

Southern Elephant Seal Foraging Behaviour Influences of Oceanographic Conditions

Anne-Cécile Dragon 1,2

¹CEBC-CNRS, France

² MAP 5-CNRS, France

PhD Advisors: Avner Bar-Hen² & Christophe Guinet¹

Chize, 16 September 2011

Content

Introduction

Study site & model species

Scale-related patterns: Detection of Foraging Behaviour Foraging & Oceanographic Conditions

Synthesis

Perspectives

Animal Movement

Seasonal migrations Avoiding predators

Foraging

Animal movement

Finding mates

Aggressive interactions

Optimal Foraging

Optimal Foraging Theory

Mac Arthur & Pianka 1966 ; Emlen 1966 ; Pyke et al. 1977 etc.

 \rightarrow animals forage in ways maximizing their fitness

 \rightarrow evolutionary favorable strategies that optimise resource acquisition

Field measurements

In the field,

observations / measurements of

• feeding events

feeding events

Field measurements

feeding events

In the field,

observations / measurements of

- feeding events
- body condition

body condition

Field measurements

feeding events

In the field,

observations / measurements of

- feeding events
- body condition
- trajectory

body condition

trajectory

Field measurements

Trajectory

Movement

 \rightarrow continuous process

 $\forall t \ decision \ to \ change \ behaviour$

or not

Trajectory

Movement

 \rightarrow continuous process

 $\forall t \ decision \ to \ change \ behaviour$

or not

Moving animal,

 \rightarrow must decide to continue moving,

to change direction,

speed of movement

etc.

Trajectory

Movement

 \rightarrow continuous process

 $\forall t$ decision to change behaviour

or not

Moving animal,

 \rightarrow must decide to continue moving,

to change direction,

speed of movement

etc.

temporal & spatial scales

in a patchy environment

 \rightarrow within-patch movements

Patch =

High trophic value area

Trajectory

Movement

 \rightarrow continuous process

 $\forall t \ decision \ to \ change \ behaviour$

or not

Moving animal,

 \rightarrow must decide to continue moving,

to change direction,

speed of movement

etc.

temporal & spatial scales

in a patchy environment

- \rightarrow within-patch movements
- \rightarrow between patches

Patch =

High trophic value area & Different patch sizes

Foraging Detection in Predators

• Detection of intensive foraging zones

 \rightarrow Area Restricted Search (ARS)

Kareiva & Odell 1987

 \rightarrow with **aggregated** prey items, search **intensification**

Foraging Detection in Predators

• Detection of intensive foraging zones

 \rightarrow Area Restricted Search (ARS)

Speed (m/s)

Kareiva & Odell 1987

→ with **aggregated** prey items, search **intensification**

ⓑ Displacement speed

Foraging Detection in Predators

• Detection of intensive foraging zones

 \rightarrow Area Restricted Search (ARS)

Kareiva & Odell 1987

→ with aggregated prey items, search intensification

Intensive search \Leftrightarrow ARS

- low speed
- strong sinuosity

Extensive search \Leftrightarrow travelling

- high speed
- small sinuosity

Goal: identify foraging behaviour from displacement parameters

• empirical descriptors Benhamou & Bovet 1989

pathlength, speed, turning angles etc.

Hyp: displacement \rightarrow foraging behaviour

bimodal distribution \rightarrow 2 behavioural modes

Goal: identify foraging behaviour from displacement parameters

- empirical descriptors
- analytical methods

fractal dimension, first-passage-time etc.

Fauchald & Tveraa 2003

First-Passage-Time (FPT)

= **crossing duration** in a virtual circle with a given radius *d* centered on the *ith* path location

 $FPT = t_6 - t_1$

radius d ~ patch scale

Goal: identify foraging behaviour from displacement parameters

- empirical descriptors
- analytical methods
- process-based models

Goal: identify foraging behaviour from displacement parameters

- empirical descriptors
- analytical methods
- process-based models

Jonsen et al. 2003, Moralès et al. 2004, Jonsen et al. 2007, Patterson et al. 2008

Goal: identify foraging behaviour from displacement parameters

- empirical descriptors
- analytical methods
- process-based models

 q_{ij} = **probability** of being in the **behavioural mode** *i* at the time *t*+1 knowing that the individual was in mode *j* at the time *t*

 $[i,j] \in \{1,2\}^2 \rightarrow estimation of q_{11}, q_{12}, q_{21}, q_{22}$

Jonsen et al. 2003, Moralès et al. 2004, Jonsen et al. 2007, Patterson et al. 2008

Goal: identify foraging behaviour from displacement parameters

- empirical descriptors
- analytical methods
- process-based models

- \rightarrow Behaviour estimation from movement variables
- + environmental covariate to help in estimation

\rightarrow ¿ Behavioural transitions \Leftrightarrow Environmental Changes ?

Movement & Environment

• Detection of intensive foraging zones along tracks

→ Area-restricted Search Kareiva & Odell, 1987

 \rightarrow detection at different scales that will match the patch sizes

Movement & Environment

• Detection of **intensive foraging zones** along tracks

 \rightarrow Area-restricted Search Kareiva & Odell, 1987

 \rightarrow detection at different scales that will match the patch sizes

Movement & Environment

• Detection of intensive foraging zones along tracks

→ Area-restricted Search Kareiva & Odell, 1987

 \rightarrow detection at different scales that will match the patch sizes

¿ What are the additional challenges in the marine environment?

Movement & Environment

• Detection of intensive foraging zones along tracks

 \rightarrow Area-restricted Search Kareiva & Odell, 1987

\rightarrow detection at different scales that will match the patch sizes

¿ What are the additional challenges in the marine environment?

o fluid & dynamic & wide environment

Movement & Environment

• Detection of intensive foraging zones along tracks

→ Area-restricted Search Kareiva & Odell, 1987

- \rightarrow detection at different scales that will match the patch sizes
- ¿ What are the additional challenges in the marine environment?
 - o fluid & dynamic & wide environment o difficulty of observation

Movement & Environment

• Detection of intensive foraging zones along tracks

→ Area-restricted Search Kareiva & Odell, 1987

\rightarrow + detection at different scales that will match the patch sizes

- ¿ What are the additional challenges in the marine environment?
 - o fluid & dynamic & wide environmento difficulty of observationo vertical dimension

Meso-scale Structuration

Meso-scale Structuration

Meso-scale Structuration

Meso-scale Structuration

phytoplankton blooms stimulation in sub- & mesoscale structures

 \rightarrow resources aggregation

in the eddies & filaments

for higher trophic levels Wheeler et al. 2003, Bakun 2006, Bost 2009

Proxies of Biological Richness

Proxies of Biological Richness

Biologging & Top-Predators

Biologging & Top-Predators

Goals of this PhD

Detect successful foraging behaviour

horizontal dimension

- ¿ Which data resolution ?
- ¿ Which methodology ?

Hyp: intensive foraging related to \triangleleft body condition
Goals of this PhD

Detect successful foraging behaviour

horizontal dimension vertical dimension

¿ Which data resolution ?

¿ Which methodology ?

For diving predators,

with movements in horizontal + vertical dimensions

Hyp: diving behaviour related to horizontal ARS

Goals of this PhD

Detect successful foraging behaviour

horizontal dimension

vertical dimension

¿ Which data resolution ?

¿ Which methodology ?

 Establish how oceanographic conditions affect the foraging behaviour

¿ Behavioural transitions ⇔ Oceanographic Changes ?

¿ Influence of Eddies ?

Hyp: intensive foraging related to eddies

Goals of this PhD

Detect successful foraging behaviour

horizontal dimension

vertical dimension

¿ Which data resolution ?

¿ Which methodology ?

 Establish how oceanographic conditions affect the foraging behaviour

¿ Behavioural transitions ⇔ Oceanographic Changes ?

¿ Influence of Eddies ?

→ According to various **spatial & temporal scales**

→ In a wild animal in a dynamic environment

Content

Introduction

Study site & model species

Scale-related patterns: Detection of Foraging Behaviour Foraging & Oceanographic Conditions

Synthesis

Perspectives

Southern Ocean

numerous eddies in the interfrontal zone

- \rightarrow HNLC but local primary production
- \rightarrow enhancement
- \rightarrow prey aggregation

-3 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.2 0.4 0.6 Log₁₀ of Magnitude of Velocity Averaged over Top 100 m in m s⁻¹

PF = Polar Front SAF = Sub-Antarctic Front STF = Sub-Tropical Front

Southern Indian Ocean

• Numerous top-predators

Southern Indian Ocean

- Numerous top-predators
- Very productive waters during southern summer Dragon et al. 2011 Cybium

Southern Elephant Seal

Southern Elephant Seal

Order: Pinnipeds Biggest Phocid Important Sexual Dimorphism

Life cycle: 2 months on land / year

Post-breeding Foraging trip:

Post-moulting Foraging trip:

3 - 4 months

6 - 7 months

At sea At sea Oct: Breeding Jan: Moulting

at sea

Southern Elephant Seal

Order: Pinnipeds Biggest Phocid Important Sexual Dimorphism Life cycle: 2 months on land / year Post-breeding Foraging trip: 3 - 4 months at sea Post-moulting Foraging trip: 6 - 7 months Oct: Breeding **Continuous Deep Diving** 3 min at the surface Jan: Moulting 0 -200 Depth (m) at sea -400 Depth Dive duration 18: 00:0 Mean 500-600 m 20-30 min 6 8 10 4 12 2000 m ~ 80 min Maximal Water Temperature ℃

Southern Elephant Seal

+ specific diving behaviour

Passive Drift Dives

Negative

Crocker et al. 1997 Biuw et al. 2003

Drift rate = Drift rate = Drift rate = Drift condition
At-sea proxy of foraging success

Previous Studies

At-sea distribution ?

Tagging since 2003 in Kerguelen

Previous Studies

At-sea distribution ?

Tagging since 2003 in Kerguelen

Previous Studies

 \rightarrow Intersexual & Inter-ages differences

	Tagging	Indirect Studies (Isotopes etc.)	
Juveniles (♀ & ♂)	pelagic: interfrontal zone	Meso-pelagic prey Myctophids	
Females (> 4 yrs)	pelagic : - Interfrontal zone		
	- Marginal Ice Zone		
Males (> 4 yrs)	benthic : - Kerguelen Plateau - Peri-Antarctic Plateau	benthic prey	

 \rightarrow several geographic foraging strategies

Ducatez et al. 2008 Mar Biol, Cherel et al. 2008 MEPS, Bailleul F. et al 2010. Ecography

Tagging data

• Argos & GPS tracks (Lon, Lat)

Tagging data

- Argos & GPS tracks (Lon, Lat)
- **CTD** (Conductivity, T°, Depth)
- **TDR** (T°, Depth)

270 000 000

2003

along the water column

Tagging data

- Argos & GPS tracks (Lon, Lat)
- **CTD** (Conductivity, T^o, Depth)
- **TDR** (T°, Depth)

Tagging data

- Argos & GPS tracks (Lon, Lat)
- **CTD** (Conductivity, T^o, Depth)
- **TDR** (T°, Depth)

Diving behaviour variables:

- Diving duration, bottom-time
- Max depth, pathlength

Tagging data

- Argos & GPS tracks (Lon, Lat)
- **CTD** (Conductivity, T°, Depth) along the water column
- **TDR** (T°, Depth)

Diving behaviour variables:

- Diving duration, bottom-time
- Max depth, pathlength

Satellital data we

weekly & monthly maps

- Sea Level Anomalies **SLA** (1/3°)
- Water Colour $(1/25^{\circ}) \rightarrow$ [chlorophyll A]

Content

Introduction

Study site & model species

Scale-related patterns: Detection of Foraging Behaviour Foraging & Oceanographic Conditions

Synthesis

Perspectives

Foraging Detection

to detect successful foraging areas,

1) successful = *increase in body condition*

in the horizontal dimension,

2) which method & data is the most appropriate ?

Foraging success from the drift rate index

Crocker et al. 1997, Biuw et al. 2003

Foraging success from the drift rate index

Crocker et al. 1997, Biuw et al. 2003

Foraging success from the drift rate index

➢ Drift rate over time = ➢ body condition

Crocker et al. 1997, Biuw et al. 2003

Main successful foraging areas including a 4 day metabolisation lag

Rosen et al. 2007, Thums et al. 2008

Foraging Detection 2) which method & data ?

Similarity between • empirical descriptors

- analytical methods
- process-based models

Foraging Detection 2) which method & data ?

Similarity between • empirical descriptors

- analytical methods
- process-based models 80 100 120 **First-Passage Time 39 ± 3%** -40 Nb Dives / km **Drift rate Index** 16 ± 6 % -45 -50 -55 -60 -- extensive foraging 100 40 60 80 intensive foraging Dragon et al. in revision MEPS *Argos* + *GPS* + *TDR*, *n* = 6 ♀ jitude

Foraging Detection 2) which method & data ?

Best similarity between

process-based models & Pody Condition

Foraging Detection 2) which method & data ?

Good similarity between Argos & GPS (39 ± 6 %)

for process-based models

\rightarrow little effect of data resolution

Foraging Detection

to detect successful foraging areas,

1) successful = *increase in body condition*

in the horizontal dimension,

2) which method & data is the most appropriate ?

in the vertical dimension,

3) are the seals displaying vertical ARS?

Foraging Detection 3) vertical ARS ?

Identification of 4 dive classes (PCA & cluster)

Hindell et al. 1991 Fedak et al. 2001 Schreer et al. 2001 Thums et al. 2008

Foraging Detection 3) vertical ARS ?

Identification of 4 dive classes (PCA & cluster)

Hindell et al. 1991 Fedak et al. 2001 Schreer et al. 2001 Thums et al. 2008

	Sinuosity	Bott.Time	Pathlength	Depth
Drift	0	++	-	-
Explo	-	-	++	+
Shal. Active	++	+		-
Deep. Active	++++			++

Intensification of the foraging activity

 \rightarrow vertical ARS

Argos + GPS + TDR, n = 9 ♀

Dragon et al. accepted MEPS

Foraging Detection 3) vertical ARS ?

Bottom -Time adaptation according to depth

- Shallow diving: optimisation of bottom time Bailleul et al. 2007b,
- Deep diving: energetic cost
- \rightarrow quadratic relation *Bessigneul et al. in prep.*

Argos + GPS + TDR, n = 9 ♀

Foraging Detection

to detect successful foraging areas,

1) successful = *local* **increase in body condition**

in the horizontal dimension,

2) which method & data is the most appropriate ?

in the vertical dimension,

3) are the seals displaying vertical ARS?

in both dimensions,

4) **consistence** between increase in body condition and horizontal & vertical ARS ?

Foraging Detection
4) horizontal & vertical consistency ?

Process-based models & Drift rate index:

→ Localisation of the main successful foraging areas

Foraging Detection
4) horizontal & vertical consistency ?

Process-based models & Drift rate index:

→ Localisation of the main successful foraging areas

Active dives & vertical ARS

all along the tracks

 \rightarrow Localisation of the foraging dives

Foraging Detection
4) horizontal & vertical consistency ?

Process-based models & Drift rate index:

→ Localisation of the main successful foraging areas

Active dives & vertical ARS

all along the tracks

 \rightarrow Localisation of the foraging dives

Variations in dive proportions depending on the horizontal behavioural mode

Extensive Foraging vs. Intensive Foraging

Dragon et al. accepted MEPS

A Mass Gain when A foraging intensification

Foraging Detection
4) horizontal & vertical consistency ?

 \rightarrow foraging & \triangleleft in body condition *all along the tracks*

 \rightarrow but, main successful foraging localised in very favourable areas

 \rightarrow localisation of main foraging areas from horizontal tracking data

= good proxy of foraging success

even for a diving predator

Foraging Detection

to detect successful foraging areas,

in the horizontal dimension,

1) increase in body condition

Main successful foraging areas = ARS 4-day lag for an increase in body condition

2) which method & data is the most appropriate ?

Process-based models (HMM, SSM etc.) either on Argos or GPS tracking data

Dragon et al. under review MEPS

Foraging Detection

to detect successful foraging areas,

in the vertical dimension,

3) are the seals displaying vertical ARS?

intensification of foraging in deep & shallow active dives occurring all along the foraging trip

in both dimensions,

4) **consistence** between increase in body condition and horizontal & vertical ARS ?

 \bigtriangledown % active dives & \checkmark % horizontal ARS ~ \checkmark gain mass

horizontal ARS = *good predictor of foraging success*

Dragon et al. accepted MEPS

Foraging Detection

Favourable foraging areas

 \rightarrow how can we characterise their distribution ?

Content

Introduction

Study site & model species

Scale-related patterns: Detection of Foraging Behaviour Foraging & Oceanographic Conditions

Synthesis

Perspectives

Foraging & Oceanographic Conditions.

1) Do the seals adapt their foraging behaviour according to specific oceanographic conditions ?

¿ Behavioural transitions ⇔ Oceanographic Changes ?

2) Are successful foraging areas related to eddies ?

if yes, which type of eddies ?

Foraging & Oceanographic Conditions
1) Oceanographic conditions at track scale?

 \rightarrow in process-based models,

improvement of behavioural mode estimation

with the use of an environmental covariate : Sea Level Anomalies

Foraging & Oceanographic Conditions
1) Oceanographic conditions at track scale?

 \rightarrow in process-based models,

improvement of behavioural mode estimation

with the use of an environmental covariate : Sea Level Anomalies

Logit(P[switching to intensive foraging]) = - 2.52 + 0.92 * SLA

Foraging & Oceanographic Conditions
2) Eddies & Foraging ?

→ Significant correlations between behaviour & oceanographic environment

		Nb Dive/km	Bottom Time	Depth	Pathlength
SLA		/	/		
[Chl a]	/		/		
Temp					

Dragon et al. 2010 Prog in Ocean

Foraging & Oceanographic Conditions 3) Eddies & Foraging ?

If an oceanographic structure presents ...

Foraging & Oceanographic Conditions3) Eddies & Foraging ?

in a dynamic environment, If an oceanographic structure presents ... Low SLA Low AbGeoVel High [Chl a] Low Temperatures

Cyclonic & Anti-Cyclonic eddies are adjacent

Argos + *CTD*, *n* = 22 ♀

Park et al. 2002, Bakun 2006

Foraging & Oceanographic Conditions3) Eddies & Foraging ?

If an oceanographic structure presents ...

Anti-Cyclonic edges

& Cyclonic cores

in a dynamic environment,

Cyclonic & Anti-Cyclonic eddies are adjacent Eddies' edges present **bouncing effects**

Argos + CTD, n = 22 ♀

Foraging & Oceanographic Conditions3) Eddies & Foraging ?

If an oceanographic structure presents ...

Foraging & Oceanographic Conditions
3) Eddies & Foraging ?

If an oceanographic structure presents ...

Dragon et al. 2010 Prog in Ocean

Foraging & Oceanographic Conditions.

 \rightarrow Foraging related to specific oceanographic structures

Do the seals adapt their foraging behaviour according to specific oceanographic conditions ?

YES

Are successful foraging areas related to eddies ? YES

if yes, which type of eddies ?

cyclonic cores & anti-cyclonic edges

Dragon et al. 2010 Prog in Ocean, Dragon et al. in revision MEPS

Content

Introduction

Study site & model species

Scale-related patterns: Detection of Foraging Behaviour Foraging & Oceanographic Conditions

Synthesis

Perspectives

Intensification of Foraging Behaviour

Myctophids = nyctemeral migrations

☆ depth of cryptic prey☆ forager depth

Pusch et al. 2004, Loots et al. 2007

Intensification of Foraging Behaviour

Myctophids = nyctemeral migrations

☆ depth of cryptic prey☆ forager depth

Dive by night *depth ~ 80m*

Dive by day depth ~ 200m

Dive by day & night depth ~ 500m

Contraints & Species Biology

Depth

Intensification of Foraging Behaviour

Myctophids = nyctemeral migrations

☆ depth of cryptic prey☆ seal depth

Shallow Active	Deep Active

Dragon et al. accepted MEPS

Intensification of Foraging Behaviour

Myctophids = nyctemeral migrations

☆ depth of cryptic prey☆ seal depth

Active

But both active dives displayed by day & night time

Dragon et al. accepted MEPS

Intensification of Foraging Behaviour

Cyclonic cores

- & Anticyclonic edges
- \rightarrow intensification of the foraging behaviour

> Dragon et al. 2010 Prog in Ocean Jaud et al. in prep.

Intensification of Foraging Behaviour

Cyclonic cores

- & Anticyclonic edges
- \rightarrow intensification of the foraging behaviour

⊘[phytoplankton] ⊘ light attenuation

b depth of cryptic prey

Dragon et al. 2010 Prog in Ocean Jaud et al. in prep.

Intensification of Foraging Behaviour

Cyclonic cores

- & Anticyclonic edges
- \rightarrow intensification of the foraging behaviour

⊘[phytoplankton] ⊘ light attenuation

☆ depth of cryptic prey☆ seal depth

Dragon et al. 2010 Prog in Ocean

Jaud et al. in prep.

Intensification of Foraging Behaviour

Cyclonic cores

- & Anticyclonic edges
- \rightarrow intensification of the foraging behaviour

Low Pathlength Low Max Depth High Bottom Time High Nb Dives/km

☆ depth of cryptic prey☆ seal depth

Sub-surface Fluorescence study

Guinet et al. in prep. Dragon et al. 2010 Prog in Ocean Jaud et al. in prep.

Intensification of Foraging Behaviour

Cyclonic cores

- & Anticyclonic edges
- \rightarrow intensification of the foraging behaviour

⊘[phytoplankton] ⊘ light attenuation Solution Solutio

Bioluminescent study

Vacquie et al. submitted Dragon et al. 2010 Prog in Ocean Jaud et al. in prep.

Biologging & Top-Predators

Biologging & Top-Predators

Biologging & Top-Predators

Foraging Detection

Animals forage & feed all along their tracks, but ... Favourable foraging areas

 \rightarrow ARS display

Fine scale

- \rightarrow body condition increase
- \rightarrow diving activity intensification (esp. shallow active dives)

Foraging Detection

Animals forage & feed all along their tracks, but ... Favourable foraging areas

 \rightarrow ARS display

Fine scale

- \rightarrow body condition increase
- \rightarrow diving activity intensification (esp. shallow active dives)
- 1) Use of Argos tracking data to detect successful foraging areas
 - ► to be confirmed for other top-predator species

Foraging Detection

Animals forage & feed all along their tracks, but ... Favourable foraging areas

 \rightarrow ARS display

Fine scale

- \rightarrow body condition increase
- \rightarrow diving activity intensification (esp. shallow active dives)
- 1) Use of Argos tracking data to detect successful foraging areas
 - ► to be confirmed for other top-predator species
- 2) Use of environmental covariate to help in this detection
 - to be chosen according to species biology

sea level anomalies, sea ice, bathymetry etc.

Foraging Detection

Animals forage & feed all along their tracks, but ... Favourable foraging areas

 \rightarrow ARS display

Fine scale

- \rightarrow body condition increase
- \rightarrow diving activity intensification (esp. shallow active dives)
- 1) Use of Argos tracking data to detect successful foraging areas
 - ► to be confirmed for other top-predator species
- 2) Use of environmental covariate to help in this detection
 - to be chosen according to species biology
 - sea level anomalies, sea ice, bathymetry etc.
- 3) Validation by very fine scale data

Foraging Detection

Favourable foraging areas

 \rightarrow ARS display

Fine scale

- \rightarrow body condition increase
- \rightarrow diving activity intensification (esp. shallow active dives)
- \rightarrow ¿ feeding events increase ? Very Fine scale

Weimerskirch et al. 2007

Bowen et al. 2002, Hooker et al. 2002, Davis et al. 2003

Foraging Detection

- Favourable foraging areas
- \rightarrow ARS display
- \rightarrow body condition increase
- \rightarrow diving activity intensification (esp. shallow active dives)
- \rightarrow ¿ feeding events increase ? Very Fine scale

Bowen et al. 2002, Hooker et al. 2002, Davis et al. 2003

Introduction - Study Species - Results - Synthesis - Perspectives

Foraging Detection

- Favourable foraging areas
- \rightarrow ARS display
- \rightarrow body condition increase
- \rightarrow diving activity intensification (esp. shallow active dives)

Very Fine scale

Bowen et al. 2002, Hooker et al. 2002, Davis et al. 2003

Introduction - Study Species - Results - Synthesis - Perspectives

Foraging Detection

- Favourable foraging areas
- \rightarrow ARS display
- \rightarrow body condition increase
- \rightarrow diving activity intensification (esp. shallow active dives)

150 Mo

In the last decades,

1 Mo

100 ko

1 ind =

Exponential increase in data quality & quantity

5 Go

+ complexification of methodology

Introduction - Study Species - Results - Synthesis - Perspectives

Given a biological question,

validation of best foraging predictor with few individuals

Application to long-term tracking datasets

Inter-annual Study

Natural experiment for inter-annual variations

Perspectives

Global Warming

Over the years,

- A thermocline depth

- Predators foraging depth
- Diological richness
- impact on top-predators population dynamics ?

Special Thanks to ...

Defence committee

Chizé's team

Paris's team

Kerguelen's team

Friends & Family

Arnaud

Publications

Refereed Journal Publications Dragon, A-C., Monestiez, P., Bar-Hen, A. and C. Guinet. Linking foraging behaviour to physical oceanographic structures: Southern Elephant Seals and mesoscale eddies east of Kerguelen Island. *Progress in Oceanography*, 87 (2010) 61-71.

- Dragon, A-C., Marchand, S., Authier, M., Cotté, C., Blain, S. and C. Guinet. Insights into the spatio-temporal distribution of productivity in the indian southern ocean provided by satellite observations. *Cybium*, in press.
- Dragon, A-C., Bar-Hen, A., Monestiez, P. and C. Guinet. Horizontal Area-Restricted-Search and Vertical Diving Movements to Predict Foraging Success in a Marine Top-Predator. *Marine Ecology Progress Series*. 2011. *Accepted*.

Publications

SUBMITTED JOURNAL PUBLICATIONS Patterson, T., Bravington, M., Biuw, M., Hindell, M., Foster, S., Fedak, M., Dragon, A-C., Guinet, C. and D. Costa. Ocean-scale analysis, population-level comparisons and spatial-prediction of foraging marine toppredators: a global comparison of foraging strategies in four sub-populations of southern elephant seals (*Mirounga leonina*). Ecological Monographs. 2011. In Revision.

- **Dragon, A-C.**, Bar-Hen, A., Monestiez, P. and C. Guinet. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data *Marine Ecology Progress Series*. 2011. In Revision.
- Authier, M., Dragon, A-C., Richard, P., Cherel, Y. and C. Guinet. O' mother where wert thou ? Maternal strategies in the southern elephant seal: a stable isotope investigation. *Proceedings of the Royal Society of London*, B. 2011. Under Review.
- Vacquie-Garcia, J., Royer, F., Dragon, A-C., Viviant, M. and Bailleul, F. and C. Guinet. Foraging in the darkness of the Southern Ocean: influence of bioluminescence on a deep diving predator. *PloS One. Under Review.*

Publications

- PAPERS IN PREPARATION
 Dragon, A-C., Bar-Hen, A., Monestiez, P. and C. Guinet. Temperature and Temperature Gradient as Predictors of Top-Predators' Fine Foraging Decisions: Southern Elephant Seals Adapting their Diving Behaviour in the Polar Frontal Zone off Kerguelen Islands. Deep-Sea Research, Part II. submission in November 2011.
 - Dragon, A-C., Viviant, M., Bar-Hen, A., Monestiez, P. and C. Guinet. Adapting state-space models to predator's biology: the detection of arearestricted search on antarctic fur seals' tracks. *Marine Ecology Progress Series.* submission in December 2011.
 - Dragon, A-C., Cotté, C., Walker, E., Phillips, H., Bar-Hen, A., Monestiez, P. and C. Guinet. Horizontal and vertical characterisation of a polar mesoscale structure: from ecological and oceanographical points of view. *Proceedings of the Royal Society of London, B.* submission in December 2011.
 - Authier, M., Dragon, A-C., Cherel, Y. and C. Guinet.Changing your Habits: where's the gain? Females sticking to their foraging strategy have larger mass gain in Southern Elephant Seals. *Ecology*. submission in October 2011.
 - Cotté, C., d'Ovidio, F., Dragon, A-C., Lévy, M. and C. Guinet. Biophysical identification of eddies of ecological interest from a marine predator outlook. *Royal Society Interface*. submission in October 2011.
 - Martin, A., Thiebot, J-B., Dragon, A-C., Cherel, Y. and C-A. Bost. Sexual differences in foraging strategies of macaroni penguins in relation to austral oceanographic structures and diet. *Polar Biology*. submission in October 2011.