
HAL Id: tel-00660816
https://theses.hal.science/tel-00660816v1

Submitted on 17 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Theory of Mediating Connectors to achieve
Interoperability

Romina Spalazzese

To cite this version:
Romina Spalazzese. A Theory of Mediating Connectors to achieve Interoperability. Software Engi-
neering [cs.SE]. Università degli studi de l’Aquila, 2011. English. �NNT : �. �tel-00660816�

https://theses.hal.science/tel-00660816v1
https://hal.archives-ouvertes.fr

Dipartimento di Informatica
Università di L’Aquila

SEA Group
Via Vetoio, I-67100 L’Aquila, Italy

http://www.di.univaq.it

PhD Thesis in Computer Science

A Theory of Mediating Connectors
to achieve Interoperability

Romina Spalazzese

April 2011

Advisor
Prof. Paola Inverardi

c© Romina Spalazzese, 2011. All rights reserved

To those who,
when facing troubles,

do not surrender:
they fall, but

pick themselves up
and fight.

ABSTRACT

Systems populating the Ubiquitous Computing environment are characterized by an often
extreme level of heterogeneity at different layers which prevents their seamless interop-
erability. In this environment, heterogeneous protocols would cooperate to reach some
common goal even though they meet dynamically and do not have a priori knowledge of
each other.
Although numerous efforts have been done in the literature, the automated and run-time
interoperability is still an open challenge for such environment.

Therefore, this thesis focuses on overcoming the interoperability problem between het-
erogeneous protocols in the Ubiquitous Computing. In particular, we aim at providing a
means to drop the interoperability barriers by automatically eliciting a way for the proto-
cols to interact.
The solution we propose is the automated synthesis of emerging mediating connectors
(also called mediators or connectors). Specifically, we concentrate our efforts to: (i) devis-
ing AMAzING, a process to synthesize mediators, (ii) characterizing protocol mismatches
and related mediator patterns, and (iii) designing MediatorS, a theory of mediating
connectors. The theory, and the process, are put in practice by applying them to a real
world application, and have been adopted by the European Research Project CONNECT.

ACKNOWLEDGMENTS

The work is partly supported by the CONNECT European Project No 231167 of the Fu-
ture and Emerging Technologies (FET) programme within the ICT theme of the Seventh
Framework Programme for Research of the European Commission.

Obstacles are those frightful things you see
when you take your eyes off your goal.
(Henry Ford)

TABLE OF CONTENTS

Abstract i

Acknowledgments iii

Table of Contents vii

List of Figures ix

1 Introduction 1
1.1 Running Example: Photo Sharing Scenario 4
1.2 Formal Foundations . 5

1.2.1 Protocols as LTS . 5
1.2.2 Ontologies . 8

1.3 Challenges and Contributions . 9

2 Related Work 13
2.1 Emergent Computing . 13
2.2 Mediator Patterns . 15
2.3 Protocol Interoperability . 16

3 The AMAzING Process 25
3.1 The Abstraction Phase . 26
3.2 The Matching Phase . 27
3.3 The Mapping Phase . 28

4 Mediator Patterns 31
4.1 Photo Sharing Applications . 32
4.2 A Pattern-based Approach for Interoperability Mismatches 34
4.3 Mediating Connector Architectural Pattern 34
4.4 Basic Mediator Patterns . 37
4.5 Application of the Patterns to the Photo Sharing Scenario 44
4.6 Conclusion . 46

5 MediatorS: a Theory of Mediating Connectors 47
5.1 Formalizing the Theory . 47

5.1.1 Abstraction Formalization . 49
5.1.2 Matching Formalization . 53
5.1.3 Mapping Formalization . 55

viii TABLE OF CONTENTS

5.2 Implementing the Theory: Algorithms 57
5.2.1 Abstraction Algorithms . 58
5.2.2 Matching Algorithms . 61
5.2.3 Mapping Algorithms . 62

5.3 Correctness Discussion . 63
5.4 Conclusion . 66

6 Extending the MediatorS Theory to Encompass Middleware-Layer 67
6.1 Modeling Networked Systems . 68

6.1.1 Affordance . 69
6.1.2 Interface Signature . 69
6.1.3 Affordance Protocol . 71

6.2 Ontology for Mediation . 73
6.2.1 Middleware Ontology . 73
6.2.2 Application-specific Ontology 77

6.3 Abstraction of Networked Systems . 78
6.4 Functional Matching of Networked Systems 78

6.4.1 Affordance Matching . 79
6.4.2 Interface Mapping . 80
6.4.3 Behavioural Matching of Affordances 82

6.5 Mapping of Networked Systems . 82
6.6 Conclusion . 82

7 Mediating Flickr and Picasa: a Case Study 85

8 The MediatorS Theory in CONNECT 91
8.1 Towards the CONNECT Architecture . 92

8.1.1 Heterogeneity Dimensions . 93
8.1.2 Beyond State of the Art Interoperability Solutions 94
8.1.3 The CONNECT Architectural Framework 96
8.1.4 Conclusion . 99

9 Discussion and Future Work 101

References 105

LIST OF FIGURES

1.1 Abstract Networked Systems’ model and the kind of interoperability . . . 3
1.2 Overview of the Photo Sharing scenario 4

3.1 Overview of the AMAzING Process . 25
3.2 Abstraction phase of the AMAzING Process 26
3.3 Matching phase of the AMAzING Process 27
3.4 Mapping phase of the AMAzING Process 28

4.1 Peer-to-Peer-based implementation . 33
4.2 Infrastructure-based implementation . 33
4.3 Entities involved in a mediated system without and with Mediating Con-

nector . 36
4.4 Basic interoperability mismatches . 38
4.5 Basic solutions for the basic mismatches 39
4.6 Variants of the Basic Mediator Pattern (1) 40
4.7 Variants of the Basic Mediator Pattern (2) 41
4.8 Variants of the Basic Mediator Pattern (3) 42
4.9 Variants of the Basic Mediator Pattern (4) 43
4.10 Behavioural description of the Mediating Connector for the Photo Shar-

ing example (IB photo producer of Figure 4.2 a) and P2P Photo Sharing
version 1 of Figure 4.1 v1)) . 45

5.1 An overview of our approach . 48
5.2 Ontology mapping between Infrastructure-based Photo-Sharing Producer

and the peer-to-peer Photo-Sharing version 1 (Figure 4.2 a and Figure4.1
v1 respectively) . 49

5.3 The abstract protocol building . 50
5.4 Abstracted LTSs of the Photo Sharing protocols 52

6.1 Infrastructure- and peer-to-peer-based photo sharing 72
6.2 Middleware ontology . 74
6.3 Middleware alignment . 75
6.4 Shared-memory based Photo Sharing after the mapping of middleware

functions to reference middleware ontology 76
6.5 Middleware-agnostic peer-to-peer Photo Sharing 76
6.6 Photo Sharing ontology . 77

x LIST OF FIGURES

7.1 Flickr and Picasa services . 85
7.2 Flickr client protocol . 86
7.3 Picasa server protocol . 87
7.4 Ontological information . 88
7.5 Abstracted protocols . 89
7.6 Mediator between Flickr and Picasa protocols 90

8.1 Actors in the CONNECT Architecture . 97
8.2 Networked System Model . 97
8.3 The Discovery Enabler . 98
8.4 A software Connector . 99

CHAPTER 1

INTRODUCTION

Today’s Ubiquitous Computing environment is populated by a wide variety of hetero-
geneous Networked Systems (NSs), dynamically appearing and disappearing, that belong
to a multitude of application domains: home automation, consumer electronics, mobile
and personal computing, to mention a few. Key technologies such as the Internet, the
Web, and the wireless computing devices and networks can be qualified as ubiquitous, in
the sense of Mark Weiser [121], even if these technologies have still not reached the ma-
turity envisioned by the Ubiquitous Computing and the subsequent pervasive computing
and ambient intelligence paradigms because of the extreme level of heterogeneity of the
underlying infrastructure which prevents seamless interoperability.
The Ubiquitous Computing (UbiComp) was proposed by Mark Weiser in the Nineties
[122] [121] as the direction for technology development in the twenty-first century. But
the early basics for this new philosophy were created in 1988 as “tabs, pads and boards”
[123]. A further evolutionary step that followed the UbiComp is represented by those
made for distributed systems and mobile computing [103]. The Ubiquitous vision was
based on the principle of making the computer able to vanish in the background. Weiser
defined UbiComp as the method to increase the use of computers making available many
of those present in the physical environment in an efficient and invisible manner to users.
The term Ubiquitous Computing, hence refers to that trend that sees the interaction be-
tween user and a dynamic set of devices and networked services,which are often invisible
and embedded into objects in the environment. This trend fosters an environment in which
the distinction between physical and digital devices is not clear. All entities in a physical
space are integrated in a cohesive programmable unit to create, for example, smart offices
and active spaces.
The environment includes not only a large set of devices, spanning powerful computers
and workstations, but also interaction and communication patterns for users to support
user-oriented services since the UbiComp suggests the ability for users to enter the envi-
ronment in a natural way, without being aware of who or what populate it. Furthermore,
the user should be able to use the services available using its devices without complex
procedures and manual configurations. This leads to the need for high quality reliable
services possibly partially present on devices. As we already said, the currently available
technologies and computations have not yet reached the maturity required by the ubiqui-
tous paradigm. The ubiquity of digital systems is not complete due to the fact that it is still
tied and dependent on technology: the effectiveness of the composition and integration of

1

2 Chapter 1. Introduction

networked systems, i.e., is proportional to the level of interoperability of the underlying
technologies.
All the variety of resources typical of the ubiquitous vision leads to the creation of techno-
logical islands of interoperating systems and requires the construction of interoperability
bridges among different islands to make their communication possible. In addition, the
speed with which technology changes at each level of abstraction, increasingly shortens
the life of these interoperability bridges making increasingly complex their maintenance
process. The availability of a large number of heterogeneous resources, leads to a para-
dox: to be able to exploit a potentially infinite number of capabilities and services implies
the need to abandon any predetermined knowledge. In other words, applications should
be able to interpret and learn what the environment offers, and dynamically adapt to it to
achieve their aims while making minimal assumptions.
The described Ubiquitous vision puts emphasis on the activities that one wants to play
rather than the means used to do this and sees computers evanish into the background.
This vision perfectly fits our idea of building an interoperability solution. That is, each
entity should maintain its own characteristics, being able to communicate and cooperate
with the others despite diversities. In particular, heterogeneous protocols would cooperate
to reach some common goal even though they meet dynamically and do not have a priori
knowledge of each other.

The term protocol refers to interaction protocols or observable protocols. That is, a pro-
tocol is the behaviour of a system in terms of the sequences of messages (input/output
actions) visible at the interface level, which it exchanges with other systems. In other
words an interaction protocol provides a system behavioural description taking an exter-
nal (black-box) perspective. More specifically, in this thesis the term protocol will first
refer to application-layer protocols. In a second step this notion will be extended to in-
clude also middleware-layer protocols, i.e., subsequently we will consider together both
application- and middleware layer protocols.

We further focus on compatible protocols or functionally matching protocols. Com-
patibility or functional matching means that heterogeneous protocols can potentially com-
municate by performing complementary sequences of actions (or complementary conver-
sations).
Potentially means that communication may not be achieved because of mismatches (het-
erogeneity), i.e., the languages of the two protocols are different, although semantically
equivalent. For example, protocol languages can have: (i) different granularity, or (ii)
different alphabets. Protocols behavior may have, for example, different sequences of ac-
tions because of (a.1) the order in which actions are performed by a protocol is different
from the order in which the other protocol performs the same actions; (a.2) interleaved
actions related to third parties communications i.e., communications with other systems,
the environment. In some cases, as for example (i), (ii) and (a.1), it is necessary to prop-
erly perform a manipulation of the two languages to enable communication. In the case
(a.2) it is necessary to provide an abstraction of the two actions sequences that results in
sequences containing only actions that are relevant to the communication.
Communication is then possible if the two possibly manipulated (e.g., reordered) and ab-

3

stracted sequences of actions are complementary, i.e., are the same sequences of actions
while having opposite output/input “type” for all actions.
For the sake of simplicity, and without loss of generality, we limit the number of protocols
to two but the work can be generalized to an arbitrary number of protocols.

Although numerous efforts has been done in the literature, automated and run-time inter-
operability is still an open challenge for such environment where protocols do not know
their possible interlocutors a priori.
Therefore, the problem we address and overcome, is the interoperability between hetero-
geneous protocols in the Ubiquitous Computing environment.

With interoperability, we mean the ability of heterogeneous protocols to coordinate to
reach their goal(s), i.e., communicate. The coordination is expressed as synchronization,
i.e., two systems succeed in communicating if they are able to synchronize reaching their
goal(s).
In this thesis we will formulate and provide a solution for the application-layer inter-
operability. However the approach we propose is general, and then subsequently we
will extend it by considering together application-layer and middleware-layer interop-
erability. Figure 1.1 illustrates the abstract Networked Systems’ model and the kind of
interoperability we consider in this thesis.

Networked Systemi

Application

Middleware

Communication
Infrastructure

Networked Systemk

Application

Middleware

Communication
Infrastructure

Network

1

2

Application-layer interoperability (Chapter 5)1

2 Application-layer + middleware-layer interoperability (Chapter 6)

Figure 1.1: Abstract Networked Systems’ model and the kind of interoperability

Summarizing, we want to automatically achieve interoperability between functionally
matching protocols. Based on the terminology explained above, the research question
that this thesis addresses can be formulated as follows:

“given compatible protocols, is it possible to automatically synthesize a mediator which
enables them to communicate (solving their mismatches)?”

To answer this question, i.e., in order to make communication between heterogeneous pro-
tocols possible, here we propose as solution a theory of mediators. The theory, reasoning
about the mismatches of the compatible protocols, automatically elicits and synthesizes
an emerging mediator that solves them allowing protocol interoperability. The theory
paves the way for run-time (or on-the-fly) approaches to the mediators synthesis.

4 Chapter 1. Introduction

A mediator is then a protocol that allows the communication among compatible protocols
by mediating their differences.

In the reminder of this chapter we: introduce a running example (Section 1.1) that will
be also used in the subsequent chapters for explanation purpose; characterize protocols as
Labelled Transition systems 1.2.1; and illustrate the challenges and contributions of this
thesis (Section 1.3), we provide its outline and we list the papers on which it is based.

1.1 RUNNING EXAMPLE: PHOTO SHARING SCENARIO

In order to illustrate our approach to mediator synthesis, we consider the simple yet chal-
lenging scenario of Photo Sharing within a public space such as a stadium which is illus-
trated in Figure 1.2.

Figure 1.2: Overview of the Photo Sharing scenario

The target environment allows both Infrastructure-based (IB) and ad hoc peer-to-peer
(P2P) Photo Sharing. In the IB implementation, a Photo Sharing service is provided by
the stadium, where only authenticated photographers are able to produce pictures while
any spectator may download and even annotate pictures. The P2P implementation allows
for photo download, upload and annotation by any spectator, who are then able to directly
share pictures using their handhelds.

In both cases, the spectator’s handheld would need to embed the appropriate software
application, which may not be available due to the handheld’s specific platform. Further,
the spectator may not be willing to download yet another Photo Sharing application, i.e.,
the proprietary implementation offered by the stadium, while one is already available
on his/her handheld. Moreover, while the Photo Sharing functionality is present in both
versions of the Photo Sharing application, it is unlikely that they feature the very same
interface and behaviour. In particular, the RPC interaction paradigm suits quite well the IB
service, while a distributed shared data space is more appropriate for the P2P version. In
general, considering the ever growing base of content-sharing applications for handhelds,

1.2 Formal Foundations 5

numerous versions of the Photo Sharing application may be available on the spectators’
handhelds, thus calling for appropriate interoperability solutions.

The case we are addressing deals with protocols that are willing to communicate to reach
a common goal, e.g., photo sharing, but cannot communicate because of protocol mis-
matches. For instance, as mentioned above, protocols may have different alphabets, i.e.,
different action labels, or the order in which actions are performed by protocols may be
different. Our approach automatically creates a mediator (protocol) that solves the mis-
matches which prevent protocol communication by suitably mediating such differences,
thus enabling the communication among protocols.

Note that due to the limited capacities of the devices, the creation process of the mediator
can be performed, for instance, by a supporting infrastructure made up by more powerful
computers. One can think that coming devices advertise their applications behaviors and
ontological characterizations to the supporting infrastructure which starts computing the
mediators -if possible. Then, when the will to communicate is manifested, the mediator
-if it exists- can be either ready or partially computed. While the mediator could not exist
because applications are not compatible and then do not have a way to communicate.
The supporting infrastructure could then be helpful for both the automated and on-the-fly
synthesis of mediators.

1.2 FORMAL FOUNDATIONS

The application-layer interaction protocol, as described in the previous sections, is the
behaviour of a system in terms of the actions it exchanges with other application-layer
protocols. We recall that an interaction protocol describes the behaviour of a protocol
from an external point of view thus consisting of the sequence of input and output actions
at interface level. Further, in order to realize protocol mediators, ontologies play an im-
portant role.
In Section 1.2.1 we provide a characterization of protocols (i.e., behaviours) using La-
belled Transition Systems (LTSs) [70] while in Section 1.2.2 we describe ontologies.
Note that the in the following we neither provide an algebra nor a language while we
express in a syntactic notation how the mediator is built.

1.2.1 PROTOCOLS AS LTS

LTSs constitute a widely used model for concurrent computation and are often used as a
semantic model for formal behavioural languages such as process algebras. Let Act be the
set of observable actions (input/output actions), we get the following definition for LTS:

Definition 1 (LTS) A LTS P is a quadruple (S, L,D, s0) where:
S is a finite set of states;

6 Chapter 1. Introduction

L ⊆ Act
⋃
{τ} is a finite set of labels (that denote observable actions) called the alphabet

of P. τ is the silent action. Labels with an overbar in L denote output actions while
the ones without overbar denote input actions. We also use the convention that for all
l ∈ L, l = l1.
D ⊆ S × L× S is a transition relation;
s0 ∈ S is the initial state.

We then denote with {L
⋃
{τ}}∗ the set containing all words on the alphabet L. We also

make use of the usual following notation to denote transitions:
si

l−→ sj ⇔ (si, l, sj) ∈ D

We consider an extended version of LTS, where the set F of the LTS’ final states is
explicit. An extended LTS is then a quintuple (S, L,D, F, s0) where the quadruple
(S, L,D, s0) is a LTS and F ⊆ S. From now on, we use the terms LTS and extended
LTS interchangeably, to denote the latter one.

The initial state together with the final states, define the boundaries of the protocol’s
coordination policies. A coordination policy is indeed defined as any trace that starts
from the initial state and ends into a final state. It captures the most elementary behaviours
of the networked system which are meaningful from the user perspective (e.g., upload
of photo of photo sharing producer meaning upload of photo followed by the reception
of one or more comments). Then, a coordination policy represents a communication
(i.e., coordination or synchronization) unit. We get the following formal definition of
traces/coordination policy:

Definition 2 (Trace or Coordination Policy) Let P = (S, L,D, F, s0).
A trace t of P is a sequence t = l1 l2 . . . ln ∈ L∗ such that:
∃(s0

l1−→ s1
l2−→ s2 . . . sm

ln−→ sn) where {s1, s2, . . . , sm, sn} ∈ S ∧ sn ∈ F .

We use the usual compact notation s0
t⇒ sn to denote a trace, where t is the concatenation

of actions of the trace.
Moreover we define a subtrace as any (sub)sequence of a trace of a protocol (it may be
also a trace). More formally:

Definition 3 (Subtrace) Let P = (S, L,D, F, s0) and t = l1 l2 . . . ln ∈ L∗ be a trace of
P .
A subtrace st of t is a sequence st = lili+1 . . . lj ∈ L∗ such that:

∃(si
li−→ si+1

li+1−−→ si+2 . . . sj
lj−→ sk) where {si, si+1, si+2, . . . , sj, sk} ∈ S

Similarly to traces, also in this case we use the compact notation si
st⇒ sk.

LTSs can be combined using the LTS parallel composition operator. Several semantics
1This convention comes from Calculus of Communicating Systems (CCS) [79]

1.2 Formal Foundations 7

have been given in the literature for this operator. In the following we provide a descrip-
tion of parallel composition we need that is similar to the one of CSP (Communicating
Sequential Processes) [101]. More precisely, in our case protocols P and Q synchro-
nize on complementary actions while proceeding independently when engaged in non
complementary actions. Actions are complementary if they are the same action while
having opposite output/input type. Note that we do not need choice operators because
the way in which the parallel is defined is non-deterministic. Moreover, we need a syn-
chronous reference model as the one of CSP or FSP (Finite State Process) [76] where the
synchronization is forced when an interaction is possible by requiring simultaneous par-
ticipation of P andQ. Differently, the asynchronous model like the one of CCS (Calculus
of Communicating Systems) [79], would allow agents to nondeterministically choose to
not interact by performing complementary actions a and a separately.

Although the semantics and the model we need are à la CSP, we use CCS because (i) it is
able to emulate the synchronous model of CSP thanks to the restriction operator and (ii) it
has several characteristics that CSP does not have and that we need, e.g., complementary
actions and τ .

Then our parallel composition semantics is that protocols P and Q synchronize on com-
plementary actions producing an internal action τ in the parallel composition. Instead, P
and Q can proceed independently when engaged in non complementary actions. An ac-
tion of P (Q resp.) for which no complementary action exists in Q (P resp.), is executed
only by P (Q resp.), hence, producing the same action in the parallel composition.

Definition 4 (Parallel composition of protocols) Let P = (SP , LP , DP , FP , s0P) and Q
= (SQ, LQ, DQ, FQ, s0Q). The parallel composition of P and Q is defined as the LTS
P |Q = (SP × SQ, LP ∪ LQ, D, FP ∪ FQ, (s0P , s0Q)) where the transition relation D
is defined as follows:

P
m−→ P ′

P |Q m−→ P ′|Q
(where m ∈ LP ∧m 6∈ LQ)

Q
m−→ Q′

P |Q m−→ P |Q′
(where m ∈ LQ ∧m 6∈ LP)

P
m−→ P ′;Q

m−→ Q′

P |Q τ−→ P ′|Q′
(where m ∈ LP ∧m ∈ LQ)

Note that we build the parallel composition of protocols P andQ, with their environment,
i.e., other systems protocols E, and a mediator M , i.e., a protocol that mediating P and
Q differences allows their communication. The resulting composed protocol P |Q|E|M
is restricted to the language made by the union of the common languages between each

8 Chapter 1. Introduction

pair of protocols. Thus, this restriction forces all the protocols to synchronize when an
interaction is possible among them.

1.2.2 ONTOLOGIES

Ontologies play an important role in realizing connectors which primarily relies on rea-
soning about protocol functionalities. More in detail, what is needed is to identify match-
ing sequences of observable actions among the actions performed by the protocols. On-
tologies play a key role in identifying such matching and allow overcoming the inherent
heterogeneity of ubiquitous networked systems. Indeed, “an ontology is a formal, explicit
specification of a shared conceptualization” [114]. Such an ontology is then assumed to
be shared widely. In addition, work on ontology alignment enables dealing with possi-
ble usage of distinct ontologies in the modeling of the different networked systems [46].
Different relations may be defined between ontology concepts. The subsumption relation
(in general named is-a) is essential since it allows, besides equivalence, to match between
concepts based on inclusion. Precisely: a concept C is subsumed by a concept D in a
given ontology O, noted C v D, if in every model of O the set denoted by C is a subset
of the set denoted by D [10].

In the literature, [67, 66] ontologies ,and ontology mapping, are presented as logical the-
ories as follows:

“an ontology is a pair O = (S,A), where S is the (ontological) signature describ-
ing the vocabulary and A is a set of (ontological) axioms specifying the intended
interpretation of the vocabulary in some domain of discourse”.

“A total ontology mapping from O1 = (S1, A1) to O2 = (S2, A2) is a morphism
f : S1 → S2 of ontological signatures, such that, A2 = f(A1), i.e., all interpreta-
tions that satisfy O2’s axioms also satisfy O1’s translated axioms”.

We specialize the above ontology mapping, that maps single elements of S1, by defining
an abstraction ontology mapping where the f is such that maps the S1 language (i.e., S∗1)
into S2, i.e., f : S∗1 → S2.
We use such specialized ontology mapping on the ontologies of the compatible proto-
cols, where the vocabulary of the source ontology is represented by the language of the
protocol. More formally:

Definition 5 (Abstraction Ontology Mapping) Let:

• P = (SP , LP , DP , FP , s0P) be a protocol,

• OP = (L∗P , AP) be the ontology of P ,

1.3 Challenges and Contributions 9

• O = (L,A) be an ontology,

• st ∈ L∗P be a subtrace of a trace of P .

The abstraction ontology mapping is a function maps such that:
maps : L∗P → L.

The application of the above abstraction ontology mapping maps on the ontology of P
returns as result the abstract ontology Labs = {l ∈ L : ∀ st ∈ L∗P l = maps(st)}.

Towards enabling connectors, in Chapter 5 we will use application ontologies character-
izing the application actions. Subsequently, to support the theory extension, we will also
extend such ontological description by introducing a middleware ontology that is the basis
for middleware protocol mediation (Section 6.2.1) together with domain-specific applica-
tion ontologies characterizing application actions defining both control- and data-centric
concepts (Section 6.2.2).

1.3 CHALLENGES AND CONTRIBUTIONS

As already pointed out, this thesis focuses on the interoperability problem between het-
erogeneous protocols and the solution we propose is a theory to automatically synthesize
mediators allowing protocols to interoperate by solving their mismatches.
The interoperability problem and the notion of mediator to solve it are not new. They
have been the focus of extensive studies within different research communities (this is
widely described in Chapter 2). Protocol interoperability come from the early days of
networking and different efforts, both theoretical and practical, have been done to address
it in several areas including, for example: protocol conversion, component adaptors, Web
services mediation, theories of connectors, wrappers, bridges, and interoperability plat-
forms.
Although the existence of numerous solutions in the literature, to the best of our knowl-
edge, all of them either: (i) assume the communication problem solved (or almost solved)
by considering protocols already (or almost) able to interoperate; or (ii) are informal mak-
ing it impossible to be automatically reasoned; or (iii) deal with the interoperability sepa-
rately either at application layer or at middleware layer; or (iv) follows a semi-automatic
process for the mediator synthesis requiring a human intervention; or (v) consider only
few possible mismatches.

The list above results in limitations making it difficult, if not impossible, to automati-
cally synthesize mediators in the context we consider, i.e., where protocols have no prior
knowledge one another and the way to achieve communication -if it is possible- needs
reasoning to emerge. Therefore, informally we can say that our work puts the emphasis
on “eliciting a way to achieve communication -if communication is possible” while it can
gain from more practical treatments of the mediators (or also of converters, or adaptors

10 Chapter 1. Introduction

or coordinators) synthesis. Our work has been devoted in particular to the elicitation and
definition of a comprehensive mediator synthesis process and of a theory of emerging
mediators which also includes related supporting methods and tools. In particular, our
work has led us to design automated techniques and tools to support the devised synthesis
process, from protocol abstraction to matching and mapping.
In the following, we summarize the challenges that we investigated and the related results
achieved, that are further detailed in the next chapters, which are contributions of this
thesis.

• Devising a comprehensive mediator synthesis process.
We defined AMAzING, a process which: (i) performs an abstraction of the proto-
cols (ii) checks their compatibility and (iii) in case of successful check (i.e., the
protocols are compatible), automatically synthesizes a mediator while returns an
incompatibility message otherwise.

• Approaching the mediator synthesis problem in a systematic way by adopting
a pattern-based solution.
We have precisely characterized the protocol mismatches that we intend to solve
with our connectors, as well as the basic mediator patterns that solve the classified
problems. We believe that this classification of mediator patterns can serve, in the
future, as a basis for addressing compositional mediator synthesis.

• Designing and extending a theory of mediators.
We elaborated MediatorS, a theory of mediating connectors (also referred as me-
diators or connectors), which defined the matching and mapping relations over the
interaction behaviours of applications abstracted as Labelled Transition Systems.
The theory has been applied to several case studies including Instant Messaging
real world applications.
Further, we have revised and extended the theory, so to deal also with middleware
layer protocols and conveyed data.

THESIS OUTLINE

As detailed in the following chapters, significant progress has been achieved towards ac-
tually enabling the connection of networked systems despite heterogeneity. The reminder
of the thesis is organized as follows.
Chapter 2 surveys the research work related to the topics of this thesis and, by making a
comparison with them, positions our work with respect to the literature.
The first contribution of the work, i.e. the AMAzING process is presented in Chapter 3
describing three phases: protocol abstraction, matching and mapping.
Chapter 4 illustrates another contribution, the mediator patterns, mades up by a set of de-
sign building blocks to tackle in a systematic way the protocol interoperability problem.
The core contribution is described in Chapter 5, where a formalization of the MediatorS

1.3 Challenges and Contributions 11

theory is given, under some assumptions, together with its implementation in terms of al-
gorithms.
Subsequently, in Chapter 6, we describe another contribution by extending the theory pre-
sented in the previous chapter in order to deal with a more complete protocol description.
That is, in addition to application-layer protocols considered in Chapter 5, it takes into
account also middleware-layer protocols and data.
We validate our theory, and hence process, on a real world case study in Chapter 7 and we
report in Chapter 8 about the CONNECT European Project that adopted both the process
and the theory.
Finally, we conclude in Chapter 9 with a discussion about the obtained achievements and
by outlining future work perspectives.

PUBLICATIONS

Some of the contributions listed above are also reported in the following published papers
on which this thesis is based:

• the paper [109] illustrates a preliminary version of the mediator patterns;

• the work [108] extends and revises the patterns presented in the previous paper;

• the paper [107] gives an overview of the problem and approach of this thesis;

• the paper [110] provides an high-level view of the theory for application-layer;

• the work [62] describes more in detail the theory providing a formalization of it;

• the paper [18] shows a combined approach between the mediator synthesis and the
monitoring mechanism;

• the work [15] presents first results towards the software architecture of the CON-
NECT project.

Furthermore, we are planning a number of works according to the future directions de-
scribed in the final discussion of this thesis.

CHAPTER 2

RELATED WORK

This Chapter gives an overview about the works in the literature related to this thesis.
Moreover, a comparison with the existing works is provided all along the text thus posi-
tioning our work with respect to the literature. The works description is organized based
on the different research areas and aspects they belong to, that are: Emergent Computing
(Section 2.1), Mediator/Connector Patterns (Section 2.2), and Protocol Interoperability
(Section 2.3).

2.1 EMERGENT COMPUTING

The Emergent Computing (EC) is described as a highly complex process which arises
from the cooperation of many simple processes. This paradigm is inspired by and explores
biological and social systems in which the behaviour of complex global level emerges in
a nonlinear fashion from a large number of interactions between low-level components
[102]. The Emergent Computation is a type of bottom-up computation in the sense that
the system behaviour is neither globally nor fully programmed but simply emerges as an
aggregation of local information [68].
Emergent Computing Systems are defined by Olson et al. as systems composed of inde-
pendent agents that behave according to explicit instructions [88, 87]. The system shows
spatial and/or time-implicit patterns arising as result of interactions between the subcom-
ponents that constitute it and/or between them and their environment. Patterns belong to
a higher level with respect to that of agents and are not explicitly coded in their specifica-
tions.
Among the works belonging to the Emergent Computing research we can mention [115]:
(i) that of John von Neumann’s on self-reproducing automata (1940) in systems with
computational abilities of a universal Turing machine; (ii) a work based on Genetic Al-
gorithms which are computational models of evolution and growth and where the central
concept is the Evolution by Natural Selection; (iii) work about classifier systems, which
can be seen as an evolution of genetic algorithms, and which can be thought as super-
agents that combine different genetic algorithms; and finally (iv) neural networks that are
a complex array of layers designed to mimic the paths of neurons in the brain.
In the EC context, one line of work that has correlation with the work that we propose in

13

14 Chapter 2. Related Work

this thesis, is the one of Aberer et al. [90, 4, 3]. Their study, dating back to the beginning
of 2000, analyzes the principles and conditions under which global properties emerge
from local interactions. The context of their study is the Semantic Web, that is highly
dynamic, in which agents (peers) do not necessarily have the same vision. The idea is to
apply such principles to an interpretation of structured data.

These peer dynamically build information and knowledge creating new semantic commu-
nity. They establish a new form of semantic interoperability namely Emergent Semantics
(ES) which is based on dynamic agreements. This latter is an emerging phenomenon built
incrementally. Its state at a given instant of time depends on the frequency, the quality,
and the efficiency with which negotiations can be conducted to achieve an agreement on
a common interpretation in the context of a specific purpose. In the following we report
the key principles of the Emergent Semantics [4].

1. Agreement as a Semantic Handshake Protocol The set of mutual beliefs among
interacting agents is called the agreement or consensus. Meaningful exchanges can
happen only on the basis of mutually accepted propositions. The strength of the
agreement will depend on the strength of the accepted propositions, their quality
and trustworthiness.

2. Agreements emerge from negotiations The information exchange between agents is
necessary to negotiate new agreements and to verify the existent ones. When an
agent learns more about other agents, and when the interests are spread or become
more focused, then the agreements evolve.

3. Agreement emerge from local interactions An assumption on the Emergent Seman-
tics is that the commitments are dynamic and incrementally established. A chal-
lenge is the scalability because of the complexity of the ES and the costs of com-
munication. The practice suggests as a solution to use Emergent Semantics locally
to reduce communication costs and to derive global agreements through aggrega-
tion of local agreements.

4. Agreements are dynamic and self-referential approximations Since the interpreta-
tion can depend on the context, the agreements are established dynamically and the
local consensus is influenced by the existing global agreements, thus the process of
establishing agreements is self-referential.

5. Agreements induce semantic self-organization Considering the dynamics and self-
referential nature of emergent semantics, it is not far-fetched to view it as the result
of a self-organization process.

According to what described, there is a correlation between the model of Emergent Se-
mantics and our work. Similarly to ES, in our theory we have the concept of agreement
that is represented by the ontology mapping and that plays a crucial role. Indeed, we build
upon it for the mediator construction.

2.2 Mediator Patterns 15

Moreover, such agreement is local meaning that it relates to potentially communicating
protocols. Thanks to it we are able to automatically derive a mediator that is the fun-
damental (missing) piece for the protocols to constitute a global system where protocols
interoperate.

2.2 MEDIATOR PATTERNS

In the last decades, protocol mediation has been investigated in several contexts, among
which integration of heterogeneous data sources [126, 125] and design patterns [54]. In-
deed, an approach to protocol mediation is to categorize the types of protocol mismatches
that may occur and that must be solved in order to provide corresponding solutions to
these recurring problems. This immediately reminds of patterns whose pioneer was
Alexander [5]: “each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the same
way twice”. Patterns have received attention in several research areas.

In the software architecture field [92, 106, 116], Bushmann et al. [28] gave the fol-
lowing definition: “A pattern for software architecture describes a particular recurring
design problem that arises in specific design contexts, and presents a well-proven generic
scheme for its solution. The solution scheme is specified by describing its constituent
components, their responsibilities and relationships, and the ways in which they collabo-
rate. [...] An architectural pattern expresses a fundamental structural organization schema
for software systems. It provides a set of predefined subsystems, specifies their responsi-
bilities, and includes rules and guidelines for organizing the relationships between them”.
More recently, architectural patterns have been revisited in [9], which proposes a pattern
language.

The “gang of four” in [54] have defined design patterns as “descriptions of commu-
nicating objects and classes that are customized to solve a general design problem in a
particular context”. Among all, two design patterns are related to ours: the Mediator
Design Pattern that is behavioral, and the Adapter Pattern that is structural. The former
is similar because it serves as an intermediary for coordinating the interactions among
groups of objects but it is different because its main aim is to decrease the complexity of
interactions. The latter is similar because it adapts the interfaces of the objects while it
differs because our mediator is not just an interface translator.

In the Web services context, several works have introduced basic pattern mismatches
and the corresponding template solutions to help the developers to compose mediators
[14, 34, 113, 129, 65]. In particular, references [129, 14] are related to our work since
they identify and classify basic types of mismatches that can possibly occur when com-
patible but mismatching processes try to interoperate. Moreover, they provide support to
the developers by assisting them while identifying protocol mismatches and composing
mediators. In [129], the authors also take into consideration more complex mediators

16 Chapter 2. Related Work

obtained by composition of basic ones. The main difference between these two works
and ours is the semi-automation issue. Indeed, they require the developer intervention
for detecting the mismatches, configuring the mediators, and composing basic mediators
while, thanks to formal methods as we will illustrate in the following chapters, we aim at
automatically deriving the mediator under some conditions.
Reference [45] presents an algebra over services behavioral interfaces to solve six mis-
matches and a visual notation for interface mapping. The proposed algebra describes with
a different formalism, solutions that are similar to our basic patterns and this can be of
inspiration for us in the direction of reasoning.

The work [130] proposes an adaptor theory for the interoperability of applications. Ap-
plications are assumed to agree on the ordering of messages and the theory does not con-
cern the messages buffering, thus not solving ordering, splitting and merging mismatches.

In the connector area [105], Spitznagel in her Ph.D. thesis [111] illustrates a set of pat-
terns of basic connector’s transformations that is adaptations, enhancements. She also
shows how these patterns can be applied compositionally to simple connectors in order to
produce a number of more complex connectors. In particular she shows how to select and
to apply such transformations in the domain of dependability and proposes a prototypal
tool to semi-automatically derive new connectors as enhancements.
The work [124], exploiting concepts from the Software Architectures and from the Cate-
gory Theory, proposes three connector pattern to describe transient interactions in mobile
computing that are inhibition, synchronization, and communication actions. Using the
COMMUNITY design language for the syntax and the categorical framework Category
Theory for the semantics, the authors illustrate how to obtain the architecture of a whole
mobile system by applying the instantiated connectors to the components. This approach
is suited for the representation of a static architecture of systems with limited mobility or
limited number of different components types.
In [59] the authors describe a way to characterize connectors basing on the same founda-
tional idea of Mendeleiev’s periodic table of elements. Inspiring to this table that contains
all basic elements in which all known substances can be decomposed, they propose a set
of high level canonical properties as framework to describe all possible connectors and to
allow operations to be defined over them. They also reason about factorization of connec-
tors with common properties, specialization of connectors with the addition of properties
to the owned set and highlight the class connector concept.

Summarizing, as explained in this section, our work clearly relates to mediator patterns
existing in the literature in the software architecture area, in the software connector field,
and especially to some design patterns and patterns in the web services context.

2.3 PROTOCOL INTEROPERABILITY

Protocol interoperability has been the focus of significant research since the early days
of networking. Systematic approaches to protocol conversion were the initial focus of

2.3 Protocol Interoperability 17

studies, i.e., synthesizing a mediator that adapts the two interacting protocols that need to
interoperate based on formal methods as surveyed in [29]. Existing approaches may in
particular be classified into two categories depending on whether: (i) they are bottom-up,
heuristic-based, or (ii) top-down, algorithmic-based. In the former case, the conversion
system derives from some given protocol, which may either be inferred from the semantic
correspondence between the messages of the interacting protocols [72] or correspond to
the reference protocol associated with the service to be realized through protocol inter-
action [86]. In the latter case, protocol conversion is considered as finding the quotient
between the two interacting protocols. Then, if protocols are specified as finite-state sys-
tems, an algorithm computing the quotient is possible but the problem is computationally
hard since it requires an exhaustive search of possibilities [29]. Then, the advantage of
the bottom-up approach is its efficiency but at the expense of: (i) requiring the message
mapping or reference protocol to be given and further (ii) not identifying a converter in
all cases. On the other hand, the top-down approach will always compute a converter
if it exists given the knowledge about the semantics of messages, but at the expense of
significant complexity. This has led to the further development of formal approaches to
protocol conversion so as to improve the performance of proposed algorithms [71]. Our
work extensively builds on these formal foundations, adopting a bottom-up approach in
the form of interface mapping which, under some assumptions, is always able to synthe-
size a mediator - if it exists. However, unlike the work of [72], our interface mapping is
systematically inferred, thanks to the use of ontologies. In addition, while the proposed
formal approaches pave the way for rigorous reasoning about protocol compatibility and
conversion, they are mostly theoretical, dealing with simple messages (e.g., absence of
parameters).

A work strictly related to the theory presented in this thesis is the seminal work [130]
that proposes an adaptor theory to characterize and solve the interoperability problem
of augmented interfaces of applications. Yellin and Strom formally define the checks of
applications compatibility and the concept of adapters. The latter can be used to bridge
the differences discovered while checking the applications that have functional match-
ing but are protocol incompatible. Furthermore, they provide a theory for the automated
generation of adapters based on interface mapping rules, which relate to our definition
of ontology mapping for protocols. With respect to the protocol conversion, in [130]
is addressed a more practical treatment, which focuses on the adaptation of component
protocols for object-oriented systems. The solution is top-down in that the synthesis of
the mediator requires the mapping of messages to be given. By further concentrating on
practical application, the authors have primarily targeted an efficient algorithm for pro-
tocol conversion, leading to a number of constraining assumptions such as synchronous
communication. In general, the approach is quite restrictive in the mediation patterns that
it supports (as illustrated in Section 2.2). Then, our solution relates to this specific pro-
posal and it is more general by dealing with more complex mediation patterns and further
inferring message mapping from the ontology-based specification of interfaces. While
the approach presented in [130] is semi-automatic because of non-automatic interface
mapping. Our solution further defines protocol compatibility by in particular requiring
that any input action (message reception) has a corresponding (set of) output action(s),

18 Chapter 2. Related Work

while the definition of [130] requires the reverse. Our approach then enforces networked
systems to coordinate so as to update their states as needed, based on input from the
environment.

More recent works are for example [24, 23, 30, 117, 8, 7]. The paper [117] presents an
approach for the synthesis of deadlock-free coordinators for correct components assem-
bly. The aim of the coordinator is to guarantee that the assembly correctly interact by
preventing the behavioural problems that can arise from component composition. The
coordinator is build by taking as input the behavioural interfaces specification of compo-
nents and the desirable behavioural properties for the composed system. The approach is
supported by the SYNTHESIS tool1 [7].
Moreover, in [8] the authors illustrate how to generate a distributed adaptor by splitting
the centralized version that is the outcome of the approach in [117] into wrappers local
to the components. Differently from our work, [117] is designed for protocols already
able to interoperate, hence not dealing with the reasoning on different languages. Nev-
ertheless, we can think to exploit some of their achievements in order to build a whole
implementation of our process till the code generation.
Similarly to [117], the paper [30] proposes an approach for software adaptation which
takes as input components behavioral interfaces and adaptation contracts and automat-
ically builds an adaptor such that the composed system is deadlock-free. The adaptor
generation is also tool supported.
Although the work described in [30] is a first step towards dealing with protocols on dif-
ferent languages, this remains at a syntactic level. Indeed, the author assume to know
possible action mappings between an action of one protocol which is labelled with a dif-
ferent name in the other. Under this assumption also the approach [117] may be able to
deal with such protocols.
Unfortunately, also [30] does not deal with the reasoning on different languages while
building the interoperability solution and solving the behavioural mismatches.
The two approaches [117] and [30] seems to be closely related to our work while pos-
ing the focus on different problems. Indeed, they both mainly concentrate on ensuring
deadlock freedom and on addressing system-wide adaptation, specified through policies
and properties, while considering the communication problem (almost) solved. Instead
our main goal, starting from a more complex scenario where protocols meet dynamically,
is to achieve communication. We consider different protocols in terms of language and
behaviour and without a priori knowledge one of the other. And our aim is to find - if pos-
sible - a way to let them communicate, i.e., we look for a common abstraction that allows
us to synthesize a connector solving their mismatches and enabling their interoperability.

More recently, with the emergence of Web services and advocated universal interoper-
ability, the research community has been studying solutions to the automatic mediation
of business processes [119, 118, 80, 127]. They differ with respect to: (a) a priori expo-
sure of the process models associated with the protocols that are executed by networked
resources, (b) knowledge assumed about the protocols run by the interacting parties, (c)
matching relationship that is enforced. However, most solutions are discussed informally,

1http://www.di.univaq.it/tivoli/index.php?pageId=synthesis

2.3 Protocol Interoperability 19

making it difficult to assess their respective advantages and drawbacks.

This highlights the needed for a new and formal foundation for mediating connectors
from which protocol matching and associated mediation may be rigorously defined and
assessed. These relationships should be automatically reasoned upon, thus paving the way
for on the fly synthesis of mediating connectors. To the best of our knowledge, such an
effort has not been addressed in the Web services and Semantic Web area although pro-
posed algorithms for automated mediation manipulate formally grounded process models.
Within the Web Services research community, a lot of work has been also devoted to be-
havioral adaptation which has been actively studying this problem. Among these works,
and related to our, there is [81]. It proposes a matching approach based on heuristic
algorithms to match services for the adapter generation taking into account both the in-
terfaces and the behavioral descriptions. Our matching, as sketched before, is driven by
the ontology and is better described in [110] where the theory underlying our approach is
described at a high level and in [62] where a more detailed version of the theory can be
found. Other related works are the ones about protocol conformance [21, 22].

Moreover, recently the Web services community has been also investigating how to ac-
tually support service substitution so as to enable interoperability with different imple-
mentations (e.g., due to evolution or provision by different vendors) of a service. While
early work has focused on semi-automated, design-time approaches [80, 97], latest work
concentrates on automated, run-time solutions [40, 31]. The work [40] addresses the
interoperability problem between services and provides experimentation on real Web2.0
social applications. They propose a technique to dynamically detect and fix interoperabil-
ity problems based on a catalogue of inconsistencies and their respective adapters. This
is similar to our proposal to use ontology mapping to discover mismatches and mediator
to solve them. Our work differs with respect to theirs because we aim at automatically
synthesizing the mediator. Instead, their approach is not fully automatic since although
they discover and select mismatches dynamically, the identification of mismatches and of
the opportune adapters is made by the engineer.
Our work also closely relates to [31], sharing the exploitation of ontology to reason about
interface mapping and the further synthesis of protocol converter behaviors according to
such mapping, using model checking [31]. However, our work goes one step forward
by not being tied to the specific Web service domain but instead considering highly het-
erogeneous pervasive environments where networked systems may build upon diverse
middleware technologies and hence protocols.

Our work also closely relates to significant effort from the semantic Web service domain
and in particular the WSMO (Web Service Modeling Ontology) initiative that defines me-
diation as a first class entity for Web service modeling towards supporting service compo-
sition. The resulting Web service mediation architecture highlights the various mediations
levels that are required for systems to interoperate in a highly open network [113]: data
level, functional level, and process level. This has in particular led to elicit base patterns
for process mediation together with supporting algorithms [34, 119]. However, as for
the above mentioned work on Web service adaptation, mediation is focused on the up-

20 Chapter 2. Related Work

per application layer, ignoring possible mismatches in the lower protocol layers. In other
words, work from the Web service arena so far concentrates on interoperability among
networked systems from the same technology domain. However, pervasive networks will
increasingly be populated by highly heterogeneous systems, spanning, e.g., from systems
for sensing/actuating to enterprise information systems. As a result, systems run disparate
middleware protocols that need to be reconciled on the fly.

Other works concerns connectors and include a classification framework [78] presented
with the purpose to better understand the existing connectors and also to synthesize new
species. Assuming that connectors mediate the interactions among components, in or-
der to give the classification they identify for each connector: one or more interaction
channels called ducts, mechanisms for transferring data and/or control along the ducts,
connector categories, types, dimensions within types, and values for each dimensions.
The main categories identified are: communication, coordination, conversion, and fa-
cilitation while the main types are: procedure call, data access, linkage, stream, event,
arbitrator adaptor, and distributor. Connector species are classified or created by choosing
the appropriate combinations of dimensions and values for them.

Other studies on connectors are [128] and [69]. In [128] Woollard and Medvidovich pro-
pose software connectors as first-class to model services required in parallel programming
instead of languages, libraries, and compilers. They both observed the general form with
which scientific applications are described as programs and the evolution of connectors,
from locks and semaphores to monitors and single commits. Thus basing on these obser-
vations they resumed the services that high performance connectors must provide that is
communication, separation of concerns and synchronization.
In [69] Kell studies connectors under several perspectives. He says that a connector
provides mechanisms enabling communication between components and requires agree-
ments between two components which want to communicate in terms of common as-
sumptions about syntax and semantics of the messages they exchange. He also states that
there are types and instances of connector that can adhere or not to a type and that have
in addiction run-time state. Moreover he discusses about the continuum that component
and connector form (not a disjunction as is written till now in literature) and about the
distinction that only depends on the level of abstraction assumed. Furthermore he de-
scribes the relationships with coordinators and adaptors that are viewed as most general
connectors and argue about the coupling derived from the agreements giving three possi-
ble mitigation solutions that also achieve re-use: localization of the agreement to change
it, standardization to eliminate coupling problems and adaptation with extra code to me-
diate. At the end he identifies the configuration languages highlighting their relevance in
composition proposing explicit primitive connectors.

Other formally grounded state of the art works on connectors include [112] that presents
an approach for formally specifying connector wrappers as protocol transformations,
modularizing them, and reasoning about their properties, with the aim to resolve com-
ponent mismatches. In their vision a wrapper is new code interposed between component
interfaces and communication mechanisms and its intended effect is to moderate the be-

2.3 Protocol Interoperability 21

haviour of the component in a way that is largely transparent to the component or the
interaction mechanism. Instead, a connector wrapper is a wrapper that address issues
related to communication and compatibility including things such as changing the way
data is represented during communication, the protocols of interaction, the number of
parties that participate in the interaction, and the kind of communication support that is
offered for things like monitoring, error handling, security, and so on. Their approach is
to formally specify connector wrappers by means of a process algebra as a set of parallel
process (one for each connector’s interface and one for the glue) and to produce new con-
nectors converting the protocol defining the first connector wrapper into a new protocol
defining an altered connector by adding and modifying processes. Protocol transforma-
tions may include redirecting, recording and replaying, inserting, replacing, and discard-
ing particular events yielding benefits like composability and reusability.
In [48] Fiadeiro, Lopes, and Wermelinger propose mathematical techniques as founda-
tions to develop architectural design environments that are ADL-independent. In par-
ticular they present a categorical semantics for the formalization of concepts like inter-
connection, configuration, instantiation and composition. That is they show how this
framework allows the computation (i.e. the configuration) of the program thus providing
a well-defined semantics for an architectural graphical representation. They moreover
show their formalization of connectors to coordinate the interactions (that can change at
run-time) between components and how the categorical framework provides a way to cre-
ate new connectors by composition.
In [11] Balek considering the context of distributed component-based applications and in
particular the SOFA/DCUP project component model, proposes a new connector model
that allows the description of more or less complex interactions between components with
a semi-automatic generation of the corresponding code. He highlights the so called de-
ployment anomaly that is the post-design modification of a component internals enforced
by its deployment (owing to the fact that communication mechanisms are directly hard-
coded in the component). Thus he identifies functional and non-functional requirements
of a connector model design giving also an architectural model of connectors and a proof-
of-concepts.
The paper [75] presents a formal specification mechanism, by a categorical semantics,
for higher order connectors concept that is connectors that take a connector as parameter
and deliver another as result. The connector in input is constituted by a formal parameter
declaration that describes the kind of connector to which that service can be applied and
a body connector that models the nature of the service that is superposed on instantiation
of the formal parameter. This notion supports designers in constructing software con-
nectors also including services for properties like security, fault tolerance, compression,
and monitoring handled by the connector passed as actual parameter. They also describe
how to compose these higher order connectors in a way independent of any Architectural
Description Language.
In [12] Barbosa and Barbosa present a formalization of software connectors that is the
patterns of interaction between components. They give a semantic model through a coal-
gerbra and also a systematic way of building connectors (e.g. source and sinks connectors)
by aggregation of ports or by a concurrent composition or by a generalization of pipelin-
ing (e.g. broadcasters and mergers).

22 Chapter 2. Related Work

In [27] Bruni, Lanese, and Montanari present an algebra for five basic stateless connec-
tors that are symmetry, synchronization, mutual exclusion, hiding and inaction. They also
give the operational, observational and denotational semantics and a complete normal-
form axiomatization. The presented connectors can be composed in series and in parallel.
In [104] Schreiner and Göschka propose the foundations for the automatic middleware
generation following the component based paradigm principles applied to the communi-
cation middleware for distributed embedded systems. In particular, they provide the start-
ing elements for the methodology that are: connector schematics i.e. structural design
of explicit connectors (comprising an architecture of the communication needs) treating
sender-receiver connector and client-server connector. They also provide a classification
of a set of connectors building blocks called communication primitives.

The issue of middleware interoperability has deserved a great deal of attention since
the emergence of middleware. Solutions were initially dealing with diverging implemen-
tations of the same middleware specification and then evolved to address interoperability
among different middleware solutions, acknowledging the diversity of systems populat-
ing the increasingly complex distributed systems of systems. As reported in [36, 38],
one-to-one bridging was among the early approaches [89] and then evolved into more
generic solutions such as Enterprise Service Bus [32], interoperability platforms [56] and
transparent interoperability platforms [25, 82]. Our work takes inspiration from the latest
transparent interoperability approach, which is itself based on early protocol conversion
approaches. Indeed, protocol conversion appears the most flexible approach as it does
not constrain the behavior of systems. Then, our overall contribution comes from the
comprehensive handling of protocol conversion, from the application down to the mid-
dleware layers, which have so far been tackled in isolation. In addition, existing work on
middleware-layer protocol conversion focuses on interoperability between middleware
solutions implementing the same interaction paradigm. On the other hand, our approach
allows for interoperability among networked systems based upon heterogeneous middle-
ware paradigms, which is crucial for the increasingly heterogeneous networking environ-
ment.

To summarize what we already mentioned above, our work: (i) builds on the protocol
conversion idea of a bottom-up approach in the form of interface mapping; (ii) positions
in the wide research area of software connectors and in particular of mediators; (iii) is
linked to adaptors theories for several aspects, e.g., interface (ontology) mapping and
mediation patterns, while is different for another aspect, i.e., our work concentrates on
the problem of finding a way to let protocols communicate instead of ensuring deadlock
freedom while assuming the communication (almost) solved; (iv) relates to and builds
upon tremendous work done in the web services area going a step forward since the
theory is not tight to a specific context; (v) relates to the middleware area contributing
with a combined approach between application- and middleware-layer interoperability
where middleware interoperability is among different middleware paradigms.

In conclusion, tremendous work has been done in the literature in several research areas
as surveyed in this chapter. Although the existence of all these works, to the best of our

2.3 Protocol Interoperability 23

knowledge they have limitations making it difficult, if not impossible, to automatically
synthesize mediators in the context we consider. We recall that we concentrate on a net-
worked context including protocols that meet dynamically without any a-priori knowledge
one another. This highlights the need for a reasoning on such protocols that let emerge a
way for them to achieve communication (if possible) to interoperate.
As mentioned above, the solutions in the literature are limited for one or a combination
of the following aspects.

- assume the communication problem solved (or almost solved) by considering pro-
tocols already (or almost) able to interoperate;

- are informal making it impossible to be automatically reasoned;

- deal with the interoperability separately either at application layer or at middleware
layer;

- follows a semi-automatic process for the mediator synthesis requiring a human in-
tervention;

- consider only few possible mismatches.

This motivates our work that aims at defining a process and a theory to automatically
synthesize emerging mediators.

CHAPTER 3

THE AMAzING PROCESS

One of the contributions of this thesis work, as pointed out in Chapter 1, is a compre-
hensive mediator synthesis process to automatically synthesize a mediator that allows
compatible protocols to interoperate.
Given the ubiquitous context where protocols meet dynamically without a priori knowl-
edge, and since we focus on automated synthesis techniques, a key issue is to work with
reduced yet meaningful (protocols) models. Moreover, if protocols we deal with are com-
patible, being able to potentially communicate, we expect to find at a given level of ab-
straction a common (protocol) model for them illustrating their potential interactions.

Abstracted
protocols

Abstraction

Semantic characterizations
(of protocols actions)

Protocols
(behavioral specifications)

Abstraction
information

Matching
abstracted protocols

Matching

END

NO

YES

Mapping

Mediator

Matching
Information

Figure 3.1: Overview of the AMAzING Process

These motivations inspired our process, depicted in Figure 3.1 which amounts to: ab-
stracting the protocols so to make them comparable, while possibly reducing their size;
checking the (abstracted) protocols compatibility, i.e., the existence of portions of them
that could interoperate; deriving the mediator that, solving possible mismatches, allows

25

26 Chapter 3. The AMAzING Process

these protocols (portions) to communicate. We called this process AMAzING.
The acronym AMAzING summarizes the three phases or steps of the process that are:
Abstraction, MAtching and mappING respectively illustrated in Sections 3.1, 3.2, and 3.3.
Chapters 5 and 6 illustrate a realization the AMAzING process from abstraction to match-
ing and then mapping. In the following sections, for the explanation, we refer to the Photo
Sharing scenario. We consider two applications dynamically meeting. A spectator enters
the stadium with its device embedding a peer-to-peer (P2P) photo consumer application;
another spectator is already inside with an infrastructure based (IB) producer application
running on its device.

3.1 THE ABSTRACTION PHASE

The first phase of the AMAzING process is the abstraction which is highlighted by Fig-
ure 3.2 by the (non-gray) coloured portion. Referring to the scenario described above,
although the two application protocols are heterogeneous in principle they should be
compatible and able to communicate. In order to check their compatibility, during the
matching phase, we first need to make them comparable.

Matching
abstracted protocols

Matching

END

NO

YES

Mapping

Mediator

Matching
Information

Abstracted
protocols

Abstraction

Semantic characterizations
(of protocols actions)

Protocols
(behavioral specifications)

Abstraction
information

Figure 3.2: Abstraction phase of the AMAzING Process

Then, this step takes as input (i) protocols behavioural models, and (ii) semantic charac-
terization of the protocol actions. The returned output is made by (1) abstracted protocols
behaviour and (2) information used to perform the protocol abstraction. This abstraction
information, in case of a positive answer from the subsequent matching phase, will be
exploited (backwards) to build the mediator during the mapping phase. In order to find

3.2 The Matching Phase 27

the protocols’ abstractions, we exploit the information contained in their semantic char-
acterization to suitably relabel them so to make them comparable.
In the example described above we have two different protocols (i), P2P consumer and IB
producer, having different languages, interactions with third parties, and different granu-
larities. However, thanks to their semantic characterization (ii), and in particular to some
semantic matching information (2), we are able to abstract their behaviours by relabelling.
After the relabelling operation, we obtain new behavioural descriptions for both protocols
labelled only by common actions and τ , that is, protocols more abstract than before, e.g.,
sequences of actions may have been compressed into single actions. This step, produc-
ing abstract protocols, addresses to some extent a scalability issue. The next phase is the
matching.

3.2 THE MATCHING PHASE

To establish whether the two abstracted protocols can interoperate we have to check the
existence of portions that can interoperate.

Abstraction

Semantic characterizations
(of protocols actions)

Protocols
(behavioral specifications)

Abstraction
information

NO

YES

Mapping

Mediator

Abstracted
protocols

Matching
abstracted protocols

Matching

END

Matching
Information

Figure 3.3: Matching phase of the AMAzING Process

More precisely we have to verify the existence of at least one complementary trace, by
properly taking into account and managing mismatches (see Chapter 4) and communica-
tions with third parties. Figure 3.3 illustrates the second phase of the AMAzING process,
the matching. The non-grayed portion shows that this step takes as input (1) the ab-
stracted behavioural specification and, performs the matching check that can answer yes

28 Chapter 3. The AMAzING Process

or no. Depending on the answer, this phase can return as output (a) the matching ab-
stracted behaviours and (b) matching information (case answers yes) or end its execution
(case answer no). In order to find the matching portion of the abstracted protocols, if it
exists, a check has to be performed to discover whether modulo mismatches and third
parties communication there exists at least one trace in both protocols that allows them to
coordinate to reach their goal (we recall that we express coordination as synchronization).
If such trace(s) exists then the check is successful, otherwise it is not.
The matching check of the above Photo Sharing example is successful and the match-
ing abstracted behaviours of IB producer and P2P consumer are respectively upload/-
download of photos and download/upload of comments. In this example we do not have
matching information while in general they could be for instance actions reordering.
A successful matching means that the two systems can achieve a common goal/intent,
i.e., implies the existence of a mediating connector and the automated computation of the
mapping. After a successful matching check on the behaviours, we obtain the set of their
complementary traces (labelled only by common actions and τ). The subsequent step is
the mapping or synthesis which automatically produces the mediator protocol.

3.3 THE MAPPING PHASE

The mapping or synthesis is the last phase of the process.

Abstraction

Semantic characterizations
(of protocols actions)

Protocols
(behavioral specifications)

Matching
NO

YES

Abstracted
protocols

Abstraction
information

Matching
abstracted protocols

END

Mapping

Mediator

Matching
Information

Figure 3.4: Mapping phase of the AMAzING Process

This step serves to find a suitable mediator that allows the protocol interoperability that
otherwise would not be possible. It is automatically activated only in case of a success-

3.3 The Mapping Phase 29

ful matching check and it is represented in Figure 3.4 by the non-gray coloured portion.
he mapping takes as input the output of the two previous phases, i.e., (1) the abstracted
protocols, (2) the abstraction information, (a) the matching abstracted behaviours, (b) and
the matching information and returns as output a mediator. The mediator is described at
the same level of the two starting protocols being labelled with actions belonging to their
alphabets.
In the considered Photo Sharing the mediator allows: the IB producer to upload photos
and the P2P consumer to download photos following their protocols while managing their
previously identified mismatches, i.e., language differences, third parties interactions and
different granularity. The mediator similarly allows the P2P consumer to upload photo
comments and the IB producer to download them.
After the mapping, we then obtain a mediator that, as described in Chapter 1, is a proto-
col that allows the communication among the mismatching protocols by mediating their
differences.

CHAPTER 4

MEDIATOR PATTERNS

In order to comprehensively define the problem of protocol mediation, we categorize the
types of protocol mismatches that may occur and that must be solved in order to provide
corresponding solutions to these recurring problems. This immediately reminds of pat-
terns [5, 28, 9, 54]. Indeed, in this chapter, which is an extended and revised version of
the work discussed in [109], we describe the Mediator Patterns, a set of design building
blocks to tackle in a systematic way the protocol mediation problem, that is, the interop-
erability between heterogeneous protocols. The patterns give an overview about the kind
of problems and their related solutions that have to be supported, and thus are accounted
for in the definition of functional matching and protocol mapping used in the second and
third steps of the AMAzING process.

The design building blocks that we present include:

• An Architectural Pattern called Mediating Connector, which is the key enabler for
communication;

• A set of Basic Mediator Patterns, which describe: (i) basic mismatches that can
occur while components try to interact, and (ii) their corresponding solutions.

For illustration, in the following, we consider the Photo Sharing scenario introduced in
Section 1.1, for which multiple versions of both the IB and P2P implementations may be
envisioned.
These applications should be able to interoperate since they both have similar function-
alities while not having the very same interfaces and behaviours. Then, mediating their
respective protocols to achieve interoperability is far from trivial.

In this chapter, we make some assumptions. We assume to know the interaction protocols
run by two networked components as LTSs and the components’ interfaces with which
to interact as advertised or as result of learning techniques [60, 19]. We also assume a
semantic correspondence between the messages exchanged among components exploiting
ontologies. Note that we use the generic term component to indicate networked systems.
In particular, to ease the explanation and without loss of generality, we consider one
application at a time on networked systems.

31

32 Chapter 4. Mediator Patterns

The remaining of this chapter is organized as follows. In Section 4.1, we illustrate models
of different implementations of the Photo Sharing scenario. In Section 4.2, we describe a
pattern-based approach which we envision for the automatic synthesis of mediating con-
nectors for the ubiquitous networked environment. In Sections 4.3 and 4.4, we illustrate
the Mediating Connector Architectural Pattern and the related Basic Mediator Patterns
Then, Section 4.5 illustrates the application of the mediator patterns to the Photo Shar-
ing scenario (see Section 1.1) by showing how the defined patterns can be used to solve
interoperability mismatches. In Section 4.6, we conclude by also outlining future work.

4.1 PHOTO SHARING APPLICATIONS

To better illustrate protocol mediation and the related underlying problems, in the follow-
ing we exploit the Photo Sharing scenario (sketched in Section 1.1 and recalled above),
where different application implementations with similar functionalities should be able to
interoperate despite behavioural mismatches.
We recall that the high level functionalities that the networked systems implement, taking
the producer perspective, are: (1) the authentication -for the IB producer only- possibly
followed by (2) the upload of photo, by sending both metadata and file, possibly followed
by (3) the download of comments; on the other hand, taking the consumer perspective, the
implemented high level functionalities are: (i) the download of photo by receiving both
metadata and file respectively, possibly followed by (ii) the upload of comments.
Figure 4.1 then shows four different versions of the P2P application (v1, v2, v3 and v4
respectively), where protocols are depicted using state machines (made by states, tran-
sitions and actions) where the names of actions are self-explanatory. Note that the four
protocols differ for several aspects. For instance they have: different actions names with
the same semantics (e.g., PictureFile vs. PhotoPhile), different actions order to perform
the same operation (e.g., PhotoMetadata,PhotoFile vs. PhotoFile,PhotoMetadata), differ-
ent actions granularity (e.g., PhotoMetadata and PhotoFile vs. PhotoMetaAndFile). We
further use the convention that actions with overbar denote output actions while the ones
with no overbar denote input actions. In all four versions of the P2P implementation, the
networked system implements both roles of producer and consumer. Instead, as depicted
in Figure 4.2, the IB implementation, while having similar roles and high level function-
alities with respect to the P2P one, differs from it, because: (i) in IB, the consumer and
producer roles are played by two different/separate networked systems, in collaboration
with the server, and (ii) comparing complementary roles among any P2P and IB, they
have different interfaces and behaviours. This second difference applies also if one con-
siders two different versions (among the four) of the P2P implementation. In fact, two
instances of different versions (e.g., Photo Sharing version 1 and version 3) have different
interfaces and behaviours preventing their direct interoperability. While two instances of
the same version (e.g., P2P Photo Sharing version 1) have the very same interfaces and
behaviours thus being able to interoperate.

4.1 Photo Sharing Applications 33

v1) Photo-Sharing version 1

PhotoMetadata

PhotoFile

PhotoFile

PhotoMetadata

PhotoComment

PhotoComment

v2) Photo-Sharing version 2

PictureMetadata

PictureFile PictureFile

PictureMetadata

PictureComment

PictureComment

v3) Photo-Sharing version 3

PhotoMetadata

PhotoFile PhotoFile

PhotoMetadata

PhotoComment

PhotoComment

PhotoMetaAndFile

PhotoCommentPhotoComment

v4) Photo-Sharing version 4

PhotoMetaAndFile

Figure 4.1: Peer-to-Peer-based implementation

c) Photo-Sharing Consumera) Photo-Sharing Producer

DownloadPhoto

CommentPhoto

SearchPhotos

DownloadPhoto

Authenticate

b) Photo-Sharing Server

UploadPhoto

Authenticate

UploadPhoto

SearchPhotos

CommentPhoto

CommentPhoto

Acknowledge

Acknowledge

SearchPhotos
SearchPhotos

DownloadPhoto

DownloadPhoto

CommentPhoto

Figure 4.2: Infrastructure-based implementation

34 Chapter 4. Mediator Patterns

For the sake of illustration, from now on and when not differently specified, we consider
as example the pair of mismatching applications made by: the IB producer (Figure 4.2 a))
and the P2P Photo Sharing Version 1 (Figure 4.1 v1)).

4.2 A PATTERN-BASED APPROACH FOR

INTEROPERABILITY MISMATCHES

In this section we illustrate a pattern-based approach to solve interoperability mismatches.
The defined patterns allow us to rigorously characterize the kind of interoperability mis-
matches we want to solve by means of the automated mediator synthesis process described
in Chapters 3 and 5. Thus, this chapter can be considered as the foundational base for the
subsequent chapters. To establish if components are compatible, i.e., if modulo some
adaptation, they show complementary sequences of messages visible at interface level,
we envision (1) a decomposition strategy/tool to decompose the whole components’ be-
haviour (LTS) into elementary behaviours (traces) representing elementary intents of the
components and (2) an automatic analyzer to identify mismatches between elementary
behaviours of the different components as done in other research areas [81, 84]. Once
discovered the components compatibility, solving their interoperability means solving the
behavioural mismatches that they exhibit. Then it is necessary to: (3) define a mismatches
manager to solve the identified mismatches between elementary behaviours; (4) define a
composition approach to build elementary mediating behaviours (mediating traces) based
on the identified mismatches and their relative solutions; (5) define a composition strat-
egy to build a mediating connector’s behaviour starting from the elementary mediating
behaviours.

The above described approach is far from trivial, especially if it has to be automatically
performed. However, in the following we contribute to its realization by describing six
Basic Mediator Patterns that are the building blocks on which the steps (2), (3), and (4)
can be built upon.

4.3 MEDIATING CONNECTOR ARCHITECTURAL

PATTERN

The interoperability problem between diverse components populating the ubiquitous en-
vironment and its related solution is characterized as a Mediating Connector Architectural
Pattern basing on the template used in [28] that contains the following fields: Name, Also
Known As, Example, Context, Problem, Solution, Structure, Dynamics, Implementation,
Example Resolved, Variants, Consequences. The Mediating Connector is a behavioural
pattern and represents the architectural building block embedding the necessary support
to dynamically cope with components’ behavioural diversity.

4.3 Mediating Connector Architectural Pattern 35

Name. Mediating Connector.

Also Known As. Mediator.

Example. As example we consider the Photo Sharing applications and in particular the
infrastructure-based photo producer of Figure 4.2 a) and peer-to-peer Photo Sharing ver-
sion 1 of Figure 4.1 v1).
Other example could also be, for instance, the infrastructure-based producer (Figure 4.2
a)), may want to communicate with the peer-to-peer Photo Sharing version 1 (Figure 4.1
v1)) (or also with version 2, 3, or 4 - Figure 4.1 v2), Figure 4.1 v3) or Figure 4.1 v4)
respectively), and in principle this should be possible. Nevertheless, their behavioural
mismatches prevent the communication.

Context. The environment is distributed and changes continuously. Heterogeneous (mis-
matching) systems populating the environment require seamless coordination and com-
munication.

Problem. In order to support existing and future systems’ interoperability, some means of
mediation is required. From the components’ perspective, there should be no difference
whether interacting with a peer component, i.e, using the very same interaction protocol,
or interacting through a mediator with another component that uses a different interaction
protocol. The component should not need to know anything about the protocol of the
other one while continuing to ”speak” its own protocol.

Using the Mediating Connector, the following forces (aspects of the problem that should
be considered when solving it [28]) need to be balanced: (a) the different components
should continue to use their own interaction protocols. That is components should inter-
act as if the Mediating Connector were transparent; (b) the following basic interaction
protocol mismatches should be solved in order for a set of components to coordinate and
communicate (a detailed description of these mismatches is given within Section Basic
Mediator Patterns): 1) Extra Send/Missing Receive Mismatch; 2) Missing Send/Extra
Receive Mismatch; 3) Signature Mismatch; 4) Ordering Mismatch; 5) One Send-Many
Receive/Many Receive-One Send Mismatch; 6) Many Send-One Receive/One Receive-
Many Send Mismatch.

Solution. The introduction of a Mediating Connector to manage the interaction be-
havioural differences between compatible components. The idea behind this pattern is
that, by using the Mediating Connector, components that would need some interaction
protocol’s adaptation to become compatible, and hence to interoperate, are able to coordi-
nate and communicate achieving their goals/intents without undergoing any modification.

The Mediating Connector is one (or a set of) component(s) that manages the behavioural
mismatches listed above. It directly communicates with each component by using the
component’s proper protocol. The mediator forwards the interaction messages from one
component to the other by making suitable translation/adaptation of protocols when/if
needed.

36 Chapter 4. Mediator Patterns

Structure. The Mediating Connector Pattern comprises three types of participating com-
ponents: communicating components, compatible components and mediators.
The communicating components (or applications) implement components able to directly
interact with other components and evolve following their usual interaction behaviour.
The compatible components (or applications) implement the application level entities
(whose behaviour, interfaces’ description and semantic correspondences are known). Each
component wants to reach its intents by interacting with other components able to satisfy
its needs, i.e. required/provided functionalities. However the components are unable to
directly interact because of protocol mismatches. Thus, the compatible components can
only evolve following their usual interaction behaviour, without any change. The medi-
ators are entities responsible for the mediated communication between the components.
This means that the role of the mediator is to make compatible components that are mis-
matching. That is, a mediator must receive and properly forward requests and responses
between compatible components that want to interoperate. Figure 4.3 shows the objects
involved in a mediated system first without and then with Mediating Connector.

Compatible Component

Communicating Component

Compatible Component

Mediating Connector

BEFORE…

…AFTER

Communicating Component

Communicating Component

Compatible Component

Communicating ComponentCommunicating Component

Compatible Component

Communicating Component

Compatible Component
Compatible Component

Figure 4.3: Entities involved in a mediated system without and with Mediating Connector

Dynamics. The dynamics refers to the interactions between components (applications)
and mediators. In our case study, the IB producer protocol (Figure 4.2 a) performs one of
its possible behaviours: it authenticates and then uploads one photo receiving the respec-
tive acknowledgment. This is performed by sending in sequence the messages Authen-
ticate and UploadPhoto and then receiving the message Acknowledgment. The mediator
should: (1) forward the authentication message as it is between the IB producer and its
authentication server, that are communicating components, (2) manipulate/translate and
forward the upload and acknowledge messages between the IB producer (Figure 4.2 a)
and the P2P Photo Sharing version 1 protocol (Figure 4.2 v1)) that are compatible com-
ponents. With the term “translation” we mean not just a language translation but also a
“behavioural translation” (see Section Basic Mediator Patterns for details).

Implementation. The implementation of this pattern implies the definition of an ap-

4.4 Basic Mediator Patterns 37

proach/tool (we have sketched one in Section 4.2) to automatically synthesize the be-
haviour of the Mediating Connector which allows the compatible components to interop-
erate mediating their interactions.

Example Resolved. The Mediating Connector’s concrete protocol for the example is
shown in Figure 4.10. Once established that components are compatible (i.e. they have
some complementary portion of interaction protocols), the mediating connector manages
the components’ behavioural mismatches allowing them to have a mediated coordination
and communication.

Variants. Distributed Mediating Connector. It is possible to implement this pattern either
as a centralized component or as distributed components, that is by a number of smaller
components. This introduces a synchronization issue that has to be taken into considera-
tion while building the mediator behaviour.

Consequences. The main benefit of the Mediating Connector Pattern is that it allows
interoperability between components that otherwise would not be able to do it because
of their behavioural differences. These components do not use the very same observable
protocols and this prevents their cooperation while, implementing similar functionalities,
they should be able to interact. The main liability that the Mediating Connector Pattern
imposes is that systems using it are slower than the ones able to directly interact because
of the indirection layer that the Mediating Connector Pattern introduces. However the
severity of this drawback is mitigated and made acceptable by the fact that such systems,
without mediator, will not be not able at all to interoperate.

4.4 BASIC MEDIATOR PATTERNS

In the previous sections we characterized the Mediating Connector pattern and we sketched
an approach for the automatic synthesis of its behaviour.

In this section, we concentrate on six finer grain Basic Mediator Patterns which represent
a systematic approach to solve interoperability mismatches that can occur during compo-
nents’ interaction. The Basic Mediator Patterns are constituted by basic interoperability
mismatches with their corresponding solutions and are: (1) Message Consumer Pattern,
(2) Message Producer Pattern, (3) Message Translator Pattern, (4) Messages Ordering
Pattern, (5) Message Splitting Pattern, (6) Messages Merger Pattern.

The mismatches, inspired by service composition mismatches, represent send/receive
problems that can occur while synchronizing two traces. We are not considering pa-
rameters mismatches which are extensively addressed elsewhere [85].

Figure 4.4 shows the basic interoperability mismatches that we explain in detail in the
following. For each basic interoperability mismatch, we consider two traces (left and
right) coming from two compatible components. All the considered traces are the most
elementary with respect to the messages exchanged and only visible messages are shown.

38 Chapter 4. Mediator Patterns

message2

(4) ORDERING MISMATCH

(3) SIGNATURE MISMATCH(1) EXTRA SEND/MISSING RECEIVE
MISMATCH

(2) MISSING SEND/EXTRA RECEIVE
MISMATCH

(5) ONE SEND–MANY RECEIVE/ MANY
RECEIVE-ONE SEND MISMATCH

(6) MANY SEND-ONE RECEIVE/ ONE
RECEIVE-MANY SEND MISMATCH

message

message1

message1

…

…
…

…

…

message1

message2

…
…

…

message1

message1

…
… …

…

message2

message2

message1

…
…

…

message2

message1

…
…

…

…
…

message2

message1

…
…

…

message

…
…

message2

message1

…
…

…

…
…

Figure 4.4: Basic interoperability mismatches

It is obvious that, in real cases, the traces may also contain portions of behaviour already
compatible (abstracted by dots in the figure) and may amount to any combination of the
presented mismatches. Then an appropriate strategy to detect and manage this is needed.
The considered basic mismatches are addressed by the basic solutions (elementary me-
diating behaviours) illustrated in Figure 4.5 where only their visible messages are shown
(messages that they exchange with the components).

The six Basic Mediator Patterns share the context, i.e., the situation in which they may
apply and have a unique intent.

Context. Consider two traces (left and right) expressing similar complementary func-
tionalities. Focus on one of their subtraces which identifies an elementary action that is
semantically equivalent and complementary between them.

Intent. To allow synchronization between the two traces letting them evolve together.
This, otherwise would not be possible because of behavioural mismatches.

(1) MESSAGE CONSUMER PATTERN.

Problem. (1) Extra send/missing receive mismatch ((1) in Figure 4.4, where the extra
send action is message2). One of the two considered traces either sends an extra action
or a it lacks a receive action.

Example. Consider two traces implementing the abstract action “upload photo (respec-
tively download photo)”. For example, in the mismatch (1) of Figure 4.4 the right trace
implements only the sending of the photo (message1) while the left trace implements the

4.4 Basic Mediator Patterns 39

message2 message2

SOLUTION OF MISMATCH (3)

message1

message2

message1

message2

SOLUTION OF MISMATCH (1) SOLUTION OF MISMATCH (2)

SOLUTION OF MISMATCH (4) SOLUTION OF MISMATCH (5) SOLUTION OF MISMATCH (6)

message2

message1
…

…
…

…
… …

…

… …

message2

message1

message

message

message2

message1

Figure 4.5: Basic solutions for the basic mismatches

receiving of the photo and the sending of an acknowledgment (message1.message2).

Solution. Introducing a message consumer (solution of mismatch (1) in Figure 4.5) that
is made by an action that, “consumes” the identified extra send action by synchronizing
with it, letting the two traces communicate.

Example Resolved. First the two traces synchronize on the sending/receiving of the
photo (message1) and then the left trace synchronizes its sending of the acknowledgment
(message2) with the message consumer that receives it.

Variants. Possible variants and respective solutions are represented in Figure 4.6 and are:

(a) message1 has switched the send/receive type within the two traces, i.e., the left
trace is the sequence message1.message2 while the right trace is just message1.
In this case the message consumer remains the same (message2).

(b) message1 is the extra send message instead of message2. The left trace is the
sequence message1. message2 while the right trace is made by message2. In this
case the message consumer performs message1 absorbing the extra sent message.

(c) the extra send message is message1, the left trace is the sequence message1.
message2 while the right trace is message2. In this case the message consumer
is made by message1.

(2) MESSAGE PRODUCER PATTERN.

40 Chapter 4. Mediator Patterns

message2

VARIANT (a) OF MISMATCH (1)

message1

message1

…

…
…

…

…

message2 message1

SOLUTION OF MISMATCH (1) (a)

…
… …

…

message2

VARIANT (b) OF MISMATCH (1)

message1

message2

…

…
…

…

…

message2

VARIANT (c) OF MISMATCH (1)

message1

message2
…

…
…

…

…

message1

…
…

SOLUTION OF MISMATCH (1) (b) SOLUTION OF MISMATCH (1) (c)

Figure 4.6: Variants of the Basic Mediator Pattern (1)

Problem. (2) Missing send/extra receive mismatch ((2) in Figure 4.4, where the missing
send action is message2). One of the two considered traces either contains an extra
receive action or a send action is missing in it. This is the dual problem of mismatch (1).

Example. Consider two traces implementing the abstract action “send (respectively re-
ceive) photo”. In the mismatch (2) of Figure 4.4, the right trace implements the sending
of the photo (message1) and the receiving of an acknowledgment (message2) while the
left trace implements just the receiving the message (message1).

Solution. Introducing a message producer (solution of mismatch (2) in Figure 4.5) made
by an action that “produces” the missing send action corresponding to the identified extra
receive action and let the two traces synchronize.

Example Resolved. The two traces first synchronize on the sending/receiving of the mes-
sage (message1) and then the right trace synchronize its receive of the acknowledgment
(message2) with the message consumer mediator that sends it.

Variants. Possible variants and respective solutions are shown in Figure 4.7 and are:

(a) message1 has switched the send/receive type within the two traces, i.e., the left
trace is message1 while the right trace is the sequence message1.message2 In this
case the message producer performs message2.

(b) the missing send message is message1, instead of being message2, the right trace
is the sequence message1.message2 while the left trace is made by message2. In
this case the message producer is made by message1.

(c) the missing send message is message1, the left trace is message2 while the right
trace is the sequence message1.message2. In this case the message producer is
made by message1.

4.4 Basic Mediator Patterns 41

message1

…
…

message2

…
…

message1

message2

…
…

…

message1

…
…

message1

message2

…
…

…

message2

…
…

message1

message2

…
…

…

message2

…
…

message1

…
…

VARIANT (a) OF MISMATCH (2)

SOLUTION OF MISMATCH (2) (a)

VARIANT (b) OF MISMATCH (2) VARIANT (c) OF MISMATCH (2)

SOLUTION OF MISMATCH (2) (b) SOLUTION OF MISMATCH (2) (c)

Figure 4.7: Variants of the Basic Mediator Pattern (2)

(3) MESSAGE TRANSLATOR PATTERN.

Problem. (3) Signature mismatch (upper right box of Figure 4.4). The two traces rep-
resent semantically complementary actions but with different signatures. With signature
we mean only the action name.

Example. Consider two traces implementing the abstract action “send (respectively re-
ceive) photo file”. Instantiating the mismatch (3) of Figure 4.4, message1 could be the
send of a message PhotoFile while message2 the receive of a PictureFile message.

Solution. Introducing a message translator (solution of mismatch (3) in Figure 4.5). It
receives the request and sends it after a proper translation1. Referring to the example, the
translator mediator trace is: message1.message2.

Example Resolved. First the message PhotoFile is exchanged between one trace and the
mediator. After its translation, a PictureFile message is sent by the mediator to the other
trace. The message translator performs: PhotoFile.PictureF ile.

Variants. A possible variant with its solution is shown in Figure 4.8 and amounts to ex-
changing the sender/receiver roles between the two traces, i.e., message1 and message2
and the solution is made by message2 . message1.

(4) MESSAGES ORDERING PATTERN.

Problem. (4) Ordering mismatch ((4) in Figure 4.4, where both traces perform com-
plementary (send/receive) message1 and message2 but in different order). Both traces
consist of complementary functionalities but they perform the actions in different orders.
Nevertheless this mismatch can be considered also as a combination of extra/missing

1Technically the message translator synchronizes twice with the involved components using different
messages and this implements a translation.

42 Chapter 4. Mediator Patterns

message1

…
… …

…

message2

message1

message2

…
…

VARIANT OF MISMATCH (3) SOLUTION OF MISMATCH (3)

…
Figure 4.8: Variants of the Basic Mediator Pattern (3)

send/receive actions mismatches (1) and (2), however we choose to consider it as a first
class mismatch. Generally speaking, it may happen that not all the ordering problems are
solvable due to the infinite length of the traces. However this is not our case because we
work on finite traces that represent a conversation.

Example. Consider two traces implementing the abstract action “send (respectively re-
ceive) photo”. message1 and message2 in the mismatch (4) of Figure 4.4, for example,
correspond to PhotoMetadata and PhotoF ile respectively. Then, one sends the se-
quence PhotoMetadata . PhotoF ilewhile the other receives PhotoF ile . PhotoMetadata.

Solution. Introducing a messages ordering (solution of mismatch (4) in Figure 4.5). This
pattern has a compatible behaviour for both the traces. The pattern is made by a trace that
receives the messages and, after a proper reordering, resends them.

Example Resolved. Referring to the example, the messages ordering trace is: message1
. message2 . message2 . message1 that is PhotoMetadata . PhotoF ile . PhotoF ile .
PhotoMetadata. That is, first one trace synchronizes with the mediator which receives
the messages and then the mediator reorders the messages and sends them to the other
trace.

Variants. Possible variantsand respective solutions are shown in Figure 4.9 and are:

(a) left trace has switched the sender/receiver role with respect to the right trace, i.e.,
the left trace is the sequence message2.message1 while the right trace is the se-
quence message1.message2. In this case the messages ordering is the sequence
message2.message1.message1.message2.

(b) in both traces the first action is a send while the second is a receive. That is, the
left trace is message1.message2 while the right is message2.message1. In this
case the messages ordering is the sequence message1 . message2 . message2 .
message1.

(c) in both traces the first action is the receive followed by the send. That is, the left
trace is message1 . message2 while the right is message2.message1. In this case
the basic solution to solve the mismatch is not the messages ordering. It is a proper

4.4 Basic Mediator Patterns 43

combination of messages producers and consumers (message producer followed
by message consumer for the left trace followed by message producer followed by
message consumer for the right trace). That is, message1.message2 followed by
message2. message1.

message1

message2

…
…

…

message1

message2

…
…

…

message2

message1

…
…

…

message2

message1

…
…

…

message2

message1

…
…

…

message2

message1

…
…

…

message2

message1

message2

message1

message1

message2

message1

message2

message1

message2

message1

message2

VARIANT (a) OF MISMATCH (4)

SOLUTION OF MISMATCH (4) (a)

VARIANT (b) OF MISMATCH (4) VARIANT (c) OF MISMATCH (4)

SOLUTION OF MISMATCH (4) (b) SOLUTION OF MISMATCH (4) (c)

Figure 4.9: Variants of the Basic Mediator Pattern (4)

(5) MESSAGE SPLITTING PATTERN.

Problem. (5) One send-many receive/many receive-one send mismatch ((5) in Figure
4.4). The two considered traces represent a semantically complementary functionality
but one expresses it with one action and the other with two actions.

Example. Consider two traces implementing the abstract action “send (respectively re-
ceive) photo”. Instantiating the one send-many receive mismatch (5) of Figure 4.4, for ex-
ample, message can be the send of one message PhotoMetaAndFile while message1
andmessage2 are the receive of two separate messages PhotoMetadata and PhotoF ile.

Solution. Introducing a message splitting (solution of mismatch (5) in Figure 4.5). It
receives one message from one side, splits it properly, and sends the split messages to
the other2. Referring to the example, the trace of the message splitting (5) is: message .
message1 . message2.

Example Resolved. With respect to the example, the mediator first performs one receive,
then a splitting, and subsequently sends two messages. That is, of PhotoMetaAndFile .
PhotoMetadata . PhotoF ile.

(6) MESSAGES MERGER PATTERN.
2Technically the message splitting synchronizes several times with the involved components using dif-

ferent messages and this implements a split.

44 Chapter 4. Mediator Patterns

Problem. (6) Many send-one receive/one receive-many send mismatch ((6) in Figure
4.4). The two considered traces represent a semantically complementary functionality but
they express it with a different number of actions. This is the dual problem of mismatch
(5).

Example. Consider two traces implementing the abstract action “send (respectively re-
ceive) photo”. Instantiating the many send-one receive (6) of Figure 4.4, for example,
message1 and message2 are the sending of two separate messages PhotoMetadata and
PhotoF ile while message is the receiving of PhotoMetaAndFile.

Solution. Introducing a messages merging (solution of mismatch (6) in Figure 4.5).
It receives two messages from one side, merges them properly, and sends the merged
messages to the other. Referring to the example, the trace of the messages merging is:
message1.message2.message.

Example Resolved. With respect to the example, the mediator first performs two re-
ceives, then a merge, and subsequently sends one message. That is, PhotoMetadata .
PhotoF ile . PhotoMetaAndFile.

4.5 APPLICATION OF THE PATTERNS TO THE PHOTO

SHARING SCENARIO

The aim of this section is to show the patterns at work, putting together all the jigsaws
puzzle. Thanks to a compatibility analyzer (e.g., see the definition of functional matching
in the two next chapters), we discover that the two Photo Sharing applications considered
as example (i.e., the IB photo producer (Figure 4.2 a)) and the P2P Photo Sharing version
1 (Figure 4.1 v1))) are compatible, since they share some intent, having complementary
portions of interaction protocols. Hence, it makes sense to use the architectural Mediating
Connector Pattern to mediate their conversations.

Following the pattern-based approach described in Section 4.2, the behaviour of the IB
photo producer and the behaviour of the P2P Photo Sharing version 1 are decomposed
into traces representing elementary behaviours. Then, the traces are analyzed and their
basic mismatches are identified thanks to the basic mediators patterns. Subsequently, a
composition strategy is applied to build elementary mediators, i.e., mediator traces, ex-
ploiting the basic mediators patterns. Finally, in order to automatically synthesize the
behaviour of the whole Mediating Connector for the Photo Sharing applications, a com-
position approach aggregates the elementary mediators so to have a mediated coordination
and communication.

Figure 4.10 shows the behaviour of the Mediating Connector for the applications consid-
ered in our example. We recall (as already sketched in Section 4.1) that the high level
functionalities of the various applications are the following. Taking the producer perspec-
tive (1) authentication –for the IB producer only–, (2) upload of photo, and (3) download

4.5 Application of the Patterns to the Photo Sharing Scenario 45

PhotoMetadata

PhotoFile

PhotoComment

UploadPhoto

CommentPhoto

Acknowledge

AuthenticateAuthenticate

|

Figure 4.10: Behavioural description of the Mediating Connector for the Photo Sharing
example (IB photo producer of Figure 4.2 a) and P2P Photo Sharing version 1 of Figure
4.1 v1))

of comments, while taking the consumer perspective: (i) download of photo, and (ii) the
upload of comments.

The mediator, in this example, allows the interaction between the two different Photo
Sharing applications by (A) manipulating/translating and forwarding the conversations
from one protocol to the other and (B) forwarding the interactions between the producer
and its server. To better explain, in the following, we describe which Basic Mediator
Patterns are used to detect and solve mismatches.

• The IB producer implements the authentication with the action “Authenticate”
while the P2P version 1 does not include such functionality, i.e., there is no seman-
tically correspondent action in the P2P application (the complementary action is in
the IB server – third parties communication). Then, in this case, the mediator has
to forward the interactions from the producer to its server (case B above).

• The IB producer implements the upload of photo with the sequence of actions
“UploadPhoto . Acknowledge” where the former action sends both photo meta-
data and file and the latter models the reception of an acknowledgment. The corre-
sponding download of photo implemented by the P2P version 1 is the sequence of
actions “PhotoMetadata . PhotoF ile”. Hence, although the actions are semanti-
cally equivalent, they do not synchronize. In order to detect/solve the mismatches,
one has to use the basic patterns: message splitting pattern for the mismatch one
send-many receive/many receive-one send “UploadPhoto” vs. “PhotoMetadata
. PhotoF ile”; message producer pattern for the mismatch missing send/extra re-
ceive “Acknowledge” vs. no action. In this case, the mediator then (case A above)
translates and forwards the conversations from one protocol to the other.

46 Chapter 4. Mediator Patterns

• The P2P version 1 implements the upload of comments with the action “PhotoCom-
ment” while the IB producer implements the respective download of comments
with the action “CommentPhoto”. In order to detect/solve the signature mis-
match “PhotoComment” vs. “CommentPhoto”, the message translator pattern
is needed. Also, in this case (A above), the mediator translates and forwards the
conversations from one protocol to the other.

4.6 CONCLUSION

In this chapter, we described the Mediating Connector Architectural Pattern, which by
encapsulating the necessary support, is the key enabler for communication between mis-
matching components. Indeed, it solves the interoperability problems between heteroge-
neous and functionally compatible components.
Further, we described a set of Basic Mediator Patterns, including basic mismatches and
their respective solutions, which specify the interoperability problems solved by the Me-
diating Connector Architectural Pattern.
Moreover we sketched a pattern-based approach to solve interoperability mismatches
which allows: the component’s behavior decomposition, the reasoning on mismatches,
and the synthesis of a mediating connector behavior.

The patterns described above are twofold. On the one hand, the patterns are a set of
design building blocks to tackle in a systematic way the protocol mediation problem.
On the other hand, they rigorously characterize the kind of interoperability mismatches
we deal with. Hence, one contribution of this chapter is to set the foundational base for
the subsequent Chapters 5 and 6 that respectively present a theory of mediators and its
extension.

As future works, we intend to: refine the design of the compositional approach based on
patterns, that we sketched in Section 4.2, by exploiting the algebra of connectors presented
in [6].
Moreover, in the direction of automated code generation, we also aim at providing: (i) the
“concrete” Basic Mediator Patterns, i.e., the skeleton code corresponding to the “abstract”
patterns presented in this chapter, (ii) the implementation of the pattern-based approach,
i.e., the actual code for the component’s behaviour decomposition and composition and
the mediating connector behaviour building.

CHAPTER 5

MediatorS: A THEORY OF MEDIATING CONNECTORS

In our work, we want to approach the protocol interoperability problem in an automated
way. Then, the problem we address here, is to automatically synthesize mediators that
allow protocols to interoperate by solving their behavioral mismatches. To achieve such
automation we designed a model-based synthesis technique that automatically derive a
mediator by reasoning on protocols models, i.e., on their behavioural specification to-
gether with their semantic characterization.
As already mentioned, the key term protocol, defined in Section 1, will be used here to in-
dicate application-layer protocols. Thus, in this Chapter we will address the application-
layer interoperability.
While in Chapter 4 we have described the kind of mismatches we deal with in terms of
the basic mediator patterns that can be used to solve them, in the following we describe
the process that is performed in order to automatically elicit the mediator protocol. For
the sake of exemplification we refer, also in this chapter, to the Photo Sharing scenario
introduced in the previous chapter (Chapter 4). Still, among all the implementations that
are sketched, we consider as reference scenario, the one made by: the IB Photo-Sharing
Producer (Figure 4.2 a)) and the P2P Photo-Sharing version 1 (Figure 4.1 v1)).

This chapter specifically presents MediatorS, a theory of mediating connectors which
is a revised and extended version of the theory presented in [62]. The acronym MediatorS
summarizes the words Mediator Synthesis.
This chapter is organized as follows. Section 5.1 introduces a formalization for interac-
tion protocols, which paves the way for their abstraction, the automated reasoning about
protocols functional matching and for the automated synthesis of mediators. Section 5.2
provides the algorithms implementing the three phases of our AMAzING process formal-
ized in the previous section. Section 5.3 discuss the correctness of the mediator and finally
Section 5.4 draws some conclusions.

5.1 FORMALIZING THE THEORY

In this section we describe the MediatorS theory, which is a formalization based on the
AMAzING process. Figure 5.1 depicts the main elements of our methodology:

47

48 Chapter 5. MediatorS: a Theory of Mediating Connectors

OP

AP AQ

QP

U E

M
(mediator)

OPQ OQ

IPQ

Protocols

Ontologies

Abstracted protocols

Common abstracted protocol

InfPAbstraction information
InfQ

IM

O

Figure 5.1: An overview of our approach

(i) Two application-layer protocols P and Q whose representation is given in terms of
Labelled Transition Systems (LTSs), where the initial and final states on the LTSs
define the sequences of actions (traces) that characterize the coordination policies
of the protocols.

(ii) Two ontologies OP and OQ describing the meaning of P and Q’s actions, respec-
tively.

(iii) Two ontology mapping functionsmapsP andmapsQ defined fromOP and fromOQ

to a common ontology O. The intersection OPQ on the common ontology identifies
the “common language” between P and Q. For simplicity, and without loss of
generality, we consider protocols P and Q that have disjoint languages and that are
minimal where we recall that every finite LTS has a unique minimal representative
LTS.

(iv) Then, starting from P and Q, and based on the ontology mapping, we build two
abstractions AP and AQ by relabelling P and Q, respectively, where the actions not
belonging to the common language OPQ are hidden by means of silent actions (τ);
moreover, we store some abstraction information (i.e., used to make the abstrac-
tion), InfP and InfQ, that in case of positive matching check, will be exploited to
synthesize the mediator during the mapping;

(v) Then, we check the compatibility of the protocols by looking for complementary
traces (the set IPQ in figure), modulo mismatches and third parties communications,
between the sets of traces TP and TQ generated by AP and AQ, respectively. If this
is the case, then we are able to synthesize a mediator that makes it possible for the
protocols to coordinate. Hence, we store the matching information (i.e., used to
make the abstraction) IM that will be exploited during the mapping.

(vi) Finally, given two protocols P and Q, and an environment E (not in figure), the
mediator M that we synthesize is such that when building the parallel composition

5.1 Formalizing the Theory 49

P |Q|E|M , P and Q are able to coordinate by reaching their final states under the
hypothesis of fairness.

Referring to the AMAzING process of Chapter 3, the proposed theory of mediators tackles
all its steps. For our purposes, in this thesis we assume that: for each application, each
device (e.g., PDA, smartphone, or tablet) is equipped with the behavioural specification of
the application and a semantical characterization of its actions through ontologies. Taking
the perspective of two systems that have compatible protocols and that also communicate
with third parties, we also assume that there exists the proper environment for them, i.e.,
other systems representing third parties. Further, we concentrate on interoperability at
application- and middleware-layer (respectively in this Chapter and the following) while
assuming solved the heterogeneity of the underlying layers.

5.1.1 ABSTRACTION FORMALIZATION

As already mentioned in Chapter 3, protocols abstraction is twofold: it makes protocols
comparable thus allowing to perform the functional matching check and possibly reduces
their size so to ease the automatic reasoning on them. If the protocols we deal with, let us
say P and Q, are compatible being potentially able to communicate, we expect to find at
a given level of abstraction a common (protocol) model C for them representing their po-
tential interactions. This leads us to formally analyze such alike protocols to find such C
–if it exists– and a suitable mediator that allows the interoperability that otherwise would
not be possible. This problem can be formulated as a kind of antiunification problem
[61, 96, 120, 98].
Let us consider: two extended LTSs P and Q modelling two protocols run by networked
systems, two ontologies OP and OQ describing their actions, abstraction ontology map-
ping functions mapsP on P and mapsQ on Q (see Definition 5 in Section 1.2.2), and the
intersecting common ontology OPQ (i.e., the intersection among the mapped ontologies
OP and OQ).

Infrastructure-based
Photo-Sharing Producer

Common Language Projected on the
Protocols (Complement Language)

Peer-to-peer
Photo-Sharing version 1

UploadPhoto.
Acknowledge

UP UP
(upload photo) (download photo)

PhotoMetadata.
PhotoFile

CommentPhoto UC UC
(download comment) (upload comment)

PhotoComment

- - UP
(upload photo)

PhotoMetadata.
PhotoFile

- - UC
(download comment)

PhotoComment

Figure 5.2: Ontology mapping between Infrastructure-based Photo-Sharing Producer and
the peer-to-peer Photo-Sharing version 1 (Figure 4.2 a and Figure4.1 v1 respectively)

50 Chapter 5. MediatorS: a Theory of Mediating Connectors

In order to find the protocols’ abstractions, we exploit the information contained in the
ontology mapping to suitably relabel the protocols. Specifically, as detailed in the follow-
ing, the relabelling of LTSs produces new LTSs that are labelled only by common actions
and τ , and hence are more abstract than before (e.g., sequences of actions may have been
compressed into single actions).
For illustration, Figure 5.2 summarizes the ontological information of the IB Producer
of Figure 4.2 a) (first column) and of the P2P Photo-Sharing version 1 of Figure 4.1 v1)
(third column). The second column shows their common language. We recall that: (1)
the overlined actions are output/send action while non-overlined are input/receive; (2) the
P2P application implements both roles, producer and consumer, while the IB application
we are focusing on, is only the producer role (the overall Photo Sharing is implemented
by three separate IB applications). This explains why we have in the table two non-paired
actions; because they are paired with the actions of the other IB applications.
The abstract protocols are then obtained, leveraging on the abstraction ontology mapping
(Definition 5 within Section 1.2.2), by relabelling protocols with labels of their common
language and τ for the thirds parties languages. A necessary condition for the existence
of a common language between two protocols P and Q, is that there exist two abstraction
ontology mappingmapsP on P andmapsQ onQ that map the languages L∗P of P and L∗Q
of Q into the same abstract/common ontology. Thus, to identify the common language,
we first map each protocol’s ontology into a common ontology and then by intersection,
we find their common language.

AP AQ

QP

OPQmapsP
mapsQ

COQ

COP

OP
OQCDP

CDQ

w ЄOPQ
w OPQЄ

Figure 5.3: The abstract protocol building

Operationally, we do not work on protocols while we reason on traces: starting from a
protocol P (Q resp.), we extract all the traces from it and apply the relabelling on the
traces that result into a set of abstracted traces, with labels belonging to the common lan-
guage and τ . However, the abstract protocol(s) of P (Q resp.), can be easily obtained by
merging the traces where possible (e.g. common prefixes). Similarly, we use a reasoning
on traces also for the matching and mapping phases.
It has to be noticed that the set of all the traces may not be finite. We consider minimal
protocols1. Hence, the infinite set of traces is represented by a minimal automaton (con-
taining at least a final state). Then, the abstraction ontology mapping on such minimal au-
tomaton, either applies directly (to the minimal automaton) returning a set of (abstracted)

1This is similar to the normal form of a system of recursive equations in [63] which is based on the idea
to eliminate repetitions of equivalent recursive equations (that is equations with the same unfolding)

5.1 Formalizing the Theory 51

traces on the common language and τ , or it does not exist any automaton unfolding on
which the abstraction ontology mapping applies.
Figure 5.3 depicts the abstraction of the protocols. We consider two minimal and de-
terministic protocols P and Q with their respective ontologies OP = (L∗P , AP) and
OQ = (L∗Q, AQ) and their abstraction ontology mappings mapsP and mapsQ respec-
tively. We first map OP and OQ, through mapsP : L∗P → L and mapsQ : L∗Q → L
respectively, into a common ontology O = (L,A) where COP and COQ represent the
codomain sets of mapsP and mapsQ respectively.

The common language between P and Q is defined as the intersection OPQ of COP and
COQ. In particular, it is built by: (1) applying the abstraction ontology mapping to P
and Q respectively thus obtaining the two sets of labels COP and COQ respectively; (2)
starting from pairs of actions l and l (l, l resp.) belonging to COP and COQ respectively,
store into OPQ the action l –without taking into account the type output/input. Below, we
define the common language more formally.

Definition 6 (Common Language) Let:

• P = (SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q),

• stP , stQ be subtraces of traces of P and of Q respectively,

• OP = (L∗P , AP) be the ontology of P and
OQ = (L∗Q, AQ) be the ontology of Q,

• O = (L,A) be an ontology,

• mapsP : L∗P → L be the abstraction ontology mapping of P and
mapsQ : L∗Q → L be the abstraction ontology mapping of Q.

The common language OPQ between P and Q is defined as:
OPQ = {l : l (or l) = mapsP (stP) ∧ l (or l) = mapsQ(stQ) }
where stP , stQ implement basic mismatches or combinations of them (as defined in Sec-
tion 4.4 –see also Figure 4.4). For instance, the pairs of labels (UP , UP), or (UP , UP),
or (UP , UP), or (UP , UP) let us derive UP as an action belonging to the common
language.

The abstract protocol AP (AQ resp.) of P (Q resp.), is built as follows:
for each trace tP of P (tQ of Q resp.) build a new trace t′P (t′Q) such that:

1. for each chunk (sequences of states and transitions) of tP (tQ resp.) labelled by
subtraces on DP (DQ resp.), build a single transition in t′P (t′Q) labelled with a label
on OPQ;

2. for all the other chunks of tP (tQ resp.) labelled with actions belonging to the third
parties language, build chunks labelled with τ .

52 Chapter 5. MediatorS: a Theory of Mediating Connectors

UP
UC

UP

UC

UP

UC

(a) IB Producer

UP
UC

(b) P2P Photo Sharing version 1

UP

UC

UP

UC

This is not common
with the IB Producer

(it is with third parties)

abstracts abstracts

This is not common
with the IB Producer

(it is with third parties)

Figure 5.4: Abstracted LTSs of the Photo Sharing protocols

In the following we define more formally the relabelling function that we exploit:

Definition 7 (Relabelling function) Let:

• P = (SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q) be protocols,

• OP = (L∗P , AXP) and OQ = (L∗Q, AXQ) be ontologies of P and Q respectively,

• O = (L,A) be a common ontology for P and Q,

• mapsP : L∗P → L and mapsQ : L∗Q → L be abstraction ontology mappings of P
and Q respectively,

• COP and COQ be the codomain sets of mapsP and mapsQ respectively,

• OPQ be the common language between P and Q.

The relabelling function relabels is defined as: relabels : (P, mapsP , OPQ)→ AP
where AP = (SA, LA, DA, FA, s0A) and where
SA ⊆ SP ,
LA = {l ∈ OPQ}

⋃
{τ},

DA = {si
l−→ sj (or si

l−→ sj) : ∃ sk
w⇒ sn ∈ DP ∧ l (or l) = mapsP (w)},

FA ⊆ FP , and
s0A = s0P .

5.1 Formalizing the Theory 53

The above definition applies similarly to Q: relabels : (Q, mapsQ, OPQ)→ AQ.
In the Photo Sharing scenario, the only label that is not abstracted in the common lan-
guage is authenticate that represents a third party coordination. The IB producer and P2P
Photo-Sharing version 1’s abstracted LTSs are shown in Figure 5.4 where the upper part
illustrates the protocols on the common language (i.e., common labels without taking into
account output and input) while the bottom part of the figure illustrates the protocols on
the common language projected on the protocols (i.e., labels where output and inputs are
not abstracted). The subsequent step is to check whether the two abstracted protocols
share a complementary coordination policy, i.e., whether the abstracted protocols may in
fact synchronize, which we check over protocol traces as mentioned before.

5.1.2 MATCHING FORMALIZATION

The formalization described so far is needed to: (1) characterize the protocols and (2)
abstract them into protocols on the same alphabet. Then we want to identify whether such
two protocols are functionally matching and, if so, to synthesize the mediator that enables
them to interoperate, despite behavioral mismatches and third parties communications.
We recall that with functional matching we mean that given two systems with respective
interaction protocols P and Q, ontologies OP and OQ describing their actions, abstrac-
tion ontology mapping functions mapsP on P and mapsQ on Q, and their intersecting
common ontology OPQ, there exists at least one pair of complementary traces (one trace
in P and one in Q) that allows P and Q to coordinate towards a (common) goal. In other
words, one or more sequences of actions of one protocol can synchronize with one or
more sequences of actions in the other. This can happen by properly solving mismatches,
using the basic patterns discussed in the previous chapter, and managing communications
with third parties.
Then, to establish whether two protocols P and Q can interoperate, given their respective
abstractions AP and AQ based on their common ontology OPQ (i.e., common language)
and possibly τ , we need to check that the abstracted protocols AP and AQ share comple-
mentary coordination policies. To establish this, we use the functional matching relation
between AP and AQ, which succeeds if AP and AQ have a set of pairs of complementary
coordination traces, i.e., at least one pair.
Before going into the definition of the compatibility or functional matching relation, let us
provide the one of complementary coordination policies. Informally, two coordination
policies are complementary if and only if they consist of the same set of complementary
actions. We recall that actions are complementary iff they are the same action while hav-
ing opposite output/input type. That is, traces t and t′ are complementary if and only if
they are the same set of actions while having opposite input/output type for all actions.
More precisely: each output action (resp. input) of t has its complementary input action
(resp. output) in t′ and similarly with switched roles among t′ and t. More formally:

Definition 8 (Complementary Coordination Policies or Traces) Let:

• P = (SP , LP , DP , FP , s0P) and Q = (SQ, LQ, DQ, FQ, s0Q),

54 Chapter 5. MediatorS: a Theory of Mediating Connectors

• AP , AQ be the abstracted protocols of P and Q respectively,

• TP and TQ be the set of all the traces of AP and AQ, respectively,

• t = l1l2 . . . ln ∈ TP and t′ = l′1l
′
2 . . . l

′
m ∈ TQ.

Coordination policies t and t′ are complementary coordination policies iff the following
conditions hold: discarding the τ ,

(i) for each li ∈ t ∃ l′j ∈ t′ : li and l′j are complementary actions (i.e., respectively
output and input actions or input and output actions);

(ii) for each l′j ∈ t′ ∃ li ∈ t : l′j and li are complementary actions (i.e., respectively
input and output actions or output and input actions);

Note that (i) and (ii) above do not take into account the order in which the complementary
labels li and l′j are within the traces. Hence, two traces having all complementary labels
(skipping the τ) but in different order are considered to be complementary coordination
policies (modulo a reordering). Therefore, while doing this check, we store such infor-
mation that will be used during the mediator synthesis in addition to other information,
e.g., the abstraction information.
As said above, we perform the complementary coordination policies check on the ab-
stracted protocols AP and AQ, which are expressed in a common language plus τ rep-
resenting third parties synchronization. We use the functional matching relation to
describe the conditions that have to hold in order for two protocols to be compatible.
Formally:

Definition 9 (Compatibility or Functional matching) Let:

• P and Q protocols,

• relabels be a relabelling function,

• AP and AQ be the abstracted protocols, through relabels, of P and Q respectively,
and

• ti be a coordination policy of AP and let t′i be a coordination policy of AQ.

Protocols P and Q have a functional matching (or are compatible) iff there exists a set
C of pairs (ti, t′i) of coordination policies that results in complementary coordination
policies.

5.1 Formalizing the Theory 55

Note that when considering applications that play only the client role, asking for services
to a server, the functional matching definition above is slightly modified as follows: in-
stead of checking the existence of a set of pairs of complementary traces, it checks the
existence of a set of pair of traces that result in the same trace.

The functional matching relation defines necessary conditions that must hold in order for
a set of networked systems to interoperate through a mediator. In our case, till now, the
set is made by two networked systems and the matching condition is that they have at
least a complementary trace modulo the τ . Such third parties communications (τ) can be
just skipped while doing the check, but have to be re-injected while building the mediator.
They hence represent information to be stored for the subsequent synthesis.

Generally speaking, protocols can also have more than one complementary trace, i.e., a
set. We then define three different levels of functional matching, spanning from partial
to total:

• Intersection: concerns cases where two protocols have only a subset of their traces
that result in complementary coordination policies (from one trace to many, but not
all);

• Inclusion: refers to the case in which two protocols have a shared set of comple-
mentary coordination policies and for one protocol this set coincides with the set of
all its traces while for the other it represents a subset of all its traces;

• Total Matching: refers to the case in which two protocols have a shared set of
complementary coordination policies and for both of them this set coincides with
the set of all their traces.

5.1.3 MAPPING FORMALIZATION

Consider two protocols P and Q that functionally match where the set C is made by
their pairs of complementary coordination policies, and a protocol E representing the
environment2. We want to synthesize a mediator M such that the parallel composition
P |M |Q|E, allows P and Q to evolve to their final states. An action of P or Q can belong
either to their common language or the third parties language, i.e., the language of the
environment. Note that the environment is called third parties with respect to the inter-
action among P and Q. That is, taking the perspective of P , a protocol E is considered
third party if P needs to interact with both E and Q in order to allow the communication
among P and Q. This applies similarly to Q.
We build the mediator in such a way that it lets P and Q evolve independently for the
portion of the behavior to be exchanged with the environment (denoted by τ action in
the abstracted protocols) until they reach a “synchronization state” from which they can

2For the sake of simplicity, and without loss of generality, we consider only one protocol to be the
environment but this can be generalized to an arbitrary number of protocols

56 Chapter 5. MediatorS: a Theory of Mediating Connectors

synchronize on complementary actions. We recall that the synchronization cannot be di-
rect since the mediator needs to perform a suitable translation according to the ontology
mapping, e.g., UC = CommentPhoto in one protocol and UC = PhotoComment in
the other.
As we said previously, operationally we work on traces instead of working on protocols.
Hence we produce a set of mediating traces for the set C. We recall that C is made up
of pairs of complementary coordination policies of the abstract protocols AP and AQ of
P and Q respectively. Then, the mediator protocol AM for C can be easily obtained
by merging the mediating traces. AM can be considered an “abstract mediator” since it
mediates between abstract protocols. To obtain the corresponding “concrete mediator”,
we then need to translate each abstract action to its corresponding concrete (sequence of)
action(s), i.e., on the languages of P and of Q.
Therefore, a mediator is a protocol that, for each pair cij = (ci, cj) in C, builds a medi-
ating trace mij such that, for each action (also τ) in ci and in cj it always first receives the
action and then resends it. More formally:

Definition 10 (Mediator) Let:

• C be the set of pairs of complementary coordination policies between two abstract
protocols AP and AQ of protocols P and Q respectively;

• OC be the common language among P and Q;

• (ci, cj) ∈ C be a pair of complementary traces where |ci| = x |cj| = y;

The mediator M for C is defined as follows:

∀ (ci, cj) ∃ a mediating trace mij ∈M : mij = l1, l2, . . . , lk ∧ k = x+ y ∧
if li = a ∧ a ∈ OC ∧ a ∈ ci then ∃ 1 ≤ h < x : lh = a ∧ a ∈ cj;
if li = a ∧ a ∈ OC ∧ a ∈ cj then ∃ 1 ≤ h < n : lh = a ∧ a ∈ ci;

The mediator is logically made up of two separate components: MC and MT . MC speaks
only the common language and MT speaks only the third parties language. MC is a
LTS built starting from the common language between P and Q whose aim is to solve
the protocol-level mismatches occurring among their dual interactions (complementary
sequences of actions) by translating and coordinating between them. MT , if it exists, is
built starting from the third parties language of P and Q and represents the environment.
The aim of MT is to let the protocols evolve, from the initial state or from a state where a
previous synchronization is ended, to the states where they can synchronize again.

For illustration, we assume to have with the behavioral specification of the considered
Photo Sharing applications, their coordination policies (thanks to the initial and final states
on LTSs), their respective ontologies describing their actions, and the ontology mapping
that defines the common language between IB producer and P2P Photo-Sharing version 1.

5.2 Implementing the Theory: Algorithms 57

The first step is to abstract the protocols exploiting the ontology mapping. Following the
theory, the abstracted protocols for the Photo Sharing scenario are illustrated in Figure
5.4. The second step is to check whether they have some complementary coordination
policies. In this scenario, the IB producer is able to (complementary) simulate the P2P
consumer, i.e., right branch of the LTS in Figure 5.4. The other branch, within the dashed
circle has to be discarded since it is not common with the producer application (while
being common with the server of the IB application). Then, the coordination policies that
IB producer and P2P consumer share are exactly the consumer’s ones. Hence, with the
application of the theory to the scenario, we obtain the connector of Figure 4.10 presented
in Chapter 4 that we report in the following.

PhotoMetadata

PhotoFile

PhotoComment

UploadPhoto

CommentPhoto

Acknowledge

AuthenticateAuthenticate

|

Copy of Figure 4.10: Mediating Connector for the Photo Sharing

In this case, only the producer has third parties language actions and then the mediator is
made by the part that translates and coordinates the common language and the part that
simulates the environment by forwarding from and to it.

Note that the building of a connector can be slightly different according to the kind of
protocols to be mediated.
If the control of a protocol P (and Q) is characterized by both output and input actions,
then the mediator will (i) receive an action(s) from P , (ii) properly translate it, and (iii)
send it to the Q and viceversa with exchanged roles between P and Q. The mediator
will repeat these three steps several times to mediate each trace. Hence the mediator will
synchronize with P (Q resp.) to receive or send messages.
Instead, if the control of protocol P (and Q) is only characterized by output actions,
implementing the client role only, then the mediator will only receive actions from P (Q).

5.2 IMPLEMENTING THE THEORY: ALGORITHMS

In this section we describe algorithms to abstract the protocols (Section 5.2.1), check
their compatibility (Section 5.2.2) and, if possible, synthesize a mediator (Section 5.2.3).

58 Chapter 5. MediatorS: a Theory of Mediating Connectors

They provide an algorithmic description of the three steps process described in Chapter
3, and formalized in Section 5.1. The current version of the reasoning underlying the
theory is not directly using the patterns while taking them into account and solving the
problems they represent. Accordingly, the current version of the algorithms does not make
explicit use of the patterns while detecting and solving their underlying problems. Pattern-
based theory, and then pattern-based algorithms, are among future works. Technically, our
algorithms work on traces instead of on LTSs despite the abstraction and the synthesis
respectively takes as input and returns as output LTSs (corresponding to the traces sets).

5.2.1 ABSTRACTION ALGORITHMS

Considering two different protocols, we are looking for a common abstraction that makes
them comparable and then enables the reasoning on them.
What. The abstractionPhase algorithm, described by Listing 5.1, takes as input two
minimal and deterministic protocols P1 and P2, and their respective bijective abstraction
ontology mappings maps1 and maps2 (see Definition 5). The algorithm automatically
produces (line 14) the set of abstract traces T ′1 and T ′2 corresponding to the abstracted
protocols of P1 and of P2, and a set of tuples TS summarizing the common language plus
third parties language between P1 and P2. Each tuple is of the form < l1,m1,m2, l2 >
where l1 and l2 are subtraces of traces of P1 and P2 respectively and m1 and m2 are their
corresponding labels on the common language plus tau.

1 I n p u t : minimal and deterministic LTSs P1 and P2 , bijective
↪→abstract ionOnto logyMappingFunct ions maps1 and maps2

2 Outpu t : a triple <T ′1 , T ′2 , TS> with types TraceSet , TraceSet , TuplesSet respectively
3

4 <TraceSet , TraceSet , TuplesSet> abstractionPhase (LTS P1 , LTS P2 ,
↪→abstract ionOntologyMappingFunct ion maps1 , abstract ionOntologyMappingFunct ion maps2
↪→) {

5 TraceSet T1 ,T2 ;
6 TuplesSet TS ;
7 TraceSet T ′1 ,T ′2 ;
8 T1 := extractTraces(P1) ;
9 T2 := extractTraces(P2) ;

10 / / we recall that P2 = (S2, L2, D2, F2, s02)
11 TS := buildCommonLanguagePlusTau (T1 , T2 , L2 , maps1 , maps2) ;
12 T ′1 := relabelTraces (T1 , TS) ;
13 T ′2 := relabelTraces (T2 , TS) ;
14 re turn <T ′1 ,T ′2 , TS > ;
15 }

Listing 5.1: abstractionPhase Algorithm

How. The abstraction phase algorithm is made up by three sub-phases:

1) traces extraction from protocols (lines 8-9 of Listing 5.1), which exploits the algo-
rithm described by Listing 5.2 to extract the set of all the traces of a given protocol;

2) languages alignment of protocols (line 11 of Listing 5.1), which exploits the algo-
rithm described by Listing 5.3 to build the common language plus tau between two
traces sets (representing protocols);

5.2 Implementing the Theory: Algorithms 59

3) traces relabelling (lines 12-13 of Listing 5.1), which exploits the algorithm de-
scribed by Listing 5.4 to substitute subtraces of a given protocol with the corre-
spondent abstract actions and τ through a given set of tuples TS recording the
correspondences.

The extractTrace Algorithm, takes as input a minimal and deterministic LTS P and re-
turns as output the set of all the coordination policies it extracts from P . According to
Definition 2 in Section 1.2.1, a coordination policy is a sequence of actions in an LTS
from its initial state to one of its final states.

1 I n p u t : minimal and deterministic LTS P
2 Outpu t : TraceSet T of P
3

4 TraceSet T e x t r a c t T r a c e s (LTS P) {
5 TraceSet T := ∅ ;
6 / / we assume bounds on loops execution
7 whi le (∃ t : t is a coordination policy of P ∧ t 6∈ T) {
8 T := T

⋃
t ;

9 }
10 re turn T ;
11 }

Listing 5.2: extractTraces Algorithm

The buildCommonLanguagePlusTau algorithm takes as input two trace sets T1 and T2
representing two protocols and returns as output (line 23 of Listing 5.3) a set TS of tuples
recording the common language plus tau built among T1 and T2 through the abstraction
ontology mapping functions maps1 and maps2.

Specifically, the algorithm builds a quadruple in TS that may be of two kind:
(i) < li,mi,mj, lj > for each pair of subtraces li and lj of T1 and T2 respectively that,
through maps1 and maps2, result to be semantically corresponding, with labels mi and
mj on the common language plus tau (lines from 7 to 12 of Listing 5.3). Note that mi

and mj are the same label with opposite type input/output and are called common (com-
plementary) names or abstract actions.
(ii) < li, τh,−,− > (or < −,−, τk, lj > respectively) for each remaining subtrace, i.e.,
the subtraces that do not have correspondences (lines from 13 to 17 and from 18 to 22
respectively of Listing 5.3). The τ represent conversations exchanged with third parties
and hence abstract only the actions of one protocol (the τ are not common indeed we use
subscripts to distinguish the τ of one protocol with respect to the ones of the other -see
also lines 14 and 20).

1 I n p u t : TraceSets T1 and T2 (of LTSs P1 and P2 respectively) , labelSet L2 ,
↪→abstract ionOnto logyMappingFunct ions maps1 and maps2

2 Outpu t : TuplesSet TS
3

4 pairsSet buildCommonLanguagePlusTau (TraceSet T1 , TraceSet T2 , labelSet L2 ,
↪→abstract ionOntologyMappingFunct ion maps1 , abstract ionOntologyMappingFunct ion maps2
↪→) {

5 TuplesSet TS := empty ;
6 quadruple qij , qi, qj := empty ;
7 forEach trace ti ∈ T1{ / / this covers all the traces of T1

60 Chapter 5. MediatorS: a Theory of Mediating Connectors

8 forEach (li := subtrace(ti)) : ∃lj ∈ L∗2 ∧ ((mh := maps1(li) ∧ mh := maps2(lj)) ∨
↪→(mh := maps1(li) ∧ mh := maps2(lj))) { / / this covers all the subtraces of
↪→traces in T1 that belong to the common language

9 qij := < li,mh,mh, lj > or < li,mh,mh, lj > (accordingly)
10 / / mh ranges on m1,m2, . . . ,mk ;
11 TS := TS

⋃
qij ;

12 }
13 forEach remaining li := subtrace(ti) { / / this covers all the subtraces of traces in

↪→T1 not already considered that belong to third parties conversation
14 qi := < li, τh,−,− > / / h ranges over 1, 2, . . . , k ;
15 TS := TS

⋃
qi ;

16 }
17 }
18 forEach (lj ∈ L∗2 : lj has not already been considered) { / / this covers all the

↪→subtraces of traces in T2 , not already covered , that belongs to third parties
↪→conversation

19 qj := < −,−, τh, lj >
20 / / h ranges over k + 1, k + 2, . . . , k + n ;
21 TS := TS

⋃
qj ;

22 }
23 re turn TS ;
24 }

Listing 5.3: buildCommonLanguagePlusTau Algorithm

The relabelTraces algorithm relabels/rewrites/abstracts the traces of T by collapsing,
where possible, sequences of states and transitions (see also the abstract protocol building
in Section 5.1.1 before Definition 7). It takes as input a trace set T and a tuple set TS
recording correspondences/mappings of subtraces of T (with respect to another protocol
TO) and returns a relabelled traces set T ′1 of T (line 14 of Listing 5.4).

For each trace ti ∈ T (line 6), the algorithm substitutes subtraces stj of ti with their cor-
responding abstract actions belonging to TS (lines 8 to 10). The corresponding actions
can belong either to the common language ranging among m1,m2, . . . ,mn or can belong
to third parties languages and range among τ1, τ2, . . . , τm.

1 I n p u t : TraceSet T , TuplesSet TS
2 Outpu t : TraceSet T ′

3

4 TraceSet relabelTraces (TraceSet T , TuplesSet TS) {
5 Trace tir ;
6 forEach trace ti ∈ T {
7 tir := ti ;
8 forEach stj := subtrace(tir) : mi (or mi or τi) corresponds to stj in TS i .e . ,

↪→< stj ,mi,mi, stk >∈ TS (or < stj ,mi,mi, stk >∈ TS or < stj , τi,−,− >∈ TS) {
9 tir := rewrite(tir,mi) (or tir := rewrite(tir,mi) or tir := rewrite(tir, τi) accordingly)

10 }
11 i f tir 6= ti then
12 T ′ := T ′

⋃
tir ;

13 }
14 re turn T ′ ;
15 }

Listing 5.4: relabelTraces Algorithm

5.2 Implementing the Theory: Algorithms 61

5.2.2 MATCHING ALGORITHMS

What. The (semantic) matching phase is described by Listing 5.5. It checks the existence
of (at least) a complementary coordination policy between two traces sets T ′1 and T ′2 taken
as input. The algorithm returns as output (line 40 of Listing 5.5): matching, indicating
whether a matching exists or not, relation specifying the levels of (functional) matching,
matchingTraces which is the set of complementary coordination policies.
matching can respectively be yes (line 25) if at least a matching trace is found or no oth-
erwise (line 24). In case matching = yes, relation can be either intersection (lines
28 to 30) or inclusion, i.e., t1containst2 (lines 31 to 33) or t2containst1
(lines 34 to 36), or it can be totalmatching (lines 37 to 39). In case matching = no
the relation is the string *.

1 I n p u t : TraceSet T ′1 and TraceSet T ′2
2 Outpu t : S t r i n g matching , S t r i n g relation , triplesSet matchingTraces
3

4

5 < Str ing , Str ing , triplesSet > matchingPhase (TraceSet T ′1 , TraceSet T ′2) {
6 Boolean intersect1 := false ;
7 Boolean intersect2 := false ;
8 Boolean intersection := false ;
9 Boolean t1containst2 := false ;

10 Boolean t2containst1 := false ;
11 Boolean totalmatching := false ;
12 S t r i n g matching := ’ ’ ;
13 Boolean relation := ’∗ ’ ;
14 triplesSet checkedTraces := emptyset ; / / contains triples < ti, tj , resp > : ti ∈ T ′1 , tj ∈ T ′2 ,

↪→resp ∈ {true, false}
15 triplesSet matchingTraces := ∅ ;
16 for each Trace ti ∈ T ′1 {
17 for each Trace tj in T ′2 {
18 / / element is of the kind < ti, tj , detailsn > : ti ∈ T ′1 , tj ∈ T ′2 , details is a data

↪→structure which , among other fields , includes resp ∈ {true, false}
19 triple element := checkCompatibility (ti , tj) ;
20 checkedTraces := checkedTraces

⋃
element ;

21 }
22 }
23 matchingTraces := {< ti, tj , detailsn >∈ checkedTraces : detailsn.resp = true } ;
24 i f (matchingTraces = ∅) then matching := NO
25 e l s e matching := YES ;
26 i f (∃t′i ∈ T ′1 : 6 ∃ elementk = t′i ∈ matchingTraces) then intersect1 := true ;
27 i f (∃t′j ∈ T ′2 : 6 ∃ elementk = t′j ∈ matchingTraces) then intersect2 := true ;
28 i f (intersect1 = true and intersect2 = true) then
29 intersection := true ;
30 relation := INTERSECTION ;
31 e l s e i f (intersect1 = true) then
32 t1containst2 := true ;
33 relation := T1CONTAINST2 ;
34 e l s e i f (intersect2 = true) then
35 t2containst1 := true ;
36 relation := T2CONTAINST1 ;
37 e l s e i f (intersect1 = false and intersect2 = false) then
38 totalmatching := true ;
39 relation := TOTALMATCHING ;
40 re turn < matching , relation , matchingTraces > ;
41 }

Listing 5.5: matchingPhase Algorithm

62 Chapter 5. MediatorS: a Theory of Mediating Connectors

How. For each trace ti ∈ T ′1 and each trace tj ∈ T ′2 (lines 16 to 22), the matchingPhase
algorithm exploits an auxiliary procedure, shown by Listing 5.6, to perform the compati-
bility check between two traces.

The checkCompatibility Algorithm reasons on two traces t1 and t2 taken as input and
finds, if any, their subtraces correspondences. The triple it returns, < t1, t2, details >, is
made up by t1 and t2 and details which is a data structure recording the correspondences
found. Among other fields it includes resp, ranging on {true, false}, indicating whether
or not the two traces are matching.

1 triple checkCompatibility (Trace t1 , Trace t2)

Listing 5.6: checkCompatibility Algorithm

5.2.3 MAPPING ALGORITHMS

What. The mapping phase, described by Listing 5.7, builds the mediator behavior. It
takes as input matching, relation, and matchingTraces coming from the previous
phase, and the TuplesSet (describing the common language plus the third parties lan-
guage) coming from the abstraction phase. The algorithm returns as output mediator
(line 50 of Listing 5.7) which can be a non-empty LTS in case matching is yes and an
empty LTS in case matching is no (line 12).

1 I n p u t : S t r i n g matching , S t r i n g relation , triplesSet matchingTraces , pairsSet PS (output of
↪→abstractionPhase ,i .e . , buildCommonLanguagePlusTau)

2 Outpu t : LTS mediator
3

4 LTS mappingPhase (S t r i n g matching , S t r i n g relation , triplesSet matchingTraces , TuplesSet TS
↪→) {

5 triple tripleaux := empty ; / / of the kind < ti, tj , detailsn >
6 triple reorderedTraces := empty ; / / of the kind < ti, tj , detailsn >
7 LTSSet medt := empty LTS set ;
8 LTSSet media := empty LTS set ;
9 LTS med_nontau :=empty LTS ;

10 Trace concrete1 := ’ ’ ;
11 boolean reordered := false ;
12 i f (matching = NO) then return emptyLTS ;
13 e l s e i f (matching = YES) then {
14 / / matchingTraces contains triples < ti, tj , detailsn >
15 forEach triplei ∈ matchingTraces {
16 tripleaux := triplei ;
17 i f (checkToReorder (tripleaux) = true) then {
18 reorderedTraces .details .mediator := reorder (tripleaux) ;
19 reordered := true ;
20 } e l s e {
21 tripleaux.details.mediator := computeMediator(tripleaux) ;
22 reordered := false ;
23 }
24 forEach action act = τh ∈ ti ∈ tripleaux {
25 concrete1 := c o n c r e t i z e A c t i o n (τh , TS) ;
26 medt := medt

⋃
b u i l d L t s (concrete1) ;

27 }
28 forEach action act = τk ∈ tj ∈ tripleaux {
29 concrete1 := c o n c r e t i z e A c t i o n (τk , TS) ;

5.3 Correctness Discussion 63

30 medt := medt
⋃

b u i l d L t s (concrete1) ;
31 }
32 i f (reordered = true) then {
33 forEach action mi ∈ reorderedTraces .details .mediator {
34 concrete1 := c o n c r e t i z e A c t i o n (mi , TS) ;
35 / / mi can either be an INPUT or an OUTPUT action and can either

↪→belong to a protocol or to the other hence resulting translated
↪→ into one language or the other accordingly

36 med_nontau := append (b u i l d L t s (concrete_1) , med_nontau) ;
37 }
38 } e l s e {
39 forEach action mi ∈ tripleaux.details.mediator {
40 concrete1 := c o n c r e t i z e A c t i o n (mi , TS) ;
41 med_nontau := append (b u i l d L t s (concrete_1) , med_nontau) ;
42 }
43 }
44 }
45 media := medt

⋃
med_nontau ;

46 }
47 LTS mediator := parallelComposition (media) ;
48 mediator := makeDeterministic (mediator) ; / / all its ltss
49 mediator := makeMinimal (mediator) ;
50 re turn mediator ;
51 }

Listing 5.7: mappingPhase Algorithm

How. In the case matching is yes (line 13), i.e., a matching exists, the algorithm per-
forms the following operations. For each matching traces pair (line 15)
(i) if needed, it computes and stores into reorderedTraces a mediator which prop-
erly reorders the non-tau actions of the two traces (lines 18 and 19). Otherwise computes
and stores a proper mediator without reordering (lines 20 to 23).
(ii) For each tau action of a trace (lines 24 to 27) and of the other trace (lines 28 to 31),
concretizes them with their actual/corresponding actions in TS and builds a proper medi-
ator LTS for them.
(iii) Concretizes and builds the proper LTS for the mediators in the point (i).
In the case a reordering has been performed (lines 32 to 37), the algorithm concretizes
-according to the proper protocol language- the non-tau actions of the mediator created
and stored in reorderedTraces and build the corresponding LTS.
In the case the reordering is not needed (lines 39 to 44), the algorithm concretizes the
mediator stored in tripleaux -according to the proper protocol language- and build the
corresponding LTS.

5.3 CORRECTNESS DISCUSSION

In the previous sections we presented a theory to synthesize mediators for protocol inter-
operability. Here we discuss the correctness-by-construction of the produced mediator,
i.e., that all the mediator traces allow a correct protocols interaction. We will demon-
strate the correctness by absurd.

As mentioned in the previous chapters, we work under some assumptions that we recall
in the following.

64 Chapter 5. MediatorS: a Theory of Mediating Connectors

Let us consider two compatible protocols P1 and P2, and a protocol P3 all working under
a fairness hypothesis. P3 is able to directly interoperate with P1, thus being a third party
when taking the interoperability perspective of the pair P1 and P2. Let us also call A1 and
A2 the abstracted protocols of P1 and P2 respectively.
We assume:

A1 to know the correct behavioural description of the protocols as LTS, i.e., correctly
representing the behaviour of the real/running protocol;

A2 to know the correct (i.e. actual) semantical characterization of the protocol’s ac-
tions, i.e., of the ontological description of the labels on the LTS;

A3 the existence of the correct environment where protocols communicate also with it,
i.e. proper third parties, other protocols;

A4 to know the correct bijective abstraction ontology mapping functions of the proto-
cols ontology;

A5 to use a correct algorithm to translate a set of traces into the corresponding LTS that
represent them;

Considering P1, P2, and P3 under the above assumptions, the theory (1) identifies the set
C of matching coordination traces between A1 and A2 and (2) creates a mediator M for
P and Q.
To build M , as mentioned in Section 5.1.3, we first build an abstract mediator AM for C,
mediating between abstract traces, and then we translates the abstract actions of AM into
concrete actions of P1, P2 and P3.
Thus, to show the correctness of the mediatorM we can show the correctness of the medi-
ator AM , i.e., that each mediator trace is correct allowing a correct protocols interaction.
This backward step from M to all the traces of AM is possible because of assumptions
A4 and A5 that respectively guarantee that: the inverse function of the abstraction ontol-
ogy mapping applied to go from M to AM is correct, and the algorithm to translate the
set of mediating traces into the corresponding AM representing them is correct.

A correct protocols interaction is defined as follows.
Let us consider two protocols P and Q and two traces tP of P and tQ of Q.
tP and tQ represent a correct protocol interaction between P and Q if they are the
same sequence of actions with opposite output/input type hence being able to synchro-
nize reaching one of their respective final states.

In our case the mediator has to mediate among matching traces. Then let us consider a
pair of matching traces t1 and t2.
Given the above, a mediating tracem is correct for t1 and t2 if it allows a correct protocol
interaction.
We recall that this means that t1 and t2 implement a complementary functionality while
possibly having mismatches and interleaved third parties actions. Thus a correct protocols

5.3 Correctness Discussion 65

interaction is a traces synchronization that allows t1 and t2 to evolve until they reach one
of their respective final states by communicating, through the mediator, either together
(on the complementary functionality) or with third parties. This means that m, in order to
be correct, must allow such kind of synchronization.

But this is exactly how we build our set of mediator traces. In particular, for each pair
of matching traces we build a mediator trace that let them evolve together by mediating
their mismatches and forwarding the third parties interactions hence being able, under the
described assumptions, to let two matching traces correctly communicate.
Summarizing, each mediator trace we build is correct-by-construction and hence the
whole mediator is correct.

Demonstration by absurd. Let us suppose by absurd that there exists a non-correct medi-
ating trace mij of the mediator for the pair of matching traces ti and tj . That is, mij does
not allow to evolve until its final state at least one among ti and tj . This can be translated
into three cases: (i) only ti does not evolve to its final state, (ii) only tj does not evolve to
its final state, and (iii) both ti and tj do not evolve until their final states.

Case (i). Only ti does not evolve to its final state.
This could happen because (1) an action of ti has to be exchanged with third parties
and it does not happen, or (2) an action of ti belongs to the common language and has
to be exchanged with tj , but this does not happen. In the case (1), either the action is
erroneously categorized as third parties action or mij is erroneous. But this violates the
assumptions A2 and A3 that ensure that the action is an actual third parties action, and
conflicts with the conditions in the definition to build mij that, starting from ti and tj
under the assumption A1, ensures that the action is exchanged performing a receive of
this action followed by the corresponding send.
In the case (2), either the action is erroneously categorized as common language action or
mij is erroneous. The demonstration is straightforward from case (i) (1).

Case (ii). Only tj does not evolve to its final state.
The demonstration is straightforward from case (i).

Case (iii). Both ti and tj do not evolve until their final states. This means that both ti
and tj are blocked on an action that prevents them to evolve. We can have two cases: (a)
the pair of actions of ti and tj is of the form (τi, τj) (b) the pair of actions is made by
actions of the common language that should be exchanged with the other trace but this
does not happen. The case (a) is demonstrated by absurd from the case (i)(1). The case
(b) can depend on two things: either the actions are erroneously categorized as common
language actions or the reordering performed by mij is erroneous. The former hypothesis
is demonstrated by absurd following the demonstration of case (i)(2), while the latter
conflicts with the conditions in the definition to build mij that, starting from ti and tj
under the assumption A1, ensures that the action is exchanged performing a receive of
this action followed by the corresponding send.

66 Chapter 5. MediatorS: a Theory of Mediating Connectors

5.4 CONCLUSION

In this chapter, we described our proposed theory for the interoperability of application-
layer protocols that are observable at the interface level. Key issue is to solve behavioral
mismatches among the protocols although they are functionally matching.

The proposed theory is a means to: (1) clearly define the problem, (2) show the feasibility
of the automated reasoning about protocols, i.e., to check their functional matching and
to detect their behavioral mismatches, and (3) show the feasibility of the automated syn-
thesis of abstract mediators under certain conditions to dynamically overcome behavioral
mismatches of functionally matching protocols. We have also shown the correctness of
the synthesized mediator.

Our theoretical framework is a first step towards the automated synthesis of actual medi-
ators. As detailed in the next chapter, significant part of our current work is on leveraging
practically the proposed theory in particular dealing with automated reasoning about pro-
tocol matching and further automated protocol mapping. We are also concerned with the
integration with complementary work so as to develop an overall framework enabling the
dynamic synthesis of emergent connectors among networked systems.

Relevant effort includes the study of: learning techniques to dynamically discover the
protocols that are run in the environment, middleware protocols mediation, dependability
assurance, data-level mediation, as well as algorithms and run-time techniques towards
efficient synthesis.

First results of such integration effort are described in Chapter 6 that reports about the
extension of the MediatorS theory to deal also with middleware mediation and data,
and in paper [18] that illustrates the combination of the automated synthesis technique
described in this chapter with a monitoring mechanism.

CHAPTER 6

EXTENDING THE MediatorS THEORY TO ENCOMPASS

MIDDLEWARE-LAYER

The previous two chapters respectively presented a mediator synthesis process called
AMAzING and a theory of mediators implementing such process called MediatorS.
As seen, the mediator synthesis relies on:

1. the abstraction of LTSs protocols whose actions semantics is given using ontolo-
gies;

2. the definition of a functional matching relation over abstract protocols to identify
whether they may coordinate to achieve a common goal using a mediator that solves
their possible behavioral mismatches;

3. the definition of protocol mapping which returns a mediator implementing appro-
priate solutions to possible mismatches between the protocols; in other words, the
mediators compose basic mediation patterns introduced in Chapter 4.

Since both the process and the theory that we proposed are general, in this chapter we will
extend the interoperability scope by considering together application-layer and middleware-
layer interoperability. Our aim is then to apply AMAzING and MediatorS on both
application- and middleware-layers. Thus with the term protocol in this chapter we refer
to a combination of application- and middleware-layer protocol plus the data conveyed.
In this chapter we illustrate:

- a refined model of networked systems that: (i) makes explicit their high-level func-
tionalities whose aim is to reduce the complexity of protocol matching verification;
(ii) extends the protocol model so to include, together with the application actions,
also the middleware functions and input/output data;

- the definition of (a) a middleware ontology (b) a middleware alignment and (c) a
middleware abstraction;

The above listed extensions lead to refine the working of protocol abstraction, functional
matching and mapping, defined in the previous chapter.

67

68Chapter 6. Extending the MediatorS Theory to Encompass Middleware-Layer

In the following, we present a revised version of our work [17] where: Section 6.1 intro-
duces the refined model of networked systems (Section 6.1.1) including also the extended
protocol model (Sections 6.1.2 and 6.1.3). Section 6.2 describes ontologies that are used
to conceptualize middleware (Section 6.2.1) in addition to application and data (Section
6.2.2). Then, Sections 6.3, 6.4, and 6.5 respectively discuss the refinement of the abstrac-
tion, of the functional matching relation and of the mapping introduced in the previous
chapter taking into account the above extensions. Finally, Section 6.6 concludes with a
summary of the chapter’s contributions and future work. Our contribution primarily lies
in dealing with interoperability/mediation of both application and middleware layer.

6.1 MODELING NETWORKED SYSTEMS

In this section, towards reducing the complexity of protocol matching verification and to
model middleware functions and input/output data together with the application actions,
we refine the model of the networked systems provided so far.
A basic assumption of on-the-fly connection of networked systems is that systems adver-
tise their presence in the network(s) they join. This is now common in pervasive networks
and supported by a number of resource discovery protocols [131]. Still, a crucial issue is
which description of resources should be advertised, which ranges from simple (attribute,
value) pairs as with SLP1 to advanced ontology-based interface specification [13].
In our work, resource description shall enable networked systems to compose according
to the high-level functionalities they provide and/or require in the network, despite het-
erogeneity in the protocols associated with the implementation of this functionality. In
other words, networked systems must advertise the high-level functionalities they pro-
vide and/or consume to be able to meet according to them. We call such functionalities
affordances (Section 6.1.1). A necessary condition for the compatibility/composabil-
ity of networked system is affordance matching (Section 6.4.1). That is a networked
system requires an affordance that matches an affordance provided by another. In the
theory of mediators introduced in the previous chapter, affordances are not explicit and
are inferred from the reasoning on the set of complementary coordination policies of the
networked systems’ abstract protocols. To reduce the complexity of checking networked
systems compatibility, we consider explicit the specification of the networked systems’
affordances, in a way similar to the specification of capabilities in the definition of se-
mantic Web services. In this way we can first perform an high-level check, i.e. affordance
matching. If this is successful we proceed with the reasoning otherwise we stop.
Then, the specification of networked systems decomposes into a number of affordances
whose behaviors are defined as protocols. We recall that we consider the observable pro-
tocol, i.e., sequences of actions visible at the interface level exchanged with other systems.
Protocols actions are specified as part of the system’s interface signature (Section 6.1.2)
while the modeling of protocols relies on some concurrent language or equivalently LTSs
and may be advertised by the system or be possibly learned (Section 6.1.3). Finally, the
semantics of actions is defined by exploiting ontologies.

1http://www.openslp.org/

6.1 Modeling Networked Systems 69

6.1.1 AFFORDANCE

An affordance denotes a high-level functionality provided to or required from the net-
worked environment. We model an affordance as a tuple:

Aff = <Type, Op, I, O >

where:
Type denote that either an affordance is offered/provided in the network (Prov) or con-
sumed/required (Req) or both required and provided (Req Prov). This latter is common
in peer-to-peer systems;
Op gives the semantics of the functionality associated to the affordance in terms of an
ontology concept;
I (resp. O) specifies the set of inputs (resp. outputs) of the affordance, and is defined as
a tuple < i1, . . . , in > (resp. < o1, . . . , om >) with each ih (resp. ok) being an ontology
concept.

As an illustration, the consumer affordance of the Photo Sharing scenario is defined
as: Photo-Sharing Consumer = <Req, Photo-Sharing Consumer, <PhotoComment>,
<Photo>> where the meaning of concepts is direct from their names (see further Sec-
tion 6.2 for the definition of the ontology).

6.1.2 INTERFACE SIGNATURE

The interface signature of a networked system specifies the set of observable actions that
the system executes to interact with other systems. In particular, networked systems im-
plement advertised affordances as protocols over observable actions that are defined in
their interfaces. Usually, the interface signature abstracts the specific middleware func-
tions that the system calls to carry out actions in the network. However, this is due to the
fact that existing interface definition languages are closely tied to a specific middleware
solution, while we target pervasive networking environments hosting heterogeneous mid-
dleware solutions. The specification of an action should then be enriched with the one
of the middleware function that is specifically used to carry out that action; indeed, an
observable action in an open pervasive network is the conjunction of an application-layer
with a middleware-layer function. Middleware functions then need to be unambiguously
characterized, which leads us to introduce a middleware ontology that defines key con-
cepts associated with state-of-the-art middleware API, as presented in the next section.
Given the above, the interface of a networked system is defined as a set of tuples as defined
in the following. More formally:

Interface = {< m, a, I, O >}

where:
m denotes a middleware function;

70Chapter 6. Extending the MediatorS Theory to Encompass Middleware-Layer

a denotes the application action;
I (resp. O) denotes the set of inputs (resp. outputs) of the action.

Moreover, as detailed in Section 6.2, the tuple elements are ontology concepts so that
their semantics may be reasoned upon.
As an illustration, the listing2 below gives the interface signatures associated with the
infrastructure-based implementation of Photo Sharing. The interfaces refer to ontol-
ogy concepts from the middleware and application-specific domains of the target sce-
nario; however, this does not prevent general understanding of the signatures given the
self-explanatory naming of concepts. Three interface signatures are introduced, which
are respectively associated with the producer, consumer and server networked systems.
The definition of the systems’ actions specify the associated SOAP3 functions, i.e., the
client-side application actions are invoked though SOAP middleware using the SOAP-
RPCInvoke function, while they are processed on the server side using the two functions
SOAP-RPCReceive and SOAP-RPCReply. The specific applications actions are rather
straightforward from the informal sketch of the scenario in Sections 1.1 and 4.1. For
instance, the producer invokes the server operations Authenticate and UploadPhoto for
authentication and photo upload, respectively. The consumer may possibly search for,
download or comment photos, or download comments. Finally, the actions of the Photo
Sharing server are complementary to the client actions.

1 I n t e r f a c e photo sharing producer = {
2 <SOAP−RPCInvoke , Authenticate , login , authenticationToken>
3 <SOAP−RPCInvoke , UploadPhoto , photo , acknowledgment>
4 }
5 I n t e r f a c e photo sharing consumer = {
6 <SOAP−RPCInvoke , SearchPhotos , photoMetadata , photoMetadataList>
7 <SOAP−RPCInvoke , DownloadPhoto , photoID , photoFile>
8 <SOAP−RPCInvoke , DownloadComment , photoID , photoComment>
9 <SOAP−RPCInvoke , CommentPhoto , photoComment , acknowledgment>

10 }
11 I n t e r f a c e photo sharing server = {
12 <SOAP−RPCReceive , Authenticate , login , ∅>
13 <SOAP−RPCReply , Authenticate , ∅ , authenticationToken>
14 <SOAP−RPCReceive , UploadPhoto , photo , ∅>
15 <SOAP−RPCReply , UploadPhoto , ∅ , acknowledgment>
16 <SOAP−RPCReceive , SearchPhotos , photoMetadata , ∅>
17 <SOAP−RPCReply , SearchPhotos , ∅ , photoMetadataList>
18 <SOAP−RPCReceive , DownloadPhoto , photoID , ∅>
19 <SOAP−RPCReply , DownloadPhoto , ∅ , photoFile>
20 <SOAP−RPCReceive , DownloadComment , photoID , ∅>
21 <SOAP−RPCReply , DownloadComment , ∅ , photoComment>
22 <SOAP−RPCReceive , CommentPhoto , photoComment , ∅>
23 <SOAP−RPCReply , CommentPhoto , ∅ , acknowledgment>
24 }

Listing 6.1: Interface signature

The peer-to-peer-based implementation defines a single interface signature, as all the
peers feature the same observable actions. It further illustrates the naming of actions
over domain data types of the application data instead of operations since the actions are

2As defined in the next section, photoFile and photoComment include photoID.
3http://www.w3.org/TR/soap/

6.1 Modeling Networked Systems 71

data-centric and are performed through functions of the LIME4 tuple-space middleware.

1 I n t e r f a c e photo sharing = {
2 <Out , PhotoMetadata , ∅ , photoMetadata>
3 <Out , PhotoFile , ∅ , photoFile>
4 <Rdg , PhotoMetadata , photoMetadata , photoMetadataList>
5 <Rd , PhotoFile , photoID , photoFile>
6 <Rd , PhotoComment , photoID , photoComment>
7 <Out , PhotoComment , ∅ , photoComment>
8 <In , PhotoComment , photoID , photoComment>
9 <Rd , PhotoComment , photoID , photoComment>

10 }

Listing 6.2: Photo sharing

Listing 6.2 highlights four primitives: a non-blocking write operation (Out) to produce
a tuple writing it into tuple space; a blocking non-destructive read (Rd) to get a copy of
one tuple and one to get all the tuples (Rdg) matching a template from the tuple space;
a blocking destructive read that getting a copy consumes/removes it from the tuple space
(In).

6.1.3 AFFORDANCE PROTOCOL

Given the networked system’s interface signature, the behavior of the system’s affor-
dances is specified as protocols over the system’s actions, which are defined in the inter-
face signature. Such protocols may be explicitly defined using some concurrent language
or the equivalent LTSs, as part of the networked system’s advertisements, as for instance
promoted by Web services languages. Alternatively, the protocol specification may be
learned in a systematic way based on the system’s interfaces but this is beyond our scope.
Thus, in this chapter, we assume that protocols are explicitly advertised. Different lan-
guages may be considered for such a specification from formal modeling to programming
languages. To provide a concrete example, we exploit today’s well-established language
from the Web service domain, i.e., BPEL5. Indeed, BPEL offers many advantages for the
definition of processes, among which: (i) the specification of both data and control flows
that allow identifying causally independent actions; (ii) the formal specification of BPEL
in terms of process algebra and the corresponding LTS that allows abstracting BPEL pro-
cesses for automated reasoning [53]; and (iii) the rich tool set coming along with BPEL,
which in particular eases process definitions by developers. However, in a way similar to
the definition of interface signatures, the language must allow specifying communication
actions using the various communication paradigms enabled by today’s middleware solu-
tions and not only those promoted by Web service technologies. Precisely, BPEL needs to
be enriched so as to support interaction with networked systems using different interaction
patterns and protocols, i.e., other than message-based ones that are classically associated
with Web services, which can be addressed in a systematic way using the BPEL extension
mechanism.

4http://lime.sourceforge.net
5http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

72Chapter 6. Extending the MediatorS Theory to Encompass Middleware-Layer

Photo-Sharing
-

-

-

If

-

-
Sequence

<Rdg,PhotoMetadata,photoMetadata,photoMetadataList>

-

-

While

<Rd,PhotoFile,photoID,photoFile>

<Rd,PhotoComment,photoID,photoComment>

-
Sequence

-

<In,PhotoComment,photoID,photoComment>

<Out,PhotoComment,empty,photoComment>

-

-
Sequence

<Out,PhotoMetadata,empty,photoMetadata>

-

-

While

<Rd,PhotoComment,photoID,photoComment>

-
Sequence

-

<In,PhotoComment,photoID,photoComment>

<Out,PhotoComment,empty,photoComment>

-

<Out,PhotoFile,empty,photoFile>

a) LIME-based Implementation

b) SOAP-based Implementation

<SOAP-RPCInvoke,Authenticate,login,authenticationToken>

<SOAP-RPCInvoke,UploadPhoto,photo,acknowledgment>

-

-

-

While

-

Photo-Sharing Producer

Photo-Sharing Consumer

<SOAP-RPCInvoke,SearchPhotos,photoMetadata,photoMetadataList>

-

-

-

While

<SOAP-RPCInvoke,DownloadPhoto,photoID,photoFile>

-

Photo-Sharing Server
-

-

-

While

-

-
Sequence

-

<SOAP-RPCReceive,Authenticate,login,empty>

<SOAP-RPCReply,Authenticate,empty,authenticationToken>

-
Sequence

-

<SOAP-RPCReceive,UploadPhoto,photo,empty>

<SOAP-RPCReply,UploadPhoto,empty,acknowledgment>

-
Sequence

-

<SOAP-RPCReceive,SearchPhotos,photoMetadata,empty>

<SOAP-RPCReply,SearchPhotos,empty,photoMetadataList>

-
Sequence

-

<SOAP-RPCReceive,DownloadPhoto,photoID,empty>

<SOAP-RPCReply,DownloadPhoto,empty,photo>

-
Sequence

-

<SOAP-RPCReceive,CommentPhoto,photoComment,empty>

<SOAP-RPCReply,CommentPhoto,empty,acknowledgment>

<SOAP-RPCInvoke,CommentPhoto,photoComment,acknowledgment>

<SOAP-RPCInvoke,DownloadComment,photoID,photoComment>

-
Sequence

-

<SOAP-RPCReceive,DownloadComment,photoID,empty>

<SOAP-RPCReply,DownloadPhoto,empty,photoComment>

Figure 6.1: Infrastructure- and peer-to-peer-based photo sharing

6.2 Ontology for Mediation 73

For illustration, Figure 6.1 gives the specification of the protocols associated with the
peer-to-peer and infrastructure-based Photo Sharing applications where we more specif-
ically consider: (a) LIME-based peer-to-peer and (b) SOAP-based infrastructure-based
implementations of the Photo Sharing application. The protocol executed by LIME-based
networked systems allows for both production and consumption of photo files. On the
other hand, there are different protocols for the producer, consumer and server for the
SOAP-based implementation due to the distinctive roles imposed by the service imple-
mented by the Photo Sharing server. Still, connectors shall enable seamless interaction of
the LIME-based Photo Sharing implementation with systems implementing affordances
of the infrastructure-based Photo Sharing.

6.2 ONTOLOGY FOR MEDIATION

Towards enabling mediators, we introduce a middleware ontology that forms the basis of
middleware protocol mediation (Section 6.2.1). In addition, domain-specific application
ontologies characterizing application actions serve defining both control- and data-centric
concepts (Section 6.2.2).

6.2.1 MIDDLEWARE ONTOLOGY

In this section we propose: (i) a reference middleware ontology and (ii) a middleware
alignment. The aim of the first is to provide a reference characterization of the existing
middleware so to have a shared language to express middleware functions.
Instead, the middleware alignment, when applied to LTSs, realizes an abstraction of the
middleware functions producing the corresponding LTSs with only application actions
and input/output data. Towards the realization of the AMAzING process, (i) and (ii) serves
realizing the middleware abstraction next to the application abstraction illustrated in the
previous chapter. In more detail, middleware-specific functions are first abstracted as ref-
erence middleware functions of the reference ontology, and then aligned.
State-of-the-art middleware may be categorized according to four middleware types re-
garding provided communication and coordination services [116]: remote procedure call,
shared memory, event-based and message-based.
The proposed reference middleware ontology is depicted in Figure 6.2 and more specif-
ically with concepts defined in white boxes. The ontology is structured around four cate-
gories, which serve as reference enabling to express in a unique language (the set of white
boxes concepts) functions of different middleware solutions.
Indeed, specific middleware functions (gray boxes in Figure 6.2) refines the reference
middleware ontology functions (white boxes in Figure 6.2). In particular grayed boxes
define concepts of the LIME and SOAP-based middleware solutions, that we consider in
our Photo Sharing scenario, respectively refining concepts of the shared-memory and re-
mote procedure call middleware reference ontology.

74Chapter 6. Extending the MediatorS Theory to Encompass Middleware-Layer

In addition to the is-a relation that is denoted by a white arrow head, the middleware on-
tology introduces a number of customized relations between concepts: hasOutput (resp.
hasInput) to characterize output (resp. input) parameters.
We also use relations from best practices in ontology design6 as illustrated by the follows
relation that serves defining sequence patterns.

<<owlClass>>
RemoteProcedureCallAPI

<<owlClass>>
Invoke

<<owlClass>>
ReceiveCall

<<owlClass>>
Reply

<<owlClass>>
MethodName

<<owlClass>>
Arguments

<<owlClass>>
ReturnValue

0..1 + follows {some}

+hasInput {some}

+hasOutput {some}

+hasOutput {some}

<<owlClass>>
SharedMemoryAPI

<<owlClass>>
Read

<<owlClass>>
Write

<<owlClass>>
DataChannel

<<owlClass>>
Data

+hasIntput {some}
+hasOutput {some}

+hasInput {some} +hasOutput {some}

<<owlClass>>
EventAPI

<<owlClass>>
Subscribe

<<owlClass>>
GetEvent

<<owlClass>>
Publish

<<owlClass>>
EventType

<<owlClass>>
Event

0..1 + follows {some}

+hasOutput {some}

+hasIntput {some} +hasOutput {some}+hasOutput {some}

+hasOutput {some}

<<owlClass>>
MessageAPI

<<owlClass>>
SendMessage

<<owlClass>>
ReceiveMessage

<<owlClass>>
MessageChannel

<<owlClass>>
Message

+hasOutput {some}

+hasOutput {some} +hasOutput {some}

+hasOutput {some}

+hasInput {some}

+IsAssociatedWith {some}

(d) Message-based middleware

a) Remote procedure call middleware (b) Shared memory middleware

(c) Event-based middleware

+hasInput {some}

+hasOutput {some}

<<owlClass>>
SOAP-RPCReply

<<owlClass>>
SOAP-RPCInvoke

<<owlClass>>
SOAP-RPCReceive

<<owlClass>>
SOAPRequest

<<owlClass>>
SOAPResponse

<<owlClass>>
In

<<owlClass>>
Inp

<<owlClass>>
Ing

<<owlClass>>
Rd

<<owlClass>>
Rdp

<<owlClass>>
Rdg

<<owlClass>>
Out

<<owlClass>>
Outg

<<owlClass>>
TupleTemplate

<<owlClass>>
Tuple

Figure 6.2: Middleware ontology

The ontology is given as a set of UML diagrams. In Figure 6.2.a), the ontology con-
cepts associated with RPC-based middleware include the Invoke function parameterized
by the method name and arguments, which is used on the client side. On the server
side, the ReceiveCall function to catch an invocation is followed by the execution of the
Reply function to return the result. The ontologies of functions for shared memory and
message-based middleware are rather straightforward. In the former, the shared mem-
ory is accessed through Read/Write functions parameterized by the associated data and
corresponding channel (see Figure 6.2.b). In the latter, messages are exchanged using the
SendMessage and ReceiveMessage functions parameterized by the actual message and re-
lated channel (see Figure 6.2.d). Regarding event-based middleware, events are published
using the Publish function parameterized by the specific event; while they are consumed
through the GetEvent function after registering for the specific event type using the Sub-
scribe function (see Figure 6.2.c).

6http://ontologydesignpatterns.org

6.2 Ontology for Mediation 75

<ReceiveCall, a, I, >

<Reply, a, , O>

Middleware
Agnostic LTS

<a, I, O>

RPC Server LTS

RPC Client LTS Event Subscriber LTS

Event Publisher LTS

Memory Reader LTS

Memory Writer LTS Message Sender LTS

Message Receiver LTS

<Invoke, a, I, O><a, I, O>

<Write, a, , O>

<Read, a, I, O>

<Publish, a, , O>

<Subscribe, a, , >

<GetEvent, a, , O> (*)

<SendMessage, a, , O>

<ReceiveMessage, a, , O>

= MethodName
= Arguments
= ReturnValue

= DataChannel
= Data
= Data

= EventType
= Event

= MessageChannel
= Message

a
I
O

a
I
O

a
O

a
O

(*) Considers transient subscription only

Figure 6.3: Middleware alignment

The proposed ontology serves mapping the functions of existing middleware into the ref-
erence functions, as illustrated for example for the cases of SOAP-based and LIME mid-
dleware. Heterogeneity in the underlying implementation may then be overcome using
transparent middleware interoperability solutions (e.g., [25]).

A further challenge for connectors in pervasive networking environments is to enable me-
diation among different types of middleware. To enable such mediation, we introduce a
middleware alignment that is a further abstraction allowing cross-type alignment of mid-
dleware functions. More specifically, according to their semantics, middleware functions
may be aligned based on whether they produce or consume an action in the network. We
hence define the alignment of middleware functions onto abstract input and output (de-
noted by an overbar) actions, which are parameterized by the application action a and
associated input I and output O.
The alignment of (possibly sequence of) middleware functions as abstract input and out-
put actions is summarized in Figure 6.3. The alignment defined for shared memory and
message-based middleware functions is rather direct: the Write and SendMessage func-
tions are mapped onto an output action; while the Read and ReceiveMessage translate into
an input action. Note that Read is possibly parameterized with I if the value to be read
shall match some constraints, as, e.g., enabled by tuple space middleware. The alignment
for the event-based middleware functions is straightforward for Publish: publication of
an event maps onto an output action. The dual input action is performed by the GetEvent
function, which is preceded by at least one invocation of Subscribe on the given event7.
The semantics of RPC functions follows from the fact that it is the server that produces an
application action, although this production is called upon by the client. Then, the output

7Note that for the sake of conciseness, the figure depicts only the case where a Subscribe is followed by
a single GetEvent.

76Chapter 6. Extending the MediatorS Theory to Encompass Middleware-Layer

action is defined by the execution of ReceiveCall followed by Reply, while the dual input
action is defined by the Invoke function.

<Write, PhotoMetadata, , photoMetadata>

<Write, PhotoFile, , photoFile>

<Read, PhotoFile, photoID, photoFile>

<Read, PhotoMetadata, photoMetadata, photoMetadataList>

<Read, PhotoComment, photoID, photoComment>

<Write, PhotoComment, , photoComment>

<Read, PhotoComment, photoID, photoComment>

<Write, PhotoComment, , photoComment>

Figure 6.4: Shared-memory based Photo Sharing after the mapping of middleware func-
tions to reference middleware ontology

As mentioned before, the alignments of Figure 6.3 are used to abstract protocols associ-
ated with the realization of affordances as middleware-agnostic processes. That is proto-
cols where (sequence of) middleware functions are abstracted into input and output of the
application actions. In other words middleware-agnostic processes have labels of the form
< a, I, O >where the application action a is overlined if the middleware function seman-
tics is translated into output into the network while a is non-overlined if the middleware
function semantics is translated into input from the network. As a result, protocols may be
matched based purely on their application-specific actions. In more detail, middleware-
specific functions are abstracted as middleware functions of the reference ontology, which
are then translated into input and output actions through the defined alignment.

<PhotoMetadata, PhotoMetadata, photoMetadata, photoMetadataList>

<PhotoMetadata, , photoMetadata>

<PhotoFile, , photoFile>

<PhotoComment, photoID, photoComment>

<PhotoComment, photoID, photoComment>

<PhotoComment, , photoComment>

<PhotoComment, , photoComment>

<PhotoFile, photoID, photoFile>

Figure 6.5: Middleware-agnostic peer-to-peer Photo Sharing

Figure 6.4 illustrates the protocol associated with the Shared-memory based Photo Shar-
ing implementation where has been performed the mapping of its middleware-specific
functions through the reference ontology. Instead, Figure 6.5 depicts the protocol asso-
ciated with the peer-to-peer Photo Sharing implementation after the alignment into mid-
dleware-agnostic input and output application-specific actions. Following the previous

6.2 Ontology for Mediation 77

chapter, abstract processes are represented as Labeled Transition Systems where circles
denote states (initial states are denoted by the double arrow and final states by double
circles) and arrows denote transitions labeled by the corresponding actions. Thanks to
the alignment of middleware functions, processes may be matched against the realiza-
tion of matching application-specific actions whose semantics is given by the associated
ontology.

6.2.2 APPLICATION-SPECIFIC ONTOLOGY

The subsumption relation of ontologies (also called is-a) serves matching application-
specific actions. We believe that the subsumption is not the panacea to reason about
semantic relationships between concepts. Other relations such as sequence [42] or part-
whole8 should be specified. We believe that best practices of ontology design and ontol-
ogy engineering9 and the use of ontology design patterns10 may prove very beneficial to
automatically discover and reuse semantic relations between concepts. Indeed, next to
the subsumption we defined other relations that serves matching the application-specific
actions: uses and is part of relations.

[uses] [uses]

[uses] [uses]
[uses]

[is part of]
[is part of]

[is part of]

Figure 6.6: Photo Sharing ontology

As detailed in the next section, a required affordance (resp. input action) matches a pro-
vided affordance (resp. output action) if the former is subsumed by the latter.

8http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.
html

9http://www.w3.org/2001/sw/BestPractices/OEP/
10http://ontologydesignpatterns.org

78Chapter 6. Extending the MediatorS Theory to Encompass Middleware-Layer

For illustration, Figure 6.6 gives an excerpt of the domain-specific ontology associated
with our Photo Sharing scenario, which shows the relations holding among the vari-
ous concepts implementing the scenario. Note that the application-specific ontology
not only describes the semantics and relationships related to data but also to the func-
tionalities and roles of the networked systems, such as Photo-Sharing Producer, Photo-
Sharing Consumer, and Photo-Sharing Server. It also defines the semantics of the op-
erations performed on data, such as UploadPhoto, DownloadPhoto, and SearchPhoto.
Furthermore, it relates data to operations: data subsumes the operations performed on
them. The rationale behind this statement is that by having access to data, any operation
could be performed on it. For example PhotoFile subsumes DownloadPhoto since by
providing access to a photo file, one can download it.

6.3 ABSTRACTION OF NETWORKED SYSTEMS

The above described models extensions leads to a refinement of the working of the ab-
straction step described in the previous chapter by manipulating models which include
also middleware functions and input/output data. We recall, as described in Section 5.1.1,
that the aim of this phase is to makes protocols comparable thus allowing to perform the
functional matching check and possibly reduces their size so to ease the automatic rea-
soning on them.
We recall that, differently from before, here we first perform the affordance matching
check illustrated in Section 6.4.1 to verify an high-level networked systems compatibility.
If the check is successful, then we perform the abstraction otherwise the process stops
because the networked systems are not compatible/composable. Within the abstraction
(1) we add the middleware abstraction in the beginning. That is, we need to do a kind
of preprocessing that translate the protocol model described here (including middleware
functions, application actions and input/output data) into one which abstracts the mid-
dleware thus resulting in a protocol describing only application actions and input/output
data. Subsequently, (2) we slightly modify the reasoning described in Section 5.1.1 to
include also the data reasoning together with the application actions reasoning. While the
middleware abstraction (1) is described in Section 6.2.1 we do not describe (2) which is
similar to what already done for the application reasoning and is part of future work.

6.4 FUNCTIONAL MATCHING OF NETWORKED SYSTEMS

As already mentioned, we need to refine the working of the matching of the previous
chapter according to the above provided characterization of networked systems and the
described abstraction phase. In the following we provide such definition.

More precisely, given two networked systems implementing semantically matching affor-
dances (Section 6.4.1), we say that the networked systems are functionally matching iff

6.4 Functional Matching of Networked Systems 79

there exists a mapping of their interfaces (Section 6.4.2) under which their affordances
are matching (Section 6.4.3).
Then, considering two semantically matching affordances of two networked systems, we
check the existence of an interface mapping that makes the abstracted affordance proto-
cols match.
As already said, the semantic matching of affordances is introduced to limit the use of
reasoning about behavioral matching, and hence improve the overall performance of the
abstract mediator synthesis.

6.4.1 AFFORDANCE MATCHING

The first step in identifying the possible matching of two networked systems is to assess
whether they respectively provide and require a matching affordance. More precisely, and
following the definition of [91] that adheres to the Liskov Substitution Principle [74]:

an affordance AffR = < Req, OpR, IR, OR > matches an affordance AffP = <Prov,
OpP , IP , OP >, denoted with AffR ↪→ AffP , iff in the given ontology
OpR v OpP ;
IP v IR which is a shorthand notation for subsumption between sets of ontology concepts;
OR v OP , similar shorthand notation as above.

Note that an affordance AffR of type Req produces the inputs IR and consumes the
corresponding outputsOR. In a dual manner, an affordanceAffP of type Prov consumes
the inputs IP and produces the corresponding outputs OP .

In the case where an affordance is required and provided by a NS (i.e., Type = Req Prov)
and the other affordance is required (resp. provides) by another NS, we apply similarly
the condition above considering that the Req Prov affordance is provided (resp. required).
For instance, given (1) and (2) below we have (3):
PhotoSharingConsumer =<Req , Photo−Sharing_Consumer , Comment , Photo> (1)

PhotoSharing =<Req_Prov ,Photo−Sharing ,{Photo , PhotoComment} ,{Photo , PhotoComment}> (2)

PhotoSharingConsumer ↪→ PhotoSharing (3)

Finally, in the case where both affordances are both provided and required, the equiva-
lence of concepts obviously needs to hold.
Given affordance matching, the connector between the matching networked systems should
mediate possible mismatches in their respective middleware-agnostic interaction proto-
cols. Specifically, possible mismatches for input actions need to be solved so as to ensure
that any input action is synchronized with an output action of the matching networked
system with respect to the realization of the affordance of interest. On the other hand, the
absence of consumption of an output action does not affect the behaviour of the networked
system as long as deadlock is prevented by the connector at runtime. Still, synthesis of

80Chapter 6. Extending the MediatorS Theory to Encompass Middleware-Layer

a protocol mediator is known as a computationally hard problem for finite state systems
in general [29] and thus requires heuristics to make the problem tractable. Towards that
goal, we focus on enabling the basic mediation patterns described in Chapter 4 [109, 108].
We then account for basic mediation patterns as follows:

• Messages ordering pattern: (includes ordering mismatch) concerns the re-ordering
of actions so that networked systems may indeed coordinate. Assuming the spec-
ification of affordance behaviour using a BPEL-like language as discussed in Sec-
tion 6.1.3, causally independent actions may be identified through data-flow anal-
ysis, hence enabling to introduce concurrency among actions and thus supporting
acceptable re-ordering.

• Message consumer pattern: (includes Extra send/missing receive mismatch) as
discussed above, extra output actions are simply discarded from the standpoint of
behavioural matching. Obviously, the associated mediator should handle any extra
synchronous output action to avoid deadlock.

• Message producer pattern: (includes Missing send/extra receive mismatch) any
input action needs to be mapped to an output action of the matching networked
system. However, in this case, there is no such output action that directly maps to
the input action. In a first step, we do not handle these mismatches as they would
significantly increase the complexity of protocol adaptation.

• Message Splitting pattern: (includes One send-many receive/many receive-one
send mismatch) Splitting actions relate to having an action of one system realized
by a number of actions of the other. Then, an input action may be split into a number
of output actions of the matching networked system if such a relation holds from
the domain-specific ontology giving the semantics of actions. On the other hand,
we do not deal with the splitting of output actions, which is an area for future work
given the complexity it introduces.

• Message Merger pattern (includes Many send-one receive/one receive-many send
mismatch) the merging of actions is the dual of splitting from the standpoint of the
matching networked system. Then, we only handle the merging of output actions.

• Message Translator Pattern: (which includes Signature mismatch) concerns the
language translation among actions so that NSs can coordinate. While doing the
behavioural matching, there is the assumption of the middleware ontology and of
the application-specific ontology which allow alignment. Then, the mediator should
just exploit that information.

6.4.2 INTERFACE MAPPING

Following the above, interface mapping serves identifying mappings among the actions
of the interaction protocols run by the networked systems that should coordinate (to reach
a common goal) towards the realization of a given affordance.

6.4 Functional Matching of Networked Systems 81

Let two networked systems that respectively implement the matching affordances Aff 1

and Aff 2. Let further IAff1 (resp. IAff2) be the set of abstracted actions (of the form
application action, input data, output data) executed by the protocol realizing Aff 1 (resp.
Aff 2); We introduce the function MapI(IAff1 , IAff2) which identifies the set of all pos-
sible mappings of all the input actions of IAff1 (resp. IAff2) with actions of IAff2 (resp.
IAff1), according to the semantics of actions and data. More formally:

MapI(IAff1 , IAff2) =
(
⋃
<a,I,O>∈IAff1

map(< a, I, O >, IAff2)) ∪
(
⋃
<a′,I′,O′>∈IAff2

map(< a′, I ′, O′ >, IAff1))

where:

map(< a, Ia, Oa >, I) =
(
⋃
i=1..n < bi, Ii, Oi >∈ I | a v

⋃
i{bi} ∧ Ii v (

⋃
j<i Oj) ∪ {Ia} ∧

Oa v (∪j<i{Oj}) ∪ {Ia}) ∧
∀seq1 ∈ map(< a, Ia, Oa >, I), 6 ∃seq2 ∈ map(< a, Ia, Oa >, I)|seq2 ≺ seq1

where ≺ denotes the inclusion of sequences. In the above definition, the ordering of
actions given by the sequence follows from the sequencing of actions in the protocol
realizing the affordance. The definition is further given in the absence of concurrent
actions to simplify the notations, while the generalization to concurrent actions is rather
direct.

As an illustration, we give in Listing 6.3 the interface mapping between the PhotoShar-
ingConsumer and PhotoSharing affordances. All the input actions of PhotoSharingCon-
sumer have a corresponding output action in PhotoSharing. On the other hand, the input
actions of PhotoSharing associated with the production of photos do not have matching
output actions in PhotoSharingConsumer. As a result, we support the adaptation of pro-
tocols for interaction between PhotoSharingConsumer and PhotoSharing regarding the
consumption of photos by the former only, as further discussed in the next section.

1 Map(I′photo sharing consumer , I′photo sharing) = {
2 < SearchPhotos, photoMetadata, photoMetadataList > 7→ {<<PhotoMetadata, ∅, photoMetadata >>} ,
3 < DownloadPhoto, photoID, photoF ile > 7→ {<< PhotoF ile , ∅, photoF ile >>} ,
4 < CommentPhoto, photoComment, acknowledgment > 7→ {<< PhotoComment, ∅, photoComment >>} ,
5 < DownloadComment, photoID, photoComment > 7→ {<< PhotoComment, ∅, photoComment >>} ,
6 < PhotoComment, photoID, photoComment > 7→ ∅ ,
7 < PhotoMetadata, photoMetadata, photoMetadataList > 7→ ∅ ,
8 < PhotoF ile, photoID, photoF ile > 7→ ∅
9 }

Listing 6.3: Interface mapping between the PhotoSharingConsumer and PhotoSharing
affordances

We are currently devising an efficient algorithm implementation towards computing in-
terface mappings, building upon related effort in the area (e.g., [81]). In addition, we

82Chapter 6. Extending the MediatorS Theory to Encompass Middleware-Layer

have implemented more primitive interface mapping that deals only with 1-to-1 action
mapping. This allows for joint implementation of interface mapping and of behavioral
matching of affordances using ontology-based model checking [16].

6.4.3 BEHAVIOURAL MATCHING OF AFFORDANCES

Given interface mappings returned by MapI , we need to identify whether the protocols
associated with the matching affordances may indeed coordinate reaching a common goal,
i.e., the concurrent execution of the two protocols successfully terminates.

We say that a process P1 associated with affordance Aff1 behaviourally matches a pro-
cess P2 associated with affordance Aff2 under Map(I ′1, I ′2), denoted with P1↪→P P2, iff
there exists at least one pair of complementary coordination policies.

Applying the above definition to our Photo Sharing example, we can check that:
Pphoto sharing consumer↪→PPphoto sharing

6.5 MAPPING OF NETWORKED SYSTEMS

According to the refined models, abstraction, and matching proposed in this chapter, we
also need to refine the working of the mapping or synthesis of mediators. In particular,
from a theoretical point of view we can leverage on the definition of the previous chapter
extended with the data. While special care is required from a pragmatic standpoint, in
reversing the abstractions that are applied to be able to reason about interface mapping
and protocol matching. In other words, the knowledge embedded in the ontologies needs
to be used to both abstract and concretize concepts. For instance, a middleware agnostic
action needs to be ultimately translated into a middleware-specific message that embeds
application-specific control and data. We are currently investigating such an issue, where
the encoding of knowledge using domain specific languages seems very promising [26].

6.6 CONCLUSION

The need to deal with the existence of different protocols that perform the same function
is not new and has been the focus of tremendous work since the 80s, leading to the study
of protocol mediation from both theoretical and practical perspectives. However, while
this could be initially considered as a transitory state of affairs, the increasing pervasive-
ness of networking technologies together with the continuous evolution of information
and communication technologies make protocol interoperability a continuous research
challenge. As a matter of fact, networked systems now need to compose on the fly while

6.6 Conclusion 83

overcoming protocol mismatches from the application down to the middleware layer. To-
wards that goal, this chapter has discussed the foundations of mediators, which adapt the
protocols run by networked systems that implement a matching functionality but possibly
mismatch from the standpoint of associated application protocol and even middleware
technology used for interactions. Enabling connectors specifically lies in the appropriate
modeling of the networked systems’ high-level functionalities, for which we exploit on-
tologies, and related protocols. This chapter has illustrated the refinement of our theory
enabling mediators that in the same time address interoperability at both application- and
middleware-layer. This represents our contribution compared to related work, that deals
with either automated protocol conversion/mediation or middleware interoperability. In
particular, through the alignment of middleware concepts, we are able to deal with inter-
operability between networked systems relying on heterogeneous middleware paradigms.
As future work we need to further formalize some of the above described refinement, as
for instance the working of abstraction and mapping phases.
Further we plan to implement the matching and mapping relations discussed in this chap-
ter so to enable networked systems to actually meet and compose on the fly. This means
that we need to design and implement the networked systems matching and mapping as
part of a networked systems’ universal discovery.

CHAPTER 7

MEDIATING FLICKR AND PICASA: A CASE STUDY

In the previous chapters we illustrated a theory of mediating connectors to achieve in-
teroperability exploiting a running scenario, the photo sharing within a stadium (see also
[15, 62, 43]). Other analyzed scenarios, such as Instant Messaging Applications and Dis-
tributed Marketplace Scenario, can be found in our works [110, 108, 107, 109, 18].

In order to validate our theory and process, together with the Instant Messengers Applica-
tions, we analyzed another real world case study, i.e., the Photo Management and Sharing
Application Tools which we describe in the following.

We considered two real services Flickr [50] and Picasa [93], illustrated in Figure 7.1,
offering similar and compatible functionalities.

Figure 7.1: Flickr and Picasa services

Both of them provide an API (see [51] for Flickr and [94] for Picasa) which we exploited
for the implementation; Picasa also offers a java example useful to developers [95]. For
Flickr, more specifically, we used the REST [49] access to the service.

The above mentioned tools, among others functionalities, (i) allow users to upload their
pictures on the web making available a space to them where to store the photos, and (ii)
share the pictures with, e.g., family, friends, colleagues. They are functionally matching

85

86 Chapter 7. Mediating Flickr and Picasa: a Case Study

protocols while having some behavioural mismatches indeed they offer similar operations
while showing some discrepancies in their implementation.

UploadPrivatePhoto

AddPhotoToNewSet

UploadPublicPhoto

UploadPhotoforGroups

AddPhotoToNewSet

AddPhotoToNewSet

UploadPrivatePhoto

UploadPublicPhoto
UploadPhotoforGroups

AddPhotoToNewSet

AddPhotoToNewSet

AddPhotoToNewSetMakeSetPrivate

MakeSetPublic

MakeSetForGroups

MakeSetPublic

MakeSetPrivate

MakeSetForGroups

MakePhotoPrivate

MakePhotoPublic

MakePhotoForGroup

MakePhotoPublic

MakePhotoPrivate

MakePhotoForGroup

Figure 7.2: Flickr client protocol

In particular, we focused on a Flickr client and the Picasa server. Figures 7.2 and 7.3 illus-
trate the considered protocols respectively. The labels on the LTSs are self-explanatory.
A different version of this example has been used in [31] where the authors describe an
approach on how to infer mappings without or with limited human intervention.

A first difference between the Flickr and Picasa protocols concerns the operations sig-
natures of the two services as can be noticed from their labels. Then, in Flickr, photos
can have different levels of visibility spanning public, private, family, and friend, where
family and friend are groups and the meaning is that only such authorized people can see
the photos. Private and public visibility are self-explanatory. Once uploaded, the pictures
can be organized in sets and it is always possible to modify the photo visibility and that
of the sets.
In Picasa, instead, the albums play a central role and hence the tool does not support the
upload of non-grouped photos, i.e. photos not organized in album. For this reason in
Picasa is needed first to create an album in order to be able to then upload pictures into
the created album. Moreover, due to this centrality of albums, differently from Flickr,
the visibility can be only applied to albums and not directly to photos. Additionally, the
visibility in Picasa can be private, public, anyone with the link and additionally can be
also shared with family, friends and colleagues (which are groups).

In the following we describe the application our MediatorS theory based on the AMAzING
process on these two protocols. As already said, we assume to have the two protocols to-
gether their ontological information. Figure 7.4 shows the ontological information related

87

CreatePrivateAlbum

AddNewPhotoToAlbum

CreatePublicAlbum

CreateAlbumWithLink

AddNewPhotoToAlbum AddNewPhotoToAlbum

CreatePrivateAlbum

CreatePublicAlbum
CreateAlbumWithLink

AddPhotoToNewSet

AddNewPhotoToAlbum

AddNewPhotoToAlbumMakePhotosInAlbumPrivate

MakePhotosInAlbumPublic

MakePhotosInAlbumWithLink

MakePhotosInAlbumPublic

MakePhotosInAlbumPrivate

MakePhotosInAlbumPublic

MakeAlbumPrivate

MakeAlbumPublic

MakeAlbumWithLink

MakeAlbumPublic

MakeAlbumPrivate

MakeAlbumWithLink

Figure 7.3: Picasa server protocol

to Flickr (left column) and Picasa (right column) protocols. The central column shows
their common language where in some cases there is no correspondence meaning that
those actions have not any correspondent action.

The first step is the protocols abstraction by using the common language. The abstracted
protocols for this scenario are illustrated in Figure 7.5 where it appears clear that they are
the “same protocol”. The abstraction information is made up by the ontology mapping
rules used in order to produce the abstracted LTS. For instance PuAPuP in Figure 7.5
a) can be obtained in several ways and we store all the possible mappings. Examples
are: UploadPrivatePhoto . AddPhotoToNewSet . MakeSetPublic 7→ PuAPuP ;
UploadPublicPhoto . AddPhotoToNewSet 7→ PuAPuP .
Referring to Figure 7.5 b), PuAPuP can be obtained in several ways. Examples are:
CreatePublicAlbum . AddNewPhotoToAlbum 7→ PuAPuP ;
CreatePrivateAlbum . AddNewPhotoToAlbum . MakePhotosInAlbumPublic 7→
PuAPuP .

The second step is the matching. In our case study, Flickr and Picasa protocols are
compatible having all compatible (abstract) traces, i.e. their abstract protocols are the
same (complementary) protocol. The intuitive meaning of the matching traces is that there
are three high-level matching functionalities: (1) upload of public albums with public
pictures, (2) upload of private albums with private pictures, and (3) upload of albums only
visible to some group with pictures only visible to some group.

88 Chapter 7. Mediating Flickr and Picasa: a Case Study

Flickr Client Protocol
Common Language

Projected on the Protocols
Picasa Server Protocol

UploadPrivatePhoto.
AddPhotoToNewSet.

MakeSetPublic
PuAPuP PuAPuP

CreatePublicAlbum.
AddNewPhotoToAlbum

UploadPrivatePhoto.
AddPhotoToNewSet.

MakeSetPublic
PuAPuP PuAPuP

CreatePrivateAlbum.
AddNewPhotoToAlbum.

MakePhotosInAlbumPublic

UploadPublicPhoto.
AddPhotoToNewSet

PuAPuP PuAPuP
CreatePublicAlbum.

AddNewPhotoToAlbum

UploadPrivatePhoto PrP - -

AddPhotoToNewSet PrS - -

MakeSetPublic PuS - -

- - PrA CreatePrivateAlbum

- - PrPA AddNewPhotoToAlbum

- - PuA MakePhotosInAlbumPublic

UploadPrivatePhoto.
AddPhotoToNewSet

PrAPrP PrAPrP
CreatePrivateAlbum.

AddNewPhotoToAlbum.

UploadPhotoforGroups.
AddPhotoToNewSet

GrAGrP GrAGrP
CreateAlbumWithLink.
AddNewPhotoToAlbum

… … … …

… … … …

Figure 7.4: Ontological information

We recall that mapping back each abstract trace into concrete traces of Flickr and Picasa
protocols we obtain a set of different traces, i.e., a protocol. Hence we store as matching
information the pairs of matching traces of the two protocols.

The third and last step is the mapping that, taking in input the abstraction and the match-
ing information, compute the mediator.
The mediator resulting from this step intuitively translates any service invocation coming
from the Flickr client into the corresponding service invocation to the Picasa server. More
in detail, the mediator receives any trace of Flickr (corresponding to one of the three
high-level functionalities (1),(2),or (3) above) and translates them into the set of comple-
mentary traces of Picasa.
Figure 7.6 shows the mediator between Flickr and Picasa (from the former to the latter)
where for the readability of the figure we relabeled the actions with capital letters labels.
The upper part of the figure, coloured in blue, is the complementary protocol of the Flickr
client, i.e., the same protocol with opposite actions (all actions are of the type receive).
The bottom part of the figure, coloured in green, is made up by three copies of the Picasa
client protocol, i.e. protocol with all send actions. This is due to the fact that from the
matching check among Flickr and Picasa protocols we discover that there are three com-

89

PuAPuP

PrAPrP

GrAGrP PuAPuP

PrAPrP

GrAGrP

a) Abstract protocol of Flickr b) Abstract protocol of Picasa

PuAPuP

PrAPrP

GrAGrP PuAPuP

PrAPrP

GrAGrP

abstracts abstracts

Figure 7.5: Abstracted protocols

plementary functionalities and each of them can be achieved in several different ways.
For this reason we can see that the mediator (Figure 7.6) first accepts the input coming
from Picasa (in the upper portion of the figure) and then depending on which functionality
has been performed in Picasa will perform one of its corresponding behaviour in Flickr
terminating in one of the three accepting states in the bottom of the figure. In particular a
correct interaction will be represented in the mediator as a trace execution that starts from
the initial state and ends into one of the three final states.

We have also implemented a mediator to allow the communication between Flickr and
Picasa. The implementation has been done using Java and exploiting the API provided by
the two services (mentioned in the beginning of this chapter). Two personal accounts on
the photo management and sharing application tools have been used.

In particular we considered the Flickr client first uploading a private photo, subsequently
adding the photo to a new private set, and then making public the visibility of the set. This
amount to uploading a public set with a public photo on it. Hence this can be translated
into one of the corresponding invocations of the Picasa service to do that.
The case described above is illustrated by the following coordinations policies from Flickr
and Picasa clients respectively: UploadPrivatePhoto . AddPhotoToNewSet . MakeSet-
Public and UploadPublicPhoto . AddPhotoToNewSet. As we said, the mediator (a)
receives the service invocations from the Flickr client (expressed in its language and pro-
tocol), i.e., UploadPrivatePhoto . AddPhotoToNewSet . MakeSetPublic (b) trans-
late them into a Picasa service invocation, i.e., UploadPublicPhoto . AddPhotoToNewSet,
and (c) invoke the Picasa service.
Summarizing, the resulting mediator trace isUploadPrivatePhoto . AddPhotoToNewSet

90 Chapter 7. Mediating Flickr and Picasa: a Case Study

A

A

B

B

CC

D

D

B
B

B

B

E

F F
G

E

G

H

H
I I

J

L

M
M

N

N

O
O

R

R

N

N
N

N

P

Q Q

S

P
S

T

TK K

L

L

M
M

N

N

O
O

R

R

N

N
N

N

P

Q Q

S

P

T

T
K K

L

L

S

M

M

N

N

O
O

R

R

N

N N

N

P

Q Q

S

P
S

T

T
K K

L

L

Figure 7.6: Mediator between Flickr and Picasa protocols

. MakeSetPublic . UploadPublicPhoto . AddPhotoToNewSet. The outcome of this
interaction is that the Flickr client perform its invocations to upload the public set with a
public photo, the mediator intercepts these invocations and translate them into the corre-
sponding invocations of Picasa service then creating the album with the photo in Picasa.

This case study have shown that both the process and the theory are successfully being
able to: (1) establish that Flickr and Picasa clients are functionally matching, and (2)
produce a mediator that lets a Flickr client interact/communicate with the Picasa service.
This can be considered a first effort towards the automated synthesis of mediators. In-
deed, to put our solution into actual practice, we still need to implement the reasoning
underlying the MediatorS theory.

CHAPTER 8

THE MEDIATORS THEORY IN CONNECT

The CONNECT1 Integrated Project [35, 64] aims at enabling continuous composition of
Networked Systems (NSs) to respond to the evolution of functionalities provided to and
required from the networked environment.
At present the efficacy of integrating and composing networked systems depends on the
level of interoperability of the systems’s underlying technologies. However, interopera-
ble middleware cannot cover the ever growing heterogeneity dimensions of the networked
environment.
CONNECT aims at dropping the interoperability barrier by adopting a revolutionary ap-
proach to the seamless networking of digital systems, that is, synthesizing on the fly the
connectors via which networked systems communicate.
The resulting emergent connectors are effectively synthesized according to the behavioural
semantics of application- down to middleware-layer protocols run by the interacting par-
ties. The synthesis process is based on a formal foundation for connectors, which allows
learning, reasoning about and adapting the interaction behaviour of networked systems
at run-time. Synthesized connectors are concrete emergent system entities that are de-
pendable, unobtrusive, and evolvable, while not compromising the quality of software
applications.
To reach these objectives the CONNECT project undertakes interdisciplinary research in
the areas of behaviour learning, formal methods, semantic services, software engineering,
dependability, and middleware.
Specifically, CONNECT will investigate the following issues and related challenges: (i)
Modeling and reasoning about peer system functionalities, (ii) Modeling and reasoning
about connector behaviours, (iii) Runtime synthesis of connectors, (iv) Learning connec-
tor behaviours, (v) Dependability assurance, and (vi) System architecture. The effec-
tiveness of CONNECT research will be assessed by experimenting in the field of wide
area, highly heterogeneous systems where today’s solutions to interoperability already
fall short (e.g., systems of systems).

Due to its research topics and objectives, CONNECT adopted and currently exploits both
the AMAzING approach and the MediatorS theory. In particular, given the respective
interaction behaviour of networked systems (NSs), CONNECT wants to synthesize the
behaviour of the connector(s) needed for them to interact. These connectors serve as

1http://connect-forever.eu/

91

92 Chapter 8. The MediatorS Theory in CONNECT

mediators of the networked systems interaction at both application and middleware layers.
First achievements have been reported in Deliverable D3.1 [38]: Modeling of application-
and middlewarelayer interaction protocols while more recent results are contained in [39].
More specifically, the project used AMAzING and MediatorS to address two among all
its objectives that can be summarized as follows:

1 - Synthesis of application-layer conversation protocols. The goal here is to identify
connectors patterns that allow the definition of methodologies to automatically syn-
thesize, in a compositional way and at run-time, application-layer connectors.

2 - Synthesis of middleware-layer protocols. The objective here is to generate adequate
protocol translators (mappings) that enable heterogeneous middleware to interoper-
ate, and realize the required non-functional properties, thus successfully intercon-
necting NSs at the middleware level.

Thus, the project has been and is a perfect framework within which to validate and exper-
iment MediatorS and the process it implements.
To give an overview of the whole CONNECT, in the following we report first results to-
wards its architecture. More details of preliminary results can be found in [15, 36] while
more recent results are in [37].

8.1 TOWARDS THE CONNECT ARCHITECTURE

A fundamental requirement of distributed systems is to ensure interoperability between
the communicating elements; systems that have been implemented independently of one
another must be able to connect, understand and exchange data with one another. This
is particularly true in highly dynamic application domains (e.g. mobile and pervasive
computing) where systems typically only encounter one another at runtime. Middleware
technologies have traditionally resolved many of the interoperability problems arising
in these situations, such as operating system and programming language heterogeneity.
Where two applications conform to a particular middleware standard, e.g. CORBA [57]
and Web Services [20, 33], they are guaranteed to interoperate. However, the next gener-
ation of distributed computing applications are characterized by two important properties
that force a rethink of how interoperability problems should be tackled:

- Extreme heterogeneity. Complex pervasive systems are composed of technology-
dependent islands, i.e. domain specific systems that employ heterogeneous commu-
nication and middleware protocols. For example, Grid applications, mobile ad-hoc
networks, Enterprise systems, and sensor networks all use their own protocols such
that they cannot interoperate with one another.

8.1 Towards the CONNECT Architecture 93

- Spontaneous Communication. Connections between systems are not made until
runtime (and are made between systems that were not aware of one another before-
hand). With such characteristics, requiring all applications to be developed upon
a common middleware technology, e.g. CORBA or Web Services, is unsuitable in
practice. Rather, new approaches are required that allow systems developed upon
heterogeneous technologies to interoperate with one another at runtime. In this
paper, we present the CONNECT architectural framework that aims to resolve this
interoperability challenge in a fundamentally different way. Rather than create a
middleware solution that is destined to be yet another legacy platform that adds to
the interoperability problem, we propose the novel approach of generating the re-
quired middleware at runtime i.e. we synthesize the necessary software to connect
two end-systems. For example, if a client application developed using SOAP [58]
encounters a CORBA server then the framework generates a connector that resolves
the heterogeneity of the i) data exchanged, ii) application behaviour e.g. sequence
of operations called, and iii) the lower level middleware and network communica-
tion protocols. In this paper we identify the requirements that need to be satisfied
to guarantee interoperability, namely interoperability at the discovery, behavioural
and data level. We then outline the key elements of the CONNECT framework that
underpin a runtime solution to achieving such interoperability, and that are further
detailed in the papers [60, 62, 18, 6, 41]:

- Discovering the functionality of networked systems and applications advertised by
legacy discovery protocols e.g. Service Location Protocol (SLP) and Simple Ser-
vice Discovery Protocol (SSDP). Then, transforming this to a rich intermediary
description used to syntactically and semantically match heterogeneous services.

- Using learning algorithms to dynamically determine the interaction behaviour of a
networked system from its intermediary representation and producing a model of
this behaviour in the form of a labelled transition system (LTS) [60].

- Dynamically synthesising a software mediator using code generation techniques
(from the independent LTS models of each system) that will connect and co-ordinate
the interoperability between heterogeneous end systems [62, 18].

We highlight the potential of this CONNECT framework to achieve interoperability having
high levels of heterogeneity.

8.1.1 HETEROGENEITY DIMENSIONS

We now examine the dimensions of heterogeneity which explain why interoperation fails.

1. Heterogeneous discovery protocols are used by systems to locate other systems, and
to advertise their services, e.g., SLP and SSDP. In situations where systems differ
in this aspect, they will be unable to discover one another and the first step fails.

94 Chapter 8. The MediatorS Theory in CONNECT

2. Systems use heterogeneous middleware protocols to implement their functional in-
teractions, e.g. tuple space middleware and SOAP RPC protocol [58] are used;
these are different communication paradigms: the tuple space follows a shared
space abstraction to write tuples to and read from, whereas RPC is an asynchronous
invocation of a remote operation. Hence, the two cannot interoperate directly.

3. Application level heterogeneity. Interoperability challenges at the application level
arise due to the different ways that application developers implement the function-
ality. As a specific example, consider two different sequences of messages: a single
remote call, or three separate remote calls.

4. Data-representation Heterogeneity. Implementations may represent data differently.
Data representation heterogeneity is typically manifested at two levels. The sim-
plest form of data interoperability is at the syntactic level where two different sys-
tems may use very different formats to express the same information. As example
consider an XML representation vs. a Java Object. Further, even if two systems
share a common language to express data, different dialects may still raise interop-
erability issues, e.g. price and cost or also value and amount. The deeper problem
of data heterogeneity is the semantic interoperability whereby all systems should
have the same interpretation of data.

Summarizing the requirements, we have described four dimensions where systems may
be heterogeneous: i) the discovery protocol, ii) the middleware protocol, iii) application
behaviour, and iv) data representation and meaning. A universal interoperability solution
must consider all four.

8.1.2 BEYOND STATE OF THE ART INTEROPERABILITY SOLUTIONS

Achieving interoperability between independently developed systems has been one of
the fundamental goals of middleware researchers and developers; and prior efforts have
largely concentrated on solutions where conformance to one or other standard is required
e.g. as illustrated by the significant standards work produced by the OMG for CORBA
middleware [57], and by the W3C for Web Services based middleware [20, 33]. These
attempt to make the world conform to a common standard; such an approach has been
effective in many areas e.g. routing of network messages in the Internet. To some extent
the two approaches have been successful in connecting systems in Enterprise applications
to handle hardware platform, operating system and programming language heterogeneity.
However, in the more general sense of achieving universal interoperability and dynamic
interoperability between spontaneous communicating systems they have failed. Within
the field of distributed software systems, any approach that assumes a common middle-
ware or standard is destined to fail due to the following reasons:

- A one size fits all standard/middleware cannot cope with the extreme heterogeneity of
distributed systems e.g. from small scale sensor applications through to large scale Inter-

8.1 Towards the CONNECT Architecture 95

net applications.

- New distributed systems and application emerge fast, while standards development is a
slow, incremental process. Hence, it is likely that new technologies will appear that will
make a pre-existing interoperability standard obsolete, c.f. CORBA versus Web Services
(neither can talk to the other).

- Legacy platforms remain useful. Indeed, CORBA applications remain widely in use
today. However, new standards do not typically embrace this legacy issue; this in turn
leads to immediate interoperability problems. One approach to resolving the heterogene-
ity of middleware solutions comes in the form of interoperability platforms. ReMMoC
[56], Universal Interoperable Core [100] and WSIF [44] are client side middleware which
employ similar patterns to increase interoperability with heterogeneous service side proto-
cols. First, the interoperability platform presents an API for developing applications with.
Secondly, it provides a substitution mechanism where the implementation of the protocol
to be translated to, is deployed locally by the middleware to allow communication di-
rectly with the legacy peers (which are simply legacy applications and their middleware).
Thirdly, the API calls are translated to the substituted middleware protocol. For the par-
ticular use case, where you want a client application to interoperate with everyone else,
interoperability platforms are a powerful approach. However, these solutions rely upon a
design time choice to develop upon the interoperability platforms. Therefore, they are un-
suited to other interoperability cases e.g. when two applications developed upon different
legacy middleware want to interoperate spontaneously at runtime. Software bridges offer
another interoperability solution to enable communication between different middleware
environments. Clients in one middleware domain can interoperate with servers in another
middleware domain where the bridge acts as a one-to-one mapping between domains; it
will take messages from a client in one format and then marshal this to the format of the
server middleware; the response is then mapped to the original message format. While
a recognised solution to interoperability, bridging is infeasible in the long term as the
number of middleware systems grow i.e. due to the effort required to build direct bridges
between all of them. The Enterprise Service Buses (ESB) can be seen as a special type of
software bridge; they specify a service-oriented middleware with a message-oriented ab-
straction layer atop different messaging protocols (e.g., SOAP, JMS, SMTP). Rather than
provide a direct one-to-one mapping between two messaging protocols, a service bus of-
fers an intermediary message bus. Each service (e.g. a legacy database, JMS queue, Web
Service etc.) maps its own message onto the bus using a piece of code, to connect and
map, deployed on the peer device. The bus then transmits the intermediary messages to
the corresponding endpoints that reverse the translation from the intermediary to the local
message type. Hence traditional bridges offer a 1-1 mapping; ESBs offer an N-1-M map-
ping. Example ESBs are Artix [1] and IBM Websphere Message Broker [2]. ESBs offer
a solution to the problem of middleware heterogeneity; however, it focuses on the mes-
saging abstraction only and the assumption is that all messaging services can be mapped
to the intermediary abstraction (which is a general subset of messaging protocols). This

96 Chapter 8. The MediatorS Theory in CONNECT

decision is enacted at design or deployment time, as the endpoint must deploy code to
connect to a particular message bus with an appropriate translator and hence is unsuitable
for dynamic interoperation between two legacy platforms. INDISS [25], uMiddle [83],
OSDA [73], PKUAS [55] and SeDiM [52] are examples of transparent interoperability
solutions which attempt to ensure legacy solutions unaware of the heterogeneous middle-
ware are still able to interoperate. Here, protocol specific messages, behaviour and data
are captured by the interoperability framework and then translated to an intermediary; a
subsequent mapper then translates from the intermediary to the specific legacy middle-
ware to interoperate with. The use of an intermediary means that one middleware can
be mapped to any other by developing these two elements only (i.e. a direct mapping to
every other protocol is not required). Another difference to bridging is that the peers are
unaware of the translators (and no software is required to connect to them, as opposed to
connecting to ’bridges’). The interoperation solutions proposed above concentrate on the
middleware level. They support interoperation by abstract protocols and language spec-
ifications. But, by and large they ignore the data dimension. To this extent a number of
efforts, which are generically labelled as Semantic Web Services [77, 99, 47], attempt to
enrich the Web services description languages with a description of the semantics of the
data exchanged. The result of these efforts are a set of languages that describe both the or-
chestration of the services’ operations, in the sense of the possible sequences of messages
that the services can exchange as well as the meanings of these messages with respect
to some reference ontology. However, such approaches assume a common middleware
standard and do not address the heterogeneity problems previously described. The state
of the art investigation shows two important things; first, there is a clear disconnect be-
tween the main stream middleware work and the work on application, data, and semantic
interoperability; second, none of the current solutions addresses all of the four require-
ments of dynamic pervasive systems as highlighted previously. Hence, these results show
that there is significant potential for CONNECT to extend beyond the state of the art in
interoperability middleware.

8.1.3 THE CONNECT ARCHITECTURAL FRAMEWORK

The CONNECT architecture provides the underlying principles and software architec-
ture framework to enact the necessary mechanisms to achieve universal interoperability
between heterogeneous systems.

Figure 8.1 presents a high-level overview of the following actors involved within the
CONNECT architecture and how they interact with one another:

• Networked systems are systems that manifest the will to connect to other systems
for fulfilling some intent identified by their users and the applications executing
upon them.

• Enablers are networked entities that incorporate all the intelligence and logic of-
fered by CONNECT for enabling connection between heterogeneous networked

8.1 Towards the CONNECT Architecture 97

Figure 8.1: Actors in the CONNECT Architecture

systems. In this paper, we focus on how the discovery, learning and synthesis en-
ablers co-ordinate to produce a connector as shown in Figure 8.1.

• Connectors are the synthesized software connectors produced by the action of en-
ablers to connect networked systems.

Discovery and Learning of Networked Systems Networked systems use discovery pro-
tocols to advertise their will to connect (i.e. their intent); service advertisements are used
to describe the services that a system provides, while service lookup requests document
the services that are required. It is the role of the discovery enabler to capture this in-
formation from the legacy network protocols in use and to create an initial picture of the
network systems wishing to connect with one another.

Figure 8.2: Networked System Model

The outputs of this enabler are models of networked system as shown in Figure 8.2. It
is important to note that only a subset of this description is made available by the net-
worked system; the learning enabler utilises an active learning algorithm to learn the
co-ordination and interaction patterns of the application [60]. Much of the information
about the middleware level is not explicit in the discovery process, but pointers within
the discovery descriptions (e.g. this is a SOAP service) can be used to build the model
from pre-defined, constant middleware models (e.g. a model of the SOAP protocol). The
model builds upon discovery protocol descriptions that convey both syntactic informa-
tion and semantic information about the externalized networked system. This semantic

98 Chapter 8. The MediatorS Theory in CONNECT

information is necessary in open environments, where semantics cannot be assumed to
be inherently carried in a commonly agreed syntax. Typically, ontologies are used in
open environments for providing a common vocabulary on which semantic descriptions
of networked systems can be based.

Figure 8.3: The Discovery Enabler

The architecture of the discovery enabler is illustrated in Figure 8.3. This software frame-
work is deployed upon a third party node within the network and consists of three core
elements:

- Discovery protocol plug-ins. Discovery protocols e.g. SLP, UPnP, LDAP, Jini, etc. are
heterogeneous in terms of their behaviour and message format; further they differ in the
data representation used to describe services. To resolve this, individual plug-ins for each
protocol receive and send messages in the legacy format; the plug-in also translates the
advertisements and requests into a common description format used by the CONNECT
networked system model.

- The Model repository stores networked system models of all CONNECT ready systems
(this is a system which advertises its intent and whose behaviour is learnable). These
remains alive for the lifetime of the request-for a system advertising its services this will
normally match the length of its lease as presented by the legacy protocol and, for a sys-
tem’s request, this is the length of time before the legacy protocol lookup request times
out.

- The Functional Matcher actively matches potential requests with advertisements i.e.
matching the required and provided interface types of a network system. Simple semantic
matchers can be plugged into to match descriptions of the same type, or richer semantic
matchers can be employed.

Synthesis of Connectors

8.1 Towards the CONNECT Architecture 99

We have already extensively describes the process to synthesize the connectors model in
the previous chapters. Within the CONNECT context, the Connector Synthesis is a two-
step process that encompasses the construction of a mediation LTS and its interpretation
at runtime. The needed mediation LTS defines the behaviour that will let the networked
systems synchronize and interact. It results from the analysis of both the networked sys-
tems behaviours and the ontology, and specifies all the needed message translations from
one side to the other.
The mediation LTS resolves the application-level and data-level interoperability. The
resulting mediation LTS remains an abstract specification that does not include enough
middleware-level information to be directly executed.

Figure 8.4: A software Connector

Instead, as shown on Figure 8.4, the mediation LTS is seen as an orchestration of middle-
ware invocations and is dynamically interpreted by an engine, which receives, translates
and forwards messages from the two sides. In our example, when the mediation engine is
notified of a getInfo tuple was released by the client, it triggers the emission of three SOAP
requests and triggers the generation of one Lime tuple containing the requested informa-
tion. As shown in Figure 8.4, the missing middleware-level knowledge is hard-coded into
reusable plug-ins denoted as Listener and Actuator. According to a given middleware
protocol, a listener receives data packets and outputs application messages whereas an
actuator composes network messages. In our marketplace example, the proper invocation
of the Lime infrastructure and the emission and reception of SOAP messages are han-
dled by those ad-hoc listeners and actuators. The use of such plug-ins finally ensures the
middleware-level interoperability. In addition, when a new middleware is released, such
plug-ins can be separately generated from the networked system models. By contrast with
code-generation, the choice of interpretation eases the monitoring and dependability ver-
ification of runtime Connectors. Although the Connect framework also addresses these
two issues, they are not presented here for the sake of conciseness.

8.1.4 CONCLUSION

We have shown that in spite of the major research and industrial efforts to solve the prob-
lem of interoperability, current solutions demonstrably fail to meet the needs of modern

100 Chapter 8. The MediatorS Theory in CONNECT

distributed applications especially those that embrace dynamicity and high levels of het-
erogeneity. An important observation is that there is a significant disconnect between mid-
dleware solutions and semantic interoperability solutions, which in turn severely hampers
progress in this area. We have introduced the CONNECT architecture as a fundamentally
different way to address the interoperability problem; this intrinsically supports middle-
ware and application level interoperability and embraces learning and synthesis. The
initial experiment with the architecture provides early evidence of the validity of the pro-
posed approach and we believe that as the architecture matures it will provide further
novel and rich contributions to the field of interoperability. Future work will continue to
explore a broader range of issues in the heterogeneity space. Much of this will focus on
the important requirements that have not been yet investigated and their integration into
the Connect software architecture. These include for example: i) non-functional proper-
ties. That is creating connectors that conform to the non-functional requirements of both
interacting parties in the same way they meet the functional requirements currently; iii)
Dependability. Ensuring that the deployed connectors are dependable, trustworthy and
secure; this is especially important given the nature of the pervasive computing environ-
ments where these solutions will be deployed.

CHAPTER 9

DISCUSSION AND FUTURE WORK

Automated and on-the-fly interoperability is a key requirement for heterogeneous proto-
cols within ubiquitous computing environments where networked systems meet dynami-
cally and need to interoperate without a priori knowledge of each other.
Although numerous efforts has been done in many different research areas, such kind of
interoperability is still an open challenge.
The research question on which this thesis focused is: “given compatible protocols, is
it possible to automatically synthesize a mediator which enables them to communicate
(solving their mismatches)?”.
To answer to this question, we proposed techniques to automatically reason about and
compose the behaviour of networked systems that aim at fulfilling some intent by con-
necting to other systems.

The reasoning serves to find a way to achieve communication -if it is possible- and to
build the related mediation solution. Our work put the emphasis on “the elicitation of
a way to achieve communication” while it can gain from more practical treatments of
similar problems in the literature like converters, or adaptors or coordinators synthesis.
In particular, our work amounts to the following contributions:

1 Design of AMAzING, a comprehensive mediator synthesis process made by three
phases: protocol abstraction, matching and mapping.

2 A set of mediator patterns which represent the building blocks to tackle in a system-
atic way the protocol mediation. This led us to devise a complete characterization of
the protocol mismatches that we are able to solve by our connector synthesis process
and to define significant mediator patterns as solution to the classified problems.

3 Formalization of MediatorS, a theory of emerging mediating connectors which
includes related automated model-based techniques and tools to support the devised
AMAzING synthesis process. The theory rigorously characterizes: (i) application
layer protocols, (ii) their abstraction, (iii) the conditions under which two proto-
cols are functionally matching, (iv) the notion of interoperability between protocols
based on the definition of the functional matching relationship, and (v) the map-
ping, i.e., the synthesis of the mediator behaviour needed to achieve protocol in-
teroperability under functional matching. We also discussed the correctness of the
synthesized mediator.

101

102 Chapter 9. Discussion and Future Work

4 An extension of the MediatorS theory for dealing also with middleware layer
protocols and data, in addition to application layer protocols. Accordingly, we pro-
vided: (i) new models for rigorously characterizing networked systems (ii) new ab-
stractions, (iii) new matching and (iv) mapping functions to reason upon networked
systems compatibility, and a (iv) new mediator protocol definition.

Further, we positioned this thesis with respect to surveyed related works. MediatorS
and AMAzING, among other case studies, have been applied in this thesis to Flickr and
Picasa services and they have also been adopted by the European Research Project CON-
NECT. Moreover, we did a first effort towards taking into account also non-functional
properties while building mediators which is described in [18] and summarized in the fol-
lowing.
To build an interoperability solution between the networked systems, two aspects have
to be considered of the connected system under-construction: functional interoperability
and non-functional interoperability. The first one solely refers to functional properties
and aims at allowing the networked systems to communicate. Instead, non-functional
interoperability refers to the assessment and achievement of the non-functional character-
istics which qualify the communication (how it should be provided).
We proposed a combined interoperability approach made by the integration of our au-
tomated technique for the synthesis of mediators with a monitoring mechanism. The
mediators provide functional interoperability and the monitors make it possible to assess
the non-functional characteristics of the connected system at runtime that cannot be as-
sessed statically at synthesis time. The combined approach then addresses functional in-
teroperability pursued by-construction at synthesis time (i.e., a-priori), and non-functional
interoperability, that is compliance to non-functional constraints, continuously assessed
at execution time (a-posteriori), by passive monitoring.

In the following we conclude with a discussion that outlines future work perspectives.
The mediator patterns described in Chapter 4 are twofold: (a) they are a set of design
building blocks to tackle in a systematic way the protocol mediation problem and (b) they
rigorously characterize the kind of interoperability mismatches we deal with. Patterns can
hence serve as base for addressing compositional connector synthesis that has not been
addressed so far. Then, as future works we intend to:

• refine the design of the compositional approach based on patterns, that we sketched
in Section 4.2, by exploiting the algebra of connectors presented in [6].

• provide, in the direction of automated code generation: (i) the “concrete” Basic
Mediator Patterns, i.e., the skeleton code corresponding to the “abstract” patterns
presented in this chapter, (ii) the implementation of the pattern-based approach, i.e.,
the actual code for the component’s behaviour decomposition and composition and
the mediating connector behaviour building.

The MediatorS theory proposed in Chapter 5, and extended in Chapter 6, (1) clearly
defines the interoperability problem, (2) shows the feasibility of the automated reasoning

103

about protocols, i.e., functional matching, and (3) shows the feasibility of the automated
synthesis of abstract mediators under certain assumptions. In the future we aim to:

• implement the theory algorithms being able to automatize the mediator generation.
In this direction we are currently working to on-the-fly reasoning about interoper-
ability using ontology-based model checking [16];

• study run-time techniques towards efficient synthesis;

• scale the synthesis process. The current theory is described considering only two
protocols but extending it to an arbitrary number n of protocols seems not to be
be problematic. This aspect has to be still investigated. However, the protocol
abstraction step developed within the devised AMAzING process represents a first
attempt in this direction by reducing the size of the behavioural models of the NSs
to be connected;

• extend the validation of the theory on other real world applications. It would pos-
sibly help in tuning the theory, if needed, and in refining the borders among which
the theory works;

• translate the synthesized connector model into an executable artefact that can be
deployed and run in the network for actual enactment of the connectors, as stud-
ied in the CONNECT project. This also requires devising the runtime architecture
of connectors (preliminary achievements have been presented in Chapter 8) by in-
vestigating the issue of generation of code versus interpretation of the connector
model;

• ensure dependability. Preliminary results towards this aim have been summarized
above and are described in our paper [18]. Our combined interoperability approach
is a first step in the direction of a complete interoperability solution, i.e., includ-
ing both functional and non-functional interoperability. As future work, we plan
to investigate the following aspects. Next to dynamic monitoring, we aim to take
into account non-functional interoperability during the AMAzING process. Indeed
we would include also the modeling of non-functional aspects, together with their
respective matching and mapping reasoning.
With respect to the current combined approach we also need to: propose a language
to express non-functional constraints and properties; provide reaction policies or
reaction policy patterns that can be undertaken when something wrong is detected
by the monitoring. Examples are: to use predictive approaches that try to prevent
the wrong behaviours; to adapt the CONNECT architectural infrastructure, if pos-
sible, for improving the provided connection; eventually, to notify the Networked
Systems about the unexpected behaviour, and let them directly handle the problem.

• relax some assumptions, towards a dynamic environment, and manage the conse-
quent uncertainty. For example, (i) instead of considering the abstraction ontology
mapping given, we aim to infer it through an iterative interaction with the ontology.

104 Chapter 9. Discussion and Future Work

Further, we aim at integrating with complementary works about: (ii) learning tech-
niques to dynamically learn the protocols (instead of assuming them given) that are
run in the environment; (iii) universal discovery techniques to dynamically perform
the matching and mapping of protocols thus allowing on-the-fly interoperability;
(iv) data-level interoperability (instead of assuming the ontology given) to elicit
the data mappings. This may rise the problem of dealing with partial or erroneous
specification.

REFERENCES

[1] Artix enterprise service bus software. http://web.progress.com/en/
sonic/artix-esb.html, 2010.

[2] IBM Software WebSphere. http://www-01.ibm.com/software/
websphere/.

[3] ABERER, K., CATARCI, T., CUDRÉ-MAUROUX, P., DILLON, T. S., GRIMM, S.,
HACID, M.-S., ILLARRAMENDI, A., JARRAR, M., KASHYAP, V., MECELLA,
M., MENA, E., NEUHOLD, E. J., OUKSEL, A. M., RISSE, T., SCANNAPIECO,
M., SALTOR, F., SANTIS, L. D., SPACCAPIETRA, S., STAAB, S., STUDER, R.,
AND TROYER, O. D. Emergent semantics systems. In ICSNW (2004), pp. 14–43.

[4] ABERER, K., CUDRÉ-MAUROUX, P., M.OUKSEL, A., CATARCI, T., HACID,
M.-S., ILLARRAMENDI, A., KASHYAP, V., MECELLA, M., MENA, E.,
NEUHOLD, E. J., TROYER, O. D., RISSE, T., SCANNAPIECO, M., SALTOR,
F., SANTIS, L. D., SPACCAPIETRA, S., STAAB, S., AND STUDER, R. Emer-
gent semantics principles and issues. In 9th International Conference on Database
Systems for Advances Applications (2004), pp. 25–38.

[5] ALEXANDER, C., ISHIKAWA, S., AND SILVERSTEIN, M. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, New York, 1977.

[6] AUTILI, M., CHILTON, C., INVERARDI, P., KWIATKOWSKA, M. Z., AND

TIVOLI, M. Towards a connector algebra. In ISoLA (2) (2010), pp. 278–292.

[7] AUTILI, M., INVERARDI, P., NAVARRA, A., AND TIVOLI, M. SYNTHESIS:
A Tool for Automatically Assembling Correct and Distributed Component-Based
Systems. In International Conference on Software Engineering (ICSE’07) (Los
Alamitos, CA, USA, 2007), IEEE Computer Society, pp. 784–787.

[8] AUTILI, M., MOSTARDA, L., NAVARRA, A., AND TIVOLI, M. Synthe-
sis of decentralized and concurrent adaptors for correctly assembling distributed
component-based systems. Journal of Systems and Software 81, 12 (2008), 2210–
2236.

[9] AVGERIOU, P., AND ZDUN, U. Architectural Patterns Revisited - a Pattern Lan-
guage. In Proceedings of the 10th European Conference on Pattern Languages of
Programs (EuroPLoP 2005) (Irsee, Germany, July 2005).

[10] BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-
SCHNEIDER, P. F. The Description Logic Handbook. Cambridge University Press,
2003.

106 REFERENCES

[11] BALEK, D. Connectors in Software Architectures. PhD thesis, Charles University,
Prague - Czech Republic, May 2002.

[12] BARBOSA, M. A., AND BARBOSA, L. S. Specifying software connectors. In
ICTAC (2004), pp. 52–67.

[13] BEN MOKHTAR, S., PREUVENEERS, D., GEORGANTAS, N., ISSARNY, V., AND

BERBERS, Y. EASY: Efficient semantic service discovery in pervasive computing
environments with QoS and context support. Journal of Systems and Software 81,
5 (2008), 785–808.

[14] BENATALLAH, B., CASATI, F., GRIGORI, D., NEZHAD, H. R. M., AND

TOUMANI, F. Developing adapters for web services integration. In proceedings
of the International Conference on Advanced Information Systems Engineering
(CAiSE), Porto, Portugal (2005), Springer Verlag, pp. 415–429.

[15] BENNACEUR, A., BLAIR, G. S., CHAUVEL, F., GEORGANTAS, N., GRACE,
P., HOWAR, F., INVERARDI, P., ISSARNY, V., PAOLUCCI, M., PATHAK, A.,
SPALAZZESE, R., STEFFEN, B., AND SOUVILLE, B. Towards an architecture for
runtime interoperability. In Proceedings of ISoLA 2010 - 4th International Sympo-
sium On Leveraging Applications of Formal Methods, Verification and Validation
(2010), Springer.

[16] BENNACEUR, A., ISSARNY, V., AND SPALAZZESE, R. On-the-fly reasoning
about interoperability using ontology-based model checking. technical report, inria
rocquencourt, paris., Jan. 2011.

[17] BENNACEUR, A., SPALAZZESE, R., INVERARDI, P., ISSARNY, V., GEORGAN-
TAS, N., AND SAADI, R. Model-based mediators for dynamic-adaptive connec-
tors. Tech. rep., INRIA Paris-Rocquencourt, France. January 2011.

[18] BERTOLINO, A., INVERARDI, P., ISSARNY, V., SABETTA, A., AND

SPALAZZESE, R. On-the-fly interoperability through automated mediator synthe-
sis and monitoring. In ISoLA 2010, Part II, LNCS 6416, (2010), Springer, Heidel-
berg, pp. 251–262.

[19] BERTOLINO, A., INVERARDI, P., PELLICCIONE, P., AND TIVOLI, M. Automatic
synthesis of behavior protocols for composable web-services. In ESEC/FSE ’09:
Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering (New York, NY, USA, 2009), ACM, pp. 141–150.

[20] BOOTH, D., HAAS, H., MCCABE, F., NEWCOMER, E., CHAMPION, M., FER-
RIS, C., AND OR-CHARD, D. Web services architecture. in http://www.w3.
org/TR/sawsdl/. w3c, february 2004.

[21] BOTH, A., AND ZIMMERMANN, W. Automatic protocol conformance checking
of recursive and parallel bpel systems. In ECOWS (2008), pp. 81–91.

REFERENCES 107

[22] BOTH, A., ZIMMERMANN, W., AND FRANKE, R. Model checking of component
protocol conformance - optimizations by reducing false negatives. Electr. Notes
Theor. Comput. Sci. 263 (2010), 67–94.

[23] BRACCIALI, A., BROGI, A., AND CANAL, C. A formal approach to component
adaptation. Journal of Systems and Software 74, 1 (2005), 45–54.

[24] BROGI, A., CANAL, C., AND PIMENTEL, E. Behavioural types and component
adaptation. In Algebraic Methodology and Software Technology: 10th Interna-
tional Conference, AMAST 2004, volume 3116 / 2004 of LNCS (2004), Springer-
Verlag GmbH, pp. 42–56.

[25] BROMBERG, Y.-D., AND ISSARNY, V. INDISS: Interoperable Discovery System
for Networked Services. In Middleware (2005), pp. 164–183.

[26] BROMBERG, Y.-D., AND ISSARNY, V. Formalizing middleware interoperability:
From design time to runtime solutions. Tech. rep., Rocquencourt, France, 2008.

[27] BRUNI, R., LANESE, I., AND MONTANARI, U. A basic algebra of stateless con-
nectors. Theor. Comput. Sci. 366, 1 (2006), 98–120.

[28] BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL,
M. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. Wiley,
Chichester, UK, 1996.

[29] CALVERT, K. L., AND LAM, S. S. Formal methods for protocol conversion. IEEE
Journal on Selected Areas in Communications 8, 1 (1990), 127–142.

[30] CANAL, C., POIZAT, P., AND SALAÜN, G. Model-based adaptation of behavioral
mismatching components. IEEE Trans. Software Eng. 34, 4 (2008), 546–563.

[31] CAVALLARO, L., NITTO, E. D., AND PRADELLA, M. An automatic approach to
enable replacement of conversational services. In ICSOC/ServiceWave (2009).

[32] CHAPPELL., D. Enterprise Service Bus. O’Reilly, 2004.

[33] CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEERAWARANA, S.
Web services description language (wsdl) 1.1. in http://www.w3.org/TR/
wsdl, march 2001.

[34] CIMPIAN, E., AND MOCAN, A. Wsmx process mediation based on chore-
ographies. In Business Process Management Workshops (2005), C. Bussler and
A. Haller, Eds., vol. 3812, pp. 130–143.

[35] CONNECT. CONNECT Annex I: Description of Work. FET IP CONNECT EU
project, FP7 grant agreement number 231167, http://connect-forever.
eu/.

108 REFERENCES

[36] CONNECT. CONNECT Deliverable D1.1: Initial Connect Architecture. FET
IP CONNECT EU project, FP7 grant agreement number 231167, http://
connect-forever.eu/.

[37] CONNECT. CONNECT Deliverable D1.2: Intermediate Connect Architecture.
FET IP CONNECT EU project, FP7 grant agreement number 231167, http:
//connect-forever.eu/.

[38] CONNECT. CONNECT Deliverable D3.1: Modeling of application- and
middleware-layer interaction protocols. FET IP CONNECT EU project, FP7 grant
agreement number 231167, http://connect-forever.eu/.

[39] CONNECT. CONNECT Deliverable D3.2: Reasoning about and harmonizing the
interaction behavior of networked systems at application- and middleware- layer.
FET IP CONNECT EU project, FP7 grant agreement number 231167, http:
//connect-forever.eu/.

[40] DENARO, G., PEZZE’, M., AND TOSI, D. Ensuring interoperable service-oriented
systems through engineered self-healing. In Proceedings of ESEC/FSE 2009
(2009), ACM Press.

[41] DI GIANDOMENICO, F., KWIATKOWSKA, M., MARTINUCCI, M., MASCI, P.,
AND QU, H. Dependability analysis and verification for connected systems. In
Proceedings of ISoLA 2010 - 4th International Symposium On Leveraging Appli-
cations of Formal Methods, Verification and Validation (2010), Springer.

[42] DRUMMOND, N., RECTOR, A. L., STEVENS, R., MOULTON, G., HORRIDGE,
M., WANG, H., AND SEIDENBERG, J. Putting OWL in order: Patterns for se-
quences in OWL. In OWLED (2006).

[43] DRY-RUN, C. The popcorn scenario. https://www-roc.inria.fr/
connect/connect-dry-run/.

[44] DUFTLER, M. J., MUKHI, N. K., SLOMINSKI, A., SLOMINSKI, E., AND WEER-
AWARANA, S. Web Services Invocation Framework (WSIF). In OOPSLA Work-
shop on Object Oriented Web Services (2001).

[45] DUMAS, M., SPORK, M., AND WANG, K. Adapt or perish: Algebra and visual
notation for service interface adaptation. In Business Process Management (2006),
pp. 65–80.

[46] EUZENAT, J., AND SHVAIKO, P. Ontology matching. Springer-Verlag, Heidelberg
(DE), 2007.

[47] FARRELL, J., AND LAUSEN, H. Semantic annotations for wsdl and xml schema.
http://www.w3.org/TR/sawsdl/, august 2007.

[48] FIADEIRO, J. L., LOPES, A., AND WERMELINGER, M. Theory and practice of
software architectures. Tutorial at the 16th IEEE Conference on Automated Soft-
ware Engineering, San Diego, CA, USA, Nov. 26-29, 2001.

REFERENCES 109

[49] FIELDING, R. T. Architectural styles and the design of network-based software
architectures. PhD thesis, 2000. AAI9980887.

[50] FLICKR. http://www.flickr.com/.

[51] FLICKR API. http://www.flickr.com/services/api/.

[52] FLORES-CORTÉS, C. A., BLAIR, G. S., AND GRACE, P. An adaptive middleware
to overcome service discovery heterogeneity in mobile ad hoc environments. IEEE
Distributed Systems Online 8 (July 2007).

[53] FOSTER, H., UCHITEL, S., MAGEE, J., AND KRAMER, J. Ltsa-ws: a tool for
model-based verification of web service compositions and choreography. In ICSE
(2006), pp. 771–774.

[54] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns:
Elements of Resusable Object-Oriented Software. Addison-Wesley Professional,
1995.

[55] GANG, H., HONG, M., QIAN-XIANG, W., AND FU-QING, Y. A systematic ap-
proach to composing heterogeneous components. chinese journal of electronics,
12(4):499-505, 2003.

[56] GRACE, P., BLAIR, G. S., AND SAMUEL, S. ReMMoC: A reflective middle-
ware to support mobile client interoperability. In CoopIS/DOA/ODBASE (2003),
pp. 1170–1187.

[57] GROUP, O. M. The common object request broker: Architecture and specification
version 2.0, 1995.

[58] GUDGIN, M., HADLEY, M., MENDELSOHN, N., MOREAU, J., NIELSEN, H. F.,
KARMARKAR, A., AND LAFON., Y. Soap version 1.2 part 1: Messaging frame-
work. in http://www.w3.org/TR/soap12-part1, april 2001.

[59] HIRSCH, D., UCHITEL, S., AND YANKELEVICH, D. Towards a periodic table
of connectors. In Coordination Models and Languages (COORDINATION ’99)
(1999), p. 418.

[60] HOWAR, F., JONSSON, B., MERTEN, M., STEFFEN, B., AND CASSEL, S. On
handling data in automata learning: Considerations from the connect perspective.
In proceedings of ISOLA 2010 (2010).

[61] INTRIGILA, B., INVERARDI, P., AND ZILLI, M. V. A comprehensive setting
for matching and unification over iterative terms. Fundam. Inform. 39, 3 (1999),
273–304.

[62] INVERARDI, P., ISSARNY, V., AND SPALAZZESE, R. A theory of mediators for
eternal connectors. In Proceedings of ISoLA 2010 - 4th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation, Part
II. (2010), vol. 6416, Springer, Heidelberg, pp. 236–250.

110 REFERENCES

[63] INVERARDI, P., AND NESI, M. Deciding observational congruence of finite-state
ccs expressions by rewriting. Theor. Comput. Sci. 139, 1-2 (1995), 315–354.

[64] ISSARNY, V., STEFFEN, B., JONSSON, B., BLAIR, G., GRACE, P.,
KWIATKOWSKA, M., CALINESCU, R., INVERARDI, P., TIVOLI, M.,
BERTOLINO, A., AND SABETTA, A. CONNECT Challenges: Towards Emergent
Connectors for Eternal Networked Systems. In 14th IEEE International Confer-
ence on Engineering of Complex Computer Systems (Postdam Germany, 2009).

[65] JIANG, F., FAN, Y., AND ZHANG, X. Rule-based automatic generation of me-
diator patterns for service composition mismatches. In Proceedings of the 2008
The 3rd International Conference on Grid and Pervasive Computing - Workshops
(Washington, DC, USA, 2008), IEEE Computer Society, pp. 3–8.

[66] KALFOGLOU, Y., AND SCHORLEMMER, M. Ontology mapping: the state of the
art. Knowl. Eng. Rev. 18, 1 (January 2003), 1–31.

[67] KALFOGLOU, Y., AND SCHORLEMMER, M. Ontology mapping: The state
of the art. In Semantic Interoperability and Integration (Dagstuhl, Germany,
2005), Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab, and M. Uschold, Eds.,
no. 04391 in Dagstuhl Seminar Proceedings, (IBFI), Schloss Dagstuhl, Germany.

[68] KANADA, Y. Emergent computation. http://www.kanadas.com/CCM/
hyper/emergent-computation.html, 1995.

[69] KELL, S. Rethinking software connectors. In SYANCO ’07: International work-
shop on Synthesis and analysis of component connectors (New York, NY, USA,
2007), ACM, pp. 1–12.

[70] KELLER, R. M. Formal verification of parallel programs. Commun. ACM 19, 7
(1976), 371–384.

[71] KUMAR, R., NELVAGAL, S., AND MARCUS, S. I. A discrete event systems
approach for protocol conversion. Discrete Event Dynamic Systems 7, 3 (1997).

[72] LAM, S. S. Correction to ”protocol conversion”. IEEE Trans. Software Eng. 14, 9
(1988), 1376.

[73] LIMAM, N., ZIEMBICKI, J., AHMED, R., IRAQI, Y., LI, D. T., BOUTABA, R.,
AND CUERVO, F. Osda: Open service discovery architecture for efficient cross-
domain service provisioning. Comput. Commun. 30 (February 2007), 546–563.

[74] LISKOV, B., AND WING, J. M. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst. 16, 6 (1994), 1811–1841.

[75] LOPES, A., WERMELINGER, M., AND FIADEIRO, J. L. Higher-order architec-
tural connectors. ACM Trans. Softw. Eng. Methodol. 12, 1 (2003), 64–104.

[76] MAGEE, J., AND KRAMER, J. Concurrency : State models and Java programs.
Hoboken (N.J.) : Wiley, 2006.

REFERENCES 111

[77] MARTIN, D., BURSTEIN, M., MCDERMOTT, D., MCILRAITH, S., PAOLUCCI,
M., SYCARA, K., MCGUINNESS, D. L., SIRIN, E., AND SRINIVASAN, N. Bring-
ing semantics to web services with owl-s. World Wide Web 10 (September 2007),
243–277.

[78] MEHTA, N. R., MEDVIDOVIC, N., AND PHADKE, S. Towards a taxonomy of
software connectors. In ICSE ’00: Proceedings of the 22nd international confer-
ence on Software engineering (New York, NY, USA, 2000), ACM Press, pp. 178–
187.

[79] MILNER, R. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[80] MOTAHARI NEZHAD, H. R., BENATALLAH, B., MARTENS, A., CURBERA, F.,
AND CASATI, F. Semi-automated adaptation of service interactions. In WWW ’07:
Proceedings of the 16th international conference on World Wide Web (New York,
NY, USA, 2007), ACM, pp. 993–1002.

[81] MOTAHARI NEZHAD, H. R., XU, G. Y., AND BENATALLAH, B. Protocol-aware
matching of web service interfaces for adapter development. In Proceedings of the
19th international conference on World wide web (New York, NY, USA, 2010),
WWW ’10, ACM, pp. 731–740.

[82] NAKAZAWA, J., TOKUDA, H., EDWARDS, W. K., AND RAMACHANDRAN, U. A
bridging framework for universal interoperability in pervasive systems. In ICDCS
’06: Proceedings of the 26th IEEE International Conference on Distributed Com-
puting Systems (Washington, DC, USA, 2006), IEEE Computer Society, p. 3.

[83] NAKAZAWA, J., TOKUDA, H., EDWARDS, W. K., AND RAMACHANDRAN, U. A
bridging framework for universal interoperability in pervasive systems. In Proceed-
ings of the 26th IEEE International Conference on Distributed Computing Systems
(Washington, DC, USA, 2006), ICDCS ’06, IEEE Computer Society, pp. 3–13.

[84] NEJATI, S., SABETZADEH, M., CHECHIK, M., EASTERBROOK, S., AND ZAVE,
P. Matching and merging of statecharts specifications. In Proceedings of the 29th
international conference on Software Engineering (Washington, DC, USA, 2007),
ICSE ’07, IEEE Computer Society, pp. 54–64.

[85] NOY, N. F. Semantic integration: a survey of ontology-based approaches. SIG-
MOD Rec. 33 (December 2004), 65–70.

[86] OKUMURA, K. A formal protocol conversion method. In SIGCOMM (1986),
pp. 30–37.

[87] OLSON, R., AND SEQUEIRA, R. Emergent computation and the modeling and
management of ecological systems. Comput.Electron. Agric. 12, 3 (1995), 183–
209.

112 REFERENCES

[88] OLSON, R., AND SEQUEIRA, R. An emergent computational approach to the
study of ecosystem dynamics. Ecological Model 79, 1-3 (1995), 95–120.

[89] (OMG). COM/CORBA interworking specification Part A & B, 1997.

[90] P. CUDRÉ-MAUROUX AND K. ABERER (EDS), ABDELMOTY, A. I., CATARCI,
T., DAMIANI, E., ILLARAMENDI, A., JARRAR, M., MEERSMAN, R.,
NEUHOLD, E. J., PARENT, C., SATTLER, K.-U., SCANNAPIECO, M., SPAC-
CAPIETRA, S., SPYNS, P., AND TRÉ, G. D. Viewpoints on emergent semantics.
Journal on Data Semantics IV (2006), 1–27.

[91] PAOLUCCI, M., KAWAMURA, T., PAYNE, T. R., AND SYCARA, K. P. Semantic
matching of web services capabilities. In ISWC (2002).

[92] PERRY, D. E., AND WOLF, A. L. Foundations for the study of software architec-
ture. SIGSOFT Softw. Eng. Notes 17 (October 1992), 40–52.

[93] PICASA. http://picasaweb.google.com/.

[94] PICASA API. http://code.google.com/intl/it-IT/apis/
picasaweb/docs/2.0/developers_guide_java.html.

[95] PICASA EXAMPLE. http://code.google.com/p/
gdata-java-client/downloads/list.

[96] PLOTKIN, G. D. A note on inductive generalization. Machine Intelligence 5
(1970), 153–163.

[97] PONNEKANTI, S., AND FOX, A. Interoperability among independently evolv-
ing Web services. In Proc. ACM/IFIP/USENIX Middleware Conference (2004),
pp. 331–351.

[98] REYNOLDS, J. Transformational systems and the algebraic structure of atomic
formulas machine intelligence, edinburgh university press, usa, vol. 5, pp. 135-
151, 1970.

[99] ROMAN, D., KELLER, U., LAUSEN, H., DE BRUIJN, J., LARA, R., STOLLBERG,
M., POLLERES, A., FEIER, C., BUSSLER, C., AND FENSEL, D. Web service
modeling ontology. Appl. Ontol. 1 (January 2005), 77–106.

[100] ROMAN, M., KON, F., AND CAMPBELL, R. H. Reflective middleware: From
your desk to your hand. Tech. rep., Champaign, IL, USA, 2000.

[101] ROSCOE, A. W., HOARE, C. A. R., AND BIRD, R. The Theory and Practice of
Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[102] RUSKIN, H. J., AND WALSHE, R. Emergent computing - introduction to the spe-
cial theme. http://www.ercim.org/publication/Ercim News/enw64/intro-st.html,
Jan, 2006.

REFERENCES 113

[103] SATYANARAYANAN, M. Pervasive computing: vision and challenges. IEEE Per-
sonal Communications 8, 4 (2001), 10–17.

[104] SCHREINER, D., AND GÖSCHKA, K. M. Building component based software
connectors for communication middleware in distributed embedded systems. In
Proceedings of the ’3rd ASME/IEEE International Conference on Mechatronic
and Embedded Systems and Applications (MESA 2007), Las Vegas, Nevada, USA
(2007).

[105] SHAW, M. Procedure calls are the assembly language of software interconnec-
tion: Connectors deserve first-class status. In Selected papers from the Workshop
on Studies of Software Design (London, UK, 1996), ICSE ’93, Springer-Verlag,
pp. 17–32.

[106] SHAW, M., AND GARLAN, D. Software architecture: perspectives on an emerging
discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[107] SPALAZZESE, R. Towards mediator connectors for application level interoperabil-
ity. In ESEC/FSE Doctoral Symposium ’09: Proceedings of the doctoral sympo-
sium for ESEC/FSE on Doctoral symposium (New York, NY, USA, 2009), ACM,
pp. 35–36.

[108] SPALAZZESE, R., AND INVERARDI, P. Components interoperability through me-
diating connector pattern. In WCSI 2010, arXiv:1010.2337; EPTCS 37, 2010, pp.
27-41.

[109] SPALAZZESE, R., AND INVERARDI, P. Mediating connector patterns for compo-
nents interoperability. In ECSA (2010), pp. 335–343.

[110] SPALAZZESE, R., INVERARDI, P., AND ISSARNY, V. Towards a formalization
of mediating connectors for on the fly interoperability. In Proceedings of the Joint
Working IEEE/IFIP Conference on Software Architecture and European Confer-
ence on Software Architecture (WICSA/ECSA 2009) (2009), pp. 345–348.

[111] SPITZNAGEL, B. Compositional Transformation of Software Connectors. PhD
thesis, Carnegie Mellon University, May 2004.

[112] SPITZNAGEL, B., AND GARLAN, D. A compositional formalization of connector
wrappers. In ICSE (2003), pp. 374–384.

[113] STOLLBERG, M., CIMPIAN, E., MOCAN, A., AND FENSEL, D. A semantic
web mediation architecture. In In Proceedings of the 1st Canadian Semantic Web
Working Symposium (CSWWS 2006 (2006), Springer.

[114] STUDER, R., BENJAMINS, V. R., AND FENSEL, D. Knowledge engineering:
Principles and methods. Data Knowl. Eng. 25, 1-2 (1998), 161–197.

[115] SUH, N., BASS, B., CHAN, E., AND TOLLER, N. Emergent computation and
modelling: Complex organization and bifurcation within environmental bounds
(cobweb). Journal of Environmental Informatics 1, 2 (2003. ISEIS), 1–11.

114 REFERENCES

[116] TAYLOR, R. N., MEDVIDOVIC, N., AND DASHOFY, E. M. Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009.

[117] TIVOLI, M., AND INVERARDI, P. Failure-free coordinators synthesis for
component-based architectures. Sci. Comput. Program. 71 (May 2008), 181–212.

[118] VACULÍN, R., NERUDA, R., AND SYCARA, K. P. An agent for asymmetric pro-
cess mediation in open environments. In SOCASE (2008), R. Kowalczyk, M. N.
Huhns, M. Klusch, Z. Maamar, and Q. B. Vo, Eds., vol. 5006 of Lecture Notes in
Computer Science, Springer, pp. 104–117.

[119] VACULÍN, R., AND SYCARA, K. Towards automatic mediation of OWL-S process
models. Web Services, IEEE International Conference on 0 (2007), 1032–1039.

[120] WATT, S. M. Algebraic generalization. SIGSAM Bull. 39, 3 (2005), 93–94.

[121] WEISER, M. The computer for the 21st century. Scientific American (Sep. 1991).

[122] WEISER, M. Hot Topics: Ubiquitous Computing. IEEE Computer (oct 1993).

[123] WEISER, M. Ubiquitous computing. http://sandbox.xerox.com/ubicomp/, 1996.

[124] WERMELINGER, M., AND FIADEIRO, J. L. Connectors for mobile programs.
IEEE Trans. Softw. Eng. 24, 5 (1998), 331–341.

[125] WIEDERHOLD, G. Mediators in the architecture of future information systems.
IEEE Computer 25 (1992), 38–49.

[126] WIEDERHOLD, G., AND GENESERETH, M. The conceptual basis for mediation
services. IEEE Expert: Intelligent Systems and Their Applications 12, 5 (1997),
38–47.

[127] WILLIAMS, S. K., BATTLE, S. A., AND CUADRADO, J. E. Protocol mediation
for adaptation in semantic web services. In ESWC (2006), pp. 635–649.

[128] WOOLLARD, D., AND MEDVIDOVIC, N. High performance software architec-
tures: A connector-oriented approach. In Proceedings of the Institute for Software
Research Graduate Research Symposium, Irvine, California (June 2006).

[129] XITONG, L., YUSHUN, F., JIAN, W., LI, W., AND FENG, J. A pattern-based ap-
proach to development of service mediators for protocol mediation. In proceedings
of WICSA ’08 (2008), IEEE Computer Society, pp. 137–146.

[130] YELLIN, D. M., AND STROM, R. E. Protocol specifications and component adap-
tors. ACM Trans. Program. Lang. Syst. 19, 2 (1997), 292–333.

[131] ZHU, F., MUTKA, M. W., AND NI, L. M. Service discovery in pervasive com-
puting environments. IEEE Pervasive Computing 4, 4 (2005), 81–90.

