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Abstract

V
irtual Infrastructures (VIs) have recently emerged as result of the combined on-
demand provisioning of Information Technology (IT) resources (consolidated by Cloud

Computing) and dynamic virtual networks (introduced by Cloud Networking). By com-
bining IT and network virtualization to realize dynamic service provisioning, the VI con-
cept is turning the Internet into a world-wide reservoir of interconnected resources, where
computational, storage, and communication services are available on-demand for different
users and applications.

A VI is fully virtualized, provisioned and managed by an Infrastructure Provider (InP).
During the VI’s lifetime, the requesting user is given full control over the aggregation of
IT and network resources. Several projects are studying mechanisms to create, allocate,
deploy, and manage VIs, exploring technologies such as virtualization of machines, links,
switches, and routers for composing and providing isolated and time-limited virtual in-
frastructures.

The innovation introduced by VIs brought along a set of challenges requiring the
development of new models, technologies, and procedures to assist the migration of existing
applications and services from traditional infrastructures to VIs. The complete abstraction
of physical resources and network topologies, coupled with the indeterminism of required
computing and communication resources to execute applications, turned the specification
and composition of a VI into a challenging task. In addition, efficiently mapping a set of
VIs onto a distributed and large-scale physical substrate is an NP-hard problem. Besides
considering common objectives of InPs (e.g., efficient usage of the physical substrate, cost
minimization, increasing revenue), an effective allocation algorithm should consider the
users’ expectations (e.g., allocation quality, data location and mobility).

This thesis contributes to these challenges and related ongoing research initiatives by
proposing the following:

A language for describing virtual infrastructures: We propose the Virtual Infras-
tructure Description Language (VXDL) as a descriptive and declarative language that
allows users and systems to completely describe the relevant components of a virtual
infrastructure, including the set of virtual resources, the network topology, and the or-
ganization of the internal timeline [6] [1]. The main advantages of such language are
to abstract the request formulation from the effective provisioning and thus increase the
application portability. VXDL has been proven to be an efficient solution for describ-
ing VIs, being adopted by several applications and solutions for provisioning dynamic
VIs. In addition, an open forum for discussions and improvements is being launched
(http://www.vxdlforum.org/). This forum will allow developers and InPs to exchange
experiences, suggestions, and extensions, guiding the standardization of VXDL.

Specifying and executing distributed applications: The execution of a distributed
application is facilitated by a mechanism for translating workflows into VI specifications.
The mechanism extracts information from workflows and combines it with the users’ ex-
pertise on the application’s behavior. Both node and network requirements are addressed.

1
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For a proof of concept, a large-scale distributed application has been executed atop VIs
provisioned following different specifications. The results highlight the importance and
impact of data location and proximity of virtual nodes [5]. In addition, the capability of
specifying elastic VIs results in an efficient tradeoff between cost and performance [2].

Allocating resources to virtual infrastructures: We propose an approach to reduce
the search space in an automatic and efficient way, accelerating the process of VI allocation
and finding an effective mapping solution. In addition, our allocation algorithm exploits
attributes defined in VXDL, and is guided by a problem formulation that reconciles the
perspectives of both users and InPs. Experimental results have shown that by using our
optimized algorithm, the objectives of InPs and users are satisfied [4] [VXAlloc] [VXCap].

Providing reliable virtual infrastructures: Finally, we propose and develop a mech-
anism where a user can delegate the reliability expectations of his application to the InP,
contracting a transparent service. By using VXDL, each VI component can request a
specific level of reliability. The internal InP mechanism translates these requirements into
the effective number of replica nodes and links that must be provisioned together with
the original VI. The results demonstrate that when a failure happens the service automat-
ically activates the replica nodes, keeping the entire reliability management completely
transparent to the running application [7].
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Résumé

L
e concept d’Infrastructures Virtuelles (VI, ou Virtual Infrastructures), approvisionnées
dynamiquement, a émergé récemment suite la combinaison de l’approvisionnement

de ressources informatiques (consolidés par le calcul dans le nuage) d’une part, et des
réseaux virtuels dynamiques (introduits par les réseaux de nuage) d’autre part. Grâce
la virtualisation combinée des ressource de calcul et de réseau pour l’approvisionnement
dynamique de services, le concept de VI a transform l’Internet en un réservoir mondial de
ressources interconnectées, où des services de calcul, de stockage et de communication sont
disponibles á la demande, pour des utilisateurs et applications avec des besoins différents.

Une VI est un infrastructure de calcul et de réseau complètement virtualisée, qui est
approvisionnée et gérée par un Infrastructure Provider (InP) ou fournisseur d’infrastruc-
ture en français. Pendant sa durée de vie, le contrôle sur la VI est transféré á l’utilisateur
émetteur de la requête, qui a désormais le contrôle total sur cette agrégation des ressources
de calcul et de réseau. Plusieurs projets ont proposé des mécanismes pour créer, allouer,
déployer et gérer des machines, liens, commutateurs et routeurs, afin de pouvoir composer
et fournir des infrastructures virtuelles isolées ayant une durée de vie limitée.

Avec l’innovation des VIs viennent aussi un ensemble de nouveaux défis nécessitant le
développement de nouveaux modèles, technologies et procédures, pour assister la migration
d’applications et de services existants d’infrastructures traditionnelles vers des VIs. L’abs-
traction complète des ressources physiques et de la topologie réseau, et l’indéterminisme
dans les besoins des applications en termes de ressources de calcul et de communication
ont fait de la spécification et de la composition de VI un problème difficile. En outre,
l’allocation efficace d’un ensemble de plusieurs VIs sur un substrat physique distribué à
grande échelle est un problème NP-hard. En plus de considérer les objectifs traditionnels
des VIs (par exemple un usage efficace du substrat physique, un cout minimal, un re-
venu croissant), un algorithme d’allocation efficace doit également satisfaire les attentes
des utilisateurs (par exemple la qualité de l’allocation, la localisation des données et la
mobilité).

Ce manuscrit contribue aux initiatives de recherche en cours et est organisées autour
des propositions suivantes :

Un langage pour décrire des infrastructures virtuelles : nous proposons VXDL
(pour Virtual Infrastructure Description Language - langage de description d’infrastruc-
tures virtuelles), qui permet aux utilisateurs et aux systèmes de décrire entièrement les
composants pertinents d’une infrastructure virtuelle, comprenant un ensemble de res-
sources virtuelles, leur topologie réseau et leur organisation temporelle [6] [1]. VXDL
est reconnu comme étant une solution efficace pour décrire des infrastructures virtuelles.
Il est adopté par plusieurs applications pour approvisionner des VIs dynamiques. De
plus, un forum ouvert de discussions pour la progression du langage est en cours de
développement (http://www.vxdlforum.org/). Ce forum permettra aux développeurs
et aux InPs d’échanger leurs expériences, suggestions et propositions d’extensions, pour
conduire VXDL à la standardisation.
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Spécification et exécution d’applications distribuées : l’exécution d’applications
distribuées est facilitée par un mécanisme qui traduit un flux de travail en une spécification
de VI. Ce mécanisme extrait l’information nécessaire des flux de travail pour la combiner
avec l’expertise qu’a l’utilisateur sur le comportement de l’application. Cela répond aux
besoins la fois des nœuds de calcul et du réseau. Pour valider ce concept, une application
distribuée à large échelle est exécutée plusieurs fois dans des VIs, approvisionnées selon
différentes spécifications à chaque fois. Les résultats mettent en évidence l’importance et
l’impact de la localisation des données et de la proximité entre nœuds virtuels [5]. De plus,
la possibilité de spécifier des VIs élastiques permet d’aboutir à un meilleur compromis
entre coût et performance [2].

Allocation d’infrastructures virtuelles : une solution d’allocation est développée
pour réduire l’espace de recherche d’une façon automatique et efficace. Elle accélère le
processus d’allocation et trouve une solution d’allocation efficace. Cette solution a été bre-
vetée. De plus, notre algorithme d’allocation exploite les attributs proposés dans VXDL.
Il est guidé par la formulation du problème qui prend en compte à la fois le point de
vue des utilisateurs et celui des InPs. Des résultats expérimentaux montrent qu’en utili-
sant notre algorithme optimisé, les objectifs des InPs ainsi que ceux des utilisateurs sont
satisfaits [4] [VXAlloc] [VXCap].

Fournir des infrastructures fiables : la fiabilité devient un service offert par des InPs.
Nous proposons et développons un mécanisme, avec lequel un utilisateur peut déléguer les
besoins en fiabilité de son application à l’InP, en souscrivant à un service de fiabilité
qui est transparent pour lui-même. En utilisant VXDL, chaque composant d’une VI peut
demander un niveau de fiabilité spécifique. Le mécanisme, interne à l’InP, traduit ces ni-
veau de fiabilité en le nombre effectif de répliques de nœuds et de liens qui doivent être
approvisionnés en même temps que la VI de base. Des résultats d’expérience montrent
que lorsqu’une défaillance se produit, le service active automatiquement les répliques des
nœuds, tout en gardant la gestion de la fiabilité complètement transparente pour les ap-
plications en cours d’exécution [7].
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1.1 Motivation

1.2 Problem and objectives

1.3 Contributions

1.4 Thesis organization

1.1 Motivation

T
he Internet is constantly evolving, metamorphosing from a communication network
into a computation-and-communication system. Nowadays, users can reserve and

utilize resources and services on a pay-as-you-go basis according to their applications’
requirements [Buyya, 2009]. The maturity of resource virtualization and Grid technologies
has contributed to the emergence of virtualized infrastructures and business models such
as Cloud Computing, which allow users to tap into a virtually unlimited reservoir of
resources [Rochwerger et al., 2009].

Cloud Computing comes at various shapes and flavors, where typically different layers
of an Information Technology (IT) infrastructure are virtualized and delivered to end users
as services. Examples include Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). By renting only the resources that they need, when
they need, small organizations can reduce their costs with IT infrastructure as they no
longer need to spend on buying and managing their own servers. In fact, more and more
companies have opted to outsource their IT infrastructure to Cloud providers [Rosenberg
and Mateos, 2010].

Until recently, several infrastructures virtualized only server and storage resources,
and paid little attention to network. Cloud Networking has changed this scenario by
enabling dynamic provisioning of virtual links to interconnect virtual server components. A
combination of Cloud Computing and Cloud Networking allows for the creation of entirely
virtualized infrastructures (e.g., IT and network) atop a distributed physical substrate. A
Virtual Infrastructure (VI) is a fully virtualized IT infrastructure that appears to be
physical, but in reality, shares the underlying physical substrate with other VIs during a
given time frame.

A VI can be formulated as a graph of computing and communication resources that
carries substantial information. The virtual IT or network components are the vertices
(e.g., nodes, routers, storage), interconnected by a set of virtual links, the edges. The
dynamic provisioning of virtualized resources enables each component of a VI to vary its
capacity during its lifetime. Moreover, a component can be present only in specific stages
of a VI’s lifetime. The resulting VI graph is a malleable and elastic entity, composed and
modeled according to users’ and applications’ requirements.

VIs have a well-defined lifecycle composed of specification, allocation, provisioning,
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and release. For illustrating the use of VIs, the bottom part of Figure 1.1 presents a
physical substrate as a combination of several virtualized resources. In this example,
three Cloud providers are exposing their resources to the management framework. At the
top, a user (e.g., person, institution, or enterprise) wants to run his legacy application
(e.g., scientific application, meeting platform, game, corporate control software) in the
Cloud. The application, which used to run on a physical substrate (e.g., clusters, Grids,
private data centers), now has to migrate to execute on a virtualized infrastructure that
is dynamically provisioned, and where each execution is charged according to the resource
usage. The VI specification is submitted to a management framework responsible for
provisioning the virtual resources according to the user’s specifications. The framework
knows about the capacities of available resources that compose the distributed physical
substrate. With this information, the framework can allocate, provision, and control the
VI during its lifetime.

Provisioning a VI poses a series of challenges due to: i) the indeterminism of the
required VI composition for running a legacy application efficiently; ii) the abstraction of
existing computational power, architecture, and geographical location; and iii) the lack of
specific tools to describe and manage VIs, that consider their dynamic aspect.

1.2 Problem and objectives

The composition and usage of VIs, and the management of virtualized physical substrates
are challenging tasks because although a VI is a simple entity, its virtual resources can
be defined in a complex manner, carrying substantial information. By being elastic, a VI
can vary its configuration, capacities, and usage on the fly. In addition, virtual resources
are mobile and can move around the physical substrate.

Moreover, users who used to know their applications’ behavior on physical substrates
and are now migrating to the Cloud, have difficulty in defining an efficient VI composition
to execute their applications. Different from a private infrastructure, in the Cloud, users
have to find the tradeoff between cost and application performance before submitting the
application.

From the Infrastructure Providers’ (InPs) perspective, allocating and provisioning VIs
are not trivial operations. Allocating resources is a complex step of the VI’s lifecycle
because finding an optimal mapping solution between virtual and physical resources (rep-
resented as graphs) is an NP-hard problem [Chowdhury and Boutaba, 2009]. Besides to
find a satisfactory solution (considering the InP objectives) in an acceptable response time,
an efficient heuristic must consider the user’s expectations.

New models and tools are required to ease the composition of VI’s specification, trans-
lating the abstract application requirements in well-defined attributes for composing the
virtual resources. Several approaches from different projects have investigated the man-
agement of VIs [GEN] [HIP] [SAI] [GEY], but some key-points still require research and
engineering efforts. We identified four key open questions characterizing the main objec-
tives of this thesis:

1. A declarative language capable of easing the specification of distributed
applications is required. A representative model should consider the different
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Figure 1.1: A user requesting a set of compute-and-communication resources for executing
his application.

aspects of IT and network virtualization, describing their functionalities and compo-
sition. The dynamic and elastic aspects of VIs must be considered in the descriptive
process. Today, Cloud providers are representing, describing, and requesting virtual
resources thanks to different application programming interfaces.

2. Models, mechanisms, and tools for simplifying the VI manipulation. As
users are migrating their applications from traditional infrastructures (e.g., clusters,
Grids, private data centers) to a virtualized and often external substrate based on

c© Copyright 2011 by Guilherme Piêgas Koslovski 7
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dynamic provisioning, new models and tools are required to ease the composition
of VIs, translating the abstract application requirements into defined attributes to
compose virtual resources.

3. A solution for allocating VIs considering both users’ and InPs’ expecta-
tions. Finding an efficient mapping between the users’ requirements and the sub-
strate objectives is not trivial. In addition, the VI concept brings new objectives and
expectations for the formulation of the allocation problem: i) the elasticity aspect
of virtual resources; ii) the user’s expectations in terms of application efficiency and
quality of experience; iii) and the on-demand provisioning including pay-as-you-go
model.

4. Reliability as a Service. The on-demand service provisioning model explored
by InPs leaves opportunities for the creation of new services. The provisioning of
new services generally aggregates revenue for InPs, while facilitates the development
and execution of complex applications. For example, a physical resource (IT or
networking) is subject to the occurrence of random failures. Consequently, a VI
allocated on top of a virtualized physical substrate can be also affected by physical
failures. Some applications are critical and cannot tolerate failures as the absence
of a single physical resource can compromise the whole execution. In addition, in a
pay-as-you-go execution model, users have no control of the physical substrate, and
usually have no information to treat and prevent failures.

These four open questions are routing the contributions of this thesis.

1.3 Contributions

Considering the challenges of the previously defined research issues, and defining VIs as
the key entity manipulated in this work, we summarize our contributions in four main
areas: i) the creation of a language for describing VIs; ii) the application and validation of
the language with a distributed application; iii) efficient algorithms for allocating virtual
infrastructures onto virtualized and distributed physical substrate; and iv) the proposition
of VI’s reliability as a service. Figure 1.2 presents the four contributions as they are
distributed over the chapters, describing their interaction and workflow. User input is dealt
with at the highest level. A user should be located on top of the highest level, contributing
with his application and expertise, and below at the bottom level, a distributed and
virtualized physical substrate is present to receive the user VI. This thesis contributions
are the intermediate layers, as describe below:

Virtual Infrastructure Description Language (VXDL): The Virtual Infrastruc-
ture Description Language (VXDL) enables the description of virtual infrastructures [6].
By using VXDL, a VI can be described and modeled defining the exact requirements in
terms of computing resource and network configuration [1] [8]. In addition, VXDL in-
cludes elastic and dynamic aspects of VIs and is constructed for enabling an allocation
and provisioning of the VI guided by users. By defining some cross-layer attributes, users
can interact with the service provisioning, indicating rules and requirements which are
indispensable for the efficient execution of their applications.
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Figure 1.2: The organization of chapters and contributions.

The descriptive capacity of VXDL has been demonstrated through use cases that
represent real scenarios. Furthermore, a set of tools have explored VXDL as the main
language for describing VIs [LYaTiss, 2011] [MOT].

Specifying VIs for executing distributed applications: As users migrate their ap-
plications to the Cloud, a facilitator mechanism is highly required to translate the appli-
cation’s requirements into VXDL documents. For translating workflow-based applications
into VI specifications, we propose a mechanism whose translation strategies extract in-
formation (e.g., data dependency, execution sequence) from a workflow combining it with
the application behavior (given by results of micro-benchmarks and user’s expertise) com-
posing VI specifications [5].

A real large-scale distributed application is translated into different VXDL documents,
which are them submitted to a management framework. An analysis is performed by com-
paring the results of the application when executed on top of different VIs. The analysis
highlight that an optimal VI composition is essential for finding a good tradeoff between
provisioning cost and application performance [2], and the results show the importance of
data and nodes location when executing the application inside a VI [5].

Allocating resources to Virtual Infrastructures: As VXDL introduced attributes
with which the user can define the behavioral rules (e.g., capacity and composition can
vary), and enabled the definition of specific allocation constraints (e.g., a specific location,
disabling the resource sharing, and composing shared risk groups), the VI allocation prob-
lem becomes also controllable by the user, and not only by the InPs. As a consequence,
both users’ and InPs’ perspectives must be combined into the problem formulation. We
formulate the VI allocation problem considering both perspectives and develop an alloca-
tion algorithm guided by these constraints and objectives [4]. The results show that our
allocation algorithm reduces the costs and substrate fragmentation while guaranteeing the
allocation quality.
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Reliable Virtual Infrastructures: Following the current reservation and execution
model, the provisioning of reliable virtual resources becomes a service provided by the InP.
We propose and develop a mechanism capable of interpreting the reliability requirements
(specified within VXDL) and compose a reliable virtual infrastructure. VXDL acts as
a participant in the Service Level Agreement (SLA) composition. The reliability level
requested for each component is translated into the effective number of replicas that must
be dynamically provided to guarantee the user’s requirements. When a failure occurs,
a replica automatically assumes the execution of the resource that failed. The recovery
process is abstracted from the user.

The service is evaluated by executing a distributed application with different require-
ments of reliability level. The results identify the cost for provisioning, and perform a
comparison between the reliable service and the application level reliability support [7].

1.4 Thesis organization

This manuscript is organized as follow. Chapter 2 reviews the literature on the techniques
and concepts related to virtual infrastructures. Chapter 3 presents our language for de-
scribing VIs. Techniques to translate workflow-based applications into VI requirements are
described in Chapter 4. The execution of a large-scale distributed application is presenting
as a validation of the proposition. Chapter 5 presents our algorithms for allocating virtual
infrastructures. In Chapter 6, a mechanism for providing reliable virtual infrastructures as
a service is introduced. Finally, Chapter 7 concludes and presents perspectives for future
work.
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2.2 Virtualization

2.2.1 Computing resources virtualization

2.2.2 Network virtualization

2.2.3 Discussion

2.3 Cloud Computing

2.3.1 Types of Clouds

2.3.2 Service models

2.3.3 Cloud Networking

2.3.4 Discussion

2.4 Virtual Infrastructures

2.4.1 Concept

2.4.2 Building blocks

2.4.3 Discussion

2.5 Provisioning dynamic Virtual Infrastructures

2.5.1 Requirements for efficient VI provisioning

2.5.2 Existing solutions for provisioning VIs

2.5.3 HIPerNet framework

2.5.4 Discussion

2.6 Summary

Part of the contents of this chapter was published at the International Jour-
nal of Network Management - special issue on Network Virtualization and
its Management (IJNM 2010) [1], and at the 20th ITC Specialist Seminar
2009 [8].

2.1 Introduction

T
he concept of Virtual Infrastructure (VI) is emerging from a combination of resource
virtualization techniques (computing and network), Grid Computing, and the inno-

vative service model explored by Cloud Computing. This chapter reviews concepts, tech-
nologies and models related to dynamically provisioned virtual infrastructures. Section 2.2
reviews the techniques and concepts proposed to virtualize IT and network resources. Sec-
tion 2.3 discusses Cloud Computing technology, its key concepts, and future directions. In
Section 2.4, the concept and composition of virtual infrastructures are presented, whereas
their provisioning is described in Section 2.5. Finally a summary of the literature survey
is presented in Section 2.6, positioning the contributions of this thesis.
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2.2 Virtualization

The virtualization of resources consists in dematerializing their physical capacity and
functionalities, and representing them as virtual entities and services. This technology
has been studied for decades in different contexts, such as for virtualizing resources like
desktops, applications, systems, storage, and networks [Jeong and Colle, 2010].

Currently, IT infrastructures are using virtualization to consolidate computational
resources and to decrease administrative costs [VMWare, 2009]. Different services with
specific and distinct requirements can be allocated on a single computational element
or platform, sharing the capacity of physical resources. This consolidation reduces costs
with energy consumption, cooling requirements, administration and management, while
it increases the platform exploitation [Microsoft, 2009]. In addition, virtualization brings
isolation and protection: the hardware abstraction that it provides guarantees that services
hosted by virtualized elements are kept completely isolated from one another.

The available technologies exploit virtualization following four paradigms for resources
sharing: abstraction, partitioning, aggregation, and transformation [Garcia-Espin et al.,
2010].

• Abstraction (1:1) represents the class of physical resources exposed as a single entity
that can be reserved and configured by a user (e.g., the reservation mode explored
by Grid’5000 [Cappello et al., 2005]).

• Partitioning (1:N) a physical resource into N virtual entities is the main paradigm
explored by IT resource virtualization technologies. The N virtual resources share
the capacities and functionalities of the physical resource;

• Aggregation (N:1) consists in grouping a set of physical resources (IT or network)
and exposing the resulting combined capacity as a single entity; and

• Transformation (N:M) is a combination of both partitioning and aggregation. The
virtual entities exposed by partitioned physical resources can be combined indepen-
dently of the physical source.

These paradigms are explored at different levels of an IT infrastructure, including
hardware, operating systems, programming languages, network equipments and links. The
next sections focus on virtualization of computing and network resources.

2.2.1 Computing resources virtualization

In the 1960s, Goldberg explored virtualization techniques to share the computing power of
large mainframes [Popek and Goldberg, 1973]. Until the 2000s, most of these techniques
remained confined to these platforms, having not been much explored by academia and
industry. Due to the decreasing price of microcomputers and the development of modern
multitask operating systems, resource virtualization techniques were not mandatory. In
recent years, motivated by the increasing computing power of modern platforms coupled
with a need for higher flexibility, both academia and industry have directed efforts toward
resource virtualization.

Virtualization became an alternative to overcome some difficulties and limitations of
existing hardware and operating systems, such as platform dependency, and inefficient
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usage of parallel machines. Nowadays, the computing virtualization technology consists
in partitioning a physical resource and representing it as abstract entities called Virtual
Machines (VM) [Rosenblum and Garfinkel, 2005]. Each virtual machine offers features,
services, and interfaces that are similar to those of the underlying virtualized hardware
(e.g., CPU, memory, and Input/Ouput - I/O - devices). An abstraction layer, the Vir-
tual Machine Monitor (VMM), controls the access to the physical hardware [VMWare,
2010] [Barham et al., 2003]. We review below the techniques used by some of the current
VMMs to virtualize CPU, memory, and I/O devices.

2.2.1.1 CPU virtualization

The x86 platform was not initially designed to be virtualized and to share a single physical
resource among multiple virtual machines. Although this architecture has four levels of
execution privileges, operating systems assume a single and isolated execution, using by
default the most privileged level, the ring 0.

Virtualizing this platform naturally requires the introduction of a virtualization layer
under the operating system. Some explicit instructions cannot be virtualized due to their
ring dependency (they can be only executed in the most privileged level). When exe-
cuted in a higher (unprivileged) level, they require a semantic rewrite, performed by the
underlying VMM.

Over the past few years, research on CPU virtualization attempted to overcome these
x86 limitations, introducing new concepts and consequently new CPU technologies. The
current scenario of CPU virtualization can be decomposed in three main
categories [VMWare, 2010]: full virtualization; virtualization at the operating system
level and paravirtualization; and hardware-assisted virtualization. The categories are re-
viewed below and the main technologies, advantages, and drawbacks are summarized in
Table 2.1.

Full virtualization: This technology, based on the simulation of physical resources, does
not require any update of operating system and legacy software running inside a virtual
machine. Non-virtualizable instructions and operations requested by a hosted system
are translated into real platform instructions before the execution. More specifically, full
virtualization is the only technique that requires no hardware assistance or operating
system updates.

Examples of common software that provides full virtualization include VirtualBox [Vir],
VMWare [VMW], QEMU [QEM], and Microsoft Hyper-V Server [HYP]. VMWare com-
bines full virtualization with real time binary translation [Sugerman et al., 2001]. This
approach translates kernel code replacing privileged instructions with new sequences that
have the intended effect on the virtualized hardware. QEMU shares the same approach,
also relying on dynamic binary translation to emulate a processor, but provides an in-
termediate mode for supporting native execution combined with binary translation. One
particularity of QEMU is its capability to run on any computer without administrative
rights. The technology explored by Microsoft Hyper-V Server is based on virtual parti-
tions. Each partition can be considered as a virtual machine, in which a hosted operating
system can be executed. Similarly to the other systems, operations that require privileged
access to physical hardware are dynamically intercepted and translated into operations of
the native physical machine.

c© Copyright 2011 by Guilherme Piêgas Koslovski 13
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Operating system-level virtualization and paravirtualization: Virtualization at
the operating system level explores multiple isolated user-spaces offered by certain ker-
nels implementations. Instead of using the hardware instructions directly, hosted oper-
ating systems running on user-space virtual machines use the normal system calls of the
host operating system. Consequently, the interface exposed to hosted operating systems
can be more limited than the physical interface. Implementations like OpenVZ [OPEb],
UML [UML], Linux-VServer [VSE], and Jails [Kamp and Watson, 2000] explore this vir-
tualization technology, also known as containers.

Differentiating from this approach, the paravirtualization technology [Whitaker et al.,
2002] [Barham et al., 2003] is applied on x86 architectures to overcome their existing limi-
tations. The hosted operating systems have knowledge about the virtualized environment
(the existence of a virtual machine). This approach requires modifications on virtualized
operating systems introducing specific calls (the hypercalls that give the control to VMM)
aiming to reduce the execution overhead with architecture dependent instructions, which
in a full virtualized scenario must be trapped by the VMM before execution.

Hardware-assisted virtualization: This virtualization technique reflects the efforts
of the industry to contribute with the virtualization wave and to explore it commercially.
Current physical architectures, such as Intel VT-x [INT] and AMD-V [AMD] introduce a
new CPU execution mode that allows the VMM to run on a privileged mode below ring
0. In this scenario, hosted privileged instructions are automatically trapped and directed
to the VMM. Dynamic binary translation or paravirtualization are no longer required.
Consequently, the changes needed in hosted operating systems are eliminated. Virtual
machine monitors such as Xen [Barham et al., 2003], VMWare [VMW], KVM [KVM], and
Microsoft Hyper-V [HYP] offer implementations exploring the hardware-assisted virtual-
ization.

Categories Main technology Advantages Drawbacks

Full virtualization translation, emulation updates of operating system
and legacy software are not re-
quired; isolation

execution overhead

Operating system-level
virtualization and par-
avirtualization

operating system hy-
pervisor

better performance than full
virtualization

update required in hosted op-
erating system; less isolation

Hardware assisted vir-
tualization

virtualization support
directly in hardware

no need for updates of hosted
operating systems

execution overhead in some
I/O operations

Table 2.1: Summary of virtualization categories including their main technologies, advan-
tages and drawbacks.

2.2.1.2 Memory virtualization

The virtualization of random access memory (RAM) is considered as a critical part of
a VMM implementation [Barham et al., 2003]. The traditional approach is to give to
VMM the control of a shadow image of the virtual machine’s memory-management data
structure. With this information, the VMM can precisely control the access to physical
memory [Waldspurger, 2002], all active memory pages, and consequently, the paging mech-
anism. This technique can induce overheads on hosted operating systems as it frequently
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accesses and changes page tables. The future direction of memory virtualization is the
usage of hardware-managed shadow page tables for accelerating x86 virtualization [Rosen-
blum and Garfinkel, 2005].

2.2.1.3 Virtualization of I/O devices

The sharing of physical devices among hosted VMs requires a routing access control to
efficiently distribute their capacity among the guest operating systems, while guarantee-
ing their isolation and protection. Some implementations rely on emulation of virtual
devices proposing standard and consistent device drivers to improve the portability across
platforms [Sugerman et al., 2001] [VMWare, 2010].

Other proposals expose a set of device abstractions [Barham et al., 2003], where ac-
cess is controlled by the VMM via shared-memory and asynchronous buffer-descriptor
rings, similarly to hardware interrupts implemented on operating systems. For example,
the virtualization of network interface cards (NICs) enables the creation of virtual net-
works, including virtual switches and bridges, on a single physical host [Sugerman et al.,
2001] [Barham et al., 2003] [8] .

Future research in this area includes the introduction of hardware support on device
virtualization [Rosenblum and Garfinkel, 2005], which can efficiently eliminate the I/O
overhead imposed by the emulation and abstract device techniques.

2.2.2 Network virtualization

This kind of virtualization has been explored to co-allocate multiple virtualized networks
on top of physical networks [4WA]. Similarly to server virtualization, this technology en-
ables the sharing of physical resources, in this case links and network equipments, among
hosted virtual resources. This concept has been applied in distinct scenarios and layers
of the Open System Interconnection (OSI) model [ISO, 1994], exploring different tech-
nologies [Chowdhury and Boutaba, 2010], which have paved the road toward full virtual
networks.

We review these technologies, organizing the concepts into four main categories: virtual
LANs, virtual private networks, overlay networks, and programable networks.

2.2.2.1 Virtual LAN

Virtual LANs (VLANs), standardized as 802.1Q by IEEE [IEE], are logically isolated
networks that can co-habit on a single central network switch or switching hub [Bell et al.,
1999] [802.1Q, 2005] [Sincoskie and Cotton, 1988]. Typically, this virtualization technique
operates at OSI’s layers 2 and 3. VLANs were initially explored to reduce the collision
domain of Ethernet segments interconnected by hubs in Local Area Networks (LANs).
With the introduction of switches, the collision problem was controlled and VLANs started
to be used for reducing broadcast domains.

This virtualization technology does not cope with traffic engineering, except when
coupled with 802.1p [Nichols et al., 1998] it enables to prioritize part of the traffic. Cur-
rent technologies for switches and routers have proposed a set of configurable options for
guaranteeing quality of service provisioning, being applied to logically integrate network
members into a single view, increasing the organization, segmentation and planing of local
networks [Bin Tariq et al., 2009].
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2.2.2.2 Virtual Private Network

A Virtual Private Network (VPN) is a communication network used to interconnect one or
more IT endpoints geographically distributed over a Wide Area Network [Baugher et al.,
1999] [Rosen and Rekhter, 2006], by establishing tunnels over the public communication
infrastructure. It was introduced for security reasons (at layer 3) maintaining privacy on
data exchange through cryptography, and for accelerating routing operations (at layer 2).

VPNs have been used to interconnect distributed branches of companies, exploring
secure and trusted communications [VPN]. In secured VPNs the tunnel is encrypted
when transmiting sensitive data, guaranteeing that if someone intercepts the traffic, the
information cannot be directly accessed. In trusted VPNs, the Service Provider (SP)
responsible for the VPN and the client establish a Service Level Agreement (SLA) that
aims to guarantee a secure virtual communication path over the specific trusted physical
path.

VPNs comprise three classes of components [Andersson and Madsen, 2005]: Customer
Edges (CE), Provider Edge routers (PE), and P routers, as presented in Figure 2.1. Cos-
tumer Edges are the source and target border nodes. Provider Edges and P routers are
part of the SPs network. PEs are directly connected to the CEs, and P routers are used
to interconnect the PEs.

Figure 2.1: Representation of basic VPN components. Customer Edges (CE) are located
at Customer Site. Provider Edge routers (PE) and P routers are part of Service Provider
(SP) network.

VPNs can be established at different levels of the OSI model, exploring multiple pro-
tocols and services. We detail these levels below.

Layer 1: The virtualization of Layer 1 network elements, such as Optical Cross-connect
(OXC), or Time-Division Multiplexing (TDM) switches, enable the composition and real-
ization of L1VPNs [Takeda, 2007]. By definition, a Layer 1 VPN uses GMPLS RSVP-TE
for signaling both within the service provider network (between PEs), and between the
costumer and the SP (between CE and PE) [Fedyk et al., 2008].

Generalized Multiprotocol Label Switching (GMPLS) [Farrel and Bryskin, 2005] is
an extension of the MPLS architecture [Rosen et al., 2001]. MPLS has been defined to
support label-based forwarding of data. In the original architecture, the Label Switching
Routers (LSRs) were assumed to have a forwarding plane capable of recognizing packet or
cell boundaries. The GMPLS extension includes Label Switching Routers (LSRs) that do
not forward data based on packet or cell boundaries. These LSRs include devices where the
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forwarding decision is based on time slots, wavelengths, or physical ports [Berger, 2003].
This extension, combined with the concept of nested Label Switched Paths (LSPs), allows
the system to scale by building a forwarding hierarchy. According to their topologies, Layer
1 VPNs can be classified in Virtual Private Wire Services (VPWS) which are point-to-
point, and Virtual Private Line Services (VPLS) which are point-to-multipoint [Benhaddou
and Alanqar, 2007].

Layer 2: Layer-2 VPNs are usually provided over Ethernet, ATM, and Frame-Relay
technologies. There are two fundamental types of Layer 2 VPN services that a SP could
offer to a customer [Andersson and Rosen, 2006]: Virtual Private Wire Service (VPWS)
and Virtual Private LAN Service (VPLS). A VPWS is a VPN service that supplies an L2
point-to-point service, and a VPLS is an L2 service that emulates LAN service across a
Wide Area Network (WAN) [Augustyn and Serbest, 2006].

The Layer 2 VPN protocols encapsulate the Layer 3 packets into point-to-point frames.
The advantage of Layer 2 VPNs is that the higher level protocols remain with their normal
operation, more specifically, the virtualization is transparent to Layer 3 protocols. Point-
to-point Tunneling Protocol (PPTP) [Hamzeh et al., 1999], Layer 2 Tunneling Protocol
(L2TP) [Townsley et al., 1999], and Layer 2 Forwarding (L2F) [Valencia et al., 1998] are
examples of L2VPN protocols.

Layer 3: A Layer-3 VPN is characterized by the use of IP and/or MPLS to virtualize a
shared network infrastructure (VPN backbone) [Carugi and McDysan, 2005]. The SP edge
devices determine how to route VPN traffic by looking at the IP and/or MPLS headers
of the packets they receive from the customer’s edge devices [Callon and Suzuki, 2005].

Layer-3 VPNs are implemented as two basic types [Chowdhury and Boutaba, 2009]:
CE- and PE-based. In a CE-based VPN, the CE devices create and manage the tunnels,
without interference of network provider. The CE devices encapsulate the packets and
route them through carrier networks. In this scenario, three protocols are identified to
create the tunnel: a carrier protocol responsible for carrying the VPN packets (such as IP);
an encapsulating protocol, such as PPTP [Hamzeh et al., 1999], L2TP [Townsley et al.,
1999], and IPSec [Kent and Atkinson, 1998] [Kent and Seo, 2005]; and the original CE
passenger protocol. Already in a PE-based approach, the network provider is responsible
for the establishment and management of the existing VPNs.

2.2.2.3 Overlay networks

Overlay networks are topologies constructed over existing networks. In this virtualization
layer, virtual links are logically established over physical links or paths to interconnect the
nodes that are part of the overlay.

Nowadays, this technology is used as an alternative to overcome diverse issues in
different contexts, such as Internet routing resilience [Andersen et al., 2001], enable mul-
ticasting [Eriksson, 1994] [Jannotti et al., 2000], provide QoS guarantees on communica-
tions [Subramanian et al., 2004], and content distribution [Krishnamurthy et al., 2001].
Peer-to-Peer networks, often built at level 4 of the OSI model, are examples of overlay
networks [Androutsellis-Theotokis and Spinellis, 2004], where the content is typically ex-
changed atop of an IP network, as explored by Akamai solutions [AKA].
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2.2.2.4 Programmable networks

This type of network can be programmed via a minimal set of Application Programming
Interfaces (APIs) with which one can ideally compose an infinite spectrum of higher-level
services [Campbell et al., 1999].

This technology supports the construction of networks enabling dynamic deployment
of new services and protocols. As identified by [Chowdhury and Boutaba, 2009], two
schools of thought emerged for the implementation method:

• Open Signaling: proposes a clear distinction between transport, control, and man-
agement planes. It defines an abstraction layer for physical network devices with
a well-defined interface. For example, OpenFlow switches explore a bottom-up ap-
proach to dynamically configure networks [McKeown et al., 2008];

• Active Network: explores the dynamic configuration based on routers and switches
information collected by analyzing packet exchange, which allows a real-time adap-
tation of the network according to the traffic [Tennenhouse and Wetherall, 2002].

2.2.3 Discussion

Virtualization is a driving force for flexibility in the next-generation Internet, guarantee-
ing its growth and success, and preventing its ossification [Handley, 2006]. It can enable
ubiquitous deployment of applications and foster innovations by adding a layer of abstrac-
tion between the actual hardware and running and exposed resources [Anderson et al.,
2005] [Niebert et al., 2008] [Keller and Rexford, 2010].

Although the isolation mechanisms of VMMs have an impact on the performance of
virtualized systems [Wang and Ng, 2010] [Schlosser et al., 2011] and some issues remain
opened [Gupta et al., 2006], virtualization enables an efficient usage and sharing of phys-
ical resources. By being de-materialized, virtual resources can be deployed on demand,
configured, started, paused, saved, or deleted, like a set of programmable objects. This
gives to IT and network providers the possibility to set up and manage virtual resources,
allowing the dynamic provisioning of new services [Carapinha and Jiménez, 2009].

Virtualization has over the years been applied to specific scenarios, such as server
consolidation and VLAN composition. The timeline depicted in Figure 2.2 shows the
progress of the main technologies, projects and software for virtualization of network and
IT resources. Following the timeline, one can observe that virtualization technologies have
increasingly shifted from solutions for specific endpoints of the Internet (e.g., servers, local
networks) to more distributed resources (e.g., VPNs). Currently, different virtualization
techniques can be combined for providing more elaborated services. For example, two
providers with heterogeneous solutions for network virtualization (i.e., one exposing optical
Layer 1 virtualization, and another a Layer 2 VPN service) can cooperate and interconnect
to serve the needs of a customer who is unaware of the difference of underlaying technology.
In addition, an external network operator can orchestrate resources by allocating them
and composing virtual networks using services exposed by different providers [GEYSERS,
2011].

One of the main contributions introduced by virtualization techniques is that resources
can be dynamically reconfigured. IT resources can have their memory, storage, and CPU
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configurations redefined during the execution process, whereas a virtual link can be con-
trolled in terms of bandwidth capacity. These dynamic configuration and provisioning
features have been explored by recent technologies, as detailed in the following sections.
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Figure 2.2: A network and IT resources timeline comprising the main technologies,
projects, and software explored for virtualization.

2.3 Cloud Computing

The maturity of resource virtualization and Grid Computing technologies [Kesselman and
Foster, 1998] have led to the emergence of Cloud Computing. Concepts such as virtual
organizations and services exposed via transparent interfaces have initially been explored
in Grids [Foster and Kesselman, 1997] [Foster, 2001] [Foster, 2005]. Cloud Computing
combines these concepts with new virtualization techniques and business models to enable
on-demand access to a shared pool of configurable resources (e.g., servers, storage, applica-
tions and services) that can be rapidly provisioned and released with minimal management
effort [Mell and Grance, 2009] [Buyya, 2009] [Rimal et al., 2011].

In this way, Cloud Computing provides a new means for delivering IT services, based
on cost-efficient, scalable and on-demand provisioning guided by the user’s requirements.
Exploiting the flexibility offered by virtualization, IT elements are exposed as a set of ser-
vices (or even resources) that can be reserved by users for a specific timeframe. Currently,
single users, companies, and institutions deploy dynamic computing resources on Clouds
to execute their applications, exploring the advantages offered by the different levels of
virtualization, including cost reduction [2] and reliability support [7].

The commercial model explored in Clouds differs from traditional IT commercializa-
tion by demanding smaller up-front investment. Traditionally, a user buys a software or
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hardware, and then uses it respecting the conditions imposed by contractual agreements
(e.g., number of licenses, or number of allowed executions). Cloud Computing proposes
the on-demand availability of different virtualized services that can be rented, accessed,
customized, and exploited by users in a pay-as-you-go manner.

With the Cloud approach, both users and providers can explore advantages such as:

• users are not locked into a single IT solution or provider;

• software and hardware licenses’ costs are diluted and distributed between providers
and users;

• providers can operate close to the maximum computing capacity and, at same time,
maximize revenues;

• IT administration costs are also proportionally shared by users and providers.

2.3.1 Types of Clouds

Clouds are classified according to the servers’ location and the users who access them.
The location distinguishes private resources, belonging to a single organization, and public
resources, located over a distributed infrastructure, while the access identifies the users
and how they access the resources (e.g., reserving, renting, combining). A commonly used
classification identifies mainly three types of Clouds: Private Clouds, Public Clouds, and
Hybrid Clouds [Zhang et al., 2010]. Figure 2.3 shows an example of a scenario composed
of a Private Cloud, two Public Clouds (A and B), and two hybrid Clouds (A and B). The
following sections detail these types of Clouds.

Figure 2.3: A common classification defining three types of Clouds: Private Clouds, Public
Clouds, and Hybrid Clouds.
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2.3.1.1 Private Clouds

Private Clouds (also called Internal Clouds) are built using the internal resources of orga-
nizations. The exclusive use of computing power is usually restricted to members of the
organization to guarantee the confidentially of internal and critical data. Administrators
of private computing infrastructures have the highest level of control over performance,
reliability, and security of resources. Both commercial and open-source frameworks and
tools, such as VMware vCloud Director [vCl], OpenNebula [Opea], Xen Cloud Platform
(XCP) [XCP], Eucalyptus Systems [Euc], and LYaTiss Weaver [LYaTiss, 2011], can be
used to compose and manage Private Clouds.

2.3.1.2 Public Clouds

Public Clouds (or External Clouds) make their resources available to users as services.
The set of virtualized computing resources is often geographically distributed across several
data centers. In comparison to Private Clouds, Public Clouds offer less control and security
guarantees over critical data, and require the establishment of a communication channel
to access virtual machines.

Examples of Public Cloud providers comprise Amazon EC2 [AMAa], Microsoft Win-
dows Azure platform [AZUa], Salesforce.com [SAL], 3Tera [TER],
Google App Engine [GOOa], NetSuite [Net], among others. As of writing, Cloud providers
do not offer the provisioning of virtual links to interconnect virtual machines. Instead, the
communication is performed following a best-effort approach.

2.3.1.3 Hybrid Clouds

At times, an organization can feel compelled to reserve public on-demand resources and
interconnect them with its Private Cloud. It may be the case under peak-load conditions
where the organization’s private resources may not suffice the application workload. A set
of public services are then provisioned on-demand, hence combining private and public
resources for a given timeframe.

Figure 2.3 details the composition of Hybrid Clouds, where a subset of resources from
Public Cloud A is combined with internal resources of the Private Cloud, creating the Hy-
brid Cloud A. Resources are interconnected by a communication channel established over
the Internet. The Hybrid Cloud B is similarly composed using the on-demand resources
of Public Cloud B.

Combining public and private resources enables a finer control on sensitive data loca-
tion and security than using only Public Clouds. An organization can keep the sensitive
data on its Private Cloud, exploring the public resources to execute less critical tasks.

2.3.2 Service models

Cloud Computing can dynamically provision virtualized services at different levels. A set
of virtualized servers and IT infrastructure can provide Software, Platform, and Infras-
tructure as a Service [Mell and Grance, 2009] as shown by the layers in Figure 2.4. A set
of distributed and virtualized servers composing the physical substrate is shown at the
bottom, while the other layers represent different models for exposing services, which are
detailed below.
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Figure 2.4: The service models offered by Cloud Computing providers in 2011.

2.3.2.1 Software as a Service (SaaS):

SaaS, the higher level of abstraction, offers on-demand execution of applications allocated
on remote servers. In contrast to the one-time licensing model commonly used in tra-
ditional software, SaaS is frequently sold using a subscription model, where customers
pay an ongoing fee to use the application [Jacobs, 2005]. Examples of SaaS providers
include Microsoft Online [BPO] Salesforce.com [SAL], Rackspace [RACa], SAP Business
ByDesign [SAP], Google Apps [GOOb] and NetSuite [Net].

2.3.2.2 Platform as a Service (PaaS):

The PaaS model provides features to users for deploying a complete application lifecycle
(for example, tools to design, develop, test, host, and integrate software) without the need
for special software installation and configuration. PaaS -layer resources, such as software
development frameworks, are exposed as on-demand services.

In addition, tools to manage and control scalability, security and persistency are pro-
vided as optional service components. Google App Engine [GOOa], Microsoft Windows
Azure [AZUa], and Force.com [FOR] are examples of PaaS providers.

2.3.2.3 Infrastructure as a Service (IaaS):

This model offers Virtual Machines (VMs) as services. Instead of buying new servers
to run his application, the client can lease a set of virtual machines. Virtual machines
are dynamically provisioned and interconnected through a best-effort approach, generally
without any quality of service guarantees to the network communications. Examples of
IaaS providers include Amazon EC2 [AMAa], GoGrid [GOG], Rackspace [RACa], and
Flexiscale [FLE].

2.3.3 Cloud Networking

Although Cloud Computing has consolidated the on-demand provisioning of virtual ma-
chines, an efficient network interconnection of these elements has not been addressed.
Cloud providers instantiate a set of virtual machines and interconnect them using best-
effort approaches in which the network is generally not controlled and the usage of com-
munication resources is charged according to the total volume of transferred data.

The best-effort approach is not enough for network-sensitive applications. A bottleneck
or increased latency between distributed modules can compromise the entire application
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execution [5]. To overcome this limitation, Cloud Networking enables networking resources
to be controlled, deployed and provisioned in a much more dynamic, flexible and scalable
way [SAI]. This technology proposes the dynamic provisioning of connectivity services
following the same delivery model explored by Cloud Computing: on-demand and billed
according to usage.

Figure 2.5 exemplifies the dynamic provisioning of a connectivity service between a
Private Cloud and a Public Cloud provider. A virtual link is reserved and dynamically
provisioned to interconnect both Clouds. The provisioned capacity can vary during the
reservation time: a peak on data to be computed or to be transferred requires more
capacity then the nominal rate originally provided. During the peak, more resources are
dynamically provisioned by the Cloud Networking provider.

Figure 2.5: Example of Cloud Networking provisioning between a Private Cloud and a
Public Cloud (example discussed in the context of SAIL project [SAI]).

2.3.4 Discussion

Cloud Computing consolidates the on-demand provisioning of configurable virtual ma-
chines to perform computations [AMAa] [ENO] and provide large data storage [TER].
Cloud users have been outsourcing their computing and storage infrastructure to Public
Cloud providers who provision services in a pay-as-you-go service provisioning. In addition,
the concept of Cloud Networking aims at dynamically provision virtual interconnections
to enable efficient and secure communication between virtual entities.

Many research and engineering issues are still open in Clouds. For example, Public
Cloud providers differ in the ways that their infrastructure is composed and the form
their features and services are exposed (e.g., virtualization techniques, internal network
topology). A user can thus expect his application to have a different behavior when
executing it over different Cloud providers [Li et al., 2010].

Usually, a provider has an API or a set of web services that enable the interaction
with its reservation and provisioning systems, such as Amazon EC2 API [AMAb], Win-
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dows Azure API [AZUb], and Rackspace API [RACb]. These APIs can be exposed using
SOAP [Gudgin et al., 2007], HTTP [Fielding et al., 1999], or RESTful [Gregorio and
de Hora, 2007] interfaces. They do not follow a well-defined standard, which hence in-
duces issues in communication and information exchange among these systems, manage-
ment frameworks, and users.

Moreover, the security of Clouds is a major concern, especially when sensitive informa-
tion must be outsourced to distributed public resources [Barrios Hernandez et al., 2010].
In addition to traditional security aspects that should be provided (e.g., authentication,
authorization, integrity, and confidentially), Cloud Computing introduces the possibility
of the misuse of resources. A large amount of computing power can be allocated and used
for illegal services (e.g., DoS attack, spamming) [Schoo et al., 2010].

In spite of the issues above, it is incontestable that Cloud Computing has changed
the usage of the Internet. This technology has been adopted by many enterprises, each
following a specific business model. Predictions for the next years indicate that more than
80% of the IT will be outsourced by the end of 2020, and Clouds will be cheaper, more
reliable, more secure, and easier to use. In addition, the Cloud providers’ cost will be less
than 25% of that of corporate data centers [Rosenberg and Mateos, 2010].

2.4 Virtual Infrastructures

Virtual Infrastructures (VIs) extend the original IaaS paradigm to provide dynamic virtual
networks of computing (also virtualized) resources [SAI] [GEN] [GEYSERS, 2011]. With
the VI extension, the Internet’s computational, storage and network resources can be ab-
stracted from physical infrastructure and exposed as services that are dynamically reserved
and provisioned [Laganier and Vicat-Blanc Primet, 2005] [Rochwerger et al., 2009].

Figure 2.6 illustrates this new scenario: two virtual infrastructures (A and B) are
allocated on a distributed and virtualized physical substrate, sharing its IT and networking
capacities. Both VIs are completely isolated and have no knowledge of sharing physical
resources.

2.4.1 Concept

We defined a Virtual Infrastructure (VI) as a time-limited group of virtual computing
resources interconnected by a virtual network [1]. By combining resource and network
virtualization, the user of a VI has the illusion that he is using a private distributed
system, while in reality he is using multiple systems that are part of a virtualized physical
substrate. VI instances are kept isolated from one another.

VIs can span multiple networks belonging to different administrative domains. Inde-
pendently of the underlying physical topology and the applied virtualization techniques,
a VI user has a consistent view of a regular network stack. He can join the VI from any
location, deploying and using the same application used on the Internet or his intranet.

A VI can be formally represented as a graph whose vertices are in charge of active data-
processing functions and edges of moving data between vertices. Figure 2.7 illustrates this
concept representing a virtual infrastructure composed of virtual machines interconnected
through virtual links. It shows two virtual routers (vertices rvA and rvB) which are used
to interconnect and perform the bandwidth control among the other virtual resources (ver-
tices rv1 to rv8). The virtual routers can independently forward the traffic of the different
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Figure 2.6: Two VIs are sharing a distributed and virtualized physical substrate.

virtual infrastructures which share the same physical network. Each edge represents a
virtual link (as lv1 and lv2) with different configurations used to interconnect a pair of
virtual resources.

Figure 2.7: Example of a VI composition using a graph notation. The virtual IT resources
are the vertices and the virtual links the edges.

Moreover, a VI can be defined and modeled according to user requirements [6]. Dif-
ferent information can be defined for the graph components, individually or aggregated:

• Temporal attributes for each resource (time window for provisioning).

• Parameters to represent the necessary configuration of IT resources (e.g., RAM,
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2.4. VIRTUAL INFRASTRUCTURES CHAPTER 2. STATE OF THE ART

CPU speed, and storage capability) and to define the link requirements (bandwidth
and latency). This information can vary during the VI lifetime.

• The required software (e.g., operating systems) and tools (e.g., communication and
programming tools) that must be provisioned with the VI.

• The resource’s functionality (e.g., a set of computing nodes or storage nodes).

• Security attributes for each component (e.g., access control, confidentiality level).

• Reliability level required for each VI component.

• Commercial attributes (maximum cost).

2.4.2 Building blocks

As defined by LYaTiss Weaver [LYaTiss, 2011], a VI is composed of the following compo-
nents or building blocks (edges and vertices) [1] [16]: vNodes, vStorage, vRouters, vAc-
cessPoints, and vLinks. They can be organized individually or in groups. For example, a
vertex of a VI graph can be composed of a group of vNodes, vRouters, and vLinks.

vNode: is a fully customizable virtual machine that is provisioned (e.g., assigned CPU,
RAM, and storage resources) and configured (e.g., set the operating system and commu-
nication tools) atop virtualized physical hosts according to the user’s requirements.

vRouter: the virtual routers are special components that virtualize the data, control,
and management network planes. Users can deploy customized routing protocols and
configure the packet-queuing disciplines, packet filtering and monitoring mechanisms they
want. In addition, as they concentrate aggregated VI traffic, vRouters represent strategic
points of the network for transfer rate control. By limiting the rate and policing the traffic
of different vRouters, the traffic of VIs can be controlled so that the user is provided with
a fully isolated VI. The advantage of having controlled environments is twofold: users have
strong guarantees, and the network provider can better exploit the network by sharing it
efficiently among users.

vStorage: the location, mobility, and security aspects of data are critical factors for
many applications and users. vStorages are special virtual machines that must be allo-
cated and provisioned on top of specialized physical hosts, which implement Storage Area
Network (SAN), Direct-Attached Storage (DAS), or Network-Attached Storage (NAS)
technologies. In this case, physical hosts must provide enough capacity to fulfill the ap-
plication requirements in terms of data volume, encryption and security.

vAccessPoint: virtual access points are the entry points of VIs. They allow the inter-
connection among external components and VI resources, and between different virtual in-
frastructures. In addition, vAccessPoints can offer functionalities such as Network Address
Translation (NAT), masquerade network, load balancing, firewall and data encrypting.
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vLink: the components of VIs (which can include vNodes, vRouters, vAccessPoints,
vStorage and groups of these) are interconnected using vLinks (virtual links). Each vLink
is a temporary path allocated over multiple physical channels for which metrics such as
bandwidth (forward and reverse) and latency can be defined. In addition, by asking for
vLinks it is possible to compose and model the VI, identifying for example the critical
communication paths.

2.4.3 Discussion

Virtual Infrastructures have emerged as the blend of different concepts and techniques,
such as resource and network virtualization, Grid Computing, and resources as services.
Within this new concept, users can reserve a set of interconnected IT resources and con-
figure them according to their application requirements. VIs are provisioned on top of a
distributed and virtualized physical substrate, sharing the resources in a transparent and
isolated way. During a given time slot, all VI resources are made available to, configured
and managed by the user.

2.5 Provisioning dynamic Virtual Infrastructures

The provisioning of a virtual infrastructure is a complex task as each of its components
can vary its configuration in three dimensions: capacity, time, and cost. Following the
pay-as-you-go model, cost represents the InP perspective, who is charging for the resource
provisioning according to time and capacity requirements.

Figure 2.8 shows the three dimensions that should be considered during a virtual
resource provisioning. The virtual resource rv1 can vary its capacity per time resulting in
a specific usage cost. Four volumes of capacity per time have their own provisioning costs.
Moreover, each virtual resource composing a VI can similarly vary its configuration.

Figure 2.8: Dimensions that should be considered during a VI provisioning.

The following sections review the requirements for efficient VI provisioning, and present
existing solutions for this purpose, detailing specifically a framework used as base for
developing the contributions of this thesis.

c© Copyright 2011 by Guilherme Piêgas Koslovski 27
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2.5.1 Requirements for efficient VI provisioning

VIs have a lifecycle composed of specification, allocation, deployment, and release [16].
The three dimensions (time, cost, and capacity) are present and should be treated in
all steps. For provisioning efficient VIs, a management framework should respect and
integrate the following requirements:

• Enabling the specification of dynamic resources. The requirements of virtual IT and
network resources can vary their capacity during the reservation time. In addition,
a virtual resource can be present only partially in the whole VI reservation time;

• The internal mechanism for embedding VIs should also respect this elastic aspect,
as well as the user’s and InP’s expectations. The allocation should be performed
efficiently for both, optimizing the trade-off between their goals; and

• Deploying the VIs respecting the user’s requirements. Tools for guaranteeing the
Quality-of-Service (QoS) should control the provisioned capacity, assuring isolation
and performance for each individual component.

2.5.2 Existing solutions for provisioning VIs

Several projects, prototypes, and commercial solutions have been proposed to provide
virtual resources, virtual networks, and VIs within different contexts, such as in Grids and
Clouds. We discuss these solutions here by organizing them in IT resource provisioning,
and network provisioning. They are analyzed respecting the requirements identified in
Section 2.5.1.

2.5.2.1 IT virtualization

Grids have explored decoupling services from physical infrastructure with virtualization
techniques. In [Rezmerita et al., 2006], the authors proposed PVC, combining various Grid,
P2P and VPN approaches to create instant Grids. This distributed system is composed
of a daemon process (peer) and a brokering service, which helps establish the connections.
Distributed peers are aggregated composing a virtual Grid.

Existing commercial products, such as Amazon’s Elastic Compute Cloud (EC2) [AMAa],
Enomaly’s Elastic Computing Platform (ECP) [ENO] and GOGRID [GOG], allow users
to reserve a set of resources, choose an operating system, and customize them. Other
products are less configurable, like 3Tera’s AppLogic [TER] where the operating system
cannot be chosen. Some frameworks for Cloud orchestration, such as OpenNebula [Opea]
and Eucalyptus [Euc], provide tools for IaaS provisioning. All these Cloud solutions are
suitable for performing computation and storage and are not aim to host virtual routers.
Moreover, these Cloud Computing solutions do not intend to control the network or its
communication performance.

2.5.2.2 Network virtualization

Some proposals have explored virtualization for enabling end-to-end control while using
physical equipments from different physical infrastructure providers [Feamster et al., 2007].
In [Bavier et al., 2006], the authors propose VINI, a virtual network infrastructure that al-
lows several virtual networks to share a single physical infrastructure. Researchers can run
experiments in virtual-network slices running inside User Mode Linux (UML) instances.
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They can configure the slices and choose a protocol, among those available, to commu-
nicate internally. This also provides full-isolation between virtual nodes and controlled
resource sharing.

Trellis [Bhatia et al., 2008], a network-hosting platform deployed on the VINI facility, is
a virtual-network substrate that can run on commodity hardware. It is implemented using
VServer’s [VSE] container-based virtualization because of its network performance. VINI
and Trellis were evaluated on PlanetLab [Bavier et al., 2004] which provides users with
slices of virtual resources distributed across its overlay infrastructure. The virtual resources
are VServers generally providing end-host functionalities. In the GENI design [GEN], the
users are provided with slices, like in VINI, but composed of virtual machines or partitions
of physical resources. GENI’s goal is to provide users with multiple shareable types of
resources.

ShadowNet [Xu Chen, 2009] proposes an architecture for an operational trial/test net-
work consisting of ShadowNet nodes interconnected by a single backbone. A ShadowNet
node is composed of a collection of carrier-grade equipments, namely routers, switches and
servers. Each node is connected to the Internet as well as to other ShadowNet nodes via
a (virtual) backbone. VIs are developed on top of ShadowNet nodes mainly for testing
purposes.

In addition to these initiatives, some proposals have specifically treated the bandwidth
sharing in virtual networks. A design and mathematical model of dynamic adaptation of
virtual networks to their performance objectives has been proposed by DaVinci [He et al.,
2008]. In addition, isolation between virtual networks is provided by slicing mechanisms,
controlling the attribution of bandwidth to virtual links [Kim et al., 2010] [Sherwood et al.,
2010].

Recent projects have addressed the VI provisioning [SAI] [GEY]. Geysers project [GEY-
SERS, 2011] is investigating solutions for implementing virtual networks atop distributed
optical providers, while SAIL project [SAI] is investigating the provisioning of virtual net-
works to interconnect distributed Cloud data centers, proposing the dynamic creation of
Flash Network Slice.

2.5.3 HIPerNet framework

We present in this section the HIPerNet, the first framework to provide and manage dy-
namic virtual infrastructures proposed in the context of HIPCAL [HIP] and CARRIOCAS
projects [Audouin et al., 2009] [Vicat-Blanc Primet et al., 2009]. This framework was cho-
sen to serve as the base for the development and implementation of the contributions of
this thesis. The concepts and technologies addressed by HIPerNet, which justifies this
choice, are discussed here.

2.5.3.1 Concepts and design principles

HIPerNet is a framework for dynamic provisioning of networking and computing infras-
tructures. Conceptually, it innovates by combining system and network virtualization
technologies with bandwidth sharing and advance reservation mechanisms [Laganier and
Vicat-Blanc Primet, 2005] [1]. By definition, HIPerNet is transparent to all types of up-
per layers, such as: protocols (e.g., TCP, UDP), APIs (e.g., sockets), middleware (e.g.,
Globus [Foster and Kesselman, 1997]), applications, services and users. It helps end users
with intensive-application deployment, execution and debugging, by providing an envi-
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ronment to run them on scalable, controlled, distributed and high-capacity platforms. In
addition, it is mostly agnostic of lower layers and can be deployed over IP as well as
lambda networks.

The HIPerNet framework is responsible for the creation, management and control of
VIs supervising and monitoring their status and behavior during their whole lifetime.
The key principle is to have operations realized automatically. For this, HIPerNet defines
and activates mechanisms to automatically control the VIs as well as the status of the
underlying exposed and virtualized physical substrate.

Figure 2.9 shows the main components of HIPerNet. At the lower level, HIPerNet
accesses and controls a part of the physical infrastructure that is virtualized and exposed.
The physical resources are registered on the HIPerNet database and can be allocated to
VIs. Once the resources have been exposed, HIPerNet gets full control over them. This
set of exposed virtualized resources composes the substrate hosting the VIs. At the up
layer, HIPerNet receives VI requests using a special language: VXDL (a contribution of
this thesis whose is discussed in Chapter 3).

The internal mechanism of HIPerNet allocates, deploys, and configures VIs following
the user’s requirements. All modules of HIPerNet can be customized. For example, the
allocation or deployment mechanisms can be replaced as long as they respect the defined
API. This has been an important feature for devising the allocation mechanism detailed in
Chapter 5, and the reliability service is discussed in Chapter 6. At run-time, the HIPerNet
manager communicates with the virtual and physical resources to monitor their status and
configure control tools to supervise the resource usage [HIPerNet].

Figure 2.9: Dynamic provisioning of VIs with the HIPerNet framework.

Provisioning of IT resources: HIPerNet provides virtual IT resources based on Xen
VMM [Barham et al., 2003]. The virtualized physical substrate is composed of a set of
physical machines running a special administrative image, which is basically a Xen dom0
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with a set of private management tools. To spontaneously join the virtualized physical
substrate, each machine must deploy the HIPerNet image and declare its existence, con-
figuration, and available capacity to HIPerNet, becoming a potential host for virtual IT
resources. This information is automatically declared during the bootstrap.

Virtual machines are composed according to the user’s specification and instantiated on
physical hosts. Considering the filesystem deployment, HIPerNet follows two approaches:
an image can be copied directly to physical hosts; or placed on a network file system. The
operation mode is selected by the user during the instantiation process. Some services, such
as live migration [Clark et al., 2005] and reliability support [7], require the provisioning
using the network file system to guarantee the mobility of virtual machines.

Dynamic network provisioning: HIPerNet has explored tools and technologies for
virtualizing networks at layers 1 to 3, enabling multiple virtual overlay networks to cohabit
on a shared communication infrastructure. All network overlays and virtual resources are
kept isolated at the network level to ensure security, performance control and adaptability.

Within HIPerNet, vLinks implemented at layer 3 are based on IPsec [Kent and Seo,
2005] and the HIP protocol [Moskowitz and Nikander, 2006]. In addition, at this layer, the
network provisioning and traffic control are based on vRouters. The initial prototyping of
a vRouter consists in a software router implemented inside the Xen virtual machines [8].
vRouters perform an efficient channel provisioning by combining routing and traffic engi-
neering in order to satisfy the quality of service requirements of each VI [Divakaran and
Vicat-Blanc Primet, 2007].

The implementation and provisioning of virtual links at lower layers (L1 and L2) was
addressed within the CARRIOCAS projects [Audouin et al., 2009] [Vicat-Blanc Primet
et al., 2009]. A prototype named Scheduling, Reconfiguration, and Virtualization (SRV)
was developed for interconnecting IT resources with ultra-high speed optical
networks [Verchere et al., 2008].

Security model: The security model is based on a combination of Simple Public Key
Infrastructure (SPKI) and HIP protocol [9]. The cryptographic identification scheme is
the core of the SPKI [Ellison et al., 1999], which defines a flexible private authorization
management layer for the VI resources. A certificate is signed by the sender using its
private key. When receiving the certificate, the receiver verifies the signature using the
sender’s public key available in the certificate, in order to check the message integrity and
authenticate the sender. Unlike the traditional PKI model, there is no need for a high
level naming service to guarantee the certificate authenticity. The SPKI certificate itself
carries a signed authorization associated to the resource identified by its public key.

In addition, the HIP protocol automatically associates public keys to entities [Moskowitz
and Nikander, 2006]. Traditionally, the IP address plays two independent roles: a locator
and an identifier. Network layer protocols (e.g., IPv4, IPv6) use the locator role to route
packets, while the upper layer protocols (e.g., TCP, UDP) use the identifier role. As upper
layer protocols depend on location, they fail when mobility causes a modification of the IP
address. HIP decouples these two roles while maintaining a binding between an identifier
and a set of associated locators. The identifier namespace defined by HIP comprises the
public key of the host and is called a Host Identity (HI). HIP also defines the Host Identity
Tag (HIT), a 128 bit long truncated hash of the HI, used by applications for communicate.
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2.5.4 Discussion

The new challenges posed by VIs, particularly its multidimensional aspect, requires the
development of specific tools for efficient provisioning and management. As VIs are com-
prehensive entities gathering substantial information, solutions for provisioning IT and
network resources should be combined for efficiently manage all their dynamic aspects.

One of the first framework that proposed the combined provisioning of IT and net-
work resources was the HIPerNet. It has demonstrated to be a flexible solution for the
dynamic provisioning of virtual infrastructures. The modules composing the HIPerNet can
be replaced, enabling its adaptability to different developers.

HIPerNet was used as the base framework to deploy and validate the contributions
that are presented in the following chapters. Several patents have been produced [VX-
Cap] [VXAlloc], and currently an industrialized version of the HIPerNet framework has
been developed and maintained by the LYaTiss company (for more information please
refer to http://www.lyatiss.com).

2.6 Summary

Virtualization is the main technology that drives the research to Future Internet. Dis-
tributed data centers have adopted virtualization as an efficient technology to consolidate
IT platforms, improve resource usage, and decrease costs (e.g., with IT administration,
power consumption, and cooling) [Festor et al., 2010].

A new business model has been explored for outsourcing IT infrastructures [Rosen-
berg and Mateos, 2010]. Instead of buying new resources, several enterprises are renting
on-demand services to complete their IT infrastructures, following a pay-as-you-go model.
Clouds have consolidated the on-demand provisioning of virtualized services (e.g., IaaS,
PaaS, SaaS). In addition, Cloud Networking has proposed a new wave of service provi-
sioning dedicated to dynamic interconnection of virtual entities. A dynamic virtual link
can be established with a specific configuration (e.g., security, bandwidth) to interconnect
distributed IT resources (e.g., data centers, Private and Public Clouds).

Recently, the combined provisioning of IT and networking resources has been pro-
posed, composing a malleable computing-and-communication entity identified as Virtual
Infrastructure. VIs can be provisioned on top of multiple distributed physical substrate,
sharing their resource capacities. The HIPerNet framework was developed as a proof of
concept, to provide dynamic VIs.

Although the VI concept is a motivating scenario, reviewing the existing solutions for
dynamic resource provisioning, we observe that research and engineering work is still re-
quired to enable its real exploitation. As VIs are a relatively new concept, the development
of tools to specify and manipulate these entities (e.g., allocate, provision, and execute) are
required to facilitate its adoption by users.

Four of these tools are described in the following chapters: a language for specifying
VIs; a mechanism to translate a workflow-based application into a VI specification; an
allocation algorithm for mapping VIs on top of distributed and virtualized substrates; and
a service for providing transparent reliability for virtual resources. Each chapter presents
a literature review specifically related to the subject and problem that it addresses.
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A language for describing VIs

3.1 Introduction

3.2 State of the art

3.2.1 IT resource description languages

3.2.2 Network description languages

3.2.3 Virtual infrastructure description languages

3.2.4 Standardization efforts

3.2.5 Discussion and analysis

3.3 Virtual Infrastructure Description Language - VXDL

3.3.1 Language grammar

3.3.2 VXDL file structure

3.3.3 Describing VI scenarios with VXDL

3.4 Conclusions

The work presented in this chapter was published at the Second Interna-
tional Conference on Networks for Grid Applications (GridNets 2008) [6].
VXDL has been adopted by recent projects (such as HIPCAL [HIP], CAR-
RIOCAS [Audouin et al., 2009], GEYSERS [GEY], and SAIL [SAI]) as one
of the languages used to specify virtual infrastructures, and is part of the so-
lutions patented by the LYaTiss company (http: // www. lyatiss. com ) and
the Institut National de Recherche en Informatique et en Automatique (IN-
RIA, http: // www. inria. fr/ ) [VXCap] [VXAlloc]. In addition, an open
forum for discussions and improvements is being launched (http: // www.
vxdlforum. org/ ).

3.1 Introduction

W
e have seen that Virtual Infrastructure (VI) is a new concept based on combined and
interconnected dynamic provisioning of IT and network resources. VIs are malleable

entities requested and customized by users according to their specific requirements.

Applications differ in the hardware and software configurations required to run success-
fully. Standalone applications usually require VIs with high computing capacity, whereas
distributed applications, in addition to computational resources, often demand VIs with
large communication capabilities. Distributed applications may transfer large databases
across networks for processing while exchanging very small and sensitive messages. A
deadline can be specified to enforce efficient use of reserved resources as well as to shorten
the task completion time [Agapi et al., 2009]. Low latency communications (for example,
Message Passing Interface – MPI [MPI, 1995]) require strong quality-of-service and can
benefit from end-to-end bandwidth reservation and isolation services.
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The VI concept introduces a complete abstraction of physical resources and their geo-
graphic locations, which poses new challenges in specifying and executing high-end appli-
cations. Many factors can directly impact application performance, such as the amount
of data to be processed, the geographical location, distribution and confidentiality of the
data, and the indeterminism of the required computational power. These factors must be
translated into virtual infrastructure requirements in terms of computation, storage, and
communication capacities.

In general, descriptive languages are a way to specify and detail the resources users
need. Due to a VI’s complexity, a language for describing its composition must be abstract
enough and more adaptive than conventional resource-description languages and models.
In addition, it needs to combine the spatial and temporal aspects of virtual infrastructures.

This chapter proposes the Virtual Infrastructure Description Language (VXDL), an
XML-based language for specifying and modeling VIs. VXDL allows the identification
and parameterization of virtual resources and groups of resources (according to their
functionalities), as well as the network topology (based on the link-organization concept).
It also introduces the internal virtual infrastructure timeline, which explores the elasticity
of VIs, enabling application providers to specify the exact intervals when virtual resources
are provisioned.

The rest of this chapter is organized as follows. Section 3.2 discusses the main projects,
languages, and standards that have been proposed to describe computing resources and
network topologies. It also reviews the motivations and needs for a new language for
specifying virtual infrastructures. VXDL is presented in Section 3.3, and Section 3.4
concludes this chapter.

3.2 State of the art

The description of IT resources and network topologies has been the focus of several
studies over the past years. Essentially, the proposed languages differ in the context
and expressiveness of their grammars. In this section, we review resource and network
description languages, discuss languages for describing virtual infrastructures, and review
standardization efforts.

3.2.1 IT resource description languages

The list of languages presented here contains those used to describe computing resources in
Grids and others for general purpose description. The languages are reviewed in the order
they were proposed and published since a chronological analysis helps observe constant
improvements in the descriptive process. In early languages, users specified only the
number of computers required to execute their applications. As Grid Computing evolved,
the level of detail increased.

ClassAd: this language was developed in the context of the Condor project [CON] to
allow for job submission and resource reservation in Grids [Raman et al., 1998]. Clas-
sAd is a semi-structured language that does not specify a rigid grammar. By comparing
expressions, it aims to perform a mapping between described attributes (substrate) and
specified values (request). Attributes can be default values (e.g., integers, reals) or com-
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plete requests (queries) with parameters for resource reservation (start and end dates).
ClassAd does not provide attributes to describe network topology.

Redline: proposed to improve the resource description performed by ClassAd. It presents
three main innovations [Liu and Foster, 2003]: the description and parameterization of
groups of resources; the introduction of pre-defined functions, such as sum(), count() and
max() to personalize the definition of resources; and the introduction of predicates includ-
ing forall x in set, which allowed the application of a single rule for a set of resources.

SWORD: is a resource discovery system for shared wide-area platforms [Oppenheimer
et al., 2005]. This system supports queries described in a specific XML format (SWORD
XML) or using the ClassAd language. The proposed description format, XML SWORD,
enables the specification of individual resources, clusters and the union of clusters. Queries
specified with SWORD can also inform simple parameters for network configuration, such
as the latency and bandwidth allowed on interconnections.

JSDL: the Job Submission Description Language (JSDL) [Anjomshoaa et al., 2005]
allows the description of simple computational tasks of non-interactive applications for
traditional Grid environments. A job defined in JSDL specifies parameters such as required
resources, execution limits (in terms of CPU time or consumed memory), and command
line to execute the application.

GLUE: is an information model composed of objects developed to unify the modeling
and representation of Grid resources and their relation [Andreozzi et al., 2007]. The con-
cept discussed in GLUE is the usage of Computing Elements (CE) that include resource
features, policy tasks, and the interaction among CE’s. GLUE allows the representation
of homogeneous clusters and sets of heterogeneous resources. Each CE can be individu-
ally specified and parameterized; its required software and functionality can be explicitly
defined.

BPDL: Broker Property Description Language follows the XML standard and proposes
a grammar that enables resource description in terms of quality-of-service attributes, re-
quired software and middleware, and security policies [Kertesz et al., 2007]. This language
was developed to represent a whole IT substrate, and later improved to include attributes
for specifying monitoring metrics, fault tolerance requirements and scheduling policies.

3.2.2 Network description languages

The languages to describe network resources and topologies discussed here were developed
with distinct contexts and goals, such as VPN representation, generic and abstract net-
work description, network simulation, and telecommunications management network [Pras
et al., 1999] [ITU-T, 1995]. In general, these languages enable a potential representation
of networks, but without attention to IT resources.

CIM: the Common Information Model (CIM) specification [CIM, 1999] describes a com-
mon set of objects and their relationships. The CIM architecture is based on UML and
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provides the CIM Query Language (CQL) to select sets of properties from CIM-object
instances. CQL, a subset of SQL-92 [SQL, 1992] with extensions specific to CIM, allows
queries for a set of resources with certain configurations, but does not have parameters to
interact with the allocation system (e.g., informing the basic location of a component).

NDL: the Network Description Language (NDL) [NDL] [der Ham et al., 2007] is a
collection of schemas (topology, layer, capability, domain and physical) used to represent a
network infrastructure at different levels [Dijkstra et al., 2008]. This language is guided by
the general-purpose Resource Description Framework (RDF) [RDF], used for representing
information on the Web. RDF (and NDL) explores a graph data model composed of a
set of RDF triples (a subject, an object and a predicate). A subject (resource) has a set of
describing objects that are interconnected by predicates.

3.2.3 Virtual infrastructure description languages

Other resource description models are found when analyzing projects that are also inves-
tigating network virtualization and provisioning of virtual resources.

vgDL: Virtual Grid Description Language [Chien et al., 2004] enables users to provide an
initial description of the desirable virtual resources (similar to templates). vgDL proposes
three types of virtual aggregations: LooseBag, TightBag and Cluster. The meaning of
each type is abstracting the kind of network interconnection that is provisioned.

libvirt: this API [LIB] is a toolkit to interact with different virtualization platforms. It
contains an XML format that enables low-level description and configuration of virtual
machines and virtual network entities (including bridges, Network Address Translation -
NAT, and routed networks).

Rspec model: the Rspec model [RSp], developed in the context of the GENI
project [GEN], aims to provide interoperability and data exchange between components
of a virtualized execution scenario (e.g., users, resource allocator). The proposed language
does not define boundaries in the description, which means that each component can be
described with a different level of detail. This approach can help the interaction among
computational entities, but it introduces complexity in defining the level of description
that is enough for each situation.

3.2.4 Standardization efforts

Currently, several working groups are investigating and proposing standard models to
enable the interaction among different contexts and technologies. We review the stan-
dardization projects related to network and resource description, and Cloud Computing
models.

OGF NML-WG: the Open Grid Forum (OGF) Network Markup Language Working
Group (NML-WG) [NML] is addressing the problem of inter-domain light-path provi-
sioning by defining a standard schema for network topology description and information
exchange at the network-domain level. The schema describes network objects and their
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relationships. The basic NML objects and extended objects can be represented in multiple
syntaxes, including XML and RDF.

OGF NSI-WG: the OGF Network Service Interface Working Group (NSI-WG) [NSI]
is investigating recommendations to define a generic network service interface. More
specifically, this working group focuses on defining an interface that is exposed by ser-
vice providers (including functionalities), and called by different entities, such as users,
other network service providers, and middleware.

OGF OCCI-WG: OGF Open Cloud Computing Interface Working Group (OCCI-
WG) [OCC] is investigating a solution to interface with Cloud Infrastructures exposed
as a service. OCCI defines a modular API and Cloud infrastructure resources (compute,
network and storage) are described using a simple key-value based descriptor format.

DMTF OVF: the specification level addressed by the Distributed Management Task
Force (DMTF) Open Virtualization Format (DMTF OVF) [DMTF, 2009] is the packaging
and distribution of software to be run on virtual machines. OVF enables the description
and parameterization of virtual machines in terms of hardware configuration (devices such
as hard-disks, network interfaces, and memory) and the information of software (e.g.,
operating system and specific legacy services) that runs during the execution time. In
addition, OVF permits the configuration of the operating system (e.g., host names, IP
address, subnets) and application (e.g., DNS name, databases and external services). An
extension of OVF, proposed to address the elastic aspect of virtual infrastructures, includes
the definition of key performance indicators that are monitored during the reservation
time [Galán et al., 2009].

W3C USDL: the Unified Service Description Language Incubator (USDL) Group Char-
ter [USD] is defining a language for describing general parts of technical and business
services and allow them to become tradable and consumable. Technical services are those
based on WSDL, REST or other specifications, whereas business services are defined as
activities offered by a service provider to a consumer to create value for the latter. The
business services are more general and comprise manual and technical services. This work
group started in late 2010 and as of writing of this chapter the documentation and propo-
sition were still under development.

3.2.5 Discussion and analysis

Users need to define the virtual infrastructures they request according to their applications’
requirements. A language dedicated to virtual infrastructure description must be abstract
enough and more adaptive than conventional resource description. During the specification
process, new challenges coming from virtualization techniques have to complement the
management, configuration and execution features of classical infrastructure description
languages. For example, the description languages explored in Grids only enable the
specification of computing resources and jobs that the users submit. They do not offer
attributes to deal with the elastic aspect of VIs’ components.
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A VI is modeled as a graph composed of vertices (IT resources) and edges (network
links). Due to its complexity and large number os components, attributes, and partic-
ularities, this compute and communication resource graph must be described as a single
entity. Standardization groups are identifying the requirements and proposing models to
specify resources and applications in the context of Cloud Computing (IT resource only),
but the combined specification of IT resources and network topologies are not addressed
by these models.

Usually, languages for describing networks do not offer enough attributes for specifying
computing resources, which are interconnected by these networks. Although a network
description language offers enough attributes to specify the network topology, it becomes
necessary to complement it with an comprehensive model for defining IT resources. More-
over, a language dedicated to VI description needs to combine the space and temporal
aspects of these entities.

Table 3.1 summarizes the languages reviewed in this section. The column values were
selected considering the definition of a virtual infrastructure, its components and prop-
erties. The components, identified in Section 2.4 in Chapter 2, consist of: vNodes, vAc-
cessPoints, vRouters, vStorage, and vLinks. The selected properties represent the key
attributes for specifying a VI: location, monitoring, software configuration, reliability, and
elasticity. Location is related to the interaction between user and management framework.
A user can define the exact geographical location where the virtual component must be
provisioned due to specific reasons (e.g., data dependency, security, governmental law).
Monitoring, reliability, and elasticity indicate the presence of attributes for configuring
the services exposed by an InP. For instance, defining the reliability and monitoring lev-
els, or defining the elasticity rules (capacity variation per time). Software configuration
indicates the availability of attributes to configure and interact with the legacy software
running on the virtual resources (e.g., configuring rules for load balancing, number of
active threads of a pager server) The value

√
indicates the availability of an attribute

to specify the required VI component. As we can observe, the language that offers more
attributes covers only 55% of VI components and particularities. Most languages do not
reach 37%, and none allows the complete description of VI components. This analysis
hence shows the need for a specific language to describe virtual infrastructures, by enabling
the parameterization of all their components, attributes, and particularities.

3.3 Virtual Infrastructure Description Language -

VXDL

VXDL allows the description of a VI or a compute-and-communication resource graph [6].
As presented in Figure 3.1, VXDL enables the specification of a VI according to different
levels of application requirements (e.g., SaaS and PaaS). It fulfills all the requirements in
Table 3.1 and brings four original aspects:

• the joint specification of network and computing elements;

• a language that permits a simple and abstract description of complex virtual infras-
tructures;
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3.3. VIRTUAL INFRASTRUCTURE DESCRIPTION LANGUAGE - VXDL CHAPTER 3. VXDL

• the VI timeline specification used to describe the temporal and elastic aspects of
virtual infrastructures, defining intervals where each resource is really required; and

• the specification of attributes representing the expected Quality-of-Experience (QoE).

Figure 3.1: The positioning of VXDL considering the service models offered by Cloud
Computing providers.

As discussed earlier, users can model VIs based on the requirements of their appli-
cations. In this context, VXDL enables the development of requests such as ”I am a
user from London, and I would like the provisioning of a VI composed of 2 vNodes, with
reservation slot starting on 10/11/2011 at 14:00:00, lasting 1 hour. One node must be
geographically located in Lyon and the other in Paris. The vNodes must have 2 GB of
RAM, and 1 CPU core of 2.0 GHz. My vNodes are critical and must be provisioned with
a reliability of 99.9%. My application requires a bi-directional virtual link of 10 Mbps to
communicate efficiently.”.

In addition, Infrastructure Providers (InPs) can share requests, propose templates,
and expose a subset of virtualized resources. This information is essential in distributed
discovery and allocation systems. For example, an InP A could share an information and
request a VI composition using resources of InP B: ”I would like to extend the VI of my
client over your substrate for a reservation period starting on 10/08/2011 at 08:00:00, dur-
ing 3 months. To be executed, the financial-information system operated by this company
requires 8 storage servers and 20 computing nodes. Each data server must have a storage
capacity of 1 TB, while the computing nodes must have 4 GB of memory. These resources
will be used by a temporary branch of my client’s company, and must be interconnected
with the headquartered access point located in California, through a dedicated communica-
tion channel with 100 Mbps of bandwidth capacity. Both IT and network resources must
be provisioned with a high-level security to guarantee the data confidentiality.”.

These two sentences indicate the scenarios where VXDL acts. In Section 3.3.3 we
describe examples to show how the language helps the description of VIs in both contexts.

3.3.1 Language grammar

VXDL proposes a simple and high level grammar to specify virtual infrastructures hiding
hardware details. The syntax and lexical rules of VXDL are presented in Figure 3.2 and
Figure 3.3 using the Extended Backus-Naur Form (EBNF) [EBNF, 1996]. EBNF adds the
regular expression syntax of regular languages to the BNF notation [Crocker and Overell,
1997], in order to allow very compact specifications. The definitions of string, integer, float,
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double, boolean, date and time are not presented to simplify the description, concentrating
only in defining the elements of VXDL. These elements follow the international format
in accordance with W3C recommendations [Biron and Malhotra, 2001]. As observed in
these figures, VXDL follows the XML standard. An XML Schema Definition (XSD) and
the documentation of VXDL are maintained on http://www.ens-lyon.fr/LIP/RESO/

Software/vxdl/.
Following a tree organization, a VXDL description begins by the definition of virtual-

Infrastructure, as shown by the first line of Figure 3.2. Thus, the virtual infrastructure is
specified and composed respecting the defined rules. We can note that a set of elements
are optional permitting the adaption of VXDL to different contexts with specific require-
ments. In the next section, we discuss the semantic of VXDL and demonstrate the usage
of its grammar.

3.3.2 VXDL file structure

As presented in Figure 3.4, a VXDL file structure is conceptually composed of four parts
that represent all aspects of a VI:

• the general description of the VI, and the definition of default values;

• the description of virtual resources;

• the description of the virtual network topology; and

• the description of the internal VI timeline.

A VXDL document is organized as follows: the root element virtualInfrastructure con-
tains recursive entries for vNode, vRouter, vAccessPoint, vStorage, vLink, and vGroup
elements. Each virtual resource is identified and referred by a unique identifier (id at-
tribute). In addition, the document contains a single entry for virtualTimeline descrip-
tion. The description of VXDL elements is partially optional. It is possible to specify a
simple communication infrastructure (for example, a virtual private network) or a simple
aggregate of end resources without any network topology description.

The UML specification of VXDL is presented in Figure 3.5, showing the interaction and
dependency of its components. To simplify the language definition, some of the attributes
are factorized and grouped in special classes such as common and capacity. Moreover,
a special component, vResource, is used to abstract the interaction among other virtual
resources.

In the following sections, we detail the conceptual organization of VXDL documents.

3.3.2.1 VI general description

The first part of a VXDL document concerns the general and default attributes of a
virtual infrastructure. Performing an analogy with a graph specification, this section of
VXDL defines the default attributes for all VI components, and additional attributes not
placed in a graph. Looking at Figure 3.5, the object virtualInfrastructure represents the
general description, being composed of the following attributes (following the inheritance
of common):

• the identification of the infrastructure;
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VXDL = ’<virtualInfrastructure>’, owner, {user}, [extension], common,

{vNode | vRouter | vAccessPoint | vStorage | vLink | vGroup},

[virtualTimeline], sharedRiskGroup, ’</virtualInfrastructure>’;

common = id, [startDate], [totalTime], [reliability], [location], [security], [monitoring],

[monitoringURL];

id = ’<id>’, string, ’</id>’;

startDate = ’<startDate>’, date, time, ’</startDate>’;

totalTime = ’<totalTime>’, time, ’</totalTime>’;

owner = ’<owner>’, string, ’</owner>’;

user = ’<user>’, string, ’</user>’;

extension = ’<extension>’, boolean, ’</extension>’;

reliability = ’<reliability>’, string, ’</reliability>’;

security = ’<security>’, string, ’</security>’;

monitoring = ’<monitoring>’, string, ’</monitoring>’;

monitoringURL = ’<monitoringURL>’, string, ’</monitoringURL>’;

location = ’<location>’, string, ’</location>’;

sharedRiskGroup = ’<sharedRiskGroup>’, id, resources, ’</sharedRiskGroup>’;

resources = ’<resources>’, {id}, ’</resources>’;

vResource = common, [model], [exclusivity], [tags];

model = ’<model>’, string, ’</model>’;

exclusivity = ’<exclusivity>’, boolean, ’</exclusivity>’;

tags = ’<tags>’, {key, value}, ’</tags>’;

key = ’<key>’, string, ’</key>’;

value = ’<value>’, string, ’</value>’;

vNode = ’<vNode>’, vResource, [devices], [ip],

[imageURL], [storage], [cpu], [memory], ’</vNode>’;

imageURL = ’<imageURL>’, string, ’</imageURL>’;

devices = ’<devices>’, {string}, ’</devices>’;

ip = ’<ip>’, string, ’</ip>’;

memory = ’<memory>’, (longInterval | longSet | longSimple), memoryUnit, ’</memory>’;

cpu = ’<cpu>’, frequency, [cores], [architecture], ’</cpu>’;

frequency = ’<frequency>’, (doubleInterval | doubleSet | doubleSimple), frequencyUnit,

’</frequency>’;

cores = ’<cores>’, integer, ’</cores>’;

architecture = ’<architecture>’, string, ’</architecture>’;

storage = ’<storage>’, (longInterval | longSet | longSimple), memoryUnit, ’</storage>’;

vStorage = ’<vStorage>’, vResource, type, [volume], [imageURL], [ip], ’</vStorage>’;

type = ’<type>’, ’NAS’ | ’DAS’ | ’SAN’, ’</type>’;

volume = ’<volume>’, string, ’</volume>’;

vAccessPoint = ’<vAccessPoint>’, vResource, [ip], {loadBalancer | nat | masquerade},

’</vAccessPoint>’;

loadBalancer = ’<loadBalancer>’, {inEndpoint}, {publicIP}, ’</loadBalancer>’;

inEndpoint = ’<inEndpoint>’, string, ’</inEndpoint>’;

publicIP = ’<publicIP>’, ip, ’</publicIP>’;

nat = ’<nat>’, [inEndpoint], [inPort], protocol, [publicIP], [outPort], ’</nat>’;

inEndpoint = ’<inEndpoint>’, string, ’</inEndpoint>’;

inPort = ’<inPort>’, long, ’</inPort>’;

outPort = ’<outPort>’, long, ’</outPort>’;

protocol = ’<protocol>’, string, ’</protocol>’;

masquerade = ’<masquerade>’, {inEndpoint}, publicIP, ’</masquerade>’;

Figure 3.2: Specification of the VXDL grammar (version 2.7) using EBNF (part 1 of 2).
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vLink = ’<vLink>’, vResource, source, destination, [latency], [bandwidth], ’</vLink>’;

source = ’<source>’, string, ’</source>’;

destination = ’<destination>’, string, ’</destination>’;

bandwidth = ’<bandwidth>’, forward, [reverse], ’</bandwidth>’;

forward = ’<forward>’, (doubleInterval | doubleSet | doubleSimple), bandwidthUnit,

’</forward>’;

reverse = ’<reverse>’, (doubleInterval | doubleSet | doubleSimple), bandwidthUnit,

’</reverse>’;

latency = ’<latency>’, (doubleInterval | doubleSet | doubleSimple), latencyUnit,

’</latency>’;

vRouter = ’<vRouter>’, vResource, [memory], dataPlane, controlPlane, ’</vRouter>’;

dataPlane = ’<dataPlane>’, scheduling, ’</dataPlane>’;

scheduling = ’<scheduling>’, (’LQF’ | ’RR’ | ’FCF’), ’</scheduling>’;

controlPlane = ’<controlPlane>’, layer, type, routingProtocol, [routingTable], ’</controlPlane>’;

type = ’<type>’, (’static’ | ’dynamic’), ’</type>’;

routingProtocol = ’<routingProtocol>’, (’OSPF’ | ’BGP’ | ’RIP’), ’</routingProtocol>’;

layer = ’<layer>’, string, ’</layer>’;

routingTable = ’<routingTable>’, rtSize, {route}, ’</routingTable>’;

rtSize = ’<rtSize>’, integer, ’</rtSize>’;

route = ’<route>’, source, destination, gateway, ’</route>’;

gateway = ’<gateway>’, string, ’</gateway>’;

vGroup = ’<vGroup>’, id, multiplicity, [location], {vNode | vRouter | vAccessPoint |

vStorage | vLink}, ’</vGroup>’;

multiplicity = ’<multiplicity>’, integer, ’</multiplicity>’;

virtualTimeline = ’<virtualTimeline>’, id, {timeline}, ’</virtualTimeline>’;

timeline = ’<timeline>’, id, [after], {activate}, totalTime, ’</timeline>’;

after = ’<after>’, string, ’</after>’;

activate = ’<activate>’, string, ’</activate>’;

longInterval = ’<interval>’, longValues, ’</interval>’;

longValues = ’<min>’, long, ’</min>’, ’<max>’, long, ’</max>’;

longSet = ’<set>’, longValues, ’<step>’, long, ’</step>’, ’</set>’;

doubleInterval = ’<interval>’, doubleValues, ’</interval>’;

doubleValues = ’<min>’, double, ’</min>’, ’<max>’, double, ’</max>’;

doubleSet = ’<set>’, doubleValues, ’<step>’, double, ’</step>’, ’</set>’;

memoryUnit = ’MB’ | ’GB’ | ’TB’;

frequencyUnit = ’GHz’ | ’MHz’;

bandwidthUnit = ’Gbps’ | ’Mbps’;

latencyUnit = ’us’ | ’ms’ | ’s’;

Figure 3.3: Specification of the VXDL grammar (version 2.7) using EBNF (part 2 of 2).
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Figure 3.4: The conceptual VXDL file structure (version 2.7).

• an attribute informing if the VI being described is an extension of a VI already
provisioned;

• the reservation period (start date and duration);

• the default security and reliability levels;

• the required monitoring level;

• the global geographical location;

• the owner and the list of users allowed to access and manipulate the VI;

• and the composition of Shared Risk Groups (SRGs).

The values of some attributes (e.g., the levels of monitoring, security and reliability
are defined by the substrate configuration and availability) are defined and exposed by the
InP during the SLA negotiation. The default definitions informed in this section can be
refined for each element. For example, a VI defined with default reliability requirement of
99.9% and default security level bronze, can have internal critical components with 99.99%
and gold requirements, for reliability and security, respectively.

By defining SRGs, users can identify groups of critical resources that should not be
allocated on the same physical resources. This definition is an extension of the Shared Risk
Link Groups (SRLGs) used to avoid the allocation of back-up MPLS tunnels in the same
SRLG of the interfaces they are protecting [Kompella and Rekhter, 2005]. Besides virtual
links, VXDL allows SRGs composed of IT resources. SRGs can be used for defining the
reliability requirements at the user level, instead of requesting an InP service (as discussed
in Chapter 6).

In addition, the virtualInfrastructure element also has entries for the components com-
posing the other three main conceptual parts of VXDL, as described in the sequence.
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Figure 3.5: UML specification of VXDL (version 2.7).
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3.3.2.2 Virtual resources description

The second part of VXDL describes, in a simple and objective way, all the IT resources
and groups of them. Keeping the analogy with a graph description, these components are
responsible for describing the vertices. The objects with the blue color and white font
shown in Figure 3.5 are mainly explored to describe virtual resources. One can observe
the presence of attributes that specify the basic building blocks of virtual infrastructures:
vNodes, vAccessPoints, vStorage, and vRouters, as discussed in Section 2.4.2 in Chapter 2.

VXDL allows the basic resource parameterization (values for memory size, CPU speed,
among others), using simple values, intervals, and sets of acceptable values. A specific
attribute, the tags, enables the specification of a set of key-value pairs, allowing the in-
teraction of VXDL with other description languages and models. Tags can also be used
to transmit software configuration to the management framework, aiming for automatic
configuration.

An important feature of VXDL is that it proposes cross-layer parameters (i.e. ap-
plication level and physical level attributes) for all components. For example, with the
specification of location and exclusivity, and the composition of shared risk groups, users
can directly transmit application-specific information and constraints to the management
framework. The location attribute corresponds to a physical embedding constraint, which
places a virtual resource (group, or an entire VI) in a given physical location (e.g. a city,
a country, a site, or a machine), for an application- or user-specific reason.

On the other hand, on a virtualized physical substrate, multiple virtual machines can
be executed in the same physical host sharing the available resources. VXDL enables the
specification of exclusivity, meaning that only one virtual machine must be allocated in a
physical host, disabling any sharing to offer explicit security and performance guarantees.
In addition, software to be deployed on resources can be specified by this part of the VI
description.

Analyzing the virtual resources individually, we observe that the attributes proposed to
describe vRouters enable the specification of data-planes and control-planes individually,
being more adaptable to different technologies and usage scenarios [GEY] [SAI]. Also, the
attributes to specify vAccessPoints enable the definition of VI boundaries, and the rules
that guide the interaction of the VI with the external world, not part of the VI (e.g., a
public resource, the Internet). A NAT, a set of masquerade rules, and a Load Balancer
are proposed to interconnect and organize the incoming and outcoming traffic.

Finally, besides the storage capacity, attributes to identify the type of storage and
the volume configuration are proposed. The type of a vStorage can be chosen among
DAS (Direct-attached storage), NAS (Network-attached storage), or SAN (Storage Area
Network) technologies.

3.3.2.3 Virtual network topology description

Continuing the line of a graph description, these elements define attributes to specify
the edges of VI graph. These virtual links define interconnections between IT resources,
between individual resources and groups, inside groups, and among groups.

The dark-blue color and white font components presented in Figure 3.5 show the
main attributes available to describe virtual links. The required capacity and quality-of-
service values are defined by the bandwidth (forward and reverse) and latency attributes.
Maximum and minimum values can be defined for latency and bandwidth (forward and
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Figure 3.6: Examples of network topologies used to interconnect virtual resources.

reverse).

vLinks are specified as source-destination pairs. The extremities of a virtual link can
be a single IT resource (e.g., vNode, vRouter, vAccessPoint, vStorage) or a group of
resources. Figure 3.6 presents some topologies that can be described with VXDL: a ring,
a tree, and a star. While many topologies can be described using VXDL, we select these
three to exemplify the source-destination pairs and the positioning of a vRouter. In this
example, the Ring topology is described requiring a uni directional path with bandwidth
of 25 Mbps to interconnect six vNodes. The fragment of VXDL presented in Figure 3.7
shows the description of this topology, where only one vLink was specified and a set of pairs
defined the resources that are interconnected by this link. The Star topology exemplifies
the presence of a vRouter (rv1) to control the traffic between five vNodes.

3.3.2.4 Virtual timeline description

Finalizing the analogy with a graph description, this section of VXDL describes the elastic
aspects of VIs or, in other words, the subgraphs grouped by time slots. Virtual infrastruc-
tures are allocated and provisioned for a defined time slot. Time slot duration is specific
to the substrate-management framework and consequently this parameter is configured by
the manager of the virtualized environment.

Often, the virtual infrastructure components are not used simultaneously or all along
the virtual infrastructure lifecycle. Thus, the specification of an internal timeline for each
virtual infrastructure can help optimizing the allocation, scheduling, and provisioning of
virtual resources.

Figure 3.8 explains the timeline description of a VI composed of five IT resources: three
computing clusters (cluster A, B, and C ), a database node, and a visualization node. This
VI is divided in three stages according to the resource usage. In stage I, a data transfer
is performed between the database server and the computing clusters. At this moment, a
network interconnection with enough capacity is required to perform the transfer before
a defined deadline. After the data transfer, stage II begins, during which a computation
is performed and clusters must be interconnected with a different network configuration.
Finally, in stage III a data transfer must be carried out for the final visualization of
results. Again, virtual links with enough capacity must be provisioned to interconnect the
computing clusters with the visualization resources.

By analyzing this example it is possible to observe that the specification of internal
timelines can help management frameworks in resources allocation and provisioning: the
timeline indicates the exact moment where resource are required helping InPs in not
wasting over-provisioned capacities. If a VI lifetime is long enough and can be divided in
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<?xml ver s i on=” 1 .0 ” encoding=”UTF−8”?>
<de s c r i p t i on xmlns=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl ”

xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema− i n s t ance ”
x s i : schemaLocation=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl VXDL. xsd”>
<v i r t u a l I n f r a s t r u c t u r e id=”my VPXI” owner=” ko s l o v s k i ”>

<user>gu i lhermekos lovsk i </user>
<startDate >2011−09−21T08 :00:00 </ startDate>
<totalTime>PT3H</totalTime>
<vLink id=” v i r t u a l l i n k 1”>

<bandwidth>
<forward>

<simple >25.0</ simple>
<unit>Mbps</unit>

</forward>
</bandwidth>
<source>rv 1</source>
<des t ina t i on>rv 2</de s c r ip t i on>

</vLink>
<vLink id=” v i r t u a l l i n k 2”>

<bandwidth>
<forward>

<simple >25.0</ simple>
<unit>Mbps</unit>

</forward>
</bandwidth>
<source>rv 2</source>
<des t ina t i on>rv 3</de s c r ip t i on>

</vLink>
<vLink id=” v i r t u a l l i n k 3”>

<bandwidth>
<forward>

<simple >25.0</ simple>
<unit>Mbps</unit>

</forward>
</bandwidth>
<source>rv 3</source>
<des t ina t i on>rv 4</de s c r ip t i on>

</vLink>
<vLink id=” v i r t u a l l i n k 4”>

<bandwidth>
<forward>

<simple >25.0</ simple>
<unit>Mbps</unit>

</forward>
</bandwidth>
<source>rv 4</source>
<des t ina t i on>rv 5</de s c r ip t i on>

</vLink>
<vLink id=” v i r t u a l l i n k 5”>

<bandwidth>
<forward>

<simple >25.0</ simple>
<unit>Mbps</unit>

</forward>
</bandwidth>
<source>rv 5</source>
<des t ina t i on>rv 6</de s c r ip t i on>

</vLink>
<vLink id=” v i r t u a l l i n k 6”>

<bandwidth>
<forward>

<simple >25.0</ simple>
<unit>Mbps</unit>

</forward>
</bandwidth>
<source>rv 6</source>
<des t ina t i on>rv 1</de s c r ip t i on>

</vLink>
</v i r t u a l I n f r a s t r u c t u r e >

</de s c r ip t i on>

Figure 3.7: Description of a ring topology using VXDL.

48 c© Copyright 2011 by Guilherme Piêgas Koslovski
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Figure 3.8: Internal timeline of a Virtual Infrastructure. Three distinct stages are identi-
fied: i) data transfer, ii) data computation, and iii) visualization of resulting data.

well-defined stages of resource usage, the infrastructure provider can activate the virtual
resource only when they are really required by the application. In Figure 3.5 the dark-blue
objects represent the attributes offered to specify virtual timelines.

3.3.3 Describing VI scenarios with VXDL

This section presents examples of scenarios where VXDL can be used. It aims to demon-
strate the usage and the expressiveness of VXDL.

3.3.3.1 Requesting and provisioning vNodes and vLinks

The first example, explored in the context of the HIPCAL project [HIP], demonstrates
the usage of a simple set of vNodes during the reservation and activation. The goal of
this example is to show how the attributes are used in the description and provisioning
processes.

Figure 3.9 presents the description of two vNodes interconnected by a single vLink.
The vNodes require a 2 GHz CPU (1 core) and a memory capacity between 2 GB and 4
GB. Any value within this range is acceptable. Observe that the VI requires a monitoring
service described as gold. The meaning of this keyword is defined by the infrastructure
provider during the service definition and exposition.

Figure 3.9 also describes a vLink to interconnect node 1 and node 2, requiring a
bandwidth capacity between 10 Mbps and 20 Mbps. For the sake of simplicity, this
example does not describe the VI timeline.

A management framework that receives this VXDL description must allocate and
provision the virtual resources. During the allocation, the framework decides on a single
value to be provisioned within the acceptable ranges informed by the user. Usually this
decision if performed by the infrastructure provider considering the load distribution,
economic aspects, physical substrate fragmentation, among others factors (we discuss the
allocation problem in detail in Chapter 5).

After the decision process, a new VXDL description is composed and returned to inform
relevant information about the provisioned VI, such as: i) which values were provisioned
between the ranges specified by the user; ii) the IP address through which the virtual
resources can be accessed; and iii) the monitoring address of every resource from which a
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user can access on-line information and metrics (in accordance with the service exposed
by the infrastructure provider).

Figure 3.10 presents a VXDL description that states the values selected to be provi-
sioned by the management framework. In this example, node 1 was provisioned with 3 GB
of memory, and node 2 with 2 GB. Also, the virtual link was configured with a bandwidth
of 10 Mbps for both forward and reverse. Finally, the attributes highlighted in green
show the address used to access the virtual resources, and where monitoring information
is available.

3.3.3.2 Multiuser game service

This scenario presents a virtual infrastructure requested to host a multiuser game service
where client requests can arrive at any time during the reservation period. This example
was developed in the context of HIPCAL [HIP] and CARRIOCAS [CAR] projects, and the
main objective is to demonstrate how VXDL can be used to specify dynamic VIs where
the number of resources and their configuration change during the execution time.

As shown in Figure 3.11, a virtual server must be provisioned to host the game service
during a defined period. Each client who wishes to play must connect to the central server.
Virtual links between clients access-point and game server are dynamically provisioned to
ensure the Quality-of-Service (QoS) of players. Clients can be located at different cities.
The dashed boxes and links represent resources that must be dynamically provisioned,
whereas the solid boxes and links represent the connected clients.

The VI that will host the multiuser game service requires a reservation slot with a
duration of 10 days, starting at 2011-04-21 08:00:00 and is composed of:

• Virtual Infrastructure:

– a centralized game server (vNode) able to connect to a maximum of 100 clients
(vAccessPoints) using TCP protocol for communication;

– The security level required is gold among the options: basic, silver, gold, and
platinum.

• Game server requirements:

– RAM capacity: 8 GB;

– Storage capacity: 100 GB;

– The game server is a critical component of this VI. Thus, a high reliability level
is required (platinum in this case, among the options: basic, silver, gold, and
platinum).

• Virtual links:

– 100 vLinks must be dynamically provisioned, respecting the arrival of remote
clients;

– Each virtual link must have at least 10 Mbps of bandwidth reserved to be
provisioned when the client requests the connection.
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<?xml ver s i on=” 1 .0 ” encoding=”UTF−8”?>
<de s c r i p t i on xmlns=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl ”

xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema− i n s t ance ”
x s i : schemaLocation=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl VXDL. xsd”>
<v i r t u a l I n f r a s t r u c t u r e id=”example 1” owner=” ko s l o v s k i ”>

<user>gu i lhermekos lovsk i </user>
<startDate >2011−04−21T08 :00:00 </ startDate>
<totalTime>PT4H</totalTime>
<monitoring>gold</monitoring>
<vNode id=”node 1”>

<cpu>
<cores >1</cores>
<frequency>

<simple>2</simple>
<unit>GHz</unit>

</frequency>
</cpu>
<memory>

<i n t e rva l >
<min>2.0</min>
<max>4.0</max>

</ in t e rva l >
<unit>GB</unit>

</memory>
</vNode>
<vNode id=”node 2”>

<cpu>
<cores >1</cores>
<frequency>

<simple>2</simple>
<unit>GHz</unit>

</frequency>
</cpu>
<memory>

<i n t e rva l >
<min>2.0</min>
<max>4.0</max>

</ in t e rva l >
<unit>GB</unit>

</memory>
</vNode>
<vLink id=” l i n k 1”>

<bandwidth>
<forward>

<i n t e rva l >
<min>10.0</min>
<max>20.0</max>

</ in t e rva l >
<unit>Mbps</unit>

</forward>
<reverse>

<i n t e rva l >
<min>10.0</min>
<max>20.0</max>

</ in t e rva l >
<unit>Mbps</unit>

</reverse>
</bandwidth>
<source>node 1</source>
<des t ina t i on>node 2</de s c r ip t i on>

</vLink>
</v i r t u a l I n f r a s t r u c t u r e >

</de s c r ip t i on>

Figure 3.9: Description of 2 vNodes interconnected by a vLink using the VXDL.
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<?xml ver s i on=” 1 .0 ” encoding=”UTF−8”?>
<de s c r i p t i on xmlns=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl ”

xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema− i n s t ance ”
x s i : schemaLocation=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl VXDL. xsd”>
<v i r t u a l I n f r a s t r u c t u r e id=”example 1” owner=” ko s l o v s k i ”>

<user>gu i lhermekos lovsk i </user>
<startDate >2011−04−21T08 :00:00 </ startDate>
<totalTime>PT4H</totalTime>
<vNode id=”node 1”>

<ip >200.142.35.10 </ ip>
<monitoringURL>http : / /200 . 1 42 . 3 5 . 5 0/ node1</monitoringURL>
<cpu>

<cores >1</cores>
<frequency>

<simple>2</simple>
<unit>GHz</unit>

</frequency>
</cpu>
<memory>

<simple>3</simple>
<unit>GB</unit>

</memory>
</vNode>
<vNode id=”node 2”>

<ip >200.142.35.11 </ ip>
<monitoringURL>http : / /200 . 1 42 . 3 5 . 5 0/ node2</monitoringURL>
<cpu>

<cores >1</cores>
<frequency>

<simple>2</simple>
<unit>GHz</unit>

</frequency>
</cpu>
<memory>

<simple>2</simple>
<unit>GB</unit>

</memory>
</vNode>
<vLink id=” l i n k 1”>
<monitoringURL>http : / /200 . 1 42 . 3 5 . 5 0/ l ink1 </monitoringURL>
<bandwidth>

<forward>
<simple >10</simple>
<unit>Mbps</unit>

</forward>
<reverse>

<simple >10</simple>
<unit>Mbps</unit>

</reverse>
</bandwidth>
<source>node 1</source>
<des t ina t i on>node 2</de s t ina t i on>

</vLink>
</v i r t u a l I n f r a s t r u c t u r e >

</de s c r ip t i on>

Figure 3.10: Example of a VXDL description used to inform the configuration provisioned
by the management framework according to the request in Figure 3.9.
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Figure 3.11: Example of a multiuser game server connected to a set of remote clients.

Within VXDL, this scenario can be presented using two types of description: one to
specify the game server, and another to specify the clients. An initial VXDL file describes
the game server configuration and prepares the remote vAccessPoints. The submission of
a new VXDL informing the location of the new client access point is necessary for each
client that arrives to play the game. At this moment, the virtual link is provisioned to
interconnect client and game server. The VXDL file presented in Figure 3.12 shows the
initial configuration.

The requests of client connections can arrive at any time during the reservation period.
The VXDL description shown in Figure 3.13 represents the demand for provisioning a
vLink to interconnect the new client to game server. In other words, this VXDL extension
file informs that one of the vAccessPoints prepared during the initial configuration became
active. In this case, a client located at City N informs its IP address and requests the
connection to the original VI for a period of 2 hours.

We extend the discussion of this example to identify how vLinks can be provisioned
to interconnect the new client with the game server. Figure 3.14 exemplifies two possible
scenarios for this dynamic provisioning.

• Case A: the client is outside the administrative domain. By administrative domain
we mean the domain of virtualized and exposed resources that is administered by
the management framework. Thus, the vLink can be provisioned with all required
guarantees (forward and reverse bandwidth) until the end of the administrative
domain where the vAccessPoint is located.

• Case B: the client is within the administrative domain. In this scenario, a vLink can
be provisioned until the client’s vNode instead of the vAccessPoint. Consequently,
the full path that provisions the vLink has the same guarantees.

3.3.3.3 VISUPIPE

The High Performance Collaborative Remote Visualization (VISUPIPE) software gener-
ates 30 images of 20 megapixels x 32 bits per second x 2 for stereo, which results in a
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<?xml ver s i on=” 1 .0 ” encoding=”UTF−8”?>
<de s c r i p t i on xmlns=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl ”

xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema− i n s t ance ”
x s i : schemaLocation=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl VXDL. xsd”>
<v i r t u a l I n f r a s t r u c t u r e id=”mult iuser game s e r v i c e ” owner=” ko s l o v s k i ”>

<startDate >2011−04−21T08 :00:00 </ startDate>
<totalTime>P10D</totalTime>
<s e cur i ty>gold</secur i ty>
<vNode id=”game se rve r ”>

<r e l i a b i l i t y >platinum</ r e l i a b i l i t y >
<memory>

<simple>8</simple>
<unit>GB</unit>

</memory>
<storage>

<simple >100</simple>
<unit>GB</unit>

</storage>
</vNode>
<vGroup id=” acce s s po in t s ” mu l t i p l i c i t y=”100”>

<vAccessPoint id=” c l i e n t ”>
<nat>

<protoco l>TCP</protoco l>
</nat>

</vAccessPoint>
</vGroup>
<vLink id=”dynamic l i n k ”>

<bandwidth>
<forward>

<simple >10</simple>
<unit>Mbps</unit>

</forward>
<reverse>

<simple >10</simple>
<unit>Mbps</unit>

</reverse>
</bandwidth>
<source>game server </source>
<des t ina t i on>ac c e s s points </de s t ina t i on>

</vLink>
</v i r t u a l I n f r a s t r u c t u r e >

</de s c r ip t i on>

Figure 3.12: VXDL description for the initial VI configuration of the multiuser game
service example.

<?xml ver s i on=” 1 .0 ” encoding=”UTF−8”?>
<de s c r i p t i on xmlns=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl ”

xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema− i n s t ance ”
x s i : schemaLocation=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl VXDL. xsd”>
<v i r t u a l I n f r a s t r u c t u r e id=”mult iuser game s e r v i c e ” owner=” ko s l o v s k i ”>

<extens ion>true</extens ion>
<user>new c l i e n t </user>
<startDate >2011−04−21T10 :00:00 </ startDate>
<totalTime>PT2H</totalTime>
<vAccessPoint id=”new c l i e n t ”>

<l o ca t i on>CityN</l o ca t i on>
<nat>

<protoco l>TCP</protoco l>
<publ icIP >200.142.35.110 </ publ icIP>

<nat>
</vAccessPoint>
<vLink id=”dynamic l i n k ”>

<bandwidth>
<forward>

<simple >10.0</ simple>
<unit>Mbps</unit>

</forward>
<reverse>

<simple >10.0</ simple>
<unit>Mbps</unit>

</reverse>
</bandwidth>
<source>new c l i e n t </source>
<des t ina t i on>game server </de s t ina t i on>

</vLink>
</v i r t u a l I n f r a s t r u c t u r e >

</de s c r ip t i on>

Figure 3.13: VXDL description of a client request for the multiuser game service example.
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Figure 3.14: Example of clients provisioning for the multiuser game service use case.

Figure 3.15: Execution pipeline of the High Performance Collaborative Remove Visual-
ization (VISUPIPE) application.

bandwidth requirement of 38.4 Gbps when a researcher wants to explore the data and
images in real time. The VISUPIPE execution pipeline is presented in Figure 3.15, where
five clusters, each with different requirements (computing and communication), are in-
terconnected by unidirectional links. The data information stored on Storage cluster is
transferred to computing clusters (identified as Filtering, Mapping, and Rendering). Each
cluster manipulates the data and transfers the resulting information to the next one, until
it reaches the data visualization cluster (Visualization cluster). The goal of this example
is to show how a virtual timeline is specified, informing the internal behavior of a VI.

The execution of the VISUPIPE application requires a virtual infrastructure com-
posed of five clusters interconnected by virtual links with different requirements. The
virtual infrastructure must be reserved for 11 hours, starting at 2011-04-21 08:00:00.
More specifically, the virtual infrastructure is composed of:

• Storage cluster:

– Composed of 20 nodes, each requiring a minimum storage capacity of 200 GB;

– Nodes must be interconnected by links with maximum latency of 0.200 ms.

• Filtering cluster:

– Composed of 40 nodes, each requiring a minimum memory capacity of 4 GB
and a minimum CPU speed of 2 GHz;

– Nodes must be interconnected by links with maximum latency of 0.400 ms and
minimum bandwidth of 100 Mbps.
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3.4. CONCLUSIONS CHAPTER 3. VXDL

• Mapping cluster:

– Composed of 30 nodes;

– Each node requires a minimum memory capacity of 4 GB, a minimum CPU
speed of 2 GHz, and a minimum storage capacity of 80 GB.

• Rendering cluster:

– Composed of 10 nodes, each requiring a minimum memory capacity of 8 GB,
and a minimum CPU speed of 2 GHz;

– The nodes interconnection tolerates a maximum latency of 0.150 ms.

• Visualization cluster:

– Composed of 30 components. Each node requires a minimum memory capacity
of 8 GB, and a minimum CPU speed of 2 GHz;

– The nodes interconnection required is a maximum latency of 0.200 ms;

– All nodes must be interconnected with a specific device (visualization wall)
located in Lyon, France.

• Network topology configuration connecting the clusters:

– Unidirectional links with minimum bandwidth capacity of 38.4 Gbps between:
Storage cluster to Filtering cluster, Filtering cluster to Mapping cluster, Map-
ping cluster to Rendering cluster, and Rendering cluster to Visualization clus-
ter.

Figures A.1, A.2, A.3, and A.4 of Appendix A present a VXDL specification for the
VISUPIPE example. This VXDL file describes the five clusters and all network links
required to execute VISUPIPE. Particularly, Figure A.3 shows the timeline composition
of this scenario. The computing and data transfer stages are defined in advance (before
the start of the application’s execution). Each timeline (or stage) has a specific duration
and begins after the end of the previous timeline.

3.4 Conclusions

VIs are malleable entities that can be composed according to users’ and applications’
requirements, which can differ in terms of computing, storage and communication [Vicat-
Blanc et al., 2011]. The absence of one may affect the application’s performance, but the
over-provisioning can increase the cost for users.

An efficient and expressive description language is crucial for VI instantiation as it
is the way (tool) users define the requirements of their applications. In this chapter, we
presented the Virtual Infrastructure Description Language (VXDL), a powerful language
that enables the complete description and parameterization of VI components. VXDL has
a simple and objective grammar that offers attributes to specify virtual resources, virtual
network topology, and the internal timeline of virtual infrastructures.

Examples applied to different projects were presented. In each example, we described
the scenario, objectives, and how VXDL can be used. In some cases, the discussion was
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extended to show how a VXDL description (or a VI specification) is instantiated by infras-
tructure providers, and how VXDL is exploited for carrying the provisioned configuration.

Some attributes proposed by this language open opportunities for further studies.
For example, a user can specify the required reliability level for a service, which is then
implemented by the InP in a transparent way and charged from the final user (we discuss
a mechanism to provide reliable virtual infrastructures in Chapter 6). On the other hand,
an advanced user can define the shared risk groups. The benefits and drawbacks of each
scenario should be identified, considering allocation costs and application performance.

Finally, it is important to mention that VXDL has been adopted by several software
solutions as an intermediate communication tool between application and the execution
environment, including: the HIPerNet framework [HIPerNet], the MOTEUR workflow
manager [MOT], and the LYaTiss solutions for VI orchestration in the Clouds (VXDL
parser [VXDLParser], LYaTiss Weaver [LYaTiss, 2011], LYaTiss Designer, VXDL transla-
tor, among others).
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4.3.1 Workflow-based applications

4.3.2 Permanent and variable parts of workflows

4.3.3 Translation strategies
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4.5.4 Impact of bandwidth control on application cost and performance

4.6 Conclusions

The work presented in this chapter was published at the Journal of Grid Com-
puting (JoGC 2010) [2], the First International Conference on Cloud Com-
puting (CLOUDCOMP 2009) [5], and as a research report [16]. The work has
been done in collaboration with the I3S team (http: // www. i3s. unice. fr )
in the framework of the HIPCAL project [HIP].

4.1 Introduction

C
loud Computing is increasingly being exploited for providing resources on-demand
to users who reserve and then adapt the allocated virtual infrastructures to their

application requirements. A challenging problem, both for InPs and users, is to estimate
the number of resources to allocate from the Cloud for a specific period. Commercial
Clouds implement several schemes to bill for resource usage, most based on coarse-grained
metering of the amount of CPU and disk space consumed [AMAa], although network
bandwidth is also a critical resource in many applications. Estimating the proper number
of resources to allocate is the user’s responsibility, an estimation that is far from trivial,
especially when considering distributed applications. Assistance in estimating resource
consumption and cost management is therefore highly desirable.

The task of determining the size of a VI for supporting the execution of a given appli-
cation is often difficult. Although a quasi-unlimited number of computing resources can
be allocated, a balance has to be found between the VI cost and the expected application
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performance. Without assistance, the user has to specify a VI solely based on his previous
experience in executing the application on the InP substrate.

In theory, a system can estimate the cost of a VI deployment and usage scenario if
enough information is known on the application and the VI. However, it is hardly feasible
to anticipate the precise needs or behavior of a parallel application on a given a VI.

The general problem of estimating resource requirements for a VI, while minimizing
cost and maximizing performance, and translating them into a VI specification is in-
tractable given that it depends on knowing the exact execution behavior of a distributed
application. To make the problem tractable, we focus on workflow-based applications by
proposing a solution that models the application behavior using the formalism of work-
flow descriptions. Such a solution is not too restrictive as many coarse-grained distributed
applications can be modeled as workflows whose tasks are module invocations [Glatard
et al., 2008]. In this solution, modules to be executed are the nodes of a workflow’s directed
graph, whereas module dependencies are the edges. Each application module might be
invoked a number of times depending on the database size and, as long as no dependency
exists between invocations, modules can be performed concurrently. With the workflow
formalism, the application logic can be interpreted and exploited to produce an execution
schedule estimate.

This chapter thus investigates a mechanism whereby users can foresee the optimal VI
components and network topology needed for their application. The mechanism allows
users to automatically deploy a VI for executing their applications. Figure 4.1 positions the
contribution of this chapter considering the modular models offered by Cloud Computing
providers. The proposed strategies translate an application description (e.g., computing
nodes, middleware, framework) into VXDL files.

Figure 4.1: Positioning of the specification strategies and VXDL considering the module
models offered by Cloud Computing providers.

The rest of this chapter is structured as follows. Section 4.2 reviews the state of the
art related to translating workflow-based applications. Section 4.3 describes strategies to
translate workflow-based applications into VXDL descriptions. An experimental analysis
is presented in Section 4.4, and Section 4.5 compares the proposed strategies to generate
VXDL descriptions. Conclusions are presented in Section 4.6.
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4.2 State of the art

The VI design optimization problem is to determine both the number of resources and the
network topology needed to run a given application efficiently. Minimizing the number
of resources needed is not necessarily the best objective function as it may be better to
find a trade-off between VI cost and application performance. Such an objective can
be formulated as a cost function whose parameters depend on the size of the allocated
infrastructure and its configuration. Both computing resources and network bandwidth
have to be considered in this cost function.

Several existing resource allocation and task scheduling strategies for Grid applications
focus on matchmaking algorithms whose goal is not to find an optimal allocation, but to
identify suitable resources [Braun et al., 2001]. Best-effort algorithms such as Min-Min,
Max-Min [Maheswaran et al., 1999] or HEFT [Topcuoglu et al., 2002] focus only on min-
imizing the application makespan whereas other QoS constrained algorithms consider a
multi-objective scheduling problem [Yu and Buyya, 2005] [Sakellariou et al., 2005]. How-
ever, none takes into account the bandwidth of a link for data exchange between workflow
modules. Silva et al. [Silva et al., 2008] presented a heuristic for resource allocation on
utility computing infrastructures that optimizes the number of machines allocated to pro-
cess tasks and speed up the execution within a budget. However, this heuristic is only
suitable for bag-of-tasks problems where tasks are independent and do not communicate.

Some workflow-based allocation algorithms [Blythe et al., 2005] [Guo et al., 2006] [Man-
dal et al., 2005] [Xiao et al., 2007] can deliver better performance than matchmaking [Bit-
tencourt and Madeira, 2010]. However, the objective of these algorithms is to minimize
the application makespan without taking into account the execution cost on a pay-per-
use platform such as Clouds. Ramakrishnan et al. [Ramakrishnan et al., 2009] presented
a fault tolerant scheduling algorithm that orchestrates multiple workflows on Grid and
Cloud infrastructures by duplicating the execution of some workflows thereby increasing
the probability of success of individual tasks. This kind of approach, although poten-
tially efficient in reducing execution time, does not consider the VI allocation cost. Senkul
et al. [Senkul and Toroslu, 2005] presented an architecture for workflow scheduling that
considers allocation cost and co-allocation of tasks on the same resource, but it does not
consider resource heterogeneity.

In addition, resource allocation algorithms for mapping grid-based workflows onto Grid
resources have been proposed in the context of service level agreements [Dang and Hsu,
2008] [Dang and Altmann, 2009]. These algorithms try to assign the workflow tasks to
Grid resources so as to meet the user’s deadline and minimize cost. The algorithms do
not take into account network bandwidth.

4.3 Strategies to translate workflows into VXDL

We propose a process to specify distributed applications represented using workflows into
VXDL descriptions [5]. This application-mapping process comprises three main steps:

1. Workflow generation: the workflow is generated using information extracted from
the application, such as benchmark results, data input description, data transfer in
each module, and the number of nodes required to perform a satisfactory execution.
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A workflow description represents the input/output data, the data-processing mod-
ules, and the relationship of the application’s modules. This representation has been
well-studied into the literature (as reviewed in Section 4.2).

2. Workflow translation into VXDL: taking into account the application requirements
(such as RAM, CPU speed, and storage size), users can develop a VXDL descrip-
tion asking for the desirable configuration of the VI. At this point, users can also
declare that some components must be allocated in a specific location as well as de-
fine the virtual network topology, stating the proximity of the components (latency
configuration) and the required bandwidth. In addition, users can assign critical
components for identifying the virtual resources that require reliability support (a
mechanism for providing reliability support is described in Chapter 6).

3. VI provisioning: a management framework allocates the VI components respect-
ing the configuration expressed by the user (such as parameterizations and timeline
composition). In addition, the software configuration (operating system, program-
ming tools, and communication libraries), extracted directly from the application
and described using VXDL, are deployed within the virtual resources that compose
the VI. This step is detailed in Chapter 5.

4.3.1 Workflow-based applications

Complex and large scale applications are generally described as workflows and interpreted
by engines that convert the work description into execution scripts. An example of a
workflow composition is given in Figure 4.2, where Floating and Reference represent data
units to be processed, and CrestLines, CrestMatch, PFMatchICP, PFRegister, Yasmina
and Baladin are processing modules. Modules are invoked as many times as needed
to process all data units received. The user describing the application focuses on the
data processing logic rather than on the execution schedule. The structural application
workflow is transformed into an execution schedule dynamically while the workflow engine
is being executed.

Several languages have been proposed in the literature to describe workflows. On Grid-
based infrastructures, Directed Acyclic Graph (DAG)-based languages, such as MA-DAG
used in the DIET middleware [Caron and Desprez, 2006], have often been employed. To
ease definition of large-scale distributed applications with a complex logic, more abstract
languages have been introduced. For instance, Scufl was proposed within the myGrid
project [myG] to present data flows enacted through the Taverna workflow engine [Oinn
et al., 2007]. It has been one of the first languages to focus on the application data flow
rather than on the generated task graph.

The language we chose for representing workflow, GWENDIA [GWE], is a data flow
oriented language that aims at easing the description of complex application data flows
from a user’s perspective. GWENDIA is represented in XML using the tags and syntax
defined below:

• Types: values flowing through the workflow are typed. Basic types are integer,
double, string, and file;

• Processors: a processor is a data production module. A regular processor invokes
a service through a known interface. Special processors include workflow input (a
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Figure 4.2: Bronze Standard’s workflow.

processor with no inbound connectivity, delivering a list of externally defined data
values), sink (a processor with no outbound connectivity, receiving some workflow
output) and constant (a processor delivering a single, constant value);

• Processor ports: processor input and output ports are named and declared. A port
may be an input (<in> tag), an output (<out> tag) or both an input/output value
(<inout> tag). The input ports also define iteration strategies that control the
number of invocation of the processor as a function of its inputs. A simple example
is presented in Figure 4.3.

• Data link: a data link is a simple connection between a processor output port and
a processor input port as exemplified in Figure 4.4.

Workflow-based applications are represented using descriptive languages and submit-
ted to workflow managers, which are in charge of submitting the tasks and optimizing
the execution process. For example, the data-intensive Grid-interfaced workflow manager
(MOTEUR) [MOT] enacts workflows represented with both Scufl and GWENDIA lan-
guages. MOTEUR interprets the workflow description and submits the workflow tasks
to a distributed infrastructure, optimizing the execution via three levels of parallelism:
workflow parallelism, data parallelism and pipelining [Glatard et al., 2008].

4.3.2 Permanent and variable parts of workflows

Considering the workflow translation into VXDL, usually, applications are composed of two
different sets of modules (or workflow entities): permanents and variables. This separation
is performed according to the modules’ lifetime, where it is considered permanent if it
is present during the whole life of a workflow, and variable otherwise. For example, in
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<workflow>
<i n t e r f a c e >

<constant name=”parameter” type=” in t e g e r ”>
<value >50</value>

</constant>
<source name=” r e a l s ” type=”double ”/>
<s ink name=” r e s u l t s ” type=” f i l e ”/>

</ i n t e r f a c e >
<proces sor s>

<proce s so r name=”docking” type=”webserv ice ”>
<wsdl u r l=”http :// l o c a l h o s t / docking . wsdl” operat ion=”dock”/>
<in name=”param” type=” in t e g e r ”/>
<in name=” input ” type=” f i l e ”/>
<out name=” r e s u l t ” type=”double ”/>
< i t e r a t i o n s t r a t e g y >

<cross>
<port name=”param”/>
<port name=” input ”/>
</cross>

</ i t e r a t i o n s t r a t e g y >
</processor>
<proce s so r name=” s t a t i s t i c a l t e s t ” type=” d i e t ”>

<s e r v i c e path=”weightedaverage ”/>
<in name=”weights ” type=”double ”/>
<in name=” va lues ” type=” l i s t ( i n t e g e r ) ”/>
<in name=” c o e f f i c i e n t ” type=”double ”/>
<out name=” r e s u l t ” type=” f i l e ”/>
< i t e r a t i o n s t r a t e g y >

<cross>
<port name=” c o e f f i c i e n t ”/>
<match tag=” pat i en t ”>

<port name=” va lues ”/>
<port name=”weights ”/>

</match>
</cross>

</ i t e r a t i o n s t r a t e g y >
</processor>

</proces sor s>
</workflow>

Figure 4.3: Description of workflow tasks using the GWENDIA language. This figure
presents a few processors (or data production unit) and their interaction using input/out-
put ports.

<l i nk s >
< l i n k from=” r e a l s ” to=” s t a t i s t i c a l t e s t : c o e f f i c i e n t ”/>
< l i n k from=”docking : r e s u l t ” to=” s t a t i s t i c a l t e s t : weights ”/>
< l i n k from=” s t a t i s t i c a l t e s t : r e s u l t ” to=” r e s u l t s ”/>

</l i nk s >

Figure 4.4: Example of a workflow’s task interconnections (data links) using the GWEN-
DIA language.
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. . .
<vNode id=”database ”>

<memory>
<i n t e rva l >

<min>1</min>
</ in t e rva l >
<unit>GB</unit>

</memory>
<storage>

<simple >100</simple>
<unit>GB</unit>

</storage>
</vNode>
. . .

Figure 4.5: Description of a permanent database node using the VXDL language.

Notation Meaning

mmax maximum number of computing nodes available on the VI
n number of input data items
s number of execution stages of the application

m = (m1,m2, ...,ms) number of nodes used at each execution stage with ∀i,mi ≤ mmax

cr per-second cost of a computing resource
cb per-Mbps cost of bandwidth
Tdi deployment time of stage i (in seconds)

Ti(mi, n, b) execution time of stage i (in seconds)
b = (b1, b2, ..., bki), i ∈ [1..s] links bandwidth used at stage i (in Mbps)

Table 4.1: Notations used in the cost function model.

Figure 4.2 the data modules (represented in blue) are used by different computing modules
and must be available during the entire workflow execution. The computing modules, on
the other hand, are only used at determined moments.

The permanent part also comprises the dedicated nodes hosting middleware, frame-
work, and database required for running the application. Figure. 4.5 presents a partial
VXDL description of permanent resources, where a simple database node is described to
store the data presented in Figure 4.2.

The variable part of a VI description depends directly on the information extracted
from the workflow, such as input data, the number of modules, and the links between
the modules. In addition, the virtual network topology is directly related to the variable
part composition. The more dependence exists between workflow modules, the more
complicated is the network topology.

4.3.3 Translation strategies

This section details the proposed strategies implemented in the MOTEUR workflow man-
ager for designing VIs to execute workflow-based applications and for producing the VXDL
files [2]. Table 4.1 summarizes all the parameters used for formulating the strategies.

4.3.3.1 Naive strategy

This strategy is naive in the sense that it only considers a single execution stage and the
resources are statically allocated to each module, even though a module may not be used
during the whole execution of the workflow.

Let p be the number of modules in a workflow, and ti the benchmarked execution time
of each module i ∈ 1..p. A set of mmax virtual computing nodes is allocated and split
proportionally to each module execution time: mmaxti/

∑
j∈s tj . The network bandwidth
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Figure 4.6: Estimation of the execution time and total cost with regard to the bandwidth
of the FIFO strategy.

is similarly allocated proportionally to the amount of data to transferred between each
pair of modules, or the same bandwidth is reserved for all links in the infrastructure. This
strategy serves as a performance baseline for comparisons.

4.3.3.2 FIFO strategy

In this approach, we assume that the resources are indistinguishable, and the workflow
scheduler can request any module to be executed on any available virtual resource. A
FIFO scheduling strategy is optimal in the sense that VI redeployment is unnecessary
(T = T1). In addition, the same bandwidth is reserved for all links in the infrastructure
(b1 = b2 = ... = bk).

Figure 4.6 displays the estimated execution time and the total cost of the workflow
from Figure 4.2 with regard to the bandwidth (for n = 32 input data items and unit costs
cr = cb = 0.2). When the bandwidth is small, the total cost is high due to the increased
data transfer time, but as the bandwidth increases, both the execution time and cost
decrease. However, after a 2.0 Mbps threshold, the execution time slightly reduces and
the bandwidth allocation cost increases. The optimization method used to approximate
numerically the optimal bandwidth leads to 0.6517 Mbps.

4.3.3.3 Optimized strategy

The FIFO strategy can only be applied with homogeneous resources without optimizing
the bandwidth between each resource pair. The optimized strategy described here con-
siders dividing the workflow execution into multiple stages and allocating resources and
bandwidth independently for each stage. A cost minimization algorithm is executed for
identifying the optimal number of virtual resources to be allocated to the modules involved
in the stage.

Moreover, the algorithm should decide on the number of stages and when a VI re-
configuration should happen. Initially, it transforms the workflow into a Directed Acyclic
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Figure 4.7: DAG jobs of Bronze Standard application for n inputs.

Graph (DAG) using the approach presented in [Zhao and Sakellariou, 2006]. Secondly, the
DAG is divided in execution stages, as shown in the example in Figure 4.7 for the workflow
of Figure 4.2. IN and OUT are special entries and exit nodes that are not considered in
estimating the execution and data transfer times. An execution stage is defined as the set
of invocations that have the same depth in the DAG graph.

Note that the DAG generation is only possible for workflows without unbounded loops
(i.e., the exact number of invocations of each module must be known in advance), so
that the workflow planer can determine a complete execution schedule. Workflows in-
cluding while loops, or foreach constructs iterating over data structures of unknown size
are unresolvable prior to execution. Although DAG representation limits the class of ap-
plications that can be planed, it represents a broad category of workflow applications in
e-Science [Deelman et al., 2003]. A solution for dealing with workflows with unresolvable
constructs is to divide them into smaller resolvable sub-workflows. This strategy was im-
plemented, for example, in the workflow manager of the DIET middleware (MA DAG) to
deal with workflows that could not be represented by DAGs [MA].

At each execution stage identified, the infrastructure is reconfigured for only deploying
the specific modules involved in that stage. The resources are allocated proportionally to
the number of invocations needed for each module. In a typical data intensive application
execution, there are more data items to process (n) than resources available (mmax). For
instance, in the case of a stage i with only one module j (e.g., stage 1, 2 or 4 in Figure 4.7),
mmax data items are processed concurrently by j and the process is repeated n/mmax times,
leading to the execution time:

Ti =

⌈
n

mmax

⌉
× Tj (4.1)

where Ti is the execution time for j.
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. . .
<v i r tua lT ime l i n e id=”Appl i ca t ion t ime l i n e ”>

<t ime l i n e id=”T1”>
<ac t i va te>Se rv i c e i </ac t i va t e>
<totalTime>PTtiS</totalTime>

</t ime l ine>
<t ime l i n e id=”T2”>

<a f t e r>T1</a f t e r>
<ac t i va te>Se rv i c e j 1 </ac t i va t e>
<ac t i va te>Se rv i c e j 2 </ac t i va t e>
<ac t i va te>Se rv i c e j 3 </ac t i va t e>
<totalTime>PTtjS</totalTime>

</t ime l ine>
</v i r tua lT ime l ine>
. . .

Figure 4.8: Timeline description for the optimized strategy.

The next step is to introduce the bandwidth requirements as well as the IT resource
configurations. Let invj , j = 1..s be the number of invocations of module j at stage i where
s is the number of modules being executed at this stage. Let vectorm = (m1,m2, ...,ms) be
a combination of numbers of resources allocated to the module j, satisfying the condition∑s

j=1mj ≤ mmax. The resulting optimal execution time to complete invj invocations of
module j is:

Tj =

⌈
invj
mj

⌉
× Tuj (4.2)

where Tuj is the unit execution time of module j.

The optimized strategy composes an internal virtual timeline of a VI. Figure 4.8
presents an application example with two stages described in VXDL. The first stage has
a module that executes in ti seconds, and the second stage has three modules starting
together after the first stage completes.

4.3.3.4 Modules grouping optimization

The total execution cost also depends on the time at which each stage is deployed. An
optimization of the total resource reservation and redeployment time was designed, ex-
tending the job grouping strategy without loss of parallelism using a technique introduced
in [Glatard et al., 2008]. This strategy minimizes the application makespan by grouping
modules that would have been executed sequentially, thus reducing data transfers and the
number of job invocations needed. Applying this strategy to the workflow of Figure 4.2,
two module groups are identified, which do not cause loss of parallelism as shown in
Figure 4.9a. The number of execution stages can also be reduced as shown in Figure 4.9b.

Starting from the execution DAG split into stages, module invocation groups are eval-
uated for each consecutive pair of stages. For each module a of the workflow involved in
the stage i, let a0, a1, ..., aj be all children from a in stage i+ 1. All possible combinations
of grouping a with one or more of the ak modules is tested and the resulting execution
cost is evaluated by optimizing the number of resources and the bandwidth allocated.
Figure 4.10 shows the best solution for the workflow example presented in Figure 4.2.
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4.4 Executing workflow-based applications

The experiments presented here assess the performance of a workflow-based application
atop several VIs allocated over a distributed and virtualized physical substrate. The main
goal is to show the impact and importance of well placing the permanent and variable
parts of a workflow, in terms of resources proximity. A set of VIs were composed based on
the information available on the workflows and benchmarks, which represents the users’
knowledge about the application. The VIs were allocated and provisioned considering
different approaches for placing the virtual resources.

4.4.1 Medical application example

We selected a complex, real-scale medical-image analysis application, known as Bronze
Standard, to illustrate the translation of a workflow into a VXDL description. The Bronze
Standard technique addresses the difficult problem of validating procedures for medical-
image analysis [Glatard et al., 2006], where there is usually no reference, or gold standard,
to assess objectively the quality of computational results. The statistical analysis of im-
ages enables the quantitative measurement of computational errors, thereby the bronze
standard technique quantifies the maximal error resulting from widely used image regis-
tration algorithms. The larger the sample image database and the number of registration
algorithms to compare with, the most accurate the method. This very-scalable procedure
requires the composition of a complex application workflow including different registration-
computation modules with data transfer inter dependencies.

Modules Time (average ± standard deviation) Input data Produced data

CrestLines 31.06s ± 0.57 15 MB 10 MB
CrestMatch 3.22s ± 0.51 25 MB 4 MB
PFMatchICP 10.14s ± 2.41 10.2 MB 240 kB
PFRegister 0.64s ± 0.22 240 kB 160 kB
Yasmina 52.94s ± 12.96 15.2 MB 4 MB
Baladin 226.18s ± 19.36 15.2 MB 4 MB

Table 4.2: Benchmarks of the Bronze Standard’s modules: execution time, data input and
produced data volumes.

The estimated performance of Bronze Standard depends on the size of the image
database. In the experiments we use a clinical database of 32 pairs of patient images to
be registered by the different algorithms in the workflow. For each run, the processing of
the complete image database results in the generation of approximately 200 computing
tasks. As illustrated in Figure 4.2, the workflow of this application has a completely
deterministic pattern, all modules of the application have the same number of invocations.
The execution time and the data volume transferred by each module have been measured
in initial micro-benchmarks reported in Table 4.2.

Bronze Standard’s workflow is enacted with the MOTEUR workflow manager [Glatard
et al., 2008]. MOTEUR submits the workflow tasks to the VI infrastructure through
the DIET middleware [Caron and Desprez, 2006], a scalable Grid scheduler based on a
hierarchy of agents communicating through CORBA [COR].
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. . .
<vNode id=”Moteur”>

<memory>
<i n t e rva l >

<min>4</min>
</ in t e rva l >
<unit>GB</unit>

</memory>
</vNode>
<vGroup id=”Clus te r Ba lad in ” mu l t i p l i c i t y=”22”>

<vNode id=”Node Cluster Baladin ”>
<memory>

<i n t e rva l >
<min>512</min>

</ in t e rva l >
<unit>MB</unit>

</memory>
</vNode>

</vGroup>
. . .

Figure 4.11: Description of a vNode and a computing cluster required to execute the
Bronze Standard application.

To exemplify the translation of Bronze Standard’s workflow into a VXDL file, let us
consider a request for a VI of 35 nodes. Three nodes will be dedicated to the perma-
nent part: 1 node for MOTEUR, 1 node for the middleware server and 1 node for the
database server. The 32 nodes left are distributed and allocated proportionally to the
execution time of the workflow modules using, for simplicity, the Naive strategy (discussed
in Section 4.3.3.1); 3 nodes are used for CrestLines, 1 node for CrestMatch, 1 node for
PFMatchIP, 1 node for PFRegister, 22 nodes for Baladin, and 4 nodes for Yasmina. Fig-
ure 4.11 presents the specification of a virtual node (MOTEUR) and a computing cluster
(Baladin). Several variants of VI descriptions with different network topologies can be ex-
pressed for the same computing-resources set. We give examples developing two different
VI compositions.

4.4.2 VI composition

Figure 4.12 illustrates the graph of a VI composition to execute the Bronze Standard’s
workflow, where the vertices represent the virtual resources and virtual clusters required
to execute the application, and the edges are the network links required to enable the
communication between the workflow’s modules. The permanent part is differentiated
from other components (i.e., MOTEUR, middleware and database nodes) including those
that are critical in terms of computing and data transfer (i.e., CrestMatch, Yasmina,
Baladin and PFMatchICP).

Based on this composition, we developed two descriptions for this scenario varying the
network topology and requirements:

• VI 1. The network is composed of two types of links: one with low intra-cluster
latency, and another with a maximum latency of 10 ms for interconnecting the
clusters;

• VI 2. The network comprises three virtual links: i) one with low intra-cluster
latency (maximum latency of 0.200 ms); ii) one with latency of 10 ms intercon-
necting the components, except the links with iii) a maximum latency of 0.200 ms
between CrestMatch (dark blue) and clusters PFMatchICP, Yasmina and Baladin
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Figure 4.12: A VI composition for executing the Bronze Standard’s workflow.

(presented in dark blue). The communication-intensive links of VI 2 are presented
in Figure 4.13.

To illustrate how each description can be allocated on a physical substrate, we propose
two solutions for each VI, which corresponds to a total of four different allocations. For
the sake of illustration, these allocations were arbitrarily performed, not based on any
particular algorithm (a detailed discussion is available in Chapter 5). In this example,
Location 1 and Location 2 represent two geographically distributed resource sets. We use
the notations rv and rp to represent virtual and physical resources, respectively.

Figure 4.14 summarizes the allocation described below:

• VI 1 - Allocation I: the intra-cluster link specification motivates the allocation of
loosely connected resources with one virtual machine per physical node.

• VI 1 - Allocation II: the virtual resources of clusters CrestMatch, PFRegister,
Yasmina, and Baladin share physical nodes. Each physical node allocates 2 virtual
machines.

• VI 2 - Allocation III: due to the required interconnection capacity (maximum
latency) all virtual resources must be allocated at the same location (for example, in
the same site of a Grid, or a specific geographical location that respects the maximum
latency defined). This allocation explores the allocation of 1 virtual machine per
physical node.

• VI 2 - Allocation IV explores the same physical components of Allocation III but
with 2 virtual machines per physical node for the clusters CrestMatch, PFRegister,
Yasmina, and Baladin.
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CHAPTER 4. SPEC. VIS FOR EXEC. DISTRIB. APPS. 4.4. EXECUTING WORKFLOW-BASED APPLICATIONS

. . .
<vLink id=”Communication In t en s i v e 1”>

<l a tency>
<i n t e rva l >

<max>0.200</max>
</ in t e rva l >
<unit>ms</unit>

</latency>
<source>Cluster CrestMatch</source>
<des t ina t i on>Cluster Ba lad in </de s t ina t i on>

</vLink>
<vLink id=”Communication In t en s i v e 2”>

<l a tency>
<i n t e rva l >

<max>0.200</max>
</ in t e rva l >
<unit>ms</unit>

</latency>
<source>Cluster Yasmina</source>
<des t ina t i on>Cluster PFMatchICP</de s t ina t i on>

</vLink>
<vLink id=”Communication In t en s i v e 3”>

<l a tency>
<i n t e rva l >

<max>0.200</max>
</ in t e rva l >
<unit>ms</unit>

</latency>
<source>Cluster CrestMatch</source>
<des t ina t i on>Cluster PFMatchICP</de s t ina t i on>

</vLink>
<vLink id=”Communication In t en s i v e 4”>

<l a tency>
<i n t e rva l >

<max>0.200</max>
</ in t e rva l >
<unit>ms</unit>

</latency>
<source>database</source>
<des t ina t i on>Cluster PFMatch</de s t ina t i on>

</vLink>
. . .

Figure 4.13: VXDL description of the communication-intensive virtual links of Figure 4.12.

c© Copyright 2011 by Guilherme Piêgas Koslovski 73
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Figure 4.14: Allocations of descriptions VI-1 and VI-2.

4.4.3 Application execution

The experimental testbed for executing the Bronze Standard application used physical
resources from the Grid’5000 testbed [Cappello et al., 2005]. Grid’5000 is an experimen-
tal testbed distributed across 9 sites in France, for research in large-scale parallel and
distributed systems [GRI]. The sites are interconnected by a backbone infrastructure
comprising 10 Gbps dedicated lambda paths provided by the French National Telecom-
munication Network for Technology (RENATER) [REN] as depicted in Figure 4.15. The
reserved physical infrastructure was composed of the clusters capricorne (located in Lyon),
bordemer (located in Bordeaux ), and azur (located in Sophia), whose nodes contain CPUs
of 2.0 GHz dual-core Opterons.

The resources were virtualized by the HIPerNet framework [1], responsible for the
provisioning and management of all virtual infrastructures composed to execute the appli-
cation. The VIs used a system image containing the operating system based on a standard
Linux distribution Debian Etch with a kernel version 2.6.18-8 for AMD64. Each VI is
composed of 35 nodes divided in permanent and variable parts: 3 nodes are dedicated to
the permanent part (MOTEUR, DIET, and storage server) using 1 CPU per node, and
the remaining 32 nodes to the variable part. The allocation of variable resources was
performed in accordance with the following VI descriptions: VI 1 - Allocation I and VI
2 - Allocation III used 1 CPU per node while VI 1 - Allocation II and VI 2 - Allocation
IV used 1 CPU core per node. For each each experiment, we executed the application
10 times and obtained the averages and standard deviations of the application makespan,
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Figure 4.15: Architecture of Grid’5000: 9 sites interconnected by 10 Gbps dedicated
lambda paths (figure courtesy of the Grid’5000 community [GRI]).

the data transfer and the task execution time.

4.4.3.1 Placing resources on one location

This experiment analyzes the application execution on VI’s components in the same geo-
graphical location. The VI locations follow their specification: VI 2 - Allocation III and
VI 2 - Allocation IV.

The application’s makespans on VI 2 - Allocation III and VI 2 - Allocation IV are
11min 44s (±49s) and 12min 3s (±50s), respectively. This corresponds to a +3.8%
makespan increase due to the execution overhead when two virtual machines are collo-
cated on the same physical resource. In addition, we present in the Table 4.3 the average
execution time (in seconds) of the application modules on VI 2 - Allocations III and IV.
The average execution overhead is 5.17% (10.53% in the worst case and 1.28% in the best
case).

4.4.3.2 Resources distributed across 2 locations

In this experiment the VI’s components were provisioned across 2 locations. We compare
the application execution of a VI locally provisioned (VI 2 - Allocation IV ) with that of a
VI whose resources are distributed (VI 1 - Allocation II ). The resources’ locations follow
the map solution proposed by VI 1 - Allocation II and VI 2 - Allocation IV.

When porting the VIs from a local provisioning to a large scale distributed provisioning,
data transfers increase. Table 4.4 presents the data transfer time (in seconds) of the
application modules on VI 2 - Allocation IV (local) and VI 1 - Allocation II (distributed
across 2 locations). The overhead is 150% in the worst case. Conversely, some local
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Modules VI 2 - Allocation III VI 2 - Allocation IV variation

CrestLines 34.12 ± 0.34 36.84 ± 5.78 +7.97%
CrestMatch 3.61 ± 0.48 3.99 ± 0.63 +10.53%
PFMatchICP 11.93 ± 2.76 12.75 ± 5.35 +6.87%
PFRegister 0.78 ± 0.18 0.79 ± 0.18 +1.28%
Yasmina 59.72 ± 14.08 61.53 ± 13.98 +3.03%
Baladin 244.68 ± 16.68 247.99 ± 19.51 +1.35%

Table 4.3: Average execution time (in seconds) on VI 2 - Allocation III and VI 2 -
Allocation IV.

transfers may be slightly reduced. However, in this case this overhead has little impact
on the application makespan since it is compensated for by the parallel data transfer and
computations introduced by MOTEUR [Glatard et al., 2008].

Indeed, the makespans of VIs distributed across 2 locations are 12min (±12s) and
12min 11s (±20s) on VI 1 - Allocation I and VI 1 - Allocation II, respectively, very
similar to the performance of the local VI 2 - Allocation IV.

Modules VI 2 - Allocation IV VI 1 - Allocation II variation

CrestLines 2 ± 0.45 3.01 ± 1.6 +50.5%
CrestMatch 1.99 ± 0.34 1.83 ± 0.36 -8.04%
PFMatchICP 1.3 ± 0.4 3.25 ± 0.13 +150%
PFRegister 0.51 ± 0.23 0.43 ± 0.09 -15.69%
Yasmina 1.19 ± 0.27 1.16 ± 0.21 -2.52%
Baladin 1.17 ± 0.38 1.81 ± 1.03 +54.7%

Table 4.4: Data transfer time (in seconds) on the local VI 2 - Allocation IV and large
scale distributed VI 1 - Allocation II.

4.4.3.3 Resources distributed across 3 locations

In the final experiment of this section, the VIs were provisioned over 3 locations. The
permanent part of allocation solution VI 1 - Allocation II was placed in a single location
(Lyon, in this case) whereas the variable part was randomly distributed among Lyon,
Bordeaux, and Sophia locations.

As expected, further distributing computational resources causes an additional in-
crease in the data-transfer overheads among the application’s modules, with an execution
makespan of 12min 13s (± 30s) and a data-transfer overhead of 176% in the worst case.

4.5 Analysis of strategies for composing VIs

The second set of experiments, also using Bronze Standard, investigates the different
strategies for composing VIs. Different VIs were elaborated following the proposed strate-
gies and the information extracted from Bronze Standard. In the following subsections we
describe the testbed and the main obtained results.
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Figure 4.16: Experimental infrastructure used to compare the different strategies to com-
pose VIs.

4.5.1 Testbed composition

The testbed also uses physical resources from Grid’5000, but this time only resources
located in Lyon site were reserved. The physical resources are Sun Fire V20z machines
with 2.4 GHz CPUs, 2 cores, 2 GB RAM, interconnected through 1 Gbps Ethernet. Once
again, the VIs were allocated and managed by the HIPerNet framework.

The experimental infrastructure is depicted in Figure 4.16. For the experiments, 35
vNodes were deployed, but this time, the MOTEUR workflow engine acted as a client
of the HIPerNet framework, being hosted on a dedicated physical host, outside the VI.
The HIPerNet engine deploys and manages virtual machines on-demand on the computers
(dark connections), either with an operating-system image of the input database server
or with the application modules. Each physical computer hosts a single virtual machine.
MOTEUR produces VXDL descriptions that are submitted to the HIPerNet engine (blue
connection). After receiving the information about all components allocated to the VI,
MOTEUR connects to the computing nodes to invoke the application modules (red con-
nections). The computing nodes connect to the database host to copy the input data and
send the computational results. The final results are sent to MOTEUR (green connec-
tions).

For the needs of the MOTEUR planner which implements the strategies described in
this Chapter, all modules involved in the Bronze Standard’s workflow have been bench-
marked for execution time and amount of data transferred, as reported in Table 4.2. For
each experiment, the application was executed 5 times and the makespan was averaged
to minimize the execution time variations encountered in distributed computing. The
standard deviation is also reported.

For each strategy, the planner optimizer of MOTEUR was executed to determine the
configuration with the minimal execution cost. The number of virtual machines allocated
to the application and the bandwidth among the database node and computing nodes is
specified by corresponding VXDL documents.
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4.5.2 Cost model

The execution of a workflow-based application can occur in several stages. At each stage,
the VI can be reallocated respecting a specific configuration, to perform the execution of
part of the workflow. The VI reconfiguration between different stages, which may involve
redeploying resources, is time-consuming. An extreme condition is to create a static VI
for the whole workflow execution, thus sparing the redeployment cost. Another extreme
is to allocate new resources, one by one, on demand.

The cost model presented in this section makes a fine-grained estimate of the resources
consumed by each application run [2] [Truong Huu and Montagnat, 2010]. Note that
the model is applicable to estimate the cost of a single run of an application on the
infrastructure. It does not take into account other costs, such as the long term storage of
data onto Cloud resources. Should users need data storage before and/or after execution,
they would be charged additionally and independently of the cost calculated below.

The cost was formulated following the notation presented in Table 4.1. Let mmax

be the maximum number of computing nodes available on the infrastructure and s be
the number of execution stages of the application. The vector m = (m1,m2, ...,ms) is
the number of nodes used at each execution stage with ∀i,mi ≤ mmax. Let cr be the
per-second cost of a computing resource. The total computing cost of the infrastructure
allocated for the application is:

Cr = cr ×
s∑

i=1

mi × (Tdi + Ti(mi, n, b)) (4.3)

where Tdi is the deployment time (including resource reservation and initialization
time) and Ti(mi, n, b) is the execution time at stage i. Ti depends both on computing time
and on data transfer time involved within stage i. It is parameterized by the number of
resources reserved (mi), the number of input data items to process (n) and the bandwidth
(b = (b1, b2, ..., bki), i ∈ [1..s]) of the network links used for data transfer. The computation
of Ti is possible using the application logic described through the workflow. The workflow
engine used in our experiment, MOTEUR [Glatard et al., 2008], was seminally designed to
produce an execution schedule and control the distribution of an application at runtime.
It was enriched with a resource allocation and scheduling planner used to estimate Ti,
given that information on the workflow modules execution time and transferred data is
available.

The total infrastructure cost is also impacted by the data transfer time. If the per-
Mbps cost of the reserved bandwidth is cb, then the total data transfer cost is:

Cb = cb ×
s∑

i=1

(Tdi + Ti(mi, n, b))

ki∑
j=1

bj (4.4)

This cost applies to a VI where the amount of allocated bandwidth is controlled. It
sums all data transfer costs involved in the workflow execution, including workflow input
data transferred from outside the Cloud (at stage 1), the temporary data generated during
workflow execution (at all stages) and the output data transferred to external resources
(at stage s). From equations 4.3 and 4.4, the total infrastructure cost to execute the
applications can be computed as:
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C = Cr + Cb (4.5)

This cost has to be optimized considering a maximum admissible cost and the applica-
tion performance scalability. A trade-off has to be found between the number of computing
and network resources allocated (which impacts Ti) and the resulting cost.

4.5.3 Comparing strategies

The Bronze Standard application was executed over VIs composed with the different
discussed strategies. We compare the single-stage strategy and multi-stage strategies to
identify the application behavior when executing in an elastic VI.

4.5.3.1 Single-stage strategies

The naive and FIFO strategies are single-stage. They use the maximum available comput-
ing resources with an optimal bandwidth yielding a minimal execution cost. The virtual
infrastructures of the naive and FIFO strategies are represented in Figure 4.17 and 4.18,
respectively. The naive allocation strategy allocated the 34 computing nodes to appli-
cation modules as follows: 3 nodes for CrestLines, 1 node for CrestMatch, 1 node for
PFMatchICP, 1 node for PFRegister, 5 nodes for Yasmina, and 23 nodes for Baladin.
The same bandwidth, 2.69Mbps, is required to interconnect all computing nodes. The
application makespan is 67.08min ± 0.10min.

This experiment shows that the virtual resources are not well exploited during the
execution. Figure 4.19 shows a schedule of this strategy. Each colored line represents
one task duration: it starts once the corresponding task has been submitted and stops at
the end of its execution. The first, brighter part of a line represents the task’s waiting
time spent from submission until a resource becomes available for execution. Colors are
arbitrary and just help distinguish the different tasks. As can be seen, at the beginning
of the execution, only three nodes are used to execute the CrestLines module. Other
resources are wasted. Similarly, the result of CrestMatch is needed by three modules:
PFMatchICP, Yasmina and Baladin, but there is only one resource allocated to this
module according to this strategy, thereby becoming a bottleneck.

The makespan of the FIFO strategy is lower: 46.88min ± 0.78min with the optimal
bandwidth (1.16Mbps). The standard deviation of this strategy is higher due to the
variable arriving order of the tasks. Some long tasks are executed on the same computing
resource, leading to an increase in the application makespan. Figure 4.20 shows a typical
task schedule for this strategy.

4.5.3.2 Multi-stage strategies

The optimized strategies are multi-staged, optimized bandwidth required, and may al-
locate less resources than the maximum available when doing so leads to no gain. The
planer determines the number of virtual resources and the bandwidth yielding a minimal
execution cost.

Within the multi-stage optimization, virtual resources from stage n can be reused in
stage n + 1. If stage n + 1 uses more virtual machines than stage n, additional virtual
machines are deployed during the execution of stage n.

Without module grouping there are 4 execution stages, which are represented in Fig-
ure 4.21. According to the optimization results, only 30 nodes were allocated to the first,

c© Copyright 2011 by Guilherme Piêgas Koslovski 79
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Figure 4.17: Virtual Infrastructure composition considering the naive strategy.

Figure 4.18: Virtual Infrastructure composition considering the FIFO strategy.

Figure 4.19: Task schedule with the naive strategy.
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Figure 4.20: Task schedule with the FIFO strategy.

second and fourth stages (additional resources would be wasted). The required bandwidths
are 4.62 Mbps, 14.74 Mbps and 3.87 Mbps, respectively. For the third stage, 4 nodes were
allocated to PFMatchICP, 6 nodes for Yasmina and 20 nodes for Baladin. The bandwidth
for each module in this stage is 0.87 Mbps, 1.36 Mbps and 1.29 Mbps, respectively. The
corresponding application makespan is 37.05min ± 0.25min.

Further grouping the application modules as shown in Figure 4.10, the application is
divided into three stages only, using 30 nodes each. As presented in Figure 4.22, the band-
width allocated to each stage is 4.90 Mbps, 1.95 Mbps and 3.87 Mbps, respectively. The
application makespan is then 22.93min ± 0.35min. Besides the execution time improve-
ment, the number of resources consumed is lowered. As we can observe in Figure 4.23,
not all tasks of the same stage finish exactly at the same time though, due to variations in
execution time of the image analysis tools, which depends on the exact processed image
content. This has an impact as the tasks of stage n have to wait for the longest task of
stage n− 1 before the system can be reconfigured.

4.5.3.3 Analysis

For complementing the analysis, we also measured the deployment time of the virtual
infrastructure before running the application and the reconfiguration time between stages
of the optimized strategies. The reconfiguration time takes into account bandwidth re-
configuration between the database host and computing nodes allocated to application
modules in each stage.

Table 4.5 compares the performance of the strategies presented above and the asso-
ciated platform cost computed using Equation 4.5. The worst case is the naive strategy
which uses the maximum number of resources for a very large makespan and a long de-
ployment. The FIFO strategy spends the same time to deploy the infrastructure, but it
has a better makespan than the naive strategy. The naive and FIFO strategies reconfig-
uration time is null since they are single-stage. The optimized strategy without module
grouping has better results than the naive and FIFO strategies, both in terms of appli-
cation makespan and number of resources consumed, although it has to spend time to
reconfigure the infrastructure after each stage. The best case is obtained for the optimized
strategy with module grouping. It uses less resources, spends less time to reconfigure the
infrastructure and returns the results faster. In terms of deployment time, the naive and
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Figure 4.21: Virtual Infrastructure composition considering the optimized strategy without
grouping modules.

Figure 4.22: Virtual Infrastructure composition considering the optimized strategy with
grouping modules.
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Figure 4.23: Task schedule with optimized modules grouping.

FIFO strategies take 29.83 min to deploy a VI composed of 35 virtual resources. This
duration corresponds to the time needed to copy the operating-system images (319 MB)
from the image repository to the virtual machines and start them sequentially. The opti-
mized strategies use only 31 machines, reducing the deployment time to 25.68 min. It is
expected that a parallel deployment decreases this redeployment overhead. As expected,
the cost estimated is lowered for higher performing strategies toward the reduction of the
application makespan and of the network bandwidth consumed.

Strategy Makespan #VM
Deployment Reconfiguration Execution cost

time time (×105)

Naive 67.08min ± 0.10 35 29.83min 0 1.40× cr + 3.68× cb
FIFO 46.88min ± 0.78 35 29.83min 0 0.98× cr + 1.10× cb
Optimized
(without grouping) 37.05min ± 0.25 31 25.68min 79.29s 0.69× cr + 0.98× cb
Optimized
(with grouping) 22.93min ± 0.58 31 25.68min 52.86s 0.42× cr + 0.48× cb

Table 4.5: Performance comparison among the four strategies.

4.5.4 Impact of bandwidth control on application cost and
performance

Finally, we complemented the set of experiments by evaluating the application behavior
when executing following the bandwidth reservation and control mechanisms offered by
the HIPerNet framework. For that, the application was executed using the optimized
strategy with module grouping under two additional network bandwidth configurations:
lower and higher bandwidth values than the optimal found were tested (i.e., 1 Mbps and
10 Mbps respectively).

Table 4.6 displays, for each configuration, the data transfer time in each stage (in sec-
onds), the application makespan (in minutes), and the corresponding cost. Comparing the
results with the optimized bandwidth allocation, it appears that the makespan increases
as expected when using a low bandwidth. However, the cost increases as well because
the cost gain on network bandwidth is compensated by the loss in the computing nodes’
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reservation time. With the high bandwidth, the application makespan can be reduced
(-22.72% in this case) at a higher cost (+102% computed with cr = cb = 0.10).

Bandwidth Stage 1 Stage 2 Stage 3 Makespan Execution cost
(seconds) (seconds) (seconds) (minutes) (×105)

Low (1 Mbps) 222.59 ± 2.51 316.57 ± 40.37 2.91 ± 0.50 34.78 ± 0.67 0.65× cr + 0.31× cb
Optimized 53.8 ± 4.56 171.72 ± 24.66 1.53 ± 0.23 22.93 ± 0.58 0.42× cr + 0.48× cb
High (10 Mbps) 30.79 ± 3.85 42.68 ± 9.55 1.09 ± 0.18 17.72 ± 0.23 0.33× cr + 1.61× cb

Table 4.6: Evaluation of the bandwidth control mechanism.

4.6 Conclusions

This chapter addressed the difficult problem of composing an optimal VI to execute a
distributed application. Applications have different requirements in terms of computing
and communication that can vary during the execution time. In a pay-as-you-go scenario,
such as Cloud Computing, an optimal VI must consider the trade-off between allocation
cost and application performance. We proposed and evaluated strategies to determine
optimal VIs specification for executing workflow-based distributed applications on VIs,
provisioned following the pay-as-you-go model.

We identified that applications can explore the dynamism provided by the elasticity of
VIs. By decomposing a VI in well-defined stages, application performance can be improved
while costs can be reduced, as shown by results that assess the performance of the optimized
strategy with a job grouping optimization. In addition, the advanced network bandwidth
reservation and control capabilities offered by management frameworks (such as HIPerNet)
can be exploited to improve the applications’ performance.

VXDL has acted as a key facilitator for describing VIs, since the attributes offered
by this language enabled the specification of the required VI configuration in terms of
computation, communication, and usage intervals. However, to guarantee the user’s ex-
pectations, an efficient mechanism is highly required for translating and allocating a set
of VIs onto a distributed physical substrate. The allocation mechanism should interprets
and exploits all attributes of VXDL, and in addition, considers the user’s expectations
during the formulation of the allocation problem.

An open research line that we will investigate is the elaboration of translation mech-
anism for legacy applications, represented and characterized with other information (e.g.,
MapReduce [Dean and Ghemawat, 2008], web servers).
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5.6 Conclusions

The work presented in this chapter has been accepted for publication at the
12th IEEE/IFIP International Symposium on Integrated Network Manage-
ment - Special Track on Management of Cloud Services and Infrastructures
(IM 2011 - STMCSI) [4]. In addition, it is part of the solutions patented
by the LYaTiss company ( http: // www. lyatiss. com ) and the Institut
National de Recherche en Informatique et en Automatique (INRIA, http:

// www. inria. fr/ ) [VXAlloc] [VXCap].

5.1 Introduction

A
s illustrated in Figure 5.1, once the needs of an application are identified and a VI
for it is specified, the resulting VXDL file carrying the specification and substantial

information on the user’s requirements must be interpreted, allocated and provisioned
over the distributed substrate. As a key step in the dynamic provisioning process, the
allocation of a VI atop a physical substrate must reconcile the users’ expectations with the
Infrastructure Providers (InP) objectives. While users can compose VXDL descriptions,
considering their requirements in terms of application performance and reservation cost,
InPs, on the other hand, usually aim to minimize resource usage and substrate cost, or to
maximize the acceptance ratio of new requests.
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Figure 5.1: Positioning of a mechanism for allocating VIs specified with VXDL, considering
the service models offered by Cloud Computing providers.

Due to combinatorial explosion, the computational time to find a feasible solution de-
pends exponentially on the size of the search space considered by the allocation algorithm.
The optimal allocation of a virtual infrastructure with constraints on physical nodes and
links is an NP-hard problem (it cannot be solved in polynomial time) [Chowdhury and
Boutaba, 2009].

Moreover, the complete abstraction of physical network and IT resources, combined
with the geographical independence of VIs, brings together new challenges to the allo-
cation process, since a VI can be allocated anywhere on top of a distributed substrate.
The allocation of geographically fragmented virtual infrastructures raises the following
concerns for users and InPs: i) the network-communication latency between distributed
virtual resources increases, which can augment the application’s runtime [5]; and ii) the
physical substrate’s fragmentation decreases the potential for accepting new requests due
to increased congestion on communication channels and IT resources [Zhu and Ammar,
2006]. The more geographically distributed are the physical resources that host a VI, the
more bandwidth capacity is required (reserved) to interconnect the virtual IT resources.
In the long term, the physical substrate’s fragmentation can increase costs such as energy
consumption, cooling and administration, due to the simultaneous activation of several
distributed physical racks and network equipments.

In the face of these challenges, the main contributions of this chapter are:

• an allocation-problem formulation that considers the user and InP metrics; and

• an allocation heuristic guided by the geographical location of virtual and physical
components, which introduces a procedure to reduce the search space in an automatic
and intelligent way, accelerating the allocation algorithm without compromising the
cost.

The results highlight an improvement in allocation quality (the user perspective) of
about 39% for different sizes of virtual infrastructures allocated on a medium-size physical
substrate. In addition, the fragmentation can decrease by almost 28% on a medium-size
physical substrate, while the cost can decrease by approximately 21% (the InP perspec-
tive).

This chapter is organized as follows: Section 5.2 illustrates the allocation of a virtual
infrastructure and reviews the state of the art. Section 5.3 formulates the allocation
problem using a graph notation, and describes the formal representation of constraints
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and objective functions. In Section 5.4 we propose the allocation method, describing its
composition and implementation. The experiments performed with our proposition are
presented in Section 5.5. Section 5.6 concludes the chapter.

5.2 State of the art

In the lifecycle of virtual infrastructures, the allocation step is responsible for identifying
the mapping between virtual and physical resources. Within this step, a VI request must
be interpreted and available distributed resources must be reserved. This mapping is used
by the management framework to identify the exact location where the virtual resources
must be provisioned. The following sections describe this mapping process and review the
approaches that have been elaborated for allocating IT resources, virtual networks, and
VIs.

5.2.1 Example scenario

VIs and physical substrates can be modeled using a graph notation, where the vertices rep-
resent the IT resources (virtual and physical), and the edges represent the communication
channels (virtual links and physical paths). Consequently, a simple way to exemplify the
allocation process is through a mapping of graph components: the virtual edges and ver-
tices are mapped into physical edges and vertices, respectively, respecting the constraints
and capacities of each component (virtual or physical).

To illustrate the allocation of VIs, we create two specifications (presented in Figure 5.2)
and allocate them on a distributed physical substrate (as presented in Figure 5.3). Both
VIs presented in Figure 5.2 are described using graphs. The VIs (VI A and VI B) and
the physical substrate have Q values attributed to links and resources. For VIs, these
values represent the requirements in terms of network communication and computing
configuration, and for a physical substrate, they represent the available capacity. VI A
is composed of four virtual resources (rv1, rv2, rv3, and rv4), which are interconnected by
three virtual links (lv1, lv2, and lv3). VI B comprises three virtual resources (rv5, rv6, and
rv7) interconnected by two virtual links (lv4, and lv5).

Figure 5.2: Example of two virtual infrastructures (VI A and VI B) using graphs.

The physical infrastructure (described on the left side of Figure 5.3) is composed of
twelve resources (rp1 to rp12) interconnected by fifteen links (lp1 to lp15). The resources
are geographically distributed over two locations (Location 1 and Location 2 ) intercon-
nected by a dedicated backbone.
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Figure 5.3: The representation of a physical substrate, and an example of a map solution
between the VIs presented in Figure 5.2 and the physical substrate.

The mapping solution (present on the right side of Figure 5.3) is an allocation al-
ternative for the VI A and VI B over the physical substrate. In this example, the IT
and network resources of both VIs are distributed over the two locations. The Q values
presented in this mapping solution show the available capacity of physical resources after
the allocation process. Table 5.1 summarizes this allocation mapping using tuples in the
format < virtual resource, physical resource, capacity, ∆t >, where ∆t means the time
period during which the capacity was reserved. To simplify the description, we consider a
unique time t0 in this example. Following the VI’s life cycle, this mapping information is
given as input to management frameworks that provision the virtual resources.

5.2.2 Existing solutions for allocating VIs

The allocation of virtual resources (IT and network) has been investigated over the past
few years in different contexts. Initially, this problem was addressed to allocate commu-
nication channels between IT endpoints in different networking technologies, such as IP,
MPLS, ATM and frame-relay, composing VPNs. In VPNs, the allocation process con-
sists in finding paths between source-destination pairs respecting the bandwidth require-
ments [Duffield et al., 1999] [Gupta et al., 2001] [Lu and Turner, 2006]. The allocation
of virtual computing resources was not addressed by these approaches. In addition, the
location of source and destination endpoints were known in advance by the allocation
algorithms.

[Dias de Assunção and Buyya, 2009] proposed a system termed as the InterGrid for
allocating virtual machines at multiple computing sites. The concept was further extended
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(rv or lv) (rp or lp) Q ∆t

rv1 rp2 5 t0
rv2 rp3 2 t0
rv3 rp4 5 t0
rv4 rp9 5 t0
lv1 lp2 3 t0
lv2 lp3 2 t0
lv3 lp4 3 t0
lv3 lp15 3 t0
rv5 rp6 4 t0
rv6 rp5 4 t0
rv7 rp7 4 t0
lv4 lp5 5 t0
lv5 lp15 5 t0
lv5 lp8 5 t0

Table 5.1: Map of the allocation solution presented in Figure 6.4 using tuples in the format
< virtual resource, physical resource, capacity, ∆t >.

to allow an organization to extend the capacity of its local cluster by borrowing resources
from a Public Cloud provider. This work targeted only bag-of-tasks applications and the
allocation of virtual links was not taken into consideration.

Recent work has focused on problem formulations considering node requirements to-
gether with network configuration. Due to its NP-hard complexity [Chowdhury and
Boutaba, 2009], there are different proposals on solving this graph-embedding problem,
most of which aim to find an optimal solution in an acceptable response time. These
proposals include isomorphism-based detection, path-splitting methods, multi-commodity
flow modeling, and heuristics based on substrate characteristics. In addition to exploring
different approaches, these proposals have their own objectives and metrics, for example,
maximizing resource usage, minimizing maximum link load, proposing fault-tolerant algo-
rithms, and allocating virtual resources across multiple domains. We detail here selected
proposals, their context, main contributions and particularities.

[Ricci et al., 2003] proposed a search-space restriction to accelerate the response time
of the allocation process. The proposed program, called assign, explores the resource
homogeneity of the Emulab testbed [White et al., 2002] by aggregating resources into
equivalence classes (vclasses and pclasses). A group of aggregated resources is intercon-
nected by network links with capacities described in terms of bandwidth. Particularly,
this program does not allow computing resources to be shared among multiple virtual ma-
chines. Assign implements an algorithm based on simulated annealing [Kirkpatrick et al.,
1983] for finding a mapping solution.

[Lu and Turner, 2006] investigated the mapping of virtual networks on shared sub-
strates. The proposed algorithm attempts to find the best topology in a family of backbone-
star topologies. More specifically, a set of intermediate nodes is assigned as the backbone,
and each remaining node is connected to the nearest backbone node aiming to minimize
the network total cost. By positioning intermediate backbone nodes the search space is
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limited. Only a subset of nodes directly connected by the backbone-star topology are
considered to determine the shortest path in terms of resource distance.

[Zhu and Ammar, 2006] proposed a set of heuristics to allocate virtual networks on
a physical substrate. This work aimed to increase the allocation efficiency by minimizing
the stress on nodes and links, where the stress of a resource represents the load already
supported and reserved. Based on this metric, new resources are provisioned on top of
physical resources with a relatively low stress. The authors also proposed an algorithm to
reconfigure the substrate by reallocating a subset of virtual resources, keeping the entire
substrate with a low load. In addition, the reallocation can be guided by reconfiguration
policies [Fan and Ammar, 2006].

[Houidi et al., 2008] proposed a distributed algorithm for load balancing and to al-
locate virtual nodes and links to physical substrates. They have designed a protocol for
asynchronous communication between agents located on distributed resources to guide
the allocation process. The algorithm performs a star based decomposition of the virtual
network, using a hub-and-spoke approach, which maps a central node as hub and con-
nects the other nodes as spokes (similar to the backbone-star approach, proposed in [Lu
and Turner, 2006]). The implementation was based on a multi-agent system [Kephart
and Chess, 2003], where a set of autonomous and independent agents communicate and
collaborate to identify a map solution. A recent approach extended this algorithm by
proposing a distributed fault-tolerant allocation algorithm to handle failures and reselect
new resources to replace those no longer available [Houidi et al., 2010] [Houidi et al., 2011].
This framework (mainly composed of resource description [Renault et al., 2010], discovery
and allocation mechanisms) monitors the physical substrate to detect when a resource
fails, acting to select and allocate a new resource to replace the one that failed.

[Cadere et al., 2008] modeled an embedding graph problem considering three param-
eters to evaluate the quality of an allocation map: the dilatation that is the maximum
length of a path and represents the communication delay; the congestion that is the max-
imum number of virtual links using a physical path and represents the bandwidth control;
and the load that is the number of virtual resources allocated on a physical resource.
The proposed multi-objective allocation heuristic aims at minimizing these metrics and
consequently the number of resources used to accommodate a virtual infrastructure. The
evaluation results indicate that the heuristic may have a long computation time under
certain distributed physical substrates.

[Yu et al., 2008] discussed the design of the substrate network considering virtual path
migration and splitting, wherein a virtual link can be split among a set of virtual paths
enabling a more efficient usage of the substrate network. In addition, a path migration
is periodically performed to optimize the substrate network utilization. The problem is
modeled as a multi-commodity flow problem without node remapping. According to their
evaluation, the splitting of virtual links helps maximize revenue and minimize substrate
resource usage.

[Lischka and Karl, 2009] proposed a backtracking algorithm to identify a subgraph
isomorphism between the virtual and the physical graph. The proposed algorithm is an
extension of the vflib graph matching algorithm [Cordella et al., 2004] and is solvable in
polynomial time. By limiting the length of a physical path in which a virtual link can
be extended, the authors reduced the search space and consequently limited the response
time. Within this approach, nodes and links are considered together during the allocation
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process.

[Chowdhury et al., 2009] developed two algorithms (one deterministic and one ran-
domized) to allocate virtual infrastructures with coordinated node and link mapping.
With link and node constraints, the problem is formulated as a Mixed Integer Program
(MIP) [Schrijver, 1998], and the integer constraints were relaxed to obtain a linear pro-
graming. In [Chowdhury et al., 2010] the allocated problem was formulated considering
the allocation of VIs across multiple administrative domains that compose the physical
substrate. They proposed a decentralized framework based on a hierarchical addressing
scheme and on a location awareness protocol. Each local domain (or intra-domain) re-
ceives a partition of a VI request to allocate on their private resources by executing the
centralized heuristic described in [Chowdhury et al., 2009]. The protocol carries infor-
mation to request the VI, to negotiate the allocation, and to inform its status (success
and failure). Recently, [Yeow et al., 2010] extended this formulation and investigated the
virtual-infrastructure allocation considering mechanisms to pool backup nodes in order to
achieve the desired level of reliability together with resource allocation.

The work developed in [Butt et al., 2010] investigates a topology-aware mechanism to
re-optimize and allocate initially rejected requests. This approach identifies the bottleneck
of rejected requests and re-optimizes the physical substrate to accommodate their require-
ments. The metric used to control the physical substrate load and to determine which
resources must be re-optimized are based on a scaling factor that identifies the probability
of a resource becoming a bottleneck.

We summarize these approaches in Table 5.2 identifying the following characteristics:

• Centralized or distributed implementation: the majority of the proposed algorithms
have been implemented with a centralized approach. The decentralization of the
algorithm is justified by an improvement in scalability, robustness, and local man-
agement of partial failures.

• Reconfigurability: refers to the algorithm’s skill in reconfiguring the virtual infras-
tructures already allocated in order to balance the load of the physical substrate.
The existence of this option may be related to the context in which the approach
is inserted. Usually, this reconfiguration task can be performed by management
frameworks outside of the allocation mechanism.

• Type of incoming requests: the online problem formulation refers to the scenario
where the virtual infrastructure requests are not known in advance, arriving dynam-
ically with a non-arbitrary duration (reservation time). Over the past years, this
model of incoming requests has been adopted mainly to represent a real scenario,
where the services (VIs) could be requested at any time.

• Problem formulation and heuristic: different solutions can be applied for solving
the allocation problem. In general, software implementations have used substrate
based heuristic, shortest path [Dijkstra, 1959], and subgraph-isomorphism [West,
2000] detection techniques, while simulations have explored Mixed Integer Problem
formulations [Schrijver, 1998].
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5.2.3 Requirements for efficient VI allocation

As highlighted in the previous section, the allocation of virtual infrastructures has been
well studied, forming an extensive background of good practices and future action points.
For example, often virtual resources are not mapped adjacently, but distributed over
physical resources. Consequently, the vLinks required to interconnect these resources
must be extended over multiple physical communication paths, with a vLink being split
over the physical substrate to provide communication between virtual source and target.
The splitting of a vLink means its decomposition in many virtual links allocated over
different physical components [Yu et al., 2008], while the extension is related to providing
a QoS control mechanism along the physical path where the vLink is provisioned.

Conceptually, the abstract decomposition and extension are completely transparent to
final users [Yu et al., 2008], who are only aware of the dynamic virtual resources provi-
sioned to compose the VI (called by User layer). An abstract layer is introduced between
the physical layer and the user layer to implement the required mechanisms to perform
traffic control and QoS provisioning [Anhalt et al., 2010]. We explain this decomposition
in Figure 5.4, where a vLink (part of the user layer) is divided and extended on multiple
virtual paths (the abstract layer) allocated on top of a virtualized and distributed physical
substrate (the physical layer). vLink lv1 is decomposed into four new vLinks (lv2, lv3, lv4,
and lv5), and two virtual routers (rvA and rvB), forming the virtual paths. The com-
munication between virtual resources rv1 and rv2 is effectively divided over two physical
paths resulting from vLink decomposition.

Figure 5.4: Illustration of a vLink decomposition using extension, splitting, and vRouters.
User layer represents the components exposed to users; Abstract layer remains transpar-
ent, being controlled by the InP to guarantee the users’ requirements; and Physical layer
represents the materialized resources that compose the distributed physical substrate.

[Yu et al., 2008] argued that splitting techniques can decrease the usage of physical
substrate resources and increase the acceptance ratio of new requests. However, the allo-
cation of virtual paths increases the complexity since a virtual path is directly related to
the location of virtual source and target. These locations also are discovered during the
mapping process, and consequently, also the virtual paths composition.

In addition, [Ricci et al., 2006] drew lessons from the implementation of an allocation
algorithm in the context of PlanetLab [Bavier et al., 2004] and Emulab [White et al.,
2002] testbeds. They concluded that the resource allocator should have a well-defined
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and asynchronous interface to enable the negotiation with users and other allocators.
Although the scenario explored in their work is simpler than the allocation of virtual
infrastructures, the requirements are similar and must be considered. For example, as
detailed in Chapter 3, a description language plays an important role in the negotiation
step.

Recently, [Haider et al., 2009] highlighted new challenges in the allocation of virtual
networks, most of which related to the need for an adaptive approach capable of dynam-
ically adapting the resources allocated to VIs requirements. In this context, the SAIL
project has determined the elastic aspect of virtual resources as an important requirement
for efficient usage and implementation of VIs [SAI].

We considered these requirements along with the expectations and needs of real users to
produce a complementary list of key aspects that should be addressed in allocating virtual
infrastructures. The users’ expectations were defined based on [5] and [2]. As discussed
in Chapter 4, users can generate efficient VI descriptions that represent the application
requirements, and decompose them in different stages, identifying the exact capacity re-
quired for each one. The key requirements are divided in Infrastructure Providers’ (InP)
and users’ allocation requirements:

InPs’ requirements:

• The main objective of an InP is to allocate the maximum number of VI in an
efficient manner, minimizing the number of physical resources activated. To achieve
this purpose, an allocation algorithm should consider nodes and links with the
same weight, allocating both at the same time, as highlighted in [Chowdhury
et al., 2009]. Several algorithms perform the allocation in a two-step process, first
allocating the nodes and then allocating the links, solving a shortest-path problem
or a multi-commodity flow problem. This approach may lead to inefficient solutions
in terms of resources usage.

• Virtual infrastructure can be positioned anywhere on top of a virtualized substrate.
The allocation mechanism should minimize the spreading and fragmentation
of physical resources. Decreasing the number of distributed physical resources
activated reduces the administrative costs (e.g., energy and cooling).

• The virtual resources composing a VI can vary their capacity requirements during
the reservation time. Instead of comparing single values representing the capacity
requirements, allocators should manipulate capacity profiles, which represent
the capacity variation during the reservation time.

• In some cases, an IT virtual resource cannot be allocated on a single resource be-
cause its requirements exceed the physical capacity. An allocator should consider
the aggregation of similar physical resources composing a single virtual
entity able to provide the required capacity. A similar approach has been
implemented in vLinks extension and splitting [Yu et al., 2008].

94 c© Copyright 2011 by Guilherme Piêgas Koslovski
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Users’ requirements:

• As discussed in Chapters 3 and 4, the new languages and techniques developed to
compose and describe virtual infrastructures enable the direct participation of users
in the allocation process. Users and management framework must interact to
efficiently allocate a virtual infrastructure. The constraints and requirements
are explicitly detailed guiding the allocator. Moreover, a VI description can be
improved after a monitored execution, and the acquired knowledge should be used to
improve the next VI allocation and execution, applying for example, the adaptability
concept [Andrzejak et al., 2006].

• Following the pay-as-you-go model applied to Cloud Computing and Cloud Network-
ing technologies, new services can be requested by users, such as security,
reliability and adaptability. To provide these new services, the allocation process
must be aware of the requirements and particularities of each service. In Chapter 6,
we demonstrate how a service that offers reliable virtual infrastructures can be im-
plemented, and the important role performed by the allocation algorithm.

5.3 Problem formulation

In this section we formulate the allocation problem using a graph representation. This
formulation is guided by the requirements identified in Section 5.2.3 and aims to cover the
attributes proposed by the descriptive language presented in Chapter 3.

5.3.1 Graph embedding problem

The problem of mapping VIs to a physical substrate corresponds to a classical graph
embedding problem. The graph describing the VI, Gv(Rv, Lv), must be mapped on the
physical substrate graph, Gp(Rp, Lp), where Rv and Rp are the set of virtual and physical
nodes, respectively, and Lv and Lp are the set of virtual and physical links, respectively.
Table 5.3 summarizes the notation used to formulate the allocation problem.

Let’s denote by QR(r, t) the vector of capacities (e.g., memory and CPU) of node r
(∈ Rv or ∈ Rp) at time t ∈ [0, T ]. In addition, let P p be the set of all the simple physical
paths between any two physical nodes, QP (p, t) be the vector of capacities of physical path
p ∈ P p, and QL(l, t) the vector of capacities of link l ∈ Lv, both at time t. For a physical
path p = (l1, l2, . . . ), the bandwidth capacity is the minimum of all bandwidth values of
li in p. By adopting capacity vectors indexed by time, the capacities of IT resources and
links can vary during the reservation’s time.

Let AR(r) be the set of geographical locations of resource r (∈ Rv or ∈ Rp). For
virtual resources, the value of AR(r) can be specified by users, and for physical resources
it represents the exact geographical location. Finally, let ER(r) be a binary function
which identifies if a virtual resource requires exclusivity on a physical host, not sharing its
capacity.

A map of a VI on a physical substrate represents the reservation of all the capacity
requirements specified by the user, noted as:

Resources mapping :MR : Rv → Rp (5.1)
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Notation Meaning

Gv(Rv, Lv) a graph of virtual resources Rv (vertices) and the virtual links Lv (edges)
Sv a set of virtual graphs Gv

i ∈ Sv

ri ∈ Rv a virtual IT resource
rj ∈ Rp a physical IT resource
li ∈ Lv a virtual link
lj ∈ Lp a physical link

p = (l1, l2, . . . ) a physical path p composed of a set of links
P p set of all physical paths between any two nodes

t ∈ [0, T ] time instant of reservation period [0, T ]
QR(r, t) the vector of capacities of a IT resource r indexed by time t
QL(l, t) the vector of capacities of a link l indexed by time t
QP (p, t) the vector of capacities of a path p
AR(r) geographical locations of resource r
ER(r) binary function identifying exclusivity of virtual resources

Table 5.3: Notations used to formulate the allocation problem.

Links mapping :ML : Lv → P p (5.2)

Given a set of VI requests Sv, the embedding problem is to obtain a mapping of virtual
nodes Rv to physical nodes Rp, denoted by MR, and virtual links Lv to physical paths
P p, denoted by ML, such that the following conditions are satisfied:

QR(MR(ri), t) ≥ QR(ri, t),∀ri ∈ Rv
j ,

∀Gv
j ∈ Sv, ∀t ∈ [0, T ]; (5.3)

QP (ML(li), t) ≥ QL(li, t),∀li ∈ Lv
j ,

∀Gv
j ∈ Sv, ∀t ∈ [0, T ]; (5.4)

AR(ri) ⊂ AR(MR(ri)),∀ri ∈ Rv
j ,∀Gv

j ∈ Sv; (5.5)

ER(ri) = 1 =⇒ MR(ri) 6=MR(rj),

∀i ∈ Rv
k,∀Gv

k ∈ Sv,∀j ∈ Rv
m,∀Gv

m ∈ Sv. (5.6)

5.3.2 Objective functions

As identified in Section 5.2.3, different objectives and functions can be exploited for solving
the allocation problem. We formulate the objective functions considering both InP and
users perspectives. The former was formulated in terms of allocation cost and physical
substrate fragmentation, while the latter in terms of allocation quality.

To facilitate the introduction of these functions, explaining their motivations in a real
scenario, we present in Figure 5.5 a VI request and in Figure 5.6 a physical substrate that
must host the virtual infrastructure. The VI is composed of three virtual resources (rvA,
rvB, and rvC) which are interconnected by a set of virtual links. A particular user has
access to all VI components during the reservation time.

This VI must be allocated and provisioned on top of a distributed and virtualized
physical substrate. Usually, this physical substrate is hierarchically organized and in-
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terconnected. Figure 5.6 presents an example of this hierarchical organization using a
tree structure where the leaves are the IT resources, and the parent nodes represent the
geographical organization and interconnection. Starting from the bottom, the physical re-
sources (for example, rp1, rp2, and rp3) are grouped into racks. These racks are positioned
at different locations, such as lyon.fr.eu and paris.fr.eu. More specifically, in this example
the exact location of the physical node rp1 is noted as rp1.rack1.lyon.fr.eu. The distance
between physical resources in this hierarchical organization is given by the number of
intermediate hops. For example, the distance between rp2 and rp3 is one hop.

Figure 5.5: A VI composed of resources rvA, rvB and rvC is requested by a user with
access point located at lyon.fr.eu.

Figure 5.6: The physical substrate that must allocate the VI described in Figure 5.5
comprises components hierarchically distributed and interconnected.

5.3.2.1 Physical substrate cost

For an InP, the cost to allocate a virtual infrastructure is proportional to the number
of resources required to accommodate the user’s requirements. Let’s define the functions
Cr(r, t) and Cl(l, t), which set the physical substrate cost for an amount of resource r ∈ Rv

and the cost for an amount of link l ∈ Lv, respectively, both at time t. The total cost of
resources Rv, over a reservation time [0, T ] is given by:
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CR(Rv, T ) =

∫ T

0
(
∑
ri∈Rv

Cr(ri, t)) dt (5.7)

Similarly, the total cost of links Lv, over a reservation time [0, T ] is defined as:

CL(Lv, T ) =

∫ T

0
(
∑
li∈Lv

Cl(li, t)× len(ML(li))) dt (5.8)

where len(ML(li)) gives the length of the path provisioned to allocate virtual link li.
Consequently, the total cost of a VI Gv is noted as:

CV I(Gv, T ) = αCR(Rv, T ) + βCL(Lv, T ) (5.9)

Constants α and β are tunable weights that allow the balance and the normalization
between resources’ and links’ costs. Given a set of VI requests Sv, an immediate metric
is the minimization of the total cost for the infrastructure provider, defined by:

minimize:
∑

Gv
i ∈Sv

CV I(Gv
i , T ) (5.10)

subject to the constraints defined by conditions (5.3)-(5.6).

5.3.2.2 Physical substrate fragmentation

The cost of a virtual infrastructure allocation is usually negotiated and charged to the
final user. However, InPs have administrative costs that vary depending on the number of
resources activated. These costs are difficult to be charged during the SLA negotiation, but
can have a negative impact on the InP objectives. For example, the allocation of spread VI
components induces long-term issues: i) it increases costs related to energy consumption,
cooling, and provisioning of high-speed networks to interconnect data-centers due to the
simultaneous activation of several racks and network equipments; and ii) it decreases
the acceptance ratio of new requests due to increased congestion on communication and
computational resources [Zhu and Ammar, 2006]. These issues are directly related to the
physical substrate fragmentation.

We define the physical substrate’s fragmentation as a metric to qualify the number of
physical resources (IT and network) reserved and activated on a distributed and virtualized
substrate. This metric is given by the ratio of the number of activated resources to the
total number of physical resources available.

To exemplify the fragmentation, lets consider the virtual infrastructure request pre-
sented in Figure 5.5 and the physical substrate described in Figure 5.6. Considering the
physical substrate fragmentation, an efficient allocation mapping allocates all the virtual
nodes and virtual links using the minimum number of physical components. For example,
allocating the virtual nodes into physical machines rp1, rp2, and rp3, respectively, only
requires activating one rack and using a single physical communication path to provide
network access to those components. Furthermore, an optimal allocation places all virtual
nodes (rvA, rvB, and rvC) into physical machine rp1 only requiring the activation of a
single computing resource. In the long term, it is expected that minimizing the physical
substrate’s fragmentation increases the acceptance ratio of an InP.
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InPs aim to minimize the physical resources’ fragmentation. Thus, let’s denote by
FR the subset of physical resources r ∈ Rp that supports at least one virtual resource
running, and similarly, by FL the subset of physical links l ∈ Lp that hosts at least one
virtual link activated. The objective is to minimize the number of physical resources (IT
and networking) to allocate Sv:

minimize:
#FR + #FL

#Rp + #Lp
(5.11)

subject to the constraints defined by conditions (5.3)-(5.6).

5.3.2.3 Allocation quality

From the user’s perspective, the allocation and provisioning of spread VI components
increases latency of network communications [5] as follows:

• node-to-node: usually, the more distant apart the physical hosts are, the higher the
latency in communication. This issue is more perceptible in communication intensive
applications, but can also affect regular applications;

• user interaction: interactive applications (such as remote terminals or visualization
tools) are explored by users to control the virtual infrastructure and their appli-
cations. The response time of these applications increases proportionally to the
physical distance between the user and the virtual infrastructure components.

Chapter 4 showed that advanced users can specify the exact configuration required
to execute their applications efficiently including the exact location where the virtual
resources should be provisioned [6]. Reasons why a certain application should run in
a certain location, include data-location dependency, security, and even limitations on
data mobility because of governmental law. Although this location-based provisioning
can be explicitly required, regular users are not aware of the efficient configuration in
terms of networking and computational power. Moreover, some users are not familiar
with the meaning of latency in communications, and only wish a set of VMs to execute
their applications, as the approach explored in Clouds.

In this context, defining the allocation quality from the user’s perspective is a difficult
task as it is optimal when the virtual request is precisely defined and all resources correctly
provisioned. When the request is non-absolutely defined, quality is subjective: the user
does not care about the optimal configuration to execute his application, but he wants the
application to run well, usually with efficient interaction among its distributed components.
Figure 5.5 describes this scenario: a VI is requested by a user with access point located
at lyon.fr.eu. The user does not specify any requirement in terms of virtual-resources’
location or network configuration. Thus, the InP can allocate this request anywhere on
top of the distributed substrate represented by Figure 5.6.

The resources’ proximity can be optimized for both types of users (e.g., advanced or
regular) independently of the VIs description level. We call allocation quality of a VI the
average of all distances (calculated in hops) between the virtual resources and one specific
geographical landmark (the reference point). More specifically, the reference point can be
the location of the user; or the location of a certain virtual resource, as specified by the
user.
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To illustrate the definition of allocation quality, let’s consider the user’s location as the
geographical landmark for hops calculation (lyon.fr.eu). Allocating resources distributed
across other locations (such as es.eu) results in a greater number of hops from the user’s
location than allocating resources near lyon, or even fr. More specifically, allocating all
the components of this VI on physical node rp1.rack1.lyon.fr.eu results in a minimum
distance (in this case, only one hop, from lyon’s access point), and consequently, an
optimal allocation quality.

The quality of an allocation is directly related to the location of the virtual resources.
Let’s define the function DR(ai, aj) that gives the distance between locations ai and aj in
number of hops, where a ∈ AR, and each hop is equivalent as one unit. Further, define au

as the location specified by the user (the reference point). The optimal allocation quality
is given by the minimization of the average resources’ distance:

minimize:
∑
ri∈Rv

DR(AR(MR(ri)), a
u)

#Rv
(5.12)

subject to the constraints defined by the conditions (5.3)-(5.6).

Conceptually, the quality improvement is related to the minimization of physical sub-
strate fragmentation. This relationship is observed in results presented in Section 5.5.

5.4 A heuristic for allocating VIs

As discussed beforehand, there are different approaches to solve the graph-embedding
problem, such as heuristics based on substrate characteristics, path-splitting methods,
multi-commodity flow modeling, and isomorphism-based detection. Among these options,
we choose a subgraph-isomorphism detection [West, 2000], solvable in polynomial time,
to incorporate the allocation constraints and to examine the metrics proposed in this
chapter. As result of this work, we have proposed a heuristic to allocate virtual infras-
tructures [VXAlloc] that drastically decreases the decision time by proposing a method to
restrict the search-space. This method has been patented and is exploited by the LYaTiss
startup, and for the sake of confidentiality its critical part cannot be detailed here. There-
fore this section overviews the method and details experimental results obtained with our
implementation of the heuristic.

5.4.1 Subgraph-isomorphism detection

The technique for identifying isomorphic subgraphs acts as an alternative for embedding
a virtual graph in a physical one [West, 2000] [Cordella et al., 2004] [Lischka and Karl,
2009]. An isomorphism, with edges extension, from Gv to Gp is a function f that maps
Rv to Rp and Lv to P p such that each edge li ∈ Lv with endpoints rm ∈ Rv and rn ∈ Rv

is mapped to a path of edges lj ∈ P p with endpoints f(rm) ∈ Rp and f(rn) ∈ Rp, subject
to the constraints defined by the conditions (5.3)-(5.6).

Figure 5.7 exemplifies a subgraph isomorphism map between graphs Gv and Gp. Ap-
plying function f for all ri ∈ Rv and for all li ∈ Lv results in a set of maps noted
< x, f(x) >, where x represents both vertices or edges, contextually.

A subgraph-isomorphism mapping of non-simple graphs (e.g., VIs) requires the exten-
sion of edges to interconnect non-adjacent vertices. Figure 5.7c exemplifies this require-
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(a) graph Gv(Rv, Lv). (b) graph Gp(Rp, Lp). (c) Subgraph isomorphism between graphs
Gv and Gp.

Figure 5.7: A subgraph-isomorphism mapping between Gv (5.7a) and Gp (5.7b) given by
the application of a function f , where f(rvA) = rp3, f(rvB) = rp2, f(rvC) = rp6, f(lvA) =
lp2, f(lvB) = lp3 ∪ lp5, f(lvC) = lp6, as exemplified by 5.7c.

ment: rvB and rvC were mapped on rp2 and rp6, respectively. Consequently, lvB must
be extended over lp3 and lp5.

5.4.2 Algorithms formalization

This section formalizes the main heuristics composing the allocation algorithm. The no-
tation presented in Table 5.3 is used to describe the pseudo-algorithms.

In Algorithm 5.1 we present a general view of the location-aware algorithm. Initially,
the location-aware algorithm identifies the set of physical landmarks specified by the user,
as well as the set of virtual resources without location constraints. An iteration is per-
formed on these sets. Each time, a physical location specified by the user is defined as
the required location constraint for components that do not have this information. At
this moment, a subgraph-isomorphism detection is performed to find a map solution. If
no allocation solution is found for this configuration, the location constraint is relaxed for
these resources (the location’s precision is decreased).

Let’s use Figure 5.6 as example. In the first iteration, the required location of virtual
resources rv1, rv2, and rv3 are defined as lyon.fr.eu (the user’s location). Considering that
no solution is found with this configuration, the geographical location of these virtual re-
sources is relaxed from lyon.fr.eu to fr.eu. Observe that, in this way, the algorithm always
tries to allocate virtual components as close as possible to the geographical landmark.
The algorithm focuses on solving the embedding problem, optimizing the allocation qual-
ity and decreasing the substrate fragmentation, as discussed in Section 5.3. A

′
R represents

the combination of all locations defined in the VI request, including the original user’s
location (the first one to be used as reference). To induce the minimization of virtual
resource distances, the algorithm temporarily sets a location constraint for these resources
that have not specified this requirement. The resulting set of virtual resources (Rv′) is
used as input for the allocation procedure described in Algorithm 5.2. If no solution is
found, the location constraints of those resources are relaxed.

Algorithm 5.2 solves a subgraph-isomorphism detection respecting the allocation con-
straints defined in Section 5.3. This algorithm is based on the formulations proposed
in [Cordella et al., 2004] and [Lischka and Karl, 2009]. We mainly differ from the origi-
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Algorithm 5.1: A heuristic for allocating VIs.

for a ∈ A′R do1

while a 6= ∅ do2

Rv′ ← ∅ : temporary set of virtual resources;3

for ri ∈ Rv do4

if AR(ri) = ∅ then5

set a for ri;6

add ri in Rv′ ;7

M = alloc(Rv′ , Lv, ∅, ∅);8

if M 6= ∅ then9

return M ;10

relax a;11

return ∅;12

Algorithm 5.2: alloc: subgraph-isomorphism detection.

Rv: requested virtual resources;1

Lv: requested virtual links;2

Rv′ : temporary set of allocated virtual resources;3

Lv′ : temporary set of allocated virtual links;4

C ← candidates(Rv′ , Lv′ , Rv, Lv);5

if C = ∅ then6

return ∅;7

for (ri, rj) ∈ C do8

Lt ← all links between (ri, R
v′);9

if allocation constrains (5.3)-(5.6) from Section 5.3 are satisfied then10

add ri in Rv′ ;11

extend vLinks from Lt as described in Section 5.2.3;12

add Lt in Lv′ ;13

if (Rv′ = Rv) ∧ (Lv′ = Lv) then14

return (Rv′ , Lv′);15

n ← alloc(Rv, Lv, Rv′ , Lv′);16

if n 6= ∅ then17

return (Rv′ , Lv′);18

return ∅;19
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nal proposition by adding the optimized constraints on generating candidates and by not
using a backtracking approach.

This recursive algorithm propagates the virtual request (Rv and Lv) and a set of
temporary allocated resources (Rv′ and Lv′). With this information, pairs of virtual-
physical candidates are generated (line 5) and covered in the following lines aiming the
total allocation of a virtual infrastructure. Each allocated resource is added to a temporary
set and the recursion is continued.

5.5 Experiments

This section describes a set of experiments performed with VXAlloc and the respective
analysis considering the metrics proposed in Section 5.3. A complementary comparison
between the wasted capacity and the acceptance-ratio of VXAlloc and non-virtualized
infrastructures are discussed.

5.5.1 Scenario composition

We ran the experiments on machines belonging to Grid’5000 [Cappello et al., 2005] with
the following configuration: 2 CPUs Intel Xeon L5420, 4 cores, 2.5 GHz, 6 MB cache, and
32 GB RAM. We used Java Runtime Environment version 1.6.0 20 to run the allocator
and the other HIPerNet tools.

The physical-substrate graphs and the virtual-request graphs were generated by the
topology generation tool GT-ITM [Calvert et al., 1997]. Physical substrates use the transit-
stub model, which results in graphs with domains interconnected by a backbone. Virtual
requests were generated considering the normal model without backbone routers, following
setups similar to previous work [Yu et al., 2008] [Chowdhury et al., 2009].

Two physical substrates were simulated:

• a small-size substrate composed of 100 resources (domains and backbone routers)
and approximately 200 physical links, organized in 4 geographical domains, and
interconnected by a backbone composed of 8 resources;

• a medium-size substrate composed of 500 resources, approximately 4000 links, di-
vided in 8 geographical domains, and interconnected by a backbone composed of
20 resources.

The values of CPU cores (2, 4 or 8) and memory capacity (2 GB, 4 GB, 8 GB or
16 GB) follow a uniform distribution. The network’s bandwidth capacity was defined as
1 Gbps within domains and 10 Gbps between domains (in the backbone). To represent a
realistic scenario, the allocation of computing nodes on backbone resources was disabled.

Virtual requests can require 2, 4, 6, 8, or 10 nodes. The probability of two virtual
nodes being connected is 0.5, as defined in GT-ITM configuration. All VI requests require
a reservation period of one hour. The values of CPU cores (1, 2 or 4) and memory capacity
(256 MB, 512 MB, 1 GB, or 2 GB) also follow a uniform distribution. The same approach
was used to generate network-bandwidth requirements (10 Mbps, 20 Mbps, 40 Mbps,
100 Mbps, 200 Mbps, 400 Mbps, or 600 Mbps).

The values of α and β used to calculate the VI cost (CV I) were defined as α = β = 1,
indicating that nodes and links have the same weight in the InP, as explored on previous
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scenarios [Yu et al., 2008]. The cost functions (Cr(r, t) and Cl(l, t)) require an equivalent
metric to calculate the costs. As an example of this equivalence, in terms of cost calcula-
tion, we arbitrarily set that 1 GB, 1 core, and 100 Mbps are the basic units for memory,
CPU and bandwidth, respectively. The definition of these values requires a specific study
based on InP policies and current substrate load, as proposed by [Zhu and Ammar, 2006].
We leave this implementation and analysis for future work.

The number of VI requests submitted were: 100 to the small-size substrate, and 300
to the medium-size substrate. The number of requests’ sources varies (1 or 3) to represent
different request-submission scenarios. Results identified by allocation with basic algo-
rithm were obtained by executing the regular subgraph-isomorphism detection without
the geographical-location optimization. The optimized execution is identified as allocation
with our optimized algorithm.

All averages presented here were calculated considering 10 executions and have a con-
fidence interval of 95%.

5.5.2 Physical substrate fragmentation and cost

The second experiment investigates the variation of InP allocation costs and physical-
substrate fragmentation. For both metrics, the results were obtained considering two
configurations: small-size and medium-size physical substrate.
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Figure 5.8: Fragmentation of a small-size physical substrate. The number of sources
requesting VIs is 1 and 3.

Figure 5.8 shows the average total fragmentation of a small-size physical substrate. The
comparison performed in Figure 5.8 highlights that our algorithm improves the physical
substrate usage by decreasing the fragmentation by approximately 10% in the case where
all requests come from the same location. Its performance increases with the number of
requests source: 28% when 3 sources are submitting requests. Similar results are obtained
with requests submitted to the medium-size substrate (see Figure 5.9).

The average of the total cost required to allocate these requests were analyzed and
presented in Figure 5.10 and Figure 5.11. For these scenarios, our optimized algorithm
also decreases the average cost. Considering requests submitted by only 1 source, the cost
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Figure 5.9: Fragmentation of a medium-size physical substrate. The number of sources
requesting VIs is 1 and 3.
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Figure 5.10: InP cost of allocations on a small-size physical substrate. The number of
sources requesting VIs is 1 and 3.

decreases in both scenarios: approximately 4% on a small-size physical substrate, and 8%
on a medium-size substrate. When analyzing requests submitted by 3 sources, the cost
also decreases nearly by 17% and 21% for the small-size and the medium-size substrates,
respectively.

5.5.3 Allocation quality

We also measured the the allocation quality. The user location (source of requests) was
defined as the reference point for calculating the distances.

Figure 5.12 and Figure 5.13 present the average for the small-size and medium-size
substrate, respectively. The results show that the average total distance is smaller with
our algorithm in both scenarios, for requests submitted by 1 and 3 source(s). When only
1 source was submitting requests, the average total distance decreased by almost 13%
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Figure 5.11: InP cost of allocations on a medium-size physical substrate. The number of
sources requesting VIs is 1 and 3.

for small-size and medium-size substrates. When 3 sources were submitting requests the
average total distance is highly decreased: by approximately 36% and 39% for small-size
and medium-size substrates, respectively. Consequently, it is expected that the users of
VIs allocated by our optimized algorithm have a lower impact of the physical-resource
distribution in terms of network communication.
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Figure 5.12: Aggregated distance of VI components allocated on a small-size physical
substrate. The number of sources requesting VIs is 1 and 3.

An analysis of the results of the optimized algorithm highlights the relationship be-
tween performance and the number of geographical landmarks used as reference points (in
this case, the user’s location). For all metrics, the results obtained with three sources of
requests showed better performance than those obtained with one source of requests, in-
dependently of the physical substrate size. Consequently, increasing performance of these
metrics (physical fragmentation, allocation cost, and allocation quality) is expected when

106 c© Copyright 2011 by Guilherme Piêgas Koslovski
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Figure 5.13: Aggregated distance of VI components allocated on a medium-size physical
substrate. The number of sources requesting VIs is 1 and 3.

the number of sources submitting VI requests is augmented.

5.5.4 Comparing VXAlloc with non-sharing allocation

A complementary study was performed to compare the percentage of wasted capacity and
the acceptance ratio of VXAlloc (a virtualized allocation) and non-sharing allocation. For
that, we simulated a physical substrate network comprising 5 racks, each one composed
of 24 nodes, interconnected by a hypercube network. Every physical node disposes of a
8 core 2.4 GHz CPU, and a memory capacity of 32 GB. Physical nodes of a rack are
interconnected with a bandwidth capacity of 1 Gbps, while the capacity between racks is
10 Gbps.

The virtual infrastructures were also generated by the GT-ITM tool and follow the nor-
mal model [Calvert et al., 1997]. A set of virtual requests composed of 200 VI descriptions
vary the number of virtual nodes (among 2, 4, and 8) following a uniform distribution. All
virtual nodes require the provisioning of 1 core, varying the memory configuration among
4 GB, 8 GB, 16 GB, and 24 GB. We used the load notation to identify the percentage of
total memory required by virtual resources when compared with the available 32 GB.

Results identified by non-sharing allocation are the result of requests that require
exclusivity for all nodes, allocated by VXAlloc. Those with the label: allocation with
our optimized algorithm are the result of the normal execution of VXAlloc. Note that
by requiring exclusity for all virtual resources allocation, the physical substrate sharing is
automatically disabled.

5.5.4.1 Evaluation

The first results identify the wasted capacity (in percentage) of both allocation solutions.
Figure 5.14 presents this comparison. In the first graph (left side) the loads (percentage
of virtual resources over the physical capacity) are analyzed individually. The virtual
requests vary following the configuration described above. As expected, we observe better
performance of VXAlloc in terms of physical substrate usage, highlighting one of the main
advantages of virtualization: the possibility of sharing a physical resource among multiple
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virtual resources, respecting the user’s expectations. The wasted capacity decreases by
65.6%, 72.9%, and 87.26% for loads 0.125, 0.25, and 0.5, respectively. With load 0.75 both
algorithms present the same wasted capacity due to the physical limitation.

The second graph of Figure 5.14 (right side) gives the comparison when load varies
(respecting the values defined in the configuration). Following the same line, VXAlloc also
presents better performance in terms of resource usage, decreasing the wasted capacity by
34.2%. In addition, we performed a comparison of the acceptance ratio of both scenar-
ios. The first graph of Figure 5.15 (left side) shows that VXAlloc has higher acceptance
ratio than the non-sharing allocation under all load configurations. When the load varies
following a uniform distribution (right-side graph), VXAlloc also exceeds the non-sharing
values by 178% percent.
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Figure 5.14: A comparison of wasted capacity between a non-sharing scenario and one
virtualized, allocated using VXAlloc.
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Figure 5.15: A comparison of the acceptance ratio between a non-sharing scenario and
one virtualized, allocated using VXAlloc.
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5.6 Conclusions

This chapter concentrates on the allocation of virtual infrastructures guided by the ge-
ographical location of virtual resources. Thanks to VXDL (as discussed in Chapter 3),
users can interact with the allocation mechanism, informing specific attributes and setting
constraints that represent their expectations and QoE requirements.

We formulated the allocation-problem and proposed metrics considering the users’
(allocation quality) and the InPs’ (cost and fragmentation) perspectives. An allocation
heuristic that optimizes both perspectives has been implemented as a patented module
of the LYaTiss Weaver. Our experiments show that it is possible to improve the virtual-
infrastructure allocation’s quality (approximately 39% for VIs allocated on a medium-size
substrate), and simultaneously decrease the physical substrate’s fragmentation and the
substrate’s cost (almost 28% and 21% on a medium-size substrate, respectively).

A future research line that we will explore is the interconnection of allocation strategies
with information exposed by the InP management framework. For instance, the buffer
capacity of virtual switches and routers are relevant information for the efficient provi-
sioning of split and extended paths [Anhalt et al., 2010]. In addition, a different approach
for modeling the allocation problem is planned as future work (discussed in Chapter 7).
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The work presented in this chapter was published at the Second IEEE In-
ternational Conference on Cloud Computing Technology and Science (Cloud-
Com 2010) [7]. It has been done in collaboration with DoCoMo Labs USA
(http: // www. docomolabs-usa. com/ ) .

6.1 Introduction

O
ne of the main benefits of infrastructure virtualization is the capability of providing
new services to accomplish the users’ expectations. Among these new services we

highlight the provisioning of transparent reliability. In other words, reliability becomes a
service provided by the InPs.

Independent of the application context, some tasks are critical and their failure would
cause the system to collapse. In addition, even the failure of non-critical tasks could
significantly impact (for instance, delay) the completion of an application or service. In
case of failure, a component of a virtual infrastructure can be migrated to a different
location in the physical substrate. One key aspect in this scenario is for the infrastructure
user to be able to specify the reliability associated with a task during the VI bootstrap,
and for the InP to transparently provide the reliability to the user and effectively provision
it through the allocation of virtual backup nodes ready to take over in case of node failure.

We discuss the motivations and gains of introducing customizable reliability of virtual
infrastructures when executing large-scale distributed applications, and present a frame-
work to specify, allocate and deploy virtualized infrastructure with reliability support. This
chapter proposes an approach to efficiently specify and control the reliability at runtime.
We illustrate the ideas described above by analyzing the introduction of reliability at the
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VI level on a real application. Experimental results, obtained with the Bronze Standard
application (described in Section 4.4.1 of Chapter 4) running in virtual infrastructures
provisioned on the experimental large-scale Grid’5000 platform, show the benefits of the
reliability service.

The rest of this chapter is organized as follows. Section 6.2 reviews the state of the
art and technologies related to reliability on distributed systems. Section 6.3 motivates
the introduction of reliability in virtual infrastructures, and identifies system goals which
guide the design of our proposition. In Section 6.4, we discuss the issues associated with
the translation of the reliability requirements, specified with VXDL, into a reliable VI.
Section 6.5 describes the allocation and provisioning of a virtual reliable graph onto the
physical substrate. In Section 6.6, we show experimental results with the Bronze Standard
application as well as a cost analysis. We conclude this chapter and present perspectives
for future work in Section 6.7.

6.2 State of the art

Providing reliability and availability on virtualized environments is an issue that has been
studied in the recent years. Within virtual nodes, hypervisors such as Xen [Barham et al.,
2003] provide the capability to store live snapshots of the virtual machines to reliable
storage, which can be resumed on other physical nodes if failures occur. Remus [Cully
et al., 2008] and Kemari [Tamura et al., 2008] improved static snapshots by periodically
updating live snapshots to replica nodes that are on standby. From another perspective,
proactive migration of virtual machines to other healthy nodes is considered upon early
warnings of impending failures [Nagarajan et al., 2008] [Clark et al., 2005].

Also, recovering from failures has received some attention in the literature. On a
large-scale execution environment, the re-submission mechanism is one of the solutions
used to make the application continue running when a failure is detected [Lingrand et al.,
2009a] [Lingrand et al., 2009b]. The application’s makespan is longer in this case when
the submitted task’s execution time is long. Another possible solution is to periodically
save static snapshots of the entire VI [Kangarlou et al., 2009] to disk, while execution is in
progress. The live snapshots are reloaded as a new submission if failures are encountered
in the current execution. The application’s makespan then depends on the re-submission
interval and the snapshot interval, which may be long due to disk-access times. Moreover,
synchronizing clocks of reloaded virtual machines is critical as it can compromise the
execution of time sensitive applications [Broomhead et al., 2010].

Fault tolerance is provided in some contexts, such as data centers [Mysore et al.,
2009] [Guo et al., 2009]. However, it is achieved through specific engineering of the network
nodes and links over-provisioned for redundancy. [Yeow et al., 2010] provides mechanisms
to pool backup nodes to achieve a desired level of reliability. However, it is mostly a the-
oretical work and does not provide any vertical integration from the user specification to
the physical substrate allocation. In [Menth et al., 2009], the authors focus on providing
link reliability in wide-area network, by considering the most likely link failure combina-
tions, and providing backup links for these failures. The reliability of virtual nodes is not
addressed in this work.

These mechanisms, unfortunately, do not provide sufficient transparency against fail-
ures. Re-initiating or resuming applications at a later time to recover from failures will

112 c© Copyright 2011 by Guilherme Piêgas Koslovski
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impact any time-sensitive applications. Therefore, a live protection mechanism such as
Remus [Cully et al., 2008] or Kemari [Tamura et al., 2008] is needed. In both Remus and
Kemari, the memory state of a protected (critical) node is continuously synchronized with
a replica (backup node), as with checkpointing. When a failure in the protected node
occurs, the backup node can resume execution immediately, and the failover process can
be made transparent to other nodes in the VI. This live protection mechanism has another
advantage over prior snapshot mechanism: instead of the entire VI, only the critical nodes
need to be checkpointed.

The key difference between Remus and Kemari is that Kemari initiates a checkpoint
only when external events occur, such as disk writing and network-packet sending, whereas
Remus checkpoints at a regular interval. One important feature of Remus is that, at
every checkpoint, the external output is buffered locally in the critical node until it is
assured that the backup node completes that checkpoint update. This ensures that any
failover operation will be transparent to other unaffected nodes. Moreover, the protected
node continues execution in parallel until the next checkpoint, thereby increasing system
performance over classical lock-step checkpointing. Kemari, on the other hand, does not
perform any buffering and relies on pausing the protected node to achieve the required
transparency. We chose to use Remus over Kemari in our proof of concept as it provides a
finer and customizable granularity between checkpoints, which can be as frequent as tens
of milliseconds. As of Xen 4.0.0 [Barham et al., 2003], Remus is included in the official
Xen releases.

6.3 Motivations and goals

Networking and computing infrastructures are subject to random failures of nodes and
links. These failures are not rare in the case where the number of physical entities is large,
especially in distributed systems. Currently, Cloud Computing providers have defined
Service Level Agreements (SLAs) comprising the percentage of reliability, availability, or
uptime of their systems. For instance, Amazon EC2 [AMAa] and Windows Azure [AZUa]
inform an availability of 99.95%, while SalesForce [SAL] informs 99.9% of availability.
However, the levels are not guaranteed: when an SLA is not respected (e.g., a failure
occurs compromising the execution) a compensation in terms of credits for a new execution
is offered to the user. For some users this compensation is sufficient, but for critical
applications, a failure can compromise the entire execution.

The impact of a node failure to a distributed application can be very different; a failed
worker node amongst hundreds of others is less significant than the failure of a database
server. The reliability of a system may be evaluated quantitatively and qualitatively. The
Mean Time Between Failures (MTBF) is a statistical metric to determine the failure rate
of the underlying infrastructure, which can be evaluated by the InP’s management system.

One approach is for the application designer to ensure reliability himself, by providing
redundancy in the components and modules composing the application. However, this
requires different sets of expertise: one is the expertise to design the system in order to
deliver the intended application; another is to ensure that the components are integrated
so as to support the desired reliability.

Furthermore, the actual reliability will depend on the physical resource upon which
the system is deployed. If the application developer provides his own physical substrate
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(servers and switches), then he can specify the reliability of each individual element. If
on the other hand the system is deployed using a virtualized infrastructure, the reliability
characteristics of the physical resources might be unknown.

Since it is common for the application developer to delegate the elastic provisioning
of resources to the infrastructure provider, in order to only use the proper amount of
resource in the face of varying demands, the corresponding provisioning of the reliability
must by the same token be delegated as well. From the application provider’s perspective,
it is easier and more flexible to specify a level of reliability and have the reliable virtual
infrastructure provided transparently as part of a SLA. On the other hand, from the
InP’s perspective, reliability becomes a service that can be added and that can generate
new revenue streams. Further, the infrastructure provider is free to manage reliability in
light of his own constraints and optimization opportunities: a backup might be associated
to different resources from different independent applications. This multiplexing of the
backup resources provides economy of scale to the infrastructure provider [Yeow et al.,
2010].

These observations highlight a few requirements for a reliable virtualized infrastructure:

• the virtual infrastructure user should be able to specify reliability in a flexible and
expressive manner (we exploit VXDL for specifying the reliability requirements, as
discussed in Chapter 3);

• the InP should be able to implement and allocate reliable and backup resources
efficiently (we extended the formulation presented in Chapter 5 as presented in
Sections 6.4 and 6.5);

• both the virtual-infrastructure user and the physical-network provider need to see
their business objectives satisfied (we discuss the results in Section 6.6).

Figure 6.1 summarizes the stages and requirements to provide reliable virtual infras-
tructures considering the application-provider specification. Our goal is to describe tools
which allow to satisfy these requirements, and to deliver the efficient provisioning of reli-
ability in a virtual infrastructure, as specified by the virtual infrastructure user.

6.4 From reliability requirements to reliable VIs

The VXDL language allows for describing the required reliability level for a VI. The ap-
plication provider can set the reliability requirement individually for each virtual resource
(nodes and links), or for a group of resources. This approach enables the composition of
a VI with different requirements in terms of reliability level. For instance, an application
with a master-worker architecture, e.g., MapReduce [Dean and Ghemawat, 2008], can re-
quire more reliability support for masters, and set the same reliability level for a group of
workers. The example presented in Figure 6.2 illustrates the flexibility of the specification
language. Part of a VXDL file, the example describes a group of 30 virtual nodes with a
reliability specification of 99.9% (among other parameters).

The VXDL file containing the reliability requirements is interpreted by the VXDL
parser [VXDLParser], a versatile tool that translates a VI specification into a resource
request to the InP management framework. Specifically, it analyzes the VI specification,
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Figure 6.1: The integration of reliability service from the user specification to the VI
allocation.

. . .
<vGroup id=”workers ” mu l t i p l i c i t y=”30”>
<vNode id=”worker”>
<r e l i a b i l i t y >99.9%</ r e l i a b i l i t y >
<memory>

<simple >512</simple>
<unit>MB</unit>

</memory>
<cpu>
<cores >1</cores>
<frequency>

<simple >1.0</simple>
<unit>GHz</unit>

</frequency>
</cpu>

</vNode>
</vGroup>
. . .

Figure 6.2: Part of a VXDL file exemplifying the the description of reliable virtual re-
sources: a group of critical resources requires a reliability level of 99.9%.

automatically fills in any missing components (e.g., default elements and values by some
predefined templates), and translates the VI into a graph representation for resource al-
location (see next section). Furthermore, automated inclusion of backup components into
the graph for targeted reliabilities is added onto the VXDL parser. The procedure is
described below.

6.4.1 Automatic generation of backup nodes

A targeted reliability, in general, can be achieved with sufficient backup nodes. A critical
node with a low MTBF will require more backup nodes on standby (synchronized with
the active node) than another node with a higher MTBF for the same reliability level, if
physical failures are independent. As noted in [Yeow et al., 2010], backup nodes can be
shared among different groups of critical nodes to minimize the total number of backup
nodes (and hence, minimal idle nodes).

For example, a VI has two groups of critical nodes with n1 and n2 critical nodes
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respectively, requires at least r1 and r2 reliability respectively, and k1 and k2 backup
nodes respectively. It is possible to share the backup nodes for n1 + n2 nodes such that
the total number of backup nodes is lower than k1 +k2 provided that every backup node is
a standby for all other critical nodes. In [Yeow et al., 2010], the Opportunistic Redundancy
Pooling (ORP) mechanism imposes a sharing policy between groups of critical nodes such
that it is possible to have min(k1, k2) backup nodes so long as the reliabilities of every
group is satisfied.

The VXDL parser implements ORP to evaluate the number of backup nodes required.
Since ORP assumes independent physical failures, it also generates additional physical-
embedding constraints such that the physical locations of all shared backup nodes and
critical nodes validate that assumption. For example, virtual nodes may not be embedded
onto the same physical host, or rack that is connected to the same switch, or power supply.

6.4.2 Backup links: consistent network topology

Failovers from the critical nodes to backup nodes are expected to be transparent to the
unaffected nodes of the VI. While the virtual machine protection tool (e.g., Remus) guar-
antees the failover time in tens of milliseconds and consistency across the VI through
output buffering, consistency in the network topology has to be guaranteed through ad-
ditional links to the backup nodes. That is, failed critical nodes which are resumed at
the backup nodes must be connected to the rest of the VI as described in the original
specification.

To ensure failover transparency, the additional backup links are pre-allocated (together
with the VI) rather than on demand after failures occurred. In the latter case, resources
for backup nodes cannot be guaranteed and, even if sufficient resources are available,
undesired delays may be incurred during failover. Furthermore, active synchronization
from the critical nodes to backup nodes consume bandwidth, which has to be allocated
as well. Harary and Hayes [Harary and Hayes, 1996] have devised methods to minimize
the number of additional links required. Specifically, a new graph G′ is constructed with
n + k nodes such that the original VI is always a subgraph of G′ when any k nodes are
removed. Unfortunately, this class of solutions is infeasible in our system:

1. Guaranteeing that the VI is a subgraph of G′ only ensures that the graph after k
node failures is isomorphic. Hence, recovering from failures may result in unaffected
nodes being moved around in order to recover the VI.

2. Exact solutions are found only for regular graphs such as rings, lines, square-grids
and trees. For general graphs, heuristics are used [Dutt and Mahapatra, 1997] [Ajtai
et al., 1992].

3. The solution assumes unweighted links; adding weights on top of the solution intro-
duces an additional layer of complexity.

As such, similar to the approach in [Yeow et al., 2010], we add i) links from nodes of the
VI to backup nodes such that every backup node is linked to neighbors of critical nodes,
and ii) links interconnecting the backup nodes since two critical nodes which are neighbors
of each other may fail simultaneously. We call the former set first-order backup links and
the latter set second-order backup links. The second-order links are only required if two
critical nodes are linked in the original VI.
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In addition to the results of [Yeow et al., 2010], we reuse the first-order backup links for
synchronization between critical nodes and backup nodes whenever possible. Algorithm 6.1
shows the procedure for the generation and reuse of first-order backup links and their
attributes: bandwidth (bw) and latency (lat). We omit details on the generation of
second-order links and the remaining synchronization links that were not reused from the
first-order links, since the procedure is similar to that of the first order.

Algorithm 6.1: Generating First-Order Backup links

Rb: set of backup nodes;1

C(b): set of critical nodes which uses b as a backup node;2

Lv: set of links in VI ;3

for b ∈ Rb do4

for (i, j) ∈ Lv do5

if i ∈ C(b) then6

bw(b, j) ← bw(b, j) + bw(i, j);7

lat(b, j) ← min {lat(b, j), lat(i, j)};8

if j ∈ C(b) then9

Label (b, j) as synchronization link;10

Ensure bw and lat suffice for Remus;11

Figure 6.3 shows an example of how backup links are generated. Nodes rv1 and
rv2 request a backup node each one, identified as rvA and rvB, respectively. A new link
between a backup node and some other node is created if it is a neighbor of a critical node.
Hence, in Figure 6.3b, node rvA connects to all three nodes. Furthermore, the attributes of
link (rvA, rv3) can function as links (rv1, rv3) or (rv2, rv3). Links (rvA, rv1) and (rvA, rv2)
are reused for synchronization. With one more backup node (as in Figure 6.3c), the first-
order backup links of node rvB are the same as those of node rvA, and with a second-order
backup link between node rvA and rvB to function as the link (rv1, rv2) when both critical
nodes fail.

6.5 Reliable VI provisioning

Translating a VI to a graph representation results in a unified input to a resource allo-
cation manager, regardless whether a VI requires reliability support. This immediately
translates the resource allocation problem into a graph embedding problem. However,
reliability support demands tighter allocation constraints, which are not present in VI’s
that does not require any reliability guarantee. That is, virtual nodes should be mapped
in a way that virtual node failures resulting from the physical substrate should be in-
dependent. Then, virtual nodes of the same VI should not be allocated onto the same
physical node. Moreover, the framework management should be able to provision and con-
trol the execution of reliable virtual infrastructures, identifying the occurrence of physical
resources failures, and monitoring the efficiency of the service execution. In this section
we describe the graph constraints related to the reliable VI provisioning, and describe the
implementation of this service using the HIPerNet framework.
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(a) Original VI (b) Add one backup (c) Add two backups

Figure 6.3: The figures show the steps (from left to right) as each backup node is added
to the original VI for reliability. Nodes rv1 and rv2 are critical nodes, and nodes rvA and
rvB are backup nodes. Backup links are used for synchronization (in dotted lines), and
the respective attributes are determined by the existing links in the original VI.

6.5.1 Graph embedding and mapping constraints

In Chapter 5 we presented an algorithm to allocate virtual infrastructures based on
subgraph-isomorphism detection. In this section, we extend that formulation by adding
the constraints related with reliability support. These constraints complement the gener-
ation of backup links described by Algorithm 6.1 and guarantee the allocation of reliable
virtual nodes. While the classical graph embedding problem enforces virtual nodes to be
placed only onto unique physical nodes, it is insufficient to assure independent failures.

In the example presented in Figure 6.4, the physical substrate of Figure 6.4a must
host the virtual infrastructure of Figure 6.3a. The nodes to be protected rv1 and rv2, and
backup node rvB would need to be placed on different physical resources, hence creating
additional mapping constraints to the graph embedding problem.

We formulate these conditions according to the notation used in Chapter 5 (refer to
Table 5.3). Initially, let B(ri) be the set of backup nodes of virtual resource ri ∈ Rv. An
efficient mapping solution will not allow the sharing of physical resources among ri and
the set of backup nodes R(ri). Also, the physical resources mapping the backup nodes
must have enough capacity to allocate the original virtual component in the event of a
failure. More specifically, the conditions are:

MR(ri) 6=MR(rj),∀ri ∈ Rv,∀rj ∈ B(ri); (6.1)

MR(ri) 6=MR(rj),∀rk ∈ Rv,∀ri ∈ B(rk),∀rj ∈ B(rk); (6.2)

QR(MR(rk), t) ≥ QR(ri, t),∀ri ∈ Rv,∀rk ∈ B(ri),∀t ∈ [0, T ]. (6.3)

The allocation mapping presented in Figure 6.4b follows the reliable allocation con-
ditions discussed above. Virtual resources and their relative backups are not sharing the
physical resources, and the virtual links were allocated to keep the network topology con-
sistent in the case of failures.
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(a) Physical substrate. (b) Embedded Graph.

Figure 6.4: Example of embedding a graph in Figure 6.3b onto a physical substrate rep-
resented by (a), respecting the reliability constraints: original and backup nodes are not
placed in the same physical resource.

6.5.2 Mapping solution

The graph embedding problem is well-known to be NP-hard [Chowdhury and Boutaba,
2010]. The additional allocation constraints between virtual nodes, however, does not
make the problem less complex since solution space remains the same even though the
search space may be reduced. To this end, we implemented the allocation constraints to
the VXAlloc software. The subgraph isomorphism detection implemented by VXAlloc is
relatively straightforward to incorporate the additional allocation constraints.

We briefly review the graph embedding method as follows. It is essentially a depth-
first search that looks at all possible node mappings and eliminate the choices based on
feasibility of virtual links emanating from the node in consideration. Initially, all possible
node mappings are generated and sorted in some order that optimize some objective such
as minimize cost and fragmentation, while maximizing the allocation quality. The sorting
and ordering of physical candidates is limited to the number of candidates configured by
the InP to avoid looking too deep into a search tree. We refer the reader to Chapter 5 for
further details. For our purpose of incorporating the additional placement constraints, a
filtering step is added to the list of generated possible mappings.

6.5.3 From mapping to provisioning

The mapping provided by the allocation step is interpreted and instantiated using the
HIPerNet framework 1. The HIPerNet framework combines system and networking vir-
tualization technologies with bandwidth sharing and advance reservation mechanisms to
offer dynamic networking and computing infrastructures as services [1] [16] [9].

The reliability mechanisms of HIPerNet presented in this work, are based on a mod-
ified version of Remus. To enable Remus protection, all VMs file-system were deployed
on a Network File System (NFS) server. The first benchmarks performed with Remus

1We refer the reader to Section 2.5.3 in Chapter 2 for further details of the HIPerNet framework.
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demonstrated that communication between the NFS server (source) and virtual machines
(destination) should be limited to a maximum transfer rate of 100 Mbps. Otherwise, Re-
mus cannot keep a stable copy of the critical VM for the default checkpoint intervals of
200ms. In this work, the reliability mechanisms are applied to virtual nodes. The protec-
tion of network communication and data persistent on NFS are out of scope and they are
not discussed.

6.6 Evaluation through a use case application

We now evaluated the reliability service by executing an existing large-scale distributed
application, named Bronze Standard, for proof of concept purpose. The bronze stan-
dard [Glatard et al., 2006] technique, described in Section 4.4.1 of Chapter 4, tackles the
difficult problem of validating procedures for medical-image analysis.

The bronze standard application can be represented as a workflow of computational
processes with I/O data dependencies, as illustrated in Figure 4.2. In the experiments
reported below, this workflow is enacted with the data-intensive Grid-interfaced MOTEUR
workflow manager [Glatard et al., 2008]. A clinical database of 59 pairs of patient images
to be registered by the different algorithms involved in the workflow is used. Each service
depicted in Figure 4.2 is instantiated as an independent computing task that is delegated to
one of the computing nodes. For each run, the processing of the complete image database
results in the generation of 354 computing tasks (with a computation time of 30 seconds
to 5 minutes each on a state-of-the-art PC). The data volume transferred for each task is
in the order of 30 MB. The makespan of the application’s execution is in the order of 20
minutes in the absence of failures.

The experiments are carried out using VIs managed by HIPerNet within the Grid’5000
testbed [Cappello et al., 2005]. In our experiments, we use 100 physical nodes to compose a
pool of virtualized physical resources. The number of physical nodes exceeds that of virtual
resources specified (see next section) because virtual machines of the same application
cannot be co-located in the same physical node to prevent correlated failures and additional
virtual backup nodes are needed to protect the critical nodes.

Faults are simulated by shutting down physical machines respecting the MTBF param-
eter. The MTBF of each node in each experiment is 60000s, 30000s and 15000s. Assuming
the largest makespan to be 30 minutes, the failure probability of each node is then 0.03,
0.06 and 0.12, respectively. The initial MTBF value (60000s) is based on failure rate of
servers (with a probability between 0.02 and 0.04) identified by [Atwood and Miner, 2008].
The other lower MTBF values represent worse failure rates which could be attributed to
a variety of reasons. Some examples are improper cooling in racks, irregular maintenance
and inadequate protection from power interruptions.

6.6.1 VI composition

The VI specification to bronze standard is based on the results presented in Chapter 4,
where 31 virtual resources are configured with 512 MB of RAM, and 1 GHz of CPU, and
10 Mbps of bandwidth requirement for each virtual link between the database and the
workers. Virtual nodes require exclusivity on physical nodes. As shown in Figure 4.16,
the HIPerNet engine deploys and manages virtual machines on these computers on demand
(dark arrows).
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The MOTEUR workflow engine, as a client of the HIPerNet framework, was hosted on
one physical host outside the VI. MOTEUR produces VXDL descriptions including the
reliability requirements that are requested to the HIPerNet engine (blue connection). After
receiving all virtual machines allocated to the VI, MOTEUR connects to the computing
nodes (worker nodes) to invoke the application services (red connections). The computing
nodes connect to the database host to copy the input data and send the computational
results, and the final results are sent to MOTEUR (green connections).

6.6.2 Cost model

From an infrastructure provider point of view, the major challenge is to account (financially
or not) for resource usage according to specific criteria (e.g., fair share among users,
digressive price, reliability level etc). Although a quasi-unlimited amount of computing
resources may be allocated, a balance has to be found among i) the allocated infrastructure
cost, ii) the expected performance, and iii) the optimal performance achievable, which
depends on the level of parallelization of the application.

Considering this scenario, we introduce a simple cost model for the pricing of a VI with
reliability support. The InP estimates the provisioning cost of an extended VI (already
with backup resources identified). We consider different prices for active and backup
resources.

Following the notation presented in Table 5.3 (Chapter 5), we define a price function
ΨR(QR(r, t), t) which sets the price for an amount of resource r at time t. Similarly,
ΨL(QL(l, t), t) would set a price for the bandwidth. The total price for the use of the
resource is thus, over the lifetime [0, T ] of the virtual infrastructure Gv:

PG(T ) =

∫ T

0
(
∑
i∈Rv

ΨR(QR(ri, t), t) +
∑
j∈Lv

ΨL(QL(lj , t), t)) dt (6.4)

Introducing link and node redundancy to increase the reliability corresponds to an
additive cost to the user which has to be evaluated. The cost function is extended to
calculate the total price (PG′(T )) for the extended graph (Gv′(Rv′ , Lv′)), including reliable
resources (Rb, Lb). The price of reliability (PB) of a virtual infrastructure is given by

PB(T ) =

∫ T

0
(
∑
i∈Rb

ΨR(QR(ri, t), t) +
∑
j∈Lb

ΨL(QL(lj , t), t)) dt (6.5)

and the total price of a reliable virtual infrastructure is of course PG′(T ) = PG(T ) +
PB(T ).

For a first order assessment of the performance of our model, we consider a pricing
model based on the published prices of Amazon EC2 [AMAa] for Europe. A detailed
economic analysis is outside the scope of this document and we set ΨR(QR(r, t), t) to
correspond to a fixed price per hour use for one of two types of nodes, and one of two
types of contract: basic node (with 1.7 GB RAM) and high performance node (with 7.5
GB RAM); short term lease, and long term lease, respectively. Those prices are given in
Table 6.1. EC2 does not charge any link cost in between nodes of its data center, and since
the data transfers in our application can be fulfilled by typical ethernet links, we do not
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include any specific link pricing in our basic cost analysis. For EC2-like infrastructures,
there is a cost and delay associated with uploading the medical images to process up to
the data center over the Internet, however this is independent of the reliability and outside
of the scope discussed here.

VM Specifications 1.7 GB RAM 7.5 GB RAM

Short term lease $0.095 $0.38
Long term lease $0.031 $0.031

Table 6.1: Amazon EC2 Europe prices for VMs (per hour or part thereof).

We consider prices for the user, but an analysis of the costs to the provider would yield
similar results. Our intent is to provide rough estimates to illustrate the trade-off between
resource and reliability.

6.6.3 Experimental results

The application makespan when the application is executed on a substrate without sim-
ulated failures is 1205s ± 40s, serving as the baseline. For these values, the regular cost
of this VI without reliability support is $2.95 (short term lease), serving as base cost for
analysis.

The first experiment examines the protection of the database node. In this case, the
database is the unique component protected, and faults are submitted in accordance with
MTBF definition. Table 6.2 summarizes the execution of this scenario. The application
makespan increases proportionally to the number of failures detected on the database
node. Comparing with the baseline, the application makespan increases by +16%, +26%
and +40% with regard to the MTBF values, 60000s, 30000s and 15000s, respectively.

In our experimental setup, we provided reliability by backing up the database 1:1, and
the price for all values of the MTBF would be $3.04. However, while 1:1 replication made
our proof-of-concept implementation feasible (the current Remus implementation for Xen
3.4 is limited to a 1:1 protection), it does not keep the required reliability at the specified
level. To calculate the theoretical price of each VI with the proper reliability support, we
compute the number of backup nodes required to provide the reliability level of 99.99%
as a function of the MTBF, computed according to [Yeow et al., 2010]. For this scenario,
the cost of database protection with reliability level 99.99% increases the VI cost by about
6%, 10%, and 13% for MTBF 60000s, 30000s, and 15000s, respectively (see Table 6.4). If
we assume that the backup nodes are selected by the InP from a pool of nodes reserved for
this purpose with a long-term lease, then the price of reliability amounts to an increase of
2%, 3%, and 4% for MTBF 60000s, 30000s, and 15000s, respectively (again, see Table 6.4).

Each workflow service has a pre- and post-processing stage where the input data is
copied to worker nodes and the results are sent to the database. The more failures happen
during these two stages, the more the application makespan increases. In Table 6.3, we
present the data transfer time (in seconds) of this scenario. The data transfer time increase
dominates when there are more failures detected on database node.

The second experiment analyzes the protection of workers nodes. The MTBF varies
according to the failure model presented above. After an MTBF, a random physical
machine is crashed. The backup virtual machine is automatically started and continues
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MTBF DB Increase CN Increase

∞ 1205s 1205s
60000s 1401s 16.26% 1208s 0.2%
30000s 1524s 26.47% 1225s 1.7%
15000s 1688s 40.08% 1244s 3.2%

Table 6.2: Execution time and % increase over baseline for critical database protection
only (column DB), and for computing nodes protection (column CN).

MTBF Total data transfer time

∞ 165.02s ± 44.30s
60000s 190.20s ± 96.75s
30000s 292.96s ± 115.38s
15000s 299.61s ± 128.26s

Table 6.3: Total data transfer time of application services running with critical database
protection scenario.

running the same workflow task. As presented in Table 6.2, the application makespan
slightly increases with regard to the number of failures detected on the infrastructure.
The delay on the backup node activation is compensated by other parallel executions.
Providing reliability for workers nodes (99.9%) dramatically decreases the time to complete
the application, from execution time for the 15000s MTBF of 1688s down to 1244s in
Table 6.2, a gain of almost 40%. Table 6.5 shows the price increase due to reliability for
the different values of the MTBF, assuming that the backup nodes are drawn from the
same (short term lease) pool as the rest of the virtual infrastructure, or from a long term
lease pool set aside by the InP.

In both cases, database protection and workers protection, the application ran nor-
mally, with faults being transparent to the application provider.

Short term Long term

MTBF pFAIL nrb PG′ PB/PG′ PG′ PB/PG′

60000s 0.03 2 $3.13 6% $3.01 2%
30000s 0.06 3 $3.23 10% $3.04 3%
15000s 0.12 4 $3.33 13% $3.07 4%

Table 6.4: Price with reliability for database protection (reliability level 99.9%) and frac-
tion of price corresponding to reliability with backup provisioned on short term leases or
long term leases.

We also performed the experiments using the task resubmission mechanism (applica-
tion level) to compare with the VI reliability service. In general, after a failure occurs
on a worker node, a new worker node must be provisioned, and the task executed on the
failed node has to be relaunched on the new worker node. We minimize the activation
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Short term Long term

MTBF pFAIL nrb PG′ PB/PG′ PG′ PB/PG′

60000s 0.03 5 $3.42 16.1% $3.10 5.3%
30000s 0.06 8 $3.71 25.8% $3.19 8.4%
15000s 0.12 12 $4.09 38.7% $3.32 12.6%

Table 6.5: Price of reliability for computing node protection (reliability level 99.9%) and
fraction of price corresponding to reliability with backup provisioned on short term leases
or long term leases.

time of a backup node to zero by reserving, deploying and configuring backup nodes prior
to the execution of the Bronze Standard. Hence, the only difference from the previous
experiments is the time needed to rework the tasks on the failed worker nodes.

The number of backup nodes for task resubmission mechanism is set to be the same
as that in the previous scenario (5, 8, and 12 for MTBF of 60000s, 30000s, 15000s, respec-
tively) so that the cost and amount of resources used are equivalent. Our experimental
results show that the application makespan increases significantly in comparing with the
virtual infrastructure reliability service, +13.08%, +19.67% and +22.19% with respect
to 60000s, 30000s and 15000s of the MTBF, as presented in Table 6.6. The makespan
gap would have been more if backup nodes were not pre-allocated and configured. We
do not present results otherwise since the time required for reservation, deployment and
configuration may vary with the configuration and total utilization of the Grid.

MTBF Reliability Resubmission Increase

60000s 1208s 1366s +13.08%
30000s 1225s 1466s +19.67%
15000s 1244s 1520s +22.19%

Table 6.6: Application makespan with task resubmission mechanism and percentage in-
creased when compared with VI reliability service.

6.7 Conclusions

We have presented a mechanism that introduces transparent reliability support into vir-
tualized infrastructures. The transparency allows virtual infrastructure users to focus on
application development and scale reliability requirements at deployment. The InP can
provide reliability as a service, and implement reliability transparently from the point of
view of the service operator.

Our mechanism relies on VXDL for describing the reliability requirements in a flex-
ible and expressive manner. These requirements are translated into the real number of
backup nodes and links that must be provisioned for guaranteeing the reliability level.
The allocation algorithm (an extended version of VXAlloc, discussed in Chapter 5) al-
locates the extended VI (original resources and replicas). During the execution time, a
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synchronization mechanism preserves virtual machine states in case of physical node fail-
ures. We implemented the mechanism on top of the HIPerNet framework, deployed over
the Grid’5000 infrastructure, and demonstrated that it effectively supports reliability and
enables the transparent execution of fault-sensitive distributed applications. In particular,
our implementation reduces the completion time of the application under a slight increase
of the resource cost.

Further work includes the implementation of a n : k reliability ratio within our testbed,
in order to fully benefit from the virtualization of reliability. This also involves implement-
ing the sharing of redundant nodes across different virtual infrastructures to minimize the
number of such nodes, as described in Section 6.4. In [Yeow et al., 2011], Wai-Leong Yeow
et al. have started this work proposing some algorithms to implement n : k reliability
based on routing and code construction, highlighting the conditions to support optimal
rates for synchronization and recovery.

For the cost benefit, we presented a simple yet promising back-of-the-envelope analysis.
We would like to refine the model to better distinguish the economical trade-offs for each
of the stakeholders: service customer, service provider and virtual infrastructure provider,
in particular when the virtual infrastructure is hosted across different administrative do-
mains.
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— SEVEN —
Conclusions & Future work

7.1 Conclusions

R
eviewing the advances in virtualization techniques, Cloud Computing, and especially
the dynamic provisioning of Virtual Infrastructures, we note that the way we use

Internet resources is changing. The reservation and provisioning of on-demand resources
is becoming a reality as we can currently share the available computing and communication
resources guided by pay-as-you-go economic models. Frameworks, such as the HIPerNet,
have been designed to manage distributed and virtualized substrates on top of which
dynamic virtual infrastructures can be provisioned, paving the road toward control and
management of such hybrid entities. As these advances are recent and users are still
migrating their applications from traditional computing platforms to the Cloud, a number
of obstacles have to be addressed to facilitate the process.

Initially, we observed that the existing tools for describing a compute-and-communicate
graph (the virtual infrastructure) did not meet all expectations of infrastructure providers
and application architects. To overcome this limitation, we have proposed and developed
a language for modeling and describing virtual infrastructures, the VXDL. VXDL has
shown its strong potential allowing the specification of complex virtual infrastructures in
a user-oriented manner. Various software and projects have been adopting this language
for representing virtual infrastructures in different scenarios. In addition, as of writing of
this manuscript, an open forum for discussions and improvements is being launched (http:
//www.vxdlforum.org/). This forum will allow developers and infrastructure providers to
exchange experiences, suggestions, and extensions, guiding the standardization of VXDL.

Specifying VXDL files for complex distributed applications may be a difficult task. We
developed a mechanism that automatically extracts information from workflow-based ap-
plications. Workflows are a representative way for describing the data and processes inter-
action (e.g., dependency and parallelism). Our mechanism combines information from the
workflow with user’s expertise, which comes from previous workflow executions or micro-
benchmarks. The mechanism has been validated by executing a large-scale distributed
application were different virtual infrastructure compositions have been compared. In ad-
dition to highlighting the real importance of performing an efficient VI composition, the
results demonstrated the expressiveness of VXDL, which enabled several specifications
corresponding to different strategies.

VIs are comprehensive entities carrying substantial information (e.g., resource capaci-
ties varying with time, location dependency, user’s expectations). Consequently, the pro-
cess of allocating these entities is more complex (e.g., search space, multiple objectives,
more constraints on nodes and links) than provisioning the network or set of nodes. We
addressed these issues by developing an allocation mechanism, the VXAlloc, which has
proven to be efficient as it balances both users’ and InPs’ perspectives. The innovations
of this solution were patented by INRIA and LYaTiss.

One of the great advantages of the on-demand model explored by the Cloud is the
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provisioning of new services. An InP can develop internal mechanisms and commercialize
them as new value-added services. Following this line, we proposed that reliability becomes
a service. A user can express the reliability requirements of his application as well as any
other configuration. The InP interprets these requirements and guarantees that a reliable
virtual infrastructure is provisioned, keeping any substrate failures complete abstract to
the user.

The contributions of this thesis aimed at making the dynamic provisioning of virtual
infrastructures an easier task. It is important to observe that all contributions are ar-
ticulated around the VXDL language. The language was the enabler for the proposed
contributions since: i) it is powerful enough for composing different specifications for an
application; ii) it enables a user to interact with the management framework by defining
specific allocation’s constraints directly within the VI specification; and iii) it has an im-
portant participation in the reliability service provisioning, enabling users to define the
required reliability level for individual components.

7.2 Perspectives for future work

During this thesis we defined and investigated the dynamic provisioning of virtual infras-
tructures. However, some questions remain open, pointing to future directions of research.
We select a few for discussing:

Exploring the elastic aspect of virtual infrastructures: The performance of an
application can vary during the execution time due to changes in workload (increase
or decrease), request peaks, among other reasons [Andrzejak et al., 2006, Arnaud and
Bouchenak, 2010]. As VIs are malleable entities, they can be elastic for accommodating
these dynamic variations. In this context, being elastic means to vary the capacity during
execution (e.g., provision more bandwidth, memory, or even migrating a node close to user
for decreasing the latency in communications).

We will concentrate on this important aspect of virtual infrastructures. As a continua-
tion of the work performed in this thesis, the elasticity requirements (known in advance or
on-demand) can be specified using VXDL. In addition, the allocation-problem was formu-
lated with capacities specified as profiles (capacity per time), being capable of allocating
elastic aspects known in advance. The allocation mechanism can be extended for adapting
the dynamic variation that comes during the execution time.

Monitoring virtual infrastructures: For addressing the elastic aspects of a VI and
for controlling the efficient usage of provisioned resources, a monitoring tool and a set
of specific metrics should be investigated [Lahmadi et al., 2009]. The monitoring tools
should consider sharing of resources between VIs. An InP should have knowledge about
this information, following aggregated data, whereas a user should receive only information
about his private resources [Clayman et al., 2010].

Moreover, a monitoring tool (or even a service) should give combined information
about application and VI performance. A change in application behavior (e.g., peak
usage, performance, load) will reflect in a change in VI composition (e.g., bandwidth,
memory, storage). The reverse scenario may also occur.
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Consequently, research is required for defining metrics and efficient tools for monitoring
VIs. The contributions of this thesis are a starting point for developing these tools.
Similarly to the reliability service, a monitoring service could be proposed, exploring VXDL
as basis for formulating requirements and gathering measurement data.

A Mechanism Design Approach for allocating virtual infrastructures: The al-
location of virtual infrastructures over distributed substrates may also address the eco-
nomic aspects involved in dynamic provisioning. This problem can be modeled following
a Mechanism Design Approach [Nisan et al., 2007], where users inform the requirements
for composing their VIs while InPs expose their substrate composition and capacities.
Then, an allocation mechanism solves the allocation problem among these participants,
proposing payment values for users and provisioning costs for the InP. Users can evaluate
the proposed solution based on a utility function used to identify if it is feasible. A similar
approach can be followed for the InP, which would identify if the proposed solution meets
its objectives.

These research lines can also explore VXDL for declaring VI’s requirements, and extend
the allocation-problem formulation addressed in this thesis.
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<?xml ver s i on=” 1 .0 ” encoding=”UTF−8”?>
<de s c r i p t i on xmlns=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl ”

xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema− i n s t ance ”
x s i : schemaLocation=”http ://www. ens−lyon . f r /LIP/RESO/Software / vxdl VXDL. xsd”>
<v i r t u a l I n f r a s t r u c t u r e id=”VISUPIPE” owner=”CARRIOCAS pro j e c t ”>

<user>kos l ov sk i </user>
<startDate >2011−04−21T08 :00:00 </ startDate>
<totalTime>PT11H</totalTime>
<vGroup id=”Storage c l u s t e r ” mu l t i p l i c i t y=”20”>

<vNode id=”nodes s to rage c l u s t e r ”>
<storage>

<i n t e rva l >
<min>200</min>

</ in t e rva l >
<unit>GB</unit>

</storage>
</vNode>

</vGroup>
<vGroup id=” F i l t e r i n g c l u s t e r ” mu l t i p l i c i t y=”40”>

<vNode id=”nodes f i l t e r i n g c l u s t e r ”>
<memory>

<i n t e rva l >
<min>4</min>

</ in t e rva l >
<unit>GB</unit>

</memory>
<cpu>

<cores >1</cores>
<frequency>

<i n t e rva l >
<min>2.0</min>

</ in t e rva l >
<unit>GHz</unit>

</frequency>
</cpu>

</vNode>
</vGroup>
<vGroup id=”Mapping c l u s t e r ” mu l t i p l i c i t y=”30”>

<vNode id=”nodes mapping c l u s t e r ”>
<memory>

<i n t e rva l >
<min>4</min>

</ in t e rva l >
<unit>GB</unit>

</memory>
<cpu>

<cores >1</cores>
<frequency>

<i n t e rva l >
<min>2.0</min>

</ in t e rva l >
<unit>GHz</unit>

</frequency>
</cpu>
<storage>

<i n t e rva l >
<min>80</min>

</ in t e rva l >
<unit>GB</unit>

</storage>
</vNode>

</vGroup>

Figure A.1: VXDL description for the VISUPIPE example (part 1 of 4).
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<vGroup id=”Rendering c l u s t e r ” mu l t i p l i c i t y=”10”>
<vNode id=”nodes render ing c l u s t e r ”>

<memory>
<i n t e rva l >

<min>8</min>
</ in t e rva l >
<unit>GB</unit>

</memory>
<cpu>

<cores >1</cores>
<frequency>

<i n t e rva l >
<min>2.0</min>

</ in t e rva l >
<unit>GHz</unit>

</frequency>
</cpu>

</vNode>
</vGroup>
<vGroup id=” V i s u a l i z a t i o n c l u s t e r ” mu l t i p l i c i t y=”30”>

<vNode id=”nodes v i s u a l i z a t i o n c l u s t e r ”>
<l o ca t i on>lyon . f r ance . eu</l o ca t i on>
<devices>v i s u a l i z a t i o n wall </dev ices>
<memory>

<i n t e rva l >
<min>8</min>

</ in t e rva l >
<unit>GB</unit>

</memory>
<cpu>

<cores >1</cores>
<frequency>

<i n t e rva l >
<min>2.0</min>

</ in t e rva l >
<unit>GHz</unit>

</frequency>
</cpu>

</vNode>
</vGroup>
<vLink id=” l i n k 1 Latency 0 .200 ms”>

<l a tency>
<i n t e rva l >

<max>0.200</max>
</ in t e rva l >
<unit>ms</unit>

</latency>
<source>Storage Cluster </source>
<des t ina t i on>Storage Cluster </de s t ina t i on>

</vLink>
<vLink id=” l i n k 2 Latency 0 .200 ms”>

<l a tency>
<i n t e rva l >

<max>0.200</max>
</ in t e rva l >
<unit>ms</unit>

</latency>
<source>Vi su a l i z a t i o n Cluster </source>
<des t ina t i on> Vi su a l i z a t i o n Cluster </de s t ina t i on>

</vLink>
<vLink id=” l i n k Latency 0 .400 ms”>

<l a tency>
<i n t e rva l >

<max>0.400</max>
</ in t e rva l >
<unit>ms</unit>

</latency>
<bandwidth>

<forward>
<i n t e rva l >

<min>10.0</min>
</ in t e rva l >
<unit>Mbps</unit>

</forward>
</bandwidth>
<source>F i l t e r i n g Cluster </source>
<des t ina t i on>F i l t e r i n g Cluster </de s t ina t i on>

</vLink>

Figure A.2: VXDL description for the VISUPIPE example (part 2 of 4).
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<vLink id=” l i n k Latency 0 .150 ms”>
<l a tency>

<i n t e rva l >
<max>0.150</max>

</ in t e rva l >
<unit>ms</unit>

</latency>
<source>Rendering Cluster </source>
<des t ina t i on> Rendering Cluster </de s t ina t i on>

</vLink>
<vLink id=”high capac i ty l i n k 1”>

<bandwidth>
<forward>

<i n t e rva l >
<min>38.4</min>

</ in t e rva l >
<unit>Gbps</unit>

</forward>
</bandwidth>
<source>Storage Cluster </source>
<des t ina t i on>F i l t e r i n g Cluster </de s t ina t i on>

</vLink>
<vLink id=”high capac i ty l i n k 2”>

<bandwidth>
<forward>

<i n t e rva l >
<min>38.4</min>

</ in t e rva l >
<unit>Gbps</unit>

</forward>
</bandwidth>
<source>F i l t e r i n g Cluster </source>
<des t ina t i on>Mapping Cluster </de s t ina t i on>

</vLink>
<vLink id=”high capac i ty l i n k 3”>

<bandwidth>
<forward>

<i n t e rva l >
<min>38.4</min>

</ in t e rva l >
<unit>Gbps</unit>

</forward>
</bandwidth>
<source>Mapping Cluster </source>
<des t ina t i on> Rendering Cluster </de s t ina t i on>

</vLink>
<vLink id=”high capac i ty l i n k 4”>

<bandwidth>
<forward>

<i n t e rva l >
<min>38.4</min>

</ in t e rva l >
<unit>Gbps</unit>

</forward>
</bandwidth>
<source>Rendering Cluster </source>
<des t ina t i on>Vi su a l i z a t i o n Cluster </de s t ina t i on>

</vLink>
<v i r tua lT ime l i n e id=”VISUPIPE t ime l i n e ”>

<t ime l i n e id=”data t r a n s f e r 1”>
<ac t i va t e>Storage Cluster </ac t i va t e>
<ac t i va t e>F i l t e r i n g Cluster </ac t i va t e>
<ac t i va t e>high capac i ty l i n k 1</ac t i va t e>
<totalTime>PT1H</totalTime>

</t ime l ine>
<t ime l i n e id=” F i l t e r i n g s tage ”>

<a f t e r>data t r a n s f e r 1</a f t e r>
<ac t i va t e>F i l t e r i n g Cluster </ac t i va t e>
<totalTime>PT2H</totalTime>

</t ime l ine>
<t ime l i n e id=”data t r a n s f e r 2”>

<a f t e r>F i l t e r i n g stage </a f t e r>
<ac t i va t e>F i l t e r i n g Cluster </ac t i va t e>
<ac t i va t e>Mapping Cluster </ac t i va t e>
<ac t i va t e>high capac i ty l i n k 2</ac t i va t e>
<totalTime>PT1H</totalTime>

</t ime l ine>
<t ime l i n e id=”Mapping s tage ”>

<a f t e r>data t r a n s f e r 2</a f t e r>
<ac t i va t e>Mapping Cluster </ac t i va t e>
<totalTime>PT1H</totalTime>

</t ime l ine>

Figure A.3: VXDL description for the VISUPIPE example (part 3 of 4).
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<t ime l i n e id=”data t r a n s f e r 3”>
<a f t e r>Mapping stage </a f t e r>
<ac t i va t e>Mapping Cluster </ac t i va t e>
<ac t i va t e>Rendering Cluster </ac t i va t e>
<ac t i va t e>high capac i ty l i n k 3</ac t i va t e>
<totalTime>PT1H</totalTime>

</t ime l ine>
<t ime l i n e id=”Rendering s tage ”>

<a f t e r>data t r a n s f e r 3</a f t e r>
<ac t i va t e>Rendering Cluster </ac t i va t e>
<totalTime>PT2H</totalTime>

</t ime l ine>
<t ime l i n e id=”data t r a n s f e r 4”>

<a f t e r>Rendering stage </a f t e r>
<ac t i va t e>Rendering Cluster </ac t i va t e>
<ac t i va t e>Vi su a l i z a t i o n Cluster </ac t i va t e>
<ac t i va t e>high capac i ty l i n k 4</ac t i va t e>
<totalTime>PT2H</totalTime>

</t ime l ine>
<t ime l i n e id=” V i s u a l i z a t i o n s tage ”>

<a f t e r>data t r a n s f e r 4</a f t e r>
<ac t i va t e>Vi su a l i z a t i o n Cluster </ac t i va t e>
<totalTime>PT1H</totalTime>

</t ime l ine>
</v i r tua lT ime l ine>

</v i r t u a l I n f r a s t r u c t u r e >
</de s c r ip t i on>

Figure A.4: VXDL description for the VISUPIPE example (part 4 of 4).
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REFERENCES REFERENCES

[Chowdhury and Boutaba, 2009] Chowdhury, N. M. M. K. and Boutaba, R. (2009). Network Virtualiza-
tion: State of the Art and Research Challenges. IEEE Communications Magazine, 47(7).

[Chowdhury et al., 2009] Chowdhury, N. M. M. K., Rahman, M. R., and Boutaba, R. (2009). Virtual Net-
work Embedding with Coordinated Node and Link Mapping. INFOCOM 2009. 28th IEEE International
Conference on Computer Communications. Proceedings.

[Clark et al., 2005] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I., and
Warfield, A. (2005). Live migration of virtual machines. In NSDI’05: Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation, pages 273–286, Berkeley, CA, USA.
USENIX Association.

[Clayman et al., 2010] Clayman, S., Galis, A., Chapman, C., and Toffetti, G. (2010). Monitoring service
clouds in the future internet. Towards the Future Internet - Emerging Trends from European Research,
pages 115–126.

[Cordella et al., 2004] Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2004). A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell., 26(10):1367–1372.

[Cully et al., 2008] Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., and Warfield, A. (2008).
Remus: high availability via asynchronous virtual machine replication. In Proceedings of USENIX NSDI,
pages 161–174.

[Dang and Altmann, 2009] Dang, M. Q. and Altmann, J. (2009). Resource allocation algorithm for light
communication grid-based workflows within an SLA context. International Journal of Parallel, Emergent
and Distributed Systems, 24(1):31–48.

[Dang and Hsu, 2008] Dang, M. Q. and Hsu, D. F. (2008). Mapping Heavy Communication Grid-Based
Workflows Onto Grid Resources Within an SLA Context Using Metaheuristics. International Journal
of High Performance Computing Applications (IJHPCA), 22(3):330–346.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing
on large clusters. Commun. ACM, 51:107–113.

[Deelman et al., 2003] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn,
K., Lazzarini, A., Arbree, A., Cavanaugh, R., and Koranda, S. (2003). Mapping Abstract Complex
Workflows onto Grid Environments. Journal of Grid Computing (JOGC), 1(1):9–23.

[der Ham et al., 2007] der Ham, J. V., Grosso, P., der Pol, R. V., Toonk, A., and de Laat, C. (2007).
Using the Network Description Language in Optical Networks. In Tenth IFIP/IEEE Symposium on
Integrated Network Management.

[Dias de Assunção and Buyya, 2009] Dias de Assunção, M. and Buyya, R. (2009). Performance analysis
of allocation policies for interGrid resource provisioning. Information and Software Technology, 51(1):42
– 55. Special Section - Most Cited Articles in 2002 and Regular Research Papers.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271.

[Dijkstra et al., 2008] Dijkstra, F., Andree, B., Koymans, K., van der Ham, J., Grosso, P., and de Laat,
C. (2008). A multi-layer network model based on itu-t g.805. Comput. Netw., 52:1927–1937.

[Divakaran and Vicat-Blanc Primet, 2007] Divakaran, D. M. and Vicat-Blanc Primet, P. (2007). Channel
Provisioning in Grid Overlay Networks. In Workshop on IP QoS and Traffic Control.

[DMTF, 2009] DMTF (2009). DMTF white paper DSP2017: Open Virtualization Format Specification
(OVF).

[Duffield et al., 1999] Duffield, N. G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K. K., and
Van der Merive, J. E. (1999). A flexible model for resource management in virtual private networks. In
SIGCOMM ’99: Proceedings of the conference on Applications, technologies, architectures, and protocols
for computer communication, pages 95–108, New York, NY, USA. ACM.

[Dutt and Mahapatra, 1997] Dutt, S. and Mahapatra, N. R. (1997). Node-covering, Error-correcting
Codes and Multiprocessors with Very High Average Fault Tolerance. IEEE/ACM Trans. Comput.
Biology Bioinformatics, 46(9):997–1015.

[Eriksson, 1994] Eriksson, H. (1994). MBONE: the multicast backbone. Commun. ACM, 37(8):54–60.

c© Copyright 2011 by Guilherme Piêgas Koslovski 141
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