Alexander Knapp helped me get started with my work
on animation while I was in Munich and made several valuable suggestions. I
would also like to thank my further co-author Achim D. Brucker for the good
collaboration.

I am grateful to Bernhard Rumpe and Catherine Dubois for the hard task of
reading my thesis and providing a review.

During my time at University Paris-Sud, I was welcomed by the “ForTesSE”
group, which was a very pleasant environment to work in. I am very happy
about the acquaintances I made there, on a professional as well as a personal
level. Makarius Wenzel, in particular, always was ready to take a few minutes,
or a few hours, to introduce me to the secrets of the Isabelle system.

Last but not least, I would like to thank my wife Florence and my parents for
their constant support.

v

vi

Abstract (in French)

L’objectif de cette thèse est l’assistance à la génération de tests et à l’animation de
spécifications orientées objet. Nous cherchons en particulier à profiter de l’état de
l’art des techniques de résolution de satisfaisabilité en utilisant une représentation
appropriée des données orientées objet. Alors que la génération automatique de
cas de tests recherche un large ensemble de valeurs à fournir en entrée d’une
application, l’animation de spécifications effectue les calculs qui sont conformes
à une spécification à partir de valeurs fournies par l’utilisateur. L’animation est
une technique importante pour la validation des spécifications.

Comme fondement de ce travail, nous présentons des clarifications et une
formalisation partielle du langage de spécification OCL (Object Constraint Lan-
guage) ainsi que quelques extensions, afin de permettre la génération de tests et
l’animation à partir de spécifications OCL.

Pour la génération de tests, nous avons implémenté plusieurs améliorations à
HOL-TestGen, outil basé sur le démonstrateur de théorème Isabelle, qui engendre
des tests à partir de spécifications en Logique d’Ordre Supérieure (Higher-Order
Logic ou HOL). Nous montrons comment des solveurs SMT peuvent être utilisés
pour résoudre différents types de contraintes en HOL et nous présentons une
approche modulaire de raisonnement par cas pour dériver des cas de tests. Cette
dernière approche facilite l’introduction de règles de decomposition par cas qui
sont adaptées aux spécifications orientées objet.

Pour l’animation de spécifications, nous avons développé OCLexec, outil d’ani-
mation de spécifications en OCL. A partir de contrats de fonctions OCLexec
produit les implémentations Java correspondantes qui appellent un solveur de
contraintes SMT lors de leur exécution.

Mots clés : Génération de tests, Animation, Execution de modèle, UML, OCL,
Solveurs SAT, Isabelle/HOL

vii

viii

Contents

1 Introduction 1
1.1 Contributions . 2

1.1.1 Fundamental Techniques 2
1.1.2 Applications . 3

2 Preliminaries 5
2.1 SAT and SMT Solving . 5

2.1.1 The DPLL Algorithm . 5
2.1.2 Eager SMT Solving . 7
2.1.3 Lazy SMT Solving . 8
2.1.4 E-Matching . 10

2.2 Isabelle/HOL . 13
2.3 Specification Based Testing with HOL-TestGen 15

2.3.1 Test Coverage . 16
2.3.2 Automating Testing . 19
2.3.3 The HOL-TestGen Tool 20

2.4 The Object Constraint Language (OCL) 23

3 Modular Test Theorem Derivation in HOL-TestGen 25
3.1 Overview of Test Theorem Derivation 26
3.2 An Interface for Test Derivation Rules 26
3.3 Tactical Test Theorem Derivation 28
3.4 How Useful is the Regularity Hypothesis? 32

4 Solving Constraints in Isabelle 35
4.1 Constraint Solving versus Theorem Proving 35
4.2 Random Constraint Solving Techniques 37
4.3 An SMT Interface Exploiting Counterexamples 39

4.3.1 Interpreting Counterexamples 41
4.4 Solving Recursive Constraints . 44

4.4.1 Recursion in HOL . 44
4.4.2 Tackling Recursive Constraints 45
4.4.3 Enforcing Termination by Under-Approximation 48

ix

4.5 Towards Interactive Constraint Solving 52
4.5.1 Case Study: Red-Black Trees 53
4.5.2 Modifying the Specification Interactively 55

4.6 Experimental Results . 56
4.7 Related Work . 58

5 Arithmetic Formulas with Bounded Quantifiers 61
5.1 Syntax and Semantics . 61
5.2 Expressiveness and Decidability 62
5.3 Solving Using Eager SMT . 63

5.3.1 Encoding as a Boolean Circuit 64
5.3.2 Choosing Suitable Ranges for Function Symbols 65
5.3.3 Efficient Translation of Formulas to Boolean Circuits . . . 67
5.3.4 Extension to Support Objective Functions 70

5.4 Related Work . 72

6 Extending OCL Operation Contracts with Objective Functions 75
6.1 Syntax . 76
6.2 Semantics . 78
6.3 Applications . 80

6.3.1 Ordinary Optimization Problems 80
6.3.2 Problems that do not always have a Solution 82
6.3.3 Other Disguised Optimization Problems 83

7 Undefined Values in OCL 85
7.1 An Overview over OCL Semantics 86

7.1.1 Valid Transitions and Evaluations 87
7.1.2 Strict Operations . 89
7.1.3 Boolean Operators . 90
7.1.4 Object-oriented Data Structures 91
7.1.5 The Accessors . 92

7.2 A Formal Semantics for OCL 2.2 93
7.2.1 Revised Operations on Basic Types 93
7.2.2 Null in Class Types . 95
7.2.3 Revised Accessors . 96
7.2.4 Null and Collection Types 97

7.3 Attribute Values . 97
7.3.1 Single-Valued Attributes 98
7.3.2 Collection-Valued Attributes 98
7.3.3 The Precise Meaning of Multiplicity Constraints 99
7.3.4 Semantics of Operation Contracts 99

7.4 Compliance with the OCL Standard 100
7.5 Related Work . 101

x

xi

8 Animation of OCL Operation Contracts 103
8.1 A Case Study . 103

8.1.1 The Task . 103
8.1.2 Anatomy of the Operation Contract 104
8.1.3 Animating the Operation Contract 106

8.2 Execution of Animation . 107
8.2.1 Preliminary Analysis: Reasoning about New Class Instances109
8.2.2 Translating OCL Expressions to Arithmetic Formulas with

Bounded Quantifiers . 111
8.3 Experimental Results . 113
8.4 Related Work . 115

9 Generating Tests from Object-Oriented Specifications 117
9.1 Running Example: Linked Lists 117

9.1.1 Singly-Linked Lists . 117
9.1.2 Translating Invariants into Recursive HOL Predicates . . . 118
9.1.3 Translating Contracts into HOL 119

9.2 Test Generation . 119
9.2.1 Unfolding . 120
9.2.2 Alias Closure . 122

9.3 Implementation in HOL-TestGen 123
9.4 Related Work . 124

10 Conclusion 125
10.1 Summary . 125
10.2 Future Work . 126

xii

Chapter 1

Introduction

Testing is a primary means for achieving that computer systems function cor-
rectly. Due to the large number of test cases necessary to achieve satisfactory
test coverage, it is desirable to automate testing activities as far as possible. The
use of formal specifications, that specify the required behavior of the system in a
machine-readable formal language, facilitates the automation of testing. Formal
specifications can help testing frameworks determine whether output returned by
the system under test meets the requirements. Moreover, test cases can often be
generated automatically from formal specifications. It is argued that formal spec-
ifications in themselves improve the quality of software by describing precisely
and unambiguously the required behavior of the system, and thus preventing
misunderstandings between users and developers. However, the use of formal
specifications is still often not considered worthwhile.

Another technique that can help improve the quality of software is anima-
tion [60]. Animation is the execution of computations that comply with a formal
specification based on user-provided input data. If support for animation is avail-
able, users can validate the specification by animating it on sample sets of input
data (scenarios). This is already possible before implementation of the system.
For incomplete, faulty or inadequate specifications, animation will typically lead
to strange and alarming results. This allows the discovery of errors and misun-
derstandings before they have lead to a buggy implementation. Animation is a
longstanding research problem (see [107] for an overview).

In contrast to automatically generated test cases, animation based on user-
supplied input avoids scenarios that are too artificial. Animation can help users
gain confidence in the specification by allowing the execution of scenarios that
are common for the application domain. Animation is particularly powerful if it
is accomplished by generating a prototype implementation. The generated code
can be linked with components of the system that are already finished. This
allows the system to be tested as a whole, although some of its parts are not yet
available. It may even be possible to entirely omit the manual implementation
of certain operations if they can be animated efficiently enough.

1

2 Chapter 1. Introduction

This thesis proposes novel techniques for the automatic generation of tests
from formal specifications and for animation. Due to the widespread use of
object-oriented design techniques, we decide to focus on object-oriented specifi-
cations. We choose the Object Constraint Language (OCL [125]) as a represen-
tative object-oriented specification language. OCL is an established specification
language that is closely integrated with the Unified Modeling Language (UML),
the de-facto standard for object-oriented modeling.

Both test generation and animation depend fundamentally on constraint solv-
ing techniques. In recent years, satisfiability (SAT) solving has emerged as
an astonishingly efficient constraint solving approach. SAT solving has already
been applied successfully to some testing scenarios, e.g., white box testing with
Pex [142]. However, it is still nontrivial to implement tool support based on SAT
solvers. We show how SAT solvers, in particular SMT (satisfiability modulo the-
ories) solvers, can be used effectively to solve the constraints we encounter during
test generation and animation.

For test generation, we have implemented several enhancements to HOL-
TestGen [34], a tool built on top of the Isabelle theorem proving system [120]
that generates tests from specifications in Higher-Order Logic (HOL). We show
how SMT solvers can be used to solve various types of constraints in HOL and
present a modular approach to case splitting for deriving test cases. The latter
facilitates the introduction of splitting rules that are tailored to object-oriented
specifications.

For animation, we implemented the tool OCLexec for animating specifica-
tions in OCL. OCLexec generates from operation contracts corresponding Java
implementations that call an SMT-based constraint solver at runtime.

1.1 Contributions

The precise contributions of this thesis are the following.

1.1.1 Fundamental Techniques

These are contributions concerning fundamental techniques used for testing and
animation.

Modular Test Theorem Derivation in HOL-TestGen Test generation
typically involves some sort of case splitting based on the test specification in
order to identify desired test cases. A very common example of such a trans-
formation step is the generation of a disjunctive normal form (DNF) from the
specification. We observed that the set of appropriate case splits may depend
on various factors such as the application domain or the datatypes used in the
specification. In order to take this into account, we present a new modular design

1.1. Contributions 3

of HOL-TestGen’s test theorem derivation procedure that can be parametrized
with different specification transformations. This allows the application of new
case splitting rules in HOL-TestGen and results in a flexible test generation pro-
cedure that can easily be adapted to different application domains or variations
in the specification language.

Solving Constraints in HOL with SMT Solvers from Isabelle In order
to solve the constraints arising in the test data generation phase of HOL-TestGen,
we use an interface between Isabelle and an SMT solver. We show how coun-
terexamples returned from the solver can be converted to variable instantiations
that are usable within Isabelle. The instantiations are checked in a safe LCF-
style manner, i.e., they are ,,reconstructed“ in Isabelle. Recursive functions are
omnipresent and indispensable in HOL. In order to solve constraints with recur-
sive predicates, we apply an approach that is based on under-approximating the
set of solutions of the constraint. Finally, we give an example of an application
of techniques from interactive theorem proving to ,,interactive constraint solv-
ing” for test generation. We give experimental results for the efficiency of our
constraint solving technique based on case studies with HOL-TestGen.

Solving Arithmetic Constraints with Bounded Quantifiers Bounded
quantifiers over integers, which can be regarded as a special case of a recur-
sive definition, are powerful enough to express nearly any kind of constraint. We
will see later that it is straightforward to map most OCL constraints to a for-
mula representation with bounded quantifiers. Eager SMT solving is a method
for deciding the satisfiability of a constraint by translating it to a Boolean SAT
problem. The resulting SAT problem is solved using an off-the-shelf SAT solver.
We show how existing approaches to eager SMT solving can be adapted to handle
bounded quantifiers. In particular, we pay attention to optimizing the time con-
sumed by translating to a SAT problem. The satisfiability of integer constraints
is merely semi-decidable when bounded quantifiers and function symbols are al-
lowed. Hence, every decision procedure for such a language must revert to some
kind of potentially non-terminating enumeration. We define a form of enumera-
tion that, based on a prior analysis of the formula, tends to find solutions quickly.
Finally, we show how these techniques can be extended to allow for optimization
according to an objective function.

1.1.2 Applications

We now turn to the application to concrete test and animation scenarios.

A Semantics for Undefined Values in OCL Both model-based testing and
animation are based on a formal specification of the system. Test generation as

4 Chapter 1. Introduction

well as animation necessarily depend on a precise semantics of the specification
language. We build on previous work on defining a formal semantics for OCL,
in particular the approach based on embedding OCL into HOL [33]. We extend
previous work by clarifying the semantics of undefined values [27]. The seman-
tics of undefined values in OCL is particularly intricate since OCL features two
distinct undefined values with different semantics.

Extensions to OCL We observe that extensions to OCL are necessary in or-
der to allow for satisfactory animation of OCL specifications. These extensions
include a simplified definition of frame conditions by invariability clauses and
objective functions as a part of operation contracts. We achieve tool interop-
erability by specifying invariability clauses and objective functions in a UML
profile. We present several application examples of objective functions in order
to substantiate that objective functions are a useful general-purpose specification
instrument [101].

Animation of OCL Operation Contracts We present an efficient as well as
fully automatic approach to the animation of OCL operation contracts [102]. It is
implemented in the tool OCLexec that generates from OCL operation contracts
corresponding Java implementations which call a constraint solver at runtime. We
show how OCL constraints can be mapped to semantically equivalent arithmetic
formulas with bounded quantifiers. For animation, the operation contract is
translated to an arithmetic formula with bounded quantifiers, which can then be
solved with an adapted eager SMT approach. Case studies demonstrate that our
approach can handle problem instances of considerable size.

Generating Tests from Object-Oriented Specifications As an application
of our modular design of HOL-TestGen’s test case generation phase, we present
a setup tailored to testing based on object-oriented specifications [26]. Taking
into account that object identity is one of the most important aspects of object-
oriented modeling, we define rewrite rules that distinguish test cases based on
object identity. By also considering the multiplicities of object attributes, we are
able to systematically enumerate all object graphs that may represent test cases.
Moreover, we show how recursive operation specifications can be handled with
similar techniques.

Chapter 2

Preliminaries

2.1 SAT and SMT Solving

Satisfiability (SAT) solvers have had an enormous impact on the application areas
in which they are used. In this section we review the techniques used by state
of the art satisfiability solvers. We first outline the basic DPLL algorithm for
deciding Boolean satisfiability which is still at the core of most solving procedures.
Then we sketch how this foundation can be extended to deal with richer logics
for deciding Satisfiability Modulo Theories (SMT).

2.1.1 The DPLL Algorithm

A Boolean formula is satisfiable if there exists an assignment of the Boolean
values true and false to the variables occurring in the formula for which the
formula evaluates to true. Algorithms for decidability often suppose that the
formula is in conjunctive normal form (CNF), i.e., a conjunction of disjunctive
clauses. Clauses consist of a set of literals, i.e., variables or negated variables.

The satisfiability of a general Boolean formula can be reduced easily and
polynomially to the satisfiability of a CNF by introducing new variables. Such
a reduction also applies more generally to Boolean circuits. A Boolean circuit
consists of a collection of gates, with every gate computing a Boolean function of
its inputs. A circuit in which the output of every gate is an input to at most one
gate is a formula. Using an encoding due to Tseitin [146], a Boolean circuit can
be converted to a CNF with equivalent satisfiability and of size that is linear in
the size of the circuit.

The DPLL (Davis-Putnam-Logemann-Loveland) algorithm [57] for deciding
satisfiability of a CNF is still the basis of most SAT solving procedures. Figure 2.1
shows the essence of the DPLL algorithm. A key element is a simplification of
the CNF through the detection of clauses with only one literal (unit clauses).
A unit clause forces the literal l it consists of to assume the value true in any
satisfying assignment, so all other clauses containing l can be deleted from the

5

6 Chapter 2. Preliminaries

procedure DPLL(ϕ : CNF) :
ϕ′ := un i t propagate (ϕ)
i f ϕ′ conta in s the empty c l au s e then

return u n s a t i s f i a b l e
else i f ϕ′ only conta in s un i t c l a u s e s then

return s a t i s f i a b l e
else

l := c h o o s e l i t e r a l (ϕ′)
i f DPLL(ϕ′ ∧ l) = s a t i s f i a b l e

or DPLL(ϕ′ ∧ ¬l) = s a t i s f i a b l e
then

return s a t i s f i a b l e
else

return u n s a t i s f i a b l e
end i f

end i f

end procedure

Figure 2.1: Basic DPLL algorithm

CNF, and all occurrences of ¬l in the CNF can be deleted as well. The resulting
simplified CNF is satisfiable iff the original CNF was satisfiable. The deletion
of a literal may reduce other clauses to unit clauses, which in turn leads to a
further simplification, and so on. This process is called unit propagation. If an
empty clause is detected at any time during unit propagation, we can conclude
that the CNF is unsatisfiable and stop propagating. If all clauses are reduced
to unit clauses, we have found a satisfying variable assignment. Otherwise, unit
propagation stops with a CNF in which all clauses have at least two literals.

The DPLL algorithm proceeds by recursively setting a Boolean variable to
true or false and then performing unit propagation. If unsatisfiability is detected,
it is known that the current partial assignment cannot be completed to a satisfying
assignment. Then the algorithm backtracks up the search tree and continues with
a different partial assignment. If no satisfying assignment is found during the
search and there are no possible further assignments to try, it can be concluded
that the CNF is unsatisfiable and the algorithm terminates.

Implementations of the DPLL algorithm have attained impressive efficiency
by thorough optimization of several aspects such as the following:

• When backtracking, it can usually be deduced that assignments to a limited
set of variables are responsible for reaching an unsatisfiable partial assign-
ment. Appropriate clauses can be added to the CNF that allow this reason
for unsatisfiability to be avoided by unit propagation. This kind of learning
can be accomplished in various ways [155].

2.1. SAT and SMT Solving 7

• The choice of the literal selected for assignment in the recursive step is
essential for efficiency. Several heuristics have been proposed [139].

• Datastructures for representing the CNF must be designed carefully, con-
sider e.g., the two literal watching scheme [114] for easily detecting clauses
relevant for unit propagation.

2.1.2 Eager SMT Solving

Most naturally arising satisfiability problems are not concerned exclusively with
Boolean values. Rather, real applications usually also involve other entities like
numbers, strings, lists etc. Thus, we are interested in solving the problem of
satisfiability modulo the theories of these additional datatypes. An approach
to deal with such data is to encode it into Boolean variables, as is done for
example by the UCLID tool [104]. By expressing operations on the new types
by Boolean circuits, as would be done for computing the operations in hardware,
the satisfiability problem can be reduced to a Boolean one. This technique is
called eager SMT solving since the satisfiability problem is translated at once
to a Boolean representation rather than waiting “lazily” and performing theory-
specific reasoning during the Boolean search. Eager SMT solving allows the
efficiency of highly optimized Boolean SAT solvers to be exploited for solving
problems involving richer logics.

Eager SMT can be used for solving constraints over bitvectors. This tech-
nique is called “bit-blasting” since, depending on the maximum bitwidth, a large
number of Boolean variables may be necessary to encode a bitvector value or
an arithmetic operation. Bit-blasting is a widely used approach for analyzing
systems that employ finite-precision bit-vector arithmetic; see [39] for a recent
overview. Programming languages like Java specify precise bounds for integer
types, so bit-blasting is in principle suitable for solving problems expressed in the
context of such languages. Moreover, tailored techniques have been developed for
bounding the bitwidth required for solving linear constraints over integers [135].
However, in general such bounds cannot be derived for nonlinear constraints.

When performing eager SMT solving, the time consumed by the SAT solver for
solving the resulting Boolean satisfiability problem grows quickly with the size of
the input formula and the bitwidth used for encoding integer values. Therefore
abstraction techniques are of interest that create smaller Boolean satisfiability
problems which only partially express the original satisfiability problem. Such
abstractions can be under-approximations exhibiting a subset of the solutions
of the exact satisfiability problem, or over-approximations whose solutions are
a superset of the actual solutions. Hence, if a SAT solver finds a solution to
an under-approximation, this solution corresponds to a solution to the original
satisfiability problem. If a SAT solver determines that an over-approximation
is unsatisfiable, it can be concluded that the original satisfiability problem is

8 Chapter 2. Preliminaries

unsatisfiable as well. If the approximations defined are insufficient for determining
satisfiability of the original satisfiability problem, they can often be refined to
yield larger Boolean satisfiability problems that express the exact satisfiability
problem more accurately.

Although a satisfiable over-approximation yields no direct conclusion about
the satisfiability of the original satisfiability problem, the counterexample re-
turned by the SAT solver can guide the further refinement of the abstractions
by, e.g., indicating value ranges that are likely to include solutions to the exact
problem. Similarly, the subset of the clauses used by the SAT solver for estab-
lishing unsatisfiability of an under-approximation, the “unsatisfiable core”, can
be used for constructing tailored over-approximations.

A class of abstractions proposed for accelerating SMT solving is based on
restricting the bitwidth used for encoding integers [39, 36]. Another kind of useful
over-approximation can be computed by ignoring certain array axioms [69, 37].
For example, if a[x] and a[y] occur in the input formula, the over-approximation
can be constructed by replacing the array accesses by distinct variables. This
is an approximation since a counterexample in which a[x] 6= a[y] but x = y is
spurious.

2.1.3 Lazy SMT Solving

Lazy SMT solving has been proposed as a technique for allowing theory-specific
reasoning to be carried out by dedicated theory solvers rather than encoding the
theories into Boolean logic (see e.g. [132] for a survey). This approach allows to
avoid the blow-up of the Boolean representation inherent to eager SMT solving
and makes it possible to handle theories which are difficult to encode like real
linear arithmetic.

Lazy SMT solving proceeds by creating a Boolean abstraction of the satisfi-
ability problem. Atomic theory-specific subformulas are represented by Boolean
variables in the abstraction. Boolean search according to the DPLL procedure is
used to find a conjunction of literals (a monome) that implies the abstraction. If
such a monome is found, the theory solver is invoked in order to decide whether
the monome is satisfiable modulo the theory. If this is not the case, the theory
solver returns a clause of literals that expresses the cause of this unsatisfiability.
The Boolean search is then resumed with the newly learned clause.

Example Consider the formula

x > 2 ∧ (x < 1 ∨ x > 3)

in the theory of linear arithmetic. Boolean abstraction yields the CNF

a ∧ (b ∨ c) .

2.1. SAT and SMT Solving 9

A first Boolean search could choose the monome a ∧ b which corresponds to
x > 2 ∧ x < 1. The theory solver for linear arithmetic responds that this
monome is unsatisfiable. Then the Boolean search is resumed with the learnt
clause (¬a ∨ ¬b). Unit propagation yields the monome a ∧ c which corresponds
to x > 2 ∧ x > 3. The theory solver constructs the model x = 4.

Usually it is desired to decide satisfiability modulo a combination of different
theories, each with a different theory solver. Typical theories that are combined
are the theory of arrays, the theory of uninterpreted functions, the theories of
linear arithmetic as well as theories of bitvectors and of recursive datatypes.

A well-known scheme for combining theories that has been adopted by many
solver implementations is due to Nelson and Oppen [116]. In the sequel, we sketch
how theories can be combined according to this scheme. We restrict ourselves
without loss of generality to the combination of two theories T1 and T2. First,
the original formula ϕ is transformed to an equisatisfiable formula ϕ1 ∧ ϕ2 such
that ϕi only contains function symbols of the theory Ti. This can be achieved by
substituting a sufficient set of subexpressions by fresh variables and conjoining
corresponding equalities with the input formula.

We call a formula ar an arrangement of a set X of variables if there is an
equivalence relation R on X such that

ar =
∧

(x,y)∈R

x = y ∧
∧

(x,y) 6∈R

x 6= y.

Under sufficient conditions on T1 and T2 it can be shown that ϕ1∧ϕ2 is satisfiable
iff there is an arrangement ar of the common variables of ϕ1 and ϕ2 such that
ar ∧ ϕ1 and ar ∧ ϕ2 are satisfiable [143]. Thus, the satisfiability of ϕ1 ∧ ϕ2

can be determined by checking the satisfiability of ar ∧ ϕ1 and ar ∧ ϕ2 for all
possible arrangements. This can be done within a DPLL framework by conjoining
x = y ∨ x 6= y with ϕ1 ∧ ϕ2 for all pairs x, y of common variables [22]. Then the
satisfiability of a monome encountered during DPLL search can be determined
by calling the theory solvers on the respective subsets of the monome’s literals.

Example Consider the formula

f (x) < f (y) ∧ (x ≥ y ∨ x < y − 1)

in the combined theory of uninterpreted functions and linear arithmetic. We
introduce the fresh variables t1 and t2 in order to partition the formula according
to theories which yields

t1 < t2 ∧ (x ≥ y ∨ x < y − 1)

∧ t1 = f (x) ∧ t2 = f (y) .

10 Chapter 2. Preliminaries

Adding additional equality distinctions for representing arrangements results in

t1 < t2 ∧ (x ≥ y ∨ x < y − 1)

∧ t1 = f (x) ∧ t2 = f (y)

∧ (x = y ∨ x 6= y) ∧ (x = t1 ∨ x 6= t1) ∧ (x = t2 ∨ x 6= t2)

∧ (y = t1 ∨ y 6= t1) ∧ (y = t2 ∨ y 6= t2) ∧ (t1 = t2 ∨ t1 6= t2) .

During the search the constraint t1 < t2 causes the theory solver for linear arith-
metic to object whenever the variables t1 and t2 are assigned to the same equiv-
alence class by the arrangement. Suppose the monome

t1 < t2 ∧ x ≥ y

∧ t1 = f (x) ∧ t2 = f (y)

∧ x = y ∧ x 6= t1 ∧ x 6= t2

∧ y 6= t1 ∧ y 6= t2 ∧ t1 6= t2

is selected during the search. The theory solver for linear arithmetic accepts this
monome, but the theory solver for uninterpreted functions finds a contradiction
in t1 = f (x) ∧ t2 = f (y) ∧ x = y ∧ t1 6= t2.

2.1.4 E-Matching

Formulas arising naturally in applications often include quantifiers. However, for
many theories of interest only the quantifier-free fragment is decidable.1 A com-
mon approach of lazy SMT solvers for an approximate treatment of quantified
formulas is to instantiate quantifiers with heuristically selected ground terms that
are encountered during the search. It can be assumed without loss of generality
that the only quantifiers in the formula are positively occurring universal quan-
tifiers, since other quantifiers can be moved or skolemized. For such a formula it
can be possible to derive unsatisfiability by heuristic quantifier instantiation if the
right ground terms are selected for instantiation and an unsatisfiable ground for-
mula is constructed. Otherwise, however, we cannot make any conclusion about
the satisfiability of the formula.

Heuristic quantifier instantiation in lazy SMT solvers, which was pioneered
by the Simplify theorem prover [59], typically proceeds as follows. We call a
ground term active if it occurs in a literal that is currently asserted in the search
process. Note that monomes for which a theory solver is called only consist of
active terms. Every quantified subformula is associated with a set of formulas
with free variables which is called a trigger 2. A quantifier is instantiated with all
active terms encountered during the search that match its trigger. Triggers can
be generated automatically according to heuristics or can be user-specified.

1See [70] for some theory fragments that are decidable despite the presence of quantifiers.
2A trigger is also called pattern in some publications and in the SMT-LIB standard.

2.1. SAT and SMT Solving 11

Solvers maintain so-called E-graphs which represent the equalities that are
implied by the asserted literals. An E-graph describes an equivalence relation on
the active terms. Two ground terms are equivalent if the current assertions imply
that they are equal. Some theory reasoning, e.g., in the theory of uninterpreted
functions, can be carried out directly on the E-graph by propagating knowledge
about equalities and inequalities. Trigger matching is typically not performed
syntactically, but modulo the equivalence relation expressed by the current E-
graph, which is called E-matching. This enlarges the set of matching ground
terms and makes quantifier instantiation more powerful.

Example Consider the formula

f (0) < f (f (0)) ∧ ∀x.f (f (x)) = f (x) .

Suppose that the trigger {f (f (x))} is used for the quantifier, and that only
the literal f (0) < f (f (0)) has been asserted so far in the search process. The
ground term f (f (0)) matches this trigger, so the instantiation f (f (0)) = f (0)
is obtained, and unsatisfiability is derived by linear arithmetic. Consider the
equivalent, but syntactically distinct formula

y = f (0) ∧ y < f (y) ∧ ∀x.f (f (x)) = f (x) .

Now none of the occurring ground terms match the trigger {f (f (x))} syntac-
tically. After y = f (0) has been added to the E-graph, however, the term y
matches the trigger modulo the equalities in the E-graph, so unsatisfiability can
be derived as before.

There are basically two variants of trigger-driven quantifier instantiation: ea-
ger and lazy instantiation. When performing eager instantiation, quantifiers are
instantiated as early as possible, i.e., as soon as literals are asserted that contain
new matching terms. Such a strategy restricts the search space and favors con-
straint propagation. However, eager instantiation can also be counterproductive
if there are many matching terms. In particular, since an instantiation may itself
contain ground terms that match the trigger used, infinite matching loops can
occur.

Figure 2.2 shows a simplified lazy SMT algorithm with eager trigger-based
quantifier instantiation. Some of the notation is inspired by [65]. The algorithm
is based on the DPLL procedure shown in Figure 2.1. Now we allow the CNF
argument to also include quantified variables. When called on a satisfiable CNF,
the procedure returns null. When called on an unsatisfiable CNF, the procedure
returns a set of clauses that, when added to the CNF, enables unit propagation
to prevent the configuration of unit clauses in the CNF of reoccurring. This
is the DPLL learning mechanism mentioned in Section 2.1.1 that is essential
for efficiency, but omitted in Figure 2.1 for simplicity. Learning is particularly
important for lazy SMT solving.

12 Chapter 2. Preliminaries

procedure SMT(ϕ : CNF) :
ϕ′ := un i t propagate (ϕ)
i f ϕ′ conta in s the empty c l au s e then

return reason for u n s a t i s f i a b i l i t y
else i f ϕ′ only conta in s un i t c l a u s e s then

return t h e o r y s o l v e (ϕ′)
else

l := c h o o s e l i t e r a l (ϕ′)
ϕ′′ := ϕ′ ∧match (ϕ′, l)
L := SMT(ϕ′′ ∧ l)
i f L = null then

return null

else i f un i t propagate (ϕ′′ ∧ L) conta in s the empty c l au s e then

return L ∧match (ϕ′, l)
else

/∗ ¬l f o l l ow s from ϕ′′ ∧ L by un i t propagat ion ∗/
R := SMT(ϕ′′ ∧ L ∧match (ϕ′′, L))
i f R = null then

return null

else

return L ∧R ∧match (ϕ′, l) ∧match (ϕ′′, L)
end i f

end i f

end procedure

Figure 2.2: Simplified lazy SMT algorithm with quantifier instantiation

2.2. Isabelle/HOL 13

The subroutine theory solve determines the satisfiability of a monome
modulo the theory used. Just as the main procedure, it can return null or a
learned clause. The function match returns the set of clauses to be added to the
CNF for quantifier instantiation. The set match (ϕ, S) are the new clauses that
result from adding the set of clauses S to the CNF ϕ, performing unit propagation
and matching ground terms in unit clauses to triggers modulo the E-graph for
the unit clauses, and instantiating the corresponding quantifiers.

In its simplest form, the subroutine unit propagate can ignore the theory
semantics of the literals and work as in the plain Boolean DPLL procedure. It
is desirable for efficiency, however, that unit propagate also performs some
theory-specific reasoning. A very basic form of such reasoning is to check the
satisfiability of the occurring unit clauses modulo the theory used. This is the
same kind of analysis that the subroutine theory solve performs on a set of
unit clauses that implies the entire formula ϕ. This technique called early pruning
(see e.g. [38]) prevents further expensive Boolean reasoning to be carried out on
a configuration of unit clauses that can be shown to be unsatisfiable modulo the
theory used. A more sophisticated form of reasoning that can be integrated in
unit propagate is theory propagation (see e.g. [118]). Theory propagation can
deduce literals from sets of unit clauses by theory-specific reasoning, analogous
to unit propagation in the Boolean case.

Trigger-driven quantifier instantiation gives a kind of execution model to the
language processed by SMT solvers. Thus, in this sense the language of SMT
solvers adheres to the slogan Algorithm = Logic + Control (see e.g., [97]) of logic
programming and somewhat resembles a logic programming language.

2.2 Isabelle/HOL

Isabelle [120] is a well-known interactive theorem proving system. Isabelle follows
the “LCF approach”, i.e., basic inferences are performed by a small inner kernel.
More complex inferences are composed into elementary ones that can be carried
out by the kernel. Isabelle’s kernel is considered trusted due it to its simplicity
and its rigorous validation. Hence, there is very high confidence in theorems
proven within Isabelle.

Isabelle is implemented in the functional programming language ML. The
term language used by Isabelle is a typed λ-calculus. Theorems proved by the
kernel are terms of propositional type that are represented as ML values of type
Thm. These theorem objects are the basic building blocks of proofs. Theorems
can be manipulated and composed in order to create new theorems. A high-level
instrument for obtaining new theorems are tactics. Tactics are ML functions
that map theorems to sequences of theorems. Many Isabelle tactics require an
additional argument of type Proof.context that provides additional book-
keeping information. The result of a tactic is a sequence of all theorems that

14 Chapter 2. Preliminaries

can result from the operation represented by the tactic. Examples of commonly
used tactics are tactics for resolution, instantiation and simplification. Tactics
can be composed using tacticals. Tacticals are functions that create new tactics
from existing ones. They can be regarded as control structures that guide the
way to a proof. Commonly used tacticals are, for example, THEN for sequential
application of tactics, COND for conditional application, and REPEAT for iterative
application. Tacticals can be used to build complex proving procedures from the
basic inference steps provided by Isabelle. An example of such an elaborate high-
level tactic implemented in Isabelle is Cooper’s algorithm for deciding Presburger
arithmetic [45].

Most often proofs in Isabelle are performed in a backward manner. For prov-
ing a proposition C, the goal C =⇒ C is created. While the conclusion of the
implication is left unchanged, the premises are manipulated by tactics, and the
original premise C is possibly decomposed into several subgoals so that an impli-
cation of the form

A1 =⇒ . . . =⇒ An =⇒ C (2.1)

results. After all proof obligations have been discharged, the desired theorem C
is obtained.

Isabelle is a generic theorem prover, meaning that it can be instantiated with
different logics. The most important logic used with Isabelle is Higher-Order
Logic (HOL), a variant of Church’s type theory [48]. HOL is powerful enough to
express nearly all common mathematical theorems. It offers function and pred-
icate symbols, quantifiers over arbitrary sets, the usual logical connectives, and
lambda abstractions. Basically HOL can be used like other variants of higher-
order predicate logic. HOL has been extended with facilities that ease the de-
velopment of formal theories. In particular, there is support for conveniently
defining recursive datatypes and recursive functions. As a result, HOL can also
be informally described as a “functional programming language with quantifiers”.
New definitions of datatypes and functions are usually added to a theory by con-
servative definitions that ensure that no inconsistencies are introduced. Many
generally useful theories have been integrated into HOL, such as lists, sets, nat-
ural and rational numbers etc. These theories can be used as universal libraries
for developing new theories or specifications.

Interfaces to Isabelle have been created for several third-party theorem prov-
ing tools like SAT and SMT solvers [128, 152, 17]. A fundamental problem is
that such tools often do not justify the theorems they generate. In this case such
theorems can be consumed by Isabelle using the oracle mechanism that accepts
external theorems but marks them as potentially untrusted, as well as theorems
derived from these external theorems. Third-party tools that do justify their
theorems usually provide proofs that are very different from Isabelle proofs. In
this case it can however be feasible to transform the external proof into a gen-
uine Isabelle proof by mapping the provided proof steps to appropriate Isabelle

2.3. Specification Based Testing with HOL-TestGen 15

tactics. This task is referred to as proof reconstruction since the external proof
is “reconstructed” by the Isabelle kernel. If proof reconstruction is possible, the
oracle mechanism is not needed, and the generated theorem should be consid-
ered as trustworthy as any other theorem derived within Isabelle. Thus, proof
reconstruction can allow to combine the efficiency of highly optimized specialized
theorem provers, like SAT solvers, with the safety of Isabelle’s LCF architecture.
Moreover, a failed attempt to reconstruct a proof can be an indication of an
unsoundness flaw in a theorem proving tool.

Isabelle comes with a wide range of features that make the development of
large theories and applications practical. The Isabelle system provides a struc-
tured proof language [154], an Emacs-based editing environment that displays
remaining proof obligations [7], counterexample generators for detecting non-
theorems [12, 16] and code generators that can generate implementations of func-
tions defined in Isabelle [11]. As as result, Isabelle could be successfully applied
in large projects, such as formalizations of the prime number theorem [8], of the
relative consistency of the axiom of choice [127] and of parts of Hales’ proof of
the Kepler conjecture [119]. Another area of successful applications of Isabelle
has been the verification of hardware and system software [4, 80].

2.3 Specification Based Testing with HOL-TestGen

In this section we review the most important notions of testing and introduce the
HOL-TestGen tool for automated test generation.

Testing is the process of exercising a system on a selected set of inputs and
thereby observing whether the system behaves as required. This general definition
of testing applies to the testing of software as well as hardware, or combined hard-
ware/software systems. Testing is an essential part of the software development
process. Software development is highly error-prone, so it would be illusionary
to expect even a simple program to serve a useful purpose without being tested.
For the special case of software systems employed in areas like transportation and
medicine in which failures may potentially be life-threatening, it is to be expected
that an immense testing effort is required to achieve a satisfactory level of safety
and security, and that testing is the most expensive part of the development
process.

Since testing only takes into account the behavior of a system on a finite
set of inputs, testing alone cannot ensure unconditionally that the system works
correctly under all circumstances. The only exception to this rule are hardware
components with a memory of only a couple of bits for which exhaustive testing is
feasible. A potential alternative to testing are formal verification techniques that
can guarantee by theorem proving that program code satisfies certain formalized
requirements. Although formal verification is attractive because it delivers un-
conditional assurances of correctness, it also has the following drawbacks when

16 Chapter 2. Preliminaries

used alone without supplementary testing:

• Formal verification can only guarantee compliance with requirements that
can be expressed in the formalisms supported by the respective verifica-
tion technique. Formal specifications often do not capture important non-
functional requirements. E.g., even if formal verification proves that a sys-
tem always gives a correct response, the system may nevertheless exhibit
unacceptable runtime for some inputs.

• Formal verification techniques are based on abstractions of the system that
idealize components like the operating system, CPU, compiler etc. Testing
may reveal errors in this periphery of the system.

• Due to their complexity, formal verification techniques are tailored to cer-
tain implementation languages. However, large systems are often imple-
mented in multiple languages and may depend on third-party binaries,
which limits their suitability for formal verification.

• Since by Rice’s theorem it is undecidable for any property whether a func-
tion computed by a program in a Turing-complete language satisfies it, for-
mal verification is necessarily not fully automatic or limited to a restricted
subset of programs. As a result, formal verification requires immense effort
and cannot be applied in practice to large systems as a whole.

Due to these limitations of formal verification, testing remains an indispens-
able element of the software development process.

2.3.1 Test Coverage

Although testing cannot ensure unconditionally that a system works correctly,
there are approaches to selecting a set of test cases that exercises a sufficient
portion of the system, and thus achieves satisfactory test coverage. Different
coverage criteria have been defined to characterize suitable test suites. The most
modest requirement is that every piece of code should be executed at least once by
the test suite (statement coverage), since an error in a certain piece of code cannot
possibly be detected by a test suite if this code is never executed. It is reasonable
to demand the slightly stronger criterion of decision coverage that requires the
test suite to make the condition of every decision in the system evaluate to true
as well as false at least once. Thus, for code enclosed in an if-statement, decision
coverage requires a test case that executes this code as well as a test case that
avoids its execution. Note that statement coverage may not require a test case
that avoids the execution.

Of course decision coverage is likely to miss some errors, since an error may
only be revealed for specific input values, for example an error caused by a division

2.3. Specification Based Testing with HOL-TestGen 17

by zero. Boundary value analysis is a technique that seeks values for testing that
are likely to reveal certain errors. Condition coverage is a coverage criterion
that targets errors in Boolean logic by requiring every condition in a Boolean
expression to be evaluated to true as well as false at least once. Some coverage
criteria, although justified in principle, may be impossible to achieve in practice.
Path coverage, for example, requires every path through different branches of the
program to be executed at least once, unless the path is infeasible, i.e., is not
executed for any input. This is a sensible coverage criterion, since some errors
can only be revealed by executing certain branches in combination. However, for
all but the most primitive programs, path coverage is only a theoretical concept
because the number of paths (feasible and infeasible) grows exponentially with
the number of decisions encountered during execution, and typically is infinite
for programs with loops.

Coverage criteria can be applied to the system under test itself as well as its
specification. A specification defines the requirements demanded from the sys-
tem under test. In general, different implementations of the system with different
behavior may conform to the same specification. The precise definition of confor-
mance with a specification depends on the type of specification. An example of a
kind of conformance which has attracted attention for testing purposes is input-
output conformance, which was introduced by Tretmans [145] for specifications of
automata with input and output. In this thesis, we will use HOL and UML/OCL
as specification formalisms. It is important to consider coverage criteria related
to the specification in addition to criteria concerning the implementation in order
to cover features that are present in the specification, but have erroneously been
omitted from the implementation. Testing approaches that are only based on
the specification are referred to as black-box testing since they do not take into
account the internals of the system under test. Analogously, approaches that are
based on the implementation are characterized as white-box testing techniques.

Although the coverage criteria described above may appeal to intuition, none
of them can guarantee the detection of all errors in the system under test. Since
intuition can be misleading, it is desirable to be able to make formal statements
about the quality of certain test suites. An important step in this direction
has been the definition of test hypotheses [13]. Test hypotheses are assumptions
under which it is possible to infer that a system works correctly from the fact
that a system passes all tests in a certain test suite. Thus, test hypotheses
are a logical description of the gap between the set of correct systems and the
set of systems that pass all tests. Test hypotheses are a formal concept for
characterizing the quality of test suites. A test suite that requires test hypotheses
that are “strong” in some sense for inferring correctness of the system is to be
considered inferior to a test suite which allows “weaker” test hypotheses. In other
words, test hypotheses are a formal measure of test coverage.

To introduce test hypotheses more formally, let the function p : I → O model
the behavior of an implementation that returns output values in O on input values

18 Chapter 2. Preliminaries

in I. Let the relation S ⊆ I×O represent a specification. We say that a program
under test p conforms to the specification S if ∀x ∈ I. (x, p (x)) ∈ S. This is
a quite general definition of conformance and is adequate e.g., for specifications
based on pre- and postconditions. If the program p is specified to satisfy the
postcondition post ⊆ I × O whenever the precondition pre ⊆ I is satisfied, we
can define S to be

{(x, y) ∈ I ×O | x ∈ pre =⇒ (x, y) ∈ post} .

A test is simply a certain input from I for which the output of the program
p is checked for conformance with the specification S. Let T ⊆ I denote a set of
tests constituting a test suite. The program p passes all tests in the test suite if
∀x ∈ T. (x, p (x)) ∈ S. The predicate HT is a sufficient test hypothesis for the
test suite T if

HT ∧ ∀x ∈ T. (x, p (x)) ∈ S =⇒ ∀x ∈ I. (x, p (x)) ∈ S.

The so-called uniformity and regularity hypotheses are two specific types of
test hypothesis that are commonly combined to form a hypothesis HT that is
sufficient for a certain test suite T [13]. The uniformity hypothesis is of the form

∀x0 ∈ X. ((x0, p (x0)) ∈ S =⇒ ∀x ∈ X. (x, p (x)) ∈ S) , (2.2)

or equivalently

(∃x0 ∈ X. (x0, p (x0)) ∈ S) =⇒ (∀x ∈ X. (x, p (x)) ∈ S) . (2.3)

This hypothesis expresses the assumption that the set X of possible tests is
“uniform” in the sense that if any test in X detects an error in the program p,
then so will all tests. Thus, under this assumption, it is sufficient to test the
program on just one arbitrarily chosen input x0 from X. The set X that is
regarded as uniform typically consists of closely related inputs, such as a set of
inputs that lead to the same decision outcomes during execution.

Regularity hypotheses are applicable when a function size on the set X of
tests under consideration is available that expresses in some sense the structural
complexity of its argument. For example, for integers size could be defined
as absolute value and for lists it could be the length of the list. A regularity
hypothesis is of the form

(∀x ∈ X. size (x) ≤ k =⇒ (x, p (x)) ∈ S) =⇒ (∀x ∈ X. (x, p (x)) ∈ S) . (2.4)

Thus, this hypothesis expresses the assumption that the set X of possible tests
is “regular” in the sense that if any test in X detects an error in the program
p, then so will a test whose size is at most k. This corresponds to the intuition
that a bug should be able to be exhibited with a small “minimal” example that

2.3. Specification Based Testing with HOL-TestGen 19

only includes those features that are relevant for the code containing the bug. In
other words, under the assumption that the regularity hypothesis (2.4) is true,
it is sufficient to test the program only on the inputs whose size is at most k. If
this set is still infinite, it is necessary to assume further hypotheses in order to
obtain a finite set of tests in the end. The regularity hypothesis can be regarded
as a formal variant of the small scope hypothesis [87] that some authors refer to.

2.3.2 Automating Testing

Testing is regarded as a tedious activity by many developers. Even for testing
small pieces of code, it is often necessary to design many similar test cases in
order to sufficiently exercise the code. Determining the correctness of the results
returned on these test cases by the system under test also belongs to the task of
testing. Moreover, substantial amounts of testing often need to be repeated after
changes to the system, even if the modifications are minor.

For these reasons, it is desirable to automate the various steps of testing as far
as possible. Frameworks are in widespread use that allow for executing a whole
test suite with a single command, e.g. JUnit [91]. Such tools can also check the
correctness of the test results as long as this is feasible, e.g., when it is sufficient
to compare the results to previously returned ones. A very challenging area of
test automation is the problem of generating test cases themselves. The difficulty
of generating test cases is due to the fact that it can be very hard to determine
inputs that satisfy certain conditions in a specification or exercise certain parts
of code during execution of an implementation, or only determine if such inputs
exist. The standard approach to generating a test case that tests a certain part
of code is to define a formula called path condition that expresses the fact that
execution reaches the code when the system is run on a variable input. Solving
the path condition for the input then yields a suitable input that can be used for
a test case, unless the code in question is dead code and no such input exists.
However, for typical systems under test such path conditions become much too
large and too complex to be in the reach of the currently available constraint
solving techniques.

The automated generation of test cases is a longstanding research problem.
Several test case generation tools have been implemented that generate tests from
suitable implementations, such as implementations that are coded in Java [5,
21, 18] or a functional programming language [49, 95, 47], or that run on the
.NET platform [142]. Another class of tools generate test cases from various
kinds of specifications [89, 88, 82, 149]. Generating tests from specifications has
the advantage that specifications can be more succinct than implementations
that may need to read their input in a complex format or distinguish additional
cases for optimization purposes. As a result, the arising path conditions are
often simpler and can be solved more easily. Also, the analysis of a system
implemented in several different languages is difficult, while it may be possible to

20 Chapter 2. Preliminaries

provide its specification in a single, less complex language. Another advantage of
specifications is that they define the allowed behavior of the system under test.
Thus, they also facilitate automated checking of the test results. Altogether, the
use of formal specifications has many advantages for testing.

2.3.3 The HOL-TestGen Tool

In the remainder of this chapter, we introduce the HOL-TestGen tool that gen-
erates tests from specifications in HOL. This presentation refers to the original
version of HOL-TestGen described for example in [34].

For using HOL-TestGen, a property to test is specified by a HOL formula that
contains a free variable representing the program under test. This specification
expresses that the formula should hold, i.e., be a theorem, when the free variable
representing the program is substituted by a function modeling the program under
test. HOL specifications can make use of any types, predicates and functions
that have been defined properly in HOL. Such HOL theories that describe the
background of a test specification can be referred to as test theories.

A specification consisting of a precondition pre and a postcondition post could
be mapped to the HOL formula

pre (x) =⇒ post (x, p (x)) ,

in which the variable p represents the program under test. The variable x repre-
sents the input to the program under test, and is regarded as implicitly universally
quantified. Another type of HOL specification that has been used are specifica-
tions for testing programs on inputs sequences [31]. These specifications have
been designed by modeling input sequences as lists and defining the semantics of
executing the program on such a sequence in a dedicated HOL theory.

HOL-TestGen is built on top of the Isabelle theorem prover. Its main compo-
nent is the Isabelle tactic gen_test_cases that transforms a test specification
into a test theorem. A test theorem is a snapshot of an Isabelle proof state (2.1).
The original test specification remains as the conclusion of the test theorem. The
premises of the test theorem, i.e., the subgoals of the proof state, are designated
as either test cases or test hypotheses. Thus, a test theorem has the form

[TC1, . . . , TCn, H1, . . . , Hm] =⇒ TS,

where the premises TC1, . . . , TCn are the test cases, the premises H1, . . . , Hm

are the test hypotheses and the conclusion TS is the test specification. The
test cases TC1, . . . , TCn in a test theorem returned by gen_test_cases still
contain variables. They can be turned into executable tests by instantiating
their variables adequately. A test theorem expresses that a program under test
conforms to the test specification if it passes all tests and the test hypotheses
H1, . . . , Hm are true.

2.3. Specification Based Testing with HOL-TestGen 21

When invoking the tactic gen_test_cases on a test specification TS, the
proof state TS =⇒ TS is created. This is the standard way in Isabelle of creating
a proof state from a conjecture. Then the proof state is transformed by applying
Boolean equalities to create a conjunctive normal form (CNF). Note that a proof
state (2.1) can be written equivalently as

¬A1 ∧ . . . ∧ ¬An =⇒ C. (2.5)

Thus, the subgoals already form a conjunction. A CNF is obtained by trans-
forming the subgoals to disjunctions by applying De Morgan’s laws. The Isabelle
provides standard tactics for this task. The transformation to a DNF or CNF is
a standard approach to generating test cases from specifications [61].

The next step taken by gen_test_cases for deriving the test theorem is
case splitting on free variables whose type is a recursive datatype. The case
splitting is based on the size function provided by Isabelle/HOL for all recursive
datatypes. This function counts the number of constructor applications that are
necessary to obtain a value. For every possible size of the variable’s value from
zero to a user-defined constant k, a separate case represented by its own subgoal
is introduced. The remaining case of a size that is larger than k is taken into
account by introducing a subgoal containing a regularity hypothesis (2.4). For
example, in the case of a list variable x and k = 2, this case split can be expressed
by the derivation rule
[

x = []
]

··
P (x) ∀a.

[

x = [a]
]

··
P (x) ∀a, b.

[

x = [a, b]
]

··
P (x) size (x) > 2 =⇒ P (x)

P (x)

. (2.6)

Here new variables a, b are introduced for holding the elements of lists considered
for the cases k = 1 and k = 2. These new variables will be processed in the
further course of the gen_test_cases procedure, depending on their type. The
proposition size (x) > 2 =⇒ P (x) represents the regularity hypothesis.

The steps of CNF generation and case splitting are repeated for a customiz-
able number of times. Simplification stages can be inserted if appropriate. After
this iteration, any remaining free variables are dealt with by adding subgoals
containing uniformity hypotheses (2.3). These uniformity hypotheses allow free
variables, that are implicitly universally quantified, to be eliminated by intro-
ducing existentially quantified variables. Furthermore, an existentially quantified
variable in a subgoal is logically equivalent to an Isabelle metavariable that can
be instantiated. These metavariables remain in the test theorem and are instan-
tiated later for generating executable tests.

As an example, we present a test theorem generated by HOL-TestGen for
testing a procedure that sorts lists of integers. First, we need to define what
“sorted” means in order to specify the desired behavior of the procedure. We
achieve this by means of a straightforward recursive definition in HOL:

22 Chapter 2. Preliminaries

primrec is_sorted:: "int list ⇒ bool"

where "is_sorted [] = True" |

"is_sorted (x#xs) = (case xs of

[] ⇒ True

| y#ys ⇒ x ≤ y ∧ is_sorted xs)"

This recursive definition can be regarded as a very small test theory that forms
the background of our specification. We are now ready to specify the property
that is to be tested. We intend to simply test that the list returned is sorted:

test spec "is_sorted(PUT (l::(int list)))"

Here PUT stands for the implementation under test, and l represents an arbitrary
input list. In order to keep the example simple, we omitted stating that the list returned
by the implementation under test must be a permutation of the input list.

After defining the test specification, we can now apply the gen_test_cases

tactic:

apply(gen_test_cases "PUT")

The test theorem returned by gen_test_cases consists of the following subgoals:

1. is_sorted (PUT [])

2. THYP (is_sorted (PUT []) −→ is_sorted (PUT []))

3. is_sorted (PUT [??X8X2])

4. THYP

((∃a. is_sorted (PUT [a])) −→
(∀a. is_sorted (PUT [a])))

5. is_sorted (PUT [??X5X2, ??X6X3])

6. THYP

((∃a aa. is_sorted (PUT [a, aa])) −→
(∀a aa. is_sorted (PUT [a, aa])))

7. is_sorted (PUT [??X1X2, ??X2X3, ??X3X4])

8. THYP

((∃a aa ab. is_sorted (PUT [a, aa, ab])) −→
(∀a aa ab. is_sorted (PUT [a, aa, ab])))

9. THYP (3 < length l −→ is_sorted (PUT l))

Subgoals marked by THYP constitute test hypotheses. The last subgoal is a reg-
ularity hypothesis for lists and expresses that the result for an input list larger than
3 is considered to be sorted. The other test hypotheses are uniformity hypotheses.
The subgoals that are not marked with THYP correspond to test cases. The variables
remaining in the test theorem can be instantiated by arbitrary integers (since this test
theorem does not prescribe any constraints on the variables’ values) in order to obtain
executable tests.

The test theorem is stored when gen_test_cases terminates. It can later be
retrieved and inspected by the user like any other theorem derived in Isabelle. The
command gen_test_data provided by HOL-TestGen applies constraint solving

2.4. The Object Constraint Language (OCL) 23

techniques to instantiate the variables that still are present in the test theorem’s
subgoals for generating executable tests. The tests obtained by gen_test_data

are stored in a dedicated data structure. HOL-TestGen also provides a command
gen_test_script that packages the test cases in a ML program. This ML
code can execute the tests on any implementation that can be called from ML
and analyze the results. For deciding the correctness of the test results, HOL-
TestGen makes use of Isabelle’s support for generating code from HOL [11].

A notable application of HOL-TestGen has been the test of security policies
in various domains [31, 25, 23, 24]. To facilitate this task, a tailored simplification
method for security policies has been designed in Isabelle [23].

Other tools similar to HOL-TestGen are LOFT [110] and FocalTest [42].
LOFT is a deduction system for test generation that makes test hypotheses ex-
plicit. FocalTest generates tests from specifications that are defined within a
proof environment.

2.4 The Object Constraint Language (OCL)

The Unified Modeling Language (UML) is a graphical modeling language that
is regarded as the de-facto standard for object-oriented modeling. OCL [125] is
a textual language complementing UML that can be used for specification tasks
that are difficult or impossible to accomplish with UML diagrams alone. OCL
has a variety of applications at different modeling levels. In this thesis we use
OCL for querying and constraining UML system states.

The expressions of OCL constitute the core of the language. The evaluation
of OCL expressions is free of side effects. OCL provides convenient means for
navigating across associations and retrieving objects. For an OCL expression e,
the expression e.a denotes the value of the attribute a for the object e. In some
contexts it is also meaningful to refer to the value e.a@pre in the pre-state of an
operation, i.e., the value before its potential modification by the operation call.

In addition to user-defined classes and the primitive types Boolean, Integer,
Real and String, OCL offers the collection types Set, Bag (i.e., multiset),
Sequence and OrderedSet. Collections appear usually by evaluating attributes
with a corresponding multiplicity, but OCL also features dedicated collection con-
structors. The OCL standard library provides numerous collection operations.
These operations are accessed by means of the -> operator, e.g., e->size() de-
notes the size of the collection-valued expression e. Special operations called
iterators allow variables to refer to collection elements. A type of such iterators
are comprehensions, which are named collect in OCL. The mathematical ex-
pression {x+ 1 | x ∈ A} would be written as A->collect(x | x + 1) in OCL.
Variables in iterators can also be left implicit, e.g., e->collect(a) denotes a col-
lection of all values the attribute a can assume for any object in the collection e.
The precise type of the resulting collection depends on the type of the source e.

24 Chapter 2. Preliminaries

Another important class of iterators allow quantification over collections. Due to
this focus on collection manipulation, OCL somewhat resembles SQL.

Pre- and postconditions are OCL expressions of type Boolean that specify
operations. A precondition has to be fulfilled when the operation specified by it
is called and a postcondition has to hold when the operation returns. An OCL
operation contract consists of an arbitrary number of pre- and postconditions.
Another specification instrument are class invariants that have to always hold for
all objects of a certain class, independent from any operation calls.

The OCL standard [125] explicitly allows pre- and postconditions to refer to
functions that are specified by OCL operation contracts. In particular, a con-
tract can refer to the operation that it specifies, which corresponds to a recursive
definition. However, this kind of recursive definition in OCL differs substantially
from recursive definitions in functional programming languages, since OCL opera-
tion contracts, also recursive ones, are satisfied by any implementation (function)
that conforms to the pre- and postconditions. Thus, in general, an OCL oper-
ation contract can be satisfied by several different implementations. Therefore
recursive OCL operation contracts bear more similarity to algebraic specifica-
tions. The OCL standard forbids “infinite” recursion without giving a definition
of this notion.

Chapter 3

Modular Test Theorem
Derivation in HOL-TestGen

The original procedure of HOL-TestGen for deriving a test theorem, which was
described in Section 2.3.3, discriminates between variables whose type is a recur-
sive datatype and variables that have a different type. For recursive datatypes,
separate test cases for different sizes of the variable’s value are introduced in
combination with a regularity hypothesis, whereas for other types a single case
is produced by means of a uniformity hypothesis. It is evident that testing is
likely to benefit from adding custom treatment for further types in addition to
recursive datatypes. For example, for bitvector types boundary values like 0,
1, -1 as well as the maximal and minimal values of the types are particularly
interesting for testing, and could be considered separately in different test cases.
This would constitute a kind of case splitting that is tailored to the respective
bitvector types. Set and collection types are further interesting targets. For these
types, exhaustion lemmas like (2.6) cannot be derived the same way as for re-
cursive datatypes. It is however conceivable to introduce an analogous kind of
case splitting for such types that is based on using the collection’s size as size
function in the regularity hypothesis.

In this chapter, we present an improved test derivation procedure for HOL-
TestGen with a modular design. The modularity allows tailored derivation rules
for arbitrary types to be plugged into a generic kernel. This facilitates the cus-
tomization of HOL-TestGen to new application domains and avoids a complicated
implementation that is cluttered with special cases for handling various types.
Furthermore, we highlight the affinity of theorem proving and testing by present-
ing tactical code for test derivation. As additional contribution of this chapter,
we discuss the relationship between case splitting and test hypotheses and give
some advice for producing effective test suites.

25

26 Chapter 3. Test Theorem Derivation

procedure g e n t e s t c a s e s (t e s t s p e c , ru l e s , breadth) :
p r o o f s t a t e := t e s t s p e c
t rans f o rmat i on s := ∅
for i := 1 to breadth do

for r u l e in r u l e s do

t rans f o rmat i on s := t rans f o rmat i ons ∪ r u l e (p r o o f s t a t e)
end for

s o r t (t rans f o rmat i on s)
for t rans fo rmat ion in t rans f o rmat i on s do

p r o o f s t a t e := trans fo rmat ion (p r o o f s t a t e)
end for

end for

i n s e r t un i f o rm i t y (p r o o f s t a t e)
return p r o o f s t a t e

end procedure

Figure 3.1: High-level description of test derivation procedure

3.1 Overview of Test Theorem Derivation

We represent test derivation rules as functions from proof states to sets of transfor-
mations on proof states. Every such transformation is associated with a priority.
To derive the test theorem, we apply the provided test derivation rules to the
test specification, and then perform the transformations returned by these rules
in order of their priority. We repeat this process for a number of times that is
configurable by the user. At the end of the procedure, the uniformity hypoth-
esis (2.3) is inserted for any remaining variables. Figure 3.1 shows this overall
procedure as pseudo-code. The user-defined parameter breadth determines the
number of times the rules are applied.

3.2 An Interface for Test Derivation Rules

The original procedure of HOL-TestGen for deriving a test theorem discriminates
variables based on their type. For variables whose type is recursive datatype, a
particular kind of case splitting is performed. Another element of the original
procedure is the generation of a CNF by applying De Morgan’s laws. This can
be regarded as a kind of case splitting which is not based on variables, but rather
on certain Boolean operations. Thus, a generic interface that is suitable for these
forms of splitting cannot be solely based on types. Rather, a more universal
notion of test derivation rule is necessary. Therefore we define a test derivation
rule to be a general mapping from proof states represented as Thms in ML to lists

3.2. An Interface for Test Derivation Rules 27

of tactics:

type test_derivation_rule

= Proof.context -> int -> thm -> (int * tactic) list

The integer argument taken by a test derivation rule denotes a subgoal index that
the rule should operate on. This is a common indexing convention used in Isabelle
code for tactics that manipulate an individual subgoal of a proof state. Similarly,
we intend test derivation rules to only consider the subgoal that is denoted by
the integer argument. The third argument represents the proof state passed to
the rule. This argument can be understood as counterpart to the Thm taken by
tactics. In contrast to tactics, which must return a sequence of theorems, a test
derivation rule is declared to return a list of pairs of integers and tactics. The
tactics returned are operations that implement the rule if they are applied to the
proof state. These tactics can constitute case splits, simplifications, or any other
operations that serve the purpose of deriving a test theorem. Thus, our notion of
test derivation is very general. The integers associated with the tactics returned
denote priorities. The higher the priority, the sooner the tactic should be applied
to proof state. These priorities have an important function. For example, it can
make a difference whether a simplification is carried out before or after a case
split.

Note that the tactics returned by a test derivation rule do not take a subgoal
index as argument. Rather, they operate on an entire proof state. This is not
a restriction, since a subgoal-specific tactic can be wrapped with the ALLGOALS
tactical provided by the Isabelle library in order to obtain a tactic that operates
on all subgoals of a proof state. The reason for this design decision is that tactics
returned by a test derivation rule may be applied in an unforeseeable order to the
proof state, depending on the priorities they are associated with. Tactics that are
applied before some particular test derivation rule, such as those used for CNF
generation, may split a subgoal into new ones. Thus, subgoal indices determined
in advance become obsolete.

Many test derivation rules do not use all features of this interface. For ex-
ample, we define a basic simplification rule that returns the same simplification
tactic independently from the proof state as follows:

fun minimize_rule ctxt no state =

[(10, distinct_subgoals_tac

THEN (ALLGOALS(asm_full_simp_tac (simpset_of ctxt)))]

This rule returns a singleton list containing a tactic that first carries out
distinct_subgoals_tac that merges identical subgoals and then applies the
simplification tactic asm_full_simp_tac to all subgoals. The returned tactic is
associated with the priority “10”. Since the tactic returned does not depend on
the proof state, the argument state is ignored.

28 Chapter 3. Test Theorem Derivation

3.3 Tactical Test Theorem Derivation

We now describe the generic test generation procedure that can apply provided
test derivation rules in order to yield a test theorem. We define some custom
tacticals that are useful for this purpose. One such tactical is

ALLCASES: (int -> tactic) -> tactic,

as we decide to name it. This tactical applies the tactic passed to it as argument
to all subgoals that have not been marked particularly by HOL-TestGen. These
subgoals represent classes of test cases, and, in particular, have not been marked
as test hypotheses. The other custom tactical that we will use is

SORT: Proof.context -> test_derivation_rule list

-> int -> tactic

This tactical returns a tactic that applies the provided test derivation rules to
the proof state, and then applies the tactics returned by the test derivation rules
in order of the priority they have been associated with by the rules.

The tactical SORT can be implemented easily. First we apply the passed test
derivation rules rules to the subgoal n of the proof state thm and collect the
resulting pairs of tactics and priorities:

val matches = maps (fn rule => rule ctxt n thm) rules

The combinator maps provided by the Isabelle standard library applies a list-
valued function to a list and merges the results to a single list. As next step, we
obtain a sorted list of the tactics to apply by sorting the list matches:

val sorted = map (fn (i,tac) => tac)

(sort (fn (x,y) =>

rev_order (int_ord (fst x, fst y))) matches)

Here we use the sort function provided by the Isabelle standard library,
parametrized with a suitable order on the list elements. We obtain this order
by reversing the standard integer order on the priorities, so we achieve a sorted
result with tactics of higher priority at the beginning of the list. After sorting,
we trim off the priorities in order to construct a list consisting only of the tactics.
Then we use the EVERY tactical for obtaining a composition of these tactics as
EVERY sorted. The EVERY tactical provided by Isabelle applies the tactics in
the list passed to it in the order they appear in the list. Finally, we enclose this
sequential composition in the SELECT_GOAL tactical that is also provided by the
Isabelle standard library. This tactical allows to apply a tactic that operates on
an entire proof state to a single subgoal. Using SELECT_GOAL ensures that SORT
only affects the subgoal that has been passed to it as argument. Other subgoals

3.3. Tactical Test Theorem Derivation 29

are not altered, at most their number changes if the modified subgoal is split into
several ones. Altogether, the tactic returned by SORT amounts to

SELECT_GOAL (EVERY sorted) n

We are now ready to give a definition of the gen_test_cases tactic:

fun gen_test_case_tac ctxt rules breadth =

ALLCASES((asm_full_simp_tac (simpset_of ctxt))

THEN REPEAT_DETERM_N breadth (ALLCASES (SORT ctxt rules)))

THEN ALLCASES(uniformityI_tac ctxt))

Thus, the gen_test_cases tactic is a sequential composition of three tactics.
The first tactic performs a general-purpose simplification of the test specification.
Then, using the SORT tactical, the provided test derivation rules are applied for
a number of times that is specified by the breadth parameter. The value of
this parameter is user-defined. For achieving this repetition, we use the tactical
REPEAT_DETERM_N provided by the Isabelle standard library. The final step of
gen_test_cases is to insert the uniformity hypothesis (2.3). This is performed
by the auxiliary tactic uniformityI_tac.

We do not give the implementation of the tactic uniformityI_tac here be-
cause it is quite technical, but rather give a high-level description. The tactic
uniformityI_tac assumes that the proof state is in conjunctive normal form.
Thus, every subgoal is a disjunction, or equivalently, a series of implications
A1 =⇒ . . . =⇒ An. The tactic uniformityI_tac permutes this series, if neces-
sary, by applying the identity A =⇒ B ≡ ¬B =⇒ ¬A, such that all propositions
referencing the program under test are moved to the right end of the series. At
this point the subgoal is of the form

pre (x1, . . . , xm) =⇒ post (x1, . . . , xm, PUT (x)) , (3.1)

where PUT is the program under test, x1, . . . , xm are the variables occurring in
the subgoal, and pre (x1, . . . , xm) does not contain any references to PUT . We
then insert the subgoal

(∃x1, . . . , xm. pre (x1, . . . , xm) ∧ post (x1, . . . , xm, PUT (x)))

=⇒ (∀x1, . . . , xm. pre (x1, . . . , xm) =⇒ post (x1, . . . , xm, PUT (x))) ,

which represents a uniformity hypothesis. Adding this hypothesis allows us to
replace the subgoal (3.1) by the two subgoals

pre (x1, . . . , xm) (3.2)

and
post (x1, . . . , xm, PUT (x)) , (3.3)

30 Chapter 3. Test Theorem Derivation

in which the variables x1, . . . , xm occur as Isabelle metavariables, i.e., are im-
plicitly universally quantified and can be instantiated. The subgoal (3.2) will be
treated as constraint on the variables x1, . . . , xm. The other resulting subgoal
(3.3) represents a test case. Once the variables x1, . . . , xm are instantiated, the
subgoal (3.3) is executable and evaluates to true if the program under test passes
the test. The subgoal (3.2) should be eliminated by instantiating the variables
x1, . . . , xm such that it evaluates to true. Such an instantiation operates simulta-
neously on both subgoals (3.2) and (3.3). It can be performed by the constraint
solving tactics presented in Chapter 4.

In order to give an example for test derivation, we revisit the sorting spec-
ification presented in Section 2.3.3. Now, we additionally specify that the list
returned by the implementation under test must be a permutation of the input
list. We achieve this by specifying that the output of the implementation under
test is equal to the output produced by an insertion sort. We define an insertion
sort function in HOL by first recursively defining insertion into a sorted list:

fun ins :: ”int ⇒ int list ⇒ int list”

where ”ins x [] = [x]”

—”ins x (y#ys) = (if (x < y) then x#y#ys else (y#(ins x ys)))”

Using this function, we can now recursively define insertion sort as follows:

fun sort:: ”int list ⇒ int list”

where ”sort [] = [] ”

— ”sort (x#xs) = ins x (sort xs)”

With the insertion sort function at our disposal, we can specify the behavior
of the implementation under test simply by PUT (l) = sort (l). As in the first
part of this example, PUT represents the implementation under test and l the
input list to be sorted. Given this specification, the tactic gen_test_cases

first applies a test derivation rule that carries out case splitting for variables of a
recursive datatype. This rule applies the derivation rule (2.6) for the variable l,
which transforms the specification into the following list of subgoals:

1. PUT [] = List_test.sort []

2.
∧

a. PUT [a] = List_test.sort [a]

3.
∧

a aa. PUT [a, aa] = List_test.sort [a, aa]

4.
∧

a aa ab list.

length (a # aa # ab # list) ≤ 2 =⇒
PUT (a # aa # ab # list)

= List_test.sort (a # aa # ab # list)

5.
∧

a aa ab list.

THYP (2 < length l −→ PUT l = List_test.sort l)

3.3. Tactical Test Theorem Derivation 31

These subgoals represent, from top to bottom, the cases of an empty input list,
a list of length one, a list of length two, a list of length larger than two and
a corresponding regularity hypothesis. Simplifying this proof state inserts the
definition of the sort function where this is possible. The fourth subgoal is
eliminated by this simplification:

1. PUT [] = []

2.
∧

a. PUT [a] = [a]

3.
∧

a aa.

(a < aa −→ PUT [a, aa] = [a, aa]) ∧
(¬ a < aa −→ PUT [a, aa] = [aa, a])

4. THYP (2 < length l −→ PUT l = List_test.sort l)

Then gen_test_cases performs a transformation to conjunctive normal form,
which yields the following proof state:

1. PUT [] = []

2.
∧

a. PUT [a] = [a]

3.
∧

a aa. a < aa =⇒ PUT [a, aa] = [a, aa]

4.
∧

a aa. ¬ a < aa =⇒ PUT [a, aa] = [aa, a]

5. THYP (2 < length l −→ PUT l = List_test.sort l)

In this proof state, every subgoal, except for the one representing the regularity
hypothesis, constitutes a clause of the CNF. The clauses correspond to every pos-
sible permutation of a list with up to two elements. By using different parameters
for case splitting, we could make this proof state enumerate the permutations of
arbitrarily long lists. The final step of gen_test_cases is the application of
uniformity hypotheses, which results in the following test theorem:

1. PUT [] = []

2. THYP (PUT [] = [] −→ PUT [] = [])

3. PUT [??X7X2] = [??X7X2]

4. THYP ((∃a. PUT [a] = [a]) −→ (∀a. PUT [a] = [a]))

5. PO (??X4X2 < ??X5X3)

6. PUT [??X4X2, ??X5X3] = [??X4X2, ??X5X3]

7. THYP

((∃a aa. a < aa ∧ PUT [a, aa] = [a, aa]) −→
(∀a aa. a < aa −→ PUT [a, aa] = [a, aa]))

8. PO (¬ ??X1X2 < ??X2X3)

9. PUT [??X1X2, ??X2X3] = [??X2X3, ??X1X2]

10. THYP

((∃a aa. ¬ a < aa ∧ PUT [a, aa] = [aa, a]) −→
(∀a aa. ¬ a < aa −→ PUT [a, aa] = [aa, a]))

11. THYP (2 < length l −→ PUT l = List_test.sort l)

This step generates a test case for every clause of the CNF. Moreover, constraints
are added for test cases with nontrivial constraints. In this example, these are

32 Chapter 3. Test Theorem Derivation

the test cases that consider lists of length two. The subgoals in the test theorem
that represent constraints are marked with “PO” (“proof obligation”). These
constraints can be tackled with the constraint solving tactics presented in Chap-
ter 4.

3.4 How Useful is the Regularity Hypothesis?

Regularity hypotheses (2.4) are applicable when a function size on the set X of
tests under consideration is available that expresses in some sense the structural
complexity of its argument. A regularity hypothesis can be described as the
assumption that the set X of possible tests is “regular” in the sense that if any
test in X detects an error in the program p, then so will a test whose size is
at most k. Thus, under the assumption that the regularity hypothesis is true,
it is sufficient to test the program only on those inputs whose size is at most
k. At first glance, a regularity hypothesis may appear to be a weaker hypothesis
than a corresponding uniformity hypothesis that only leads to the generation of
a single test case, because the regularity hypothesis requires tests that cover all
inputs whose size is at most k. This, however, is not true in general, since the
set X may not contain any tests at all whose size is at most k. In this case,
the regularity hypothesis does not require any tests, while using a corresponding
uniformity hypothesis can never eliminate the need for tests.

Thus, a regularity hypothesis is not a priori preferable to a corresponding
uniformity hypothesis. Considering the interaction with case splitting for test
generation gives another argument against using regularity hypotheses. To see
this, note that assuming a regularity hypothesis (2.4) still requires the generation
of test cases for checking

∀x ∈ X. size (x) ≤ k =⇒ (x, p (x)) ∈ S. (3.4)

If (3.4) holds, i.e., the implementation passes these test cases, and any hypotheses
assumed for establishing (3.4) are true, then (2.4) is equivalent to

∀x ∈ X. size (x) > k =⇒ (x, p (x)) ∈ S. (3.5)

Note that this is the interesting case, since the hypotheses do not matter when
the implementation does not pass the tests.

Now, consider instead a case split of the test specification into

∀x ∈ X. size (x) ≤ k =⇒ (x, p (x)) ∈ S (3.6)

and
∀x ∈ X. size (x) > k =⇒ (x, p (x)) ∈ S. (3.7)

The case (3.6) is identical to the formula (3.4), and the other case (3.7) is identical
to the modified regularity hypothesis (3.5). When generating a test suite, the case

3.4. How Useful is the Regularity Hypothesis? 33

(3.6) can be handled in the same way as the identical case (3.4) when introducing
the regularity hypothesis. Let us turn to the other case (3.7). By introducing
the uniformity hypothesis

(∃x0 ∈ X. size (x0) > k ∧ (x0, p (x0)) ∈ S)

=⇒ (∀x ∈ X. size (x) > k =⇒ (x, p (x)) ∈ S) , (3.8)

we can reduce case (3.7) to a single test case (x0, p (x0)) ∈ S for an x0 that
satisfies size (x0) > k. Thus, we avoided assuming the regularity hypothesis (3.5)
by assuming the uniformity hypothesis (3.8) and adding one additional test case.
Note that the regularity hypothesis (3.5) implies (3.8), while the converse is not
true. Hence, by performing the case split and avoiding the regularity hypothesis,
we were able to weaken the hypotheses that we must assume.

So should we simply forget about the regularity hypothesis? A nice charac-
teristic of the regularity hypothesis is that it allows us to avoid constraints of the
form size (x0) > k. When deducing test cases using regularity hypotheses and
exhaustion lemmas like (2.6), we instead face constraints like size (x0) = k. Such
more restrictive constraints can allow useful simplifications. E.g., in the case of
a list x0 and k = 2, we can write x0 = [a, b], and sort (x0) = y can be rewrit-
ten by the Isabelle simplifier to (a < b =⇒ [a, b] = y)∧(¬a < b =⇒ [b, a] = y) . In
contrast, if the constraint were size (x0) > 2 instead of size (x0) = 2, we would
have no means of simplifying the term sort (x0), and would have to deal with the
presence of recursive functions during the constraint solving phase. However, the
techniques for tackling recursive constraints presented in Section 4.4 allow us to
cope with such a situation. Note that it is possible to substitute any disliked test
case by a suitable test hypothesis if desired. Thus, this recourse should be used
with care. In all, we conclude that skepticism towards the regularity hypothesis
is warranted in order to achieve test suites that are as effective as possible.

34 Chapter 3. Test Theorem Derivation

Chapter 4

Solving Constraints in Isabelle

In this chapter we first discuss the intricacy of solving constraints in a theorem
proving environment. Then we introduce different types of methods that we use
for solving constraints in Isabelle. These include methods based on the random
generation of candidate solutions, as well as methods based on SMT solving. We
show how recursive constraints can be solved with SMT solvers, and describe an
interactive approach to make constraints amenable to SMT solving. Finally, we
present experimental results for these constraint solving techniques and review
related work.

4.1 Constraint Solving versus Theorem Proving

Isabelle is a theorem proving tool. For the purposes of this thesis, testing and
animation, we are faced however with the task of constraint solving, which at
first sight appears to be considerably different from theorem proving. To prove
a theorem typically means to show that some assertions hold for all possible
values that one or more variables can assume. Moreover, we usually know which
theorem we want to prove before we prove it. We may record the proof found for
later reference, but often, e.g, when performing system verification, we are only
interested in the certain knowledge that a theorem holds, independently of the
type of proof carried out.

Generally, to solve a constraint means to determine a set of values X1, . . . , Xn

such that P (X1, . . . , Xn) holds for some predicate P . If we have found a con-
crete solution X1 = x1, . . . , Xn = xn, we have actually proved the theorem
P (x1, . . . , xn). In contrast to the typical theorem proving scenario, we did not
know which theorem we would prove before we found the solution, i.e., proved
the theorem. Another possible point of view is that we proved the more general
theorem ∃X1, . . . , Xn. P (X1, . . . , Xn) by solving the constraint. Such a theorem
stating that some solution exists, however, is in itself often not of much use. For
applications like testing and animation, the proof of this theorem that conveys

35

36 Chapter 4. Solving Constraints in Isabelle

which values solve the constraint are of crucial importance.
Thus, the question arises whether Isabelle as a theorem proving environment

can meet the requirements that are necessary for dealing with constraint solving
tasks. Our approach exploits the support of Isabelle for metavariables. Metavari-
ables are variables in a theorem (which is represented internally in Isabelle as an
ML value of type Thm) that can be instantiated if desired, resulting in a new the-
orem. We represent a constraint by a subgoal P (X1, . . . , Xn) with metavariables
X1, . . . , Xn. The metavariables are the unknowns that need to be determined
such that the constraint is satisfied. Instantiating the metavariables with values
that satisfy the constraint allows the subgoal to be simplified to True and thus to
be eliminated. This corresponds to the usual way of proving theorems in Isabelle
by successively eliminating subgoals. Since further occurrences of the metavari-
ables outside of the eliminated subgoal are instantiated at the same time, the
solution to the constraint is not necessarily lost when the subgoal is eliminated.
The simplest way to obtain such a subgoal P (X1, . . . , Xn) is to create the trivial
theorem P (X1, . . . , Xn) =⇒ P (X1, . . . , Xn). Eliminating the subgoal would then
yield the theorem P (x1, . . . , xn) in which all metavariables have been replaced
by concrete values x1, . . . , xn. This theorem expresses that the constraint has
been solved by x1, . . . , xn. For a suitable predicate P this instantiation can be
recovered from the term structure of P (x1, . . . , xn).

We illustrate this approach with a toy example. Our constraint just asks for
natural numbers x and y such that x is smaller than y.

schematic lemma "(?x::nat) < (?y::nat)"

In this statement of the lemma, the variables x and y are metavariables. We obtain
a single subgoal representing the constraint:

1. ?x < ?y

We guess the solution x = 3, y = 7 and represent this instantiation as a list on
the ML level as required by Isabelle’s low level instantiation tactic that we will use.

ML prf {*

val insts = [(("x",0),"(3::nat)"), (("y",0),"(7::nat)")]

*}

apply(tactic "RuleInsts.instantiate_tac @{context} insts")

Performing the instantiation yields the expected subgoal:
1. 3 < 7

apply(simp)

done

Simplification eliminates the subgoal and results in the desired theorem ex-
pressing a solution to the constraint: 3 < 7. The instantiation used can be
recovered by matching this theorem to the constraint x < y.

4.2. Random Constraint Solving Techniques 37

4.2 Random Constraint Solving Techniques

Random constraint solving proceeds by first generating a candidate solution ran-
domly and then determining whether it is a valid solution to the constraint. The
random generation is repeated until a valid solution is found or a time limit is
reached. This approach, which is also referred to as the “generate-and-test” tech-
nique, is a brute-force approach since it does not employ advanced reasoning like
constraint propagation and learning to find a solution quickly. Also, the unsat-
isfiability of a constraint cannot be shown with this technique. An advantage of
the random constraint solving approach is its simplicity – it is applicable when-
ever means for the random generation of candidate solutions and the detection
of valid solutions is available. For many kinds of data these building blocks have
already been made available for other applications, while a tailored constraint
solving algorithm would require substantial additional effort.

When used for the generation of test data, the random approach has further
advantages. Sometimes random test data is preferred since random data often
appears to be complex and therefore challenging to an implementation under
test. In contrast, “intelligent” constraint solving techniques are likely to yield
solutions that exhibit unnatural structure, such as all-zero solutions or other
border cases. Moreover, for some applications it is believed that the actual input
data is itself random in some sense. Finally, by constructing a sufficiently large
test suite from test data generated uniformly at random, it can be argued that
an appropriate test coverage has been achieved, provided that the real inputs to
the system under test exhibit the same distribution. A problem with randomly
generated test data is that some parts of the system under test are likely to never
be exercised by random inputs. However, such parts may be critical for common
uses of the system. When testing a compiler on random data, for example, it is
to be expected that a syntax error is detected for the overwhelming majority of
inputs. On the other hand, it is very unlikely that valid source code of a program
with input and output is generated.

The random approach to test data generation has been investigated exten-
sively for testing functional programs [49, 95, 47]. Inspired by the QuickCheck
tool [49] for randomly testing Haskell programs, Berghofer and Nipkow [12] imple-
mented Isabelle’s quickcheck command for detecting non-theorems. Adapting
the approach of its predecessor for Haskell, the quickcheck command generates
random values for free values in a conjecture and then tests the validity of the
conjecture for the random assignment. In order to perform repeated validity tests
efficiently, quickcheck uses Isabelle’s code generator to obtain a validity test
as compiled code. Thus, quickcheck can benefit from any available compiler
optimizations. The drawback is that only “executable” conjectures amenable to
code generation can be analyzed this way.

Brucker andWolff have employed a different form of random constraint solving
for test data generation in the HOL-TestGen tool [28]. In their approach, candi-

38 Chapter 4. Solving Constraints in Isabelle

date solutions are generated randomly as does the quickcheck command, but
instead of generated compiled code, the Isabelle simplifier is used for testing the
validity of the solutions. While this approach is potentially less efficient when
checking a large number of candidate solutions, it can benefit from more powerful
reasoning capabilities provided by the Isabelle simplifier. When testing for valid
solutions during random constraint solving, the Isabelle simplifier is used as a
general-purpose reasoner that is more powerful than a plain evaluation engine.
For example, the Isabelle simplifier can eliminate quantifiers in some situations,
such as in the formula ∀x ∈ Z. x = 1 =⇒ P (x), which it simplifies to P (1). Note
that quantified formulas like this one are likely to make an SMT solver fail since
SMT solvers often do not apply many heuristics for dealing with quantifiers.
Thus, this variant of random constraint solving can be beneficial even if more
sophisticated constraint solving techniques such as SMT solving are available.

We have packaged both the quickcheck-based random solving technique as
well as the alternative technique using the Isabelle simplifier in a tactic that
allow a constraint to be solved by a single call to the tactic. An invocation of
the quickcheck-based tactic quickcheck_tac from Isabelle’s structured proof
language Isar, using a maximum of 50 solving attempts, looks like this:

schematic lemma "(?x::nat) < (?y::nat)"

by (tactic "quickcheck_tac @{context} 50 1")

For applying the other tactic random_solve_tac that is based on the Isabelle
simplifier, it is enough to change the name of the tactic:

schematic lemma "(?x::nat) < (?y::nat)"

by (tactic "random_solve_tac @{context} 50 1")

These tactics yield theorems that express a solution to the constraint like the
theorem 0 < 2.

It is interesting to note that the tactic random_solve_tac can itself be de-
fined by tactical code. As basic building block, we assume the availability of a
tactic random_inst_tac: Proof.context -> int -> tactic that instanti-
ates all metavariables in the indicated subgoal of the theorem passed with suitably
generated random constant terms. We assume that this tactic returns a sequence
consisting of a single theorem. Thus, in order to generate several random instan-
tiations, we have to call random_inst_tac repeatedly.

We introduce the tactic

solve_by_simp_tac: Proof.context -> int -> tactic

as another auxiliary tactic. This tactic returns a theorem if the subgoal passed
as the second argument can be eliminated by the simplifier. This tactic can be
defined as follows:

fun solve_by_simp_tac ctxt

= SOLVED’ (full_simp_tac (simpset_of ctxt))

4.3. Exploiting Counterexamples 39

Here SOLVED’: (int -> tactic) -> int -> tactic is a tactical from
Isabelle’s library that only returns theorems for which the corresponding sub-
goal has been eliminated. The tactic full_simp_tac invokes the Isabelle
simplifier. With the help of solve_by_simp_tac, we can define the tactic
single_tac: Proof.context -> int -> tactic that makes an attempt to
solve the constraint using a single random instantiation:

val single_tac ctxt =

(random_inst_tac ctxt)

THEN’ (solve_by_simp_tac ctxt)

This tactic simply generates a random instantiation with
single_rand_inst_tac and then checks for a valid solution with
solve_by_simp_tac. The desired tactic

random_solve_tac: Proof.context -> int -> int -> tactic

can then be defined as a repeated application of single_tac:

fun random_solve_tac ctxt iterations n thm

= (FIRST (replicate iterations (single_tac ctxt n))) thm

The function replicate belongs to the standard library and constructs a
list containing single_tac iterations number of times. The tactical FIRST
is also from the library and selects the first invocation of single_tac from the
list that succeeds, i.e., solves the constraint. If no call to single_tac succeeds,
FIRST returns an empty theorem sequence indicating failure.

4.3 An SMT Interface Exploiting Counterex-

amples

We now present an approach to constraint solving in Isabelle that is based on
exploiting counterexamples returned by SMT solvers. We build on the interface
that has been implemented between Isabelle and the SMT solver Z3 [17]. This
interface provides the smt tactic to Isabelle for using Z3 to prove theorems.
Z3 [58] is a state-of-the art SMT solver that follows the lazy SMT paradigm and
includes theory solvers for real and integer linear arithmetic, bitvectors, recursive
datatypes, function symbols and arrays. Z3 supports quantifier reasoning based
on user-defined triggers and E-matching.

The smt tactic encodes a conjecture in HOL into a constraint that can be
processed by the solver and whose unsatisfiability implies the truth of the con-
jecture. In the case that Z3 determines that the constraint is unsatisfiable, Z3
also returns a description of a proof for its unsatisfiability. The smt tactic then
reconstructs this proof in order to obtain a proof of the conjecture within Isabelle.

40 Chapter 4. Solving Constraints in Isabelle

Figure 4.1: Architecture of the extended interface between Isabelle and the Z3
solver

The tactic also supports a mode of operation in which theorems are created with
Isabelle’s oracle mechanism in order to allow for faster execution.

SMT solvers usually can provide counterexamples when they fail to show that
a constraint is unsatisfiable. A counterexample is an assignment of concrete func-
tions to the uninterpreted functions occurring in the constraint which satisfies the
constraint. The smt tactic presents such counterexamples to the user as an aid
to detecting non-theorems and debugging proofs. Thus, this feature of the tactic
is similar to counterexample generators like Quickcheck [12] and Nitpick [16]. We
will use counterexamples provided by SMT solvers also for proving theorems in
order to derive further benefit from them. The resulting extended architecture
of the interface between Isabelle and Z3 is depicted in Figure 4.1.

Our approach for exploiting counterexamples works as follows. In order to
prove and eliminate a subgoal Ak of a proof state

A1 =⇒ . . . =⇒ Ak =⇒ . . . =⇒ An =⇒ C, (4.1)

we pass the negated subgoal Ak =⇒ False to the existing smt tactic of Isabelle
in the hope of obtaining a counterexample. Any such counterexample must assign
values to the metavariables of Ak that make Ak evaluate to True. From the coun-
terexample we extract an instantiation of these metavariables with HOL terms
and instantiate the proof state (4.1) correspondingly. Finally we apply Isabelle’s
simplifying tactic to the subgoal and hope that this results in its elimination. In
practice this may not be the case because the correctness of the instantiation may
rely on parts of the background theory that were not passed to the SMT solver.

Note that this technique to exploit counterexamples is based on the instan-
tiation of metavariables, so it fits nicely with our Isabelle-compatible constraint
solving approach described above. Moreover, the derivation of a proof from a
counterexample in Isabelle constitutes a trusted way of checking the correctness

4.3. Exploiting Counterexamples 41

of a counterexample, analogous to proof reconstruction techniques implemented
in Isabelle [128, 152, 17]. Although it is arguably easier to check a counterex-
ample than a proof since counterexample checking essentially amounts to term
evaluation and does not require, e.g., resolution steps, using the established Is-
abelle kernel for this purpose can provide a particular level of confidence in the
correctness of the counterexample. We have packaged our counterexample-based
proof technique in a tactic called smt_solve_tac. This tactic can be invoked by
the user in the same way as the other constraint solving tactics quickcheck_tac
and random_solve_tac introduced above.

4.3.1 Interpreting Counterexamples

The extraction of an instantiation from a counterexample still presents some dif-
ficulty because counterexamples often contain references to fresh values of types
that the solver regards as uninterpreted. The counterexamples are based on the
assumption that these values are distinct. It is problematical to map these values
in the counterexample to HOL terms suitable for the instantiation of metavari-
ables. Moreover, the constraint passed to the SMT solver typically contains
references to functions that the solver regards as uninterpreted, but that have a
concrete semantic interpretation in HOL. The semantic interpretation of these
functions further constrains the HOL terms that can denote values occurring in
a counterexample.

Recall our example x < y from above. The SMT interface of Isabelle 2011
generates the following textual description in so-called SMT-LIB format for pro-
cessing by Z3.

(benchmark Isabelle

:status unknown

:logic AUFLIA

:extrasorts (S1 S2)

:extrafuns (

(f1 S1)

(f2 S1)

(f3 S2 Int)

(f4 S2)

(f5 S2)

(f6 Int S2)

)

:assumption (not (= f1 f2))

:assumption (< (f3 f4) (f3 f5))

:assumption (not false)

:assumption (forall (?v0 S2) (= (f6 (f3 ?v0)) ?v0))

:assumption (forall (?v0 Int) (implies (<= 0 ?v0) (= (f3 (f6 ?v0)) ?v0)))

:assumption (forall (?v0 Int) (implies (< ?v0 0) (= (f3 (f6 ?v0)) 0)))

:formula true)

Since natural numbers are not a builtin theory of Z3, the additional sort S2
is declared for denoting natural numbers. The function f3 represents the HOL
function int that embeds the natural numbers in the integers. The function f6
represents its inverse nat. These are examples of functions that have a concrete

42 Chapter 4. Solving Constraints in Isabelle

semantic interpretation in HOL, but are declared as uninterpreted in the language
processed by the SMT solver. The function f4 represents the value of the variable
x and f5 the value of the variable y. The remaining functions and sorts in the
constraint have been introduced for internal purposes of the SMT interface.

Given this input, Z3 produces the following textual description of the coun-
terexample it found.

f1 -> val!0

f2 -> val!1

f4 -> val!2

f5 -> val!3

f3 ->

val!2 -> 0

val!3 -> 1

else -> 1

f6 ->

0 -> val!2

1 -> val!3

else -> val!3

unknown

Here, the verdict “unknown” at the end indicates that the solver was not able
to establish the correctness of the counterexample due to the presence of quanti-
fiers. In the counterexample, symbols starting with val! represent fresh values
that are identified by the number at the end of the symbol. The counterexample
above assigns to the variables x and y represented by f4 and f5 the values val!2
and val!3. These values are intended to represent distinct natural numbers. We
cannot create HOL terms for instantiating x and y by choosing an arbitrary pair
of distinct natural numbers because val!2 and val!3 are also referenced by
other parts of the counterexample. In particular, the counterexample states that
the function f6 representing the HOL function nat maps 0 to val!2 and 1 to
val!3. Note that we can associate concrete HOL terms with f6(0) and f6(1),
namely nat 0 and nat 1. This observation allows us to derive that val!2 and
val!3 can be denoted by nat 0 and nat 1, respectively.

We generalize this approach for extracting instantiations from counterexam-
ples as follows. We represent every fresh value in the counterexample by a free
variable in HOL. This allows us to express the counterexample as a list of HOL
equations. The left-hand sides of the equations represent function applications
in the counterexample, which may correspond to arbitrary terms in HOL, in-
cluding metavariables. The right hand sides represent the values assigned to the
function applications and may correspond to numeric constants or free variables
representing fresh values in HOL.

4.3. Exploiting Counterexamples 43

We now manipulate the list of equations by substitutions in order to obtain
assignments to metavariables without free variables. For every equation of the
form e = a, where a is a free variable and e is an expression without free vari-
ables, we delete the equation and substitute all occurrences of a in the remaining
equations, on the left hand as well as the right hand sides, by e. This elimi-
nates all references to the fresh value represented by a from the equations. We
perform these kinds of substitutions as long as possible. This results in a set of
equations with the property that for every equation e = a for a free variable a,
the expression e also contains free variables. There is no hope to eliminate these
remaining equations, since definitions of any free variables in e will depend on
further free variables, and so on. Thus, we have done the best possible to obtain
instantiations of metavariables by suitable HOL terms.

Note that it was essential for our substitution approach that we limited our-
selves to substitutions that do not contain other free variables, since there may
be several equations defining the same free variable. However, not all definitions
may be fruitful in the end, e.g., some definitions could refer to free variables that
are not defined anywhere. By restricting ourselves to substitutions that do not
contain other free variables, we ensure that only definitions are applied that are
guaranteed to be useful.

The counterexample presented above is represented as follows by HOL equa-
tions.

x = a

y = b

int a = 0

int b = 1

nat 0 = a

nat 1 = b

Here we have discarded equations involving functions symbols used for in-
ternal purposes of the SMT interface. When applying our substitution method,
we observe that nat 0 = a and nat 1 = b are definitions of a and b that do
not contain other free variables. Performing the corresponding substitutions and
deleting these definitions yields the following set of equations.

x = nat 0

y = nat 1

int (nat 0) = 0

int (nat 1) = 1

Our transformation of the counterexample is now finished, since there are no
more free variables left that represent fresh values. As desired, we have obtained
the instantiations x = nat 0 and y = nat 1 of the metavariables x and y.

44 Chapter 4. Solving Constraints in Isabelle

4.4 Solving Recursive Constraints

Recursive functions are indispensable in Isabelle/HOL. Comprehensive support
for recursive functions makes HOL resemble a functional programming language.
Thus, when generating tests from HOL specifications, we need to be prepared
to solve constraints involving recursive functions and predicates. In this section
we first give an introduction to recursive definitions in HOL. Then we discuss
the difficulties that arise when dealing with recursive constraints and present an
approach for solving a large class of recursive constraints with SMT solvers.

4.4.1 Recursion in HOL

A recursive function is defined in HOL by stating several equations with the
function on the left-hand side. A classical example of a function that can be
defined recursively is the factorial function, which can be defined as follows in
HOL. The factorial function is first declared as a function that maps natural
numbers to natural numbers and then defined uniquely by a set of equations.

fun fac::"nat ⇒ nat"

where

"fac (Suc x) = (x+1) * (fac x)" |

"fac 0 = 1"

Here Suc denotes the successor function of the natural numbers. The package
for recursive function definitions included in Isabelle/HOL turns such a recursive
definition into a conservative definition of the function, i.e., a definition that does
not risk to introduce inconsistencies.

There may be more than two equations in a recursive definition, as for example
in the following definition taken from [120].

fun sep::"’a ⇒ ’a list ⇒ ’a list"

where

"sep a [] = []" |

"sep a [x] = [x]" |

"sep a (x # xs) = x # a # sep a (xs)"

This function sep inserts the element a between the elements in a list. In
this definition of sep, the patterns on the left-hand sides of the second and third
equations overlap since they both match lists of length one. When interpreting
a recursive function definition, Isabelle/HOL matches the patterns on the left-
hand sides from top to bottom. Thus, for determining the value of the sep

function, lists of length one are preserved and the last equation only applies to

4.4. Solving Recursive Constraints 45

lists of length at least two. Internally Isabelle/HOL creates equations from such
a definition whose patterns do not overlap. See [100] for a description of the
internals of Isabelle/HOL’s recursive function package.

Another feature of recursive definitions in HOL is support for explicit condi-
tions that guide the application of equations in addition to pattern matching. For
simplicity we will not separately consider this advanced feature in this section.

In recursive definitions, the function being defined may not occur in the pat-
terns on the left-hand sides. Otherwise, the set of patterns that may appear on
the left-hand sides is basically not restricted. However, it is essential that the
HOL package for recursive definitions can establish termination of the definition.
Termination means that for all possible function arguments, the equations in
the recursive definitions need only be applied a finite number of times until a
base case is reached in which the function being defined does not occur on the
right-hand side.

A common tool for proving the termination of recursive definitions aremeasure
functions. Consider a recursive definition of a function f : A→ B. The existence
of a suitable measure function µ : A→ N guarantees that the recursive definition
terminates. A measure function µ is suitable if µ (l) > µ (r) for every pair l,r of
function arguments that can appear simultaneously on the left and right-hand side
of an equation in the recursive definition. Thus, the value of the measure function
for the function arguments reduces by at least 1 every time we apply an equation
in the recursive definition from left to right. Since the value of the measure
function cannot become negative, we are certain to reach a base case after a finite
number of steps. The HOL package for recursive function definitions attempts to
prove termination automatically by performing a systematic search for a suitable
measure function. The starting point are “size” functions for recursive datatypes.
Basically these functions count the number of datatype constructor applications
that are necessary to obtain the respective value. Thus, the size of a list is defined
to be the list’s length, and the size of a natural number is the number itself. These
size functions are usually good candidates for measure functions because most
recursive function definitions peel off datatype constructors and use recursive
calls on the arguments to the constructor. HOL’s datatype package searches for
a suitable composition of size functions for the arguments of a recursive function
in order to find a measure function that works for the entire recursive definition.

4.4.2 Tackling Recursive Constraints

SMT solvers cannot deal with recursive functions out-of-the-box. The reason
is that a recursive definition is a universally quantified formula, and the kind
of trigger-driven quantifier instantiation used by SMT solvers is incomplete. For
most decidable theories supported by SMT solvers, there is no hope for a complete
decision procedure for recursive constraints over these theories. For example, a
solution to an instance of the Post correspondence problem can be expressed

46 Chapter 4. Solving Constraints in Isabelle

using the append function on lists. The append function can easily be defined
recursively using only language from the theory of recursive datatypes which
some SMT solvers support as a subtheory. Thus, the satisfiability of recursive
constraints over lists can be shown undecidable by a reduction to post’s cor-
respondence problem. A similar argument applies to recursive constraints over
integers.

We can however define an instrumentation of recursive definitions that brings
us closer to our goal of finding solutions to recursive constraints. In the sequel
we define a recursive definition to be a set of formulas of the form

∀u. f1 (p1,1 (u)) = r1,1 (u)

...

∀u. f1 (p1,n1
(u)) = r1,n1

(u)

...

∀u. fm (pm,1 (u)) = rm,1 (u)

...

∀u. fm (pm,nm
(u)) = rm,nm

(u)

(4.2)

that uniquely define the referenced functions fi, i.e., have a unique model, and
whose left-hand sides are complete, i.e., the formula

∀x. ((∃u. x = pi,1 (u)) ∨ . . . ∨ (∃u. x = pi,ni
(u))) (4.3)

is a tautology for all i = 1, . . . ,m. The terms p1,1, . . . , pm,nm
represent pat-

terns, and r1,1, . . . , rm,nm
are the right-hand sides of the definition. The condition

(4.3) expresses that every argument of a recursive function matches one of the
function’s patterns on the left-hand side. This class of recursive definitions cor-
responds to the representation of recursive definitions that Isabelle/HOL uses
internally, except that we also allow overlapping patterns. Allowing recursive
definitions to refer to several functions allows mutual recursion as well as the
definition of functions that are based on another recursive function. Since the
quantified variable u and the patterns pi,j in the equations (4.2) may range over
Cartesian products, it is possible to restrict ourselves to using only one quantified
variable in recursive definitions without loss of generality.

Proposition 4.1. Let a set of formulas Γ consist of a set of terminating recursive
definitions and a set of quantifier-free formulas Φ. Let Γ′ be the set of formulas
obtained from Γ by adding the completeness assertion (4.3) for every recursively
defined function fi instrumented with a trigger as follows:

∀x {fi (x)} . ((∃u. x = pi,1 (u)) ∨ . . . ∨ (∃u. x = pi,ni
(u))) (4.4)

4.4. Solving Recursive Constraints 47

Moreover, we instrument every recursive definition in Γ′ as follows:

∀u {f1 (p1,1 (u))} . f1 (p1,1 (u)) = r1,1 (u)

...

∀u {f1 (p1,n1
(u))} . f1 (p1,n1

(u)) = r1,n1
(u)

...

∀u {fm (pm,1 (u))} . fm (pm,1 (u)) = rm,1 (u)

...

∀u {fm (pm,nm
(u))} . fm (pm,nm

(u)) = rm,nm
(u)

(4.5)

Then the conjunction of the formulas in Γ′ is logically equivalent to the con-
junction of the formulas in Γ, and if an SMT solver employing the algorithm of
Figure 2.2 terminates when called on the conjunction of formulas in Γ′, then the
result returned by the solver corresponds to the satisfiability of the conjunction of
the formulas in Γ.

We cannot expect the algorithm of Figure 2.2 to terminate because of poten-
tial matching loops. But the proposition above tells us that if the algorithm does
terminate, then in this special case the result returned by the algorithm is guar-
anteed to be correct, although this is not the case in general because trigger-based
quantifier instantiation is incomplete.

Proof of Proposition 4.1. The conjunction of the formulas in Γ′ is logically equiv-
alent to the conjunction of the formulas in Γ because the formulas (4.3) are tau-
tologies. If the algorithm of Figure 2.2 returns a non-null result to indicate that
the problem is unsatisfiable, then the problem is indeed unsatisfiable.

It remains to show that the satisfiability problem is satisfiable if the algorithm
of Figure 2.2 returns null. In this case a potential modelM has been constructed
that satisfies the quantifier-free formulas Φ as well as the instantiations of the re-
cursive definitions and completeness assertions in Γ′ that have been triggered. By
construction the recursive definitions are satisfied by the functions they uniquely
define. Let R (fi) denote the function the recursive definition specifies for the
function symbol fi. If we can show that for every function symbol fi representing
a recursive function, its interpretation M (fi) by the model M can be extended
to the function R (fi), we have shown that an extended model M ′ based on M
exists that satisfies Γ′ and therefore Γ.

It is enough to show that for every assignment

M (fi) (a) = b (4.6)

prescribed by M , we have M (fi) (a) = R (fi) (a). Suppose that for some a, we
haveM (fi) (a) 6= R (fi) (a). SinceM prescribes the assignment (4.6), there must

48 Chapter 4. Solving Constraints in Isabelle

be some ground term fi (t) such that M (t) = a. Otherwise, this assignment
would be irrelevant. The ground term fi (t) matches the trigger attached to
the completeness assertion (4.4) for fi. Thus, this completeness assertion was
instantiated with t. It follows that M satisfies t = pi,j (u) for some j and u, and
this equality was included in the E-graph. As a result, the ground term fi (t)
matches the trigger of the equation

∀u {fi (pi,j (u))} . fi (pi,j (u)) = ri,j (u) (4.7)

of the recursive definition of fi modulo E. Thus, this equation is instantiated
with u. Since the pattern pi,j does not contain the function symbol fi

1, we
have R (pi,j (u)) = M (pi,j (u)) = M (t) = a. Hence, because both M and R
satisfy (4.7), it follows that M (fi) (a) =M (ri,j (u)) and R (fi) (a) = R (ri,j (u)).
Together with M (fi) (a) 6= R (fi) (a), we obtain M (ri,j (u)) 6= R (ri,j (u)). Thus,
the right-hand side ri,j (u) must contain an occurrence of fi

1, leading to a new
inequality M (fi) (a

′) 6= R (fi) (a
′). However, since the recursive definition of fi

terminates, we reach a base case after a finite number of steps. This base case
gives an inequality M (ri,k (u

′)) 6= R (ri,k (u
′)) for a right-hand side ri,k that does

not contain fi – contradiction.

Note that the addition of the completeness assertions (4.3) to the constraint
was essential in this proof, although as tautologies they have no effect on the
satisfiability of the constraint. Moreover, we exploited the capability of SMT
solvers to match triggers modulo the set E of asserted equalities. Plain syntactic
matching would not have been sufficient.

4.4.3 Enforcing Termination by Under-Approximation

Proposition 4.1 brings us closer to solving recursive constraints. However, this
proposition only applies to cases in which the solver terminates. Passing a con-
straint that is instrumented according to Proposition 4.1 to an SMT solver em-
ploying Figure 2.2 may lead to a nonterminating call to the solver.

The reason for this potential nontermination are matching loops that occur
naturally in the constraints (4.5). The function symbols fi may occur on the
right-hand sides in (4.5), and these occurrences can match the triggers in (4.5).
Even if these occurrences do not match the triggers in (4.5) syntactically, it is
essential for recursion that they can match the triggers modulo equalities from
(4.4).

This potential nontermination cannot be avoided without sacrifices because
the satisfiability of recursive constraints over theories of interest is undecidable.

1If it contains an occurrence of another function symbol fk, k < i, that the recursive
definition of fi depends on and M (fk) cannot be extended to R (fk), we can start over with a
new inequality M (fk) (ak) 6= R (fk) (ak), and so on.

4.4. Solving Recursive Constraints 49

Our approach will be based on under-approximating the constraint in order to
eliminate non-terminating matching loops. We will restrict solutions of the con-
straint to ones in which the measures of the arguments to recursive functions do
not exceed a certain bound. This will allow us to derive that the measures of any
instantiated arguments to recursive functions are bounded as well. As a result,
the number of quantifier instantiations can be bounded accordingly.

A tool we will use to achieve a terminating instrumentation are “transformed”
definitions of recursive functions. For a function fi defined recursively as in (4.2),
we define the transformed function f ′

i by

∀u, k. f ′
i (pi,1 (u) , k + 1) = r′i,1 (u, k)

...

∀u, k. f ′
i (pi,ni

(u) , k + 1) = r′i,ni
(u, k)

(4.8)

where the transformed right-hand sides r′i,j are simply the original right-hand
sides with occurrences of any function f from the same recursive definition sub-
stituted by f ′ with the additional argument k. Furthermore, we define

∀u. f ′
i (pi,j (u) , 0) = ri,j (u) (4.9)

if ri,j is a base case, i.e., does not contain any occurrences of fi, and

∀u. f ′
i (pi,j (u) , 0) = d (4.10)

otherwise, for an arbitrary constant d. It is easy to see that µ′
i defined by

µ′
i (x, k) = k is a measure function for a transformed function f ′

i . Thus, the
number of steps required to evaluate f ′

i can be bounded by the new second argu-
ment k. Moreover, if µi is a measure function for the original function fi, then we
have f ′

i (x, k) = fi (x) if k ≥ µi (x). Here we assume that µi also counts the steps
used for evaluating any functions f that are defined in the same recursive defini-
tion as fi and that fi depends on. In other words, regarding the suitability of a
measure function, we may treat fi and the functions fi depends on as mutually
recursive, even if fi is not actually mutually recursive. As a result, the measure
functions used by Isabelle for proving termination may not always be adequate
for our purposes.

In order to guarantee termination, we will need to adapt the triggers in Propo-
sition 4.1. Otherwise, we cannot be sure that only intended quantifier instantia-
tions occur, since matching is performed modulo the set of equalities in asserted
ground formulas, and the user-provided constraints may contain arbitrary equali-
ties. For example, the term f ′ (x, k) can match the trigger {f ′ (x, y + 1)} modulo
the user-specified equality k = y+1. In order to be able to trace all instantiations
of recursive definitions to specific occurrences of recursive functions, we introduce
an auxiliary function symbol Predi for every recursive function fi and use this
function symbol in triggers.

These considerations lead to the following proposition.

50 Chapter 4. Solving Constraints in Isabelle

Proposition 4.2. Let a set of formulas Γ consist of a set of recursive definitions
and a set of quantifier-free formulas Φ. Let Γ′ be the set of formulas obtained
from Γ by transforming the recursive definitions according to (4.8), (4.9) and
(4.10), and instrumenting the transformed definitions with triggers as follows:

∀u, v {f ′
i (pi,j (u) ,Predi (v) + 1)} .

f ′
i (pi,j (u) ,Predi (v) + 1) = r′i,j (u,Predi (v)) (4.11)

For the definitions (4.9) and (4.10) that specify the value of a transformed func-
tion for a second argument of zero, we can avoid using Predi in the trigger.

We also add to Γ′ the completeness assertions (4.4) instrumented as in Propo-
sition 4.1 and the following analogous assertions for every auxiliary function sym-
bol Predi:

∀k {f ′
i (x, k)} . k = 0 ∨ k > 0 ∧ k = Predi (k) + 1 (4.12)

Moreover, for every occurrence of a recursive function fi (t) in Φ, let Γ′ con-
tain the equation

fi (t) = f ′
i (t, l) , (4.13)

where l is some arbitrary fixed constant.
Let Ψ be a set of quantifier-free formulas that contains for every argument

t used in an application of a recursive function fi in Φ a constraint µi (t) ≤ l,
where µi is a measure function for fi.

Then, if the conjunction of the formulas in Γ ∪ Ψ is satisfiable, then the
conjunction of the formulas in Γ′ ∪Ψ is satisfiable. Furthermore, an SMT solver
employing the algorithm of Figure 2.2 terminates when called on the conjunction
of formulas in Γ′ ∪ Ψ, and the result returned by the solver corresponds to the
satisfiability of the conjunction of the formulas in Γ ∪Ψ.

This proposition improves over Proposition 4.1 by also guaranteeing termi-
nation. The price we have to pay is the under-approximation introduced by the
restrictions µi (t) ≤ l.

Proof of Proposition 4.2. The transformed recursive definitions in Γ′ and equa-
tions (4.12) involving Predi are satisfiable by construction. Also, the equations
fi (t) = f ′

i (t, l) in Γ′ are implied by the constraints µi (t) ≤ l in Ψ. Hence, if the
conjunction of the formulas in Γ∪Ψ is satisfiable, then so is the conjunction of the
formulas in Γ′ ∪Ψ. Thus, if the algorithm of Figure 2.2 returns a non-null result
to indicate that Γ′ ∪ Ψ is unsatisfiable, then Γ ∪ Ψ is also unsatisfiable. If null
is returned, then it can be shown in the same way as in the proof of Proposition
4.1 that Γ ∪Ψ is satisfiable.

It remains to show that the algorithm of Figure 2.2 terminates when called on
Γ′ ∪ Ψ. According to the triggers applied, the transformed recursive definitions
(4.11) can only be instantiated by the terms Predi (k) in the equations (4.12),

4.4. Solving Recursive Constraints 51

which can themselves only be instantiated by arguments to transformed recursive
functions. Other than in the equations (4.13), applications of transformed recur-
sive functions can only occur in the right-hand sides of the transformed recursive
definitions (4.11). As a result, we can trace every application of a transformed
recursive function in an instantiated ground term to the evaluation of an ap-
plication of a transformed recursive function in the equations (4.13). For every
such application f ′

i (x, k) in an instantiated ground term, the second argument
to the function corresponds to the distance of this application to the original
application in (4.13). If this argument m reaches zero, the condition k > 0 in
(4.12) causes the arithmetic component of the SMT solver to prevent the equation
Predi (m) + 1 = m from being asserted. Since the triggers of the recursive defi-
nitions require an active occurrence of Predi for instantiation, the instantiation
chain of recursive definitions is interrupted. Thus, termination is ensured.

Note that we exploited quite specific features of the SMT solver in this proof.
In particular, we required that triggers are not matched against

k > 0 ∧ Predi (k) + 1 = k

if the assertion of these literals, in combination with the other already asserted
literals, leads to a contradiction modulo the theory of linear arithmetic (or differ-
ence logic). This requirement is met by a solver that employs a suitable form of
theory propagation in the unit propagate step in Figure 2.2. A less elaborate
solver could meet the requirement by performing a form of early pruning within
the choose literal step to prevent a literal to be selected that leads to a
contradiction.

Example: Exponential Diophantine Equations With this support for re-
cursive functions, it is possible to handle constraints with nonlinear arithmetic
by defining nonlinear functions recursively. We start with the multiplication
function, for which we define the following transformed variant on N× N× N:

mult (x+ 1, y, k + 1) = y +mult (x, y, k)

mult (0, y, k) = 0

mult (x+ 1, y, 0) = 0

(4.14)

Here the last equation defines an arbitrary function value as default for the case
that the number of evaluation steps specified by the third argument is not suf-
ficient. Based on this function for multiplication, we can define a function for
exponentiation in the same manner:

pow (x, y + 1, k + 1) = mult (x, pow (x, y, k) , k)

pow (x, 0, k) = 1

pow (x, y + 1, 0) = 1

(4.15)

52 Chapter 4. Solving Constraints in Isabelle

It is easy to see that using these definitions, the required recursive depth to
evaluate xy is x + y. Thus, we have pow (x, y, l) = xy if l ≥ x + y. Hence, we
can find all solutions (x, y) between 0 and 3 to the equation xy = 8 by choosing
l = 3 + 3 = 6 and passing (4.14), (4.15) and corresponding versions of (4.12)
together with appropriate triggers and the following system of constraints to an
SMT solver:

pow (x, y, 6) = 8

x ≤ 3

y ≤ 3

(4.16)

The SMT solver Z3 yields as desired the solution (x, y) = (2, 3).

4.5 Towards Interactive Constraint Solving

Isabelle is a theorem prover that favors interactive use. Users can freely define
intermediate lemmas, examine proof states and decide which tactics to apply.
These forms of interaction allow theorems to be proved that are out of reach
of non-interactive theorem proving procedures. In principle, interaction enables
the proof of any theorem that is provable if a sufficiently rich set of elementary
inference steps is made available to the user. However, in order for a proof to
actually be carried out, it is necessary that the user is ingenious enough to find a
successful approach to prove the theorem. A nice feature of the type of interaction
provided by Isabelle is that a user can choose and apply appropriate automated
theorem proving procedures that are known to work well for a particular class of
conjectures.

In contrast, typical constraint solving procedures are fully automatic and do
not provide for user interaction after computation has started. Users may be able
to influence constraint solving by altering the representation of the constraints
before starting the solver. E.g., a user may define custom triggers that are later
taken into account for quantifier instantiation during SMT solving. Also, a con-
straint solving algorithm may be customizable through parameters and options.
Finally, a constraint solver may allow users to supply solving subroutines that
are used for a specific type of constraints. Such subroutines could e.g. be solvers
for a custom theory for an SMT solver featuring theory combination.

Using Isabelle for constraint solving problems raises the question whether Is-
abelle’s support for interaction can aid constraint solving in a similar way as it
aids theorem proving. Brucker and Wolff [29] have demonstrated that interac-
tion in Isabelle can contribute to constraint solving when applying their random
constraint solving technique. They used a custom rewrite rule for simplifying con-
straints that define test cases for red-black trees. The correctness of the rewrite
rule was proved interactively. The tailored simplifications were shown to improve
the performance of random constraint solving remarkably. However, we have no

4.5. Interactive Constraint Solving 53

indication that this kind of approach can provide similar advantages when apply-
ing more sophisticated constraint solving techniques, such as those used by SMT
solvers.

In this thesis we present a different way in which constraint solving can benefit
from interaction in Isabelle. Above we have described how SMT solvers can be
used within Isabelle for solving quantifier-free constraints, possibly involving re-
cursive functions. However, occurrences of quantifiers in constraints, other than
those in recursive function definitions, remain problematic for SMT solvers, since
the kind of trigger-driven quantifier instantiation used by SMT solvers is incom-
plete. We now present a case in which interaction in Isabelle can help alleviate
this shortcoming of SMT solvers. We use the same red-black tree example that
Brucker and Wolff [29] used for making a case for interactive constraint solving.
The most natural specification of red-black tree operations involves quantifiers
that would be problematic for SMT solvers without special precautions. We show
how these quantifiers can be eliminated by means of interactive proofs. The test
cases generated from the modified specification can be handled by the SMT solv-
ing techniques we presented above.

In the sequel, we present the original specification of red-black trees and then
show how the occurring problematic quantifiers can be eliminated by means of
interactive proofs.

4.5.1 Case Study: Red-Black Trees

A red-black tree [10] is a binary tree that satisfies additional balancing invariants
to ensure fast lookups. Each node is associated with a color (i.e., red or black) to
allow for balancing. Thus, we introduce a corresponding color datatype in HOL.

datatype color = R | B

We define red-black trees as a polymorphic datatype to allow for storage of
different types of values. However, for simplicity we will restrict ourselves in the
sequel to trees that store integers.

datatype ’a tree = E | T color "’a tree" "’a" "’a tree"

The type constructor E represents an empty tree, non-empty trees can be
built with the type constructor T.

In order to describe the datastructure of red-black trees, we still need to
define the balancing invariants. We start with the so-called weak red invariant
that prevents a red node from having a red child:

fun redinv :: "int tree ⇒ bool"

where redinv_1: "redinv E = True"

| redinv_2: "redinv (T B a y b) = (redinv a ∧ redinv b)"

| redinv_3: "redinv (T R (T R a x b) y c) = False"

| redinv_4: "redinv (T R a x (T R b y c)) = False"

54 Chapter 4. Solving Constraints in Isabelle

| redinv_5: "redinv (T R a x b) = (redinv a ∧ redinv b)"

We continue with the strong red invariant. This invariant requires every red
node to have a black parent. This is implied by the weak red invariant if in
addition the root is black. Hence, the strong red invariant can be defined as
follows:

fun strong_redinv :: "int tree ⇒ bool"

where

Rinv_1: "strong_redinv E = True"

| Rinv_2: "strong_redinv (T R a y b) = False"

| Rinv_3: "strong_redinv (T B a y b) = (redinv a ∧ redinv b)"

In order to define the black invariant, we introduce the auxiliary function
max B height on trees whose value is equal to the greatest number of black
nodes on any path from the root to a leaf:

fun max_B_height :: "int tree ⇒ nat"

where

maxB_height_1: "max_B_height E = 0"

| maxB_height_3: "max_B_height (T B a y b)

= Suc(max (max_B_height a)

(max_B_height b))"

| maxB_height_2: "max_B_height (T R a y b)

= (max (max_B_height a) (max_B_height b))"

Now we can express the black invariant that requires all paths from the root
to any leaf to exhibit the same number of black nodes:

fun blackinv :: "int tree ⇒ bool"

where

blackinv_1: "blackinv E = True"

| blackinv_2: "blackinv (T color a y b)

= ((blackinv a) ∧ (blackinv b)

∧ ((max_B_height a) = (max_B_height b)))"

The following recursive predicate that determines whether a certain integer
belongs to a red-black tree can be used in test specifications:

fun isin :: "int ⇒ int tree ⇒ bool"

where

isin_empty : "isin x E = False"

| isin_branch : "isin x (T c a y b)

= ((x = y) | (isin x a) | (isin x b))"

Of course, we also need to ensure that the integers stored in red-black trees
are ordered:

fun isord :: "int tree ⇒ bool"

where

isord_empty : "isord E = True"

4.5. Interactive Constraint Solving 55

| isord_branch : "isord (T c a y b) =

(isord a ∧ isord b

∧ (∀ x. isin x a −→ (x < y))

∧ (∀ x. isin x b −→ (x > y)))"

4.5.2 Modifying the Specification Interactively

The problem in the specification of red-black trees above are the quantifiers in
the definition of isord that are difficult for SMT solvers to deal with. We will
use the following definition in order to eliminate these quantifiers.

fun tree_all_comp

:: "int tree ⇒ (int ⇒ int ⇒ bool) ⇒ int ⇒ bool"

where

tree_all_comp_empty : "tree_all_comp E c y = True"

| tree_all_comp_branch :

"tree_all_comp (T rb a x b) c y

= ((c x y) ∧ (tree_all_comp a c y) ∧ (tree_all_comp b c y))"

This function tree_all_comp compares its third argument to all nodes in the
tree passed as its first argument, thereby using the comparison function passed
as its second argument. By choosing an appropriate recursive definition, we are
able to express this function without quantifiers like in the definition of isord
above.

The following lemma states how the quantifier in the definition of isord can
be expressed using the function tree_all_comp.

lemma all_eq: "(tree_all_comp a c y)

= (∀ x. isin x a −→ c x y)"

All proof obligations resulting from this conjecture can be discharged by the fol-
lowing sequence of tactics that was found interactively. The proof is essentially based
on induction according to the recursive definition of tree_all_comp.

apply(auto)

apply(erule rev_mp)+

apply(induct_tac a)

apply(auto)

apply(erule rev_mp)+

apply(induct_tac a)

apply(auto)

done

In order to avoid lambda-expressions in the test specification that may be
problematic for SMT solvers, we define the following two specific tree comparison
functions.

fun tree_all_less :: "int tree ⇒ int ⇒ bool"

56 Chapter 4. Solving Constraints in Isabelle

where

tree_all_less_d:

"tree_all_less a y = (tree_all_comp a (λu v .u < v)) y"

fun tree_all_greater :: "int tree ⇒ int ⇒ bool"

where

tree_all_greater_d:

"tree_all_greater a y = (tree_all_comp a (λu v. u > v)) y"

Using these new functions, we are able to provide a new definition of isord
that does not rely on an unbounded quantifier.

fun isord’ :: "int tree ⇒ bool"

where

isord_empty’ : "isord’ E = True"

| isord_branch’ : "isord’ (T c a y b) =

(isord’ a ∧ isord’ b

∧ (tree_all_less a y)

∧ (tree_all_greater b y))"

Using our lemma above, we can prove interactively that the new predicate
isord’ is equivalent to its predecessor isord. Again, the proof is essentially
based on induction.

lemma isord_subst: "isord t = isord’ t"

apply(induct_tac t)

apply(auto)

apply(simp_all add: all_eq)

done

By inserting this lemma isord ?t = isord’ ?t in the Isabelle simplifier,
we can eliminate any occurrence of isord by the equivalent predicate isord’

that can be handled more easily by SMT solvers.

4.6 Experimental Results

We evaluated the constraint solving techniques discussed in this chapter on the
following test generation problems:

• The classical “triangle” example of testing a program that classifies a tri-
angle as equilateral, isosceles or scalene [115].

• The sorting specification presented in Section 3.3. However, we chose dif-
ferent parameters in order to obtain a larger test suite. The resulting test
suite consists of 34 test cases that correspond to all possible permutations
of lists with lengths up to 4.

4.6. Experimental Results 57

Test suite # tests
Random solver Quickcheck SMT

solved Runtime # solved Runtime # solved Runtime

Triangle 18 18 0.13 18 4.4 18 1.1
Listsort 34 34 1.1 34 14 34 1.1
RB trees
(original)

30 0 – 0 – 0 –

RB trees
(modified)

30 14 23 11 20 30 418

AVL trees 14 14 3.2 14 6.5 14 2.5
Firewall 238 8 0.054 8 3.4 238 8.5

Table 4.1: Test data generation with different constraint solving techniques: ex-
perimental results

• A test specification expressing that the deletion of an element from a red-
black tree preserves the black invariant:

isord t ∧ isin y t ∧ strong redinv t ∧ blackinv t

=⇒ blackinv (delete (y, t))

See Section 4.5.1 for definitions of the predicates used in this specification.
We removed the recursive definition of isord from the Isabelle simplifier in
order to obtain test cases that are independent from this definition. As a
result, applications of isord remained in the constraints associated with the
test cases. We carried out our evaluation on these original constraints as
well as modified constraints in which isord was substituted by its equivalent
variant isord′ introduced in Section 4.5.2.

• A similar specification about AVL trees stating that a tree remains balanced
after insertion. However, here we did not specify that the trees are ordered,
which yields simpler constraints. Nevertheless, the resulting constraints
still contain applications of recursive functions.

• A test specification taken from a large case study for HOL-TestGen that is
concerned with the test of firewalls [23]. The resulting constraints are rich
in arithmetic inequalities, e.g.,

¬x ≤ 4096 ∧ 1 < y ∧ y < 256 ∧ 1001 < z ∧ z < 1256 ∧ x ≤ 6544.

For solving the constraints generated by HOL-TestGen for these test speci-
fications, we applied the random solving technique of Brucker and Wolff [28], a
technique based on Isabelle’s quickcheck command [12] and the SMT approach
described in Section 4.3 with instrumentation for recursive functions following the
presentation in Section 4.4.

58 Chapter 4. Solving Constraints in Isabelle

The results of the evaluation are shown in Table 4.1. The table gives for
every test suite the number of tests in the test suite and the number of tests that
each constraint solving technique could generate as well as the time in seconds
consumed by constraint solving. The times given only refer to those constraints
that were actually solved by the respective techniques. The number of random
solving attempts was limited to 1000 per constraint. The quickcheck proce-
dure was configured for a maximum of 10000 attempts per constraint, except
for the red-black tree example, for which we reduced this parameter to 1000 in
order to be able to carry out the measurements within reasonable time despite
the complexity of the constraints. The timeout for SMT solving was set to 300
seconds. The measurements were carried out on a machine with 2 GB RAM and
a dual-core 2.4 GHz P8600 mobile CPU. Parallel processing in Isabelle [111] was
turned off.

We conclude that, at least for the kinds of test generation problems we dealt
with in this evaluation, SMT solving is the method of choice. In particular,
this is the only technique that succeeded in generating all tests of the red-black
tree and firewall test suites. However, for the triangle test suite the random
solving technique consumed less time, which may be an indication that random
solving can solve some easy constraints faster than the SMT-based technique.
Moreover, random solving using the Isabelle simplifier for detecting solutions
compared favorably to quickcheck in this evaluation. Reasons for this could
be the distributions used for the random generation of candidate solutions, or
that quickcheck suffers from an overhead due to code generation.

4.7 Related Work

The random approach to test data generation for functional programs was first
introduced by the Quickcheck tool [49] and has been applied since in several
variations [95, 47, 42]. Because HOL resembles a functional programming lan-
guage, the application of random solving in HOL-TestGen can be regarded as a
continuation of this work.

The instrumentation of formulas with suitable triggers for SMT solving has
already been investigated before [106, 113]. This prior work has been concerned
with defining triggers that are sufficient for finding proofs in certain situations,
notably in the domain of program verification. In contrast, the goal of our work
was to define triggers that not only ensure the correctness of an “unsat” response
of the solver, but also the correctness of a counterexample in case of a “sat”
response.

Another tool that heavily relies on solving recursive constraints with a SMT
solver is the SQL “query explorer” Qex [151] that generates test cases for
databases. Database tables are represented as recursive datastructures, and SQL
constructs are mapped to recursive functions that operate on tables. A difference

4.7. Related Work 59

to our approach is that the bounds on the size of the tables in the constraint
encoding are not expressed numerically, but by constraints that are specific to
the datastructure. Such custom constraints may become very large for certain
datastructures.

Carlier et al. [43] have presented a different approach to solving constraints
that involve functions defined via pattern matching. They integrated dedicated
constraint combinators for pattern matching into a framework for constraint
logic programming. With this approach, they also were able to observe massive
speedups for test data generation when compared to random solving methods.

Nitpick [16] is a counterexample generator integrated in Isabelle that solves
HOL constraints using an eager SMT approach, i.e., HOL formulas are encoded
in several steps into Boolean constraints that are passed to a propositional SAT
solver. The purpose of Nitpick is to detect false conjectures during interactive
proofs, it does not establish new Isabelle theorems. Nitpick ensures termination
in presence of recursive functions by under-approximating types, e.g., the set of
natural numbers could be approximated by a finite range [15]. In contrast, our
approximation approach targets the arguments of recursive functions individually.
The two kinds of approximation are, however, very similar. Following the eager
SMT methodology, Nitpick performs the instantiation of recursive definitions
before calling the SAT solver. Our trigger-based approach to the instantiation
of recursive definitions can potentially benefit from optimizations in the solver.
In particular, instantiations are performed “on demand” only when a trigger
matches.

60 Chapter 4. Solving Constraints in Isabelle

Chapter 5

Arithmetic Formulas with
Bounded Quantifiers

In this chapter we introduce arithmetic formulas with bounded quantifiers as
intermediate representation for constraints. As in compiler construction, inter-
mediate representations play a crucial role in animation tools. Intermediate lan-
guages must be general enough to be able to express all constructs supported by
the tool and at the same time allow for efficient processing in the back-end. In
the context of animating OCL specifications, arithmetic formulas with bounded
quantifiers turn out to possess these desirable properties.

OCL constraints have a complex structure. They deal with a rich set of
types including classes and several kinds of collections. Analysis is simplified
substantially if constraints can first be translated to a simpler intermediate rep-
resentation.

In the sequel, we define the syntax and semantics of arithmetic formulas with
bounded quantifiers and discuss its expressiveness. We then present an efficient
eager SMT approach for solving constraints represented in this language. Since
it is essential for animation that objective functions can be taken into account,
we also show how an objective function can be optimized when solving. We will
describe later how most of the OCL language can be mapped conveniently to
arithmetic formulas with bounded quantifiers.

5.1 Syntax and Semantics

We define the syntax of our intermediate language, that we refer to as the lan-
guage of arithmetic formulas with bounded quantifiers, as follows:

1. Function symbols represent uninterpreted functions mapping Z
k to Z.

2. Additional function symbols represent any desired unary and binary arith-
metic operations such as addition, subtraction, multiplication and integer

61

62 Chapter 5. Bounded Quantifiers

division. We will assume in the sequel that at least addition is included.

3. Constants from Z are terms.

4. Variables are terms and assume values in Z.

5. A function symbol applied to terms is a term.

6. Binary predicates =, <, ≤, > and ≥ applied to terms are formulas.

7. Formulas can be connected using the usual boolean operations.

8. For a formula p and terms t1 and t2, if p then t1 else t2 is a term.

9. If p is a formula and t1, t2 are terms, then ∀t1 ≤ x ≤ t2 . p is a formula. Here
t1 is the lower bound and t2 is the upper bound of the quantifier. Similarly,
∃t1 ≤ x ≤ t2 . p is a formula.

The semantics of this language is the ordinary semantics associated with the
combined theory of arithmetic and uninterpreted functions. Thus, the language of
arithmetic formulas with bounded quantifiers can be understood as a syntactically
defined subset of this combined theory.

5.2 Expressiveness and Decidability

The language of arithmetic formulas with bounded quantifiers has some useful
characteristics. As is usual terminology, we call a set of function symbols and
variables a signature. We refer to an assignment of specific functions to function
symbols and variables in a signature as model. A formula is satisfiable if there is
a model for which the formula evaluates to true. The following proposition states
that arithmetic formulas with bounded quantifiers are very expressive.

Proposition 5.1. Every recursively enumerable predicate P (x1, . . . , xk) ⊆ N
k

has an arithmetic formula ϕ (x1, . . . , xk) such that for all x1, . . . , xk ∈ N,
ϕ (x1, . . . , xk) is satisfiable iff P (x1, . . . , xk) is true.

Proof. The proposition follows from Matiyasevič’s theorem [56] stating that every
recursively enumerable predicate P (x1, . . . , xk) ⊆ N

k can be expressed in the form
∃y1, . . . , yl ∈ N. p (x1, . . . , xk, y1, . . . , yl) = 0, where p (x1, . . . , xk, y1, . . . , yl) is a
polynomial with integer coefficients. We can take ϕ := p ∧ y1 ≥ 0 ∧ . . . yl ≥ 0,
and leave y1, . . . , yl as free variables.

Note that it is not essential that we allow multiplication as elementary oper-
ation in arithmetic formulas, since we can replace a multiplication s · t by

if t ≥ 0 then f (|t|) else −f (|t|)

5.3. Solving Using Eager SMT 63

for a fresh function symbol f if we add the constraints f (0) = 0 and

∀1 ≤ x ≤ |t| . f (x) = f (x− 1) + s.

The absolute value |·| can be expressed by

|t| = if t > 0 then t else −t.

It follows immediately from Proposition 5.1 that the satisfiability of arithmetic
formulas with bounded quantifiers is undecidable since there are recursively enu-
merable sets that are not recursive.

Proposition 5.2. Given a representation of a model M for a signature Σ that
allows every function value M (f) (a) of an interpretation M (f) of a function
symbol f in Σ by M to be computed effectively, the value of every arithmetic
formula with function symbols from Σ can be computed effectively.

Proof. It is enough to note that the formula can be evaluated bottom-up in the
obvious way.

Proposition 5.3. The set of satisfiable arithmetic formulas with bounded quan-
tifiers is recursively enumerable.

Proof. We call a model M for a signature Σ bounded if there is a number n ∈ N

such that for every function f in Σ, |M (f) (a)| ≤ n for all a ∈ Z
k, M (f) (a) = 0

if the absolute value of a component of a ∈ Z
k is larger than n, and |x| ≤ n for

every variable x in Σ. It is easy to see that the set of bounded models can be enu-
merated. Hence, in order to infer that the set of satisfiable arithmetic formulas
with bounded quantifiers is recursively enumerable, it is enough to show that ev-
ery satisfiable arithmetic formula with bounded quantifiers has a bounded model.
To see this, observe that since an arithmetic formula with bounded quantifiers
can be evaluated for any model in a finite number of steps, the largest absolute
value of any integer used during such an evaluation is bounded.

Thus, although the satisfiability of arithmetic formula with bounded quanti-
fiers is undecidable, the set of satisfiable formulas is at least recursively enumer-
able, or semi-decidable. In the next section, we present an approach based on
SMT solving for performing this enumeration in an efficient manner.

5.3 Solving Using Eager SMT

The satisfiability of arithmetic formulas with bounded quantifiers can be analyzed
using the techniques based on lazy SMT that we gave in Section 4.4 for constraints

64 Chapter 5. Bounded Quantifiers

with recursive functions. To see this, note that the value of a quantified formula
∀t1 ≤ x ≤ t2 . p (x) equals q (max (t2 − t1 + 1, 0)), where the predicate q is defined
recursively by

q (0) = true

q (n+ 1) = q (n) ∧ p (n+ t1) .

Thus, bounded quantifiers in an arithmetic formula can be expressed with recur-
sive definitions. However, in this section we present a different technique based
on eager SMT for solving arithmetic formulas with bounded quantifiers. Using a
technique based on eager SMT has the advantage that a wide variety of proposi-
tional SAT solvers are available, while many of today’s top lazy SMT solvers are
closed-source. On the other hand, an advantage of lazy SMT solvers is that built-
in solvers for linear arithmetic can handle real numbers with arbitrary precision.
We do not claim here that eager or lazy SMT is more efficient in general, but
observe that in either case efficiency depends on a carefully tuned implementation
of the solver.

We proceed as follows to find a model of an arithmetic formula with bounded
quantifiers using eager SMT. First, the formula is simplified in order to remove
redundant subexpressions. Second, we construct a Boolean circuit that computes
the validity of the formula. In order to construct the circuit, we may need to
bound certain values. Third, the Boolean circuit is converted to conjunctive
normal form (CNF). Fourth, the resulting CNF is solved by an off-the-shelf SAT
solver. A solution to the Boolean satisfiability problem yields a model for the
original arithmetic formula. If no solution to the Boolean problem exists and we
had to bound any values in order to construct the circuit, we repeat the analysis
with less restrictive bounds. The result is a semi-decision procedure that always
finds a model if one exists. However, termination is not guaranteed. This basic
procedure is depicted in Figure 5.1.

In the sequel we describe this procedure in more detail.

5.3.1 Encoding as a Boolean Circuit

Our encoding of arithmetic formulas as Boolean circuits does not differ signifi-
cantly from the encodings employed by other SAT-based analysis tools [50, 144,
69, 35]. However, we describe our encoding here for completeness.

Encoding of Function Symbols Recall that function symbols represent un-
interpreted functions mapping Z

n to Z. We encode function symbols as vectors
of Boolean variables. For every function value these vectors contain as subvector
a bit-vector that is long enough to represent all values in the range of the function
(we discuss the problem of fixing this range below in Section 5.3.2). Through an
analysis of the formula we determine the set of possible arguments the function
may be evaluated for during an evaluation of the formula. The length of the

5.3. Solving Using Eager SMT 65

procedure s o l v e (ϕ) :
bounds := i n i t i a l b o und s (ϕ)
forever do

CNF := generate CNF (ϕ , bounds)
(so lved , s o l u t i o n) := ca l l SAT so l v e r (CNF)
i f so lved then

return s o l u t i o n
end i f

i n c r ea se bounds (bounds)
end forever

end procedure

Figure 5.1: Basic procedure for finding a model of an arithmetic formula with
bounded quantifiers

vector for a function symbol is the product of the number of possible arguments
and the number of bits necessary for representing a function value.

Encoding of Terms We encode integer terms as vectors of Boolean circuits
which represent the bits of the integer value. Arithmetic operations like addition
and multiplication are dealt with by constructing a Boolean circuit for the opera-
tion, as would be done for computing the operation in hardware. We do not allow
arithmetic overflow, e.g., we encode the sum of two 32-bit integers as a vector of
33 bits, so all values that can result from the addition of two 32-bit integers can
be represented. We translate function application to a multiplexer circuit that
selects the bit-vector which corresponds to the value of the function argument. If
a term contains free variables, we perform the encoding for every possible variable
assignment. This results in a map that assigns a vector of Boolean circuits to
every variable assignment.

Encoding of Formulas Boolean operations in arithmetic formulas can be
mapped directly to corresponding gates in the generated Boolean circuit. For
quantifiers, we encode the body of the quantified formula together with a guard
checking the quantifier bounds for all possible assignments to the quantified vari-
able. The resulting Boolean circuits are fed into the respective gate (∧ or ∨).1

5.3.2 Choosing Suitable Ranges for Function Symbols

Recall that in the Boolean encoding of arithmetic formulas outlined above, a
subexpression with free variables is encoded separately for all values the variables

1Of course this is not necessary for quantifiers that can be eliminated by skolemization.

66 Chapter 5. Bounded Quantifiers

can assume during an evaluation of the formula. It is clearly not feasible to always
perform the encoding for all values in the largest possible quantifier range, e.g.,
all 32-bit integers.

Existing analysis tools for UML/OCL operation contracts like UML2Alloy [6]
and UMLtoCSP [40] depend on bounds provided by the user for restricting quan-
tifier ranges. The results of the analysis only make a statement about states that
comply with the provided bounds. However, for the purpose of animation it is
highly desirable to use a form of analysis that is complete in the sense that valid
animation results are obtained if they exist. We aim to relieve the user from the
burden of providing adequate bounds. In particular, the necessity of specifying
bounds is a considerable obstacle to the integration of animated operations with
other code, since it requires a modification of the operation interface.

Trigger-based quantifier instantiation used by solvers following the lazy SMT
approach can alone not overcome this difficulty. In general, that quantifier in-
stantiation cannot derive unsatisfiability does not imply that a correct model of
the formula can be obtained.

We propose an iterative approach that is based on restricting the ranges of
certain function symbols occurring in the arithmetic formula. We restrict the
ranges of those function symbols that occur in the quantifier bounds that are
made explicit by the syntax of our language. Through interval arithmetic, we can
then derive a restricted range for each lower and upper quantifier bound. Thus,
we can obtain a sufficient translation of a quantified formula by instantiating
the quantified variable only for the restricted set of values that can be between
the quantifier bounds. If the function symbol ranges are chosen to be small
enough, this set of values the quantified variable can assume is manageable. If no
model is found for the first choice of restricted function symbol ranges, a more
expensive attempt with larger ranges is made, and so on. Restricting the range of
a function symbol results in an under-approximation of the original satisfiability
problem, i.e., certain models are excluded, whereas every solution to the under-
approximation is a valid model for the formula. Note that simply restricting the
quantifier ranges considered during the translation while leaving function symbol
ranges unchanged does not necessarily yield an under-approximation, and thus
may give rise to solutions that are not valid models of the formula.

This technique of restricting ranges of function symbols is analogous to our
under-approximation technique described in Section 4.4 for solving constraints
with recursive functions.

We restrict the ranges of function symbols occurring in function arguments
as we do for function symbols occurring in quantifier bounds. As a result, we can
derive through interval arithmetic sufficiently bounded ranges for all terms that
are function arguments. This allows us to encode function symbols as vectors of
Boolean variables that are of manageable size.

Since in an eager SMT approach a fixed number of bits has to be allocated
for every integer value in order to obtain a Boolean encoding of the formula, the

5.3. Solving Using Eager SMT 67

range of every integer value has to be bounded. In many applications, it is pos-
sible to restrict integer values that do not occur in quantifier bounds or function
arguments to ranges which are certainly sufficient. Consider as an example an
integer value modeling a Java field of type int. Its values may be restricted to
32-bit numbers, which is sufficient to represent all values of the Java int type.

As a result of this approach to bounding function values, we search for models
using different bounds for different integer values. In the context of animating
OCL specifications, these integer values can represent values of integer attributes,
numbers of instances of a class or collection sizes. The bounds for these values are
chosen depending on the contexts in which the values are used in the constraints.
Consider for example the constraint

s (0) = 0

∧ ∀1 ≤ x ≤ n. s (x) = s (x− 1) + c (x− 1) .

Here s and c are unary function symbols, and n is a constant (nullary func-
tion). This kind of constraint could be used to express summation over collection
elements represented as c (0) , c (1) , . . . , c (n− 1). The sum equals s (n). For
analyzing the satisfiability of such a constraint, we would introduce restrictive
bounds for the constant n, since n occurs in a quantifier bound. These bounds
would, if necessary, be increased in future iterations in order to find a model. On
the other hand, since the functions s and c occur neither in quantifier bounds nor
function arguments, we could consider, e.g., all possible 32-bit values for values
of these functions already in the first call to the SAT solver. Thus, even models
with very large values for these functions are not necessarily problematic for our
approach.

5.3.3 Efficient Translation of Formulas to Boolean Cir-
cuits

In our approach, the actual constraint solving is performed by the SAT solver
that receives the CNF. The preceding computation that generates the Boolean
circuit from the arithmetic formula and converts the circuit to a CNF is deter-
ministic and has a complexity that is polynomial in the size of the circuit. These
facts suggest that the SAT solving is the bottleneck regarding runtime, whereas
the preprocessing steps are uncritical for performance. Nevertheless, in our expe-
rience the cost of generating the input to the SAT solver is for many simulation
problems far more expensive than the execution of the SAT solver itself.2 We ob-
served that many SAT instances arising during animation are solved in a fraction
of a second. The main factor that determines the size of the Boolean circuit and
the CNF, and thus the preprocessing time, are the quantifiers that are present

2See [41, 144] for measurements showing that preprocessing consumed more time than SAT
solving.

68 Chapter 5. Bounded Quantifiers

in the input formula and the ranges for which they are instantiated. Nested
quantifiers are particularly expensive.

In order to reduce the time used for preprocessing, we have implemented
an improved algorithm for translating quantified formulas to Boolean circuits.
Figure 5.2(a) shows a typical approach to perform an encoding like the one de-
scribed in Section 5.3.1. In this pseudo-code, BINARY OP stands for any kind
of binary operation such as addition. The assignment env to the free variables
of the formula is a parameter to the translation. This assignment can then be
passed on to recursive calls of the procedure for translating subexpressions. The
resulting subexpression translations can be used for obtaining a translation of the
entire formula, e.g., by feeding them into a circuit constructed by the function
make BINARY OP that computes the operation BINARY OP. For translating a
quantified formula, a loop iterates over the values for which the quantifier is in-
stantiated. For every value, the body of the quantified formula is translated with
the quantified variable set to this value.3 The translations of the body are then
aggregated according to the type of the quantifier. The remaining connectives of
our language such as if-then-else can be handled analogously. This approach to
formula translation is straightforward to implement. It is also suggested by some
semantics definitions that define the semantics of quantifiers by constructs that
resemble loops. This is also the case for the OCL standard [125].

However, it turns out the straightforward approach depicted in Figure 5.2(a)
is not optimal concerning efficiency. Note that it causes a separate translation
of every subexpression in the scope of a quantifier for every value the quantified
variable can assume—even for subexpressions in which the quantified variable
does not occur. Consider for example the constraint

∀1 ≤ x ≤ 10. ∀1 ≤ y ≤ 10. f (g (x)) 6= h (k (y)) .

The subexpression f (g (x)) would be translated 10 · 10 times, although the vari-
able x can only assume 10 different values. The subexpression h (k (y)) would
also be translated 10 · 10 times, although the variable y can only assume 10 dif-
ferent values as well. This clearly is a waste of resources. It would be much
more efficient to perform translations of subexpressions depending on their free
variables.

This observation leads to the algorithm sketched in Figure 5.2(b). We call
this approach bottom-up in contrast to the top-down method in Figure 5.2(a).
The bottom-up algorithm first translates subexpressions for all possible assign-
ments to their free variables. The resulting translations are stored in a map data
structure that supports lookups based on a variable assignment. When translat-
ing an application of an arithmetic operation, the translations of the arguments
are retrieved for every assignment to the free variables of the entire formula.
When performing these map lookups, we discard any values for variables that

3Here we assume that this body already contains the guard checking the quantifier bounds.

5.3. Solving Using Eager SMT 69

procedure t r a n s l a t e (expr , env) :
case expr of BINARY OP(in1 , in2) :

return make BINARY OP(t r a n s l a t e (in1 , env) , t r a n s l a t e (in2 , env))

case expr of FORALL(x , body) :
inputs := ∅
for i in [lowerBound (x) . . upperBound (x)] do

i nputs := inputs ∪ t r a n s l a t e (body , env [x:= i])
end for

return make AND(inputs)

case expr of . . .
end procedure

(a) Top-down

procedure t r a n s l a t e (expr)
case expr of BINARY OP(in1 , in2) :

t r a n s l a t i o n s 1 := t r a n s l a t e (in1)
t r a n s l a t i o n s 2 := t r a n s l a t e (in2)
for env in Assignments (FreeVars (expr)) do

t r a n s l a t i o n s [env]
:= make BINARY OP(t r a n s l a t i o n s 1 [env] , t r a n s l a t i o n s 2 [env])

end for

return t r a n s l a t i o n s

case expr of FORALL(x , body) :
body t r an s l a t i on s := t r a n s l a t e (body)
for env in Assignments (FreeVars (expr)) do

i nputs := ∅
for i in [lowerBound (x) . . upperBound (x)] do

i nputs := inputs ∪ body t r an s l a t i on s [env [x:= i]]
end for

t r a n s l a t i o n s [env] := make AND(inputs)
end for

case expr of . . .
end procedure

(b) Bottom-up

Figure 5.2: Approaches to Generating Circuits from Formulas with Quantifiers
(pseudo-code)

70 Chapter 5. Bounded Quantifiers

are not free variables of the respective argument. The retrieved subexpression
translations are then used for computing corresponding translations of the entire
formula. For translating a quantified formula, the translations of the body are
aggregated according to the type of the quantifier.

The bottom-up approach has the advantage that the number of times a subex-
pression is translated only depends on the values that its free variables can as-
sume. The translation procedure visits every subexpression only once. All trans-
lations of a subexpression are performed in an efficient loop structure. This
promotes optimizations like the elimination of loop invariant computations and
caching of memory.

In the implementation of our approach, we use an adapted version of the
kodkod solver for constructing the circuit as a Compact Boolean Circuit [144],
a compressed representation of a Boolean circuit. Kodkod includes effective al-
gorithms for constructing and compressing Compact Boolean Circuits. We do
not make use of higher-level features of kodkod such as symmetry breaking or
encoding of relations.

5.3.4 Extension to Support Objective Functions

For many applications, it is essential that constraints can not only be solved,
but also that solutions can be determined that are optimal according to provided
objective functions, or at least close to optimal. We now show how our approach
to finding models for arithmetic formulas can be extended to support objective
functions. As objective functions we allow arbitrary arithmetic terms in our
language.

The fundamental problem encountered when considering objective functions is
that it is generally undecidable whether a better solution exists that improves the
value of the objective function. Such a superior solution may only be constructible
using much larger bounds. Therefore we encourage the user to supply a time
limit for solving with an objective function in order to ensure termination. In
order to promote early termination, we also consider over-approximations of the
satisfiability problem based on the same bounds used for under-approximation
as described above. If we determine that an over-approximation of the problem
of finding an improved solution is unsatisfiable, we know that such a solution
does not exist for any bounds and can stop the search. However, solving over-
approximations is always incomplete, so unfortunately user-provided time limits
are in general unavoidable.

We construct over-approximations by adding fresh Boolean variables to for-
mulas resulting from the translation of quantifiers. These new variables represent
the unknown value of the quantified formula in case the quantifier bounds exceed
the bounds used for the translation. For a universal quantifier ∀t1 ≤ x ≤ t2 . p (x)

5.3. Solving Using Eager SMT 71

we construct the Boolean formula

(t1 ≤ lb (t1) ∧ lb (t1) ≤ t2 =⇒ p (lb (t1)))

∧ (t1 ≤ lb (t1) + 1 ∧ lb (t1) + 1 ≤ t2 =⇒ p (lb (t1) + 1))

. . .

∧ (t1 ≤ ub (t2) ∧ ub (t2) ≤ t2 =⇒ p (ub (t2)))

∧ (t1 < lb (t1) ∨ ub (t2) > t2 =⇒ a)

(5.1)

where lb (t) and ub (t) are a lower and upper bound, respectively, of the values
the term t can assume when the function values that t depends on are within
the bounds used for the translation. The Boolean variable a is a fresh variable
that represents the unknown value of the quantified formula in case the lower
bound t1 of the quantifier is smaller than lb (t1) or the upper bound t2 is larger
than ub (t2). The new variable a does not have any effect if t1 ≥ lb (t1) and
t2 ≤ ub (t2) or the quantified formula evaluates to false due to the values of
p (lb (t1)) , . . . , p (ub (t2)).

Example Consider a quantified formula

ϕ = ∀ 0 ≤ x ≤ f + g . h (x) = 1. (5.2)

Here f and g are constants (nullary functions) and h is a unary function. If we
use bounds that restrict f and g to assume values in [−2, 2], we obtain through
interval arithmetic an upper bound of 4 for f + g. We apply the scheme (5.1)
with t1 = 0 and t2 = f + g. Since the lower bound t1 is constant, comparisons
with it can be eliminated, and we obtain the following unfolding of ϕ:

(0 ≤ f + g =⇒ h (0) = 1)

∧ (1 ≤ f + g =⇒ h (1) = 1)

∧ (2 ≤ f + g =⇒ h (2) = 1)

∧ (3 ≤ f + g =⇒ h (3) = 1)

∧ (4 ≤ f + g =⇒ h (4) = 1)

∧ (4 > f + g =⇒ a).

(5.3)

The overall procedure for animating with an objective function is shown in
Figure 5.3. We can test the existence of a solution meeting a certain bound on
the value of the objective function by calling the SAT solver with an appropriate
set of Boolean literals as assumptions. When called with assumptions, a SAT
solver restricts the search to models in which the assumptions are true. Clauses
learned by the solver remain and can be used when solving later under different
assumptions. Both MiniSat [63] and SAT4J [14] are SAT solvers that provide an
interface for solving under assumptions.

72 Chapter 5. Bounded Quantifiers

For every choice of bounds we compute a solution by binary search that is
optimal among all solutions within these bounds. We assume that the objective
function assumes values within a certain interval [f min, f max] that we determine
e.g. by restricting the values of all function symbols to 32-bit numbers. This has
the additional benefit of preventing infinite looping in case there is no optimal
solution.

We maintain a lower bound on the value of the objective function, which is to
be minimized, with the hope of observing at some point that we have obtained
a solution that is optimal unconditionally. After having searched for a solution
that is as good as possible for the chosen bounds, we again perform a binary
search for determining the best lower bound. For determining the lower bound
we can reuse the same CNF since we can also control over-approximation over
the assumption interface. We terminate after a solution has been found and the
timeout is reached or a solution has been found whose value of the objective
function matches the lower bound.

5.4 Related Work

The benefit of using intermediate languages for implementing animation tools has
been recognized, and led to the intermediate languages µZ [77] for animating Z
and CLPS-B [20] for B. These intermediate languages do not directly address the
problem of quantifier bounding. On the other hand, bounded quantifiers have
received widespread attention in computational complexity theory [98, 54].

So-called model finders like Paradox [50] and Nitpick [16] that search for mod-
els of quantified formulas with a SAT solver proceed by generating SAT problems
that do not cover all potential models. If no model is found, they can generate
a larger SAT problem to cover more models, and so on. This constitutes an it-
erative approach that is similar to our approach to finding models for arithmetic
formulas with bounded quantifiers. Nitpick deals with problematic quantifiers by
computing an undefined value when the value of the quantified formula is un-
known. Our over-approximation approach can detect slightly more unsatisfiable
constraints. The technique of under- and over-approximation that we use corre-
sponds to abstraction-refinement techniques in verification [52]. Such techniques
can be more powerful if the under-approximation is computed according to the
result of the over-approximation and vice versa. An application of this idea to
bounded quantifiers may be able to improve our approach.

Our bottom-up approach to translating quantifiers described in Section 5.3.3
is similar to a technique used by a past version of the Alloy tool [138] which
augments the basic top-down approach with a cache of the generated Boolean
subcircuits in order to prevent unnecessary quantifier instantiations. This tech-
nique can potentially save more quantifier instantiations than ours since it also
takes identities obtained by constant folding into account. In contrast, we avoid

5.4. Related Work 73

procedure s o l v e (ϕ , f , max time) :
i n i t i a l i z e t i m e r f o r t im e o u t
bounds := i n i t i a l b o und s (ϕ)
f ound so l u t i on := f a l s e
b e s t va l u e := f max + 1
lower bound := f min
do

CNF := generate CNF (ϕ , bounds)
l o ca l m in := lower bound
do

mid := lo ca l m in + (be s t va l u e − l o ca l m in) div 2
(so lved , s o l u t i o n)

:= ca l l SAT so l v e r (CNF, f ≤ mid , under−approximate)
i f so lved then

f ound so l u t i on := true
b e s t s o l u t i o n := s o l u t i o n
be s t va l u e := mid

else

l o ca l m in := mid + 1
end i f

while be s t va l u e > l o ca l m in

loca l max := be s t va l u e
while lower bound < l oca l max

mid := lower bound + (loca l max − lower bound) div 2
(so lved , s o l u t i o n)

:= ca l l SAT so l v e r (CNF, f ≤ mid , over−approximate)
i f not so lved then

lower bound := mid + 1
else

l oca l max := mid
end i f

end while

i n c r ea se bounds (bounds)
while not f ound so l u t i on or t imeout (max time)

or lower bound = be s t va l u e

return b e s t s o l u t i o n
end procedure

Figure 5.3: Procedure for solving with an objective function f

74 Chapter 5. Bounded Quantifiers

the overhead of cache misses by performing all translations of a subexpression at
once. This also allows us to process subexpressions in a predictable order, which
facilitates optimizations. Our observation that a bottom-up translation can be
more efficient than a straightforward top-down approach has an analogue in the
area of XPath query evaluation [75].

Another type of solver applicable to satisfiability problems with objective
functions are MAX-SAT solvers, e.g., one of the solvers in the SAT4J [14] package.
Since they are tailored to optimization, such solvers are likely to be more efficient
than the technique of optimizing via assumptions that we use. Sugar [141] is a
SAT-based constraint solver that also performs optimization over an assumption
interface to a SAT solver. The Z3 [58] SMT solver supports a notion of so-
called contexts that provide similar functionality as the assumption interface of
MiniSat [63] and SAT4J [14].

Chapter 6

Extending OCL Operation
Contracts with Objective
Functions

OCL has been wisely conceived with executability in mind. The language omits
constructs like unbounded quantifiers ranging over all integers that make expres-
sion evaluation intractable or entirely impossible. Recursion used for defining
operations in postconditions is restricted by the OCL standard [125] to be finite,
so uncomputable operations are avoided. The collection constructors and opera-
tions are designed in a way that prevents an uncontrolled explosion of collection
size. As a result, evaluators for OCL that check the conformance of an imple-
mentation to its OCL specification at runtime could be implemented without
resorting to sophisticated reasoning techniques (e.g., [83]). This is in contrast
to other specification languages like Z [84] that offer more powerful constructs.
For such languages constraint evaluation can be highly nontrivial, not to mention
more difficult kinds of specification analysis like animation or test generation.

Naturally, the choice to restrict the expressive power of OCL comes at a price:
some specification tasks may be impossible to accomplish or require considerably
higher effort. Working around limitations of the language may also lead to spec-
ifications that obscure the problem that was to be specified originally. This may
be one of the reasons why the use of OCL operation contracts appears to still
not have gained widespread acceptance, although OCL has established itself as a
language for model well-formedness rules and is also widely employed for queries
in model-transformation and action languages.

A shortcoming of OCL in this respect that we identified is the difficulty to
express optimization tasks. Such problems ask for operation results for which
an objective function assumes an optimal value. Optimization problems arise
naturally in application domains like operations research and constitute some of
the most elementary algorithmic problems. A basic example is the problem of
finding a shortest path in a graph. Figure 6.1 lists fundamental optimization

75

76 Chapter 6. Objective Functions

algorithms covered in a classic introductory algorithms textbook [133]. Conse-
quently, objective functions are widely used in mathematical modeling languages
like AMPL [66] or GAMS [1]. Sugar [141] is an example of a constraint program-
ming language that features objective functions.

We propose to facilitate the specification of optimization tasks in OCL by
adding objective functions to operation contracts. Thus, rather than enriching
the expression language of OCL, we introduce an additional constituent of oper-
ation contracts. Objective functions in operation contracts would provide imme-
diate support in OCL for specifying optimization problems. Moreover, objective
functions can also be used as a convenient means to specify that an operation
should return a solution to a certain constraint if a solution exists: make the
objective function evaluate whether the constraint holds and return the optimal
value only if this is the case. Altogether, we think that this extension would make
OCL operation contracts more attractive by facilitating the specification of many
operations.

• Closest pair among a set of
points

• Minimum spanning tree of a
graph

• Shortest path in a graph

• Maximum network flow

• Maximum matching of a graph

• Regression: Least Squares

• Knapsack problem

• Linear programming

Figure 6.1: Optimization algorithms
covered in a classical algorithms text-
book [133]

Objective functions strictly in-
crease the expressiveness of OCL op-
eration contracts. With the presence
of an objective function, it is no longer
decidable whether a set of returned op-
eration results conforms to an opera-
tion contract. We propose to achieve
tool interoperability by specifying ob-
jective functions in a UML profile. Ex-
isting tools can simply ignore the addi-
tional information represented by ob-
jective functions. Thus, existing appli-
cations of OCL are not compromised
by the introduction of objective func-
tions.

In the remainder of this chapter, we
precisely define the syntax and seman-
tics of this extension to OCL. We also
discuss applications of objective func-
tions to different specification tasks by
means of an example specification.

6.1 Syntax

Together with class invariants and dif-
ferent kinds of value definitions, oper-
ation contracts are a major ingredient

6.1. Syntax 77

of OCL specifications. Recall that an OCL operation contract consists of pre-
and postconditions which are Boolean expressions. We propose to allow objective
functions as a further element of operation contracts. Obviously, the type of an
objective function must support comparison, so we restrict objective functions
to expressions of type Integer or Real.1 This corresponds to the restrictions
imposed on body expressions of the sortedBy iterator. Furthermore, every oper-
ation contract may include at most one objective function.

Another useful extension proposed to OCL operation contracts are invari-
ability clauses [96] that specify which parts of the system state an operation
may modify. We will also consider this extension since invariability clauses are
essential for animation support that we will discuss later.

In all, an OCL operation contract for an operation op with the arguments
x1, . . . , xn with these extensions has the form:

context C :: op(x1, . . . , xn) : T

pre : φ(self , x1, . . . , xn)

pre : ...

post : ψ(self , x1, . . . , xn, result)

post : ...

minimize : θ(self , x1, . . . , xn, result)

modifies only : t1(self , x1, . . . , xn) :: a1, . . . , tm(self , x1, . . . , xn) :: am
(6.1)

Here, the OCL expressions φ and ψ are of type Boolean and θ is an OCL
expression of type Integer or Real. The OCL expressions t1, . . . , tm denote sets
of objects in the pre-state. We require that @pre does not occur in φ or t1, . . . , tm.
The operation contract (6.1) requires the operation to minimize the function θ.
Thus, we extend the concrete syntax of operation contracts with the keyword
minimize. Of course, a corresponding maximize keyword can be introduced as
syntactic sugar as well. In short, the modifies only clause in (6.1) specifies that
the operation may only change the attribute ai for the objects in ti. Attributes
not mentioned in the modifies only clause may not be changed for any object.
A richer syntax for modifies only clauses is presented in [96].

OCL operation contracts are often defined in UML models by storing OCL
expressions as specifications of Constraint model elements. Operation ele-
ments can then reference such constraints through associations provided for by
the UML metamodel. In order to avoid metamodel incompatibilities and to en-
sure the interoperability with OCL tools that do not use our operation contract
extensions, we define the new operation contract elements in a UML profile. Fig-
ure 6.2 shows a UML profile for extending operation contracts with objective
functions and invariability clauses. The objective function is stored as a string

1A further syntax extension could allow user-defined comparison functions.

78 Chapter 6. Objective Functions

«stereotype»
oclExec

 minimize: String [0..1]
 propertiesModified: Property [*] {ordered,unique}
 objectsModified: String [*] {ordered}

(uml)
Operation

Figure 6.2: A UML profile for operation contract extensions

and can be parsed when needed. The modifies only clause is defined by listing
the expressions t1, . . . , tm and the attributes a1, . . . , am in separate attributes of
the stereotype.

It may be more systematic to rather model objective functions and
modifies only clauses as separate stereotypes of the Constraint metaclass.
However, the profile in Figure 6.2 is simple and can be applied easily in UML
editors. A more comprehensive approach to extending OCL that is based on
modularization instead of UML profiles has been presented in [3].

6.2 Semantics

When discussing the semantics of operation contracts we assume without loss
of generality that there is exactly one precondition φ and one postcondition ψ.
Following Annex A of the OCL standard [125], we define the semantics of an
operation contract to be a relation R between pre-environments rpre and post-
environments rpost. An environment includes the system state and values of
parameters to the operation. R is defined by

R = {(rpre, rpost) | φ(rpre) ∧ ψ (rpre, rpost)} . (6.2)

Thus, a transition from a pre- to a post-environment is permitted by the semantics
if both the pre- and the postcondition are satisfied. The behavior of an operation
implementation can be described by a function f that maps pre-environments to
post-environments. The operation implementation satisfies the contract if and
only if the graph of f is contained in R (graph(f) ⊆ R).

6.2. Semantics 79

We show how this original definition of R can be modified in order to take
an objective function θ into account. Let the contract require that the opera-
tion minimizes θ. This is expressed by the following definition of the modified
semantics R′:

R′ = {(rpre, rpost) | φ (rpre) ∧ ψ (rpre, rpost)

∧ ∀ r′post. ψ
(

rpre, r
′
post

)

=⇒ θ (rpre, rpost) ≤ θ
(

rpre, r
′
post

)}

. (6.3)

Thus, a pair of a pre- and post-environment (rpre, rpost) can only belong to R′

if there is no other post-environment r′post satisfying the postcondition with a
smaller objective value. Hence, the objective function constrains the set of per-
mitted transitions and may forbid transitions that are allowed by the original
semantics R. Note that there only is a difference to the original semantics if
the contract is underspecified, i.e., there is a valid pre-environment for which
there is more than one post-environment satisfying the postcondition. Other-
wise, r′post = rpost whenever ψ

(

rpre, r
′
post

)

, and the additional condition in (6.3)
could never be violated. Thus, the objective function selects preferred post-states
in case several are permitted by the postconditions.

Also note that the addition of the objective function increased the expressive-
ness of OCL operation contracts since the new semantics R′ cannot in general be
obtained by simply adding a postcondition θ (rpre, rpost) ≤ c (rpre) for some OCL
expression c. This only is an alternative if there exists such an expression c that
computes the optimal value of the objective function from the pre-environment.
However, this cannot always be the case, since the values of OCL expressions are
effectively computable, but the existence of a post-environment r′post violating
(6.3) is in general undecidable. Even in cases in which it is possible to designate
such an expression c, it is likely that this expression is much more complex than
the addition of an objective function to the operation contract.

Finally, note that objective functions in operation contracts differ considerably
from the min and max operations on collections that are provided by the OCL
standard library. While these operations select the minimum and maximum from
a finite collection, objective functions operate on the set of all possible post-states,
which tends to be much larger than an OCL collection or can even be infinite.

If a subclass redefines the operation, the semantics of the redefined operation
must conform to the Liskov substitution principle. Specifically, the set of possible
post-states rpost that can result from calling the redefined operation in a certain
pre-state rpre satisfying the precondition φ must be a subset of the set of post-
states reachable from this pre-state rpre by calling the operation in the superclass.
The objective function can be redefined in the subclass as long as this requirement
is met.

The modifies only clause further constrains the semantics of the operation
contract. However, unlike for objective functions, it is also possible to express this
restriction through postconditions. Such a transformation is described in [96].

80 Chapter 6. Objective Functions

Project

 name: String [1]

 getBalancedCompilationJobs(Integer[1]): CompilationJob[*]
 getOrderedCompilationJob(): CompilationJob[0..1]
 getIndependentCompilationJobs(): CompilationJob[*]

CompilationUnit

 size: Integer [1]
 file: String [1]

CompilationJob

 cpu: Integer [0..1]

 - compilationUnits [*]

 [1]

 - dependsOn

 - referencedBy

 [*]

 [*]

 - compilationUnits {ordered,unique}

 [1..*] [0..1]

Figure 6.3: Excerpt from a possible UML model of a build tool

6.3 Applications

In this section we demonstrate the usefulness of objective functions by pre-
senting several application examples. As running example we use the simpli-
fied model of a build tool shown in Figure 6.3. A Project comprises several
CompilationUnits. In general, the task of the build tool is to arrange all
CompilationUnits into adequate CompilationJobs. A CompilationJob desig-
nates an ordered sequence of CompilationUnits that are to be processed in order
to complete the job. The assignment of CompilationUnits to CompilationJobs

may be driven by various considerations. In particular, there can be dependen-
cies between CompilationUnits, which is modeled by an association. Moreover,
CompilationUnits can have different sizes.

6.3.1 Ordinary Optimization Problems

As first example, we consider a plain optimization task that is representa-
tive for many similar ones with an operations research background. The
goal is to achieve efficient parallel processing of CompilationJobs by assigning
CompilationUnits to CompilationJobs such that the longest execution time of
any CompilationJob is minimized and the entire process is completed as early as
possible. This is accomplished by the operation getBalancedCompilationJobs

specified in Figure 6.4, which returns a set of CompilationJobs that arrange the

6.3. Applications 81

context Project::getBalancedCompilationJobs(n: Integer):

Set(CompilationJob)

post allUnitsReturned:

result->collect(compilationUnits)->asSet() = compilationUnits@pre

post jobLimitMet: result->size() <= n

minimize: let

jobSizes: Bag(Integer)

= result->collectNested(job |

job->compilationUnits

->collectNested(size@pre)->sum())

in

jobSizes->max()

modifies only: compilationUnits::compilationJob

Figure 6.4: Operation contract for evenly distributing compilation units among
processes

CompilationUnits of the Project such that total execution time is minimized.
The parameter n indicates the maximal number of CompilationJobs created and
would usually correspond to the number of CPUs available. The postcondition
allUnitsReturned specifies that the set of compilationUnits included in the
returned CompilationJobs are exactly the CompilationJobs of the Project for
which the operation is called. The postcondition jobLimitMet limits the num-
ber of returned CompilationJobs to the argument passed to the operation. In
this operation contract, most of the behavior is specified in the objective func-
tion. In the objective function, we first compute the total sizes of all returned
CompilationJobs by applying collectNested and sum. We use collectNested

here instead of collect in order to make explicit for readability that no flatten-
ing is performed. Then the value of the objective function is defined to be the
maximum of all total job sizes, which is an estimate of the total execution time.
Finally, the modifies only clause specifies that the attribute compilationJob

may only be changed for the compilationUnits belonging to the Project for
which the operation is called and that the values of all other attributes may not
be affected by the operation. This invariability clause makes some previous @pre
decorations superfluous, but we decided to keep these in order to already make
explicit in the postconditions that these are values from the pre-state.

This problem of optimizing parallel execution is NP-hard since the subset sum
problem can be reduced to it. Thus, even a relatively simple implementation is
likely to be substantially more complex than the operation contract.

82 Chapter 6. Objective Functions

context Project::getOrderedCompilationJobs(): CompilationJob

post allUnitsReturned: (not result.oclIsUndefined())

implies

result.compilationUnits->asSet()

= compilationUnits@pre

post resultSorted:

(not result.oclIsUndefined())

implies

let

units: OrderedSet(CompilationUnit) = result.compilationUnits

in

Sequence{2..units->size()}

->forAll(i | Sequence{1..i-1}

->forAll(j | units->at(j).dependsOn@pre

->excludes(units->at(i))))

minimize: if result.oclIsUndefined() then 1 else 0 endif

modifies only: compilationUnits::compilationJob

Figure 6.5: Operation contract for ordering compilation units by dependencies

6.3.2 Problems that do not always have a Solution

The task of the next operation getOrderedCompilationJobs that we specify is to
find a compilation order that respects the dependencies of the CompilationUnits.
In other words, we desire a topologically sorted sequence of the compilation units.
The contract is shown in Figure 6.5. An interesting aspect of this operation is that
there is no valid compilation order if the dependency graph has a cycle. In this
case the operation should return null. The postcondition allUnitsReturned

specifies that if the result is not null, i.e., a solution exists, then the set of
CompilationJobs returned are exactly the CompilationJobs of the Project, as
in the previous contract. The postcondition resultSorted states that, if the
result is not null, no CompilationUnit depends on another unit occurring later
in the returned sequence.

This operation does not solve an optimization problem at first sight. The ob-
jective function of the contract expresses that the operation should return a non-
null result whenever possible, i.e., when it is not excluded by the postconditions.
The presence of the objective function is essential for the contract to be complete,
since otherwise an implementation that always returns null even if a valid com-
pilation order exists would satisfy the contract. Note that it is not sufficient to
simply add the additional postcondition post: not result.oclIsUndefined(),
since this would make the postconditions unsatisfiable in case there is no valid
compilation order, and the contract would not be implementable. An admissible

6.3. Applications 83

context Project::getIndependentCompilationJobs():

Set(CompilationJob)

post allUnitsReturned:

result->collect(compilationUnits)->asSet() = compilationUnits@pre

post jobsIndependent:

result->forAll(compilationUnits->forAll(

compilationUnits->includesAll(dependsOn@pre)))

minimize: -result->size() -- this maximizes the size of the result

modifies only: compilationUnits::compilationJob

Figure 6.6: Operation contract for grouping compilation units into independent
jobs

alternative would be to add a precondition expressing that the postconditions are
satisfiable, i.e., that the dependency graph is acyclic. This choice would be possi-
ble for this operation because the satisfiability of the postconditions is decidable
in this case. It is clear, however, that such a precondition testing whether the
dependency graph has a cycle would be much more lengthy then the objective
function in Figure 6.5. Thus, the possibility of adding an objective function to
the contract helped considerably to specify the operation in a concise and com-
prehensible manner. This technique of preferring non-null results by means of an
objective function is applicable in general to problems that do not always have a
solution.

6.3.3 Other Disguised Optimization Problems

Next we consider another task that is usually not regarded as an optimization
problem. We are seeking a set of CompilationJobs that can be processed in-
dependently, e.g., for allowing parallel execution as discussed above for the op-
eration getBalancedCompilationJobs. But this time we do not arrange the
CompilationUnits based on their size but according to their dependencies. We
require that there is no dependency between any two CompilationUnits be-
longing to distinct CompilationJobs. In order to be as flexible as possible for
execution, we desire to have as many independent CompilationJobs as possible.
This amounts to finding the connected components of the dependency graph.
The operation getIndependentCompilationJobs, whose contract is shown in
Figure 6.6, is specified to return a set of CompilationUnits that meets these re-
quirements. As for the previous operations, the first postcondition expresses that
the CompilationUnits included in the returned CompilationJobs are exactly
the CompilationJobs of the Project. The next postcondition jobsIndependent

84 Chapter 6. Objective Functions

states that every CompilationJob returned includes all CompilationUnits that
depend on any unit in the job. This rules out any dependencies between any two
CompilationUnits belonging to distinct CompilationJobs.

In order to ensure that the returned CompilationJobs correspond to the con-
nected components of the dependency graph, we still need to specify that there
actually is a dependency between every pair of CompilationUnits that belong
to the same CompilationJob. Otherwise, an implementation may always re-
turn just a single CompilationJob that includes all CompilationUnits. How-
ever, we find this requirement difficult to express using postconditions, since
two CompilationUnits may depend on each other via several other intermediate
CompilationUnits. This is where the objective function comes in handy. The
objective function defined in Figure 6.6 requires the operation to return a max-
imal number of CompilationJobs. This implies that every job corresponds to
exactly one connected component of the dependency graph. Thus, adding an
objective function to the contract helped again to keep the contract simple.

Chapter 7

Undefined Values in OCL

From its beginnings, OCL has been equipped with the notion of an undefined
value (called OclUndefined in previous versions of the standard, e. g., [123]; in
recent versions of the OCL standard, e. g., [125], this constant is called invalid)
to deal with exceptions occurring during expression evaluation. A classical exam-
ple of such an exception is a division by zero. In OCL such an erroneous division
is specified to yield an undefined value. Other reasons for exceptions include at-
tempts to retrieve elements from empty collections, illegal type conversions and
attribute calls on objects that do not exist. Most operations in OCL are defined
to be strict, i. e., they evaluate to invalid if they are called with an undefined
argument. This ensures that errors are propagated during expression evaluation
so they are visible and can be handled later on. Naturally, OCL collections are
not allowed to have undefined elements, since errors are more easily signaled by
marking the entire collection value as undefined.

During the development of OCL, it became clear that convenient object-
oriented navigation required a second exception element in addition to invalid.
This second exception element, called null, represents the absence of value rather
than indicating evaluation errors. The need to express the absence of value
arises naturally when dealing with object attributes with a multiplicity of zero
or one. These attributes, that occur frequently in models, are not required to
yield a value when evaluated. Representing this absence of value with the original
undefined value invalid would be inconvenient and counter-intuitive. To prevent
a propagation of undefined values, it would be necessary to handle all cases
of value absence immediately. In particular, it would not be possible to pass
potentially null values to strict operations. Since nearly all operations of OCL
are strict, even the most basic operations such as equality testing would not
be realizable without checking for an absence of value. These difficulties can
be avoided by introducing the null element as a valid operation argument and
collection element.

Recent versions of OCL 2.0 standard [124] (and later versions of OCL, in par-
ticular OCL 2.2 [125]) introduce null as a second exception element representing

85

86 Chapter 7. Undefined Values in OCL

the absence of a value. Unfortunately, this extension has been done in an ad hoc
manner, which results in several inconsistencies and ambiguities. For example,
the standard does not exactly define when null operation arguments are treated
as exceptions, i. e., lead to invalid operation results. It is not clear when object
attributes can evaluate to null values and how this depends on the multiplicity
of the attribute. There is also no indication in the standard whether objects
that do not exist (“dangling references”) are treated the same way as null or
not. Unsurprisingly, an evaluation [73] of OCL tools identified the handling of
undefined values as a major weakness of most tools.

In this chapter we propose a formal semantics that overcomes these problems
in the current version of the OCL standard. We build on the “HOL-OCL” ap-
proach [33] of defining OCL semantics by means of an embedding of OCL into
HOL. We first provide a summary of the essentials of the HOL-OCL semantics
as it could be found in textbooks. Nevertheless, our semantics is a strong formal
semantics largely following [123, Annex A]. Then we present as an increment
our proposal for OCL 2.2 [125], focusing on the key issue of null-elements and
null-types. In particular we analyze the consequences for an omnipresent fea-
ture of UML, namely multiplicities, and its pragmatics. Finally, we discuss some
problematic aspects of the OCL standard that concern undefined values.

7.1 An Overview over OCL Semantics

In this section, we will briefly introduce to OCL semantics from the HOL-OCL
perspective. The main differences between the OCL 2.0 formal semantics descrip-
tion [123, Annex A] and HOL-OCL are

1. that the latter is a machine-checked, “strong” formal semantics which is
itself based

2. on a typed meta-language (i. e., HOL) instead of an untyped one (i. e., näıve
set theory), and

3. various technical simplifications: instead of three different semantic inter-
pretation functions I(x), IJeKτ , and IAttJeKτ , we use only one.

The first difference enables us to give a semantic consistency guarantee: Since all
definitions of our formal semantics are conservative extensions, the consistency
of HOL-OCL is reduced to the consistency of HOL, i. e., a widely accepted small
system of seven axioms. The second difference dramatically reduces the number
of rules necessary for formal reasoning.

For modeling undefined values in OCL, we will make use of the type con-
structor α⊥ := ⊥ | xy : α provided by the HOL library that assigns to each
type α a type α⊥ disjointly extended by the exceptional element ⊥. The function
pq : α⊥ ⇒ α is the inverse of xy (unspecified for ⊥). Partial functions α⇀β are

7.1. An Overview over OCL Semantics 87

defined as functions α⇒β⊥ supporting the usual concepts of domain (dom) and
range (ran).

7.1.1 Valid Transitions and Evaluations

We recall that OCL expressions (which we will describe below in more detail)
form a typed assertion language whose syntactic elements are composed of

1. operators on built-in data structures such as Boolean or collection types
like Set,

2. operators of the user-defined data-model such as attribute accessors, type-
casts and tests, and

3. calls to user-defined, potentially recursive, side-effect-free methods.

The topmost goal of the formal semantics for OCL expressions is to define the
notion of a valid transition over system states; even concepts like object invariants
can be derived from this notion. Let σ be a pre-state and σ′ a post-state and let
and φ a Boolean OCL expression, then we write

(σ, σ′) � φ

for “the transition from σ to σ′ is valid in φ.” A formula φ is valid if and only
if its evaluation in the context (σ, σ′) yields true. As all types in HOL-OCL are
extended by the special element ⊥ denoting undefinedness, we define formally:

(σ, σ′) � φ ≡
(

IJφK(σ, σ′) = xtruey
)

.

Since all operators of the assertion language depend on the context (σ, σ′) and
result in values that can be ⊥, all expressions can be viewed as evaluations from
(σ, σ′) to a type α⊥. All types of expressions have a form captured by the following
type abbreviation:

V(α) := σ × σ ⇒ α⊥ ,

where σ stands for the type of system states and := denotes type abbreviation.
In the following, we will use the abbreviation τ = (σ, σ′) whenever there is no
need to refer to the pre-state and post-state of a state transition explicitly.

The OCL semantics [123, Annex A] uses different interpretation functions
for invariants and pre-conditions; instead, we achieve their semantic effect by a
syntactic transformation pre which replaces all accessor functions . a by their
counterparts . a@pre. For example, (self . a > 5)pre is just (self . a@pre > 5).
The operation .allInstances() is also substituted by its @pre counterpart.

88 Chapter 7. Undefined Values in OCL

Thus, we can re-formulate the semantics of the two OCL top-level constructs,
invariant specification and method specification, as follows:

IJcontext c : C inv n : φ(c)Kτ ≡

τ � (C .allInstances()-->forall(x—φ(x))) ∧

τ � (C .allInstances()-->forall(x—φ(x)))pre .

(7.1)

The standard forbids expressions containing @pre in invariants or preconditions
syntactically; thus, mixed forms can not arise. The semantics for a specification
of a op with the arguments a1, . . . , an reads as follows:

IJcontext C :: op(a1, . . . , an) : T

pre φ(self , a1, . . . , an)

post ψ(self , a1, . . . , an, result)Kτ ≡

∀s, x1, . . . , xn.

∆(s, x1, . . . , xn) ∧ τ � φ(s, x1, . . . , xn)pre

→τ � ψ(s, x1, . . . , xn, s.op(x1, . . . , xn))

∧ ¬∆(s, x1, . . . , xn)

→τ � s.op(x1, . . . , xn) , invalid

(7.2)

where ∆(s, x1, . . . , xn) is an abbreviation for

τ � not s.oclIsInvalid()∧ . . . ∧ τ � not xn .oclIsInvalid()

and where the symbol , stands for “strong equality” which will be formally
introduced in Section 7.1.3 together with the constant invalid and its test for
it.

This definition captures two cases: if the arguments of an operation are de-
fined, the result of a method call must satisfy the specification; otherwise the
operation will be strict and return invalid. Note that we specify the inter-
pretation function for operation calls occurring in OCL expressions this way:
IJs.op(a1, . . . , an)Kτ must be chosen such that it satisfies the constraints of the
postconditions.

Summing up, by these definitions an OCL specification, i. e., a sequence of
invariant declarations and operation contracts, can be transformed into a set of
(logically conjoined) statements which is called the context Γτ . The theory of an
OCL specification is the set of all valid transitions τ � φ that can be derived from
Γτ . For the logical connectives of OCL , a conventional Gentzen-style calculus for
pairs of the form Γτ ⊢ φ can be developed that allows for inferring valid transitions
from Γτ by deduction (cf. [33, 30])). Due to the inclusion of arithmetic, any
calculus for OCL is necessarily incomplete. Note further that it is straight-forward
to extend our notion of context to multi-transition contexts such as:

Γ ≡ {(σ, σ′) � φ, (σ′, σ′′) � ψ} .

7.1. An Overview over OCL Semantics 89

7.1.2 Strict Operations

Following common terminology, an operation that returns ⊥ if one of its argu-
ments is ⊥ is called strict. The majority (including all user-defined operations,
e. g., defined in the underlying class model) of operations is strict. For example,
the Boolean negation is formally presented as:

IJnot XKτ ≡

{

x¬pIJXKτqy if IJXKτ 6=⊥,

⊥ otherwise,

where τ = (σ, σ′) and IJ K is a notation marking the OCL constructs to be
defined. This notation is motivated by our goal to achieve the maximal textual
similarity to the textbook-style semantics in the OCL standard [123].

The binary case of the integer addition is analogous:

IJX + Y K τ ≡

{

xpX
′q+ pY ′qy if X ′ 6=⊥ and Y ′ 6=⊥,

⊥ otherwise,

whereX ′ is an abbreviation for IJXKτ and Y ′ for IJY Kτ . The operator + on the
right refers to the integer HOL operation with type [int, int] ⇒ int. The type of
the corresponding strict OCL operator + is [V(int), V(int)] ⇒ V(int). From the
bulk of definitions of this kind, a large number of theorems (derived rules) such
as associativity, commutativity, etc. were formally proven in HOL-OCL (omitted
here).

A variation of this definition scheme is used for the operators on collection
types such as OCL sets or sequences:

IJX-->union(Y)Kτ ≡

{

SxpX
′q∪pY ′qy if X ′ 6=⊥ and Y ′ 6=⊥,

⊥ otherwise,

where X ′ ≡ IJXK τ and Y ′ ≡ IJY K τ . Here, S (“smash”) is a function that
maps a lifted set xXy to ⊥ if and only if ⊥ ∈ X and is the identity otherwise.
Smashedness of collection types is the natural extension of the strictness principle
for data structures.

Intuitively, the type expression V(τ) is a representation of the type that cor-
responds to the OCL type τ . We introduce the following type abbreviations:

Boolean := V(bool) , Set(α) := V(α set) ,

Integer := V(int) , and Sequence(α) := V(α list) .

The mapping of an expression E of OCL type T to an expression E of type T in
our meta-language HOL is injective and preserves well-typedness.

90 Chapter 7. Undefined Values in OCL

7.1.3 Boolean Operators

There is a small number of explicitly stated exceptions from the general rule that
OCL operators are strict: the strong equality, the undefinedness operator and the
logical connectives. As a prerequisite, we define the logical constants for truth,
absurdity and undefinedness as follows:

IJtrueKτ ≡ xtruey ,

IJfalseKτ ≡ xfalsey , and

IJinvalidKτ ≡ ⊥ .

OCL has a strict equality, written = , which we denote
.
= throughout

this paper. On the primitive types, it is defined similarly to the integer addition;
the case for objects is discussed later. For logical purposes, we introduce also a
strong equality , which is defined as follows:

IJX , Y K τ ≡ (IJXK τ = IJY K τ) ,

where the = operator on the right denotes the logical equality of HOL. The un-
definedness test is defined by X .oclIsInvalid() ≡ (X , invalid). Strong
equality can be explained as a syntactic abbreviation via strict equality and un-
definedness:

X , Y ≡

(X
.
= Y or (X

.
= Y).oclIsInvalid()) and

(X .oclIsInvalid()
.
= Y .oclIsInvalid()) (7.3)

The major purpose of strong equality is a concise formulation of the Leibniz rule
(equals may be substituted in any context) adapted to OCL :

τ � e , e′ ∈ Γ Γ ⊢ τ � φ(e)

Γ ⊢ τ � φ(e′),

This is the foundation of term-rewriting in OCL. The equivalence symbol in
Equation 7.2 is also syntactically equivalent to strong equality (on Boolean).

The strong equality can be used to state reduction rules like: τ � (invalid
.
=

X) , invalid. The OCL standard requires a Strong Kleene Logic. In particular:

IJX and Y Kτ ≡

xpX
′q ∧ pY ′qy if X ′ 6=⊥ and Y ′ 6=⊥,

xfalsey if X ′ or Y ′ are xfalsey,

⊥ otherwise,

where X ′ ≡ IJXKτ and Y ′ ≡ IJY Kτ . Thus, the Boolean operation and has
type [V(bool), V(bool)] ⇒ V(bool).

7.1. An Overview over OCL Semantics 91

The other Boolean connectives are just shortcuts:

X or Y ≡ not (not X andnot Y), and

X implies Y ≡ not X or Y .

The logical quantifiers are viewed as special operations on the collection types
Set(α) or Sequence(α). Their definition in the OCL standard is very operational
and restricted to the finite case; instead, we define the universal quantification
as generalization of the conjunction:

IJX-->forall(x | P (x))K τ ≡

⊥ if X ′ = ⊥,

x∀a ∈ pX ′q. pp(a)qy if ∀a ∈ pX ′q. p(a) 6=⊥,

xfalsey if ∃a ∈ pX ′q. p(a) = xfalsey,

⊥ otherwise,

where X ′ ≡ IJXKτ and p(a) ≡ IJP (λ τ. a)Kτ . As usual, the existential quantifi-
cation is introduced as abbreviation:

X-->exists(x | P (x))

≡ not X-->forall(x | not P (x)) .

7.1.4 Object-oriented Data Structures

Above we described various built-in operations on datatypes and the logic. Now
we turn to several families of operations that the user implicitly defines when
stating a class model as logical context of a specification. This is the part of the
language where object-oriented features such as type casts, accessor functions,
and tests for dynamic types come into play. Syntactically, a class model provides
a collection of classes C, an inheritance relation < on classes and a collection of
attributes A associated to classes. Semantically, a class model means a collection
of accessor functions (denoted .a :: A → B and . a@pre :: A → B for a ∈ A
and A,B ∈ C), type casts that can change the static type of an object of a class
(denoted .oclAsType(C) of type A → C) and dynamic type tests (denoted
.oclIsTypeOf(C)). A precise formalization of the syntactic side of a class
system can be found in [32].

Class Models: A Simplified Semantics

We now clarify the notions of object identifiers, object representations, class types
and state.

First, object identifiers are captured by just an abstract type oid comprising
countably many elements and a special element nullid.

92 Chapter 7. Undefined Values in OCL

Second, object representations model “a piece of typed memory,” i. e., a kind
of record comprising some administrative information and the information for all
the attributes of an object; here, the basic types Booleanτ , Integerτ , etc. as
well as collections over them are stored directly in the object representations,
class types and collections over them are represented by oid’s (respectively lifted
collections over them; such collections may be ⊥).

Third, the class type C will be the type of such an object representation. It
is a Cartesian product:

C := (oid× Ct × A1 × · · · × Ak)

where a unique tag-type Ct (ensuring type-safety) is created for each class type,
and where the types A1, . . . , Ak are the attribute types (including all inherited
attributes) with class types substituted by the type oid. The function OidOf
projects the first component, the oid, out of an object representation.

Fourth, for a class model M with the classes C1, . . . , Cn, we define states as
partial functions from oids to object representations satisfying a state invariant
invσ:

σ := {f :: oid⇀(C1 + . . .+ Cn) | invσ(f)}

where invσ(f) states two conditions:

1. there is no object representation for nullid:

nullid /∈ (dom f) .

2. there is a “one-to-one” correspondence between object representations and
object identifiers (oid):

∀oid ∈ dom f. oid = OidOf pf(oid)q .

The latter condition is also mentioned in [123, Annex A] and goes back to Mark
Richters [130].

7.1.5 The Accessors

On states built over object universes we can now define accessors, casts, and type
tests of an object model. We consider the case of an attribute a of a class C
which has the simple class type D (not a basic type, not a collection):

IJself . aK(σ, σ′)

≡

⊥ if o = ⊥ ∨ id /∈ dom σ′

getD u if σ′(getCpσ
′ idq. a(0)) = xuy,

⊥ otherwise;

7.2. A Formal Semantics for OCL 2.2 93

and for accessing the attribute in the previous state:

IJself . a@preK(σ, σ′)

≡

⊥ if o = ⊥ ∨ id /∈ dom σ

getD u if σ(getCpσ idq. a
(0)) = xuy,

⊥ otherwise,

where o = IJself K(σ, σ′) and id = OidOf poq. Here, getD is the projection function
from the object universe to D⊥, and x. a is the projection of the attribute from
the class type (the Cartesian product). In the case of a class type, we have
to evaluate the expression self , get an object representation (or invalid if the
evaluation is not possible), project the attribute, de-reference it in the pre or post
state, respectively, and project the class object from the object universe (getD
may yield ⊥ if the element in the universe does not correspond to a D object
representation). In the case of a basic type attribute, the de-referentiation step
is left out.

In our model accessors always yield (type-safe) object representations; not
oids. This has the consequence that a reference that is not in dom σ, i. e.,
that is a “dangling reference,” immediately results in invalid (this is a subtle
difference to [123, Annex A] where undefinedness is detected one de-referentiation
step later). The strict equality

.
= must be defined via OidOf when applied to

objects. It satisfies (invalid
.
= X) , invalid.

The definitions of casts and type tests are straightforward and can be found
in [32], together with other details of the construction above and its automation
in HOL-OCL. Strict equality of objects that are not undefined amounts to a
comparison of the respective oids of their object representations.

7.2 A Formal Semantics for OCL 2.2

In this section, we describe our proposal for a formal semantics of OCL 2.2 [125]
as an increment to the OCL 2.0 semantics (currently underlying HOL-OCL and
essentially formalizing [123, Annex A]). In later versions of the standard [125], the
semantics annex is only slightly updated and does not reflect all changes made
to the mandatory parts of the standard.

7.2.1 Revised Operations on Basic Types

In UML, and since [124] also in OCL, all basic types comprise the null-element,
modeling a possible absence of value. Seen from a functional language perspec-
tive, this corresponds to the view that each basic value is a type like int option

as in SML [126]. Technically, this results in lifting any basic type twice:

Integer := V(int⊥) , etc.

94 Chapter 7. Undefined Values in OCL

and basic operations have to take the null elements into account. The distin-
guishable invalid and null elements are defined as follows:

IJinvalidKτ ≡ ⊥ and IJnullKτ ≡ x⊥y .

As example for elementary constants, we present:

IJtrueKτ ≡ xxtrueyy and IJfalseKτ ≡ xxfalseyy .

Consistent with the OCL 2.2 standard [125], we give an interpretation such that
null+3 = invalid, and due to commutativity, we postulate 3+null = invalid,
too. The necessary modification of the semantic interpretation reads as follows:

IJX + Y K τ ≡

{

xxppX
′qq+ ppY ′qqyy if X ′, Y ′ /∈ {⊥, x⊥y}

⊥ otherwise ,

where X ′ ≡ IJXK τ and Y ′ ≡ IJY K τ . The resulting principle here is that
operations on the primitive types Boolean, Integer, Real, and String treat null
as invalid (except , ,

.
= , .oclIsInvalid(), .oclIsUndefined(),

and type-tests).
This principle is motivated by our intuition that invalid represents known

errors, while null-arguments of operations for Boolean, Integer, Real, and String
are optional data. Thus, we must also modify the logical operators such that

null and false , false

and, in an analogous case,

null and true , invalid

holds. As another consequence of this principle, we define

X .oclIsUndefined() ≡ (X , invalid)

or (X , null) .

Now, the question arises how the test for invalid has to be redefined in an OCL
2.2 setting. We see two options:

1. Since the standard currently requires:

null .oclIsInvalid() , invalid ,

an awkward definition would be:
X .oclIsInvalid() ≡ ifX , null

then invalid

else X , invalid

endif

7.2. A Formal Semantics for OCL 2.2 95

2. Easier to handle from a deductional point of view would be:

X .oclIsInvalid() ≡ X , invalid,

which also maintains Equation 7.3.

7.2.2 Null in Class Types

It is a viable option to rule out inherent undefinedness in object graphs as such.
The source of such undefinedness are oids which do not occur in the state, i. e.,
which represent “dangling references.” Ruling out potentially undefined object
accessors would correspond to a world where constructors always set attributes
to null or an object that is not undefined and to a programming language with-
out explicit deletion (as, for instance, in Spec# [9]). Semantically, this can be
modeled by strengthening the state invariant invσ by adding clauses that state
that in each object representation all oids are either nullid or element of the
domain of the state. We deliberately decided against this option for the following
reasons:

1. methodologically we do not like to constrain the semantics of OCL with-
out clear reason; in particular, “dangling references” exist in C and C++

programs and it might be necessary to write contracts for them, and

2. semantically, the condition “no dangling references” can only be formulated
with the complete knowledge of all classes and their layout in form of object
representations. This restricts the OCL semantics to a closed world model.1

We can model null-elements as object representations with nullid as their oid:

Definition 7.1 (Representation of null-Elements). Let Ci be a class type with
the attributes A1, . . . , An. Then we define its null object representation by:

nullrepCi := x(nullid, arbt, a1, . . . , an)y

where the ai are ⊥ for primitive types and collection types, and nullid for simple
class types. The term arbt is an arbitrary underspecified constant of the tag-type.

1In our presentation, the definition of state in Section 7.1 assumes a closed world. This
limitation can be easily overcome by leaving “polymorphic holes” in our object representation
universe, i. e., by extending the type sum in the state definition to C1 + · · · + Cn + α. The
details of the management of universe extensions are involved, but implemented in HOL-OCL
(see [32] for details). However, these constructions exclude knowing the set of “reachable oids”
in advance.

96 Chapter 7. Undefined Values in OCL

7.2.3 Revised Accessors

Having introduced null-elements, the modification of the accessor functions is
now straight-forward:

IJobj . aK(σ, σ′)

≡

⊥
if A = ⊥,

or id /∈ dom σ′

nullrepD if getCpσ
′(id)q. a(0) = nullid

getD u if σ′(getCpσ
′(id)q. a(0)) = xuy,

⊥ otherwise,

where A ≡ IJobj K(σ, σ′) and id ≡ OidOfpAq.
The definitions for type cast and dynamic type test, which are not explicitly

shown in this thesis (see [32] for details) can be generalized accordingly. In the
sequel, we will discuss the resulting properties of these modified accessors.

Accessors, type casts and type tests are strict:

invalid. a , invalid

invalid.oclAsType(C) , invalid

invalid.oclIsTypeOf(C) , invalid

Furthermore, the following rule schemes express that the dynamic type re-
mains unchanged while casting:

obj.oclAsType(B).oclIsTypeOf(A)

= obj.oclIsTypeOf(A)

Moreover, we can “re-cast” an object safely, i. e., up and down casts are idempo-
tent. Casting an object deeper in the subclass hierarchy than its dynamic type
results in invalid. Furthermore, casting is transitive:

τ � obj.oclIsTypeOf(B)

τ �
(

(obj.oclAsType(A)).oclAsType(B)
)

, obj

τ � obj.oclIsTypeOf(A)

τ � obj.oclAsType(B) , invalid

τ � obj.oclIsTypeOf(C)

τ �
(obj.oclAsType(B)).oclAsType(A)

, obj.oclAsType(A)

where we assume classes A,B,C with C < B < A.

7.3. Attribute Values 97

7.2.4 Null and Collection Types

According to the OCL 2.2 standard, both null and invalid also belong to the
collection types. Moreover, null is admissible as collection element. In contrast,
invalid is not permitted as collection element, since exceptions are more easily
signaled by marking the entire collection value as undefined. Hence, we obtain,
e. g., the OCL Set type with integer elements as:

Set(Integer) := V(int⊥ set)

The element type of the set is only lifted once, since invalid collection elements
are not permitted.

This raises the question how collection operations should behave when called
with undefined values as arguments. Since collection operations cannot insert
invalid into a collection, it appears reasonable that they return invalid when
called with invalid arguments in order to propagate the exception. On the
other hand, when called with null arguments, collection operations should not
necessarily evaluate to invalid, since otherwise null could not be inserted into
collections, and their presence would be cumbersome to detect. Hence, collection
operations should be strict with respect to invalid, but not respect to null.
Consider as example the ->includes operation for testing membership in a
collection. Following our previous reasoning concerning strictness, we obtain the
following definition of this operation:

IJa-->includes(X)K τ

≡

{

xxpX
′q ∈ ppAqqyy if X ′ 6= ⊥ and A /∈ {⊥, x⊥y}

⊥ otherwise,

where A ≡ IJaK τ and X ′ ≡ IJXK τ . We apply these strictness conventions
only to arguments of collection operations that are of the element type of the
collection. Thus, collection operations should be strict for null arguments that
are collections (e. g., the argument of ->union) or other types not related to the
collection (e. g., the index argument of the sequence access function _->at(_)).

7.3 Attribute Values

The evaluation of an attribute for an object can yield a value or a collection of
values. The type of the evaluation result depends on the multiplicity specified for
the attribute. A multiplicity defines a lower bound as well as a possibly infinite
upper bound on the cardinality of the attribute’s values.

98 Chapter 7. Undefined Values in OCL

7.3.1 Single-Valued Attributes

If the upper bound specified by the attribute’s multiplicity is one, then an eval-
uation of the attribute yields a single value. If the lower bound specified by the
multiplicity is zero, the evaluation is not required to yield a non-null value. In
this case an evaluation of the attribute can return null to indicate an absence of
value.

To facilitate accessing attributes with multiplicity 0..1, the OCL standard
states that single values can be used as sets by calling collection operations on
them. However, the implicit conversion of a value to a Set is not defined by
the standard. We argue that the resulting set cannot be constructed the same
way as when evaluating a Set literal. Otherwise, null would be mapped to the
singleton set containing null, but the standard demands that the resulting set is
empty in this case. The conversion should instead be defined for all non-collection
types T as follows:

context T::asSet():T

post: if self
.
= null then result

.
= Set{}

else result
.
= Set{self} endif

7.3.2 Collection-Valued Attributes

If the upper bound specified by the attribute’s multiplicity is larger than one,
then an evaluation of the attribute yields a collection of values. This raises the
question whether null can belong to this collection. The OCL standard states
that null can be owned by collections. However, if an attribute can evaluate to
a collection containing null, it is not clear how multiplicity constraints should
be interpreted for this attribute. The question arises whether the null element
should be counted or not when determining the cardinality of the collection.
Recall that null denotes the absence of value in the case of a cardinality upper
bound of one, so we would assume that null is not counted. On the other hand,
the operation size defined for collections in OCL does count null.

We propose to resolve this dilemma by regarding multiplicities as optional.
This point of view complies with the UML standard, that does not require lower
and upper bounds to be defined for multiplicities.2 In case a multiplicity is spec-
ified for an attribute, i. e., a lower and an upper bound are provided, we require
any collection the attribute evaluates to to not contain null. This allows for a
straightforward interpretation of the multiplicity constraint. If bounds are not
provided for an attribute, we consider the attribute values to not be restricted
in any way. Because in particular the cardinality of the attribute’s values is not
bounded, the result of an evaluation of the attribute is of collection type. As

2We are however aware that a well-formedness rule of the UML standard does define a
default bound of one in case a lower or upper bound is not specified.

7.3. Attribute Values 99

the range of values that the attribute can assume is not restricted, the attribute
can evaluate to a collection containing null. The attribute can also evaluate to
invalid. Allowing multiplicities to be optional in this way gives the modeler
the freedom to define attributes that can assume the full ranges of values pro-
vided by their types. However, we do not permit the omission of multiplicities
for association ends, since the values of association ends are not only restricted
by multiplicities, but also by other constraints enforcing the semantics of associ-
ations. Hence, the values of association ends cannot be completely unrestricted.

7.3.3 The Precise Meaning of Multiplicity Constraints

We are now ready to define the meaning of multiplicity constraints by giving
equivalent invariants written in OCL. Let a be an attribute of a class C with a
multiplicity specifying a lower bound m and an upper bound n. Then we can
define the multiplicity constraint on the values of attribute a to be equivalent to
the following invariants written in OCL :

context C inv lowerBound: a->size() >= m

inv upperBound: a->size() <= n

inv notNull: not a->includes(null)

If the upper bound n is infinite, the second invariant is omitted. For the definition
of these invariants we are making use of the conversion of single values to sets
described in Section 7.3.1. If n ≤ 1, the attribute a evaluates to a single value,
which is then converted to a Set on which the size operation is called.

If a value of the attribute a includes a reference to a non-existent object, the
attribute call evaluates to invalid. As a result, the entire expressions evaluate
to invalid, and the invariants are not satisfied. Thus, references to non-existent
objects are ruled out by these invariants. We believe that this result is appro-
priate, since we argue that the presence of such references in a system state is
usually not intended and likely to be the result of an error. If the modeler wishes
to allow references to non-existent objects, she can make use of the possibility
described above to omit the multiplicity.

7.3.4 Semantics of Operation Contracts

With the addition of null values, we need to adapt the semantic interpretation of
operation contracts defined in (7.2). As we already mentioned in Section 7.1.1, an
operation call should evaluate to an undefined value (i. e., invalid) if any of the
arguments are undefined in order to ensure the propagation of undefined values.
As invalid arguments are always undefined, and invalid is also returned if the
self-argument is null, we modify the ∆ in (7.2) as follows:

∆′ ≡ τ � not s.oclIsUndefined()

100 Chapter 7. Undefined Values in OCL

∧ τ � not x1 .oclIsInvalid()

∧ · · · ∧ τ not � xn .oclIsInvalid() .

This interpretation of operation contracts allows null as argument (except self)
of an operation, i. e., the parameters x1, . . . , xn are, in the underlying class model,
specified with a multiplicity 0..1.

For the case that some parameter xi (1 ≤ i ≤ n) of an operation with the
postcondition φ(x1, . . . , xn) has multiplicity 1..1, we replace φ with the post-
condition

xi = null and result.oclIsInvalid()

or not xi = null andφ(x1, . . . , xn)

that explicitly captures the case where xi is null. Such a representation of
diagrammatic UML features as textual OCL constraints is also used for other
features of UML, e. g., the multiplicity of attributes and association ends.

7.4 Compliance with the OCL Standard

While the latest version of the OCL standard [125] improved a lot with respect
to the handling of null values (e. g., compared to [124]), many details are still
underspecified. In the following, we will discuss the relation of our proposal to
the OCL standard [125]. In particular, we focus on decisions that are either
only implicitly mentioned in the OCL standard or in which different parts of the
standard contradict each other.

The OCL standard does not clearly define the semantics of null values for
basic datatypes (e. g., Boolean, Integer). While we strongly suggest (see Sec-
tion 7.2.1) to treat null and invalid equivalently for basic datatypes (e. g.,
5 + null , invalid holds), this is not required by the standard. For ex-
ample, a semantics where 5 + null , 5 holds is not explicitly excluded by
the standard. As the OCL standard still requires that null + 5 , invalid

holds (recall that null + 5 is a shorthand for null.+(5)) this would result
in an addition that is not commutative.

In Section 7.2.3 we argued that casts of invalid should result in invalid.
While languages such as JML [105] define a similar behavior (i. e., casts of un-
defined values raise a runtime exception), the OCL standard is inconsistent: On
the one hand, it states “If the actual type of self at evaluation time does not
conform to t, then the oclAsType operation evaluates to null.” [125, p. 141] and
on the other hand, it states “An object can only be re-typed to a type to which it
conforms. If the actual type of the object, at evaluation time, is not a subtype of
the type to which it is re-typed, then the result of oclAsType is invalid.” [125, p.
13]. In this case, we clearly suggest to follow the semantics of languages like JML

7.5. Related Work 101

or Java and change the requirement on page 141 of the standard to “. . . evaluates
to invalid.”

Due to the pragmatics described in Section 7.3.1, the collection types are
potential candidates for extending the semantics of null-values, i. e., a null-
collection could be semantically equivalent to the corresponding empty collec-
tion. As the description of the operation ->isEmpty() [125, p. 148] states,
“null->isEmpty() returns ’true’ in virtue of the implicit casting from null
to Bag{},” the OCL standard seems, at the first sight, to intend such a se-
mantical equivalence. Since such an “implicit casting to Bag” is only defined
for non-collection types, this example can only describe cases in which the op-
eration is called on non-collection values. Consequently, our semantics han-
dles operation calls on null values of collection-types similar to any other op-
eration call on null (i. e., resulting in invalid). In Section 7.3.1 we pre-
sented a well-defined implicit conversion asSet() which facilitates the access
to non-collection type attributes and association ends with multiplicity 0..1.
The flattening of collections is another class of operations for which we pro-
pose to interpret the collection-type null value as empty collection such that
Set{Set{1}, null}->flatten()} , Set{1}} holds.

Already the OCL Manifesto [53] (and earlier versions dating back to at least
1998) recognized the need for both a strong and a strict equality, however, the
OCL standard only defines the strict equality. As the strong equality is mainly
important for formal reasoning over OCL specifications, we see no strong need
to include a strong equality in the OCL standard. Thus, we propose to de-
fine the standard equality to be strict with respect to invalid and non-strict
with respect to null. Similar to other object-oriented specification languages
(e. g., JML) we propose to add the equality to the list of exceptions to the rule
that calling an operation on null results in invalid. Thus, in our semantics
(null

.
= null) , true holds. This, for example, also ensures the equiva-

lence

A->includes(x) = A->exists(a | x = a)

for all values of x that are not undefined (including the case x = null). With
respect to the handling of null and invalid the intention of the recent stan-
dard is unclear to us. In more detail, the standard [125, p. 141] seems for the
types OclVoid and OclInvalid to override the equality of the type OclAny.
Still, as these overridden operations are defined within the list of operations of
the type OclAny, the intended semantics remains unclear.

7.5 Related Work

Although there have been several approaches to defining a formal semantics of
UML and OCL, e.g., [81, 64, 109, 136, 78], to the best of our knowledge none of

102 Chapter 7. Undefined Values in OCL

them addresses the interplay between invalid and null. There are other object-
oriented specification languages that support null elements, namely JML [105] or
Spec# [9]. Notably, both languages limit null elements to class types and provide
a type system supporting non-null types. In the case of JML, the non-null types
are chosen as the default types [46]. Supporting non-null types simplifies the
analysis of specifications drastically, as many cases that result in undefined values
(e. g., de-referencing a null) are already ruled out by the type system.

Recently three alternative semantics for handling undefinedness have been
proposed for languages processed by finite-domain constraint solvers [67], includ-
ing the three-valued Kleene semantics adopted by the Boolean operations of OCL.
However, this proposal only considers a single undefined value. Alloy [85] is a
language that is often compared to OCL. Since objects in Alloy can only occur
as members of a set or a relation, an undefined object value is modeled by an
empty set. This very natural representation of the absence of value is also em-
ployed in OCL by the conversions of values which can potentially be null to sets.
Undefined Boolean values do not occur in Alloy.

Chapter 8

Animation of OCL Operation
Contracts

In this chapter we present an approach to animating OCL operation contracts.
By translating OCL constraints to arithmetic formulas with bounded quantifiers
and solving these using our techniques presented in Chapter 5, we can perform
animation efficiently without relying on additional guidance from the user. We
implemented our approach in the tool OCLexec that generates from OCL opera-
tion contracts corresponding Java implementations which call a constraint solver
at runtime. The generated code can serve as a prototype.

In the sequel, we first demonstrate the benefits of animation by means of a
case study. Then we present our animation technique in detail. We describe a
preliminary analysis of operation contracts that narrows down the set of classes
for which new instances may need to be created and the set of constraints that
need to be considered for animation. Moreover, we show how OCL expressions
can be mapped to arithmetic formulas with bounded quantifiers. Finally, we give
experimental results for our animation tool OCLexec.

8.1 A Case Study

In this section we present an example of a specification that could benefit from
animation.

8.1.1 The Task

Figure 8.1 shows an excerpt from a possible UML model of a company. Em-
ployees are temporarily assigned to customers to carry out the customers’ orders.
Customers specify the skills that they would like the employee to have for han-
dling their order (association end requestedSkills). Also, employees may give
a list of customers that they prefer to work for (attribute preferredCustomers).

103

104 Chapter 8. Animation of Operation Contracts

Skill

 name: String [1]

Employee

 name: String [1]
 preferredCustomers: Customer [*]

Customer

 name: String [1]

Company

 name: String [1]

 assignNewCustomers(in Customer[*])

 - skills

 - employee

 [*]

 [*]

 - requestedSkills - customer [*] [*]

 - customer

 - employee

 [0..1]

 [0..1]

 - employees

 - company

 [*]

 [1]

Figure 8.1: Excerpt from a possible UML model of a company

A task of the system which we are specifying is to perform an adequate assign-
ment of employees to customers. What is sought is an assignment that respects
the preferences of both the customers and the employees. This kind of assign-
ment problem can be regarded as an instance of the prominent stable marriage
problem [68]. The term stable marriage is inspired by the idea of matching men
to women in a consistent manner. It is well-known that if the numbers of men
and women are equal, it is always possible to find a stable assignment, i.e., an
assignment in which no man and woman leave their assigned partners in order
to form a new couple because they both prefer their new partner to the one that
was assigned to them.

8.1.2 Anatomy of the Operation Contract

Since the operation contract in Figure 8.2 is nontrivial, we explain why it ex-
presses the requirements. The precondition of the operation contract states that
there are at least as many available employees, i.e., employees that are currently
not assigned to a customer, as customers that are supposed to be matched. This
condition is obviously necessary for the existence of any assignment of available

8.1. A Case Study 105

context Company::assignNewCustomers(newCustomers: Set(Customer)):

pre enoughEmployees: employees->select(customer.oclIsUndefined())->size()

>= newCustomers->size()

post allCustomersAssigned:

employees@pre->select(customer@pre.oclIsUndefined()

and not customer.oclIsUndefined())

->collect(customer)->asSet() = newCustomers

post assignmentStable:

employees@pre->select(customer@pre.oclIsUndefined())

->forAll(e | newCustomers->forAll(c |

let

matchedSkills : Set(Skill)

= c.requestedSkills@pre->intersection(c.employee.skills@pre),

potentialSkills : Set(Skill)

= c.requestedSkills@pre->intersection(e.skills@pre)

in

(potentialSkills->includesAll(matchedSkills)

implies potentialSkills = matchedSkills)

or

(e.preferredCustomers@pre->includes(c)

implies e.preferredCustomers@pre->includes(e.customer))))

modifies only: employees->select(customer.oclIsUndefined())::customer,

newCustomers::employee

Figure 8.2: Operation contract for assigning new customers to available employees

106 Chapter 8. Animation of Operation Contracts

employees to all new customers. As mentioned above, this condition is also suf-
ficient for the existence of a stable assignment. In the precondition, we use the
built-in operation oclIsUndefined for testing whether the value of the customer
attribute of an Employee object is null or a reference to a Customer object. Us-
ing this test, we can form the set of available employees and apply the built-in
operation size to it.

The first postcondition of the operation contract asserts that after completion
of the operation all customers have in fact been assigned to available employees.
In this postcondition, first the set of employees that were available in the pre-state
but are no longer available in the post-state is defined. Then we use the collect
comprehension of OCL to obtain the collection of customers that are assigned to
this set of employees. This collection is a bag, since OCL semantics is based on
the general case that several employees may be assigned to the same customer,
although this is excluded by the multiplicities in the class diagram. We use the
built-in operation asSet to convert the bag to a set, so it can be compared to the
set of new customers.

The second postcondition asserts that the assignment performed by the op-
eration is stable. We quantify over all pairs e, c of available employees and new
customers and consider the employee assigned to the customer (c.employee) as
well as the customer assigned to the available employee (e.customer). This post-
condition rules out that the pair e-c is a better match than both c-c.employee
and e-e.customer. It does so by stating that the skills potentially provided by
employee e to customer c are not a proper superset of the skills provided by
c.employee to customer c, or that employee e also prefers e.customer if em-
ployee e lists customer c as preferred.

To complete the operation contract, we still need to specify which attribute
values may be changed by the operation. We do this by adding a modifies only
clause which states that the operation may only modify the attribute customer

for the available employees and the attribute employee for the new customers. All
other attribute values must be left unchanged by the operation. The operation
contract in Figure 8.2 does not contain an objective function, but our animation
technique would also be able to take an objective function into account. Modifies
only clauses and objective functions have not yet been incorporated into the OCL
standard. See Section 6.1 for details about these extensions to OCL.

We have now obtained an operation contract that precisely reflects the re-
quirements. Note that the contract is underspecified, i.e., it does not prescribe a
unique result, but allows the operation to perform any stable assignment. More-
over, the contract does not indicate how such an assignment can be found.

8.1.3 Animating the Operation Contract

The tool OCLexec we implemented our approach in generates Java method bod-
ies. It inserts code that enforces the postconditions of the operation and all class

8.2. Execution of Animation 107

invariants. OCLexec serializes an intermediate representation of the operation
contract to a file that the generated method body can access as a resource. This
intermediate representation is based on the language of arithmetic formulas with
bounded quantifiers introduced in Chapter 5. The method body only reads the
serialized file and calls a library routine responsible for animating the operation.
The pre-state considered for animation is simply the pre-state of the method call.
In principle, the results returned by this generated method body cannot be dis-
tinguished from results returned from a manually implemented method body that
conforms to the operation contract. Note that inserting code in method bodies
should not interfere with other code that may have been generated for the model.
Thus, the developer can use her favorite tool for the overall code generation and
then use our tool only for selected method bodies.

Figure 8.3(a) depicts a very simple system state in which the operation
assignNewCustomers can be called. The company employs two staff mem-
bers whose names are Smith and Jones. There are two skills: French and German
language skills. Smith speaks French while Jones speaks German. There are two
customers, called Petit and Schmidt, who ask for French and German language
skills, respectively, from the employee that is assigned to them. Moreover, em-
ployee Smith prefers to work for customer Schmidt. Figure 8.3(b) shows a possible
outcome of calling the generated method for the two customers in this system
state. Employee Smith is assigned to customer Schmidt and employee Jones is
assigned to customer Petit. Unfortunately, neither customers’ request for lan-
guage skills is met. However, the assignment is stable, since employee Smith is
now assigned to his preferred customer Schmidt and therefore not interested in
changing the assignment.

Depending on the needs of the company, this result of the operation call
may not be sufficient. It may well be that the customers’ demands for skills are
deemed more important than the preferences of the employees. If this is the case,
animation would have revealed an important flaw of the specification. Note that
this kind of unforeseen behavior cannot be discovered if the constraints are only
tested on system states that the specifier has designed to be correct or incorrect.

If the operation is not performance-critical and sufficiently efficient code can
be generated for it, animation may allow to skip or postpone its implementation.
Such an opportunity saves implementation effort and helps avoid coding errors.
Moreover, a larger part of the development can be carried out on a higher and
platform independent level of abstraction. In this sense, animation of operation
contracts can be regarded as a contribution to Model-Driven Development.

8.2 Execution of Animation

We implemented an animation technique that is based on a translation of the
operation contract to an arithmetic formula with bounded quantifiers as described

108 Chapter 8. Animation of Operation Contracts

co : Company

name = Example Corp.

e1 : Employee

name = Smith
preferredCustomers = [c2]

e2 : Employee

name = Jones
preferredCustomers = []

c1 : Customer

name = Petit

c2 : Customer

name = Schmidt

s1 : Skill

name = French

s2 : Skill

name = German

(a) State before animation

co : Company

name = Example Corp.

e1 : Employee

name = Smith
preferredCustomers = [c2]

e2 : Employee

name = Jones
preferredCustomers = []

c1 : Customer

name = Petit

c2 : Customer

name = Schmidt

s1 : Skill

name = French

s2 : Skill

name = German

(b) State after animation

Figure 8.3: Effect of animating a call to the operation assignNewCustomers

on a system state

8.2. Execution of Animation 109

in Chapter 5. First, we narrow down the set of classes for which new instances
may need to be created and the set of constraints that need to be considered
for animation. Using this information, we can the express the set of animation
results that are permitted by the operation contract by an arithmetic formula
with bounded quantifiers. A concrete animation result can then be obtained by
solving this formula using the techniques described in Section 5.3.

8.2.1 Preliminary Analysis: Reasoning about New Class
Instances

As a first step of animation, we determine for which classes new instances may
need to be generated. It is beneficial to restrict this set of classes as much as
possible. Knowing that no instances need to be created for a certain class allows
to reduce the search space that has to be explored. Such an observation also
concerns the handling of class invariants. Class invariants have to always hold
for all objects of a certain class. The following OCL invariant definition stating
that the name attribute of an object of class Skill may never be empty could be
added to the specification presented in Section 8.1:

context Skill inv: name <> ""

If no instances are created for a class that an invariant belongs to and the
invariant references no attributes that can be modified by the operation, then we
can conclude that the invariant can never be violated in the post-state if it was
satisfied in the pre-state. Hence, such invariants do not need to be considered
when searching for animation results, which simplifies the computation.

The creation of new instances can be restricted by the operation contract.
OCL provides the oclIsNew test for querying whether an object has been created
by the operation call. By using this language feature, postconditions can express
that certain objects must have already existed before the operation call. However,
it is usually not possible to observe that this test has been applied to a set of
object references that is sufficient to completely rule out the creation of new
instances for a certain class. In this case we must take into account that it
may be necessary to create new instances of the class to satisfy the operation
contract. Our goal is to compute an approximation of the set of classes requiring
new instances that is as good as possible.

For defining a suitable approximation, we observe that, in order to be relevant
for animation results, a reference to a new object needs to be (i) the value of an
output parameter, (ii) a value of a modified attribute of an object existing before
the operation call, or (iii) a value of an attribute of a freshly created object.

We can approximate the set of classes for which new instances need to be
created by analyzing for which types of objects these cases can occur. In order to
limit the impact of case (iii), we demand that attributes of a freshly created object
are assigned null when this is possible without compromising satisfiability of the

110 Chapter 8. Animation of Operation Contracts

operation contract. This is the case when the multiplicity lower bound of the
attribute is zero and the attribute is not referenced by any constraint considered
during animation.

Let T denote the set of classes for which new instances may be created and
C be the set of constraints considered for animation. The observations above
yield that the following conditions on T and C are sufficient for ensuring correct
animation.

1. Every postcondition belongs to C.

2. If a modifies only clause lists an attribute a, then every invariant referencing
a belongs to C.

3. Every invariant of a class in T belongs to C.

4. If a class t is the type of an out-parameter of the operation or a subtype of
the parameter’s type, then t ∈ T . This corresponds to case (i) above.

5. If a modifies only clause lists an attribute a, then every class t which is the
type of a or a subtype of the type of a belongs to T . This corresponds to
case (ii) above.

6. For every attribute a of a class in T , if a is referenced by a constraint in C
in the post-state or a does not have a multiplicity lower bound of zero, then
every class t which is the type of a or a subtype of the type of a belongs to
T . This condition corresponds to case (iii) above.

The smallest sets T and C that satisfy these conditions can easily be found
by a closure computation. We initialize T and C to empty sets and augment the
sets according to the conditions until a fixed point is reached.

When performing preliminary constraint analysis on the operation contract
in Figure 8.2, the set C of constraints to consider consists of the two postcon-
ditions, since the specification does not define any invariants. The set T is set
to {Employee, Customer} according to Condition 5. The class Company is added
to T by Condition 6 because the association end company of class Employee does
not have a multiplicity lower bound of zero, and the procedure terminates with

T = {Employee, Customer, Company} .

Thus, no new instances of class Skill need to be created in the post-state. Hence,
even if the example invariant given at the beginning of this section is included in
the specification, it would not need to be considered during animation. However,
if the invariant was defined for the class Company instead of Skill, it would be
added to the set C by Condition 3.

8.2. Execution of Animation 111

8.2.2 Translating OCL Expressions to Arithmetic Formu-
las with Bounded Quantifiers

We describe how OCL expressions can be translated to nested tuples of the arith-
metic formulas with bounded quantifiers defined in Section 5.1. For animating
an operation, we translate the postconditions of the operation and all relevant
invariants1 to arithmetic constraints. The conjunction of the resulting formulas
expresses the condition that must be satisfied when the operation returns.

Representing OCL expressions of type Integer by arithmetic terms is straight-
forward; we cope with undefinedness in OCL separately (see below). Similarly,
OCL expressions of type Boolean can be compiled directly to formulas.

Expressions whose type is a class are mapped to a pair (t1, t2) of arithmetic
terms, where t1 describes the dynamic type of the object which is the expression
value. For this purpose, we assign an integer to every non-abstract class in the
model. Note that due to subtyping t1 can become quite complex. The second
term t2 gives an identifier of the object.

An expression of a collection type is mapped to the comprehension

〈t1 ≤ x ≤ t2 | p(x) • E(x)〉 , (8.1)

where x is a variable, t1 and t2 are terms, p(x) is a formula and E(x) is itself an
encoding of an OCL expression whose type is the element type of the collection.
The terms t1 and t2 are the lower and upper bound of the variable x. As indicated
by the notation, x may occur in p(x) and E(x). For every integer i between t1
and t2, the value described by E(i) belongs to the collection iff p(i) is true. Here
we denote by p(i) and E(i) the formula p(x) and the encoding E(x), respectively,
with i substituted for x.

Collection operations are translated by manipulating the tuple that repre-
sents the collection expression. For example, a select operation on a collection
represented by a comprehension of the form (8.1) is translated by conjoining the
body of the select construct with the predicate p(x). A collect operation can
be translated by substituting E(x) by the body of the collect construct.

For expressing undefined values, we add to every translation of an OCL ex-
pression e two formulas invalide and nulle such that e evaluates to invalid iff
invalide is true, and to null iff nulle ∧ ¬invalide is true.

There are a limited number of OCL language features like recursive operations
and real numbers that we do not support due to the effort required to encode
them using this kind of framework.

We show how the translation is derived for the first postcondition
allCustomersAssigned of the operation contract in Figure 8.2. We adhere to
the OCL convention that the variable holding the object the operation is called
on is named self. We assign the integer 0 to the class Company and introduce the

1These are the constraints in the set C defined in Section 8.2.1.

112 Chapter 8. Animation of Operation Contracts

function symbol fself in order to translate the self variable of type Company to
the term pair (0, fself). Note that self is the implicit source of the attribute
call employees@pre in this postcondition. We assign the integer 1 to the class
Employee and introduce the 0-1-valued function symbol femployees with arity
four for representing a characteristic function that indicates whether an Employee

object is associated with a Company object in the pre-state. The function symbol
fEmployee represents the number of Employee instances in the pre-state.2 Thus,
the expression employees@pre of type Set can be translated to the comprehension

〈

0 ≤ x ≤ fEmployee − 1 | femployees (0, fself, 1, x) = 1 • (1, x)
〉

.

We use the 0-1-valued function symbols fnull(customer) and f ′
null(customer) for

indicating whether the values of the attribute customer are null in the pre- and
post-state, respectively. Thus, the translation of the expression

employees@pre->select(customer@pre.oclIsUndefined()

and not customer.oclIsUndefined())

becomes

〈

0 ≤ x ≤ fEmployee − 1 | p(x) • (1, x)
〉

with

p(x) := femployees (0, fself, 1, x) = 1

∧ fnull(customer) (1, x) = 1 ∧ ¬f ′
null(customer) (1, x) = 1.

We assign the integer 2 to the class Customer and introduce the function sym-
bol f ′

customer with arity two for representing a function which maps Employee
instances to identifiers of the associated Customer objects in the post-state. As
a result, applying the collect construct with body expression customer to this
source yields the translation

〈

0 ≤ x ≤ fEmployee − 1 | p(x) • (2, f ′
customer (1, x))

〉

with the same formula p(x) as in the previous comprehension.
Using the function symbol fnewCustomers as characteristic function for the

set-valued parameter newCustomers and applying the same translation scheme as
above for this expression gives us the comprehension

〈0 ≤ x ≤ fCustomer − 1 | fnewCustomers (2, x) = 1 • (2, x)〉

2Since the class Employee belongs to the set T of classes for which new instances may need
to be created for animation, a separate function symbol would be necessary for representing
the number of instances of this class in the post-state.

8.3. Experimental Results 113

Based on these translations, we obtain the following formula that expresses that
all elements of newCustomers belong to the collection on the left-hand side of the
equality:

∀ 0 ≤ x ≤ fCustomer − 1 .

fnewCustomers (2, x) = 1

=⇒ ∃ 0 ≤ y ≤ fEmployee − 1 . p(y) ∧ x = f ′
customer (1, y) .

In order to translate the entire equality, we only need to conjoin an analogous
formula for the containment in the other direction.

8.3 Experimental Results

We evaluated the efficiency of OCLexec by animating the operation contract of
Figure 8.2 in system states of increasing size. Specifically, these are states with
a number n of Employee and Customer objects, respectively, and ⌊log2 n⌋ Skill

objects. Employees and customers are associated independently to every skill
with probability 1/2. This achieves that every subset of skills is quite likely to be
associated with at least one employee or customer, which favors conflicts between
the different actors. Similarly, an employee lists every customer as preferred with
probability 1/2.

Customers Employees Skills Runtime

5 5 2 0.4 sec
10 10 3 0.5 sec
20 20 4 0.8 sec
30 30 4 2.2 sec
40 40 5 23 sec
50 50 5 78 sec

Table 8.1: Runtime required for animating the operation contract of Figure 8.2

The results of the evaluation are shown in Table 8.1. The measurements were
performed on a machine with 2 GB RAM and a dual-core 2.4 GHz P8600 mobile
CPU. The SAT solver used was MiniSat [63], a well-known state-of-the-art SAT
solver.

We note that for states with up to 20 employees and customers, animation is
efficient enough for certain applications like prototyping. States of this size al-
ready include many interesting application scenarios. However, for larger states
the time consumed increases quickly, and animation becomes infeasible. These
runtimes may seem disappointing, considering that a polynomial-time algorithm
exists for the stable marriage problem. Note that the number of generated
Boolean constraints grows faster than linearly in the number of employees and
customers, due to e.g., the nested quantifiers in the specification. Also recall

114 Chapter 8. Animation of Operation Contracts

Operation n = 3 n = 5 n = 7 n = 10 n = 15 n = 20

getBalancedCompilationJobs(2) 3.0 3.0 50 >1000 >1000 >1000
getOrderedCompilationJob() 2.5 12 37 >1000 >1000 >1000
getIndependentCompilationJobs() 3.0 9 10 140 >1000 >1000
getCompilationOrder()

(input cyclic)
1.0 1.0 1.0 1.5 1.5 >1000

getCompilationOrder()

(input acyclic)
1.0 1.0 1.0 1.5 1.5 >1000

Table 8.2: Runtime (in seconds) required for animating the specification in Sec-
tion 6.3

context Project::getCompilationOrder(): OrderedSet(CompilationUnit)

post allUnitsReturned: (not result->isEmpty())

implies

result->asSet() = compilationUnits@pre

post resultSorted:

(not result->isEmpty())

implies

Sequence{2..result->size()}

->forAll(i | Sequence{1..i-1}

->forAll(j | result->at(j).dependsOn@pre

->excludes(result->at(i))))

minimize: if result->isEmpty() then 1 else 0 endif

modifies only: nothing

Figure 8.4: “Tuned” variant of the operation contract in Figure 6.5

that we are processing a high-level specification in a relatively general-purpose
language.

We also evaluated OCLexec on the specification presented in Section 6.3 with
random inputs. When generating an input with n compilation units, we added
every possible dependency between compilation units with probability 0.1/n, so
it was sufficiently unlikely that a cyclic dependency graph was generated. File
sizes were sampled uniformly between 0 and 10000. Unfortunately, our over-
approximation scheme was not able to identify optimal solutions for any of the
operations, so user-defined timeouts were necessary for animating these opera-
tions. Table 8.2 shows the total execution times for animating the operations
obtained by adding the best attainable value of the objective function as an
additional postcondition.

In order to evaluate our approach to over-approximation, we modified the
contract of the operation getOrderedCompilationJob as shown in Figure 8.4.

8.4. Related Work 115

The modified contract returns a sequence of compilation units directly rather
than returning an object holding this sequence. Cyclic dependency graphs are
indicated by returning an empty sequence. Over-approximation succeeds for this
modified contract, which we animated with dependencies added with probability
10/n, so the dependency graph very likely had a cycle. Table 8.1 shows the time
required to determine that 1 is the optimal value of the objective function and the
operation can return an empty result. The table also shows the time consumed
by animating the modified contract when processing the acyclic graphs used for
animating the other contracts, which are essentially identical to the runtimes
for animating the cyclic dependency graphs with the same number of vertices.
We note that animation of the modified contract in Figure 8.4 is more efficient
than the original contract in Figure 6.5. The reason may be that, in contrast to
the original contract, the modified contract does not specify the creation of new
objects.

8.4 Related Work

There has been constant interest in animation as a research problem. Work on
animation has focused particularly on the specification languages Z [62, 147, 77]
and B [20, 134, 107]. Pioneering work on animating OCL can be found in [122, 76].

Animators for operation contracts have also been implemented, for example,
for the specification language JML [19, 99, 44]. These animators for JML do
not use SAT solving like OCLexec does, but rely on other constraint solving
techniques. They are automatic in the sense that they do not explicitly require
the user to provide additional information such as bounds. However, they cannot
handle certain constraints. Specifically, the JML-TT animator [19] lacks support
for quantifiers, which severely restricts the class of specifications it can process.
The jmle animator [99, 44] works by generating a prototype implementation in
Java, as does OCLexec, and throws an exception at runtime for certain constraints
it cannot handle. In contrast, OCLexec identifies unsupported constraints at
compile-time, and an operation implementation generated by OCLexec always
terminates successfully if valid operation results exist. A recent animator that
uses a SAT solver is Squander [112], which animates operation contracts in a
tailored specification language.

The power available through SAT solvers as constraint solving engines has
long been recognized. Alloy [86], NP-SPEC [41], answer set programming sys-
tems (e.g., smodels [117]) and SAT-based CSP solvers (see e.g., [140]) are tools
that process constraint languages using SAT solvers or similar search techniques.
These languages avoid constructs that are difficult to encode in Boolean con-
straints, like multisets and nested collections which are available in OCL, and
usually require narrow bounds on integer values that allow for explicit enumer-
ation of the considered integers. As a result, these languages offer an attractive

116 Chapter 8. Animation of Operation Contracts

trade-off between expressiveness and efficiency. This comes at a price: since these
languages are not tightly integrated into a large-scale language like UML or Java,
developers need to write tedious glue code to interface with the constraint solver.
We view OCLexec as complementary to these tools; after animating an operation
with OCLexec, a developer could seek a more efficient execution of the operation
using such a SAT-based tool. The Alloy annotation language [94] could be re-
garded as an approach to close the gap between Alloy as a constraint language
and Java as a large-scale language.

UML2Alloy [6], UMLtoCSP [40] and USE [71, 103] are tools for analyzing
OCL specifications. They aim to verify or validate certain properties of speci-
fications, which basically amounts to solving the OCL constraints. UML2Alloy
performs a translation to the Alloy language, UMLtoCSP is based on the Eclipse
constraint programming system, and USE employs, among other techniques, the
kodkod constraint solver. All of these tools require the user to specify bounds
to restrict the scope of analysis. Moreover, they do not support modifies only
clauses or objective functions. HOL-OCL [33] is an embedding of OCL into Is-
abelle/HOL and also relies on substantial guidance from the user for most kinds
of analysis. Another tool along these lines is the SQL query explorer Qex [150]
that automatically constructs test cases for databases and is based on a powerful
SMT solver.

Chapter 9

Generating Tests from
Object-Oriented Specifications

In this chapter we present a technique for generating tests from object-oriented
specifications. Its cornerstones are the logical manipulation of OCL expressions
that are embedded into HOL, the systematic exploration of object-oriented datas-
tructures, the analysis of recursive query operations and a representation of object
graph classes by an equivalence relation.

9.1 Running Example: Linked Lists

We present a small OCL specification that will serve as a running example for our
test generation technique. We will also discuss the translation of OCL into HOL
and discuss the implicit invariants of this example. We use the notation intro-
duced in Chapter 7. As additional notation, we define ∂ X ≡ not (X , ⊥) for
marking OCL expressions that are not undefined (not .oclIsInvalid()).

9.1.1 Singly-Linked Lists

Figure 9.1 illustrates our running example of a singly-linked list: the list stores
integers as data and links between nodes are modeled by an association. As a
node does not necessarily need to have a successor, the association end next has
multiplicity 0..1. An invariant of the class states that the integers are stored
in a descending order in the list. We specify an operation insert that adds an
integer to the list. The postcondition of the insert operation states that the
set of integers stored in the list in the post-state is the set of stored integers in
the pre-state extended by the argument. For defining the set of integers stored
in the list, we separately specify the recursive query operation contents().

In the sequel, we will describe how to build the context Γτ from this OCL
specification. We will add semantic presentations of the specification to Γτ which

117

118 Chapter 9. Object-Oriented Tests

context Node

inv: next <> null implies i > next.i

context Node::contents():Set(Integer)

post: result = if next = null

then Set{i}

else next.contents()->including(i)

context Node::insert(x:Integer)

post: contents() = contents@pre()->including(x)

Node

i:Integer

contents():Set(Integer)
insert(x:Integer)

next0..1

Figure 9.1: A Singly-linked list specified in OCL (excerpt)

are already in a “massaged format” suitable for test generation. Since the transi-
tion is not changing in the rest of this paper, we will assume one global transition
τ (understood to be relative to the specification of this example); we will drop
the index and abbreviate τ � φ to just � φ. In our test generation approach, we
assume that all diagrammatic constraints over the class model are represented as
OCL expressions (for details, see [74]). For example, associations are represented
by collection-valued class attributes together with OCL constraints expressing
the multiplicity.

9.1.2 Translating Invariants into Recursive HOL Predi-
cates

The example in Figure 9.1 only includes one explicit invariant. The multiplicity
constraints in the class model constitute invariants semantically. For our example,
the multiplicity constraints could be expressed as follows in OCL:

inv: (next = null or next <> null) and i <> null

In the sequel, we will assume that attributes and arguments that have a primitive
type (e. g., Integer) have a multiplicity of 1..1, i. e., they cannot be null.
Thus we can simplify the invariant representing the multiplicity constraints to:

inv: (next = null or next <> null)

This simplification improves the readability of the formulas and is not a funda-
mental restriction of our approach.

For our purposes it will be convenient to convert invariants to recursive pred-
icates and add them to Γ, paving the way for the exploration of input parameters
by simply unfolding them rather than making them, based on the definition (7.1),
lengthy arguments over .allInstances(). Of course, not any recursive pred-
icate is consistent; however these recursive predicates can be derived from the
invariants by using a greatest fixed-point construction and proving that the body
of the invariant is monotone—the reader interested in the details is referred to

9.2. Test Generation 119

HOL-OCL [32] where this is done automatically (albeit for OCL 2.0, i. e., without
null). The invariant of the Node class can be expressed as follows in HOL.

∀ self. � ∂ self ∧ � self 6
.
= null → � invNode(self)

⇐⇒ � self.next
.
= null ∨ (� self.next 6

.
= null

∧ � self.i > self.next.i ∧ � invNode(self.next))

Additionally to this recursive predicate, we add to Γ the fact that any non-null
object that is not undefined will satisfy this invariant:

∀ self. � ∂ self ∧ � self 6
.
= null → � invNode(self)

Our recursive definitions are a conjunction of the explicit invariant and the mul-
tiplicity constraints of our example. The invariant invNode @pre expresses well-
formedness in a pre-state:

∀ self. � ∂ self ∧ � self 6
.
= null

→ � invNode@pre(self) ⇐⇒ � self.next@pre
.
= null

∨ (� self.next@pre 6
.
= null ∧ � invNode@pre(self.next@pre)

∧ � self.i@pre > self.next@pre.i@pre)

9.1.3 Translating Contracts into HOL

Given the fact that � (true)pre just collapses to true, the formulas that we add
to Γ is the straight-forward simplification of the semantics rule (7.2):

∀ self. ∆(self) → � self.contents() ,

if self.next
.
= null then Set{i}

else self.next.contents()->including(i)

∧ ¬∆(self) → � self.contents() , ⊥

where ∆(self) is a short-cut for � ∂ self ∧ � self 6
.
= null. The variant

for contents@pre() reads as follows:

∀ self. ∆(self) → � self.contents@pre() ,

if self.next@pre
.
= null then Set{i}

else self.next@pre.contents@pre()->including(i)

∧ ¬∆(self) → � self.contents@pre() , ⊥

9.2 Test Generation

We follow the classical approach of transforming the test specification into a DNF,
extended by the treatment of invariants and recursive definitions, which corre-
sponds to a case distinction that partitions the input space of the operation(s).

A particular class of case distinctions arises from aliasing ; i. e., the fact that
two object references can designate the same object, e. g., s.next.next may in

120 Chapter 9. Object-Oriented Tests

fact be identical to s due to a cycle in the object graph. Aliasing is a crucial phe-
nomenon in object-oriented systems. It is likely that a system behaves differently
depending on the aliasing relationships among the objects it handles. Therefore
we will add further case distinctions to the specification under analysis that dis-
tinguish different aliasing relationships. We will refer to this transformation as
alias closure.

9.2.1 Unfolding

For generating a set of test cases, we start with the test specification stating that
the operation call s.insert(x) is executed successfully. This test specification
amounts to the translation of the postcondition to HOL, restricted to the part
where s is not undefined and not null:

∆(s,x) ∧ � s.contents()
.
= s.contents@pre()->including(x)

This test specification does not show any explicit case distinctions. Rather, the
case distinctions are hidden in the recursive specification of contents().

The invariants over the different arguments of the operation (including s)
must be taken into account for the generation of relevant test cases. In our
example, only ordered lists can occur in pre-states and post-states of the insert
operation. Adding these invariants as constraints over the pre-states or post-
states reduces the number of test cases derived from the test specification by
removing as many non-satisfiable clauses as possible before the test data selection.
Because of the facts contained in Γ, we obtain:

∀ self. � ∂ self ∧ � self 6
.
= null → � invNode(self)

These invariants can be inserted at any time during the unfolding process.
For instance, we can already insert the invariant for the pre-states and post-

states of the insert operation, knowing that s is not undefined and not null:

∆(s,x) ∧ � invNode@pre(s) ∧ � invNode(s)
∧ � s.contents()

.
= s.contents@pre()->including(x)

To enrich this condition with explicit case distinctions, we unfold the operation
calls and invariants by replacing them with their specification: an operation call
will be replaced with its contract and an invariant with its definition, which is
allowed here since we have ∆(s, x). For the sake of readability, we do not replace
the contents operation calls directly with their contract but rather conjoin the
contract with the existing formulas. We obtain the following conditions:

∆(s,x)
∧ (� s.next@pre

.
= null

∨ (� s.next@pre 6
.
= null

∧ � s.i@pre > s.next@pre.i@pre ∧ � invNode@pre(s.next@pre)))
∧ (� s.next

.
= null

∨ (� s.next 6
.
= null ∧ � s.i > s.next.i ∧ � invNode(s.next)))

9.2. Test Generation 121

∧ � s.contents()
.
= s.contents@pre()->including(x)

∧ � s.contents() , if s.next
.
= null then Set{s.i}

else s.next.contents()->including(s.i)

∧ � s.contents@pre() ,

if s.next@pre
.
= null then Set{s.i@pre}

else s.next@pre.contents@pre()->including(s.i@pre)

A second refinement step could be performed by unfolding the invariants and the
operation calls a second time: we could insert the invariant definitions again and
instantiate the operation contract for the contents operation with s.next

(correspondingly for the pre-state).
The unfolding process and invariant insertion can be stopped at any time, once

the refinement is sufficient according to the tester’s needs. Then, the DNF of the
obtained formula is generated to enumerate the different test cases coming from
case distinction. The DNF obtained for the previous formula is the following,
leading to four clauses distinguishing whether s.next and s.next@pre are
null.

(∆(s, x)
∧ � s.next

.
= null

∧ � s.next@pre
.
= null

∧ � s.contents()
.
= s.contents@pre()->including(x)

∧ � s.contents() , Set{s.i}

∧ � s.contents@pre() , Set{s.i@pre})

∨ (∆(s, x)
∧ � s.next 6

.
= null ∧ � s.i > s.next.i ∧ � invNode(s.next)

∧ � s.next@pre
.
= null

∧ � s.contents()
.
= s.contents@pre()->including(x)

∧ � s.contents() , s.next.contents()->including(s.i)

∧ � s.contents@pre() , Set{s.i@pre})

∨ (∆(s, x)
∧ � s.next

.
= null

∧ � s.next@pre 6
.
= null ∧ � s.i@pre > s.next@pre.i@pre

∧ � invNode@pre(s.next@pre)
∧ � s.contents()

.
= s.contents@pre()->including(x)

∧ � s.contents() , Set{s.i}

∧ � s.contents@pre() , s.next@pre.contents@pre()

->including(s.i@pre))

∨ (∆(s, x)
∧ � s.next 6

.
= null ∧ � s.i > s.next.i ∧ � invNode(s.next)

∧ � s.next@pre 6
.
= null ∧ � s.i@pre > s.next@pre.i@pre

∧ � invNode@pre(s.next@pre)
∧ � s.contents()

.
= s.contents@pre()->including(x)

∧ � s.contents() , s.next.contents()->including(s.i)

∧ � s.contents@pre() , s.next@pre.contents@pre()

122 Chapter 9. Object-Oriented Tests

->including(s.i@pre))

The first case boils down (due to constant propagation and set reasoning) to:

∆(s, x) ∧ � s.next
.
= null ∧ � s.next@pre

.
= null

∧ � s.i , s.i@pre ∧ � s.i , x

All other cases still contain invariant applications like � invNode(s.next). The
derivation

∆(s, x)
∧ � s.next 6

.
= null ∧ � s.i > s.next.i ∧ � invNode(s.next)

∧ � s.next@pre
.
= null

∧ � s.next.contents()->including(s.i)
.
= Set{s.i@pre}

->including(x)

for the second case expands to:

(∆(s, x)
∧ � s.next 6

.
= null ∧ � s.i > s.next.i ∧ � s.next.next

.
= null

∧ � s.next@pre
.
= null

∧ � s.next.contents()->including(s.i)
.
= Set{s.i@pre}

->including(x))

∨ (∆(s, x)
∧ � s.next 6

.
= null ∧ � s.i > s.next.i

∧ � s.next.i > s.next.next.i ∧ � s.next.next 6
.
= null

∧ � invNode(s.next.next)
∧ � s.next@pre

.
= null

∧ � s.next.contents()->including(s.i)
.
= Set{s.i@pre}

->including(x))

While the second sub-case is unsatisfiable since it asserts that the insertion in-
creases the list length by two, the first sub-case reduces to:

∆(s, x)
∧ � s.next 6

.
= null ∧ � s.i > s.next.i ∧ � s.next.next

.
= null

∧ � s.next@pre
.
= null

∧ � Set{s.next.i}->including(s.i)
.
= Set{s.i@pre}

->including(x)

which, due to set reasoning, corresponds to a test case in which the inserted
element x is not already in the list. The test cases still containing an occurrence
of the invariance predicate correspond to the class of “yet to be tested” test cases.

9.2.2 Alias Closure

Unfolding and invariant insertion represent only a first step of the exploration of
the specification by case distinction. There is another implicit case distinction
that needs to be considered, since the two references s and s.next could actually
refer to the same object, due to a cycle in the object graph. We should thus

9.3. Implementation in HOL-TestGen 123

distinguish the cases s.next , s and s.next 6, s. Analogously, we should
distinguish the cases s.next@pre , s and s.next@pre 6, s.

To handle these four cases during test generation, we add the following tau-
tology, called alias distinction, to the unfolding of our test specification:

(� s.next , s ∨ � s.next 6, s)

∧ (� s.next@pre , s ∨ � s.next@pre 6, s)

In the cases s.next , s and s.next@pre , s, the invariants evalu-
ate to false due to the strict inequality, thus only the cases s.next 6, s and
s.next@pre 6, s remain. Computing the DNF in our example leads to al-
most the same formula as in the previous subsection, where � s.next 6, s ∧
� s.next@pre 6, s is added to each conjoint.

In the general case, the alias closure of a formula is the conjoint of the tautolo-
gies p , q ∨ p 6, q for all the references p and q occurring in the formula.
Formally, let Path(ϕ) be the set of path-expressions (references) occurring in a
formula ϕ. We define AliasClosure(ϕ) as the set of formulas

{ p , q ∨ p 6, q | p, q ∈ Path(ϕ) ∧ p non-identical to q }

This produces all possible objects graphs.

9.3 Implementation in HOL-TestGen

Using the interface for test generation rules presented in Chapter 3, we defined
test generation rules for alias closure as well as for unfolding invariants and re-
cursive functions. We do not show their definition here since it is very technical.
For carrying out alias closure, references can be identified by means of their type.

To prepare our test specification

∆(s,x) ∧ � s.contents()
.
= s.contents@pre()->including(x)

for HOL-TestGen, we define functions contents and contents at pre that take the
respective state as an explicit argument. The insert operation can be modeled
as a function post state that takes a pre-state as well as the argument to the
operation and yields the post-state returned by the operation. This results in the
following test specification that can be processed by HOL-TestGen:

inv pre state s −→ contents (post state pre state x) (Some s)

= contents at pre pre state (Some s) ∪ {x}

The precondition inv pre state s stands for the recursive predicate invNode from
Section 9.1.2 applied to s in the pre-state. The function post state is designated
to be treated by HOL-TestGen as the program under test.

We executed HOL-TestGen with an unfolding depth of two to this test spec-
ification. Applying the SMT solving techniques presented in Section 4.3 yielded

124 Chapter 9. Object-Oriented Tests

concrete pre-states, object identifiers for s and integer arguments x to insert
that constitute test cases. For example, one such test case was described by a
pre-state given as the lambda expression

((λ . Some (Node 0 None))(2 7→ Node 1 (Some 3))

together with the object identifier 2 for the s reference. As can be seen from eval-
uating the lambda expression on this object identifier and the successor identifier
3, this test input corresponds to the list [1, 0].

9.4 Related Work

UML models and OCL constraints can be used for testing in various ways [131].
There have been several proposals for test generation from UML/OCL models,
however, none of them is based on the three-valuedness of OCL. The most closely
related publications [148, 2, 153] are all inspired by the seminal work of [61] and,
thus, share the idea of using symbolic DNF computation for partitioning the
input space. Moreover, sequence diagrams have been used an input for test
generation, e. g., [108]. Pairwise testing of OCL contracts has been proposed in
e. g., [121]. Finally, [72] applies random testing techniques to the analysis of OCL
specifications.

A well known tool for generating tests from object-oriented specifications is
Spec Explorer [149]. Spec Explorer processes Spec# specifications and is based on
the traversal of finite state machines. TestEra [93] is another tool that generates
object-oriented tests from preconditions in the Alloy language. The precondi-
tion is mapped to a Boolean satisfiability problem, and a SAT solver is used
to enumerate all solutions. Each solution is interpreted as a test case. A dif-
ficulty inherent in this approach is that in general, the same test case may be
represented by different solutions to the satisfiability problem, depending on the
Boolean encoding used. Thus, a particular Boolean encoding has to be chosen,
and additional constraints that enforce the uniqueness of test cases may be nec-
essary. In contrast, in our approach test cases are identified by monomes of the
DNF, independent from any encoding possibly used for constraint solving.

Chapter 10

Conclusion

10.1 Summary

Both test generation and animation are valuable techniques for software devel-
opment. We presented novel approaches to these tasks. We described new fun-
damental techniques for constraint solving and test derivation as well as their
application to concrete testing and animation scenarios.

Constraint solving is essential to both test generation and animation. Ran-
dom solving techniques have been used for a long time for generating tests for
functional programs. However, SMT solving can be substantially more efficient
for a large class of constraints. We showed how counterexamples returned from
SMT solvers can be used for solving constraints in the test generation tool HOL-
TestGen that is based on the Isabelle theorem prover. A counterexample is
interpreted and transformed to an Isabelle theorem that expresses a solution
to the constraint. Recursive functions in constraints are unavoidable since re-
cursive functions are an essential feature of HOL, the language processed by
HOL-TestGen. Although constraints with recursive functions are in general un-
decidable, we show how under-approximation can yield decidable constraints. We
demonstrated how Isabelle’s support for user interaction can be used to further
extend the class of constraints that can be handled with SMT solvers within
Isabelle.

For solving constraints that arise when animating OCL specifications, we pro-
pose to represent the constraints as arithmetic formulas with bounded quantifiers.
The language of arithmetic formulas with bounded quantifiers is very expressive,
and most OCL language constructs can be mapped conveniently to it. As further
benefit, constraints expressed as arithmetic formulas with bounded quantifiers
can be solved using an eager SMT approach in a straightforward and efficient
manner. We also showed how an objective function can be taken into account
when solving this kind of constraints.

For test derivation, we presented an approach based on modular test deriva-

125

126 Chapter 10. Conclusion

tion rules. We showed how the common steps for test derivation within a theorem
prover can be united in a kernel, while test derivation rules that are tailored to
specific types of data and specifications are provided by pluggable modules. We
outlined an implementation of this architecture in tactical code.

Furthermore, we presented applications of these novel fundamental techniques
to concrete testing and animation scenarios. We defined tailored test deriva-
tion rules for generating tests from object-oriented specifications with recursive
functions. These rules unfold recursive functions and enumerate object graphs
systematically.

For animation, we presented an efficient as well as fully automatic approach
to the animation of OCL operation contracts. It is implemented in the tool
OCLexec that generates from OCL operation contracts corresponding Java im-
plementations which call a constraint solver at runtime. We showed how most
OCL constraints can be expressed by arithmetic formulas with bounded quanti-
fiers. The addition of objective functions to OCL operation contracts makes the
animation of OCL operation contracts much more useful. Case studies demon-
strate that our animation approach can handle problem instances of considerable
size. For implementing tool support for OCL, a precise semantics of OCL is es-
sential. We clarified the semantics of undefined values in OCL by extending an
embedding of OCL into HOL that was initiated by the “HOL-OCL” project.

10.2 Future Work

The implementation of tools is a time-consuming activity, and thus it is natural
that many desirable enhancements remain to be carried out. Here we list some
of these possible targets for future work on test generation and animation:

• An asset of HOL-TestGen is the explicit representation of test hypotheses.
However, for all but the smallest test suites, the generated test hypotheses
are too numerous to be comprehensible when examined manually. It would
be interesting to seek well-formedness rules for test hypotheses which give
further assurance that a good test coverage has been achieved.

• An integration of the HOL-OCL [33] system with HOL-TestGen could pro-
vide further support for test generation from OCL specifications. The trans-
lation of OCL constraints to HOL presented in Chapter 9 was carried out
manually, although the necessary semantic theory is available.

• It is plausible that symmetry breaking could improve the efficiency of ani-
mation. Symmetries in post-states arise when animation creates new class
instances, for example when animating the contracts in Chapter 6. There
is a large amount of literature on symmetry breaking for constraint solving,
see [144] for an approach that is targeted at object-oriented structures.

10.2. Future Work 127

• In order to make tool support for the animation of OCL operation contracts
useful in practice, it must be integrated into a complete modeling toolchain.
Such a toolchain must in particular provide support for editing operation
contracts, including invariability clauses and objective functions.

128 Chapter 10. Conclusion

Bibliography

[1] General algebraic modeling system (GAMS). http://www.gams.com.

[2] B. K. Aichernig and P. A. P. Salas. Test case generation by OCL mutation
and constraint solving. In QSIC, pages 64–71. IEEE Computer Society,
2005.

[3] D. H. Akehurst, S. Zschaler, and W. G. J. Howells. OCL: Modularising the
language. ECEASST, 9, 2008.

[4] E. Alkassar, N. Schirmer, and A. Starostin. Formal pervasive verification
of a paging mechanism. In Ramakrishnan and Rehof [129], pages 109–123.

[5] S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: A symbolic execution
extension to Java PathFinder. In Grumberg and Huth [79], pages 134–138.

[6] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A chal-
lenging model transformation. In G. Engels, B. Opdyke, D. C. Schmidt,
and F. Weil, editors, MoDELS, volume 4735 of Lecture Notes in Computer
Science, pages 436–450. Springer, 2007.

[7] D. Aspinall. Proof general: A generic tool for proof development. In S. Graf
and M. I. Schwartzbach, editors, TACAS, volume 1785 of Lecture Notes in
Computer Science, pages 38–42. Springer, 2000.

[8] J. Avigad, K. Donnelly, D. Gray, and P. Raff. A formally verified proof of
the prime number theorem. ACM Trans. Comput. Log., 9(1), 2007.

[9] M. Barnett, K. Leino, and W. Schulte. The Spec# programming sys-
tem: An overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, volume 3362 of Lecture Notes in Computer
Science, pages 49–69. Springer Berlin / Heidelberg, 2005.

[10] R. Bayer. Symmetric binary B-trees: Data structure and maintenance
algorithms. Acta Inf., 1:290–306, 1972.

129

130 Chapter 10. Conclusion

[11] S. Berghofer and T. Nipkow. Executing higher order logic. In P. Callaghan,
Z. Luo, J. McKinna, and R. Pollack, editors, TYPES, volume 2277 of Lec-
ture Notes in Computer Science, pages 24–40. Springer, 2000.

[12] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In SEFM,
pages 230–239. IEEE Computer Society, 2004.

[13] G. Bernot, M. C. Gaudel, and B. Marre. Software testing based on formal
specifications: a theory and a tool. Softw. Eng. J., 6:387–405, November
1991.

[14] D. L. Berre and A. Parrain. The Sat4j library, release 2.2. JSAT, 7(2-3):59–
64, 2010.

[15] J. Blanchette. Relational analysis of (co)inductive predicates, (co)algebraic
datatypes, and (co)recursive functions. Software Quality Journal.

[16] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In Kaufmann and
Paulson [92], pages 131–146.

[17] S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In
Kaufmann and Paulson [92], pages 179–194.

[18] M. Boshernitsan, R.-K. Doong, and A. Savoia. From daikon to agitator:
lessons and challenges in building a commercial tool for developer testing.
In L. L. Pollock and M. Pezzè, editors, ISSTA, pages 169–180. ACM, 2006.

[19] F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. Symbolic animation
of JML specifications. In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, edi-
tors, FM, volume 3582 of Lecture Notes in Computer Science, pages 75–90.
Springer, 2005.

[20] F. Bouquet, B. Legeard, and F. Peureux. CLPS-B — a constraint solver to
animate a B specification. Int. J. Softw. Tools Tech. Trans., 6(2):143–157,
2004.

[21] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based
on Java predicates. In ISSTA, pages 123–133, 2002.

[22] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van
Rossum, and R. Sebastiani. Efficient theory combination via boolean
search. Inf. Comput., 204(10):1493–1525, 2006.

[23] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff. Verified firewall
policy transformations for test case generation. In ICST, pages 345–354.
IEEE Computer Society, 2010.

10.2. Future Work 131

[24] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff. An approach to
modular and testable security models of real-world health-care applications.
In R. Breu, J. Crampton, and J. Lobo, editors, SACMAT, pages 133–142.
ACM, 2011.

[25] A. D. Brucker, L. Brügger, and B. Wolff. Model-based firewall confor-
mance testing. In K. Suzuki, T. Higashino, A. Ulrich, and T. Hasegawa,
editors, TestCom/FATES, volume 5047 of Lecture Notes in Computer Sci-
ence, pages 103–118. Springer, 2008.

[26] A. D. Brucker, M. P. Krieger, D. Longuet, and B. Wolff. A specification-
based test case generation method for UML/OCL. In J. Dingel and A. Sol-
berg, editors, MoDELS Workshops, volume 6627 of Lecture Notes in Com-
puter Science, pages 334–348. Springer, 2010.

[27] A. D. Brucker, M. P. Krieger, and B. Wolff. Extending OCL with null-
references. In S. Ghosh, editor, MoDELS Workshops, volume 6002 of Lec-
ture Notes in Computer Science, pages 261–275. Springer, 2009.

[28] A. D. Brucker and B. Wolff. Symbolic test case generation for primitive re-
cursive functions. In J. Grabowski and B. Nielsen, editors, FATES, volume
3395 of Lecture Notes in Computer Science, pages 16–32. Springer, 2004.

[29] A. D. Brucker and B. Wolff. Interactive testing with HOL-TestGen. In
W. Grieskamp and C. Weise, editors, FATES, volume 3997 of Lecture Notes
in Computer Science, pages 87–102. Springer, 2005.

[30] A. D. Brucker and B. Wolff. The HOL-OCL book. Technical Report 525,
ETH Zurich, 2006.

[31] A. D. Brucker and B. Wolff. Test-sequence generation with HOL-TestGen
with an application to firewall testing. In Y. Gurevich and B. Meyer, edi-
tors, TAP, volume 4454 of Lecture Notes in Computer Science, pages 149–
168. Springer, 2007.

[32] A. D. Brucker and B. Wolff. An extensible encoding of object-oriented data
models in hol. J. Autom. Reasoning, 41(3-4):219–249, 2008.

[33] A. D. Brucker and B. Wolff. Semantics, calculi, and analysis for object-
oriented specifications. Acta Inf., 46(4):255–284, 2009.

[34] A. D. Brucker and B. Wolff. On theorem prover-based testing. Formal
Aspects of Computing, 2011. To appear.

[35] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for
bit-vectors and arrays. In S. Kowalewski and A. Philippou, editors,

132 Chapter 10. Conclusion

TACAS, volume 5505 of Lecture Notes in Computer Science, pages 174–
177. Springer, 2009.

[36] R. Brummayer and A. Biere. Effective bit-width and under-approximation.
In R. Moreno-Dı́az, F. Pichler, and A. Quesada-Arencibia, editors, EURO-
CAST, volume 5717 of Lecture Notes in Computer Science, pages 304–311.
Springer, 2009.

[37] R. Brummayer and A. Biere. Lemmas on demand for the extensional theory
of arrays. JSAT, 6(1-3):165–201, 2009.

[38] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani. A lazy and layered SMT(BV) solver for hard
industrial verification problems. In Damm and Hermanns [55], pages 547–
560.

[39] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and
B. A. Brady. An abstraction-based decision procedure for bit-vector arith-
metic. STTT, 11(2):95–104, 2009.

[40] J. Cabot, R. Clarisó, and D. Riera. Verifying UML/OCL operation con-
tracts. In M. Leuschel and H. Wehrheim, editors, IFM, volume 5423 of
Lecture Notes in Computer Science, pages 40–55. Springer, 2009.

[41] M. Cadoli and A. Schaerf. Compiling problem specifications into SAT.
Artif. Intell., 162(1-2):89–120, 2005.

[42] M. Carlier and C. Dubois. Functional testing in the Focal environment. In
B. Beckert and R. Hähnle, editors, TAP, volume 4966 of Lecture Notes in
Computer Science, pages 84–98. Springer, 2008.

[43] M. Carlier, C. Dubois, and A. Gotlieb. Constraint reasoning in FocalTest.
In J. A. M. Cordeiro, M. Virvou, and B. Shishkov, editors, ICSOFT (2),
pages 82–91. SciTePress, 2010.

[44] N. Cataño and T. Wahls. Executing JML specifications of Java card appli-
cations: a case study. In Shin and Ossowski [137], pages 404–408.

[45] A. Chaieb and T. Nipkow. Proof synthesis and reflection for linear arith-
metic. J. Autom. Reasoning, 41(1):33–59, 2008.

[46] P. Chalin and F. Rioux. Non-null references by default in the Java modeling
language. In Proceedings of the 2005 conference on Specification and ver-
ification of component-based systems, SAVCBS ’05, New York, NY, USA,
2005. ACM.

10.2. Future Work 133

[47] J. Christiansen and S. Fischer. Easycheck - test data for free. In J. Garrigue
and M. V. Hermenegildo, editors, FLOPS, volume 4989 of Lecture Notes in
Computer Science, pages 322–336. Springer, 2008.

[48] A. Church. A formulation of the simple theory of types. J. Symb. Log.,
5(2):56–68, 1940.

[49] K. Claessen and J. Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. In ICFP, pages 268–279, 2000.

[50] K. Claessen and N. Sörensson. New techniques that improve MACE-style
finite model finding. In Proc. Wsh. Model Computation — Principles, Al-
gorithms, Applications, Miami, Florida, 2003.

[51] T. Clark and J. Warmer, editors. Object Modeling with the OCL: The
Rationale behind the Object Constraint Language, volume 2263 of Lecture
Notes in Computer Science. Springer, 2002.

[52] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[53] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. The
Amsterdam manifesto on OCL. In Clark and Warmer [51], pages 115–149.

[54] S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2010.

[55] W. Damm and H. Hermanns, editors. Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007,
Proceedings, volume 4590 of Lecture Notes in Computer Science. Springer,
2007.

[56] M. Davis. Hilbert’s Tenth Problem is Unsolvable. The American Mathe-
matical Monthly, 80, 1973.

[57] M. Davis, G. Logemann, and D. W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[58] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Ramakr-
ishnan and Rehof [129], pages 337–340.

[59] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

[60] A. Dick, P. Krause, and J. Cozens. Computer aided transformation of Z
into Prolog. In J. Nicholls, editor, Proc. 4th Z Users Workshop, Workshops
in Computing, pages 71–85, Oxford, 1989. Springer.

134 Chapter 10. Conclusion

[61] J. Dick and A. Faivre. Automating the generation and sequencing of test
cases from model-based specifications. In J. Woodcock and P. G. Larsen,
editors, FME, volume 670 of Lecture Notes in Computer Science, pages
268–284. Springer, 1993.

[62] V. Doma and R. A. Nicholl. EZ: A system for automatic prototyping of Z
specifications. In S. Prehn and W. J. Toetenel, editors, VDM Europe (1),
volume 551 of Lecture Notes in Computer Science, pages 189–203. Springer,
1991.

[63] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia
and A. Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

[64] S. Flake. Towards the completion of the formal semantics of OCL 2.0.
In V. Estivill-Castro, editor, ACSC, volume 26 of CRPIT, pages 73–82.
Australian Computer Society, 2004.

[65] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy
proof explication. In W. A. H. Jr. and F. Somenzi, editors, CAV, volume
2725 of Lecture Notes in Computer Science, pages 355–367. Springer, 2003.

[66] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press, 2002.

[67] A. M. Frisch and P. J. Stuckey. The proper treatment of undefinedness
in constraint languages. In I. P. Gent, editor, CP, volume 5732 of Lecture
Notes in Computer Science, pages 367–382. Springer, 2009.

[68] D. Gale and L. S. Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9–15, 1962.

[69] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays.
In Damm and Hermanns [55], pages 519–531.

[70] Y. Ge and L. M. de Moura. Complete instantiation for quantified formulas
in satisfiabiliby modulo theories. In A. Bouajjani and O. Maler, editors,
CAV, volume 5643 of Lecture Notes in Computer Science, pages 306–320.
Springer, 2009.

[71] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based specification
environment for validating UML and OCL. Sci. Comp. Prog., 69(1–3):27–
34, 2007.

[72] M. Gogolla, L. Hamann, and M. Kuhlmann. Proving and visualizing OCL
invariant independence by automatically generated test cases. In G. Fraser

10.2. Future Work 135

and A. Gargantini, editors, TAP, volume 6143 of Lecture Notes in Computer
Science, pages 38–54. Springer, 2010.

[73] M. Gogolla, M. Kuhlmann, and F. Büttner. A benchmark for OCL engine
accuracy, determinateness, and efficiency. In K. Czarnecki, I. Ober, J.-M.
Bruel, A. Uhl, and M. Völter, editors, MoDELS, volume 5301 of Lecture
Notes in Computer Science, pages 446–459. Springer, 2008.

[74] M. Gogolla and M. Richters. Expressing UML class diagrams properties
with OCL. In Clark and Warmer [51], pages 85–114.

[75] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing
XPath queries. In VLDB, pages 95–106. Morgan Kaufmann, 2002.

[76] J. Gray and S. Schach. Constraint animation using an object-oriented
declarative language. In A. J. Turner, editor, ACM Southeast Regional
Conference, pages 1–10. ACM, 2000.

[77] W. Grieskamp. A computation model for Z based on concurrent constraint
resolution. In J. P. Bowen, S. Dunne, A. Galloway, and S. King, editors,
ZB, volume 1878 of Lecture Notes in Computer Science, pages 414–432.
Springer, 2000.

[78] H. Grönniger, J. O. Ringert, and B. Rumpe. System model-based defini-
tion of modeling language semantics. In D. Lee, A. Lopes, and A. Poetzsch-
Heffter, editors, FMOODS/FORTE, volume 5522 of Lecture Notes in Com-
puter Science, pages 152–166. Springer, 2009.

[79] O. Grumberg and M. Huth, editors. Tools and Algorithms for the Con-
struction and Analysis of Systems, 13th International Conference, TACAS
2007, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007,
Proceedings, volume 4424 of Lecture Notes in Computer Science. Springer,
2007.

[80] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M. Petters. Towards
trustworthy computing systems: taking microkernels to the next level. Op-
erating Systems Review, 41(4):3–11, 2007.

[81] R. Hennicker, A. Knapp, and H. Baumeister. Semantics of OCL operation
specifications. Electr. Notes Theor. Comput. Sci., 102:111–132, 2004.

[82] A. Huima. Implementing conformiq qtronic. In A. Petrenko, M. Veanes,
J. Tretmans, and W. Grieskamp, editors, TestCom/FATES, volume 4581
of Lecture Notes in Computer Science, pages 1–12. Springer, 2007.

136 Chapter 10. Conclusion

[83] H. Hußmann, B. Demuth, and F. Finger. Modular architecture for a toolset
supporting OCL. Sci. Comp. Prog., 44(1):51–69, 2002.

[84] ISO/IEC 13568. Information technology — Z formal specification notation
— Syntax, type system and semantics.

[85] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, 2002.

[86] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[87] D. Jackson and C. Damon. Elements of style: Analyzing a software design
feature with a counterexample detector. In ISSTA, pages 239–249, 1996.

[88] E. Jaffuel and B. Legeard. LEIRIOS test generator: Automated test gen-
eration from B models. In Julliand and Kouchnarenko [90], pages 277–280.

[89] C. Jard and T. Jéron. TGV: theory, principles and algorithms. STTT,
7(4):297–315, 2005.

[90] J. Julliand and O. Kouchnarenko, editors. B 2007: Formal Specification
and Development in B, 7th International Conference of B Users, Besançon,
France, January 17-19, 2007, Proceedings, volume 4355 of Lecture Notes in
Computer Science. Springer, 2006.

[91] JUnit. http://www.junit.org.

[92] M. Kaufmann and L. C. Paulson, editors. Interactive Theorem Proving,
First International Conference, ITP 2010, Edinburgh, UK, July 11-14,
2010. Proceedings, volume 6172 of Lecture Notes in Computer Science.
Springer, 2010.

[93] S. Khurshid and D. Marinov. TestEra: Specification-based testing of Java
programs using SAT. Autom. Softw. Eng., 11(4):403–434, 2004.

[94] S. Khurshid, D. Marinov, and D. Jackson. An analyzable annotation lan-
guage. In OOPSLA, pages 231–245, 2002.

[95] P. W. M. Koopman, A. Alimarine, J. Tretmans, and M. J. Plasmeijer. Gast:
Generic automated software testing. In R. Pena and T. Arts, editors, IFL,
volume 2670 of Lecture Notes in Computer Science, pages 84–100. Springer,
2002.

[96] P. Kosiuczenko. Specification of invariability in OCL. In O. Nierstrasz,
J. Whittle, D. Harel, and G. Reggio, editors, MoDELS, volume 4199 of
Lecture Notes in Computer Science, pages 676–691. Springer, 2006.

http://www.junit.org

10.2. Future Work 137

[97] R. A. Kowalski. The early years of logic programming. Commun. ACM,
31(1):38–43, 1988.

[98] J. Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory.
Cambridge University Press, New York, NY, USA, 1995.

[99] B. Krause and T. Wahls. jmle: A tool for executing JML specifications
via constraint programming. In L. Brim, B. R. Haverkort, M. Leucker, and
J. van de Pol, editors, FMICS/PDMC, volume 4346 of Lecture Notes in
Computer Science, pages 293–296. Springer, 2006.

[100] A. Krauss. Automating Recursive Definitions and Termination Proofs in
Higher-Order Logic. PhD thesis, Technische Universität München, 2009.

[101] M. P. Krieger and A. D. Brucker. Extending OCL operation contracts with
objective functions. ECEASST, 44, 2011.

[102] M. P. Krieger, A. Knapp, and B. Wolff. Automatic and efficient simulation
of operation contracts. In E. Visser and J. Järvi, editors, GPCE, pages
53–62. ACM, 2010.

[103] M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive validation of OCL
models by integrating SAT solving into USE. In J. Bishop and A. Vallecillo,
editors, TOOLS (49), volume 6705 of Lecture Notes in Computer Science,
pages 290–306. Springer, 2011.

[104] S. K. Lahiri and S. A. Seshia. The UCLID decision procedure. In R. Alur
and D. Peled, editors, CAV, volume 3114 of Lecture Notes in Computer
Science, pages 475–478. Springer, 2004.

[105] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller,
J. Kiniry, and P. Chalin. JML reference manual (revision 1.2), Feb. 2007.
Available from http://www.jmlspecs.org.

[106] K. R. M. Leino and R. Monahan. Reasoning about comprehensions with
first-order SMT solvers. In Shin and Ossowski [137], pages 615–622.

[107] M. Leuschel and M. Butler. ProB: An automated analysis toolset for the
B method. Int. J. Softw. Tools Tech. Trans., 10(2):185–203, 2008.

[108] B.-L. Li, Z. shu Li, L. Qing, and Y.-H. Chen. Test case automate generation
from UML sequence diagram and OCL expression. In CIS, pages 1048–1052.
IEEE Computer Society, 2007.

[109] S. Markovic and T. Baar. Semantics of OCL specified with QVT. Software
and System Modeling, 7(4):399–422, 2008.

http://www.jmlspecs.org

138 Chapter 10. Conclusion

[110] B. Marre. LOFT: A tool for assisting selection of test data sets from alge-
braic specifications. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach,
editors, TAPSOFT, volume 915 of Lecture Notes in Computer Science,
pages 799–800. Springer, 1995.

[111] D. C. J. Matthews and M. Wenzel. Efficient parallel programming in
Poly/ML and Isabelle/ML. In L. Petersen and E. Pontelli, editors, DAMP,
pages 53–62. ACM, 2010.

[112] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Unifying execu-
tion of imperative and declarative code. In R. N. Taylor, H. Gall, and
N. Medvidovic, editors, ICSE, pages 511–520. ACM, 2011.

[113] M. Moskal. Programming with triggers. In Proceedings of the 7th Interna-
tional Workshop on Satisfiability Modulo Theories, SMT ’09, pages 20–29,
New York, NY, USA, 2009. ACM.

[114] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In DAC, pages 530–535. ACM, 2001.

[115] G. Myers. The art of software testing. Business data processing. Wiley,
1979.

[116] G. Nelson and D. C. Oppen. Simplification by cooperating decision proce-
dures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[117] I. Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273, 1999.

[118] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory prop-
agation and its application to difference logic. In K. Etessami and S. K.
Rajamani, editors, CAV, volume 3576 of Lecture Notes in Computer Sci-
ence, pages 321–334. Springer, 2005.

[119] T. Nipkow, G. Bauer, and P. Schultz. Flyspeck I: Tame graphs. In U. Fur-
bach and N. Shankar, editors, IJCAR, volume 4130 of Lecture Notes in
Computer Science, pages 21–35. Springer, 2006.

[120] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[121] S. Noikajana and T. Suwannasart. An improved test case generation
method for web service testing from WSDL-S and OCL with pair-wise test-
ing technique. In S. I. Ahamed, E. Bertino, C. K. Chang, V. Getov, L. Liu,
H. Ming, and R. Subramanyan, editors, COMPSAC (1), pages 115–123.
IEEE Computer Society, 2009.

10.2. Future Work 139

[122] I. Oliver and S. Kent. Validation of object oriented models using animation.
In EUROMICRO, pages 2237–. IEEE Computer Society, 1999.

[123] UML 2.0 OCL specification, Oct. 2003. Available as OMG document
ptc/03-10-14.

[124] UML 2.0 OCL specification, Apr. 2006. Available as OMG document
formal/06-05-01.

[125] UML 2.2 OCL specification, Feb. 2010. Available as OMG document
formal/2010-02-01.

[126] L. Paulson. ML for the working programmer. Cambridge University Press,
1996.

[127] L. C. Paulson. The relative consistency of the axiom of choice – mechanized
using Isabelle/ZF. LMS Journal of Computation and Mathematics, 6:2003,
1999.

[128] L. C. Paulson and K. W. Susanto. Source-level proof reconstruction for
interactive theorem proving. In K. Schneider and J. Brandt, editors,
TPHOLs, volume 4732 of Lecture Notes in Computer Science, pages 232–
245. Springer, 2007.

[129] C. R. Ramakrishnan and J. Rehof, editors. Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science. Springer, 2008.

[130] M. Richters. A Precise Approach to Validating UML Models and OCL
Constraints. PhD thesis, Universität Bremen, Logos Verlag, Berlin, BISS
Monographs, No. 14, 2002.

[131] B. Rumpe. Model-based testing of object-oriented systems. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W. P. de Roever, editors, FMCO, volume
2852 of Lecture Notes in Computer Science, pages 380–402. Springer, 2002.

[132] R. Sebastiani. Lazy satisability modulo theories. JSAT, 3(3-4):141–224,
2007.

[133] R. Sedgewick. Algorithms. Addison-Wesley, Second edition, 1988.

[134] T. Servat. BRAMA: A new graphic animation tool for B models. In Julliand
and Kouchnarenko [90], pages 274–276.

http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/06-05-01
http://www.omg.org/cgi-bin/doc?formal/2010-02-01

140 Chapter 10. Conclusion

[135] S. A. Seshia and R. E. Bryant. Deciding quantifier-free presburger formulas
using parameterized solution bounds. Logical Methods in Computer Science,
1(2), 2005.

[136] L. Shan and H. Zhu. A formal descriptive semantics of UML. In S. Liu,
T. S. E. Maibaum, and K. Araki, editors, ICFEM, volume 5256 of Lecture
Notes in Computer Science, pages 375–396. Springer, 2008.

[137] S. Y. Shin and S. Ossowski, editors. Proceedings of the 2009 ACM Sympo-
sium on Applied Computing (SAC), Honolulu, Hawaii, USA, March 9-12,
2009. ACM, 2009.

[138] I. Shlyakhter, M. Sridharan, R. Seater, and D. Jackson. Exploiting subfor-
mula sharing in automatic analysis of quantified formulas. In E. Giunchiglia
and A. Tacchella, editors, Sel. Rev. Papers 6th Int. Conf. Theory and Ap-
plications of Satisfiability Testing (SAT’03), volume 2919 of Lecture Notes
in Computer Science. Springer, May 2004.

[139] J. P. M. Silva. The impact of branching heuristics in propositional satisfia-
bility algorithms. In P. Barahona and J. J. Alferes, editors, EPIA, volume
1695 of Lecture Notes in Computer Science, pages 62–74. Springer, 1999.

[140] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear
CSP into SAT. Constraints, 14(2):254–272, 2009.

[141] N. Tamura, T. Tanjo, and M. Banbara. Solving constraint satisfaction
problems with SAT technology. In M. Blume, N. Kobayashi, and G. Vidal,
editors, FLOPS, volume 6009 of Lecture Notes in Computer Science, pages
19–23. Springer, 2010.

[142] N. Tillmann and J. de Halleux. Pex-white box test generation for .NET. In
B. Beckert and R. Hähnle, editors, Tests and Proofs, volume 4966 of Lecture
Notes in Computer Science, pages 134–153. Springer Berlin / Heidelberg,
2008.

[143] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson-Oppen
combination procedure. In Frontiers of Combining Systems (FroCos), pages
103–119, 1996.

[144] E. Torlak and D. Jackson. Kodkod: A relational model finder. In Grumberg
and Huth [79], pages 632–647.

[145] J. Tretmans. Test generation with inputs, outputs and repetitive quies-
cence. Software - Concepts and Tools, 17(3):103–120, 1996.

10.2. Future Work 141

[146] G. Tseitin. On the complexity of proofs in propositional logics. In J. Siek-
mann and G. Wrightson, editors, Automation of Reasoning: Classical Pa-
pers in Computational Logic 1967–1970, volume 2. Springer-Verlag, 1983.

[147] M. Utting. Data structures for Z testing tools. In G. Schellhorn and
W. Reif, editors, Proc. 4th Wsh. Tools for System Design and Verification
(FM-TOOLS’00). Technical Report 2000-07, Universität Ulm, 2000.

[148] L. van Aertryck and T. Jensen. UML-CASTING: Test synthesis from UML
models using constraint resolution. In J.-M. Jézéquel, editor, Approches
Formelles dans l’Assistance au Développement de Logiciels (AFADL’2003).
INRIA, 2003.

[149] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson. Model-based testing of object-oriented reactive systems
with Spec Explorer. In R. M. Hierons, J. P. Bowen, and M. Harman, editors,
Formal Methods and Testing, volume 4949 of Lecture Notes in Computer
Science, pages 39–76. Springer, 2008.

[150] M. Veanes, P. Grigorenko, P. de Halleux, and N. Tillmann. Symbolic query
exploration. In K. Breitman and A. Cavalcanti, editors, ICFEM, volume
5885 of Lecture Notes in Computer Science, pages 49–68. Springer, 2009.

[151] M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symbolic SQL query
explorer. In E. M. Clarke and A. Voronkov, editors, LPAR (Dakar), volume
6355 of Lecture Notes in Computer Science, pages 425–446. Springer, 2010.

[152] T. Weber and H. Amjad. Efficiently checking propositional refutations in
HOL theorem provers. J. Applied Logic, 7(1):26–40, 2009.

[153] S. Weißleder and B.-H. Schlingloff. Quality of automatically generated test
cases based on OCL expressions. In ICST, pages 517–520. IEEE Computer
Society, 2008.

[154] M. Wenzel. Isar - a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Théry, editors, TPHOLs, volume 1690 of Lecture Notes in Computer
Science, pages 167–184. Springer, 1999.

[155] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict
driven learning in boolean satisfiability solver. In ICCAD, pages 279–285,
2001.

	Introduction
	Contributions
	Fundamental Techniques
	Applications

	Preliminaries
	SAT and SMT Solving
	The DPLL Algorithm
	Eager SMT Solving
	Lazy SMT Solving
	E-Matching

	Isabelle/HOL
	Specification Based Testing with HOL-TestGen
	Test Coverage
	Automating Testing
	The HOL-TestGen Tool

	The Object Constraint Language (OCL)

	Modular Test Theorem Derivation in HOL-TestGen
	Overview of Test Theorem Derivation
	An Interface for Test Derivation Rules
	Tactical Test Theorem Derivation
	How Useful is the Regularity Hypothesis?

	Solving Constraints in Isabelle
	Constraint Solving versus Theorem Proving
	Random Constraint Solving Techniques
	An SMT Interface Exploiting Counterexamples
	Interpreting Counterexamples

	Solving Recursive Constraints
	Recursion in HOL
	Tackling Recursive Constraints
	Enforcing Termination by Under-Approximation

	Towards Interactive Constraint Solving
	Case Study: Red-Black Trees
	Modifying the Specification Interactively

	Experimental Results
	Related Work

	Arithmetic Formulas with Bounded Quantifiers
	Syntax and Semantics
	Expressiveness and Decidability
	Solving Using Eager SMT
	Encoding as a Boolean Circuit
	Choosing Suitable Ranges for Function Symbols
	Efficient Translation of Formulas to Boolean Circuits
	Extension to Support Objective Functions

	Related Work

	Extending OCL Operation Contracts with Objective Functions
	Syntax
	Semantics
	Applications
	Ordinary Optimization Problems
	Problems that do not always have a Solution
	Other Disguised Optimization Problems

	Undefined Values in OCL
	An Overview over OCL Semantics
	Valid Transitions and Evaluations
	Strict Operations
	Boolean Operators
	Object-oriented Data Structures
	The Accessors

	A Formal Semantics for OCL 2.2
	Revised Operations on Basic Types
	Null in Class Types
	Revised Accessors
	Null and Collection Types

	Attribute Values
	Single-Valued Attributes
	Collection-Valued Attributes
	The Precise Meaning of Multiplicity Constraints
	Semantics of Operation Contracts

	Compliance with the OCL Standard
	Related Work

	Animation of OCL Operation Contracts
	A Case Study
	The Task
	Anatomy of the Operation Contract
	Animating the Operation Contract

	Execution of Animation
	Preliminary Analysis: Reasoning about New Class Instances
	Translating OCL Expressions to Arithmetic Formulas with Bounded Quantifiers

	Experimental Results
	Related Work

	Generating Tests from Object-Oriented Specifications
	Running Example: Linked Lists
	Singly-Linked Lists
	Translating Invariants into Recursive HOL Predicates
	Translating Contracts into HOL

	Test Generation
	Unfolding
	Alias Closure

	Implementation in HOL-TestGen
	Related Work

	Conclusion
	Summary
	Future Work

