
HAL Id: tel-00661101
https://theses.hal.science/tel-00661101v1

Submitted on 1 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vers la modélisation grand échelle d’environnements
urbains à partir d’images

Oussama Moslah

To cite this version:
Oussama Moslah. Vers la modélisation grand échelle d’environnements urbains à partir d’images.
Computer Vision and Pattern Recognition [cs.CV]. Université de Cergy Pontoise, 2011. English.
�NNT : �. �tel-00661101�

https://theses.hal.science/tel-00661101v1
https://hal.archives-ouvertes.fr

UNIVERSITY OF CERGY - PONTOISE

DOCTORAL SCHOOL STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

PhD of Science

of the University of Cergy - Pontoise
Speciality : Computer Science

Defended by

Oussama Moslah

Towards Large-Scale Urban Environments
Modeling from Images

Thesis Advisor: Sylvie Philipp-Foliguet

prepared at:
THALES D3S SBL Simulation, Cergy-Pontoise, France.

ETIS - UMR CNRS 8051, ENSEA, Cergy-Pontoise, France.

Jury :

Reviewers : Nicolas Paparoditis - IGN, Paris, France.
Peter Sturm - INRIA Alpes, Grenoble, France.

Advisor : Sylvie Philipp-Foliguet - ETIS - UMR CNRS 8051, Cergy, France.
President : Serge Couvet - THALES Simulation, Cergy, France.
Examinators : Peter Wonka - Arizona State University, Tempe, USA.

Thorsten Thormählen - MPII, Sarbrucken, Germany.

Acknowledgments

First, I wish to aknowledge particlurarly my PhD supervisors Mme Sylvie Philipp-
Foliguet and Mr Serge Couvet for their supervision, assistance, and helpfull sugges-
tions and guidelines during the thesis.

I wish also to aknowledge the members of the jury, Mr Nicolas Paparoditis, Mr
Peter Sturm, Mr Peter Wonka, and Mr Thorsten Thormählen for their acceptation
to read the PhD manuscript and assist to my PhD thesis defense.

I wish also to aknowledge my colleagues and particularly Mr Vincent Guitteny
for its help during the PhD thesis and its assistance during the writing of this
manuscript.

I wish to aknowledge all the students that did internships with me in Thales
and strongly contribute to the work presented in this manuscript and the different
research papers.

Finally, I wish to acknowledge the Cap Digital Business Cluster Terra Numerica
project for sponsoring the research reported in this manuscript.

Contents

1 Introduction 1

I Multiple View Reconstruction 5

2 Structure from Motion 7
2.1 Introduction . 7
2.2 The classical pinhole camera model 7

2.2.1 Central projection in homogeneous coordinates 8
2.2.2 Principal point offset . 8
2.2.3 Rotation and translation of the camera 9

2.3 Keypoints detection and matching 10
2.4 Epipolar geometry and the fundamental matrix 10

2.4.1 Linear methods . 12
2.4.2 Iterative methods . 13
2.4.3 Robust methods . 14

2.5 Structure from motion . 20
2.5.1 Overview . 20
2.5.2 Initial reconstruction . 20
2.5.3 Adding views . 23
2.5.4 Results . 25

2.6 Registration . 26
2.6.1 Recovering walls . 28
2.6.2 Model fitting . 30
2.6.3 Visualisation and rendering 32

2.7 Conclusion . 32

3 Multi-View Stereo 35
3.1 Introduction . 35

3.1.1 GPU pipeline and GPGPU 35
3.1.2 System overview . 36

3.2 Dense stereo matching . 36
3.3 Multi-view correspondence linking 37
3.4 3D mesh generation and texture mapping 40
3.5 Conclusion . 40

4 Voxel Coloring 43
4.1 Introduction . 43
4.2 Related Work . 43
4.3 Our Approach . 44

4 Contents

4.3.1 Visual Hull . 44
4.3.2 Voxel Coloring . 45
4.3.3 Marching Cubes . 47
4.3.4 Acceleration Using Graphics Hardware 47

4.4 Results . 49
4.5 Discussion . 51
4.6 Conclusion . 51

II Single View Procedural Modeling 53

5 Procedural Modeling 55
5.1 Introduction . 55
5.2 Fractals . 55
5.3 Generative Modeling Language (GML) 56
5.4 L-systems . 57
5.5 Shape grammars . 58

5.5.1 Production system . 58
5.5.2 CGA commands . 59

5.6 Interactive editing . 63
5.7 Conclusion . 64

6 Grammar-driven Reconstruction 67
6.1 Introduction . 67
6.2 Related work . 68
6.3 System overview . 69
6.4 Bottom-up detection . 69

6.4.1 Window detection . 70
6.4.2 Balcony detection and removal 74
6.4.3 Cornice detection . 76
6.4.4 A Generic Element Detector 78

6.5 The stochastic grammar . 78
6.6 Top-Down optimization . 80

6.6.1 Problem formulation . 81
6.6.2 The facade prior . 82
6.6.3 The facade likelihood . 82
6.6.4 The optimization algorithm 84

6.7 Discussion . 86
6.8 Conclusion . 87

7 Conclusion 91

Bibliography 95

Chapter 1

Introduction

The context of this thesis is the growing interest in large-scale modeling of cities.
This thesis is a part of the Terra Numerica project whose aim is to develop new
technologies for the large-scale reconstruction of urban environments and new
virtual/augmented reality applications based on the city 3D model. This work was
carried out in Thales Training and Simulation a division of the Thales group and
the ETIS lab in Cergy.

Terra Numerica project :

The access to accurate and geo-localized informations of the territories is a
crucial issue for a broad spectrum of applications involving individuals, governments
and businesses. The introduction of the third dimension in the representation of
these areas provides a unique potential to visualize information and simulations
used for the study and management of these territories.

The TerraNumerica project aims to develop technologies needed to produce the
most automated and most accurate possible representation of large 3D urban areas
with high resolutions, and the use of these visual representations through online
applications (Internet), mobile applications (mobile phone or PDA) devices and
virtual reality and augmented reality.

The developped technologies include: the acquisition of geo-referenced buildings
from platforms and mobile ground stations and airborne platforms, the fusion and
the alignment of geo-referenced data from different sources and different acquisition
devices, the automated 3D reconstruction of buildings and vegetation using
image-based and model-based approaches, the segmentation, compression, and
transmission of reconstructed urban 3D data, and the use of 3D urban databases
through online applications, mobile devices (phones, PDAs), and virtual/augmented
reality.

Thales Training and Simulation :

Thales Training & Simulation is a subsidiary of the Thales group, in the Security
Solutions division & Services. Thales Training & Simulation design and integrates
simulators and training systems for nearly 50 years and offers a wide range of prod-
ucts and services. At first, it only produced aircraft simulators, and then demand

2 Chapter 1. Introduction

has diversified. Today’s products and services delivered by the subsidiary cover ar-
eas such as civil aviation, military and energy. Europe accounts for about 70 %
revenue of the company are divided equally between the fields of defense and civil-
ian. Thales Training & Simulation is present in over 60 countries worldwide with
over 800 systems in operation simulations.

The simulators offered allow students to learn how to behave in case of emer-
gencies or unexpected situations.

Figure 1.1: An aircraft simulator developped by Thales.

Military forces also rely on simulation systems to perform repeated tasks. The
business simulation offers a wide range of possibilities, from training systems based
on computers and full flight simulators to the synthetic environments in the most
comprehensive network, enabling the simulation of large-scale military operations.

The simulators manufactured by Thales include flight simulators for civil
aviation used by Airbus and Boeing simulators and military training systems
for the Mirage 2000, Rafale , Eurofighter Typhoon, the Leclerc tanks and other
vehicles, and also the truck Trust simulator that I had the chance to try during my
internship. This is a real cab mounted on jacks and really giving the impression of
being in a truck with a field of vision 180 degrees.

Thesis objectives and contributions :

The main goal of this thesis is to develop innovative and practical tools for the
reconstruction of buildings from images. The typical input to our work is a set of
facade images, building footprints, and coarse 3D models reconstructed from aerial
images. The main steps include the calibration of the photographs, the registration
with the coarse 3D model, the recovery of depth and semantic information, and the
refinement of the coarse 3D model.

To achieve this goal, we use computer vision, pattern recognition, and computer
graphics techniques. Contributions in this approach are presented in two parts.

3

In the first part, we focused on multiple view reconstruction techniques with
the aim to automatically recover the depth information of facades from a set
of uncalibrated photographs. First, we use structure-from motion techniques to
automatically calibrate the set of photographs. Then, we propose techniques
for the registration of the sparse reconstruction to a coarse 3D model. Finally,
we propose an accelerated multi-view stereo and voxel coloring framework using
graphics hardware to produce a textured 3d mesh of a scene from a set of calibrated
images. Multi-view stereo is a direct approach (2D images -> 3D scene) where
stereo techniques are used to produce depth maps and then produce a 3D surfacic
model. Voxel coloring is an indirect method (3D scene -> 2D images) in which the
volume encompassing the 3D scene is discretized as voxels that are re-projected
onto images and colored if they are consistent.

The second part is dedicated to single view reconstruction and its aim is to
recover the semantic structure of a facade from an ortho-rectified image. The nov-
elty of this approach is the use of a stochastic grammar describing an architectural
style as a model for facade reconstruction. We combine bottom-up detection with
top-down proposals to optimize the facade structure using the Metropolis-Hastings
algorithm.

Part I

Multiple View Reconstruction

Chapter 2

Structure from Motion

This chapter addresses the problem of fitting a coarse 3D model to a structure from
motion sparse reconstruction. Fitting the model to the sparse reconstruction is
defined and solved as an absolute orientation problem. The novelty of our approach
is the use of facade correspondences to compute the absolute orientation. We also
propose a solution to automatically establish facade correspondences using a pseudo-
RANSAC procedure. Our system consists of four parts: a robust structure from
motion recovery framework able to register accurately a set of digital photographs,
a method to recover the principal walls of a scene from a 3d sparse reconstruction
using a robust RANSAC scheme, a method to fit automatically a 3d model to a
set of 3d wall planes, and finally, a user interface allowing scene visualisation and
photorealistic rendering of urban 3d models from a set of calibrated photographs.

2.1 Introduction

Our work is mainly related to Structure From Motion (SFM) techniques. Struc-
ture from motion techniques are able to automatically recover the sparse struc-
ture of a scene together with the motion of the camera using multiple view ge-
ometry techniques [Hartley 2003]. There are three main Structure From Motion
methods: (1) Factorization based methods [Sturm 1996, Triggs 1996] consist of
SVD (Singular Value Decomposition) decomposition of a matrix containing the im-
ages of points in all views in order to recover a projective structure and motion of
the scene. The metric reconstruction is then obtained using self-calibration meth-
ods [Hartley 2003, Ponce 2005, Pollefeys 2004], (2) Trifocal tensor based methods
[Hartley 2003] use image triplets to iteratively recover the structure and motion
from images sequences, (3) Sequential methods [Pollefeys 2004, P.A. 1997] use the
motion computed from the fundamental matrix between a pair of images as ini-
tialization and then iteratively update the structure and motion by resection. Our
implementation is similar to the PhotoTourism project which is a recent sequential
structure from motion research work [N. 2006] able to calibrate a large set of digital
photographs taken by different cameras.

2.2 The classical pinhole camera model

The classic pinhole model representing the central projection of points in space on
a plane is shown schematically in Fig. 2.1. The projection center, or optical center
C is the origin of the Euclidean coordinate system ; the plane Z = f where f is

8 Chapter 2. Structure from Motion

the focal length of the camera is called the image plane or focal plane. The point p
is called the central point and is obtained by intersecting the main axis Z with the
image plane.

Figure 2.1: Projection of a 3D in the image plane using the pinhole camera model
: (a) pinhole camera model (b) image coordinates (x, y) and camera coordinates
(xcam, ycam)

A 3D point M in the space is projected onto a 2D point m on the image plane
as the beam emitted from the pointM to the center of camera C through the image
plane at that point. The central projection between the 3D Euclidean space and
the 2D Euclidean space is such that:

<3 → <2 : M(X,Y, Z)T 7→ (
fX

Z
,
fY

Z
)T (2.1)

2.2.1 Central projection in homogeneous coordinates

The central projection can be described by the matrix relation m PM with M =

(X,Y, Z, 1)T the 3D point of space, m = (fX/Z, fY/Z)T its projected point into
the image plane and P the projection matrix[3× 4]. The projection of a point can
then be written:

X

Y

Z

1

 7−→
 fX

fY

Z

 =

 f 0 0 0

0 f 0 0

0 0 1 0

︸ ︷︷ ︸

P

X

Y

Z

1

 (2.2)

2.2.2 Principal point offset

The above relations imply that the origin of the coordinate system in the image
plane is the principal point p. In practice, this is not always the case as described
in [Hartley 2003]. Thus, the central projection is then defined by:

<3 → <2 : M(X,Y, Z)T 7→ (
fX

Z
+ px,

fY

Z
+ py)

T (2.3)

2.2. The classical pinhole camera model 9

where (px, py) are the coordinates of principal point in the coordinate system of
the image plane. This projection is described in homogeneous coordinates by:

X

Y

Z

1

 7−→
 fX + Zpx

fY + Zpy
Z

 =

 f 0 px 0

0 f py 0

0 0 1 0

X

Y

Z

1

 (2.4)

If one writes:

K =

 f 0 px
0 f py
0 0 1

 (2.5)

The projection than is written as follows:

m = K[I|0]Mcam (2.6)

where K is defined as the intrinsic camera matrixa and Mcam is the 3D repre-
sentation of the point M in the camera coordinate system. The notation [.|.] is a
block representation of a matrix. In this example, [I|0] is a 3x4 matrix composed
by a 3× 3 identity matrix and in the last a column a 3× 1 zeros vector.

2.2.3 Rotation and translation of the camera

The points of space are described in another Euclidean coordinate system: the
world coordinate frame. The latter is related to the camera coordinate frame by a
rotation and a translation, as shown in Fig 2.2. Let M be the vector representing
the inhomogeneous coordinates of a point in space in the world coordinate frame and
Mcam its representation in the camera coordinate frame, then Mcam = R(M − C),
where C represents the optical center in the world coordinate frame and R is the
rotation matrix [3× 3] representing the orientation of the camera. This relationship
can be written in homogeneous coordinates as follows:

Mcam =

[
R −RC
0 1

]
X

Y

Z

1

 =

[
R −RC
0 1

]
M (2.7)

This leads to the relation m = KR[I| − C]M where M is now expressed in
the world coordinate frame. The projection matrix P = KR[I| − C] has then
9 degrees of freedom: 3 for matrix K (the focal length f and the coordinates of
the central point p = (px, py), 3 to rotation matrix R and 3 for the optical center
C. Parameters contained in K are called internal or intrinsic parameters of the
camera while parameters of R and C are called external or extrinsic parameters
of camera and represent the external orientation of the camera. In general, it is
more appropriate to represent the transformation (world coordinate frame / camera

10 Chapter 2. Structure from Motion

coordinate frame) as follows: Mcam = RM + t with t = −RC. In this case, the
matrix of the camera is just P = K[R|t].

Figure 2.2: Euclidean transformation between world (right) and camera coordinate
frame (left).

2.3 Keypoints detection and matching

The first step of any structure from motion recovery technique consists in matching
feature points between the set of photos. We used SIFT [Lowe 2003] keypoints
and descriptors since they are invariant to changes of scale, rotation, illumination
and partially to the point of view. As SIFT descriptors are of dimension 128,
we used a K-d tree to match keypoints between pairs of photos. Other methods
have been explored to address the problem of matching image features such as the
optical flow method and particularly the pyramidal implementation of Lucas-Kanade
algorithm [Bouguet 1999], these techniques are particularly suitable for processing
video images (small changes between two points of view). FIG 2.3 presents the
results obtained using SIFT on the first two images of the Wadham College image
sequence.

2.4 Epipolar geometry and the fundamental matrix

The epipolar geometry models the geometric relationship between two image points
x and x′ projected from the same 3D point in space on two different views. Indeed,
the two image points, the 3D point in space and the two optical centers are coplanar
and belong to the same plane called epipolar plane. This plan intersects the two
image planes in two epipolar lines.

The fundamental matrix is the algebraic representation of epipolar geometry. It
models the algebraic mapping between an image point in one view and its corre-

2.4. Epipolar geometry and the fundamental matrix 11

Figure 2.3: Keypoints matching using SIFT: the number of matched points is 921.
The points of the first image are displayed in green and those of the second in red.
The lines connecting pairs of matched points between the two images are displayed
in blue. Both images are displayed in superposition. Notice the presence of false
matches. Those outliers can be detected and rejected using the epipolar geometry.

Figure 2.4: Epipolar geometry.

sponding epipolar line in another view. The fundamental matrix is a matrix [3× 3]

of rank 2. Given two image points (m,m
′
) projected from the same 3D point M

on images I and I
′ and (l

′
, l) the two corresponding epipolar lines respectively in

images I ′ and I, then l′ = Fm and l = F Tm
′ .

According to epipolar geometry image point m′ belongs to the epipolar line l′ ,
then: m′T l′ = 0, hence:

m
′TFm = 0 (2.8)

Thus the fundamental matrix is defined as the unique homogeneous

12 Chapter 2. Structure from Motion

[3 × 3] matrix of rank 2 satisfying this relationship for all previous corre-
spondences (mi(xi, yi)m

′
i(x
′
i, y
′
i), i = 1, ..., n, between two distinct views.

The relation m
′T
i Fmi = 0 can then be written in algebraic form as follows

[Zhang 1995, G. Xu 1996, Zhang 1996]:

uiTf = 0 (2.9)

with :

f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
T (2.10)

ui = [xix
′
i, xiy

′
i, xi, yix

′
i, yiy

′
i, yi, x

′
i, y
′
i, 1]T (2.11)

where Fij represents the element of the fundamental matrix F at row i and
column j.

The concatenation of vectors ui, i = 1, ..., n of the relationship leads to the
following linear system:

Unf = 0 (2.12)

With:

Un = [u1, u2, ..., un]T (2.13)

All these linear equations and the rank constraint on the fundamental matrix
allows then to estimate the epipolar geometry between two views. We can classify
the methods of estimation as follows: linear, iterative, and robust methods.

2.4.1 Linear methods

2.4.1.1 Exact solution with 7 points

The fundamental matrix is of rank 2 and is defined up to a scale factor then it has
7 degrees of freedom [Hartley 2003, Zhang 1996]. Thus, 7 points (minimum) are
needed to solve the linear system of the previous relationship. For n = 7 points,
an eigen value decomposition using SVD (Singular Value Decomposition) of matrix
Un yields to two vectors f1 and f2 leading to matrices F1 and F2. The fundamental
matrix is then a linear combination αF1 + (1 − α)F2 with α ∈ [0, 1]. The rank 2
constraint on the fundamental matrix requires:

det[αF1 + (1− α)F2] = 0 (2.14)

This gives a polynomial of degree 3 whose maximum number of real solutions is
3. For each value of α, the fundamental matrix is then given by:

F = αF1 + (1− α)F2 (2.15)

2.4. Epipolar geometry and the fundamental matrix 13

2.4.1.2 Normalized 8 points algorithm

This method is known as the normalized 8-point algorithm [Hartley 2003]. The
principle is described in algorithm 1. It consists in solving the following problem in
the sense of least squares:

min
F

n∑
i=1

(m
′T
i Fmi)

2, n ≥ 8 (2.16)

The normalization of points (before the resolution of the linear relationship)
improves the conditioning of the problem and therefore the stability of the final
result. The normalization used here is that proposed in [Hartley 2003] which consists
of a translation and a rescaling of the homogeneous points in each image so that the
mean point is at the origin and the average distance of points to the origin at

√
2.

Algorithm 1 Normalized 8 point algorithm
Input : Set of 8 image matches mi(xi, yi)⇔ m

′
i(x
′
i, y
′
i) or more.

Output : Fundamental matrix F .

(i) Normalization : Transform the coordinates of points such that m̂i = Tmi and
m̂
′
i = T

′
m
′
i ; T and T ′ are two normalization matrices consisting on a translation

and a scaling.

(ii) Find the fundamental matrix F̂ for the correspondances m̂i ⇔ m̂
′
i correspond-

ing to the smallest eigenvalue of Un. Strengthen the rank 2 constraint by an SVD
decomposition.

(iii) Denormalization : The matrix F is then obtained by F = T
′T F̂ T and

corresponds to the initial image matches mi ⇔ m
′
i.

2.4.2 Iterative methods

Iterative methods can be classified into two groups: those based on minimizing
distances between points and epipolar lines and those which rely on the gradient.
Minimizing distances points / lines is defined by the following equation:

min
F

n∑
i=1

d2(mi, F
Tm

′
i) + d2(m

′
i, Fmi) (2.17)

Where d(., .) is the euclidean distance. This equation can be solved by applying
a minimization of Newton-Raphson or Levenberg-Marquardt. Iterative methods
based on the gradient solves the following equation:

min
F

n∑
i=1

(m
′T
i Fmi)

2

g2i
(2.18)

14 Chapter 2. Structure from Motion

with :

g2i =
√
l21 + l22 + l

′2
1 + l

′2
2 (2.19)

Fm
′
i = (l1, l2, l3)

T (2.20)

F Tmi = (l
′
1, l
′
2, l
′
3)
T (2.21)

2.4.3 Robust methods

Point correspondences are obtained using corner detection and correlation tech-
niques or similarity between two images [Zhang 1996]. This process necessarily
includes bias. Indeed, on the set of points obtained in matches, there is a proportion
of false points due especially to:

• bad locations: when estimating the fundamental matrix, the error on the
location of points of interest is assumed to follow a Gaussian distribution. A
localization error of more than 3 pixels considerably degrades the estimation
of fundamental matrix.

• false match: during the process of mapping several points there are false
matches. This would completely undermine the process of estimating the
fundamental matrix.

The methods described above are extremely sensitive to these errors since
mapping is based on techniques like least squares. Several robust regression
methods exist in the literature, the most popular algorithms are M-estimator,
RANSAC and LMedS. These methods are detailed in next paragraphs.

2.4.3.1 M-Estimator

Algorithms for M-Estimator attempt to reduce the effect of false points in the min-
imization of the residual error using a weight function [Zhang 1995, G. Xu 1996,
Zhang 1996]. Thus the M-estimators are based on solving the following equation:

min
F

n∑
i=1

wir
2
i (2.22)

with
r2i = (m

′T
i Fmi)

2 (2.23)

Several weighting functions exist in the literature, including the Tukey
[F. Mosteller 1977] and Huber [Huber 1981] weighting functions. The Tukey’s
weight function is defined by:

2.4. Epipolar geometry and the fundamental matrix 15

wi =

{ (
1−

(
ri

4.6851

)2)2 si |ri| ≤ 4.6851σ

0 sinon
(2.24)

A robust estimate of standard deviation σ related to the median value of residual
errors and the number of points n is given by:

σ = 1.4826

(
1 +

(
5

n− 7

))
mediani |ri| (2.25)

Among other functions of weight used in the M-estimators we can cite functions
of type Lp, Cauchy, Welsch and Geman-McClure. For each weight function used
a different M-Estimator is obtained. However, the minimization procedure of M-
estimators is the same and is described by algorithm 2.

Algorithm 2 M-Estimator algorithm
Input : A set of 8 correspondances mi(xi, yi) ⇔ m

′
i(x
′
i, y
′
i) or more and an initial

estimate of the fundamental matrix F0

Output : Fundamental matrix F .
(i) Normalization : Transform the coordinates of points such that m̂i = Tmi and
m̂
′
i = T

′
m
′
i ; T et T ′ are two transformation matrices consisting of a translation and

scaling.
(ii) k = 1, Calculation of the residual rk−1 and the robust standard deviation σ

using equations (2.23) and (2.25)
(iii) Calculation of the Tukey’s weights wk−1 using equation (2.24).
(iv) Solve the linear system wk−1Unfk = 0. Strengthen the rank 2 constraint on Fk
using an SVD decomposition.
(v) If |Fk − Fk−1| < ε or k > N go to (vii)
(vi) Fk−1 = Fk, k = k + 1, go to (iii)
(vii)Denormalization The fundamental matrix is obtained by F = T

′TFkT and
corresponds to the initial correspondences mi(xi, yi)⇔ m

′
i(x
′
i, y
′
i).

Figure 2.5: Tukey and Huber weighting functions.

16 Chapter 2. Structure from Motion

The robustness of this method relies on the weight assignement to selective
points to give less importance to the false points in the resolution of linear system.
Assessments have shown that this algorithm is robust to false points due to poor
locations but not to false matches. This is because it does not remove false matches
but only assignes a low weight to them.

2.4.3.2 RANSAC (RANdom SAmple Consensus)

The RANSAC algorithm (see algorithm3) has been proposed by Fischler and Bolles
[A.M. Fischler 1981]. Unlike conventional regression techniques that use as many
points as possible, the RANSAC algorithm (see algorithm 3) is based on the estima-
tion of a model from a minimum of s points (eg: s = 2 points for a line, s = 4 points
for a homography, s = 7 points for a fundamental matrix) randomly drawn. This
estimation is repeated several times, the selected model is the one that has received
the greatest support. The support is defined as the number of points whose distance
from the model is below a threshold. The implicit idea is that if a false match has
been used to estimate the model, so it will not have a great support.

Algorithm 3 RANSAC (RANdom SAmple Consensus) algorithm
Input : A set of de 8 matches mi(xi, yi)⇔ m

′
i(x
′
i, y
′
i) or more.

Output : Fundamental matrix F .
(i)Select randomly m subsets of 8 matches.
(ii) For each subset k compute the fundamental matrix Fk using the normalized 8
point algorithm.
(iii) For each fundamental matrix Fk compute the residual error di associated to
each match mi ⇔ m

′
i and a robust estimation of the standard deviation σ and the

threshold t = 1.96σ :
σ̂ = 1.4826

[
1 + 5

(n−7)

]√
mediani |di|.

(iv)Compute the number of inliers such that di < t.
(v) Select the best solution corresponding to the largest number of inliers.
(vi) Compute the fundamental matrix F using the inliers.

Suppose we have a proportion ε of data contaminated by false points and the
probability P that at least one of m randomly drawn subsets does not contain false
points, then (1 − (1 − ε)s)m = 1 − P . Thus, we deduce the minimum number of
iterations [Hartley 2003, Zhang 1996]:

m =
log(1− P)

log(1− (1− ε)s)
The RANSAC algorithm [Hartley 2003, Zhang 1996] includes the automatic cal-

culation of the threshold (see algorithm 3), thus allowing the calculation of the sup-
port of each estimated model. This algorithm is robust to false matches and allows
an automated estimation of the fundamental matrix. Another advantage is the abil-
ity to make an adaptative estimate of the fundamental matrix F by the calculation

2.4. Epipolar geometry and the fundamental matrix 17

of the ratio ε of data contamination at each iteration, by estimating the support of
the model.

2.4.3.3 LMedS (Least Median of Squares)

The principle of the LMedS algorithm originally proposed by Rousseeuw
[P. J. Rousseeuw 1987] is to solve the nonlinear minimization problem:
min(medianir

2
i), where r2i is the squared residual error associated with the

correspondence between the points mi and m
′
i (see equation (2.23)). The principle

of solving this problem is described by the algorithm 4 [Zhang 1996] and is quite
similar to the RANSAC algorithm. The difference is based on the criterion of model
selection. Contrary to RANSAC, which selects the model with the greatest support,
the LMedS algorithm retains the model giving the smallest median squared residual
error.

Algorithm 4 Algorithm LMedS (Least Median of Squares)
Input : A set of de 8 matches mi(xi, yi)⇔ m

′
i(x
′
i, y
′
i) or more.

Output : Fundamental matrix F .
(i)Select randomly m subsets of 8 matches.
(ii) For each subset k compute the fundamental matrix Fk using the normalized 8
point algorithm.
(iii) For each fundamental matrix Fk compute the median Mk of the squared
residual errors : Mk = mediani=1,...,n

[
d2(mi, F

T
k m

′
i) + d2(m

′
i, Fkmi)

]
(iv) Select the fundamental matrix Fk associated to the smallest residual error in
Mk.
(v) Compute a robust estimation of the standard deviation σ given by :
σ̂ = 1.4826

[
1 + 5

(n−7)

]√
Mk.

(vi) For each match assign a weight wi, such that :

wi =

{
1 si

∣∣r2i ∣∣ ≤ (2.5σ̂)2

0 else

with r2i = d2(mi, F
T
Km

′
i) + d2(m

′
i, FKmi) (vii) Compute the fundamental matrix F

on the set of correspondences whose weight is not zero.

Correspondences whose weight is zero are considered as false points and are no
longer taken into account in estimating the fundamental matrix. Thus the funda-
mental matrix is correctly estimated because the wrong points are discarded before
the final estimate of F . Performance improvements of this algorithm is to have
sub-sets of points scattered in the image. Indeed, if we chose the subset of corre-
spondences randomly, without taking into account their spatial distribution in the
image, we can select points close to each others and the estimation of the epipolar
geometry becomes ill conditioned. A solution to this problem is to use the technique
known as "bucketing". The principle of this method involves cutting the image into

18 Chapter 2. Structure from Motion

grids and randomly choose s = 8 matches from different grids. The technique pro-
posed by Zhang [Zhang 1996] is implemented here, and its principle is described in
the algorithm 5. This technique ensures that each point has the same probability
of being selected. Thus, the calculation of the number of iterations needed for the
LMedS algorithm remains valid.

Algorithm 5 Bucketing algorithm.
Input: Set of n points mi(xi, yi), b2: number of buckets.
Output: s points drawn randomly.
(i) Calculate the min and max of xi and yi (bounding rectangle).
(ii) Cut the bounding rectangle into b× b buckets.
(iii) The buckets that have no points attached are excluded.
(iv) Cut the interval [0, 1] into L subintervals such that the length of the ith interval
is equal to ni

n with ni the number of points included in the bucket number i and L
the total number of non empy buckets.
(v) During the selection procedure of s buckets, a number produced by a uniform
random generator between 0 and 1 belonging to the ith interval implies that bucket
number i is selected.
(vi) For each bucket chosen randomly select one of its points.

Figure 2.6 illustrates the different phases of selection of points by the bucketing
technique on an image of the Wadham College sequence [Hartley 2003].

Figure 2.6: Principle of the bucketting technique for selecting candidate points :
(left) cut the region into 8× 8 buckets, (middle) buckets with no points are removed
, (right) select s = 8 buckets.

2.4.3.4 Evaluation

The evaluation procedure of the quality of the estimated fundamental matrix and
epipolar geometry is defined by the average of the residual error between epipolar
lines and points correspondences :

QF (pixels) =

n∑
i=1

d(mi, F
Tm

′
i) + d(m

′
i, Fmi)

n

2.4. Epipolar geometry and the fundamental matrix 19

where (mi,m
′
i) represents a pair of points in correspondence and d the Euclidean

distance.
Figure 2.7 represents the quality assessment of the fundamental matrix estima-

tion algorithms obtained by RANSAC and LMedS according to the proportion of
data contamination by false points on two images of the Wadham College sequence.

Figure 2.7: Error evaluation of algorithms for estimating the fundamental matrix
on two images of the Wadham College sequence.

The LMedS algorithm achieves more reliable results than RANSAC and this for
a proportion of false points below 50%. Once the LMedS algorithm rejected the
"false points" we use the normalized 8 point algorithm to estimate the fundamental
matrix. However, the points selected by the LMedS algorithm may still contain false
points that introduce bias to the estimation process. The solution to this problem
is to use the M-estimator algorithm to reduce the effect of these false points.

Estimating the fundamental matrix, and thus the epipolar geometry is an
important stage within a structure from motion framework. Several algorithms and
techniques exist in the literature for estimating this matrix. Among the algorithms
robust to false matches we selected the LMedS algorithm originally proposed by
[P. J. Rousseeuw 1987] combined to the bucketing technique proposed by Zhang
[Zhang 1996]. The contribution consists to use an M-estimator using Huber’s weight
function [Huber 1981] as a final step of re-estimating the final fundamental matrix
on all the inlier points instead of using the normalized 8 point algorithm. Tests
on several image sequences were used to validate the combined algorithm LMedS
/ M-estimator and showed its relevance with regard to conventional methods.
Figure 2.8 illustrates the filtering of false matches by the estimation of the epipolar
geometry.

20 Chapter 2. Structure from Motion

Figure 2.8: Filtering image correspondences using the epipolar geometry : (left)
initial point matching using SIFT : 921 points ; (right) result after estimating the
fundamental matrix: 365 outlier points were rejected (556 inlier point correspon-
dances).

2.5 Structure from motion

2.5.1 Overview

The relationships between the different views (epipolar geometry) will be used to
jointly estimate the camera motion and scene structure. This problem is known
under the term "Structure from Motion" (SFM) [P.A. Beardsley 1997]. The SFM
approach consists in initializing a 3D reconstruction using 2 views, then in estimating
the projection matrices for each view using the 2D−3D point correspondences. The
results of this method are strongly related to the quality of the initial reconstruction.
The SFM process is summarized in Algorithm 6. The differrent steps of our SFM
framework including the initialization of the structure, the iterative calculation of
the different views camera pose and the bundle adjustment are explained in the
following sections.

2.5.2 Initial reconstruction

The SFM pipeline starts by initializing the structure and the motion with a conve-
nient pair of photos. The essential matrix is derived from the fundamental matrix
and it represents the calibrated epipolar geometry between two views:

E = KT
2 FK1 = [R2(T1 − T2)]xR2R

T
1 (2.26)

Where R1, R2, T1 and T2 are repectiveley the camera orientation and translation
of the two cameras and K1, K2 their intrinsic matrices. The first camera is chosen
so that it is aligned with the world coordinate frame [Pollefeys 2004] and the second

2.5. Structure from motion 21

Algorithm 6 Structure from Motion

Input : N images, taken by different cameras at different conditions.

1. Linking

(a) Keypoint detection for all the views using SIFT [Lowe 2003]

(b) Keypoint matching using a K-D tree data structure [Lowe 2003]

(c) Fundamental matrix estimation and outlier removal [et R.C. Bolles ,
Hartley 2003]

(d) Remove the connections between images whose number of matches is
below nmin (For example, 20 matches)

(e) Link keypoint matches over all the views as tracks.

2. Initial reconstruction using 2 views.

(a) Select the 2 appropriate camera views with known intrinsic parameters
such that they have the greatest number of matches and wich can not
be well modeled using a homography [Lourakis 2006] to avoid degenerate
cases.

(b) Using the fundamental matrix and the intrinsic camera parameters com-
pute the essential matrix and then the relative camera pose between the
initial 2 views (rotation and translation).

(c) Align the first camera with the world coordinate frame. The second
camera pose corresponds to the relative camera motion computed from
the essential matrix.

(d) Compute the projection matrices for the 2 initial views.

(e) Compute 3D points using the optimal triangulation method on 2D points.

3. Adding views : while there are images to be processed

(a) Select the camera which has the highest number of reconstructed points

(b) Robust Estimation of the projection matrix using the DLT (Direct Linear
Transform) method [Hartley 2003] inside a RANSAC procedure

(c) Compute intrinsic and extrinsic camera parameters.

(d) Add, Remove, and Update 3D points using the optimal triangulation
method.

(e) Local bundle ajustement to optimize the overall reprojection error
[Lourakis 2004]

(f) Exclude cameras with a high average reprojection error.

Output : Ncal cameras poses (Ncal ≤ N), reconstructed 3D points.

22 Chapter 2. Structure from Motion

camera is chosen to correspond to the relative camera motion (R,T) computed by
an SVD decomposition of essential matrix:

E = KT
2 FK1 = [T]xR (2.27)

Thus, the projection matrices of the initial pair of cameras are given by:

P1 = [I|0]

P2 = [R|t]

Let S, U and V be respectively the diagonal matrix and two unitary matrices
produced by the SVD decomposition of the essential matrix E:

E = USV T

Then the rotation and translation are defined by: R = UWV T or UW TV T ,
and t = u3 or −u3

with:

W =

 0 −1 0

1 0 0

0 0 1

This gives four different combinations of rotations and translations which

represent combinations for the second projection matrix. We can determine
the correct geometric configuration interpretation. The right pair of projection
matrices, as shown in Fig 2.9, is the one that provides the 3D points in front of two
cameras.

To automatically determine the right pair of projection matrices we can proceed
as follows:

• Choose a pair of point matches between the first two images,

• Obtain the corresponding 3D point using the optimal triangulation method,

• Compute the depth of the 3D point for the two cameras for each configuration,

• Select the configuration that gives a positive depth for the two cameras.

The depth of a 3D point X is defined as follows:

Depth(X,P) =
sign(Det(M))w

T ‖m3‖
with :

2.5. Structure from motion 23

Figure 2.9: Combinations of orientations and rotations from the SVD decomposition:
the configuration chosen is the one which provides the 3D points (gray points) in front
of the two cameras (black points).

• P = [M |p4] the camera projection matrix (with M a 3x3 matrix and p4 a 3x1

vector)

• X̂ = [XY ZT]T

• PX̂ = w [xy1]T

• M = [m1m2m3]
T , mi rows of M .

The two initial views should be close enough to get enough point correspon-
dences, and far enough such that the problem of triangulation is well conditioned.
Indeed, uncertainty on the 3D position of a point obtained by triangulation depends
on the angle between the projection rays. For too close views, the angle is low and
uncertainty is high. Further details regarding the selection of reference images for
initialization of the reconstruction are defined in [Pollefeys 2004]. Once the projec-
tion matrices of the first two views are defined, an initial reconstruction of 3D points
can be obtained using the optimal triangulation method [Hartley 1997].

2.5.3 Adding views

We iteratively select a new camera and compute extrinsic parameters using the direct
linear transform method [Hartley 2003] within a RANSAC scheme followed by an
optimization of the re-projection error through gradient descent. The structure is
updated by removing, adding or refining 3d points [Pollefeys 2004]. We refine the
results through a local bundle adjustment which consists in finding the parameters
of cameras and 3d points that minimize the re-projection error. So for m views and
n tracks, we try to minimize the following criterion:

24 Chapter 2. Structure from Motion

min
Pi,Mj

m∑
i=1

n∑
j=1

d(PiMj ,m
i
j)

2 (2.28)

We use the sparse bundle adjustment library of Lourakis and Agyros
[Lourakis 2004] based on the non linear minimization method of Levenberg-
Marquardt to minimize this criterion. Figure 2.10 and Figure 2.11 respectively
show an example of a photo sequence and a sparse reconstruction generated with
our SFM pipeline.

Figure 2.10: The Luxembourg palace sequence (9 photos, 3072x2048, Canon EOS
300D Digital Camera).

Figure 2.11: Structure and camera poses of the Luxembourg palace sequence (9
cameras, 2345 3d points).

2.5. Structure from motion 25

2.5.4 Results

Table 2.1 shows the computation times and results for some image sequences. The
calculations were performed on a 1.4 GHz PC with 2GB RAM.

Name Luxembourg Notre-Dame Arenberg Temple Triomphe

Resolution 1536 ∗ 1024 1896 ∗ 1350 768 ∗ 576 2050∗1543 1912∗1440

N 9 277 22 39 48

Ncal 9 170 22 29 25

tdetection SIFT 2 min 3 h 4 min 15 min 25 min
tmatching 3 min 15 s 4 days 3 min 45 min 2 h
tFM estimation 15 s 2 h 10 s 1 min 3 min
tlinking 30 s 8 h 30 s 3 min 12 min
tSFM 1 min 3 days 50 s 12 min 15 min
ttotal (approx.) 7 min 8 days 9 min 2 h 11 min 2 h 55 min
nSIFT (mean) 9457 11002 6100 8152 10050

npoints 3D 5773 97418 10086 10355 13606

Error 0.38 pixels 1.23 pixels 0.19 pixels 0.84 pixels 1.05 pixels

Table 2.1: Structure from motion computation times for different photo collections

The user interface of the Photo3D software that allows the user to create SFM
projects using images sequences is illustrated in figure 2.12.

The 3D user interface integrated to the Photo3D software is illustrated in figures
2.13 and 2.14 and shows the Notre Dame de Paris image sequence calibrated using
our SFM framework. This sequence was downloaded from The FlickR website and
consists in 300 photographs of Notre Dame de Paris taken by different cameras
at different conditions and times. Among the 300 photographs, 170 cameras were
succefully calibrated. The intrinsic camera parameters are extracted from the Exif
header in JPEG images. This header contains for example the focal length of the
camera.

26 Chapter 2. Structure from Motion

Figure 2.12: Photo3D User Interface : the user interface allows to create, load and
update SFM projects. The user can also tune the SFM parameters and manually
update the camera database.

2.6 Registration

The proposed solution described by Figure 2.15 consists of four parts. Here we give
a short description of the individual parts, with details provided in the later sections.
(1) Structure from motion: The input is a set of un-calibrated photographs. We use
SFM techniques to iteratively recover a sparse structure of a scene and the motion of
the camera. (2) Recovering walls: The input of this part is a sparse set of 3d points
and camera projection matrices. We use an iterative RANSAC (RANdom SAmple
Consensus) scheme together with a recursive facade splitting algorithm to recover
the principal walls of a scene. (3) Model fitting: The input is a CAD model and a set
of principal walls of a scene. Fitting the CAD model to a sparse SFM reconstruction

2.6. Registration 27

Figure 2.13: The sparse 3D reconstruction of Notre Dame de Paris seen from a
selected camera viewpoint.

Figure 2.14: The sparse 3D reconstruction of Notre Dame de Paris and the camera
poses seen from an arbitrary camera viewpoint.

28 Chapter 2. Structure from Motion

is then defined and solved as an absolute orientation problem. (4) Visualisation and
rendering: Once the model is fitted we use projective texture mapping technique to
obtain a photorealistic rendering of the CAD model.

Figure 2.15: System overview.

2.6.1 Recovering walls

We use an iterative and robust RANSAC scheme to fit 3d dominant planes of a
building from a sparse reconstruction. Each wall is represented by a rectangle
and has 4 parameters: height h, width w, position p and normal n. We begin
by estimating the normal to the ground floor from the camera centers. Then we
iteratively recover 3d dominant planes of the scene from the set of sparse 3d points
using a robust RANSAC scheme. The 3d planes are constrained to be orthogonal
to the ground floor plane. Figure 2.16 (a) shows the re-projection of different
sets of 3d points belonging to fitted 3d planes. Note that there are some points
belonging to the same 3d plane (red points in chimney and roof windows) but do
not belong to the same wall plane. Another problem is that two different walls
belonging to the same 3d plane gives rise to the same entity.

Second, we recover the boundaries of each wall plane by spanning each 3d
point set belonging to the same 3d plane in the horizontal and vertical directions
[A. 2003]. Figure 2.16 (b) illustrates a resulting boundary of a wall plane together
with the set of inlier 3d points.

Finally, we use a recursive splitting method to subdivide and filter wall planes

2.6. Registration 29

(a) 3d plane fitting using a robust and iterative RANSAC scheme.

(b) fitting wall boundaries using a spanning technique.

(c) wall subdivision and filtering using a recursive and robust splitting technique.

Figure 2.16: Robust wall fitting using a combined spanning and splitting technique.
Each 3d point set belonging to a different wall plane is plotted with a different color.

into different facades. This technique consists of splitting in the vertical and hori-
zontal directions the in-lying 3d points of a wall plane and recursively subdividing
around lines that separate parts containing significant 3d points. Figure 2.17 shows
an illustration of the principle of this method: the input is a wall plane and in-lying
3d points and the output is a subdivision into main facades. Note that the badly
localized points are removed by defining a threshold for the size of facades and the
number of in-lying 3d points which must be significant to obtain a real facade. Fig-
ure 2.16 (c) shows the final result obtained with this method. Note that we solve
at the same time the problem of badly localized points (red points in chimney and
roof in Figure 2.16 (a)) and the subdivision of wall planes containing more than
one facade.

30 Chapter 2. Structure from Motion

Figure 2.17: Recursive vertical and horizontal splitting technique.

2.6.2 Model fitting

Fitting the 3d model of a building to a sparse set of facade planes can be formu-
lated as an absolute orientation problem. The unknown parameters to fit are: the
scale s (1 parameter), the 3d orientation R (3 parameters) and the 3d translation
T (3 parameters). The idea is to use the fitted walls from the sparse reconstruction
and the CAD model of the building to dynamically establish a list of facade corre-
spondences and then compute the absolute orientation. Figure 2.18 illustrates the
absolute orientation problem between two facades.

Figure 2.18: Fitting a model facade to a fitted facade wall plane.

We compute for each facade four points: top left, top right, bottom right and
bottom left. Each facade vertex correspondence are then related by the formula:

Yi = s(R.Xi + T) (2.29)

The scale parameter s is computed as the ratio of the widths or heights of both
facades. Each point correspondence gives rise to 2 equations, the minimum number
of correspondences needed to estimate the rotation and the translation (6 degrees
of freedom) is 3 points.

Xmean =
1

n

n∑
i=1

Xi Ymean =
1

n

n∑
i=1

Yi (2.30)

The rotation matrix R is recovered by an SVD decomposition of the matrix A:

A = (Y − Ymean).(X −Xmean)T (2.31)

2.6. Registration 31

The translation vector T is then recovered from the rotation matrix using the
simple formula:

T = Ymean −R.Xmean (2.32)

Finally, we optimize the results through gradient descent by minimizing the
following criterion:

min
s,R,t

N∑
i=1

d(Yi, s(R.Xi + T))2 (2.33)

To dynamically establish the list of facade correspondences the solution is
implemented as a pseudo-RANSAC procedure. For each fitted facade we try to
find a facade in the model that has almost the same height/width ratio. This
allows to directly eliminating false facade correspondences. Then, we estimate the
absolute orientation and compute the consensus. We chose the resulting facade
correspondences that give rise to the largest consensus and robustly estimate the
absolute orientation using only the in-lying facade correspondences. Figure 2.19
shows an illustration of a final result obtained with our method for fitting a CAD
model to the SFM sparse reconstruction.

Figure 2.19: CAD model of the Luxembourg palace automatically fitted to the
computed structure and motion.

32 Chapter 2. Structure from Motion

2.6.3 Visualisation and rendering

We developed an OpenGL-based user interface for the visualization and rendering of
the CAD model using projective texture mapping technique. The camera selected
by the user is used to project texture onto the model. Figure 2.20 shows two
different views for the rendering of a CAD model using our interface.

2.7 Conclusion

This chapter introduces methods and techniques for recovering wall planes from a
sparse reconstruction and for fitting CAD models to a set of un-calibrated pho-
tographs. These two elements form the major contribution of this chapter. Our
structure from motion pipeline is mainly inspired from state of the art techniques
but involved some contribution such the combination of LMedS and the M-Estimator
algorithms for estimating the fundamental matrix and the use of the bucketing tech-
nique to improve the spatial distribution of points.

2.7. Conclusion 33

(a) Rendering from the camera viewpoint of the Luxembourg palace.

(b) Rendering from an arbitrary viewpoint.

Figure 2.20: A photorealistic rendering of the CAD model using projective texture
mapping.

Chapter 3

Multi-View Stereo

This chapter presents an accelerated implementation of a multi-view stereo pipeline
using parallel processing capababilities of the GPUs. Our system takes as input a
set of calibrated photographs and produces a textured 3D mesh of the scene. The
pipeline is divided into three parts: dense stereo matching, multi-view correspon-
dence linking and 3D model generation. First, we use a combined vertical aggre-
gation and dynamic programming (DP) scheme to produce disparity maps between
pairs of photographs. Then, the depth maps are computed using a multi-view cor-
respondence linking algorithm. Finally, we use a Delaunay triangulation algorithm
and texture mapping to produce the 3D model of the scene.

3.1 Introduction

We present in this chapter an accelerated implementation of a multi-view stereo
pipeline that takes advantage of the parallel processing capababilities of actual
GPUs. Stereovision is a very challenging research topic in computer vision. The re-
search community has devoted a lot of effort to developp algorithms and techniques
for an automatic 3D reconstruction of a scene from a set of uncalibrated photographs
[Hartley 2003, Pollefeys 2004]. Scharstein and Szeliski [Scharstein 2002] have es-
tablished a classification of the different dense stereo matching algorithms into local
and global methods. Local methods use the intensity of a pixel and of its neighbours
to compute the disparity. Global methods make use of optimization techniques (dy-
namic programming, graph cuts, ...) for the computation of the disparities. Accel-
eration using graphics hardware to estimate depth was first explored by Yang et al.
[Yang 2002] using a plane sweep approach. Cornells and Van Gool [Cornelis 2005]
combined this with the iterative refinement from Zach et al. [Zach 2003] to generate
quality depth maps for fine 3D structures.

3.1.1 GPU pipeline and GPGPU

Acceleration using graphics hardware has been for a long time restricted to purely
graphical processing. With the constant evolution of graphics hardware and the
emerging GPGPU techniques and technologies such Cg [CG: 2008] and CUDA
[CUD 2008] researchers start to re-design their algorithms to benefit from the par-
allel capababilities of modern GPUs. GPGPU stands for General Purpose Graphics
Processing Unit [GPG 2008]. Stating it briefly, GPGPU is a combination between
hardware components and software that allows the use of a traditional GPU to per-
form computing tasks that are extremely demanding in terms of processing power.

36 Chapter 3. Multi-View Stereo

The graphics pipeline is designed to allow hardware implementations to maintain
high computation rates through parallel execution. The pipeline is divided into sev-
eral stages; all geometric primitives pass through every stage. In hardware, each
stage is implemented as a separate piece of hardware on the GPU in what is termed
a task-parallel machine organization. Figure 3.1 shows the pipeline stages in cur-
rent GPUs. This pipeline is described in more detail in the OpenGL Programming
Guide [Shreiner 2003].

Figure 3.1: The modern graphics hardware pipeline: the vertex and fragment pro-
cessor stages are both programmable by the user.

3.1.2 System overview

The 3D reconstruction pipeline presented in this paper consists of three parts. (1)
Dense Stereo Matching: match all the pixels between consecutive image pairs and
produces the disparity maps. We use two different dense stereo matching methods:
the winner takes all approach, that runs fully in GPU and a dynamic programming
approach that runs in both GPU and CPU. (2) Multi-View Correspondence Linking:
produces the depth maps using multiple view triangulation of all correspondences.
This process fully runs in GPU and forms the major contribution of this chapter.
(3) 3D Mesh Generation and Texture Mapping: produces the final 3D model using
a Delaunay triangulation and texture mapping.

3.2 Dense stereo matching

Dense stereo matching consists in matching all the pixels between two consecutive
images in order to produce disparity maps. Our algorithm has three major steps:

3.3. Multi-view correspondence linking 37

matching cost computation, cost aggregation and disparity selection. To compute
the cost volume, we draw a rectangle aligned with the two input rectified images
stored as textures, and one of them shifted by d pixels. We adopt the following
matching cost criterion:

|p(x, y)− q(x+ d, y)| (3.1)

where p and q are the corresponding matched pixels and d is the hypothesized
disparity value. We use a fragment program to calculate the color absolute difference
and output it to a texture. After doing this process over all the disparity hypothesis
d we have the entire cost volume separated in different textures. One 4-channel
texture for each 4 disparity hypothesis. The matching cost computation is done
entirely in the graphics processing unit. We compute the weight masks in a similar
way using the following equation:

w(p, q) = exp

(
−(

∆cpq
γc

+
∆gpq
γg

)

)
(3.2)

where p and q are pixels, ∆cpq their color difference, ∆gpq their Euclidean dis-
tance and γc and γg are weighting constants determined empirically. The cost
aggregation is implemented as a pixel shader that can index between both cost and
weight textures to produce a new set of textures that will conform the aggregated
cost volume. The aggregated cost is computed as a weighted sum of the per-pixel
cost [Wang 2006] and is implemented as a pixel shader. The number of render-
ing passes needed to do this process is

⌈
N∗H
16

⌉
where N is the number of disparity

hypothesis and H is the size of the vertical window. To select the best disparity
for each pixel in the image we use both Winner Takes All (WTA) approach and
a Dynamic Programming (DP) scheme [Forstmann 2004]. WTA approach simply
selects the disparity that has the lower cost while DP selects the disparity trying to
minimize a global energy function [Wang 2006]. The WTA algorithm can be fully
implemented in the GPU. The DP algorithm can be implemented also in GPU,
but as reported in [Wang 2006, Gong 2005], a GPU-based DP program is actually
slower than it’s CPU counterpart. Figure 3.2 shows the differences between the
disparity maps calculated with the two different methods: WTA and DP. Table 3.1
illustrates the real-time performances of the dense stereo matching algorithm.

3.3 Multi-view correspondence linking

The pairwise disparity estimation allows to compute correspondences between
adjacent rectified image pairs and independent depth estimates for each camera
viewpoint. In order to fuse those separate depth estimates into a common 3D
model we use the multi-view correspondence linking algorithm described in
[Pollefeys 2004]. For each image point mk we create two chains of correspondence
links one up mk+1 and one down mk−1 as follows :

38 Chapter 3. Multi-View Stereo

Figure 3.2: Resulting disparity maps using WTA and DP methods.

Image Size DR VA + DP WTA
GPU CPU Total GPU

16 0.024 0.382 0.407 0.026
640x480 32 0.051 0.731 0.783 0.054

48 0.076 1.082 1.158 0.081
16 0.007 0.098 0.105 0.007

320x240 32 0.013 0.182 0.196 0.014
48 0.019 0.271 0.290 0.020

Table 3.1: Real-time Performance in seconds. The test system is a 3.0Ghz with
a NVIDIA GForce 8800 GTS 512 Mb graphics card. VA+DP denotes Vertical
Aggregation + Dynamic Programming, WTA denotes Winner Takes All and DR
the Disparity Range.

3.3. Multi-view correspondence linking 39

mk+1 = (Hk
k+1)

−1D(k,k+1)[H
k+1
k mk] (3.3)

mk−1 = (Hk
k−1)

−1D(k,k−1)[H
k−1
k mk] (3.4)

This linking process is repeated along the image sequence for a reference view
i to create a chain of correspondences upwards (i, i + 1, .., n) and downwards (i,i-
1,...,1) . Every correspondence link requires 2 mappings and 1 disparity lookup.
The Disparity map D(k,k−1) holds the downward correspondences from image Ik to
Ik−1 while the map D(k,k+1) contains the upward correspondences from Ik to Ik+1 .
Rectification of image points for a stereoscopic pair of images (Ik, Ik+1) is done using
transformation matrices Hk+1

k and Hk
k+1. Once we have located the same pixel in

a sequence of images, we can proceed to triangulate them to get a set of depths.
And last, we use a Kalman filter to estimate the final depth. We also have to detect
when a depth estimation falls out of our previous mean estimation. Outliers can
be detected comparing the depth estimation of the new point with the previous
filtered mean and taking into account the error in the current step. If we find an
outlier, the correspendance chain ends and we have to assure that this pixel will
not be triangulated in further steps. Figure 3.3 illustrates the principle of depth
estimation and outlier detection using a chain of correspondence link.

Figure 3.3: Depth fusion, uncertainty estimation and outlier detection from corre-
spondence linking.

We have implemented this algorithm in the GPU by performing the linking in
an incremental way. We select a camera for which we want to compute the depth
map then we step forward and backward to triangulate all the correspondences. At

40 Chapter 3. Multi-View Stereo

each step we triangulate correspondent image points and estimate the pixels depth
values. For each step and for each image point we save the following informations
in textures: the coordinates of correspondant point in the next image, the filtered
depth estimation and the number of estimations. By this way the algorithm is
suitable to run in GPU and generates the depth maps in a very fast way. The
CPU implementation takes about 112 s to calculate the depth maps of the Wadham
College example, our GPU implementation takes less than 0.5 s. We can see an
example of a computed depth map using this algorithm in figure 3.4.

Figure 3.4: Resulting depth map using the multi-view correspondence linking algo-
rithm.

3.4 3D mesh generation and texture mapping

The 3D mesh generation is performed using a 2D Delaunay triangulation of a selected
depth map followed by a inverse projective transformation. We compute normal
vectors of each triangle and extract textures from the original images depending on
the camera viewpoint. The visualisation and rendering of the final 3D model is then
obtained using the OpenSceneGraph library [OSG 2008]. Figure 3.5 shows some
final 3D models generated with our system and Table 3.2 illustrates the computation
times.

3.5 Conclusion

This chapter presented algorithms and techniques to accelerate a multi-view stereo
pipeline using parallel processing capababilities of the GPUs. Most previous work
focus on the acceleralation of two-frame dense stereo matching algorithms. Our
GPU implementation of a multi-view correspondence linking algorithm allows 3D
reconstruction from multiple images.

3.5. Conclusion 41

Figure 3.5: Four views of the reconstructed models. From left to right: Wadham
College, Merton College I, Merton College II [VGG 2008a] and Arenberg Castle
[MP: 2008].

Image Sequence MDR DSM MVCL 3DMG&TM Total
Wadham College (5 images 640x480) [-34,94] 40.987 0.414 1.122 42.623
Arenberg Castle (22 images 768x576) [-8,52] 89.301 3.053 1.774 94.128
Merton College I (3 images 640x480) [-248,90] 418.214 2.942 0.969 422.125
Merton College II (2 images 1024x768) [-65,106] 244.812 2.370 2.430 249.612

Table 3.2: Computation times in seconds. The test system is a 3.0Ghz with
a NVIDIA GForce 8800 GTS 512 Mb graphics card. MDR, DSM, MVCL and
3DMG&TM respectively denotes for Maximum Disparity Range, Dense Stereo
Matching, Multi-View Correpondence Linking and 3D Mesh Generation and Tex-
ture Mapping.

Chapter 4

Voxel Coloring

This chapter presents algorithms and techniques towards a real-time and accurate
Voxel Coloring framework. We combine Visual Hull, Voxel Coloring and Marching
Cubes techniques to derive an accurate 3D model from a set of calibrated pho-
tographs. First, we adapted the Visual Hull algorithm for the computation of the
bounding box from image silhouettes. Then, we improved the accuracy of the Voxel
Coloring algorithm using both colorimetric and geometric citerions. The calculation
time is reduced using an Octree data structure. Then, the Marching Cubes is used
to obtain a polygonal mesh from the voxel reconstruction. Finally, we propose a
practical way to speed up the whole process using graphics hardware capababilities.

4.1 Introduction

In this chapter we address the problem of real-time 3D reconstruction from pho-
tographs. Our framework consists of three parts: (1) computation of the bound-
ing box of the object we want to reconstruct using a Visual Hull approach, (2) a
voxel reconstruction based on both colorimetric and geometric criterions (3) and
a generation of a polygonal mesh using Marching Cubes techniques. The context
of this work is the growing interest in automatic reconstruction techniques from
photographs. With the increasing capababilities of modern graphics hardware 3D
reconstruction techniques can be accelerated to obtain accurate models in real-time.

4.2 Related Work

The original Voxel Coloring paper described in [Seitz 1997] uses only colorimetric
criterions to reconstruct an object consistent with the input images. This algorithm
starts by discretizing the 3D space into voxels and projects them on each image.
The voxels that are consistent from a colorimetric viewpoint with the images are
retained. The complexity of this algorithm is O(N3 ∗ n) with N3 is the number of
voxels and n the number of images. In order to improve the accuracy of this method
we use both colorimetric and geometric criterions to derive 3D models from image
silhouettes. The calculation time is improved using an Octree data structure. The
Visual Hull algorihm [Franco 2003] operates in a different manner by projecting the
image silhouettes into the 3D space. The intersection of the silhouettes cones pro-
duces the 3D polygonal model. We adapted this algorithm to compute the bounding
box of the 3D object which is needed for the voxel reconstruction. Instead of pro-
jecting the image silhouettes into the 3D space we project their 2D bounding boxes.

44 Chapter 4. Voxel Coloring

Figure 4.1: A sample data set: Our system takes as input a set of calibrated images
and silhouettes and produces a textured polygonal model. [VGG 2008b]

The Marching Cubes technique [Lorensen 1987, F. Goetz 2005] takes as input a 3D
point cloud and produces a textured polygonal mesh. Acceleration using graphics
hardware has been for a long time restricted to purely graphical processing. With
the constant evolution of graphics hardware and the emerging GPGPU (General
Purpose GPU) techniques and technologies such Cg [W. R. Mark 2003] and CUDA
[Cuda 2008] researchers start to re-design their algorithms to benefit from the par-
allel capababilities of modern GPUs [Trendall 2000, Krueger 2003, F. Goetz 2005].

4.3 Our Approach

Given a set of calibrated images and silhouettes our system produces a textured
polygonal model. Figure 1 illustrates a sample input data set used for evaluating
our reconstruction pipeline. The proposed solution described consists of three parts.
First we compute the bounding box of the object we want to reconstruct using a
Visual Hull approach. Then we reconstruct the 3D object with a colorimetric and
geometric consistency based Voxel Coloring scheme. Finally, we produce a textured
polygonal model using the Marching Cubes technique. The Voxel Coloring algorithm
is accelerated using graphics hardware.

4.3.1 Visual Hull

The Visual Hull algorihm [Franco 2003] computes a 3D coarse representation of an
object from it’s 2D projections in a set of images. Figure 2 illustrates this algorithm
in the simple case of 2 calibrated images. Given (1) two projection matrices PA
and PB (2) two 2D regions DA and DB representing the projection of the same 3D
object we compute the 3D cones VA and VB and intersect them to compute the
coarse 3D model C.
We adapted this algorithm to compute the bounding box of the 3D object which is
needed for the voxel reconstruction. Instead of projecting the image silhouettes into
the 3D space we project their 2D bounding boxes.

4.3. Our Approach 45

Figure 4.2: Illustration of the Visual Hull principle.

4.3.2 Voxel Coloring

The Voxel Coloring algorithm described in [Seitz 1997] uses a colorimetric criterion
to decide if a voxel is consistent or not. Thus voxels can be colorized even if their
projection is totally outside of the object silhouette. In order to improve the accuracy
of the Voxel Coloring algorithm we add a geometric criterion [Kuzu 2001]. Figure 3
illustrates the principle of the use of silhouettes: voxels are identified respectively as
gray, black or white depending if their projection into images falls in the boundary,
outside or inside of the silhouettes.

Figure 4.3: Illustration of the geometric consistency check.

To reduce the complexity of the algorithm we use an Octree data structure
[A. W. Fitgibbon 1998]. We recursively subdivide the volume into 8 subvolumes.
The subdivision of a volume is made only if it’s projection into images is on the

46 Chapter 4. Voxel Coloring

boundary of the silhouette. Thus the object is reconstructed in an economic way.
Figure 4 shows an illustration of a volume subdivision and it’s associated data struc-
ture.

Figure 4.4: Recursive subdivision of a volume and the associated octree.

We also use a 3D connexity check to improve the surface of the voxel reconstruction.
We proceed as follows to update the voxel classification: (1) we check the 6 neigh-
bours of each gray voxel and if no black voxel is found we identify it as white, (2)
we also check the neighbourhood of each white voxel and if at least one black voxel
is found we identify it as gray. Figure 5 illustrates the principle of this algorithm.

Figure 4.5: Illustration of the voxels connexity check.

4.3. Our Approach 47

4.3.3 Marching Cubes

The Marching cubes algorithm [Lorensen 1987] is used to obtain a polygonal model
from a scattered set of voxels. The algorithm starts by taking eight neighbor lo-
cations to construct a cube, then determine the polygons that passes through this
cube. The individual polygons are then fused into the model surface. We use
an index of precalculated array of 256 possible polygon configurations (28 = 256)
within the cube. This array of 256 cube configurations is obtained by reflections
and symmetrical rotations of the basic cases illustrated by Figure 6.

Figure 4.6: 15 basic configurations of polygons.

4.3.4 Acceleration Using Graphics Hardware

The GPU architecture is specialized for parallel computing tasks. The graphics
hardware consists of a set of processors grouped together in a common multiproces-
sors block. Figure 7 illustrates the hierarchy of the parallel architecture of actual
GPUs.
For example the device used in this work is the NVidia GeForce 8800GTS card.
This card mainly consists of 12 multiprocessors and a 512 MB device memory.
Each multiprocessor is composed itself by 16 processors, a shared memory and
an instruction unit. This card can thus make 192 calculations in parallel. Unlike
the device memory the shared memory consists of 16 Kb and is accessible only
by processors belonging to the same multiprocessor unit. However this memory is
very usefull and can be accessible much more faster than the device memory. To
execute hundreds of processes working in various programs, multi-processors use
new architecture called SIMT (Single Instruction Multiple Thread).

The Voxel Coloring process is accelerated using the parallel capabilities of modern

48 Chapter 4. Voxel Coloring

Figure 4.7: Graphics hardware parallel architecture

graphics hardware. Unlike the original Voxel Coloring algorithm [Seitz 1997] we use
an Octree data structure [Szelinski 1993]. First, each volume is subdivided into 8
subvolumes. This gives rise to 27 points (we remove redundant 3D points). The
projection is made using the well known pinhole camera model [Zissermann 2003]
that describes how a 3D pointM with coordinates (X, Y , Z) in the world coordinate
space projects into an image pointm with coordinates (u,v) in pixels using the classic
perspective transformation:

m ∼= K
[
RT | −RT t

]
M = PM (4.1)

4.4. Results 49

(a) (b) (c)

(d)

Figure 4.8: Reconstruction results for three different level of details (64 = 26, 128 =

27, 256 = 28) (a,c) Calculation using the CPU (b,d) Calculation using the GPU

Where R and t respectively represent the camera orientation and position, K the
camera matrix or matrix of intrinsic parameters and P the projection matrix. In
order to optimize the use of parallel architecture of the graphics hardware we assign
a different process for image point coordinate computation using the simple formula:

m[p+ 27n] =
3∑

k=0

P [4n+ 12i+ k] ∗M [4p+ k] (4.2)

Where m, P and M respectively represent the concatenated matrices of 2D image
points, projection matrices and 3D points. Then the result is normalized and we
obtain 27 points in homogenous coordinates (u,v,1) for each image using the formula
:

m[p+ 27n] =
m[p+ 27n]

m[p+ 54]
(4.3)

Finally, a subvolume can be recursively subdivided if the projection into images falls
in the boundary of the silhouette. Thus we get better level of details without the
need of subdividing all the voxels.

4.4 Results

Figure 8 illustrates the final results obtained with our Voxel Coloring framework
for different level of details. The level of detail corresponds to the depth of the
Octree data structure. It is the maximum number of recursive subdivisions of a
voxel. Figure 9 shows the reconstruction results of the Dinosaur and the Soldier for
the maximum level of detail. Evaluation of the results and the computing times of
our framework are presented in Table 1.

50 Chapter 4. Voxel Coloring

(a) (b)

Figure 4.9: Results using the highest level of detail (256 = 28). (a) the Dinosaur
reconstructed (b) the Soldier reconstructed

Dinosaur Soldier
64 128 256 64 128 256

Visual Hull (seconds) 0.442 3.703
Voxel Coloring (seconds) CPU 92.4 518 5449 56.47 200 1614

GPU 1.50 3.25 16.44 0.79 1.98 8.33
Marching Cubes (seconds) 2.37 12.49 97.16 3.13 13.56 90.34
Mesh (number of triangles) 18736 73672 308956 24020 93652 392468

Table 4.1: Evaluation results of our Voxel Coloring framework using the Nvidia card
8800GTS 512MB on a Dualcore Intel Pentium 4 3.2Ghz with 2GB RAM.

4.5. Discussion 51

4.5 Discussion

Comparison to previous work: Most previous works on reconstruction tech-
niques from image silhouettes using Voxel Coloring algorithm either use geometric
or colorimetric approach. In our work we combine those two criteria to get an
accurate reconstruction. We also use an Octree data structure to improve the
computing times and propose a way to accelerate the algorithm using parallel
processing capabilities of modern GPUs.

Robustness and Limitations: The robustness of our approach strongly depends
on the quality of silhouettes. Actually only the Voxel Coloring algorithm is acceler-
ated using the GPU. Thus our framework is a mixed CPU/GPU implementation.

4.6 Conclusion

This chapter introduced methods and techniques for real-time recovering of accurate
textured 3D models from image silhouettes. The main contributions of this work is
the way we compute the bounding box using a Visual Hull approach, the combined
colorimetric and geometric criteria used inside the Voxel Coloring algorithm and
the way the computations are accelerated using the parallel capabilities of modern
GPUs.

Part II

Single View Procedural Modeling

Chapter 5

Procedural Modeling

5.1 Introduction

Procedural modeling focuses on automatically creating 3D models and textures from
a set of rules by using algorithms, rather than manually editing by using generic
3D modellers. Procedural modeling is generally applied to create complex or large
scale content. The procedural content does not need to be stored, since the algo-
rithm used can produce the same result using the same random seed. Moreover,
procedural techniques are generally context-sensitive and thus allow to automati-
cally fit user input. The set of rules may either be embedded into the algorithm,
configured by parameters, or the set of rules is separate from the production engine.
L-Systems, fractals, generative modeling, and shape grammars are procedural mod-
eling techniques since they apply algorithms to produce content. In this chapter we
will present a general overview of some procedural techniques and specifically shape
grammars for architecture modeling.

5.2 Fractals

A fractal is "a rough or fragmented geometric shape that can be split into parts,
each of which is (at least approximately) a reduced-size copy of the whole", 1 a
property called self-similarity.

The term fractals was first introduced by Benoît Mandelbrot in 1975 and
was derived from the Latin word "fractus" meaning "broken" or "fractured".
They are generally used to produce complex real-world scenes such as clouds,
mountain surfaces, and snow flakes. They can be easily generated using computer
algorithms. They can be defined using a reccurrence relation, a fixed geometric
replacement rule, or differential equations. They can be classified according to
their self-similarity. The strongest type of self-similarity is the exact self-similarity
where the fractal appears the same at different scales. In the quasi self-similarity
case, fractals appears approximately identical at different scales. The statistical
self-similarity is the weakest case where the fractals preserve a statistical measure
at different scales.

1Barnsley, Michael F., and Hawley Rising. Fractals Everywhere. Boston: Academic Press
Professional, 1993. ISBN 0-12-079061-0

56 Chapter 5. Procedural Modeling

The Barnsley Fern is a fractal introduced by the mathematician Michael
Barnsley who first described it in his book Fractals Everywhere 1. This fractal was
made to resemble the Black Spleenwort, Asplenium adiantum-nigrum plant (figure
5.1).

Figure 5.1: The Barnsley Fern. Left : a real Asplenium fern. Right : an Aspelenium
fern fractal.

5.3 Generative Modeling Language (GML)

Generative Modeling Language (GML) is a simple programming language where
complex scenes can be modeled using a list of operations rather than a hierarchy
of objects. The same list of operations can be applied to different user input data
to produce different results. This makes this approach context-sensitive and very
powerfull for the modeling of complex scenes. GML provides a list of operators
for the creation and transformation of 3D models. Similarly to other procedural
approaches the model complexity is no longer directly (ie: linearly) related with
the file size. The Procedural Cathedral, a basic model of the Cologne Cathedral,
contains about 7 million triangles generated from only 126 KB of GML code (18
KB zipped)1.

Figure 5.2: The Procedural Cathedral, a basic model of the Cologne Cathedral,
contains about 7 million triangles generated from only 126 KB of GML code (18
KB zipped).

1http://en.wikipedia.org/wiki/Generative_Modelling_Language

5.4. L-systems 57

5.4 L-systems

An L-system or Lindenmayer system is a parallel rewriting system and a variant of a
formal grammar generally used to model the growth processes of plant development.
L-systems were introduced and developed in 1968 by Aristid Lindenmayer.

L-system grammars are very similar to formal grammar (Chomsky grammars).
L-systems are defined as a tuple G = (V, S, ω, P), where:

• V (the alphabet) is a set of symbols containing elements that can be replaced
(variables).

• S is a set of symbols containing elements that remain fixed (constants).

• ω (axiom) is a string of symbols from V defining the initial state of the system.

• P is a set of production rules defining the way variables can be replaced with
combinations of constants and other variables. A production rule consists of
two strings, the predecessor and the successor.

The rules of the L-system grammar are applied iteratively starting from the
initial state. As many rules as possible are applied simultaneously, per iteration;
this is the distinguishing feature between an L-system and the formal language
generated by a formal grammar.

An L-system is context-free if each production rule refers only to an individual
symbol and not to its neighbours.

If a rule depends not only on a single symbol but also on its neighbours, it is
called a context-sensitive L-system.

If there is exactly one production for each symbol, then the L-system is said to
be deterministic. If there are several, and each is chosen with a certain probability
during each iteration, then it is a stochastic L-system.

Figure 5.3 shows different trees generated using a real-time L-systems implemen-
tation 1.

Figure 5.3: Realistic trees generated using the L-Trees application. From left to
right : Rug, Willow, Birch, Garden tree, Gray wood and Pine.

1http://ltrees.codeplex.com/

58 Chapter 5. Procedural Modeling

5.5 Shape grammars

In our work we build on the CGA shape grammar [Mueller 2007] which we will
briefly review in the following. Shape grammars were first introduced by Stiny
and Gips [Stiny 1972] and Wonka et al. [Wonka 2003] extended the concept to
computer graphics . CGA shape grammar also builds on concepts introduced for
the modeling of plants using L-systems [Prusinkiewicz 1991].

5.5.1 Production system

Procedural modeling of architecture using shape grammars is based on a production
system. The process takes as input a basic shape called the axiom and a set of
production rules and sequentially generates what is called the shape tree. A shape
is mainly defined by a symbol, a geometry (mesh) and a scope. A scope is an
oriented bounding box composed of an origin P , three orthogonal axis X, Y , and
Z and three numeric attributes Sx, Sy, and Sz defining its size in meters (see figure
5.4). At each iteration of the process the system chooses an active shape A in the
shape tree and a production rule with A as shape predecessor. Then it creates a set
of new shapes according to the commands on the right hand side of the rule and
adds them as children of the shape A in the shape tree. The shape A is then marked
as inactive and another iteration starts till the shape tree contains no more active
and non-terminal shapes or there is no more applicable production rules.

Figure 5.4: A rendering of a 3d asset of a Haussmannian tile : The scope is an
oriented bounding box composed of an origin P , three orthogonal axis X, Y , and
Z and three numeric attributes Sx, Sy, and Sz defining its size in meters.

A typical Haussmannian building model generated using our procedural model-
ing tool (ie: BuildingMaker) from a set of 60 production rules and a basic Hauss-
manian shape library (3d assets and textures of some architectural elements such
windows, balconies, and chimney) is shown in figure 5.5.

5.5. Shape grammars 59

Figure 5.5: A typical Haussmannian building model generated using our procedural
modeling tool with a set of 60 rules and rendered using mental ray.

Notation: The production rules are defined as follows:

predecessor : condition→ successor : probability

where predecessor is a symbol representing a shape that will be replaced by
successor (a set of CGA commands). The condition is a logical expression that
has to evaluate to true in order to select the rule and probability is used to add
stochastic variability during the production process.

5.5.2 CGA commands

Scope commands: we use scope commands to modify shapes: T(tx, ty, tz)
translates a shape and its scope position P, R(rx,ry,rz) rotates a shape and its local
coordinate system, and S(sx, sy, sz) scales a shape and sets the size of the scope.
We also use [and] to push and pop the current shape on a stack.

Extrude: This command allows to extrude a polygon into a volume. For
example, in order to extrude a building lot into a volume wich height is 30 meters
we use the following rule:

Lot→ Extrude(30){Building}

Component split: This command allows to explode a shape into a lower
dimension shapes. For example the following command explodes a building volume
into facades (here only the side faces are selected):

Building → Comp(”sidefaces”){Facade}

Subdiv: This command allows to split a shape along a scope axis into smaller
shapes of different sizes using a plane clipping algorithm. For example, we use

60 Chapter 5. Procedural Modeling

Subdiv to split a facade into floors:

Facade→ Subdiv(”Y ”){
4 : GroundF loor|
3 : Floor1|
3 : Floor2|
...|
3 : Floor6

}

Repeat: This command is similar to Subdiv except the fact that it splits a
shape into a collection of shapes of the same size. The size is adjusted depending
on the scope size. For example, we use Repeat to split a floor into tiles of the same
approximate size (2.5 meters):

Floor1→ Repeat(”X”, 2.5){Tile1}

Insert: This command allows to insert a 3d asset and fit it to the scope of
the current shape. For example, the following command inserts a 3d model of a
window in Wavefront OBJ format into a tile.

Tile1→ I(”window1.obj”)

SetupUV: This command allows to setup the UV coordinates for the texture
of a shape:

SetupUV (channel, u, v, z − factor)

where the channel parameter is used for multitexturing purposes, (u, v) parame-
ters in meters are used to define the UV coordinates for the texture. The z−factor
parameter is related to 3D textures but it still not used in our actual implementa-
tion. The following rule shows an example of the use of UV coordinates for texture
mapping (see figure 5.6).

1 : tile→ SetupUV (0, scope.sx, scope.sy, 1)Texture(”uvtest.tif”)

2 : tile→ SetupUV (0, 4, 5, 1)Texture(”uvtest.tif”)

BakeUV: The BakeUV command when applied to a shape allows to ’bake’ (ie:
all the derived shapes in the shape tree will be assigned the same texture than the

5.5. Shape grammars 61

Figure 5.6: SetupUV operator. Left : the (u, v) parameters are set to the scope
size of the shape (here scope.sx = 20meters and scope.sy = 25meters) thus the
texture fits the shape. Right : the (u, v) parameters are set to 4 and 5 meters thus
the texture is repeated 5 times along the X and Y axis.

original shape) a texture. The UV coordinates will be automatically computed for
each created shape depending on its scope and the scope of the original shape.

OffsetUV: The OffsetUV command when applied allows to make an offset on
the UV coordinates in meters along the X and Y scope axis.

ScaleUV: The ScaleUV command when applied allows to make a scale on the
UV coordinates along the X and Y scope axis.

Color: The Color command allows to define an (R,G,B) color with a trans-
parency parameter A to a shape in the range [0, 1]. The notation of this command
is as follows:

Color(R,G,B,A)

Texture: This command allows to define the texture file of a shape. For ex-
ample, the following production rule combines the SetupUV, Texture and BakeUV
commands to ’bake’ a facade texture and thus allows the automatic recursive tex-
turing of all the derived shapes (floors, tiles, windows, ...) using the original facade
texture: (1) The SetupUV command is used here so that the texture fits the facade
shape since the UV parameters are set to the scope size along the X and Y axis
(ie: scope.sx and scope.sy) (2) The Texture command is used to define the texture
file (ie: ’facade19.jpg’) (3) The BakeUV command is used to ’bake’ the texture file
to all created child shapes (ie: for example, here the GroundF loor, Floor1, ...,
and Floor6 created shapes using the Subdiv command applied to the Facade shape
will be assigned the same texture file ’facade19.jpg’ but different UV coordinates

62 Chapter 5. Procedural Modeling

depending on their relative scope with the Facade shape).

Facade→
SetupUV (0, scope.sx, scope.sy)

Texture(”facade19.jpg”)

BakeUV (0)

Subdiv(”Y ”){
4 : GroundF loor|
...|
3 : Floor6

}

Center: This command is usefull when we want to center a shape towards its
predecessor shape. For example the following production rules show the result of
the center operator on the generation of balconies (see figure 5.7).

1 : tile→ windowS(′1.2,′ 0.3,′ 1)balcony

2 : tile→ windowS(′1.2,′ 0.3,′ 1)Center(”X”)balcony

Figure 5.7: Center operator. Left : a balcony shape generated using the first rule
(without the center operator). Right : a balcony shape generated using the second
rule (with the center operator).

Roof: The Roof command creates a roof structure (pyramid, gable, hipped,
mansard) on a base polygon. For example, the following production rule allows to
crate a mansard roof with a 75◦ angle and a height equal to 3 meters.

top→ Roof(”mansard”, 75, 3){roof}

NIL: The NIL command allows to delete a shape from the shape tree.

5.6. Interactive editing 63

5.6 Interactive editing

Most procedural modeling tools using grammars are text-based editing systems. The
user has to manually write some rules and then the production system automatically
produces the 3d model. In order to refine or modify the obtained 3d model the user
has to modify the text several times. We found that this process can become very
time consuming for the user mainly when modeling real facades using photographs.
The parameters tuning of the corresponding shape grammars rules takes the most
of the time since the user has no direct control over the created 3d model.

Figure 5.8: BuildingMaker : an interactive procedural modeling tool of architecture
using CGA shape grammars.

Thus, we developped a similar interactive editing framework following the
approach described in [Lipp 2008] and integrate it into our procedural modeling
tool illustrated in figure 5.8. Instead of using a text-based system to write rules
the user has a direct control over the derivation process using a visual user
interface. The user can create or modify rules using user interface components and
also directly tune the rule parameters in the 3d viewer. For example, the visual
implementation of the Subdiv and Repeat CGA commands (split operators) that
allows to subdivide a shape into smaller shapes through an axis direction (X, Y, or
Z) allows the user to directly tune the parameters by splitting the clipping planes

64 Chapter 5. Procedural Modeling

inside the 3d viewer and adjust them to fit the input photograph 5.8. Following
a similar reasoning we implemented a visual and interactive editing capabilities
and integrated them into our procedural modeling tool to speed up and offer a full
control over the procedural modeling process.

We also created additionnal user interface components to improve the usability
of our procedural modeling tool and to offer advanced capabilities to designers.
For example, the user can select a component such a shape in the 3d viewer or
its corresponding node in the shape tree user interface component and then its
corresponding rule will be automatically selected inside the text editor and vice
versa. Moreover, we added import/export capabilities using standard formats
for the interface with other modeling tools. The user can also import calibrated
photographs and use them to texture the 3d model using projective texture
mapping. We also added the import of the LIDAR data (3d point cloud) into the
3d viewer to allow the user to tune the depth parameters of facades.

The modeling of a real Haussmannian facade in Paris such those presented in
figure 5.9 could need between 30 to 60 min of user time using a text-based procedural
scheme and only 5 to 10 min thanks to the interactive modeling capabalities. The
perspective rectification can be done as a pre-processing stage through homographic
rectification or using projective texture mapping (see figures 5.10 and 5.11). Realistic
and semantic 3d models obtainted using our procedural modeling tool for the urban
dataset sequence in Paris 5.9 are shown in figure 5.12.

Figure 5.9: Urban dataset: the input dataset is composed of a set of calibrated pho-
tographs (pixel image resolution 1920x1080)and a coarse 3D model of the observed
Parisian buildings.

5.7 Conclusion

This chapter presented some procedural modeling techniques and more specifically
shape grammars for the modeling of architecture. We found that CGA shape gram-
mars are suitable for the modeling of Parisian facades. Using simple and concise
grammars, realistic and semantic facade models were modeled using rectified facades
images and some 3d assets and textures representing some architectural elements
(modilions, ornaments, balconies, ...). The interactive editing capabilities improves
the usability of the tool but we still need to manually edit one shape grammar per

5.7. Conclusion 65

Figure 5.10: The camera selected by the user is projected onto the 3D model.

Figure 5.11: Perspective rectification is obtained using an orthographic rendering
of a 3D facade with projective texture mapping. From left to right the real-world
dimensions are: 17.6x24.4m, 13.5x22.2m, 12.6x20.9m and 15.1x20.6m and and the
pixel image resolutions are: 333x465, 487x799, 392x642 and 372x519.

facade. Thus we realize that we need to develop automatic facade elements detectors
in order to obtain a large scale reconstruction of Paris city. The idea is basically to
write a stochastic shape grammar that can describe the variety inside one particular
architectural style and to use it as a model combined with bottom-up detectors for
the modeling of several facades of the style. This approach is described in the next
chapter.

66 Chapter 5. Procedural Modeling

Figure 5.12: Semantic and realistic 3D models of Facades generated using our
procedural modeling tool.

Chapter 6

Grammar-driven Reconstruction

This chapter presents an approach to reconstruct 3d facade models from a single
image. The novelty of our approach is the use of stochastic shape grammars as
architectural prior instead of deterministic shape grammars. We combine bottom-
up detection using image-based classifiers with top-down proposals generated by the
stochastic shape grammar using Metropolis-Hastings as optimization algorithm. We
demonstrate the robustness of our approach on a variety of complex facade images
with challenging architectural elements and occlusions due to balconies.

6.1 Introduction

This paper addresses the problem of 3d facade reconstruction from a single image.
The output of our method is a 3d model including textures and a semantic segmen-
tation. We believe that there is widespread interest in urban reconstruction and our
models could be used in applications like internet based mapping, urban planning,
architecture, computer games, movies, tourism, and training simulations.

The problem of 3d facade reconstruction from a single image is very difficult.
There are various forms of image noise, occlusions due to objects such as vege-
tation and balconies, and no depth information is available. Therefore, previous
work always use a combination of image analysis, architectural knowledge, and
user interaction. Approaches vary from image-based reconstruction approaches
[Mueller 2007, Xiao 2008] where architectural knowledge is encoded in parameter
settings and implicit restrictions on the alignment of facade elements, to parametric
architectural models [Dick 2003], and more recently deterministic (shape) gram-
mars [Alegre 2004, Ripperda 2008, Hohmann 2009, Koutsourakis 2009]. Determin-
istic shape grammars lead to very strong results, but a lot of time is spend in
modeling because one shape grammar has to be modeled for each facade image.

The main motivation of our work is to extend the idea of grammar-based recon-
struction to stochastic shape grammars. A stochastic shape grammar can encode
the variation within an architectural style (a larger class of facades) and it becomes
possible to use one shape grammar to reconstruct many facades. Our proposed
solution is a framework that uses CGA (Computer Generated Architecture) shape
grammars [Mueller 2006] (including the use of parameters, conditions, and prob-
abilities) to encode knowledge about an architectural style. We combine a set of
bottom-up detectors for locating architectural elements on a facade with a top-down
optimization stage that uses the Metropolis-Hastings algorithm to guide the sam-
pling of facade structures from the grammar. While the use of stochastic shape

68 Chapter 6. Grammar-driven Reconstruction

grammars is the main novelty of this paper, we also propose new algorithms for
window detection, balcony detection, and inpainting. These algorithms are impor-
tant, because we found that previous work was not sufficiently robust for difficult
architectural styles, such as Louis XIII-XVI (1595 − 1790), Empire (1800 − 1815),
Restauration (1815 − 1830) and Haussmanian (1850 − 1870) style (figure 5.5) in
Paris. These styles contain balconies resulting in self occlusions and several complex
ornaments such as consoles and modillions. The main contributions of this paper
are:

• We are the first to use a full parametric, conditional, and stochastic shape
grammar as prior for facade reconstruction instead of parametric models or
deterministic grammars.

• We combine bottom-up detection with top-down proposals to optimize the
facade structure using the Metropolis-Hastings algorithm making full use of
the prior knowledge encoded inside the stochastic grammar.

• We introduce a new algorithm for window detection and a new algorithm
for balcony detection and inpainting. These algorithms are more efficient
when processing facade images with complex ornaments and occlusions due to
balconies than previous work.

6.2 Related work

Different authors adressed the problem of semantic 3d reconstruction
of buildings from images. The proposed approaches fall into two cat-
egories: image-based [Lee 2004, Mueller 2007, Xiao 2008] or model-based
[Dick 2003, Alegre 2004, Ripperda 2008, Hohmann 2009, Koutsourakis 2009].

The image-based techniques focus on using image processing and recognition
methods to produce 3d models from images. The architectural style prior is
generally not explicitly introduced within the reconstrucion process. Therefore, it
is likely that these methods miss some architectural elements in the presence of
occlusions or difficult noise.

The model-based techniques try to explicitly incorporate prior knowledge to
optimize the reconstruction. The prior can contribute to add constraints on the
reconstruction and thus makes the results consistent. This helps to fill in miss-
ing model parts making the methods robust to partial occlusions and to drive
the semantic building understanding which can considerably reduce the search
space inside images and improve the accuracy of pure image-based fitting tech-
niques. The way the prior knowledge is encoded within model-based approaches
ranges from parametric models [Dick 2003] to deterministic shape grammars
[Alegre 2004, Ripperda 2008, Hohmann 2009, Koutsourakis 2009]. However in the

6.3. System overview 69

case of existing grammar-based models the authors optimize the parameters of a
given derivation tree (a set of deterministic rules) and not the tree itself. There-
fore, these methods are actually very similar to parametric models. The use of a
deterministic grammar as a model cannot capture the variation within an architec-
tural style. In our work we propose to extend the previous shape grammar based
approaches by allowing stochastic shape grammars and including more bottom-up
image classifiers.

6.3 System overview

Our system takes as input a rectified facade image and produces a semantic and
photo-realistic 3d model (figure 6.1). The a priori knowledge on the architectural
style is encoded inside a stochastic grammar. The proposed pipeline consists of
two stages. Here we give a short description of the individual stages, with details
provided in the later sections:

Bottom-up detection: The input is a rectified facade image. We detect win-
dows using a combined contour-based and texture-based profile projection method
(see section 4.1). We also automatically detect balconies using both a color-based
pixel clustering and Gabor filtering (see section 4.2). The balconies are then re-
moved using a specific inpainting technique based on pixel neighboorhood. The
cornices are detected using elongated segments in a fine granularity segmentation
(see section 4.3). Finally, we use classifiers as generic detectors to locate additional
architectural elements such as modillions, and doors (see section 4.4).

Top-down optimization: The input to this stage is a collection of bottom-up
detected elements and a stochastic grammar describing the corresponding architec-
tural style (see section 5). The problem is formulated using a Bayesian approach (see
section 6.1) where the facade prior is computed from the stochastic grammar (see
section 6.2) and the likelihood is defined as a top-down/bottom-up evidence score
(see section 6.3). The optimization is done using the Metropolis-Hastings algorithm
where the random facade structures are sampled from the stochastic grammar (see
section 6.4).

6.4 Bottom-up detection

In this section we will introduce classifiers for windows, balconies, cornices, and gen-
eral elements. The goal of this section is to detect and label as many facade elements
as possible. Our framework does not require perfect element detection. The opti-
mization algorithm will combine the output of the classifiers with prior architectural
knowledge to improve the results. The first technical challenge of this work was to
analyze several existing algorithms and see how well they work in combination. Our
main results were that 1) existing window detection algorithms cannot handle the
difficult inputs we consider (see Fig. 3). 2) occlusion due to balconies has not been
sufficiently explored in previous work, but explicit balcony detection and removal

70 Chapter 6. Grammar-driven Reconstruction

Figure 6.1: System overview. Left : original rectified facade image. Right : recon-
structed 3d model. Our system allows the creation of semantic and photo-realistic 3d
models of complex facades including windows, balconies, cornices, and modillions.

is very important. 3) detection of other elements such as cornices, modillions, and
doors is very difficult, but a well engineered heuristic is an important complement to
window and balcony detection. We developped specific detectors for windows, bal-
conies, and cornices and we use generic Viola-Jones [Viola 2002] trained classifiers
to detect other elements such modillions and doors. Windows are detected using
a combined contour-based and texture-based profile projection method (see section
4.1). Balconies are detected using both a color-based pixel clustering and Gabor
filtering (see section 4.2). The balconies are then removed using an inpainting tech-
nique based on pixel neighboorhoods. The cornices are detected using elongated
segments in a fine granularity segmentation (see section 4.3). We also use Viola-
Jones [Viola 2002] classifiers as generic detectors to locate additional architectural
elements such as modillions and doors (see section 4.4).

6.4.1 Window detection

Window detection is probably the most important bottom-up detector for a facade
reconstruction pipeline. The detected window grid has a strong impact on the
perception of the facade and it gives additional information for balcony detection and
for obtaining the ground floor limit. Due to its importance it is vital to have a robust
and precise algorithm. This is difficult because the intra-class variety is significant:
windows can be closed or opened, can be protected by shutters, can reflect the sky or
another building and usually have various curtains behind. Some attempts have been
made to create a window detector. Dick et al [Dick 2003] use a correlation grid (with
prior examples), Werner and Zisserman [Werner 2002] use learned correlations over
contours to directly detect and classify windows. Mueller et al [Mueller 2007] use the
mutual information to detect similarities between regions and split the facades into

6.4. Bottom-up detection 71

tiles and then further split tiles into walls and windows. Lee and Nevatia [Lee 2004]
use a contour profile projection method based on the vertical/horizontal alignment of
windows. The last method performs well with facades composed of a simple window
grid. However, when dealing with complex facades this method fails (Figure 6.2)
due to the noise introduced by architectural elements such as balconies, cornices,
modillions and ornaments. Thus we introduce a texture profile projection method
similar to Lee and Nevatia [Lee 2004] technique which uses texture descriptors
rather than contours. The combination of both methods provides a robust window
detection technique in presence of occlusions and noise.

Figure 6.2: The horizontal/vertical profile projection method evaluation. Left: a
facade with a simple window grid. Right: a Haussmannian facade with perturbations
due to balconies, cornices, ornaments and modillions.

To avoid the problem of false contour lines and noise edges we introduce a new
descriptor for detecting major borderlines between architectural elements based on
texture (figure 6.3). The materials that appear on a facade (stone, iron, wood,
glass, ...) have strong stochastic texture components (randomness). According to
previous work [Liu 1996] the best model for this textural components is an AR
(Auto-Regressive) model. AR [Mao 1992] is a model where a pixel c of intensity
I(c) is a linear combination of its neighbors r ∈ N . The descriptors D(r) are the
parameters of this combination:

I (c) = µ+
∑
r∈N

D(r)I(r + c) + ε(c) (6.1)

Where ε is the error of this model at c and µ the intensities mean value of its
neighbors r ∈ N . The parameter estimation is done over a window so that the
model is overdetermined. For our purpose we want to detect the regions where the
texture changes. Intuitively and empirically the region where two textures meet
has a higher model error ε than the model error of the two textures. We create
probability blobs that correspond to window locations by projecting vertically and
horizontally the texture model error. Let ε be the texture model error as defined

72 Chapter 6. Grammar-driven Reconstruction

Figure 6.3: Window detection. From left to right: original image, texture blobs,
contour blobs, fine granularity segmentation, final averaged blobs, detected windows.
Texture derived blobs are more reliable than contour based blobs.

in equation 6.1, and KxL the image resolution. The texture-based blobs are then
obtained using the formula:

B(i, j) =

(
1

K

K∑
k=0

ε(i, k)

)(
1

L

L∑
l=0

ε(l, j)

)
(6.2)

We compute a pixel-wise multiplication between the texture-based blobs (figure
6.3 (b)) and the contour-based blobs (figure 6.3 (c)) and average the results over a
fine granularity segmentation (using the algorithm described in [Felzenszwalb 2004])
to create sharp edges between window blobs and the facade wall. The averaged
combined blobs (noted B̃) are then reprojected to obtain the final precise window
blobs Bf (figure 6.3 (e)) using a similar formula:

Bf (i, j) =

(
1

K

K∑
k=0

B̃(i, k)

)(
1

L

L∑
l=0

B̃(l, j)

)
(6.3)

The blobs are then thresholded at different levels and a window energy function
E(t) is computed over the set of detected windows W (t) at each threshold level t:

E(t) =
∑

w1,w2∈W (t)

Al(w1, w2) +
∑

w∈W (t)

Pr(w) (6.4)

Here Al() is a function that decreases exponentially with the misalignment of
two windows in the same row or column and is zero otherwise. Pr() is a function
that encodes the architectural prior for windows in the current architectural
style. It can be obtained by sampling windows from the grammar. It decreases
exponentially when the size of the window is different from the average grammar
sampled window size. The optimization is done through a gradient descent to
minimize the variations in position and size between the set of windows according
to the vertical/horizontal alignement assumption. The final set of detected windows
is the one that maximizes the energy function E(t).

6.4. Bottom-up detection 73

Method Recall Overlap Notes
Dick et
al[Dick 2003]

< 20% > 80% correlation; works
well if test data
similar to prior
data

Viola-Jones
trained
detection[Ali 2007]

53% >50% trained detector,
no window-grid
assumptions

Lee and
Nevatia[Lee 2004]

60% >80% edge blobs, works
well in the ab-
sence of noise,
evaluated on a
dataset of hauss-
manian facades,
irregular window
grid-assumptions

Texture and
Edge based
blobs(our
method)

85% > 80% Assumes an
irregular-grid
of windows,
handles architec-
tural noise (e.g.
Haussmannian
architecture)

Table 6.1: Comparative evaluation of window detection algorithms

6.4.1.1 Comparative evaluation of the algorithm

While testing Dick’s window detection method[Dick 2003] we realized that using
correlation techniques with prior examples worked well only if the prior examples
are very similar to the test data (recall bellow 20% for windows overlapping at
more than 80%). Searching for correlations at different scales also generated perfor-
mance problems. We have also experimented with mutual information techniques
[Mueller 2007] but the hypothesis of the mutual information approach was invali-
dated by the fact that windows in our test data sets are very different on the same
facade (e.g. shutters, reflections, etc.) (recall was not computed). Experiments
done by [Ali 2007] and our own efforts to train a Viola-Jones detector failed because
of the intra-class variety (reported recall was 53% for windows that overlapped by
more than 50% with ground truth, thus finding the window grid is not possible
for such a low recall). Lee and Nevatia’s method of blob-construction [Lee 2004]
showed the most promising results but has two issues: the user must manually se-
lect a threshold for blob extraction and the method has a low robustness due to
noise introduced by complex facade elements (see projected contour histograms for
the right (noisy) facade in figure 6.2). We realized that false contour lines are the

74 Chapter 6. Grammar-driven Reconstruction

major problem on complex facades. We have then replaced the classic contour lines
(e.g. Canny) with texture-based descriptors in order to detect changes in materials.
We also introduced the window grid energy function to thresold the blobs without
the need to manually select a threshold. In the following we compare our method to
various other algorithms for window detection. The general algorithm behavior is
the following: it either succeeds (recall > 85% for 80% overlap) or it fails completely
(recall < 20% for 50% overlap). Such a failure case is easily detected by inspecting
the maximum value of the window energy function in equation 6.4 for abnormally
low values. Known failure cases are: window missing in the grid and false-positives
introduced, wrong size of windows due to slight misalignment of one window in
a column, and strong occlusions by trees. The comparative evaluation of window
detection techniques are listed in table 6.1.

6.4.2 Balcony detection and removal

Balconies have a strong impact on the visual realism of a 3d facade model. The
reason why we developed a specific balcony detector is because balcony detection
does not work with general classifiers. We started out using a trained Viola-Jones
[Viola 2002] detector and we found the following obstacles: trained Viola-Jones like
detectors are inappropriate to detect balconies because of their variable aspect ratio,
the strong texture variability, and the fact that the balconies are occluding elements
with transparent parts on different facade materials such as walls and windows.
That is why we propose a specialized detector for iron-made railing balconies. The
color of balconies is a system parameter (eg: dark-colored, red-colored) used for
a pixel-based clustering of regions that are more likely to be a balcony on the
facade. Moreover, we developed an inpainting technique that generates a facade
texture without balconies. This removes texture artifacts that happen if we directly
texture map the facade 3d model using the original image and allows the creation
of photo-realistic 3d models in the presence of occlusions. Synthetic balconies are
then automatically added by the grammar using generic textures.

Based on the initial description of the balconies we search for regions of the
image that are more likely to be a balcony (eg: dark-colored pixels) and have a high
energy texture [Petkov 1997]. We cluster the pixels into two groups one that is
close to the user given color and one that is far. The centroid estimation can be
easily done using an EMGM (Expectation Maximization Gaussian Mixture) with 2
gaussians (one for the wall, the other for the balconies). We can then assign to each
pixel a probability that it belongs to the balconies cluster (equation 6.5). Assuming
the wall cluster is called W and the balconies cluster is B (parameters for the two
Gaussian clusters have been estimated by the EMGM procedure) we can compute
the posterior probability (equation 6.5) that a pixel of color intensity irgb belongs
to the balconies cluster B (figure 6.4 (b)). Low probability values (e.g. less than
2%) should be thresholded to 0.

6.4. Bottom-up detection 75

Figure 6.4: Balcony detection and removal. From left to right: original image,
color-based pixel clustering, Gabor filtering, detected balconies, inpainted image.

P (B|i) =
P (i|B)P (B)

P (i|B)P (B) + P (i|W)P (W)
(6.5)

For high energy texture areas we use a combination of 4 standard Gabor filters
(figure 6.4 (c)) (G0, G45, G90, G135) with the following orientations [0◦, 45◦, 90◦,
135◦] [Grigorescu 2002]. We have chosen four directions instead of two in order
to handle complex (artistic) balconies. Since we search for texture energy in all
directions we multiply the resulting responses and then scale the result to the interval
[0..1]. Extremely low values are thresholded (e.g. less than 0.02).

ETex (x, y) = G0G45G90G135 (x, y) (6.6)

We then combine (multiply) the balconies cluster probability (equation 6.5) of
each pixel with its texture energy (equation 6.6) and scale back the result to [0..1]

to obtain the soft mask S(x, y).

S(x, y) = P (B|ix,y)ETex (x, y) (6.7)

To obtain each balcony size and position (figure 6.4 (d))we morphologically close
the refined soft mask, threshold at a very low value (e.g. 0.02) and use a flood fill
algorithm to extract connected components and perform size/position sanity checks
on these components. The kernel for all morphological operations is a square whose
size is chosen based on the image resolution (e.g. ksize = 21 pixels for resolutions
close to 100 pixels/meter). We compared our balcony detection algorithm with the
method described in [Hernandez 2009] and an example is shown in figure 6.5.

Both methods have the same limitation when dealing with close balconies
(spacing<20cm). However, our method can manage balconies with different
heights since we process separatly each balcony while the method described in
[Hernandez 2009] can not since they use a horizontal profile projection method (see
the small balconies of the 3rd floor in figure 6.5).

The facade inpainting is done for all non zero values in the refined soft mask.
Each pixel color I(x, y) is replaced by a weighted combination of its original color
I(x, y), the color in the morphologically opened image M(x, y) and the color of
a pixel N lines above I(x, y − N) (e.g. N = 5 pixels for resolutions close to 100

76 Chapter 6. Grammar-driven Reconstruction

Figure 6.5: Balcony detection comparison. Left : a combined morphological and
horizontal profile projection method. Right : our balcony detection method.

pixels/meter). The last component is introduced so that vertical lines are continued
in the inpainting image, and this also propagates horizontal texture with a period
of less than N.

T (x, y) = α ·M(x, y) + (1− α)I(x, y −N) (6.8)

C(x, y) = S(x, y) · T (x, y) + (1− S(x, y)) · I(x, y) (6.9)

Despite its empiric construction the balconies inpainting algorithm has proven
to be robust in practice and it gives good results on several facades. We have
comapared it with a recently published inpainting technique [Liu 2009] and it gives
better results on different facades (Figure 6.6). Alternative methods using Dynamic
Programming and Belief Propagation such [Sun 2005] can be investigated to im-
prove or extend the concept to other occluding architectural elements or vegetation
to automatically produce a high-quality facade texture without artifcats.

6.4.3 Cornice detection

To detect cornices we propose a simple heuristic that detects and merges elongated
segments in a fine granularity segmentation. Horizontal elongated segments (aspect
ratio inferior to 20) are grouped, merged and filtered using the detected window
positions. The presence of a cornice is signaled by a group of elongated segments
that spans more than 50% of the facade’s width. The results of Gao and Bischof
[Gao 2009] could be a basis for further developements to improve the cornice de-
tector. Based on some small scale experiments we have performed, for this task
trained Viola-Jones like detectors are inappropriate because of the aspect ratio of
cornices. Similarly pixel-wise trained detectors do not work well because the cornice
has almost the same color/texture as the facade wall. Cornice detection results are
shown in figure 6.12. Problems are mostly due to low precision(more then 50% false
positives). The unreliable results from the cornice detector are compensated by a

6.4. Bottom-up detection 77

Figure 6.6: Facade inpainting results. Left : original image. Middle : using a more
generic image inpaintig technique [Liu 2009]. Notice the horizontal artifacts after
inpainting the balconies. Right : using our specialized inpainting method. The
inpainted image is used to texture the procedural facade 3d model derived from the
stochastic grammar. We found that if we map the original image directly into the 3d
model artifcats appear because the balcony texture is mapped into the windows and
facade wall. Since our window detection algorithm is robust to noise and occlusions
we get similar results when using the original image or the inpainted image as input
for window detection.

78 Chapter 6. Grammar-driven Reconstruction

strict definition of the relative position and size in the grammar file. This technique
can be generalized, meaning that if you have a detector that yields unreliable re-
sults you should restrict as much as possible the parameter space proposed by the
grammar and contextually link the existance of the element with another reliable el-
ement. Cornices are linked(probabilistically derived from the same rule) as window
rows and modilions/consoles are linked with windows.

6.4.4 A Generic Element Detector

In order to detect other architectural elements such as doors, modillions and orna-
ments (Figure 6.12) we use a trained Viola-Jones [Viola 2002] detector which uses
Haar descriptors as image features. The modillions detector is trained on a database
of 226 positive examples and 344 negatives. For door detection we use 56 positive
images and 711 negatives. The size of the positive and negative database for each
detector are then increased by an automatic procedure that adds random noise. The
generic element detector has shown very good results for detecting architectural el-
ements that show little intra-class variations. For modillion detection the recall was
superior to 80% and the precision was superior to 80% for all datasets. However
results were significantly worse for elements that have a high degree of variability:
windows - 53% recall [Ali 2007], and doors <30% recall. In our pipeline it used for
detecting modilions and doors. While we think that the detection of modilions is
sufficient, the classifier for doors should be refined in future work. However, the
door detection algorithm is not the most critical part of our pipeline and most of
the time there is only one door in a facade.

6.5 The stochastic grammar

In this section we describe how we modeled stochastic grammars for our test data
set of facade images from Paris. We developed three different grammars for three
different styles: Haussmannian (1850− 1870), Louis XIII (1595− 1660), and Louis
XIV (1660−1700) and we will describe the Haussmannian style in more detail. The
Haussmannian style is probably one of the most interresting architectural styles
in Paris since it is the most frequent and has challenging architectural elements
such as balconies, cornices, modillions, and ornaments. George Eugene Haussmann,
was the prefect of Seine in Paris from June 23rd, 1853 till January 5th, 1870. He
supervised the architectural transformations of Paris under the Second Empire by
working on a vast plan of renovation. During this period strict architectural laws
were in effect to regulate the construction of new buildings. Haussmanian facades
follow these rules and a stochastic shape grammar was written with the help of an
architect to setup the variations on the style and the corresponding probabilities.
A typical Haussmannian facade sampled from a stochastic grammar is shown in
figure 6.8 together with a corresponding real facade in Paris that follows the same
semantic structure. Following the same approach we also developed a grammar

6.5. The stochastic grammar 79

(a) θ0=(f1:2,f2:1,f3:2,f4:2,f5:1) (b) θ1=(f1:2,f2:2,f3:2,f4:2,f5:3) (c) θ2=(f1:1,f2:2,f3:2,f4:2,f5:3)

(d) θ3=(f1:2,f2:2,f3:2,f4:2,f5:1) (e) θ4=(f1:2,f2:1,f3:2,f4:1,f5:2) (f) θ5=(f1:1,f2:1,f3:2,f4:2,f5:2)

(g) θ6=(f1:2,f2:1,f3:2,f4:2,f5:3) (h) θ7=(f1:1,f2:1,f3:2,f4:1,f5:2) (i) θ8=(f1:2,f2:2,f3:2,f4:2,f5:2)

Figure 6.7: Visualization of the procedural space: some facade variations sampled
from the stochastic grammar of the Haussmannian architectural style (windows in
blue, balconies in green, cornices in yellow, modillions and doors in red). Each
facade structure θi is the result of the derivation of different variations of the pro-
duction rules. The facade prior probability is computed using the product of the
corresponding rule variations probabilities. In the examples the position of windows
and the door position are fixed.

80 Chapter 6. Grammar-driven Reconstruction

for the following styles: Louis XIII-XVI (1595− 1790), Empire (1800− 1815), and
Restauration (1815− 1830).

Figure 6.8: A typical Haussmannian facade structure sampled from the stochastic
shape grammar. The 2nd and the last floor has generaly a long balcony with a
support base and the other floors has small balconies with a support base while
the first floor can be composed of flat iron balconies without a support base. Each
floor can also be composed of modillions and ornaments. This style is similar to
other architectural styles in France and several European cities. This particular
Haussmannian facade structure is one of the most frequent thus it has a high prior
probability according to equation 6.13.

Some other semantic facade structure variations sampled from the Haussman-
nian stochastic grammar (see table 6.2) are illustrated in figure 6.7. We envision
that users of our system can also use a similar approach to generate new gram-
mars for a wide variety of architectural styles. While in our system implementation
scripting experience is necessary to define new styles, recent work showed how to
define grammars with a visual user interface [Lipp 2008]. Incorporating a similar
approach could allow a larger number of users to model stochastic grammars.

6.6 Top-Down optimization

The motivation behind our approach is to use a Bayesian inference framework where
the architectural knowledge is encoded inside the stochastic shape grammar and used
as prior to improve the facade reconstruction process. The detected architectural
elements are the evidence in the image and our aim is to maximize the posterior
probability. Since the procedural space derived from a stochastic grammar is in
general very large, the inference problem cannot be solved analytically in an efficient
way. Thus, we use Markov chain Monte Carlo (MCMC) methods where the facade
structures are randomly sampled from the stochastic grammar. The problem is
formulated using a Bayesian approach (see section 6.1) where the facade prior is
computed from the stochastic grammar using the rule variations probabilities (see

6.6. Top-Down optimization 81

rule variations
ground floor fixed : contain a door
first floor f1:1 windows

f1:2 windows, flat balconies
second floor f2:1 windows, long balcony and a modillions row

f2:2 windows, long balcony and a 2 modillions/window
third floor f3:1 windows, small balconies and 2 modillions/window

f3:2 windows with a long cornice
fourth floor f4:1 windows, small balconies and 2 modillions/window

f4:2 windows and a long cornice
fifth floor f5:1 windows, long balcony and a modillions row

f5:2 windows, long balcony and a 2 modillions/window
f5:3 windows, long balcony and a long cornice

last floor fixed : contain roof windows

Table 6.2: The Haussmanian stochastic grammar: variations on the different floor
rules for a facade with 6 floors.

section 6.2) and the likelihood is defined as a top-down/bottom-up scoring function
that measures the evidence of the proposed top-down facade structure towards the
bottom-up detected elements in the image (see section 6.3). The optimization is
done using the Metropolis-Hastings algorithm where the random facade structures
are sampled from the stochastic grammar (see section 6.4).

6.6.1 Problem formulation

In our shape grammar a facade structure θ is represented by a tree containing non-
terminal (eg: floor, tile, etc.) and terminal shapes (eg: window, balcony, cornice,
etc.). Each shape has a symbol, a scope, a mesh, and a texture associated with
it. Finding the optimal structure θ of a facade given its architectural style M
(encoded by a stochastic grammar) and a set of bottom-up detected elements D can
be formulated as a maximum a posteriori problem [Dick 2003]. The facade energy
function is then defined as follows:

P (θ|MD) =
P (D|θM)P (θ|M)

P (D|M)
(6.10)

=
P (D|θM)P (θ|M)P (M)

P (M |D)P (D)
(6.11)

∝ P (D|θM)P (θ|M) (6.12)

Each factor in equations 6.10, 6.11 and 6.12 has an intuitive interpretation:

P (θ|MD) is the probability of the facade described by θ knowing the architectural
style M and the set of bottom-up detected elements D. The best structure
will maximize this probability.

82 Chapter 6. Grammar-driven Reconstruction

P (D|θM) is the likelihood of the detected data D given the structure described by
θ and the architectural style M . It is the evidence in the image of the given
facade θ.

P (θ|M) is the prior probability of the facade structure θ given the architectural
style M .

P (M) is the probability of the given architectural style. As the architectural style
is provided as user input this probability is always 1.

P (M|D) is the probability of the architectural style knowing the detected data.
This probability is always 1 for the same reason.

P (D) is the probability of the detected data. Our specialized window and balcony
detectors return a probability, Viola-Jones derived detectors do not return such
a probability. Under the assumption of independent detection the cumulative
probability P (D) is equal to: P (D) =

∏|D|
i=0 P

(
Di
)
. However, since this

probability is constant per facade it is not used to compute the facade energy.

The main conclusion of equation 6.12 is that the best reconstructed facade should
be the one that maximizes the product of its prior probability given its style and
the evidence in the image (the likelihood of the image D given a facade structure θ
and its style M).

6.6.2 The facade prior

Since the facade structures are directly sampled from the stochastic grammar we
can compute P (θ|M) using the rule probabilities (see the rule notation in section
2.1). Assuming that the root of the shape tree (the axiom) has the probability 1 we
assign to each shape θi created by a production rule its corresponding probability
P (θi). The probability of the facade structure θ given its architectural style M is
then defined as follows:

P (θ|M) =
∏
θi∈θ

P (θi) (6.13)

6.6.3 The facade likelihood

In this subsection we propose a practical way to compute P (D|θM), the likelihood
of the image given a facade structure θ and the architectural style M . We define
a top-down/bottom-up score (see figure 6.9) to measure the evidence of detected
elements D towards a proposed structure θ.

Let θi ∈ θ be a top-down shape proposed by the grammar and Dj ∈ D a bottom-
up detected architectural element in the input image. We define the evidence of θi

in the input image as follows:

E(θi) = max
Dj∈D

δijEP (θi, Dj)ES(θi, Dj)ET (θi, Dj) (6.14)

6.6. Top-Down optimization 83

Figure 6.9: Top-down/bottom-up evidence score. From left to right : bottom-
up detected elements, top-down candidate structure θ1, top-down candidate θ2.
Here likelihood(θ1) > likelihood(θ2) since the first structure contains a window,
a balcony, and two modillions where the second structure contains only a window.
The textures are extracted from the same tile in a facade image: the left figure
is extracted from the original image where the middle and the right figures are
extracted from the inpainted facade image.

where δij = 1 if the elements θi and Dj are of the same type and 0 otherwise.
EP , ES and ET are respectively the position, size and texture evidence scores. All
these functions must take into account the presence of noise in the image and we
define them as follows:

EP
(
θi, Dj

)
= exp−

‖Pos
(
θi
)
− Pos

(
Di
)
‖2

2σ2Pos
(6.15)

ES
(
θi, Dj

)
= exp−

‖Size
(
θi
)
− Size

(
Di
)
‖2

2σ2Size
(6.16)

Here σPos, σSize are acceptable noise parameters in position and size (deter-
mined empirically at 0.3 meter and 0.1 meter). Pos(), Size() are functions that
give metric position and size of an element.

The texture evidence is based on the Mahalanobis distance dM between the
joint MRSAR [Mao 1992, Liu 1996] texture features (15) and 4 Gabor filter
[Randen 1999] responses that were precomputed in the bottom-up detections stage
(see section 6.4). The 19x19 covariance matrix is computed over joint features of
the entire image. Let Vi, Vj be the average joint feature vectors for the elements
θi, Dj . The Mahalanobis distance is:

dM
(
θi, Dj

)
=

√
(Vi − Vj)T C−1 (Vi − Vj) (6.17)

Similarly we define:

84 Chapter 6. Grammar-driven Reconstruction

ET
(
θi, Dj

)
= exp−

d2M
(
θi, Di

)
2σ2tex

(6.18)

We combine the evidence scores for individual elements to provide an approxi-
mation for P (D|θM):

P (D|θM) ∝
∑
θi∈θ

E
(
θi
)

(6.19)

Using equations 6.13 and 6.19 and according to equation 6.12 the facade energy
function is computed as follows:

P (θ|MD) ∝
∏
θi∈θ

P (θi) ·
∑
θi∈θ

E(θi) (6.20)

6.6.4 The optimization algorithm

As optimization algorithm we experimented with several alternatives: simulated
annealing, greedy optimization, and Metropolis Hastings. Since we cannot generate
and evaluate a huge number of samples the theoretical properties in the limit are not
that interesting in the practical application. We therefore selected an algorithm that
conducts a global search within the search space and that is easy to implement and
replicate. The optimization of the posterior distribution given in equation 6.20 is
done using a Markov Chain Monte Carlo (MCMC) method. MCMC approximates
a probability distribution using a set of discrete samples within a Markov Chain
mechanism (figure 6.10).

Figure 6.10: MCMC Simulation: a representation of the Markov chain, each state
represents a random sampled facade structure. New elements in the chain are com-
puted based on the direct predecessor.

The Metropolis-Hastings (MH) algorithm is the most popular variant of MCMC
methods. The MH algorithm explores the state space (the space of possible facade
structures within a given architectural style sampled from the stochastic grammar)
in a random walk fashion. The MH algorithm starts from an initial facade structure

6.6. Top-Down optimization 85

θ0. Then a new structure θ is generated by sampling from the proposal distribution,
g(θ|θn−1). A sample from the proposal distribution g(θ|θn−1) is generated as follows:
the shape tree of the previous facade structure θn−1 is cut at a random non-terminal
node and the non-terminal node is derived again by the grammar. The sample is
then either accepted and added to the Markov Chain as the nth sample, or rejected
and the previous sample is added to the chain as the nth sample. The decision to
accept or reject the proposed facade structure depends on the acceptance ratio, α.
The acceptance ratio measure the improvement in the quality of the sample θ over
the previous sample θn−1. We automatically accept samples showing improvement,
and accept the rest with the probability α (Algorithm 7).

Algorithm 7 Top-down optimization algorithm
Sample a random initial facade structure θ0.
θ∗ ← θ0. max← energy(θ∗).
for n = 1 to N do
Sample a facade structure θ from the grammar
using the proposal distribution g(θ|θn−1)
Evaluate the transition probability:
α← min

[
energy(θ)

energy(θn−1)
, 1
]

Sample a probability t from U(0, 1).
if t < α then θn ← θ else θn ← θn−1 end if.
if energy(θn) > max then
max← energy(θn). θ∗ ← θn.

end if
end for
Return the most visited facade structure θ
(optionally return the highest energy structure θ∗).

The Metropolis-Hastings algorithm explores areas of high energy structures by
accepting samples which increase the overall energy. The samples resulting in lower
energy can still be added to the Markov chain with probability α in order to keep
the MH algorithm from becoming stuck in local maxima. The Markov chain is
constructed from drawing N = Nburn +Nmix samples where Nburn is the number of
burn-in samples andNmix is the number of samples required to reach the mixing time
after burn-in until the equilibrium distribution is reached. The facade structures
sampled during the burn-in period are removed from the chain in order to make the
Metropolis-Hastings algorithm less sensitive to the impact of a badly located intial
structure θ0. An alternative simpler computation can just return the structure with
the highest energy θ∗.

86 Chapter 6. Grammar-driven Reconstruction

6.7 Discussion

Comparison to previous works: The main problem of facade optimization is
that the facades in a given style have a complex distribution from which it is
impossible to draw samples. The technique used by most authors [Dick 2003,
Alegre 2004, Ripperda 2008] in this case is to simulate the drawing of samples us-
ing a Markov Chain. This technique is known by the community as Monte Carlo
Markov Chain (MCMC) method [Green 1995]. The Metropolis-Hastings algorithm
[Hastings 1970, Metropolis 1949] is the most popular brand of MCMC methods.
Dick [Dick 2003] was the first to use the MCMC algorithm using parametric mod-
els and a bayesian formulation for modeling architecture from images. However,
in his approach we have to manually define the jump categories and their respec-
tive probabilities within the Markov chain. Other authors [Koutsourakis 2009] use
a Markov Random Field (MRF) formulation and parametric grammars for build-
ing reconstruction. Our proposed approach using a stochastic shape grammar as
architectural style prior instead of parametric models or specific grammars (a set
of deterministic rules) together with an efficient Metropolis-Hastings optimization
algorithm within a bayesian formulation completes and improves the state of the art
towards a full model-based and photo-realistic 3d facade reconstruction. We believe
that one important conclusion from our work is that top-down optimization has to
be complimented with bottom-up detectors to be successful.

Results: The advantage of a model-based approach (as opposed to an image-
based approach) is the robustness to missing data, noise and occlusions. More over,
the reconstructed facade structures are consistent with the input grammar (the
model). Our system takes advantage of this features and offers a flexible framework
for facade reconstruction. The bottom-up detectors can be enriched if we want to
manage additional architectural styles. We use a dataset consisting of more than
30 rectified facade images belonging to five different architectural styles. The shape
grammars for these architectural styles have between 40 and 50 rules. We show
selected final reconstruction results for facades belonging to different architectural
styles in figure 6.12 and 6.13. The reconstruction process takes around 3-5 minutes
depending on the image resolution. The bottom-up detection results take about 3
minutes and the optimization step takes about 2 minutes on average. We used a
computer with a core duo processor 1.6GHZ and 2GB of RAM to time the results.

Limitations: The major limitation of our approach lies in the window detection
algorithm which works only under the horizontal and vertical windows alignment
assumption (see Figure 6.11). We are currently working on a generic windows clas-
sification approach which will remove this limitation.

Future work: While the proposed optimization algorithm works well for our
test cases, we envision two additional changes that could improve our method. First,
we would like to extend our shape grammar definitions to introduce randomness on
global parameters. Second, we would like to investigate an alternative formulation
using rjMCMC. rjMCMC has a better theoretical framework for evaluating struc-
tural changes. We are also interested in extending our conceptual framework to

6.8. Conclusion 87

Figure 6.11: Failure cases. Left : the roof windows are not aligned with the facade
windows grid. Right : on the top right of the facade a window is over detected.
These examples show the typical limitations of our contour and texture based profile
projection method.

other domains, such as plant modeling and texure modeling.

6.8 Conclusion

We have presented a framework to reconstruct 3d facade models from single images.
The novelty of our approach is the use of stochastic shape grammars as architectural
prior together with a combined top-down/bottom-up facade optimization scheme
using the Metropolis-Hastings algorithm. In contrast to previous works we can
model one stochastic shape grammar for a larger class of facade images instead
of modeling one deterministic shape grammar for each input image. Additionally,
we propose a new image-based window detector and a new balcony detection and
inpainting method that is necessary to handle difficult inputs, such as images with
balconies and many ornaments.

88 Chapter 6. Grammar-driven Reconstruction

Figure 6.12: Reconstruction results. From left to right: original image, bottom-
up detected elements(windows in blue - balconies in green - cornices in yellow -
consoles, modillions and doors in red), inpainted facade image, reconstructed facade
and facade details. The two first facades belongs to the Haussmannien style (1850−
1870), the third facade to the Louis XIV style (1660− 1700) and the fourth facade
to the Louis XIII style (1595− 1660).

6.8. Conclusion 89

Figure 6.13: Additionnal reconstruction results. From left to right: original image,
bottom-up detected elements(windows in blue - balconies in green - cornices in
yellow - consoles, modillions and doors in red), inpainted facade image, reconstructed
facade and facade details. The three facades belongs to the Haussmannien style
(1850− 1870).

Chapter 7

Conclusion

During this thesis we developped several tools for the reconstruction of buildings
from images. The techniques used come from computer vision, pattern recognition
and computer graphics fields. The main developped tools include techniques such as
structure from motion, multi-view stereo, voxel coloring, and procedural modeling.
Contributions in this approach was presented in two parts.

In the first part, we focused on multiple view reconstruction techniques with
the aim to automatically recover the depth information of facades from a set of un-
calibrated photographs. First, we implemented a structure from motion framework
able to automatically calibrate a set of unordered photographs [4]. Our structure
from motion implementation is sequential and uses the Exif header of JPEG
images to initialize the intrinsic camera parameters. We combined the LMedS and
M-Estimator algorithms to address the problem of estimating the fundamental
matrix. We also used the bucketing technique to improve the spatial distribution
of the randomly selected keypoints during the fundamental matrix estimation. We
demonstrate the robustness of our structure from motion framework on several
state of the art image sequences and on a large set of unordered photographs of
Notre Dame de Paris (300 images taken by different cameras at different times
and conditions). Then, we proposed techniques for the registration of the sparse
reconstruction to a coarse 3d model based on the fitting of 3d planes [2,4,5]. The
novelty of the approach is the use of facade correspondences to compute the absolute
orientation. This offer an automatic and low-cost procedure for the georeferencing
of uncalibrated photographs using a coarse 3d model. We also proposed a method
for fitting the 3d facade planes from the sparse 3d reconstruction (3d point cloud
and cameras poses). Finally, we proposed an accelerated multi-view stereo [1] and
voxel coloring framework [3] using graphics hardware to produce a textured 3d
mesh of a scene from a set of calibrated images. We demonstrate the robustness of
our GPU implementaions on state of the art image sequences.

The second part was dedicated to single view reconstruction and its aim is to
recover the semantic structure of a facade from an ortho-rectified image. The nov-
elty of this approach is the use of a stochastic grammar describing an architectural
style as a model for facade reconstruction. The stochastic grammar describing
Paris architectural styles was modeled with the help of an architect/designer based
on a large set of facade photographs. In our approach we combine bottom-up
detection with top-down proposals to optimize the facade structure using the

92 Chapter 7. Conclusion

Metropolis-Hastings algorithm. During each iteration a facade structure is ran-
domly sampled from the stochastic shape grammar and an energy function is used
for its evaluation. The energy function is based on the consistency of the sampled
facade structure with the detected facade elements. To address the problem of
window detection we proposed a combined contour and texture profile projection
method. We also developped a method for balconies detection and removal using
inpainting techniques. In order to detect additionnal facade elements such as doors
and modillions we used trained Viola-Jones classifiers based on a large database of
image samples. We demonstrate the robustness of our approach on several facade
images belonging to different Paris architectural styles.

Further investigations should be carried in order to combine multiple view
reconstruction techniques with single view procedural modeling. As first step, we
can use depth maps as an additionnal input for single view facade reconstruction.
This will make the semantic recognition process easier and will allow the automatic
tuning of model parameters such as windows, balconies, and cornices depth.

The procedural modeling tool developped in this thesis was succefully used
within the Terra Numerica project to produce 3d models of large-scale urban
environments for the Paris city and is being under integration within the DataBase
Generator System (DBGS) in Thales company for training and simulation markets.
The developped procedural modeling tool and associated urban shape grammars are
also used in other projects such as "Lyon Confluence" whose aim is to produce a 3d
model of a future urban part of the Lyon city and the "Bus Training Game" (BTG)
project whose aim is to develop a bus training simulator in urban environments to
prevent accidents.

During the PhD thesis in Thales a patent was pended for a process to observe
scenes partially covered by a set of cameras using a reduced number of screens [8].
The idea consists in a 3d video surveillance system where the user can see the whole
set of cameras within a textured 3d model of the scene. The moving objects such
as persons are then tracked and represented in real-time in 3D. This process offers
a global view of the surveillance system and a flexible way for the user to move
from a camera viewpoint to another one in order for example to track peoples.

Publications:

[1] Oussama Moslah, Alex Valles-Such, Vincent Guitteny, Serge Couvet and
Sylvie Philipp-Foliguet. Accelerated Multi-View Stereo using Parallel Processing
Capababilities of the GPUs. 3DTV-conf 2009.

[2] Oussama Moslah, Vincent Guitteny, Serge Couvet. Geo-Referencing Un-
calibrated Photographs using Aerial Images and 3D Urban Models. (CORESA2009).

93

[3] Oussama Moslah, Arnaud Debeugny, Vincent Guitteny, Serge Couvet
and Sylvie Philipp-Foliguet. Towards Real-Time and Accurate Voxel Coloring
Framework. International Conference on Computer Vision Theory and Applications
(VISAPP 2009)

[4] Oussama Moslah, Mathieu Klee, Antoine Grolleau, Vincent Guitteny, Serge
Couvet and Sylvie Philipp-Foliguet. Urban Models Texturation from Uncalibrated
Photographs. 23rd International Conference Image and Vision Computing New
Zealand (IVCNZ 2008).

[5] Oussama Moslah, Vincent Guitteny, Serge Couvet. Fitting Uncalibrated
Photographs to Geo-Referenced Urban 3D Models. Association Française de
Réalité Virtuelle (AFRV 2008)

[6] Vincent Guitteny, Oussama Moslah and Serge Couvet. Infrared Based
Camera Registration for In-Door/Out-Door Augmented Reality. Association
Française de Réalité Virtuelle (AFRV 2008).

[7] Vincent Guitteny, François-Pierre Robert and Oussama Moslah. Infrared
Based Camera Calibration for Urban Augmented Reality. 2nd International
WorkShop on Mobile Geospatial Augmented Reality (REGARD 2008).

[8] Olivier Desmaison, Vincent Guitteny and Oussama Moslah. Procedé dobser-
vation de scenes couvertes au moins partiellement par un ensemble de cameras et
visualisables sur un nombre reduit decrans. French patent, 6 June 2008, N◦ 08/03
168.

Bibliography

[A. W. Fitgibbon 1998] A. Zissermann A. W. Fitgibbon G. Cross. Automatic 3D
Model Construction for Turn-Tables Sequences. Lectures notes in Computer
Sciences, 1998. 45

[A. 2003] Dick A., Torr R., Ruffle S. and Cipolla R. Modeling and interpretation of
architecture from several images. IJCV, 2003. 28

[Alegre 2004] Fernando Alegre and Frank Dellaert. A Probabilistic Approach to the
Semantic Interpretation of Building Facades. In Proc. CIPA, 2004. 67, 68,
86

[Ali 2007] Haider Ali, Christin Seifert, Nitin Jindal, Lucas Paletta and Gerhard
Paar. Window Detection in Facades. ICIAP, 2007. 73, 78

[A.M. Fischler 1981] R.C. Bolles A.M. Fischler. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. ACM Communication, vol. 24, pages 381–395, 1981. 16

[Bouguet 1999] J-Y. Bouguet. Pyramidal Implementation of the Lucas-Kanade Fea-
ture Tracker. In OpenCV Documentation, Microprocessor Research Labs,
Intel Corporation., 1999. 10

[CG: 2008] NVidia Cg programming language homepage
http://developer.nvidia.com/page/cg_main.html. 2008. 35

[Cornelis 2005] N. Cornelis and L. V. Gool. Real-time connectivity constrained depth
map computation using programmable graphics hardware. In Proceedings of
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1099–1104, 2005. 35

[CUD 2008] NVidia Cuda API technology homepage http://www.nvidia.com/cuda.
2008. 35

[Cuda 2008] Cuda. CUDA: Compute Unified Device Architecture,
www.nvidia.com/cuda. NVidia, July 2008. 44

[Dick 2003] A. R. Dick, P. H. S. Torr and R. Cipolla. Modeling and interpretation
of architecture from several images. IJCV, 2003. 67, 68, 70, 73, 81, 86

[et R.C. Bolles] M.A. Fischler et R.C. Bolles. Random sample consensus: a
paradigm for model fitting with application to image analysis and automated
cartography. In Communication Association and Computing Machine, vol-
ume 24(6), pages = 381-395, year=1981. 21

96 Bibliography

[F. Goetz 2005] G. Domik F. Goetz T. Junklewitz. Real-Time Marching Cubes on
the Vertex Shader. In Eurographics, 2005. 44

[F. Mosteller 1977] J. W. Tukey F. Mosteller. Data analysis and regression: A
second course in statistics. 1977. 14

[Felzenszwalb 2004] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient
Graph-Based Image Segmentation. International Journal of Computer Vi-
sion, vol. 59, no. 2, September 2004. 72

[Forstmann 2004] S. Forstmann, J. Ohya, Y. Kanou, A. Schmitt and S. Thuering.
Realtime stereo by using dynamic programming. In Proc. of CVPR Workshop
on Real-time 3D Sensors and Their Use, 2004. 37

[Franco 2003] J.S. Franco and E. Boyer. Exact Polyhedral Visual Hull. In British
Machine Vision Conference (BMVC’03), volume I, pages 329–338, September
2003. 43, 44

[G. Xu 1996] Z. Zhang G. Xu. Epipolar geometry in stereo, motion and object
recognition : A unified approach. Springer, 1996. 12, 14

[Gao 2009] Rui Gao and Walter F. Bischof. Detection of Linear Structures in
Remote-Sensed Images. ICIAR, 2009. 76

[Gong 2005] M. Gong and Y.-H. Yang. Near real-time reliable stereo matching using
programmable graphics hardware. In Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR), pages 924–931, 2005. 37

[GPG 2008] GPGPU, General-Purpose Computation Using Graphics Hardware
homepage http://www.gpgpu.org/. 2008. 35

[Green 1995] Peter J. Green. Reversible jump markov chain monte carlo computa-
tion and bayesian model determination. Biometrika, vol. 87, pages 711–732,
1995. 86

[Grigorescu 2002] S.E. Grigorescu, N. Petkov and P. Kruizinga. Comparison of
texture features based on Gabor filters. IEEE Trans. on Image Processing,
vol. 11, no. 10, pages 1160–1167, 2002. 75

[Hartley 1997] Richard I. Hartley and Peter Sturm. Triangulation. Computer Vision
and Image Understanding, vol. 62(2), pages 146–157, 1997. 23

[Hartley 2003] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
computer vision. Cambridge University Press, Second Edition, 2003. 7, 8,
12, 13, 16, 18, 21, 23, 35

[Hastings 1970] W. K. Hastings. Monte carlo sampling methods using markov chains
and their applications. Biometrika, vol. 57, pages 97–109, 1970. 86

Bibliography 97

[Hernandez 2009] Jorge Hernandez. Morphological Image Analysis for Urban Mod-
eling. PhD thesis, CMM - Mines ParisTech, 2009. 75

[Hohmann 2009] Bernhard Hohmann, Ulrich Krispel, Sven Havemann and Dieter
Fellner. CityFit: High-Qualiy Urban Reconstructions by Fitting Shape Gram-
marsto Images and Derived Textured Point Clouds. In Proc. 3DARCH, 2009.
67, 68

[Huber 1981] P.J. Huber. Robust statistics. 1981. 14, 19

[Koutsourakis 2009] P. Koutsourakis, O. Teboul, L. Simon, G. Tziritas and N. Para-
gios. Single View Reconstruction Using Shape Grammars for Urban Envi-
ronments. In Proc. ICCV, 2009. 67, 68, 86

[Krueger 2003] J. Krueger and R. Westermann. Acceleration Techniques for GPU-
Based Voluume Rendering. In IEEE Visualization’03, 2003. 44

[Kuzu 2001] Y. Kuzu and V. Rodehorst. Volumetric Modeling Using Shape from
Silhouette, Photogrammetry and Cartography. 2001. 45

[Lee 2004] Sung Chun Lee and Ram Nevatia. Extracting and integration of window
in a 3D building model from ground view image. In Proc. CVPR, 2004. 68,
71, 73

[Lipp 2008] Markus Lipp, Peter Wonka and Michael Wimmer. Interactive Visual
Editing of Grammars for Procedural Architecture. In Proc. SIGGRAPH,
2008. 63, 80

[Liu 1996] Fang Liu and Rosalind W. Picard. Periodicity, Directionality, and Ran-
domness: Wold Features for Image Modeling and Retrieval. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence PAMI, vol. 18, no. 7,
pages 722–733, 1996. 71, 83

[Liu 2009] J. Liu, P. Musialski, P. Wonka and J. Ye. Tensor Completion for Esti-
mating Missing Values in Visual Data. In ICCV, 2009. 76, 77

[Lorensen 1987] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm. In SIGGRAPH’97, August 1987.
44, 47

[Lourakis 2004] M.I.A. Lourakis and A.A. Argyros. The Design and Implementa-
tion of a Generic Sparse Bundle Adjustment Software Package Based on the
Levenberg-Marquardt Algorithm. In ICS/FORTH Technical Report No. 340,
2004. 21, 24

[Lourakis 2006] M.I.A. Lourakis. Non-linear, robust homography estimation. In
Inst. of Computer Science-FORTH, Heraklion, Crete, Greece, 2006. 21

98 Bibliography

[Lowe 2003] David G. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. IJCV, 2003. 10, 21

[Mao 1992] Jianchang Mao and Anil K. Jain. Texture Classication and Segmen-
tation Using Multiresolution Simultaneous Autoregressive Models. Pattern
Recognition, vol. 25, pages 173–188, 1992. 71, 83

[Metropolis 1949] Nicholas Metropolis and S. Ulam. The Monte Carlo Method. Jour-
nal of the American Statistical Association, vol. 44, no. 247, pages 335–341,
1949. 86

[MP: 2008] Marc Pollefeys’ homepage, University of North Carolina at Chapel Hill,
www.cs.unc.edu/˜marc/. 2008. 41

[Mueller 2006] P. Mueller, P. Wonka, S. Haegler, A. Ulmer and L. Van Gool. Pro-
cedural Modeling of Buildings. In Proc. SIGGRAPH, 2006. 67

[Mueller 2007] Pascal Mueller, Gang Zeng, Peter Wonka and Luc Van Gool. Image-
based procedural modeling of facades. In Proc. SIGGRAPH, 2007. 58, 67, 68,
70, 73

[N. 2006] Snavely N., Seitz S. M. and Szeliski R. Photo tourism: Exploring photo
collections in 3D. In ACM Transactions on Graphics (SIGGRAPH Proceed-
ings), volume 25(3), pages 835–846, 2006. 7

[OSG 2008] OpenSceneGraph: an open source high performance 3D graphics toolkit,
2008. http://www.openscenegraph.org/. 2008. 40

[P. J. Rousseeuw 1987] A. M. Leroy P. J. Rousseeuw. Robust regression and outlier
detection. John Wiley & Sons, Inc, 1987. 17, 19

[P.A. Beardsley 1997] D. W. Murray P.A. Beardsley A. Zisserman. Sequential Up-
dating of Projective and Affine Structure from Motion. International Journal
on Computer Vision, vol. 23, pages 235–259, 1997. 20

[P.A. 1997] Beardsley P.A., Zisserman A. and Muray D.W. Sequential Updating of
Projective and Affine Structure from Motion. IJCV, vol. 23(3), pages 235–
259, 1997. 7

[Petkov 1997] N. Petkov and P. Kruizinga. Computational models of visual neurons
specialised in the detection of periodic and aperiodic oriented visual stimuli:
bar and grating cells. Biological Cybernetics, vol. 76, no. 2, pages 83–96,
1997. 74

[Pollefeys 2004] Marc Pollefeys. Visual Modeling With A Hand-Held Camera. IJCV,
vol. 59(3), pages 207–232, 2004. 7, 20, 23, 35, 37

[Ponce 2005] J. Ponce, T. Papadopoulo, M. Teillaud and B. Triggs. On the Absolute
Quadric Complex and its Application to Autocalibration. In CVPR, 2005. 7

Bibliography 99

[Prusinkiewicz 1991] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty
of plants. Springer Verlag, 1991. 58

[Randen 1999] Trygve Randen and John H. Husoy. Filtering for texture classifi-
cation: a comparative study. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 21, pages 291–310, April 1999. 83

[Ripperda 2008] Nora Ripperda. Determination of Facade Attributes for Facade Re-
construction. In International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, 2008. 67, 68, 86

[Scharstein 2002] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms. International Journal
of Computer Vision (IJCV), vol. 47(1), pages 7–42, 2002. 35

[Seitz 1997] S. M. Seitz and C. R. Dyer. Photorealistic Scene Reconstruction by
Voxel Coloring. In Computer Vision and Pattern Recognition Conf., pages
1067–1073, 1997. 43, 45, 48

[Shreiner 2003] D. Shreiner, M. Woo, J. Neider and T. Davis. Addison-Wesley, 2003.
36

[Stiny 1972] G. Stiny and J. Gips. Shape Grammars and the Generative Specification
of Painting and Sculpture. Inf. Proc., vol. 71, pages 1460–1465, 1972. 58

[Sturm 1996] Peter Sturm and Bill Triggs. A Factorization Based Algorithm for
Multi-Image Projective Structure and Motion. In ECCV, 1996. 7

[Sun 2005] Jian Sun, Lu Yuan, Jiaya Jia and Heung-Yeung Shum. Image Comple-
tion with Structure Propagation. In SIGGRAPH, 2005. 76

[Szelinski 1993] R. Szelinski. Rapid Octree Construction From Images Sequences.
In CVGIP, pages 23–32, july 1993. 48

[Trendall 2000] C. Trendall and A. J. Steward. General Calculation Using Graphics
Hardware, with Application to Interactive Caustics. In Eurographics Work-
shop on Rendering, pages 287–298. Springer, 2000. 44

[Triggs 1996] Bill Triggs. Factorization Methods for Projective Structure and Mo-
tion. In CVPR, 1996. 7

[VGG 2008a] Visual Geometry Group Home Page, University of Oxford,
www.robots.ox.ac.uk/˜vgg/. 2008. 41

[VGG 2008b] VGG. Visual Geometry Group Dataset.
www.robots.ox.ac.uk/˜vgg/data/data-mview.html, 2008. 44

[Viola 2002] Paul Viola and Michael Jones. Robust real-time object detection. In-
ternational Journal of Computer Vision, 2002. 70, 74, 78

100 Bibliography

[W. R. Mark 2003] K. Akelet M.J. Kilgard W. R. Mark R. S. Glanville. Cg: A
System for Programming Graphics Hardware in a C-like Language. In Pro-
ceedings of SIGGRAPH, 2003. 44

[Wang 2006] L. Wang, M. Liao, M. Gong, R. Yang and D. Nister. High Quality Real-
time Stereo using Adaptive Cost Aggregation and Dynamic Programming. In
Third International Symposium on 3D Data Processing, Visualization and
Transmission (3DPVT), 2006. 37

[Werner 2002] Tomas Werner and Andrew Zisserman. Model Selection for Auto-
mated Architectural Reconstruction from Multiple Views. In British Machine
Vision Conference, 2002. 70

[Wonka 2003] Peter Wonka, Michael Wimmer, Francois Sillon and William Rib-
arsky. Instant Architecture. In Proc. SIGGRAPH, 2003. 58

[Xiao 2008] Jianxiong Xiao, Tian Fang, Ping Tan, Peng Zhao, Eyal Ofek and Long
Quan. Image-based Facade Modeling. In Proc. SIGGRAPH Asia, 2008. 67,
68

[Yang 2002] R. Yang, G. Welch and G. Bishop. Real-Time Consensus-Based Scene
Reconstruction Using Commodity Graphics Hardware. In Proceedings of Pa-
cific Graphics 2002, pages 225–234, 2002. 35

[Zach 2003] C. Zach, A. Klaus and K. Karner. Accurate Dense Stereo Reconstruction
using Graphics Hardware. In Eurographics 2003, pages 227–234, 2003. 35

[Zhang 1995] Z. Zhang. Parameter Estimation Techniques: A Tutorial with Appli-
cation to Conic Fitting. Rapport technique, INRIA - Sophia Antipolis, 1995.
12, 14

[Zhang 1996] Z. Zhang. Determining the Epipolar Geometry and its Uncertainty:
A Review. Rapport technique, INRIA - Sophia Antipolis, 1996. 12, 14, 16,
17, 18, 19

[Zissermann 2003] A. Zissermann and R. Hartley. Multiple view geometry in com-
puter vision. Cambridge University press, 2nd édition, 2003. 48

Towards Large-Scale Urban Environments Modeling from Images

Abstract: The main goal of this thesis is to develop innovative and practical
tools for the reconstruction of buildings from images. The typical input to our work
is a set of facade images, building footprints, and coarse 3d models reconstructed
from aerial images. The main steps include the calibration of the photographs,
the registration with the coarse 3d model, the recovery of depth and sematic
information, and the refinement of the coarse 3d model.
To achieve this goal, we use computer vision, pattern recognition and computer
graphics techniques. Contributions in this approach are presented on two parts.
In the first part, we focused on multiple view reconstruction techniques with
the aim to automatically recover the depth information of facades from a set
of uncalibrated photographs. First, we use structure from motion techniques to
automatically calibrate the set of photographs. Then, we propose techniques for the
registration of the sparse reconstruction to a coarse 3d model. Finally, we propose
an accelerated multi-view stereo and voxel coloring framework using graphics
hardware to produce a textured 3d mesh of a scene from a set of calibrated images.
The second part is dedicated to single view reconstruction and its aim is to recover
the semantic structure of a facade from an ortho-rectified image. The novelty of
this approach is the use of a stochastic grammar describing an architectural style as
a model for facade reconstruction. we combine bottom-up detection with top-down
proposals to optimize the facade structure using the Metropolis-Hastings algorithm.

Keywords: 3d reconstruction, image-based modeling, procedural modeling,
shape grammars, architecture.

	Introduction
	I Multiple View Reconstruction
	Structure from Motion
	Introduction
	The classical pinhole camera model
	Central projection in homogeneous coordinates
	Principal point offset
	Rotation and translation of the camera

	Keypoints detection and matching
	Epipolar geometry and the fundamental matrix
	Linear methods
	Iterative methods
	Robust methods

	Structure from motion
	Overview
	Initial reconstruction
	Adding views
	Results

	Registration
	Recovering walls
	Model fitting
	Visualisation and rendering

	Conclusion

	Multi-View Stereo
	Introduction
	GPU pipeline and GPGPU
	System overview

	Dense stereo matching
	Multi-view correspondence linking
	3D mesh generation and texture mapping
	Conclusion

	Voxel Coloring
	Introduction
	Related Work
	Our Approach
	Visual Hull
	Voxel Coloring
	Marching Cubes
	Acceleration Using Graphics Hardware

	Results
	Discussion
	Conclusion

	II Single View Procedural Modeling
	Procedural Modeling
	Introduction
	Fractals
	Generative Modeling Language (GML)
	L-systems
	Shape grammars
	Production system
	CGA commands

	Interactive editing
	Conclusion

	Grammar-driven Reconstruction
	Introduction
	Related work
	System overview
	Bottom-up detection
	Window detection
	Balcony detection and removal
	Cornice detection
	A Generic Element Detector

	The stochastic grammar
	Top-Down optimization
	Problem formulation
	The facade prior
	The facade likelihood
	The optimization algorithm

	Discussion
	Conclusion

	Conclusion
	Bibliography

