N. Tatarazako, H. Ishibashi, K. Teshima, K. Kishi, and K. Arizono, Effects of Triclosan on Various Aquatic Organisms, Envir. Sci, vol.11, p.133, 2004.

B. Wilson, D. R. Orvos, D. J. Versteeg, and J. Inauen, Aquatic Toxicity of Triclosan, 1338. 18 Environment News Daily. Denmark Discourages Household Antibacterials, 2000.

A. Glaser, The Ubiquitous Triclosan, A Common Antibacterial Agent Exposed, Beyond Pesticides/National Coalition Against the Misuse of Pesticides, vol.24, p.12, 2004.

L. Massi, F. Guittard, S. Geribaldi, R. Levy, and Y. Duccini, Antimicrobial properties of highly fluorinated bis-ammonium salts, International Journal of Antimicrobial Agents, vol.21, issue.1, p.20, 2003.
DOI : 10.1016/S0924-8579(02)00271-6

B. Qi, C. Liu, and Q. , Immobilization of Quaternary Ammonium Salts on Grafting Particle Polystyrene/SiO2 and Preliminary Study of Application Performance, Appl. Surf. Sci, vol.254, p.4159, 2008.

D. Leclerc, M. Izard, P. Husson, E. Wattre, and . Jakubczak, Microbiologie générale, nouvelle édition, 1983.

G. Flemming, C. C. Capelli, S. L. Cooper, and R. A. Proctor, Bacterial colonization of functionalized polyurethanes, Biomaterials, vol.21, issue.3, p.273, 2000.
DOI : 10.1016/S0142-9612(99)00176-3

J. C. Wataha, P. E. Lockwood, and A. Schedle, Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures, Journal of Biomedical Materials Research, vol.25, issue.2, pp.52-360, 2000.
DOI : 10.1002/1097-4636(200011)52:2<360::AID-JBM16>3.0.CO;2-B

H. C. Yang and L. A. Pon, Toxicity of metal ions used in dental alloys: a study in the yeast Saccharomyces cerevisiae, Drug Chem. Toxicol, pp.26-75, 2003.

Z. H. Chohan, M. Arif, M. A. Akhtar, and C. T. Supuran, Metal-based antibacterial and antifungal agents: synthesis, characterization, and in vitro biological evaluation of Co(II, Cu(II), Ni(II)

T. W. Clarkson, The toxicology of mercury nickel ? results of a multifactorial analysis, Crit. Rev. Clin. Lab. Sci. Contact Dermatitis, vol.34, issue.33, pp.48-80, 1997.

P. K. Chu, Applications of plasma-based technology to microelectronics and biomedical engineering, Surface and Coatings Technology, vol.203, issue.17-18, p.2793, 2009.
DOI : 10.1016/j.surfcoat.2009.02.131

W. Zhang, Y. H. Zhang, J. H. Ji, J. Zhao, Q. Yan et al., Antimicrobial properties of copper plasma-modified polyethylene, 7441. 34 Hund-Rinke, K., Frank Marscheider-Weidemann and M. Kemper,Beurteilung der Gesamtumweltexposition von Silberionen aus Biozid-Produkten. Forschungsbericht des Umweltbundesamtes, p.4708, 2006.
DOI : 10.1016/j.polymer.2006.08.057

. Project_on_emerging_nanotechnologies, C. Damm, H. Munsted, A. Rosch, F. Zeng et al., Consumer Product Inventory Analysis Long-term antimicrobial polyamide6/silver- nanocomposites, Journal of Materials Science Nanotechnology, vol.42, issue.18, 2007.

A. B. Lansdown, L. T. Phung, and G. Silver, Silver I: its antibacterial properties and mechanism of action Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds, J. Wound Care J. Ind. Microbiol. Biotechnol, vol.11, issue.627, pp.33-40, 2002.

H. J. Klasen, Historical review of the use of silver in the treatment of burns. I. Early uses, Burns, vol.26, issue.2, pp.26-117, 2000.
DOI : 10.1016/S0305-4179(99)00108-4

J. M. Schierholz, L. J. Lucas, A. Rump, and G. Pulverer, Efficacy of silver-coated medical devices, Journal of Hospital Infection, vol.40, issue.4, pp.40-257, 1998.
DOI : 10.1016/S0195-6701(98)90301-2

M. Kierans, A. M. Staines, H. Bennett, and G. M. Gadd, Silver tolerance and accumulation in yeasts, Biology of Metals, vol.32, issue.2, p.100, 1991.
DOI : 10.1007/BF01135386

K. M. , W. K. Li, S. K. Wo, C. W. Tsang, and N. L. Ma, Silver(I) affinities of amides: a combined ab initio and experimental study, 144. 44 Fox C.L. and S.M. Modak. Mechanism of silver sulfadiazine action on burn wound infections, p.582, 1974.

Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed

Y. K. Yacaman, J. M. Tak, and . Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? A study of the Gram negative bacterium Escherichia coli, 2346. 60 Pal S, pp.16-73, 2005.

I. Sondi and B. Salopek-sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a??model for Gram-negative bacteria, Journal of Colloid and Interface Science, vol.275, issue.1, pp.275-177, 2004.
DOI : 10.1016/j.jcis.2004.02.012

J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park et al., Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine, vol.3, issue.1, p.95, 2007.
DOI : 10.1016/j.nano.2006.12.001

W. Yang, C. Shen, Q. Ji, H. An, J. Wang et al., Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA, Nanotechnology, vol.20, issue.8, pp.20-085102, 2009.
DOI : 10.1088/0957-4484/20/8/085102

S. A. Blaser, M. Scheringer, M. Macleod, and K. Hungerbuhlrer, Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles, Science of The Total Environment, vol.390, issue.2-3, pp.390-396, 2008.
DOI : 10.1016/j.scitotenv.2007.10.010

N. C. Mueller and B. Nowack, Exposure Modeling of Engineered Nanoparticles in the Environment, Environmental Science & Technology, vol.42, issue.12, p.4447, 2008.
DOI : 10.1021/es7029637

M. Ip, S. L. Lui, V. Poon, I. Lung, and A. Burd, Antimicrobial activities of silver dressings: an in vitro comparison Assessment of a silver-coated barrier dressing for potential use with skin graft on excised burns, J. Med. Microbiol, vol.55, issue.59, pp.29-445, 2003.

A. B. Lansdown, Silver 2: toxicity in mammals and how its products aid wound repair, Journal of Wound Care, vol.11, issue.5, p.173, 2002.
DOI : 10.12968/jowc.2002.11.5.26398

J. B. Wright, K. Lam, A. G. Buret, P. E. Olson, R. E. Burrell et al., Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing, Woud Rep The rate of re-epithelialisation across meshed skin grafts es increased with exposure to silver, Reg. Burns, vol.10, issue.70, pp.28-264, 2002.

«. Renard and . Elaboration, microstructure et comportement des matériaux composites à matrice polymère, 2005.

V. Goia, Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions, Journal of Materials Chemistry, vol.14, issue.4, p.451, 2004.
DOI : 10.1039/b311076a

J. H. Hutter and . Fendler, Exploitation of Localized Surface Plasmon Resonance, Advanced Materials, vol.34, issue.19
DOI : 10.1002/adma.200400271

. Mate, 1685. 92 g. schmid, clustera and colloids: from theory to applications, 1994.

P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, Strong Optical Limiting of Silver-Containing Nanocrystalline Particles in Stable Suspensions, The Journal of Physical Chemistry B, vol.103, issue.1, p.77, 1999.
DOI : 10.1021/jp9835014

V. Serebryakova, O. Y. Uryupina, and V. I. Roldughin, Formation of the bimodal ensemble of silver nanoparticles in polymer solutions, Colloid Journal, vol.238, issue.1, p.79, 2005.
DOI : 10.1007/s10595-005-0009-4

X. Y. Ji, C. M. Chen, J. L. Wai, and . Fulton, Synthesizing and Dispersing Silver Nanoparticles in a Water-in-Supercritical Carbon Dioxide Microemulsion, Journal of the American Chemical Society, vol.121, issue.11
DOI : 10.1021/ja9840403

P. Petit, M. P. Lixon, and . Pileni, In situ synthesis of silver nanocluster in AOT reverse micelles, The Journal of Physical Chemistry, vol.97, issue.49, pp.97-12974, 1993.
DOI : 10.1021/j100151a054

P. Pileni, Reverse micelles as microreactors, The Journal of Physical Chemistry, vol.97, issue.27, p.6961, 1993.
DOI : 10.1021/j100129a008

L. Carotenuto and . Nicolais, Size-controlled synthesis of thiol-derivatized gold clusters, Journal of Materials Chemistry, vol.13, issue.5
DOI : 10.1039/b300320p

B. R. Mayer, Formation of noble metal nanoparticles within a polymeric matrix: nanoparticle features and overall morphologies, Materials Science and Engineering: C, vol.6, issue.2-3, p.155, 1998.
DOI : 10.1016/S0928-4931(98)00049-6

B. Carotenuto, P. B. Martorana, L. Perlo, and . Nicolais, A universal method for the synthesis of metal and metal sulphide clusters embedded in polymer matrices, J. Mater

S. Matsuda and . Ando, Generation Behaviors of Optical Anisotropy Caused by Silver Nanoparticles Precipitated in Uniaxially Drawn Polyimide Films, Japanese J. App. Phy. Part 1-Regular Papers Short Notes & Review Papers, pp.44-187, 2005.
DOI : 10.1143/JJAP.44.187

S. Matsuda, T. Ando, and . Sawada, Thin flexible polariser of Ag-nanoparticle-dispersed fluorinated polyimide, Electronics Letters, vol.37, issue.11, p.706, 2001.
DOI : 10.1049/el:20010473

S. Koizumi, S. Matsuda, and . Ando, Synthesis, Characterization, and Optical Properties of Uniaxially Drawn and Gold Nanoparticle Dispersed Fluorinated Polyimide Films., Journal of Photopolymer Science and Technology, vol.15, issue.2
DOI : 10.2494/photopolymer.15.231

. Khaibullin, Formation of metal-polymer composites by ion implantation, Philosophical Magazine B, vol.80, p.23, 2000.

L. Stepanov, S. N. Abdullin, and I. B. Khaibullin, Optical properties of polymer layers with silver particles, Journal of Non-Crystalline Solids, vol.223, issue.3, pp.223-250, 1998.
DOI : 10.1016/S0022-3093(97)00363-3

. Hasell, Synthesis of Metal-Polymer Nanocomposites, these, 2008.

P. D. Brown, H. J. Winship, and . Reid, Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?, J. Antimicrob. Chemother, pp.54-1019, 2004.

M. Tamai, T. Watanabe, N. Teramura, K. Nishioka, and . Matsukawa, Metal Nanoparticle/Polymer Hybrid Particles: The Catalytic Activity of Metal Nanoparticles Formed on the Surface of Polymer Particles by UV-Irradiation, Macromolecular Symposia, vol.24, issue.1, p.199, 2009.
DOI : 10.1002/masy.200950821

M. Yagci, G. Sangermano, and . Rizza, A visible light photochemical route to silver???epoxy nanocomposites by simultaneous polymerization???reduction approach, Polymer, vol.49, issue.24, p.5195, 2008.
DOI : 10.1016/j.polymer.2008.09.068

M. U. Uygun, D. Kahveci, S. Odaci, Y. Timur, and . Yagci, Antibacterial Acrylamide Hydrogels Containing Silver Nanoparticles by Simultaneous Photoinduced Free Radical Polymerization and Electron Transfer Processes, Macromolecular Chemistry and Physics, vol.18, issue.21, pp.210-1867, 2009.
DOI : 10.1002/macp.200900296

L. D. Cocca and . Orazio, Novel silver/polyurethane nanocomposite by in situ reduction: Effects of the silver nanoparticles on phase and viscoelastic behaviour of silver with skeleton structures, J. Polym. Sci.: Part B: Polym. Phys. Mater. Lett, vol.46, issue.344, pp.58-1121, 2004.

K. Chaki, J. Sharma, A. B. Mandle, I. S. Mulla, R. Pasricha et al., Size dependent redox behavior of monolayer protected silver nanoparticles (2???7 nm) in aqueous medium, Phys. Chem. Chem. Phys., vol.14, issue.6, p.1304, 2004.
DOI : 10.1039/B312643A

G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, Polyol Synthesis of Uniform Silver Nanowires:?? A Plausible Growth Mechanism and the Supporting Evidence, Nano Letters, vol.3, issue.7, p.955, 2003.
DOI : 10.1021/nl034312m

G. Sun and Y. N. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, vol.298, issue.5601, p.2176, 2002.
DOI : 10.1126/science.1077229

H. Chen and Y. W. Huang, Spontaneous Formation of Ag Nanoparticles in Dimethylacetamide Solution of Poly(ethylene glycol), Journal of Colloid and Interface Science, vol.255, issue.2, p.299, 2002.
DOI : 10.1006/jcis.2002.8674

L. M. Pastoriza-santos and . Liz-marzan, Synthesis of Silver Nanoprisms in DMF, Nano Letters, vol.2, issue.8, p.903, 2002.
DOI : 10.1021/nl025638i

Q. Wang, H. Itoh, K. Naka, and Y. Chujo, Tetrathiafulvalene-Assisted Formation of Silver Dendritic Nanostructures in Acetonitrile, Langmuir, vol.19, issue.15, p.6242, 2003.
DOI : 10.1021/la027070z

A. Faure, W. Derre, and . Neri, Spontaneous Formation of Silver Nanoparticles in Multilamellar Vesicles, The Journal of Physical Chemistry B, vol.107, issue.20, p.4738, 2003.
DOI : 10.1021/jp027449u

H. Chen and D. L. Carroll, Synthesis and Characterization of Truncated Triangular Silver Nanoplates, Nano Letters, vol.2, issue.9, p.1003, 2002.
DOI : 10.1021/nl025674h

D. Mandal, M. Rautaray, and . Sastry, ???Keggin ion colloidal particles as novel templates for the growth of silver nanoparticle assemblies, J. Mater. Chem., vol.41, issue.12, p.3002, 2003.
DOI : 10.1039/B307000J

S. T. Malandrino, I. L. Finocchiaro, and . Fragala, Silver nanowires by a sonoself-reduction template process, J. Mater. Chem., vol.2, issue.18, pp.14-2726, 2004.
DOI : 10.1039/B408981B

J. Johans, S. Clohessy, K. Fantini, V. J. Kontturi, and . Cunnane, Electrosynthesis of polyphenylpyrrole coated silver particles at a liquid???liquid interface, Electrochemistry Communications, vol.4, issue.3, p.227, 2002.
DOI : 10.1016/S1388-2481(02)00256-4

. Ren, Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes, Chem. Commun, p.2814, 2002.

S. Yin, H. Y. Ma, S. Y. Wang, and S. H. Chen, -vinylpyrrolidone), The Journal of Physical Chemistry B, vol.107, issue.34, p.8898, 2003.
DOI : 10.1021/jp0349031

URL : https://hal.archives-ouvertes.fr/hal-01358925

Q. Cheng and S. W. Yao, Synthesis and characterization of silver nanoparticles by sonoelectrode-position, Rare Met, vol.24, p.376, 2005.

O. Socol, A. Abramson, Y. Gedanken, L. Meshorer, A. Berenstein et al., Suspensive Electrode Formation in Pulsed Sonoelectrochemical Synthesis of Silver Nanoparticles, Langmuir, vol.18, issue.12, p.4736, 2002.
DOI : 10.1021/la015689f

P. Zhang, L. Q. Sheng, and P. Chen, Synthesis of various types of silver nanoparticles used as physical developing nuclei in photographic science, Chin. Chem. Lett, pp.14-645, 2003.

F. Zhou and Z. Xu, The preparation of nano-scale plate silver powders by visible light induction method, Journal of Materials Science, vol.39, issue.7, p.2487, 2004.
DOI : 10.1023/B:JMSC.0000020014.82696.85

G. Shchukin, I. L. Radtchenko, and G. B. Sukhorukov, Photoinduced Reduction of Silver inside Microscale Polyelectrolyte Capsules, ChemPhysChem, vol.300, issue.10, p.1101, 2003.
DOI : 10.1002/cphc.200300740

Z. Zhang, J. C. Yu, H. Y. Yip, Q. Li, K. W. Kwong et al., with Enhanced Photocatalytic and Bactericidal Activities, Langmuir, vol.19, issue.24, p.10372, 2003.
DOI : 10.1021/la035330m

M. Junior, H. P. De-oliveira, and M. H. Gehlen, Preparation of silver nanoprisms using poly(N-vinyl-2-pyrrolidone) as a colloid-stabilizing agent and the effect of silver nanoparticles on the photophysical properties of cationic dyes, Photochem. Photobiol. Sci., vol.122, issue.9, p.921, 2003.
DOI : 10.1039/B302943C

C. Jin, Y. C. Cao, E. C. Hao, G. S. Metraux, G. C. Schatz et al., Controlling anisotropic nanoparticle growth through plasmon excitation, Nature, vol.425, issue.6957, p.487, 2003.
DOI : 10.1038/nature02020

M. J. Mallick, M. S. Witcomb, and . Scurrell, Polymer stabilized silver nanoparticles: A photochemical synthesis route, Journal of Materials Science, vol.39, issue.14, p.4459, 2004.
DOI : 10.1023/B:JMSC.0000034138.80116.50

I. Kryukov, N. N. Zin-'chuk, A. V. Korzhak, and S. Y. Kuchmii, The Effect of the Conditions of Catalytic Synthesis of Nanoparticles of Metallic Silver on Their Plasmon Resonance, Theor. Exp. Chem, pp.39-48, 2003.

. Semiconductor, Metal Nanocomposite in Homogeneous Nonpolar Solution, J. Am. Chem

K. Liu, P. W. Huang, Y. C. Chang, F. H. Ko, and T. C. Chu, Microwave-assisted synthesis of silver nanorods, Journal of Materials Research, vol.899, issue.02, p.469, 2004.
DOI : 10.1016/0040-4020(95)00900-0

H. B. Yamamoto, Y. Yin, T. Wada, T. Kitamura, H. Sakata et al., Morphology-Control in Microwave-Assisted Synthesis of Silver Particles in Aqueous Solutions, Bulletin of the Chemical Society of Japan, vol.77, issue.4, pp.77-757, 2004.
DOI : 10.1246/bcsj.77.757

D. S. Komarneni, B. Li, H. Newalkar, A. S. Katsuki, and . Bhalla, Microwave???Polyol Process for Pt and Ag Nanoparticles, Microwave?Polyol Process for Pt and Ag Nanoparticles, p.5959, 2002.
DOI : 10.1021/la025741n

B. Yin, T. Yamamoto, Y. Wada, and S. Yanagida, Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation, Materials Chemistry and Physics, vol.83, issue.1, pp.83-66, 2004.
DOI : 10.1016/j.matchemphys.2003.09.006

M. Qin, Z. L. Jiang, Q. Y. Liu, L. Liao, and Y. M. Jiang, Preparation of silver nanoparticles in the presence of polyacrylamide by microwave high-pressure synthesis method and its spectral properties. Chin, J. Anal. Chem, pp.30-1254, 2002.

M. Hornebecq, T. Antonietti, M. Cardinal, and . Treguer-delapierre, Stable Silver Nanoparticles Immobilized in Mesoporous Silica, Chemistry of Materials, vol.15, issue.10, 1993.
DOI : 10.1021/cm021353v

URL : https://hal.archives-ouvertes.fr/hal-00226401

H. Choi, S. H. Lee, Y. M. Hwang, K. P. Lee, and H. D. Kang, Interaction between the surface of the silver nanoparticles prepared by ?-irradiation and organic molecules containing thiolgroup, Radiat. Phys. Chem, pp.67-517, 2003.

H. Xin, R. M. Zhou, E. B. Gracien, and A. O. Francis, Synthesis of silver nano-particles by EB irradiation, J. Radiat. Res. Radiat. Process, vol.22, p.69, 2004.

T. Tsuji, M. Kakita, and . Tsuji, Preparation of nano-size particles of silver with femtosecond laser ablation in water, Applied Surface Science, vol.206, issue.1-4, p.314, 2003.
DOI : 10.1016/S0169-4332(02)01230-8

W. Zheng, L. Y. Zhu, X. J. Wang, A. H. Yan, and Y. Xie, A simple mixed surfactant route for the preparation of noble metal dendrites, Journal of Crystal Growth, vol.260, issue.1-2, p.255, 2004.
DOI : 10.1016/j.jcrysgro.2003.08.006

W. Zheng, L. Y. Zhu, A. H. Yan, X. J. Wang, and Y. Xie, Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions, Journal of Colloid and Interface Science, vol.268, issue.2, p.357, 2003.
DOI : 10.1016/j.jcis.2003.09.021

L. Zhang, B. X. Han, M. H. Liu, D. X. Liu, Z. X. Dong et al., Ultrasonication-Induced Formation of Silver Nanofibers in Reverse Micelles and Small-Angle X-ray Scattering Studies, The Journal of Physical Chemistry B, vol.107, issue.16, p.3679, 2003.
DOI : 10.1021/jp026738f

S. Maillard, M. P. Giorgio, . Pileni, and . Silver-nanodisks, Silver Nanodisks, Advanced Materials, vol.14, issue.15, p.1084, 2002.
DOI : 10.1002/1521-4095(20020805)14:15<1084::AID-ADMA1084>3.0.CO;2-L

C. Mcleod, R. S. Mchenry, E. J. Beckman, and C. B. Roberts, Synthesis and Stabilization of Silver Metallic Nanoparticles and Premetallic Intermediates in Perfluoropolyether

M. Egorova and A. A. Revina, Optical Properties and Sizes of Silver Nanoparticles in Micellar Solutions, Colloid Journal, vol.64, issue.3, p.301, 2002.
DOI : 10.1023/A:1015912608285

R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones, and M. O. Stone, Biomimetic synthesis and patterning of silver nanoparticles, Nature Materials, vol.1, issue.3, p.169, 2002.
DOI : 10.1038/nmat758

. Yacaman, Alfalfa sprouts: a natural 'source for the" synthesis of silver nanoparticles, Langmuir, vol.19, p.1357, 2003.

S. Shankar, A. Ahmad, and M. Sastry, Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles, Biotechnology Progress, vol.19, issue.6, p.1627, 2003.
DOI : 10.1021/bp034070w

. Paknikar, Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotechnology, vol.14, p.95, 2003.

C. Bhainsa and S. F. Souza, Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus, Colloids and Surfaces B: Biointerfaces, vol.47, issue.2, p.160, 2006.
DOI : 10.1016/j.colsurfb.2005.11.026

S. Shankar, A. Rai, A. Ahmad, and M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core???Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, Journal of Colloid and Interface Science, vol.275, issue.2, pp.275-496, 2004.
DOI : 10.1016/j.jcis.2004.03.003

X. Zhang, J. Qiao, and . Chen, Synthesis of silver nanoparticles???Effects of concerned parameters in water/oil microemulsion, Materials Science and Engineering: B, vol.142, issue.1, p.142, 2007.
DOI : 10.1016/j.mseb.2007.06.014

A. May and . Ben, Molecular Theory of the Sphere-to-Rod Transition and the Second CMC in Aqueous Micellar Solutions, The Journal of Physical Chemistry B, vol.105, issue.3, p.630, 2001.
DOI : 10.1021/jp003021o

P. Durán, O. Marcato, G. Alves, E. Ih-de-souza, and . Esposito, Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, Journal of Nanobiotechnology, vol.3, issue.1, 2005.

R. Klaus-joerger, E. Joerger, C. G. Olsson, and . Granqvist, Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science, Trends in Biotechnology, vol.19, issue.1, p.15, 2001.
DOI : 10.1016/S0167-7799(00)01514-6

T. Joerger, C. G. Klaus, and . Granqvist, Biologically Produced Silver-Carbon Composite Materials for Optically Functional Thin-Film Coatings, Advanced Materials, vol.12, issue.6, p.407, 2000.
DOI : 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O

T. Nair and . Pradeep, Strains, Crystal Growth & Design, vol.2, issue.4, p.293, 2002.
DOI : 10.1021/cg0255164

URL : https://hal.archives-ouvertes.fr/hal-01145334

Y. Luo, X. Zhang, Y. Zeng, Y. Zeng, and . Wang, The role of poly(ethylene glycol) in the formation of silver nanoparticles, Journal of Colloid and Interface Science, vol.288, issue.2, p.444, 2005.
DOI : 10.1016/j.jcis.2005.03.005

P. Angshuman, S. Sunil, and D. Surekha, Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent, Materials Chemistry and Physics, vol.114, p.530, 2009.

A. Martinez-castanon, N. Nino-martinez, F. Martinez-gutierrez, J. R. Martinez-mendoza, and F. Ruiz, Synthesis and antibacterial activity of silver nanoparticles with different sizes, Journal of Nanoparticle Research, vol.19, issue.8, p.1343, 2008.
DOI : 10.1007/s11051-008-9428-6

W. , C. Q. Jiang, C. Yang, D. Liu, X. Xu et al., One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone), Colloids Surf A Physicochem Eng Asp, vol.301, p.73, 2007.

M. E. Levison, Pharmacodynamics of antimicrobial drugs, Infectious Disease Clinics of North America, vol.18, issue.3, p.451, 2008.
DOI : 10.1016/j.idc.2004.04.012

J. M. Andrews, Determination of minimum inhibitory concentrations, J Antimicrob Chemother, vol.48, issue.5, 2001.

Z. Tat-'jana, Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity, J. Phys. Chem. B, vol.110, p.16248, 2006.

N. Kheybari, S. V. Samadi, A. Hosseini, M. R. Fazeli, and . Fazeli, Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method, Daru, vol.18, p.168, 2010.

P. Couvercelle, V. Bailleul, and C. Bunel, Synthesis, dispersion and properties of hydroxy polybutadiene-based anionic polyurethane-urea, Macromolecular Symposia, vol.151, issue.1, pp.347-352, 2000.
DOI : 10.1002/1521-3900(200002)151:1<347::AID-MASY347>3.0.CO;2-T

-. Kwak, S. Park, and H. Kim, Preparation and properties of waterborne polyurethane?urea anionomers?influences of the type of neutralizing agent and chain extender, Colloid & Polymer Science, vol.281, issue.10, pp.957-963, 2003.
DOI : 10.1007/s00396-003-0861-x

M. B. Coutinho and M. C. Delpech, Waterborne Anionic Polyurethanes and Poly(urethaneurea )s: Influence of the Chain Extender on Mechanical and Adhesive Properties, Polym.Test, vol.19, pp.939-952, 2000.

S. Kwak, Y. Park, H. Lee, and . Kim, Preparation and properties of waterborne polyurethanes for water-vapor-permeable coating materials, Journal of Applied Polymer Science, vol.28, issue.4, pp.123-129, 2003.
DOI : 10.1002/app.12128

A. Durrieu, M. N. Gandini, A. Belgacem, G. Blayo, and J. Eiselé, Preparation of aqueous anionic poly-(urethane-urea) dispersions: Influence of the nature and proportion of the urethane groups on the dispersion and polymer properties, Journal of Applied Polymer Science, vol.26, issue.2, pp.700-710, 2004.
DOI : 10.1002/app.20933

URL : https://hal.archives-ouvertes.fr/hal-00306790

. Woods, The ICI Polyurethanes book, ICI polyurethane and John Wiley and Sons: Netherlands, 1990.

. Hoker, Development and characterization of a biocompatible hydroxy-modified copolymer based on polyurethane, Angew, Makromol. Chem, vol.109, 1991.

. Pinchuk, A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of 'biostable' polyurethanes, Journal of Biomaterials Science, Polymer Edition, vol.27, issue.3, 1994.
DOI : 10.1163/156856294X00347

M. Kaji and . Murano, Sequence Distribution of Segmented Polyurethane-Urea, Polymer Journal, vol.14, issue.12, p.1065, 1990.
DOI : 10.1021/ma00169a018

C. Chun, K. S. Kim, J. S. Shim, and K. H. Kim, Synthesis and characterization of poly(siloxane-urethane)s. Polym. Intern, 1992.

K. J. Ho, R. A. Wynne, and . Nissan, Polydimethylsiloxane-urea-urethane copolymers with 1

. Gogolewski, Selected topics in biomedical polyurethanes. A review, Colloid & Polymer Science, vol.3, issue.1, 1989.
DOI : 10.1007/BF01410115

J. P. Chang and . Kennedy, Gas permeability, water absorption, hydrolytic stability and airoven aging of polyisobutylene-based polyurethane networks, Polym. Bull, vol.8, p.69, 1982.

L. Bonart, E. H. Morbitzer, and . Muller, X-ray investigations concerning the physical structure of crosslinking in urethane elastomers. III. Common structure principles for extensions with aliphatic diamines and diols, Journal of Macromolecular Science, Part B, vol.9, issue.3, 1974.
DOI : 10.1080/00222347408204548

A. Cohn and . Penhasi, Poly(ether urethane amide)s: A new family of biomedical elastomers, Clinical Materials, vol.8, issue.1-2
DOI : 10.1016/0267-6605(91)90017-A

F. Tomita, T. Sanda, and . Endo, Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction, Journal of Polymer Science Part A: Polymer Chemistry, vol.197, issue.6, p.851, 2001.
DOI : 10.1002/1099-0518(20010315)39:6<851::AID-POLA1058>3.0.CO;2-3

F. Tomita, T. Sanda, and . Endo, Polyaddition behavior of bis(five- and six-membered cyclic carbonate)s with diamine, Journal of Polymer Science Part A: Polymer Chemistry, vol.197, issue.6, p.860, 2001.
DOI : 10.1002/1099-0518(20010315)39:6<860::AID-POLA1059>3.0.CO;2-2

A. Rokicki and . Piotrowska, A new route to polyurethanes from ethylene carbonate, diamines and diols, Polymer, vol.43, issue.10, pp.2927-2935, 2002.
DOI : 10.1016/S0032-3861(02)00071-X

G. Randrasana, B. Daude, C. Delmond, and . Baquey, A new route to polyurethanes from ethylene carbonate, diamines and diols, Innov. Tech. Biol. Med, vol.15, issue.6, p.707, 1994.

R. Zalipsky, S. Seltzer, and . Menon-rudolph, Evaluation of a new reagent for covalent attachment of polyethylene glycol to proteins.???, Biotechnology and Applied Biochemistry, vol.15, issue.1, p.100, 1992.
DOI : 10.1111/j.1470-8744.1992.tb00198.x

D. Nathan, N. Bolika, S. Vyavahare, J. Zalipsky, and . Kohn, Hydrogels based on watersoluble poly(ether urethanes) derived from L-lysine and poly(ethylene glycol)

R. Rokicki and . Lazinski, Polyamines containing ?-hydroxyurethane linkages as curing agents for epoxy resin, Angewandte Makromolekulare Chemie, vol.170, issue.1, p.211, 1989.
DOI : 10.1002/apmc.1989.051700117

Y. Kihara, T. Kushida, and . Endo, Optically active poly(hydroxyurethane)s derived from cyclic carbonate andL-lysine derivatives, Journal of Polymer Science Part A: Polymer Chemistry, vol.34, issue.11, p.2173, 1996.
DOI : 10.1002/(SICI)1099-0518(199608)34:11<2173::AID-POLA10>3.0.CO;2-C

T. Kihara and . Endo, Synthesis and properties of poly(hydroxyurethane)s, Journal of Polymer Science Part A: Polymer Chemistry, vol.31, issue.11, pp.2765-373, 1993.
DOI : 10.1002/pola.1993.080311113

H. Neffgen, H. Keul, and . Höker, Cationic Ring-Opening Polymerization of Trimethylene Urethane:?? A Mechanistic Study, Macromolecules, vol.30, issue.5, pp.1289-1297, 1997.
DOI : 10.1021/ma9610774

H. Kusan, H. Keul, and . Höker, Cationic Ring-Opening Polymerization of Tetramethylene Urethane, Macromolecules, vol.34, issue.3, pp.389-395, 2001.
DOI : 10.1021/ma000535c

H. Neffgen, H. Keul, and . Höker, Polymerization of 2,2-dimethyltrimethylene urethane

R. Zalipsky, S. Seltzer, and . Menon-rudolph, Evaluation of a new reagent for covalent attachment of polyethylene glycol to proteins.???, Biotechnology and Applied Biochemistry, vol.15, issue.1, p.100, 1992.
DOI : 10.1111/j.1470-8744.1992.tb00198.x

D. Nathan, N. Bolika, S. Vyavahare, J. Zalipsky, and . Kohn, Hydrogels based on water-soluble poly(ether urethanes) derived from L-lysine and poly(ethylene glycol), Macromolecules, vol.25, issue.18, p.4476, 1992.
DOI : 10.1021/ma00044a004

V. Palaskar, A. Boyer, E. Cloutet, C. Alfos, and H. Cramail, Synthesis of Biobased Polyurethane from Oleic and Ricinoleic Acids as the Renewable Resources via the AB-Type Self-Condensation Approach, Biomacromolecules, vol.11, issue.5, pp.11-1202, 2010.
DOI : 10.1021/bm100233v

URL : https://hal.archives-ouvertes.fr/hal-00503105

A. Champ, The Science of the Total Environment, 2000.

I. Kébir, A. Campistron, J. Laguerre, C. Pilard, T. Bunel et al., Use of telechelic cis-1,4-polyisoprene cationomers in the synthesis of antibacterial ionic polyurethanes and copolyurethanes bearing ammonium groups, Biomater, pp.28-4200, 2007.

. Nanoparticle, Polymer Hybrid Particles: The Catalytic Activity of Metal Nanoparticles Formed on the Surface of Polymer Particles by UV-Irradiation, Macromol. Symp, p.282, 0199.

M. Yagci, G. Sangermano, and . Rizza, A visible light photochemical route to silver???epoxy nanocomposites by simultaneous polymerization???reduction approach, Polymer, vol.49, issue.24, pp.49-5195, 2008.
DOI : 10.1016/j.polymer.2008.09.068

G. Tyurin, D. De-filpo, F. P. Cupelli, A. Nicoletta, G. Mashin et al., Particle size tuning in silver-polyacrylonitrile nanocomposites, eXPRESS Poly, Let, vol.4, p.71, 2010.

M. U. Uygun, D. Kahveci, S. Odaci, Y. Timur, and . Yagci, Antibacterial Acrylamide Hydrogels Containing Silver Nanoparticles by Simultaneous Photoinduced Free Radical Polymerization and Electron Transfer Processes, Macromolecular Chemistry and Physics, vol.18, issue.21, pp.210-1867, 2009.
DOI : 10.1002/macp.200900296

L. D. Cocca and . Orazio, Novel silver/polyurethane nanocomposite byin situ reduction: Effects of the silver nanoparticles on phase and viscoelastic behavior, Journal of Polymer Science Part B: Polymer Physics, vol.42, issue.4, pp.46-344, 2008.
DOI : 10.1002/polb.21308

H. Hong, J. L. Park, I. H. Sul, J. Youk, and T. J. Kang, Preparation of Antimicrobial

M. B. Shameli, W. M. Ahmad, A. Zin-wan-yunus, N. A. Rustaiyan, M. Ibrahim et al., Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity, International Journal of Nanomedicine, vol.5, issue.875, 2010.
DOI : 10.2147/IJN.S13632

J. F. Humphries, J. B. Jaworzyn, A. Cantwell, and . Eakin, The use of non-ionic ethoxylated and propoxylated surfactants to prevent the adhesion of bacteria to solid surfaces, FEMS Microbiology Letters, vol.42, issue.1, pp.42-91, 1987.
DOI : 10.1111/j.1574-6968.1987.tb02305.x

H. and S. Hsu, Biological performances of poly(ether)urethane?silver nanocomposites, Nanotech, vol.18, p.475101, 2007.

E. Sardella, P. Favia, R. Gristina, M. Nardulli, and R. Agostino, Plasma-Aided Micro- and Nanopatterning Processes for Biomedical Applications, Plasma Processes and Polymers, vol.13, issue.6-7, 2006.
DOI : 10.1002/ppap.200600041