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Dans cette thèse nous étudions des équations différentielles stochastiques sur quelques graphes simples dont les solutions sont des flots de noyaux au sens de Le Jan et Raimond.

Dans une première partie, nous définissons une extension de l'équation de Tanaka sur un nombre fini de demi-droites orientées et issues de l'origine. Utilisant certaines propriétés de régularité du flot associé au mouvement brownien biaisé, nous donnons une description complète de toutes les solutions. S'appuyant sur une transformation discrète introduite par Csaki et Vincze, nous donnons dans un cas d'orientation particulière (qui couvre déjà l'équation de Tanaka usuelle) une approche discrète à quelques solutions. La dernière partie de ce travail est effectuée avec O.Raimond. Par une méthode de couplage des flots, nous classifions les solutions de l'équation de Tanaka sur le cercle. Nous établissons aussi que ces flots sont coalescents.
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Chapter 1 Introduction

Dans cette thèse nous nous intéressons à des équations différentielles stochastiques dont les solutions sont des flots de noyaux introduits par Le Jan et Raimond [START_REF] Le | Flows, coalescence and noise[END_REF]. Le point de départ consiste à écrire l'équation de Tanaka usuelle sur deux demi-droites ayant la même origine et deux orientations opposées. Dans une première partie, nous considérons une équation plus générale définie sur un nombre fini de demi-droites orientées arbitrairement. Le mouvement à 1 point associé aux diverses solutions est le mouvement brownien de Walsh [START_REF] Walsh | A diffusion with discontinuous local time, volume 52 of Temps locaux Astérisque[END_REF]. En utilisant une version du mouvement brownien biaisé (Skew Brownian motion) étudiée par Burdzy-Kaspi [START_REF] Barlow | Coalescence of skew Brownian motions[END_REF], nous donnons une classification complète des solutions à travers les mesures déterministes sur les simplexes. Dans une deuxième partie, nous étudions dans un cas particulier qui couvre déjà l'équation de Tanaka classique deux solutions particulières de notre équation: le flot de Wiener, qui est une fonction simple du mouvement brownien initial et le flot d'applications ayant une expression plus compliquée. Ce dernier, dont l'existence et l'unicité sont dûes à Watanabe [START_REF] Watanabe | The stochastic flow and the noise associated to Tanaka's stochastic differential equation[END_REF], a été construit par Le Jan et Raimond dans le cas réel en attachant de l'aléa supplémentaire aux minimas locaux du mouvement brownien [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]. Partant d'un flot discret simple, nous donnons une autre construction de ce flot d'applications. Notre outil principal est une transformation discrète introduite par Csaki et Vincze [START_REF] Révész | Random walk in random and non-random environments[END_REF] que nous étudions en détail et relevons ses liens forts avec l'equation de Tanaka. La dernière partie de ce travail est en collaboration avec Olivier Raimond. Nous définissons une équation de Tanaka sur le cercle et donnons une classification complète de ses solutions. Notre approche consiste à projeter les flots de Le Jan et Raimond [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] sur le cercle et s'inspirer en même temps du modèle discret pour achever la construction. En outre, nous montrons que tous les flots associés sont coalescents.

La structure de la thèse est la suivante:

(i) L'introduction présente la problématique et énonce les résultats importants de la thèse.

(ii) Dans le chapitre 2, nous introduisons le mouvement brownien biaisé, ainsi que celui de Walsh que nous utiliserons fréquemment au cours des chapitres 4 et 5.

(iii) Le Chapitre 3 reprend les deux articles de Le Jan et Raimond [START_REF] Le | Flows, coalescence and noise[END_REF] et [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] et rappelle certains objets importants pour cette thèse.

(iv) Le chapitre 4 est une version détaillée d'un article intitulé "Stochastic flows related to Walsh Brownian motion "paru dans Electronic journal of probability. Nous étendons le travail de Le Jan et Raimond [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] et relions les flots stochastiques au mouvement brownien de Walsh.

(v) Le chapitre 5 est une étude approfondie du flot de Wiener et du flot d'applications de l'équation de Tanaka associée au mouvement brownien de Walsh. Il s'agit aussi d'un article intitulé "Discrete approximations to solution flows of Tanaka's equation related to Walsh Brownian motion ", accepté pour publication dans le Séminaire de probabilité.

(vi) Le chapitre 6 est un travail en collaboration avec Olivier Raimond. Nous appliquons les résultats de [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] pour l'étude de l'équation de Tanaka sur le cercle.

Nous donnons maintenant un descriptif plus détaillé du contenu de ce manuscrit en respectant l'ordre des chapitres.

Mouvements browniens: biaisé et de Walsh

Considérons un mouvement brownien réfléchi R t et un paramètre α ∈ [0, 1]. Itô et McKean [START_REF] Itô | Brownian motions on a half line[END_REF] montrent comment construire ce qu'ils appellent le mouvement brownien biaisé à partir de R t . Considérons les intervalles d'excursion de R t hors 0. Puis, changeons le signe de chaque excursion indépendamment de sorte qu'une excursion donnée est positive avec la probabilité α et négative avec la probabilité 1α. Le processus resultant est appelé mouvement brownien biaisé de paramètre α. Lorsque α = 1 2 , il s'agit du brownien ordinaire et le cas α ∈ {0, 1} correspond au brownien réfléchi. Si α = 1 2 , ce processus est une diffusion qui se comporte comme un brownien ordinaire loin de l'origine, et qui traverse l'origine plus aisément dans une direction qu'une autre. Dans [START_REF] Walsh | A diffusion with discontinuous local time, volume 52 of Temps locaux Astérisque[END_REF], Walsh calcule le semigroupe associé à cette diffusion et montre qu'il s'agit d'une semimartingale continue ayant un temps local discontinu en espace lorsque α = 1 2 . Ceci a généré de nouvelles recherches menant à des articles fondamentaux sur le mouvement brownien biaisé (voir [START_REF] Barlow | Coalescence of skew Brownian motions[END_REF], [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF], [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF], [START_REF] Harrison | On skew Brownian motion[END_REF]). L'article [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] résume différentes façons de construire ce processus et montre les liens entre eux. Il ajoute aussi des applications récentes en matière de modélisation et des simulations numériques.

Il est connu que le mouvement brownien possède la propriété de représentation prévisible pour sa filtration naturelle. Dans [START_REF] Yor | Sur l'étude des martingales continues extrémales[END_REF], Yor posait la question réciproque: les filtrations ayant la propriété de représentation prévisible sont-elles les filtrations naturelles d'un autre mouvement brownien? Vers la fin de son article [START_REF] Walsh | A diffusion with discontinuous local time, volume 52 of Temps locaux Astérisque[END_REF], Walsh propose d'étudier une généralisation du mouvement brownien biaisé qui répondra ultérieurement par la négative à la question de Yor (réponse fournie par Tsirelson [START_REF] Tsirelson | Triple points: from non-Brownian filtrations to harmonic measures[END_REF]). Walsh introduit son mouvement comme suit: "The idea is to take each excursion of R t and, instead of giving it a random sign, to assign it a random variable θ with a given distribution in [0, 2π[, and to do this independently for each excursion. That is, if the excursion occurs during the interval (u, v), we replace R t by the pair (R t , θ) for u ≤ t < v, θ being a random variable with values in [0, 2π[. This provides a process {(R t , θ t ), t ≥ 0}, where θ t is constant during each excursion from 0, has the same distribution as θ, and is independent for different excursions. We then consider Z t = (R t , θ t ) as a process in the plane, expressed in polar coordinates. It is a diffusion which, when away from the origin, is a Brownian motion along a ray, but which has what might be called a roundhouse singularity at the origin: when the process enters it, it, like Stephen Leacock's hero, immediately rides off in all directions at once." Walsh ne prouve pas que son processus est une diffusion sur R 2 . Cependant, depuis l'introduction de ce processus, plusieurs autres constructions ont été proposées: en utilisant les résolvantes [START_REF] Rogers | Addendum to: "Itô excursion theory via resolvents[END_REF], à partir du générateur infinitésimal [START_REF] Baxter | The equivalence of diffusions on networks to Brownian motion[END_REF] ou encore via la théorie des excursions [START_REF] Salisbury | Construction of right processes from excursions[END_REF]. En 1989 Barlow, Pitman, et Yor [4] produisent une autre construction en utilisant le semigroupe. Leur approche consiste à utiliser un peu d'intuition pour écrire un semigroupe possible puis vérifier que l'éventuel semigroupe réunit les conditions nécessaires. La théorie générale permet de produire un processus canonique associé au semigroupe donné. Les auteurs vérifient ensuite que ce processus possède les caractéristiques désirées du processus de Walsh. Dans le premier chapitre, nous adoptons la définition de Barlow, Pitman et Yor du mouvement brownien de Walsh W (α 1 , • • • , α N ) sur le graphe G suivant (Figure 1.1) où

N ∈ N * , α 1 , • • • , α N > 0 avec N i=1
α i = 1. Nous commençons par fournir une preuve constructive de l'existence du mouvement brownien de Walsh. Nous allons le construire directement à partir d'un mouvement brownien réfléchi comme cela a été décrit par Walsh. Plus précisément, on a la proposition suivante: B u , g t = sup{r ≤ t : B + r = 0}, d t = inf{r ≥ t : B + r = 0}, Enfin, posons

Proposition 1.1. Soient D n = { k 2 n , n ≥ 0, k ∈ N} et D = ∪ n∈N D n . Pour 0 ≤ u < v, définissons n(u, v) = inf{n ∈ N : D n ∩]u, v[ = ∅}, f (u, v) = inf D n(u,v) ∩]u, v[.
Z t = γ r B + t , r = f (g t , d t ) si B + t > 0, Z t = 0 si B + t = 0.
Alors (Z t , t ≥ 0) est un W (α 1 , • • • , α N ) processus sur G issu de 0.

Ceci nous amènera à prouver le théorème de Donsker suivant, généralisant celui de [START_REF] Enriquez | Markov chains on graphs and Brownian motion[END_REF] traitant le cas

α 1 = • • • = α N = 1
N , ainsi que le théorème de Donsker pour le brownien biaisé ( [START_REF] Cherny | Limit behaviour of the "horizontalvertical" random walk and some extensions of the Donsker-Prokhorov invariance principle[END_REF], [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF], [START_REF] Harrison | On skew Brownian motion[END_REF], [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF]). Proposition 1.2. Soit M = (M n ) n≥0 une chaine de Markov sur G issue de 0 et dont les lois de transitions sont décrites par la matrice Q suivante:

Q(0, e i ) = α i , Q(n e i , (n ± 1) e i ) = 1 2 ∀i ∈ [1, N], n ∈ N * . (1.1) Soient t -→ M(t) l'interpolation linéaire de (M n ) n≥0 et M n t = 1 √ n M(nt), n ≥ 1.
Alors

(M n t ) t≥0 loi -----→ n → +∞ (Z t ) t≥0
dans C([0, +∞[, G) où Z est un W (α 1 , • • • , α N ) processus issu de 0.

Pour prouver ce résultat nous plongeons une chaine de Markov ayant la même loi que M dans la trajectoire d'un processus de Walsh Z. Nous associons à Z N mouvements browniens biaisés (Z i ) 1≤i≤N qui engendrent la filtration de Z et qui sont définis par

Z i t = |Z t |1 {Zt∈D i } -|Z t |1 {Zt / ∈D i } , i ∈ [1, N].
L'inégalité simple suivante (ii) f est deux fois dérivable sur G * et admet deux dérivées, f ′ et f ′′ bornées sur G * (ici f ′ (z) est la dérivée de f en z suivant la direction e i pour tout z ∈ D i \{0}).

d(Z t , Z s ) ≤ N i=1 |Z i t -Z i s |,
(iii) lim z→0,z∈D i ,z =0 f ′ (z) et lim z→0,z∈D i ,z =0 f ′′ (z) existent pour tout i ∈ [1, N].

Théorème 1.1. [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] Soit (Z t ) t≥0 un W (α 1 , • • • , α N ) processus sur G issu de z.

Alors:

(i) (|Z| t ) t≥0 est un mouvement brownien réfléchi issu de |z|. 

f (Z t ) = f (z) + t 0 f ′ (Z s )dB s + 1 2 t 0 f ′′ (Z s )ds + ( N i=1 α i lim z→0,z∈D i ,z =0 f ′ (z)) Lt (X).
Nous donnons une preuve simple de cette formule en utilisant de nouveau les processus (Z i ) 1≤i≤N et l'approximation du temps local par le nombre de montées. Noter que la partie martingale locale de f (Z t ) est une intégrale de B ce qui correspond à la propriété de représentation prévisible établie dans [4]. Lorsque z = 0, une application du lemme de Skorokhod ( [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 239) montre que

|Z t | = B + t (:= B t -inf u∈[0,t] B u ).
Partant de B, on peut ainsi d'après la Proposition 1.1 construire un mouvement brownien de Walsh Z issu de 0 tel que

df (Z t ) = f ′ (Z t )dB t + 1 2 f ′′ (Z t )dt, f ∈ D(α 1 , • • • , α N ) où D(α 1 , • • • , α N ) = {f ∈ C 2 b (G * ) : N i=1 α i lim z→0,z∈D i ,z =0 f ′ (z) = 0}.
Lorsque N = 2, α 1 = α 2 = 1 2 , la projection de Z sur R:

X t = |Z t |1 {Zt∈D 1 } -|Z t |1 {Zt∈D 2 }
satisfait l'équation de Tanaka dX t = sgn(X t )dB t .

La proposition suivante montre que le domaine D(α 1 , • • • , α N ) est suffisamment riche pour caractériser le semigroupe du mouvement de Walsh.

Proposition 1.3. Soit Q = (Q t ) t≥0 un semigroupe de Feller tel que:

Q t f (x) = f (x) + 1 2 t 0 Q u f ′′ (x)du ∀f ∈ D(α 1 , • • • , α N ).
Alors, Q est le semigroupe de W (α 1 , • • • , α N ) processus.

Ce travail est loin de la théorie des filtrations, mais signalons finalement que pour N ≥ 3, il n'existe aucun mouvement brownien W tel que F Z t = F W t [START_REF] Tsirelson | Triple points: from non-Brownian filtrations to harmonic measures[END_REF].

1.2 Flots stochastiques et équation de Tanaka ) est un mouvement brownien en dimension r (voir [START_REF] Elworthy | Stochastic dynamical systems and their flows[END_REF], [START_REF] Malliavin | Stochastic calculus of variations and hypoelliptic operators[END_REF], [START_REF] Bismut | Mécanique aléatoire[END_REF], [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF]). La loi d'un flot stochastique solution de (1.3) est décrite par la loi des mouve-

ments à k points t → (ϕ 0,t (x 1 ), • • • , ϕ 0,t (x k )) ∈ R dk , pour tout k ≥ 1, x 1 , • • • , x k ∈ R d qui dépendent seulement du générateur à 1 point
L et d'une matrice de covariance C, données par

Lf (x) = lim t→0+ E[f (ϕ 0,t (x k )) -f (x)] t , x ∈ R d ,
C p,q (x, y) = lim t→0+ E[(ϕ p 0,t (x)x p )(ϕ q 0,t (y)y q )] t , x, y ∈ R d .

Ces paramètres sont déterminés par les coefficiens de (1.3) et s'appellent les caractéristiques locales du flot [START_REF] Le | Stochastic flows of diffeomorphisms[END_REF].

Un autre problème naturel consiste à construire des flots stochastiques dont les caractéristiques sont moins régulières. Il faut ainsi abandonner le cadre des flots d'homéomorphismes et des ÉDS qui n'admettent pas toujours des solutions fortes.

Un premier exemple important est donné sur R, par le flot d'Arratia [START_REF] Alejandro | Coalescing Brownian motions on the line[END_REF]. Ici, deux points suivent des trajectoires browniennes indépendantes jusqu'au moment où elles se rencontrent. Alors elles se transforment en un seul mouvement brownien: on parle de flot coalescent.

Récemment, Le Jan et Raimond ont étendu ce procédé en considérant des flots stochastiques de noyaux (K s,t (x, dy)). Un noyau aléatoire K agit sur les fonctions test f par la relation Kf (x) = f (y)K(x, dy). Étant donné un flot de noyaux K,

P ⊗n t f (x) = f (y 1 , • • • , y n )E[K 0,t (x 1 , dy 1 ) • • • K 0,t (x n , dy n )], n ≥ 1
définit une famille compatible de semigroupes felleriens, c'est à dire telle que la distribution marginale de tout k composantes du mouvement à n points est celle du mouvement à k points. Réciproquement, par une extension du théorème de De Finetti, Le Jan et Raimond associent à tout système compatible de semigroupes felleriens un flot stochastique de noyaux. Lorsque

P 2 t f ⊗2 (x, x) = P t f 2 (x)
pour tout f, x, t, le flot de noyaux est un flot d'applications K s,t (x, dy) = δ ϕs,t(x) (dy).

Dans cette thèse, nous allons considérer des ÉDS sans solutions fortes au sens usuel mais admettant des solutions fortes sous forme des mesures aléatoires. Nous commençons par donner un apperçu des résultats de Le Jan et Raimond sur l'équation de Tanaka.

Équation de Tanaka

Soit (W t ) t∈R un mouvement brownien sur la droite réelle défini sur un espace de probabilité (Ω, A, P), c'est à dire (W t ) t≥0 et (W -t ) t≥0 sont deux mouvements browniens réels indépendants. Tout au long de cette thèse, nous utilisons la notation suivante

W s,t = W t -W s , s ≤ t.
Considérons l'équation de Tanaka

ϕ s,t (x) = x + t s sgn(ϕ s,u (x))dW u , s ≤ t, x ∈ R, (1.4) 
Ceci est l'exemple classique des ÉDS n'admettant pas de solution forte mais ayant une solution faible. Dans [START_REF] Watanabe | The stochastic flow and the noise associated to Tanaka's stochastic differential equation[END_REF], Watanabe établit l'existence et l'unicité d'un flot d'applications solution de (1.4). Ce flot a la forme suivante ϕ s,t (x) = (x + sgn(x)W s,t )1 {t≤τs(x)} + ε s,t W + s,t 1 {t>τs(x)} , où τ s (x) = inf{r ≥ s : W s,r = -|x|} et W + s,t = W s,tmin s≤r≤t W s,r . De plus, il doit satisfaire: ε s,t est indépendante de W pour (s, t) fixés. Il est clair que la propriété de cocycle de ϕ, faisant intervenir s, t et u va induire certaines relations entre les processus (ε s,t ) et W . Le Jan et Raimond [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] montrent après qu'il suffit d'attacher les variables (ε s,t ) aux minimas locaux de W pour construire ϕ.

Si K est un flot de noyaux, on dit que K est solution de l'équation de Tanaka si:

pour tout s ≤ t, x ∈ R, f ∈ C 2 b (R) (f est C 2 et f ′ , f ′′ sont bornées) K s,t f (x) = f (x) + t s K s,u (f ′ sgn)(x)dW u + 1 2 t s K s,u f ′′ (x)du p.s. (1.5) 
Lorsque K = δ ϕ , est un flot d'applications, (1.5) est équivalente à (1.4). Le Jan et Raimond montrent qu'il existe une seule solution forte de (1.5) obtenue en divisant la masse en deux à l'origine

K W s,t (x) = (x + sgn(x)W s,t )1 {t≤τs(x)} + 1 2 (δ W + s,t + δ -W + s,t )1 {t>τs(x)} .
L'équation (1.5) admet encore des solutions faibles K (telles que F W 0,t = F K 0,t ). Ces noyaux ont la forme suivante K s,t (x) = δ x+sgn(x)Ws,t 1 {t≤τs(x)} + (U s,t δ W + s,t + (1 -U s,t )δ -W + s,t )1 {t>τs(x)} .

où U s,t est indépendante de W et de loi m ne dépendant pas de t-s. La classification donnée par Le Jan et Raimond est la suivante:

Théorème 1.2. [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] (a) Toute mesure de probabilité m sur [0, 1] de moyenne 1 2 définit un flot stochastique de noyaux K m solution de (1.5).

• À δ1 2 est associée une solution Wiener K W .

• À 1 2 (δ 0 + δ 1 ) est associé un flot d'applications coalescent ϕ. Cette fonction joue le rôle de la fonction sgn sur le graphe G. Pour simplifier les notations, nous supposons que Sur un espace de probabilité (Ω, A, P), soient W un mouvement brownien sur la droite réelle et K un flot stochastique de noyaux sur G. On dit que (K, W ) est une 1.3) correspond à l'équation de Tanaka (1.5) [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]. Dans [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF], nous démontrons essentiellement les deux résultats suivants: 

ε 1 = • • • = ε p = 1, ε p+1 = • • • = ε N = -1 pour un certain p ≤ N. Posons G + = 1≤i≤p D i , G -= p+1≤i≤N D i . Alors G = G + G -(Figure 1.2). G O ei (Di, αi) G + G - ε(x) = -1 ε(x) = 1
solution de (E) si pour tout s ≤ t, f ∈ D(α 1 , • • • , α N ), x ∈ G, K s,t f (x) = f (x) + t s K s,u (εf ′ )(x)dW u + 1 2 t s K s,u f ′′ (x)du p.s. Le cas N = 2, p = 2, ε 1 = ε 2 = 1, α 1 = α 2 = 1 2 (Figure
O + + Figure 1.3: Équation de Tanaka. Le cas N = 2, p = 1, ε 1 = 1, ε 2 = -1 (Figure 1.4) correspond à l'équation du mouvement brownien biaisé comme solution forte de W , X s,x t = x + W s,t + (2α -1) Lx s,t , t ≥ s, x ∈ R, (1.6) 
= α + . Définissons Z s,t (x) = X s,ε(x)|x| t , s ≤ t, x ∈ G et K W s,t (x) = δ x+ e(x)ε(x)Ws,t 1 {t≤τs,x} + p i=1 α i α + δ e i |Zs,t(x)| 1 {Zs,t(x)>0} + N i=p+1 α i α -δ e i |Zs,t(x)| 1 {Zs,t(x)≤0} 1 {t>τs,x} , où τ s,x = inf{r ≥ s : x + e(x)ε(x)W s,r = 0}. Alors, K W est l'unique solution Wiener de (E). C'est à dire, K W résout (E) et si K est une autre solution Wiener de (E), alors pour tout s ≤ t, x ∈ G, K W s,t (x) = K s,t ( 
∆ k = u = (u 1 , • • • , u k ) ∈ [0, 1] k : k i=1 u i = 1 , k ≥ 1. Supposons que α + = 1 2 . (a) Soient m + et m -deux mesures de probabilités respectivement sur ∆ p et ∆ N -p telles que: (+) ∆p u i m + (du) = α i α + , ∀1 ≤ i ≤ p, (-) ∆ N-p u j m -(du) = α j+p α -, ∀1 ≤ j ≤ N -p.
Alors, (m + , m -) définit un flot de noyaux K m + ,m -solution de (E).

• À (δ

( α 1 α + ,••• , αp α + ) , δ ( α p+1 α -,••• , α N α -) ) est associée une solution Wiener K W . • À p i=1 α i α + δ 0,..,0,1,0,..,0 , N i=p+1
α i α -δ 0,..,0,1,0,..,0 est associé un flot d'applications coalescent ϕ.

(b) Pour tout flot de noyaux K solution de (E), il existe un unique couple de mesures

(m + , m -) satisfaisant les conditions (+) et (-) tel que K loi = K m + ,m -.
(2) Si α + = 1 2 , N > 2, alors (E) admet une seule solution (Wiener).

Donnons les grandes lignes de la preuve de ces résultats.

Construction

Supposons que ϕ est un flot d'applications solution de (E), alors ϕ 0,t := ϕ 0,• (0) est un mouvement brownien de Walsh et par suite:

∀f ∈ C 2 b (G * ) f (ϕ 0,t ) = f (0)+ t 0 f ′ (ϕ 0,s )dB s + 1 2 t 0 f ′′ (ϕ 0,s )ds+ N i=1 α i lim z→0,z∈D i ,z =0 f ′ (z) Lt (|ϕ 0,• |). où B t = |ϕ 0,t | -Lt (|ϕ 0,• |). Si f (x) = ε(x)|x|, alors Y t = f (ϕ 0,t ) est un mouvement
brownien biaisé de paramètre α + et par application de f dans la dernière formule, on trouve

Y t = t 0 ε(ϕ 0,s )dB s + (2α + -1) Lt (Y ).
En comparant la formule de Freidlin-Sheu avec l'équation (E), on peut espérer avoir 

B t = t 0 ε(ϕ 0,s )dW 0,s . En conclusion, la norme algébrique Y de ϕ 0,• vérifie l' ÉDS Y t = W 0,t + (2α + -1) Lt (Y ). ( 1 
K W s,t (x) = E[δ ϕs,t(x) |σ(W )]
. La formule explicite de K W s,t (x) est donnée par le Théorème 3. En suivant [START_REF] Le | Integration of Brownian vector fields[END_REF], nous montrons alors qu'une solution Wiener de (E) est unique dans sa décomposition en chaos ce qui permet de conclure le Théorème 3. La construction de la solution K m + ,m -est similaire à celle de ϕ: on attache aux excursions positives (resp. négatives) du mouvement brownien biaisé des v.a. indépendantes de loi m + (resp. m -). Nous construisons ϕ et K m + ,m - sur le même espace de probabilité de sorte que

K m + ,m - s,t (x) = E[δ ϕs,t(x) |σ(K m + ,m -)] et Ks,t (x, y) = K m + ,m - s,t (x 
) ⊗ δ ϕs,t (y) est un flot de noyaux sur G 2 . Selon la terminologie de Le Jan et Raimond, nous disons que ϕ domine faiblement K m + ,m -.

Unicité

Soit (K, W ) une solution quelconque de (E). On cherche ainsi deux mesures m + et

m -telles que K loi = K m + ,m -. Définissons V +,i t = K 0,t (0)(D i ), V -,j t = K 0,t (0)(D j ) for all1 ≤ i ≤ p, p + 1 ≤ j ≤ N, V + t = (V +,i t ) 1≤i≤p , V - t = (V -,i t ) p+1≤i≤N .
Soit Y l'unique solution forte de (1.7 

= (K m + ,m - 0,t (0) 
, W ′ ) pour tout t > 0 où (K m + ,m -, W ′ ) est la solution associée à (m + , m -) construite avant. En partant de x quelconque, on a aussi (K 0,t (x), W )

loi = (K m + ,m - 0,t (x), W ′ ).
Pour conclure que

(K 0,t (x 1 ), • • • , K 0,t (x n )) loi = (K m + ,m - 0,t (x 1 ), • • • , K m + ,m - 0,t (x n )) pour tout (x 1 , • • • , x n ) ∈ G n , nous prouvons la proposition suivante: Proposition 1.4. Soit P t,x 1 ,••• ,xn la loi de (K 0,t (x 1 ), • • • , K 0,t (x n ), W ) où t ≥ 0 et x 1 , • • • , x n ∈ G. Alors, P t,x 1 ,••• ,xn est uniquement determinée par {P u,x , u ≥ 0, x ∈ G}.
Le cas α + = 1 2 . Dans ce cas on a Y t = W 0,t . Nous montrons que toutes les solutions de (E) ont le même mouvement à n points pour tout n ≥ 1. Il s'en suit alors que (E) admet une unique solution, qui est le flot de Wiener. On considère le graphe G de la figure 1.1. Soient W un mouvement brownien sur la droite réelle et K un flot de noyaux définis sur un espace de probabilité (Ω, A, P). On dit que (K, W ) est une solution de (T ) si pour tout

s ≤ t, f ∈ D(α 1 , • • • , α N ), x ∈ G, K s,t f (x) = f (x) + t s K s,u f ′ (x)dW u + 1 2 t s K s,u f ′′ (x)du p.s.
D'après le Théorème 3, l'unique solution Wiener de (T ) est simplement (Flots discrets) On dit qu'un processus ψ p,q (x) (resp. N p,q (x)) in-

K W s,t (x) = δ x+ e(x)Ws,t 1 {t≤τs,x} + N i=1 α i δ e i W + s,t 1 {t>τs,x} . où τ s,x = inf{r ≥ s : x + e(x)
dexé par {p ≤ q ∈ Z, x ∈ G N } et à valeurs dans G N (resp. P(G N )) est un flot discret d'applications (resp. de noyaux) sur G N si: (i) La famille {ψ i,i+1 ; i ∈ Z} (resp. {N i,i+1 ; i ∈ Z}) est indépendante. (ii)∀p ∈ Z, x ∈ G N , ψ p,p+2 (x) = ψ p+1,p+2 (ψ p,p+1 (x)) (resp. N p,p+2 (x) = N p,p+1 N p+1,p+2 (x)) p.s. où N p,p+1 N p+1,p+2 (x, A) := y∈G N N p+1,p+2 (y, A)N p,p+1 (x, {y}) pour tout A ⊂ G N .
On 

S h . Pour p ∈ Z, x ∈ G N , définissons Ψ p,p+1 (x) = x + e(x)S p,p+1 si x = 0, Ψ p,p+1 (0) = η p S + p,p+1 . K p,p+1 (x) = δ x+ e(x)S p,p+1 si x = 0, K p,p+1 (0) = N i=1 α i δ S + p,p+1 e i .
On étend cette définition pour tout p ≤ n ∈ Z en posant

Ψ p,n (x) = x1 {p=n} + Ψ n-1,n • Ψ n-2,n-1 • • • • • Ψ p,p+1 (x)1 {p>n} , K p,n (x) = δ x 1 {p=n} + K p,p+1 • • • K n-2,n-1 K n-1,n (x)1 {p>n} .
On munit P(G) de la topologie de la convergence faible suivante:

β(P, Q) = sup | gdP -gdQ|, g ∞ + sup x =y |g(x) -g(y)| |x -y| ≤ 1, g(0) = 0 .
Nous construisons (ϕ, K W ), partant de (Ψ, K) et montrons en particulier le résultat suivant:

Théorème 1.5. (2) Il existe une réalisation (ψ, N, ϕ, K W ) sur un espace de probabilité commun (Ω, A, P) telle que

(i) (ψ, N) loi = (Ψ, K).
(ii) (ϕ, W ) (resp. (K W , W )) est l'unique flot d'applications (resp. Wiener) solution de (T ).

(iii) Pour tout s ∈ R, T > 0, x ∈ G, x n ∈ 1 √ n G N telle que lim n→∞ x n = x, on a lim n→∞ sup s≤t≤s+T | 1 √ n ψ ⌊ns⌋,⌊nt⌋ ( √ nx n ) -ϕ s,t (x)| = 0 p.s. (1.8) et lim n→∞ sup s≤t≤s+T β(K ⌊ns⌋,⌊nt⌋ ( √ nx n )( √ n.), K W s,t (x)) = 0 p.s.
Ce théorème entraine le corollaire suivant:

Corollaire 1.1. Pour tout s ∈ R, x ∈ G N , soient t -→ Ψ (t) l'interpolation linéaire de Ψ ⌊ns⌋,k (x), k ≥ ⌊ns⌋ et Ψ n s,t (x) := 1 √ n Ψ (nt), K n s,t (x) = E[δ Ψ n s,t (x) |σ(S)], t ≥ s, n ≥ 1. Pour tout 1 ≤ p ≤ q, (x i ) 1≤i≤q ⊂ G, soit x n i ∈ 1 √ n G N tel que lim n→∞ x n i = x i . Définissons Y n = Ψ n s 1 ,• ( √ nx n 1 ), • • • , Ψ n sp,• ( √ nx n p ), K n s p+1 ,• ( √ nx n p+1 ), • • • , K n sq,• ( √ nx n q ) . Alors Y n law -----→ n → +∞ Y dans p i=1 C([s i , +∞[, G) × q j=p+1 C([s j , +∞[, P(G)) où Y = ϕ s 1 ,• (x 1 ), • • • , ϕ sp,• (x p ), K W s p+1 ,• (x p+1 ), • • • , K W sq,• (x q ) .

Étapes de la preuve

Notre preuve du Théorème 1.5 est basée sur le résultat suivant de Csaki et Vincze 

Y n := max k≤n S k -S n ⇒ |Y n -|S n || ≤ 2 ∀n ∈ N.
Ce théorème décrit l'équation de Tanaka en temps discret. Nous montrons la conséquence suivante: soient S une marche aléatoire simple sur Z et ε une v.a. de Bernoulli indépendante de S (juste une !). Alors, il existe une marche aléatoire simple sur Z, notée M, telle que 

σ(M) = σ(ε, S) et ( 1 √ n S(nt), 1 √ n M(nt)) t≥0 loi -----→ n → +∞ (B t , W t ) t≥0 dans C([0, ∞[, R 2
• Y p = Y p-1 = Y q = Y q+1 = 0. • ∀ p ≤ j < q, Y j = 0 ⇒ Y j+1 = 1.
Si E = [p, q] est un intervalle d'excursion pour Y , on définit e(E) := p, f (E) := q.

Soit (E i ) i≥1 l'ensemble aléatoire de tous les intervalles d'excursion de Y ordonnés tels que: e(E i ) < e(E j ) ∀i < j. Nous apellons E i la i-ième excursion de Y .

Proposition 1.5. Sur un espace de probabilité (Ω, A, P ), considérons les processus indépendants suivants:

• η = ( η i ) i≥1 , une suite i.i.d. de v.a. de loi N i=1 α i δ e i .
• (S n ) n∈N une marche aléatoire simple sur Z.

Alors, sur une extension de (Ω, A, P ), il existe une chaine de Markov (M n ) n∈N issue de 0 de matrice stochastique donnée par (1.1) telle que:

Y n := max k≤n S k -S n ⇒ |M n -η i Y n | ≤ 2
sur la i-ième excursion de Y . 

Équation de Tanaka sur le cercle

Par analogie avec l'équation de Tanaka associée au mouvement brownien de Walsh, nous définissons dans ce chapitre une équation de Tanaka sur un autre graphe simple qui est le cercle.

Considérons le cercle unité C de la figure 1.5. On dit qu'une fonction f définie sur

C est dérivable en z 0 ∈ C si f ′ (z 0 ) := lim h→0 f (z 0 e ih ) -f (z 0 ) h existe. Soit C 2 (C ) l'espace des fonctions f définies sur C telles que f ′ et f ′′ existent et sont continues sur C . Définition 1.4. Fixons l ∈]0, π] et définissons ǫ(z) := 1 {arg(z)∈[0,l]} -1 {arg(z)∈]l,2π[} , z ∈ C .
Soient W un mouvement brownien sur la droite réelle et K un flot stochastique de noyaux sur C définis sur (Ω, A, P). On dit que (K, W ) est une solution de l'équation de Tanaka sur C , notée . Alors (1) (m + , m -) définit un flot stochastique de noyaux K m + ,m -solution de (T C ).

(T C ) si pour tout s ≤ t, f ∈ C 2 (C ), x ∈ C , K s,t f (x) = f (x) + t s K s,u (ǫf ′ )(x)dW u + 1 2 t s K s,u f ′′ (x)du p.s.
• À m + = m -= δ1 2
est associée une solution Wiener K W .

• À m + = m -= 1 2 (δ 0 + δ 1 ) est associé un flot d'applications ϕ.

(2) Pour tout flot de noyaux K solution de (T C ), il existe un unique couple de mesures (m + , m -) de moyennes 1 2 tel que

K loi = K m + ,m -.
Pour prouver ce théorème, on va s'inspirer du modèle discret associé: l'expression d'une solution quelconque de (T C ) est facile à déterminer sur des petits intervalles de temps connaissant les flots de Tanaka de Le Jan et Raimond. Soit K une solution de l'équation de Tanaka (Figure 1. 

(C ) = e il , K m + ,m - 0,T k (C ) = δ e il pour tout k ≥ 1.
(2) Il existe une suite croissante (S k ) k≥1 de (F W 0,t ) t≥0 -temps d'arrêts avec lim k→∞ S k = +∞ p.s. et telle que p.s.

ϕ 0,S k (C ) = 1, K m + ,m - 0,S k (C ) = δ 1 pour tout k ≥ 1.
Cette proposition signifie en particulier que les flots sont coalescents. 

Introduction

In this chapter we first summarize various equivalent ways to construct SBM. In Section 2.3 we introduce Walsh Brownian motion. We begin by providing a constructive proof of the existence of Walsh Brownian motion. We will construct it directly from the sample paths of a reflecting Brownian motion and a sequence of i.i.d. vectors with common distribution. Then after verifying that the constructed process has continuous paths, satisfies the simple Markov property, and has the semigroup (P t ) t≥0 as proposed in [4], we use their result to conclude that the process is a Feller diffusion satisfying the definition of Walsh Brownian motion. Section 2.3 contains also a proof of Donsker theorem for Walsh Brownian motion as limit of a particular Markov chain. Our result extends that of [START_REF] Enriquez | Markov chains on graphs and Brownian motion[END_REF] who treated the case

α 1 = • • • = α N = 1
N and of course the Donsker theorem for the SBM which may be found for example in [START_REF] Cherny | Limit behaviour of the "horizontalvertical" random walk and some extensions of the Donsker-Prokhorov invariance principle[END_REF], [START_REF] Harrison | On skew Brownian motion[END_REF], [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF]. The rest of Section 2.3 will be devoted to Itô's formula proved by Freidlin and Sheu in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] for a general class of diffusion processes defined by means of their generators. Here we first establish this formula using simple arguments and then deduce the characterization of Walsh Brownian motion by means of its generator (Proposition 2.5).

Skew Brownian motion 2.2.1 Local time

Before introducing SBM, we recall the definition of the local time of a continuous semimartingale from [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]. For the most part of this manuscript we will use the symmetric local time which is defined as follows

Definition 2.1. Let sgn(x) = 1 {x>0} -1 {x<0} .
If X is a continuous semimartingale, then for any real number a, there exists an increasing continuous process La (X) called the symmetric local time of X in a such that,

|X t -a| = |X 0 -a| + t 0 sgn(X s -a)dX s + La t (X).
This is Tanaka's formula. Furthermore,

La t (X) = lim ε→0+ 1 2ε t 0 1 ]-ε,+ε[ (X s -a)d X s .
Some basic properties:

(i) L0 t (X) = L0 t (|X|).
(ii) The measure d La t (X) is carried by the set {t : X t = a}.

(iii) The "non symmetric "local time L a t (X) is defined by considering sgn(x) = 1 {x>0} -1 {x≤0} and satisfies also (ii). We also have

La (X) = 1 2 (L a (X) + L a-(X)).
The following lemma due to Skorokhod gives in some contexts a more explicit expression for the local time Lemma 2.1. Let y be a real-valued continuous function on [0, ∞[ such that y(0) ≥ 0.

There exists a unique pair (z, a) of functions on [0, ∞[ such that 

(i) z = y + a, ( 
F B t . Since L0 t (β + ) = L0 t (|B|) = L0 t (B) = -inf s≤t β s , β + satisfies β + t = β t + L0 t (β + ). (2.1)

The associated semigroup

Let α ∈ [0, 1] and p t be the semigroup of Brownian motion. Define

p α t (0, y) = 2αp t (0, y)1 {y>0} + 2(1 -α)p t (0, y)1 {y<0} , p α t (x, y) = (p t (x, y) + (2α -1)p t (x, -y))1 {x>0,y>0} + 2(1 -α)p t (x, y)1 {x>0,y<0}
+ (p t (x, y) + (1 -2α)p t (x, -y))1 {x<0,y<0} + 2αp t (x, y)1 {x<0,y>0} .

In the special case α = 1 2 , we recover the semigroup of Brownian motion. The case α = 1 (respectively α = 0) corresponds to the semigroup of the reflecting Brownian motion above 0 (respectively below 0) , |B| (respectively -|B|) where B is a Brownian motion. More generally, we have the following Definition 2.2. [50] p α is a Feller semigroup on C 0 (R). A strong Markov process X with state space R and semigroup p α and such that X is càdlàg is by definition the skew Brownian motion of parameter α (SBM(α)).

The associated SDE

In [START_REF] Harrison | On skew Brownian motion[END_REF], Harrison and Shepp connected SBM with a particular stochastic equation as follows Theorem 2.1. [START_REF] Harrison | On skew Brownian motion[END_REF] Let B be a Brownian motion. The SDE

X t = x + B t + (2α -1) L0 t (X),
has a pathwise unique solution if and only if α ∈ [0, 1]. In this case the unique solution is distributed as SBM(α).

By (2.1), X t = B + t is the unique solution if x = 0, α = 1. If x = 0, α = 0, -X t = -B t + L0 t (X)
and therefore X t = B t -sup r≤t B r . Since d L0 t (X) is carried by the set {t : X t = 0}, X t is simply given by x + B t before it hits the origin (say at time τ

x ). Let X (x) t = X t+τx and B (x) t = B t+τx -B τx , t ≥ 0. Then X (x) t = B (x) t + (2α -1) L0 t (X (x) ).
This allows to deduce the solutions in the cases α = 0, 1.

Remark 2.1. If X is a SBM(α), then L 0 t (X) = 2α L0 t (X) = 2α L0 t ( 
|X|) by identifying Tanaka's formulas for symmetric and non symmetric local time for X.

Approximation by random walks

As one can expect, SBM(α) may be approximated by the following random walk: Let (S k ) k≥0 be a random walk starting from 0 with transition probabilities

P(S k+1 = i ± 1|S k = i) = 1 2 if i = 0, P(S k+1 = 1|S k = 0) = 1 -P(S k+1 = -1|S k = 0) = α.
We set for all t ≥ 0 and any integer n,

X n t = 1 n S ⌊n 2 t⌋ + n 2 t -⌊n 2 t⌋ n (S 1+⌊n 2 t⌋ -S ⌊n 2 t⌋ ).
The following theorem may be found in [START_REF] Cherny | Limit behaviour of the "horizontalvertical" random walk and some extensions of the Donsker-Prokhorov invariance principle[END_REF], [START_REF] Harrison | On skew Brownian motion[END_REF], [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] or in a more general context in [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF].

Theorem 2.2. The sequence (X n ) n∈N converges in distribution in the space of continuous functions to the SBM(α).

Walsh Brownian motion 2.3.1 The associated semigroup

We review the existence of Walsh Brownian motion (WBM) established in [4]. Fix

N ∈ N * and α 1 , • • • , α N > 0 such that N i=1 α i = 1.
In the sequel G will denote the graph below consisting of N half lines (D i ) 1≤i≤N emanating from 0 (see Figure 2.1).

G O e i (D i , α i ) Figure 2.1: Graph G
Let e i be a vector of modulus 1 such that D i = {h e i , h 0} and define for all function f : G -→ R and i ∈ [1, N], the mappings:

f i : R + -→ R h -→ f (h e i )
From now on, we extend this definition on R by setting f i = 0 on ] -∞, 0[. Define the following distance on G:

d(h e i , h ′ e j ) =      h + h ′ if i = j, (h, h ′ ) ∈ R 2 + , |h -h ′ | if i = j, (h, h ′ ) ∈ R 2 + .
For x ∈ G, we will use the simplified notation |x| := d(x, 0).

We equip G with its Borel σ-field B(G). On C 0 (G), consider:

P t f (h e j ) = 2 N i=1 α i p t f i (-h) + p t f j (h) -p t f j (-h), h > 0, P t f (0) = 2 N i=1 α i p t f i (0).
where (p t ) t>0 is the heat kernel of standard Brownian motion. 

W (α 1 , • • • , α N )
, the WBM on G.

Construction by flipping Brownian excursions

For all n ≥ 0, let

D n = { k 2 n , k ∈ N} and D = ∪ n∈N D n . For 0 ≤ u < v, define n(u, v) = inf{n ∈ N : D n ∩]u, v[ = ∅}, f (u, v) = inf D n(u,v) ∩]u, v[.
Let B be a standard Brownian motion defined on a probability space (Ω, A, P)

and ( γ r , r ∈ D) be a sequence of independent random variables with the same law N i=1 α i δ e i which is also independent of B. We define

B + t = B t -min u∈[0,t] B u , g t = sup{r ≤ t : B + r = 0}, d t = inf{r ≥ t : B + r = 0},
and finally

Z t = γ r B + t , r = f (g t , d t ) if B + t > 0, Z t = 0 if B + t = 0.
Then we have the following

Proposition 2.1. (Z t , t ≥ 0) is a W (α 1 , • • • , α N ) process on G started at 0.
Proof. We use the notations

min s,t = min u∈[s,t]
B u , e 0,t = e(Z t ), F s = σ( e 0,u , B u ; 0 ≤ u ≤ s).

We now fix 0 ≤ s < t and denote by E s,t = {min 0,s = min 0,t }(= {g t ≤ s} a.s). Let h : G -→ R be a bounded measurable function. Then

E[h(Z t )|F s ] = E[h(Z t )1 Es,t |F s ] + E[h(Z t )1 E c s,t |F s ].
We first show that

E[h(Z t )1 E c s,t |F s ] = N i=1 E[h i (B + t )1 {gt>s, e 0,t = e i } |F s ] = N i=1 α i E[h i (B + t )1 {gt>s} |F s ].
Note that, for all

r 1 ≤ • • • ≤ r p < r p+1 ∈ D, σ(B, γ r 1 , • • • , γ rp ) is independent of γ r p+1 . Fix s 1 < • • • < s p ≤ s and define R i = f (g s i , d s i ) (i ∈ [1, p]), R p+1 = f (g t , d t ).
Then on (g t > s), we have

( e 0,s 1 , • • • , e 0,sp , e 0,t ) = ( γ R 1 , • • • , γ Rp , γ R p+1 ) and R 1 ≤ • • • ≤ R p < R p+1 a.s.
By summing over all possible cases, this shows that σ(B, γ

R 1 , • • • , γ Rp ) is indepen- dent of γ R p+1 conditionally to (g t > s
) which clearly proves our claim.

If B s,r = B r -B s , then the density of ( min

r∈[s,t]
B s,r , B s,t ) with respect to the Lebesgue measure is given by:

g(x, y) = 2 2π(t -s) 3 (-2x + y) exp( -(-2x + y) 2 2(t -s) )1 {y>x,x<0}
(see [START_REF] Gall | Calcul stochastique et processus de Markov[END_REF] page 28). Now, we show that (B s,r , r ≥ s) is independent of F s . To this end, it will be convenient to set

γ u = ∂ / ∈ { e i , i ∈ [1, N]} if u ∈ R + \ D. Define F = σ( γ u∧gs , u ∈ D). Then for all i 1 , • • • , i p ∈ [1, N], u 1 ≤ • • • ≤ u p , we have ( γ u 1 ∧gs = e i 1 , • • • , γ up∧gs = e ip ) = ( γ u 1 = e i 1 , • • • , γ up = e ip ) ∩ (u p < g s ) a.s.
By remarking that (u p < g s ) ∈ σ(B r , r ≤ s), it easily comes that B s,• is independent of σ(B r , r ≤ s) ∨ F ∨ σ( γ f (gs,ds) ) which contains F s . This proves our claim and yields

E[h i (B + t )1 {gt>s} |F s ] = E[h i (B s,t -min r∈[s,t] B s,r )1 { min r∈[0,s] Bs,r> min r∈[s,t] Bs,r} |F s ] = R 1 {-B + s >x} ( R h i (y -x)g(x, y)dy)dx = 2 R + h i (u)p t-s (B + s , -u)du (u = y -x)
and so

E[h(Z t )1 E c s,t |F s ] = 2 N i=1 α i p t-s h i (-B + s ).
On the other hand

E[h(Z t )1 Es,t |F s ] = E[h( e 0,s (B t -min 0,s ))1 Es,t∩(Bt>min 0,s ) |F s ] = E[h( e 0,s (B t -min 0,s ))1 {Bt>min 0,s } |F s ] -E[h( e 0,s (B t -min 0,s ))1 E c s,t ∩(Bt>min 0,s ) |F s ].
Clearly on { e 0,s = e k },

E[h( e 0,s (B t -min 0,s ))1 {Bt>min 0,s } |F s ] = E[h k (B s,t + B + s )1 {Bs,t+B + s >0} |F s ] = p t-s h k (B + s ),
and

E[h( e 0,s (B t -min 0,s ))1 {E c s,t ∩(Bt>min 0,s )} |F s ] = E[h k (B s,t +B + s )1 {-B + s > min r∈[s,t]
Bs,r,Bs,t+B

+ s >0} |F s ]. = R h k (y + B + s )1 {y+B + s >0} R 1 {-B + s >x} g(x, y)dx dy = p t-s h k (-B + s ).
As a result

E[h(Z t )|F s ] = P t-s h(Z s ).
where

(P t ) is the semigroup of W (α 1 , • • • , α N ).
Proposition 2.2. Let M = (M n ) n≥0 be a Markov chain on G started at 0 with stochastic matrix Q given by:

Q(0, e i ) = α i , Q(n e i , ( n+1 
) e i ) = Q(n e i , (n-1) e i ) = 1 2 ∀i ∈ [1, N], n ∈ N * . (2.2)
Then, for all 0 ≤ t 1 < • • • < t p , we have

( 1 2 n M ⌊2 2n t 1 ⌋ , • • • , 1 2 n M ⌊2 2n tp⌋ ) law -----→ n → +∞ (Z t 1 , • • • , Z tp ),
where

Z is a W (α 1 , • • • , α N ) process started at 0.
Proof. Let B be a standard Brownian motion and define for all n ≥ 1: 

T n 0 (B) = T n 0 (|B|) = 0 and for k ≥ 0 T n k+1 (B) = inf{r ≥ T n k (B), |B r -B T n k | = 1 2 n }, T n k+1 (|B|) = inf{r ≥ T n k (|B|), ||B r | -|B T n k || = 1 2 n }. Then, clearly T n k (B) = T n k (|B|) and so (T n k (|B|)) k≥0 law = (T n k (B)) k≥0 . It
M n t = 1 √ n M(nt), n ≥ 1. Then (M n t ) t≥0 law -----→ n → +∞ (Z t ) t≥0 in C([0, +∞[, G) where Z is a W (α 1 , • • • , α N ) process started at 0. Proof. Let (Z t ) t≥0 be a W (α 1 , • • • , α N )
process on G started at 0 and

Z i t = |Z t |1 {Zt∈D i } -|Z t |1 {Zt / ∈D i } , i ∈ [1, N]
.

Then Z i t = Φ i (Z t ) where Φ i (x) = |x|1 {x∈D i } -|x|1 {x / ∈D i } .
Let p α i be the semigroup of SBM(α i ) (see Section 2.2.2). Then the following relation is easy to check: P t (f

•Φ i ) = p α i t f • Φ i for all bounded measurable function f defined on R which shows that Z i is a SBM(α i ) started at 0. For n ≥ 1, i ∈ [1, N], k ≥ 0, define T n 0 = 0, T n k+1 = inf{r ≥ 0 : |Z r -Z T n k | = 1 √ n }.
T n,i 0 = 0, T n,i k+1 = inf{r ≥ 0 :

|Z i r -Z i T n,i k | = 1 √ n }.
Remark that

T n k+1 = T n,i k+1 = inf{r ≥ 0 : ||Z r | -|Z T n k || = 1 √ n }. Furthermore if Z t ∈ D i , then obviously d(Z t , Z s ) = |Z i t -Z i s | for all s ≥ 0 and consequently d(Z t , Z s ) ≤ N i=1 |Z i t -Z i s |. (2.3) Now define Z n k = √ nZ T n k , Z n,i k = √ nZ i T n,i k .
Then by the proof of Proposition 2.2,

(Z n k , k ≥ 0) law = M. Furthermore for all T > 0, sup t∈[0,T ] d(Z t , 1 √ n Z n ⌊nt⌋ ) ≤ N i=1 sup t∈[0,T ] |Z i t - 1 √ n Z n,i ⌊nt⌋ | -----→ n → +∞
0 in probability by Lemma 4.4 [START_REF] Cherny | Limit behaviour of the "horizontalvertical" random walk and some extensions of the Donsker-Prokhorov invariance principle[END_REF] which proves our result.

Proposition 2.4. The W (α 1 , • • • , α N ) process admits a modification having continuous paths.

Proof. This is a consequence of (2.3) as well as the continuity of SBM.

Freidlin-Sheu formula

Set G * = G \ {0} and define:

C 2 b (G * ) = f ∈ C(G) : ∀i ∈ [1, N], f i is twice derivable on R * + , f ′ i , f ′′ i ∈ C b (R * + )
and both have finite limits at 0 + .

For f ∈ C 2 b (G * ), we use the conventions f ′ (0) = f ′ N (0+), f ′′ (0) = f ′′ N (0+). Theorem 2.3. [17] Let (Z t ) t≥0 be a W (α 1 , • • • , α N ) process on G started at z and let X t = |Z t |. Then (i) (X t ) t≥0 is a reflecting Brownian motion started at |z|. (ii) B t = X t -Lt (X) -|z| is a standard Brownian motion where Lt (X) = lim ε→0 + 1 2ε t 0 1 {|Xu|≤ε} du. (iii) ∀f ∈ C 2 b (G * ), f (Z t ) = f (z) + t 0 f ′ (Z s )dB s + 1 2 t 0 f ′′ (Z s )ds + ( N i=1 α i f ′ i (0+)) Lt (X). (2.4) 
Remark 2.2. For N ≥ 3, the filtration (F Z t ) has the martingale representation property with respect to B [4], but there is no Brownian motion W such that F Z t = F W t [START_REF] Tsirelson | Triple points: from non-Brownian filtrations to harmonic measures[END_REF].

Proof. Let p 1 be the semigroup of the reflecting Brownian motion on R and define Φ(x) = |x|. Then X t = Φ(Z t ) and it can be easily checked that P t (f • Φ) = p 1 t f • Φ for all bounded measurable function f : R -→ R which proves (i). (ii) is an easy consequence of Tanaka's formula for local time.

(iii) Set τ z = inf{r ≥ 0, Z r = 0}. For t ≤ τ z , (2.4) follows from Itô's formula applied to the semimartingale X. By discussing the cases t ≤ τ z and t > τ z , one can assume that z = 0 and so in the sequel we take z = 0.

For all i ∈ [1, N], Z i t = |Z t |1 {Zt∈D i } -|Z t |1 {Zt / ∈D i } is a SBM(α i
) started at 0 by the proof of Proposition 2.3. We use the notation (P) to denote the convergence in probability. For δ > 0, define τ δ 0 = θ δ 0 = 0 and for n 1

θ δ n = inf{r ≥ τ δ n-1 , |Z r | = δ}, τ δ n = inf{r ≥ θ δ n , Z r = 0}. Let f ∈ C 2 b (G * ) and t > 0. Then f (Z t ) -f (0) = ∞ n=0 f (Z θ δ n+1 ∧t ) -f (Z θ δ n ∧t ) = Q δ 1 + Q δ 2 + Q δ 3 where Q δ 1 = ∞ n=0 (f (Z θ δ n+1 ∧t ) -f (Z τ δ n ∧t )) - N i=1 ∞ n=0 δf ′ i (0+)1 {θ δ n+1 ≤t,Z θ δ n+1 ∈D i } , Q δ 2 = N i=1 ∞ n=0 δf ′ i (0+)1 {θ δ n+1 ≤t,Z θ δ n+1 ∈D i } , Q δ 3 = ∞ n=0 f (Z τ δ n ∧t ) -f (Z θ δ n ∧t ).
We first show that Q δ 1 ---→ δ → 0 0 (P) and for this write [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] where L t is the nonsymmetric local time in zero and therefore

Q δ 1 = Q δ (1,1) + Q δ (1,2) with Q δ (1,1) = ∞ n=0 N i=1 (f (Z θ δ n+1 ) -f (Z τ δ n ) -δf ′ i (0+))1 {θ δ n+1 ≤t,Z θ δ n+1 ∈D i } , Q δ (1,2) = ∞ n=0 N i=1 (f (Z t ) -f (Z τ δ n ∧t ))1 {θ δ n+1 >t,Z θ δ n+1 ∈D i } . Since f ∈ C 2 b (G * ), we have (i)∀i ∈ [1, N]; δ 0 (f ′ i (u) -f ′ i (0+))du = f i (δ) -f i (0) -δf ′ i (0+). (ii) There exists M > 0 such that ∀i ∈ [1, N], u ≥ 0 : |f ′ i (u) -f ′ i (0+)| ≤ Mu. Consequently |Q δ (1,1) | = | ∞ n=0 N i=1 (f i (δ) -f i (0) -δf ′ i (0+))1 {θ δ n+1 ≤t,Z θ δ n+1 ∈D i } | ≤ NMδ 2 2 ∞ n=0 1 {θ δ n+1 ≤t} . It is known that δ ∞ n=0 1 {θ δ n+1 ≤t} ---→ δ → 0 1 2 L t (X) (P)
Q δ (1,1) ---→ δ → 0 0 (P). Let C > 0 such that ∀i ∈ [1, N], u ≥ 0 : |f i (u) -f i (0)| ≤ Cu. Then |Q δ (1,2) | = | ∞ n=0 N i=1 (f (Z t ) -f (Z τ δ n ∧t ))1 {θ δ n+1 >t,Z θ δ n+1 ∈D i } | ∞ n=0 N i=1 |f i (X t ) -f i (0)|1 {τ δ n <t<θ δ n+1 ,Z θ δ n+1 ∈D i } CX t ∞ n=0 1 {τ δ n <t<θ δ n+1 } ≤ Cδ which shows that Q δ (1,2) ---→ δ → 0 0 a.s. and so Q δ 1 ---→ δ → 0 0 (P). Now define Q δ (2,i) = δ ∞ n=0 1 {θ δ n+1 ≤t,Z θ δ n+1 ∈D i } . Since ∞ n=0 1 {θ δ n+1 ≤t,Z θ δ n+1 ∈D i } is the number of upcrossings of Z i from 0 to δ before time t, we have Q δ (2,i) ---→ δ → 0 1 2 L t (Z i ) (P).
Using Remark 2.1, we see that

Q δ 2 ---→ δ → 0 ( N i=1 α i f ′ i (0+)) Lt (X) (P).
We now establish that

Q δ 3 ---→ δ → 0 t 0 f ′ (Z s )dB s + 1 2 t 0
f ′′ (Z s )ds (P). For this write

Q δ 3 = Q δ (3,1) + Q δ (3,2) with Q δ (3,1) = ∞ n=0 (f (Z τ δ n ) -f (Z θ δ n ))1 {τ δ n ≤t} = ∞ n=0 N i=1 (f (0) -f i (δ))1 {τ δ n ≤t,Z θ δ n ∈D i } , Q δ (3,2) = N i=1 (f (Z t ) -f i (δ))♯{n ∈ N : θ δ n < t < τ δ n , Z θ δ n ∈ D i }. It is clear that ♯{n ∈ N : θ δ n < t < τ δ n , Z θ δ n ∈ D i } ---→ δ → 0 1 {Zt∈D i \{0}} a.s. and so Q δ (3,2) converges to f (Z t ) -f (0) as δ → 0 a.s. Define τ δ,i 0 = θ δ,i 0 = 0 and θ δ,i n = inf{r ≥ τ δ,i n-1 , Z r = δ e i }; τ δ,i n = inf{r ≥ θ δ,i n , Z r = 0}, n 1. Using ∞ n=0 1 {τ δ n ≤t,Z θ δ n ∈D i } = ∞ n=0 1 {τ δ,i n ≤t} , it follows that Q δ (3,1) = ∞ n=0 N i=1 (f (0) -f i (δ))1 {τ δ,i n ≤t} .
On the other hand

f i (X τ δ,i n ∧t ) -f i (X θ δ,i n ∧t ) = (f i (X τ δ,i n ) -f i (X θ δ,i n ))1 {τ δ,i n ≤t} + (f i (X t ) -f i (0))1 {θ δ,i n <t<τ δ,i n }
and therefore

Q δ (3,1) = N i=1 ∞ n=0 (f i (X τ δ,i n ∧t )-f i (X θ δ,i n ∧t ))- N i=1 (f i (X t )-f i (0))×♯{n ∈ N, θ δ,i n < t < τ δ,i n }. Since ♯{n ∈ N, θ δ,i n < t < τ δ,i n } ---→ δ → 0
1 {Zt∈D i \{0}} a.s., we deduce that

Q δ 3 δ→0 = N i=1 ∞ n=0 (f i (X τ δ,i n ∧t ) -f i (X θ δ,i n ∧t )) + o(1) a.s. For all i ∈ [1, N], let fi be C 2 on R such that fi = f i on R + , f ′ i = f ′ i , f ′′ i = f ′′ i on R * + . Now a.s. ∀s ∈ [0, t], i ∈ [1, N], ∞ n=0 1 [θ δ,i n ∧t,τ δ,i n ∧t[ (s) ---→ δ → 0 1 {Zs∈D i \{0}} .
By dominated convergence for stochastic integrals (see [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 142),

∞ n=0 fi (X τ δ,i n ∧t ) -fi (X θ δ,i n ∧t ) = t 0 ∞ n=0 1 [θ δ,i n ∧t,τ δ,i n ∧t[ (s)d fi (X s ) ---→ δ → 0 t 0 1 {Zs∈D i \{0}} d fi (X s ) (P). Finally t 0 f ′ (Z s )dB s + 1 2 t 0 f ′′ (Z s )ds = N i=1 t 0 1 {Zs∈D i \{0}} (f ′ i (X s )dB s + 1 2 f ′′ i (X s )ds) = N i=1 t 0 1 {Zs∈D i \{0}} d fi (X s ).
by Itô's formula and using the fact that d Ls (X) is carried by {s : Z s = 0}. Now the proof of Theorem 2.3 is complete.

The foregoing theorem entails the following characterization of the

W (α 1 , • • • , α N )
process by means of the generator of its semigroup.

Proposition 2.5. Let

• D(α 1 , • • • , α N ) = {f ∈ C 2 b (G * ) : N i=1 α i f ′ i (0+) = 0}.
• Q = (Q t ) t≥0 be a Feller semigroup satisfying:

Q t f (x) = f (x) + 1 2 t 0 Q u f ′′ (x)du for all f ∈ D(α 1 , • • • , α N ). Then, Q is the semigroup of the W (α 1 , • • • , α N ) process.
Proof. Denote by P be the semigroup of the

W (α 1 , • • • , α N ) process, A ′ and D(A ′ )
being respectively its generator and its domain on C 0 (G). Let

D ′ (α 1 , • • • , α N ) = f ∈ C 0 (G) D(α 1 , • • • , α N ), f ′′ ∈ C 0 (G) . (2.5)
Then it is enough to prove the statements:

(i) ∀t > 0, P t (C 0 (G)) ⊂ D ′ (α 1 , • • • , α N ). (ii) D ′ (α 1 , • • • , α N ) ⊂ D(A ′ ) and A ′ f (x) = 1 2 f ′′ (x) on D ′ (α 1 , • • • , α N ). (iii) D ′ (α 1 , • • • , α N ) is dense in C 0 (G) for ||.|| ∞ .
(iv) If R and R ′ are respectively the resolvents of Q and P , then

R λ = R ′ λ for all λ > 0 on D ′ (α 1 , • • • , α N ). (i) Pick t > 0 and f ∈ C 0 (G). Since P is Feller, we have P t f ∈ C 0 (G). Set H i (y, h) = 2 N j=1 α j f j (y)p t (h, -y) + f i (y)(p t (h, y) -p t (h, -y)), h > 0, y 0. For h ≥ 0, x = h ε i , P t f (x) = R + H i (y, h)dy if h > 0; P t f (0) = 2 N i=1 α i R + f i (y)p t (h, -y)dy if h = 0. It is clear that h -→ H i (y, h) is C ∞ on R * + and furthermore ∀y ≥ 0, h > 0, ∂ ∂h H i (y, h) = 2 N j=1 α j f j (y) ∂ ∂h p t (h, -y) + f i (y)( ∂ ∂h p t (h, y) - ∂ ∂h p t (h, -y)), ∂ ∂h 2 H i (y, h) = 2 N j=1 α j f j (y) ∂ ∂h 2 p t (h, -y) + f i (y)( ∂ ∂h 2 p t (h, y) - ∂ ∂h 2 p t (h, -y).
For some constant M ∈ R, we have

| ∂ ∂h H i (y, h)| ≤ M(| ∂ ∂h p t (h, -y)| + | ∂ ∂h p t (h, y)|) ≤ M t {(y + h)p t (h, -y) + |y -h|p t (h, y)}. Clearly (P t f ) ′ i exists on R * + and ∀h > 0, (P t f ) ′ i (h) = R + ∂ ∂h H i (y, h)dy.
The last equality shows that h -→

(P t f ) ′ i (h) is bounded on R * + since sup h>0 +∞ 0 (y + h)p t (h, -y)dy < +∞; sup h>0 +∞ 0 |y -h|p t (h, y)dy < +∞. (2.6)
An easy application of dominated convergence yields

(P t f ) ′ i (h) ----→ h → 0+ -2 t N j=1 α j R + f j (y)yp t (0, y)dy + 2 t R + f i (y)yp t (0, y)dy
and in particular

N i=1 α i (P t f ) ′ i (0+) = 0.
For the second derivative, we have for some

constant M ∈ R, | ∂ ∂h 2 H i (y, h)| ≤ M(Q 1 (h, y)p t (h, -y) + Q 2 (h, y)p t (h, y))
where Q 1 , Q 2 are two polynomials in two variables (h, y) and both having positive coefficients. Using

∂ ∂h 2 p t (h, u) = -1 t p t (h, u) + (u -h) 2 t 2 p t (h, u) -→ h→0+ p t (0, u)( u 2 t 2 - 1 t )
and dominated convergence, we deduce that

(P t f ) ′′ i (h) ----→ h → 0+ 2 N j=1 α j R + f j (y)( y 2 -t t 2 )p t (0, y)dy (no longer depends i ∈ [1, N]).
To conclude that

P t f ∈ D ′ (α 1 , • • • , α N )
, it remains to show that lim h→+∞ (P t f ) ′′ i (h) = 0. For this, write (P t f ) ′′ i = I 1 + I 2 -I 3 where

I 1 (h) = 2 N j=1 α j R + f j (y) ∂ ∂h 2 p t (h, -y)dy, I 2 (h) = R + f i (y) ∂ ∂h 2 p t (h, y)dy, I 3 (h) = R + f i (y) ∂ ∂h 2 p t (h, -y)dy.
Clearly, there exists a polonomial D with positive coefficients satisfying

|I 1 (h)| ≤ R + D(h + y)e -(h+y) 2 2t dy -----→ h → +∞ 0. Likewise, I 3 (h) -----→ h → +∞ 0. Finally I 2 (h) = -1 t R + f i (y)p t (h, y)dy + 1 t 2 R + f i (y)(y -h) 2 p t (h, y)dy = C 1 R f i (y + h)1 {y>-h} e -y 2 2t dy + C 2 R f i (y + h)1 {y>-h} y 2 e -y 2 2t dy. Since f ∈ C 0 (G), I 2 (h) -----→ h → +∞
0 by dominated convergence and so lim h→+∞

(P t f ) ′′ i (h) = 0. (ii) easily comes from 2.4. (iii) Let f ∈ C 0 (G), then P 1 n f ∈ D ′ (α 1 , • • • , α N ) for all n ≥ 1 by (i) and since P is Feller, we get ||P 1 n f -f || ∞ -→ n→+∞ 0.
(iv) Let A be the generator of P . By assumption,

D ′ (α 1 , • • • , α N ) ⊂ D(A) and Af = 1 2 f ′′ on D ′ (α 1 , • • • , α N ). For f ∈ D ′ (α 1 , • • • , α N ), R λ f is the unique element of D(A) such that (λI -A)(R λ f ) = f.
In order to complete the proof, we will show that

(a) R ′ λ f ∈ D(A), (b)λR ′ λ f -A(R ′ λ f ) = f. (a) Since R ′ λ f (x) = +∞ 0 e -λt P t f (x)dt and P t f ∈ D ′ (α 1 , • • • , α N ), dominated con- vergence to gether with (ii) show that R ′ λ f ∈ D ′ (α 1 , • • • , α N ) ⊂ D(A). As R ′ λ f ∈ D ′ (α 1 , • • • , α N ), it comes that A ′ (R λ f ) = A(R λ f ) = 1 2 (R λ f ) ′′ . Now (λI -A ′ )(R ′ λ f ) = f yields (λI -A)(R ′ λ f ) = f which proves (b)
and (iv). By (iii), we see that R λ = R ′ λ , in other words P = Q.

Exercice. Consider the full WBM in the plane P = R 2 as defined by its semigroup in [4]. Let P * = P \ {0} where 0 = 0 R 2 . We will use polar co-ordinates (r, θ) to denote points in P. For f defined on P and θ

∈ [0, 2π[, let f θ (h) = f (h, θ), h ≥ 0.
We say that f is continuous on

P if f θ is continuous on R + for all θ ∈ [0, 2π[. Define analogously C 2 b (P * ) = f ∈ C(P) : ∀θ ∈ [0, 2π[, f θ is twice derivable on R * + , f ′ θ , f ′′ θ ∈ C b (R * +
) and both have finite limits at 0 + .

For f ∈ C 2 b (P * ), z = (r, θ) ∈ P with z = 0, set f ′ (z) = f ′ θ (r), f ′′ (z) = f ′′ θ (r). We use the conventions f ′ (0) = f ′ 0 (0+), f ′′ (0) = f ′′ 0 (0+).
Let Z be a full WBM in the plane started at z and X t = |Z t |. Using a similar decomposition of f (Z t )f (0) as 51 in the proof of Theorem 2.3 and the approximation of local time by the number of upcrossings in L p spaces, show that:

(i) (X t ) t≥0 is a reflecting Brownian motion started at |z|. (ii) B t = X t -Lt (X) -|z| is a standard Brownian motion where Lt (X) = lim ε→0 + 1 2ε t 0 1 {|Xu|≤ε} du. (iii) For all suitable functions f ∈ C 2 b (P * ): f (Z t ) = f (z) + t 0 f ′ (Z s )dB s + 1 2 t 0 f ′′ (Z s )ds + 1 2π ( [0,2π[ f ′ θ (0+)dθ) Lt (X).
Then deduce the analogous of Proposition 2.5. A large part of this thesis can be generalized to the full WBM in the plane. 

Introduction

In this chapter we introduce basic objects for this thesis. We begin with stochastic flows: flows of mappings and more generally flows of kernels according to Le Jan and Raimond. A stochastic flow of kernels K can be viewed as the transition probabilities of a Markov process in a random environment. To K is associated a compatible family of Feller semigroups (P n ) n≥1 : namely, the marginal distribution of any k components of an n motion is necessarily a k point motion. Conversely Le Jan and

Raimond have proved that any compatible family of Feller semigroups gives a unique stochastic flow of kernels. We briefly review these notions in Section 3.2. In Section 3.3, we define the noise filtration associated with any flow of kernels and recall the notion of "filtering with respect to a subnoise filtration ". Then we study coalescing flows which can be obtained from flows whose two point motion hits the diagnoal.

Then the original flow can be recovered by filtering the coalescing flow with respect to a subnoise filtration. In Section 3.4, we apply this theory and extend Tanaka's equation to kernels. We recall the construction of flows associated to the extended Tanaka's equation from [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]. At the end of Section 3.4, a new flow of kernels will appear giving rise to a more general Tanaka's equation as well as to new difficulties.

This has been the starting point of this thesis.

Stochastic flows

Let (Ω, A, P) be a probability space and M be any locally compact separable metric space. Let us recall some fundamental definitions and results from [START_REF] Le | Flows, coalescence and noise[END_REF].

Stochastic flows of mappings

Let (F, F ) be the space of all measurable mappings from M into M endowed with the σ-field F generated by ϕ -→ ϕ(x), x ∈ M and C 0 (M) be the space of all continuous functions on M which vanish at infinity. Definition 3.1. A family (ϕ s,t ) s≤t of (F, F )-valued random variables is called a stochastic flow of mappings if ∀s t, the mapping

ϕ s,t : (M × Ω, B(M) ⊗ A) -→ (M, B(M)) (x, ω) -→ ϕ s,t (x, ω)
is measurable and if it satisfies the following properties:

(1) ∀s < t < u, x ∈ M, P-a.s., ϕ s,u (x) = ϕ t,u (ϕ s,t (x)) (cocycle or flow property).

(2) ∀s t, the law of ϕ s,t only depends on ts (stationarity).

(

) For all t 1 < t 2 < • • • < t n , the family {ϕ t i ,t i+1 , 1 ≤ i ≤ n -1} is independent. (4) ∀t ≥ 0, x ∈ M, f ∈ C 0 (M), lim y→x E[(f (ϕ 0,t (x)) -f (ϕ 0,t (y))) 2 ] = 0. 3 
(

) ∀t ≥ 0, f ∈ C 0 (M), lim x→+∞ E[f 2 (ϕ 0,t (x))] = 0. (6) ∀x ∈ M, f ∈ C 0 (M), lim t→0+ E[(f (ϕ 0,t (x)) -f (x)) 2 ] = 0. 5 
A family of Feller semigroups (P n ) n≥1 defined on M n and acting on C 0 (M n ) is said to be compatible as soon as, for all k ≤ n,

P k t f (x 1 , • • • , x k ) = P n t g(y 1 , • • • , y n ),
where f and g are in

C 0 (M n ) such that g(y 1 , • • • , y n ) = f (y i 1 , • • • , y i k ) with {i 1 , • • • , i k } ⊂ {1, • • • , n} and (x 1 , • • • , x k ) = (y i 1 , • • • , y i k ).
The following proposition associates to a stochastic flow of mappings a compatible system of Feller semigroups.

Proposition 3.1. Consider a stochastic flow of mappings (ϕ s,t

) s≤t . For f ∈ C 0 (M n ), x = (x 1 , • • • , x n ), set P n t f (x) = E[f (ϕ 0,t (x 1 ), • • • , ϕ 0,t (x n ))].
Then (P n ) n≥1 is a compatible family of Feller semigroups acting respectively on

C 0 (M n ) satisfying P 2 t f ⊗2 (x, x) = P t f 2 (x) for all f ∈ C 0 (M), x ∈ M, t ≥ 0. (3.1)
Moreover, the n point motion (or Markov process) started at

(x 1 , • • • , x n ) ∈ M n associated to P n is given by (ϕ 0,• (x 1 ), • • • , ϕ 0,• (x n )).
Proof. The second assertion is clear. See Proposition 3.3 below for the first claim.

Stochastic differential equations have been for a long time a powerful tool to construct stochastic flows [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF]. This is for example the case of SBM as we will see in the next chapter. However the approach of Le Jan and Raimond is different and is of type Kolmogorov extension theorem. Before reminding their first result, we need to introduce Feller convolution semigroups on (F, F ) and begin by Definition 3.2. A probability measure Q on (F, F ) is called regular if there exists a measurable mapping J : (F, F ) -→ (F, F ) such that

(M × F, B(M) ⊗ F ) -→ (M, B(M)) (x, ϕ) -→ J (ϕ)(x),
is measurable and, for every

x ∈ M, Q(dϕ) -a.s., J (ϕ)(x) = ϕ(x),
that is, J is a measurable modification of the identity mapping on (F, F , Q). We call it a measurable representation of Q.

Proposition 3.2. Let Q 1 and Q 2 be two probability measures on (F, F ). Assume Q 1 is regular. Let J be a measurable presentation of Q 1 . Then the mapping

(F 2 , F ⊗2 ) -→ (F, F ) (ϕ 1 , ϕ 2 ) -→ J (ϕ 1 ) • ϕ 2 , is measurable. Moreover, if J ′ is another measurable presentation of Q 1 , then for every x ∈ M, Q 1 (dϕ 1 ) ⊗ Q 2 (dϕ 2 ) -a.s., J (ϕ 1 ) • ϕ 2 (x) = J ′ (ϕ 1 ) • ϕ 2 (x).
We denote Q 1 ⋆ Q 2 , and we call the convolution product of Q 1 and Q 2 , the law of the random variable (ϕ 1 , ϕ 2 ) -→ J (ϕ 1 ) • ϕ 2 defined on the probability space

(F 2 , F ⊗2 , Q 1 ⊗ Q 2 ).
It is now possible to give the following

Definition 3.3. A convolution semigroup on (F, F ) is a family (Q t ) t≥0 of regular
probability measures on (F, F ) such that, for all nonnegative s and t,

Q s+t = Q s ⋆Q t .
We say that (Q t ) t≥0 is Feller as soon as

(i) ∀t ≥ 0, x ∈ M, f ∈ C 0 (M), lim y→x (f • ϕ(x) -f • ϕ(y)) 2 Q t (dϕ) = 0. (ii) ∀t ≥ 0, f ∈ C 0 (M), lim x→+∞ f 2 (ϕ(x))Q t (dϕ) = 0. (iii) ∀x ∈ M, f ∈ C 0 (M), lim t→0+ (f • ϕ(x) -f (x)) 2 Q t (dϕ) = 0.
We now turn to the first fundamental result of Le Jan and Raimond 57 Theorem 3.1. (i) Let (P n t , n ≥ 1) be a compatible family of Feller semigroups on M satisfying (3.1). Then there exists a unique Feller convolution semigroup

(Q t ) t≥0 on (F, F ) such that, for all n ≥ 1, t ≥ 0, f ∈ C 0 (M n ) and x ∈ M n , P n t f (x) = f • ϕ ⊗n (x)Q t (dϕ).
(ii) For every Feller convolution semigroup (Q t ) t≥0 on (F, F ), there exists a stochastic flow of mappings (ϕ s,t ) s≤t such that for all s ≤ t, the law of ϕ s,t is Q t-s .

The following lemma gives a sufficient condition for a compatible family of Markovian kernels semigroups to be constituted of Feller semigroups.

Lemma 3.1. (i) A compatible family (P n t , n ≥ 1) of semigroups of Markovian kernels is constituted of Feller semigroups when the following condition is satisfied:

(C) For all f ∈ C 0 (M) and x ∈ M, lim t→0 P 1 t f (x) = f (x)
and for all x ∈ M, ǫ > 0 and t > 0, lim y→x P 2 t d ǫ (x, y) = 0, where d ǫ (x, y) = 1 {d(x,y)>ǫ} . (ii) When (C) is satisfied, (3.1) holds and so a stochastic flow of mappings is associated with this family of semigroups.

Proof. (i) This is Lemma 1.11 in [START_REF] Le | Flows, coalescence and noise[END_REF]. (ii) Let f ǫ (x, y) = f (x)f (y)d ǫ (x, y). We have

P 2 t f ⊗2 (x, x) = P 2 t f ǫ (x, x) + P 2 t (f ⊗2 -f ǫ )(x, x).
By hypothesis P 2 t d ǫ (x, x) = 0 and so P 2 t f ǫ (x, x) = 0. On the other hand

(f ⊗2 -f ǫ )(z 1 , z 2 ) = f (z 1 )f (z 2 )1 {d(z 1 ,z 2 )≤ǫ} converges pointwise to f 2 (z 1 )1 {z 1 =z 2 } as ǫ → 0. By dominated convergence lim ǫ→0 P 2 t (f ⊗2 -f ǫ )(x, x) = f 2 (z 1 )1 {z 1 =z 2 } P 2 t ((x, x), dz 1 dz 2 ) = P t f 2 (x) -f 2 (z 1 )1 {z 1 =z 2 } P 2 t ((x, x), dz 1 dz 2 ).
Again from

P 2 t d ǫ (x, x) = 0, f 2 (z 1 )1 {z 1 =z 2 } P 2 t ((x, x), dz 1 dz 2 ) = 0,
which finishes the proof.

Coalescing flows

Let ϕ be a stochastic flow of mappings. We say that ϕ is coalescing as soon as, for all (x, y) ∈ M 2 , with probability 1, T x,y = inf{t ≥ 0, ϕ 0,t (x) = ϕ 0,t (y)} < ∞ and ϕ 0,t (x) = ϕ 0,t (y) for all t ≥ T x,y . Suppose that for each x ∈ M, ϕ 0,• (x) has a continuous version which will be usually the case in this thesis. Then, by Proposition 3.1, the following lemma holds.

Lemma 3.2. (The strong Markov property.) For all (x 1 , • • • , x n ) ∈ M n , denote by P x 1 ,••• ,xn the law of (ϕ 0,• (x 1 ), • • • , ϕ 0,• (x n )) in C(R + , M n ). Let T be a finite (F t )-
stopping time where

F t = σ(ϕ 0,u , u ≤ t), t ≥ 0. Then the law of (ϕ 0,T +• (x 1 ), • • • , ϕ 0,T +• (x n ))
knowing F T is given by

P ϕ 0,T (x 1 ),••• ,ϕ 0,T (xn) .
Applying the previous lemma at T = T x,y , we see that ϕ is a coalescing flow if and only if, for all (x, y) ∈ M 2 , with probability 1, T x,y < ∞.

Stochastic flows of kernels

Let P(M) be the space of all probability measures on M and (f n ) n∈N be a sequence of functions dense in {f ∈ C 0 (M), ||f || ∞ ≤ 1}. We equip P(M) with the distance

d(µ, ν) = ( n 2 -n ( f n dµ -f n dν) 2 )
1 2 for all µ and ν in P(M). Thus, P(M) is a locally compact separable metric space. A kernel K on M is a measurable mapping from M into P(M). We denote by E the space of all kernels on M and we equip E with the σ-field E generated by the mappings K -→ µK, µ ∈ P(M), with µK the probability measure defined as µK(A) = M µ(dx)K(x, A).

Let Γ denote the space of measurable mappings on P(M). We equip Γ with the σ-field generated by the mappings Φ → Φ(µ) for all µ ∈ P(M). Note that (Γ, G) = (F, F ) once we have replaced M by P(M).

Definition 3.4. A family of (E, E)-valued random variables (K s,t ) s≤t is called a stochastic flow of kernels if, ∀s t the mapping

K s,t : (M × Ω, B(M) ⊗ A) -→ (P(M), B(P(M))) (x, ω) -→ K s,t (x, ω)
is measurable and if it satisfies the following properties:

(1) ∀s < t < u, x ∈ M a.s.,

∀f ∈ C 0 (M), K s,u f (x) = K s,t (K t,u f )(x) (cocycle or flow property).
(2) ∀s t, the law of K s,t only depends on ts (stationarity).

(

) For all t 1 < t 2 < • • • < t n , the family {K t i ,t i+1 , 1 ≤ i ≤ n -1} is independent. (4) ∀t ≥ 0, x ∈ M, f ∈ C 0 (M), lim y→x E[(K 0,t f (x) -K 0,t f (y)) 2 ] = 0. 3 
(

) ∀t ≥ 0, f ∈ C 0 (M), lim x→+∞ E[(K 0,t f (x)) 2 ] = 0. (6) ∀x ∈ M, f ∈ C 0 (M), lim t→0+ E[(K 0,t f (x) -f (x)) 2 ] = 0. 5 
Note that δ ϕ is a stochastic flow of kernels as soon as ϕ is a stochastic flow of mappings. In Section 3.4, we shall give other examples of stochastic flows of kernels in connection wih Tanaka's equation.

Proposition 3.3. Let K be a stochastic flow of kernels on M. For f ∈ C 0 (M n ), x = (x 1 , • • • , x n ) ∈ M n , set K ⊗n 0,t f (x) = M f (y 1 , • • • , y n )K 0,t (x 1 , dy 1 ) • • • K 0,t (x n , dy n ) and P n t f (x) = E[K ⊗n 0,t f (x)].
Then, (P n ) n≥1 is a compatible family of Feller semigroups acting respectively on C 0 (M n ).

Proof. We will show that:

(i) P n t+s = P n t (P n s ), (ii) P n t (C 0 (M n )) ⊂ C 0 (M n ), (iii) ∀x ∈ G n , f ∈ C 0 (M n ), lim t→0+ P n t f (x) = f (x).
(i) is an easy consequence of the cocyle property satisfied by K.

(ii) Let f ∈ C 0 (M n ) such that f = f 1 ⊗ • • • ⊗ f n with f i ∈ C 0 (M). We have | n i=1 K 0,t f i (x i ) - n i=1 K 0,t f i (y i )| ≤ Q 1 + Q 2 ,
where

Q 1 = | n i=1 K 0,t f i (x i ) -K 0,t f 1 (y 1 ) n i=2 K 0,t f i (x i )|
and

Q 2 = |K 0,t f 1 (y 1 ) n i=2 K 0,t f i (x i ) - n i=1 K 0,t f i (y i )|. There exist C 1 , C 2 ∈ R such that Q 1 ≤ C 1 |K 0,t f 1 (x 1 ) -K 0,t f 1 (y 1 )|, Q 2 ≤ C 2 | n i=2 K 0,t f i (x i )] - n i=2 K 0,t f i (y i )|.
Consequently, for some constant C 3 , we have

|P n t f (x) -P n t f (y)| ≤ C 3 n i=1 E[|K 0,t f i (x i ) -K 0,t f i (y i )|].
By property (4) in the definition of flows, we get:

lim y→x P n t f (y) = P n t f (x) for all x ∈ M n . (3.2)
This remains true for a finite linear combination of functions of the previous form.

Now, if f ∈ C 0 (M n ), there exists a sequence (f k ) k∈N ⊂ C 0 (M n ), such that f k satisfy (3.2) for all k and ||f k -f || ∞ -→ k→+∞ 0. It is clear that |P n t f (x) -P n t f (y)| 2||f k -f || ∞ + |P n t f k (x) -P n t f k (y)|. By letting y -→ x and then k -→ ∞, we conclude that lim sup y→x |P n t f (x) -P n t f (y)| = 0. On the other hand, if f = f 1 ⊗ • • • ⊗ f n , with f i ∈ C 0 (M), then for all i ∈ [1, n],
there exists

C ′ i ≥ 0 such that |P n t f (x)| ≤ C ′ i E[|K 0,t f i (x i )|].
By property [START_REF] Barlow | Autour d'un théorème de Tsirelson sur des filtrations browniennes et non browniennes[END_REF] in the definition of K, we get lim x→+∞ P n t f (x) = 0 and the result extends for all f ∈ C 0 (M n ) as preceded.

(iii) If f = f 1 ⊗ • • • ⊗ f n , with f i ∈ C 0 (M) for all i ∈ [1, n], then similarly to (ii),
there exists a constant C 4 with

|P n t f (x) -f (x)| ≤ C 4 n i=1 E[|K 0,t f i (x i ) -f i (x i )|].
Consequently, lim

t→0+ P n t f (x) = f (x)
, by property (6) in the definition of K. Now, the result easily extends for all f ∈ C 0 (M n ) by the previous argument of density.

Let I denote the measurable mapping from (E, E) on Γ, G) defined by

I(K)(µ) = µK. Definition 3.5. (1) A probability measure ν on (E, E) is called regular if I * (ν) is a regular probability measure on (Γ, G). (2) A convolution semigroup on (E, E) is a family (ν t ) t≥0 of regular probability measures on (E, E) such that (I * (ν t )) t≥0 is a convolution semigroup on (Γ, G). (3) A convolution semigroup (ν t ) t≥0 on (E, E) is called Feller if (i) ∀t ≥ 0, x ∈ M, f ∈ C 0 (M), lim y→x (Kf (x) -Kf (y)) 2 ν t (dK) = 0. (ii) ∀t ≥ 0, f ∈ C 0 (M), lim x→+∞ (Kf (x)) 2 ν t (dK) = 0. (iii) ∀x ∈ M, f ∈ C 0 (M), lim t→0+ (Kf (x) -f (x)) 2 ν t (dK) = 0.
The following result extends Theorem 3.1.

Theorem 3.2. (i) Let (P n t , n ≥ 1) be a compatible family of Feller semigroups on M. Then there exists a unique Feller convolution semigroup

(ν t ) t≥0 on (E, E) such that, for all n ≥ 1, t ≥ 0, f ∈ C 0 (M n ) and x ∈ M n , P n t f (x) = K ⊗n f (x)ν t (dK).
(ii) For every Feller convolution semigroup (ν t ) t≥0 on (E, E), there exists a stochastic flow of kernels (K s,t ) s≤t such that for all s ≤ t, the law of K s,t is ν t-s .

Remarks 3.1. (i) When (3.1) is satisfied, the stochastic flow of kernels K is induced by a stochastic flow of mappings.

(ii

) Let Ω 0 = s t E, A 0 = ⊗ s≤t E and K : (Ω, A, P ) -→ (Ω 0 , A 0 ) ω -→ (K s,t (ω)) s≤t
be a stochastic flow of kernels. Then the law of K is a probability measure on (Ω 0 , A 0 ) which is uniquely determined by the family (P n t , n ≥ 1). Denote by ν t the law of K 0,t . Then the law of K is equivalently uniquely determined by (ν t ) t≥0 .

Noise filtration and coalescence

The content of this paragraph is borrowed from [START_REF] Le | Flows, coalescence and noise[END_REF].

Noise filtration

Definition 3.6. Let (Ω, A, P) be a probability space. A noise filtration on (Ω, A, P) is a family (F s,t ) -∞≤s≤t≤∞ of σ-fields of A such that (i) F s,t and F t,u are independent for all s ≤ t ≤ u.

(ii) F s,t ∨ F t,u = F s,u for all s ≤ t ≤ u.

(iii) For all s ≤ t, F s,t contains all P-negligeable sets of F -∞,∞ .

Let us give the following examples of noises

(1) White noise filtration. Consider a Brownian motion on the real line (W t ) t∈R on (Ω, A, P), that is (W t ) t≥0 and (W -t ) t≥0 are two independent standard Brownian motions. Throughout this thesis, we will use the notation

W s,t = W t -W s , s ≤ t. Let F W s,t = σ(W u,v , s ≤ u ≤ v ≤ t) for all -∞ ≤ s ≤ t ≤ ∞.
We complete F W s,t by the set of P-negligeable sets of

F W -∞,∞ for all -∞ ≤ s ≤ t ≤ ∞. Then (F W s,t
) is by definition the noise filtration associated to W . (2) Noise filtration associated to a stochastic flow. Let K be a stochastic flow of kernels on (Ω, A, P) and define

F K s,t = σ(K u,v , s ≤ u ≤ v ≤ t) for all -∞ ≤ s ≤ t ≤ ∞.
We complete F K s,t by the set of P-negligeable sets of

F K -∞,∞ for all -∞ ≤ s ≤ t ≤ ∞. Then (F K s,t
) is by definition the noise filtration associated to K. Given two noise filtrations F 1 = (F 1 s,t ) and F 2 = (F 2 s,t ), we say that F 1 is a subnoise filtration of F 2 provided F 1 s,t ⊂ F 2 s,t for all -∞ ≤ s ≤ t ≤ ∞. We now introduce the notion of filtering with respect to a subnoise filtration. Proposition 3.4. Let K be a stochastic flow of kernels and denote by (F K s,t ) the noise filtration associated to K. Let F be a subnoise filtration of F K . Then there exits a stochastic flow of kernels K such that for all s ≤ t and x ∈ M,

K s,t (x) = E[K s,t (x)|F s,t ] = E[K s,t (x)|F -∞,∞ ] a.s.
We say that K is obtained by filtering K with respect to F.

Construction of a family of coalescent semigroups

Let (P n , n ≥ 1) be a compatible family of Feller semigroups on M. Another important result of Le Jan and Raimond is the following

Theorem 3.3. Let ∆ n = {x ∈ M n , ∃i = j, x i = x j } and T ∆n = inf{t ≥ 0, X n t ∈ ∆ n }
where X n denotes the n-point motion associated to P n . There exists a unique compatible family (P n,c t , n ≥ 1) of Markovian semigroups on M such that if X n,c is the associated n-point motion and

T c ∆n = inf{t ≥ 0, X n,c t ∈ ∆ n }, then (i) (X n,c t , t ≤ T c ∆n ) is equal in law to (X n t , t ≤ T ∆n ), (ii) for t ≥ T c ∆n , X n,c t ∈ ∆ n .
Moreover, when the following condition (F) is satisfied, this family is constituted of Feller semigroups.

(F) For all t > 0, ǫ > 0 and x ∈ M,

lim y→x P 2 (x,y) [{T ∆ 2 > t} ∩ {d(X t , Y t ) > ǫ}] = 0,
where (X t , Y t ) = X 2 t . In this case, (P n,c t , n ≥ 1) satisfies (3.1) and is associated with a stochastic flow of mappings.

If P 2 (x,y) [T ∆ 2 < ∞] = 1
for all x and y in M, then the associated flow is coalescing.

Proof. Fix (x 1 , • • • , x n ) ∈ M n and let Y n be the n point motion started at (x 1 , • • • , x n )
associated to P n . We denote the ith coordinate of Y n t by Y n t (i). Let

T 1 = inf{u ≥ 0, ∃i < j, Y n u (i) = Y n u (j)} (∈ [0, +∞]), Y n,c t := Y n t , t ∈ [0, T 1 ]. Suppose that Y n T 1 (i) = Y n T 1 (j) with i < j.
Then define the process

Y n,1 t (h) = Y n t (h) for h = j, Y n,1 t (j) = Y n,1 t (i), t ≥ T 1 .

Now set

T 2 = inf{u ≥ T 1 , ∃h < k, h = j, k = j, Y n,1 u (h) = Y n,1 u (k)}. For t ∈ [T 1 , T 2 ], we define Y n,c t = Y n,1 t
and so on (see Figure 3.1).
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x 2 In this way, we construct a Markov process Y n,c such that for all i, j ∈ [1, n],

Y n,c (i) and Y n,c (j) collide whenever they meet. Define P n,c t (x 1 , • • • , x n , dy) as the law of Y n,c t . Then (P n,c t , n ≥ 1) is a compatible family of Markovian semigroups on M. Let X n,c be the associated n-point motion. Then (i) and (ii) are clear. Note that when P 2 (x,y) [T ∆ 2 < ∞] = 0 for all x = y, then P n,c = P n obviously. For every positive ǫ, we have

P 2,c (x,y) [d(X t , Y t ) > ǫ] ≤ P 2 (x,y) [{T ∆ 2 > t} ∩ {d(X t , Y t ) > ǫ}]
which converges toward 0 as y → x when (F) is satisfied. Now the result holds from Lemma 3.1 (ii). The last claim is obvious.

Let ν = (ν t ) t≥0 be the associated Feller convolution semigroup to (P n , n ≥ 1).

Suppose that (P n,c , n ≥ 1) is constituted of Feller semigroups (which is true when (F) holds). We denote by ν c the associated Feller convolution semigroup to (P n,c , n ≥ 1).

We close this section by the following Theorem 3.4. There exists a joint realization (K c , K) where K c and K are two stochastic flows of kernels associated respectively to ν c and ν such that:

(i) Ks,t (x, y) = K c s,t (x) ⊗ K s,t (y) is a stochastic flow of kernels on M × M, (ii) For all s ≤ t, x ∈ M, K s,t (x) = E[K c s,t (x)|K] a.s.
Sketch of the proof. Fix (x 1 , y 1 ), • • • , (x n , y n ) in M × M and denote by X 2n the 2n point motion associated to P 2n started at (x 1 , y 1 , • • • , x n , y n ). Let X n,c be the process obtained from (X 2n (1), X 2n (3), • • • , X 2n (2n-1)) as in the proof of Theorem

3.3. Now set Xn = (X n,c (1), X 2n (2), • • • , X n,c (n), X 2n (2n))
and define P n t ((x 1 , y 1 , • • • , x n , y n ), dz) as the law of Xn t . Then ( P n , n ≥ 1) is a compatible family of Feller semigroups on (M × M) n to which is associated a stochastic flow of kernels K by Theorem 3.2. Then K is a tensor product

Ks,t (x, y) = K c s,t (x) ⊗ K s,t (y)
and it is clear that the Feller convolution semigroup associated to K c (respectively

K) is ν c (respectively K).
3.4 Tanaka's SDE and stochastic flows.

Tanaka's SDE

For a given Brownian motion W , Tanaka's equation driven by W is the one-dimensional stochastic differential equation

dX t = sgn(X t )dW t , X 0 = 0 (3.3)
where sgn(x) = 1 {x>0} -1 {x≤0} . The signum function does not satisfy the Lipschitz continuity condition required for the usual theorems guaranteeing existence and uniqueness of strong solutions. In fact, the Tanaka's equation admits a weak solution but has no strong solution, i.e. one for which X is adapted to the filtration generated by W (see the application of Lemma 2.1). In what follows X is a fixed weak solution of (3.3) and (F X t ) is its natural filtration. Obviously -X solves also (3.3). A natural question is the following Can we describe all the solutions which are (F X t ) adapted ?

The Balayage formula (see e.g. [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 260) supplies an answer to this question.

Denote by g t and d t respectively the last zero of X before t and the first zero of X after t, namely:

g t = sup{u < t : X u = 0}, d t = inf{u > t : X u = 0}.
Let (ε u , u ≥ 0) be a predictable process with respect to (F X t ), and takes only values +1 and -1. Then by the Balayage formula Y t = ε gt X t is a Brownian motion and more precisely

Y t = t 0 ε gs dX s . Hence t 0 sgn(Y s )dY s = t 0 sgn(ε gs X s )ε gs dX s = t 0 sgn(X s )dX s = W t .
In other words, Y solves (3.3) too. Conversely, Azéma and Yor (see [2] page 268) showed that any (F X t ) continuous martingale Z such that |Z| = |X| has the form η gt X t where η is an (F X t ) predictable process. Since

|X t | = |Y t | = W t -inf 0≤u≤t W u ,
we have therefore an answer to the above question.

Flows associated to Tanaka's SDE

In this paragraph, we consider a more general Tanaka's equation with variable initial conditions

ϕ s,t (x) = x + t s sgn(ϕ s,u (x))dW u , s ≤ t, x ∈ R, (3.4) 
where (W t ) t∈R is a Brownian motion on the real line defined on a given probability space (Ω, A, P).

If K is a stochastic flow of kernels, then by definition, (K, W ) is a solution of Tanaka's

SDE if for all s ≤ t, x ∈ R, f ∈ C 2 b (R) (f is C 2 on R and f ′ , f ′′ are bounded) K s,t f (x) = f (x) + t s K s,u (f ′ sgn)(x)dW u + 1 2 t s K s,u f ′′ (x)du a.s. (3.5) 
When K = δ ϕ , is a flow of mappings, (3.5) is then equivalent to (3.4). In [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] Le Jan and Raimond have classified all solution flows of (3.5) by probability measures on [0, 1] and have showed the following Theorem 3.5. (a) Let m be a probability measure on [0, 1] with mean 1 2 . Then, to m is associated a stochastic flow of kernels K m solution of (3.5).

• To δ1 2 is associated a Wiener solution K W . • To 1 2 (δ 0 + δ 1 )
is associated a coalescing stochastic flow of mappings ϕ.

(b) For all stochastic flow of kernels K solution of (3.5) there exists a unique measure

m with mean 1 2 such that K law = K m .
We will review the construction of all solutions of (3.5) according to [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] in the next paragraph.

The construction

There exists a probability space (Ω, A, P) on which one can construct a process

(ε s,t , U s,t , W s,t ) s≤t indexed by {(s, t) ∈ R 2 , s ≤ t} taking values in {-1, 1} × [0, 1] × R
such that:

(i) W s,t := W t -W s , s ≤ t where W is a Brownian motion on the real line.

(ii) For a fixed s < t, (ε s,t , U s,t ) is independent of W and

(ε s,t , U s,t ) law = m(du)(uδ 1 + (1 -u)δ -1 ).
In particular 

P(ε s,t = 1|U s,t ) = U s,
m(du)(uδ 1 + (1 -u)δ -1 )
when min s,t ∈ {min s i ,t i ; 1 ≤ i ≤ n} and is given by

n i=1 δ εs i ,t i ,Us i ,t i × 1 {mins,t=mins i ,t i } Card{i; min s i ,t i = min s,t } otherwise.
Note that (i)-(iii) uniquely define the law of (ε

s 1 ,t 1 , U s 1 ,t 1 , • • • , ε sn,tn , U sn,tn , W ) for all s i < t i , 1 ≤ i ≤ n. By construction, for all s < t, u < v, if P(min s,t = min u,v ) > 0, then P(ε s,t = ε u,v , U s,t = U u,v |min s,t = min u,v ) = 1. For s, x ∈ R, define τ s (x) = inf{r ≥ s : W s,r = -|x|} and for x ∈ R, s ≤ t, let W + s,t = W t -min s,t , ϕ s,t (x) = (x + sgn(x)W s,t )1 {t≤τs(x)} + ε s,t W + s,t 1 {t>τs(x)} , K m s,t (x) = δ x+sgn(x)Ws,t 1 {t≤τs(x)} + (U s,t δ W + s,t + (1 -U s,t )δ -W + s,t )1 {t>τs(x)
} . We will denote W + 0,t simply by W + t . Le Jan and Raimond showed that ϕ is a stochastic flow of mappings (see Lemma 4.3 [36]). For all 0 < s < t, we have ε 0,t = ε 0,s on {min 0,t = min 0,s } and the law of ε 0,t knowing σ(ε 0,u , 0

≤ u ≤ s) ∨ σ(W ) is 1 2 (δ -1 + δ 1 ) on {min 0,t < min 0,s }. By Proposition 2.1, ϕ 0,• (0) is a Brownian motion. Apply Tanaka's formula so that |ϕ 0,t (0)| = t 0 sgn(ϕ 0,u (0))dϕ 0,u (0) + L t
where L t is the nonsymmetric local time at 0 of ϕ 0,• (0). But |ϕ 0,t (0)| = W + t and by identification, we get

ϕ 0,t (0) = t 0 sgn(ϕ 0,u (0))dW u .
Notice that ϕ and K m are linked by the relation K m s,t (x) = E[δ ϕs,t(x) |σ(U, W )] for all x ∈ R and s < t which entails that K m solves (3.5). To m = δ1 2 , is associated the unique F W adapted solution (Wiener flow) of (3.5):

K W s,t (x) = δ x+sgn(x)Ws,t 1 t≤τs(x) + 1 2 (δ W + s,t + δ -W + s,t )1 t>τs(x) .
Note that the one point motion of a solution of (3.5) is the Brownian motion and if xm(x) = 1 2 , this cannot be the case.

Remark 3.1. Let ψ be a stochastic flow of mappings solving (3.4). Then (i) For all x ∈ R,

ψ 0,t (x) = x + sgn(x)W t = x + sgn(x) t 0 sgn(ψ 0,u (0))dψ 0,u (0) ∀ t ≤ τ 0 (x), (ii) |ψ 0,t (0)| = W + t
, for all t ≥ 0 (see the application after Lemma 2.1).

In particular ψ 0,t (0) = ψ 0,t (x) = 0 at t = τ 0 (x). Using (i) and (ii), one easily shows that in fact we have

τ 0 (x) = inf{r ≥ 0, ψ 0,r (x) = ψ 0,r (0)}.
Therefore ψ is a coalescing flow and ψ 0,r (x) = ψ 0,r (0) for all r ≥ τ 0 (x). We have

shown that for all x ∈ R, ψ 0,• (x) is a measurable function of ψ 0,• (0). Since ψ 0,• (0) is a Brownian motion, the law of (ψ 0,• (x 1 ), • • • , ψ 0,• (x n )) is unique for all (x 1 , • • • , x n ) ∈ R n .
Assuming that ϕ constructed above is a flow associated to (3.4), then this is the unique flow of mappings solving Tanaka's equation.

We will review the content of this paragraph in a more general context as well as part (b) of Theorem 3.5 in the coming chapters. Let m be a probability measure on [0, 1] with mean 1 2 . We denote K m simply by K and define P n t = E[K ⊗n 0,t ]. For all 1 ≤ i ≤ n and (f i ) 1≤i≤n a family of measurbale bounded functions on R, we have

P n t (f 1 ⊗ • • • ⊗ f n )(x 1 , • • • , x n ) = 1 0 P n,α t (f 1 ⊗ • • • ⊗ f n )(x 1 , • • • , x n )m(dα),
where

P n,α t (f 1 ⊗ • • • ⊗ f n )(x 1 , • • • , x n ) = E n i=1 K α 0,t f i (x i ) , and 
K α s,t (x) := δ x+sgn(x)Ws,t 1 {t≤τs(x)} + (αδ W + s,t + (1 -α)δ -W + s,t )1 {t>τs(x)} , s ≤ t, x ∈ R.
Then one can easily check that K α is a stochastic flow of kernels (this will be also justified in the next chapter). Remark also that K

1 2 = K W . It is now natural to ask
what is the SDE satisfied by K α for α ∈ [0, 1] ?. This will be of course a more general Tanaka's equation depending on α. We postpone the answer to the next chapter.

Introduction and main results

In [START_REF] Le | Integration of Brownian vector fields[END_REF], [START_REF] Le | Flows, coalescence and noise[END_REF] Le Jan and Raimond have extended the classical theory of stochastic flows to include flows of probability kernels. Using the Wiener chaos decomposition, it was shown that non Lipschitzian stochastic differential equations have a unique

Wiener measurable solution given by random kernels. Later, the theory was applied in [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] to the study of Tanaka's equation (3.4). The extension to kernels of (3.4) is defined by (3.5). Each solution flow of (3.5) can be characterized by a probability measure on [0, 1] which entirely determines its law. Among solutions of (3.5), there is only one flow of mappings which has been already studied in [START_REF] Watanabe | The stochastic flow and the noise associated to Tanaka's stochastic differential equation[END_REF].

We now fix α ∈ [0, 1] and consider the following SDE driven by a Brownian motion on the real line W :

X s,x t = x + W s,t + (2α -1) Lx s,t , t ≥ s, x ∈ R, (4.1) 
where W s,t = W t -W s , s ≤ t and Lx s,t = lim Equation (4.1) was introduced in [START_REF] Harrison | On skew Brownian motion[END_REF]. For a fixed initial condition, it has a pathwise unique solution which is distributed as the SBM(α) (see Section 2.2). It was shown in [START_REF] Barlow | Coalescence of skew Brownian motions[END_REF] that when α = 1 2 , flows associated to (4.1) are coalescing and a deeper study of (4.1) was provided later in [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF] and [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF]. Now, consider the following generalization of (3.4):

X s,t (x) = x + t s sgn(X s,u (x))dW u + (2α -1) Lx s,t (X), s ≤ t, x ∈ R, (4.2) 
where Lx s,t (X) = lim

ε→0 + 1 2ε t s 1 |Xs,u(x)|≤ε du.
Each solution of (4.2) is distributed as the SBM(α). By Tanaka's formula for symmetric local time

|X s,t (x)| = |x| + t s sgn(X s,u (x))dX s,u (x) + Lx s,t (X).
By combining the last identity with (4.2), we have

|X s,t (x)| = |x| + W s,t + Lx s,t (X). (4.
3)

The uniqueness of solutions of the Skorokhod equation (Lemma 2.1), entails

|X s,t (x)| = |x| + W s,t -min s≤u≤t [(|x| + W s,u ) ∧ 0]. (4.4) Clearly (4.3) and (4.4) imply that σ(|X s,u (x)|; s ≤ u ≤ t) = σ(W s,u ; s ≤ u ≤ t)
which is strictly smaller than σ(X s,u (x); s ≤ u ≤ t) and so X s,• (x) cannot be a strong solution of (4.2). For these reasons, we call (4.2) Tanaka's SDE related to SBM(α). Now recall the definitions

• C 2 b (R * ) = {f ∈ C(R) : f is twice derivable on R * , f ′ , f ′′ ∈ C b (R * ), f ′ |]0,+∞] , f ′′ |]0,+∞] (resp. f ′ |]-∞,0[ , f ′′ |]-∞,0[
) have right (resp. left) limit in 0}.

• D α = {f ∈ C 2 b (R * ) : αf ′ (0+) = (1 -α)f ′ (0-)}.
For f ∈ D α , we set by convention f ′ (0) = f ′ (0-), f ′′ (0) = f ′′ (0-). By Itô-Tanaka formula (see [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] page 432) or Freidlin-Sheu formula (Theorem 2.3) and Proposition 2.5, both extensions to kernels of (4.1) and (4.2) may be defined by

K s,t f (x) = f (x) + t s K s,u (εf ′ )(x)dW u + 1 2 t s K s,u f ′′ (x)du, f ∈ D α , (4.5) 
where ε(x) = 1 (respectively ε(x) = sgn(x)) in the first (respectively second) case, but due to the pathwise uniqueness of (4.1), the unique solution of (4.5) when

ε(x) = 1, is K s,t (x) = δ X s,x t
(this can be justified by (6.15)). Our first aim is to define an extention of (4.5) related to WBM in general. We begin by defining our graph.

Definition 4.1. (Graph G) Fix N ≥ 1 and α 1 , • • • , α N > 0 such that N i=1 α i = 1.
We consider the graph G defined in Section 2.3.1. Recall the definitions of

• C 2 b (G * ) = {f ∈ C(G) : ∀i ∈ [1, N], f i is twice derivable on R * + , f ′ i , f ′′ i ∈ C b (R * + )
and both have finite limits at 0+}.

• D(α 1 , • • • , α N ) = {f ∈ C 2 b (G * ) : N i=1 α i f ′ i (0+) = 0}.
For all x ∈ G, we define e(x)

= e i if x ∈ D i , x = 0 (convention e(0) = e N ). For f ∈ C 2 b (G * ), x = 0, let f ′ (x) be the derivative of f at x relatively to e(x) (= f ′ i (|x|) if x ∈ D i ) and f ′′ (x) = (f ′ ) ′ (x) (= f ′′ i (|x|) if x ∈ D i ). We use the conventions f ′ (0) = f ′ N (0+), f ′′ (0) = f ′′ N (0+). Now, associate to each ray D i a sign ε i ∈ {-1, 1} and then define ε(x) =      ε i if x ∈ D i , x = 0 ε N if x = 0
To simplify, we suppose that

ε 1 = • • • = ε p = 1, ε p+1 = • • • = ε N = -1 for some p ≤ N. Set G + = 1≤i≤p D i , G -= p+1≤i≤N D i . Then G = G + G -(Figure 4.1).
We also put α + = 1α -:= p i=1 α i .

Remark 4.1. Our graph can be simply defined as N pieces of R + in which the N origins are identified. The values of the e i will not have any effect in the sequel.

Definition 4.2. (Equation (E)).

On a probability space (Ω, A, P), let W be a Brownian motion on the real line and K be a stochastic flow of kernels on G. We say that (K, W ) solves (E) if for all

s ≤ t, f ∈ D(α 1 , • • • , α N ), x ∈ G, K s,t f (x) = f (x) + t s K s,u (εf ′ )(x)dW u + 1 2 t s K s,u f ′′ (x)du a.s.
If K = δ ϕ is a solution of (E), we simply say that (ϕ, W ) solves (E). (

G O ei (Di, αi) G + G - ε(x) = -1 ε(x) = 1
) If (K, W ) solves (E), then σ(W ) ⊂ σ(K) (see Corollary 4. 2 
2) below. So, one can simply say that K solves (E).

(

) The case N = 2, p = 2, ε 1 = ε 2 = 1 (Figure 4. 3 
2) corresponds to Tanaka's SDE related to SBM and includes in particular the usual Tanaka's SDE [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]. In fact, let (K R , W ) be a solution of (4.5) with α = α 1 , ε(y) = sgn(y) and define

ψ(y) = |y|( e 1 1 y≥0 + e 2 1 y<0 ), y ∈ R. For all x ∈ G, define K G s,t (x) = ψ(K R s,t (y)) with y = ψ -1 (x). Let f ∈ D(α 1 , α 2 ), x ∈ G and g be defined on R by g(z) = f (ψ(z)) (g ∈ D α 1 ). Since K R satisfies (4.5) in (g, ψ -1 (x)) (g is the test function and ψ -1 (x)
is the starting point), it easily comes that K G satisfies (E) in (f, x). Similarly, if (5) Equation (E) can be defined differently. We call f ′ the derivative of f in the sense

K G solves (E), then K R solves (4.5). O + +
0 → (resp. 0 ←) on G + (resp. on G -) (Figure 4.4). Set ε i = 1 i∈[1,p] -1 i∈[p+1,N ] .
Then (E) is equivalent to In this chapter, we classify all solutions of (E) by means of probability measures.

K s,t f (x) = f (x) + t s K s,u f ′ (x)dW u + 1 2 t s K s,u f ′′ (x)du, where f ∈ C 2 b (G * ), N i=1 α i ε i lim z→0,z∈D i ,z =0 f ′ (z) = 0. G O G + G -
We now state the first where τ s,x = inf{r ≥ s : x + e(x)ε(x)W s,r = 0}. Then, K W is the unique Wiener solution of (E). This means that K W solves (E) and if K is another Wiener solution of (E), then for all s ≤ t, x ∈ G, K W s,t (x) = K s,t (x) a.s.

The proof of this theorem follows [START_REF] Le | Integration of Brownian vector fields[END_REF] (see also [START_REF] Micaux | Flots stochastiques d'opérateurs dirigés par des bruits Gaussiens et Poissonniens[END_REF] for more details) with some modifications adapted to our case. We will use Freidlin-Sheu formula for WBM to check that K W solves (E). 

∆ k = u = (u 1 , • • • , u k ) ∈ [0, 1] k : k i=1 u i = 1 , k ≥ 1.
Suppose α + = 1 2 . (a) Let m + and m -be two probability measures respectively on ∆ p and ∆ N -p satisfying:

(+) ∆p u i m + (du) = α i α + , ∀1 ≤ i ≤ p, (-) 
∆ N-p u j m -(du) = α j+p α -, ∀1 ≤ j ≤ N -p.
Then, to (m + , m -) is associated a stochastic flow of kernels K m + ,m -solution of (E).

• To (δ

( α 1 α + ,••• , αp α + ) , δ ( α p+1 α -,••• , α N α -)
) is associated a Wiener solution K W .

• To ( p i=1 α i α + δ 0,..,0,1,0,..,0 , N i=p+1 α i α -δ 0,..,0,1,0,..,0 ) is associated a coalescing stochastic flow of mappings ϕ.

(b) For all stochastic flow of kernels K solution of (E) there exists a unique pair of measures (m + , m -) satisfying conditions (+) and (-) such that

K law = K m + ,m -. (2) If α + = 1 2 , N > 2,
then there is just one solution of (E) which is a Wiener solution.

Remarks 4.2. (1)If α + = 1, solutions of (E) are characterized by a unique measure m + satisfying condition (+) instead of a pair (m + , m -) and a similar remark applies if α -= 1.

(2) The case α + = 1 2 , N = 2 does not appear in the last theorem since it corresponds to dX t = W (dt).

This chapter follows ideas of [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] in a more general context and is organized as follows. In Section 4.2, we use a "specific"SBM(α + ) flow introduced by Burdzy-Kaspi and excursion theory to construct all solutions of (E). Unicity of solutions is proved in Section 4.3.

Construction of flows associated to (E)

In this section, we prove (a) of Theorem 4.2 and we show that K W given in Theorem 4.1 solves (E).

Flow of Burdzy-Kaspi associated to SBM Definition

We are looking for flows associated to the SDE (4.1). The flow associated to SBM [START_REF] Alejandro | Coalescing Brownian motions on the line[END_REF] which solves (4.1) is the reflected Brownian motion above 0 given by

Y s,t (x) = (x + W s,t )1 {t≤τs,x} + (W s,t -inf u∈[τs,x,t] W s,u )1 {t>τs,x} , where τ s,x = inf{r ≥ s : x + W s,r = 0}. (4.6)
and a similar expression holds for the SBM(0) which is the reflected Brownian motion below 0. These flows satisfy all properties of the SBM(α), α ∈]0, 1[ we will mention below such that the "strong"flow property (Proposition 4.1) and the strong comparison principle (4.7). When α ∈]0, 1[, we follow Burdzy-Kaspi [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF]. In the sequel, we will be interested in SBM(α + ) and so we suppose in this paragraph that

α + / ∈ {0, 1}.
With probability 1, for all rationals s and x simultaneously, equation (4.1) has a unique strong solution with α = α + . Define

Y s,t (x) = inf X u,y t u,y∈Q u<s,x<X u,y s , L s,t (x) = lim ε→0 + 1 2ε t s 1 {|Ys,u(x)|≤ε} du. Then, (s, t, x, ω) -→ Y s,t (x, ω) is measurable from {(s, t, x, ω), s ≤ t, x ∈ R, ω ∈ Ω} into R. It is easy to see that a.s. Y s,t (x) ≤ Y s,t (y) ∀s ≤ t, x ≤ y. (4.7) 
This implies that x -→ Y s,t (x) is increasing and càdlàg for all s ≤ t a.s.

According to [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF] (Proposition 1.1), t -→ Y s,t (x) is Hölder continuous for all s, x a.s. and with probability equal to 1: ∀s, x ∈ R, Y s,• (x) satisfies (4.1). We first check that Y is a flow of mappings and start by the following flow property:

Proposition 4.1. ∀ t ≥ s a.s. Y s,u (x) = Y t,u (Y s,t (x)) ∀u ≥ t, x ∈ R .
Proof. It is known, since pathwise uniqueness holds for the SDE (4.1), that for a To conclude that Y is a stochastic flow of mappings, it remains to show the following

fixed s ≤ t ≤ u, x ∈ R, we have Y s,u (x) = Y t,u (Y s,t ( 
Lemma 4.1. ∀t ≥ s, x ∈ R, f ∈ C 0 (R) lim y→x E[(f (Y s,t (x)) -f (Y s,t (y))) 2 ] = 0.
Proof. We take s = 0. For g ∈ C 0 (R 2 ), set

P (2) t g(x) = E[g(Y 0,t (x 1 ), Y 0,t (x 2 ))], x = (x 1 , x 2 ).
If ε > 0, f ε (x, y) = 1 {|x-y|≥ε} , then by Theorem 10 in [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF], P

t f ε (x, y) ---→ y → x 0. (2) 
For all f ∈ C 0 (R), we have

E[(f (Y 0,t (x)) -f (Y 0,t (y))) 2 ] = P (2) t f ⊗ 2 (x, x) + P (2) t f ⊗ 2 (y, y) -2P (2) 
t f ⊗ 2 (x, y).

To conclude the lemma, we need only to check that

lim y→x P (2) 
t f (y) = P

(2)

t f (x), ∀x ∈ R 2 , f ∈ C 0 (R 2 ). Let f = f 1 ⊗ f 2 with f i ∈ C 0 (R), x = (x 1 , x 2 ), y = (y 1 , y 2 ) ∈ R 2 . Then |P (2) 
t f (y) -P

(2)

t f (x)| ≤ M 2 k=1 P (2) t (|1 ⊗ f k -f k ⊗ 1|)(y k , x k ),
where M > 0 is a constant. For all α > 0, ∃ε > 0, |u -v| < ε ⇒ ∀1 ≤ k ≤ 2 :

|f k (u) -f k (v)| < α. As a result |P (2) 
t f (y) -P

(2)

t f (x)| ≤ 2Mα + 2M 2 k=1 ||f k || ∞ P (2) 
t f ε (x k , y k ),
and we arrive at lim sup y→x |P

t f (y) -P

(2)

t f (x)| ≤ 2Mα for all α > 0 which means that lim y→x P (2) t f (y) = P (2)
t f (x). Now this easily extends by a density argument for all f ∈ C 0 (R 2 ).

In the coming section, we present some properties related to the coalescence of Y we will require in Section 4.2.2 to construct solutions of (E).

Coalescence of the Burdzy-Kaspi flow

In this section, we suppose 1 2 < α + < 1. The analysis of the case 0 < α + < 1 2 requires an application of symmetry. Define

T x,y = inf{r ≥ 0, Y 0,r (x) = Y 0,r (y)}, x, y ∈ R.
By the fundamental result of [START_REF] Barlow | Coalescence of skew Brownian motions[END_REF], T x,y < ∞ a.s. for all x, y ∈ R. Due to the local time, coalescence always occurs in 0; Y 0,r (x) = Y 0,r (y) = 0 if r = T x,y . Recall the definition of τ s,x from (4.6). Then T x,y > sup(τ 0,x , τ 0,y ) a.s. ([3] page 203). Set

L x t = x+(2α + -1)L 0,t (x), U(x, y) = inf{z ≥ y : L x t = L y t = z for some t ≥ 0}, y ≥ x.
According to [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF] (Theorem 1.1), there exists λ > 0 such that

∀u ≥ y > 0, P(U(0, y) ≤ u) = (1 - y u ) λ .
Thus for a fixed 0 < γ < 1, we get lim y→0+ P(U(0, y)

≤ y γ ) = lim y→0+ (1 -y 1-γ ) λ = 1.
From Theorem 1.1 [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF], we have U(x, y)x law = U(0, yx) for all 0 < x < y and so

lim y→x+ P(U(x, y) -x ≤ (y -x) γ ) = 1, ∀x ≥ 0. (4.8)
Lemma 4.2. For all x ∈ R, we have lim y→x T x,y = τ 0,x in probability.

Proof. For simplicity, we will write only Y t instead of Y 0,t (0). We first establish the result for x = 0. For all t > 0, we have

P(t ≤ T 0,y ) ≤ P(L 0,t (0) ≤ L 0,T 0,y (0)) = P(L 0 t ≤ U(0, y))
since (2α + -1)L 0,T 0,y (0) = U(0, y). The right-hand side converges to 0 as y → 0+ by (4.8). On the other hand, by the strong Markov property at time τ 0,y for y < 0,

G t (y) := P(t ≤ T 0,y ) = P(t ≤ τ 0,y ) + E[1 {t>τ 0,y } G t-τ 0,y (Y τy )].
For all ǫ > 0,

E[1 {t>τ 0,y } G t-τ 0,y (Y τ 0,y )] = E[1 {t-τ 0,y >ǫ} G t-τ 0,y (Y τ 0,y )] + E[1 {0<t-τ 0,y ≤ǫ} G t-τ 0,y (Y τ 0,y )] ≤ E[G ǫ (Y τ 0,y )] + P(0 < t -τ 0,y ≤ ǫ).
From previous observations, we have Y τ 0,y > 0 a.s. for all y < 0 and consequently Y τ 0,y -→ 0+ as y → 0-. Since lim z→0+ G ǫ (z) = 0, by letting y → 0-and using dominated convergence, then ǫ → 0, we get lim sup y→0-G t (y) = 0 as desired for x = 0. Now, the lemma easily holds after remarking that

T x,y -τ 0,x law = T 0,y-x if 0 ≤ x < y and T x,y -τ 0,x law = T 0,x-y if x < y ≤ 0. For s t, x ∈ R, define g s,t (x) = sup{u ∈ [s, t] : Y s,u (x) = 0} (sup(∅) = -∞). (4.9) 
Recall that t -→ Y s,t (x) is Hölder continuous for all s, x a.s. Then for all s ∈ R, g s,t (x, ω) is measurable with respect to (t, x, ω). In fact, 1 {t≥τs,x} g s,t (x, ω) =

1 {t≥τs,x} (τ s,x + f • h(t, x, ω)) where h(t, x, ω) = (Y s,τs,x+• (x), (t -τ s,x ) ∨ 0) ∈ H × R + , H = {f ∈ C([0, +∞[, R) : f (0) = 0} and h(f, t) = sup{0 ≤ u ≤ t : f (u) = 0}
for all (f, t) ∈ H × R + . It is clear that f and h are measurable (for a fixed f , h(f, •)

is right-continuous), which proves our claim.

We use Lemma 4.2 to prove Lemma 4.3. Fix s ≤ t, x ∈ R. Then, there exists an F W s,t -measurable random variable (v, y) ∈ Q 2 , which depends on (s, t, x), such that on {t > τ s,x }, we have

s ≤ v < g s,t (x) and Y s,t (x) = Y v,t (y). Proof. For (s, x) ∈ Q 2 , this is evident. For all n ≥ 0, let D n = { k 2 n , k ∈ Z} and D be the set of all dyadic numbers: D = ∪ n∈N D n . For u < v, define n(u, v) = inf{n ∈ N : D n ∩]u, v[ = ∅} and f (u, v) = inf D n(u,v) ∩]u, v[.
In the sequel, we assume that (s, x) / ∈ Q 2 . First take x = 0 and denote by T s a,b the coalescing time of Y s,• (a) and Y s,• (b) for all a, b ∈ R. Then for all ǫ > 0,

P(∃ η > 0 : Y s,t (η) = Y s,t (-η)) ≥ P(T s -ǫ,ǫ ≤ t).
From P(t < T s -ǫ,ǫ ) ≤ P(t < T s 0,ǫ ) + P(t < T s 0,-ǫ ) and the previous lemma, we have lim ǫ→0 P(t < T s -ǫ,ǫ ) = 0 and therefore

P(∃ η > 0 : Y s,t (η) = Y s,t (-η)) = 1. We will define (v, y) on Ω = {∃p ≥ 1 : Y s,t ( 1 p ) = Y s,t (- 1 
p )} and give an arbitrary value to (v, y) on Ωc . Let p be the smallest integer such that Y s,t

( 1 p ) = Y s,t (-1 p ) and v = f (s, T s -1 p , 1 p ). Then Y s,v ( 1 p ) > Y s,v (-1 p ). Let y = f (Y s,v (-1 p ), Y s,v ( 1 p )). By (4.7), for all u ≥ v, Y v,u (Y s,v (- 1 p )) ≤ Y v,u (y) ≤ Y v,u (Y s,v ( 1 p )).
The flow property (Proposition 4.1) yields Y s,u (-

1 p ) ≤ Y v,u (y) ≤ Y s,u ( 1 p ) for all u ≥ v. So necessarily Y s,t (0) = Y s,t ( 1 p ) = Y s,t (-1 p ) = Y v,t (y) 
. For x > 0 and ǫ sufficiently small, we have

P(Y s,t (x + ǫ) > Y s,t (x), t > τ s,x ) ≤ P(τ s,x < t < T s x,x+ǫ ).
This shows that lim ǫ→0 P(Y s,t (x + ǫ) > Y 0,t (x)|t > τ s,x ) = 0 by Lemma 4.2. Similarly, for ǫ small

P(Y s,t (x -ǫ) < Y s,t (x), t > τ s,x ) ≤ P(τ s,x < t < T s x-ǫ,x ).
Lemma 4.2 states that the right-hand side converges to 0 as ǫ → 0 and so

lim ǫ→0 P(Y s,t (x) > Y s,t (x -ǫ)|t > τ s,x ) = 0. Since {Y s,t (x + ǫ) > Y s,t (x -ǫ)} ⊂ {Y s,t (x + ǫ) > Y s,t (x)} ∪ {Y s,t (x) > Y s,t (x -ǫ)}, we get P(∃ǫ > 0 : Y s,t (x -ǫ) = Y s,t (x + ǫ)|t > τ s,x ) = 1.
Following the same steps as the case x = 0, we define (v, y) on {t > τ s,x } and give an arbitrary value to (v, y) on {t ≤ τ s,x }.

Remark 4.2. The preceding lemma implies in particular that for a fixed (s, x), with probability 1, for all t > τ s,x , there exists (v, y) ∈ Q 2 such that s ≤ v < g s,t (x) and Y s,t (x) = Y v,t (y). This is clear by taking a rational t ′ ∈]τ s,x , t[.

We close this section by the Lemma 4.4. With probability 1, for all

(s 1 , x 1 ) = (s 2 , x 2 ) ∈ Q 2 simultaneously (i) T x 1 ,x 2 s 1 ,s 2 := inf{r ≥ sup(s 1 , s 2 ) : Y s 1 ,r (x 1 ) = Y s 2 ,r (x 2 )} < ∞, (ii) T x 1 ,x 2 s 1 ,s 2 > sup(τ s 1 ,x 1 , τ s 2 ,x 2 ), (iii) Y s 1 ,T x 1 ,x 2 s 1 ,s 2 (x 1 ) = Y s 2 ,T x 1 ,x 2 s 1 ,s 2 (x 2 ) = 0, (iv) Y s 1 ,r (x 1 ) = Y s 2 ,r (x 2 ) ∀r ≥ T x 1 ,x 2 s 1 ,s 2 .
Proof. (i) is a consequence of Proposition 4.1, the independence of increments and the coalescence of

Y .(ii) Fix (s 1 , x 1 ) = (s 2 , x 2 ) ∈ Q 2 with s 1 ≤ s 2 . By the comparison principle (4.7) and Proposition 4.1, Y s 1 ,t (x 1 ) ≥ Y s 2 ,t (x 2 ) for all t ≥ s 2 or Y s 1 ,t (x 1 ) ≤ Y s 2 ,t (x 2
) for all t ≥ s 2 . Suppose for example that 0 < z := Y s 1 ,s 2 (x 1 ) < x 2 and take

a rational r ∈]z, x 2 [. Then T x 1 ,x 2 s 1 ,s 2 > τ s 2 ,z ≥ τ s 1 ,x 1 and T x 1 ,x 2 s 1 ,s 2 ≥ T r,x 2 s 2 ,s 2 > τ s 2 ,x 2 .
(iii) is clear since coalescence occurs in 0. (iv) is an immediate consequence of the pathwise uniqueness of (4.1).

Construction of solutions associated to (E)

We now extend the notations given in Section 2.3.2. For all n ≥ 0, let D n = { k 2 n , k ∈ Z} and D be the set of all dyadic numbers:

D = ∪ n∈N D n . For u < v, define n(u, v) = inf{n ∈ N : D n ∩]u, v[ = ∅} and f (u, v) = inf D n(u,v) ∩]u, v[. Denote by G Q = {x ∈ G : |x| ∈ Q + }. We also fix a bijection ψ : N -→ Q × G Q and set (s i , x i ) = ψ(i) for all i ≥ 0.

Construction of a stochastic flow of mappings ϕ solution of (E)

Let W be a Brownian motion on the real line and Y be the flow of the SBM(α + ) constructed from W in the previous section. We first construct ϕ s,• (x) for all (s, x) ∈ Q × G Q and then extend this definition for all (s, x) ∈ R × G. We begin by ϕ s 0 ,• (x 0 ), then ϕ s 1 ,• (x 1 ) and so on. To define ϕ s 0 ,• (x 0 ), we flip excursions of Y s 0 ,. (ε(x 0 )|x 0 |) suitably. Then let ϕ s 1 ,t (x 1 ) be equal to

ϕ s 0 ,t (x 0 ) if Y s 0 ,t (ε(x 0 )|x 0 |) = Y s 1 ,t (ε(x 1 )|x 1 |). Before coalescence of Y s 0 ,. (ε(x 0 )|x 0 |) and Y s 1 ,• (ε(x 1 )|x 1 |), we define ϕ s 1 ,• (x 1 ) by flip- ping excursions of Y s 1 ,• (ε(x 1 )|x 1 |)
independently of what happens to ϕ s 0 ,• (x 0 ) and so on. In what follows, we translate this idea rigorously. Let γ + , γ -be two independent random variables on any probability space such that We retain the notations τ s,x , g s,t (x) of the previous section (see (4.6) and (4.9)). For It will be convenient to set

γ + law = p i=1 α i α + δ e i , γ -law = N j=p+1 α j α -δ e j . ( 4 
s ∈ R, x ∈ G define,
Z s,r (x) = ∞ if r < s. For all q ≥ 1, u 0 , • • • , u q ∈ R, y 0 , • • • , y q ∈ G define T y 0 ,••• ,yq u 0 ,••• ,uq = inf{r ≥ τ uq,yq : Z uq,r (y q ) ∈ {Z u i ,r (y i ), i ∈ [1, q -1]}}. Let {( γ + s 0 ,x 0 (r), γ - s 0 ,x 0 (r)), r ∈ D ∩ [s 0
, +∞[} be a family of independent copies of ( γ + , γ -) which is independent of W . We define ϕ s 0 ,• (x 0 ) by

ϕ s 0 ,t (x 0 ) =                    x 0 + e(x 0 )ε(x 0 )W s 0 ,t if s 0 ≤ t ≤ τ s 0 ,x 0 0 if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) = γ + s 0 ,x 0 (f 0 )|Z s 0 ,t (x 0 )|, f 0 = f (g s 0 ,t (x 0 ), d s 0 ,t (x 0 )) if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) > γ - s 0 ,x 0 (f 0 )|Z s 0 ,t (x 0 )|, f 0 = f (g s 0 ,t (x 0 ), d s 0 ,t (x 0 )) if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) < Now, suppose that ϕ s 0 ,• (x 0 ), • • • , ϕ s q-1 ,• (x q-1
) are defined and let {( γ + sq,xq (r), γ - sq,xq (r)), r ∈ D ∩ [s q , +∞[} be a family of independent copies of ( γ + , γ -) which is also indepen-

dent of σ γ + s i ,x i (r), γ - s i ,x i (r), r ∈ D ∩ [s i , +∞[, 1 ≤ i ≤ q -1, W . Since T x 0 ,••• ,xq s 0 ,••• ,sq < ∞, let i ∈ [1, q -1] and (s i , x i ) such that Z sq,t 0 (x q ) = Z s i ,t 0 (x i ) with t 0 = T x 0 ,••• ,xq s 0 ,••• ,sq . We define ϕ sq,• (x q ) by ϕ sq,t (x q ) =                            x q + e(x q )ε(x q )W sq,t if s q ≤ t ≤ τ sq,xq 0 if t > τ sq,xq , Z sq,t (x q ) = 0 γ + sq,xq (f q )|Z sq,t (x q )|, f q = f (g sq,t (x q ), d sq,t (x q )) if t ∈ [τ sq,xq , t 0 ], Z sq,t (x q ) > 0 γ - sq,xq (f q )|Z sq,t (x q )|, f q = f (g sq,t (x q ), d sq,t (x q )) if t ∈ [τ sq,xq , t 0 ], Z sq,t (x q ) < 0 ϕ s i ,t (x i ) if t ≥ t 0
In this way, we construct (ϕ s,

• (x), s ∈ Q, x ∈ G Q ). Now fix s ∈ R. For all x ∈ G, t ≥ s, set ϕ s,t (x) = x + e(x)ε(x)W s,t if s ≤ t ≤ τ s,x .
If t > τ s,x and there exist s

≤ v < g s,t (x), v ∈ Q, y ∈ G Q such that Z s,t (x) = Z v,t (y) 
, then define ϕ s,t (x) = ϕ v,t (y). We set ϕ s,t (x) = 0 in the other case. In particular, ϕ s,t (x, ω) is measurable with respect to (t, x, ω) (recall that g s,t (x, ω) is measurable)

and has independent increments by Lemma 4.3. Later, we will show that ϕ is a coalescing solution of (E).

Construction of a stochastic flow of kernels K m + ,m -solution of (E)

Let m + and m -be two probability measures respectively on ∆ p and ∆ N -p . Let U + , U -be two independent random variables on any probability space such that

U + law = m + , U -law = m -. (4.11) 
Let (Ω, A, P) be a probability space rich enough and W be a Brownian motion on the real line defined on it. We retain the notations introduced in the previous paragraph for all functions of W . We consider a family {(U + s 0 ,x 0 (r), U - s 0 ,x 0 (r)), r ∈ D ∩ [s 0 , +∞[} of independent copies of (U + , U -) which is independent of W .

If t > τ s 0 ,x 0 and Z s 0 ,t (x 0 ) > 0 (resp. Z s 0 ,t (x 0 ) < 0), let

U + s 0 ,t (x 0 ) = U + s 0 ,x 0 (f 0 ) (resp. U - s 0 ,t (x 0 ) = U - s 0 ,x 0 (f 0 )), f 0 = f (g s 0 ,t (x 0 ), d s 0 ,t (x 0 )).
Write U + s 0 ,t (x 0 ) = (U +,i s 0 ,t (x 0 )) 1≤i≤p (resp. U - s 0 ,t (x 0 ) = (U -,i s 0 ,t (x 0 )) p+1≤i≤N ) if Z s 0 ,t (x 0 ) > 0, t > τ s 0 ,x 0 (resp. Z s 0 ,t (x 0 ) < 0, t > τ s 0 ,x 0 ) and now define

K m + ,m - s 0 ,t (x 0 ) =                    δ x 0 + e(x 0 )ε(x 0 )Ws 0 ,t if s 0 ≤ t ≤ τ s 0 ,x 0 p i=1 U +,i s 0 ,t (x 0 )δ e i |Zs 0 ,t(x0)| if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) > 0 N i=p+1 U -,i s 0 ,t (x 0 )δ e i |Zs 0 ,t(x0)| if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) < 0 δ 0 if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) = 0 Suppose that K m + ,m - s 0 ,• (x 0 ), • • • , K m + ,m - s q-1 ,
• (x q-1 ) are defined and let {(U + sq,xq (r), U - sq,xq (r)), r ∈ D ∩ [s q , +∞[} be a family of independent copies of (U + , U -) which is also indepen-

dent of σ U + s i ,x i (r), U - s i ,x i (r), r ∈ D ∩ [s i , +∞[, 1 ≤ i ≤ q -1, W . If t > τ sq,xq and Z sq,t (x q ) > 0 (resp. Z sq,t (x q ) < 0), we define U + sq,t (x q ) = (U +,i sq,t (x q )) 1≤i≤p (resp. U - sq,t (x q ) = (U -,i sq,t (x q )) p+1≤i≤N ) by analogy to q = 0. Let i ∈ [1, q-1] and (s i , x i ) such that Z sq,t 0 (x q ) = Z s i ,t 0 (x i ) with t 0 = T x 0 ,••• ,xq s 0 ,••• ,sq . Then, define K m + ,m - sq,t (x q ) =                            δ xq+ e(xq)ε(xq)Ws q ,t if s q ≤ t ≤ τ sq,xq p i=1 U +,i sq,t (x q )δ e i |Zs q ,t(xq )| if t 0 > t > τ sq,xq , Z sq,t (x q ) > 0 N i=p+1 U -,i sq,t (x q )δ e i |Zs q ,t(xq )| if t 0 > t > τ sq,xq , Z sq,t (x q ) < 0 δ 0 if t 0 ≥ t > τ sq,xq , Z sq,t (x q ) = 0 K m + ,m - s i ,t (x i ) if t > t 0
In this way, we construct

(K m + ,m - s, (x), s ∈ Q, x ∈ G Q ). Now fix s ∈ R. For x ∈ G, t ≥ s, set K m + ,m - s,t (x) = δ x+ e(x)ε(x)Ws,t if s ≤ t ≤ τ s,x .
If t > τ s,x and there exist s

≤ v < g s,t (x), v ∈ Q, y ∈ G Q such that Z s,t (x) = Z v,t (y), then define K m + ,m - s,t (x) = K m + ,m - v,t (y) 
. We set K m + ,m - s,t (x) = δ 0 in the other case. In particular, K m + ,m - s,t (x, ω) is measurable with respect to (t, x, ω) and has independent increments by Lemma 4.3. In the next section we will show that K m + ,m - is a stochastic flow of kernels which solves (E).

Construction of (K m + ,m -, ϕ) by filtering Let m + and m -be two probability measures as in Theorem 4.2 and ( γ + , U + ), ( γ -, U -) be two independent random variables satisfying

U + = (U +,i ) 1≤i≤p law = m + , U -= (U -,j ) p+1≤j≤N law = m -, P( γ + = e i |U + ) = U +,i , ∀i ∈ [1, p], (4.12) 
and

P( γ -= e j |U -) = U -,j , ∀j ∈ [p + 1, N]. (4.13)
Then, in particular ( γ + , γ -) and (U + , U -) satisfy respectively (4.10) and (4.11).

On a probability space (Ω, A, P) consider the following independent processes

• W is a Brownian motion on the real line.

• {( γ + s,x (r), U + s,x (r)), r ∈ D ∩ [s, +∞[, (s, x) ∈ Q × G Q } a family of independent copies of ( γ + , U + ). • {( γ - s,x (r), U - s,x (r)), r ∈ D ∩ [s, +∞[, (s, x) ∈ Q × G Q } a
family of independent copies of ( γ -, U -). Now, let ϕ and K m + ,m -be the processes constructed in Section 4.2.2 respectively from ( γ + , γ -, W ) and (U + , U -, W ). Let σ(U + , U -, W ) be the σ-field generated by

{U + s,x (r), U - s,x (r), r ∈ D ∩ [s, +∞[, (s, x) ∈ Q × G Q } and W . We then have the Proposition 4.2. (i) For all measurable bounded function f on G, s ≤ t ∈ R, x ∈ G,
with probability 1,

K m + ,m - s,t f (x) = E[f (ϕ s,t (x))|σ(U + , U -, W )].
(ii) For all s ∈ R, x ∈ G, with probability 1, ∀t ≥ s,

|ϕ s,t (x)| = |Z s,t (x)|, ϕ s,t (x) ∈ G + ⇔ Z s,t (x) ≥ 0 and ϕ s,t (x) ∈ G -⇔ Z s,t (x) ≤ 0.
By construction, we have ϕ s 1 ,u (x 1 ) = ϕ r,u (z) and consequently ϕ s,u (x) = ϕ t,u (y).

• On the event {τ s,x < t, τ t,y < u}, since τ t,y is a common zero of (Z s,r (x)) r≥s and (Z t,r (y)) r≥t before u, it comes that g t,u (y) = g s,u (x). Define (r, z) and (s 1 , x 1 ) similarly to the previous case. Then Z s,h (x) = Z r,h (z) = Z s 1 ,h (x 1 ) for all h ∈ [g s,u (x), u] and a fortiori ϕ s,u (x) = ϕ s 1 ,u (x 1 ) = ϕ r,u (z) = ϕ t,u (y).

• On the event {τ s,x < t, u < τ t,y }, choose

s 1 ∈ [s, g s,t (x)[, x 1 ∈ G Q such that Z s,t (x) = Z s 1 ,t (x 1
), then ϕ s,t (x) = ϕ s 1 ,t (x 1 ) and Z s,r (x) = Z s 1 ,r (x 1 ) for all r ≥ t (by Lemma 4.4 (iv)). Since u > τ s,x and Z s,u (x) = Z s 1 ,u (x 1 ), we get ϕ s,u (x) := ϕ s 1 ,u (x 1 ). Now

τ t,y = inf{r ≥ t : Z t,r (y) = 0} = inf{r ≥ t : Z s,r (x) = 0}.
As Z s,r (x) = Z s 1 ,r (x 1 ) for all r ≥ t, we deduce that τ t,y = d s 1 ,t (x 1 ). Hence, it remains to show that ϕ s 1 ,u (x 1 ) = ϕ t,u (ϕ s 1 ,t (x 1 )) if u < d s 1 ,t (x 1 ) which can easily be checked from the construction.

Proposition 4.4. ϕ is a coalescing solution of (E).

Proof. We use the notations: Y u := Y 0,u (0), ϕ u := ϕ 0,u (0). We first show that ϕ is a

W (α 1 , • • • , α N ) process on G. Define for all n ≥ 1: T n 0 (Y ) = 0, T n k+1 (Y ) = inf{r ≥ T n k (Y ), d(ϕ r , ϕ T n k ) = 1 2 n } = inf{r ≥ T n k (Y ), |Y r -Y T n k | = 1 2 n } = inf{r ≥ T n k (Y ), ||Y r | -|Y T n k || = 1 2 n }, k ≥ 0.
Remark 

of W (α 1 , • • • , α N )
), for all n ≥ 0, (Y n k ) k≥1 is a Markov chain on Z started at 0 whose law is described by

Q(0, 1) = 1 -Q(0, -1) = α + , Q(m, m + 1) = Q(m, m -1) = 1 2 ∀m = 0. Let k ≥ 1 and x 0 , .., x k ∈ G such that x 0 = x k = 0 and |x h+1 -x h | = 1 if h ∈ [0, k-1].
We write

{x h , x h = 0, h ∈ [1, k]} = {x i 0 , .., x iq }, i 0 = 0 < i 1 < • • • < i q = k and {x h , x h = 0, h ∈ [1, k]} = {x h } h∈[i 0 +1,i 1 -1] ∪ • • • ∪ {x h } h∈[i q-1 +1,i k-1 ] .
Assume that

{x h } h∈[i 0 +1,i 1 -1] ⊂ D j 0 , • • • , {x h } h∈[i q-1 +1,i k-1 ] ⊂ D j q-1
and define

A n h = (Y n h = ε(x h )|x h |), E = ( e(ϕ n i 0 +1 ) = e j 0 , • • • , e(ϕ n i q-1 +1
) = e j q-1 ).

If i ∈ [1, p], we have

(ϕ n k+1 = e i , ϕ n k = x k , • • • , ϕ n 0 = x 0 ) = k h=0 A n h (Y n k+1 -Y n k = 1) E ( e(ϕ n k+1 ) = e i ) and (ϕ n k = x k , • • • , ϕ n 0 = x 0 ) = k h=0 A n h E. Now P(ϕ n k+1 = e i |ϕ n 0 = x 0 , • • • , ϕ n k = 0) = α i α + P(Y n k+1 -Y n k = 1|Y n k = 0) = α i .
Obviously, the previous argument can be applied to show that the transition probabilities of (ϕ n k , k ≥ 0) are given by (2.2) and so ϕ is a 

W (α 1 , • • • , α N ) process on G started at 0. Using (2.4) for ϕ, it follows that ∀f ∈ D(α 1 , • • • , α N ), f (ϕ t ) = f (0) + t 0 f ′ (ϕ s )dB s + 1 2 t 0 f ′′ (ϕ s )
) = ε(ϕ s ) for all s ≥ 0, it comes that ∀f ∈ D(α 1 , • • • , α N ), f (ϕ 0,t (x)) = f (x) + t 0 f ′ (ϕ 0,s (x))ε(ϕ 0,s (x))W (ds) + 1 2 t 0
f ′′ (ϕ 0,s (x))ds when x = 0. Finally, by distinguishing the cases t τ 0,x and t > τ 0,x , we see that the previous equation is also satisfied for x = 0.

Corollary 4.1. K m + ,m -is a stochastic flow of kernels solution of (E).

Proof. By Proposition 4.2 (i) and Jensen inequality, K m + ,m -is a stochastic flow of kernels. The fact that K m + ,m -is a solution of (E) is a consequence of the previous proposition and is similar to Lemma 4.6 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] using Proposition 4.2 (i). (ii) If (m + , m -) = (δ

( α 1 α + ,••• , αp α + ) , δ ( α p+1 α -,••• , α N α -) ), then K W s,t (x) = δ x+ e(x)ε(x)Ws,t 1 {t≤τs,x} (4.15) 
+ p i=1 α i α + δ e i |Zs,t(x)| 1 {Zs,t(x)>0} + N i=p+1 α i α -δ e i |Zs,t(x)| 1 {Zs,t(x)≤0} 1 {t>τs,x}
is a Wiener solution of (E).

(iii) If (m + , m -) = ( p i=1 α i α + δ (0,..,0,1,0,..,0) , N i=p+1 α i α -δ (0,..,0,1,0,..,0) ), then K m + ,m -= δ ϕ .

Unicity of flows associated to (E)

Let K be a solution of (E) and fix s ∈ R, x ∈ G. Then (K s,t (x)) t≥s can be modified such that, a.s., the mapping t -→ K s,t (x) is continuous from [s, +∞[ into P(G). To prove this, let (g n ) n≥1 be a sequence of functions dense in C 0 (G). Recall the definition

of D ′ (α 1 , • • • , α N ) from (2.5) and that h n := P 1 n g n ∈ D ′ (α 1 , • • • , α N ). Then {h n , n ≥ 1} is dense in C 0 (G)
. Let λ t be the unique linear form on H := Vect{h n , n ≥ 1} defined by

λ t h n = h n (x) + t s K s,u (h ′ n ε)(x)dW u + 1 2 t s K s,u h ′′ n (x)du.
For a fixed t ≥ s, a.s., λ t f = K s,t f (x) for all f ∈ H. Using the continuity of λ t with respect to t, we have a.s.

∀t ≥ s, f ∈ H, |λ t f | ≤ ||f || ∞ .
Therefore, we can extend λ t to a continuous linear form on C 0 (G). For a fixed t ≥ s,

a.s., ∀f ∈ C 0 (G), λ t f = K s,t f (x). Consequently, a.s., for all t ∈ [s, ∞[∩Q, λ t is a positive linear form on C 0 (G). Let f ∈ C 0 (G) and (f n ) n ⊂ H, with lim n→∞ f n = f .
Then

|λ t f -λ ⌊qt⌋ q f | ≤ 2||f n -f || ∞ + |λ t f n -λ ⌊qt⌋ q f n |.
By letting q → ∞ and then n → ∞, we get λ t f = lim q→∞ λ ⌊qt⌋ q f . In other words lim q→∞ λ ⌊qt⌋ q = λ t weakly. (4.16)

As a result a.s., for all t ≥ s, λ t is positive linear form on C 0 (G). By Riesz's theorem, there exists a measure µ t such that

λ t f = f (y)µ t (dy) for all f ∈ C 0 (G).
With probability 1, for all t ∈ [s, ∞[∩Q, µ t is a probability measure on G. Take a uniformly bounded sequence (f ) k ⊂ C 0 (G) which converges pointwise to 1. Then

|µ t (G) -1| ≤ |λ t (1) -λ t (f k )| + |λ t f k -λ ⌊qt⌋ q f k | + |λ ⌊qt⌋ q f k -1|. 96 From (4.16), lim q→∞ λ ⌊qt⌋ q f k = λ t f k and lim sup q→∞ |λ ⌊qt⌋ q f k -1| ≤ lim sup q→∞ |f k -1|dµ ⌊qt⌋ q = |f k -1|dµ t .
Finally |µ t (G) -1| ≤ 2 |f k -1|dµ t which converges to 0 as k → ∞ by dominated convergence.

We will always consider this modification for (K s,t (x)) t≥s .

Lemma 4.6. Let (K, W ) be a solution of (E). Then ∀x ∈ G, s ∈ R, a.s.

K s,t (x) = δ x+ e(x)ε(x)Ws,t , if s ≤ t ≤ τ s,x where τ s,x = inf{r ≥ s, ε(x)|x| + W s,r = 0}.
Proof. We follow [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] (Lemma 3.1). Suppose x = 0, x ∈ D i , 1 ≤ i ≤ p and take s = 0. Let β i = 1 and consider a set of numbers (β j ) 1≤j≤N,j =i such that N j=1 

β j α j = 0. If f (h e j ) = β j h for all 1 ≤ j ≤ N, then f ∈ D(α 1 , • • • , α N ). Set τx = inf{r; K 0,r (x)(∪ j =i D j ) > 0}
K 0,t∧τx f k (x) = f k (x) + t 0 1 [0,τx] (u)K 0,u (εf ′ k )(x)dW u + 1 2 t∧τx 0 K 0,u f ′′ k (x)du. As k → ∞, K 0,t∧τx f k (x) -→ t 0 |y| 2 K 0,t∧τx (x, dy) by monotone convergence. Now t 0 1 [0,τx] (u)K 0,u (εf ′ k )(x)dW u - t 0 1 [0,τx] (u) G 2|y|K 0,u (x, dy)dW u = t 0 1 [0,τx] (u) G (f ′ k (y) -2|y|)K 0,u (x, dy)dW u . Let A > 0, xe -x ≤ A for all x ≥ 0. Then |f ′ k (y) -2|y|| ≤ (4 + A)|y|.
Using dominated convergence for stochastic integrals (see [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 142) and (4.17), we see that

t 0 1 [0,τx] (u)K 0,u (εf ′ k )(x)dW u -→ t 0 1 [0,τx] (u) G 2|y|K 0,u (x, dy)dW u as k → ∞. We easily check that |f ′′ k (y)| ≤ 2e -1 k |y| + 4+A k |y| and so t∧τx 0 K 0,u f ′′ k (x)du -→ 0 as k → ∞.
By identifying the limits, we get

D i \{0} (|y| -|x| -W t ) 2 K 0,t (x, dy) = 0 ∀ t ≤ τx .
This proves that for t ≤ τx , K 0,t (x) = δ x+ e(x)Wt . The fact that τ 0,x = τx easily follows.

The previous lemma entails the following

Corollary 4.2. If (K, W ) is a solution of (E), then σ(W ) ⊂ σ(K). Proof. For all x ∈ D 1 , we have K 0,t (x) = δ e 1 (|x|+Wt) if t ≤ τ 0,x . If f is a positive function on G such that f 1 (h) = h, then W t = K 0,t f (x) -|x| for all t ≤ τ 0,x , x ∈ D 1 .
By considering a sequence (x k ) k≥0 converging to ∞, this shows that σ(W t ) ⊂ σ(K 0,t (y), y ∈ D 1 ).

Unicity of the Wiener solution

In order to complete the proof of Theorem 4.1, we will prove the following Proposition 4.5. Equation (E) has at most one Wiener solution. This means that: if K and K ′ are two Wiener solutions, then for all s ≤ t, x ∈ G, K s,t (x) = K ′ s,t (x) a.s.

Proof. Denote by P be the semigroup of the W (α 1 , • • • , α N ) process, A and D(A)

being respectively its generator and its domain on C 0 (G). Recall the definition of

D ′ (α 1 , • • • , α N ) from (2.5) and that ∀t > 0 P t (C 0 (G)) ⊂ D ′ (α 1 , • • • , α N ) ⊂ D(A) (see Proposition 2.5). Define S = {f : G -→ R : f, f ′ , f ′′ ∈ C b (G *
) and are prolongeable by continuity at 0 on each ray,

lim x→∞ f (x) = 0}.
For t > 0, h a measurable bounded function on G * , let: λ t h(x) = 2p t h j (|x|), if

x ∈ D j , where h j is the extension of h j that equals 0 on ] -∞, 0]. Then, we first check the following identity:

(P t f ) ′ = -P t f ′ + λ t f ′ on G * for all f ∈ S. (4.18) 
Fix f ∈ S, x = h e j , t > 0. We have

P t f (x) = 2 N i=1 α i R f i (y-h)p t (0, y)dy+ R f j (y+h)p t (0, y)dy- R f j (y-h)p t (0, y)dy.
and so

(P t f ) ′ (x) = -2 N i=1 α i R f ′ i (y-h)p t (0, y)dy+ R f ′ j (y+h)p t (0, y)dy+ R f ′ j (y-h)p t (0, y)dy = -P t f ′ (x) + 2 R f ′ j (y + h)p t (0, y)dy = -P t f ′ (x) + λ t f ′ (x).
Now, we will verify that (P t f ) ′ ∈ S. Clearly (P t f ) ′ ∈ C b (G * ) and is prolongeable by continuity at 0 on each ray. Furthermore, a simple integration by parts yields R f ′ j (y + h)p t (0, y)dy = C R f j (y + h)yp t (0, y)dy for some C ∈ R and since lim x→∞ f (x) = 0, we get lim x→∞ (P t f ) ′ (x) = 0. On the other hand

(P t f ) ′′ (x) = 2 N i=1 α i R f ′′ i (y-h)p t (0, y)dy+ R f ′′ j (y+h)p t (0, y)dy- R f ′′ j (y-h)p t (0, y)dy = 2 N i=1 α i R f ′′ i (y)p t (0, y + h)dy + R f ′′ j (y)p t (0, y -h)dy - R f ′′ j (y)p t (0, y + h)dy.
The first line in the equality above shows that (P t f ) ′′ ∈ C b (G * ) and is prolongeable by continuity at 0 on each ray. The second line and (2.6) show that the same holds for (P t f ) ′′′ .

Let (K, W ) be a stochastic flow that solves (E) (not necessarily a Wiener flow). Our first aim is to establish the following identity

K 0,t f (x) = P t f (x) + t 0 K 0,u (D(P t-u f ))(x)dW u (4.19) Using ||K 0,u f || ∞ ≤ ||f || ∞ if f is a bounded measurable function, we obtain: |A 1 (n)| ≤ n-1 p=0 ||P t-pt n g -P t-(p+1)t n g - t n .AP t-(p+1)t n g|| ∞ ≤ n-1 p=0 ||P t-(p+1)t n [P t n g -g - t n .Ag]|| ∞ ≤ n||P t n g -g - t n .Ag|| ∞ -----→ n → +∞ 0 Note that A 2 (n) is the sum of orthogonal terms in L 2 (Ω). Consequently ||A 2 (n)|| 2 L 2 (Ω) = n-1 p=0 || (p+1)t n pt n K 0,u D((P t-u -P t-(p+1)t n )g)(x)dW u || 2 L 2 (Ω)
By applying Jensen inequality, we get

||A 2 (n)|| 2 L 2 (Ω) ≤ n-1 p=0 (p+1)t n pt n P u V 2 u (x)du where V u = (P t-u g) ′ -(P t-(p+1)t n g) ′ .
By (4.18), one can decompose V u as follows:

V u = X u + Y u ; X u = -P t-u g ′ + P t-(p+1)t n g ′ , Y u = λ t-u g ′ -λ t-(p+1)t n g ′
Using the trivial inequality (a + b) 2 ≤ 2a 2 + 2b 2 , we obtain:

P u V 2 u (x) ≤ 2P u X 2 u (x) + 2P u Y 2 u (x) and so ||A 2 (n)|| 2 L 2 (Ω) ≤ 2B 1 (n) + 2B 2 (n)
where

B 1 (n) = n-1 p=0 (p+1)t n pt n P u X 2 u (x)du B 2 (n) = n-1 p=0 (p+1)t n pt n P u Y 2 u (x)du If p ∈ [0, n -1] and u ∈ [ pt n , (p+1)t n ], P u X 2 u (x) ≤ P u+t-p+1 n t (g ′ -P p+1 n t-u g ′ ) 2 (x)
. The change of variable v = (p + 1)tnu, yields:

B 1 (n) ≤ t 0 P t-v n (P v n g ′ -g ′ ) 2 (x)dv ≤ t 0 (P t g ′2 (x) -2P t-v n (g ′ P v n g ′ )(x) + P t-v n g ′2 (x))dv
Since g ′ is bounded, by dominated convergence to show that B 1 (n) tends to 0 as n → +∞, it sufficies to check that lim n→∞ P t-v n (g ′ P v n g ′ )(x) = P t g ′ 2 (x). Write

P t-v n (g ′ P v n g ′ )(x) = 2 N i=1 α i p t-v n (g ′ P v n g ′ ) i (-h)+p t-v n (g ′ P v n g ′ ) j (h)-p t-v n (g ′ P v n g ′ ) j (-h)
Its is enough to prove that lim

n→∞ p t-v n (g ′ P v n g ′ i )(y) = p t (g ′2 ) i (y) for all y ∈ R * , i ∈ [1, N]. (4.20)
We have

p t-v n (g ′ P v n g ′ ) i (y) = p t-v n (g ′ i (P v n g ′ ) i )(y) = R g ′ i (z)(P v n g ′ ) i (z)p t-v n (y, z)dz = 2 N k=1 α k R + g ′ i (z)p v n g ′ k (-z)p t-v n (y, z)dz + R g ′ i (z)(p v n g ′ i (z)-p v n g ′ i (-z))p t-v n (y, z)dz
which converges clearly by dominated convergence towards R g ′ i (z) 2 p t (y, z)dz = p t (g ′2 ) i (y). Now (4.20) is proved and as a result B 1 (n) -→ 0 as n → ∞. For B 2 (n), we have

P u Y 2 u (x) = 2 N i=1 α i p u ((Y 2 u ) i )(-|x|) + p u ((Y 2 u ) j )(|x|) -p u ((Y 2 u ) j )(-|x|) if x ∈ ∆ j where (Y u ) i = 2p t-u g ′ i -2p t-(p+1)t n g ′ i , defined on R * + . For all i ∈ [1, N], y ∈ R * , we have n-1 p=0 (p+1)t n pt n p u ((Y 2 u ) i )(y) = 4 n-1 p=0 (p+1)t n pt n p u (p t-u g ′ i -2p t-(p+1)t n g ′ i ) 2 (y)du
In what preceded, it was shown that this quantity tends to 0 as n → +∞ when p is replaced by P in general and consequently B 2 (n) tends to 0 as n → +∞. Now

||A 3 (n)|| L 2 (Ω) ≤ n-1 p=0 || (p+1)t n pt n (K 0,u -K 0, pt n )AP t-(p+1)t n g(x)du|| L 2 (Ω) Set h p,n = AP t-(p+1)t n g. Then, h p,n ∈ D ′ (α 1 , • • • , α N ) for all p ∈ [0, n -1] (if p = n -1 remark that h p,n = P ǫ 2 AP ǫ 2 f
). By the Cauchy-Schwarz inequality

||A 3 (n)|| L 2 (Ω) ≤ √ t n-1 p=0 (p+1)t n pt n E[((K 0,u -K 0, pt n )h p,n (x)) 2 ]du 1 2 102 If u ∈ [ pt n , (p+1)t n ]: E[((K 0,u -K 0, pt n )h p,n (x)) 2 ] ≤ E[K 0, pt n (K pt n ,u h p,n -h p,n ) 2 (x)] ≤ E[K 0, pt n (K pt n ,u h 2 p,n -2h p,n K pt n ,u h p,n + h 2 p,n )(x)] ≤ ||P u-pt n h 2 p,n -2h p,n P u-pt n h p,n + h 2 p,n || ∞ ≤ 2||h p,n || ∞ ||P u-pt n h p,n -h p,n || ∞ + ||P u-pt n h 2 p,n -h 2 p,n || ∞ Therefore ||A 3 (n)|| L 2 (Ω) ≤ √ t(2C 1 (n) + C 2 (n)) 1 2
, where:

C 1 (n) = n-1 p=0 ||h p,n || ∞ (p+1)t n pt n ||P u-pt n h p,n -h p,n || ∞ du C 2 (n) = n-1 p=0 (p+1)t n pt n ||P u-pt n h 2 p,n -h 2 p,n || ∞ du Since ||h p,n || ∞ ≤ ||Ag|| ∞ and ||P u-pt n h p,n -h p,n || ∞ ≤ ||P u-pt n Ag -Ag|| ∞ , it comes that: C 1 (n) ≤ ||Ag|| ∞ n-1 p=0 (p+1)t n pt n ||P u-pt n Ag -Ag|| ∞ du ≤ ||Ag|| ∞ t 0 ||P z n Ag -Ag|| ∞ dz
As Ag ∈ C 0 (G), C 1 (n) tends to 0 clearly. On the other hand,

h 2 p,n ∈ D(α 1 , • • • , α N ). In fact since h p,n is continuous N i=0 α i (h 2 p,n ) ′ i (0+) = N i=0 2α i (h p,n ) i (0+)(h p,n ) ′ i (0+) = h p,n (0) N i=0 2α i (h p,n ) ′ i (0+) = 0
We may apply (2.4) to get:

C 2 (n) = 1 n n-1 p=0 t 0 ||P z n h 2 p,n -h 2 p,n || ∞ dz ≤ 1 2n n-1 p=0 t 0 z n 0 ||(h 2 p,n ) ′′ || ∞ dudz
Now we verify that h ′ p,n , h ′′ p,n are uniformly bounded with respect to n and 0

≤ p ≤ n -1. In fact ||h ′′ p,n || ∞ = ||2Ah p,n || ∞ ≤ 2||AP ǫ 2 f || ∞ . Write h p,n = P t-p+1 n t+ ǫ 2 P ǫ 4 AP ǫ 4 f where P ǫ 4 AP ǫ 4 f ∈ D ′ (α 1 , • • • , α N )
. By (4.18), this shows that ||h ′ p,n || ∞ is uniformly bounded with respect to n, p ∈ [0, n -1] and the same holds for ||(h 2 p,n ) ′′ || ∞ . Conse-quently C 2 (n) tends to 0 as n → ∞. As a result:

K 0,t g(x) = P t g(x) + t 0 K 0,u (D(P t-u g))(x)dW u
Letting ǫ tend to 0, then K 0,t g(x) tends to K 0,t f (x) in L 2 (Ω). Furthermore

|| t 0 K 0,u (D(P t-u g))(x)dW u - t 0 K 0,u (D(P t-u f ))(x)dW u || 2 L 2 (Ω) ≤ t 0 P u ((P t-u g) ′ -(P t-u f ) ′ ) 2 (x)du
Using the derivation formula (4.18), the right side may be decomposed as

I ǫ + J ǫ ,
where

I ǫ = t 0 P u (P t-u g ′ -P t-u f ′ ) 2 (x)du ≤ tP t (g ′ -f ′ ) 2 (x) J ǫ = t 0 P u (λ t-u g ′ -λ t-u f ′ ) 2 (x)du
We have g ′ (y) = -P ǫ f ′ (y) + 2λ ǫ f ′ (y) -→ f ′ (y) as ǫ → 0, P t (x, dy) a.s. and so by dominated convergence I ǫ -→ 0 as ǫ → 0. Similarly J ǫ tends to 0 as ǫ → 0.

This establishes (5.5). Now suppose that (K, W ) is a wiener solution of (E) and let f ∈ S. Since K 0,t f (x) ∈ L 2 (F W 0,• ∞ ) , let K 0,t f (x) = P t f (x) + ∞ n=1 J n t f (x) be the decomposition in Wiener chaos of K 0,t f (x) in L 2 sense (see [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 202). By iterating (5.5) (recall that (P t f ) ′ ∈ S ), we see that for all n ≥ 1

J n t f (x) = 0<s 1 <•••<sn<t P s 1 (D(P s 2 -s 1 • • • D(P t-sn f )))(x)dW 0,s 1 • • • dW 0,sn .
If K ′ is another Wiener flow satisfying (5.5), then K 0,t f (x) and K ′ 0,t f (x) must have the same Wiener chaos decomposition for all f ∈ S, that is

K 0,t f (x) = K ′ 0,t f (x) a.s. Consequently K 0,t f (x) = K ′ 0,t f (x) a.s. for all f ∈ D ′ (α 1 , • • • , α N )
since this last set is included in S and the result extends for all f ∈ C 0 (G) by a density argument. This ends the proof when x = 0. The case x = 0 can be deduced from property (4) in the definition of a stochastic flow of kernels.

Consequence: We already know that K W given by (4.15) is a Wiener solution of (E). Since σ(W ) ⊂ σ(K), we can define K * the stochastic flow obtained by filtering K with respect to σ(W ) (Section 3.3.1). Then ∀s ≤ t, x ∈ G, K * s,t (x) = E[K s,t (x)|σ(W )] a.s. As a result, (K * , W ) solves also (E) and by the last proposition,

∀s ≤ t, x ∈ G, E[K s,t (x)|σ(W )] = K W s,t (x) a.s. (4.21)
From now on, (K, W ) is a solution of (E) defined on (Ω, A, P). Let P n t = E[K ⊗n 0,t ] be the compatible family of Feller semigroups associated to K. We retain the notations introduced in Section 4.2 for all functions of W (Y s,t (x), Z s,t (x), g s,t (x) • • • ).

In the next section, starting from K, we construct a flow of mappings ϕ c which is a solution of (E). This flow will play an important role to characterize the law of K.

Construction of a stochastic flow of mappings from K

Let x ∈ G, t > 0. By (6.14), on {t > τ 0,x }, K 0,t (x) is supported on

{|Z 0,t (x)| e i , 1 ≤ i ≤ p} if Z 0,t (x) > 0
and is supported on

{|Z 0,t (x)| e i , p + 1 ≤ i ≤ N} if Z 0,t (x) ≤ 0.
In [START_REF] Le | Flows, coalescence and noise[END_REF] (Section 2.6), the n point motion X n started at (x 1 , • • • , x n ) ∈ G n and associated with P n has been constructed on an extension Ω × Ω ′ of Ω such that the law of ω ′ -→ X n t (ω, ω ′ ) is given by K 0,t (x 1 , dy 1 ) • • • K 0,t (x n , dy n ). For each (x, y) ∈ G 2 , let (X x t , Y y t ) t≥0 be the two point motion started at (x, y) associated with P 2 as in Section 2.6 [START_REF] Le | Flows, coalescence and noise[END_REF]. Then

|X x t | = |Z 0,t (x)|, |Y y t | = |Z 0,t ( 
y)| for all t ≥ 0 and so

T x,y := inf{r ≥ 0, X x r = Y y r } < +∞ a.s.
To (P n ) n≥1 , we associate the compatible family of Markovian coalescent semigroups (P n,c ) n≥1 as described in Theorem 3.3. Then we have the following Proof. Fix t > 0, x ∈ G. By (6.16), δ ϕ c 0,t (x) is supported on {|Z 0,t (x)| e j , 1 ≤ j ≤ N} a.s. and so |ϕ c 0,t (x)| = |Z 0,t (x)|. Similarly, using (6.16), we have

ϕ c 0,t (x) ∈ G + ⇔ Z 0,t (x) ≥ 0 and ϕ c 0,t (x) ∈ G -⇔ Z 0,t (x) ≤ 0. (4.24)
Consequently ε(ϕ c 0,t (x)) = sgn(Z 0,t (x)) a.s. Since

ϕ c 0,• (x) is a W (α 1 , • • • , α N ) process started at x, it satisfies Theorem 2.3; ∀f ∈ D(α 1 , • • • , α N ), f (ϕ c 0,t (x)) = f (x) + t 0 f ′ (ϕ c 0,u (x))dB u + 1 2 t 0 f ′′ (ϕ c 0,u (x))du a.s. with B t = |ϕ 0,t (x)| -Lt (|ϕ 0,• (x)|) -|x| = |Z 0,t (x)| -Lt (|Z 0,• (x)|) -|x|. Tanaka's
formula and (4.24) yield

B t = t 0 sgn(Z 0,u (x))dZ 0,u (x) = t 0 sgn(Z 0,u (x))dW u = t 0 ε(ϕ c 0,u (x))dW u . Likewise for all s ≤ t, x ∈ G, f ∈ D(α 1 , • • • , α N ), f (ϕ c s,t (x)) = f (x) + t s f ′ (ϕ c s,u (x))ε(ϕ c s,u (x))dW u + 1 2 t s f ′′ (ϕ c s,u (x))du a.s.
We will see later (Remark 4.3) that ϕ c law = ϕ where ϕ is the stochastic flow of mappings constructed in Section 4.2.

Two probability measures associated to K

For all t ≥ τ s,x , set:

V +,i s,t (x) = K s,t (x)(D i \ {0}) ∀1 ≤ i ≤ p and V -,N s,t (x) = K s,t (x)(D N ), V -,i s,t (x) = K s,t (x)(D i \ {0}) ∀p + 1 ≤ i ≤ N -1, V + s,t (x) = (V +,i s,t (x)) 1≤i≤p , V - s,t (x) = (V -,i s,t (x)) p+1≤i≤N , V s,t (x) = (V + s,t (x), V - s,t (x)).
For s = 0, we use the abbreviated notations:

Z t (x) = Z 0,t (x), V + t (x) = V + 0,t (x), V - t (x) = V - 0,t (x), V t (x) = (V + t (x), V - t (x))
and if x = 0, Z t = Z 0,t (0),

V + t = V + 0,t (0), V - t = V - 0,t (0), V t = (V + t , V - t )
. By (6.14), ∀x ∈ G, s ≤ t, with probability 1,

K s,t (x) = δ e(x)|Zs,t(x)| 1 {t≤τs,x} + p i=1 V +,i s,t (x)δ e i |Zs,t(x)| 1 {Zs,t(x)>0} + N i=p+1 V -,i s,t (x)δ e i |Zs,t(x)| 1 {Zs,t(x)≤0} 1 {t>τs,x} . Define F K s,t = σ(K v,u , s ≤ v ≤ u ≤ t), F W s,t = σ(W v,u , s ≤ v ≤ u ≤ t)
and assume that all these σ-fields are right-continuous and include all P-negligible sets. When s = 0, we denote F K 0,t , F W 0,t simply by

F K t , F W t . Recall that for all s ∈ R, x ∈ G, the mapping t -→ K s,t (x) defined from [s, +∞[ into P(G) is continuous.
Then the following Markov property holds. Lemma 4.8. Let x, y ∈ G and T be an (F K t ) t≥0 -stopping time such that K 0,T (x) = δ y a.s. Then K 0,•+T (x) is independent of F K T and has the same law as K 0,• (y).

Proof. Let p ≥ 1, 0 ≤ t 1 < • • • < t p and g 1 , • • • , g p be p bounded Lipschitzs functions from P(G) into R. Let A ∈ F K T and [T ] n = inf{ j 2 n : j 2 n > T }.
Since K is a flow, we may write

E p j=1 g j (K 0,t j +T (x))1 A = lim n→∞ ∞ i=1 E p j=1 g j (K 0,t j + i 2 n (x))1 A∩{ i-1 2 n ≤T < i 2 n } = lim n→∞ E[1 A G(K 0,[T ]n (x))]
where

G(µ) = E p j=1
g j (µK 0,t j ) . To complete the proof, it remains to check that G is continuous on P(G). We can also suppose p = 1 (see the proof of Proposition Recall the definition P n t = E[K ⊗n 0,t ] and let f ∈ C 0 (G). Then

E ( K 0,t f (x)µ k (dx) -K 0,t f (x)µ(dx)) 2 = P 2 t (f ⊗ f )(x, y)µ k (dx)µ k (dy) -2 P 2 t (f ⊗ f )(x, y)µ k (dx)µ(dy) + P 2 t (f ⊗ f )(x, y)µ(dx)µ(dy).
As P 2 is Feller, it is easy to deduce (6.17).

The previous lemma shows that for all x, K 0,τ 0,x +• (x) is independent of F K τ 0,x and is equal in law to K 0,• (0).

Let T and L be the random times defined by:

T = inf{r ≥ 0 : Z r = 1}, L = sup{r ∈ [0, T ] : Z r = 0}.
Consider the following σ-fields

F L-= σ(X L , X is bounded (F W t ) t≥0 -previsible process), F L+ = σ(X L , X is bounded (F W t ) t≥0 -progressive process).
Then F L+ = F L-(see the Appendix). Let f : R N -→ R be a bounded continuous function and set

X t = E[f (V t )|σ(W )]
. By (6.15), the process r -→ V r is constant on the excursions of r -→ Z r out of 0.

Lemma 4.9. There exists an F W -progressive version of X denoted Y that is constant on the excursions of Z out of 0 and satisfies Y L = Y T a.s.

Proof. By induction, for all integers k and n, define the sequence of stopping times S k,n and T k,n by the relations: T 0,n = 0 and for k ≥ 1,

S k,n = inf{t ≥ T k-1,n : |Z t | = 2 -n }, T k,n = inf{t ≥ S k,n : Z t = 0}.
In the following U k,n will denote

U S k,n . Then for t ∈ [S k,n , T k,n [, U t = U k,n a.s. For all bounded continuous functions g 1 , • • • , g p , A ∈ F K S k,n and (u 1 , • • • , u p ) ∈ (R * + ) p , we have p i=1 g i (W S k,n ,u i +S k,n )1 A = lim j→∞ ∞ h=0 p i=1 g i (Wh+1 2 j ,u i + h+1 2 j )1 A∩{S k,n ≤ h+1 2 j }∩{ h 2 j <S k,n } . Remark that p i=1 g i (Wh+1 2 j ,u i + h+1 2 j ) is σ(K h+1 2 j ,u , u ≥ h + 1 2 j ) measurable
and

A ∩ {S k,n ≤ h + 1 2 j } ∩ { h 2 j < S k,n } ∈ F K h+1 2 j . Consequently σ(W S k,n ,u+S k,n , u ≥ 0) is independent of F K S k,n . Therefore X k,n := E[f (U k,n )|W ] = E[f (U k,n )|F W S k,n ] is F W S k,n measurable. We define inductively a se- quence X n of F W -progressive processes. Let I n = k≥1 [S k,n , T k,n [ and X 0 t = E[f (U k,0 )|W ] if t ∈ [S k,0 , T k,0 [, X 0 t = f (0) if t ∈ I 0 . Then X 0 is F W -progressive. Suppose a F W - progressive process X n is defined such that X n t = E[f (U k,n )|W ] if t ∈ [S k,n , T k,n [ and X n t = f (0) if t ∈ I n .
Define X n+1 by setting:

X n+1 t =              f (0) if t ∈ I n+1 X n S k,n if t ∈ I n+1 [S k,n , T k,n [ (for some k) E[f (U l,n+1 )|W ] if t ∈ [S l,n+1 , T l,n+1 [ I c n (for some l)
The process X n+1 is F W -progressive and for all t ∈ [S l,n+1 , T l,n+1 [,

X n+1 t = E[f (U l,n+1 )|W ]
a.s. For all t, X n t is a stationary sequence. Set Xt = lim sup n→∞ X n t . For t > 0, a.s., there exists integers k and n such that t ∈ [S k,n , T k,n [. Thus a.s., X = X t . Now set [START_REF] Gall | Calcul stochastique et processus de Markov[END_REF]) and constant on the excursions of Z out of 0.

Y 0 = f (0), Y t = lim sup n→∞ Xt+ 1 n , t > 0. Then Y is a modification of X which is F W -progressive (see Lemma 3.2
Moreover Y L = Y T a.s.
We take for X this version. Then X T is F L+ measurable. Notice that Z T = 0 and from

X T = lim n→∞ ∞ i=1 X i 2 n 1 { i-1 Lemma 4.10. E[X T |F L-] = E[f (V T )]
Proof. Let S be an F W -stopping time and d S = inf{t ≥ S : Z t = 0}. We have {S < L} = {d S < T } (up to some negligible set) and so 1 {S<L} is F W d S -measurable. Using (6.15) and the continuity of t → K 0,t (0), we have a.s.,

f (Z t ) = f (ε(y)|y|)K 0,t (0, dy) for all f ∈ C 0 (G), t ≥ 0. (4.26)
By an approximation argument |y|K 0,t (0, dy) = |Z t | which entails that K 0,t (0, dy) = δ 0 (dy) if Z t = 0 and in particular K 0,d S (0) = δ 0 a.s. Moreover, σ(Z

d S +• ) ⊂ σ(K 0,d S +• (0))
by (4.26). Let H = inf{r ≥ 0 : Z r+d S = 1}, then by Lemma 6.10,

E[X T 1 {ds<T } ] = E[f (V d S +H )1 {d S <T } ] = E[f (V T )]P(d S < T )
Since the σ-field F L-is generated by the random variables 1 {S<L} (see [START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF] page 344), this implies the lemma.

The fact that F L-= F L+ and the fact that X T is F L+ measurable imply that

X T = E[f (V T )|W ] = E[f (V T )] a.s.
Since this holds for all bounded continuous function f , this proves that V T is independent of σ(W ) and the same holds if we replace T by inf{t ≥ 0 : Z t = a} where a > 0.

Define inductively: T + 0,n = 0 and for k ≥ 1:

S + k,n = inf{t ≥ T + k-1,n : Z t = 2 -n }, T + k,n = inf{t ≥ S + k,n : Z t = 0} Set V + k,n = V + S + k,n
. Then, we have the following lemma.

Lemma 4.11. For all n, (V + k,n ) k≥1 is a sequence of i.i.d. random variables. Furthermore, this sequence is independent of W .

Proof. For all k ≥ 2, V + k,n is σ(K 0,T + k-1,n +t (0), t ≥ 0) measurable and V + k-1,n is F K 0,T + k-1,n
measurable. This proves the first claim by Lemma 6.10. Now, we show by induction

on q that (V + 1,n , • • • , V + q,n ) is independent of σ(W ). For q = 1, this has been justified. Suppose (V + 1,n , • • • , V + q-1,n ) is independent of σ(W ). Write σ(W 0,u , u ≥ 0) = σ(Z u∧T + q-1,n , u ≥ 0) ∨ σ(Z u+T + q-1,n , u > 0) Since (V + 1,n , • • • , V + q-1,n ) is F K 0,T + q-1,n measurable, σ(Z u+T + q-1,n , u > 0) ⊂ σ(K 0,T + q-1,n +t (0), t ≥ 0), we conclude that (V + 1,n , • • • , V + q,n
) and σ(W ) are independent.

Let m + n to be the common law of (V + k,n ) k≥1 for each n ≥ 1 and define m + to be the law of V + 1 conditionally to (Z 1 > 0). Then, the following lemma holds.

Lemma 4.12. The sequence (m + n ) n≥1 converges weakly towards m + . For all t > 0, under P(•|Z t > 0), V + t and W are independent and the law of V + t is given by m + .

Proof. For each bounded continuous function f : R p -→ R,

E[f (V + t )|W ]1 {Zt>0} = lim n→ ∞ k E 1 t∈[S + k,n ,T + k,n [ f (V + k,n )|W = lim n→ ∞ k 1 t∈[S + k,n ,T + k,n [ f dm + n . = 1 {Zt>0} lim n→ ∞ f dm + n + ε n (t) . with lim n→ ∞ ε n (t) = 0 a.s. Consequently lim n→ ∞ f dm + n = 1 P(Z t > 0) E[f (V + t )1 Zt>0 ]
As the left hand side no longer depends on t, we obtain the desired result.

We define analogously the measure m -by considering the following stopping times:

T - 0,n = 0 and for k ≥ 1:

S - k,n = inf{t ≥ T - k-1,n : Z t = -2 -n }, T - k,n = inf{t ≥ S - k,n : Z t = 0} Set V - k,n = V - S - k,n
and let m - n be the common law of (V - k,n ) k≥1 . Define m -to be the conditional law of V - 1 knowing (Z 1 < 0). Then, the sequence (m - n ) n≥1 converges weakly towards m -. Furthermore, for all t > 0, the conditional law of V - t knowing (Z t < 0) is given by m -. As a result, we have:

E[f (V - t )|W ]1 {Zt<0} = 1 {Zt<0} f dm -
for each measurable bounded f : R N -p -→ R. Follow the same steps as before but consider (Z u+τ 0,x (x), u ≥ 0) for all x, we show that the conditional law of V + t (x) knowing (Z t (x) > 0, t > τ 0,x ) no longer depends on t > 0. Denote by m + x such a law. Then Lemma 6.10 states that m +

x does not depend on x ∈ G. Consequently m + x = m + for all x and we get

E[f (V + t (x))|W ]1 {Zt(x)>0,t>τ 0,x } = 1 {Zt(x)>0,t>τ 0,x } f dm + (4.27)
for each measurable bounded f : R p -→ R. Similarly

E[h(V - t (x))|W ]1 {Zt(x)<0,t>τ 0,x } = 1 {Zt(x)<0,t>τ 0,x } hdm - (4.28)
for each measurable bounded h : R N -p -→ R.

Unicity in law of

K Define p(x) = |x| e 1 1 {x∈G + } + |x| e p+1 1 {x∈G -,x =0} , x ∈ G.
Fix x ∈ G, 0 < s < t and let x s = p(ϕ c 0,s (x)). Then:

(i) ϕ c s,r (x) = x + e(x)ε(x)W s,r for all r ≤ τ s,x (from Lemma 4.6).

(ii) τ s,x = τ s,p(x) and ϕ c s,r (x) = ϕ c s,r (p(x)) for all r ≥ τ s,x since ϕ c is a coalescing flow.

(iii) τ s,ϕ c 0,s (x) = τ s,xs and ϕ c s,r (ϕ c 0,s (x)) = ϕ c s,r (x s ) for all r ≥ τ s,xs by (ii) and the independence of increments of ϕ c .

(iv) On {t > τ s,xs }, ϕ c 0,t (x) = ϕ c s,t (ϕ c 0,s (x)) = ϕ c s,t (x s ) by the flow property of ϕ c and (iii).

(v) Clearly τ s,xs = inf{r ≥ s, Z 0,r (x) = 0} a.s. Since {τ 0,x < s < g 0,t (x)} ⊂ {t > τ s,xs } a.s., we deduce that

P(ϕ c 0,t (x) = ϕ c s,t (x s )|τ 0,x < s < g 0,t (x)) = 1
(vi) Recall that F0,s and Fs,t are independent ( K is a flow) and F0,t = F0,s ∨ Fs,t .

By (6.15), we have

K s,t (x s ) = E[δ ϕ c s,t (xs) |F K 0,t ].
As a result of (v),

P(K s,t (x s ) = K 0,t (x)|τ 0,x < s < g 0,t (x)) = 1. (4.29) Lemma 4.13. Let P t,x 1 ,••• ,xn be the law of (K 0,t (x 1 ), • • • , K 0,t (x n ), W ) where t ≥ 0 and x 1 , • • • , x n ∈ G. Then, P t,x 1 ,••• ,xn is uniquely determined by {P u,x , u ≥ 0, x ∈ G}.
Proof. Recall the definition of T

x 0 ,••• ,xq s 0 ,••• ,sq from Section 4.2.
2. We will prove the lemma by induction on n. For n = 1, this is clear. Notice that if t < τ 0,z , then K 0,t (z) is σ(W ) measurable and if t > T z 1 ,z 2 0,0 , then K 0,t (z 1 ) = K 0,t (z 2 ). Suppose the result holds for n ≥ 1 and let x n+1 ∈ G. Then by the previous remark, we only need to check that the law of (K 0,t (x 1 ),

• • • , K 0,t (x n+1 ), W ) conditionally to A = { sup 1≤i≤n+1 τ 0,x i < t < T x 1 ,••• ,x n+1 0,••• ,0 } only depends on {P u,x , u ≥ 0, x ∈ G}. Remark that on A, {g 0,t (x i ), 1 ≤ i ≤ n + 1}
are distinct and so by summing over all possible cases, we may replace

A by E = { sup 1≤i≤n+1 τ 0,x i < t < T x 1 ,••• ,x n+1 0,••• ,0 , g 0,t (x 1 ) < • • • < g 0,t (x n ) < g 0,t (x n+1 )}
Recall the definition of f from Section 4.2.2 and let S = f (g 0,t (x n ), g 0,t (x n+1 )), E s = E ∩ {S = s} for s ∈ D. Then it will be sufficient to show that the law of

(K 0,t (x 1 ), • • • , K 0,t (x n+1 ), W ) conditionally to E s only depends on {P u,x , u ≥ 0, x ∈ G} where s ∈ D is fixed such that s < t. On E s , (i) (K 0,t (x 1 ), • • • , K 0,t (x n ), W ) is a measurable function of (V s (x 1 ), • • • , V s (x n ), W ) as (V r (x i ), r ≥ τ 0,x i ) is constant on the excursions of (Z r (x i ), r ≥ τ 0,x i ).
(ii) There exits a random variable X n+1 which is F W 0,s measurable and satisfies K 0,t (x n+1 ) = K s,t (X n+1 ) (from (4.29)).

Clearly, the law of (V s (x 1 ), Proof. From (4.27) and (4.28), (K 0,t (x), W ) law = (K m + ,m - 0,t (x), W ′ ) for all t > 0 and x ∈ G. Notice that all the properties (i)-(v) mentioned just above are satisfied by the flow ϕ constructed in Section 4.2.2 and consequently K m + ,m -satisfies also (4.29) using the same arguments. By following the same steps as in the proof of Lemma 4.13, we show by induction on n that

• • • , V s (x n ), K s,t (X n+1 ), W ) is uniquely determined by {P s,x 1 ,••• ,xn , P t-s,
(K 0,t (x 1 ), • • • , K 0,t (x n ), W ) law = (K m + ,m - 0,t (x 1 ), • • • , K m + ,m - 0,t (x n ), W ′ ) for all t > 0, x 1 , • • • , x n ∈ G.
This proves the proposition. 

(m + , m -) = p i=1 α i α + δ (0,..,0,1,0,..,0) , N i=p+1 α i α -δ (0,..,0,1,0,..,0) .
This shows that there is only one flow of mappings solving (E).

The case α

+ = 1 2 , N > 2
Let K W be the flow given by (4.15), where Z s,t (x) = ε(x)|x| + W t -W s . It is easy to verify that K W is a Wiener flow. Fix s ∈ R, x ∈ G. Then, by following ideas of Section 4.2.2, one can construct a Brownian motion on the real line W and a process

(X x s,t , t ≥ s) which is a W (α 1 , • • • , α N ) process started at x such that • (i) for all t ≥ s, f ∈ D(α 1 , • • • , α N ), f (X x s,t ) = f (x) + t s (εf ′ )(X x s,u )dW u + 1 2 t s f ′′ (X x s,u )du a.s. • (ii) for all t ≥ s, K W s,t (x) = E[δ X x s,t |σ(W )] a.s.
By conditioning with respect to σ(W ) in (i), this shows that K W solves (E). Now, let (K, W ) be any other solution of (E) and set

P n t = E[K ⊗n 0,t ]. From the hypothesis α + = 1 2 , we see that h(x) = ε(x)|x| belongs to D(α 1 , • • • , α N )
and by applying h in (E), we get K 0,t h(x) = h(x) + W t . Denote by (X x 1 , X x 2 ) the two-

point motion started at (x 1 , x 2 ) ∈ G 2 associated to P 2 . Since |X x i | is a reflected Brownian motion started at |x i | (Theorem 2.3), we have E[|X x i t | 2 ] = t + |x i | 2 . From the preceding observation E[h(X x 1 t )h(X x 2 t )] = E[K 0,t h(x 1 )K 0,t h(x 2 )] = h(x 1 )h(x 2 )+ t and therefore E[(h(X x 1 t ) -h(X x 2 t ) -h(x 1 ) + h(x 2 )) 2 ] = 0.
This shows that h(X

x 1 t ) -h(X x 2 t ) = h(x 1 ) -h(x 2
). Now we check inductively that P n does not depend on K. For n = 1, this follows from Proposition 2.5. Suppose the result holds for n and let (x

1 , • • • , x n+1 ) ∈ G n+1 such that h(x i ) = h(x j ), i = j. Let τ x i = inf{r ≥ 0 : X x i r = 0} = inf{r ≥ 0 : h(X x i r ) = 0} and (x i , x j ) ∈ G + × G -such that h(x i ) < h(x k ), h(x h ) < h(x j ) for all (x k , x h ) ∈ G + × G -(when (x i , x j ) does not exist the proof is simpler). Clearly τ x k is a function of X x h for all h, k ∈ [1, n + 1]
and so for all measurable bounded f :

G n+1 -→ R, f (X x 1 t , • • • , X x n+1 t )1 {t<τx i ,inf 1≤k≤n+1 τx k =τx i } is a function of X x i and f (X x 1 t , • • • , X x n+1 t )1 {t<τx j ,inf 1≤k≤n+1 τx k =τx j } is a function of X x j .
where t > 0 is fixed. This shows that E[f (X

x 1 t , • • • , X x n+1 t
)1 {t<inf 1≤k≤n+1 τx k } ] only depends on P 1 . Consider the following stopping times

S 0 = inf 1≤i≤n+1 τ x i , S k+1 = inf{r ≥ S k : ∃j ∈ [1, n + 1], X x j r = 0, X x j S k = 0}, k ≥ 0. Remark that (S k ) k≥0 is a function of X x h for all h ∈ [1, n + 1].
By summing over all possible cases we need only check the unicity in law of (X

x 1 t , • • • , X x n+1 t ) conditionally to A = {S k < t < S k+1 , X x h S k = 0} where k ≥ 0, h ∈ [1, n + 1] are fixed. Write A = B ∩ {t -S k < T } where B = {S k < t, X x h S k = 0} = {S k < t, X x i S k = 0 if i = h} and T = inf{r ≥ 0, ∃j = h : X x j r+S k = 0}. On A, X x i
t is a function of (X x i S k , X x h t ) and therefore for all measurable bounded f :

G n+1 -→ R, f (X x 1 t , • • • , X x n+1 t
)1 A may be written as g((X

x i S k ) i =h , X x h t )1 A
where g is measurable bounded from G n+1 into R. By the strong Markov property for X = (X x 1 , • • • , X x n+1 ), we have

1 B E[1 {t-S k <T } g((X x i S k ) i =h , X x h t )|F X S k ] = 1 B ψ(t -S k , (X x i S k ) i =h )
where

ψ(u, y 1 , • • • , y n ) = E[1 {u<inf{r≥0:∃j∈[1,n],X y j r =0}} g(y 1 , • • • , y n , X 0 u )]. This shows that E[f (X x 1 t , • • • , X x n+1 t )1 A ] only depends on the law of (X x i ) i =h . As a result, P n+1 t ((x 1 , • • • , x n+1 ), dy) is unique whenever h(x i ) = h(x j ), i = j and by an approximation argument for all (x 1 , • • • , x n+1 ) ∈ G n+1 . Since a stochastic flow
of kernels is uniquely determined by the compatible system of its n-point motions, this proves (2) of Theorem 4.2.

Appendix

F L+ = F L-
Recall the definitions of the random times T and L. For any random time S define the following σ-fields

F S-= σ(X S , X is bounded (F W t ) t≥0 -previsible process), F S = σ(X S , X is bounded (F W t ) t≥0 -optional process), F S+ = σ(X S , X is bounded (F W t ) t≥0 -progressive process).
We follow Lemma 4.11 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] with more details. Denote by (F L t ) t≥0 the natural augmentation of (F W t ∨ σ(L)) t≥0 . From the theory of enlargement of filtration, we have [START_REF] Jeulin | Grossissement d'une filtration et applications[END_REF] page 77). For ε > 0, define T ε = inf{r ≥ 0 : Z r+L = ε}. Since the filtration (F L t ) satisfies the usual conditions, we have:

F L+ = F L L (see
F L+ = F L L = F L L+ = ǫ>0 F L L+Tǫ .
We will prove the following assertions:

(i) F L+Tǫ = F L L+Tǫ = σ(Z u∧(Tǫ+L) , u ≥ 0) ∨ σ(T ǫ + L) = σ(Z u∧(Tǫ+L) , u ≥ 0), (ii) σ(Z u∧(Tǫ+L) , u ≥ 0) = σ(Z u∧L , u ≥ 0) ∨ σ(Z (L+u)∧(L+Tε) , u ≥ 0) ∨ σ(L),
We follow [START_REF] Malric | Étude des filtrations des martingales quadratiques de M.Yor[END_REF] and begin by: [START_REF] Jeulin | Grossissement d'une filtration et applications[END_REF] Lemma 5.7 (c) page 78). Now F W is the Brownian filtration and so F L+Tǫ = F (L+Tǫ)-(see [START_REF] Nikeghbali | An essay on the general theory of stochastic processes[END_REF] Lemma 8.9). The σ-field F L+Tǫ is generated by the class C of processes

(i) Since L + T ε > L, we have F L+Tǫ = F L L+Tǫ (see
f (Z t 1 , • • • , Z tn )1 ]tn,+∞[ (L + T ǫ )
for all increasing positive sequences (t i ) 1≤i≤n and measurable bounded f (see [START_REF] Dellacherie | Chapitres I à IV, Édition entièrement refondue[END_REF]) which writes as

f (Z t 1 ∧(L+Tǫ) , • • • , Z tn∧(L+Tǫ) )1 ]tn,+∞[ (L + T ǫ ). Consequently F L+Tε ⊂ σ(Z u∧(Tǫ+L) , u ≥ 0) ∨ σ(T ǫ + L). The other inclusion is trivial and (i) is proved. (ii) is easy. As in (i), we have F L = σ(Z u∧L , u ≥ 0) ∨ σ(L)
. By combining (i) and (ii), we get

F L+ = ǫ>0 F L ∨ σ(Z (L+u)∧(L+Tε) , u ≥ 0).
On the other hand, (Z L+u∧Tε ) u≥0 is a BES(3) killed at time T ε independent of F L by the decomposition of David Williams [START_REF] Jeulin | Grossissement d'une filtration et applications[END_REF]. The Lindvall-Rogers lemma [4], yields 

F L+ = F L ∨ ǫ>0 σ(Z L+u∧Tε , u ≥ 0) = F L since the filtration of BES(3) is Brownian.

Introduction and main results

In the foregoing chapter, we have defined a Tanaka's SDE related to WBM which depends on kernels. It was shown that there is only one Wiener solution and only one flow of mappings solving this equation. In the terminology of Le Jan and Raimond, these are respectively the stronger and the weaker among all solutions. In this chapter, we provide discrete approximations to these flows. Among recent papers on approximating flows, let us mention [START_REF] Nishchenko | Discrete time approximation of coalescing stochastic flows on the real line[END_REF] where the author construct an approximation for the Harris flow and the Arratia flow. Let us first recall Tanaka's SDE related to Walsh BM Definition 5.1. ( Equation (T )).

Fix N ∈ N * , α 1 , • • • , α N > 0 such that N i=1
α i = 1 and consider the graph G defined in Section 2.3.1. On a probability space (Ω, A, P), let W be a Brownian motion on the real line and K be a stochastic flow of kernels on G. We say that (K, W ) solves

(T ) if for all s ≤ t, f ∈ D(α 1 , • • • , α N ), x ∈ G, K s,t f (x) = f (x) + t s K s,u f ′ (x)dW u + 1 2 t s K s,u f ′′ (x)du a.s. If K = δ ϕ is a solution of (T )
where ϕ is a flow of mappings, we just say that (ϕ, W )

solves (T ).

It was shown in the previous chapter that if (K, W ) solves (T ), then σ(W ) ⊂ σ(K)

and therefore one can just say that K solves (T ). We also recall the following Theorem 5.1. There exists a unique Wiener flow K W (resp. flow of mappings ϕ)

which solves (T ).

For all z ∈ G, recall the definition e(z) = e i if z ∈ D i , z = 0 (convention e(0) = e N ).

As described in Theorem 4.1, the unique Wiener solution of (T ) is simply

K W s,t (x) = δ x+ e(x)Ws,t 1 {t≤τs,x} + N i=1 α i δ e i W + s,t 1 {t>τs,x} . (5.1) 
where

τ s,x = inf{r ≥ s : x + e(x)W s,r = 0} = inf{r ≥ s : W s,r = -|x|}. (5.2) 
However, the construction of the unique (see Remark 4.3) flow of mappings ϕ relies on flipping Brownian excursions and is more complicated. Another construction of ϕ using Kolmogorov extension theorem can be derived from Section 3.4 similarly to Tanaka's equation. Here, we restrict our attention to discrete models.

Note that the one point motion associated to any solution of (T ) is the

W (α 1 , • • • , α N )
process on G. Let G N = {x ∈ G; |x| ∈ N} and P(G) (resp. P(G N )) be the space of all probability measures on G (resp. G N ). We now come to the discrete description of (ϕ, K W ) and first introduce Definition 5.2. (Discrete flows) We say that a process ψ p,q (x) (resp. N p,q (x)) in-

dexed by {p ≤ q ∈ Z, x ∈ G N } with values in G N (resp. P(G N )) is a discrete flow of mappings (resp. kernels) on G N if: (i) The family {ψ i,i+1 ; i ∈ Z} (resp. {N i,i+1 ; i ∈ Z}) is independent. (ii)∀p ∈ Z, x ∈ G N , a.s. ψ p,p+2 (x) = ψ p+1,p+2 (ψ p,p+1 (x)) (resp. N p,p+2 (x) = N p,p+1 N p+1,p+2 (x)) 
where

N p,p+1 N p+1,p+2 (x, A) := y∈G N N p+1,p+2 (y, A)N p,p+1 (x, {y}) for all A ⊂ G N .
We call (ii), the cocycle or flow property.

The main difficulty in the construction of the flow ϕ associated to (3.4) [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] is that it has to keep the consistency of the flow. This problem does not arise in discrete time. Starting from the following two remarks,

(i) ϕ s,t (x) = x + sgn(x)W s,t if s ≤ t ≤ τ s,x , (ii) |ϕ s,t (0) 
| = W + s,t and sgn(ϕ s,t (0)) is independent of W for all s ≤ t, one can easily expect the discrete analogous of ϕ as follows: consider an original random walk S and a family of signs (η i ) which are independent. Then (i) a particle at time k and position n = 0, just follows what the S k+1 -S k tells him (goes to n + 1 if S k+1 -S k = 1 and to n -1 if S k+1 -S k = -1), (ii) a particle at 0 at time k does not move if S k+1 -S k = -1, and moves according

to η k if S k+1 -S k = 1.
The situation on a finite half-lines is very close. Let S = (S n ) n∈Z be a simple random walk on Z, that is (S n ) n∈N and (S -n ) n∈N are two independent simple random walks on Z and ( η i ) i∈Z be a sequence of i.i.d. random variables with law

N i=1 α i δ e i which is independent of S. For p ≤ n, set S p,n = S n -S p , S + p,n = S n -min h∈[p,n] S h = S p,n -min h∈[p,n]
S p,h .

and for p ∈ Z, x ∈ G N , define

Ψ p,p+1 (x) = x + e(x)S p,p+1 if x = 0, Ψ p,p+1 (0) = η p S + p,p+1 . K p,p+1 (x) = δ x+ e(x)S p,p+1 if x = 0, K p,p+1 (0) = N i=1 α i δ S + p,p+1 e i .
In particular, we have

K p,p+1 (x) = E[δ Ψ p,p+1 (x) |σ(S)]. Now, we extend this definition for all p ≤ n ∈ Z, x ∈ G N by setting Ψ p,n (x) = x1 {p=n} + Ψ n-1,n • Ψ n-2,n-1 • • • • • Ψ p,p+1 (x)1 {p>n} , K p,n (x) = δ x 1 {p=n} + K p,p+1 • • • K n-2,n-1 K n-1,n (x)1 {p>n} .
We equip P(G) with the following topology of weak convergence:

β(P, Q) = sup | gdP -gdQ|, g ∞ + sup x =y |g(x) -g(y)| |x -y| ≤ 1, g(0) = 0 .
In this chapter, starting from (Ψ, K), we construct (ϕ, K W ) and in particular show the following Theorem 5.2. (1) Ψ (resp. K) is a discrete flow of mappings (resp. kernels) on

G N .
(2) There exists a joint realization (ψ, N, ϕ, K W ) on a common probability space

(Ω, A, P) such that (i) (ψ, N) law = (Ψ, K). (ii) (ϕ, W ) (resp. (K W , W ))
is the unique flow of mappings (resp. Wiener flow) which solves (T ).

(iii) For all s ∈ R,

T > 0, x ∈ G, x n ∈ 1 √ n G N such that lim n→∞ x n = x we have lim n→∞ sup s≤t≤s+T | 1 √ n ψ ⌊ns⌋,⌊nt⌋ ( √ nx n ) -ϕ s,t (x)| = 0 a.s.
and

lim n→∞ sup s≤t≤s+T β(K ⌊ns⌋,⌊nt⌋ ( √ nx n )( √ n.), K W s,t (x)) = 0 a.s. (5.3) 
This theorem implies also the following Corollary 5.1. For all s ∈ R, x ∈ G N , let t -→ Ψ (t) be the linear interpolation of

Ψ ⌊ns⌋,k (x), k ≥ ⌊ns⌋ and Ψ n s,t (x) := 1 √ n Ψ (nt), K n s,t (x) = E[δ Ψ n s,t (x) |σ(S)], t ≥ s, n ≥ 1. For all 1 ≤ p ≤ q, (x i ) 1≤i≤q ⊂ G, let x n i ∈ 1 √ n G N such that lim n→∞ x n i = x i . Define Y n = Ψ n s 1 ,• ( √ nx n 1 ), • • • , Ψ n sp,• ( √ nx n p ), K n s p+1 ,• ( √ nx n p+1 ), • • • , K n sq,• ( √ nx n q ) .
Then

Y n law -----→ n → +∞ Y in p i=1 C([s i , +∞[, G) × q j=p+1 C([s j , +∞[, P(G))
where

Y = ϕ s 1 ,• (x 1 ), • • • , ϕ sp,• (x p ), K W s p+1 ,• (x p+1 ), • • • , K W sq,• (x q ) .
Our proof of Theorem 5.2 is based on a remarkable transformation introduced by Csaki and Vincze [START_REF] Révész | Random walk in random and non-random environments[END_REF] which is strongly linked with Tanaka's SDE. Let S be a simple random walk on Z (SRW) and ε be a Bernoulli random variable independent of S (just one!). Then there exists a SRW M such that

σ(M) = σ(ε, S)
and moreover

( 1 √ n S(nt), 1 √ n M(nt)) t≥0 law -----→ n → +∞ (B t , W t ) t≥0 in C([0, ∞[, R 2 ).
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where t -→ S(t) (resp. M(t)) is the linear interpolation of S (resp. M) and B, W are two Brownian motions satisfying Tanaka's equation

dW t = sgn(W t )dB t .
We will carry a thorough study of this transformation in Section 5.2.1 and then extend the result of Csaki and Vincze to Walsh Brownian motion (Proposition 5.1);

Let S = (S n ) n∈N be a SRW and associate to S the process Y n := S nmin k≤n S k , flip independently every "excursion "of Y to each ray D i with probability α i , then the resulting process is not far from a random walk on G whose law is given by (2.2).

In Section 5.3, we study the scaling limits of Ψ, K.

Csaki-Vincze transformation and consequences

In this section, we review a relevant result of Csaki and Vincze and then derive some useful consequences offering a better understanding of Tanaka's equation.

Csaki-Vincze transformation

Theorem 5.3. ( [START_REF] Révész | Random walk in random and non-random environments[END_REF] page 109) Let S = (S n ) n≥0 be a SRW. Then, there exists a SRW S = (S n ) n≥0 such that:

Y n := max k≤n S k -S n ⇒ |Y n -|S n || ≤ 2 ∀n ∈ N.
Proof. Let X i = S i -S i-1 , i ≥ 1 and define

τ 1 = min {i > 0 : S i-1 S i+1 < 0}, τ l+1 = min {i > τ l : S i-1 S i+1 < 0} ∀l ≥ 1.
For j ≥ 1, set

X j = l≥0 (-1) l+1 X 1 X j+1 1 {τ l +1≤j≤τ l+1 } .
Then (X j ) j≥1 is a sequence of i.i.d. Bernoulli random variables. Let

S 0 = 0, S j = X 1 + • • • + X j , j ≥ 1.
Then the following properties are easy to check

(i) For k ∈ [τ l + 1, τ l+1 ], we have S k -S τ l = k j=τ l +1 X j = (-1) l+1 X 1 k j=τ l +1 X j+1 = (-1) l+1 X 1 (S k+1 -S τ l +1 ). So S k -S τ l              ≤ if τ l + 1 ≤ k ≤ τ l+1 -2 = 1 if k = τ l+1 -1 = 2 if k = τ l+1 . (ii) Let M n = max k≤n S k , then M τ l = S τ l = 2l, l ≥ 1.
(iii) For any τ l ≤ n < τ l+1 , we have 2l ≤ M n ≤ 2l + 1.

(iv)

S k =      2l + 1 -|S k+1 | ≤ if τ l + 1 ≤ k ≤ τ l+1 -1 2l + 2 -|S k | if k = τ l+1 Therefore Y k = M k -S k ≤ |S k+1 | ≤ |S k | + 1
and

Y k = M k -S k ≥ |S k+1 | -1 ≥ |S k | -2
This shows that the theorem holds for S. We call T (S) = S the Csaki-Vincze transformation of S.

Note that T is an even function, in other words T (S) = T (-S). As a consequence of (ii) and (iii) in the proof of the last theorem, we have (i) For all n ≥ 0, we have σ(S j , j ≤ n) ∨ σ(S 1 ) = σ(S j , j ≤ n + 1).

τ l = min {n ≥ 0, S n = 2l} ∀l ≥ 1. ( 5 
(ii) S 1 is independent of σ(S).

(2) Let S = (S k ) k≥0 be a SRW. Then (i) There exists a SRW S such that:

Y n := max k≤n S k -S n ⇒ |Y n -|S n || ≤ 2 ∀n ∈ N.
(ii) T -1 {S} is reduced to exactly two elements S and -S where S is obtained by adding information to S.

Proof.

(1) We retain the notations just before the corollary. (i) To prove the inclusion ⊂, we only need to check that {τ l + 1 ≤ j ≤ τ l+1 } ∈ σ(S h , h ≤ n + 1) for a fixed j ≤ n. But this is clear since {τ l = m} ∈ σ(S h , h ≤ m + 1) for all l, m ∈ N. For all 1 ≤ j ≤ n, we have X j+1 = l≥0 (-1) l+1 X 1 X j 1 {τ l +1≤j≤τ l+1 } . By (5.4), {τ l + 1 ≤ j ≤ τ l+1 } ∈ σ(S h , h ≤ j -1) and so the inclusion ⊃ holds. (ii) We may write

τ 1 = min {i > 1 : X 1 S i-1 X 1 S i+1 < 0}, τ l+1 = min {i > τ l : X 1 S i-1 X 1 S i+1 < 0} ∀l ≥ 1.
This shows that S is σ(X 1 X j+1 , j ≥ 0)-measurable and (ii) is proved.

(2) (i) Set X j = S j -S j-1 , j ≥ 1 and τ l = min {n ≥ 0, S n = 2l} for all l ≥ 1. Let ε be a random variable independent of S such that:

P(ε = 1) = P(ε = -1) = 1 2 .
Define

X j+1 = ε1 {j=0} + l≥0 (-1) l+1 εX j 1 {τ l +1≤j≤τ l+1 } 1 {j≥1} .
Setting S 0 = 0, S j = X 1 + • • • + X j , j ≥ 1, its is not hard to see that the sequence of the random times τ i (S), i ≥ 1 defined from S as in Theorem 5.3 is exactly τ i , i ≥ 1 so that T (S) = S. (ii) Let S such that T (S) = S. By (1), σ(S) ∨ σ(S 1 ) = σ(S) and S 1 is independent of S which proves (ii).

Extensions

Let S = (S n ) n≥0 be a SRW and set Y n := max k≤n S k -S n . For 0 ≤ p < q, we say that E = [p, q] is an excursion for Y if the following conditions are satisfied (with the convention Y -1 = 0):

• Y p = Y p-1 = Y q = Y q+1 = 0. • ∀ p ≤ j < q, Y j = 0 ⇒ Y j+1 = 1.
For example in Figure 5.2, [2,[START_REF] Elworthy | Stochastic dynamical systems and their flows[END_REF], [START_REF] Stewart | Markov processes[END_REF][START_REF] Grimmett | Probability on graphs[END_REF] are excursions for Y . If E = [p, q] is an excursion for Y , define e(E) := p, f (E) := q.

Let (E i ) i≥1 be the random set of all excursions of Y ordered such that: e(E i ) <

e(E j ) ∀i < j. From now on, we call E i the ith excursion of Y . Then, we have Proposition 5.1. On a probability space (Ω, A, P ), consider the following jointly independent processes:

• η = ( η i ) i≥1 , a sequence of i.i.d. random variables distributed according to N i=1 α i δ e i .
• (S n ) n∈N a SRW.

Then, there exists, on an extension of (Ω, A, P ) a Markov chain (M n ) n∈N started at 0 with stochastic matrix given by (2.2) such that:

Y n := max k≤n S k -S n ⇒ |M n -η i Y n | ≤ 2
on the ith excursion of Y . Using (5.4), we see that in [τ l , τ l+1 ] there are two jumps of max k≤n S k ; from 2l to 2l + 1 (J 1 ) and from 2l + 1 to 2l + 2 (J 2 ). The last jump (J 2 ) occurs always at τ l+1 by (5.4).

Consequently there are only 3 possible cases:

(i) There is no excursion of Y (J 1 and J 2 occur respectively at τ l + 1 and τ l + 2, see [0, τ 1 ] in Figure 5.

2).

(ii) There is just one excursion of Y (see [τ 1 , τ 2 ] in Figure 5.

2).

(iii) There are 2 excursions of Y (see [τ 2 , τ 3 ] in Figure 5.2).

Note that: Y τ l = Y τ l+1 = S τ l = S τ l+1 = 0. In the case (i), we necessarily have

τ l+1 = τ l + 2. Set M n = β l .|S n | ∀n ∈ [τ l , τ l+1 ].
To treat other cases, the following remarks may be useful: from the expression of S,

we have ∀l ≥ 0 (a) If k ∈ [τ l + 2, τ l+1 ], S k-1 = 2l + 1 ⇐⇒ S k = 0. (b) If k ∈ [τ l , τ l+1 ], Y k = 0 ⇒ |S k+1 | ∈ {0, 1} and S k+1 = 0 ⇒ Y k = 0.
In the case (ii), let E 1 l be the unique excursion of Y in the interval [τ l , τ l+1 ]. Then, we have two subcases:

(ii1) f (E 1 l ) = τ l+1 -2 (J 1 occurs at τ l+1 -1). If τ l +2 ≤ k f (E 1 l )+1, then k -1 f (E 1 l
) and so S k-1 = 2l +1. Using (a), we get: S k = 0. Thus, in this case the first zero of S after τ l is τ l+1 . Set:

M n = η N (E 1 l ) .
|S n |, where N(E) is the number of the excursion E.

(ii2)f (E 1 l ) = τ l+1 -1 (J 1 occurs at τ l +1 and so Y τ l +1 = 0). In this case, using (b) and the figure below we observe that the first zero τ * l of S after τ l is e(E 1 l ) + 1 = τ l + 2. Set

Possible values for |S|

M n =      β l .|S n | if n ∈ [τ l , τ * l -1] η N (E 1 l ) .|S n | if n ∈ [τ * l , τ l+1 ]
In the case (iii), let E 1 l and E 2 l denote respectively the first and 2nd excursion of Y in [τ l , τ l+1 ]. We have

τ l + 2 ≤ k ≤ e(E 2 l ) ⇒ k -1 ≤ e(E 2 l ) -1 = f (E 1 l ) ⇒ S k-1 = 2l + 1 ⇒ S k = 0 by (a)
. Hence, the first zero of S after τ l is τ * l := e(E 2 l ) + 1 using

Y k = 0 ⇒ |S k+1 | ∈ {0, 1} in (b). Set M n =      η N (E 1 l ) .|S n | if n ∈ [τ l , τ * l -1] η N (E 2 l ).|S n | if n ∈ [τ * l , τ l+1 ]
Let (M n ) n∈N be the process constructed above. Then clearly

|M n -η i Y n | ≤ 2 on the ith excursion of Y .
To complete the proof, it remains to show that the law of (M n ) n∈N is given by (2.2).

The only point to verify is P(M n+1 = e i |M n = 0) = α i . For this, consider on another probability space the jointly independent processes (S, γ, λ) such that S is a SRW and γ, λ have the same law as η. Let (τ l ) l≥1 be the sequence of random times defined from S as in Theorem 5.3. For all l ∈ N, denote by τ * l the first zero of S after τ l and set

V n =      γ l .|S n | if n ∈ [τ l , τ * l -1] λ l .|S n | if n ∈ [τ * l , τ l+1 ]
It is clear, by construction, that M law = V . We can write: α i δ e i . Furthermore

{τ 0 , τ * 0 , τ 1 , τ * 1 , τ 2 , • • • } = {T 0 , T 1 , T 2 , • • • } with T 0 = 0 < T 1 < T 2 < • • • For all k ≥ 0, let ζ k := N j=0 e j 1 {V | [T k ,T k+1 ] ∈D j } .
P(V n+1 = e i |V n = 0) = 1 P(S n = 0) +∞ k=0 P(V n+1 = e i , S n = 0, n ∈ [T k , T k+1 [) = 1 P(S n = 0) +∞ k=0 P( ζ k = e i , S n = 0, n ∈ [T k , T k+1 [) = α i
This ends the proof of the proposition. This might be proved without having to resort to Proposition 5.1, by showing that the family of laws is tight and that any limit process along a subsequence is the Walsh process. (ii) For all p < n < q, P( η p,q = η n,q |min h∈[p,q] S h = min h∈[n,q] S h ) = 1

Proof of main results

and

P( η p,n = η p,q |min h∈[p,n] S h = min h∈[p,q] S h , S + p,j > 0 ∀j ∈ [n, q]) = 1.
(iii) Set T p,x = inf{q ≥ p : S q -S p = -|x|}. Then for all p ≤ n, x ∈ G N , Proof. (i) We take p = 0 and prove the result by induction on n. For n = 0, this is clear. Suppose the result holds for n. If Ψ 0,n ∈ G * , then S + 0,n > 0 and so min h∈[0,n] S h = min h∈[0,n+1] S h . Moreover Ψ 0,n+1 = Ψ 0,n + η 0,n S n,n+1 = (S n+1min h∈[0,n] S h ) η 0,n = S + 0,n+1 η 0,n .

If Ψ 0,n = 0, then S + 0,n = 0 and |Ψ 0,n+1 | = S + n,n+1 . But min h∈[0,n+1] S h = min(min h∈[0,n] S h , S n+1 ) = min(S n , S n+1 ) since S + 0,n = 0 which proves (i). (ii) Let p < n < q. If min h∈[p,q] S h = min h∈[n,q] S h , then S + p,q = S + n,q . When S + p,q = 0, we have η p,q = η n,q = e N by convention. Suppose that S + p,q > 0, then clearly J := sup{j < q : S + p,j = 0} = sup{j < q : S + n,j = 0}.

By the flow property of Ψ , we have Ψ p,q = Ψ n,q = Ψ J,q . The second assertion of (ii) is also clear. 

C = C(R, R) × +∞ n=0 C([s n , +∞[, G)
equipped with the metric:

d(x, y) = d ∞ (x ′ , y ′ )+ +∞ n=0 1 2 n inf(1, d sn (x n , y n )) where x = (x ′ , x s 0 , • • • ), y = (y ′ , y s 0 , • • • ).
Let t -→ S(t) be the linear interpolation of S on R and define S

(n) t = 1 √ n S(nt), n ≥ 1.
If u ≤ 0, we define ⌊u⌋ = -⌊-u⌋. Then, we have This entirely describes the law of (W,

S (n) t = S n t + o( 1 √ n ),
ψ s,• , s ∈ D) in C independently of (n k , k ∈ N)
and consequently

Z n law -----→ n → +∞ Z in C.
Proof. (i) is clear. (ii) is a consequence of Proposition 5.3 (ii). (iii) Write {s, t, s i , t i , 1 ≤ i ≤ n} = {r k , 1 ≤ k ≤ m} with r j < r j+1 for all 1 ≤ j ≤ m -1. Suppose that s = r i , t = r h with i < h. Then a.s. {min r j ,r j+1 , i ≤ j ≤ h -1} are distinct and it will be sufficient to show that γ s,t is independent of σ(( γ s i ,t i ) 1≤i≤n , W ) conditionally to A = {min s,t = min r j ,r j+1 , min s,t = min s i ,t i for all 1

≤ i ≤ n} for j ∈ [i, h -1].
On A, we have γ s,t = γ r j ,r j+1 , {min s i ,t i , 1 ≤ i ≤ n} ⊂ {min r k ,r k+1 , k = j} and so

{ γ s i ,t i , 1 ≤ i ≤ n} ⊂ { γ r k ,r k+1 , k = j}. Since γ r 1 ,r 2 , • • • , γ r m-1 ,rm , W are independent,
it is now easy to conclude.

In the sequel, we still assume that all processes are defined on the same probability space and that Z n a.s.

-----→ (W s,u + |x|) < 0 which implies that 1 n T ⌊ns⌋, √ nxn < τ s,x + ǫ for n large. If x = 0, 1 n T ⌊ns⌋, √ nxn ≥ ⌊ns⌋ n entails obviously (5.14). If x = 0, then working in [s, τ s,xǫ] as before and using inf u∈[s,τs,x-ǫ] (W u -W s + |x|) > 0, we prove that 1 n T ⌊ns⌋, √ nxn ≤ τ s,xǫ for n large which establishes (5.14).

Now sup s≤t≤s+T | 1 √ n Ψ ⌊ns⌋,⌊nt⌋ ( √ nx n ) -ϕ s,t (x)| ≤ sup s≤t≤s+T Q 1,n s,t + sup s≤t≤s+T Q 2,n s,t (5.15) 
where

Q 1,n s,t = |(x n + e(x n )(S n t -S n s ))1 {⌊nt⌋≤T ⌊ns⌋, √ nxn } -(x + e(x)W s,t )1 {t≤τs,x} |, Q 2,n s,t = | 1 √ n Ψ ⌊ns⌋,⌊nt⌋ 1 {⌊nt⌋>T ⌊ns⌋, √ nxn } -ϕ s,t 1 {t>τs,x} |.
By (5.13), (5.14) and the convergence of 1 √ n S ⌊n.⌋ towards W on compact sets, the right-hand side of (5.15) converges to 0 when n → +∞.

Remark 5.2. From the definition of ε s,t (or Proposition 5.5), it is obvious that

ε r 1 ,r 2 , • • • , ε r m-1
,rm , W are independent for all r 1 < • • • < r m . Using (5.11), we easily check that (i), (ii) and (iii) of Proposition 5.4 are satisfied for all s < t, n ≥ 1, {(s i , t i ); 1 ≤ i ≤ n} with s i < t i (the proof remains the same as Proposition 5.4).

Proposition 5.6. ϕ is the unique stochastic flow of mappings solution of (T ).

Proof. Fix s < t < u, x ∈ G and let prove that ϕ s,u (x) = ϕ t,u • ϕ s,t (x) a.s. We follow Lemma 4.3 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] and denote τ s,x by τ s (x). All the equalities below hold a.s.

On the event {u < τ s (x)}, ϕ s,t (x) = x + e(x)W s,t , τ t (ϕ s,t (x)) = τ s (x) < u and ϕ t,u • ϕ s,t (x) = x + e(x)(W s,t + W t,u ) = x + e(x)W s,u = ϕ s,u (x).

On the event {τ s (x) ∈]t, u]}, we still have ϕ s,t (x) = x + e(x)W s,t and τ t (ϕ s,t (x)) =

τ s (x) ≤ u, thus ϕ t,u • ϕ s,t (x) = ε t,u W + t,u = ε s,u W + s,u = ϕ s,u (x).
since on the event {τ s (x) ∈]t, u]}, min s,u = min t,u and W + s,u = W umin s,u = W + t,u . On the event {τ s (x) ≤ t} ∩ {τ t (ϕ s,t (x)) ≤ u}, ϕ s,t (x) = ε s,t W + s,t and

ϕ t,u • ϕ s,t (x) = ϕ t,u ( ε s,t W + s,t ) = ε t,u W + t,u = ε s,u W + s,u = ϕ s,u (x) 
since W + s,τt(ϕs,t(x)) = 0 and thus min s,u = min t,u which implies ε s,u = ε t,u and W + s,u = W + t,u .

On the event {τ s (x) ≤ t} ∩ {τ t (ϕ s,t (x)) > u}, ϕ s,t (x) = ε s,t W + s,t and

ϕ t,u • ϕ s,t (x) = ϕ t,u ( ε s,t W + s,t ) = ε s,t (W + s,t + W t,u ) = ε s,u W + s,u = ϕ s,u (x).
since in this case min s,u = min s,t which implies ε s,u = ε s,t and

W + s,u = W u -min s,u = W u -W s + W s -min s,t = W + s,t + W t,u .
Thus we have, a.s. ϕ s,u (x) = ϕ t,u • ϕ s,t (x) which proves the cocyle property for ϕ. It is now easy to check that ϕ is a stochastic flow of mappings in the sense of Definition 3.1.

Note that (ϕ 0,t , t ≥ 0) is a W (α 1 , • • • , α N ) process started at 0 and therefore satisfies Freidlin-Sheu formula (Theorem 2.3). Let Since |ϕ 0,t | = W t -min 0,t , we get B t = W t . Let x ∈ D i \{0} and f i (r) = f (r e i ), r ≥ 0.

f ∈ D(α 1 , • • • , α N ), then for all t ≥ 0, f (ϕ 0,t ) = f (0) + t 0 f ′ (ϕ 0,u )dB u + 1 2 t 0 f ′′ (ϕ 0,u )du a.
Since lim z→0,z∈D i ,z =0 f ′ (z) and lim z→0,z∈D i ,z =0 f ′′ (z) exist, we can construct g which is C 2 on R and coincides with f i on R + . By Itô's formula,

g(|x| + W t ) = g(|x|) + t 0 g ′ (|x| + W u )dW u + 1 2 t 0 g ′′ (|x| + W u )du a.s.
and so for t τ 0 (x), we have

f (ϕ 0,t (x)) = f (x) + t 0 f ′ (ϕ 0,u (x))dW u + 1 2 t 0 f ′′ (ϕ 0,u (x))du a.s. Set α = f (0) + τ 0 (x) 0 f ′ (ϕ 0,u )dW u + 1 2 τ 0 (x) 0 f ′′ (ϕ 0,u )du = f (ϕ 0,τ 0 (x) ) = f (0) since W + 0,τ 0 (x) = 0. Then for t > τ 0 (x), write f (ϕ 0,t (x)) = f (ϕ 0,t ) = α + t τ 0 (x) f ′ (ϕ 0,u )dW u + 1 2 t τ 0 (x) f ′′ (ϕ 0,u )du = f (0) + t τ 0 (x) f ′ (ϕ 0,u (x))dW u + 1 2 t τ 0 (x) f ′′ (ϕ 0,u (x))du. But f (x) + τ 0 (x) 0 f ′ (ϕ 0,u (x))dW u + 1 2 τ 0 (x) 0 f ′′ (ϕ 0,u (x))du = f (ϕ 0,τ 0 (x) (x)) = f (0) and so, for all t ≥ 0, f ∈ D(α 1 , • • • , α N ), x ∈ G, f (ϕ 0,t (x)) = f (x) + t 0 f ′ (ϕ 0,u (x))dW u + 1 2 t 0
f ′′ (ϕ 0,u (x))du a.s.

(5.16)

Thus ϕ is a flow of mappings solution of (T ) and so Proposition 5.6 is proved (see Remark 4.3). Let give another simple proof of the unicity of ϕ and for this consider any flow of mappings (ψ, W ) solution of (T ). By lemma 4.3, ψ 0,t (x) = x + e(x)W 0,t for 0 ≤ t ≤ τ 0,x with τ 0,x given by (5.2).

(5.17)

As σ(W t ) ⊂ σ(ψ 0,t (y), y ∈ G), we can define a Wiener stochastic flow K * obtained by filtering δ ψ with respect to σ(W ) satisfying: ∀s ≤ t, x ∈ G, K * s,t (x) = E[δ ψs,t(x) |σ(W )] a.s. In particular K * solves (T ) and since K W given by (5.1) is the unique Wiener solution of (T ), we get: ∀s ≤ t, x ∈ G, K W s,t (x) = E[δ ϕs,t(x) |σ(W )] a.s. (see Proposition 4.5). As K W 0,t (0) is supported on {W + 0,t e i , 1 ≤ i ≤ N}, we deduce that |ψ 0,t (0)| = W + 0,t . Combining this with (5.17), we see that inf{r ≥ 0 : ψ 0,r (x) = ψ 0,r (0)} = τ 0,x .

This implies that ψ 0,r (x) = ψ 0,r (0) for all r ≥ τ 0,x by applying the strong Markov property (see Lemma 3.2). Note that W 0,• can be recovered out from W + 0,• and consequently ψ 0,• (x) is a measurable function of ψ 0,• (0) for all x ∈ G. Therefore, for all

(x 1 , • • • , x n ) ∈ G n , (ψ 0,• (x 1 ), • • • , ψ 0,• (x n )) is unique in law since ψ 0,• (0) is a Walsh
Brownian motion. This completes the proof.

The Wiener flow

In order to finish the proof of Theorem 5.2 and Corollary 5.1, we need only check the following lemma (the proof of (5.3) is similar) Lemma 5.2. Under the hypothesis of Proposition 5.5, we have

sup t∈[s,s+T ] β(K W s,t (x), K n s,t ( √ nx n )) -----→ n → +∞ 0 a.s. Proof. Let g : G -→ R such that g ∞ + sup x =y |g(x) -g(y)| |x -y| ≤ 1, g(0) = 0. Then, G g(y)K W s,t (x)(dy) - G g(y)K n s,t ( √ nx n )(dy) ≤ V 1,n s,t + V 2,n s,t
where V V 2,n s,t = 0 which proves the lemma.

Introduction and main results

Consider Tanaka's equation

ϕ s,t (x) = x + t s sgn(ϕ s,u (x))dW u , s ≤ t, x ∈ R, (6.1) 
where (W t ) t∈R is a Brownian motion on R (that is (W t ) t≥0 and (W -t ) t≥0 are two independent standard Brownian motions) and ϕ is a stochastic flow of mappings, both defined on a probability space (Ω, A, P). In [START_REF] Le | Flows associated to Tanaka's SDE[END_REF], Le Jan and Raimond have extended (6.1) to kernels and then classified all the laws of solutions by means of probability measures on [0, 1]. A stochastic flow of kernels K is said to solve Tanaka's equation if and only if for all s ≤ t, x ∈ R, f ∈ C 2 b (R) (f is C 2 on R and f ′ , f ′′ are bounded), a.s.

K s,t f (x) = f (x) + t s K s,u (f ′ sgn)(x)dW u + 1 2 t s K s,u f ′′ (x)du. (6.2)
The main result of [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] is a one-to-one correspondence between probability measures m on [0, 1] and solutions associated to (6.2). The case m = δ1 2 corresponds to the unique σ(W )-adapted solution (Wiener flow) of (6.2) given by

K W s,t (x) = δ x+sgn(x)(Wt-Ws) 1 {t≤τs,x} + 1 2 (δ W + s,t + δ -W + s,t )1 {t>τs,x}
where

τ s,x = inf{r ≥ s : W r -W s = -|x|}, W + s,t := W t -inf u∈[s,t] W u .
For m = 1 2 (δ 0 + δ 1 ), we recover the unique flow of mappings solving (6.1) which was firstly introduced in [START_REF] Watanabe | The stochastic flow and the noise associated to Tanaka's stochastic differential equation[END_REF]. In [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF], a more general Tanaka's equation has been defined on a graph related to Walsh's Brownian motion. In this work, we deal with another simple oriented graph with two edges and two vertices that will be embedded in the 

unit circle C = {z ∈ C : |z| = 1}. A function f defined on C is said to be derivable in z 0 ∈ C if f ′ (z 0 ) := lim h→0 f (z 0 e ih ) -f (z 0 ) h exists. Let C 2 (C )
d(µ, ν) = n 2 -n ( f n dµ -f n dν) 2 1 2
, µ, ν ∈ P(C ). (

In the following, arg(z) ∈ [0, 2π[ denotes the argument of z ∈ C. Definition 6.1. Fix l ∈]0, π] and define for z ∈ C ,

ǫ(z) = 1 {arg(z)∈[0,l]} -1 {arg(z)∈]l,2π[} .
On a probability space (Ω, A, P), let W be a Brownian motion on R and K be a stochastic flow of kernels on C . We say that (K, W ) solves Tanaka's equation on C

denoted (T C ) if for all s ≤ t, f ∈ C 2 (C ), x ∈ C , a.s. K s,t f (x) = f (x) + t s K s,u (ǫf ′ )(x)dW u + 1 2 t s K s,u f ′′ (x)du. (6.4)
If K is a solution of (T C ) and K = δ ϕ with ϕ is a stochastic flow of mappings, we simply say that (ϕ, W ) solves (T C ).

If (K, W ) is a solution of (T C ), it was shown in [START_REF] Le | Flows, coalescence and noise[END_REF] (Section 6) that σ(W ) ⊂ σ(K)

(see also Lemma 6.7 (ii) in this paper). So we will simply say that K solves (T C ).

In this paper, given two probability measures on [0, 1], m + and m -satisfying some Proposition 6.1. (1) There exists an increasing sequence (T k ) k≥1 of (F W 0,t ) t≥0stopping times such that a.s. lim k→∞ T k = +∞ and ϕ 0,T k (x) = e il , K m + ,m - 0,T k (x) = δ e il for all x ∈ C , k ≥ 1.

(2) There exists an increasing sequence (S k ) k≥0 of (F W 0,t ) t≥0 -stopping times such that a.s. lim k→∞ S k = +∞ and ϕ 0,S k (

x) = 1, K m + ,m - 0,S k (x) = δ 1 for all x ∈ C , k ≥ 1.

Construction of flows associated to (T C )

Fix two probability measures m + and m -on [0, 1] with mean 1 2 .

Coupling flows associated with two Tanaka's equations on R

In this section, we follow [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]. By Kolmogorov extension theorem, there exists a probability space (Ω, A, P) on which one can construct a process (ε

+ s,t , ε - s,t , U + s,t , U - s,t , W s,t ) -∞<s≤t<∞ taking values in {-1, 1} 2 × [0, 1] 2 × R such that:
(i) W s,t := W t -W s for all s ≤ t and W is a Brownian motion on R.

(ii) Given W , (ε + s,t , U + s,t ) s≤t and (ε - s,t , U - s,t ) s≤t are independent.

(iii) For fixed s < t, (ε ± s,t , U ± s,t ) is independent of W and

(ε ± s,t , U ± s,t ) law = (uδ 1 (dx) + (1 -u)δ -1 (dx))m ± (du).
In particular

P(ε ± s,t = 1|U ± s,t ) = U ± s,t . (6.6) 
Define for all s < t

m + s,t = inf{W u ; u ∈ [s, t]}, m - s,t = sup{W u ; u ∈ [s, t]}.
Then (iv) For all s < t and {(s i , t i ); 1 ≤ i ≤ n} with s i < t i , the law of (ε ± s,t , U ± s,t ) knowing (ε ± s i ,t i , U ± s i ,t i ) 1≤i≤n and W is given by

(uδ 1 (dx) + (1 -u)δ -1 (dx))m ± (du) when m ± s,t ∈ {m ± s i ,t i ; 1 ≤ i ≤ n} and is given by n i=1 δ ε ± s i ,t i ,U ± s i ,t i × 1 {m ± s,t =m ± s i ,t i } Card{i; m ± s i ,t i = m ± s,t } otherwise.
Note that (i)-(iv) uniquely define the law of

(ε + s 1 ,t 1 , U + s 1 ,t 1 , ε - s 1 ,t 1 , U - s 1 ,t 1 , • • • , ε + sn,tn , U + sn,tn , ε - sn,tn , U - sn,tn , W ) for all s i < t i , 1 ≤ i ≤ n. By construction, for all s < t, u < v, if P(m ± s,t = m ± u,v ) > 0, then P(ε ± s,t = ε ± u,v , U ± s,t = U ± u,v |m ± s,t = m ± u,v ) = 1. (6.7) 
For s ≤ t, x ∈ R, define

τ ± s (x) = inf{r ≥ s : W s,r = ∓|x|} and W + s,t = W t -m + s,t = W s,t -inf s≤u≤t W s,u , W - s,t = m - s,t -W t = sup s≤u≤t W s,u -W s,t . Finally for all s ≤ t, x ∈ R, set ϕ ± s,t (x) = (x ± sgn(x)W s,t )1 {t≤τ ± s (x)} + ε ± s,t W ± s,t 1 {t>τ ± s (x)} , K ± s,t (x) = δ x±sgn(x)Ws,t 1 {t≤τ ± s (x)} + (U ± s,t δ W ± s,t + (1 -U ± s,t )δ -W ± s,t )1 {t>τ ± s (x)} .
Recall the following Theorem 6.2.

[36] (i) ϕ ± is a stochastic flow of mappings which satisfies: for all

x ∈ R, s ≤ t, a.s.

ϕ ± s,t (x) = x ± t s sgn(ϕ ± s,u (x))dW u .
(ii) K ± is a stochastic flow of kernels which satisfies: for all

x ∈ R, s ≤ t, f ∈ C 2 b (R), a.s. K ± s,t f (x) = f (x) ± t s K ± s,u (sgnf ′ )(x)dW u + 1 2 t s K ± s,u f ′′ (x)du.
(iii) For all x ∈ R, all s ≤ t and all bounded continuous function f , a.s.

K ± s,t f (x) = E[f (ϕ ± s,t (x))|K ± ].

Modification of flows

For our later need, we will construct modifications of ϕ ± , K ± which are measurable with respect to (s, t, x, ω). On a set of probability 

D + = {(s, t) ∈ R 2 ; s < t, m + s,t < min(W s , W t )}, D -= {(s, t) ∈ R 2 ; s < t, m - s,t > max(W s , W t )}.
Then a.s. for all (s, t) and (u, v) in D ± , we have

{m ± s,t = m ± u,v } ⊂ { ε ± s,t = ε ± u,v , U ± s,t = U ± u,v }.
Proof. (i) By (6.7), for all s < t, u < v such that (s, t, u, v) ∈ Q 4 , we have

m ± s,t = m ± u,v =⇒ (ε ± s,t , U ± s,t ) = (ε ± u,v , U ± u,v ).
Fix s < t. With probability 1, m ± s,t is attained in ]s, t[ and thus a.s. there exists n 0 such that m ± s,t = m ± sn,tn = m ± sn 0 ,tn 0 for all n ≥ n 0 . (6.8)

Taking the limit, we get ( ε ± s,t , U ± s,t ) = (ε + sn 0 ,tn 0 , U ± sn 0 ,tn 0 ) a.s. From (6.7) and (6.8), we also draw that (ε ± s,t , U ± s,t ) = (ε + sn 0 ,tn 0 , U ± sn 0 ,tn 0 ) a.s. and (i) is proved. (ii) With probability 1, for all (s, t) and (u, v) in D ± ,

{m ± s,t = m ± u,v } ⊂ {∃n 0 : m ± sn,tn = m ± un,vn for all n ≥ n 0 } ⊂ {∃n 0 : (ε + sn,tn , U ± sn,tn ) = (ε + un,vn , U ± un,vn ) for all n ≥ n 0 } ⊂ { ε ± s,t = ε ± u,v , U ± s,t = U ± u,v }.
We may now consider the following modifications of ϕ ± and K ± defined for all

s ≤ t, x ∈ R by ϕ ± s,t (x) = (x ± sgn(x)W s,t )1 {t≤τ ± s (x)} + ε ± s,t W ± s,t 1 {t>τ ± s (x)} , K ± s,t (x) = δ x±sgn(x)Ws,t 1 {t≤τ ± s (x)} + ( U ± s,t δ W ± s,t + (1 -U ± s,t )δ -W ± s,t )1 {t>τ ± s (x)} .
Then, we have the following Lemma 6.2. (i) The mapping

(s, t, x, ω) -→ ( ϕ ± s,t (x, ω), K ± s,t (x, ω)) is measurable from {(s, t, x, ω), s ≤ t, x ∈ R, ω ∈ Ω} into R × P(R).
(ii) For all s, t, x, a.s.

ϕ ± s,t (x) = ϕ ± s,t (x), K ± s,t (x) = K ± s,t (x).
In particular, Theorem 6.2 holds also for the flows ϕ ± , K ± .

Proof.

(i) Clearly (s, t, ω) -→ ( ε ± s,t (ω), U ± s,t (ω), W s,t (ω))
is measurable. For all t ≥ s, we have

{τ + s (x) > t} = { inf s≤r≤t W s,r + |x| > 0}
which shows that (s, x, ω) -→ τ + s (x, ω) is measurable and a fortiori (s, x, ω) -→ τ - s (x, ω) is also measurable. (ii) is a consequence of Lemma 6.1 (i).

To simplify notations, throughout the rest of the paper, we will denote ε

± s,t , U ± s,t , ϕ ± s,t , K ± s,t
simply by ε ± s,t , U ± s,t , ϕ ± s,t , K ± s,t .

The construction

In this paragraph, we construct the flows K m + ,m -and ϕ as in Theorem 6.1 respectively from (K + , K -) and (ϕ + , ϕ -). Let

ρ s = inf{r ≥ s, sup(W + s,r , W - s,r ) = l}. For t ∈ [s, ρ s ], define ϕ s,t (1) 
= exp(iϕ + s,t (0)) and ϕ s,t (e il ) = exp(i(l + ϕ - s,t (0))).

For z ∈ C \ {1, e il }, define (ϕ s,t (z)) s≤t≤ρs by

ϕ s,t (z) = ze iǫ(z)Ws,t 1 {s≤t≤ρs∧τs(z)} + ϕ s,t (1)1 {ze iǫ(z)W s,τs(z) =1} + ϕ s,t (e il )1 {ze iǫ(z)W s,τs(z) =e il } 1 {τs(z)<t≤ρs} .
where τ s (z) = inf{r ≥ s, ze iǫ(z)Ws,r = 1 or e il }.

Note that on {τ s (z) < ρ s } ∩ {ze iǫ(z)W s,τs(z) = 1}, we have W + s,τs(z) = 0 and consequently ϕ s,τs(z) (1) = 1. By analogy, on {τ s (z) < ρ s } ∩ {ze iǫ(z)W s,τs(z) = e il }, we have W - s,τs(z) = 0 and so ϕ s,τs(z) (e il ) = e il .

Since (s, ω) -→ ρ s (ω) and (s, z, ω) -→ τ s (z, ω) are measurabe, it follows from Lemma 6.2 that (s, t, z, ω) -→ ϕ s,t (z, ω)1 {s≤t≤ρs(ω)} is measurable from {(s, t, z, ω), s ≤ t, z ∈ C , ω ∈ Ω} into C (we set by convention z × 0 = 1 for all z ∈ C ). Now we consider the sequence

ρ 0 s = s, ρ k+1 s = ρ ρ k s , k ≥ 0
and extend our definition for all s ≤ t, z ∈ C by setting

ϕ s,t (z) = k≥0 1 {ρ k s ≤t<ρ k+1 s } ϕ ρ k s ,t • ϕ ρ k-1 s ,ρ k s • • • • • ϕ s,ρs (z). Then (s, t, z, ω) -→ ϕ s,t (z, ω) is measurable from {(s, t, z, ω), s ≤ t, z ∈ C , ω ∈ Ω} into C . By the same way, for t ∈ [s, ρ s ], set K m + ,m - s,t (1) 
= U + s,t δ exp(iW + s,t ) + (1 -U + s,t )δ exp(-iW + s,t )
and

K m + ,m - s,t (e il ) = U - s,t δ exp(i(l+W - s,t )) + (1 -U - s,t )δ exp(i(l-W - s,t )) . Then define K m + ,m - s,t (z) = δ ze iǫ(z)W s,t 1 {s≤t≤ρs∧τs(z)} + K m + ,m - s,t (1)1 {ze iǫ(z)W s,τs(z) =1} + K m + ,m - s,t (e il )1 {ze iǫ(z)W s,τs(z) =e il } 1 {τs(z)<t≤ρs} .
We extend this definition for all s ≤ t, z ∈ C by setting

K m + ,m - s,t (z) = k≥0 1 {ρ k s ≤t<ρ k+1 s } K m + ,m - s,ρs • • • K m + ,m - ρ k-1 s ,ρ k s K m + ,m - ρ k s ,t (z). 
Then (s, t, z, ω)

-→ K m + ,m - s,t (z, ω) is measurable from {(s, t, z, ω), s ≤ t, z ∈ C , ω ∈ Ω} into P(C ). For every choice s 1 < t 1 < • • • < s n < t n , ϕ s i ,t i is σ(ε + u,v , ε - u,v , W u,v , s i ≤ u ≤ v ≤ t i ) measurable and the σ-fields σ(ε + u,v , ε - u,v , W u,v , s i ≤ u ≤ v ≤ t i
) for 1 ≤ i ≤ n are independent by construction. This implies the independence of the family {ϕ s i ,t i , 1 ≤ i ≤ n} and a fortiori the family {K m + ,m - s i ,t i , 1 ≤ i ≤ n} is independent. It is also evident that the laws of ϕ s,t and K m + ,m - s,t only depend on ts.

6.2.4

The flow property for K m + ,m -and ϕ.

To prove the flow property for both ϕ and K m + ,m -, we start by the following Proposition 6.2. Let s ∈ R and S, T be two (F W s,r ) r≥s -stopping times such that s ≤ S ≤ T ≤ ρ S . Then a.s. for all u ∈ [T, ρ S ], z ∈ C , we have

ϕ S,u (z) = ϕ T,u • ϕ S,T (z) and K m + ,m - S,u (z) = K m + ,m - S,T K m + ,m - T,u (z).
Proof. First we prove the result for ϕ a.s. on the set of probability 1 (see Lemma 6.1 (ii)):

Ω = {ω ∈ Ω : ∀ (s 1 , t 1 ), (s 2 , t 2 ) ∈ D ± , m ± s 1 ,t 1 = m ± s 2 ,t 2 ⇒ ε ± s 1 ,t 1 = ε ± s 2 ,t 2 }
and simultaneously for all (u, z) in the following sets

E (i) = {(u, z) : u < τ S (z), T ≤ u ≤ ρ S }, E (ii) = {(u, z) : τ S (z) ≤ u, T ≤ u ≤ ρ S , T < τ S (z)}, E (iii) = {(u, z) : τ S (z) ≤ u, T ≤ u ≤ ρ S , T ≥ τ S (z), u < τ T (ϕ S,T (z))}, E (iv) = {(u, z) : τ S (z) ≤ u, T ≤ u ≤ ρ S , T ≥ τ S (z), u ≥ τ T (ϕ S,T (z))}.
All the equalities below hold a.s. on Ω simultaneously for all (u, z). For all z ∈ C , set Z = ϕ S,T (z).

(i) Let (z, u) ∈ E (i) , θ = arg(z). Then as T < τ S (z), we have θ / ∈ {0, l} and

τ T (Z) = inf{r ≥ T, Ze i(ǫ(Z)W T,r ) = 1 or e il } = inf{r ≥ T, e i(θ+ǫ(z)W S,T +ǫ(Z)W T,r ) = 1 or e il } = τ S (z) since ǫ(z) = ǫ(Z). Consequently ϕ S,u (z) = ϕ T,u • ϕ S,T (z). 
(ii) Let (z, u) ∈ E (ii) . Then, we still have τ T (Z) = τ S (z) and ϕ T,τ T (Z) (Z) = ϕ S,τ S (z) (z).

Recall that ϕ S,u (z) = ϕ S,u (1)1 {ϕ S,τ S (z) (z)=1} + ϕ S,u (e il )1 {ϕ S,τ S (z) (z)=e il } (iv) Let (z, u) ∈ E (iv) . Assume for example that ϕ S,τ S (z) (z) = 1 and first that ε + S,T = 1. Then

τ T (Z) = inf{r ≥ T : W r -m + S,T ∈ {0, l}}. If W τ T (Z) -m + S,T = l, then u = τ T (Z) = ρ S and ϕ S,u (z) = ϕ T,u (Z) = e il . If W τ T (Z) -m + S,T = 0, then ϕ T,τ T (Z) (Z) = 1 and ϕ T,u (Z) = ϕ T,u (1). Since ϕ S,τ S (z) (z) = 1, we have ϕ S,u (z) = ϕ S,u (1). Moreover W + T,τ T (Z) = W + S,τ T (Z) = 0 implies W + T,r = W + S,r for all r ≥ τ T (Z). Now, if u satisfies W + T,u = W + S,u = 0, then ϕ T,u (Z) = ϕ S,u (z) = 1.
If not, we have ε +

T,u = ε + S,u and ϕ T,u (Z) = ϕ S,u (z) exactly as in (ii). Assume that ε + S,T = -1, then τ T (Z) satisfies W τ T (Z)m + S,T = 0 (recall that τ T (Z) ≤ ρ S ) and ϕ T,u (Z) = ϕ S,u (z) as before.

The result for K m + ,m -can be proved by considering

Ω = {ω ∈ Ω : ∀ (s 1 , t 1 ), (s 2 , t 2 ) ∈ D ± , m ± s 1 ,t 1 = m ± s 2 ,t 2 ⇒ U ± s 1 ,t 1 = U ± s 2 ,t 2 }
and the sets E (i) , • • • , E (iv) by replacing ϕ S,T (z) by e iW + S,T in E (iii) and E (iv) . However, the proof remains similar.

Corollary 6.1. Let s ∈ R and s ≤ S ≤ T be two (F W s,r ) r≥s -stopping times. Then, with probability 1, for all u ≥ T, z ∈ C , we have

ϕ S,u (z) = ϕ T,u • ϕ S,T (z) and K m + ,m - S,u (z) = K m + ,m - S,T K m + ,m - T,u (z).
Proof. Fix k ∈ N and define the family of stopping times T 0 = (T ∨ρ k S )∧ρ k+1 S , T i = ρ T i-1 , i ≥ 1. Then T i is an (F W s,r ) r≥s -stopping time for all i ≥ 0. Furthermore as r -→ ρ r is increasing, we have ρ k+i S ≤ T i ≤ ρ k+i+1 S for all i ≥ 0. Applying successively Proposition 6.2, we have a.s. ∀z ∈ C , i ≥ 0,

ϕ S,u (z) = ϕ ρ k+i S ,u • ϕ T i-1 ,ρ k+i S • • • • • ϕ T 0 ,ρ k+1 S • ϕ ρ k S ,T 0 • ϕ S,ρ k S (z) for all u ∈ [ρ k+i S , T i ] and ϕ S,u (z) = ϕ T i ,u • ϕ ρ k+i S ,T i • • • • • ϕ T 0 ,ρ k+1 S • ϕ ρ k S ,T 0 • ϕ S,ρ k S (z) for all u ∈ [T i , ρ k+i+1 S ].
On {ρ k S ≤ T < ρ k+1 S }, we have T i = ρ i T for all i ≥ 0 whence a.s. on

{ρ k S ≤ T < ρ k+1 S }, ∀z ∈ C , ϕ S,u (z) = ϕ ρ k+i S ,u • ϕ ρ i-1 T ,ρ k+i S • • • • • ϕ T,ρ k+1 S • ϕ S,T (z) for all u ∈ [ρ k+i S , ρ i T ], i ≥ 0 and ϕ S,u (z) = ϕ ρ i T ,u • ϕ ρ k+i S ,ρ i T • • • • • ϕ T,ρ k+1 S • ϕ S,T (z) for all u ∈ [ρ i T , ρ k+i+1 S ], i ≥ 0. Now define S 1 = (T ∨ ρ k+1 S ) ∧ ρ 1 T and S i+1 = ρ S i , i ≥ 1. Then (S i ) i≥1 is a family of (F W s,r ) r≥s -stopping times satisfying ρ i T ≤ S i+1 ≤ ρ i+1
T for all i ≥ 0. Applying successively Proposition 6.2, we get a.s.

∀z ∈ C , ϕ T,u (ϕ S,T (z)) = ϕ ρ i T ,u • ϕ S i ,ρ i T • • • • • ϕ S 1 ,ρ 1 T • ϕ T,S 1 (ϕ S,T (z)) for all u ∈ [ρ i T , S i+1 ], i ≥ 0 and ϕ T,u (ϕ S,T (z)) = ϕ S i+1 ,u •ϕ ρ i T ,S i+1 •• • ••ϕ S 1 ,ρ 1 T •ϕ T,S 1 (ϕ S,T (z)) for all u ∈ [S i+1 , ρ i+1 T ], i ≥ 0.
On {ρ k S ≤ T < ρ k+1 S }, we have S i = ρ k+i S for all i ≥ 1 and consequently a.s. on

{ρ k S ≤ T < ρ k+1 S }, ∀z ∈ C , ϕ T,u (ϕ S,T (z)) = ϕ ρ i T ,u •ϕ ρ k+i S ,ρ i T •• • ••ϕ ρ k+1 S ,ρ 1 T •ϕ T,ρ k+1 S (ϕ S,T (z)) for all u ∈ [ρ i T , ρ k+i+1 S ], i ≥ 0, and 
ϕ T,u (ϕ S,T (z)) = ϕ ρ k+i+1 S ,u •ϕ ρ i T ,ρ k+i+1 S •• • ••ϕ ρ k+1 S ,ρ 1 T •ϕ T,ρ k+1 S (ϕ S,T (z)) for all u ∈ [ρ k+i+1 S , ρ i+1 T ], i ≥ 0.
We have shown that a.s. ∀z ∈ C ,

1 {ρ k S ≤T <ρ k+1 S } ϕ T,u • ϕ S,T (z) = 1 {ρ k S ≤T <ρ k+1 S } ϕ S,u (z) for all u ≥ T.
By summing over k, we get that a.s. ∀z ∈ C , u ≥ T , ϕ T,u • ϕ S,T (z) = ϕ S,u (z). The flow property for K m + ,m -holds by the same reasoning.

6.2.5 K m + ,m -can be obtained by filtering ϕ For all -∞ ≤ s ≤ t ≤ +∞, let

F U + ,U -,W s,t = σ(U + u,v , U - u,v , W u,v , s ≤ u ≤ v ≤ t) = σ(K + u,v , K - u,v , s ≤ u ≤ v ≤ t).
Then we have the following Corollary 6.2. For all z ∈ C , all s < t and all continuous function f ,

K m + ,m - s,t f (z) = E[f (ϕ s,t (z))|F U + ,U -,W s,t ] a.s.
Proof. Fix s ≤ t, z ∈ C . We have by (6.6) that a.s.

K m + ,m - s,t f (z)1 {s≤t≤ρs} = E[f (ϕ s,t (z))|F U + ,U -,W s,t ]1 {s≤t≤ρs} . A fortiori, if Z is a random variable independent of F U + ,U -,W s,t
, then a.s.

K m + ,m - s,t f (Z)1 {s≤t≤ρs} = E[f (ϕ s,t (Z))|F U + ,U -,W s,t ]1 {s≤t≤ρs} . (6.9) 
Let

t n i = s + (t-s)i n , n ≥ 1, i ∈ [0, n] and for i ∈ [1, n] define A n,i = {t n i ≤ ρ t n i-1 }, A n = ∩ n i=1 A n,i . Then A n,i ∈ F U + ,U -,W t n i-1 ,t n i
. Note that since K + and K -are two stochastic flows, we have

F U + ,U -,W s,t = n i=1 F U + ,U -,W t n i-1 ,t n i
. By Corollary 6.1, a.s.

K m + ,m - s,t (z) = K m + ,m - s,t n 1 • • • K m + ,m - t n n-1 ,t (z) 
and

ϕ s,t (z) = ϕ t n n-1 ,t • • • • • ϕ s,t n 1 (z).
Recall that the σ-fields F U + ,U -,W t n i-1 ,t n i for 1 ≤ i ≤ n are independent. Then, using (6.9), we get that a.s.

K m + ,m - s,t f (z)1 An = E[f (ϕ s,t (z))|F U + ,U -,W s,t
]1 An , and therefore a.s.

K m + ,m - s,t f (z) = E[f (ϕ s,t (z))|F U + ,U -,W s,t ]+ K m + ,m - s,t f (z)-E[f (ϕ s,t (z))|F U + ,U -,W s,t ] 1 A c n .
To finish the proof, it remains to prove that P(A c n ) → 0 as n → ∞. Write

P(A c n ) = n i=1 P(A c n,i ) = n i=1 P(t n i -t n i-1 > ρ t n i-1 -t n i-1 ) = nP( t -s n > ρ 0 ). Let ρ ± = inf{r ≥ 0 : W ± 0,r = l}. Then P(A c n ) ≤ n P t -s n > ρ + + P t -s n > ρ - = 2nP t -s n > ρ + . We have ρ + law = inf{r ≥ 0 : |W r | = l}. Let T l = inf{r ≥ 0 : W r = l}, then P(A c n ) ≤ 4nP t -s n > T l = 4n +∞ t-s n l √ 2πx 3 exp( -l 2 2x
)dx

(see [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 107). By the change of variable v = nx, the right hand side converges to 0 as n → ∞ which finishes the proof.

The L 2 continuity

To conclude that K m + ,m -and ϕ are two stochastic flows, it remains to prove the following Proposition 6.3. For all t ≥ 0, x ∈ C and f ∈ C(C ), we have

lim y→x E (f (ϕ 0,t (x)) -f (ϕ 0,t (y))) 2 = lim y→x E (K m + ,m - 0,t f (x) -K m + ,m - 0,t f (y)) 2 = 0.
Proof. By Jensen's inequality and the preceding corollary, it suffices to prove the result for ϕ and by the proof of Lemma 1.11 [START_REF] Le | Flows, coalescence and noise[END_REF] (see also Lemma 1 [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF]), this amounts to showing that lim y→x P(d(ϕ 0,t (x), ϕ 0,t (y)) > η) = 0 for all t > 0, η > 0 and x ∈ C . (6.10) Fix η > 0, t > 0 and for x ∈ C , θ ∈ [0, 2π[, set A x,θ = {d(ϕ 0,t (x), ϕ 0,t (e iθ )) > η}.

For simplicity, we will write τ (x) instead of τ 0 (x). For θ ∈]0, l[, we have P(A 1,θ ) ≤ P(t < τ (e iθ ))+P(A 1,θ ∩{ϕ 0,τ (e iθ ) (e iθ ) = 1, t ≥ τ (e iθ )})+P(ϕ 0,τ (e iθ ) (e iθ ) = e il ).

If t ≥ τ (e iθ ) and ϕ 0,τ (e iθ ) (e iθ ) = 1, then ϕ 0,t (e iθ ) := ϕ 0,t (1). Thus P(A 1,θ ∩ {ϕ 0,τ (e iθ ) (e iθ ) = 1, t ≥ τ (e iθ )}) = 0.

From lim θ→0+ τ (e iθ ) = 0 a.s. and P(ϕ 0,τ (e iθ ) (e iθ ) = e il ) = P(θ + W 0,τ (e iθ ) = l),

we get lim θ→0+ P(A 1,θ ) = 0 and similarly, we can prove that lim θ→(2π)-P(A 1,θ ) = 0.

Thus (6.10) holds for x = 1 and by the same way for x = e il .

Fix x = e iθ 0 ∈ C such that θ 0 ∈]l, 2π[. For all θ ∈]l, 2π[, we have

P(A x,θ ) ≤ z∈{1,e il } P(A x,θ ∩ {ϕ 0,τ (x) (x) = ϕ 0,τ (e iθ ) (e iθ ) = z}) + ǫ θ
where ǫ θ is given by

P(ϕ 0,τ (x) (x) = 1, ϕ 0,τ (e iθ ) (e iθ ) = e il ) + P(ϕ 0,τ (x) (x) = e il , ϕ 0,τ (e iθ ) (e iθ ) = 1)
and tends to 0 as θ → 0. Let prove for example that lim θ→θ 0 P(B θ ) = 0 where B θ = A x,θ ∩ {ϕ 0,τ (x) (x) = ϕ 0,τ (e iθ ) (e iθ ) = 1}.

For l < θ < θ 0 , write

P(B θ ) = P(B θ ∩ {t ≤ τ (x)}) + P(B θ ∩ {τ (x) < t < τ (e iθ )}) + P(B θ ∩ {t ≥ τ (e iθ )}).
It is easy to see that lim

θ→θ 0 - P(B θ ∩ {t ≤ τ (x)}) + P(B θ ∩ {τ (x) < t < τ (e iθ )}) = 0. Now P(B θ ∩ {t ≥ τ (e iθ )}) = P(B θ ∩ {τ (e iθ ) ≤ t ∧ ρ τ (x) }) + P(B θ ∩ {ρ τ (x) < τ (e iθ ) ≤ t}) ≤ P(B θ ∩ {τ (e iθ ) ≤ t ∧ ρ τ (x) }) + P(ρ τ (x) < τ (e iθ )).
Obviously lim θ→θ 0 P(ρ τ (x) < τ (e iθ )) = 0. Set Y = ϕ 0,τ (x) (e iθ ), then a.s. on B θ ∩ {τ (e iθ ) ≤ t ∧ ρ τ (x) }, we have, ϕ 0,t (e iθ ) = ϕ τ (x),t (Y ) by Corollary 6.1 and τ τ (x) (Y ) =

τ (e iθ ) ≤ ρ τ (x) . We recall that ϕ τ (x),s (Y ) := ϕ τ (x),s (1) for all s ∈ [τ τ (x) (Y ), ρ τ (x) ] and a fortiori ϕ τ (x),s (Y ) = ϕ τ (x),s (1) for all s ≥ τ τ (x) (Y ) (by the definition of ϕ). This shows that a.s. on B θ ∩ {τ (e iθ ) ≤ t ∧ ρ τ (x) }, we have d(ϕ 0,t (x), ϕ 0,t (e iθ )) = d(ϕ τ (x),t (1), ϕ τ (x),t (1)) = 0

Finally lim θ→θ 0 -P(B θ ) = 0 and by interchanging the roles of θ 0 and θ, we have lim θ→θ 0 + P(B θ ) = 0. Similarly lim θ→θ 0 P(A x,θ ∩ {ϕ 0,τ (x) (x) = ϕ 0,τ (e iθ ) (e iθ ) = e il }) = 0 so that (6.10) is satisfied for all x such that arg(x) ∈]l, 2π[ and a fortiori for all

x ∈ C .

6.2.7

The flows ϕ and K m + ,m -solve (T C )

In this paragraph we prove the following Proposition 6.4. Both ϕ and K m + ,m -solve (T C ).

Proof. First we check the result for ϕ. We begin by x = 1 and first show that (ϕ + S,S+t (0), t ≥ 0) is a Brownian motion. We will check the following two points:

(i) For all 0 < s < t, we have P(ε + S,S+t = ε + S,S+s |m + S,S+t = m + S,S+s ) = 1.

(ii) For all 0 < s < t, the conditional law of ε + S,S+t knowing (W S,S+u , u ≥ 0) and σ(ε + S,S+r , 0 ≤ r ≤ s) is 1 2 (δ 1 + δ -1 ) on the event {m + S,S+t < m + S,S+s }. (i) Pick 0 < s < t. Since (W S,S+u , u ≥ 0) is a Brownian motion, a.s. (S, S +s), (S, S + t) are in D + . Now (i) follows at once from Lemma 6.1 (ii). To prove (ii), recall that for all s < s ′ < t, the conditional law of ε + s,t knowing σ(ε + u,v , s ≤ u ≤ v ≤ s ′ ) ∨ σ(W ) is 1 2 (δ 1 + δ -1 ) on {m + s,t < m + s,s ′ }. Note also that a.s. for all (u, v) ∈ D + ,

ε + u,v = lim u ′ →u+,v ′ →v- ε + u ′ ,v ′ .
Let n ≥ 1 and 0 < r Recall that ϕ S,S+t (1) = e iϕ + S,S+t (0) for all t ∈ [0, ρ S -S], thus the first step holds for x = 1. The first step is similarly satisfied for x = e il and for all x ∈ C \ {1, e il } by distinguishing the cases t ≤ τ S (x) -S and t > τ S (x) -S.

Second step. Let S be an (F W 0,• )-stopping time, G t = σ(ϕ 0,u (x), x ∈ C , 0 ≤ u ≤ t), t ≥ 0. Then σ(ϕ S,(S+u)∧ρ S (x), x ∈ C , u ≥ 0) is independent of G S . Clearly σ(ϕ S,(S+u)∧ρ S (x), x ∈ C , u ≥ 0) ⊂ σ(ϕ + S,S+u (0), u ≥ 0) ∨ σ(ϕ - S,S+u (0), u ≥ 0). , ⌊qS⌋-1 q +u i (0))g i (ϕ - ⌊qS⌋+1 q

, ⌊qS⌋-1 q +u i (0))1 A .

For q large enough ( 2 q < u 1 ), we have

E n i=1 f i (ϕ + ⌊qS⌋+1 q , ⌊qS⌋-1 q +u i (0))g i (ϕ - ⌊qS⌋+1 q , ⌊qS⌋-1 q +u i (0))1 A = m≥0 E n i=1
f i (ϕ + m+1 q , m-1 q +u i (0))g i (ϕ - m+1 q , m-1 q +u i (0))1 A∩{ m q ≤S< m+1 q } with A ∩ { m q ≤ S < m+1 q } ∈ Gm+1 q ⊂ σ(ϕ + u,v (x), ϕ - u,v (x), x ∈ C , 0 ≤ u ≤ v ≤ m+1 q ). Now using the independence of increments and the stationarity of (ϕ + , ϕ -), the second step easily holds. Then a.s. z -→ H (f,t) (z) is measurable from C into R. Moreover H (f,t) is σ(ϕ ρ 1 ,(ρ 1 +u)∧ρ 2 , u ≥ 0) measurable and H (f,t) (z) = 0 a.s. for all z ∈ C by the first step. The second step yields H (f,t) (ϕ 0,ρ 1 (x)) = 0 a.s. and we may replace z by ϕ 0,ρ 1 (x) directly in the stochastic integral so that, using the flow property, we get f (ϕ 0,ρ 1 +t∧(ρ 2 -ρ 1 ) (x)) = f (ϕ 0,ρ 1 (x)) + This implies that ϕ solves (T C ). The fact that K m + ,m -solves (T C ) is similar to Proposition 4.1 (ii) in [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] using Corollary 6.2.

Coalescence (Proof of Proposition 6.1)

For r ≥ 0, we denote W ± 0,r simply by W ± r . For all a ∈ R, b ≥ 0 define T a = inf{r ≥ 0 : W r = a} and ρ ± b = inf{r ≥ 0 : W ± r = b}.

We will further need the following Lemma 6.3. For all a > 0, b > 0, c < 0, we have P(T a < ρ - b ∧ T c ) > 0.

Proof. Fix η ∈]0, b 2 ∧ (-c)[ and let k ≥ 1 such that kη ≥ a. Now define the sequence of stopping times (R i ) i≥0 such that R 0 = 0 and for i ≥ 0, This shows that on {ρ + a < ρ - a }, we have W - ρ + a = 0 and similarly on {ρ - a < ρ + a }, we have W + ρ - a = 0.

R i+1 = inf{r ≥ R i : |W r -W R i | = η}. Let A = ∩ k i=1 {W R i = W R i-

The case l = π

The case l = π is the easier one. Proof. The proof is obvious.

To prove Proposition 6.1, consider the sequence of stopping times given by σ 0 = 0 and for k ≥ 0, If m + = m -= δ1 2 , then K is a Wiener flow such that K s,t (1) = 1 2 (δ e iX s,t + δ e -iX s,t ) for all s ≤ t.

The case l = π

From the definition of K, K ρ k ,t (x) is carried by at most two points for all k ≥ 0, t ∈ [ρ k , ρ k+1 ], x ∈ C . It is therefore clear that a.s. ∀t ≥ 0, x ∈ C , Card supp K 0,t (x) < ∞.

We assume in this section that m + and m -are both distinct from 1 2 (δ 0 + δ 1 ) (for the other case, see Remark 6.1 below). Proof of Proposition 6.6 (i) The sequence (A i ) i≥1 is independent and therefore we only need to check that P(A n ) > 0 for all n ≥ 1. But this is immediate from Lemma 6.6 for n even. By replacing W with -W , it is also immediate for n odd.

(ii) We denote the properties (ii1) and (ii2) respectively by P 2k and P 2k+1 . Let prove all the (P i ) i≥0 by induction. First P 0 and P 1 are clearly satisfied since K 0,0 (1) = δ 1 and supp K 0,ρ 1 (1) = {e il , e -il } on C 1 . Suppose (P i ) 0≤i≤2k hold for k ≥ 0. On C 2k+1 , K ρ 2k ,• (e 2il ) cannot reach δ e il before ρ 2k+1 since

W ρ 2k ,• < W + ρ 2k ,• ≤ l on ]ρ 2k , ρ 2k+1 ].
Moreover, on C 2k+1 , sup

ρ 2k ≤u≤ρ 2k+1 (2π -l -W ρ 2k-1 ,ρ 2k -W ρ 2k ,u ) = 2π -(W ρ 2k-1 ,ρ 2k + W ρ 2k ,ρ 2k+1 ) < 2π.
Thus, on C 2k+1 , K ρ 2k ,• (P 2k 2k+1 ) cannot reach δ 1 before ρ 2k+1 and P 2k+1 easily holds. Similarly, on C 2k+2 , K ρ 2k+1 ,• (e -il ) cannot reach δ 1 before ρ 2k+2 since

W - ρ 2k+1 ,• > -W ρ 2k+1 ,• on ]ρ 2k+1 , ρ 2k+2 ].
Moreover, on C 2k+2 , we have W ρ 2k ,ρ 2k+1 +W ρ 2k+1 ,ρ 2k+2 < 0 and therefore K ρ 2k+1 ,• (P 2k+1

2

)
cannot reach e il before ρ 2k+2 so that P 2k+2 holds.

Remark 6.1. When m + = m -, m -= 1 2 (δ 0 + δ 1 ), by considering

E 2i+1 = A 2i+1 , i ≥ 0, E 2i = A 2i ∩ {K ρ 2i-1 ,ρ 2i (e il ) = δ 1 }, i ≥ 1,
and then F n = ∩ 1≤i≤n E i , we similarly show that supp(K 0,t (1)) may be sufficiently large with positive probability.

Unicity of flows associated to (T C )

Let K be a solution of (T C ). Fix s ∈ R, x ∈ C , then (K s,t (x)) t≥s can be modified such that, a.s. the mapping t -→ K s,t (x) is continuous from [s, +∞[ into P(C ). We will always consider this modification for (K s,t (x)) t≥s . Moreover we will assume that all the σ-fields which will be considered contain all P negligible sets. Lemma 6.7. Let (K, W ) be a solution of (T C ). Then (i) ∀x ∈ C , s ∈ R denote τ s (x) = inf{r ≥ s, xe iǫ(x)Ws,r = 1 or e il }. Then a.s.

K s,t (x) = δ xe iǫ(x)W s,t , if s ≤ t ≤ τ s (x).

(ii) σ(W ) ⊂ σ(K).

Proof. (i) We follow Lemma 3.1 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]. By applying f 2 in (T C ), we also have for t < τx , K 0,t f 2 (x) = f 2 (x) + 2 t 0 C arg(y)K 0,u (x, dy)dW u + t.

Using (6.12), we obtain that for t < τx , C (arg(y)arg(x) -W t ) 2 K 0,t (x, dy) = 0.

By continuity a.s.

K 0,t (x) = δ xe iǫ(x)W t for all t ∈ [0, τx ].

The fact that τ 0 (x) = τx easily follows.

(ii) Let (f n ) n≥1 be a sequence in C 2 (C ) such that f ′ n (z) → ǫ(z) as n → ∞ for all z ∈ C \ {1, e il }. Applying f n in (T C ), we get t 0 K 0,u (ǫf ′ n )(1)dW u = K 0,t f n (1)f n (1) - Now we easily verify that h p,n , h ′ p,n , h ′′ p,n are uniformly bounded with respect to n and 0 ≤ p ≤ n -1. As a result C 2 (n) tends to 0 as n → ∞. This establishes Lemma 6.8.

Assume that (K, W ) is a Wiener solution of (T C ) and for t ≥ 0, f ∈ C ∞ (C ), x ∈ C , let K 0,t f (x) = P t f (x) + ∞ n=1 J n t f (x) be the decomposition in Wiener chaos of K 0,t f (x) in L 2 sense (recall that K 0,t f (x) ∈ L 2 (F W 0,• ∞ ) ). By iterating the identity of Lemma 6.8, we see that for all n ≥ 1, J n t f (x) is given by (6.13).

This shows that K 0,t (1) is supported on {δ e iW + t , δ e -iW + t } and so X 1 t = e iW + t or e -iW + t for all 0 ≤ t ≤ ρ. Moreover, if y / ∈ {1, e il }, then X y t = ye iε(y)Wt for all 0 ≤ t ≤ τ (y)(:= τ 0 (y)) by Lemma 6.7 (i).

Fix t > 0, ε > 0 and let A = {T 1,y > t} ∩ {d(X 1 t , Y y t ) > ε} where y is close to 1 and y = 1. Write P(A) = P(A ∩ {t ≤ τ (y)}) + P(A ∩ {t > τ (y)}).

Since τ (y) tends to 0 as y tends to 1, we have lim y→1 P(A∩{t ≤ τ (y)}) = 0. Moreover P(A ∩ {t > τ (y)}) ≤ P(B) + P(X y τ (y) = e il ).

where B = A ∩ {t > τ (y), X y τ (y) = 1}. Obviously P(B) ≤ P(B ∩ {τ (y) < ρ}) + P(τ (y) ≥ ρ)

with lim y→1 P(τ (y) ≥ ρ) = 0. On B ∩ {τ (y) < ρ}, we have X 1 τ (y) = X y τ (y) = 1 and a fortiori T 1,y ≤ τ (y). As a result P(B ∩ {τ (y) < ρ}) ≤ P(t < T 1,y ≤ τ (y)).

Since the right-hand side converges to 0 as y → 1, (C) is satisfied for x = 1 and by analogy for x = e il . Let x / ∈ {1, e il } and y be close to x, then X x and X y move parallely until one of the two processes reach 1 or e il say at time T . Since P 2 is Feller, the strong Markov property at time T and the established result for

x ∈ {1, e il } allows to deduce (C) for x.

Consequence: Let ν (respectively ν c ) be the Feller convolution semigroup associated with (P n ) n≥1 (respectively (P n,c ) n≥1 ). By Theorem 3.4, there exists a joint realization (K 1 , K 2 ) where K 1 and K 2 are two stochastic flows of kernels satisfying

K 1 law = δ ϕ c , K 2 law
= K and such that:

(i) Ks,t (x, y) = K where G(µ) = E p j=1 g j (µK 0,t j ) and µK is the probability measure µK(•) = C µ(dx)K(x, •) for all kernel K and µ ∈ P(C ). Suppose for the moment that G is continuous on P(C ), then E p j=1 g j (K 0,T +t j (x))g(K 0,T (x))1 A = E G(K 0,T (x))g(K 0,T (x))1 A .

By an approximation argument, E p j=1 g j (K 0,T +t j (x))1 {K 0,T (x)=δy} 1 A = E[G(δ y )1 {K 0,T (x)=δy } 1 A ] which proves the lemma. To check the continuity of G, suppose for simplicity that p = 1. Let µ, µ k ∈ P(C ) such that lim k→∞ d(µ k , µ) = 0 where d is the distance of weak convergence defined by (6.3). As g 1 is Lipschitz, it sufficies to prove lim k→∞ E [d(µ k K 0,t , µK 0,t )] = 0 (t := t 1 ). (6.17)

Recall the definition P n t = E[K ⊗n 0,t ] and let f ∈ C(C ). Then E K 0,t f (x)µ k (dx) -K 0,t f (x)µ(dx) 2 = P 2 t (f ⊗ f )(x, y)µ k (dx)µ k (dy) -2 P 2 t (f ⊗ f )(x, y)µ k (dx)µ(dy) + P 2 t (f ⊗ f )(x, y)µ(dx)µ(dy).

As P 2 is Feller, it is easy to deduce (6.17).

Recall the definitions of C + and C -from (6.11) and set for all s ≤ t, U + s,t = K s,t (1, C + ), U - s,t = K s,t (e il , C -).

For s = 0, we denote U + 0,t , U - 0,t simply by U + t , U - t . Let ρ + = inf{r ≥ 0 : W + r = l}, L = sup{r ∈ [0, ρ + ] : W + r = 0}.

Thanks to (6.16), on the event {0 ≤ t ≤ ρ + }, a.s.

E[δ ϕ c 0,t (1) |σ(W )] = 1 2 (e iW + t + e -iW + t ).

such that 2 -n < l, define inductively T + 0,n = 0 and for k ≥ 1:

S + k,n = inf{t ≥ T + k-1,n : W + t = 2 -n }, T + k,n = inf{t ≥ S + k,n : W + t = 0}. Set V + k,n = U + S + k,n
. Then, we have the following Lemma 6.13. For all q ≥ 1, conditionally to {S + q,n ≤ ρ + }, V + 1,n , • • • , V + q,n , W are independent and V + 1,n , • • • , V + q,n have the same law (which depends on n but no longer depends on q). Proof. We prove the result by induction on q. For q = 1, this has been justified. Suppose the result holds for q -1 and let (f j ) be an approximation of ǫ as in the proof of Lemma 6.7 (ii). For a fixed t ≥ 0, W T + q-1,n ,t+T + q-1,n = lim j→∞ K 0,t+T + q-1,n f j (1) -K 0,T + q-1,n f j (1) -1 2 t 0 K 0,u+T + q-1,n f ′′ j (1)du in L 2 (P).

On {S + q,n ≤ ρ + }, we have K 0,T + q-1,n (1) = δ 1 and therefore, W T + q-1,n ,t+T + q-1,n = lim j→∞ K 0,t+T + q-1,n f j (1)f j (1) -1 2 t 0 K 0,u+T + q-1,n f ′′ j (1)du (6.18) in L 2 (P(.|S + q,n ≤ ρ + )). As 2 -n < l, {S + q,n ≤ ρ + } = {T + q-1,n ≤ ρ + } a.s. Choose a family {g 1 , • • • , g q , g, h} of bounded continuous functions on R. Using (6.18), an application of Lemma 6.10 at time T + q-1,n shows that

E (S + q,n ≤ρ + ) q i=1 g i (U + S + i,n
)g(W t∧T + q-1,n )h(W T + q-1,n ,t+T + q-1,n ) = E (S + q,n ≤ρ + ) q-1 i=1

g i (U + S + i,n )g(W t∧T + q-1,n ) E[h(W t )]E[g q (U + S + 1,n )].
Since {S + q-1,n ≤ ρ + } ⊂ {S + q,n ≤ ρ + }, we have by the induction hypothesis

E (S + q,n ≤ρ + ) q-1 i=1 g i (U + S + i,n
)g(W t∧T + q-1,n ) = E (S + q-1,n ≤ρ + ) q-1 i=1

g i (U + S + i,n
) E (S + q,n ≤ρ + ) [g(W t∧T + q-1,n )].

In conclusion 182

E (S + q,n ≤ρ + ) q i=1 g i (U + S + i,n
)g(W t∧T + q-1,n )h(W T + q-1,n ,t+T + q-1,n ) = E (S + q-1,n ≤ρ + ) q-1 i=1

g i (U + S + i,n
) E (S + q,n ≤ρ + ) g(W t∧T + q-1,n )h(W T + q-1,n ,t+T

+ q-1,n ) E[g q (U + S + 1,n )].
The last identity remains satisfied if we replace g(W t∧T + q-1,n )h(W T + q-1,n ,t+T + q-1,n ) by a finite product k i=1 g i (W t i ∧T + q-1,n )h i (W T + q-1,n ,t i +T + q-1,n ). As a result, for all bounded continuous g :

C(R + , R) → R, E (S + q,n ≤ρ + ) q i=1 g i (U + S + i,n )g(W ) = E (S + q-1,n ≤ρ + ) q-1 i=1 g i (U + S + i,n ) E (S + q,n ≤ρ + ) [g(W )]E[g q (U + S + 1,n )].
Iterating this relation, we get

E (S + q,n ≤ρ + ) q i=1 g i (U + S + i,n )g(W ) = q i=1 E[g i (U + S + 1,n
)]E (S + q,n ≤ρ + ) [g(W )].

In particular, for all i ∈ [1, q], E (S + q,n ≤ρ + ) [g i (U +

S + i,n )] = E[g i (U + S + 1,n )].
This completes the proof.

Let m + n be the law of U + 1,n and m + be the law of U + 1 under P(.|ρ + > 1). Then, we have the Lemma 6.14. The sequence (m + n ) n≥1 converges weakly towards m + . For all t > 0, under P(•|ρ + > t), U + t and W are independent and the law of U + t is given by m + .

Proof. For each bounded continuous function f : R -→ R, 

E[f (U + t )|W ]1 {0<t<ρ + } = lim n→ ∞ k E 1 {t∈[S + k,n ,T + k,n [} f (V + k,n )|W 1 {0<t<ρ + } = lim

Soient

  Figure 1.1: Graphe G
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 100 où d est la distance du plus court chemin sur G permet toujours de définir une modification continue du processus Z. Ceci donne un sens à la convergence énoncée dans la Proposition 1.2 et permet d'en déduire le cas général à partir du théorème de Donsker connu pour le brownien biaisé. Soit Z un W (α 1 , • • • , α N ) processus sur G et associons à Z le mouvement brownien B t = |Z t | -Lt (|Z|) -|z| où Lt (|Z|) = lim ε→0 + {|Zu|≤ε} du. Barlow, Pitman et Yor montrent que toute (F Z t ) martingale locale est de la forme M t = t s dB s pour un certain processus H, (F Z t ) prévisible. Le mouvement brownien B sera d'un intérêt particulier dans ce manuscrit grâce à la formule d'Itô suivante dûe à Freidlin-Sheu [17]. Avant d'énoncer cette formule, nous introduisons les notations suivantes: soit G * = G \ {0} et désignons par C 2 b (G * ) l'espace des applications f : G -→ R telles que (i) f est continue sur G.

( 1 2ε t 0 1

 10 ii) B t = |Z t | -Lt (|Z|) -|z| est un mouvement brownien où Lt (|Z|) = lim ε→0 + {|Zu|≤ε} du. (iii) ∀f ∈ C 2 b (G * ):

( b )= K m . 1 . 3 Fixons N ≥ 1 , α 1 ,α i = 1 .

 b13111 Pour tout flot de noyaux K solution de (1.5) il existe une unique mesure m de moyenne 1 2 telle que K loi Flots stochastiques reliés au mouvement brown-• • • , α N > 0 tels que N i=1 Considérons le graphe G de la figure 1.1 et associons à chaque demi-droite D i un signe ε i ∈ {-1, 1}. Puis, définissons ε(x) = ε i si x ∈ D i , x = 0 (= ε N si x = 0).

Figure 1 . 2 :

 12 Figure 1.2: Graphe G.

1

 1 |X s,x u |≤ε du (Temps local symétrique).

Figure 1 . 4 :

 14 Figure 1.4: Équation du mouvement brownien biaisé.

. 7 )

 7 Le processus Y détermine si ϕ 0,• appartient à G + où G -sans indiquer la branche exacte sur laquelle se trouve ϕ 0,• . Vu que ϕ 0,• est un W (α 1 , • • • , α N ) processus, la seule construction possible de ϕ 0,• à partir de Y consiste à associer indépendamment à chaque excursion positive (resp. négative) de Y une v.a. de loi p i=1 α i α + δ e i (resp. N j=p+1 α j α -δ e j ). Pour construire tout un flot d'applications (ϕ s,t (x)) solution de (E), nous partons alors d'un flot associé à l' ÉDS (1.6) avec α = α + . Une version récemment étudiée par Burdzy-Kaspi [3] permet d'achever la construction. À partir de ϕ, on peut définir une solution Wiener de (E) en posant

1. 4

 4 Approche discrète à quelques flots de l'équation de Tanaka-Walsh 1.4.1 Résultats Dans le chapitre 5, nous considérons l'équation (E) dans le cas ε = 1. Notre nouvelle équation est alors la suivante: Définition 1.2. ( Équation (T )).

  W s,r = 0}. Cependant, l'expression de l'unique flot d'applications solution de (T ) est plus compliquée. Nous nous proposons ici de construire ce flot en partant d'un jeu de pile ou face. Soient G N = {x ∈ G; |x| ∈ N} et P(G) (resp. P(G N )) l'espace des probabilités sur G (resp. G N ). D'abord, nous introduisons les flots discrets comme suit Définition 1.3.

( 1 )

 1 Ψ (resp. K) est un flot discret d'applications (resp. noyaux) sur G N .

Théorème 1 . 6 .

 16 ([44] page 109) Soit S = (S n ) n≥0 une marche aléatoire simple sur Z. Alors, il existe une marche aléatoire simple sur Z, S = (S n ) n≥0 telle que:

  Avec les notations de la dernière proposition, soit ( η.Y ) la chaine de Markov définie par ( η.Y ) n = η i Y n sur la i-ième excursion de Y et ( η.Y ) n = 0 si Y n = 0. Nous montrons après que pour tout p ∈ Z, Ψ p,p+• (0) loi = ( η.Y ). En utilisant la dernière proposition et le théorème de Donsker pour le mouvement brownien de Walsh, on parvient à prouver que (Ψ (n) s,• ) s∈D converge en loi vers un processus (ψ s,• ) s∈D le long d'une sous suite (voir le Corollaire 1.1 pour la définition de Ψ (n) s,• ). Le processus limite est indépendant de la sous suite choisie et se prolonge naturellement en un flot ψ solution de (T ). Quitte à changer l'espace de probabilité, on peut supposer que (Ψ (n) s,• ) n∈N,s∈R et ψ sont définis sur le même espace initial et que la convergence précédente est presque sûre. Alors, dans ce cas (1.8) est vérifiée. Les convergences des flots de noyaux sont plus simples et se déduisent immédiatement.

0 1 Figure 1 . 5 :

 115 Figure 1.5: Le cerle C .

Figure 1 . 6 :Théorème 1 . 7 .

 1617 Figure 1.6: Équation de Tanaka sur C .
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 31 Figure 3.1: The coalescent semigroup.
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 1 |X s,x u |≤ε du (The symmetric local time).
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 41 Figure 4.1: Graph G.
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 42 Figure 4.2: Tanaka's SDE.

( 4 )Figure 4 . 3 :

 443 Figure 4.3: SBM equation.

Figure 4 . 4 :

 44 Figure 4.4: Graph G.

  Unicity will be justified by means of the Wiener chaos decomposition (Proposition 4.5). Besides the Wiener flow, there are also other weak solutions associated to (E) which are fully described by the following Theorem 4.2. (1) Define

  x)) a.s. ([START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF] page 161). Now, using the regularity of the flow, the result extends clearly as desired.

  by abuse of notations τ s,x = τ s,ε(x)|x| , g s,• (x) = g s,• (ε(x)|x|) and d s,t (x) = inf{r ≥ t : Z s,r (x) = 0}.

Remarks 4 . 3 .

 43 (i) Define Ks,t (x, y) = K m + ,m - s,t (x)⊗δ ϕs,t (y). Then K is a stochastic flow of kernels on G 2 .

Lemma 4 . 7 .

 47 (P n,c ) n≥1 is a compatible family of Feller semigroups associated with a coalescing flow of mappings ϕ c .

3. 3 )

 3 . Let µ, µ k ∈ P(G) such that µ = lim k→∞ µ k weakly. Recall the definition of the distance d on P(G) from Section 3.2.3. As g 1 is Lipschitz, it sufficies to prove lim k→∞ E [d(µ k K 0,t , µK 0,t )] = 0 (t := t 1 ). (4.25)

  y , y ∈ G}. This completes the proof.

Proposition 4 . 7 .

 47 Let (K m + ,m -, W ′ ) be the solution constructed in Section 4.2.2 associated with (m + , m -). Then K law = K m + ,m -.

Remark 4 . 3 .

 43 When K is a stochastic flow of mappings, then by definition
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 451 Figure 5.1: S and S.

3 Figure 5 . 2 :

 352 Figure 5.2: |S| and Y .

  Proof. Fix S ∈ T -1 {S}. Then, by Corollary 5.2, we have |Y n -|S n || ≤ 2 ∀n ∈ N. Consider a sequence ( β i ) i≥1 of i.i.d. random variables distributed according to N i=1 α i δ e i which is independent of (S, η). Denote by (τ l ) l≥1 the sequence of random times constructed in the proof of Theorem 5.3 from S. It is sufficient to look to what happens at each interval [τ l , τ l+1 ] (with the convention τ 0 = 0).

Figure 5 . 3 :

 53 Figure 5.3: The case (ii2).

  Obviously, S and ζ k are independent and ζ k law = N i=1

Remark 5 . 1 . 2 . ( 5 . 6 )

 51256 With the notations of Proposition 5.1, let ( η.Y ) be the Markov chain defined by ( η.Y ) n = η i Y n on the ith excursion of Y and ( η.Y ) n = 0 if Y n = 0. Then the stochastic Matrix of ( η.Y ) is given byM(0, e i ) = α i 2 , M(n e i , (n ± 1) e i ) = 1 2 ∀i ∈ [1, N], n ∈ N * , M(0, 0) = 1As a consequence of Proposition 5.1, ( η.Y ) rescales as Walsh Brownian motion.

5. 3 . 1

 31 Scaling limits of (Ψ, K) Set η p,n = e(Ψ p,n ) for all p ≤ n where Ψ p,n = Ψ p,n (0). Proposition 5.2. (i) For all p ≤ n, |Ψ p,n | = S + p,n .

Ψ

  p,n (x) = (x + e(x)S p,n )1 {n≤ Tp,x} + Ψ p,n 1 {n>Tp,x} ; K p,n (x) = E[δ Ψp,n(x) |σ(S)] = δ x+ e(x)Sp,n 1 {n≤Tp,x} + N i=1 α i δ S + p,n e i 1 {n>Tp,x} .

(

  iii) By (i), we have Ψ p,n = Ψ p,n (x) = 0 if n = T p,x and so Ψ p,• (x) is given by Ψ p,• after T p,x using the cocyle property. The last claim is easy to establish. For all s ∈ R, let d s (resp. d ∞ ) be the distance of uniform convergence on every compact subset of C([s, +∞[, G) (resp. C(R, R)). Denote by D = {s n , n ∈ N} the set of all dyadic numbers of R and define

  s. where B t = |ϕ 0,t | -Lt (|ϕ 0,• |) and Lt (|ϕ 0,• |) is the symmetric local time at 0 of |ϕ 0,• |.

  be the space of all functions f defined on C having first and second continuous derivatives f ′ and f ′′ . Let P(C ) be the space of probability measures on C and (f n ) n∈N be a sequence of functions dense in {f ∈ C(C ), ||f || ∞ ≤ 1}. We equip P(C ) with the distance

First step. 2 t 0 f

 20 Let S be an (F W 0,• )-stopping time. Then for allx ∈ C , f ∈ C 2 (C ), a.s. ∀t ∈ [0, ρ S -S], f (ϕ S,S+t (x)) = f (x) + t 0 (f ′ ǫ)(ϕ S,S+u (x))dW S,S+u +1 ′′ (ϕ S,S+u (x))du.

1 < 2 t 0 f

 120 • • • < r n ≤ s. Take a family {f, g 1 , • • • , g n } of bounded continuous functions from R into R and a bounded continuous function h : C(R + , R) -→ R. Note that a.s. (S, S + t), (S, S + r i ), 1 ≤ i ≤ n are in D + and consequentlyE f (ε + S,S+t ) n i=1 g i (ε + S,S+r i )h(W S,S+• )1 {m + S,S+t <m + S,S+s } W S,S+• )1 {m + S,S+t <m + S,S+s } .Using our previous remark, (ii) can easily be completed. Now (i) and (ii) entail that (ϕ + S,S+t (0), t ≥ 0) is a Brownian motion (see Remark 4.4[START_REF] Le | Flows associated to Tanaka's SDE[END_REF]). By Itô's formula, we have for all f ∈ C 2 (C ) a.s. ∀t ≥ 0,f (exp(iϕ + S,S+t (0))) = f (1)+ t 0 f ′ (exp(iϕ + S,S+u (0)))dϕ + S,S+u (0)+ 1 ′′ (exp(iϕ + S,S+u (0)))du.Tanaka's formula for local time yields a.s. ∀t ∈ [0, ρ S -S],|ϕ + S,S+t (0)| = t 0 sgn(ϕ + S,S+u (0))dϕ + S,S+u (0) + L t = W + S,S+twhere L t is the local time in 0 of ϕ + S,S+• (0) and the last equality is satisfied by the definition of ϕ + . Hence a.s. ∀t ∈ [0, ρ S -S,S+u (0))dW S,S+u .

Fix 0 < u 1 <

 1 • • • < u n , then a.s. (S, S + u 1 ), • • • , (S, S + u n ) are in D + ∩ D -. Take a family {f 1 , g 1 , • • • , f n , g n } of bounded continuous functions from R into R and let A ∈ G S . Then E n i=1 f i (ϕ + S,S+u i (0))g i (ϕ - S,S+u i (0))1 A

2 t∧(ρ 2 -ρ 1 ) 0 f

 220 Third step. ϕ solves (T C ).Denote ρk 0 simply by ρ k . For all k ∈ N, a.s. u -→ ϕ ρ k ,u (x) is continuous on [ρ k , ρ k+1 ] for all x ∈ C . Consequently for all x ∈ C , a.s. u -→ ϕ 0,u (x) is continuous on [0, +∞[ and in particular, ϕ 0,ρ k (x) is G ρ k measurable. Now fix f ∈ C 2 (C ), t ≥ 0, x ∈ C and define for z ∈ C , H (f,t) (z) = f (ϕ ρ 1 ,ρ 1 +t∧(ρ 2 -ρ 1 ) (z))f (z) -t∧(ρ 2 -ρ 1 ) 0 (f ′ ǫ)(ϕ ρ 1 ,ρ 1 +u (z))dW ρ 1 ,ρ 1 +u -1 ′′ (ϕ ρ 1 ,ρ 1 +u (z))du.

t∧(ρ 2 -ρ 1 ) 0 ( 2 t∧(ρ 2 -ρ 1 ) 0 f 2 ρ 1 +t∧(ρ 2 -ρ 1 ) 0 f 2 ρ

 2022021202 f ′ ǫ)(ϕ 0,ρ 1 +u (x))dW ρ 1 ,ρ 1 +u + 1 ′′ (ϕ 0,ρ 1 +u (x))du = f (x) + ρ 1 +t∧(ρ 2 -ρ 1 ) 0 (f ′ ǫ)(ϕ 0,u (x))dW u + 1 ′′ (ϕ 0,u (x))du.By induction, we have a.s. ∀k ∈ N,f (ϕ 0,ρ k +t∧(ρ k+1 -ρ k ) (x)) = f (x) + ρ k +t∧(ρ k+1 -ρ k ) 0 (f ′ ǫ)(ϕ 0,u (x))dW u + 1 k +t∧(ρ k+1 -ρ k ) 0f ′′ (ϕ 0,u (x))du.

1 +

 1 η}. Then on A, sup r≤R k W r = kη ≥ a and for alli ∈ [0, k -1], u ∈ [R i , R i+1 ], W - u = sup r≤u W r -W u = sup R i ≤s≤u (W s -W u ) ≤ 2η < b. Moreover inf 0≤r≤R k W r > -η ≥ c. Since A ⊂ {T a < ρ - b ∧ T c } and P(A) = 1 2 k , this proves the lemma. Let a > 0. Since {T a < ρ - a ∧ T -a } ⊂ {T a < ρ - a }, we deduce that P(T a < ρ - a ) > 0. Obviously ρ + a ≤ T a . Since W law = -W , we have P(ρ + a < ρ - a ) = P(ρ - a < ρ + a ) = 1 2 . Remark also that ρ + a ∧ ρ - a = inf{r ≥ 0 : W + r + W - r = a}.

Lemma 6 . 4 .

 64 With probability 1, for all x ∈ C , we haveϕ 0,ρ + π (x) = -1, K m + ,m - 0,ρ + π (x) = δ -1 and ϕ 0,ρ - π (x) = 1, K m + ,m - 0,ρ - π (x) = δ 1 .

σ 1

 1 2k+1 = inf{u ≥ σ 2k : W + σ 2k ,u = π}, σ 2k+2 = inf{u ≥ σ 2k+1 : W - σ 2k+1 ,u = π}.Then (σ 2k+1 ) k≥0 (resp. (σ 2k ) k≥0 ) satisfies (1) (resp. (2)) of Proposition 6{|Xs,u-x|≤ε} du, x = 0, π.

Fix a decreasing

  positive sequence (α k ) k≥1 such that α 1 < inf(l, 2(π -l)). Now defineA 1 = { W + 0,ρ 1 = l} and for k ≥ 1, A 2k = {W - ρ 2k-1 ,ρ 2k = l, α 2k < sup ρ 2k-1 ≤u≤ρ 2k W ρ 2k-1 ,u < α 2k-1 } = {W - ρ 2k-1 , ρ 2k = l, -l + α 2k < W ρ 2k-1 ,ρ 2k < -l + α 2k-1 }, A 2k+1 = {W + ρ 2k ,ρ 2k+1 = l, -α 2k < inf ρ 2k ≤u≤ρ 2k+1 W ρ 2k ,u < -α 2k+1 } = {W + ρ 2k ,ρ 2k+1 = l, lα 2k < W ρ 2k ,ρ 2k+1 < lα 2k+1 }.We are going to prove the following Proposition 6.6.Let C n = ∩ n i=1 A i . Then for all n ≥ 1, (i) P(C n ) > 0, (ii) Card supp (K 0,ρ n (1)) = n + 1 a.s. on C n .Moreover a.s. for all k ≥ 0, (ii1) On C 2k , supp K 0,ρ 2k (1) = {P 2k i , 1 ≤ i ≤ 2k + 1},

  Fix x ∈ C and suppose for example that arg(x) ∈]0, l[. DefineC + = {z ∈ C : arg(z) ∈]0, l[}, C -= C \ C + (6.11) and τx = inf t ≥ 0 : K 0,t (x, C -) > 0 . Let f ∈ C 2 (C ) such that f (z) = arg(z) if z ∈ C + . By applying f in (T C ), we have for t < τx , K 0,t f (x) = f (x) + W tand a fortiori, for t < τx , C arg(y)K 0,t (x, dy) = arg(x) + W t . (6.12)

= 1

 1 {0<t<ρ + } lim n→ ∞ f dm + n + ε n (t) {(m + O , m - O ), O ∈ V } where V is the vertex set of the graph. (2) Study supp(K m + ,m - 0,•(1)) constructed in the last chapter.

  d) ϕ s,t est un homéomorphisme de R d dans R d pour tout s ≤ t. ϕ s,t est appelé flot déterministe d'homéomorphismes sur R d . À l'origine, un flot stochastique d'homéomorphismes sur un espace de probabilité (Ω, A, P) est la donnée d'une famille (ϕ s,t (x, ω)) ω∈Ω d'homéomorphismes déterministes à acroissements indépendants: pour tout t 1 < t 2 < • • • < t n , la famille {ϕ t i ,t i+1 , 1 ≤ i ≤ n -1} est

	indépendante. Une classe importante des flots stochastiques d'homéomorphismes est
	construite en résolvant l' ÉDS		
	r		
	dx(t) =	F k (x, t)dB k t + F 0 (x, t)dt	(1.3)
	k=1		

1.2.1 Flots stochastiques Considérons une équation différentielle ordinaire sur R d dx dt = f (x, t). (1.2) où f (x, t) est continue en (x, t) et est lipschitzienne en x. Notons ϕ s,t (x) la solution de (1.2) vérifiant la condition initiale x(s) = x. Il est bien connu que ϕ s,t (x) satisfait les propriétés suivantes:

(a) ϕ s,t (x) est continue en (s, t, x).

(b) ϕ s,u (x) = ϕ t,u • ϕ s,t (x) pour tout s ≤ t ≤ u, x ∈ R d .

(c) ϕ s,s = Id pour tout s.

(où F 0 (x, t), F 1 (x, t), • • • , F r (x, t) sont continues en (x, t) et Lipschitziennes en x et (B 1 , • • • , B r

  dit que S = (S n ) n∈Z est une marche aléatoire simple sur Z lorsque (S n ) n∈N et

(S -n ) n∈N sont deux marches aléatoires indépendantes sur Z. Soient S une marche aléatoire simple sur Z et ( η i ) i∈Z une suite i.i.d. de v.a. de loi N i=1 α i δ e i qui est indépendante aussi de S. Soient S p,n = S n -S p , S + p,n = S nmin h∈[p,n]

  Proposition 1.6. (1) Il existe une suite croissante (T k ) k≥1 de (F W 0,t ) t≥0 -temps d'arrêts avec lim k→∞ T k = +∞ p.s. et telle que p.s. ϕ 0,T k

3) et désignons par Ks,t (1) la mesure image de K s,t (0) par l'application x → e ix . Alors Ks,• (1) vérifie (T C ) sur un petit intervalle de temps. Si K est une solution de (1.5) en remplaçant W par -W et Ks,t (e il ) est la mesure image de K s,t (0) par l'application x → e ix , alors Ks,• (e il ) vérifie (T C ) sur un petit intervalle de temps aussi. Ajoutons que toute solution K de (T C ) vérifie

K s,t (x) = δ xe iǫ(x)W s,t , si s ≤ t ≤ τ s (x)

où τ s (x) = inf{r ≥ s, xe iǫ(x)Ws,r = 1 ou e il }. Il s'agit maintenant de composer soigneusement ces noyaux pour construire une solution. Pour prouver la partie 2 du Théorème 1.7, nous montrons l'unicité des solutions sur des petits intervalles de temps ce qui est suffisant d'après la propriété du flot.

1.5.2 Coalescence

Si K est une solution de (T C ), alors d'après le Théorème 1.7, K loi = K m + ,m -pour un certain couple de mesures (m + , m -). Nous allons construire (ϕ, K m + ,m -) sur le même espace de probabilité tel que la proposition suivante est vérifiée:
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2.2.1

  Definition 2.3. [4] (P t ) t≥0 is a Feller semigroup on C 0 (G). A strong Markov process Z with state space G and semigroup P t , and such that Z is càdlàg is by definition

  t and the law of U s,t is m. Set for all s < t, min s,t = inf{W u : u ∈ [s, t]}. Then (iii) For all s < t and {(s i , t i ); 1 ≤ i ≤ n} with s i < t i , the law of (ε s,t , U s,t ) knowing (ε s i ,t i , U s i ,t i ) 1≤i≤n and W is given by

  Theorem 4.1. Let W be a Brownian motion on the real line and X s,x t be the flow associated to (4.1) with α = α + . Define Z s,t (x) = X

			s,ε(x)|x| t	, s ≤ t, x ∈ G and
	K W s,t (x) = δ x+ e(x)ε(x)Ws,t 1 {t≤τs,x} + p i=1 α i α + δ e i |Zs,t(x)| 1 {Zs,t(x)>0} +	N i=p+1	α i α -δ e i |Zs,t(x)| 1 {Zs,t(x)≤0} 1 {t>τs,x} ,

  Fix s < t < u with s, t ∈ D and let show that a.s. {min s,u = min t,u } ⊂ {∃k 0 , η ⌊n k s⌋,⌊n k u⌋ = η ⌊n k t⌋,⌊n k u⌋ for all k ≥ k 0 }.(5.9)We have {min s,u = min t,u } = {min s,t < min t,u } a.s. By uniform convergence the Ψ ⌊n k t⌋,⌊n k u⌋ ) = γ t,u a.s. which proves (5.7). If s ∈ D, t > s and min s,t = min s,u , then s and t are in the same excursion interval of W + s, and so W + s,r > 0 for all r ∈ [t, u]. As preceded,{min s,t = min s,u } is a.s. containted in + ⌊n k s⌋,j > 0 ∀j ∈ [⌊n k t⌋, ⌊n k u⌋], k ≥ k 0 }. min s,t = min u,v . There are two cases to discuss, (a) s ≤ u ≤ v ≤ t, (b) s ≤ u ≤ t ≤ v (in any other case P(min s,t = min u,v ) = 0). In case (a), we have min s,t = min u,v = min u,t and so γ s,t = γ u,t = γ u,v by (5.7) and (5.8). Similarly in case (b), we have γ s,t = γ u,t = γ u,v . Proposition 5.4. Fix s < t, s ∈ D, n ≥ 1 and {(s i , t i ); 1 ≤ i ≤ n} with s i < t i , s i ∈ For all i ∈ [1, N], h ∈ [1, n], we have E 1 { γs,t= e i } |( γ s i ,t i ) 1≤i≤n , W = 1 { γs h ,t h = e i } on {min s,t = min s h ,t h }. (iii) The law of γ s,t knowing ( γ s i ,t i ) 1≤i≤n and W is given by

	(ii) N
	last set is contained in {min s i ,t i ; 1 ≤ i ≤ n}.			i=1	α i δ e i when min s,t / ∈
	{∃k 0 ,	min ⌊n k s⌋≤j≤⌊n k t⌋	S j <	min ⌊n k t⌋≤j≤⌊n k u⌋	S j for all k ≥ k 0 }
	which is a subset of				
	{∃k 0 ,	min ⌊n k s⌋≤j≤⌊n k u⌋	S j =	min ⌊n k t⌋≤j≤⌊n k u⌋	S j for all k ≥ k 0 }.
	This gives (5.9) using Proposition 5.2 (ii). Since x -→ e(x) is continuous on G * , on
	{min s,u = min t,u }, we have	
	γ s,u = lim k→∞	e(	1 √ n k	Ψ ⌊n k s⌋,⌊n k u⌋ ) = lim k→∞	e(	1 √ n k
	{∃k 0 , S j , S Now (5.8) can be deduced from Proposition 5.2 (ii). To prove (ii), suppose that min ⌊n k s⌋≤j≤⌊n k t⌋ S j = min ⌊n k s⌋≤j≤⌊n k u⌋
	s ≤ u, D. Then						with S n t :=	1 √ n	S ⌊nt⌋ .
	Let Ψ n s,t = Ψ n s,t (0) (defined in Corollary 5.1). Then Ψ (i) γ s,t is independent of σ(W ).	(n) s,t := 1 √ n Ψ ⌊ns⌋,⌊nt⌋ + o( 1 √ n ) and
	we have the following			

  ′ →s+,s ′ ∈D γ s ′ ,t exists. Define ε s,t = lims ′ →s+,s ′ ∈D γ s ′ ,ton Ω s,t and give an arbitrary value to ε s,t on Ω c s,t . Now, let ϕ s,t = ε s,t W + s,t . Then for all s ∈ D, t > s, ( ε s,t , ϕ s,t ) is a modification of ( γ s,t , ψ s,t ). For all s ∈ R, , • • • , α N ) process started at 0. Again, Proposition 5.3 (ii) yields∀s < t, u < v, P( ε s,t = ε u,v |min s,t = min u,v ) = 1 if P(min s,t = min u,v ) > 0. (5.11) Define: ϕ s,t (x) = (x + e(x)W s,t )1 {t≤τs,x} + ϕ s,t 1 {t>τs,x} , s ≤ t, x ∈ G,where W s,t = W t -W s and τ s,x is given by (5.2).Let x ∈ G, x n ∈ 1 √ n G N , lim n→∞ x n = x, s ∈ R, T > 0. Then a.s.Proof. Let s ′ be a dyadic number such that s < s ′ < s + T . By(5.11), for t > s ′ , a.s.{min s,t = min s ′ ,t } ⊂ {ϕ s,t = ϕ s ′ ,t }.and so, a.s. ∀t > s ′ , t ∈ D;{min s,t = min s ′ ,t } ⊂ {ϕ s,t = ϕ s ′ ,t }.If t > s ′ , min s,t = min s ′ ,t and t n ∈ D, t n ↓ t as n → ∞, then min s,tn = min s ′ ,tn which entails that ϕ s,tn = ϕ s ′ ,tn and a fortiori ϕ s,t = ϕ s ′ ,t by letting n → ∞. Thus a.s. ∀t > s ′ ; {min s,t = min s ′ ,t } ⊂ {ϕ s,t = ϕ s ′ ,t }. D∩]s, s + T [, ∀t > s ′ ; {min s,t = min s ′ ,t } ⊂ {ϕ s,t = ϕ s ′ ,t }. Sp and s ′ be a (random) dyadic number in ]s, S p [. Then min s,s ′ > min s ′ ,t for all t ∈ [S p , s + T ]. By uniform convergence, there exists n 0 ∈ N such that ∀n ≥ n 0 , ∀S p ≤ t ≤ s + T, min S ⌊nu⌋ and so Ψ ⌊ns ′ ⌋,⌊nt⌋ = Ψ ⌊ns⌋,⌊nt⌋ .

	Hence for n ≥ n 0 , we have			
	sup Sp≤t≤s+T	|	1 √ n	Ψ ⌊ns⌋,⌊nt⌋ -ϕ s,t | = sup Sp≤t≤s+T	|	1 √ n	Ψ ⌊ns ′ ⌋,⌊nt⌋ -ϕ s ′ ,t | (using (5.12))
	and so						
	n → +∞ k→+∞ lim sup s≤t≤s+T Z in C. In particular ∀s ∈ D, T > 0, | 1 √ k Ψ ⌊ks⌋,⌊kt⌋ -ψ s,t | = 0 a.s. Extension of the limit process For a fixed s < t, min s,t is attained in ]s, t[ a.s. By Proposition 5.3 (ii), on a mea-(5.10) surable set Ω s,t with probability 1, lim t > s, ϕ s,t = lim n→∞ ϕ sn,t a.s. where s n = ⌊2 n s⌋+1 2 n and in particular (ϕ s,t ) t≥s is a n→+∞ sup s≤t≤s+T | 1 √ n Ψ ⌊ns⌋,⌊nt⌋ ( √ nx n ) -ϕ s,t (x)| = 0. Finally a.s. ∀s ′ ∈ (5.12) By standard properties of Brownian paths, a.s. min s,s+T / ∈ {W s , W s+T } and ∀p ∈ N * ; min s,s+ 1 p < W s , min s,s+ 1 p = W s+ 1 p , ∃!u p ∈]s, s + 1 p [: min s,s+ 1 p = W up . sup s≤t≤s+T | 1 √ n Ψ ⌊ns⌋,⌊nt⌋ -ϕ s,t | ≤ sup s≤t≤Sp | 1 √ n Ψ ⌊ns⌋,⌊nt⌋ -ϕ s,t | + sup Sp≤t≤s+T | 1 √ n Ψ ⌊ns⌋,⌊nt⌋ -ϕ s,t | ≤ sup s≤t≤s+ 1 p ( 1 √ n S + ⌊ns⌋,⌊nt⌋ + W + s,t ) + sup Sp≤t≤s+T | 1 √ n Ψ ⌊ns ′ ⌋,⌊nt⌋ -ϕ s ′ ,t | ≤ sup s≤t≤s+ 1 p ( 1 √ n S + ⌊ns⌋,⌊nt⌋ + W + s,t ) + sup s ′ ≤t≤s ′ +T | 1 √ n Ψ ⌊ns ′ ⌋,⌊nt⌋ -ϕ s ′ ,t |. From (5.10), a.s. ∀u ∈ D, lim n→+∞ sup u≤t≤u+T | 1 √ n Ψ ⌊nu⌋,⌊nt⌋ -ϕ u,t | = 0. By letting n go to +∞ and then p go to +∞, we obtain lim n→∞ sup s≤t≤s+T | 1 √ n Ψ ⌊ns⌋,⌊nt⌋ -ϕ s,t | = 0 a.s. (5.13) We now show that lim n→+∞ 1 n T ⌊ns⌋, √ nxn = τ s,x a.s. (5.14) We have 1 n T ⌊ns⌋, √ nxn = inf{r ≥ ⌊ns⌋ n : S n r -S n s = -|x n |}. For ǫ > 0, from lim n→∞ sup u∈[τs,x,τs,x+ǫ] |(S n u -S n s + |x n |) -(W s,u + |x|)| = 0, we get W (α 1 Proposition 5.5. lim p [: min s,s+ 1 p S ⌊nu⌋ > min u∈[s ′ ,t] = W u∈[s,s ′ ] S p ∈]s, s + 1 The reasoning below holds almost surely: Take p ≥ 1, min s,s+ 1 p > min s,s+T . Let lim n→∞ inf u∈[τs,x,τs,x+ǫ] (S n u -S n s + |x n |) = inf u∈[τs,x,τs,x+ǫ]

s

  )h p,n (x)) 2 ] ≤ E[K pt n (K pt n ,u h p,nh p,n ) 2 (x)] ≤ 2||h p,n || ∞ ||P u-pt n h p,nh p,n || ∞ + ||P u-pt n h 2 p,nh 2 p,n || ∞ . Therefore ||A 3 (n)|| L 2 (P) ≤ √ t(2C 1 (n) + C 2 (n)) || ∞ du. From ||h p,n || ∞ ≤ ||Af || ∞ and ||P u-ptAs Af ∈ C ∞ (C ), C 1 (n) tends to 0 obviously. On the other hand, h 2 p,n ∈ C ∞ (C ) and so

	If u ∈ [ pt n , (p+1)t n ]:											
	E[((K u -K pt n												
							≤ E[K pt n	(K pt n ,u h 2 p,n -2h p,n K pt n ,u h p,n + h 2 p,n )(x)]
							≤ P pt n	P u-pt n	h 2 p,n -2h p,n P u-pt n	h p,n + h 2 p,n (x)
							≤ ||P u-pt n	h 2 p,n -2h p,n P u-pt n	h p,n + h 2 p,n || ∞
														1 2 , where
		C 1 (n) =	n-1 p=0	||h p,n || ∞	(p+1)t n pt n	||P u-pt
			(p+1)t n pt n p,n n-1 n-1 p=0 ||P u-pt n h 2 p,n -h 2 (p+1)t p=0 n pt n ||P u-pt
	C 2 (n) =	1 n	n-1 p=0	0	t	||P s n h 2 p,n -h 2 p,n || ∞ ds ≤	1 2n	n-1 p=0	0	t	0	s n	||(h 2 p,n )
														1 2	0	t	K 0,u f ′′ n (1)du.

n h p,nh p,n || ∞ du and C 2 (n) = n h p,nh p,n || ∞ ≤ ||P u-pt n Af -Af || ∞ , we get C 1 (n) ≤ ||Af || ∞ n Af -Af || ∞ du ≤ ||Af || ∞ t 0 ||P s n Af -Af || ∞ ds. ′′ || ∞ duds.

  1 s,t (x) ⊗ K 2 s,t (y) is a stochastic flow of kernels on C 2 ,

(ii) For all s ≤ t, x ∈ C , a.s. K 2 s,t (x) = E[K 1 s,t (x)|K 2 ].

n ≤T < i 2 n } we have X T = E[f (V T )|σ(W )] a.s.

Remerciements

Chapter 4

(iii) For all s, x = y, with probability 1 t 0 := inf{r ≥ s : ϕ s,r (x) = ϕ s,r (y)} = inf{r ≥ s : Z s,r (x) = Z s,r (y) = 0} and ϕ s,r (x) = ϕ s,r (y), ∀r ≥ t 0 .

Proof. (i) comes from (4.12), (4.13) for (s, x) ∈ Q × G Q and from Lemma 4.3 for all (s, x), (ii) is clear by construction for s rational, and then for all s using Remark 4.2. (iii) is an immediate consequence of (ii).

Next we will prove that ϕ is a stochastic flow of mappings. It remains to prove that properties [START_REF] Alejandro | Coalescing Brownian motions on the line[END_REF] and ( 4) in the definition are satisfied. As in Lemma 4.1, property (4) can be derived from the following Lemma 4.5. ∀t ≥ s, ǫ > 0, x ∈ G, we have lim y→x P(d(ϕ s,t (x), ϕ s,t (y)) ≥ ǫ) = 0.

Proof. We take s = 0. Notice that for all z ∈ R, we have Y 0,t (z) = z + W t if 0 ≤ t ≤ τ 0,z .

Fix ǫ > 0, x ∈ G + \ {0} and y in the same ray as x with |y| > |x|, d(y, x) ≤ ǫ 2 . Then d(ϕ 0,t (x), ϕ 0,t (y)) = d(x, y) ≤ ǫ 2 for 0 ≤ t ≤ τ 0,|x| ∧ τ 0,|y| (= τ 0,|x| in our case). Proposition 4.2 (iii) states that ϕ 0,t (x) = ϕ 0,t (y) if t ≥ T |x|,|y| . This shows that {d(ϕ 0,t (x), ϕ 0,t (y)) ≥ ǫ} ⊂ {τ 0,|x| < t < T |x|,|y| } a.s. By Lemma 4.2, P(d(ϕ 0,t (x), ϕ 0,t (y)) ≥ ǫ) ≤ P(τ 0,|x| < t < T |x|,|y| ) → 0 as y → x, |y| > |x|.

By the same way, P(d(ϕ 0,t (x), ϕ 0,t (y)) ≥ ǫ) ≤ P(τ 0,|y| < t < T |x|,|y| ) → 0 as y → x, |y| < |x|.

The case x ∈ G -holds by the same reasoning. Proposition 4.3. ∀s < t < u, x ∈ G, a.s. ϕ s,u (x) = ϕ t,u (ϕ s,t (x)).

Proof. We begin with the following remark: for all s < u, t < u, (x, y) ∈ G 2 , a.s. {Z t,u (y) = Z s,u (x)} ∩ {t < g s,u (x)} ⊂ {Z t,r (y) = Z s,r (x) for all r ∈ [g s,u (x), u]}. This is clear since coalescence of Z t,• (y) and Z s,• (x) must occur in zero. Now fix s < t < u, x ∈ G and set y = ϕ s,t (x). By Proposition 4.1, with probability 1, ∀r ≥ t, Y s,r (ε(x)|x|) = Y t,r (Y s,t (ε(x)|x|)). Applying Proposition 4.2 (ii), we get, a.s. ∀r ≥ t, Z t,r (y) = Y t,r (ε(y)|y|) = Y t,r (Y s,t (ε(x)|x|)) = Y s,r (ε(x)|x|) = Z s,r (x).

The event {∃r ∈ [t, g t,u (y)[∩Q, z ∈ G Q : Z t,u (y) = Z r,u (z)} is a measurable function of (Z r,h , t ≤ r ≤ h ≤ u) and y. By the independence of increments of ϕ and Lemma 4.3, a.s. {u > τ t,y } ⊂ {∃r ∈ [t, g t,u (y)[∩Q, z ∈ G Q : Z t,u (y) = Z r,u (z)}. (4.14) All the equalities below hold a.s.

• On the event {u ≤ τ s,x }, we have τ t,y = inf{r ≥ t, Z t,r (y) = 0} = inf{r ≥ t, Z s,r (x) = 0} = τ s,x . Consequently u ≤ τ t,y and it is easy to check that ϕ s,u (x) = ϕ t,u (ϕ s,t (x)).

• On the event {t ≤ τ s,x < u}, we still have τ t,y = τ s,x and so g t,u (y) = g s,u (x). Choose r ∈ [t, g t,u (y)[∩Q and z ∈ G Q such that Z t,u (y) = Z r,u (z). Then ϕ t,u (y) := ϕ r,u (z).

As u > τ s,x , let

) for all h ∈ [g s,u (x), u] by the previous remark. Similarly from

where Dg(x) = ε(x).g ′ (x). Note that t 0 K 0,u (D(P t-u f ))(x)dW u is well defined. In fact

and the right hand side is bounded since (4.18) is satisfied and f ′ is bounded. Set

and so by replacing in (E), we get

Then we can write

where:

Proof. By Theorem 3.3, we only need to check that: ∀t > 0, ε > 0, x ∈ G,

| for all u ≥ 0, we have {t < T x,y } ⊂ {t < T ε(x)|x|,ε(y)|y| }. For y close to x, {d(X x t , Y y t ) > ε} ⊂ {inf(τ 0,x , τ 0,y ) < t}. Now (C) holds from Lemma 4.2.

Consequence: Let ν (respectively ν c ) be the Feller convolution semigroup associated with (P n ) n≥1 (respectively (P n,c ) n≥1 ). By Theorem 3.4, there exists a joint realization (K 1 , K 2 ) where K 1 and K 2 are two stochastic flows of kernels satisfying

= K and such that:

Then Fs,t = F 1 s,t ∨ F 2 s,t . To simplify notations, we shall assume that ϕ c is defined on the original space (Ω, A, P) and that (i) and (ii) are satisfied if we replace (K 1 , K 2 ) by (δ ϕ c , K). Recall that (i) and (ii) are also satisfied by the pair (δ ϕ , K m + ,m -) constructed in Section 4.2. Now

and using (6.14), we obtain

with K W being the Wiener flow given by (4.15).

Proposition 4.6. The stochastic flow ϕ c solves (E).

The link with Tanaka's equation

Let S be a SRW, S = -T (S) and t -→ S(t) (resp. S(t)) be the linear interpolation of S (resp. S) on R. Define for all n ≥ 1,

Then, it can be easily checked (see Proposition 2.4 in [START_REF] Stewart | Markov processes[END_REF] page 107) that (S

In particular B and W are two standard Brownian motions. On the other hand,

Tanaka's formula for local time gives

where L t (W ) is the local time at 0 of W and so dW u = sgn(W u )dB u .

(5.5)

We deduce that for each SRW S the pair (-T (S), S), suitably normalized and time scaled converges in law towards (B, W ) satisfying (5.5). Finally, remark that

is the analogue of W solves (5.5) ⇒ -W solves (5.5).

We have seen how to construct solutions to (5.5) by means of T . In the sequel, we will use this approach to construct a stochastic flow of mappings which solves equation (T ) in general.

Lemma 5.1. Let P n be the law of Z n = (S .

(n) , (Ψ

Proof. By Donsker theorem P S (n) -→ P W in C(R, R) as n → ∞ where P W is the law of any Brownian motion on the real line. Let P Zs i be the law of any W (α 1 , • • • , α N ) process started at 0 at time s i . Plainly, the law of Ψ p,p+• is given by (5.6). By the above propositions 2.3 and 5.1, for all i ∈ N, P Ψ (n)

as n → ∞. Now the lemma holds using Proposition 2.4 [START_REF] Stewart | Markov processes[END_REF] (page 107).

In the next paragraph, we will describe the law of Z. Notice that (Ψ p,n ) p≤n and S can be recovered from (Z n k ) k∈N . Using Skorokhod representation theorem, we may assume that Z is defined on the original probability space and the preceding convergence holds almost surely.

) process started at 0 for all s ∈ D.

Description of the limit process

Set γ s,t = e(ψ s,t ), s ∈ D, s < t and define min

Proof. (i) is immediate from the convergence of Z n k towards Z and Proposition 5.2 (i). (ii) We first prove that for all s < t < u,

and moment conditions, we construct a flow K m + ,m -solution of (T C ). Using the main result of [START_REF] Le | Flows associated to Tanaka's SDE[END_REF], we will attach to the particular points 1 and e il two flows K + and K - associated respectively to (6.4) and to (6.4) driven by -W . The respective laws of K + and K -are uniquely determined by the measures m + and m -. This will require a suitable description of the law of (K + , K -). The flows K + and K -provide the additional randomness when K m + ,m -passes through 1 or e il . Away from these two points, K m + ,m -just follows Brownian motion. We now state our main result and postpone the details to the next section.

Theorem 6.1. Let m + and m -be two probability measures on [0, 1] satisfying

(1) To (m + , m -) is associated a stochastic flow of kernels K m + ,m -solution of (T C ).

is associated a flow of mappings ϕ.

(2) For all stochastic flow of kernels K solution of (T C ), there exists a unique pair of measures (m + , m -) satisfying (6.5) such that

For all s ≤ t, let

Then (K m + ,m -, ϕ) will be constructed on the same probability space such that: and

T,u and W u > m + S,u . Since S and T are two (F W s,r ) r≥s -stopping times, we have

In other words, (T, u) and (S, u) are in

As T ≤ u < τ T (Z), it follows that Z / ∈ {1, e il } (if Z ∈ {1, e il }, then τ T (Z) = T ), ǫ(Z) = ε + S,T and so ϕ T,u (Z) = exp(iε + S,T (W um + S,T )). As Z = 1, we necessarily have

The assumption u < τ T (Z) implies m + S,u = m + S,T and a fortiori ϕ T,u (Z) = exp(iε + S,T W + S,u ). On the other hand,

But (S, T ) ∈ D + (from W + S,T > 0), (S, u) ∈ D + (from u < τ T (Z) which entails that W + S,u > 0). Consequently ε + S,u = ε + S,T and so ϕ T,u (Z) = ϕ S,u (z).

The case l = π

We fix δ > 0 such that 0 < lδ < l + δ < π. For s, a ∈ R define

For any (F W 0,• )-stopping time S, let

Then, we have

) reaches e il before 1 and before that ϕ S,• (e il ) arrives in e i(l+δ) or e i(l-δ) .

Define the sequence (σ k ) k≥0 of (F W 0,t ) t≥0 -stopping time by σ 0 = 0 and for k ≥ 0, σ k+1 = T ρσ k ,2(π-l) (= T ρσ k ,arg(e -il )-arg(e il ) ). Then set, for k ≥ 0,

Note that the events {W + 

Proof. We take k = 0 (the proof is similar for all k) and denote ρ 0 simply by ρ.

, ϕ 0,ρ (e il )}. On C 0 , we have W + ρ = l and so W - ρ = 0 (see the lines after Lemma 6.3). Consequently ϕ 0,ρ (e il ) = 0 and ϕ 0,ρ (1) ∈ {e il , e -il }.

Suppose ρ < τ 0 (x), then necessarily arg(x) ∈]l, 2π[ and

Since ρ < τ 0 (x), we have arg(x)inf 0≤u≤ρ W u < 2π and therefore arg(ϕ 0,ρ (x)) < 2π -l.

It is also clear that arg(ϕ 0,ρ (x)) ≥ l which proves the first statement.

(ii) Let x ∈ C with arg(x) ∈ [l, 2π-l]. Then as ϕ ρ,• (e -il ) arrives to e il before 1, ϕ ρ,• (x) reaches e il before σ 1 . Let h be the greatest integer such that ρ

(iii) and (iv) are immediate from the flow property (Corollary 6.1) and (i), (ii). The result for K m + ,m -can be proved by following the same steps with minor modifications.

Since σ k is an (F W 0,t ) t≥0 -stopping time, the sequence (C k ) k≥0 is independent and satisfies P(C k ) = P(C 0 ) = P(A 0 ) × P(W + ρ = l) for all k ≥ 0. By Lemma 6.3, k≥0 P(C k ) = ∞ and the Borel-Cantelli lemma yields P(limC k ) = 1. We deduce that with probability 1,

Proof. Remark that C k ∈ F W σ k+1 for all k ≥ 0. For all n ≥ 1, t ≥ 0, we have

It remains to prove that {k n = k} ∈ F W σ k+1 . We will prove this by induction on n. For n = 1, this is clear since {k 1 = 1} = C 1 and for k ≥ 2,

Suppose the result holds for n. Then for all k ≥ 2,

and the desired result holds for n + 1 using the induction hypothesis.

We have proved Part (1) of Proposition 6.1. Part (2) can be deduced by analogy.

6.4

The support of K m + ,m - In this section ρ k 0 and K m + ,m -will be denoted simply by ρ k and K.

The case l = π

When m + and m -are both different from 1 2 (δ 0 + δ 1 ), a precise description of supp(K 0,t (1)) can be given as follows. Recall the definition of the sequence (σ k ) k≥0 from Section 6.3.1. Then supp(K 0,t (1)) = {e iW + σ 2k ,t , e -iW + σ 2k ,t } for all σ 2k ≤ t ≤ σ 2k+1 and supp(K

In fact for all s ≤ t, supp(K s,t (1)) = {e iXs,t , e -iXs,t }, with X s,t being the unique reflecting Brownian motion on [0, π] (see [6]) solution of

with arg(P 2k i ) < arg(P 2k i+1 ) for all i ∈ [1, 2k],

P 2k 1 = 1, P 2k 2 = e 2il and P 2k 2k+1 = e i(-l-W ρ 2k-1 ,ρ 2k ) .

(ii2) On C 2k+1 , we have

) and P 2k+1 2k+2 = e -il .

To prove this proposition, let first establish the following Lemma 6.6. Fix 0 < α < β < l and define

Proof. Recall the definition of T a from the begining of Section 6.3. Consider the event

Clearly P(F ) > 0. Note that ρ can be expressed as

On F , we have T β-l < ρ ≤ T α-l and so α < sup

In other words W - ρ = l which proves the inclusion F ⊂ E and allows to deduce the lemma.

It is easy to check that

which proves (ii).

Unicity of the Wiener solution.

Our aim in this section is to prove that (T C ) admits only one Wiener solution (such that σ(W ) ⊂ σ(K)). This solution corresponds of course to m + = m -= δ1

2

. For this, we will essentially follow the general idea of [START_REF] Le | Integration of Brownian vector fields[END_REF] 

where (6.13) no longer depends on K and Df (x) = ǫ(x).f ′ (x).

Proof. Let (K, W ) be a stochastic flow that solves (T C ) (not necessarily a Wiener flow). Our first aim now is to establish the following

x ∈ C and denote K 0,t simply by K t . Note that

and the right-hand side is smaller than t||f ′ || 2 ∞ . Now

For all p ∈ {0, .., n -1}, set

and so by replacing f by

Then we can write

where

is the sum of orthogonal terms in L 2 (P). Consequently

.

By applying Jensen's inequality, we arrive at

we have

Consequently

and one can deduce that A 2 (n) tends to 0 as n → +∞ in L 2 (P). Now

. By the Cauchy-Schwarz inequality

.

Consequence: Let (K, W ) be a solution of (T C ) and K W be the unique Wiener solution of (T C ). Since σ(W ) ⊂ σ(K), we can define K * the stochastic flow obtained by filtering K with respect to σ(W ) (Lemma 3-2 (ii) in [START_REF] Le | Flows, coalescence and noise[END_REF]). Then, ∀s ≤ t, x ∈ C , a.s.

As a result, (K * , W ) solves also (T C ) and by the last proposition, ∀s ≤ t, x ∈ C , a.s.

6.5.2 Proof of Theorem 6.1 (2)

From now on, (K, W ) is a solution of (T C ) defined on (Ω, A, P). Let P n t = E[K ⊗n 0,t ] be the compatible family of Feller semigroups associated to K.

A stochastic flow of mappings associated to K.

Let (P n,c ) n≥1 be the family of compatible Markov semigroups associated to (P n ) n≥1 by Theorem 4.1 [START_REF] Le | Flows, coalescence and noise[END_REF]. Then we have Lemma 6.9. (P n,c ) n≥1 is a compatible family of Feller semigroups associated with a flow of mappings ϕ c .

Proof. For each (x, y) ∈ C 2 , let (X x t , Y y t ) t≥0 be the two point motion started at (x, y) associated with P 2 constructed as in Section 2.6 [START_REF] Le | Flows, coalescence and noise[END_REF] on an extension Ω × Ω ′ of Ω such that the law of (X x t , Y y t ) given ω ∈ Ω is K 0,t (x) ⊗ K 0,t (y). Define

By Theorem 3.3, we only need to check that: ∀t > 0, ε > 0, x ∈ C ,

Recall that for all 0 ≤ t ≤ ρ (:= ρ 0 ),

For all s ≤ t, let

Then Fs,t = F 1 s,t ∨ F 2 s,t . To simplify notations, we shall assume that ϕ c is defined on the original space (Ω, A, P) and that (i) and (ii) are satisfied if we replace (K 1 , K 2 ) by (δ ϕ c , K). Recall that (i) and (ii) are also satisfied by the pair (δ ϕ , K m + ,m -) constructed in Section 6.2.3. Now (ii) rewrites, for all s ≤ t, x ∈ C ,

and using (6.14), we obtain, for all s ≤ t, x ∈ C ,

with K W being the Wiener flow associated with m

The law of (K, ϕ c ).

For all s ≤ t, define

Assume that these σ-fields are right-continuous and include all P-negligible sets. When s = 0, we denote F K 0,t , F W 0,t simply by F K t , F W t . For each each x ∈ C , recall that t -→ K 0,t (x) is continuous from [0, +∞[ into P(C ). We denote by P x , the law of this process which is a probability measure on C(R + , P(C )). We begin this section by the following Markov property Lemma 6.10. Let x, y ∈ C and T be an (F K t ) t≥0 -stopping time. On {K 0,T (x) = δ y }, the law of K 0,T +• (x) knowing F K T is given by P y .

This shows that ϕ c 0,t (1) ∈ {e iW + t , e -iW + t } for all 0 ≤ t ≤ ρ + . Let h ∈ C(C ) such that ∀x ∈ [-l, l], h(e ix ) = |x|. Using (6.15) and the continuity of t -→ K 0,t (1), we have a.s.

Thus a.s. ∀t ∈ [0, ρ + ], K 0,t h(1) = W + t and ρ + can be expressed as

Define the σ-fields:

Then F L+ = F L-(see Section 4.4). Let f : R -→ R be a bounded continuous function and set

By (6.15), the process U + is constant on the excursions of W + out of 0 before ρ + . Lemma 6.11. There exists an F W -progressive version of X denoted Y that is constant on the excursions of W + out of 0 before ρ + and satisfies Y L = Y ρ + a.s.

Proof. We closely follow Lemma 4.12 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] and correct an error at the end of the proof there. By induction, for all integers k and n, define the sequence of stopping times S k,n and T k,n by the relations: T 0,n = 0 and for k ≥ 1,

In the following U + k,n will denote

[ and define

Then X n is F W -progressive. For all t ≥ 0, set Xt = lim sup n→∞ X n t . The process X is F W -progressive and for all t ≥ 0, Xt = X t a.s. In fact, on {0 < t < ρ + }, choose k 0 and n 0 such that t ∈ [S k 0 ,n 0 , T k 0 ,n 0 [, then X n 0 t = X k 0 ,n 0 . For all n ≥ n 0 , there exists an integer l n such that t ∈ [S ln,n , T ln,n [. Thus X n t = X ln,n = X k 0 ,n 0 since S k 0 ,n 0 and S ln,n belong to the same excursion interval of W + containing also t. Now set Y 0 = f (0), Y t = lim sup n→∞ Xt+ 1 n for all t > 0. Then Y is a modification of X which is F W -progressive and constant on the excursions of W + out of 0 before ρ + .

Moreover Y L = Y ρ + a.s.

We take for X this F W -progressive version. Then X

Proof. Let S be an F W -stopping time and d S = inf{t ≥ S : W + t = 0}. We have {S < L} = {d S < ρ + } (up to some negligible set) and so 1 {S<L} is

where K = inf{r ≥ 0 : K 0,H+r h(1) = l}. Applying Lemma 6.10 at time H, we get

Since the σ-field F L-is generated by the random variables 1 {S<L} (see [START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF] page 344), the lemma holds.

The previous lemma implies that U + ρ + is independent of σ(W ) (Lemma 4.14 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]) and the same holds if we replace ρ + by inf{t ≥ 0 :

The left-hand side no longer depends on t, which completes the proof.

We define the measure m -by analogy. Let ρ -= inf{t ≥ 0 : W - t = l}, then for all t > 0, under P(•|ρ -> t), U - t and W are independent and the law of U - t is m -. Recall the definition ρ = inf(ρ + , ρ -). Then the law of U + t (respectively U - t ) knowing {0 < t < ρ} is given by m + (respectively m -). Note that ϕ c is constructed such that for all x, y ∈ C a.s. ϕ c 0,• (x) and ϕ c 0,• (y) collide whenever they meet. By (6.15), if x ∈ C and τ 0 (x) < ρ, then K 0,t (x) ∈ {K 0,t (1), K 0,t (e il )} if t ∈ [τ 0 (x), ρ]. This entails the following Lemma 6.15. Let P t,x 1 ,...,xn be the law of (K 0,t (x 1 ), ..., K 0,t (x n ), W ) conditionally to A = {0 < t < ρ} where t > 0 and x 1 , ..., x n ∈ C . Then P t,x 1 ,...,xn only depends on {P u,1 , P u,e il , u ≥ 0}.

Proof. As already observed we only need to show that the law of (K 0,t (1), K 0,t (e il ), W ) conditionally to A only depends on {P u,1 , P u,e il , u ≥ 0}. Let

and write

Then we may replace

By summing over all possible values of S, we only need to show that the law of (K 0,t (1), K 0,t (e il ), W ) conditionally to E s = A ∩ {g - t < s < g + t } where s ∈ D is fixed only depends on {P u,1 , P u,e il , u ≥ 0}. On E s , we have y := ϕ c 0,s (1) ∈ {e iW + s , e -iW + s } by (6.16) and τ s (y) = inf{r ≥ s : W rm + 0,s = 0} = inf{r ≥ s : W + r = 0} = g + t .

Clearly ϕ c s,τs(y) (y) = ϕ c s,τs(y) (1) = 1 and a fortiori ϕ c s,r (y) = ϕ c s,r (1) for all r ≥ τ s (y). The flow property of ϕ c , yields, on E s a.s. ϕ c 0,t (1) = ϕ c s,t (y) = ϕ c s,t (1).

Using (6.15), we get K 0,t (1) = K s,t (1) a.s. on E s . This shows that (K 0,t (1), K 0,t (e il ), W )1 Es = (K s,t (1), K 0,t (e il ), W )1 Es .

On E s , K 0,t (e il ) is a measurable function of (U - s , W ) because r -→ U - r is constant on the excursions of W -on [0, ρ]. Now the law of (U - s , K s,t (1), W ) on E s (= E s ∩{t ≤ ρ s }) only depends on {P t-s,1 , P s,e il } which finishes the proof. Proposition 6.8. Let (K m + ,m -, W ′ ) be the solution constructed in Section 6.2.3 associated with (m + , m -). Then K law = K m + ,m -. Proof. For simplicity, we will note W ′ also by W . Then (K 0,t (x), W ) law = (K m + ,m - 0,t (x), W ) conditionally to {0 < t < ρ} for x = 1, e il and consequently for all x ∈ C . By following the same steps as in the proof of Lemma 6.15, we show that (K 0,t (1), K 0,t (e il ), W ) law = (K m + ,m - 0,t (1), K m + ,m - 0,t (e il ), W ) conditionally to {0 < t < ρ} and so K 0,t law = K m + ,m - 0,t conditionally to {0 < t < ρ}.

Of course for all s ∈ R, we still have K s,t law = K m + ,m - s,t conditionally to {s < t < ρ s }.

Recall that P(A c n ) → 0 as n → ∞ (see the proof of Corollary 6.2). Letting n → ∞ and using the flow property for both K and K m + ,m -, we deduce that K 0,t law = K m + ,m - 0,t Open problems