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Abstract

This thesis is about the formal verification and composition of security protocols, motivated by
applications to electronic voting protocols. Chapters 3 to 5 concern the verification of security
protocols while Chapter 6 concerns composition.

We show in Chapter 3 how to reduce certain problems from a quotient term algebra to the free
term algebra via the use of strongly complete sets of variants. We show that, when the quotient
algebra is given by a convergent optimally reducing rewrite system, finite strongly complete sets
of variants exist and are effectively computable.

In Chapter 4, we show that static equivalence for (classes of) equational theories including
subterm convergent equational theories, trapdoor commitment and blind signatures is decidable
in polynomial time. We also provide an efficient implementation.

In Chapter 5 we extend the previous decision procedure to handle trace equivalence. We
use finite strongly complete sets of variants introduced in Chapter 3 to get rid of the equational
theory and we model each protocol trace as a Horn theory which we solve using a refinement of
resolution. Although we have not been able to prove that this procedure always terminates, we
have implemented it and used it to provide the first automated proof of vote privacy of the FOO
electronic voting protocol.

In Chapter 6, we study composition of protocols. We show that two protocols that use arbitrary
disjoint cryptographic primitives compose securely if they do not reveal or reuse any shared secret.
We also show that a form of tagging is sufficient to provide disjointness in the case of a fixed set
of cryptographic primitives.
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Résumé

Cette thèse concerne la vérification formelle et la composition de protocoles de sécurité, motivées
en particulier par l’analyse des protocoles de vote électronique. Les chapitres 3 à 5 ont comme
sujet la vérification de protocoles de sécurité et le Chapitre 6 vise la composition.

Nous montrons dans le Chapitre 3 comment réduire certains problèmes d’une algèbre quotient
des termes à l’algèbre libre des termes en utilisant des ensembles fortement complets de variants.
Nous montrons que, si l’algèbre quotient est donnée par un système de réécriture de termes con-
vergent et optimalement réducteur (optimally reducing), alors des ensembles fortement complets
de variants existent et sont finis et calculables.

Dans le Chapitre 4, nous montrons que l’équivalence statique pour (des classes) de théories
équationnelles, dont les théories sous-terme convergentes, la théorie de l’engagement à trappe
(trapdoor commitment) et la théorie de signature en aveugle (blind signatures), est décidable en
temps polynomial. Nous avons implémenté de manière efficace cette procédure.

Dans le Chapitre 5, nous étendons la procédure de décision précédente à l’équivalence de
traces. Nous utilisons des ensembles fortement complets de variants du Chapitre 3 pour réduire le
problème à l’algèbre libre. Nous modélisons chaque trace du protocole comme une théorie de Horn
et nous utilisons un raffinement de la résolution pour résoudre cette théorie. Meme si nous n’avons
pas réussi à prouver que la procédure de résolution termine toujours, nous l’avons implementée
et utilisée pour donner la première preuve automatique de l’anonymat dans le protocole de vote
électronique FOO.

Dans le Chapitre 6, nous étudions la composition de protocoles. Nous montrons que la com-
position de deux protocoles qui utilisent des primitives cryptographiques disjointes est sûre s’ils
ne révèlent et ne réutilisent pas les secrets partagés. Nous montrons qu’une forme d’etiquettage
de protocoles est suffisante pour assurer la disjonction pour un ensemble fixé de primitives cryp-
tographiques.
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Chapter 1

Introduction

As the world is getting more and more connected with the advent of the Internet into everyday life,
the need for security and privacy of communication has risen considerably. Security and privacy
are achieved today by employing security protocols (also called cryptographic protocols). Security
protocols are rules for communication between participants which make use of cryptographic
primitives such as encryption to provide security guarantees such as confidentiality of data.

1.1 Cryptographic Primitives

One of the earliest documented uses of cryptography was by Julius Cæsar, who would employ
the Cæsar cipher [122] to protect messages of military significance. The Cæsar cipher and the
slightly more sophisticated ciphering methods that followed are known today to be trivially broken
using statistical methods. As the need for secure communication increased with the advent of
electronic computers and electronic communication, the need for strong ciphers (i.e. which cannot
easily be attacked) increased. In 1977 the United States Federal Information Processing Standard
adopted the Data Encryption Standard (DES) [111] as a standard. DES enjoyed widespread use
internationally; however, due to the small key-length, it quickly became vulnerable to brute-force
attacks [103]. This led to the adoption of AES (Advanced Encryption Standard) [86] to supersede
DES.

These standards are openly available for anyone to implement and analyze. The openness
of the standards follows Kerckhoffs’ principle [75], widely embraced by the scientific community,
which states that a cryptosystem should be secure even if everything about the system, except the
key, is public knowledge (i.e. including the algorithms for encrypting or decrypting). Due to the
fact that anyone can analyze the security of these ciphers, we gain confidence in their security: if
there were a problem with a standard, people would likely find and publish it.

However, ciphers have a big disadvantage in that they require the two parties that are commu-
nicating to have the same key; the fact that the same key is used for encryption and decryption is
why the key is called a symmetric key and the encryption scheme is called symmetric encryption.
Securely sharing a symmetric key can be achieved for example by meeting face-to-face before
the sensitive communication takes place and agreeing on the key. However, with the striking
development of public key cryptography [117, 77], another possibility opened up. In public key
cryptography, an agent generates a pair of keys: a public key which he shares with everyone and
a private key which he keeps to himself. If someone wishes to communicate sensitive information
to the agent, he encrypts the plaintext with the public key of the recipient; the recipient in turn
receives the ciphertext which may be decrypted using the private key to obtain the original plain-
text. Therefore, in theory, there is no more need to meet face-to-face to agree on a shared key.
It is sufficient to authentically know the public key of the person which is to receive the sensitive
information. Public/private key encryption is also called asymmetric encryption due to the fact
that different keys are used for encryption and respectively decryption.

15



16 CHAPTER 1. INTRODUCTION

However, in practice, public key encryption is computationally too expensive. Therefore key-
establishment protocols have been developed, in which two participants usually communicate using
public key encryption in order to establish a fresh symmetric session key, which they are going to
use for the remainder of the session to exchange encrypted messages. This has the advantage of not
having to meet in person in order to agree on a symmetric key. Furthermore, the computationally
expensive asymmetric cryptography operations are performed only once; after the symmetric
session key has been established, messages can be encrypted using symmetric key cryptography,
which is computationally less expensive.

Digital signatures [117] also work using private/public key pairs. An agent signs a message
using his private key to obtain a signed message. Anyone who knows the public key can verify
that the resulting message was indeed signed using the associated private key, thereby allowing
to establish the identity of the signer, provided that the public key is known authentically. Au-
thenticity of public keys is a particularly important problem [106, p. 27]. Authenticity in this
case means to be sure that a public key indeed belongs to the intended recipient and not to an
intruder. Digital signatures form the base of public-key infrastructures (PKIs) [122]. PKIs are
designed to bootstrap authenticity as follows. Trusted third party (TTP) institutions such as a
government provide certificates which consist of a pair public key - associated identity, pair which
is digitally signed by the TTP. By signing the pair, the TTP guarantees that the detainer of the
private key associated to the public key has the claimed identity. To check these certificates, the
public keys of TTPs are widely distributed via secure channels (for example, every web browser
ships with a list of trusted third parties). PKIs usually work in hierarchical way, with higher-level
TTPs certifying lower-level TTPs which in their turn provide certificates.

The security of the exchanged messages relies on the security of the cryptographic primitives
involved. For ciphers such as AES, confidence in their security results from the fact that even if
a large number of person-hours were devoted to trying to break it, no successful practical attack
was found. For public key encryption and digital signatures, confidence in their security is higher
due to the fact that there are mathematical proofs which show that breaking the encryption or the
signature scheme (e.g. by finding the private key associated to a known public key) is equivalent
to solving problems which are widely believed to be computationally difficult [88]. Computational
difficulty means that the problem requires a lot of computational resources such as time and
memory, which would make it intractable for anyone to solve it in reasonable time.

1.2 Security of Protocols

The algorithms for symmetric key encryption, for public key encryption and decryption and for
digital signatures are called cryptographic primitives since they are used as part of more complex
protocols. The security of cryptographic primitives is analyzed individually: in the case of asym-
metric key cryptography, the primitives are proven to be secure via a reduction to an intractable
problem and in the case of symmetric key encryption, security is established heuristically.

However, even if the security primitives are secure by themselves, combining them to obtain
security protocols such as key establishment protocols might prove to be insecure for several
reasons. One of the first examples of this is the Kerberos [120] protocol. The Kerberos protocol
is based on the Needham-Schroeder Shared Key (NSSK) protocol, introduced by the Needham
and Schroeder in [112]. The goal of the protocol is to establish a session key between two agents
who already share a secret key with the same trusted server. Denning and Sacco identified [76]
in 1981 an attack against the NSSK protocol. The attack allows the intruder to force an agent to
accept as session key an already compromised key. As a fix to the NSSK protocol, Denning and
Sacco propose timestamping certain message of the protocol. Participants are expected to check
the timestamp and to ignore messages which have an expired timestamp.

In 1995, Lowe [104] identified a flaw in the Need-Schroeder Public Key (NSPK) protocol,
published by Needham and Schroeder in the same article [112] as the NSSK protocol. The goal
of the NSPK protocol is to mutually authenticate two parties via a trusted server using public
key cryptography. If an honest agent initiates a session with the impostor, the attack identified
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by Lowe allows the impostor to make it look to another party that he is the honest agent. What
is interesting about the Denning-Sacco attack against NSSK and the Lowe attack against NSPK
is that these attacks do not attack the underlying encryption schemes, but the logical structure
of the protocols. For example the Lowe attack on NSPK will work no matter which public key
encryption scheme is used.

A more recent example of a protocol which is insecure (despite the cryptographic primitives
employed being secure) is the implementation of a Single Sign-On protocol by Google. A Single
Sign-on protocol is designed to ensure the a user authenticates using the same credentials to several
service providers. Armando et al. show [11] that Google’s implementation of an SSO protocol is
insecure by allowing a dishonest service provider to impersonate a user to another service provider.
The attack only exploits the expected behavior of the protocol participants and not any weakness
of the underlying cryptographic primitives.

1.3 The Dolev-Yao Model

As attacks can have serious economic, military and social repercussions, there is a significant
need to gain confidence that the security protocols that we use are not vulnerable to attacks. In
their seminal paper [78], Dolev and Yao identify the need to formally specify security protocols
and to formally verify their expected security properties, independently from the security of the
underlying cryptographic primitives. This has given the rise to a class of models for security
protocols generically called the Dolev-Yao model.

The main ingredient of the Dolev-Yao model is that messages exchanged by parties are repre-
sented as terms in a term algebra, with function symbols representing cryptographic primitives.
In the Dolev-Yao model, protocols are modeled in various formalisms such as a set of roles in role-
based models [107], sets of strands in strand-spaces-based modes [85], and processes in process
algebra based models [5, 3]. The power of the intruder is modeled as a deduction system [7, 107],
as an equational theory [3] or as the combination of a deduction system with an equational the-
ory [90]. Additionally, the intruder can intercept all messages, block any message, construct new
messages according to the deduction rules, impersonate a protocol agent and send messages of his
own creation to the agents.

Once the various details described above are fixed, a model of the security protocol can be
created. It remains to model the security property that we expect of the protocol. Traditionally,
two security properties are verified:

1. secrecy (or confidentiality) of some secret value, which intuitively means that the attacker
cannot find the secret value and

2. authentication, which means intuitively that an agent is talking to whom he believes to be
talking.

Secrecy is usually modeled as non-deducibility [118] and authentication is modeled as an im-
plication in some form of temporal logic [105]. There are other types of security properties such
as vote privacy which can be verified in the case of electronic voting protocols; we discuss them
in greater detail in the next section.

Once models of the security protocol and of the expected security property are built, we can
proceed to verify if the model of the protocol satisfies the expected property. The act of formally
verifying that a model satisfies a property is called model checking (as in Figure 1.1). In our case,
the model is the model of a security protocol and the property to be checked is a security property.

1.3.1 Modeling Cryptographic Primitives

In order to gain more confidence in the security of the protocol, the model should in general
describe as accurately as possible the protocol. Initially, the Dolev-Yao model allowed only for
a fixed set of cryptographic primitives including (symmetric) encryption modeled by a function
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(e−voting protocol)
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Figure 1.1: Model Checking

symbol enc of arity 2. The term enc(x, y) would model the encryption of some data x by the key
y. The intruder power would be given by a deduction system consisting of the following inference
rules:

Decryption
enc(x, y) y

x
Encryption

x y

enc(x, y) .

The inference rules allow the adversary to construct new messages from messages already known
either by encrypting known data x with known key y to obtain enc(x, y) or by decrypting an
already-known encrypted message enc(x, y) by the already-known associated encryption key y to
obtain x (the fact that the intruder can learn new message by observing network traffic is implicit
and there is no need to capture this explicitly in the inference rules). Due to the lack of other
inference rules, the only way for the attacker to find the contents of an encrypted message is by
knowing the encryption key. This is known as the perfect encryption hypothesis [115] and has been
criticized due to the fact that it is not realistic.

Attempts to weaken [61] the perfect encryption assumption included adding an equational
theory to the term algebra. For example, homomorphic encryption [100], where the sum of two
ciphertexts is the ciphertext of the sum of the two plaintexts, can be modeled by the following
equation:

enc(x, y) + enc(z, y) = enc(x+ z, y).

Terms are then interpreted in the quotient algebra. Another use of equational theories is to model
cryptographic primitives such as exclusive or (XOR) [42], denoted here as ⊕:

x⊕ 0 = x x⊕ x = 0
x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ y = y ⊕ x.

It turns out that using equational theories allows one to get rid entirely of the deduction system
by adding a function symbol dec modeling the decryption algorithm and satisfying the following
equation:

dec(enc(x, y), y) = x.

Modeling the decryption algorithm as a function symbol (dec) is called the Dolev-Yao model with
explicit destructors [69].

1.3.2 Verifying Security Protocols

Once a model has been fixed, the complexity of the model checking problem should be investigated.
In general, model checking of security protocols is undecidable [95, 80]. The undecidability proof
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is quite robust in the sense that reasonable variations of the problem are undecidable as well.
Therefore, more restricted versions of the model checking problem were considered. The case of a
bounded number of sessions (i.e. when each user is only allowed to run the protocol for a bounded
number of times) was considered ([118, 43, 42, 41, 54, 8, 32]) and it was shown that for several
sets of usual cryptographic primitives, the insecurity problem (i.e. does a message remain secret)
is NP-complete [118, 42]. Another approach to get round the undecidability is to verify sound
approximations of protocols. An approximation of a protocol is sound whenever showing that the
approximation is secure, the protocol is also secure. Conversely, it may be that approximations
are subject to attacks which are not attacks of the real protocol. A number of theoretical results
and tools [63, 12, 25, 82] show how to soundly approximate security protocols in order to prove
them secure.

Another line of work is to reinforce security of existing protocols. It was shown that tagging [94,
101] can be added to a protocol to stop type-flaw attacks, i.e. attacks that arise due to messages
being confounded for something else. It was also shown that by dynamic tagging [10], a protocol
which is secure for one session is secure for an unbounded number of sessions. Finally, there are
ways [62] to compile a protocol which is secure in a weak sense into a protocol which is secure
against a full attacker.

1.3.3 Composing Security Protocols

Yet another aspect is modularity. Even though protocols have been shown to be individually
secure, there are typically several of them running at the same time. Undesired interactions
among protocols which are individually secure could lead to security problems. Therefore protocol
compositionality is studied. It was shown for example that protocols which are disjoint in a certain
sense compose well [93, 92]. Using different tags for different protocols [57, 60] also leads to
secure protocols composition. Another way to ensure compositionality is to make the protocols
compositional from the very beginning [33, 34], by the security definition. Compositionality is
desired for several reasons:

1. first of all, it is not possible to foresee all of the protocols which may run on a network
such as the Internet at the same time. Therefore it is desirable to have protocols which are
compositionally secure, i.e. such that the global result is secure;

2. secondly, even if a global model of all protocols were constructible, it would be very difficult
to model check it since it would probably be very complex.

We have seen a very brief survey of the state-of-the-art in the literature on verification and
composition of protocols in the Dolev-Yao model.

1.4 Electronic Voting Protocols

Recent advances in computer technology have made it possible for electronic voting to be more
widely deployed. Electronic voting (e-voting) offers many advantages over classical voting, in that
the sum of the votes can be computed very quickly and more accurately (since a computer does
the counting of the votes).

However, while electronic voting is more convenient, it comes with several risks as it has the
potential to make abuse easier to perform on a large scale. A dishonest agent could try to attack
the protocol in order to change the tally of the result. Furthermore, the dishonest agent could be
(part of) the voting authorities. Therefore electronic voting protocols should be designed to be
secure even in the presence of corrupted officials. Furthermore, the terminal on which the voting
is performed could be infected by malware and therefore it cannot be trusted.

These issues can be mitigated by a form of auditing that is called verification. E-voting
protocols for which the tally can be verified to be correct after the election are said to have the
verifiability [99] property. Verifiability comes in several shapes. Individual verifiability means that
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every individual should be able to verify that his vote has been taken into account in the final
tally. Universal verifiability means that anyone should be able to verify that the tally includes votes
only from the eligible voters and that each eligible voter voted at most once. Sometimes eligibility
verifiability (i.e. all votes came from eligible voters) is separated from universal verifiability and
is seen as a distinct property [99].

An important aspect in e-voting protocols is vote privacy. Vote privacy means that the link
between a voter and his vote remains secret to anyone except the voter, including corrupted voting
authorities. Vote privacy is essential in e-voting protocols in order to prevent retaliation against
political dissidents.

Another property that is desirable of e-voting protocols is receipt-freeness. Receipt-freeness
essentially prevents vote selling and it means that a voter cannot convince anyone else that he
voted a certain way. Such a proof would act as a “receipt” and would allow a voter to sell his vote.
Related to receipt-freeness is coercion-resistance. A protocol is coercion-resistant if an attacker
cannot force a voter to vote a certain way (i.e. by blackmailing him or by holding a gun to his
head). The property of fairness means that no partial results of the vote are revealed during the
election and that only eligible voters can cast a valid vote.

We can see that in contrast to security properties such as confidentiality or authentication which
are traditionally verified for cryptographic protocols, the security properties which are expected
of electronic voting protocols seem to be much richer.

At this point, it might be tempting to try and reduce vote privacy to a confidentiality problem
which was shown to be co-NP-complete for certain cryptographic primitives and a bounded number
of sessions [118]. The confidentiality (or secrecy) problem is, given a protocol P and a message s,
can the intruder compute s?

Protocol P
confidentiality?

Message s

Figure 1.2: The secrecy problem

However, it is not possible to reduce vote privacy to secrecy because all of the votes are known
to the intruder! Indeed, the votes are well-known to everybody before the election takes place:
they can be either ’yes’/’no’ in case of binary election or a set of names in case of electing an
official. Furthermore, in some cases, it is not possible to have vote privacy: assume that everyone
voted ’yes’. The fact that the vote of every individual must have been ’yes’ follows directly from
the tally which is supposedly publicly announced at the end of the election.

However, vote privacy can be modeled as an equivalence property. Delaune, Kremer and Ryan
propose such a definition of vote privacy in [72]: a protocol satisfies vote privacy if the actual run
of the protocol is indistinguishable from the run where two participants swap their votes.

Properties such as vote privacy, coercion-resistance and receipt-freeness can be expressed in
terms of indistinguishability from the point of view of the attacker. We have seen for example
that

P{V1 7→ ”yes”, V2 7→ ”no”} ≈ P{V1 7→ ”no”, V2 7→ ”yes”}

is a way of specifying vote privacy, where P is the voting process, V1 and V2 represent the votes
of two participants and ≈ denotes indistinguishability form the point of view of the attacker. In
contrast to equivalence properties, confidentiality and authentication are trace properties in the
sense that it is sufficient to look at any individual run (also called a trace) of the protocol to
conclude that they hold or not. In contrast, it is necessary to look at all runs globally in order to
establish an equivalence property.

We have shown that electronic voting protocols are special because they are expected to have
much richer security properties than the traditional secrecy and authentication properties. Fur-
thermore, to ensure these properties, e-voting protocols make use of rather esoteric cryptographic
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primitives [72, 16] such as blind signatures [36], trapdoor commitments [113] and homomorphic
encryption [96].

In contrast to the tools which are available to prove and reason about authenticity and confi-
dentiality, there are not so many tools available for reasoning about equivalence properties which
are needed for establishing the security of e-voting protocols. Furthermore, existing tools are
usually limited to handling a fixed set of cryptographic primitives which usually exclude the more
esoteric primitives required by e-voting protocols.

We have shown that properties such as vote privacy are fundamentally different from secrecy
properties: vote privacy is an equivalence property while secrecy is a trace property. Furthermore,
receipt-freeness and coercion-resistance can also be modeled as equivalence properties [72]. There-
fore, in order to verify that protocols satisfy such properties, it is sufficient to devise a procedure
for the equivalence problem:

Input: two protocols P and Q
Output: is P indistinguishable from Q? (i.e. P ≈ Q).

The relation ≈ should model behavioral equivalence between processes, i.e. two protocols which
are in the ≈ relation should be indistinguishable to the intruder. Usually, ≈ is taken to be
observational equivalence, but it seems that trace equivalence is a better alternative [38]. In this
thesis, we will only consider the case where ≈ is trace equivalence. It is well-known that in general,
the equivalence problem is undecidable since is generalizes the secrecy problem. Therefore various
restrictions of the problem are usually considered.

1.5 Contributions

In this thesis, we show that automated verification of security protocols with respect to equivalence
properties is feasible for certain classes of bounded protocols and that protocols making use of
arbitrary disjoint cryptographic primitives compose well with respect to confidentiality. We detail
our contributions below.

1.5.1 The Strong Finite Variant Property

In Chapter 3, we introduce the notion of a strongly complete set of variants of a term. Strongly
complete sets of variants allow in many cases to get rid of the equational theory and solve problems
in the free term algebra. We compare (Section 3.4) the notion of strongly complete set of variants
to the notion of complete set of variants, already introduced in [53] and we show that they are
different ( 3.4.1); however, in the presence of free symbols, the problem of finding strongly complete
sets of variants can be reduced to the problem of computing complete sets of variants ( 3.4.2). We
show that convergent optimally reducing term rewriting systems have finite strongly complete sets
of variants. Optimally reducing term rewriting systems include rewrite systems which are relevant
to security protocols such as subterm convergent term rewriting systems, blind signatures, trapdoor
commitment and others.

Strongly complete sets of variants are motivated by our procedure in Chapter 5 that checks
equivalence between processes. In this procedure, strongly complete sets of variants are used to
get rid of the equational theory and reduce the problem to the free algebra.

Furthermore, strongly complete sets of variants are of independent interest, because they al-
low to construct finite complete sets of unifiers for equational unification problems as shown in
Section 3.6. This chapter is based on work presented at the UNIF 2011 workshop [47] and it has
been implemented in the tool SubVariant [48].

Related Work

The notion of finite set of variants was introduced by Comon and Delaune in [53]. It can be useful
for solving unification and disunification properties [53, 84] and in getting rid of the equational
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theory for the verification of reachability in security protocols [68]. Methods for proving and
for disproving the finite variant property are given in [83]. As opposed to previous work which
considers the general case of a convergent term rewriting system modulo an equational theory E,
we restrict ourselves to the case where E is empty. In this case (where E is empty) we extend the
notion of complete set of variants to the notion of strongly complete set of variants. This is needed
in order to obtain complete sets of unifiers constructively and to get rid of the equational theory
in our procedure (Chapter 5) for verifying trace equivalence.

1.5.2 A Decision Procedure for Static Equivalence

In Chapter 4 we show that the equivalence problem is decidable for a large class of equational
theories and for a passive attacker. A passive attacker is allowed to listen to network traffic, but
it cannot modify, block or send new messages on the network. Therefore, in the case of a passive
attacker, the equivalence problem can be reduced to the static equivalence problem, which is, given
two sequences of (ground) messages S1 and S2, can the intruder distinguish between S1 and S2?
Deciding static equivalence is a prerequisite to deciding more general equivalences which take into
account the dynamic behavior of the protocol. Furthermore, static equivalence is interesting in its
own right because it helps to partially automate equivalence proofs.

Our procedure is based on the encoding into Horn clauses of the two sequences of messages
and of the possible intruder actions. A carefully tuned refinement of resolution can then be
used to saturate the set of Horn clauses. From the saturated set of Horn clauses, it is easy to
decide if the two sequences of messages are equivalent. Our procedure is sound and complete
for any equational theory which is modeled as a convergent term rewriting system. Furthermore,
we have shown that our procedure always terminates for several (classes of) equational theories
particularly relevant to e-voting protocols, including subterm convergent rewrite systems, trapdoor
commitment and blind signatures. Most notably, this is the first decidability result for static
equivalence under trapdoor commitment, a cryptographic primitive which is used in e-voting
protocols such as Okamoto [114] to ensure receipt-freeness. We also show that by using a fair
saturation process, we obtain decidability of static equivalence for an equational theory modeling
a homomorphic encryption scheme.

As a by-product, the same procedure can be used to decide the intruder deduction problem for
the same class of equational theories. The intruder deduction problem is, given a set of (ground)
messages S and another term t, can the intruder apply deduction rules in order to derive t from
S? The intruder deduction problem can be seen as the restriction of the confidentiality problem
to a passive adversary (i.e. an adversary which can intercept messages on the network, but which
cannot modify them).

Our procedure for deciding static equivalence and the intruder deduction problem terminates in
polynomial time for several equational theories including blind signatures, trapdoor commitment
and subterm convergent equational theories. It was implemented in the KiSs tool and it is based
on work published in [50, 51].

Related Work

Many decision procedures have been proposed for the intruder deduction problem (e.g. [39, 8,
100, 40]) under a variety of equational theories. We do not discuss these here and we concentrate
on work which is directly related to static equivalence. In [2] a decidability result is obtained for
a class of equational theories which are locally stable and locally decidable. This class include
subterm convergent rewrite systems, for which a polynomial-time procedure is shown to exist.
In [58], several decision results are shown for monoidal equational theories. A combination result
(if deduction and static equivalence are decidable for two disjoint equational theories, then de-
duction and static equivalence are also decidable for the union of the two theories) was obtained
in [13]. An algorithm inspired by [2] which can handle subterm convergent rewrite theories and
blind signatures was published in [21, 22] and implemented in [20]. A procedure designed and im-
plemented to obtain asymptotically faster algorithms for static equivalence than [20, 45] is given
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in [55], although it cannot handle more cryptographic primitives. Procedures for verifying behav-
ioral equivalences such as implemented in ProVerif [25, 27] can also prove static equivalence; but
they are “overkill” in the sense that they were designed for a more difficult problem. Furthermore,
none of them can handle the theory of trapdoor commitment.

1.5.3 Automated Verification of Trace Equivalence

In Chapter 5, we show that the automated verification of equivalence properties is feasible by giving
a procedure for verifying equivalence between bounded determinate security protocols without
else branches. Our procedure is sound and complete for equational theories having the strong
finite variant property which we introduce in Chapter 3. Therefore our procedure works for
subterm convergent equational theories (which allow to model classical cryptographic primitives
such as symmetric and asymmetric encryption, digital signatures, hash functions) but also for blind
signatures and trapdoor commitment, as all of these are optimally reducing and have therefore
the strong finite variant property.

Our procedure is based on a fully-abstract modeling of each symbolic trace of a process into a
set of Horn clauses. This modeling of symbolic traces into Horn clauses extends the Horn clauses
in Chapter 4 by taking into account the dynamic behavior of the symbolic trace. We use strongly
complete sets of variants and complete sets of equational unifiers to get rid of the underlying
equational theory. Therefore the Horn clauses are interpreted in the free term algebra. A carefully
crafted refinement of resolution is then used to saturate the set of clauses. From the saturated set
of clauses, it is easy to check if two symbolic traces are equivalent. Furthermore, if two determinate
processes are given as sets of symbolic traces, we show how to check from the respective saturated
sets of clauses if the two processes are trace equivalent.

However, many electronic voting protocols are not determinate and therefore we cannot directly
apply this result to reason about them. However, in Section 5.9.1 we present a method for proving
that two nondeterminate processes are equivalent, method which uses equivalence checking for
two symbolic traces as a subroutine. This allows us to prove (Section 5.9.3) vote privacy of the
FOO [87] e-voting protocol. This is the first provably sound and fully automated proof of vote
privacy for this protocol. However, our method is incomplete in that two processes could be trace
equivalent but the methods fails to prove it.

As we have already explained, our procedure for automatically verifying trace equivalence
is based on the saturation of a set of Horn clauses. We conjecture that the saturation always
terminates for subterm convergent rewrite systems. Unfortunately, due to the highly complex
form of the structures involved in the procedure, we have not been able to show this. However, we
have implemented the procedure in the tool AKiSs and we have used it to prove vote privacy of
the FOO [87] e-voting protocol. This is the first provably sound automatic proof of vote privacy
for this protocol. An article based on this work was published in [35].

Related Work

Undecidability of observational equivalence in the spi calculus, even for the finite control fragment,
was shown by Hüttel [97]. In the same paper, a decision result is given for the finite, replication-
free, fragment of the spi calculus [97] for a fixed, limited set of cryptographic primitives. An
automated tool [79] can check observational equivalence for the finite, replication-free fragment of
the spi-calculus with a limited set of cryptographic primitives. Symbolic bisimulations have also
been devised for the spi [30, 29] and applied pi calculus [73, 102] to avoid unbounded branching
due to adversary inputs. However, only [73] and [30] yield an automated procedure for proving
equivalence, but again only approximating observational equivalence. In [121], the authors present
a decision procedure for checking open bisimulation for a variant of the spi-calculus with a fixed
set of cryptographic primitives.

A highly non-deterministic decision procedure for checking equivalence of constraint systems
(or equivalently, of two symbolic traces) is given by Baudet [19]. An alternate procedure achieving
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the same goal was proposed by Chevalier and Rusinowitch [44]. Due to the high degree of non-
determinism involved, it seems that the two procedures are not implementable. Therefore, Cheval
et al. [37] have designed a new procedure and a prototype tool to decide the equivalence of
constraint systems, but only for a fixed set of primitives. For a restricted class of simple processes
it was shown [59] that observational equivalence coincides with trace equivalence and that the later
is decidable by using as a subroutine a decision procedure for checking equivalence of constraint
systems. The procedure for constraint systems in [37] was generalized to trace equivalence [38] for
finite processes with a fixed set of primitives, but the new procedure has not been implemented.

ProVerif [25] can prove strong secrecy [26] and diff-equivalence [27], an equivalence between
processes that differ only in their choice of terms and which is stronger than observational equiva-
lence. However, ProVerif cannot verify vote privacy of the FOO electronic voting protocol except
with the use of the add-on ProSwapper [119] which was not shown to be sound. ProVerif translated
protocols into Horn clauses and employs sound abstractions that allow it to prove equivalences
for an unbounded number of sessions. However, it may fail to terminate and because of the
abstractions it can produce false attacks.

Other approaches [123, 89] based on Horn clauses also perform abstractions and allow for false
attacks. For the case of confidentiality properties, precise encodings (without false attacks) into
Horn clauses have been proposed and implemented in [6]. However, the encoding is for a fixed set
of cryptographic primitives, it does not take into account that processes may block (due to a test
failing) and it works only for confidentiality.

1.5.4 Composability

In Chapter 6, we establish a composition result with respect to confidentiality properties. We
show that two protocols which use disjoint cryptographic primitives modeled by arbitrary disjoint
equational theories can be securely composed as soon as they do not reveal shared secrets and
when the shared secrets are not reused. This is the first composition result which allows to make
use of arbitrary cryptographic primitives in the active case, all previous results assuming a limited
fixed set of primitives or a tagging scheme.

Our work allows us for example to securely compose a key-establishment protocol with an-
other protocol using the established key, as long as the two protocols use disjoint cryptographic
primitives. This also holds in the case where key-establishment is performed several times and
the respective keys are used. The composition result holds for an unbounded number of sessions.
We also show that employing a form of tagging is sufficient to ensure disjointness in the case of
encryption and hash functions. We show this by reducing the composition of the tagged protocols
to the composition of two protocols which used disjoint equational theories.

One limitation of our approach is that it cannot cope with dishonest agents due to the hypoth-
esis that shared secrets (between the two protocols which are to be composed) are not revealed.
Dishonest users would reveal such secrets immediately and therefore our composition result does
not give any guarantee in this case. The work in this chapter has been presented at CSF 2010 [49].

Related Work

One of the first papers studying the composition of protocols in the symbolic model is [93]. In the
formalism of strand spaces [85], Guttman and Thayer show that two protocols which make use of
concatenation and encryption can be safely executed together without damaging interactions, as
soon as the protocols are “independent”. In [57], Cortier et al show that tagging is sufficient to
avoid collusion between protocols sharing common keys and making use of standard cryptographic
primitives: concatenation, signature, hash functions and encryption. This framework allows to
compose processes symmetrically; however, it does not allow to securely compose e.g. a key
exchange protocol with another protocol which makes use of the shared key. In [92], Guttman
provides a characterization which ensures that two protocols can run securely together when
sharing some data such as keys or payloads. The main improvement over [93] is that keys are
allowed to be non-atomic.
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In [71], Delaune et al. use a derivative of the applied-π calculus to model off-line guessing
attacks. They show that in the passive case resistance against guessing attacks is preserved by the
composition of two protocols which share the weak secret against which the attack is mounted.
This result (in the passive case) holds for arbitrary equational theories. However, for the active
case this is no longer the case: it is however proven that tagging the weak secret enforces secure
composition (in the sense of guessing attacks). This framework applies to parallel composition
only.

Mödersheim and Viganò [109] have proposed a framework for composing protocols sequentially.
In [70], Delaune et al. use a simulation based approach inspired from the computational model
to provide a framework for securely composing protocols in the applied-π calculus. This involves
defining for each sub-protocol an ideal functionality and then showing that a certain implemen-
tation securely emulates the ideal functionality. In [91], Groß and Mödersheim introduce vertical
protocol compositions, where a key-exchange protocol is coupled with a protocol (called applica-
tion protocol) which uses the exchanged key. Vertical compositions are similar to the sequential
compositions we have used in this work. Another line of work is represented by the Protocol
Composition Logic [67], which can be used to modularly prove security properties of protocols
using a fixed set of primitives; however, the proofs may be rather involved and are not automatic.
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Research Tools

The implementations of the tools that were built as part of our research are available online:

• Ş. Ciobâcă. KiSs, a tool for deciding static equivalence and deduction under a class of
convergent equational theories (http://www.lsv.ens-cachan.fr/~ciobaca/kiss)
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• Ş. Ciobâcă. SubVariant, a tool for computing finite, complete sets of variants un-
der optimally reducing convergent equational theories (http://www.lsv.ens-cachan.fr/

~ciobaca/subvariant)

• Ş. Ciobâcă. AKiSs, a tool for automatically verifying trace equivalence of determinate,
bounded security protocols without else branches under convergent term rewriting systems
having the strong finite variant property (http://www.lsv.ens-cachan.fr/~ciobaca/akiss)

1.7 Thesis Plan

Chapter 2 introduces notations and concepts standard in the literature. In Chapter 3, we introduce
the notion of strongly complete set of variants of a term, we discuss its relation to the notion of
complete set of variants, and we show that optimally reducing term rewriting systems have finite
strongly complete sets of variants. Furthermore, we show how to construct finite complete sets
of unifiers for equational unification problems from the strongly complete sets of variants of the
terms involved. In Chapter 4, we discuss a decision procedure for the intruder deduction problem
and for the static equivalence problem for a class of convergent equational theories including
subterm convergent rewrite systems, trapdoor commitment and blind signatures. In Chapter 5,
we give a procedure for verifying indistinguishability between finite number of sessions of security
protocols. We have implemented the procedure and we have used the implementation, among
others, to prove vote privacy of the FOO [87] e-voting protocol. In Chapter 6, we establish a
composition result with respect to confidentiality properties. We show that two protocols which
use disjoint cryptographic primitives modeled by arbitrary disjoint equational theories can be
securely composed as soon as they do not reveal shared secrets and when the shared secrets are
not reused. We also show that employing a form of tagging is sufficient to ensure disjointness in
the case of encryption and hash functions. Chapter 7 concludes the thesis with a summary of the
results obtained and presents perspectives and possible future work.



Chapter 2

Preliminaries

In this chapter, we review several standard concepts and definitions in term algebra and term
rewriting theory.

2.1 Term Algebra

Let F be a signature, i.e. a finite set of function symbols. Let ar be a function associating to each
function symbol a natural number, called the arity of the symbol. A function of arity 0 is called
a constant.

We let X ,N ,M,W, C be pairwise disjoint, countably infinite sets of variables, private names,
public names, parameters and public channels, respectively. We assume furthermore that X ,N ,M,
W and C, which will act as atoms in the term algebra, are disjoint from F . We will note by A
the entire set of atoms (A = X ∪N ∪M∪W ∪ C).

Given a signature F ′ that is a subset of F (F ′ ⊆ F) and a set of atoms A′ that is a subset
of the global set of atoms (A′ ⊆ A), we define the set T (F ′,A′) of all F ′-terms over A′ as the
smallest set such that:

1. all atoms in A′ are terms (A′ ⊆ T (F ′,A′)),

2. for all function symbols f ∈ F ′ of arity ar(f) = k and all terms t1, . . . , tk ∈ T (F ′,A′),
we have that f(t1, . . . , tk) ∈ T (F ′,A′) (i.e. application of function symbols to terms yields
terms).

The set of positions of a term t ∈ T (F ,A) is a set Pos(t) of strings over the alphabet of
positive integers, defined inductively such that:

1. if t ∈ A, then Pos(t) = {ǫ}, where ǫ denotes the empty string, and

2. if t = f(t1, . . . , tk) with f ∈ F , then

Pos(t) = {ǫ} ∪
k
⋃

i=1

{ip | p ∈ Pos(ti)}.

where juxtaposition denotes string concatenation. The size |t| of the term t, is the cardinality of
Pos(t).

For every position p ∈ Pos(t) of the term t, the subterm t|p of the term t at the position p is
defined by induction on the length of p to be:

t|ǫ = t
f(t1, . . . , tk)|iq = ti|q

27
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For all terms s ∈ T (F ,A) and for every position p ∈ Pos(t) of the term t, we denote by t[s]p
the term that is obtained by placing the term s at position p in the term t, i.e.

t[s]ǫ = s
f(t1, . . . , tk)[s]iq = f(t1, . . . , ti−1, ti[s]q, ti+1, . . . , tk)

The set of subterms st(t) of the term t is the set

st(t) = {s | there exists p ∈ Pos(t) such that t|p = s}.

The set Var(t) is the set of variables of the term t, i.e.

Var(t) = {x | there exists p ∈ Pos(t) such that t|p = x ∈ X}.

The set Names(t) is the set of names of the term t, i.e.

Names(t) = {n | there exists p ∈ Pos(t) such that t|p = a ∈ N ∪M}.

The set Symbols(t) is the set of function symbols of the term t, i.e.

Symbols(t) = {f | there exists p ∈ Pos(t) and t1, . . . , tn such that t|p = f(t1, . . . , tn)}.

We extend the functions Var , Names and Symbols on tuples of terms, sets of terms and
combinations thereof in the expected manner. We say that the term t is ground if Var(t) = ∅.

A substitution is a function σ : X 7→ T (F ,A) such that σ(x) 6= x for only finitely many variables
x ∈ X . The finite set of variables Dom(σ) = {x | σ(x) 6= x} is called the domain of the substitution
σ. The range Range(σ) of the substitution σ is the set Range(σ) = {σ(x) | x ∈ Dom(σ)}. If
Dom(σ) ⊆ {x1, . . . , xn}, we may write σ as

σ = {x1 7→ σ(x1), . . . , xn 7→ σ(xn)}.

The homomorphic extension of a substitution σ to the set of terms T (F ,A) is the function
σ̂ : T (F ,A) → T (F ,A), where

σ̂(x) = σ(x) for all variables x ∈ X
σ̂(a) = a for all non-variable atoms a ∈ A \ X

σ̂(f(t1, . . . , tk)) = f(σ̂(t1), . . . , σ̂(tk)) for all other terms f(t1, . . . , tk).

We identify as usual substitutions with their homomorphic extensions and we may write sub-
stitution application in suffix form: the term tσ is the application of the homomorphic extension
σ̂ of the substitution σ to the term t, i.e. tσ = σ̂(t).

The identity substitution σ = {} is the only substitution with empty domain Dom(σ) = {}
and, when applied to a term t, it does not change it: t = t{}. If X ⊆ X is a set of variables
and σ is a substitution, then σ[X] is the restriction of σ to X, i.e. the substitution such that
σ[X](x) = σ(x) if x ∈ X and σ[X](x) = x if x ∈ X \ X. The restriction operator enjoys the
following property, which we are going to use several times later on:

Lemma 2.1. Let t be a term and let σ be a substitution. If X ⊇ Var(t) then tσ = t(σ[X]).

We let ⊎ denote the disjoint union of two sets. In particular, if σ and τ are two substitutions
with disjoint domains (Dom(σ) ∩ Dom(τ) = ∅), we denote by γ = σ ⊎ τ the substitution of
domain Dom(γ) = Dom(σ) ∪ Dom(τ) such that γ(x) = σ(x) if x ∈ Dom(σ) and γ(x) = τ(x) if
x ∈ X \Dom(σ). The composition στ of two substitutions σ and τ is defined to be the substitution
which associates to any variable x the term (xσ)τ , i.e. στ(x) = τ̂(σ(x)). Substitution composition
enjoys the following property, which we are going to use several times later on:

Lemma 2.2. Let σ1, σ2, σ3, σ4 be substitutions such that σ1[X] = (σ2σ3)[X] and σ3[X∪Var(Range(σ2))] =
σ4[X ∪ Var(Range(σ2))] for some set of variables X. Then σ1[X] = (σ2σ4)[X].
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Proof. Let x ∈ X be an arbitrary variables in the set X. If x ∈ Dom(σ2), we have that
Var(σ2(x)) ⊆ Var(Range(σ2)). If x 6∈ Dom(σ2), we have that Var(σ2(x)) = Var(x) = {x} ⊆ X.
In either case, we have that Var(σ2(x)) ⊆ X ∪ Var(Range(σ2)). Therefore

(σ3[X ∪ Var(Range(σ2))])(σ2(x)) = (σ4[X ∪ Var(Range(σ2))])(σ2(x))
= xσ2(σ4[X ∪ Var(Range(σ2))]).

As Var(xσ2) ⊆ X∪Var(Range(σ2)), it follows by Lemma 2.1 that xσ2(σ4[X∪Var(Range(σ2))] =
xσ2σ4.

We have shown that xσ2σ3 = xσ2σ4. As x ∈ X was chosen arbitrarely in X, it follows that
σ2σ3[X] = σ2σ4[X]. But σ1[X] = σ2σ3[X] and therefore, by transitivity, σ1[X] = σ2σ4[X].

A substitution σ is called a variable renaming if Dom(σ) = Range(σ). We say that σ is a
variable renaming from the set of variables X ⊆ X to the set of variables Y ⊆ X if Dom(σ) ⊆ X∪Y
and σ(x) ∈ Y for all variables x ∈ X.

If A0 is a set of atoms, a replacement of terms is a function σ : D → T (F ,A0) such that D
is a finite set of terms D ⊆ T (F ,A0). The application of a replacement σ : D → T (F ,A0) to a
term t is written in suffix notation tσ and is defined inductively to be:

tσ = σ(t) if the term t ∈ D is in the domain D of σ
tσ = a if the term t = a ∈ A \D is an atom not in the domain D of σ
tσ = f(t1σ, . . . , tkσ) if the term t = f(t1, . . . , tk) 6∈ D is not in the domain of σ

A (k-)context C ∈ T (F ,A∪ { 1, . . . , k}) is a term with distinguished variables 1, . . . , k such
that each variable i appears at most once in C. We write C[t1, . . . , tk] for the term C{ 1 7→
t1, . . . ,

k 7→ tk}.

2.1.1 Unification

Two terms s, t ∈ T (F ,A) are (syntactically) unifiable if there exists a substitution σ such that
sσ = tσ. The substitution σ is then a unifier of s and t. A unifier σ of s and t is called more
general than another unifier τ if there exists a substitution ω such that τ = σω.

It is well known [15] that any two unifiable terms s and t admit a most general unifier mgu(s, t),
i.e. a unifier which is more general than any other unifier. Furthermore, any two most general
unifiers σ and τ of two unifiable terms s and t can be obtained from each other by composition
with a variable renaming. We make therefore a slight abuse of language and speak of the most
general unifier mgu(s, t) of s and t (which is unique up to variable renaming), as is common in
term rewriting literature.

2.2 Rewriting

2.2.1 Equational Theories

An identity over F ′ ⊆ F is a pair (s, t) ∈ T (F ′,X ) × T (F ′,X ), where × denotes the cartesian
product of sets. We will write identities (s, t) ∈ T (F ,X )× T (F ,X ) as s ≈ t.

If E = {s1 ≈ t1, . . . , sn ≈ tn} is a set of identities, we will denote by =E the smallest relation
on terms containing E and such that:

1. =E is reflexive: t =E t for all terms t ∈ T (F ,A),

2. =E is transitive: s =E r and r =E t implies s =E t for all terms s, r, t ∈ T (F ,A),

3. =E is symmetric: s =E t implies t =E s for all terms s, t ∈ T (F ,A),
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4. =E is closed under substitutions: s =E t implies sσ =E tσ for all terms s, t ∈ T (F ,A) and
all substitutions σ and

5. =E is closed under F-operations: s1 =E t1, . . . , sk =E tk implies f(s1, . . . , sk) =E f(t1, . . . , tk)
for all function symbols f of arity ar(f) = k and for all terms s1, . . . , sk, t1, . . . , tk ∈ T (F ,A).

The relation =E is called the equational theory generated by the set of identities E. We will
sometimes make an abuse of language and call E an equational theory.

We write s →E t if there exist a context C, an identity si ≈ ti ∈ E and a substitution σ such
that s = C[siσ] and t = C[tiσ] or vice-versa, if s = C[tiσ] and t = C[siσ]. It is well known that
→∗

E
, the transitive and reflexive closure of →E, coincides with =E [14]. Two substitutions σ and τ

are equal modulo E, written σ =E τ , if σ(x) =E τ(x) for all x ∈ X .

Equational Unification

Two terms s, t ∈ T (F ,A) are unifiable in the equational theory E (or E-unifiable) if there exists a
substitution σ such that sσ =E tσ. The substitution σ is then an E-unifier of s and t. A set of
substitutions mguE(s, t) is called a complete set of E-unifiers of s and t if:

1. any substitution σ ∈ mguE(s, t) is an E-unifier of s and t: sσ =E tσ and

2. any E-unifier τ of s and t is an instance modulo E of some substitution σ ∈ mguE(s, t) on
the variables of s and t: there exist a substitution σ ∈ mguE(s, t) and a substitution ω such
that τ [Var(s, t)] =E σω[Var(s, t)].

An equational theory is called finitary if, for any two terms s, t ∈ T (F ,A) there exists a finite
complete set of E-unifiers (mguE(s, t) is finite).

2.2.2 Rewrite Systems

A rewrite rule is an identity l ≈ r such that l 6∈ X and Var(r) ⊆ Var(l) 1. In this case we may
write l→ r instead of l ≈ r. A term rewriting system R = {l1 → r1, . . . , ln → rn} is a finite set of
rewrite rules. We write s→R t if there exist a position p ∈ Pos(s), a rewrite rule l → r ∈ R and
a substitution σ of domain Dom(σ) ⊆ Var(l) such that s|p = lσ and t = s[rσ]p. The relation →R

is then called the one-step rewrite relation of R, the reflexive transitive closure of →R is denoted
by →∗

R
and the reflexive transitive symmetric closure of →R is denoted ↔∗

R
. We also write =R

instead of ↔∗
R
.

A rewrite system R implements an equational theory E if the relations =R and =E coincide.
If R = {l1 → r1, . . . , ln → rn} is a term rewriting system and E = {l1 ≈ r1, . . . , ln ≈ rn} is the
associated equational theory, it is known that R implements E (see for example [14]).

A rewrite system R is terminating if there is no infinite rewrite chain t1 →R t2 →R . . .. A
rewrite system R is confluent if for all terms s, u, v such that s →∗

R
u and s →∗

R
v we have that

there exists a term t such that u →∗
R
t and v →∗

R
t. A rewrite system is convergent if it is

both terminating and confluent. An equational theory is convergent if it is implementable by a
convergent rewrite system. A term t is in normal form or normalized (with respect to a rewrite
system R) if t 6→R s for any term s. A term t is a normal form of a term s (with respect to a rewrite
system R) if t is in normal form with respect to R and s→∗

R
t. It is well known (see e.g. [14]) that

if R is a convergent rewrite system, any term t has a unique normal form with respect to R. In
this case (when R is convergent) we will denote with t↓R the normal form of t.

We say that a rewrite rule l→ r is in R up to renaming, and we write l→ r ∈̄ R if there exist
a rewrite rule l′ → r′ ∈ R and a variable renaming τ such that l = l′τ and r = r′τ .

If σ is a substitution, we will denote by σ↓R the substitution which assigns to any variable x
the term (xσ)↓. We say that a substitution σ is in normal form (with respect to R) if σ = σ↓R. If
R is clear from the context, we sometimes omit R and use ↓ instead of ↓R.

1these restrictions on rewrite rules follow the lines of [14]. Rewrite rules not obeying them are necessarily
non-terminating and therefore not very interesting.
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Subterm Convergent Rewrite Systems

Definition 2.1. A term rewriting system R is subterm convergent if it is convergent and every
rewrite rule l→ r ∈ R is such that

subterm rule r ∈ st(l) or

extended rule r is a ground term in normal form with respect to R.

The first type of rewrite rule justifies the name of this class of rewrite systems and was originally
the only type of rewrite rule allowed [1] in subterm convergent rewrite systems. The second type
of rule represents a small but useful extension introduced in [21]. In this thesis, we consider
the extended version of subterm convergent rewrite systems as defined above. We say that an
equational theory E is subterm convergent if there is a subterm convergent rewrite system R that
implements the equational theory E. Subterm convergent rewrite systems allow the modeling of
many usual cryptographic primitives such as symmetric encryption:

Example 2.1. Let R = {dec(enc(x, y), y) → x}. It is easy to see that R is subterm conver-
gent. The function symbol enc models symmetric encryption and the function symbol dec
symmetric decryption. The only rewrite rule models the fact that decryption cancels out
encryption when the correct key is used.

Optimally Reducing Rewrite Systems

Definition 2.2. A rewrite rule l → r ∈ R is called optimally reducing if, for any substitution θ
such that all strict subterms of lθ are in normal form, we have that rθ is in normal form. A term
rewriting system R is optimally reducing if all rewrite rules l→ r ∈ R are optimally reducing.

Optimally reducing term rewriting systems were introduced in [110]. It is easy to see that
any subterm convergent rewrite system is an optimally reducing rewrite system. Additionally,
optimally reducing rewrite systems allow to model cryptographic primitives which cannot be
modeled by subterm convergent rewrite systems, as shown in the following example.

Example 2.2. The term rewriting system R defined bellow is convergent and optimally
reducing. However, R is not subterm convergent because of its second rewrite rule.

R =

{

check(sign(x, y), pk(y)) → x
unblind(sign(blind(x, y), z), y) → sign(x, z)

}

The term rewriting system R models blind signatures, especially useful in modeling electronic
voting protocols [72].

The function symbol sign represents the signing algorithm: the term sign(s, t) denotes the
signature of the message t with the private key t. The function symbol check allows to
verify a signature using the public key pk(y) of the party having signed the message.

The blind function symbol allows a party to “blind” a message x with a blinding factor y,
thereby obtaining the blob blind(x, y). The blob can then be signed by a party using the
private key z to obtain sign(blind(x, y), z) and then, using the unblinding function symbol
unblind, to obtain via the second rewrite rule the message sign(x, z). This allows the party
that has blinded the message to obtain a signature of x without revealing what x is. This is
particularly useful in voting protocols, where a voter can have his vote signed by the voting
authority without revealing the vote itself [72].
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Free symbols

A function symbol f ∈ F is free with respect to a rewrite system R = {l1 → r1, . . . , ln → rn} if
the function symbol f 6∈ Symbols(l1, r1, . . . , ln, rn) does not appear in any of the identities of R.
We have that:

Theorem 2.1. If R is a convergent rewrite system and f ∈ F is a free function symbol of arity
ar(f) = k, then

f(t1, . . . , tk)↓ = f(t1↓, . . . , tk↓).

Proof. We will first show by induction on the number of rewrite steps that if f(t1, . . . , tk) →∗
R
t,

then t = f(s1, . . . , sk) for some terms s1, . . . , sk such that t1 →
∗
R
s1, . . . , tk →

∗
R
sk. Indeed, for the

base case, if the number of rewrite steps is 0, we choose s1 = t1, . . . , sk = tk and we have that
t1 →

∗
R
s1, . . . , tk →

∗
R
sk as →∗

R
is reflexive.

For the inductive case, we assume by the induction hypothesis that f(t1, . . . , tk) →∗
R
f(s′1, . . . , s

′
k)

such that ti →
∗
R
s′i for all 1 ≤ i ≤ k and we show that if f(s′1, . . . , s

′
k) →R t, then t = f(s1, . . . , sk)

such that ti →
∗
R
si for all 1 ≤ i ≤ k. As f(s′1, . . . , s

′
k) →R t, it follows that there exists a rewrite

rule l → r ∈ R, a position p ∈ Pos(t) and a substitution σ such that f(s′1, . . . , s
′
k)|p = lσ and

t = f(s′1, . . . , s
′
k)[rσ]p. As f is free with respect to R, it follows that f 6∈ Symbols(l). Further-

more, by the definition of a rewrite system, l 6∈ X . Therefore l and f(s′1, . . . , s
′
k) are not unifiable.

Therefore p 6= ǫ cannot be the empty position. Therefore p = jq for some index 1 ≤ j ≤ k and
some position q.

We have therefore that t = f(s′1, . . . , s
′
k)[rσ]p = f(s′1, . . . , s

′
k)[rσ]jq is equal, by the definition

of ·[·]·, to f(s′1, . . . , s
′
j−1, s

′
j [rσ]q, s

′
j+1, . . . , s

′
k). Let si = s′i for all 1 ≤ i ≤ k such that i 6= j and

let sj = s′j [rσ]q. By the definition of →R, we have that s′j →R sj . By reflexivity of →∗
R
, we have

that s′i →
∗
R
si for all 1 ≤ i ≤ k if i 6= j. Therefore s′i →

∗
R
si for all 1 ≤ i ≤ k. But ti →

∗
R
s′i for

1 ≤ i ≤ k and, by transitivity of →∗
R
, we have ti →

∗
R
si for all 1 ≤ i ≤ k.

We have shown that t = f(s1, . . . , sk) such that ti →
∗
R
si for all 1 ≤ i ≤ k, thereby concluding

the inductive step.
We have just proved by induction on the number of rewrite steps that if f(t1, . . . , tk) →∗

R
t,

then t = f(s1, . . . , sk) for some terms s1, . . . , sk such that ti →
∗
R
si for all 1 ≤ i ≤ k. Furthermore,

if f(s1, . . . , sk) is in normal form, we have that s1, . . . , sk are also in normal form. Therefore, if
f(s1, . . . , sk) is the normal form of f(t1, . . . , tk), it follows that si is the normal form of ti for all
1 ≤ i ≤ k. Therefore f(t1, . . . , tk)↓ = f(t1↓, . . . , tk↓).

2.3 Modeling Messages as Terms

In order to formally assess the security of cryptographic protocols, we use a mathematical model of
such protocols. First of all, we model messages exchanged between the parties during the protocol
run as terms in a term algebra. Cryptographic primitives such as encryption are modeled as
function symbols and the cryptographic properties of the primitives are modeled as an equational
theory.

Example 2.3. We let F = {enc, dec}, where ar(enc) = ar(dec) = 2. The term enc(m1,m2)
represents the message denoting the encryption of the message modeled by the term m1

with the key modeled by the term m2.

Let E = {dec(enc(x, y), y) = x} be an equational theory. We have that the term dec(enc(m1,m2),m3)
represents the result of decrypting the message enc(m1,m2) by the key m3. If m2 =E m3,
we have that dec(enc(m1,m2),m3) =E m1 (the decryption succeeds).

Base data such as atomic keys are modeled as names. Names can be private (the set N is the
set of private names) if the intruder does not a priori know them, or they can be public (the set
M is the set of public names) in case the intruder knows them a priori.
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Example 2.4. Continuing the previous example, a freshly generated key can be modeled
as the term k ∈ N and the public name yes ∈ M can be used to model a well-known
representation of the vote ’yes’.

The set of terms representing messages is defined to be Messages = T (F ,N ∪M).

Example 2.5. Continuing the previous example, if we let m1 = yes and m2 = k, we have
that the term enc(m1,m2) = enc(yes, k) represents the message constructed by encrypting
the vote ’yes’ with a fresh key k that is a priori unknown to the intruder.

2.4 Frames

We fix an enumeration w1, w2, . . . of the elements of the set W. The atoms w1, w2, . . . are not
used as building blocks in messages, but are used by the attacker to point to messages exchanged
during the protocol. The parameter w1 refers to the first message exchanged, w2 to the second,
etc. This suggests a way of modeling sequences of messages exchanged during a protocol:

Definition 2.3. A frame ϕ is a substitution {w1 7→ t1, . . . , wn 7→ tn} where ti ∈ Messages

(1 ≤ i ≤ n) are terms representing messages.

Note that in our definition, every frame with |Dom(ϕ)| = n has Dom(ϕ) = {w1, . . . , wn}.

2.4.1 Deduction

The adversary can use the messages learnt from the run of a protocol to construct new messages.
Messages can be constructed by applying function symbols to already known messages and by
referring to the parameters. The adversary knows a priori all public names. We denote by
RecipesF = T (F ,M∪W) the set of recipes constructible over a given signature F , i.e. terms used
by the intruder to construct messages. If the signature F is obvious from context, we also write
Recipes instead of RecipesF . The relation between recipes and the resulting messages is modeled
as the deducibility relation.

Definition 2.4. We say that the term t is deducible from ϕ with a recipe r in the equational
theory E (written as ϕ ⊢r

E,F t) if r ∈ RecipesF and rϕ =E t.

If the signature F is obvious from context, we write ⊢E instead of ⊢E,F . If the equational
theory is also obvious from context, it can be omitted. If the equational theory E is implemented
by a rewrite system R, then we also write ⊢R instead of ⊢E.

Example 2.6. Continuing the previous example, let ϕ = {w1 7→ enc(yes, k), w2 7→ k} be a
frame representing the sequence of messages from a toy voting protocol. The first message
exchanged during the protocol was the encryption of the vote ’yes’ under a fresh key k.
The second message is the value of the key that was used to protect the vote in the first
message.

The fact that the intruder does not a priori know k is modeled by the fact that ϕ 6⊢k k,
since k ∈ N and therefore k 6∈ Recipes. However, the intruder can deduce the value of k
indirectly, by referring to w2: ϕ ⊢w2 k.

We also have that the intruder can get the value of the vote ’yes’ either indirectly, as
ϕ ⊢dec(w1,w2) yes or directly, since ϕ ⊢yes yes (as yes ∈ M, a public name, can be used in
the recipe).
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2.4.2 Static Equivalence

The deduction relation described previously is enough to model secrecy of data: we can model
the fact that a private name s remains secret after the protocol run if ϕ 6⊢r s for any recipe r,
where ϕ represents the frame collecting all messages from the protocol. However, for more subtle
properties, deduction is not enough.

Example 2.7. Consider for example a voting protocol where the possible votes are ’yes’ and
’no’. The values of any vote are a priori known to the intruder (e.g. ϕ ⊢yes yes for any
frame ϕ).

Therefore, the fact that the vote of an individual voter remains private cannot be modeled by
the fact that the name yes (representing a ’yes’ vote) or that the name no ∈M (representing
a ’no’ vote) cannot be deduced from the frame.

Instead, to express the fact that the value of the vote is not revealed, we ask that the intruder
is not be able to distinguish a run of the protocol where ’yes’ was voted from a run of the protocol
where ’no’ was voted. This indistinguishability relation is modeled as static equivalence:

Definition 2.5. A test r1
?
= r2 holds in a frame ϕ (written (r1 = r2)ϕ) if ϕ ⊢r1 t and ϕ ⊢r2 t for

some t, i.e., r1 and r2 are recipes for the same term in ϕ. If (r1 = r2)ϕ, we sometimes say that
r1 = r2 is an identity that holds in ϕ.

A frame ϕ1 is statically included in ϕ2 (written ϕ1 ⊑s ϕ2) iff for all r1, r2 we have that
(r1 = r2)ϕ1 implies (r1 = r2)ϕ2.

Two frames ϕ1 and ϕ2 are statically equivalent (written ϕ1 ≈s ϕ2) iff ϕ1 ⊑s ϕ2 and ϕ2 ⊑s ϕ1.

Example 2.8. Let ϕ = {w1 7→ enc(yes, k), w2 7→ k} and let ϕ′ = {w1 7→ enc(no, k), w2 7→ k}.
The frame ϕ can represent the messages in a run of a protocol where ’yes’ was voted, while
ϕ′ can represent the messages in a the run of the same protocol where ’no’ was voted. We
have that ϕ 6≈s ϕ

′, since the following test

dec(w1, w2)
?
= yes

holds in ϕ but not in ϕ′. We can conclude that the privacy of the vote is not preserved,
since the two frames are distinguishable.

On the other hand, the frames ϕa = {w1 7→ enc(yes, k)} and ϕb = {w1 7→ enc(no, k)} are
statically equivalent. Intuitively, this is because k ∈ N is not known to the intruder and
therefore there is no way to “open” the encryption.



Chapter 3

The Strong Finite Variant
Property

3.1 Introduction

Given a term (e.g. t = dec(x, y)) and a convergent rewrite system (e.g. R = {dec(enc(x, y), y) → x}),
we are interested in having a convenient symbolic representation of all normal forms tσ↓ of in-
stantiations tσ of the term t. In the above case, the normal form tσ↓ of tσ falls into one of the
following two cases:

1. either σ(x)↓ = enc(s, σ(y)↓) is an encryption of some term s with the term σ(y)↓, in which
case σ↓[{x, y}] = σ1τ1[{x, y}] for σ1 = {x 7→ enc(z, y)} and τ1 = {z 7→ s, y 7→ σ(y)↓} and
therefore

tσ↓ = (tσ1)↓τ1.

2. or σ(x)↓ is not such an encryption (σ(x)↓ 6= enc(s, σ(y)↓) for any term s), in which case
σ↓[{x, y}] = σ2τ2[{x, y}] for σ2 = {} (the identity substitution) and τ2 = σ↓ and therefore

tσ↓ = (tσ2)↓τ2.

The set of terms {tσi↓} (in this example, 1 ≤ i ≤ 2) is then called a complete set of variants of
t since any normal form tσ↓ of an instantiation tσ of the term t will be a syntactic instantiation
of a term tσi↓ (for some 1 ≤ i ≤ 2).

Rewrite systems for which finite complete sets of variants can be found for any term t are said
to have the finite variant property (from hereon FVP). The FVP is useful in symbolic analysis of
security protocols [53] and in solving unification and disunification problems [53, 84], since they
allow to get rid of the rewrite system and solve the resulting problems syntactically.

Complete sets of variants were introduced in [53] by Comon and Delaune. In their work,
the normal form of a term is defined modulo some equational theory (typically AC). Their work
includes showing that several rewrite systems have the finite variant property: the standard Dolev
Yao theory with explicit descriptors (modulo the empty equational theory), a presentation of
abelian groups (modulo AC) and a presentation of the Diffie-Hellman cryptographic primitives
(modulo AC). Another line of work [83] proposes algorithms for proving and for disproving that
a certain rewrite theory has or does not have the finite variant property.

In this thesis, we restrict ourselves to working modulo the empty equational theory and there-
fore we consider syntactic normal forms. Furthermore, since the complete set of variants {tσi↓} of
t is fully determined by t and the set of substitutions {σi}, we will from now speak of substitutions
σi as being the variants of t and we will say that the set {σi} is a complete set of variants of t. In
Section 3.2 we recall the definition of FVP in our setting.

35



36 CHAPTER 3. THE STRONG FINITE VARIANT PROPERTY

Our work in this chapter is motivated by the procedure for verifying security protocols that
we describe in Chapter 5. We define a notion of strongly complete set of variants (Section 3.3),
which is a stronger version of the complete set of variants. Rewrite systems having finite strongly
complete sets of variants for any term are said to have the strong finite variant property (from
hereon SFVP).

We discuss the differences between the SFVP and the FVP in Section 3.4. In particular, in
the presence of free symbols of arity ≥ 2, the two notions coincide. In the same section, we also
compare strongly complete sets of variants with complete sets of variants and we show a link
between the two.

In Section 3.5, we investigate the SFVP for convergent optimally reducing rewrite systems,
which are useful for modeling many cryptographic primitives. We show that convergent optimally
reducing rewrite systems have the strong finite variant property and we give an algorithm to
compute a finite strongly complete set of variants for a given term and a given optimally reducing
rewrite system. In chapter 5, strongly complete sets of variants allow us to get rid of the underlying
rewrite system in our procedure for verifying security protocols.

In Section 3.6, we show that having the strong finite variant property is sufficient for equational
unification problems to have finite complete sets of unifiers. The proof is constructive: a finite
complete set of unifiers of an equation modulo the rewrite system is built from the strongly
complete sets of variants of the two terms in the equation.

The two applications of our work, namely the procedure for verifying security protocols in
Chapter 5 and the computation of finite complete sets of unifiers in Section 3.6 show that the
notion of strongly complete set of variants is more natural and more useful than the notion
of a complete set of variants. This chapter is based on work [47] that has been presented at
the UNIF 2011 workshop. The algorithms presented here have been implemented in the tool
SubVariant [48].

3.2 The Finite Variant Property (FVP)

Formally, the finite variant problem is to find finite complete sets of variants for a term:

Definition 3.1. A complete set of variants of a term t with respect to a convergent term rewriting
system R is a set of substitutions {σ1, . . . , σn} such that for any substitution π, we have that
(tπ)↓ = ((tσi)↓)τ for some index 1 ≤ i ≤ n and some substitution τ .

In the above definition, the difficulty of finding a complete set of variants lies in the fact that
the term (tσi)↓τ is not normalized anymore after the application of the substitution τ to (tσi)↓.
Therefore the set consisting of the identity substitution is in general not a complete set of variants.

Example 3.1. Let t = dec(x, y) and R = {dec(enc(x, y), y) → x}. We have that the set
consisting of the substitution σ1 = {} (the identity substitution) and of the substitution
σ2 = {x 7→ enc(z, y)} is a complete set of variants of t. We prove that {σ1, σ2} is a complete
set of variants of t by choosing a substitution τ for any substitution π as follows:

1. if the decryption does not succeed (i.e. xπ↓ 6= enc(t′, yπ↓)), then we let τ = π↓ and
we have that (dec(x, y)π)↓ = dec(x, y)(π↓) = (dec(x, y)σ1)↓τ .

2. if xπ↓ = enc(t′, yπ↓) (i.e. the decryption succeeds), then we let τ = {z 7→ t′} and we
have that (dec(x, y)π)↓ = t′ = z{z 7→ t′} = (dec(x, y)σ2)↓{z 7→ t′}.

A term rewriting system R has the FVP if any term t ∈ T (F ,A) has a finite complete set of
variants. The following example illustrates that not all rewrite systems have the FVP.

Example 3.2. We consider the term rewriting system R = {f(g(x)) → g(f(x))} and the
term t = f(x). By analyzing the sequence of substitutions πi = {x 7→ gi(y)} (for all i ∈ N)
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and the normal forms (tπi)↓ = gi(f(y)) (for all i ∈ N), it can be proven that any complete
set of variants of t will contain all of the substitutions:

σi = {x 7→ gi(y)}

for all i ∈ N and up to renaming of the variable y. Therefore this term rewriting system
does not have the FVP.

3.3 The Strong Finite Variant Property

The notion of FVP was introduced in [53]. In the procedure for verifying security protocols that
we describe in Chapter 5, we require a slightly stronger notion, which motivates the following
definition:

Definition 3.2. Let t be a term with the set of variables Var(t) = X. A set of substi-
tutions {σ1, . . . , σn} is called a strongly complete set of variants of t if the substitutions σi
(1 ≤ i ≤ n) are of domain Dom(σi) ⊆ X for all 1 ≤ i ≤ n and for any substitution π, we
have that (π[X])↓ = ((σi↓)τ)[X]1 for some substitution τ and some index 1 ≤ i ≤ n such that
(tπ)↓ = ((tσi)↓)τ .

The difference between a complete set of variants and a strongly complete set of variants is
that we require not only that (tπ)↓ be equal to (tσi)↓τ , but also that π↓ and (σi↓)τ coincide on
the variables of t.

Note that in the above definition the condition π[X]↓ = (σi↓τ)[X] is not sufficient in the sense
that it does not in general imply (tπ)↓ = (tσi)↓τ : take R = {dec(enc(x, y), y) → x}, t = dec(x, y),
π = {x 7→ enc(z, y)}, σi = {} (the identity substitution). We have that τ = π is such that
π[X]↓ = (σi↓τ)[X] = τ [X] but (tπ)↓ = z 6= (tσi)↓τ = dec(enc(z, y), y).

As with complete sets of variants, a finite strongly complete set of variants does not exist in
general. As expected, rewrite systems R for which any term t has a finite strongly complete set of
variants are said to have the strong finite variant property (from hereon SFVP).

The notion of strongly complete set of variants is stronger than the notion of complete set of
variants. It is obvious that a strongly complete set of variants is always a complete set of variants.
The following example illustrates that the reverse is not true and reveals the subtlety between a
complete set of variants and a strongly complete set of variants.

Example 3.3. We consider the (subterm convergent) term rewriting system

R = {h(f(x), y) → y, h(g(x), y) → y}

and the term
t = h(x, y).

It is easy to see that the following set S is a complete finite set of variants of t:

S = {σ1 = {}, σ2 = {x 7→ f(z)}}.

Note that S does not contain the substitution σ3 = {x 7→ g(z)}. Even if S is a finite
complete set of variants of t it is not a strongly complete set of variants of t: if we consider
the substitution π = {x→ g(a)} for some constant a, we have that:

1. π↓[X] = (σ1↓)τ1[X] (with τ1 = {x 7→ g(a)}), but (tπ)↓ 6= ((tσ1)↓)τ1.

2. π↓[X] 6= (σ2↓)τ2[X] for any substitution τ2.

where X = Var(t) is the set of variables of t. However, the set S ∪ {σ3} is a strongly
complete set of variants of t.

1Recall that the notation π[X] denotes the restriction of the substitution π to the variables in X.
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3.4 Relating the SFVP and the FVP

3.4.1 Strict Containment

It is easy to see that a term rewriting system having the SFVP also has the FVP. The reverse is
not true: term rewriting systems having the FVP need not have the SFVP. Let us consider the
signature F = {f/1, g/1} and the following convergent term rewriting system

R = {f(g(x)) → f(x)}.

It is easy to see that any term t has a normal form which is either the term t↓ = gn(fm(x))
or the term t↓ = gn(fm(a)) for some variable x ∈ X , non-variable atom a ∈ A \ X and integers
n,m ∈ N. We will show that the identity substitution {} forms by itself a complete set of variants
of any term t built over the signature F .

Proof. Let σ be an arbitrary substitution and t be an arbitrary term.

1. If t↓ = gn(fm(a)) for some non-variable atom a ∈ A \ X, then (tσ)↓ = ((t↓)σ)↓ = t↓ =
(t{})↓{}.

2. If t↓ = gn(fm(x)) for some variable x ∈ X , let the term s = σ(x) be the value of σ at x.
We have that s↓ = gp(fq(y)) or s↓ = gp(fq(b)) for some variable y ∈ X , non-variable atom
b ∈ A \ X and some integers p, q ∈ N.

(a) if s↓ = gp(fq(y)) then

i. if m = 0, we have tσ↓ = gn+p(fq(y)) = (t{})↓σ and

ii. otherwise, if m > 0, we have tσ↓ = gn(fm+q(y)) = (t{})↓{x 7→ fq(y)}.

(b) if s↓ = gp(fq(b)) then

i. if m = 0, we have tσ↓ = gn+p(fq(b)) = (t{})↓σ and

ii. otherwise, if m > 0, we have (tσ)↓ = gn(fm+q(b)) = (t{})↓{x 7→ fq(b)}.

We have shown that the identity substitution forms by itself a complete set of variants of any
term t over F .

However, R does not have the SFVP. This is illustrated by the following example.

Example 3.4. Let t = f(x) be a term where x ∈ X is a variable. By analyzing the instan-
tiations tπi where the substitutions πi are defined as πi = {x 7→ gi(y)} for all i ∈ N, it can
be shown that any strongly complete set of variants must contain substitutions σi for all
i ∈ N such that σi[{x}] = {x 7→ gi(z)} for all i ∈ N (up to renaming of z). Therefore any
strongly complete set of variants of t is infinite.

3.4.2 In the Presence of Free Symbols

We have shown that in general the SFVP is a strictly stronger property than the FVP.
However, if the signature contains at least a free symbol of arity strictly greater than 1, we

show that the two notions coincide. Let f ∈ F be the free symbol of arity ar(f) = k ≥ 2. From
hereon, we will denote by tuple(t1, . . . , tn) the term

tuple(t1, . . . , tn) = f(t1, t, . . . , t, f(t2, t, . . . , t, f(· · · f(tn, t, . . . , t))))

where t is an arbitrary ground term in normal form (for example a constant in normal form or a
name).

Example 3.5. If k = 3, then tuple(a, b, c) = f(a, t, f(b, t, f(c, t, t))).
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Because f is a free symbol, we have by Theorem 2.1 that

tuple(t1, . . . , tn)↓ = tuple(t1↓, . . . , tn↓). (3.1)

The following theorem shows that in the presence of at least a free symbol f of arity k ≥ 2 the
two notions (FVP and SFVP) coincide. Note that the presence of a free symbol does not make
the notions of complete sets of variants and of strongly complete sets of variants coincide; however
a strongly complete set of variants of some term can be constructed by computing a complete set
of variants of another, more complex, term.

Theorem 3.1. Let t be a term and let X = {x1, . . . , xn} = Var(t) be the set of its variables. Let
S be a complete set of variants of tuple(t, x1, . . . , xn). Then

S′ = {σ[X] | σ ∈ S}

is a strongly complete set of variants of t.

Proof. Let π be an arbitrary substitution. We need to show that there exist a substitution σ′ ∈ S′

and a substitution τ ′ such that π[X]↓ = ((σ′↓)τ ′)[X] and (tπ)↓ = (tσ′)↓τ ′. Because S is a
complete set of variants of tuple(t, x1, . . . , xn), we have that there exist a substitution σ ∈ S and
a substitution τ such that

(tuple(t, x1, . . . , xn)π)↓ = ((tuple(t, x1, . . . , xn)σ)↓)τ. (3.2)

By applying Equation 3.1 to each side of the equality we obtain

(tuple(t, x1, . . . , xn)π)↓ = tuple((tπ)↓, (x1π)↓, . . . , (xnπ)↓)

((tuple(t, x1, . . . , xn)σ)↓)τ = tuple(((tσ)↓)τ, ((x1σ)↓)τ, . . . , ((xnσ)↓)τ)

and, as the two terms are equal by Equation (3.2), it follows that every every pair of terms at the
same position in the two tuples are equal: (tπ)↓ = ((tσ)↓)τ and xiπ↓ = xiσ↓τ for all 1 ≤ i ≤ n.
But as {x1, . . . , xn} = X, it follows that π[X]↓ = ((σ↓)τ)[X]. As X = Var(t) = {x1, . . . , xn}, it
immediately follows that (tπ)↓ = ((t(σ[X]))↓)τ and π[X]↓ = (((σ[X])↓)τ)[X].

As σ ∈ S, we have that σ[X] ∈ S′. We have shown therefore that there exist a substitution
σ′ = σ[X] ∈ S′ and a substitution τ ′ = τ such that π[X] = ((σ′↓)τ ′)[X] and (tπ)↓ = (tσ′)↓τ ′,
thereby proving that S′ is a strongly complete set of variants of t.

3.5 Computing Strongly Complete Sets of Variants for Con-
vergent Optimally Reducing Rewrite Systems

In this section, we present an algorithm for computing strongly complete sets of variants for terms
under a convergent optimally reducing rewrite system.

The algorithm for computing a strongly complete finite set of variants is based on a refinement
of narrowing which is sound and complete for convergent optimally reducing rewrite systems. Each
narrowing step (denoted hereafter →֒) works on a configuration (t,P, X) consisting of a term t, a
set of positions P of t at which narrowing is allowed and a set of forbidden variables X in the sense
that fresh variables should be chosen outside of X. The main difference between our refinement
of narrowing and standard narrowing is that positions at which a narrowing step is performed are
restricted by the set P.

In order to describe the refinement of narrowing that we use in our algorithm we first need a
new notation: if p is a position, by down(p) we denote the set of positions which is the downward
closure of p, i.e. all positions that are descendants of p, including p itself:

down(p) = {pq | for all positions q}.
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q ∈ P
l→ r ∈̄ R Var({l, r}) ∩X = ∅
θ = mgu(l, t|q)

(t,P, X)
θ
→֒ (tθ[rθ]q,P \ down(q), X ∪ Var(Range(θ)))

Figure 3.1: Narrowing step (complete for convergent optimally reducing rewrite systems)

To compute a complete finite set of variants of some term t and a convergent optimally reducing
rewrite system R, we will begin with the initial configuration

C0 = (t,Pos init(t),Var(t))

where Pos init(t) = Pos(t) \ {p | t|p ∈ X} is the set of all non-variable positions of t and non-
deterministically apply narrowing steps.

Each narrowing step non-deterministically chooses a rewrite rule l → r and a position p from
P where narrowing is performed. The initial choice of P = Pos init(t) in the initial configuration
is a way to enforce the basic restriction, that is, narrowing is only performed strictly inside t (and
not inside the variables of t). Furthermore, if we have performed narrowing at a position p and
because of the specificity of convergent optimally reducing rewrite systems, there is no need to
consider this position or any of its descendants anymore and therefore they are removed from P.

We write
θ1...θn
→֒ for the relation

θ1
→֒

θ2
→֒ . . .

θn
→֒. In particular, if n = 0, →֒ denotes the identity

relation. We show that our narrowing procedure allows to compute a finite strongly complete set
of variants for any term t:

Theorem 3.2 (Correctness). If R is a convergent optimally reducing rewrite system, the set

Σ = {σ = θ1 . . . θn | (t,Pos init(t),Var(t))
θ1,...,θn
→֒ (t′,P ′, X ′)}

is a finite strongly complete set of variants of t.

The proof of correctness of the above theorem relies on the following soundness and complete-
ness lemmas:

Lemma 3.1 (Partial Soundness). Let t, t′ be terms, P,P ′ sets of positions, X,X ′ sets of variables
and θ a substitution. If

(t,P, X)
θ
→֒ (t′,P ′, X ′),

we have that tθ →R t
′ and X ′ = X ∪ Var(Range(θ)).

Proof. By the definition of
θ
→֒, we have that if (t,P, X)

θ
→֒ (t′,P ′, X ′), there exist a rewrite rule

l → r ∈̄ R, a position q and a substitution θ such that t|qθ = lθ. We have that tθ = tθ[lθ]q →R

tθ[rθ]q = t′. The fact that X ′ = X ∪ Var(Range(θ)) is immediate from the definition of
θ
→֒.

By iterating Lemma 3.1, we obtain:

Lemma 3.2 (Soundness). Let t, t′ be terms, P,P ′ sets of positions, X,X ′ sets of variables and
θ1, . . . , θn substitutions. If

(t,P, X)
θ1...θn
→֒ (t′,P ′, X ′),

we have that tθ1 . . . θn →
∗
R
t′ and X ′ = X ∪ Var(Range(θ1)) ∪ . . . ∪ Var(Range(θn)).

Proof. We proceed by induction on n. If n = 0, we have that
θ1...θn
→֒ =→֒ is the identity relation.

Therefore X ′ = X and tθ1 . . . θn = t = t′, which implies tθ1 . . . θn →
∗
R
t′.
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If n > 0, we have that

(t,P, X)
θ1...θn−1

→֒ (t′′,P ′′, X ′′)
θn
→֒ (t′,P ′, X ′)

for some term t′′, some set of positions P ′′ and some set of variables X ′′.
By the induction hypothesis, we have that

tθ1 . . . θn−1 →
∗
R
t′′ (3.3)

and that
X ′′ = X ∪ Var(Range(θ1)) ∪ . . . ∪ Var(Range(θn−1)). (3.4)

As (t′′,P ′′, X ′′)
θn
→֒ (t′,P ′, X ′), we have by Lemma 3.1 that

X ′ = X ′′ ∪ Var(Range(θn)) (3.5)

and that
t′′θn →R t

′. (3.6)

By combining Equation (3.3) with Equation (3.6) we obtain that tθ1 . . . θn →∗
R
t′ and by

combining Equation (3.4) with Equation (3.5), we obtain that X ′ = X ∪ Var(Range(θ1)) ∪ . . . ∪
Var(Range(θn)), which is what we had to show.

Now we describe what completeness means for our narrowing rule:

Lemma 3.3 (Partial Completeness). Let t be a term, ω a substitution such that tω is not in
normal form, X a set of variables such that Var(t) ⊆ X and P ⊆ Pos(t) a set of positions in t
such that tω|p is in normal form for any position p ⊆ Pos(tω) \ P.

If R is a convergent optimally reducing rewrite system, there exist substitutions θ and ω′, a
term t′, a set of positions P ′ ⊆ Pos(t′) and a set of variables X ′ such that

(t,P, X)
θ
→֒ (t′,P ′, X ′) and

ω[X] = θω′[X].

Furthermore, Var(t′) ⊆ X ′ and t′ω′|p is in normal form for every p ∈ Pos(t′ω′) \ P ′.

Proof. As tω is not in normal form, there exists a position q, a rewrite rule l′ → r′ ∈ R and a
substitution σ′ of domain Dom(σ′) ⊆ Var(l′) such that tω|q = l′σ′. Let q be maximal (w.r.t. to
its length) with this property.

Let τ be a variable renaming such that Var({l′τ, r′τ}) ∩ X = ∅, let l = l′τ , r = r′τ and
σ = τ−1σ′. We have that l→ r ∈̄ R with Var({l, r}) ∩X = ∅, tω|q = l′σ′ = l′ττ−1σ′ = lσ.

Because tω|q is an instance of the left-hand side of a rewrite rule, we have that tω|q is not in
normal form. As tω|p is in normal form for any position p ∈ Pos(tω) \ P by hypothesis, it must
be that q ∈ P.

We have shown that q ∈ P; as P ⊆ Pos(t) by hypothesis, we have that q ∈ Pos(t). Therefore
tω|q = t|qω.

As Var(t) ⊆ X, we have that t|q(ω[X]) = t|qω = tω|q = lσ. As the domains of the substitutions
ω[X] (Dom(ω[X]) ⊆ X) and σ (Dom(σ) ⊆ Var(l) and Var(l)∩X = ∅) are disjoint, we have that
ω[X] ⊎ σ is a unifier of t|q and l.

As t|q and l are unifiable, they have a most general unifier. Let θ = mgu(t|q, l) be a most
general unifier of t|q and l. As ω[X] ⊎ σ is a unifier of t|q and l, it follows that it is an instance
of their most general unifier: there exists a substitution ω′ such that ω[X] ⊎ σ = θω′. It easily
follows that

ω[X] = θω′[X] and (3.7)

σ[Var(l)] = θω′[Var(l)]. (3.8)
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Let t′ = tθ[rθ]q, P ′ = P \ down(q) and X ′ = X ∪ Var(Range(θ)). We have that P ′ ⊆ Pos(t′).

By the definition of
θ
→֒, we have that

(t,P, X)
θ
→֒ (t′,P ′, X ′). (3.9)

As Var(rθ) ⊆ Var(lθ) by the definition of a rewrite rule, we have that Var(t′) = Var(tθ[rθ]q) ⊆
Var(tθ[lθ]q) = Var(tθ) ⊆ Var(t) ∪ Var(Range(θ)) and therefore Var(t′) ⊆ X ′.

To finish the proof, it remains to be shown that t′ω′|p is in normal form for every position
p ∈ Pos(t′ω′) \ P ′. Let p ∈ Pos(t′ω′) \ P ′ be an arbitrary position. We will show that t′ω′|p is in
normal form by the following case distinction:

1. if q is a prefix of p (i.e. there exists a position q′ such that p = qq′), we have that t′ω′|p =
(tθ[rθ]q)ω′|p = rθω′|q′ . By the definition of a rewrite rule, we have that Var(r) ⊆ Var(l).
Furthermore, by Equation (3.8), we have that σ[Var(l)] = θω′[Var(l)] and therefore rθω′ =
rσ.

As R is an optimally reducing rewrite system, we have that l → r ∈̄ R is an optimally
reducing rewrite rule. Since q was chosen to be maximal such that tω|q is not in normal
form, we have that all strict subterms of lσ = tω|q are in normal form. Therefore, as l→ r is
optimally reducing, it follows that rσ is in normal form. Therefore any subterm of rσ = rθω′

is in normal form; in particular the subterm of rσ at position q′, t′ω′|p = rθω′|q′ , is in normal
form.

2. p cannot be a prefix of q: we have that tω|p is not in normal form (since it has as subterm
lσ). Therefore p ∈ P . But P ′ = P \ down(q) and therefore p ∈ P ′. But p was chosen
arbitrarily in Pos(t′ω′) \ P ′.

3. if p and q are incomparable (w.r.t. the prefix ordering), we have that t′ω′|p = tω|p and, as
p 6∈ P ′ and P ′ = P \ down(q), it must be that p 6∈ P. Therefore t′ω′|p = tω|p is in normal
form by hypothesis.

We have shown that our choice of θ, t′, X ′,P ′ satisfies each of the properties we wanted and
therefore we conclude.

By applying Lemma 3.3 iteratively, we obtain the follow completeness lemma:

Lemma 3.4 (Completeness). Let t be a term, ω a substitution, X a set of variables such that
Var(t) ⊆ X and P ⊆ Pos(t) a set of positions such that for all p ∈ Pos(tω) \ P, we have that
tω|p is in normal form.

If R is a convergent optimally reducing rewrite system, there exist an integer n ≥ 0, substitu-
tions θ1, . . . , θn, a substitution ω′, a term t′, a set of positions P ′ and a set of variables X ′ such
that

(t,P, X)
θ1...θn
→֒ (t′,P ′, X ′),

ω[X] = θ1 . . . θnω
′[X] and t′ω′ is in normal form. Furthermore, Var(t′) ⊆ X ′.

Proof. We proceed by induction on tω equipped with the well-founded order →R given by the
terminating term rewriting relation.

Base case. If tω is already in normal form, we choose n = 0, ω′ = ω, t′ = t, X ′ = X and

P ′ = P. It trivially follows that (t,P, X)
θ1...θn
→֒ (t′,P ′, X ′) (as →֒=

θ1...θn
→֒ is the identity relation),

that ω[X] = ω′[X], that Var(t′) ⊆ X ′, that t′ω′ = tω is in normal form.
Inductive case. If tω is not in normal form, we have by Lemma 3.3 that there exists t′′, θ, ω′′,

P ′′ and X ′′ such that

(t,P, X)
θ
→֒ (t′′,P ′′, X ′′), (3.10)
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ω[X] = θω′′[X], t′′ω′′|p is in normal form for all p ∈ Pos(t′′ω′′) \ P ′′ and Var(t′′) ⊆ X ′′. By
Lemma 3.1, we have that X ′′ = X ∪Var(Range(θ)). As Var(t) ⊆ X and ω[X] = θω′′[X], we have
by Lemma 2.1 that tω = tθω′′. By Lemma 3.1, we have that tθ → t′′. Therefore tθω′′ → t′′ω′′,
which implies tω → t′′ω′′.

We can therefore apply the induction hypothesis on t′′ and ω′′ to obtain that there exists
m ≥ 0, substitutions ω′1, . . . , ω

′
m, a substitution ω′, a term t′, a set of positions P ′ and a set of

variables X ′ such that

(t′′,P ′′, X ′′)
θ′1...θ

′
m

→֒ (t′,P ′, X ′), (3.11)

ω′′[X ′′] = θ′1 . . . θ
′
mω

′[X ′′], Var(t′) ⊆ X ′ and t′ω′ is in normal form.
Let n = m+ 1, θ1 = θ and θi = θ′i−1 for 2 ≤ i ≤ n. By Equation (3.10) and Equation (3.11),

we have that (t,P, X)
θ1...θn
→֒ (t′,P ′, X ′).

We have that ω[X] = θω′′[X], that ω′′[X ′′] = θ′1 . . . θ
′
mω

′[X ′′] and thatX ′′ = X∪Var(Range(θ)).
By Lemma 2.2, we obtain that ω[X] = θθ′1 . . . θ

′
mω

′[X]. But θ1 = θ and θi = θ′i−1 for 2 ≤ i ≤ n
by choice of θ1, . . . , θn. Therefore ω[X] = θ1 . . . θnω

′[X].
In both cases, we have shown that there exist n ≥ 0, θ1, . . . , θn, t

′,P ′, X ′ such that

(t,P, X)
θ1...θn
→֒ (t′,P ′, X ′),

ω[X] = θ1 . . . θnω
′[X], Var(t′) ⊆ X ′ and t′ω′ is in normal form, which is what we had to prove.

We are now ready to show the correctness of the algorithm:

Theorem 3.2 (Correctness). If R is a convergent optimally reducing rewrite system, the set

Σ = {σ = θ1 . . . θn | (t,Pos init(t),Var(t))
θ1,...,θn
→֒ (t′,P ′, X ′)}

is a finite strongly complete set of variants of t.

Proof of Theorem 3.2. Let ω0 be an arbitrary substitution and let ω = ω0↓. We have immediately
that tω0↓ = tω↓. We show that there exist a substitution σ ∈ Σ and a substitution τ such that
tω0↓ = tω↓ = (tσ)↓τ and ω↓[Var(t)] = στ [Var(t)].

Let P = Pos init(t) and X = Var(t). We have that tω|p is in normal form for every position
p ∈ Pos(tω) \ Pos init(t) by the definition of Pos init (every such term tω|p is a subterm of the
substitution ω = ω0↓ and therefore it is obviously in normal form). We have furthermore that
Var(t) = X ⊆ X. Therefore we can apply Lemma 3.4. We have that there exist n ≥ 0, θ1, . . . , θn,
t′, ω′,P ′, X ′ such that

(t,P, X)
θ1...θn
→֒ (t′,P ′, X ′),

such that ω[X] = θ1 . . . θnω
′[X] and such that t′ω′ is in normal form.

Let σ = θ1 . . . θn and let τ = ω′. By Lemma 3.2, we have that tθ1 . . . θn →
∗
R
t′ and therefore

tθ1 . . . θnω
′ →∗

R
t′ω′. But θ1 . . . θnω

′[X] = ω[X]. As X = Var(t), it follows by Lemma 2.1 that
therefore tω = tθ1 . . . θnω

′. Therefore tω →∗
R
t′ω′. As t′ω′ is in normal form and R is convergent,

it follows that tω↓ = t′ω′. But tω↓ = tω0↓ and therefore tω0↓ = t′ω′. Since t′ω′ is in normal form,
it follows that t′ must also be in normal form. As tθ1 . . . θn →

∗
R
t′ and σ = θ1 . . . θn, we have that

tσ↓ = t′. Therefore tω0↓ = (tσ)↓ω′. But τ = ω′ and therefore tω0↓ = (tσ↓)τ .
By the choice of σ and τ , we have that ω[X] = στ [X]. As ω = ω0↓, it follows that ω0↓[X] =

στ [X]. We have chosen ω0 arbitrarily and we have shown that ω0[X] = στ [X] and tω0↓ = (tσ↓)τ
for some substitution σ ∈ Σ and for some substitution τ . It follows that Σ is a strongly complete
set of variants of t.

Each narrowing step
θi
→֒ (1 ≤ i ≤ n) is finitely branching (there is at most one narrowing choice

for each rewrite rule and each position of the term). Furthermore each narrowing step strictly
decreases the number of positions at which narrowing can be performed and therefore the number
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n of steps (
θ1,...,θn
→֒ ) is finite. We have therefore that Σ is finite and we conclude that Σ is a finite

strongly complete set of variants of t.

3.6 Equational Unification for Theories Having the SFVP

In this subsection we show that equational theories E implementable by term rewriting systems
having the SFVP are finitary, i.e. any two terms s and t have finite complete set of E-unifiers.
Our proof is constructive: we give an algorithm that computes a finite complete set of E-unifiers
of two terms s and t from the finite strongly complete sets of variants of s and of t.

Indeed, the constructive algorithm follows immediately from the following theorem, which
constructs a complete set of equational unifiers of two terms s and t, at most one equational
unifier per pair of strong variants of s and of t.

Theorem 3.3. Let E be an equational theory and let R be a convergent rewrite system that
implements E.

Let s, t ∈ T (F ,A) be two terms with common set of variables Var(s) ∩ Var(t) = {x1, . . . , xn}
and let Variants(s) and Variants(t) be finite, strongly complete sets of variants of the terms s and
t with respect to the rewrite system R. Then the set

Σ = { σs↓πsσ[Var(s) \ Var(t)] ⊎
σs↓πsσ[Var(s) ∩ Var(t)] ⊎
σt↓πtσ[Var(t) \ Var(s)] | for all σs ∈ Variants(s)

for all σt ∈ Variants(t)
where πs is a variable renaming from Var(sσs↓)

to a fresh set of variables Xs

where πt is a variable renaming from Var(tσt)
to a fresh set of variables Xt

such that Xs ∩Xt = ∅
where σ = mgu(tuple(sσs↓πs, x1σs↓πs, . . . , xnσs↓πs),

tuple(tσt↓πt, x1σt↓πt, . . . , xnσt↓πt))
where tuple is a fresh free function symbol

of arity ar(tuple) = n+ 1 }

is a finite complete set of E-unifiers of s and t.

Before proving the theorem above, we illustrate the construction in the theorem by an example.

Example 3.6. Let s = dec(x, y) and t = dec(z, y). Notice that both terms are decryptions
with the same variable y as a key. We are interested in computing a complete set Σ of

unifiers of s
?

=R t, where R = {dec(enc(x, y), y) → x}. We have that Var(s)∩Var(t) = {y}.
It is easy to see that

Variants(s) = {σ1, σ2}

is a strongly complete set of variants of the term s if σ1 = {x 7→ enc(z, y)} and σ2 = {}
(the identity substitution). Similarly,

Variants(t) = {σ3, σ4}

is a strongly complete set of variants of the term t if σ3 = {z 7→ enc(x, y)} and σ4 = {} (the
identity substitution).

For each pair of strong variants of s and t, we will add (at most) one equational unifier to
the set of unifiers, as illustrated by the following table:
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Variants sσs↓ πs tσt↓ πt σ = mgu( resulting
σs ∈ {σ1, σ2} tuple(sσs↓πs, yπs), equational
σt ∈ {σ3, σ4} tuple(tσt↓πt, yπt)) unifier
σs = {x 7→ enc(z, y)} z {z 7→ zs} x {x 7→ xt} {zs 7→ xt} {x 7→ enc(xt, y),
σt = {z 7→ enc(x, y)} z 7→ enc(xt, y)}
σs = {} dec(x, y) {x 7→ xs, x {x 7→ xt} {xt 7→ dec(xs, ys), {x 7→ xs,
σt = {z 7→ enc(x, y)} y 7→ ys} y 7→ ys} y 7→ ys,

z 7→ enc(
dec(xs, ys),
ys)}

σs = {z 7→ enc(x, y)} x {x 7→ xs} dec(z, y) {z 7→ zt, {xs 7→ dec(zt, yt), {x 7→ enc(
σt = {} y 7→ yt} y 7→ yt} dec(zt, yt),

yt)
y 7→ yt,
z 7→ zt}

σs = {} dec(x, y) {x 7→ xs, dec(z, y) {z 7→ zt, {xs 7→ zt, {x 7→ zt,
σt = {} y 7→ ys} y 7→ yt} ys 7→ yt} y 7→ yt,

z 7→ zt}

By the theorem above, we obtain that the set containing the four substitution on the
rightmost column of the above table is a complete set of unifiers of s = dec(x, y) and
t = dec(z, y).

We are now ready to proceed to the proof of the theorem.

Proof of Theorem 3.3. In order to prove the theorem, we have to show that the set Σ satisfies the
following properties:

1. it is finite.

2. it is sound: any ω ∈ Σ is an E-unifier of s and t.

3. it is complete: any E-unifier τ ′ of s and t (sτ ′ =E tτ
′) is an instance of some substitution

ω ∈ Σ.

We prove that Σ has each of the three properties in turn:

1. Σ is finite. Indeed, there is at most one substitution in Σ for every pair (σs, σt) ∈
Variants(s)× Variants(t) of variants of s and t.

2. Σ is sound, i.e. any substitution ω ∈ Σ is such that sω =E tω.

Let ω ∈ Σ be an arbitrary substitution. As ω ∈ Σ, it follows that there exist substitutions
σs ∈ Variants(s), σt ∈ Variants(t), a variable renaming πs from Var(sσs↓) to some set of
variables Xs, a variable renaming πt from Var(tσt↓) to some set of variables Xt such that
such that Xs ∩Xt = ∅ and a substitution

σ = mgu(tuple(sσs↓πs, x1σs↓πs, . . . , xnσs↓πs), tuple(tσt↓πt, x1σt↓πt, . . . , xnσt↓πt))

such that ω = σs↓πsσ[Var(s) \ Var(t)]⊎ σs↓πsσ[Var(s)∩Var(t)]⊎ σt↓πtσ[Var(t) \ Var(s)].

We trivially have that ω[Var(s)] = σs↓πsσ[Var(s)].

By the choice of σ, we have that xiσs↓πsσ = xiσt↓πtσ for all variables xi ∈ Var(s)∩Var(t) =
{x1, . . . , xn} and therefore

σs↓πsσ[Var(s) ∩ Var(t)] = σt↓πtσ[Var(s) ∩ Var(t)]. (3.12)
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By using Equation (3.12), we immediately have that ω[Var(t)] = σt↓πtσ[Var(t)].

We have that sω = s(ω[Var(s)]) = s(σs↓πsσ) =R (sσs)↓πsσ. Similarly, tω = t(ω[Var(t)]) =
t(σt↓πtσ) =R (tσt)↓πtσ. By choice of σ (it unifies sσs↓πs and tσt↓πt) we have that sσs↓πsσ =
tσt↓πtσ.

As sω =R sσs↓πsσ = tσt↓πtσ =R tω, we have that sω =R tω. But R implements E and
therefore sω =E tω.

3. Σ is complete, i.e. for any substitution τ such that sτ =E tτ , there exist ω ∈ Σ and γ such
that τ [Var(s, t)] =E ωγ[Var(s, t)].

Let τ be an arbitrary substitution such that sτ =E tτ . As R implements E, we have that
sτ↓ = tτ↓.

By the definition of a strongly complete set of variants, we have that there exist σs ∈
Variants(s) and τs such that

sτ↓ = sσs↓τs and τ↓[Var(s)] = σs↓τs[Var(s)].

Analogously, there exist σt ∈ Variants(t) and τt such that

tτ↓ = sσt↓τt and τ↓[Var(t)] = σt↓τt[Var(t)].

Let πs and πt be the substitutions used in the definition of Σ. Let θ = π−1
s τs[Xs]⊎π

−1
t τt[Xt].

We will show that θ unifies the term tuple(sσs↓πs, x1σs↓πs, . . . , xnσs↓πs) with the term
tuple(tσt↓πt, x1σt↓πt, . . . , xnσt↓πt).

Indeed, we have that sσs↓πsθ = sσs↓πsπ
−1
s τs = sσs↓τs = sτ↓. Similarly, tσt↓πtθ =

tσt↓πtπ
−1
t τt = tσt↓τt = tτ↓. But sτ↓ = tτ↓ and therefore sσs↓πsθ = tσt↓πtθ. This shows

that θ unifies the elements on the first position in the two tuples.

For the other elements, let xi ∈ Var(s) ∩ Var(t) = {x1, . . . , xn} be an arbitrary variable.
We have that xiσs↓πsθ = xiσs↓πsπ

−1
s τs = xiσs↓τs = xiτ↓. Analogously, xiσt↓πtθ = xiτ↓.

Therefore θ unifies the elements on the others positions in the two tuples as well.

As θ unifies tuple(sσs↓πs, x1σs↓πs, . . . , xnσs↓πs) and tuple(tσt↓πt, x1σt↓πt, . . . , xnσt↓πt), it
follows that the two terms have a most general unifier σ of which θ is an instance: θ = σθ′.

Let γ = θ′ and let
ω = σs↓πsσ[Var(s) \ Var(t)] ⊎

σs↓πsσ[Var(s) ∩ Var(t)] ⊎
σt↓πtσ[Var(t) \ Var(s)].

By the definition of Σ, we have that ω ∈ Σ. We will show that τ↓[Var(s, t)] = ωγ[Var(s, t)].

Indeed, let x ∈ Var(s) be an arbitrary variable. We have that xωγ = x(σs↓πsσ[Var(s)])θ′ =
xσs↓πsσθ

′ = xσs↓πsθ = xσs↓πsπ
−1
s τs = xσs↓τs = xτ↓. Analogously, if x ∈ Var(t), we have

that xωγ = xτ↓.

As xωγ = xτ↓ for any x ∈ Var(s) ∪ Var(t), we have that ωγ[Var(s, t)] =E τ [Var(s, t)]. As
τ was chosen arbitrarily, it follows that Σ is a complete set of equational unifiers of s and t.

We have shown that Σ is a finite (first item), complete set (third item) of E-unifiers (second
item) of s and t.

Theorem 3.3 shows that any equational theory that can be implemented by term rewriting
system having the strong finite variant property is finitary. Furthermore, it shows how a complete
set of unifiers of two terms can be effectively constructed from strongly complete sets of variants
of the terms in question. As an immediate corollary, we have that convergent optimally reducing
equational theories are finitary and that finite complete sets of unifiers are effectively constructible.
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3.7 Conclusion and Tool Support

We have created a prototype implementation of the algorithm in Section 3.5 for computing strongly
complete sets of variants in the SubVariant tool [48].

The SubVariant tool is written in OCaml. The goal of the tool is to demonstrate the
implementation of the algorithm and it was not designed with efficiency in mind. In particular,
the implementation of the algorithm used to compute the most general unifier takes exponential
time in the worst case.

The tool receives as input a term rewriting system R and a term t and it computes a finite
set of variants of t with respect to the rewrite system R. If the rewrite system is convergent and
optimally reducing, the computed set is guaranteed to be a strongly complete set of variants of t.
For other convergent rewrite systems (that are not optimally reducing) the set of variants is sound
(due to the soundness of the narrowing rule) but it is not in general complete, since the narrowing
rule is only guaranteed to be complete when the term rewriting system is optimally reducing.

In addition to computing strongly complete sets of variants, the tool also can also compute
sets of unifiers for an equational unification problem. Again, if the underlying rewrite system is
optimally reducing, the result is guaranteed to be a complete set of unifiers for the given equation.

In our experiments, the tool SubVariant finished instantaneously on small, hand chosen
examples. However, it can be made to take exponential time by using specially crafted examples,
since the number of variants of a term can be exponential, as shown in the following example.

Example 3.7. Let t = tuple(dec(x1, y1), . . . , dec(xn, yn)) be a term and consider the following
subterm convergent rewrite system R = {dec(enc(x, y), y) → x} (R is optimally reducing as
well). The symbol tuple is a free symbol of arity n.

In any strongly complete set of variants of t, there must be a variant for every possible choice
of success or failure of the decryption operations dec(xi, yi) (for 1 ≤ i ≤ n). Therefore, any
strongly complete set of variants of t will have size at least 2n.

The equational unification algorithm for two terms s and t will create a complete set of unifiers
that is of size at most |Variants(s)| × |Variants(t)|, since at most an equational unifier is added
for each pair of strong variants of s and t. Therefore, the equational unification algorithm will
introduce at most a quadratic blow-up compared to the algorithm for finding strongly complete
set of variants.

In general, there is no guarantee that the strongly complete set of variants computed by the
algorithm in Section 3.5 is minimal in the sense that any strict subset of it is not strongly complete.
However, it is easy to obtain minimal strongly complete sets of variants by a post-processing step
that removes redundant variants.

Similarly, there is no guarantee that the complete set of equational unifiers found by the
algorithm in Section 3.6 is minimal but can be rendered minimal by a post-processing step.

As future work, it would be interesting to study the notion of SFVP in the presence of an
equational theory such as AC, to obtain algorithms for finding strongly complete sets of variants
and complete sets of unifiers modulo such a theory and to apply these algorithms in the verification
of security protocols.
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Chapter 4

A Decision Procedure for Static
Equivalence

4.1 Introduction

We have seen in Chapter 1 that cryptographic protocols are small distributed programs that make
use of cryptographic primitives such as encryption and digital signatures to communicate securely
over a network. We have also shown that it is essential to gain as much confidence as possible in
their security because insecurity can have important negative consequences.

Symbolic methods have been developed to analyze such protocols [12, 107, 118]. In these
approaches, one of the most important aspects is to be able to reason about the knowledge of
the attacker. Traditionally, the knowledge of the attacker is expressed in terms of deducibility
(e.g. [118, 39]). A message s (intuitively the secret) is said to be deducible from a set of messages ϕ,
if an attacker is able to compute s from ϕ. To perform this computation, the attacker is allowed,
for example, to decrypt deducible messages by deducible keys.

However, deducibility is not always sufficient. Consider for example the case where a protocol
participant sends over the network the encryption of one of the constants “yes” or “no” (e.g.
the value of a vote). Deducibility is not the right notion of knowledge in this case, since both
possible values (“yes” and “no”) are indeed “known” to the attacker. In this case, a more adequate
form of knowledge is indistinguishability (e.g. [2]): is the attacker able to distinguish between two
transcripts of the protocol, one running with the value “yes” and the other one running with the
value “no”?

4.1.1 Related Work

Many decision procedures have been proposed for deducibility (e.g. [39, 8, 100, 40]) under a variety
of equational theories modelling encryption, digital signatures, exclusive or, and homomorphic
operators. Several papers are also devoted to the study of static equivalence. Most of these
results introduce a new procedure for each particular theory and even in the case of the general
decidability criterion given in [2, 58], the algorithm underlying the proof has to be adapted for each
particular theory, depending on how the criterion is fulfilled. A combination result was obtained
in [13]: if deduction and static equivalence are decidable for two disjoint equational theories, then
deduction and static equivalence are also decidable for the union of the two theories.

The first generic algorithm that has been proposed handles subterm convergent equational the-
ories [2] and covers the classical theories for encryption and signatures. This result is encompassed
by the recent work of Baudet et al. [21, 22] in which the authors propose a generic procedure that
works for any convergent equational theory, but which may fail or not terminate. This procedure
has been implemented in the YAPA tool [20] and has been shown to terminate without failure in
several cases (e.g. subterm convergent theories and blind signatures). However, due to its simple
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representation of deducible terms (represented by a finite set of ground terms), the procedure fails
on several interesting equational theories like the theory of trapdoor commitments. Our represen-
tation of deducible terms overcomes this limitation by including terms with variables which can
be substituted by any deducible terms. Independently of our work, specific decision procedures
for the theory of trapdoor commitment and that of reencryption have been presented in [24], but
have not been implemented.

Another tool that can be used to check static equivalence is ProVerif [25, 27], although this
tool is overkill in the sense that it was designed to handle a more general problem: observational
equivalence of two processes. ProVerif can handle various equational theories and analyze security
protocols under active adversaries but termination is not guaranteed in general and the tool
performs safe approximations.

4.1.2 Contribution

In this chapter, we present a decision procedure for checking static equivalence under certain
equational theories. Static equivalence models indistinguishability of two sequences of messages.
Intuitively, this notion does not take into account the dynamic behavior of the protocol. Nev-
ertheless, in order to establish that two dynamic behaviors of a protocol are indistinguishable,
an important subproblem is to establish indistinguishability between the sequences of messages
generated by the protocol [118, 3]. We will come back to the dynamic behavior of protocols in
Chapter 5.

Static equivalence also plays an important role in the study of guessing attacks (e.g. [56, 19]), as
well as for anonymity properties in e-voting protocols (e.g. [72, 17]). This was actually the starting
point of this work. During the study of e-voting protocols, we came across several equational
theories for which we needed to show static equivalence while no decision procedure for deduction
or static equivalence existed.

Our procedure is based on modeling the frames into first-order Horn clauses which we describe
in Section 4.2. We then present a saturation strategy (Section 4.3) for the set of Horn clauses such
that static equivalence of two frames can easily be checked from the saturated sets of Horn. We
prove that the saturation process is sound and complete in Section 4.4. We show how to decide
static equivalence and the intruder deduction problem from the saturated knowledge base(s) in
Section 4.5.

Both static equivalence and the intruder deduction problem are undecidable, even when the
equational theory is convergent [2]. Therefore, our saturation procedure does not always terminate.
In Section 4.6, we illustrate examples of non-termination and we identify several useful (classes
of) equational theories where it does terminate.

As a byproduct we obtain an algorithm for the intruder deduction problem, namely the problem
of deciding if a message can be computed by the intruder from a given set of messages.

This chapter is based on work that has been published [50, 51]. The algorithms described here
have been implemented in the tool KiSs [45] that we discuss in Section 4.7. We conclude and
present possible future work in Section 4.8

Our method extends previous work [2] most notably by providing a decision procedure for an
equational theory modeling trap-door commitment. This equational theory is particularly relevant
to voting protocols, where it is used to provide forms of coercion-resistance [72]. However, none of
the previous work provided a decision procedure for static equivalence in the case of this equational
theory.

Example 4.1. As a running example for this section we will consider the rewrite system

Rmal = { dec(enc(x, y), y) → x
mal(enc(x, y), z) → enc(z, y)},

modeling a hypothetical malleable encryption algorithm that allows one to obtain via the
mal function symbol the encryption of any known term with an unknown key, as long as
a prior encryption with that key is available. While such an encryption algorithm would
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be too far-fetched to be used in practice, this rewrite system allows us to illustrate our
procedure. In particular, the theory cannot be handled by current procedures [20], but it is
simple to present and it presents the same issue as more practical theories such as trapdoor
commitment.

We will consider the frame ϕ1 = {w1 7→ enc(a, k)}, where a, k ∈ N are private names and
the frame ϕ2 = {w1 7→ enc(b, k)} where b ∈M is a public name. The two frames represent
two runs of a protocol: in the first run, the protocol outputs on the network the encryption
of a private name a with a private key k and in the second run the protocol outputs the
encryption of a public name b with the private key k. The intruder can tell the difference
between the two runs as follows:

1. apply the function symbol mal to the parameter w1 (which will “evaluate” to enc(a, k)
or to enc(b, k), depending on the run) and to the term b (in the first run, the resulting
term will be mal(enc(a, k), b) =Rmal

enc(b, k) and in the second run mal(enc(b, k), b) =Rmal

enc(b, k)),

2. compare the resulting term to w1: if they are equal then we are in the second run;
otherwise in the first.

The fact that the intruder can tell the difference between the two frames is because the two
frames are not statically equivalent. This follows because mal(w1, b) = w1 is a test that
holds in ϕ2 ((mal(w1, b) = w1)ϕ2) but not in ϕ1 ((mal(w1, b) 6= w1)ϕ1).

Note that the above inequivalence is due to the choice of the rewrite system. Had we
chosen to compare the two frames ϕ1 and ϕ2 with respect to the classical rewrite system
R = {dec(enc(x, y), y) → x}, we would have found that ϕ1 is statically equivalent to ϕ2.
The fact that the two frames are not statically equivalent with respect to Rmal is due to the
additional power given to the intruder by the mal function symbol.

4.2 Modeling Frames as Sets of Horn Clauses

As we have already announced, our procedure is based on a modeling of frames into first order
Horn clauses. A refinement of resolution described in Section 4.3 is then applied to the set of Horn
clauses in order to obtain an equivalent saturated set of Horn clauses that we called solved. The
set of solved Horn clauses is equivalent in a sense made precise by Theorem 4.1 to the initial set
of Horn clauses. However, starting from the solved clauses associated to two frames, it is easy to
decide static equivalence as shown in Section 4.5. In order to obtain termination of the saturation
procedure (shown in Section 4.6), our refinement of resolution makes heavy use of the form of
redundancy elimination described in Section 4.3.

We now show how we model frames as first order Horn clauses.

Predicates. To construct the Horn clauses, we consider the usual first-order logic connectives,
with two additional binary predicates, k and i. The k(R, t) predicate intuitively denotes that R
is a recipe for t while the i(R,R′) predicate intuitively denotes that R and R′ are recipes for the
same term.

We say that a substitution σ is well-formed with respect to a formula if tσ does not contain
any parameter wi ∈ W for any term t appearing as the second argument of a k predicate in the
formula and if Rσ does not contain any private name n ∈ N for any term R appearing as the first
argument of a k predicate or as an argument of the i predicate. A formula is well-formed if the
identity substitution is well-formed with respect to the formula.

Well-formed first-order formulas are interpreted over frames ϕ and well-formed valuations σ.
(i.e. well-formed substitutions associating a ground term to each free variable in the formula).

The semantics of the two predicates for ground arguments is given in Figure 4.1. The semantics
of the first-order connectives ∧,∨,¬ are defined as usual. The semantics of the quantifiers is
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defined as usual, but restricting the domain of the variables such that the resulting valuation
is well-formed. A well-formed formula is valid in a frame if it is true when interpreted over all
well-formed valuations. From hereon, we will assume that all formulas are well-formed.

Predicates:
k(R, t) (intruder Knowledge predicate)
i(R,R′) (intruder Identity predicate)

Semantics:
ϕ |= k(R, t) if ϕ ⊢R t
ϕ |= i(R,R′) if (R = R′)ϕ

Figure 4.1: Predicates (for ground terms t, R)

The “intruder knowledge predicate” k(R, t) intuitively states that R is a recipe for t in the
frame ϕ and the “intruder identity predicate” i(R,R′) intuitively states that R = R′ is an identity
that holds in the frame ϕ (i.e. (R = R′)ϕ).

Example 4.2. Continuing the previous example, the ground formula k(w1, enc(a, k)) is true
in the frame ϕ1 but not in the frame ϕ2. The formula k(b, b) is true in both frames, since b
is a public name and is recipe of itself in any frame. The formula k(a, a) is not well-formed
since a is a private name and it appears as a first argument of the k predicate.

The formula ∀X,Y.(k(mal(X,Y ),mal(x, y)) ⇐ k(X,x) ∧ k(Y, y)) is true in all frames (The
symbol “⇐” denotes implication) since if X is a recipe for x and Y is a recipe of y then
mal(X,Y ) will be a recipe for mal(x, y).

The formula i(w1,mal(w1, b)) is true in ϕ2 but not in ϕ1 (this is the reason that the two
frames are not statically equivalent). The formula i(w1,mal(w1, a)) is not well-formed since
the private name a appears in one of the arguments of the i predicate.

Statements. Our algorithm works with a particular class of Horn clauses that we call statements.

Definition 4.1. A statement is a Horn clause of the form

f =
(

k(R, t) ⇐ k(X1, t1), . . . , k(Xn, tn)
)

or
f =

(

i(R,R′) ⇐ k(X1, t1), . . . , k(Xn, tn)
)

such that:

1. Var(R,R′, X1, . . . , Xn) ∩ Var(t, t1, . . . , tn) = ∅,

2. Var(t) ⊆ Var(t1, . . . , tn) and

3. X1, . . . , Xn are distinct variables.

In the first case in the above definition, we call f a deduction statement and in the second case
we call f an identity statement or an equational statement. We say that a statement is solved if
ti ∈ X for all 1 ≤ i ≤ n.

A statement is well-formed if it is not a deduction statement, or if it is a deduction statement
that is not solved, or if it is a deduction statement that is solved and t 6∈ X . In other words, a
statement is not well-formed only if it is a solved deduction statement with t ∈ X being a variable.

As statements are Horn clauses, we identify them up to bijective renaming of variables and up
to permutation of the antecedents. In inferences rules that use statements, we assume as expected
that the variables in the statements are renamed to fresh variables.
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Example 4.3. The statement k(w1, enc(a, k)) ⇐ (a Horn clause with an empty body) is true
in ϕ1 but not in ϕ2. The statement i(w1, X) ⇐ k(X, enc(b, k)) is true in ϕ2 but not in ϕ1.
The statement i(X,Y ) ⇐ k(X,x), k(Y, x) is true of all frames.

4.3 Saturation Procedure

Derivable statements. Let K be a set of statements and t, R be terms.

Definition 4.2. We say that the predicate k(R, t) is derivable from K (and we write k(R, t) ∈
deriv(K)) if:

1. either t and R are the same variable (t = R and t ∈ X)

2. or there exist a statement f =
(

k(R0, t0) ⇐ k(X1, t1), . . . , k(Xn, tn)
)

∈ K, some terms

R1, . . . , Rn and a substitution σ with Dom(σ) ⊆ Var(t0) such that t = t0σ, R = R0{Xi 7→
Ri}1≤i≤n and k(Ri, tiσ) ∈ deriv(K) for 1 ≤ i ≤ n.

If K is a set of well-formed solved statements, there is a simple recursive algorithm that, given
K and t, tests if there exists a term R such that k(R, t) ∈ deriv(K) and constructs such an R if
it exists. Termination is ensured by the fact that |tiσ| < |t| for all 1 ≤ i ≤ n. Note that using
memoization the algorithm works in polynomial time.

Example 4.4. Consider the following set K of statements (all of which are true in the frame
ϕ2 defined in the previous examples):

(

k(w1, enc(b, k)) ⇐
)

(f1)
(

k(b, b) ⇐
)

(f2)
(

k(enc(Y1, Y2), enc(y1, y2)) ⇐ k(Y1, y1), k(Y2, y2)
)

(f3)

We have that k(enc(w1, b), enc(enc(b, k), b)) is derivable from K. This follows easily by
instantiating the two antecedents of f3 with f1 and f2, respectively.

Equational consequences. Given a finite set K of solved equational statements and terms
M,N , we write K |= i(M,N) if i(M,N) is a consequence, in the usual first order theory of
equality (for the binary symbol i) of

{i(Rσ,R′σ) |
(

i(R,R′) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

∈ K} where σ = {Xi 7→ xi}1≤i≤k.

Note that it may be the case that xi = xj for some i 6= j (whereas Xi 6= Xj whenever i 6= j by
the definition of a statement).

Canonical form. We define for each statement f its canonical form f⇓, obtained by first
applying Rule Rename as much as possible and then Rule Remove as much as possible. The
idea is to ensure that each variable xi occurs at most once in the body and to get rid of those
variables that do not occur in t. This will be particularly useful to characterize the form of solved
statements when we prove termination of the saturation procedure. Unsolved statements and
equational statements are kept unchanged by canonicalization.

Rename

(

k(R, t) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

{i, j} ⊆ {1, . . . , n} j 6= i and xj = xi
(

k(R{Xi 7→ Xj}, t) ⇐ k(X1, x1), . . . , k(Xi−1, xi−1), k(Xi+1, xi+1), . . . , k(Xk, xk)
)
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Remove

(

k(R, t) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

xi 6∈ Var(t)
(

k(R, t) ⇐ k(X1, x1), . . . , k(Xi−1, xi−1), k(Xi+1, xi+1), . . . , k(Xk, xk)
)

Example 4.5. Consider the statement

f =
(

k(dec(enc(X1, X2), X3), x1) ⇐ k(X1, x1), k(X2, y), k(X3, y)
)

.

To find the canonical form f⇓ of f , we start by applying Rule Rename, after which we
obtain the statement:

(

k(dec(enc(X1, X2), X2), x1) ⇐ k(X1, x1), k(X2, y)
)

.

We continue with the application of Rule Remove, after which we obtain the canonical
form:

f⇓ =
(

k(dec(enc(X1, X2), X2), x1) ⇐ k(X1, x1)
)

.

Note that it is important that Rule Remove is applied only after all instances of Rule Rename

where treated. Otherwise, if a variable xi = xj does not appear in the head of the statement, the
fact that the recipes Xi and Xj must be recipes for the same term would be lost and therefore we
would make an unsound inference.

Update. We group statements into knowledge bases.

Definition 4.3. A knowledge base is a set K set of well-formed statements in canonical form.

When adding a statement to a knowledge base, we perform some redundancy checks. The
redundancy checks are performed through the update function.

Definition 4.4 (update). Given a deduction statement f =
(

k(R, t) ⇐ k(X1, t1), . . . , k(Xn, tn)
)

and a knowledge base K, the update of K by f , written K ⊕ f , is defined as:



































K ∪ {f⇓} if f is solved and k(R, t) 6∈ deriv(K) useful statement

for any R

K ∪
{(

i(R′, Rσ) ⇐ ∅
)}

if f is solved and R′ is such that redundant statement

k(R′, t) ∈ deriv(K) and σ = {X1 7→ t1, . . . , Xn 7→ tn}

(K ∪ {f}) if f is not solved unsolved statement

Given an equational statement f and a knowledge base K, the update K ⊕ f of K by f is
simply K ∪ {f}.

The choice of the recipe R′ in the redundant statement case is defined by the implementation.
While this choice does not influence the correctness of the saturation procedure, it might influence
its termination as we will see later.

Note that the result of updating a knowledge base by a (possibly not well-formed and/or not
canonical) statement is again a knowledge base. Statements that are not well-formed will be
captured by the redundant statement case, which adds an equational statement instead.

The role of the update function is to add statements to the knowledge base, while performing
some redundancy elimination. If k(R, t) 6∈ deriv(K) for any R, then the statement to be added
clearly provides interesting information and it is added to the knowledge base.

If the statement to be added is unsolved, it is added anyway (because it might prove useful
later on).

If the statement to be added is solved and k(R, t) ∈ deriv(K) for some R, then this deduction
statement does not provide new information about deducible terms, but it might provide a new
recipe for terms we already know deducible. Therefore, an equational statement is added instead,
stating that the two recipes are equal provided the antecedents are satisfied.
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Example 4.6. We consider the knowledge base K containing the following statements:

(

k(w1, enc(b, k)) ⇐
)

(f1)
(

k(b, b) ⇐
)

(f2)
(

k(enc(Y1, Y2), enc(y1, y2)) ⇐ k(Y1, y1), k(Y2, y2)
)

(f3)

We have already seen that k(enc(w1, b), enc(enc(b, k), b)) ∈ deriv(K). Updating the knowl-

edge base by
(

k(w2, enc(enc(b, k), b)) ⇐
)

would result in no modification of the set of

deduction statements, since we already know that k(R′, enc(enc(b, k), b)) ∈ deriv(K) (with

R′ = enc(w1, b)). However, a new equational statement
(

i(w2, enc(w1, b)) ⇐
)

would be

added instead.

Initialisation. Given a frame ϕ = {w1 7→ t1, . . . , wn 7→ tn}, our procedure starts from an initial
knowledge base associated to ϕ and defined as follows:

Ki(ϕ) = ∅
⊕

1≤i≤n

(

k(wi, ti) ⇐
)

⊕

n∈(Names(ϕ)∩M)

(

k(n, n) ⇐
)

⊕

f∈F

(

k(f(X1, . . . , Xk), f(x1, . . . , xk)) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

where k = ar(f) is the arity of f

Example 4.7. We will continue with the frames ϕ1 = {w1 7→ enc(a, k)}, where a ∈ N is
a private name and ϕ2 = {w1 7→ enc(b, k)} with k ∈ N being a private name and b ∈ M
being a public name defined in the previous examples. The knowledge base Ki(ϕ2) is the
following set of statements:

(

k(w1, enc(b, k)) ⇐
)

(f1)
(

k(b, b) ⇐
)

(f2)
(

k(enc(Y1, Y2), enc(y1, y2)) ⇐ k(Y1, y1), k(Y2, y2)
)

(f3)
(

k(dec(Y1, Y2), dec(y1, y2)) ⇐ k(Y1, y1), k(Y2, y2)
)

(f4)
(

k(mal(Y1, Y2),mal(y1, y2)) ⇐ k(Y1, y1), k(Y2, y2)
)

(f5)

Saturation. The idea of the saturation procedure is to keep adding valid statements to the
knowledge base such as to produce:

1. a set of solved deduction statements which have the same set of syntactic consequences as
the initial set of deduction statements modulo the equational theory and

2. a set of solved equational statements whose consequences are exactly the equations holding
in the frame.

The main part of this procedure consists in saturating the initial knowledge base Ki(ϕ) by
means of the transformation rules described in Figure 4.2.
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Narrowing

f =
(

k(M,C[t]) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

∈ K

l→ r ∈ R, t 6∈ X , σ = mgu(l, t) and Var(f) ∩ Var(l) = ∅.

K =⇒ K ⊕ f0

where f0 =
(

k(M, (C[r])σ) ⇐ k(X1, x1)σ, . . . , k(Xk, xk)σ
)

.

F-Solving

f1 =
(

k(M, t) ⇐ k(X,u), k(X1, t1), . . . , k(Xk, tk)
)

∈ K

f2 =
(

k(N, s) ⇐ k(Y1, y1), . . . , k(Yℓ, yℓ)
)

∈ K

with u 6∈ X , σ = mgu(s, u) and Var(f1) ∩ Var(f2) = ∅.

K =⇒ K ⊕ f0

where f0 =
(

k(M{X 7→ N}, tσ) ⇐ {k(Xi, tiσ)}1≤i≤k ∪ {k(Yi, yiσ)}1≤i≤ℓ

)

.

Unifying

f1 =
(

k(M, t) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

∈ K f2 =
(

k(N, s) ⇐ k(Y1, y1), . . . , k(Yℓ, yℓ)
)

∈ K

with σ = mgu(s, t) and Var(f1) ∩ Var(f2) = ∅.

K =⇒ K ∪ {f0}

where f0 =
(

i(M,N) ⇐ {k(Xi, xiσ)}1≤i≤k ∪ {k(Yi, yiσ)}1≤i≤ℓ

)

.

E-Solving

f1 =
(

i(U, V ) ⇐ k(Y, s), k(X1, t1), . . . , k(Xk, tk)
)

∈ K

f2 =
(

k(M, t) ⇐ k(Y1, y1), . . . , k(Yℓ, yℓ)} ∈ K

with s 6∈ X , σ = mgu(s, t) and Var(f1) ∩ Var(f2) = ∅.

K =⇒ K ∪ {f0}

where f0 =
(

i(U{Y 7→M}, V {Y 7→M}) ⇐ {k(Xi, tiσ)}1≤i≤k ∪ {k(Yi, yiσ)}1≤i≤ℓ

)

.

Figure 4.2: Saturation rules

The rule Narrowing is designed to apply a rewriting step on an existing deduction statement.
Intuitively, this rule allows us to get rid of the equational theory and nevertheless ensures that
the set of derivable predicates remains complete. This rule might introduce unsolved antecedents
in the statement. The rule F-Solving is then used to instantiate the unsolved antecedents of
an existing deduction statement. Unifying and E-Solving add equational statements which
memorize when different recipes for the same term exist.

Note that this procedure may not terminate and that the fixed point may not be unique (the
order in which new statements are added by the ⊕ operation matters).

We write =⇒∗ for the reflexive and transitive closure of =⇒.

Example 4.8. Continuing Example 4.7, we illustrate the saturation procedure. We can
apply the rule Narrowing on the statement f4 and the rewrite rule dec(enc(x, y), y) → x,
as well as on the statement f5 and the rewrite rule mal(enc(x, y), z) → enc(z, y), thereby
adding the statements:

(

k(dec(Y1, Y2), x) ⇐ k(Y1, enc(x, y)), k(Y2, y)
)

(f6)
(

k(mal(Y1, Y2), enc(z, y)) ⇐ k(Y1, enc(x, y)), k(Y2, z)
)

(f7)

The statements f6 and f7 are not solved and we can apply the rule F-Solving with f1,
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adding the statements:

(

k(dec(w1, Y2), b) ⇐ k(Y2, k)
)

(f8)
(

k(mal(w1, Y2), enc(z, k)) ⇐ k(Y2, z)
)

(f9)

Rule Unifying can be used on statements f1/f3, f3/f9 as well as f1/f9 to add equational

statements. This third case allows one to obtain f10 =
(

i(w1,mal(w1, Y2)) ⇐ k(Y2, b)
)

which can be solved (using E-Solving with f2) to obtain f11 =
(

i(w1,mal(w1, b)) ⇐
)

,

etc. When reaching a fixed point, f9, f11 and the statements in Init(ϕ2) are some of the
solved statements contained in the knowledge base.

4.4 Soundness and Completeness

In this section we prove the soundness and completeness of the saturation procedure:

Theorem 4.1. Let ϕ be a frame and K be a saturated knowledge base such that Init(ϕ) =⇒∗ K.

Let t ∈ T (F) and let K+ = K ∪ {
(

k(n, n) ⇐
)

| n ∈ Names(t) \ N}. Then

1. for all terms M we have that:

ϕ ⊢M t iff there exists N such that K|solved |= i(M,N) and k(N, t↓) ∈ deriv(K+|solved)

2. and for all terms M,N we have that

(M = N)ϕ iff K|solved |= i(M,N).

We begin by showing the soundness of the saturation procedure.

4.4.1 Soundness

We first show that the update operator (⊕) is sound:

Lemma 4.1. Let ϕ be a frame and K be a knowledge base such that every statement in K holds
in ϕ. Let f0 be a statement that holds in ϕ. Then every statement in K ⊕ f0 holds in ϕ.

Proof. We immediately have that if f holds in ϕ, then f⇓ holds in ϕ. Therefore, if we are in the
useful fact or unsolved fact cases, the lemma obviously holds.

We also have that if k(R, t) ∈ deriv(K), then k(R, t) is valid in ϕ. Therefore, in the redundant

statement case, we have that R′ and Rσ are recipes for the same term t. Therefore, i(R′, Rσ) is
also valid in ϕ.

Next we show that any statement in a knowledge base obtained by saturating the initial
knowledge base holds in the frame.

Lemma 4.2. Let ϕ be a frame and K be a knowledge base such that Init(ϕ) =⇒∗ K. Then every
statement f ∈ K holds in ϕ.

Proof. By induction on the derivation Init(ϕ) =⇒∗ K.

Base case: We have that K = Init(ϕ). To conclude, we have to show that the statements that
are added to the initial knowledge base hold in ϕ.
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There are three kind of deduction statements that can be added to the knowledge base: the

statements that come from ϕ, those of the form
(

k(n, n) ⇐
)

for n ∈ Names(ϕ) \N and those of

the form:
(

k(f(X1, . . . , Xk), f(x1, . . . , xk)) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

.

It is easy to see that all these statements hold in ϕ and we can conclude by Lemma 4.1.

Induction step:
In such a case, we have Init(ϕ) =⇒∗ K ′ =⇒ K. We perform a case analysis on the inference

rule used in K ′ =⇒ K. For each rule, we show that the resulting statements f0 holds in ϕ and we
conclude by relying on Lemma 4.1.

Rule Narrowing: Let f =
(

k(M,C[t]) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

be the deduction statement,

l → r ∈ R be the rewrite rule and σ = mgu(l, t) be the substitution involved in this step. Let

f0 =
(

k(M, (C[r])σ) ⇐ k(X1, x1σ), . . . , k(Xk, xkσ)
)

be the resulting deduction statement.

We show that f0 holds in ϕ. Let τ be a substitution such that ϕ ⊢Mi xiστ for 1 ≤ i ≤ k. Since
f holds in ϕ, we have that ϕ ⊢M

′

(C[t])στ for M ′ = M{X1 7→ M1, . . . , Xk 7→ Mk}. It is easy to
see that the following equalities are satisfied:

(C[t])στ = (C[l])στ =R (C[r])στ

Therefore ϕ ⊢M
′

(C[r])στ , and thus f0 holds in ϕ.

Rule F-Solving: Let f1 =
(

k(M, t) ⇐ k(X0, t0), . . . , k(Xk, tk)
)

with t0 6∈ X and f2 =
(

k(N, s) ⇐

k(Y1, y1), . . . , k(Yℓ, yℓ)
)

be the two deduction statements and σ = mgu(s, t0) be the substitution

involved in this step. Let f0 be the resulting deduction statement:

f0 =
(

k(M{X0 7→ N}, tσ) ⇐ k(X1, t1σ), . . . , k(Xk, tkσ), k(Y1, y1σ), . . . , k(Yℓ, yℓσ)
)

.

We show that f0 holds in ϕ. Let τ be a substitution such that ϕ ⊢Mi tiστ for 1 ≤ i ≤ k and
ϕ ⊢Nj yjστ for 1 ≤ j ≤ ℓ). Since f2 holds in ϕ, we have that ϕ ⊢N

′

sστ where N ′ = N{Y1 7→

N1, . . . , Yℓ 7→ Nℓ}. Since f1 holds in ϕ and sστ = t0στ , we deduce that ϕ ⊢M
′′

tστ where

M ′′ = M{X0 7→ N ′, X1 7→M1, . . . , Xk 7→Mk}
= (M{X0 7→ N}){X1 7→M1, . . . , Xk 7→Mk, Y1 7→ N1, . . . , Yℓ 7→ Nℓ}.

This allows us to conclude that f0 holds in ϕ.

Rule Unifying: Let the statement f1 =
(

k(M, t) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

and the statement

f2 =
(

k(N, s) ⇐ k(Y1, y1), . . . , k(Yℓ, yℓ)
)

be the two solved deduction statements and σ = mgu(s, t)

be the substitution involved in this step Let f0 be the resulting equational statement:

f0 =
(

i(M,N) ⇐ k(X1, x1σ), . . . , k(Xk, xkσ), k(Y1, y1σ), . . . , k(Yℓ, yℓσ)].

We show that f0 holds in ϕ. Let τ be a substitution such that ϕ ⊢Mi xiστ for all 1 ≤ i ≤ k and
ϕ ⊢Nj yjστ for all 1 ≤ j ≤ ℓ. Since f1 and f2 hold in ϕ and sστ = tστ , we deduce that ϕ ⊢M

′

tστ
for M ′ ∈ {M{X1 7→ M1, . . . , Xk 7→ Mk}, N{Y1 7→ N1, . . . , Yk 7→ Nℓ}. This allows us to conclude
that f0 holds in ϕ.

Rule E-Solving: Let f1 =
(

i(U, V ) ⇐ k(Y, s), k(X1, t1), . . . , k(Xk, tk)
)

be the equational state-

ment and f2 =
(

i(N, t) ⇐ k(Y1, y1), . . . , k(Yℓ, yℓ)
)

be the solved deduction statement, and σ =

mgu(s, t) be the substitution involved in this step. Let f0 be the resulting equational statement:

f0 =
(

i(U{Y 7→ N}, V {Y 7→ N}) ⇐ k(X1, t1σ), . . . , k(Xk, tkσ), k(Y1, y1σ), . . . , k(Yℓ, yℓσ)
)

.
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We show that f0 holds in ϕ. Let τ be a substitution such that ϕ ⊢Mi tiστ for all 1 ≤ i ≤ k and
ϕ ⊢Nj yjστ for all 1 ≤ j ≤ ℓ. Since f2 holds in ϕ, we deduce that ϕ ⊢N

′

tστ for N ′ = N{Y1 7→

N1, . . . , Yℓ 7→ Nℓ}. Since sστ = tστ , we deduce that ϕ ⊢N
′

sστ , and by using the fact that f1
holds in ϕ we deduce that

(U{Y 7→ N ′, X1 7→M1, . . . , Xk 7→Mk} = V {Y 7→ N ′, X1 7→M1, . . . , Xk 7→Mk})ϕ.

Thus, f0 holds in ϕ.

Finally, we are ready to present the main soundness lemma:

Lemma 4.3 (soundness). Let ϕ be a frame and K be a knowledge base such that Init(ϕ) =⇒∗ K.

Let t,M,N be terms and let K+ = K ∪ {
(

k(n, n) ⇐
)

| n ∈ Names(t) \ N}. We have that:

1. k(M, t) ∈ deriv(K+) implies ϕ ⊢M t and

2. K |= i(M,N) implies (M = N)ϕ.

Proof. By Lemma 4.2 and because every f ∈ {
(

k(n, n) ⇐
)

| n ∈ Names(t) \ N} holds in ϕ, we

have that all facts in K+ hold in ϕ. To conclude, we show Points 1 and 2 stated in the Lemma.

1. Let M and t be such that k(M, t) ∈ deriv(K+). By definition of deriv, as t is ground, there

exists a solved deduction statement f0 =
(

k(M0, t0) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

∈ K+

such that t = t0σ for some substitution σ and k(Mi, xiσ) ∈ deriv(K+) for some Mi for all
1 ≤ i ≤ k and M = M0{X1 7→M1, . . . , Xk 7→Mk}. We show the result by induction on |t|.

Base case: |t| = 1. In such a case t is either a name or a constant. We have that k = 0, t0 = t
and M = M0. Since f0 holds in ϕ, we deduce that ϕ ⊢M0 t. This allows us to conclude.

Induction step. Note that |xiσ| < |t| and k(Mi, xiσ) ∈ deriv(K+), thus we can apply our
induction hypothesis on xiσ. We deduce that ϕ ⊢Mi xiσ and thus ϕ ⊢M t0σ = t since f0
holds in ϕ.

2. Let M and N be such that K |= i(M,N). To show that (M = N)ϕ, it is sufficient to
establish that

(M ′σ = N ′σ)ϕ where σ = {X1 7→ x1, . . . , Xk 7→ xk}

for every solved equational fact
(

i(M ′, N ′) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

∈ K. This follows

easily from Lemma 4.2.

4.4.2 Completeness

Let us now prove the completeness of the saturation procedure. First we show completeness with
respect to equational statements.

Lemma 4.4. Let K be a saturated knowledge base and f =
(

i(U, V ) ⇐ k(X1, t1), . . . , k(Xk, tk)
)

be an equational statement in K. For any substitution σ grounding for {t1, . . . , tk} such that
k(R′i, tiσ) ∈ deriv(K|solved) for some R′i for all 1 ≤ i ≤ k, we have that k(Ri, tiσ) ∈ deriv(K|solved)
for some Ri for all 1 ≤ i ≤ k and K|solved |= i(Uτ, V τ) where τ = {X1 7→ R1, . . . , Xk 7→ Rk}.

Proof. We show this result by induction on
∑k

i=1 |tiσ|. We distinguish two cases:
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1. f is a solved equational statement, i.e. t1, . . . , tk are variables (not necessarily distinct), say
x1, . . . , xk. In such a case, we have that

K|solved |= i(U{X1 7→ x1, . . . , Xk 7→ xk}, V {X1 7→ x1, . . . , Xk 7→ xk}).

We choose each Ri arbitrarily such that xi = xj implies Ri = Rj . Then, it is easy to
conclude.

2. f is an unsolved equational statement. In such a case, there exists tj such that tj 6∈ X .
Let us assume w.l.o.g. that j = 1. As k(R′1, t1σ) ∈ deriv(K|solved), we know that there

exist a solved deduction statement f1 =
(

k(R1, t1) ⇐ k(X1
1 , x

1
1), . . . , k(X1

ℓ , x
1
ℓ)
)

in K and a

substitution τ such that t1τ = t1σ and k(R′i, x
1
i τ) ∈ K|solved for all 1 ≤ i ≤ ℓ.

Let ρ = mgu(t1, t
1). Since K is saturated, by rule E-Solving , we have that the following

statement f2 is in K:

(

i(U{X1 7→ R1}, V {X1 7→ R1}) ⇐ k(X1
1 , x

1
1ρ), . . . , k(X1

ℓ , x
1
ℓρ), k(X2, t2ρ), . . . , k(Xk, tkρ)

)

.

Let σ′ be the substitution such that σ ∪ τ = ρσ′. As the deduction statement f1 is solved,
x11ρσ

′, . . . , x1ℓρσ
′ are strict subterms of t1ρσ′ = t1τ and

∑ℓ
i=1 |x

1
i ρσ

′| < |t1τ | = |t1σ|. Thus
we can apply our induction hypothesis on the equational statement f2 with the substitution
σ′. This allows us to obtain that there exist M1

1 , . . . ,M
1
ℓ ,M2, . . . ,Mk such that k(Mi, tiρσ

′ =
tiσ) ∈ deriv(K|solved) for all 2 ≤ i ≤ k and k(M1

i , x
1
i ρσ = x1σ) for all 1 ≤ i ≤ ℓ and the

following equation (⋆)

K|solved |= (i(U{X1 7→ R1}){X1
1 7→M1

1 , . . . , X
1
ℓ 7→M1

ℓ , X2 7→M2, . . . , Xk 7→Mk},
(V {X1 7→ R1}){X1

1 7→M1
1 , . . . , X

1
ℓ 7→M1

ℓ , X2 7→M2, . . . , Xk 7→Mk})

We choose R1 = R1{X1
1 7→ M1

1 , . . . , X
1
ℓ 7→ M1

ℓ } and R2 = M2, . . . , Rk = Mk. Thus, the
equation (⋆) can be rewritten as follows:

K|solved |= i(U{X1 7→ R1, . . . , Xk 7→ Rk}, V {X1 7→ R1, . . . , Xk 7→ Rk}).

This allows us to conclude.

Now we show that if the same term can be derived with two recipes then the equality between
the two statements is a consequence of the solved knowledge base.

Proposition 4.1 (completeness, equation). Let K be a saturated knowledge base, andM,N be two
terms such that k(M, t) ∈ deriv(K|solved) and k(N, t) ∈ deriv(K|solved) for some ground term t.
Then, we have that K|solved |= i(M,N).

Proof. By definition of k(M, t) ∈ deriv(K|solved) we know that there exist a substitution σ1 and

a deduction statement f1 =
(

k(M0, u0) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

in K such that u0σ1 = t,

k(Mi, xiσ1) ∈ deriv(K|solved) for all 1 ≤ i ≤ k and M0{Xi 7→Mi}1≤i≤k = M .
Similarly, by definition of k(N, t) ∈ deriv(K|solved) we know that there exist a substitution σ2

and a deduction statement f2 =
(

k(N0, v0) ⇐ k(Y1, y1), . . . , k(Yℓ, yℓ)
)

in K such that v0σ2 = t,

k(Nj , yjσ2) ∈ deriv(K|solved) for all 1 ≤ j ≤ ℓ and N0{Yj 7→ Nj}1≤i≤ℓ = N .

We prove the result by induction on |t|. As our knowledge base K is saturated, rule Unifying

must have been applied to the statements f1 and f2. Therefore, we have that there exists an
equational statement f3 ∈ K such that:

f3 =
(

i(M0, N0) ⇐ k(X1, x1σ), . . . , k(Xk, xkσ), k(Y1, y1σ), . . . , k(Yℓ, yℓσ)
)

.
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where σ = mgu(u0, v0).
Let σ′ be a substitution such that σ1 ∪ σ2 = σσ′. We can now apply Lemma 4.4 on f3 with

substitution σ′. We obtain that there exist R1, . . . , Rk and W1, . . . ,Wℓ such that k(Ri, xiσσ
′) ∈

deriv(K|solved) for all 1 ≤ i ≤ k and k(Wj , yjσσ
′) ∈ deriv(K|solved) for all 1 ≤ j ≤ ℓ and such that

K|solved |= i(M0δ,N0δ) (4.1)

where δ = {X1 7→ R1, . . . , Xk 7→ Rk, Y1 7→W1, . . . , Yℓ 7→Wℓ}.
As Mi and Ri (1 ≤ i ≤ k) are such that k(Mi, xiσ1) ∈ deriv(K|solved) and k(Ri, xiσσ

′) ∈
deriv(K|solved), and as x1σσ

′ = x1σ1 is a strict subterm of u0σ1 = t, we can apply the induction
hypothesis to obtain that K|solved |= i(Mi, Ri). In a similar way, we also deduce that K|solved |=
i(Nj ,Wj) for all 1 ≤ j ≤ ℓ. By replacing Wj by Mj and Ri by Ni in equation (4.1), we obtain our
conclusion.

We now need a helper lemma that shows that if a derivable term is instantiated with derivable
terms, the result is still derivable.

Lemma 4.5. Let K be a knowledge base and t be a term. Let σ be a grounding substitution for t. If
k(W, t) ∈ deriv(K) and k(Rx, xσ) ∈ deriv(K) for every x ∈ Var(t), then k(W ′, tσ) ∈ deriv(K)
where W ′ = W{x 7→ Rx}x∈Var(t).

Proof. We show this result by induction on |t|.
Base case: if |t| = 1.

• If t = x is a variable, as k(W, t) ∈ deriv(K), it follows that W = t = x. By hypothesis,
there exists Rx such that k(Rx, xσ) ∈ deriv(K). This allows us to conclude.

• If t is a name or a constant, then W ′ = W and tσ = t and we immediately conclude.

Induction case: |t| > 1.
As k(W, t) ∈ deriv(K), it follows that there exist a statement f ∈ K and a substitution τ such

that:

• f =
(

k(R, u) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

;

• t = uτ ;

• k(Ri, xiτ) ∈ deriv(K) for every 1 ≤ i ≤ k and W = R{X1 7→ R1, . . . , Xk 7→ Rk}.

We have that Var(u) = {x1, . . . , xk} and thus, xiτ is a strict subterm of uτ (1 ≤ i ≤ k).
Therefore, we can apply our induction hypothesis on each term xiτ with the substitution σ. For
each i such that 1 ≤ i ≤ k, we obtain that:

k(Wi, xiτσ) ∈ deriv(K) where Wi = Ri{x 7→ Rx}x∈Var(xiτ).

Note that since t = uτ and Var(u) = {x1, . . . , xk}, we have that Var(t) = Var({x1τ, . . . , xkτ}).
By using the statement f , we get that k(W ′′, uτσ) ∈ deriv(K) where

W ′′ = R{X1 7→ R1{x 7→ Rx}x∈Var(t), . . . , Xk 7→ Rk{x 7→ Rx}x∈Var(t)}
= (R{X1 7→ R1, . . . , Xk 7→ Rk}){x 7→ Rx}x∈Var(t)
= W{x 7→ Rx}x∈Var(t)

Let W ′ = W{x 7→ Rx}x∈Var(t). We have that k(W ′, uτσ) ∈ deriv(K) and since uτσ = tσ we
easily conclude.

We now show the completeness of the ⊕ operator with respect to solved statements.
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Lemma 4.6. Let f =
(

k(R, t) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

be a solved statement and K be a

knowledge base such that K⊕ f = K. Let σ be a substitution grounding for {x1, . . . , xk} such that
k(T ′i , xiσ) ∈ deriv(K|solved) for all 1 ≤ i ≤ k. Then there exist W and Ri for all 1 ≤ i ≤ k such
that:

• k(W, tσ) ∈ deriv(K|solved), and k(Ri, xiσ) ∈ deriv(K|solved) for every 1 ≤ i ≤ k;

• K|solved |= i(W,R{X1 7→ R1, . . . , Xk 7→ Rk}).

Proof. Let f ′ = f⇓ be the canonical form of f . We first show that K∪{f ′} = K implies that there
exists T ′ such that k(T ′, t) ∈ deriv(K|solved). This is easily shown by induction on the number of
steps to compute the canonical form.

Base case: If f is already in canonical form we have that f = f ′ and hence there exists T ′ such
that k(T ′, t) ∈ deriv(K|solved).
Inductive case: The two rules are of the form

(

k(R, t) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

f0 =
(

k(R′, t) ⇐ k(X1, x1), . . . , k(Xi−1, xi−1), k(Xi+1, xi+1), . . . , k(Xk, xk)
)

Let f ′0 be the canonical form of f0. By the induction hypothesis we have K ∪ {f ′0} = K implies
that there exist T ′ such that k(T ′, t) ∈ deriv(K|solved). As f ′ = f ′0 we conclude.

To prove the lemma we consider both cases where f is either useful or redundant.

Useful statement: If f is useful we have that k(T ′, t) ∈ deriv(K|solved) for some T ′. By usefulness,
K ∪ {f⇓} 6= K which contradicts that K ⊕ f = K. Hence, this case is impossible.

Redundant statement: Since K ⊕ f = K, it follows that there exists W ′ such that k(W ′, t) ∈
deriv(K|solved) and K |= i(W ′, R{X1 7→ x1, . . . , Xk 7→ xk}).We choose Ri arbitrarily such that
k(Ri, xiσ) ∈ deriv(K|solved). Let W ′′ = W ′{x1 7→ R1, . . . , xk 7→ Rk}. By Lemma 4.5, we deduce
that k(W ′′, tσ) ∈ deriv(K|solved) and we also have that

K|solved |= i(W ′, (R{X1 7→ x1, . . . , Xk 7→ xk}){x1 7→ R1, . . . , xk 7→ Rk})

i.e. K|solved |= i(W ′′, R{X1 7→ R1, . . . , Xk 7→ Rk}).
Let W = W ′′. We have that k(W, tσ) ∈ deriv(K|solved), and k(Ri, xiσ) ∈ deriv(K|solved) for

every 1 ≤ i ≤ k. Lastly, we have that K |= i(W,R{X1 7→ R1, . . . , Xk 7→ Rk}).

We now show the completeness of the ⊕ operator with respect to any type of deduction
statements.

Lemma 4.7. Let K be a saturated knowledge base. Let f =
(

k(R, t) ⇐ k(X1, t1), . . . , k(Xk, tk)
)

be a deduction statement such that K ⊕ f = K. For any substitution σ grounding for {t1, . . . , tk}
such that k(T ′i , tiσ) ∈ deriv(K|solved) for all 1 ≤ i ≤ k, we have that there exist R1, . . . , Rk and
W such that

• k(W, tσ) ∈ deriv(K|solved), and k(Ri, tiσ) ∈ deriv(K|solved) for all 1 ≤ i ≤ k;

• K|solved |= i(W,R{X1 7→ R1, . . . , Xk 7→ Rk}).

Proof. We show the result by induction on
∑k

i=1 |tiσ|. We distinguish two cases. If f is solved
then we easily conclude by applying Lemma 4.6.

If f is not solved, there exists j such that tj 6∈ X . We assume w.l.o.g. that j = 1. Since
k(T ′1, t1σ) ∈ deriv(K|solved), there exist a solved deduction statement f ′ ∈ K, some terms R′i(1 ≤
i ≤ ℓ) and a substitution τ such that:
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• f ′ =
(

k(R′, t′) ⇐ k(Y1, y1), . . . , k(Yℓ, yℓ)
)

;

• t′τ = t1σ;

• k(R′i, yiτ) ∈ deriv(K|solved) for every 1 ≤ i ≤ ℓ.

By application of the F-Solving rule to the deduction statements f and f ′, we obtain the following
statement

f0 =
(

k(R{X1 7→ R′}, tρ) ⇐ k(X2, t2ρ), . . . , k(Xk, tkρ), k(Y1, y1ρ), . . . , k(Yℓ, yℓρ)
)

where ρ = mgu(t′, t1).

As K is saturated, K ⊕ f0 = K. Let σ′ be the substitution such that σ ∪ τ = ρσ′. As
yiρσ

′ = yi(σ ∪ τ) = yiτ are strict disjoint subterms of t′τ = t1σ, it follows that we can apply our
induction hypothesis on f0 and the substitution σ′. Therefore, there exist R′2, . . . , R

′
k, R

y
1 , . . . , R

y
ℓ

and W ′ such that:

• k(W ′, tρσ′) ∈ deriv(K|solved),

• k(R′i, tiρσ
′) ∈ deriv(K|solved) for every 2 ≤ i ≤ k,

• k(Ry
j , yjρσ

′) ∈ deriv(K|solved) for every 1 ≤ j ≤ ℓ,

• K|solved |= i(W ′, (R{X1 7→ R′}){X2 7→ R′2, . . . , Xk 7→ R′k, Y1 7→ Ry
1 , . . . , Yℓ 7→ Ry

ℓ }).

Let W = W ′, R1 = R′{Y1 7→ Ry
1 , . . . , Yℓ 7→ Ry

ℓ }, Rj = R′j for every 2 ≤ j ≤ k. It immediately
follows that K |= i(W,R{X1 7→ R1, . . . , Xk 7→ Rk}), k(W, tσ) ∈ deriv(K|solved) and k(Ri, tiσ) ∈
deriv(K|solved) for 1 ≤ i ≤ k. This allows us to conclude.

We now show that the saturation process is complete with respect to the rewrite system.

Proposition 4.2 (completeness, reduction). Let K be a saturated knowledge base, M a term and
t a ground term such that k(M, t) ∈ deriv(K|solved) and t↓ 6= t. Then there exist M ′ and t′ such
that k(M ′, t′) ∈ deriv(K|solved) with t→+ t′ and K|solved |= i(M,M ′).

Proof. We show this result by induction on |t|. By definition of k(M, t) ∈ deriv(K|solved), we know

that there exist f0 =
(

k(M0, u0) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

in K and a substitution σ such that

u0σ = t and k(Mi, xiσ) ∈ deriv(K|solved) for all 1 ≤ i ≤ k and M0{Xi 7→Mi}1≤i≤k = M for some
Mi (1 ≤ i ≤ k). We distinguish two cases:

Case 1: there exists 1 ≤ j ≤ k such that xjσ↓ 6= xjσ. Let us assume w.l.o.g. that j = 1. Since
x1σ is a strict subterm of t, we can apply our induction hypothesis on x1σ. We obtain that there
exist M ′

1 and u′1 such that k(M ′
1, u

′
1) ∈ deriv(K|solved) with x1σ →

+ u′1 and K|solved |= i(M1,M
′
1).

Now, let σ′ be the substitution defined as follows:

xσ′ =

{

xσ for x 6= x1
u′1 otherwise

Let t′ = u0σ
′ and M ′ = M0{X1 7→ M ′

1, X2 7→ M2, . . . , Xk 7→ Mk}. Since x1 ∈ Var(u0), it
is easy to see that t = u0σ →

+ u0σ
′ = t′. Furthermore, it is also easy to see that k(M ′, t′) ∈

deriv(K|solved). Lastly, since K|solved |= i(M1,M
′
1), we have that K|solved |= i(M,M ′).

Case 2: xjσ↓ = xjσ for every 1 ≤ j ≤ k. In such a case, we have that u0 = C[u′0] for some
context C and some term u′0 6∈ X such that u′0σ = lτ where l → r ∈ R and τ is a substitution.
As the knowledge base K is saturated, the rule Narrowing must have been applied. Therefore
there exists f1 such that:

• K ⊕ f1 = K, and
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• f1 =
(

k(M0, (C[r])ρ) ⇐ k(X1, x1ρ), . . . , k(Xk, xkρ)
)

where ρ = mgu(u′0, l). Let ρ′ be the substitution with Dom(ρ′) = Var({x1ρ, . . . , xkρ}) and
σ ∪ τ = ρρ′. Now, we apply Lemma 4.7 on the statement f1 and the substitution ρ′. We deduce
that there exist R1, . . . , Rk and W such that

• k(W, (C[r])ρρ′) ∈ deriv(K|solved), and k(Ri, xiρρ
′) ∈ deriv(K|solved) for 1 ≤ i ≤ k; and

• K|solved |= i(W,M0{X1 7→ R1, . . . , Xk 7→ Rk}).

Let t′ = (C[r])ρρ′ and M ′ = W . We have that k(M ′, t′) ∈ deriv(K|solved). Moreover, since
k(Ri, xiρρ

′) ∈ deriv(K|solved), k(Mi, xiσ) ∈ deriv(K|solved) and xiρρ
′ = xiσ, we can apply

Lemma 4.1 in order to deduce that K|solved |= i(R1,Mi) for 1 ≤ i ≤ k. Thus, we have that
K|solved |= i(M,M ′). In order to conclude, it remains to show that t→+

RE
t′. Indeed, we have that

t = u0σ = (C[u′0])σ →+
RE

(C[r])ρρ′ = t′.

The soundness and completeness of the saturation procedure is given by the following theorem:

Theorem 4.1. Let ϕ be a frame and K be a saturated knowledge base such that Init(ϕ) =⇒∗ K.

Let t ∈ T (F) and let K+ = K ∪ {
(

k(n, n) ⇐
)

| n ∈ Names(t) \ N}. Then

1. for all terms M we have that:

ϕ ⊢M t iff there exists N such that K|solved |= i(M,N) and k(N, t↓) ∈ deriv(K+|solved)

2. and for all terms M,N we have that

(M = N)ϕ iff K|solved |= i(M,N).

Proof. Let ϕ be a frame and K be a saturated knowledge base such that Init(ϕ) =⇒∗ K.

1.(⇐) Let M , N and t be such that K|solved |= i(M,N) and k(N, t↓) ∈ deriv(K+|solved). By
Lemma 4.3, we have that Mϕ =R Nϕ =R t.

(⇒) Let M and t be such that ϕ ⊢M t.

Let K++ = K ∪{
(

k(n, n) ⇐
)

| n ∈ Names(M)}. We have that k(M, t0) ∈ deriv(K++|solved)

and t0 →
∗ t↓ with t0 = Mϕ.

Let {n1, . . . , nℓ} = Names(M) \Names(ϕ, t). Let y1, . . . , yℓ be fresh variables and δ = {n1 7→
y1, . . . , nℓ 7→ yℓ}. Let M ′ = Mδ. We have that k(M ′, t′0) ∈ deriv(K++|solved) and t′0 →

∗ t↓ with
t′0 = M ′ϕ.

Now, let K+++ = K++ ∪ {
(

i(n, n) ⇐
)

| n ∈ Names(M)}. As K is a saturated knowledge

base, we have that K+++ is a saturated knowledge base as well. By Proposition 4.1, we deduce
that K|+++

solved
|= i(M,M ′), thus K|solved |= i(M,M ′) as well.

We show the result by induction on t0 equipped with the order < induced by the rewriting
relation (t < t′ if and only if t′ →+ t).

Base case: k(M ′, t0 = t↓) ∈ deriv(K+|solved) Let N = M ′, we have K|solved |= i(M,N) and
k(N, t↓) ∈ deriv(K|solved).

Induction case: k(M ′, t0) ∈ deriv(K+|solved) with t0 6= t↓. Let K+ = K ∪ {
(

i(n, n) ⇐
)

| n ∈

Names(t) \ N}. We easily see that as K is a saturated knowledge base we have that K+ is a
saturated knowledge base as well. Hence we can apply Proposition 4.2 and deduce that there
exist N ′ and t′ such that k(N ′, t′) ∈ deriv(K+|solved), t→+ t′, and K|+

solved
|= i(M ′, N ′). It is easy

to see that K|solved |= i(M ′, N ′) as well. We have that k(N ′, t′) ∈ deriv(K+|solved), t′ →∗ t↓ and
t′ < t0. Thus, we can apply our induction hypothesis and we obtain that there exists N such that
K|solved |= i(N ′, N) and k(N, t↓) ∈ deriv(K+|solved).
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2.(⇐) By Lemma 4.3, K|solved |= i(M,N) implies (M = N)ϕ.

(⇒) LetM andN be terms such that (M = N)ϕ. This means that there exists t such that ϕ ⊢M t

and ϕ ⊢R t. Let K+ = K ∪ {
(

k(n, n) ⇐
)

| n ∈ Names(t) \N} and K++ = K+ ∪ {
(

i(n, n) ⇐
)

|

n ∈ Names(t) \ N}. By applying Item 1, we deduce that there exist M ′, N ′ such that K|solved |=
i(M,M ′), k(M ′, t↓) ∈ deriv(K+|solved), K|solved |= i(N,N ′) and k(N ′, t↓) ∈ deriv(K+|solved). It
is easy to see that K++|solved |= i(M,M ′) and K++|solved |= i(N,N ′) as well. Because K++ is a
saturated knowledge base we apply Proposition 4.1 and deduce that K++|solved |= i(M ′, N ′), and
thus K++|solved |= i(M,N), which easily implies K|solved |= i(M,N).

4.5 Application to Deduction and Static Equivalence

We now show how to use the saturation procedure above in order to check if a term is deducible
from a frame (and provide an appropriate recipe) and respectively if two frames are statically
equivalent.

Procedure for deduction.

Let ϕ be a frame and t be a ground term. The procedure for checking if ϕ ⊢R t for some R
runs as follows:

1. Apply the saturation rules to obtain (if any) a saturated knowledge base K such that

Init(ϕ) =⇒∗ K. Let K+ = K ∪ {
(

k(n, n) ⇐
)

| n ∈ Names(t) \ N}.

2. Return yes if there exists R such that k(R, t↓) ∈ deriv(K+|solved) (in this case R is a recipe
for t in the frame ϕ); otherwise return no (in this case t is not deducible from ϕ).

Proof. If the algorithm returns yes, there exists R such that k(R, t↓) ∈ deriv(K+|solved). As
K |= i(R,R), by Theorem 4.1 we have that ϕ ⊢R t.

Conversely, if t is deducible from ϕ, then there exists R such that ϕ ⊢R t. By Theorem 4.1,
there exists N such that k(N, t↓) ∈ deriv(K+|solved). Hence, the algorithm returns yes.

Example 4.9. ex:algodeduc We continue our running example. Let K be the knowledge
base obtained from Init(ϕ2) described in Example 4.8. We show that ϕ2 ⊢ enc(c, k) and
ϕ2 ⊢ b. Indeed we have that

k(mal(w1, c), enc(c, k)) ∈ deriv(K|solved ∪ {
(

k(c, c) ⇐
)

})

using statements f9 and
(

k(c, c) ⇐
)

, and k(b, b) ∈ K|solved using statement f2.

Procedure for static equivalence. Let ϕ1 and ϕ2 be two frames. The procedure for checking
ϕ1 ≈ ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated knowledge bases Ki

(i ∈ {1, 2}) such that Init(ϕi) =⇒∗ Ki for 1 ≤ i ≤ 2. Let Li denote the solved statements of
Ki (1 ≤ i ≤ 2).

2. For {i, j} = {1, 2}, for every solved statement
(

i(M,N) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

in Li,

check if (Mσ = Nσ)ϕj where σ = {X1 7→ x1, . . . , Xk 7→ xk}.

3. If so return yes; otherwise return no.
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Proof. If the algorithm returns yes, this means that (⋆): for every solved equational fact
(

i(M,N) ⇐

k(X1, x1), . . . , k(Xk, xk)
)

in L1, we have that:

(Mσ = Nσ)ϕ2

where σ = {X1 7→ x1, . . . , Xk 7→ xk}. Let M,N be terms such that (M = N)ϕ1. By Theorem 4.1,
we have that L1 |= i(M,N). By (⋆), we deduce that (M = N)ϕ2. The other direction is analogous.

Conversely, assume now that ϕ1 ≈ ϕ2. Let
(

i(M,N) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

be a solved

equational fact in L1 and let us show that (M̃ = Ñ)ϕ2 where

• M̃ = M{X1 7→ x1, . . . , Xk 7→ xk}, and

• Ñ = N{X1 7→ x1, . . . , Xk 7→ xk}.

(The other case is analogous, and we will conclude that the algorithm returns yes.)
Let {y1, . . . , yℓ} = Var(M,N) and n1, . . . , nℓ be ℓ fresh public names that do not occur in

Names(ϕ1)∪Names(ϕ2)∪Names(M,N). Let δ = {y1 7→ n1, . . . , yℓ 7→ nℓ}. Since L1 |= i(M̃, Ñ),
we have also that L1 |= i(M̃δ, Ñδ). By Theorem 4.1, we have that (M̃δ = Ñδ)ϕ1. As ϕ1 ≈ ϕ2,
we have also that (M̃δ = Ñδ)ϕ2, and thus (M̃ = Ñ)ϕ2. This allows us to conclude.

Example 4.10. Consider again the frames ϕ1 and ϕ2 from Example 4.7. Our procedure
returns that the frames are not statically equivalent since

(

i(mal(w1, b), w1) ⇐
)

∈ K2

whereas (mal(w1, b) 6= w1)ϕ1.

4.6 Termination

The saturation process does not always terminate.

Example 4.11. Consider the convergent rewriting system consisting of the single rule f(g(x)) →
g(h(x)) and the frame ϕ = {w1 7→ g(a)} where a ∈ N is a private name. We have that

Init(ϕ) ⊇ {
(

k(w1, g(a)) ⇐
)

,
(

k(f(X), f(x)) ⇐ k(X,x)
)

}.

By Narrowing we can add the statement f1 =
(

k(f(X), g(h(x)) ⇐ k(X, g(x))
)

. Then we

can apply F-Solving to solve its antecedent k(X, g(x)) with the statement
(

k(w1, g(a)) ⇐
)

yielding the solved statement
(

k(f(w1), g(h(a))) ⇐
)

. Now, applying iteratively F-Solving

on f1 and the newly generated statement, we generate an infinity of solved statements of

the form
(

k(f(. . . f(w1) . . .), g(h(. . . h(a) . . .))) ⇐
)

. Intuitively, this happens because our

symbolic representation is unable to express that the function h can be nested an unbounded
number of times when it occurs under an application of g.

The same kind of limitation already exists in the procedure implemented in the tool YAPA [22].
However, our symbolic representation which manipulates terms that are not necessarily ground
and statements with antecedents allows us to go beyond YAPA. We are able for instance to treat
equational theories such as malleable encryption and trapdoor commitment.
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4.6.1 Generic Method for Proving Termination

We provide a generic method for proving termination, which we instantiate on several examples.
In order to prove that the saturation algorithm terminates, we require the update function ⊕ to
be uniform: i.e., the same recipe R′ be used for all redundant solved deduction statements that
have the same canonical form. Note that the soundness and completeness of the algorithm does
not depend on the choice of the recipe R′ when updating the knowledge base with a redundant
statement (cf. Definition 4.4).

Definition 4.5 (projection). We define the projection f̂ of a deduction statement f =
(

k(R, t) ⇐

k(X1, t1), . . . , k(Xn, tn)
)

to be the Horn clause

f̂ =
(

t⇐ t1, . . . , tn

)

.

We extend the projection to sets of statements K and define K̂ = {f̂ | f ∈ K}.

As usual, we identify projections which are equal up to bijective renaming of variables and we
sometimes omit braces for the antecedents.

Proposition 4.3 (generic termination). The saturation algorithm terminates if ⊕ is uniform and
there exist some functions Q, mf , me and some well-founded orders <f and <e such that for all
frames ϕ, and for all knowledge bases K such that Init(ϕ) =⇒∗ K, we have that:

1. {f̂ | f ∈ K|solved and f is a deduction statement} ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf (f0) <f mf (f1) where f0, f1 are defined as in rule F-Solving;

3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving.

Proof. A solved deduction statement f is only added to K if there is no f ′ ∈ K such that f̂ = f̂ ′.
Indeed, if f̂ = f̂ ′ then f̂ is redundant and an equational statement will be added instead. As
{f̂ | f ∈ K|solved and f is a deduction statement} ⊆ Q(ϕ) and Q(ϕ) is finite we conclude that
only a finite number of solved deduction statements are in K.

An unsolved deduction statement f can be added in two ways.

• f can be added by the rule Narrowing. Since the number of solved deduction statements
and the number of rewriting rules are finite the number of statements added by the rule
Narrowing is also finite.

• f can be added by the rule F-Solving. The number of statements added by the rule
F-Solving is bounded by the measure mf which is strictly decreasing for a well-founded
order.

An equational statement f can be added in three ways.

• f can be added when the knowledge base is updated with a redundant deduction statement.
However, since ⊕ is uniform only a finite number of such statements is added.

• f can be added by the rule Unifying. Since the number of solved deduction statements is
finite, the number of statements added by Unifying is bounded.

• f can be added by the rule E-Solving. The number of statements added by rule E-Solving

is bounded by the measure me which is strictly decreasing for a well-founded order.

Altogether, this allows us to conclude.
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4.6.2 Applications

We now give several examples for which the saturation procedure indeed terminates. For each of
these theories the definition of the function Q relies on the following notion of extended subterm.

Definition 4.6 (extended subterm). Let t be a term, its set of extended subterms stext(t) (w.r.t.
R), is the smallest set such that:

1. t ∈ stext(t),

2. f(t1, . . . , tk) ∈ stext(t) implies t1, . . . , tk ∈ stext(t),

3. t′ ∈ stext(t) and t′ → t′′ implies t′′ ∈ stext(t).

This notation is extended to frames in the usual way.

All examples in this section rely on the same mf and me. Let {k(X1, t1), . . . , k(Xn, tn)} be the
set of antecedents of a statement f . We define

mf (f) = (|Var(t1, . . . , tn)|,
∑

1≤i≤n

|ti|)

and <f is the lexicographical order on ordered pairs of integers. The measure me and the order <e

are defined in the same way.

Subterm convergent equational theories. Abadi and Cortier [2] have shown that deduction
and static equivalence are decidable for subterm convergent equational theories in polynomial time.
We retrieve the same decidability results with our algorithm.

The termination proof for this class relies on the function Q where Q(ϕ) is defined as the
smallest set that contains

1.
(

t⇐ ∅
)

, where t ∈ stext(ϕ);

2.
(

f(x1, . . . , xk) ⇐ x1, . . . , xk

)

, where ar(f) = k.

Lemma 4.8. For any frame ϕ, and any knowledge base K such that Init(ϕ) =⇒ K, we have that:

1. {f̂ | f ∈ K and f is a solved deduction statement } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf (f0) <f mf (f1) where f0, f1 are defined as in rule F-Solving;

3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q, mf , me, <f , and <e are defined w.r.t. the rewrite system as described above.

Proof. The proof of item 1 is done by induction on the number of saturation steps needed to
reach K. To ease the induction we strengthen the induction hypothesis and prove a slightly
stronger statement. We define Q′(ϕ,K) as the smallest set such that

1.
(

t⇐ ∅
)

∈ Q′(ϕ,K), where t ∈ stext(ϕ)

2.
(

f(x1, . . . , xk) ⇐ x1, . . . , xk

)

∈ Q′(ϕ,K), where ar(f) = k

3.
(

rσ ⇐ t1, . . . , tk

)

∈ Q′(ϕ,K), where:

• l→ r ∈ R

• σ : Var(l) → stext(ϕ) is a partial function
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• lσ = C[t1, . . . , tk] for some context C

• rσ ∈ st(D[t1, . . . , tk, u1, . . . , un]) for some public context D and some terms ui such

that
(

ui ⇐
)

∈ K̂

• ∃i : ti 6∈ X

In the following when a projection f̂ corresponds to one of the above 3 cases, we say that f is of
type i (1 ≤ i ≤ 3). Note that a solved deduction statement is either of type 1 or 2. We prove that

for any K such that Init(ϕ) =⇒∗ K we have that {f̂ | f ∈ K and f is a deduction statement} ⊆

Q′(ϕ,K). We have that {f̂ | f̂ ∈ Q′(ϕ,K) and f̂ is solved} ⊆ Q(ϕ) and this allows us to conclude.
We prove the result by induction on the number of saturation steps of Init(ϕ) =⇒∗ K.

Base case. It is clear that for all deduction statements f ∈ Init(ϕ) we have that f̂ is either of
type 1 or type 2.

Inductive case. We assume that the result holds for K, i.e. K̂ ⊆ Q′(ϕ,K), and show that any
possible application of a saturation rule preserves the result.

1. Consider a statement f ∈ K of type 1, i.e. f̂ =
(

t⇐
)

. By applying rule Narrowing to

it, we obtain a statement f ′ such that f̂ ′ =
(

t′ ⇐
)

with t → t′. As t ∈ stext(ϕ), we have

that t′ ∈ stext(ϕ) and therefore f ′ is of type 1.

2. Consider a statement f ∈ K of type 2, i.e. f̂ =
(

f(x1, . . . , xk) ⇐ x1, . . . , xk

)

. As all

positions of the term f(x1, . . . , xk), except the head are variables, rule Narrowing can
only be applied at this position. Let l→ r ∈ R be the rewrite rule involved in this step. We

obtain a statement f ′ such that f̂ ′ =
(

rτ ⇐ x1τ, . . . , xkτ
)

where τ = mgu(f(x1, . . . , xk), l).

By the definition of a rewrite rule, l is not a variable. Therefore, we have that l = f(l1, . . . , lk)

for some terms l1, . . . , lk and f̂ ′ =
(

r ⇐ l1, . . . , lk

)

. Let σ be such that Dom(σ) = ∅,

C = f( , . . . , ). It is clear that f̂ ′ satisfies the three first conditions of a statement of type 3.
Now, either r ∈ T (F , ∅) (i.e. r is a public ground term) and in such a case it is clear that
the statement is redundant. Otherwise, we have that r is a strict subterm of l, i.e r ∈ st(lj)
for some 1 ≤ j ≤ k. Therefore the fourth condition also holds. Now, assume that all the li
are variables (i.e. f ′ is solved), we show it is redundant and it is not added to the knowledge
base. Indeed, in such a situation, we necessarily have that r is a variable (remember that
r ∈ st(lj)) and therefore the statement f ′ is redundant. Otherwise, the resulting fact is of
type 3.

3. Consider a statement f ∈ K of type 3. Let f̂ =
(

rσ ⇐ t1, . . . , tk

)

. In such a case, there

exist a rewrite rule l → r, a partial function σ : Var(l) → stext(ϕ), a context C such
that lσ = C[t1, . . . , tk] and we have that rσ ∈ st(D[t1, . . . , tk, u1, . . . , un]) for some public

context D and some terms ui such that
(

ui ⇐
)

∈ K̂. Assume that one of the antecedents

of f is being solved by rule F-Solving with a solved statement f ′ ∈ K. We assume w.l.o.g.
that t1 is being solved. We distinguish two cases depending on the type of f ′.

• Case 1: f̂ ′ =
(

u0 ⇐
)

. Let τ = mgu(u0, t1). The projection of the statement resulting

from the F-Solving rule is f̂ ′′ =
(

rστ ⇐ t2τ, . . . , tkτ
)

. We consider σ′ = τ ∪ σ,

C ′ = C[u0, . . . , ] and D′ = D. We can show that the first four conditions hold. If
the last condition does not hold, and because the fourth holds, the resulting statement
must be either of type 1 or redundant and therefore not added to the knowledge base.

• Case 2: f̂ ′ =
(

f(x1, . . . , xk) ⇐ x1, . . . , xk

)

. Let τ = mgu(f(x1, . . . , xk), t1). As t1

is not a variable, we have that t1 = f(s1, . . . , sℓ). The projection statement resulting
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from the application of the rule F-Solving is f̂ ′′ =
(

rσ ⇐ s1, . . . , sℓ, t2, . . . , tk

)

. We

can show that the first four conditions hold. If the last condition does not hold, and
because the fourth holds, the resulting statement must be either of type 1 or redundant
and therefore not added to the knowledge base.

To show items 2 and 3 it remains to be proven that mf and me strictly decrease after an
antecedent of an unsolved statement is solved. As an antecedent can only be solved by statements
of type 1 or 2 this is easily shown by a case analysis. We detail the proof for mf . The case of me

can be done in a similar way.

Let f1 =
(

k(R, t) ⇐ k(X1, t1), . . . k(Xn, tn)
)

.

• Suppose f1 is solved by a solved statement f2 of type 1. Let f̂2 =
(

u⇐
)

where u ∈ stext(ϕ)

and σ = mgu(u, t1). There are two possible cases. Either u = t1. As u ∈ stext(ϕ) we have
that u is ground and Dom(σ) = ∅. In this case |Var(t2, . . . , tn)| = |Var(t1, . . . , tn)| but
∑

2≤i≤n |ti| <
∑

1≤i≤n |ti|. Or u 6= t1 and |Var(t2, . . . tn)| < |Var(t1, . . . tn)|.

• Suppose f1 is solved by a solved statement f2 of type 2. Let f̂2 =
(

f(x1, . . . , xk) ⇐

x1, . . . , xk

)

and σ = mgu(u, t1). As t1 6∈ X we have that t1 = f(s1, . . . , sk). We have

that σ = {x1 7→ s1, . . . , xk 7→ sk} and the resulting statement f0 is such that

f̂0 =
(

tσ ⇐ s1, . . . , sk, t2, . . . , tn

)

.

Thus, we have that |Var(s1, . . . , sk, t2, . . . , tn)| = |Var(t1, . . . , tn)| and
∑

u∈{s1,...,sk,t2,...,tn}
|u| <

∑

1≤i≤n |ti|.

This allows us to conclude the proof.

Malleable encryption. We also obtain termination for the equational theory Emal described
in Example 4.1. This is a toy example that does not fall in the class studied in [2]. Indeed, this
theory is not locally stable: the set of terms in normal form deducible from a frame ϕ cannot
always be obtained by applying public contexts over a finite set (called sat(ϕ) in [2]) of ground
terms.

As a witness, let k ∈ N be a private name and consider the frame ϕ2 = {w1 7→ enc(b, k)}
introduced in Example 4.7. Among the terms that are deducible from ϕ2, we have those of the
form enc(t, k) where t represents any term deducible from ϕ2. From this observation, it is easy to
see that Emal is not locally stable.

Our procedure does not have this limitation. A prerequisite for termination is that the set of
terms in normal form deducible from a frame is exactly the set of terms obtained by nesting in all
possible ways a finite set of contexts. The theory Emal falls in this class. In particular, for the frame

ϕ2, our procedure produces the statement f9 =
(

k(mal(w1, Y2), enc(z, k)) ⇐ k(Y2, z)
)

allowing us

to capture all the terms of the form enc(t, k) by the means of a single deduction statement.
The termination proof relies on the function Q where Q(ϕ) is defined as the smallest set that

contains:

1.
(

t⇐
)

, for every t ∈ stext(ϕ);

2.
(

f(x1, x2) ⇐ x1, x2

)

, where f ∈ {enc, dec,mal};

3.
(

enc(x, t) ⇐ x
)

, if there exists t′ such that enc(t′, t) ∈ stext(ϕ).
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Lemma 4.9. For any frame ϕ, and any knowledge base K such that Init(ϕ) =⇒∗ K, we have
that:

1. {f̂ | f ∈ K and f is a solved deduction statement } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf (f0) <f mf (f1) where f0, f1 are defined as in rule F-Solving;

3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q, mf , me, <f , and <e are defined as described above.

Proof. The proof of item 1 is done by induction on the number of saturation steps of Init(ϕ) =⇒∗

K. To ease the induction we strengthen the induction hypothesis and prove a slightly stronger
statement. We define Q′(ϕ) as the smallest set such that:

1.
(

t⇐
)

∈ Q′(ϕ), for every t ∈ stext(ϕ)

2.
(

f(x1, x2) ⇐ x1, x2

)

∈ Q′(ϕ), where f ∈ {enc, dec,mal}

3.
(

enc(x, t) ⇐ x
)

∈ Q′(ϕ), if there exists t′ such that enc(t′, t) ∈ stext(ϕ)

4.
(

x⇐ enc(x, y), y
)

∈ Q′(ϕ)

5.
(

enc(z, y) ⇐ enc(x, y), z
)

∈ Q′(ϕ)

6.
(

t⇐ t1, . . . , tk

)

∈ Q′(ϕ), if t ∈ stext(ϕ) and C[t1, . . . , tk] ∈ stext(ϕ) for some context C

7.
(

x⇐ x, t1, . . . , tk

)

, where C[t1, . . . , tk] ∈ stext(ϕ) for some context C

In the following when a projection f̂ corresponds to one of the above 7 cases, we say that f
is of type i (1 ≤ i ≤ 7). We prove that for any knowledge base K such that Init(ϕ) =⇒∗ K we

have that {f̂ | f ∈ K and f is a deduction statement} ⊆ Q′(ϕ). It is easy to see that {f̂ | f̂ ∈

Q′(ϕ) and f̂ is solved} ⊆ Q(ϕ) and this will indeed allows us to conclude.
We prove the result by induction on the number of saturation steps of Init(ϕ) =⇒∗ K.

Base case. It is clear that for all deduction statements f ∈ Init(ϕ) we have that f̂ is either of
type 1 or type 2.

Inductive case. We assume that the result holds for K and show that any possible application of
a saturation rule preserves the result.

• Consider a statement f ∈ K of type 1, i.e. f̂ =
(

t ⇐
)

with t ∈ stext(ϕ). By applying rule

Narrowing, we obtain a statement f ′ such that f̂ ′ =
(

t′ ⇐), and t → t′. As t ∈ stext(ϕ),

it follows that t′ ∈ stext(ϕ) and therefore f ′ is a statement of type 1.

• Consider a statement f ∈ K of type 2 such that f̂ =
(

f(x1, x2) ⇐ x1, x2

)

. By applying the

rule Narrowing we obtain a statement of type 4, or 5.

• Consider a statement f ∈ K of type 3, then f̂ =
(

enc(x, t) | x
)

and the rule Narrowing can

only be applied on a position in t. Therefore, Narrowing will produce another statement

f̂ ′ =
(

enc(x, u) ⇐ x
)

, where t → u. As there exists t′ such that enc(t′, t) ∈ stext(ϕ) by

definition of stext, enc(t′, u) ∈ stext(ϕ) yielding again a statement of type 3.
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• Consider a statement f ∈ K of type 4, then its unsolved antecedents can be solved using a
statement of type 1, 2 or 3. In the first case, we obtain a statement of type 6. In the second
case, we obtain a redundant statement. In the third case, we obtain a statement of type 7.

• Consider a statement f ∈ K of type 5, its unsolved antecedent can be solved using a
statement of type 1, 2 or 3. In the first case, we obtain a statement of type 3. In the second
and third case, we obtain a redundant statement.

• Consider a statement f ∈ K of type 6 or 7, its unsolved antecedents can be solved using
a statement of type 1, 2 or 3. Let f ′ be the new statement obtained by applying the F-

Solving rule. If f ′ is unsolved, it has the same type as f . If f ′ is solved, it is either of
type 1 if f is of type 6 or it is redundant if f is of type 7.

To show items 2 and 3 it remains to be proven that mf and me strictly decrease after an
antecedent of an unsolved statement is solved. As antecedents can only be solved by statements
of type 1− 3 this is easily shown by a case analysis. We detail the proof for mf . The case of me

can be done in a similar way.

Let f1 =
(

k(R, t) ⇐ k(X1, t1), . . . k(Xn, tn)
)

. The case where f1 is solved by a statement f2 of

type 1 (resp. type 2) is similar to the proof done in Lemma 4.8. It remains the case where f2 is
of type 3.

Let f̂2 =
(

enc(x, u) ⇐ x
)

and σ = mgu(enc(x, u), t1). As there exists u′ such that enc(u′, u) ∈

stext(ϕ) we have that u is ground. As t1 6∈ X we have that t1 = enc(t′1, t
′′
1).

The projection of the resulting statement f0 is f̂0 =
(

tσ ⇐ xσ, t2σ, . . . , tnσ
)

. We distinguish

two cases. Either σ = {x 7→ t′1} and f̂0 =
(

t ⇐ t′1, t2, . . . , tn

)

. In such a case |Var(t2, . . . , tn)| ≤

|Var(t1, . . . , tn)| and
∑

2≤i≤n |ti| <
∑

1≤i≤n |ti|. Otherwise, we have that |Var(t2, . . . , tn)| <
|Var(t1, . . . , tn)|.

Trap-door commitment. The following convergent equational theory Etdcommit is a model for
trap-door commitment

1. open(tdcommit(x, y, z), y) = x

2. tdcommit(x2, f(x1, y, z, x2), z) = tdcommit(x1, y, z)

3. open(tdcommit(x1, y, z), f(x1, y, z, x2)) = x2

4. f(x2, f(x1, y, z, x2), z, x3) = f(x1, y, z, x3)

We will refer below to the four corresponding rewrite rules as R1, R2, R3 and R4.
As said in the introduction, we encountered this equational theory when studying electronic

voting protocols. The term tdcommit(m, r, td) models the commitment of the message m under
the key r using an additional trap-door td. Such a commitment scheme allows a voter who has
performed a commitment to open it in different ways using its trap-door. Hence, trap-door bit
commitment tdcommit(v, r, td) does not bind the voter to the vote v. This is useful to ensure
privacy-type properties in e-voting and in particular receipt-freeness [114]. With such a scheme,
even if a coercer requires the voter to reveal his commitment, this does not give any useful informa-
tion to the coercer as the commitment can be viewed as the commitment of any vote (depending
on the key that will be used to open it).

For the same reason as Emal, the theory of trap-door commitment described below cannot be
handled by the algorithms described in [2, 22]. Our termination proof relies on the function Q
where Q(ϕ) is the smallest set that contains:

1.
(

t⇐
)

, for every t ∈ stext(ϕ);
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2.
(

tdcommit(t1, r, tp) ⇐
)

such that f(t1, r, tp, t2) ∈ stext(ϕ) for some t2;

3.
(

g(x1, . . . , xk) ⇐ x1, . . . , xk

)

, where g ∈ {open, tdcommit, f} and ar(g) = k;

4.
(

f(t1, r, tp, x) ⇐ x
)

, such that f(t1, r, tp, t2) ∈ stext(ϕ) for some t2.

Lemma 4.10. For any frame ϕ, and any knowledge base K such that Init(ϕ) =⇒∗ K, we have
that:

1. {f̂ | f ∈ K and f is a solved deduction statement } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf (f0) <f mf (f1) where f0, f1 are defined as in rule F-Solving;

3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q(ϕ) is defined as the smallest set that contains:

1.
(

t⇐
)

, for every t ∈ stext(ϕ)

2.
(

tdcommit(t1, r, tp) ⇐
)

such that f(t1, r, tp, t2) ∈ stext(ϕ) for some term t2

3.
(

g(x1, . . . , xk) ⇐ x1, . . . , xk

)

, where g ∈ {open, tdcommit, f} and ar(g) = k

4.
(

f(t1, r, tp, x) ⇐ x
)

, such that f(t1, r, tp, t2) ∈ stext(ϕ) for some t2

and mf , me, <f , and <e are defined as above.

Proof. The proof of item 1 is done by induction on the number of saturation steps of Init(ϕ) =⇒∗

K. To ease the induction we strengthen the induction hypothesis and prove a slightly stronger
statement. We define Q′(ϕ) as the smallest set that contains:

1.
(

t⇐
)

, for every t ∈ stext(ϕ)

2.
(

tdcommit(t1, r, tp) ⇐
)

such that f(t1, r, tp, t2) ∈ stext(ϕ) for some t2

3.
(

g(x1, . . . , xk) ⇐ x1, . . . , xk

)

, where g ∈ {open, tdcommit, f} and ar(g) = k

4.
(

f(t1, r, tp, x) ⇐ x
)

, such that f(t1, r, tp, t2) ∈ stext(ϕ) for some t2

5.
(

x⇐ tdcommit(x, y, z), y
)

6.
(

tdcommit(x1, y, z) ⇐ x2, f(x1, y, z, x2), z
)

7.
(

x2 ⇐ tdcommit(x1, y, z), f(x1, y, z, x2)
)

8.
(

f(x1, y, z, x3) ⇐ x2, f(x1, y, z, x2), z, x3]

9.
(

x2 ⇐ x1, y, z, f(x1, y, z, x2)
)

10.
(

x2 ⇐ tdcommit(x, y, z), x, y, z, x2

)

11.
(

x⇐ f(t1, r, tp, x)
)

for every t1, r, tp ∈ stext(ϕ)
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12.
(

x⇐ tdcommit(t, r, tp), x
)

for every t, r, tp ∈ stext(ϕ)

13.
(

x⇐ x, t1, . . . , tk

)

for every t1, . . . , tk ∈ stext(ϕ)

14.
(

t⇐ tdcommit(t1, r, tp)
)

for every t, t1, r, tp ∈ stext(ϕ)

15.
(

t⇐ t1, . . . , tk

)

for every t, t1, . . . , tk ∈ stext(ϕ), k ≥ 1

16.
(

tdcommit(t, r, tp) ⇐ t1, . . . , tk

)

, ∃t′ f(t, r, tp, t′) ∈ stext(ϕ), t1, . . . , tk ∈ stext(ϕ), k ≥ 1

17.
(

tdcommit(t, r, tp) ⇐ x, t1, . . . , tk

)

, ∃t′ f(t, r, tp, t′) ∈ stext(ϕ), t1, . . . , tk ∈ stext(ϕ), k ≥ 1

18.
(

f(t, r, tp, x) ⇐ x, t1, . . . , tk

)

, ∃t′ f(t, r, tp, t′) ∈ stext(ϕ), t1, . . . , tk ∈ stext(ϕ)

19.
(

f(t, r, tp, x) ⇐ x, x′, t1, . . . , tk

)

, ∃t′ f(t, r, tp, t′) ∈ stext(ϕ), t1, . . . , tk ∈ stext(ϕ)

In the following when a projection f̂ corresponds to one of the above 19 cases, we say that
f is of type i (1 ≤ i ≤ 19). We prove that for any K such that Init(ϕ) =⇒∗ K we have

that {f̂ | f ∈ K and f is a deduction statement} ⊆ Q′(ϕ). It is easy to see that {f̂ | f̂ ∈

Q′(ϕ) and f̂ is solved} ⊆ Q(ϕ), which will indeed allows us to conclude. We prove the result by
induction on the number of saturation steps of Init(ϕ) =⇒∗ K.

Base case. It is clear that all deduction statements f ∈ Init(ϕ) are either of type 1 or type 3.

Inductive case. We assume that the result holds for K and show that any possible application of
a saturation rule preserves the result. We summarize case analysis in the following two matrices.

Narrowing R1 R2 R3 R4

type 1 1 1 1 1
type 2 2 2 2 2
type 3 5 6 7 8
type 4 4 4 4 4

F-Solving type 1 type 2 type 3 type 4
type 5 15 15 redundant impossible
type 6 16 impossible redundant 17
type 7 11 or 14 11 9 or 10 12
type 8 18 impossible redundant 19
type 9 15 impossible redundant 13
type 10 13 13 redundant impossible
type 11 1 impossible 13 redundant
type 12 redundant redundant 13 impossible
type 13 13 or redundant 13 or redundant 13 13
type 14 1 1 15 impossible
type 15 15 or 1 15 or 1 15 15
type 16 16 or 2 16 or 2 16 16
type 17 17 or 2 17 or 2 17 17
type 18 18 or 4 18 or 4 18 18
type 19 19 or 4 19 or 4 19 19

Items 2 and 3 are shown as in Lemma 4.9.
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Blind signatures. The following convergent equational theory Eblind has been introduced in [98]
for modeling blind signatures in e-voting protocols. Abadi and Cortier have shown that deduction
and static equivalence are decidable for this theory [2].

1. unblind(blind(x, y), y) = x

2. unblind(sign(blind(x, y), z), y) = sign(x, z)

3. checksign(sign(x, y), pk(y)) = x

We will refer below to the three corresponding rewrite rules as R1, R2 and R3.

Lemma 4.11. For any frame ϕ, and any knowledge base K such that Init(ϕ) =⇒∗ K, we have
that:

1. {f̂ | f ∈ K and f is a solved deduction statement } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf (f0) <f mf (f1) where f0, f1 are defined as in rule F-Solving;

3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q(ϕ) is defined as the smallest set that contains:

1.
(

t⇐
)

, for every t ∈ stext(ϕ)

2.
(

f(x1, . . . , xk) ⇐ x1, . . . , xk

)

, where f ∈ F and ar(f) = k

3.
(

sign(t, x) ⇐ x
)

, for every t ∈ stext(ϕ)

4.
(

sign(t, t′) ⇐
)

, for every t, t′ ∈ stext(ϕ)

and mf , me, <f , and <e are defined as described above.

Proof. The proof of item 1 is done by induction on the number of saturation steps of Init(ϕ) =⇒∗

K. To ease the induction we strengthen the induction hypothesis and prove a slightly stronger
statement. We define Q′(ϕ) as the smallest set that contains:

1.
(

t⇐
)

, for every t ∈ stext(ϕ)

2.
(

f(x1, . . . , xk) ⇐ x1, . . . , xk

)

, where f ∈ F and ar(f) = k

3.
(

sign(t, x) ⇐ x
)

, for every t ∈ stext(ϕ)

4.
(

sign(t, t′) ⇐
)

, for every t, t′ ∈ stext(ϕ)

5.
(

x⇐ blind(x, y), y
)

6.
(

sign(x, z) ⇐ sign(blind(x, y), z), y
)

7.
(

x⇐ sign(x, y), pk(y)
)

8.
(

sign(x, z) ⇐ blind(x, y), z, y
)

9.
(

x⇐ sign(x, y), y
)
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10.
(

x⇐ x, y, pk(y)
)

11.
(

t⇐ t1, . . . , tk

)

if C
(

t1, . . . , tk

)

∈ stext(ϕ) for some context C and t ∈ stext(ϕ)

12.
(

sign(t, t′) ⇐ t1, . . . , tk

)

if C
(

t1, . . . , tk

)

∈ stext(ϕ) for some context C, k ≥ 1, and t, t′ ∈

stext(ϕ)

13.
(

t⇐ pk(t′)
)

, for every t, t′ ∈ stext(ϕ)

14.
(

x⇐ sign(x, t)
)

, for every t ∈ stext(ϕ)

15.
(

t⇐ y, pk(y)
)

, for every t ∈ stext(ϕ)

16.
(

sign(t, z) ⇐ z, t1, . . . , tk

)

if C
(

t1, . . . , tk

)

∈ stext(ϕ) for some context C, k ≥ 1, and

t ∈ stext(ϕ)

17.
(

x⇐ x, t1, . . . , tk

)

if C
(

t1, . . . , tk

)

∈ stext(ϕ) for some context C

In the following when a projection f̂ corresponds to one of the above 17 cases, we say that
f is of type i (1 ≤ i ≤ 17). We prove that for any K such that Init(ϕ) =⇒∗ K we have

that {f̂ | f ∈ K and f is a deduction statement} ⊆ Q′(ϕ). It is easy to see that {f̂ | f̂ ∈

Q′(ϕ) and f̂ is solved} ⊆ Q(ϕ), which will indeed allows us to conclude. We prove the result by
induction on the number of saturation steps of Init(ϕ) =⇒∗ K.

Base case. It is clear that all deduction statements f ∈ Init(ϕ) are either of type 1 or type 2.

Inductive case. We assume that the result holds for K and show that any possible application of a
saturation rule preserves the result. We summarize the case analysis in the following two matrices.

Narrowing R1 R2 R3

type 1 1 1 1
type 2 5 6 7
type 3 3 3 3
type 4 4 4 4

F-Solving type 1 type 2 type 3 type 4
type 5 11 redundant impossible impossible
type 6 12 8 16 12
type 7 13 or 14 9 or 10 15 13
type 8 16 redundant impossible impossible
type 9 11 redundant 1 11
type 10 17 redundant impossible impossible
type 11 11 or 1 11 11 11 or 1
type 12 12 or 4 12 12 12 or 4
type 13 1 11 impossible impossible
type 14 1 17 11 1
type 15 11 1 impossible impossible
type 16 16 or 3 16 16 16 or 3
type 17 17 or redundant 17 17 17 or redundant

Items 2 and 3 are shown as in Lemma 4.9.
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Addition. The following convergent equational theory Eadd is a simple model of addition intro-
duced and proved decidable in [2]:

1. plus(x, suc(y)) = plus(suc(x), y)

2. plus(x, zero) = x

3. pred(suc(x)) = x

We will refer below to the three corresponding rewrite rules as R1, R2 and R3. The saturation
procedure presented terminates on this equational theory as well.

Lemma 4.12. For any frame ϕ, and any knowledge base K such that Init(ϕ) =⇒∗ K, we have
that:

1. {f̂ | f ∈ K and f is a solved deduction statement } ⊆ Q(ϕ) and Q(ϕ) is finite;

2. mf (f0) <f mf (f1) where f0, f1 are defined as in rule F-Solving;

3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving

where Q(ϕ) is defined as the smallest set that contains:

1.
(

t⇐
)

, for every t ∈ stext(ϕ)

2.
(

f(x1, . . . , xk) ⇐ x1, . . . , xk

)

, where f ∈ {suc, plus, pred, zero} and ar(f) = k

3.
(

plus(sucn(x), t) ⇐ x
)

, if sucn(t) ∈ stext(ϕ) for n ≥ 0

and mf , me, <f , and <e are defined as above.

Proof. The proof of item 1 is done by induction on the number of saturation steps of Init(ϕ) =⇒∗

K. To ease the induction we strengthen the induction hypothesis and prove a slightly stronger
statement. We define Q′(ϕ) as the smallest set that contains:

1.
(

t⇐ ∅
)

, for every t ∈ stext(ϕ)

2.
(

f(x1, . . . , xk) ⇐ x1, . . . , xk

)

, where f ∈ F and ar(f) = k

3.
(

plus(sucn(x), t) ⇐ x
)

, if sucn(t) ∈ stext(ϕ) for n ≥ 0

4.
(

x⇐ x, zero
)

5.
(

plus(suc(x), y) ⇐ x, suc(y)
)

6.
(

x⇐ suc(x)
)

In the following when a projection f̂ corresponds to one of the above 6 cases, we say that
f is of type i (1 ≤ i ≤ 6). We prove that for any K such that Init(ϕ) =⇒∗ K we have that

{f̂ | f ∈ K and f is a solved deduction statement} ⊆ Q′(ϕ). It is easy to see that {f̂ | f̂ ∈

Q′(ϕ) and f̂ is solved} ⊆ Q(ϕ), which will indeed allows us to conclude. We prove the result by
induction on the number of saturation steps of Init(ϕ) =⇒∗ K.

Base case. It is clear that all deduction statements f ∈ Init(ϕ) are either of type 1 or type 2.
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Inductive case. We assume that the result holds for K and we show that any possible application
of a saturation rule preserves the result. We summarize the case analysis in the following two
matrices.

Narrowing R1 R2 R3

type 1 1 1 1
type 2 5 4 6
type 3 3 redundant or 3 3

F-Solving type 1 type 2 type 3
type 4 redundant redundant impossible
type 5 3 redundant impossible
type 6 1 redundant impossible

To show item 2 and 3, it remains to be proven that mf and me strictly decrease after an
antecedent of an unsolved statement is solved. An antecedent can only be solved by statements
of type 1, 2 or 3. We show the result by a case analysis.

Let f1 =
(

k(R, t) ⇐ k(X1, t1), . . . , k(Xn, tn)
)

.

• If the solved statement is of type 1 or 2, the proof is similar to the reasoning done in
Lemma 4.8.

• It is easy to see that a solved statement of type 3 cannot be used to solved an antecedent
of an unsolved statement (types 4-6). Indeed, the antecedents which are not variables, are
either zero or a term of the form s(x) and hence unification is impossible.

Let f =
(

i(U, V ) ⇐ k(X1, t1), . . . , k(Xn, tn)
)

• If the solved statement is of type 1 or 2, the proof is similar to the reasoning done in
Lemma 4.8.

• A solved statement of type 3 can be used to solve an antecedent of the form k(X, t) when
t is headed with the symbol plus. It is easy to see (since we already know the form of the
deduction statements) that the only terms t occurring in an antecedent of an equational
statement and headed with plus are ground. This allows us to conclude that the measure
me decreases also in this case.

4.6.3 Going Beyond with Fair Strategies

In [2] decidability is also shown for a theory modeling homomorphic encryption. For our procedure
to terminate on this theory we use a particular saturation strategy.

Homomorphic encryption. The theory Ehomo of homomorphic encryption that has been stud-
ied in [2, 22] is as follows:

fst(pair(x, y)) = x snd(pair(x, y)) = y dec(enc(x, y), y) = x
enc(pair(x, y), z) = pair(enc(x, z), enc(y, z))
dec(pair(x, y), z) = pair(dec(x, z), dec(y, z))

In general, our algorithm does not terminate under this equational theory. Consider for instance
the frame ϕ = {w1 7→ pair(a, b)} where a, b ∈ N are private names. We have that:

Init(ϕ) ⊇ {
(

k(w1, pair(a, b))},
(

k(enc(X,Y ), enc(x, y)) ⇐ k(X,x), k(Y, y)
)

}.
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As in Example 4.11 we can obtain an unbounded number of solved statements whose projections
are of the form:

(

pair(enc(. . . enc(a, z1) . . . , zn), enc(. . . enc(b, z1) . . . , zn)) ⇐ z1, . . . , zn

)

.

However, we can guarantee termination by using a fair saturation strategy. We say that a
saturation strategy is fair if whenever a rule instance is enabled it will eventually be taken.

Indeed in the above example using a fair strategy we will eventually add statements whose

projections are
(

k(fst(w1), a) ⇐
)

and
(

k(snd(w1), b) ⇐
)

. Now the “problematic” statements

described above become redundant and are not added to the knowledge base anymore. One may
note that a fair strategy does not guarantee termination in Example 4.11 (intuitively, because the
function g is one-way and a is not deducible in that example).

Lemma 4.13. If the saturation strategy is fair the saturation process terminates for the equational
theory Ehomo.

Proof. Orienting the five equations in Ehomo we obtain the following convergent term rewriting
system Rhomo:

R1 fst(pair(x, y)) → x

R2 snd(pair(x, y)) → y

R3 dec(enc(x, y), y) → x

R4 enc(pair(x, y), z) → pair(enc(x, z), enc(y, z))

R5 dec(pair(x, y), z) → pair(dec(x, z), dec(y, z))

For the purpose of this proof we extend the notion of extended subterm and define stext
+(t) to be

the smallest set such that:

1. t ∈ stext
+(t),

2. f(t1, . . . , tk) ∈ stext
+(t) implies t1, . . . , tk ∈ stext

+(t),

3. t′ ∈ stext
+(t) and t′ → t′′ implies t′′ ∈ stext

+(t).

4. f(t1, . . . , tk) ∈ stext
+(t) implies f(s1, . . . , sk) ∈ stext

+(t) for every si ∈ stext
+(ti) and for

every f ∈ F of arity k.

We extend as usual stext
+ to frames. We will show that the set stext

+(t) is finite for every term
t. Note that s ∈ stext

+(t) iff t→∗
Rhomo∪{f(x1,...,xn)→xi}1≤i≤n

s where f ∈ F ranges over all function

symbols and where n is the arity of f . We will show that Rhomo ∪ {f(x1, . . . , xn) → xi}1≤i≤n

is terminating. Indeed, let h(t) = {h1, . . . , hm} be the multiset containing the heights of all
occurrences of the function symbols enc and dec in the term t. We write h(s) ≺ h(t) if h(s) is
smaller, in the multiset extension of the usual ordering on natural numbers, than h(t). We have
that t →Rhomo∪{f(x1,...,xn)→xi}1≤i≤n

s implies (h(s), |s|) < (h(t), |t|) where < is the well-founded
lexicographic order with the multiset ordering ≺ on the first component and the usual order on
natural numbers on the second component. As Rhomo ∪ {f(x1, . . . , xn) → xi}1≤i≤n is terminating
and (obviously) finitely branching, it follows immediately that the set

stext
+(t) = {s | t→∗

Rhomo∪{f(x1,...,xn)→xi}1≤i≤n
s}

is finite.

Let ϕ be the frame being saturated. We first show that for all knowledge bases K such that
Init(ϕ) =⇒∗ K we have that each f̂ ∈ {f̂ | f ∈ K and f is a deduction statement} has one of the
following forms:

1.
(

t⇐ ∅
)

, for some t ∈ stext
+(ϕ)

2.
(

fst(x) ⇐ x
)
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3.
(

snd(x) ⇐ x
)

4.
(

enc(x, y) ⇐ x, y
)

5.
(

dec(x, y) ⇐ x, y
)

6.
(

pair(x, y) ⇐ x, y
)

7.
(

C[t1, . . . , tk] ⇐ Var(C)
)

where:

• C is obtained by arbitrarily nesting the following (classes of) contexts: C1 = enc( , zi),
C2 = dec( , zi) and C3 = pair( , ), where zi are variables.

• C contains at least one variable.

• C ′[t1, . . . , tk] ∈ stext
+(φ), where C ′ is obtained from C by replacing enc( , zi) and

dec( , zi) with .

8.
(

x⇐ pair(x, y)
)

9.
(

y ⇐ pair(x, y)
)

10.
(

x⇐ enc(x, y), y
)

11.
(

pair(enc(x, z), enc(y, z)) ⇐ pair(x, y), z
)

12.
(

pair(dec(x, z), dec(y, z)) ⇐ pair(x, y), z
)

13.
(

t⇐ t1, . . . , tk

)

, for some t, t1, . . . , tk ∈ stext
+(ϕ)

14.
(

C[t1, . . . , tk] ⇐ s1, . . . , sl,Var(C)
)

where:

• C is obtained by arbitrarily nesting the following (classes of) contexts: C1 = enc( , zi),
C2 = dec( , zi), and C3 = pair( , ), where zi are variables.

• C ′[t1, . . . , tk] ∈ stext
+(φ), where C ′ is obtain from C by replacing enc( , zi) and dec( , zi)

with .

• si are ground terms

We show this by induction on the number of saturation steps of Init(ϕ) =⇒∗ K. In the

following when a projection f̂ corresponds to one of the above 14 cases, we say that f is of type i
(1 ≤ i ≤ 14).
Base case. It is easy to see that all f ∈ Init(ϕ) are indeed of types 1− 6.
Inductive case. We assume that the result holds for K and we show that any possible application
of a saturation rule preserves the result. We summarize the case analysis in the following two
matrices.

Narrowing R1 R2 R3 R4 R5

type 1 1 1 1 1 1
type 2 8 impossible impossible impossible impossible
type 3 impossible 9 impossible impossible impossible
type 4 impossible impossible impossible 11 impossible
type 5 impossible impossible 10 impossible 12
type 6 impossible impossible impossible impossible impossible
type 7 7 7 1, 7, 13, 14 7 7
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F-Solving type 1 type 2 type 3 type 4 type 5 type 6 type 7
type 8 1 imp. imp. imp. imp. redundant 7, 1
type 9 1 imp. imp. imp. imp. redundant 7, 1
type 10 13 imp. imp. imp. redundant imp. 7, 1
type 11 7 imp. imp. imp. imp. redundant 7
type 12 7 imp. imp. imp. imp. redundant 7
type 13 1, 13 13 13 13 13 13 13
type 14 7, 14 14 14 14 14 14 14

We next show that because the strategy is fair at a given saturation step, no more statements
of type 7 are added.

Lemma 4.14. Suppose that the saturation strategy is fair and let

Init(ϕ) =⇒∗ K0 =⇒ . . . =⇒ Ki =⇒ . . .

be a sequence of saturation steps. If f̂ =
(

C[t1, . . . , tk] ⇐ s1, . . . , sl,Var(C)
)

∈ {f̂ | f ∈

K0 is a deduction statement} is of type 7 or type 14 and k(Rj , sj) ∈ deriv(K0|solved) for some
Rj for all j, then there exists n such that k(Ti, ti) ∈ deriv(Kn|solved) for some Ti for all i.

Proof. The proof is done by induction on the number of saturation steps of Init(ϕ) ⇒∗ K0.
Base case. As Init(ϕ) does not contain any statements of type 7 or 14 we conclude.
Inductive case. We suppose that the result holds for K0 and verify that it is maintained by any
possible rules that add a statement of type 7 or 14.

• Suppose we add a statement of type 7 by using rule Narrowing on a statement of type 7
in K0 and R1 or R2. The rewriting must occur at a position in one of the ti which is
rewritten to t′i. By induction hypothesis we have that there exists n, such that k(Ti, ti) ∈
deriv(Kn|solved). We can adapt the proof of Proposition 4.2 to show that because of fairness
(rather than saturation) narrowing must be applied such that there exists n′ such that
k(T ′i , t

′
i) ∈ deriv(Kn′ |solved) for some T ′i .

• Suppose we add a statement of type 7 by using rule Narrowing on a statement of type 7
in K0 and R3. If narrowing is applied on one of the ti the case is similar to the previous
one. If narrowing is applied inside the context such that the ti do not change we conclude
by induction hypothesis.

• Suppose we add a statement of type 14 by using rule Narrowing on a statement of type 7
in K0 and R3. Narrowing must have changed both the context and one of the ti. Suppose
w.l.o.g. i = 1. It must be that be that t1 = enc(t′1, t

′′
1). We have to show that there exists

n such that if k(T ′′1 , t
′′
1) ∈ deriv(Kn|solved) for some T ′′i then k(T ′1, t

′
1) ∈ deriv(Kn|solved)

for some T ′1 and k(Ti, ti) ∈ deriv(Kn|solved) for some Ti for all 2 ≤ i ≤ k. k(Ti, ti) ∈
deriv(Kn|solved) is obtained by induction hypothesis. If k(T ′′i , t

′′
i ) ∈ deriv(Kn|solved) and

because k(S1, enc(t′1, t
′′
1)) ∈ deriv(Kn|solved) we can apply Narrowing such that k(S′1, t

′
1) ∈

deriv(Kn′ |solved) for some n′.

• Suppose we add a statement of type 7 by using rule Narrowing on a statement of type 7
in K0 and R4 (or analogously R5). If narrowing is applied on one of the ti the case is
similar to previous cases. If narrowing is applied inside the context such that the ti do
not change we conclude by induction hypothesis. Suppose both the context and one of
the ti change. We suppose w.l.o.g. that i = 1. It must be that t1 = pair(t′1, t

′′
1). By

induction hypothesis we have that there exists n such that k(Ti, ti) ∈ deriv(Kn|solved) for
some Ti for all 2 ≤ i ≤ k. As k(S1, pair(t′1, t

′′
1)) ∈ deriv(Kn|solved) for some S1 we also

have that k(fst(S1), fst(pair(t′1, t
′′
1))) ∈ deriv(Kn|solved) and k(snd(S1), snd(pair(t′1, t

′′
1))) ∈

deriv(Kn|solved). Because of fairness Narrowing can be applied such that k(fst(S1), t′1) ∈
deriv(Kn′ |solved) and k(snd(S1), t′′1) ∈ deriv(Kn′′ |solved) for some n′ and n′′.
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• Suppose we add a statement of type 7 by using rule F-Solving on statements of type 11
and 1 in K0. Let pair(t1, t2) be the statement of type 1. As the strategy is fair we will

add statements
(

x ⇐ pair(x, y)
)

and
(

y ⇐ pair(x, y)
)

by applying rule Narrowing on

type 2/R1 and type 3/R2. Again by fairness we will apply solving on pair(t1, t2) and
(

x⇐

pair(x, y)
)

as well as
(

y ⇐ pair(x, y)
)

. Therefore t1 and t2 will be generated.

• Suppose we add a statement of type 7 by using rule F-Solving on statements of type 12
and 1 in K0. This case is similar to the previous one.

• Suppose we add a statement of type 7 by applying rule F-Solving on statements of type 8-
12 with a statement of type 7 in K0. The resulting statement is a context on the same (or a
subset of the) terms ti (1 ≤ i ≤ k) as the initial type 7 statement. We conclude by induction
hypothesis.

• Suppose we add a statement of type 7 by applying rule F-Solving on a statement of type 14
with a statement of type 1 in K0. The type 14 statement has only one ground antecedent s1

which is solved by the type 1 statement. Hence
(

s1

)

∈ {f̂ | f ∈ K0, f deduction statement}

and k(S1, s1) ∈ deriv(K0|solved) for some S1. We can apply the induction hypothesis and
conclude.

• Suppose we add a statement of type 14 by applying rule F-Solving on a statement of
type 14 with a statement of type i (1 ≤ i ≤ 14) in K0. We directly conclude by induction
hypothesis.

There are a finite number of solved statements other than of type 7. There exist only a finite
number of ti which can occur in statements of type 7 as they are in stext

+(ϕ).

Hence it follows from Lemma 4.14 that for any fair saturation sequence, at some moment all
new statements of type 7 become redundant and therefore are not added to the knowledge base.
Therefore any fair saturation sequence only contains a finite number of solved statements.

We know that after some number n of saturation steps, no more solved deduction statements
are added to the knowledge base. We now show that a finite number of unsolved statements are
added after this stage. Indeed, after n iterations, as no more solved statements are added to the
knowledge base, the only types of statements potentially added are 13 and 14. The antecedents of
these statements contain only ground terms or variables. By solving one of the ground antecedents
the cardinality of the antecedents decreases ensuring termination.

We show that all equational statements are of the form
(

i(M,N) ⇐ k(X1, t1), . . . , k(Xk, tk)
)

,

for some M,N where either ti ∈ X or ti = C[s1, . . . , sl] for some ground terms sj (1 ≤ j ≤ l)
and for some context C obtained by arbitrary nesting of contexts C1 = enc( , zn), C2 = dec( , zn),
C3 = pair( , ) and C4 = , where zn are variables.

This is true for the equational statements obtained by rule Unifying. When applying rule
E-Solving on an antecedent of the above type we consider the following cases:

• if we solve k(Xi, ti) with a type 1 statement, we easily conclude;

• if we solve k(Xi, ti) with a statement of type 2, 3, 4, 5, 6, the result is immediate;

• if we solve k(Xi, ti) (where ti = C[s1, . . . , sl]) with a type 7 statement
(

C ′[u1, . . . , um] ⇐

Var(C ′)
)

, we note that mgu(ti, C
′[u1, . . . , um]) is such that variables are mapped to either

variables or ground terms. Therefore the property holds.
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Using again the measure

me(
(

i(M,N) ⇐ k(X1, t1), . . . , k(Xk, tk)
)

) = (|Var(t1, . . . , tk)|, |t1|+ . . .+ |tk|)

and the lexicographic order <e on pairs, we obtain that f0 <e f1 for all f0 and f1 as in rule
E-Solving.

4.7 Tool Support

With certain optimizations described below, our saturation algorithm runs in polynomial time for
subterm convergent equational theories, Emal, Eblind, and Etdcommit.

4.7.1 Optimizations

Optimization 4.1 (Deciding derivations in polynomial time)). To decide if k(R, t) ∈ deriv(K|solved),
the recursive algorithm obtained immediately from the deriv rules is not polynomial. However,
by using memoization, its complexity becomes polynomial. Using the same trick, we can compute
a recipe R such that k(R, t) ∈ deriv(K|solved) in polynomial time, if we store R in DAG form.

Optimization 4.2 (Recipes in DAG form). Indeed, recipes might grow to an exponential size if

they are not stored in DAG form. Therefore, we require that the term R in
(

k(R, u) ⇐ ∆
)

and

the terms U and V in
(

k(U, V ) ⇐ ∆
)

are stored in DAG form.

Optimization 4.3 (Optimization to solve ground antecedents). Using different combinations of
solved statements to solve ground antecedents is unnecessary work. Therefore we consider that
the standard F-Solving and E-Solving rules are applied only when the antecedent being solved
contains at least one variable. To solve an antecedent of the form k(X, t) when t is ground, we use
the two rules described below. Again, as for ⊕, we suppose that the choice of recipes N and M is
uniform.

F-Solving’

f1 =
(

k(M, t) ⇐ k(X0, t0), . . . , k(Xk, tk)
)

, Var(t0) = ∅

k(N, t0) ∈ deriv(K|solved), Var(N) ∩ Var(f1) = ∅

(K,K|solved) =⇒ K ⊕ f0

where f0 =
(

k(M{X0 7→ N}, t) ⇐ k(X1, t1), . . . , k(Xk, tk)
)

.

E-Solving’

f1 =
(

i(U, V ) ⇐ k(Y, s), k(X1, t1), . . . , k(Xk, tk)
)

∈ K|solved, Var(s) = ∅

k(M, s) ∈ deriv(K|solved), Var(M) ∩ Var(f1) = ∅

(K,K|solved) =⇒ K ∪ {f0})

where f0 =
(

i(U{Y 7→M}, V {Y 7→M}) ⇐ {k(Xi, ti)}1≤i≤k

)

.

Figure 4.3: Optimized saturation rules for solving ground antecedents

The soundness of this optimization is assured by Lemma 4.15 (whose proof is immediate)
whereas completeness is shown by proving Lemma 4.4 and Lemma 4.7 in the context of the new
saturation rules.

Lemma 4.15 (soundness of the two additional rules). Let ϕ be a frame and let K be a saturated
knowledge base such that every statement in K holds in ϕ. Let f1 and f0 be two statements as in
rules F-Solving’ (resp. E-Solving’). If f1 holds in ϕ then f0 holds in ϕ.
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Lemma 4.4. Let K be a saturated knowledge base and f =
(

i(U, V ) ⇐ k(X1, t1), . . . , k(Xk, tk)
)

be an equational statement in K. For any substitution σ grounding for {t1, . . . , tk} such that
k(R′i, tiσ) ∈ deriv(K|solved) for some R′i for all 1 ≤ i ≤ k, we have that k(Ri, tiσ) ∈ deriv(K|solved)
for some Ri for all 1 ≤ i ≤ k and K|solved |= i(Uτ, V τ) where τ = {X1 7→ R1, . . . , Xk 7→ Rk}.

Proof. By induction on
∑k

i=1 |tiσ|. We distinguish two cases:

1. f is a solved equational statement. The proof is as before.

2. f is an unsolved equational statement. In such a case, there exists tj such that tj 6∈ X . Let
us assume w.l.o.g. that j = 1. If t1 is not ground, then the proof is as before.

If t1 is ground and because K is saturated,

f2 =
(

i(U{X1 7→M}, V {X1 7→M}) ⇐ k(X2, t2), . . . , k(Xk, tk)
)

must be in K|solved by rule E-Solving’, where M is such that k(M, t1) ∈ deriv(K|solved).

We can apply the induction hypothesis on the statement f2 and the same substitution σ to
obtain that there exist Ri (i ≥ 2) such that k(Ri, tiσ) ∈ deriv(K|solved) and:

K|solved |= i(U, V ){X1 7→M}{X2 7→ R2, . . . , Xk 7→ Rk}.

We chose R1 = M and we immediately obtain the conclusion.

Lemma 4.7. Let K be a saturated knowledge base. Let f =
(

k(R, t) ⇐ k(X1, t1), . . . , k(Xk, tk)
)

be a deduction statement such that K ⊕ f = K. For any substitution σ grounding for {t1, . . . , tk}
such that k(T ′i , tiσ) ∈ deriv(K|solved) for all 1 ≤ i ≤ k, we have that there exist R1, . . . , Rk and
W such that

• k(W, tσ) ∈ deriv(K|solved), and k(Ri, tiσ) ∈ deriv(K|solved) for all 1 ≤ i ≤ k;

• K|solved |= i(W,R{X1 7→ R1, . . . , Xk 7→ Rk}).

Proof. By induction on
∑k

i=1 |tiσ|. We distinguish two cases. If f is solved, the proof is as before.
If f is not solved, there exists j such that tj 6∈ X . We assume w.l.o.g. that j = 1. If t1 contains

at least one variable, the proof is as before.
Otherwise, if t1 is ground and because K is saturated, rule F-Solving’ must have been applied

and therefore we can apply the induction hypothesis on

f2 =
(

k(R{X1 7→ N}, t) ⇐ k(X2, t2), . . . , k(Xk, tk)}
)

(where N is such that k(N, t1) ∈ deriv(K|solved)) and on the same substitution σ to obtain that
there exist Ri (i ≥ 2) and W such that

• k(W, tσ) ∈ deriv(K|solved) and k(Ri, tiσ) ∈ deriv(K|solved), for 2 ≤ i ≤ k

• K|solved |= i(R{X1 7→ N}{X2 7→ R2, . . . , Xk 7→ Rk},W )

We choose R1 = N and we immediately obtain our conclusion.
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4.7.2 Complexity

Theorem 4.2. Using the optimizations 4.3, 4.2 and 4.1 described above, and if ϕ is in normal
form, the saturation algorithm terminates in polynomial time for any subterm convergent equa-
tional theory, for Etdcommit, for Emal and for Eblind.

In the remaining, we consider an equational theory E that is either subterm convergent, or
E ∈ {Emal,Eblind,Etdcommit}. We define the following set:

Q(ϕ) = {
(

rσ ⇐ t1, . . . , tk

)

}

for every rewrite rule l → r, for every partial substitution σ : Var(l) → stext(ϕ) and for every
set of incomparable positions p1, . . . , pk ∈ Pos(l) such that for every i (1 ≤ i ≤ k) we have that
ti = (l|pi

)σ.

In order to prove Theorem 4.2, we need an additional lemma.

Lemma 4.16. Let ϕ be a frame and let K be such that Init(ϕ) =⇒∗ K. For any unsolved

deduction statement f ∈ K we have that f̂ ∈ Q(ϕ).

Proof. First, note that an unsolved deduction statement obtained by applying Narrowing on a
solved statement satisfies this property. Now assume we have an unsolved deduction statement

f̂ =
(

rσ ⇐ (l|p1
)σ, . . . , (l|pk

)σ
)

∈ Q(ϕ) and assume one of its antecedents (l|pi
)σ is being solved.

Assume w.l.o.g. that i = 1.

• If (l|p1
)σ is ground, rule F-Solving’ must be applied. We therefore obtain a statement

f̂ ′ =
(

rσ ⇐ (l|p2)σ, . . . , (l|pk
)σ

)

.

• If (l|p1
)σ is not ground, rule F-Solving is applied and l|p1

is necessarily not a variable (by
the definition of σ, it maps variables only to ground terms). Therefore l|p1

is of the form
g(s1, . . . , sl) for some function symbol g ∈ F . We distinguish three cases:

– If the antecedent is solved using a deduction statement whose projection is of the form
(

t ⇐
)

for some t ∈ stext(ϕ), let σ′ = mgu((l|p1)σ, t) and consider τ = σσ′. By rule

F-Solving, the antecedent (l|p1)σ will simply be removed.

– If the antecedent is solved using a statement whose projection is
(

g(x1, . . . , xl) ⇐

x1, . . . , xl

)

, then the antecedent (l|p1
)σ will be replaced by antecedents (l|p1·j)σ, for

1 ≤ j ≤ l.

– If the antecedent is solved using a “special” statement
(

sign(t, x) ⇐ x
)

(with t ∈

stext(ϕ)),
(

enc(x, t) ⇐ x
)

(with t ∈ stext(ϕ)),
(

tdcommit(t1, t2, t3) ⇐
)

(with t1, t2, t3 ∈

stext(ϕ)) or
(

f(t1, t2, t3, x) ⇐ x
)

(with t1, t2, t3 ∈ stext(ϕ)), we obtain by a case-by-case

analysis that the property is satisfied by the resulting statement.

Now, we are able to prove Theorem 4.2

Proof. (of Theorem 4.2)
We first show that any knowledge base contains a polynomial number of deduction state-

ments. Indeed, there are a polynomial number of solved deduction statements. Furthermore, from
Lemma 4.11, Lemma 4.10, Lemma 4.9 and Lemma 4.8, we can deduce that the term in the head
of each such solved deduction statement has polynomial size. As each Narrowing rule is applied
at most once for each rewrite rule and each position of the term in the head of a solved deduction
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statement, applying rule Narrowing yields a polynomial number of unsolved deduction state-
ments. We also know, thanks to Lemma 4.16, that for any frame ϕ (in normal form), for any
knowledge base K reachable from Init(ϕ), and for any unsolved statement f ∈ K, we have that

f̂ ∈ Q(ϕ).

We consider the two following orders:

• the order <p defined on sets of positions as follows:

{p0, . . . , pℓ} <p {q1, . . . , qk, p1, . . . , pℓ} iff q1, . . . , qk are incomparable positions and p0 is a
prefix of qi (1 ≤ i ≤ k).

• the order <f defined on deduction statements whose projection are in Q(ϕ):

f0 <f f1 iff either ℓ < k or ℓ = k and {p1, . . . , pk} <p {p
′
1, . . . , p

′
ℓ}.

where f0 =
(

k(R, rσ) ⇐ k(X1, l|p1σ), . . . , k(Xk, l|pk
)
)

, and where f1 =
(

k(R′, rσ′) ⇐

k(X1, l|p′1σ
′), . . . , k(Xl, l|p′

ℓ
σ′)

)

.

As <f does not depend on the frame, all strictly decreasing sequences of deduction statements
have at most a constant size. Also note that if f1 and f0 are as in rule F-Solving or F-Solving’,
we have that f0 <f f1.

There is at most a polynomial number of choices to be made when solving each deduction
statement (which antecedent, which solved deduction statement). As the resulting statements will
be smaller (according to <f ) than the initial statement, and as any such sequence has at most a
constant length, an unsolved statement will generated at most a polynomial number of statements.

We now show that each deduction statement has at most a polynomial size if the recipes
are stored in DAG form. This is obviously true of the initial statements. The other recipes are
obtained from the initial recipes by applying a polynomial number of substitutions whose size is
polynomially bounded. Therefore all recipes have polynomial size.

It remains to show that there are a polynomial number of equational statements. This is
true of the (necessarily solved) equational statements added during application of Narrowing

and F-Solving (via the ⊕ operation). The other possibility to generate equational statements
is Unifying, which generates a polynomial number of (possible unsolved) equational statements.
All such unsolved equational statements have antecedents which are either ground or variables.
Therefore, each such unsolved equational statement will lead to at most a polynomial number of
other equational statements by applying rule E-Solving’.

4.8 Conclusion and Further Work

In this chapter, we have presented a procedure for checking static equivalence under convergent
term rewriting systems. The procedure terminates and is therefore an algorithm when the term
rewriting system implements one of the following (classes) of equational theories: subterm con-
vergent, blind signatures, trapdoor commitment schemes, homomorphic encryption.

A C++ implementation of the procedures described in this paper is provided in the KiSs

(Knowledge in Security protocols) tool [45].
The tool implements a partially fair saturation strategy and a uniform ⊕. The fairness em-

ployed by the tool is sufficient to decide the theory Ehomo. Moreover the tool implements the
optimizations described in Section 4.7.1. This makes the procedure terminate in polynomial time
for subterm convergent equational theories, and the theories Eblind, Emal and Etdcommit.

The performances of the tool are comparable to the YAPA tool [20, 22] and on most examples
the tool terminates in less than a second. In [22] a family of contrived examples is presented
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to diminish the performance of YAPA, exploiting the statement that YAPA does not implement
DAG representations of terms and recipes, as opposed to KiSs. As expected, KiSs indeed performs
better on these examples.

Regarding termination, our procedure terminates on all examples of equational theories pre-
sented in [22]. In addition, our tool terminates on the theories Emal and Etdcommit whereas YAPA
does not. In [22] a class of equational theories for which YAPA terminates is identified and it
is not known whether our procedure terminates. YAPA may also terminate on examples outside
this class. Hence the question whether termination of our procedures encompasses termination of
YAPA is still open.

As further work, it would be interesting to extend the range of equational theories handled
by the tool. In particular, associative-commutative function symbols should be handled in order
to model exclusive-or. Another direction for future work is to extend the technique in order to
handle the active case. This direction is taken in Chapter 5.
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Chapter 5

Automated Verification of Trace
Equivalence

5.1 Introduction

When security protocols are verified in a formal setting, the most usual security property that
is checked is secrecy of some data. To check secrecy of some value s, the security protocol is
modeled as a mathematical object P in some formalism such as the process algebra. Then, by
using automated methods, hand-made proofs, or a combination of the two, it is proven that either
the protocol preserves the secrecy of s in the chosen formalism, or we find an attack, i.e. a series
of intruder actions that lead to the discovery of s.

Secrecy is a trace property, in the sense that it is sufficient to analyze each trace of the protocol
in turn and check if the trace leaks s or not. Another important trace property is authentication,
which is usually modeled as an implication of the form:

Any time an event E takes place (e.g. a request for a money transfer has been sent to the
bank), it must be the case that a previous event E′ also took place (i.e. the credentials for
the bank account were sent to the bank).

There are by now a large number of theoretical results [64, 118, 43, 42, 41, 54, 8, 32] regarding
the automated verification of secrecy and authentication properties. Furthermore, a number of
automated tools [63, 12, 25, 82] are available to automatically check such properties.

However, while secrecy and authentication are certainly important, they are not sufficient,
in the sense that there exist security protocols of which we expect more. Many crucial security
properties can only be expressed in terms of indistinguishability (or equivalence).

In particular, it is usually important for electronic voting protocols to preserve vote privacy, in
the sense that an attacker (who might be one of the election organizers) should not be able to link
voters to their vote. Informally, we would like to say voting protocol satisfies vote privacy if an
attacker cannot find out how any given person voted. It turns out however that this requirement
is too strong: for example, in an election where there is unanimity, everyone knows how everyone
voted as soon as the result is announced.

Kremer, Delaune and Ryan propose another definition [72]. Let P{vA 7→ X, vB 7→ Y } be an
instance of the voting protocol where voter A voted for some candidate X (modeled by the fact
that vA = X) and where voter B voted for candidate Y . We can then say that the voting protocol
satisfies vote privacy if the attacker cannot distinguish this situation from the situation where A
and B swap their votes:

P{vA 7→ X, vB 7→ Y } ≈t P{vA 7→ Y, vB 7→ X}.

Here the symbol ≈t denotes an indistinguishability relation between processes, i.e. ≈t identifies
processes which look the same to the intruder. In this thesis, we will assume that ≈t is trace

89
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equivalence, as it best models the capabilities of the standard Dolev-Yao attacker, which has
complete control of the network and no control whatsoever of the machines belonging to the
honest participants.

Other uses of indistinguishability include strong flavors of confidentiality [26]; resistance to
guessing attacks in password based protocols [19]; and anonymity properties in private authenti-
cation protocols [4], electronic voting [72, 17], vehicular networks [65, 66] and RFID protools [9, 31].
More generally, indistinguishability allows to model security by the means of ideal systems, which
are correct by construction [5, 70]. Indistinguishablity properties of cryptographic protocols are
naturally modeled by the means of observational and testing equivalences in cryptographic exten-
sions of process calculi, e.g., the spi-calculus [5] and the applied-pi calculus [3].

While we have a good number of tools [63, 12, 25, 82] for automated verification of trace
properties, the situation is different for indistinguishability properties. This chapter addresses
this situation by introducing a procedure for checking trace equivalence.

5.1.1 Related Work

In the case of a passive adversary, i.e. an adversary that only listens to messages on the network
but cannot modify them, deciding trace equivalence reduces to checking static equivalence. As
we have seen in the previous chapter, many decidability results have been obtained [2, 58, 13].
Exact [21, 51] and approximate [27] tools exist for a variety of cryptographic primitives.

The field of automated verification for equivalence properties is less well-developed. There
are a few theoretical results [97, 37, 59, 27, 121] and very few tools [25, 37] that can handle
equivalence properties. Undecidability of observational equivalence in the spi calculus, even for
the finite control fragment, was shown by Hüttel [97]. Current results [27] allow to approximate
observational equivalence for an unbounded number of sessions. However, this approximation does
not suffice to conclude for many applications, such as electronic voting protocols.

For the finite, replication-free, fragment of the spi calculus a decision result [97] and an au-
tomated tool [79] exist for checking observational equivalence, but only for a fixed, limited set of
cryptographic primitives. Symbolic bisimulations have also been devised for the spi [30, 29] and
applied pi calculus [73, 102] to avoid unbounded branching due to adversary inputs. However,
only [73] and [30] yield a decision procedure, but again only approximating observational equiva-
lence. The results of [73] have been further refined to show a decision procedure on a restricted
class of simple processes [59]. In particular they rely on a procedure deciding the equivalence
of constraint systems, introduced by Baudet [19], for the special case of verifying the existence
of guessing attacks. Baudet’s procedure allows arbitrary cryptographic primitives that can be
modeled as a subterm convergent rewrite systems. An alternate procedure achieving the same
goal was proposed by Chevalier and Rusinowitch [44]. However, both procedures are highly non-
deterministic and do not yield a reasonable algorithm which could be implemented. Therefore,
Cheval et al. [37, 38] have designed a new procedure and a prototype tool to decide the equivalence
of constraint systems, but only for a fixed set of primitives. In particular, [37] decides equivalence
of two symbolic traces and an implementation is available. In [38], the same authors extend [37]
to handle equivalence between nondeterminate processes with else branches, but the resulting al-
gorithm is not (yet) implemented and is limited by the fact that it cannot treat cryptographic
primitives appearing in electronic voting protocols.

Techniques based on Horn clauses have been extensively used, e.g. by Blanchet [25], Weiden-
bach [123] and Goubault [89], in the case of an unbounded number of sessions. However, all these
approaches allow false attacks. In the case of confidentiality properties, precise encodings (with-
out false attacks) into Horn clauses have been proposed and implemented in [6]. However, the
encoding is for a fixed set of cryptographic primitives, it does not take into account that processes
may block (due to a test failing) and it works only for trace properties. Another approach [74]
based on resolution of clauses with rigid variables was proposed to solve reachability properties
while avoiding false attacks.
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5.1.2 Contribution

In this chapter we introduce an automated method for proving trace equivalence for a crypto-
graphic process algebra without replication and without else branches where messages are modeled
as terms equipped with an equational theory, similar to the applied pi calculus [3]. We define our
process algebra in Section 5.2. Our approach is based on modeling traces as Horn clauses and can
be seen as an extension of the procedure presented in Chapter 4. We give an informal overview
of the procedure and we present the main difficulties in modeling traces as sets of Horn clauses in
Section 5.3.

In Section 5.4, we formalize the modeling of traces into Horn clauses and in Section 5.5,
we formally describe the saturation procedure applied to the set of Horn clauses. The goal of
the saturation procedure is to produce a set of Horn clauses which make it easy to check trace
equivalence. It is correct for arbitrary cryptographic primitives that have the strong finite variant
property. We prove this by showing soundness (Section 5.6) and completeness (Section 5.7) of
the saturation procedure. Due to the highly complex form of Horn clauses appearing during
saturation, we were not able to prove that saturation always terminates. We conjecture that it
always terminates when the rewrite system is subterm convergent.

In Section 5.5.3 we show how to decide coarse trace equivalence from the saturated sets of Horn
clauses for the class of determinate processes. For this class of processes, we show (Section 5.2.3)
that coarse trace equivalence coincides with trace equivalence. Furthermore, we know that for
determinate processes, trace equivalence is the same as observational equivalence [59]. The proof
that the algorithm given in Section 5.5.3 for deciding coarse trace equivalence for determinate
processes is correct is given in Section 5.8. To overcome the limitation of determinate processes,
we suggest a proof method in Section 5.9 for showing trace equivalence for processes which are not
known to be determinate. Using this proof method, we give an automated proof of vote privacy
for the electronic voting protocol FOO in Section 5.9.3.

We have implemented the saturation procedure and the trace equivalence checking algorithm
in the tool AKiSs [46]. We describe our implementation in Section 5.9. We conclude and present
directions for further work in Section 5.10. This chapter is based on an article that has been
published in [35].

5.2 Process Algebra

In order to formally assess the security of cryptographic protocols, it is necessary to model the
protocols and the expected security properties as mathematical objects. Cryptographic process
calculi [5, 3] are a formalism derived from generic process calculi [108] that are designed specifically
for modelling cryptographic protocols. In this thesis, we introduce a version of the applied pi
calculus [3] that is particularly ammenable to automated analysis and to composability issues
discussed in this thesis. Recall that we have fixed a first-order signature F , a set N of private
names, a set M of public names, a set C of public channels, and a set W of parameters. Processes
are built from atomic building blocks that we call actions:

5.2.1 Actions

Definition 5.1. An action a is a term in T (F ∪ {receive, send,
?
=}, C,N ,M,X ) of one of the

following types:

a = receive(c, x) (receive action) or
a = send(c, t) (send action) or

a = [s
?
= t] (test action)

where receive, send,
?
= 6∈ F are fresh function symbols of arity 2, where c ∈ C is a public channel

and where s, t ∈ T (F ,N ,M,X ). The function symbol
?
= is used with infix syntax for clarity:
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s
?
= t is the same as

?
= (s, t). The square brackets around the s

?
= t action are just for presentation

reasons and are not part of the action.

The action receive(c, x) intuitively denotes the fact that a message is expected on channel c.
When a message is received, it is bound to the variable x. The action send(c, t) represents an

agent that sends out a message t on the cannel c. The action [s
?
= t] blocks if the terms s and t

represent different messages and executes successfully otherwise.

5.2.2 Traces

During a protocol run, actions are performed concurrently by the agents running the protocol.

Definition 5.2. A trace T is a finite sequence of actions T = a1.a2. . . . .an.

Intuitively, T = a1.a2. . . . .an represents an agent which first performs the action a1, then a2,
etc. As usual, a receive action ai = receive(c, x) acts as a binding construct for the variable x in
the rest of the trace ai+1, . . . , an. We assume the usual definitions of free and bound variables for
traces. We also identify traces which are equivalent up to α-renaming of bound variables.

If T is a trace with free variables x1, . . . , xn, we write T (x1, . . . , xn) instead of T . As is usual,
T (m1, . . . ,mn) will then represent the trace T where the terms m1, . . . ,mn are substituted for
variables x1, . . . , xn such that variable-capturing is avoided.

Example 5.1. Let c be a public channel name, let k ∈ N be a private name representing a
key and let

T (x) = send(c, enc(x, k)).send(c, k).

The trace T (x) can represent the sequence of actions performed by a voter that wishes to
vote x.

Semantics of traces

As is usual in security protocol analysis, we assume that all interactions between participants
are mediated by the attacker. Therefore, whenever a participant is ready to send a message
on a public channel, the attacker will be the one receiving the message, thereby increasing its
knowledge. Similarly, every time an agent is ready to input a message from a public channel, it is
the attacker that provides this message; the attacker will build it from its previous knowledge.

This fact is modeled in the operational semantics of a trace. A trace executes in the presence of
a frame representing the messages that have already been exchanged on the network. If the term
l ∈ {receive(c, r), send(c), test} is over the signature F⊎{receive, send, test} (with c ∈ C being

a channel name and r ∈ T (F ,W ∪M) being a recipe), the relation
l
−→F,E denotes one execution

step, and is defined as follows:

Receive
ϕ ⊢rF,E t

(receive(c, x).T, ϕ)
receive(c,r)
−−−−−−−−→F,E (T{x 7→ t}, ϕ)

Send

(send(c, t).T, ϕ)
send(c)
−−−−−→F,E (T, ϕ ∪ {w|Dom(ϕ)|+1 7→ t})

Test
s =E t

([s
?
= t].T, ϕ)

test
−−−→F,E (T, ϕ)

When the signature F or the equational theory E are clear from context, we can drop them

from the subscript and write
l
−→,

l
−→E or

l
−→F instead of

l
−→F,E.
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The labels on the “−→F,E” arrow denote intuitively the actions performed by the attacker. If
the trace expects a message on channel c, the intruder will construct using recipe r a term t from
the terms currently known to the intruder (the terms in ϕ). Then the receive action is executed,
the variable to which the message is bound being replaced in the rest of the trace by the message
itself. The intruder knowledge does not increase and therefore no new term is added to the frame
ϕ.

If the trace performs a send action, the message being sent goes to the intruder and is therefore
added to the frame, modeling the fact that the intruder knowledge has grown. If the trace performs
a test action, the test must be successful in order for the trace to continue. No new message is

added to the frame in this case. If the test is not successful, the trace blocks. We write
l1,...,ln
−−−−→F,E

for
l1−→F,E

l2−→F,E . . .
ln−→F,E (where juxtaposition denotes composition of relations).

Example 5.2. Continuing the previous example (T (x) = send(c, enc(x, k)).send(c, k)), we
have that

(T (yes), ∅)
send(c),send(c)
−−−−−−−−−−→ (0, ϕ)

where 0 denotes the empty trace (with 0 actions) and where ϕ = {w1 7→ enc(yes, k), w2 7→
k}.

As send and receive actions are mediated by the intruder, they are visible to the intruder.
However, test actions test are internal to the trace and are not visible to the intruder. As is usual
in process calculi, we define a weak semantics to account for the lack of visibility by the intruder
of test actions. In this semantics test actions can be performed spontaneously or skipped. This

weak semantics is defined by the relation =⇒. We shall write (T, ϕ)
l

=⇒ (T ′, ϕ′) if

1. (T, ϕ)
test

∗,l,test∗

−−−−−−−−→ (T ′, ϕ′) when l 6= test and

2. (T, ϕ)
test

∗

−−−→ (T ′, ϕ′) when l = test,

where test∗ denotes an arbitrary number of test actions.

5.2.3 Processes

Traces describe actions executing sequentially in a protocol. However, in a security protocol, a
different sequences of actions might be performed depending on the choices of agents and of the
intruder. To represent this, we define processes to consist of any number of traces.

Definition 5.3. A process P is a set (possibly infinite) of traces.

The set of bound variables (resp. the set of free variables) of a process is the union of the sets
of bound variables (resp. free variables) of all traces in the process. We identify processes which
are equal up to α-renaming of bound variables. If {x1, . . . , xn} is the set of free variables of a
process P , we write P (x1, . . . , xn) instead of P . In this case P (m1, . . . ,mn) denotes the process
P where the free variables x1, . . . , xn are replaced by the corresponding terms m1, . . . ,mn in a
variable-capture avoiding way. We identify singleton processes (consisting of a single trace) with
the trace itself.

We write (P, ∅)
l1,...,ln
−−−−→ (T, ϕ) (resp. (P, ∅)

l1,...,ln
====⇒ (T, ϕ)) if there exists S ∈ P such that

(S, ∅)
l1,...,ln
−−−−→ (T, ϕ) (resp. (S, ∅)

l1,...,ln
====⇒ (T, ϕ)).

Therefore, a process behaves as any one of its traces. This definition is non-standard, in the
sense that cryptographic process calculi usual contain a parallel operator “|” (P | Q denoting two
processes executing concurrently), a non-deterministic operator “+” (P + Q denoting a process
which executes either as P or as Q) and a replication operator “!” (!P denoting the process that
executes as an infinite number of copies of P in parallel).

However it is easy to see that any process defined using the parallel composition operator, the
non-deterministic choice operator and the replication operator is trace equivalent to a process in
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our calculus (obtained by considering all possible interleavings of actions for each of the operators).
Therefore, from a theoretical point of view, this choice of representation of processes is not a
restriction, as illustrated by the following example:

Example 5.3. We consider a toy voting protocol where each agent sends the vote (either
’yes’ or ’no’), encrypted with a previously distributed key k on a public channel. We assume
without modeling this that a trusted authority will then collect all votes, decrypt them and
announce the result.

We consider the trace S = send(c, enc(yes, k)).send(c, k) run by an agent voting ’yes’
and then accidently (or maliciously) sending the key k on the network. The trace T =
send(c, enc(no, k)) is that of an agent voting ’no’. Then the following process

P = { send(c, enc(yes, k)).send(c, k).send(c, enc(no, k)),
send(c, enc(yes, k)).send(c, enc(no, k)).send(c, k),
send(c, enc(no, k)).send(c, enc(yes, k)).send(c, k)

}

consisting of three traces represents all possible concurrent runs of S and T running in
parallel.

However, in practice, the representation of a process as a collection of traces might be exponen-
tially larger than a representation using the usual operators. We choose to work with a collection
of traces since the procedure that we describe in this chapter is easier to state on traces. However,
we note that before applying this procedure to a security protocol, an exponential blow-up could
occur due to the change in representation.

Determinate processes

An important class of processes is the class of determinate processes. The class of determinate
processes was first introduced by Engelfriet [81] for the π-calculus [108]. He showed that trace
equivalence coincides with observational equivalence for this class of processes. Cortier and De-
laune [59] extended the result of Engelfriet to the applied π-calculus [3]. As the core of our pro-
cedure shows trace equivalence for determinate process, we need to formally define determinate
processes for our calculus.

Definition 5.4. A process P is determinate if whenever (P, ∅)
l1,...,ln
====⇒ (T, ϕ) and (P, ∅)

l1,...,ln
====⇒

(T ′, ϕ′) then ϕ ≈s ϕ
′.

Intuitively this means that whenever the intruder performs a sequence of visible actions, its
knowledge is completely determined up to static equivalence by the sequence of actions that it
performed. The following is immediate from the definition.

Proposition 5.1. A trace (i.e. a process consisting of a single trace) is determinate.

5.2.4 Trace Equivalence

Security properties such as vote privacy can be defined in terms of equivalences between processes.
We recall the standard definition of trace equivalence.

Definition 5.5 (Trace equivalence). A process P is said to be trace-included in a process Q

(written P ⊑t Q) if whenever (P, ∅)
l1,...,ln
====⇒ (T, ϕ) there exist T ′, ϕ′ such that (Q, ∅)

l1,...,ln
====⇒

(T ′, ϕ′) and ϕ ≈s ϕ
′. Two processes P and Q are trace-equivalent (written P ≈t Q) if P ⊑t Q

and Q ⊑t P .
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Coarse Trace Equivalence and Determinate Processes

We now introduce an equivalence between processes that we call coarse trace equivalence and
that is in general weaker than trace equivalence: two processes which are in trace equivalence
are necessarily in coarse trace equivalence but not vice-versa. The reason for introducing this
equivalence is that it is easier to reason about. Furthermore, we show here that the two notions
of equivalence coincide for determinate processes.

Definition 5.6. Given two processes P and Q, we say that P is coarse trace included in Q (and we

write P ⊑c Q) if whenever (P, ∅)
l1,...,ln
====⇒ (T, ϕ) there exist T ′, ϕ′ such that (Q, ∅)

l1,...,ln
====⇒ (T ′, ϕ′)

and ϕ ⊑s ϕ
′. We say that P is coarse trace equivalent to P (and we write P ≈c Q) if P ⊑c Q and

Q ⊑c P .

It is easy to see from the above definition that P ≈t Q implies P ≈c Q for any processes P
and Q. The following example show that the reverse implication is not always true.

Example 5.4. Let a, b ∈ N be private names, let c ∈ C be a public channel and let

P = {send(c, a).send(c, a)}, Q = {send(c, a).send(c, a), send(c, a).send(c, b)}.

Clearly P ⊑c Q. Observe also that Q ⊑c P . This is because {w1 7→ a, w2 7→ b} ⊑s {w1 7→
a, w2 7→ a}. Thus, P ≈c Q. But P 6≈t Q.

The following theorem shows that the reverse implication is true if P and Q are determinate.

Theorem 5.1. .

If P and Q are determinate processes then P ≈t Q iff P ≈c Q.

Proof. Let P and Q be determinate processes.

(⇒) Follows immediately from definition of ≈t and ≈c.

(⇐) We need to show that that P ≈c Q implies P ≈t Q. We proceed by contradiction. Suppose
that P ≈c Q and P 6≈t Q. We suppose P 6⊑t Q (the case of Q 6⊑t P being symmetric). As

P 6⊑t Q we have that there exist l1, . . . , ln, T , ϕ, such that (P, ∅)
l1,...,ln
====⇒ (T, ϕ) and

1. either there exist no ϕ′, T ′ such that (Q, ∅)
l1,...,ln
====⇒ (T ′, ϕ′),

2. or for all ϕ′, T ′ such that (Q, ∅)
l1,...,ln
====⇒ (T ′, ϕ′) we have that ϕ 6≈s ϕ

′.

In the first case, P 6≈c Q, contradicting our hypothesis. In the second case, as ϕ 6≈s ϕ
′, there

exist r, r′ such that (r = r′)ϕ and (r 6= r′)ϕ′ (or vice-versa, the other case is symmetric).

As P ⊑c Q, we have that there exist T ′′, ϕ′′ such that (Q, ∅)
l1,...,ln
====⇒ (T ′′, ϕ′′) and ϕ ⊑s ϕ

′′.
Hence, we have (r = r′)ϕ′′. As Q is determinate, we have that ϕ′ ≈s ϕ

′′. This yields a
contradiction, as (r 6= r′)ϕ′ and (r = r′)ϕ′′ would imply ϕ′ 6≈s ϕ

′′.

5.3 Overview and Difficulties

Having already presented in Chapter 4 a successful procedure for static equivalence, we can try
to extend it to handle trace equivalence. Unfortunately, a number of difficulties arise due to the
active nature of the intruder.
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5.3.1 Horn Clause Modeling

The most natural extension is to define an initial knowledge base for a symbolic trace. As in the
previous chapter, the initial knowledge will be a Horn theory containing Horn clauses that we call
statements. Such a knowledge base would contain the “context” statements which model that the
intruder can apply function symbols to known terms. It would also contain statements modeling
that the intruder knows all public names.

In addition to those statements, an initial knowledge base for a symbolic trace should also
contain statements which model that if the intruder is able to provide inputs that pass the tests
in the process, then whatever the process outputs enters the intruder knowledge. For example,
consider the symbolic trace

P = send(c, enc(a, k)).receive(c, x).send(c, dec(x, k))

where a and k are private names and c ∈ C is a public channel. We could model this symbolic
trace by the Horn clauses

k(w1, enc(a, k))
k(w2, dec(x, k)) ⇐ k(X,x),

where the k predicate is similar to the k predicate using for static equivalence in Chapter 4: the
fact k(R, t) intuitively states that R can be used by the intruder as a recipe for t.

The first clause states that the intruder knows the encryption of a with k (as it is the first
message sent by the process). The second clause models that if the intruder can construct a
message x, then the second output of the trace (the parameter w2) is a recipe for the decryption
of x with the private name k. This allows us to conclude that a is not secret, since k(w2, a)
can be derived by instantiating k(X,x) with k(w1, enc(a, k)) in the second Horn clause above.
Unfortunately, this modeling is not accurate. Consider the following trace:

T = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).send(c, dec(x, k)).

receive(c, y).[y
?
= pair(a, a′)].send(c, s).0

where a, a′, k, s ∈ N are private names and c is a public channel. This trace first outputs the
encryption of a and respectively a′ with the key k and then offers to make one decryption with
the key k. The intruder can therefore choose to get either the private name a or the private name
a′, but not both. After the decryption, the trace verifies if the intruder is able to provide a pair
containing both a and a′ and, if so, outputs the private name s. The above trace would be modeled
as the following set of Horn clauses:

k(w1, enc(a, k))
k(w2, enc(a′, k))
k(w3, dec(x, k)) ⇐ k(X,x)
k(w4, s) ⇐ k(X,x), k(Y, y), y =E pair(a, a′)).

The above set of Horn clauses, combined with the context statement that allows the intruder
to construct pairs of known terms, allows to derive the fact k(w4, s). This is clearly not sound,
since the protocol does not reveal s. The problem in the above modeling is that the protocol
allows the intruder to decrypt exactly one message with the key k, while the Horn clauses allow
the intruder to decrypt any number of such messages.

To solve this issue, we annotate the intruder knowledge predicate with additional parameters to
take into account the entire history of interactions with the protocol. We write the new arguments
as a subscript of k. To illustrate this, consider again the symbolic trace

P = send(c, enc(a, k)).receive(c, x).send(c, dec(x, k))

where a and k are private names and c ∈ C is a public channel. We will model this trace using
the following Horn clauses

ksend(c)(w1, enc(a, k))
ksend(c),receive(c,x),send(c)(w2, dec(x, k)) ⇐ ksend(c)(X,x).
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The first Horn clause now states that after one send action on channel c, the parameter w1

points to the encryption of a with k. The second Horn clause states that if the intruder can
construct a message x after one send action of the protocol, then after one send action, one
receive action where x (the same x as before) is being input by the trace and another send action,
the parameter w2 points to the decryption of x with k. The fact that a is revealed is still modeled
by the Horn clauses since ksend(c),receive(c,enc(a,k)),send(c)(w2, a) is derivable. Furthermore, we now
avoid the accuracy problems. Consider again the trace

T = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).send(c, dec(x, k)).

receive(c, y).[y
?
= pair(a, a′)].send(c, s).0

where a, a′, k, s ∈ N are private names and c is a public channel. Using the new encoding, the
above trace is modeled as the following set of Horn clauses:

ksend(c)(w1, enc(a, k))
ksend(c),send(c)(w2, enc(a′, k))
ksend(c),send(c),receive(c,x),send(c)(w3, dec(x, k)) ⇐ ksend(c),send(c)(X,x)
ksend(c),send(c),receive(c,x),send(c),receive(c,y),send(c)(w4, s) ⇐

ksend(c),send(c)(X,x), ksend(c),send(c),receive(c,x),send(c)(Y, y), y =E pair(a, a′)).

With the new encoding, we have that ksend(c),send(c),receive(c,enc(a,k)),send(c)(w3, a) is derivable
and also that ksend(c),send(c),receive(c,enc(a′,k)),send(c)(w3, a

′) is derivable. However, there exists no
history H and no recipe R such that kH(R, pair(a, a′)) is derivable. We are assuming of course that
context statements only allow to apply contexts over terms that can be obtained by the intruder
using the same history. For example, the context statements modeling the fact that the intruder
can pair up know terms should now be

kW (pair(X,Y ), pair(x, y)) ⇐ kW (X,x), kW (Y, y),

where W is a variable that matches the history and X,Y, x, y are regular variables.
A similar encoding was proposed for verifying secrecy properties [6] for a specific intruder

theory. However, that encoding is not completely accurate as it does not take into account the
fact that processes might block. Our encoding into Horn clauses is a full abstraction of the
respective symbolic trace.

5.3.2 Getting Rid of Equational Antecedents

In the body of the Horn clauses above, we have introduced additional constraints of the form u =E

v for some terms u, v. These antecedents appear because the process is performing some test [u
?
=

v]. Fortunately, there is an easy way to get rid of these antecedents by using complete set of unifiers.
A complete set of unifiers modulo E of the terms u and v provides a finite symbolic representation
of all instantiations of u and v which render the two terms equal modulo E. Therefore, we will
simply replace a Horn clause of the form

C =
(

H ⇐ B1, . . . , Bn, u =E V
)

with a set of Horn clauses
C1 =

(

(H ⇐ B1, . . . , Bn)σ1

)

. . .

Ck =
(

(H ⇐ B1, . . . , Bn)σk

)

.

whenever σ1, . . . , σk is a complete set of unifiers of u and v. Such a complete set of unifiers can
be effectively computed using the procedure developed in Section 3.6 for any equational theory
having the strong finite variant property. By the results in Chapter 3 all convergent optimally
reducing equational theories have the strong finite variant property.
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5.3.3 Termination

The goal of the saturation procedure is to produce by resolution a set of solved statements which
is “equivalent” in some sense to the set of initial statements such that trace equivalence is easy
to check from the solved set of statements. Unfortunately, if we naively extend the saturation
procedure from Chapter 4, the saturation process will not terminate even in simple cases. We
illustrate non-termination of saturation bellow. We consider the following subterm convergent
rewrite system

R = {f(f(x)) → f(x)}

and the symbolic trace
S = receive(c, x).send(c, f(x)).

We have that the Horn clause

kreceive(c,x),send(w1, f(x)) ⇐ k(X,x)

is in the initial knowledge base of the symbolic trace. The fact that k(X,x) does not have any
subscript indicates that the intruder must construct x using recipe X before any interaction with
the process, i.e. in the empty history.

As an instantiation of f(x) might not be in normal form (depending on the value of x), there is
a chance to perform a narrowing step on this clause using the (fresh) rewrite rule f(f(y)) → f(y).
We would obtain the clause

kreceive(c,f(y)),send(w1, f(y)) ⇐ k(X, f(y)).

The antecedent in the body of this Horn clause can be solved using a context fact and we
would obtain the statement

kreceive(c,f(y)),send(w1, f(y)) ⇐ k(X, y).

Unfortunately, at this point we can perform another narrowing step of f(y) with the (fresh)
rewrite rule f(f(z)) → f(z). As this would continue forever, the saturation procedure would have
no chance to stop. Fortunately, there is a way to “precompute” all possible normal forms of the
term f(x) using the strong finite variant property described in Chapter 3 and therefore not have
to apply narrowing steps on the fly. In the initial knowledge base, we will basically replace Horn
clauses of the form

C =
(

kH(R, t) ⇐ B1, . . . , Bn

)

by a set of clauses

C1 =
(

(kH(R, t))σ1↓ ⇐ B1σ1↓, . . . , Bnσ1↓
)

. . .

Ck =
(

(kH(R, t))σk↓ ⇐ B1σk↓, . . . , Bnσk↓
)

.

whenever σ1, . . . , σk is a strongly complete set of variants of t. This replacement allows us to get
rid of the equational theory entirely during the saturation process; as an immediate consequence
it also fixes the non-termination problem in the above example.

5.3.4 Canonical Forms and the Reachability Predicate

A key ingredient of our procedure for deciding static equivalence were the canonical forms of the
statements. The canonicalization rule Rename allowed us to “collapse” two recipe variables when
the recipes pointed to the same term:

Rename

(

k(R, t) ⇐ k(X1, x1), . . . , k(Xk, xk)
)

{i, j} ⊆ {1, . . . , n} j 6= i and xj = xi
(

k(R{Xi 7→ Xj}, t) ⇐ k(X1, x1), . . . , k(Xi−1, xi−1), k(Xi+1, xi+1), . . . , k(Xk, xk)
)
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In the presence of the history arguments, things get more complicated. We could adapt the
rule Rename to behave as follows:

(

kH(R, t) ⇐ kH1
(X1, x1), . . . , kHk

(Xk, xk)
)

{i, j} ⊆ {1, . . . , n} j 6= i and xj = xi
(

kH(R{Xi 7→ Xj}, t) ⇐ kH1
(X1, x1), . . . , kHi−1

(Xi−1, xi−1), kHi+1
(Xi+1, xi+1), . . . , kHk

(Xk, xk)
)

In all of the statements in any knowledge base, all history sequences H1, . . . , Hk in the body
of the clause are prefixes of the history H in the head of the clause and therefore Hi and Hj are
one prefix of the other. If the two histories involved in the above canonicalization rule are equal
(Hi = Hj), then there is no problem with the above rule. However, if one is a strict prefix of the
other, we have to choose if we eliminate the ith or the jth antecedent (and therefore rename Xi

to Xj or vice-versa). Assume w.l.o.g. that Hi is a strict prefix of Hj .

1. If we eliminate the ith antecedent we risk to lose completeness due to the fact that we cannot
prove that f ′ implies f (where f ′ is obtained from f by the above rule).

2. Vice-versa, eliminating the jth antecedent is not sound (f does not imply f ′), since a recipe
which is valid after running history Hi is not valid after running history Hj if the trace
blocks sometime between Hi and Hj .

We chose to solve this problem by adopting a “soft” semantics for the k predicate: kH(R, t)
intuitively denotes that if a trace can successfully execute throughout history H, then R is a recipe
for t. If H cannot be executed (due to the fact that the trace blocks), then there is no guarantee.
This semantics of the k predicate makes the second option above sound. As a consequence of the
use of the “soft” semantics of k, we introduce a new predicate rH (taking as arguments only the
history), which denotes that the trace will successfully execute all commands in H. The initial
knowledge base contains Horn clauses which state that rH holds whenever all the tests in H hold
and the intruder can provide recipes for the inputs appearing in H. The fact that the tests in H
hold is modeled by applying complete sets of unifiers as previously described and the fact that
the intruder has to provide recipes for the inputs appearing in H is modeled by the antecedents
of the Horn clauses.

5.3.5 Identities and Reachable Identities

The intruder identity predicate i is, as expected, also decorated with history arguments. By
symmetry with the “knows” predicate, it enjoys the “soft” semantics: iH(R,R′) intuitively denotes
that if the trace can execute the commands in the history H, then R and R′ will be recipes for
the same term. In order to verify equivalence of two traces, we need however reachable identities.

We will therefore also use a predicate riH(R,R′) which intuitively states that H is executable
and R and R′ are recipes for the same term after execution of H:

riH(R,R′) is logically equivalent to rH ∧ iH(R,R′).

After saturation takes place, the algorithm for checking trace equivalence will verify that all
reachable identities in solved statements hold of the other trace and vice-versa.

We have briefly surveyed the difficulties associated with adapting our procedure to an active
intruder. We have also informally presented the workarounds that we propose to circumvent these
difficulties. We now proceed to fully formalize the intuitions given above, describe the main steps
of our saturation procedure and prove that the new saturation procedure is sound and complete.

5.4 Modeling Traces as Horn Clauses

As we have already announced, the new saturation procedure will make use of four predicates.
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5.4.1 Predicates and Semantics.

The intruder knowledge predicate kl1,...,lk(R, t) intuitively denotes that if the trace executed ac-
tions l1, . . . , ln, then R is a recipe for t in the resulting frame. The intruder identity predicate
il1,...,ln(R,R′) intuitively denotes that if the trace executed actions l1, . . . , ln, then R and R′ are
recipes for the same term in the resulting frame.

The intruder reachability predicate rl1,...,ln denotes that the trace can indeed execute actions
l1, . . . , ln. The intruder reachable identity predicate ril1,...,ln(R,R′) is intuitively a conjunction
of the intruder identity predicate il1,...,ln(R,R′) and the intruder reachability predicate rl1,...,ln :
ril1,...,ln(R,R′) intuitively states that the actions l1, . . . , ln can be executed by the trace and that
after the execution R and R′ are recipes for the same term in the resulting frame.

The predicates and their semantics are given in Figure 5.1. In formulas we also allow the usual
logical connectives and existential and universal quantification of variables with the expected
semantics. Formulas are interpreted over a symbolic trace T , a frame ϕ and a valuation σ.

When a formula f is ground we simply write (T, ϕ) |= f to denote that this formula holds for
(T, ϕ). If moreover, Dom(ϕ) = ∅ we simply write T |= f for (T, ϕ) |= f .

Predicates :
rl1,...,lk (Reachability predicate)
kl1,...,lk(R, t) (intruder Knowledge predicate)
il1,...,lk(R,R′) (Identity predicate)
ril1,...,lk(R,R′) (reachable identity predicate)

Semantics:

(T, ϕ0) |= rℓ1,...,ℓi if (T, ϕ0)
L1−−→ (T1, ϕ1)

L2−−→ . . .
Ln−−→ (Tn, ϕn)

such that ℓi =R Liϕi−1 for all 1 ≤ i ≤ n

(T, ϕ0) |= kℓ1,...,ℓi(R, t) if when (T, ϕ0)
L1−−→ (T1, ϕ1)

L2−−→ . . .
Ln−−→ (Tn, ϕn)

such that ℓi =R Liϕi−1 for all 1 ≤ i ≤ n
then ϕn ⊢

R t
(T, ϕ0) |= iℓ1,...,ℓi(R,R

′) if there exists t s.t.
(T, ϕ0, ) |= kℓ1,...,ℓi(R, t) and
(T, ϕ0, ) |= kℓ1,...,ℓi(R

′, t)
(T, ϕ0) |= riℓ1,...,ℓi(R,R

′) if (T, ϕ0, ) |= rℓ1,...,ℓi and (T, ϕ0, ) |= iℓ1,...,ℓi(R,R
′)

Figure 5.1: Semantics of predicates (for ground terms R,R′, t)

Example 5.5. Throughout this chapter, we will consider as a running example the following
traces

T = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(dec(x, k), k)].send(c, ok)

S1 = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(a, k)].send(c, ok)

S2 = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(a′, k)].send(c, ok)

where a, a′, k′ ∈ N are private names, where ok ∈ M is a public name and where c ∈ C
is a public channel. We will also assume that we are using the classical Dolev-Yao term

rewriting system R = {dec(enc(x, y), y) → x}. In the trace T , the test [x
?
= enc(dec(x, k), k)]

is a trick in order to test if x is an encryption with the key k. If x is of the form enc(t, k)
for some term t, the test will succeed; otherwise it will fail.

We have that the formulas ksend(c)(w1, enc(a, k)) and ksend(c),send(c)(w2, enc(a′, k)) are true
in all three traces (equipped with the empty frame). We also have that the formula

isend(c),send(c),receive(enc(a,k)),test,send(c)(w3, ok)
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is true of all three traces (equipped with the empty frame): for T and S1 the history is
executable and the third output is the public name ok, while for the third trace the history
is not executable and the i predicate holds for any recipes, including w3 and ok. The
formula rsend(c),send(c),receive(enc(a,k)),test,send(c) is true of T and S1 (equipped with the
empty frame), but not of S2 (equipped with the empty frame). The formula

risend(c),send(c),receive(enc(a,k)),test,send(c)(w3, ok)

is true of T and S1 (equipped with the empty frame), but not of S2 (equipped with the
empty frame). The formula k(w1, k) (with an empty sequence of history arguments) is true
in the traces T, S1, S2 equipped with the frame ϕ = {w1 7→ k}.

Statements. We now define a class of Horn clauses that we call statements and which are
extensively used throughout this chapter.

Definition 5.7. A statement is a Horn clause of the form H ⇐ B1, . . . , Bn where:

1. H ∈ {rl1,...,lk , kl1,...,lk(r, t), il1,...,lk(r, r′), ril1,...,lk(r, r′)} and

2. Bi = kl1,...,lji (Xi, ti) (1 ≤ i ≤ n)

for some terms l1, . . . lk, t1, . . . , tn such that ji ≤ k (1 ≤ i ≤ n) and for some distinct variables
X1, . . . , Xn ∈ X . Moreover, if H = kl1,...,lk(R, t) for some term t, then Var(t) ⊆ Var(t1, . . . , tn).

We implicitly assume that in a Horn clause all variables are universally quantified. Hence, all
statements are closed formulas. The goal of the saturation procedure is to go from a set of initial
statements to a set of solved statements which is equivalent to the initial set of statements.

Definition 5.8. A statement is solved if for all 1 ≤ i ≤ n, Bi = kl1,...,lji (Xi, xi) for some variable
xi ∈ X .

Working with a set of solved statements will make checking trace equivalence easier.

Example 5.6. For the trace T in our running example, we have that the following statements
hold in T (equipped with the empty frame):

ksend(c)(w1, enc(a, k)) ⇐
ksend(c),send(c),receive(enc(x,k)),test,send(c)(w3, ok) ⇐ ksend(c),send(c)(X, enc(x, k))

ksend(c),send(c),receive(x),test,send(c)(ok, ok) ⇐

isend(c),send(c),receive(enc(x,k)),test,send(c)(w3, ok) ⇐ ksend(c),send(c)(X, enc(x, k))

rsend(c),send(c),receive(enc(a,k)),test,send(c) ⇐

ksend(c),send(c),receive(z),test,send(c)(enc(X,Y ), enc(x, y)) ⇐

ksend(c),send(c),receive(x),test,send(c)(X,x),
ksend(c),send(c),receive(x),test,send(c)(Y, y)

5.4.2 The Seed Statements

To each trace T , we will associate a set of statements Seed(T ) which we call the seed statements
and which model the trace in a fully abstract manner. In this section. we explain how to compute
the seed statements for any ground trace. Let T = a1.a2. . . . .an be a ground trace. We assume
w.l.o.g. the following naming conventions:

1. if ai is a receive action then ai = receive(ci, xi),

2. if ai is a send action then ai = send(ci, ti),

3. if ai is a test actions then ai = [si
?
= ti].
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and that xi 6= xj for any i 6= j. Moreover, for each 1 ≤ i ≤ n we define ℓi as follows:

ℓi =







receive(ci, xi) if ai = receive(ci, xi)
send(ci) if ai = send(ci, ti)

test if ai = [si
?
= ti]

and let the sets R(m), S(m) and T (m) denote the indices of the receive actions, send actions and
respectively test actions of a1, . . . , am:







R(m) = {i | 1 ≤ i ≤ m, ai = receive(ci, xi)}
S(m) = {i | 1 ≤ i ≤ m, ai = send(ci, ti)}

T (m) = {i | 1 ≤ i ≤ m, ai = [si
?
= ti]}

Given a trace T and a set of public names M0 ⊆M, the set of seed statements associated to
T and M0, denoted Seed(T,M0), is defined to be the set of statements given in Figure 5.2. If
M0 = M, the set Seed(T,M0) = Seed(T,M) is said to be the set of seed statements associated
to T and we write in this case Seed(T ) as a shortcut for Seed(T,M).

Note that in the set of seed statements we apply complete sets of unifiers modulo R for all tests.
We use the notation mguR({si = ti}1≤i≤n) for a complete set of unifiers which render si equal to ti
modulo R for all 1 ≤ i ≤ n. Moreover, we apply strongly complete sets of variants. We use the
notation Variants(s1, . . . , sn) for a strongly complete set of variants of tuple(s1, . . . , sn), where
tuple is a fresh free function symbol of arity n. The fact of applying complete sets of unifiers and
strongly complete sets of variants allows us to get rid of the underlying term rewriting system and
therefore work in the free algebra during the saturation process.

rℓ1στ↓,...,ℓmστ↓ ⇐ {kℓ1στ↓,...,ℓj−1στ↓(Xj , xjστ↓)}j∈R(m)

for all 0 ≤ m ≤ n
for all σ ∈ mguR({sk = tk}k∈T (m))
for all τ ∈ Variants(ℓ1σ, . . . , ℓmσ)

kℓ1τ↓,...,ℓmτ↓(w|S(m)|, tmτ↓) ⇐ {kℓ1τ↓,...,ℓj−1τ↓(Xj , xjτ↓)}j∈R(m)

for all m ∈ S(n)
for all τ ∈ Variants(ℓ1, . . . , ℓm, tm)

k(c, c) ⇐
for all public names c ∈M0

kℓ1,...,ℓm(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓) ⇐ {kℓ1,...,ℓm(Yj , yjτ↓)}j∈{1,...,k}
for all 0 ≤ m ≤ n
for all function symbols f of arity k
for all τ ∈ Variants(f(y1, . . . , yk)).

Figure 5.2: Seed statements associated to T and M0 ⊆M

Example 5.7. Recall the trace T in our running example:

T = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(dec(x, k), k)].send(c, ok).

Following the naming conventions above, we have that

T = send(c1, t1).send(c2, t2).receive(c3, x3).[s4
?
= t4].send(c5, t5),
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where c1 = c2 = c3 = c5 = c, x3 = x, t1 = enc(a, k), t2 = enc(a′, k), s4 = x3 = x, t4 =
enc(dec(x3, k), k)) = enc(dec(x, k), k) and t5 = ok. We also have that ℓ1 = send(c), ℓ2 =
send(c), ℓ3 = receive(c, x), ℓ4 = test and ℓ5 = send(c).

Using for example the equational unification algorithm described in Section 3.6, we find
that mguR({x = enc(dec(x, k), k)}) = {{x 7→ enc(y, k)}}, i.e. the only equational unifier of
the two terms is the substitution σ = {x 7→ enc(y, k)}. We have that the set of variants
Variants(ℓ1σ, ℓ2σ, ℓ3σ, ℓ4σ, ℓ5σ) = Variants(ℓ1, ℓ2, receive(c, enc(y, k)), ℓ4, ℓ5). The algo-
rithm described in section 3.5 gives that the identity substitution τ = {} forms by itself a
strongly complete set of variants of the tuple send(c), send(c), receive(c, enc(y, k)), test.
We have therefore that the statement

rsend(c),send(c),receive(c,enc(y,k)),test,send(c) ⇐ ksend(c),send(c)(X3, enc(y, k))

belongs to the set of seed statements of T (it is one of the statements of the first type in
Figure 5.2).

Letting m = 5 ∈ S(n) and σ = {} ∈ Variants(ℓ1, . . . , ℓ5, t5), we have that

ksend(c),send(c),receive(c,x),test,send(c)(w3, ok) ⇐ ksend(c),send(c)(X3, x)

is in the set of seed statements of T (it is one of the statement of the second type in
Figure 5.2). If b ∈M is a public name, then the statement

k(b, b) ⇐

is in the seed set of statements (third type of statement in Figure 5.2).

Finally, we consider the function symbol dec and a strongly complete set of variants of the
term dec(y1, y2). We can use the algorithm in Section 3.5 to compute Variants(dec(y1, y2)) =
{{}, {y1 7→ enc(z, y2)}}. Therefore, the following two statements

ksend(c)(dec(Y1, Y2), dec(y1, y2)) ⇐ ksend(c)(Y1, y1), ksend(c)(Y2, y2) and
ksend(c)(dec(Y1, Y2), z) ⇐ ksend(c)(Y1, enc(z, y2)), ksend(c)(Y2, y2)

are in the set of seed statements of T (fourth type of statement in Figure 5.2).

We will now show that the set of seed statements is a fully abstract encoding of the trace in
the sense that is made precise by the following soundness and completeness lemmas.

Lemma 5.1 (Soundness of the set of seed statements). Let T be a ground trace. For any statement
f in the set of seed statements Seed(T ) we have that T |= f .

Proof. We assume the same naming conventions for T as in the beginning of the section. We prove
that for each statement f ∈ Seed(T ) we have that T |= f .

1. Let m ∈ {0, . . . , n}, let σ ∈ mguR({sk = tk}k∈T (m)) and τ ∈ Variants(l1σ, . . . , lmσ) be
substitutions as in the first type of statements in Figure 5.2. We show that

f =
(

rℓ1στ↓,...,ℓmστ↓ ⇐ {kℓ1στ↓,...,ℓj−1στ↓(Xj , xjστ↓)}j∈R(m))
)

is a statement that is true in T . Let ω be an arbitrary substitution grounding for f . Assume
furthermore that

T |= (kℓ1στ↓,...,ℓj−1στ↓(Xj , xjστ↓))ω

for all j ∈ R(m). We show that T |= (rℓ1στ↓,...,ℓmστ↓)ω by induction on m.

Base case: m = 0. We indeed have that T |= (rℓ1στ↓,...,ℓmστ↓)ω as m = 0 and therefore
(rℓ1στ↓,...,ℓmστ↓)ω = r.
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Inductive case: m > 0. We assume that T |= (rℓ1στ↓,...,ℓm−1στ↓)ω and we show that
T |= (rℓ1στ↓,...,ℓmστ↓)ω by case analysis on am. Let T1 = T and ϕ1 = ∅. As T |=
(rℓ1στ↓,...,ℓm−1στ↓)ω, we have that there exist L1, . . . , Lm−1 such that

(Ti, ϕi)
Li−→ (Ti+1, ϕi+1)

and Liϕi =R ℓiστ↓ω for all 1 ≤ i < m, where Ti = (ai. . . . .an){xj 7→ xjστ↓ω}j∈R(i−1) and
where ϕi extends ϕi−1 (for all 1 < i ≤ m).

(a) if am = send(cm, tm), then ℓm = send(cm) by definition. Let the trace Tm+1 =
(am+1. . . . .an){xj 7→ xjστ↓ω}j∈R(m) and let ϕm+1 = ϕm∪{w|Dom(ϕm)|+1 7→ tmστ↓ω}.
Let Lm = send(cm). By the definition of −→, we have that

(Tm, ϕm)
Lm−−→ (Tm+1, ϕm+1),

which is was we wanted to prove.

(b) if am = [sm
?
= tm], then ℓm = test. Let Tm+1 = (am+1. . . . .an){xj 7→ xjστ↓ω}j∈R(m)

and let ϕm+1 = ϕm. As σ ∈ mguR({sk = tk}k∈T (m)), we have that smσ =R tmσ and
therefore smστ↓ω =R tmστ↓ω. Hence the precondition in the definition of −→ holds and
by letting Lm = test, we have that

(Tm, ϕm)
Lm−−→ (Tm+1, ϕm+1),

which is what we wanted to prove.

(c) If am = receive(cm, xm), we know that m ∈ R(m). Let Tm+1 = (am+1. . . . .an){xj 7→
xjστ↓ω}j∈R(m) and let ϕm+1 = ϕm. As m ∈ R(m), we have that the trace T |=
(kℓ1στ↓,...,ℓm−1στ↓(Xm, xmστ↓))ω (this is an antecedent of f). Therefore ϕm ⊢Xmω

xmστ↓ω and, by letting Lm = receive(cm, Xmω), we obtain by the definition of −→
that

(Tm, ϕm)
Lm−−→ (Tm+1, ϕm+1),

which is what we wanted to prove.

We have shown that T |= (rℓ1στ↓,...,ℓmστ↓)ω, which means that the statement f holds in T .

2. Let m ∈ S(n) and let σ ∈ Variants(l1, . . . , ln, tm). We show that the statement

f =
(

(kℓ1σ↓,...,ℓmσ↓(w|S(m)|, (tmσ)↓) ⇐ {kℓ1σ↓,...,ℓj−1σ↓(Xj , xjσ↓)}j∈R(m))
)

is true in T . Let ω be a substitution grounding for f . We assume that

T |= (kℓ1σ↓,...,ℓj−1σ↓(Xj , xjσ↓))ω

for all j ∈ R(m) and we show that T |= (kℓ1σ↓,...,ℓmσ↓(w|S(m)|, (tmσ)↓))ω. Let Ti =
(ai. . . . .an){xj 7→ xjσω}j∈R(i−1) and ϕi = ∪1≤j≤|S(i−1)|{wj 7→ to(j)σω}, where o(j) =
min{x | |S(x)| = j}, i.e. o(j) denotes the index of the jth send action. We distinguish two
cases:

(a) if there exist L1, . . . , Lm such that (T1, ϕ1)
L1−−→ (T2, ϕ2)

L2−−→ . . .
Lm−−→ (Tl+1, ϕl+1) such

that Liϕi =R liσ↓ω for all 1 ≤ i ≤ m, we have that

ϕm(w|S(m)|) = to(S(m))σω =R tmσω,

which implies ϕ ⊢w|S(m)| (tmσ)↓ω. We obtain T |= (kℓ1σ↓,...,ℓmσ↓(w|S(m)|, tmσ↓))ω by
the semantics of k, which is what we wanted to show.
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(b) otherwise, we trivially have that T |= kℓ1σ↓,...,ℓmσ↓(w|S(m)|, (tmσ)↓)ω by the “soft”
semantics of k.

We have shown that T |= f .

3. Let c be a public name. We show that

f =
(

k(c, c) ⇐
)

is true in T . Indeed, let ϕ = ∅. We have that ϕ ⊢c c and therefore T |= k(c, c).

4. Let g be a function symbol of arity k, let m be an integer such that 0 ≤ m ≤ n and let
σ ∈ Variants(g(x1, . . . , xk)). We show that the statement

f =
(

kℓ1,...,ℓm(g(X1, . . . , Xk), g(x1, . . . , xk)σ↓) ⇐ {kℓ1,...,ℓm(Xj , xjσ↓)}j∈{1,...,k}

)

is true in T . Let ω be an arbitrary substitution grounding for f . We assume that T |=
kℓ1,...,ℓm(Xj , xjσ↓)ω for all 1 ≤ j ≤ k and we show that

T |= (kℓ1,...,ℓm(g(X1, . . . , Xk), g(x1, . . . , xk)σ↓))ω.

Let (T1, ϕ1) = (T, ∅). We distinguish between two cases:

(a) if

(T1, ϕ1)
L1−−→ (T2, ϕ2)

L2−−→ . . .
Lm−−→ (Tm+1, ϕm+1)

such that Liϕi =R ℓi for all 1 ≤ i ≤ m, we have that

ϕm+1 ⊢
Xjω xjσ↓ω

for all 1 ≤ j ≤ k by our hypothesis. But this implies

ϕm+1 ⊢
g(X1ω,...,Xkω) g(x1σ↓ω, . . . , xkσ↓ω) =R g(x1, . . . , xk)σ↓ω

which immediately implies that T |= (kℓ1,...,ℓm(g(X1, . . . , Xk), g(x1, . . . , xk)σ↓))ω.

(b) otherwise, we trivially have that T |= (kℓ1,...,ℓm(g(X1, . . . , Xk), g(x1, . . . , xk)σ↓)ω.

We have shown that T |= f .

We have shown for every statement f ∈ Seed(T ) that T |= f .

In order to state completeness we first define the least Herbrand model of a set of statements.

Definition 5.9. Let K be a set of statements. We define H(K) to be the smallest set of terms
such that:

Simple Consequence

f =
(

H ⇐ B1, . . . , Bn

)

∈ K

σ grounding for f B1σ ∈ H(K) . . . Bnσ ∈ H(K)

Hσ ∈ H(K)

ExtendK
ku(R, t) ∈ H(K)

kuv(R, t) ∈ H(K)
ExtendI

iu(R,R′) ∈ H(K)

iuv(R,R′) ∈ H(K)

Equivalently, H(K) is the least Herbrand model of

K ∪ {kuv(X,x) ⇐ ku(X,x)} ∪ {iuv(X1, X2) ⇐ iu(X1, X2)}n∈N.

By u and v we denote arbitrary sequences of terms. We will make use of this notation later on
when it simplifies the presentation. Although the ExtendI rule is not needed for the completeness
lemma below, it will be needed later when we state completeness of the saturation process.
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Lemma 5.2 (Completeness of the set of seed statements). Let T and S be traces and let ϕ be a

frame. If (T, ∅)
L1,...,Ln
−−−−−−→ (S, ϕ) then:

1. rL1ϕ↓,...,Lnϕ↓ ∈ H(Seed(T ))

2. if ϕ ⊢R t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ H(Seed(T ))

Proof. We prove the two statements by induction on n. We assume that the two statements hold

for any index less than n and we prove them for n. As (T, ∅)
L1,...,Ln
−−−−−−→ (S, ϕ), we have that:

1. there exists ω such that (L1ϕ↓, . . . , Lnϕ↓) = (ℓ1, . . . , ℓn)ω and

2. skω =R tkω for all k ∈ T (n).

1. As skω =R tkω for all k ∈ T (n), it follows by the definition of mguR that there exists

σ ∈ mguR({sk
?
= tk}k∈T (n)) such that:

(a) Dom(σ) ⊆ X,

(b) skσ =R tkσ for all k ∈ T (n) and

(c) ω[X] =R (σπ)[X] for some substitution π

where X = Var({sk, tk}k∈T (n)).

It follows that (ℓ1, . . . , ℓn)ω↓ = (ℓ1, . . . , ℓn)σπ↓ for some substitution π.

By the definition of Variants((ℓ1, . . . , ℓn)σ), we have that there exists the substitution τ ∈
Variants((ℓ1, . . . , ℓn)σ) such that (ℓ1, . . . , ℓn)σπ↓ = (ℓ1, . . . , ℓn)στ↓τ ′ for some substitution
τ ′.

By the definition of the seed knowledge base Seed(T ), we have that the statement

f =
(

rℓ1στ↓,...,ℓnστ↓ ⇐ kℓ1στ↓,...,ℓj−1στ↓(Xj , xjστ↓)j∈R(n)

)

∈ Seed(T )

is in the seed knowledge base Seed(T ).

Let {Rj}j∈R(n) be terms such that Lj = receive(cj , Rj) for all 1 ≤ j ≤ R(n). Let τ ′′

be a substitution equal to τ ′ except that it sends Xj to Rj for all j ∈ R(n). We have
by the induction hypothesis that each component kℓ1στ↓,...,ℓj−1στ↓(Xj , xjστ↓)τ

′′ of the right
hand side of fτ ′′ is in H(Seed(T )). Therefore the head rℓ1στ↓,...,ℓnστ↓τ

′′ of fτ ′′ is also in
H(Seed(T )):

rℓ1στ↓τ ′′,...,ℓnστ↓τ ′′ = rℓ1στ↓τ ′,...,ℓnστ↓τ ′ ∈ H(Seed(T )).

2. By induction on R, we show that:

kL1ϕ↓,...,Lnϕ↓(R,Rϕ↓) ∈ H(Seed(T ))

(a) If R = c is a public name, and as the statement f =
(

k(c, c) ⇐
)

is in the seed

knowledge base by definition, we can instantiate f with ω to immediately obtain the
solution and immediately get the conclusion by the ExtendK rule.

(b) If R = f(R1, . . . , Rk), let γ be the substitution of domain Dom(γ) ⊆ {y1, . . . , yk} that
maps yj to Rjϕ↓ for all 1 ≤ j ≤ k.

Let τ ∈ Variants(f(y1, . . . , yk)) and τ ′ be such that Rϕ↓ = (f(y1, . . . , yk)τ)↓τ ′.

By the definition of Seed(T ), we have that g ∈ Seed(t), where g is the statement

g =
(

kℓ1,...,ℓn(f(Y1, . . . , Yk), f(y1τ↓, . . . , ykτ↓)) ⇐ {kℓ1,...,ℓn(Yj , yjτ↓)}j∈{1,...,k}

)

.
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Let τ ′′ = ω↓ ∪ τ ′ ∪ {Yj 7→ Rj}j∈{1,...,k}. Every antecendent kℓ1,...,ℓn(Yj , yjτ↓)τ
′′ (j ∈

{1, . . . , k}) in the body of gτ ′′ is in H(Seed(T )) by the induction hypothesis. Therefore,
the head of gτ ′′ is also in H(Seed(T )):

kℓ1,...,ℓn(f(Y1, . . . , Yk), f(y1τ↓, . . . , ykτ↓))τ
′′ ∈ H(Seed(T )),

which is equivalent, by the definition of τ ′′, to what we had to prove:

kL1ϕ↓,...,Lnϕ↓(f(R1, . . . , Rk), Rϕ↓) ∈ H(Seed(T )).

(c) If R = wj , let m be the smallest index such that S(m) = j and let t = tm be the term
such that am = send(cm, tm). Let τ ∈ Variants(ℓ1, . . . , ℓm, t) and τ ′ be substitutions
such that (ℓ1, . . . , ℓm, t)ω↓ = (ℓ1, . . . , ℓm, t)τ↓τ

′. We have by the definition of the seed
knowledge base that the statement

h =
(

kℓ1τ↓,...,ℓmτ↓(wj , tmτ↓) ⇐ {kℓ1τ↓,...,ℓk−1τ↓(Xk, xkτ↓)}k∈R(m)

)

∈ K(T ).

Let Rk be recipes of xkτ↓τ
′ =R xkω in the smallest possible prefix of ϕ. Let τ ′′ =

τ ′∪{Xk 7→ Rk}k∈R(m). We have that every component kℓ1τ↓,...,ℓk−1τ↓(Xk, xkτ↓)τ
′′ (k ∈

R(m)) of the body of hτ ′′ is in H(Seed(T )) by the induction hypothesis. Therefore the
head kℓ1τ↓,...,ℓmτ↓(wj , tmτ↓)τ

′′ of hτ ′′ is also a simple consequence of the seed knowledge
base. By the definition of τ ′′, we obtain:

kL1ϕ↓,...,Lmϕ↓(wj , tmω↓) ∈ H(Seed(T )).

By rule ExtendK, we immediately obtain our conclusion.

As ϕ ⊢R t implies by definition that t↓ = Rϕ↓, we have proven that kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈
H(K(T )).

We have shown that the two conclusions hold and therefore the seed knowledge base is complete.

In Lemma 5.1 and in Lemma 5.2 we prove soundness and respectively completeness of the set
of seed statements. Therefore the set Seed(T ) is a fully abstract encoding of T into Horn clauses.

5.5 Procedure for Proving Trace Equivalence

We will now describe how to manipulate this set of statements in order to automatically check the
equivalence of two processes. This is accomplished by the saturation procedure. The goal of the
saturation procedure is to go from a sound and complete set of statements (the seed statements)
to a sound and complete set of solved statements. Using the sound and complete set of solved
statements, trace equivalence can then be checked algorithmically.

5.5.1 Knowledge Bases and Saturation

We now present the ingredients of the saturation procedure. During our saturation procedure, we
will manipulate well-formed statements:

Definition 5.10. A statement H ⇐ B1, . . . , Bn is called well-formed if whenever it is solved and
H = kt1,...,tk(R, t), we have that t 6∈ X . A set of well-formed statements a knowledge base.

If K is a knowledge base we define K|solved = {f | f ∈ K, f is solved } to be the knowledge base

restricted to the solved statements. If f =
(

H ⇐ B1, . . . , Bn

)

is a statement and H = ku(R, t)

for some u,R, t, we say that f is a deduction statement. If H = iu(R,R′) for some u,R,R′, we say
that f is an equational statement or an identity statement.
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Canonical form. Given a solved deduction statement f , we define the canonical form of f
to be the statement f⇓ obtained by first applying Rule Rename as much as possible and then
Rule Remove as much as possible:

Rename
H ⇐ ku(X,x), kuv(Y, x), B1, . . . , Bn

(H ⇐ ku(X,x), B1, . . . , Bn){Y 7→ X}

Remove
H ⇐ ku(X,x), B1, . . . , Bn x 6∈ Var(H)

H ⇐ B1, . . . , Bn

For any other type of statement f , the canonical form f⇓ is defined to be equal to f . Note that
the order in which the rules are applied is needed for soundness.

Example 5.8. Let the statement f be:

f =
(

ksend(c)(dec(enc(X,Y ), Z), x) ⇐ ksend(c)(X,x), ksend(c)(Y, y), ksend(c)(Z, y)
)

.

We have that the variable y appears twice in the body of f and we can therefore apply rule
Rename. We obtain that

f⇓ =
(

ksend(c)(dec(enc(X,Y ), Y ), x) ⇐ ksend(c)(X,x), ksend(c)(Y, y)
)

.

Consequence. Given a knowledge base K, we define the set of consequences of K, denoted
deriv(K), to be the smallest set such that:

Axiom
kuv(R, t) ⇐ ku(R, t), B1, . . . , Bm ∈ deriv(K)

Res

H ⇐ B1, . . . , Bn ∈ K
B1σ ⇐ C1, . . . , Cm ∈ deriv(K) . . . Bnσ ⇐ C1, . . . , Cm ∈ deriv(K)

Hσ ⇐ C1, . . . , Cm ∈ deriv(K)

Note that if K is a finite knowledge base that only contains solved statements, given input
t, ℓ1, . . . , ℓk, i1, . . . in, x1, . . . , xn, X1, . . . , Xn, it is decidable whether

∃R.kℓ1,...,ℓk(R, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv(K).

The definition of deriv(K) yields a direct recursive algorithm for the decision problem above
which moreover computes R:

• (Axiom) Check whether t = xj for 1 ≤ j ≤ n. If this is the case return (yes, Xj).

• (Res) Otherwise, guess a (solved) statement ku(R′, t′) ⇐ ku1
(Y1, y1), . . . kuk

(Yk, yk) ∈ K and
compute substitution σ such that kℓ1,...,ℓk(R′, t) = ku(R′, t′)σ. Check recursively whether

∃Ri.kui
(Ri, yi)σ ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv(K)

for 1 ≤ i ≤ k. In that case return (yes, R′{Yi 7→ Ri}1≤i≤n). Otherwise return no.

Termination is ensured because the size of t when checking whether

∃R.kℓ1,...,ℓk(R, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv(K)

strictly decreases in each recursive call. Indeed, when f =
(

ku(R′, t′) ⇐ ku1
(Y1, y1), . . . kuk

(Yk, yk)
)

∈

K we have that t′ 6∈ X because f is well-formed (by the definition of a knowledge base) and
yi ∈ Var(t′) by definition of a statement. Hence, |yiσ| < |t

′σ| = |t|.

Example 5.9. Let f =
(

ksend(c),send(c)(d, d) ⇐
)

and g =
(

rsend(c),send(c),receive(c,x) ⇐

ksend(c),send(c)(X,x)
)

. We have that the statement h =
(

rsend(c),send(c),receive(c,d)

)

∈

deriv({f, g}) is a consequence of the knowledge base {f, g}.
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Update. Given a knowledge base K and a statement f , the update of K by f , denoted K ⊕ f ,
is defined to be K ∪ {f⇓} if the head of f is not of the form kℓ1,...,ℓk(R, t). Otherwise, let

f⇓ = kℓ1,...,ℓk(R, t) ⇐ kℓ1,...,ℓi1 (X1, t1), . . . , kℓ1,...,ℓin (Xn, tn)

and

K ⊕ f =































(K ∪ {f⇓})
if f is solved and for any R′

f ′[R′] 6∈ K ′

K ∪ {iℓ1,...,ℓk(R,R′)
⇐ {kℓ1,...,ℓij (Xj , tj)}j∈{1,...,n}}

if f is solved and for some R′

f ′[R′] ∈ K ′

K ∪ {f⇓} if f is not solved

where K ′ = deriv(K|solved) and f ′[R′] = kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, t1), . . . , kℓ1,...,ℓin (Xn, tn) is
the statement obtained from f⇓ by replacing the occurnce of recipe R in the head by R′.

Example 5.10. If an arbitrary knowledge base is updated by

f =
(

ksend(c)(dec(enc(X,Y ), Y ), x) ⇐ ksend(c)(X,x), ksend(c)(Y, y)
)

,

we have that
(

ksend(c)(X,x) ⇐ ksend(c)(X,x), ksend(c)(Y, y)
)

∈ deriv(K). Therefore we

are in the second case of the update operator and we will add an identity statement

(

isend(c)(dec(enc(X,Y ), Y ), X) ⇐ ksend(c)(X,x), ksend(Y, y)
)

to the knowledge base instead of the deduction statement f .

Note that even if the statement f by which a knowledge base K is updated is not well-formed,
the resulting set of statements K ⊕ f is still a knowledge base, since the case where f is not
well-formed is captured by the second case in the definition of K⊕ f and an equational statement
is added instead of the not well-formed statement.

Initial knowledge base. The initial knowledge base associated to a set of seed statements
Seed(T,M0), denoted Ki(Seed(T,M0)), is defined to be the empty knowledge base updated by
the set of seed statements:

Ki(Seed(T,M0)) = ∅ ⊕f∈Seed(T,M0) f.

When M0 = M, we use Ki(T ) as a shortcut of Ki(Seed(T,M)) and we say that Ki(T ) is the
initial knowledge base associated to T .

Saturation. Given a knowledge base K, the saturated knowledge base sat(K) is obtained from
K by applying the inference rules given in Figure 5.3, until reaching a fixed point (i.e. sat(K) is
such that K ⇒∗ sat(K) and if sat(K) ⇒∗ K ′, then K ′ ⊆ sat(K)).
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Resolution

f ∈ K, g ∈ K|solved, f =
(

H ⇐ kuv(X, t), B1, . . . , Bn

)

g =
(

kw(R, t′) ⇐ Bn+1, . . . , Bm

)

σ = mgu(kw(R, t′), ku(X, t)) t 6∈ X

K ⇒ K ⊕ h where h =
(

(H ⇐ B1, . . . , Bm)σ
)

Equation

f, g ∈ K|solved, f =
(

ku(R, t) ⇐ B1, . . . , Bn

)

g =
(

ku′v′(R
′, t′) ⇐ Bn+1, . . . , Bm

)

σ = mgu(ku( , t), ku′( , t
′))

K ⇒ K ⊕ h where h =
(

(iu′v′(R,R
′) ⇐ B1, . . . , Bm)σ

)

Test

f, g ∈ K|solved,

f =
(

iu(R,R′) ⇐ B1, . . . , Bn

)

g =
(

ru′v′ ⇐ Bn+1, . . . , Bm

)

σ = mgu(u, u′)

K ⇒ K ⊕ h where h =
(

(riu′v′(R,R
′) ⇐ B1, . . . , Bm)σ

)

Figure 5.3: Saturation rules

We now state in what sense the saturation procedure is sound and complete. The proofs are
detailed in Section 5.6 and Section 5.7.

Theorem 5.2 (soundness of saturation). If f ∈ sat(Ki(T )) then T |= f .

Before stating completeness, we have to extend the least Herbrand model associated to a set
of statement by interpreting the predicate iw as a monotonic (in w) congruence relation.

Definition 5.11. Let K be a set of statements. We define He(K) to be the smallest set of terms
such that H(K) ⊆ He(K) and such that:

Refl
iw(R,R) ∈ He(K)

Sym
iw(R1, R2) ∈ He(K)

iw(R2, R1) ∈ He(K)
Extend

iu(R,R′) ∈ He(K)

iuv(R,R′) ∈ He(K)

Tran
iw(R1, R2) ∈ He(K) iw(R1, R3) ∈ He(K)

iw(R1, R3) ∈ He(K)

Cong
iw(R1, R

′
1) ∈ He(K), · · · , iw(Rn, R

′
n) ∈ He(K) f ∈ F , ar(f) = n

iw(f(R1, . . . Rn), f(R′1, . . . R
′
n)) ∈ He(K)

Equational Consequence
kw(R, t) ∈ H(K) iw(R,R′) ∈ He(K)

kw(R′, t) ∈ He(K)

We are now ready to state the completeness theorem.

Theorem 5.3 (Completeness of saturation). Let T and S be traces and let ϕ be a frame such that

(T, ∅)
L1,...,Ln
−−−−−−→ (S, ϕ).

Let K be a saturated knowledge base associated to T , i.e., K = sat(Ki(T )). Then we have that

1. rL1ϕ↓,...,Lnϕ↓ ∈ He(K|solved),

2. if ϕ ⊢R t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ He(K|solved) and

3. if ϕ ⊢R t and ϕ ⊢R
′

t, then iL1ϕ↓,...,Lnϕ↓(R,R
′) ∈ He(K|solved).
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5.5.2 Effectiveness of the Saturation

In the set of seed statements, there are an infinite number of statements due to the statements of
the form

k(m,m) ⇐

for names m ∈ M. We will show that all but a finite number of them do not interfere in the
saturation process and that it is therefore sufficient to consider a finite set of seed statements for
saturation:

Lemma 5.3. Let T be a trace, let MT = {m ∈ M | m ∈ Names(T )} be the set of public names
occurring in T and let MT̄ = M\MT be the set of public names not occuring in T . Let

KMT̄
= {{k(m,m) ⇐}m∈MT̄

∪ {i(m,m) ⇐}m∈MT̄
∪ {ri(m,m) ⇐}m∈MT̄

}.

Then sat(Ki(T )) = sat(Ki(Seed(T,MT ))) ⊎KMT̄
.

To prove this lemma, we first need two other helper lemmas. Let M0 ⊆ M be public names
and let

Knames = {{k(m,m) ⇐}m∈M0
∪ {i(m,m) ⇐}m∈M0

∪ {ri(m,m) ⇐}m∈M0
}

be a set of statements involving names in M0. Recall that ⇒ denotes the saturation relation; we
will denote by ⇒= its reflexive closure.

Lemma 5.4. Let K be a knowledge base such that Names(K) ∩M0 = ∅. Let K1 ⊆ Knames. If
h is a statement such that Names(h) ∩M0 = ∅, then

(K ⊎K1)⊕ h = (K ⊕ h) ⊎K1.

Proof. If h is not solved or if it is not a deduction statement, we have that (K ⊎ K1) ⊕ h =
(K ⊎K1) ∪ {h} = (K ∪ {h}) ⊎K1 = (K ⊕ h) ⊎K1. If h is a solved deduction statement, let

h⇓ = kℓ1,...,ℓk(R, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn).

We distinguish two cases:

1. either kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) 6∈ deriv((K ⊎ K1)|solved) for
any R′, in which case

(K ⊎K1)⊕ h = (K ⊎K1) ∪ {h⇓} = (K ∪ {h⇓}) ⊎K1.

It follows that kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) 6∈ deriv(K|solved) for
any R′ either (since K ⊆ K ⊎ K1). Therefore K ⊕ h = K ∪ {h⇓} and we immediately
conclude by replacing K ∪ {h⇓} by K ⊕ h in the equation above.

2. or kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv((K ⊎K1)|solved) for some
R′. In this case, (K ⊎K1)⊕ h = (K ⊎K1) ∪ {f} where

f =
(

iℓ1,...,ℓk(R,R′) ⇐ {kℓ1,...,ℓij (Xj , xj)}j∈{1,...,n}

)

}.

To conclude we show the following claim.

If Names(t) ∩M0 = ∅ and

kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv((K ⊎K1)|solved)

then

kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv(K|solved)

To proof this claim we proceed by induction on the size of the proof tree of

kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv((K ⊎K1)|solved).
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Base case: we need to consider two cases according to which rule has been applied.

• Axiom: the rule does not depend on the knowledge base and we trivially conclude.

• Res: we have that n = 0, i.e., (H ⇐) ∈ (K ∪ K1)|solved and Hσ = kℓ1,...,ℓk(R′, t).
As Names(t) ∩M0 = ∅ we have that H ⇐ ∈ K|solved. Hence, (kℓ1,...,ℓk(R′, t) ⇐) ∈
deriv(K|solved).

Inductive case: We suppose that the proof ends with an application of the Res rule. We
have thatH ⇐ B1, . . . , Bm ∈ (K∪K1)|solved, Biσ ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈
deriv((K ⊎K1)|solved) and Hσ = kℓ1,...,ℓk(R′, t). Let H = ku(S, t′) and Bi = kui

(Yi, yi). As
Hσ = kℓ1,...,ℓk(R′, t) and Names(t) ∩ M0 = ∅, by inspection of the statements in K1, it
must be that H ⇐ B1, . . . , Bm ∈ K|solved. Moreover, as t′σ = t we have by hypothesis
that Names(t′σ) ∩ M0 = ∅ and hence t′ ∩ Names(M0) = ∅. As yi ∈ Var(t′) we have
that Names(yiσ) ∩M0 = ∅ and we can apply our induction hypothesis to conclude that
Biσ ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv(K|solved) for 1 ≤ i ≤ n. Hence, as

H ⇐ B1, . . . , Bm ∈ K|solved

and
Biσ ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn) ∈ deriv(K|solved)

for 1 ≤ i ≤ n we conclude that (kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn)) ∈
deriv(K).

The second helper lemma follows.

Lemma 5.5. If K is a knowledge base such that Names(K) ∩M0 = ∅, K1 ⊆ Knames and

K ⊎K1 ⇒ K ′′

then K ′′ = K ′ ⊎K2 with K ⇒= K ′, K2 ⊆ Knames and Names(K ′) ∩M0 = ∅.

Proof. We perform a case distinction depending on which saturation rule triggered:

1. if rule Resolution triggered, we will show that f, g ∈ K.

Indeed, no statement
(

k(m,m) ⇐
)

∈ K1 can play the role of g in the Resolution

saturation rule since t′ = m must unify with t 6∈ X. Therefore t must be m, but m 6∈
Names(K) by hypothesis and therefore t cannot be m.

No statement in K1 can play the role of f in the Resolution saturation rule since they
have no antecedents.

Therefore f, g ∈ K and Names(h) 6∈ M0. We choose K ′ = K⊕h, K2 = K1 and we conclude
by Lemma 5.4.

2. if rule Equation triggered, we distinguish three cases:

(a) if a statement
(

k(m,m) ⇐
)

∈ K1 plays the role of f in the Equation saturation rule,

we have that t = m. As t′ unifies with m, we have that either t′ = m or that t′ is a
variable. The second case is not possible since g must be well-formed. Therefore t′ = m.
As m 6∈ Names(K) by hypothesis it follows that g ∈ K1 and therefore g = k(m,m).
Therefore the resulting statement is i(m,m). We choose K2 = K1∪{i(m,m)}, K ′ = K
to conclude.

(b) if a statement
(

k(m,m) ⇐
)

∈ K1 plays the role of g, the reasoning is analogous to

the case above
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(c) otherwise f, g ∈ K. Therefore Names(h) ∩ M0 = ∅. We choose K ′ = K ⊕ h and
K2 = K1 to conclude.

3. if rule Test triggered, we distinguish two cases:

(a) if
(

i(m,m) ⇐
)

∈ K1 plays the role of f , we choose K ′ = K and K2 = K1∪{ri(m,m)}

to conclude.

(b) otherwise f ∈ K. The statement g must also be in K since g is a reachability statement
and K1 does not contain reachability statements. We choose K ′ = K⊕h and K2 = K1

to conclude.

We are now ready to prove Lemma 5.3.

Lemma 5.3. Let T be a trace, let MT = {m ∈ M | m ∈ Names(T )} be the set of public names
occurring in T and let MT̄ = M\MT be the set of public names not occuring in T . Let

KMT̄
= {{k(m,m) ⇐}m∈MT̄

∪ {i(m,m) ⇐}m∈MT̄
∪ {ri(m,m) ⇐}m∈MT̄

}.

Then sat(Ki(T )) = sat(Ki(Seed(T,MT ))) ⊎KMT̄
.

Proof. By Lemma 5.4, we have that

Ki(T ) = Ki(Seed(T,MT )) ⊎ {k(m,m) ⇐}m∈MT̄
.

Letting M0 = MT̄ and iterating Lemma 5.5, we obtain that if

Ki(Seed(T,MT )) ⊎ {k(m,m) ⇐}m∈M0
⇒∗ K ′′,

then K ′′ = K ′ ⊎K2 with Ki(Seed(T,MT )) ⇒∗ K ′, Names(K ′) ∩M0 = ∅ and K2 ⊆ KT̄ .

If K ′′ is saturated, K ′ and K2 must be saturated as well. Therefore in the case K ′′ is saturated,
we have K2 = KMT̄

and K ′ = sat(Ki(Seed(T,MT ))). We obtained therefore that sat(Ki(T )) =
sat(Ki(Seed(T,MT ))) ⊎KMT̄

, which is what we wanted to show.

Therefore, to obtain the saturated knowledge base of the initial knowledge base Ki(T ) of T ,
it is sufficient to saturate starting from the initial knowledge Ki(Seed(T,MT )) of Seed(T,MT )
(which is finite) and add the statements in KMT̄

at the end.

5.5.3 Checking for Equivalence

We have shown how to saturate an initial knowledge base associated to a trace in a sound and
complete manner. We will now show how to use the saturated knowledge base associated to a trace
in order to prove trace inclusion for determinate processes. Trace equivalence can be obtained by
verifying that trace inclusion holds in both directions. The procedure for checking trace inclusion
for determinate processes directly follows from Theorem 5.4.
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Theorem 5.4. Let T be a trace and let P be a determinate process. Let K be the set of solved
statements from a saturated knowledge base associated to T . Then T ⊑c P iff the following tests
hold:

Reachability

(

rl1,...,ln ⇐ {kwi
(Xi, xi)}i∈{1,...,m}

)

∈ K

c1, . . . , ck fresh constants σ : Var(l1, . . . , ln) → {c1, . . . , ck} is a bijection
kl1σ,...,li−1σ(Ri, tiσ) ∈ H(K) for all i such that li = receive(di, ti)

Mi = li if li ∈ {test, send( )}
Mi = receive(di, Ri) if li = receive(di, ti)

(P, ∅)
M1,...,Mn
======⇒ (T ′, ϕ)

Identity

(

ril1,...,ln(R,R′) ⇐ {kwi
(Xi, xi)}i∈{1,...,m}

)

∈ K

c1, . . . , ck fresh constants σ : Var(l1, . . . , ln) → {c1, . . . , ck} is a bijection
kl1σ,...,li−1σ(Ri, tiσ) ∈ H(K) for all i such that li = receive(ti)

Mi = li if li ∈ {test, send( )} Mi = receive(di, Ri) if li = receive(di, ti)

(P, ∅)
M1,...,Mn
======⇒ (T ′, ϕ) such that (Rω = R′ω)ϕ where ω = {Xi 7→ xiσ}

Note that the infinity of statements KMT̄
which are guaranteed by Lemma 5.3 to be in the

saturated knowledge base K do not need to be checked since they will trivially pass. It is therefore
sufficient to check the (hopefully finite number of) statements from sat(Seed(T,MT )).

The full proof of the above theorem is in Section 5.8. Theorem 5.4 directly implies that the
following algorithm for checking if T ⊆ P for a trace T and a determinate process P is correct:

1. let K = sat(Ki(T ))|solved \ KMT̄
denote the interesting solved statements in the saturated

knowledge base associated to T (the statements in KMT̄
trivially pass all tests and therefore

do not have to be checked); by Lemma 5.3, we have that K = sat(Ki(Seed(T,MT )))|solved.

2. for every reachability statement rl1,...,ln ⇐ {kwi
(Xi, xi)}1≤i≤m in K:

(a) choose fresh constants c1, . . . , ck, one for each variable in Var(l1, . . . , lk) and a bijection
σ between {c1, . . . , ck} and Var(l1, . . . , lk)

(b) for every i such that li = receive(di, ti), find an Ri such that kl1σ,...,li−1σ(Ri, ti) ∈ H(K)
(the existence of Ri is guaranteed by the soundness and completeness of the saturation
procedure). Furthermore, a simple recursive algorithm that finds Ri follows from the
definition of H(K).

(c) let Mi = li if li ∈ {test, send(di)} and Mi = receive(di, Ri) if li = receive(di, ti)

(d) test if (P, ∅)
M1,...,Mn
======⇒ (T ′, ϕ) for some T ′ and some ϕ. If the above transition does not

take place, return ’no’; otherwise continue.

3. for every reachable identity statement ril1,...,ln(R,R′) ⇐ {kwi
(Xi, xi)}i∈{1,...,m} in K:

(a) choose fresh constants c1, . . . , ck, one for each variable in Var(l1, . . . , lk) and a bijection
σ between {c1, . . . , ck} and Var(l1, . . . , lk)

(b) for every i such that li = receive(di, ti), find an Ri such that kl1σ,...,li−1σ(Ri, ti) ∈ H(K)
(the existence of Ri is guaranteed by the soundness and completeness of the saturation
procedure)

(c) let Mi = li if li ∈ {test, send(di)} and Mi = receive(di, Ri) if li = receive(di, ti)

(d) test if (P, ∅)
M1,...,Mn
======⇒ (T ′, ϕ) for some T ′ and some ϕ. If the above transition does not

take place, return ’no’; otherwise continue.
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(e) test if (Rω = R′ω)ϕ, where ω = {Xi 7→ xiσ}. If the test fails, return ’no’; otherwise
continue.

4. if all the above tests worked, return ’yes’.

Example 5.11. We recall the traces in our running example:

T = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(dec(x, k), k)].send(c, ok)

S1 = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(a, k)].send(c, ok)

S2 = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(a′, k)].send(c, ok)

We have that the process {S1, S2} is determinate. It is true that T is trace included in
{S1, S2} and that {S1, S2} is trace-included in T . This means that T is trace equivalent
to {S1, S2}. While we cannot reproduce here all the tests performed by the algorithm that
we described above, we can show that some interesting reachability statements found in
the saturated knowledge base of T perform successfully in {S1, S2}. Indeed, the saturated
knowledge base of T contains the statements

f1 =
(

rsend(c),send(c),receive(c,enc(a,k)),test,send(c)

)

and

f2 =
(

rsend(c),send(c),receive(c,enc(a′,k)),test,send(c)

)

.

We have ksend(c),send(c)(w1, enc(a, k)) ∈ H(K) and therefore we have to check, by the first

type of test performed by the algorithm, if ({S1, S2}, ∅)
send(c),send(c),receive(c,w1),test,send(c)
============================⇒

(T ′, ϕ) for some trace T ′ and some frame ϕ. This is indeed the case, since the above run is
a valid run of the first trace S1 ⊆ {S1, S2} of the process {S1, S2}.

Similarly, we have ksend(c),send(c)(w2, enc(a′, k)) ∈ H(K) and therefore we have to check,
by the first type of test performed by the algorithm, if

({S1, S2}, ∅)
send(c),send(c),receive(c,w2),test,send(c)
============================⇒ (T ′, ϕ)

for some trace T ′′ and some frame ϕ′. This is indeed the case, since the above run is a valid
run of the second trace S2 ⊆ {S1, S2} of the process {S1, S2}.

5.6 Soundness of Saturation

This section is dedicated to proving the lemmas needed to prove Theorem 5.2, i.e. the soundness
of the saturation procedure. We first need a small helper lemma.

Lemma 5.6 (Monotonicity of the knowledge predicate). If T |= ku(R, t) then T |= kuv(R, t).

Proof. Immediate because of the ’soft’ semantics of k.

We now show that the canonicalization rules are sound.

Lemma 5.7 (Soundness of canonicalization). If T |= f then T |= f⇓.

Proof. We will show that each canonicalization rule is sound:
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1. For the Rename rule, consider a statement

f =
(

H ⇐ kt1,...,tk(X,x), kt1,...,tl(Y, x), B1, . . . , Bn

)

where k ≤ l and we show that if T |= f then T |= g where

g =
(

(H ⇐ kt1,...,tk(X,x), B1, . . . , Bn){Y 7→ X}
)

Let τ be a grounding substitution for g such that T |= kt1,...,tk(X,x){Y 7→ X}τ , B1{Y 7→
X}τ, . . . , Bn{Y 7→ X}τ . We show that if T |= f then T |= H{Y 7→ X}τ .

Let τ ′ be a substitution identical to τ , except for τ ′(Y ) = τ(X). We will show that all the
antecedents in fτ ′ are true in T .

Indeed, kt1,...,tk(X,x)τ ′ = kt1,...,tk(X,x){Y 7→ X}τ holds by hypothesis. As k ≤ l and T |=
kt1,...,tk(X,x)τ ′, we have by Lemma 5.6 that T |= kt1,...,tl(X,x)τ ′ and by the choice of τ ′, we
have kt1,...,tl(X,x)τ ′ = kt1,...,tl(Y, x)τ ′. Furthermore T |= B1τ

′ = B1{Y 7→ X}τ, . . . , Bnτ
′ =

Bn{Y 7→ X}τ by hypothesis. As T |= f , and all antecedents of fτ ′ are true in T , we obtain
that T |= Hτ ′.

But Hτ ′ = H{Y 7→ X}τ and therefore we have that T |= H{Y 7→ X}τ . As we have chosen
τ arbitrarily, it follows that T |= g.

2. For the Remove rule, consider a solved statement

f =
(

H ⇐ kt1,...,tk(X,x), B1, . . . , Bn

)

such that the rule Rename does not apply to f and such that x 6∈ Var(H). We show that
if T |= f then T |= g where

g =
(

H ⇐ B1, . . . , Bn

)

Let τ be an arbitrary substitution such that T |= B1τ, . . . , Bnτ . We will show that T |= Hτ
and hence T |= g.

Let (T1, ϕ1) = (T, ∅). We distinguish between two cases:

(a) if

(T1, ϕ1)
L1−−→ (T2, ϕ2)

L2−−→ . . .
Lk−−→ (Tk+1, ϕk+1)

such that Liϕi = tiτ for all 1 ≤ i ≤ k, we consider the substitution τ ′ to be identical
to τ except for τ ′(x) = (Xτ)ϕk+1.

As x 6∈ Var(H) and because f is solved and the rule Rename does not apply, we have
that x 6∈ Var(B1, . . . , Bn) and therefore T |= B1τ

′ = B1τ, . . . , Bnτ
′ = Bnτ .

Furthermore, we have that T |= kt1,...,tk(X,x)τ ′ by the definition of k.

As all antecedents of fτ ′ are true in T and T |= f , it follows that T |= Hτ ′. But
Hτ = Hτ ′ since x 6∈ Var(H) and therefore T |= Hτ .

(b) otherwise, we trivially have that T |= kt1,...,tk(X,x)τ . We have that all antecedents of
fτ are true in T and therefore, as T |= f , it follows that T |= Hτ .

We have shown that T |= g, therefore the rule Remove is sound.

We have shown that both rules for computing the canonical form are sound and therefore
T |= f⇓ whenever T |= f .

Next we show that the consequence rules are sound.
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Lemma 5.8 (Soundness of the consequence). If for all f ∈ K we have that T |= f , then for all
f ∈ deriv(K) we have that T |= f .

Proof. We show that both inference rules are sound.
For the Axiom rule, soundness follows immediately from the semantics of k.
For the Res rule, let

f =
(

H ⇐ B1, . . . , Bn

)

and

gi =
(

Biσ ⇐ C1, . . . , Cm

)

for 1 ≤ i ≤ n be statements such that T |= f and T |= gi (1 ≤ i ≤ n).
We will show that

T |=
(

Hσ ⇐ C1, . . . , Cm)

by letting τ be a substitution such that T |= C1τ, . . . , Cmτ and proving that T |= Hστ .
Indeed, as T |= C1τ, . . . , Cmτ and as T |= gi (1 ≤ i ≤ n), we have that T |= Biστ (1 ≤ i ≤ n).

But T |= f and therefore T |= Hστ as well, which is what we had to show.

We now show that each rule of the saturation procedure is sound.

Lemma 5.9 (Soundness of the resolution saturation rule). Let f , g and h be defined as in the
Resolution rule. If T |= f and T |= g then T |= h.

Proof. We consider the following statements:

f =
(

H ⇐ kℓ1,...,ℓi(X, t), B1, . . . , Bn

)

g =
(

kℓ′1,...,ℓ′j (R, t′) ⇐ Bn+1, . . . , Bm

)

h =
(

(H ⇐ B1, . . . , Bm)σ
)

with j ≤ i and where σ = mgu(kℓ′1,...,ℓ′j (R, t′), kℓ1,...,ℓj (X, t)). We will show that if T |= f and

T |= g then T |= h.
Indeed, let τ be an arbitrary substitution grounding for h and assume that T |= B1στ, . . . , Bmστ .

We will show that T |= Hστ .
As T |= Bn+1στ, . . . , Bmστ and because T |= g, we have that T |= kℓ′1,...,ℓ′j (R, t′)στ . But

kℓ′1,...,ℓ′j (R, t′)στ = kℓ1,...,ℓj (X, t)στ by choice of σ = mgu(kℓ′1,...,ℓ′j (R, t′), kℓ1,...,ℓj (X, t)).

As j ≤ i, it follows by Lemma 5.6 that T |= kℓ1,...,ℓi(X, t)στ as well. As all antecedents of fστ
are true in T and because T |= f , we have that T |= Hστ .

As τ was chosen arbitrarily, it follows that T |= h.

Lemma 5.10 (Soundness of the equational saturation rule). Let f , g and h be defined as in the
Equation rule. If T |= f and T |= g then T |= h.

Proof. We consider the following statements:

f =
(

ku(R, t) ⇐ B1, . . . , Bn

)

g =
(

ku′v′(R
′, t′) ⇐ Bn+1, . . . , Bm

)

h =
(

(iu′v′(R,R
′) ⇐ B1, . . . , Bm)σ

)

where σ = mgu(ku( , t), k′u( , t′)).
We will show that if T |= f and T |= g then T |= h. Let τ be an arbitrary substitution

grounding for h. We assume that T |= B1στ, . . . , Bmστ and we show that T |= iu′v′(R,R
′)στ .
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As T |= B1στ, . . . , Bnστ and because T |= f we have that T |= ku(R, t)στ . By monotonicity
of k (Lemma 5.6) we also have that T |= ku′v′(R, t)στ .

As T |= B1στ . . . , Bnστ and because T |= g we also obtain that T |= ku′v′(R
′, t′)στ .

But this is exactly the definition of T |= iu′v′(R,R
′)στ .

We have shown that the head of hτ is true in T . As τ was chosen arbitrarily, it follows that h
holds in T .

Lemma 5.11 (Soundness of the test saturation rule). Let f, g, h be statements as in the Test

saturation rule. If T |= f and T |= g then T |= h.

Proof. We consider the following statements:

f =
(

iu(R,R′) ⇐ B1, . . . , Bn

)

g =
(

ru′v′ ⇐ Bn+1, . . . , Bm

)

h =
(

(riu′v′(R,R
′) ⇐ B1, . . . , Bm)σ

)

where σ = mgu(u, u′).
Let τ be an arbitrary substitution grounding for h. We assume that T |= B1στ, . . . , Bmστ and

we show that T |= riu(R,R′)τ . Indeed, as T |= B1στ, . . . , Bnστ and as T |= f , we have that

T |= iu(R,R′)στ. (5.1)

As T |= Bn+1στ, . . . , Bmστ and as T |= g, we have that

T |= ru′v′στ. (5.2)

But σ = mgu(u, u′) and therefore uστ = u′στ . Therefore, by Equations (5.1) and (5.2), we
immediately obtain T |= riu′v′(R,R

′)στ , which is what we wanted. As τ was chosen arbitrarily, it
follows that T |= h.

We have shown soundness of all saturation rules. Now we prove soundness of the ⊕ operator.

Lemma 5.12 (Soundness of the update). If for all f ∈ K we have that T |= f and if T |= g, then
for any f ∈ (K ⊕ g) we have that T |= f .

Proof. If K ⊕ g = K ∪ {g⇓}, we immediately conclude by Lemma 5.8. Otherwise, it must be that

g⇓ =
(

kℓ1,...,ℓk(R, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn)
)

for some R, t, ℓ1, . . . , ℓk, i1, . . . , in, X1, . . . , Xn, x1, . . . , xn and K ⊕ g = K ∪ {h}, where

h =
(

iℓ1,...,ℓk(R,R′) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn)
)

and where

g′ =
(

kℓ1,...,ℓk(R′, t) ⇐ kℓ1,...,ℓi1 (X1, x1), . . . , kℓ1,...,ℓin (Xn, xn)
)

∈ deriv(K|solved).

It is sufficient to show that T |= h. As K|solved ⊆ K, it immediately follows that g′ ∈ deriv(K)
and, by Lemma 5.8, T |= g′.

We now show that T |= h. Let τ be an arbitrary substitution grounding for h such that the
antecedents of hτ are true in T . As the antecedents of hτ are the same as the antecedents of g⇓τ and
those of g′τ , and as T |= g and T |= g′ we have that T |= kℓ1,...,ℓk(R, t)τ and T |= kℓ1,...,ℓk(R′, t)τ .

But this immediately implies that T |= iℓ1,...,ℓk(R,R′)τ (the head of hτ). As τ was chosen
arbitrarily, it follows that T |= h.
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We are now ready to prove Theorem 5.2.

Theorem 5.2 (soundness of saturation). If f ∈ sat(Ki(T )) then T |= f .

Proof. Immediate by Lemma 5.1 to Lemma 5.12.

5.7 Completeness of Saturation

This section is dedicated to proving the lemmas needed to prove Theorem 5.3, i.e. the completeness
of the saturation procedure. We first show completeness for statements which are consequences of
the knowledge base.

Proposition 5.2. Let K be a knowledge base, let f =
(

H ′ ⇐ C1, . . . , Cm

)

be a statement such

that f ∈ deriv(K) and let τ be a substitution grounding for f such that Ciτ ∈ H(K) for all
1 ≤ i ≤ n. Then H ′τ ∈ H(K).

Proof. Induction on the proof tree of f ∈ deriv(K).
If the Axiom rule was used, then we have Hσ ∈ H(K) by the ExtendK rule.

If the Res rule was used, we have that there exists
(

H ⇐ B1, . . . , Bn

)

∈ K and a substitution

σ such that H ′ = Hσ and Biσ ⇐ C1, . . . , Cm ∈ deriv(K) (1 ≤ i ≤ n).

By the induction hypothesis, we have that Biστ ∈ H(K). As
(

H ⇐ B1, . . . , Bn

)

∈ K, it

follows that Hστ = H ′τ ∈ H(K), which is what we had to show.

We need a technical definition that will be useful in inductive proofs.

Definition 5.12. Let S(H,K) be the size of the smallest proof tree of H ∈ H(K) (defined only
when H ∈ H(K)).

Before proceeding, we show the following technical result.

Proposition 5.3. Let K be a knowledge base. If kw(R, t) ∈ He(K) and iw(R,R′) ∈ He(K), then

kw(R′, t) ∈ He(K).

Proof. As kw(R, t) ∈ He(K), it follows that there exist R′′ such that

kw(R′′, t) ∈ H(K) (5.3)

and such that iw(R,R′′) ∈ He(K). But iw(R,R′) ∈ He(K) and therefore, by the symmetry and
transitivity of iw( , ), we have that

iw(R′′, R′) ∈ He(K). (5.4)

Using Equations 5.3 and 5.4 we immediately obtain by the definition of He that kw(R′, T ) ∈
He(K).

The following definition and helper lemma help characterize the facts in H(K).

Definition 5.13. We write w ⊑ w′ whenever w is a prefix of w′: i.e. there exists ℓ1, . . . , ℓn such
that w′ = ℓ1, . . . , ℓn and w = ℓ1, . . . , ℓm for some 0 ≤ m ≤ n.
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Proposition 5.4. If kw(R, t) ∈ H(K) (resp. iw(R,S) ∈ H(K)) then there exist a statement

f =
(

kw′(R
′, t′) ⇐ B1, . . . , Bm

)

∈ K (resp. f =
(

iw′(R
′, S′) ⇐ B1, . . . , Bm

)

∈ K) and a

substitution σ such that R′σ = R, t′σ = t (resp. S′σ = S), w′σ ⊑ w, Biσ ∈ H(K) for all
1 ≤ i ≤ m and

∑

1≤i≤m S(Biσ,K) < S(kw(R, t),K) (resp.
∑

1≤i≤m S(Biσ,K) < S(iw(R,S),K)).

Proof. We prove the proposition by induction on the smallest proof tree of H = kw(R, t) ∈ H(K)
(resp. H = iw(R,S) ∈ H(K)). We proceed by case distinction on the last proof rule that has been
applied.

• Simple Consequence: In this case we have that there exist a statement f =
(

H ′ ⇐

B1, . . . , Bm

)

∈ K and a substitution σ such that H ′σ = H, Biσ ∈ H(K) for all 1 ≤ i ≤ m

and
∑

1≤i≤m S(Biσ,K) + 1 = S(kw′(R
′, t′)σ,K). Hence we directly conclude.

• ExtendK: In this case H = kw(R, t) and we have that w = uv for some u, v and ku(R, t) ∈
H(K). By induction hypothesis, we have that there exists f = ku′(R

′, t′) ⇐ B1, . . . , Bm ∈ K
and σ such that R′σ = R, t′σ = t, u′σ ⊑ u, Biσ ∈ H(K) for all 1 ≤ i ≤ m and
∑

1≤i≤m S(Biσ,K) < S(kw(R, t),K). As u ⊑ w, we also have that u′σ ⊑ w. Moreover,
S(kw(R, t),H(K)) = S(ku(R, t),H(K)) + 1 >

∑

1≤i≤m S(Biσ,K) which allows us to con-
clude.

• ExtendI: In this case H = iw(R,S) and we have that w = uv for some u, v and iu(R,S) ∈
H(K). By induction hypothesis, we have that there exists f = iu′(R

′, S′) ⇐ B1, . . . , Bm ∈ K
and σ such that R′σ = R, S′σ = S, u′σ ⊑ u, Biσ ∈ H(K) for all 1 ≤ i ≤ m and
∑

1≤i≤m S(Biσ,K) < S(kw(R, t),K). As u ⊑ w, we also have that u′σ ⊑ w. Moreover,
S(iw(R,S),H(K)) = S(iu(R,S),H(K)) + 1 >

∑

1≤i≤m S(Biσ,K) which allows us to con-
clude.

We are now ready to show completeness with respect to equational statements.

Lemma 5.13. Let K be a saturated knowledge base, let f ∈ K be a statement

f =
(

iw(R,R′) ⇐ B1, . . . , Bn

)

and let σ be a substitution grounding for f such that Biσ ∈ H(K|solved) for all 1 ≤ i ≤ n. Then
we have that

(iw(R,R′))σ ∈ H(K|solved).

Proof. Let G =
∑

i∈{1,...,n} S(Biσ,K|solved). We prove the lemma by induction on G. If f is a
solved statement, the conclusion is immediate by the definition of H.

Otherwise, if f is not a solved statement, there exists some Bj (1 ≤ j ≤ n) such that
Bj = kwj

(Xj , tj) and tj 6∈ X .
As Bjσ ∈ H(K|solved), it follows by Proposition 5.4 that wj = ujvj for some uj , vj and that

there exists
g =

(

ku′
j
(R′j , t

′
j) ⇐ Bn+1, . . . , Bm

)

∈ K|solved

and a substitution σ′ grounding for g such that Bn+1σ
′, . . . , Bmσ

′ ∈ H(K|solved), R′jσ
′ = Xjσ,

t′jσ
′ = tjσ, u′jσ

′ = ujσ and S(Bjσ) = 1 +
∑

i∈{n+1,...,m} S(Biσ
′).

As ω = σ ∪ σ′ is a unifier of H = ku′
j
(R′j , t

′
j) and kuj

(Xj , tj), it follows that the two terms are

unifiable. Let τ = mgu(H, kuj
(Xj , tj)) denote their most general unifier. As K is saturated, it

follows that the Resolution saturation rule was applied to f and g and therefore the resulting
equational statement

h =
(

iw(R,R′) ⇐ B1, . . . , Bj−1, Bj+1, . . . , Bm

)

τ ∈ K
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must be in K (by the update function, equational statements are added to the knowledge base).
As ω is a unifier of H and kuj

(Xj , tj) and as τ = mgu(H, kuj
(Xj , tj)), it follows that there

exists ω′ such that ω = τω′. We have that ω′ is a substitution grounding for h, that

Biτω
′ ∈ H(K|solved)

for i ∈ {1, . . . , j − 1, j + 1, . . . ,m} and that
∑

i∈{1,...,j−1,j+1,...,m} S(Biτω
′,K|solved) ≤ G − 1.

Therefore we can apply the induction hypothesis to h and ω′ and conclude.

We now prove completeness with respect to the intruder reachable identity predicate.

Lemma 5.14. Let K be a saturated knowledge base, let f ∈ K be a statement

f =
(

riw(R,R′) ⇐ B1, . . . , Bn

)

and let σ be a substitution grounding for f such that Biσ ∈ H(K|solved) for all 1 ≤ i ≤ n. Then
we have that

(riw(R,R′))σ ∈ H(K|solved).

Proof. Identical to Lemma 5.13.

Lemma 5.15. Let K be a saturated knowledge base, let f ∈ K be a statement

f =
(

rw ⇐ B1, . . . , Bn

)

and let σ be a substitution grounding for f such that Biσ ∈ H(K|solved) for all 1 ≤ i ≤ n.
Then we have that

rwσ ∈ H(K|solved).

Proof. Identical to Lemma 5.13 and Lemma 5.14.

We now show completeness of the intruder reachable identity predicate.

Lemma 5.16. Let K be a saturated knowledge base. If ru ∈ H(K|solved) and iu(R,R′) ∈ H(K|solved),
then riu(R,R′) ∈ H(K|solved).

Proof. As ru ∈ H(K|solved), there exists a solved statement f =
(

rv ⇐ B1, . . . , Bn

)

∈ K|solved and

a substitution σ grounding for f such that Biσ ∈ H(K|solved) for all 1 ≤ i ≤ n and such that
u = vσ.

As iu(R,R′) ∈ H(K|solved), there exists by Proposition 5.4 a solved statement g =
(

iw(T, T ′) ⇐

Bn+1, . . . , Bm

)

and a substitution τ grounding for g such that Biτ ∈ H(K|solved) for all n + 1 ≤

i ≤ m and such that u ⊒ wτ , R = Tτ and R′ = T ′τ .
As vσ = u ⊒ wτ , it follows that v = v0v1 such that v0 and w are unifiable (σ ∪ τ is such a

unifier). Let ω = mgu(v0, w) and let π be such that σ ∪ τ = ω ◦ π.
As the knowledge base is saturated, the Test saturation rule must have fired for f and g and

therefore K must have been updated by h where

h =
(

(riv(T, T ′) ⇐ B1, . . . , Bm)ω
)

.

But as h is not a deduction fact, the update must have simply added h to K and therefore h ∈ K.
We have that Biωπ = Biσ ∈ H(K|solved) for all 1 ≤ i ≤ n and that Biωπ = Biτ ∈ H(K|solved)

for all n + 1 ≤ i ≤ m. By applying Lemma 5.14 to the statement h and the substitution π, we
obtain that riv(T, T ′)ωπ = riu(R,R′) ∈ H(K|solved).
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We next show completeness of the intruder identity predicate.

Lemma 5.17. Let K be a saturated knowledge base such that ku(R, t) ∈ H(K|solved) and kuv(R′, t) ∈
H(K|solved). Then we have that iuv(R,R′) ∈ H(K|solved).

Proof. Let u = ℓ1, . . . , ℓk and v = ℓk+1, . . . , ℓl. As ku(R, t) ∈ H(K|solved), it follows by Proposi-
tion 5.4 that there exist

f =
(

kw(S, s) ⇐ B1, . . . , Bn

)

∈ K|solved

and a substitution σ grounding for f such that Biσ ∈ H(K|solved) (1 ≤ i ≤ n) and kw(S, s)σ =
ku′(R, t) for some u′ ⊑ u a prefix of u.

Similarly, as kuv(R′, t) ∈ H(K|solved), it follows that there exist

f ′ =
(

kw′(S
′, s′) ⇐ B′1, . . . , B

′
m

)

∈ K|solved

and a substitution σ′ grounding for f ′ such that B′iσ
′ ∈ H(K|solved) (1 ≤ i ≤ m) and kw′(S

′, s′)σ′ =
ku′′(R

′, t) for u′′ ⊑ uv a prefix of uv.
We have that wσ ⊑ u, which trivially implies wσ ⊑ uv. We also have w′σ′ ⊑ uv. Let w =

ℓ′1, . . . , ℓ
′
p and w′ = ℓ′′1 , . . . , ℓ

′′
q and let r = min{p, q}. We have that (ℓ′1, . . . , ℓ

′
r)σ = (ℓ′′1 , . . . , ℓ

′′
r )σ′.

We have that σ∪σ′ is a unifier of kℓ′1,...,ℓ′r ( , s) and kℓ′′1 ,...,ℓ′′r ( , s′), it follows that the substitution

τ = mgu(kℓ′1,...,ℓ′r ( , s), kℓ′′1 ,...,ℓ′′r ( , s′)) exists. In the following, let ℓ̄′′′ denote the sequence ℓ′1, . . . , ℓ
′
p

if p ≥ q or the sequence ℓ′′1 , . . . , ℓ
′′
q if p < q. As K is saturated, it follows that the equational fact

h =
(

iℓ̄′′′(S, S
′) ⇐ B1, . . . , Bn, B

′
1, . . . , B

′
m

)

τ ∈ K

resulting from applying the Equation saturation rule to f and f ′ is in K.
As σ ∪ σ′ is a unifier of kℓ′1,...,ℓ′r ( , s) and kℓ′′1 ,...,ℓ′′r ( , s′) and as the substitution τ is the most

general unifier τ = mgu(kℓ′1,...,ℓ′r ( , s), kℓ′′1 ,...,ℓ′′r ( , s′)), it follows that there exists ω such that σ∪σ′ =
τω.

We have that ω is grounding for h and that B1τω, . . . , Bnτω,B
′
1τω, . . . , B

′
mτω ∈ H(K|solved).

Therefore, we have by Lemma 5.13 that

iℓ̄′′′(S, S
′)τω = iℓ̄′′′(σ∪σ′)(R,R

′) ∈ H(K|solved).

But ℓ̄′′′(σ ∪ σ′) is a prefix of uv and therefore

iuv(R,R′) ∈ H(K|solved)

by the ExtendI rule, which is what we wanted to prove.

The next three lemmas show completeness with respect to the intruder knowledge predicate.

Lemma 5.18. Let K be a saturated knowledge base, let

f =
(

kw(R, t) ⇐ B1, . . . , Bn

)

be a statement such that f⇓ ∈ K|solved and let σ be a substitution grounding for f such that
Biσ ∈ H(K|solved) for all 1 ≤ i ≤ n. Then we have that

(kw(R, t))σ ∈ He(K|solved).

Proof. We prove this by induction on the number of canonicalization steps.
If f is already in canonical form, then the conclusion is immediately true by definition of H.
Otherwise, there must be a canonicalization rule which can be applied to f . We distinguish

between two cases:
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1. If the Rename canonicalization rule can be applied, then f must be of the form:

f =
(

kw(R, t) ⇐ ku(X,x), kuv(Y, x), B3, . . . , Bn

)

.

Let us consider the statement f ′ obtained by applying Rename to f :

f ′ =
(

kw(R, t) ⇐ ku(X,x), B3, . . . Bn

)

{Y 7→ X}.

By the definition of a statement, Y has at most one occurence in B1, . . . , Bn and therefore
we have that (B1, B3, . . . Bn){Y 7→ X} = (B1, B3, . . . , Bn). Therefore (B1, B3, . . . Bn){Y 7→
X}σ = (B1, B3, . . . , Bn)σ.

We can therefore apply the induction hypothesis on f ′ and σ to obtain that

kw(R, t){Y 7→ X}σ ∈ He(K|solved). (5.5)

But ku(X,x)σ ∈ H(K|solved) and kuv(Y, x)σ ∈ H(K|solved). By Lemma 5.17, we have that

iuv(X,Y )σ ∈ H(K|solved). (5.6)

From Equation 5.5 and Equation 5.6 and as uv is a prefix of w by the definition of a
statement, we conclude by Proposition 5.3 that

kw(R, t)σ ∈ He(K|solved).

2. If the Remove canonicalization rule can be applied, then f must be of the form:

f =
(

kw(R, t) ⇐ ku(X,x), B2, . . . , Bn

)

.

Let f ′ be the statement obtained from f by applying Remove. We have that

f ′ =
(

kw(R, t) ⇐ B2, . . . , Bn

)

.

By applying the induction hypothesis on f ′ and σ, we immediately obtain our conclusion:

kw(R, t)σ ∈ He(K|solved).

Lemma 5.19. Let K be a saturated knowledge base, let

f =
(

kw(R, t) ⇐ B1, . . . , Bn

)

be a statement such that f⇓ =
(

kw(R′, t) ⇐ C1, . . . , Cm

)

for some R′, C1, . . . , Cm and let R′′ be

a recipe such that

g =
(

kw(R′′, t) ⇐ C1, . . . , Cm

)

∈ deriv(K|solved)

and such that
h =

(

iw(R′′, R′) ⇐ C1, . . . , Cm

)

∈ K|solved.

Let σ be a substitution grounding for f such that Biσ ∈ H(K|solved) for all 1 ≤ i ≤ n. Then we
have that

(kw(R, t))σ ∈ He(K|solved).
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Proof. We prove the lemma by induction on the number of steps to reach the canonical form.
If f is already in canonical form we have that R = R′, B1, . . . , Bn = C1, . . . , Cm and, by

applying Proposition 5.2 to g and σ, we have that

kw(R′′, t)σ ∈ H(K|solved).

Furthermore, as h ∈ K|solved and as the body of hσ are simple consequence of K|solved, we have
that

iw(R′′, R′)σ ∈ H(K|solved).

It immediately follows that
kw(R′, t)σ ∈ He(K|solved),

which is what we had the prove since R = R′.
Otherwise, there must be a canonicalization rule which can be applied to f . We distinguish

between two cases:

1. If the Rename canonicalization rule can be applied, then f must be of the form:

f =
(

kw(R, t) ⇐ ku(X,x), kuv(Y, x), B3, . . . , Bn

)

.

Let us consider the statement f ′ obtained by applying Rename to f :

f ′ =
(

kw(R, t) ⇐ ku(X,x), B3, . . . Bn

)

{Y 7→ X}.

By the definition of a statement, Y has at most one occurence in B1, . . . , Bn and therefore
we have that (B1, B3, . . . Bn){Y 7→ X} = (B1, B3, . . . , Bn). Therefore (B1, B3, . . . Bn){Y 7→
X}σ = (B1, B3, . . . , Bn)σ.

We can therefore apply the induction hypothesis on f ′ and σ to obtain that

kw(R, t){Y 7→ X}σ ∈ He(K|solved). (5.7)

But ku(X,x)σ ∈ H(K|solved) and kuv(Y, x)σ ∈ H(K|solved). By Lemma 5.17, we have that

iuv(X,Y )σ ∈ H(K|solved). (5.8)

From Equation 5.7 and Equation 5.8 and as uv is a prefix of w by the definition of a
statement, we conclude by Proposition 5.3 that

kw(R, t)σ ∈ He(K|solved).

2. If the Remove canonicalization rule can be applied, then f must be of the form:

f =
(

kw(R, t) ⇐ ku(X,x), B2, . . . , Bn

)

.

Let f ′ be the statement obtained from f by applying Remove. We have that

f ′ =
(

kw(R, t) ⇐ B2, . . . , Bn

)

.

By applying the induction hypothesis on f ′ and σ, we immediately obtain our conclusion:

kw(R, t)σ ∈ He(K|solved).
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This lemma is the main lemma that shows completeness of the intruder knowledge predicate.

Lemma 5.20. Let K be a saturated knowledge base, let f ∈ K be a statement

f =
(

kw(R, t) ⇐ B1, . . . , Bn

)

and let σ be a substitution grounding for f such that Biσ ∈ H(K|solved) for all 1 ≤ i ≤ n. Then
we have that

(kw(R, t))σ ∈ He(K|solved).

Proof. Let G =
∑

i∈{1,...,n} S(Biσ,K|solved). We prove the lemma by induction on G.
If f is a solved statement, the conclusion is trivial by the definitions of H, He.
Otherwise, there exists some Bj = kwj

(Xj , tj) (with 1 ≤ j ≤ n) such that tj 6∈ X .
As Bjσ ∈ H(K|solved), we have by Proposition 5.4 that there exist

g =
(

ku′(R
′, t′) ⇐ B′1, . . . , B

′
m

)

∈ K|solved,

a substitution σ′ grounding for g such thatB′1σ
′, . . . , B′mσ

′ ∈ H(K|solved), ku′(R
′, t′)σ′ = ku(Xj , tj)σ

for some prefix u ⊑ wj of wj and S(Bjσ,K|solved) >
∑

i∈{1,...,m} S(B′iσ
′,K|solved).

As σ∪σ′ is a unifier of ku(Xj , tj) and ku′(R
′, t′), it follows that τ = mgu(ku(Xj , tj), ku′(R

′, t′))
exists. Let σ ∪ σ′ must be an instance of the most general unifier, let ω be a substitution such
that σ ∪ σ′ = τω.

As K is saturated, it follows that the Resolution saturation rule was applied to f and g. Let
h be the resulting statement:

h =
(

kw(R, t) ⇐ B1, . . . , Bj−1, Bj+1, . . . , Bn, B
′
1, . . . , B

′
m

)

τ.

We distinguish two cases:

1. if h is not solved we have that h ∈ K by the update function (as K is saturated).

We can therefore apply the induction hypothesis on h and on the substitution ω to immedi-
ately conclude.

2. if h is solved, we distinguish two cases:

(a) either h⇓ ∈ K, in which case we conclude by applying Lemma 5.18 to h and ω.

(b) or h⇓ =
(

kw(R′′, t) ⇐ C1, . . . , Ck

)

and

h′ =
(

kw(R′′′, t) ⇐ C1, . . . , Ck

)

∈ deriv(K|solved)

and
h′′ =

(

iw(R′′′, R′′) ⇐ C1, . . . , Ck

)

∈ K|solved

for some R′′′, in which case we conclude by applying Lemma 5.19.

The following proposition follows from the definition of He.

Proposition 5.5. If ku(R, t) ∈ He(K), then kuv(R, t) ∈ He(K).

Proof. As ku(R, t) ∈ He(K), it follows that ku(R′, t) ∈ H(K) and iu(R′, R) ∈ He(K) for some R′.
By the ExtendK rule, we have that kuv(R′, t) ∈ H(K) and by the Extend rule, we have that
iuv(R′, R) ∈ He(K). We conclude by rule Equational Consequence that kuv(R, t) ∈ He(K),
which is what we had to show.



126 CHAPTER 5. AUTOMATED VERIFICATION OF TRACE EQUIVALENCE

The following lemma shows completeness of the saturation procedure.

Lemma 5.21. Let K be a set of statements and let K ′ be the saturation of the knowledge base
obtained by updating the empty knowledge base by each statement in K.

Then H(K) ⊆ He(K
′|solved)

Proof. Let H ∈ H(K). We will prove by induction on the proof tree of H ∈ H(K) that each node
of the tree is in He(K

′|solved). We distinguish two cases:

1. if H = kw(R, t) and ku(R, t) ∈ H(K) for some prefix u of w, in which case by the induction
hypothesis we have that ku(R, t) ∈ He(K

′|solved) and we conclude by Proposition 5.5.

2. if H = iw(R,R′) and iu(R,R′) ∈ H(K) for some prefix u of w, we have that iu(R,R′) ∈
He(K

′|solved) by the induction hypothesis and therefore iw(R,R′) ∈ He(K
′|solved) by rule

Extend.

3. otherwise there is a statement

f =
(

H ′ ⇐ B′1, . . . , B
′
n

)

∈ K

and a substitution σ grounding for f such that H = H ′σ and B′iσ ∈ H(K).

By the induction hypothesis, we have that B′iσ ∈ He(K
′|solved). W.l.o.g. assume that

B′i = kw′
i
(Xi, t

′
i). As B′iσ ∈ He(K

′|solved), we have by definition of He that there exist R′i
such that

kw′
i
σ(R′i, tiσ) ∈ H(K ′|solved), (5.9)

iw′
i
σ(R′i, Xiσ) ∈ He(K

′|solved) (5.10)

for all 1 ≤ i ≤ n.

But w′iσ is a prefix of w, where w is such that H = predicatew(. . .) with predicate ∈ {r, i, ri, k}.
Therefore, by applying the Extend rule to Equation (5.10), we obtain

iw(R′i, Xiσ) ∈ He(K|solved). (5.11)

Let σ′ be the substitution defined to be σ except that it maps Xi to R′i for all 1 ≤ i ≤ n.

We will show that H ′σ′ ∈ He(K
′|solved). As K ′ was updated by f , there are three cases:

(a) if f ∈ K ′, we conclude by Lemma 5.20, Lemma 5.13, Lemma 5.14 or Lemma 5.15.

(b) or f⇓ ∈ K ′ and f 6∈ K ′, in which case f must be a solved deduction statement. In this
case, by Lemma 5.18, we obtain that H ′σ′ ∈ He(K

′|solved).

(c) or f⇓ =
(

kw(R, t) ⇐ C1, . . . , Cm

)

and there exists R′ such that

(

kw(R′, t) ⇐ C1, . . . , Cm

)

∈ deriv(K ′|solved)

and such that
(

iw(R,R′) ⇐ C1, . . . , Cm

)

∈ K ′|solved.

In this case, we have that H ′σ′ ∈ He(K
′|solved) by Lemma 5.19.

We have shown that H ′σ′ ∈ He(K
′|solved). But H ′σ′ = H ′{Xi 7→ R′i}σ and therefore

H ′{Xi 7→ Ri}σ ∈ He(K
′|solved). By Equation (5.11), we obtain that H ′{Xi 7→ Xiσ}σ =

H ′σ ∈ He(K
′|solved), which is what we had to show.
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We can now combine the completeness of the initial set of seed statements with the complete
of the saturation procedure to prove Theorem 5.3.

Theorem 5.3 (Completeness of saturation). Let T and S be traces and let ϕ be a frame such that

(T, ∅)
L1,...,Ln
−−−−−−→ (S, ϕ).

Let K be a saturated knowledge base associated to T , i.e., K = sat(Ki(T )). Then we have that

1. rL1ϕ↓,...,Lnϕ↓ ∈ He(K|solved),

2. if ϕ ⊢R t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ He(K|solved) and

3. if ϕ ⊢R t and ϕ ⊢R
′

t, then iL1ϕ↓,...,Lnϕ↓(R,R
′) ∈ He(K|solved).

Proof. The first two items are immediate consequences of Lemma 5.2 and of Lemma 5.21.
The third item follows immediately from the second item and Lemma 5.17.

5.8 Correctness of the Trace Inclusion Algorithm

This section is dedicated to proving Theorem 5.4. In order to prove it, we need a few technical
lemmas.

First we show that each intruder reachability statement and each deduction statement in the
saturated knowledge base has a certain form.

Lemma 5.22. Let T be a trace and let K be a saturated knowledge base associated to T . Then
for any statement f ∈ K, we have that:

1. if f =
(

rl1,...,ln ⇐ {kwi
(Xi, ti)}i∈{1,...,m}

)

and x ∈ Var(lk) then there exists wj = l1, . . . , lk′

with k′ < k such that x ∈ Var(tj).

2. if f =
(

kl1,...,ln(R, t) ⇐ {kwi
(Xi, ti)}i∈{1,...,m}

)

and x ∈ Var(t) then x ∈ Var(t1, . . . , tm).

Proof. The seed knowledge base satisfies the above properties and they are preserved by canoni-
calization, update and saturation.

The next lemma states that by extending a frame, we keep all existing deductions.

Lemma 5.23. If Dom(ϕ) ⊆ Dom(ϕ′) and ϕ ⊢r t, then ϕ′ ⊢r t.

Proof. The same rewrite steps to obtain t from rϕ are used to obtain t from rϕ′.

We now show that operational semantics is stable by replacement of names with recipes.

Lemma 5.24. Let T0 be a trace, ϕ0 = ∅ the empty frame, and {c1, . . . , ck} public names such
that ci 6∈ Names(T0) for all 1 ≤ i ≤ k. If

(T0, ϕ0)
L1==⇒ (T1, ϕ1)

L2==⇒ . . .
Ln==⇒ (Tn, ϕn)

and ∀1 ≤ i ≤ k

• either ci 6∈ Names(L1, . . . , Ln)

• or ϕidx(ci)−1 ⊢
Ri ti for some ti where idx(ci) = min{j | ci ∈ Names(Lj)}
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then

(T0, ϕ0)
L1π

′

===⇒ (T1π, ϕ1π)
L2π

′

===⇒ . . .
Lnπ

′

===⇒ (Tnπ, ϕnπ),

where π′ = {ci 7→ Ri}i∈{1,...,k},ci∈Names(L1,...,Ln) and π = {ci 7→ ti}i∈{1,...,k},ci∈Names(L1,...,Ln).

Proof. By induction on n, the same operational steps will take place with the new labels.

The next lemma shows that deduction is stable by replacement of names with recipes in the
recipe and the corresponding deducible terms in the term.

Lemma 5.25. Let T be a trace, let {c1, . . . , ck} be public names not appearing in T and let
the functions π : {c1, . . . , ck} → T (F ,N ,M) and π′ : {c1, . . . , ck} → T (F ,M,W) be map-
pings from names to terms. If T |= kl1,...,li(Ri+1, ti+1) and T |= kl1π,...,liπ(ciπ

′, ciπ) then T |=
kl1π,...,liπ(Ri+1π

′, ti+1π).

Proof. By induction on R.

We now show that operational semantics is stable by replacement of recipes with equivalent
recipes.

Lemma 5.26. Let T be a trace and ϕ a frame such that (T, ϕ)
L
=⇒ (T ′, ϕ′) and such that

1. either M = L,

2. or M = receive(d,R′) and L = receive(d,R) such that (R = R′)ϕ.

Then we have that (T, ϕ)
M
=⇒ (T ′, ϕ′).

Proof. If M = L then the result is obvious. Otherwise, R and R′ are recipes for the same term in
ϕ and therefore the transition still holds.

We are now ready to prove the correctness of the trace-inclusion checking algorithm:

Theorem 5.4. Let T be a trace and let P be a determinate process. Let K be the set of solved
statements from a saturated knowledge base associated to T . Then T ⊑c P iff the following tests
hold:

Reachability

(

rl1,...,ln ⇐ {kwi
(Xi, xi)}i∈{1,...,m}

)

∈ K

c1, . . . , ck fresh constants σ : Var(l1, . . . , ln) → {c1, . . . , ck} is a bijection
kl1σ,...,li−1σ(Ri, tiσ) ∈ H(K) for all i such that li = receive(di, ti)

Mi = li if li ∈ {test, send( )}
Mi = receive(di, Ri) if li = receive(di, ti)

(P, ∅)
M1,...,Mn
======⇒ (T ′, ϕ)

Identity

(

ril1,...,ln(R,R′) ⇐ {kwi
(Xi, xi)}i∈{1,...,m}

)

∈ K

c1, . . . , ck fresh constants σ : Var(l1, . . . , ln) → {c1, . . . , ck} is a bijection
kl1σ,...,li−1σ(Ri, tiσ) ∈ H(K) for all i such that li = receive(ti)

Mi = li if li ∈ {test, send( )} Mi = receive(di, Ri) if li = receive(di, ti)

(P, ∅)
M1,...,Mn
======⇒ (T ′, ϕ) such that (Rω = R′ω)ϕ where ω = {Xi 7→ xiσ}

Proof. We first prove that if any of the tests fail, T 6⊑ P . Indeed, if the Reachability test fails,

we have that (P, ∅) 6
M1,...,Mn
======⇒ ( , ), but, by the soundness of K, we have that (T, ∅)

M1,...,Mn
−−−−−−→ ( , )

and therefore T 6⊑ P .
If the Identity test fails, we have that:
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1. either (P, ∅) 6
M1,...,Mn
======⇒ ( , ), in which case, by the soundness ofK, we have that (T, ∅)

M1,...,Mn
−−−−−−→

( , ) and therefore T 6⊑ P .

2. or for any ϕ′ such that (P, ∅)
M1,...,Mn
======⇒ ( , ϕ′) we have (Rπ 6= R′π)ϕ′. By the soundness of

K, we have however that (T, ∅)
M1,...,Mn
−−−−−−→ ( , ϕ) and (Rπ = R′π)ϕ. Therefore T 6⊑ P .

Next, we prove that if T 6⊑ P , then at least one test fails. We assume by contradiction that
T 6⊑ P , that all tests pass and we derive a contradiction.

As T 6⊑ P , it follows that there exist L1, . . . , Ln, ϕ such that either:

(T, ∅)
L1,...,Ln
−−−−−−→ (T ′, ϕ) and

∀S ∈ P : (S, ∅) 6
L1,...,Ln
======⇒ (S′, ψ)

or:

(T, ∅)
L1,...,Ln
−−−−−−→ (T ′, ϕ) and (R = R′)ϕ and

∀S ∈ P, (S, ∅)
L1,...,Ln
======⇒ (S′, ψ) implies (R 6= R′)ψ

Let n be the smallest index such that one of the above holds. We then have that:

(T, ∅)
L1−−→ (T1, ϕ1)

L2−−→ . . .
Ln−1
−−−→ (Tn−1, ϕn−1)

Ln−−→ (Tn, ϕn)

and there exists S ∈ P such that:

(S, ∅)
L1==⇒ (S1, ψ1)

L2==⇒ . . .
Ln−1
===⇒ (Sn−1, ψn−1),

such that for all R,R′ we have (R = R′)ϕi =⇒ (R = R′)ψi (1 ≤ i ≤ n− 1) and:

1. either for all U ∈ P we have (U, ∅) 6
L1,...,Ln
======⇒ ( , ψ)

2. or there exist recipes R,R′ such that for any U ′ ∈ P such that (U ′, ∅)
L1,...,Ln
======⇒ ( , ψ′) we

have (R 6= R′)ψ′.

We consider each of the cases separately:

1. If we are in the case of Item 1, as (T, ∅)
L1,...,Ln
−−−−−−→ (Tn, ϕn), we have by Theorem 5.3 that

rL1ϕn↓,...,Lnϕn↓ ∈ He(K). By the definition of He, we have that it contains no reachability
statements in addition to those in H: therefore rL1ϕn↓,...,Lnϕn↓ ∈ H(K).

Therefore there exist a statement f =
(

rl1,...,ln ⇐ kwi
(Xi, xi)i∈{1,...,m}

)

∈ K and a sub-

stitution τ grounding for f such that liτ = Liϕn↓ (for all 1 ≤ i ≤ n) and such that
kwiτ (Xiτ, xiτ) ∈ H(K).

Let c1, . . . , ck be fresh public names and let σ : Var(l1, . . . , ln) → {c1, . . . , ck} be a bijection.

As
(

kℓ1,...,ℓ|wi|
(cj , cj) ⇐

)

∈ K(T ) for all 1 ≤ i ≤ m and all 1 ≤ j ≤ k and wiσ is an

instance of ℓ1, . . . , ℓ|wi|, it follows by Theorem 5.3 that there exists a substitution σ′ such
that kwiσ(Xiσ

′, xiσ) ∈ He(K) for all 1 ≤ i ≤ m, which implies by the definition of He that
there exists a substitution σ′′ such that kwiσ(Xiσ

′′, xiσ) ∈ H(K) for all 1 ≤ i ≤ m.

By instantiating f with σ ∪ (σ′′[{X1, . . . , Xm}]), we obtain that rl1σ,...,lnσ ∈ H(K). By the
soundness of K and of H, it follows that T |= rl1σ,...,lnσ. Therefore, there exist recipes R′i
(for all 1 ≤ i ≤ n such that li = receive( , ti)) such that T |= kl1σ,...,li−1σ(R′i, tiσ). By
the completeness of K, it follows that there exist recipes Ri such that kl1σ,...,li−1σ(Ri, tiσ) ∈
H(K).
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Let Mi = li if li ∈ {test, send( )} and let Mi = receive(di, Ri) if li = receive(di, ti) for all
1 ≤ i ≤ n. Because the Reachability test worked, it follows that there exists S′0 ∈ P such
that, if we let ψ′0 = ∅, we have

(S′0, ψ
′
0)

M1==⇒ (S′1, ψ
′
1)

M2==⇒ . . .
Mn==⇒ (S′n, ψ

′
n).

We already have that kwjτ (Xjτ, xjτ) ∈ H(K) by choice of f and of τ . By the soundness of
H and K, we obtain T |= kwjτ (Xjτ, xjτ). By Lemma 5.22, we have that |wj | < i, and as wj

is a prefix of l1, . . . , li−1, we have that T |= kl1τ,...,li−1τ (Xjτ, xjτ).

Let π : {c1, . . . , ck} → T (F ,N ,M) and π′ : {c1, . . . , ck} → T (F ,M,W) be defined such
that π(cl) = xjτ and π′(cl) = Xjτ when σ(xj) = cl. As Xjτ = clπ

′, xjτ = clπ and
l1τ, . . . , li−1τ = l1σπ, . . . , li−1σπ therefore we have that T |= kl1σπ,...,li−1σπ(clπ

′, clπ).

We also have that kl1σ,...,li−1σ(Ri, tiσ) ∈ H(K). By the soundness of H and K, we have that
T |= kl1σ,...,li−1σ(Ri, tiσ). We apply Lemma 5.25 to obtain that T |= kl1σπ,...,li−1σπ(Riπ

′, tiσπ).
But tiσπ = tiτ and l1σπ, . . . , li−1σπ = l1τ, . . . , li−1τ and therefore we have that T |=
kl1τ,...,li−1τ (Riπ

′, tiτ).

Let R′′i be such that Li = receive(di, R
′′
i ) for some channel di for all i such that the ith action

of T is a receive. By the definition of |=, we have therefore that T |= kl1τ,...,li−1τ (R′′i , tiτ).

We conclude that T |= il1τ,...,li−1τ (Riπ
′, R′′i ), or, equivalently, (Riπ

′ = R′′i )ϕi−1. By the
hypothesis, we have that (Riπ

′ = R′′i )ψi−1 as well.

From Lemma 5.24, we obtain that

(S′0, ψ
′
0) = (S′0π, ψ0π)

M1π
′

===⇒ (S′1π, ψ
′
1π)

M2π
′

===⇒ . . .
Mnπ

′

===⇒ (S′nπ, ψ
′
nπ).

We will show by induction on n that

(S′0π, ψ0π)
L1==⇒ (S′1π, ψ

′
1π)

L2==⇒ . . .
Ln==⇒ (S′nπ, ψ

′
nπ).

We assume by the induction hypothesis that

(S′0π, ψ0π)
L1==⇒ (S′1π, ψ

′
1π)

L2==⇒ . . .
Li=⇒ (S′iπ, ψ

′
iπ)

and we show that

(S′iπ, ψ
′
iπ)

Li+1
===⇒ (S′i+1π, ψ

′
i+1π).

We will show that Li+1 and Mi+1π
′ satisfy the conditions of Lemma 5.26 and then we can

easily conclude by it. Indeed, either Li+1 = Mi+1π
′ (in the case of a test or send action), or

Li+1 = receive(di+1, R
′′
i+1) and Mi+1π

′ = receive(di+1, Ri+1π
′) (in the case of a receive

action). In the second case, as we have shown (Ri+1π
′ = R′′i+1)ψi, by determinacy of P

it follows that ψiπ ≈s ψ
′
iπ and therefore (Ri+1π

′ = R′′i+1)ψ′i as well. As the hypothesis of
Lemma 5.26 are satisfied, we can conclude.

Let U = S′0. We have shown that (U, ∅)
L1,...,Ln
======⇒ ( , ), therefore obtaining a contradiction.

Therefore Item 1 cannot hold.

2. In the case of Item 2, we assume that for all U ∈ P such that (U, ∅)
L1,...,Ln
======⇒ ( , ψ) we have

(R 6= R′)ψ to obtain a contradiction.

As (R = R′)ϕn, it follows by Theorem 5.3 that iL1ϕn↓,...,Lnϕn↓(R,R
′) ∈ He(K).

As (R 6= R′)ψ it follows that there exist recipes Q,Q′ such that iL1ϕn↓,...,Lnϕn↓(Q,Q
′) ∈

H(K) but (Q 6= Q′)ψ.
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As rL1ϕn↓,...,Lnϕn↓ ∈ H(K), we have by Lemma 5.16 that riL1ϕ↓,...,Lnϕ↓(Q,Q
′) ∈ H(K).

Therefore there exists a statement

f =
(

ril1,...,ln(P, P ′) ⇐ {kwi
(Xi, xi)}i∈{1,...,m}

)

∈ K

and a substitution τ grounding for f such that kwiτ (Xiτ, xiτ) ∈ H(K) (for all 1 ≤ i ≤ m),
l1τ, . . . , lnτ = L1ϕn↓, . . . , Lnϕn↓, Pτ = Q and P ′τ = Q′.

Let c1, . . . , ck be fresh public names and let σ : Var(l1, . . . , ln) → {c1, . . . , ck} be a bijection.

As
(

kℓ1,...,ℓ|wi|
(cj , cj) ⇐

)

∈ K(T ) for all 1 ≤ i ≤ m and all 1 ≤ j ≤ k and wiσ is an

instance of ℓ1, . . . , ℓ|wi|, it follows by Theorem 5.3 that there exists a substitution σ′ such
that kwiσ(Xiσ

′, xiσ) ∈ He(K) for all 1 ≤ i ≤ m, which implies by the definition of He that
there exists a substitution σ′′ such that kwiσ(Xiσ

′′, xiσ) ∈ H(K) for all 1 ≤ i ≤ m.

By instantiating f with σ ∪ (σ′′[{X1, . . . , Xm}]), we obtain that rl1σ,...,lnσ ∈ H(K). By the
soundness of K and of H, it follows that T |= rl1σ,...,lnσ. Therefore, there exist recipes R′i
(for all 1 ≤ i ≤ n such that li = receive( , ti)) such that T |= kl1σ,...,li−1σ(R′i, tiσ). By
the completeness of K, it follows that there exist recipes Ri such that kl1σ,...,li−1σ(Ri, tiσ) ∈
H(K).

Let Mi = li if li ∈ {test, send( )} and let Mi = receive(di, Ri) if li = receive(di, ti) for all
1 ≤ i ≤ n. Because the Reachability test worked, it follows that there exists S′0 ∈ P such
that, if we let ψ′0 = ∅, we have

(S′0, ψ
′
0)

M1==⇒ (S′1, ψ
′
1)

M2==⇒ . . .
Mn==⇒ (S′n, ψ

′
n).

Similarly to Item 1, we can show that there exists S′0 ∈ P such that

(S′0, ψ
′
0) = (S′0π, ψ0π)

L1==⇒ (S′1π, ψ
′
1π)

L2==⇒ . . .
Ln==⇒ (S′nπ, ψ

′
nπ)

where π and π′ are defined as in Item 1.

Furthermore, as the Identity test worked, it follows that (Pω = P ′ω)ψ′n, where ω = {Xi 7→
xiσ}. As the equational theory is stable by substitution of terms for names, we have that
(Pωπ′ = P ′ωπ′)ψ′nπ. But Pωπ′ = Pτ = Q and P ′ωπ′ = P ′τ = Q′, which means that
(Q = Q′)ψ′nπ.

We have shown that there exists S′0 ∈ P such that (S′0, ∅)
L1,...,Ln
======⇒ ( , ψ′nπ) and (Q =

Q′)ψ′nπ. By determinacy of P , it follows that (Q = Q′)ψ for any ψ and any U ∈ P such

that (U, ∅)
L1,...,Ln
======⇒ ( , ψ), therefore we obtain a contradiction.

As both cases yield a contradiction, it follows that if T 6⊑ P , there exists at least one test that
fails.

5.9 Tool Support and Termination

We conjecture that our saturation procedure always terminates. Unfortunately, we have not been
able to prove this due to the highly complex form of the statements that are obtained during
saturation.

We have however implemented the saturation procedure and the trace inclusion checking pro-
cedure in the tool AKiSs (Active Knowledge in Security protocols). The tool AKiSs is written in
OCaml and has around 2500 lines of source code, including code for computing strongly complete
sets of finite variants and complete sets of equational unifiers for optimally reducing convergent
equational theories (as described in Chapter 3).

The tool AKiSs takes as input two processes P and Q in the form of a set of traces P =
{S1, . . . , Sn} and Q = {T1, . . . , Tm}. It then tries to check if the two processes are coarse trace
equivalent. There are three possible results:
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1. the tool does not terminate, in which case we cannot draw any conclusion. We conjecture
that this situation never happens for subterm convergent rewrite systems (i.e. that AKiSs

always terminates for such rewrite systems). However, due to the highly complex forms of
the statements generated during the saturation process, we have not been able to prove it.

2. the tool terminates, tells that P 6≈c Q and outputs a proof of non-trace-equivalence in the

form of a sequence of labels l1, . . . , ln and two recipes r and r′ such that (P, ∅)
l1,...,ln
−−−−→ (S′, ϕ),

(r = r′)ϕ and either (Q, ∅) 6
l1,...,ln
====⇒ (T ′, ϕ′) or for any ϕ′ such that (Q, ∅)

l1,...,ln
====⇒ (T ′, ϕ′) we

have (r 6= r′)ϕ′ (or vice-versa, the roles of P and Q being swapped).

In this case, we are sure that P 6≈t Q since P ≈t Q implies P ≈c Q (and we can hand-check
the proof).

3. the tool terminates, tells that P ≈c Q. There are two possibilities:

(a) either P and Q are determinate, in which case by the correctness proof P ≈t Q by
Theorem 5.1,

(b) or at least one of P and Q is not determinate, in which case there is no guarantee.

5.9.1 Handling Non-determinate Processes

The above has a significant weakness: it does not allow to conclude that two processes which are
not known to be determinate are equivalent. In order to circumvent this weakness, we propose
in Figure 5.4 a sound way of checking (in)equivalence of two processes P = {S1, . . . , Sn} and
Q = {T1, . . . , Tm} which are not known to be determinate. Unfortunately, the procedure is not
complete in the sense that there are non-determinate processes P and Q for which we cannot
conclude that P ≈t Q or that P 6≈t Q.

1. run AKiSs to check if P ≈c Q. If AKiSs shows that P 6≈c Q, then the two processes are
not trace equivalent.

2. otherwise, run AKiSs to check if Si ≈c Tj for every trace Si ∈ P and every trace Tj ∈ Q.
Since any individual trace Si (or Tj) is determinate, we have by Theorem 5.1 that Si ≈c Tj
iff Si ≈t Tj and therefore AKiSs will soundly determine if Si ≈t Tj or not.

It for every i ∈ {1, . . . , n} there exists a j ∈ {1, . . . ,m} such that Si ≈t Tj (and vice-versa,
for every j ∈ {1, . . . ,m} there exists an i ∈ {1, . . . , n} such that Si ≈t Tj), then it easily
follows that P ≈t Q.

3. otherwise, AKiSs cannot prove anything about P and Q and therefore some other technique
needs to be used to show trace (in)equivalence of P and Q.

Figure 5.4: How to use AKiSs to check (in)equivalence of processes P = {S1, . . . , Sn} and
Q = {T1, . . . , Tm} which are not known to be determinate.

We refer the reader to Example 5.4 for an example of two non-determinate processes that
AKiSs cannot prove to be equivalent or inequivalent. This is because the two processes are coarse
trace equivalent, but not trace equivalent. However, in our experiments on security protocols, we
have not encountered such as situation (i.e. AKiSs was able to prove or dis-prove all equivalences
for the examples that we have tried).

Also, on all our experiments with subterm convergent rewrite systems, the saturation process
always terminated. We explain in the following sections some of our experiments.
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5.9.2 The Running Example

The running example, consisting of the following traces

T = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(dec(x, k), k)].send(c, ok)

S1 = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(a, k)].send(c, ok)

S2 = send(c, enc(a, k)).send(c, enc(a′, k)).receive(c, x).[x
?
= enc(a′, k)].send(c, ok)

where a, a′, k′ ∈ N are private names, where ok ∈M is a public name and where c ∈ C is a public
channel is interesting because it illustrates a subtlety of trace equivalence: even if the processes T
and {S1, S2} are trace equivalent, note that the trace T is trace-included neither in S1 nor in S2.
However, T is included in the process consisting of both traces (S1 and S2).

This shows that even if two processes are trace-equivalent, there might be symbolic traces
of the first process which are not included in any of the individual symbolic traces of the other
process. Rather, the second process as a whole trace-includes each symbolic trace of the first
process.

It can be easily proved that {S1, S2} is a determinate process. Therefore our tool can directly
prove that T ≈t {S1, S2}. When given as input the two processes (T on one side and {S1, S2} on
the other side), it terminates instantaneously and proves their trace-equivalence.

When asked to check for the equivalence between T and either S1 or S2, the tool immediately
shows that the two are not trace-equivalent and provides an appropriate counter-example.

If we did not know that {S1, S2} is determinate, we could have used the workflow described in
Figure 5.4 to check if {S1, S2} and T are trace-equivalent or not. Unfortunately, since neither S1

nor S2 is trace-equivalent to T , we would not have been able to draw any conclusion.

5.9.3 The FOO E-voting Protocol

In this section we analyze vote privacy in a voting protocol (from hereon referred to as the ’FOO
protocol’) due to Fujioka, Okamoto and Ohta [87]. We provide an informal description of the
protocol and we then proceed to show that it satisfies vote privacy in our symbolic model.

Description

The FOO voting protocol relies on two relatively non-standard cryptographic primitives:

1. commitments: by constructing the message commit(v, r) for some value v and some key r
and sending it to some party, a participant commits to the value v with respect to the party
having received the commitment.

The commitment itself does not reveal the value v or the key r.

Later on, when the participant is ready to reveal the value v to which he has previously
commited, he sends in clear the key r to the other party. This party can nowopen the
commitment with the key r obtaining open(commit(v, r), r) =E v and obtain the value that
was commited to.

2. blind signatures: a participant who wants to have an authority sign some message m, but
without revealing the contents of m to the authority, can first blind the message m with a
random blinding factor B to obtain blind(m, b).

The authority can then sign the blinded message (if it chooses to do so) using its private key k
to obtain sign(blind(m, b), k). Later on, the participant can use the blinding factor to unblind
the message signed by the authority, thereby obtaining unblind(sign(blind(m, b), k), b) =E

sign(m, k) the signature of the authority on the unblinded message.

We have briefly described the cryptographic primitives involved. We now describe how the
protocol works. The voting takes place in three phases described bellow.
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1. In the first phase, each voter V chooses a vote v, computes a commitment commit(v, r)
of the vote v with a fresh key r, blinds the commitment using a random blinding factor b
(obtaining blind(commit(v, r), b) and signs the result with his private key, thereby obtaining
the blob sign(blind(commit(v, r), b), kV ).

The voter then sends this blob to an administrator accompanied by V ’s identity. The
administrator verifies that V has the right to vote and did not vote before, and then signs
using the administrator signature the blob (the blob is not signed by V at this point) and
sends the result sign(blind(commit(v, r), b), kA) to V .

Once the voter V receives this message (presumably the signature of the administrator on
his blinded vote), he then performs atomically the following actions: it checks that it was the
administrator who has signed the received message (using the administrator’s public key)
and then unblinds that message to obtain unblind(sign(blind(commit(v, r), b), kA), b) =E

sign(commit(v, r), kA), i.e. his own commitment signed by the administrator. Note that in
this process, V did not reveal his vote to the administrator.

2. The second phase is the actual voting phase: V sends the unblinding to the collector C on an
anonymous channel, the collector verifies that the unblinding was signed by the administrator
and, if the test succeeds, enters the commitment and the unblinding into the database.

3. The third and last phase starts once the collector decides it has received all votes (i.e. after
the election ends).

The collector publishes the database of votes. Each voter V verifies that their commitment
is in the list and if so sends r, the commitment factor, to C via an anonymous channel.

The collector C opens each ballot with the random r and publishes the vote v.

Modeling and Verifying the Protocol

To model the commitment scheme and the blind signatures, we use the following convergent
optimally reducing term rewriting system:

R =







open(commit(x, y), y) → x
check(sign(x, y), pk(y)) → x
unblind(sign(blind(x, y), z), y), pk(z)) → sign(x, z)







that models the cryptographic primitives used in this case.
As we do not trust any of the election authorities, we assume they are dishonest participants

and we give away their private key to the attacker by modeling the private key kauth ∈ M of the
authority as a public name. We model a voter V ∈ {A,B} ⊆ C (we identity voters with channels)
voting v ∈ {yes, no} ⊆ M (each vote is represented by a public name) by a trace

P (V, v) = A1(V, v).A2(V, v).A3(V, v).A4(V, v)

where

A1(V, v) = send(V, sign(blind(commit(v, rV,v), bV,v), kV ))
A2(V, v) = receive(V, xV,v).[checksign(xV,v, pk(kauth)) = blind(commit(v, rV,v), bV,v)]
A3(V, v) = send(c, unblind(xV,v, bV,v))
A4(V, v) = send(c, rV,v)

are the atomic actions of the honest participants. The names bV,v, rV,v ∈ N are private, V ∈
{A,B} is the channel of voter V and c ∈ C is a public channel (so that the signed commitment
can be transmitted anonymously). The actions A1 and A2 correspond to the first phase of the
protocol, the action A3 corresponds to the second phase and the action A4 to the third phase.

Different voting situations can then be considered by constructing interleavings of traces P (V, v)
for several values of V and v in a phase-respecting manner. To prove that an attacker cannot tell
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the difference between the situation where agent A votes yes and agent B votes no from the
situation where the two agents swap their votes: agent A votes no and agent B votes yes, we
consider the set Σ(V, v, U, u) to contains all 24 traces resulting from phase-respecting interleavings
of P (V, v) and P (U, u) as defined in Figure 5.5.

Phase1(V, v, U, u) = {
A1(V, v).A2(V, v).A1(U, u).A2(U, u)
A1(V, v).A1(U, u).A2(V, v).A2(U, u)
A1(V, v).A1(U, u).A2(U, u).A2(V, v)
A1(U, u).A1(V, v).A2(V, v).A2(U, u)
A1(U, u).A1(V, v).A2(U, u).A2(V, v)
A1(U, u).A2(U, u).A1(V, v).A2(V, v)
}

Phase2(V, v, U, u) = {
A3(V, v).A3(U, u)
A3(U, u).A3(V, v)
}

Phase3(V, v, U, u) = {
A4(V, v).A4(U, u)
A4(U, u).A4(V, v)
}

Σ(V, v, U, u) = {
P1.P2.P3 | P1 ∈ Phase1, P2 ∈ Phase2, P3 ∈ Phase3,
}

Figure 5.5: The set Σ(V, v, U, u) of all 24 traces of the FOO e-voting protocol

We next consider a process modeling all traces of the FOO protocol restricted to two honest
participants: a participant V who votes v and another participant U who votes u:

Q(V, v, U, u) = {send(c, pk(kA)).send(c, pk(kB)).T | T ∈ Σ(V, v, U, u)}.

In addition to the set of traces Σ(V, v, U, u), the process Q(V, v, U, u) also models the fact that the
intruder has the public keys of the honest agents. In order to check that the FOO protocol satisfies
vote privacy for two participants in our symbolic model, it is sufficient to establish (similarly to [72])
that

Q(A, yes, B, no) ≈t Q(A, no, B, yes).

Unfortunately, we cannot directly apply our tool AKiSs to check trace equivalence because the
two processes Q(A, yes, B, no) and Q(A, no, B, yes) are not determinate. However, the sufficient
condition described in the second step of Figure 5.4 holds, i.e. AKiSs shows in a little under 3
minutes that for any trace T ∈ Q(A, yes, B, no) there exists S ∈ Q(A, no, B, yes) such that T ≈t S
and vice-versa and therefore

Q(A, yes, B, no) ≈t Q(A, no, B, yes).

We conclude that the FOO voting protocol indeed satisfies vote privacy in our symbolic model.
Note that our model only accounts for two voters and two votes. However, the same method-

ology can be used to establish vote privacy results for several voters and several possible votes (at
the cost of an increase in running time).

5.9.4 Checking for Strong Secrecy

Usually, secrecy is checked in the Dolev-Yao model as a reachability property [107]. However, it is
possible to define stronger forms of secrecy in the Dolev-Yao model based on process equivalences.
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Blanchet [26] provides such a definition of strong secrecy based on observational equivalence in a
variant of the applied-pi calculus. According to Blanchet [26], a process P (x̃) with a set of free
variables x̃ preserves the strong secrecy of its free variables x̃ if and only if,

for all grounding substitutions σ, σ′ of domain x̃, we have Pσ ≈ Pσ′.

In the above definition, the substitution application avoids name capture (i.e. σ, σ′ are not allowed
to contain private names). Also, by the definition of [26], ≈ denotes observational equivalence. We
can model the same type of strong secrecy in our process calculus, but relying on trace equivalence
instead of observational equivalence:

Definition 5.14. Let P be a process with free variables {x1, . . . , xn}. The process P satisfies
strong secrecy of its free variables if and only if:

receive(c, x1). . . . .receive(c, xn).receive(c, x′1). . . . .receive(c, x′n).P
≈t

receive(c, x1). . . . .receive(c, xn).receive(c, x′1). . . . .receive(c, x′n).P{xi 7→ x′i}1≤i≤n,

where c ∈ C is a public channel.

We can see that the two definitions (the one from [26] and Definition 5.14) coincide (other than
the change from ≈ to ≈t) by noting that the universal quantification on σ, σ′ and the fact
that σ, σ′ do not capture private names are modeled by having the intruder choose the values of
x1, . . . , xn, x

′
1, . . . , x

′
n at the beginning of each process. We consider the running example from [26],

a key-distribution protocol:

A→ B : aenc(sign(pair(pkA, pair(pkB , k)), skA), pkB)
B → A : enc(x, k).

In this protocol, the two participants A and B wish to establish a shared key k for subsequent
communication. The participant A creates the key k, and sends it to B together with the identity
pkA of A and pkB of B. The entire message is signed by A using his private key skA and encrypted
under the public key pkB of B. The participant B can then send to A a message enc(x, k) encrypted
under the freshly created key k. The variable x is free and represents the contents of the message.
We will next analyze the strong secrecy of x in this protocol.

We model the cryptographic primitives used (public key encryption, digital signatures, symmet-
ric encryption and pairs) in a standard fashion using the following convergent optimally reducing
term rewriting system R:

R = { adec(aenc(x, pk(y)), y) → x
dec(enc(x, y), y) → x
checksign(sign(x, y), pk(y)) → ok
msg(sign(x, y)) → x
fst(pair(x, y)) → x
snd(pair(x, y)) → x

}.

We model one session of this protocol as follows. We let k, skB , skA ∈ N by private names
representing the freshly chosen symmetric k and respectively the secret keys of A and of B. We
consider a single public channel c ∈ C and two processes

PA = send(c, aenc(sign(pair(pk(skA), pair(pk(skB), k)), skA), pk(skB)))
PB(x) = receive(c, y).

[checksign(adec(y, skB), pk(skA))
?
= ok].

[fst(msg(adec(y, skB)))
?
= pk(skA)].

[fst(snd(msg(adec(y, skB))))
?
= pk(skB)].

send(c, enc(x, snd(snd(msg(adec(y, skB))))))
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modeling the actions of participant A communicating to B and that of participant B communi-
cating to A. We denote by P (x) all 6 interleavings of actions of PA and of PB(x). The strong
secrecy of x (for one session of the protocol) is then modeled by the following equivalence:

receive(c, x).receive(c, x′).send(c, pk(skA)).send(c, pk(skB)).P (x)
≈t

receive(c, x).receive(c, x′).send(c, pk(skA)).send(c, pk(skB)).P (x′).

Sending pk(skA) and pk(skB) on the network models the fact that the intruder has the pub-
lic keys of A and of B. Inputting x and x′ follows our definition of strong secrecy (Defini-
tion 5.14). The notation a.P where a is an action and P is a process denotes the process
{a.T | T ∈ P is a trace of P}.

We have checked the above equivalence using AKiSs and we have proved that it holds. We
conclude that this protocols satisfies strong secrecy of x (for one session). We have also checked
strong secrecy for the different variations of this protocol described in [26]. The variations introduce
violations of strong secrecy and fixes for these violations in order to re-obtain strong secrecy. We
obtained using AKiSs the expected results (but for only one session of the protocol).

5.9.5 Checking for Guessing Attacks

We can distinguish secrets used in cryptographic protocols as being weak secrets and strong secrets.
Strong secrets such as encryption keys have a bit-length which makes it intractable for an attacker
to completely enumerate them. In contrast, weak secrets such as PINs or passwords can be
enumerated in a more reasonable time-frame (e.g. assuming that a password is an English word,
it is sufficient to enumerate all words in an English dictionary). Weak secrets are useful as they
are easier to remember by humans. They are used for example to authenticate two participants
as the following example protocol shows:

A→ B : enc(n,w)
B → A : enc(h(n), w).

In this protocol, the participants A and B share a weak secret w. The goal of the protocol is to
authenticate B from A’s point of view. To do this, A picks a fresh name n and send a challenge
enc(n,w) to B. If B knows w, he can decrypt the challenge, compute the hash h(n) of the name
n freshly chosen by A and encrypt the hash h(n) with w to send it to A. The participant A can
then check that the decryption of what he received is the hash of the fresh name. In this case, A
is convinced to be talking to B, since B has “proved” by decrypting and encrypting with w that
we knows the weak secret w.

Suppose that an intruder records all of the messages ϕ = {w1 7→ enc(n,w), w2 7→ enc(h(w), w)}
transmitted in a session between A and B. As w is a weak secret, he can enumerate all of the
possible values v of w offline (i.e. after the session has ended). He can then check if a value v is
the correct one (i.e. is equal to w) by performing the following test:

h(dec(w1, v))
?
= dec(w2, v).

When v = w, the test will succeed and when v 6= w, the test will fail. Therefore we say that
the protocol makes w vulnerable to a guessing attack (or equivalently to an off-line dictionary
attack). We can model that a private name w appearing in a process P is resistant against an
offline dictionary attack by the following equivalence:

P.send(c, w) ≈t P.send(c, v).

In the above equivalence c ∈ C is a public channel, w, v ∈ N are private names with w representing
the weak secret and v being a fresh name. The notation P.a where P is a process and a is an
action denotes the process {T.a | T ∈ P is a trace of P}. The intuition behind the equivalence



138 CHAPTER 5. AUTOMATED VERIFICATION OF TRACE EQUIVALENCE

is that the attacker first records all messages output by P . Then he tries to guess the value of
w (by enumerating all its values). This guessing is modeled by the two actions send(c, w) and
send(c, v). If the two sides of the equivalence are indistinguishable, it means that the attacker
has no test to distinguish between the real value w of the weak secret and another value v.

We now proceed to analyze resistance against guessing attacks for the example protocol that
we have described above. We can model the roles of A and of B in the above protocol as the
following traces:

PA = send(c, enc(n,w))
PB = receive(c, x).send(c, enc(h(dec(x,w)), w)).

The participant A therefore simply sends the encryption of a fresh name n ∈ N with the weak
secret w ∈ N on the network. The participant B reads x (the message that A supposedly sent) from
the network and outputs on the network the solution to A’s challenge. We model the underlying
rewrite system as

R = { dec(enc(x, y), y) → x
enc(dec(x, y), y) → x

}.

The first equation is standard and the second equation models that the encryption scheme is not
key revealing (otherwise there would be a trivial attack: the attacker could test w1 is an encryption
with the value v that he has guessed: enc(dec(w1, v), v) = w1). Resistance against guessing attacks
of w then reduces to the equivalence

P.send(c, w) ≈t P.send(c, v)

where v ∈ N is a fresh name. The tool AKiSs shows that the two processes are not coarse trace
equivalent (and therefore not trace equivalent) and outputs the following test which holds when
X = P.send(c, w) but does not hold when X = Q.send(c, v):

(X, ∅)
send(c),receive(c,w1),test,send(c),send(c)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (Y, ϕ) s.t. (dec(w2, w3)

?
= h(dec(w1, w3)))ϕ.

Therefore the equivalence does not holds and we conclude that P is not resistant against
guessing attacks of w. We now consider a variant of the EKE protocol [23]:

A→ B : enc(pk(k), w)
B → A : enc(aenc(r, pk(k)), w).

The goal of the EKE protocol is to establish a session key r between two participants who share
a weak secret w. To do so, the initiator A generates a fresh private key k and sends to B the
associated public key pk(k) encrypted under w. The participant B then creates the fresh session
key r and send this key to A wrapped by asymmetrically encrypting it with pk(k) and then
symmetrically with w. In the EKE protocol a challenge-response phase meant to prevent replay
attacks follows but we do not model it since we concentrate on resistance against guessing attacks
on w. We model the two participants as the following traces

PA = send(c, enc(pk(k), w))
PB = receive(c, x).send(c, enc(aenc(r, dec(x,w)), w)),

where c ∈ C is a public channel and r, k, w ∈ N are private names. Then an interleaving of PA

and PB represents one session of the EKE protocol. We consider two more traces:

P ′A = send(c, enc(pk(k′), w))
P ′B = receive(c, x′).send(c, enc(aenc(r′, dec(x′, w)), w)),

with r′, k′ ∈ N modeling a second session of the same protocol. Then the process P consisting
of all interleavings of PA, PB , P

′
A, P

′
B model two concurrent sessions of the EKE protocol between
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participants A and B. We consider the term rewriting system

R = { dec(enc(x, y), y) → x
enc(dec(x, y), y) → x
adec(aenc(x, pk(y)), y) → x

}.

The first and the third rewrite rules are standard. The second rewrite rule models the fact that the
symmetric encryption scheme is key-concealing to prevent an attacker from checking if a ciphertext
has been encrypted using a known key. We have shown using AKiSs that

P.send(c, w) ≈t P.send(c, v)

for a fresh private name v ∈ N and we can therefore conclude that EKE satisfies resistance against
guessing attacks on w for two sessions.

5.10 Conclusion and Further Work

This chapter of the thesis is concerned with the verification of trace equivalence for security proto-
cols. We obtain a procedure for verifying trace equivalence for finite, determinate processes without
else branches under convergent optimally reducing rewrite systems. To handle non-determinate
processes, we present an effective proof method for trace equivalence based on the procedure for
determinate processes. We conjecture that the procedure always terminates for subterm conver-
gent term rewriting systems, but unfortunately, due to the highly complex form of Horn clauses
obtained by the procedure, we have not been able to prove this.

We have implemented this procedure in the tool AKiSs and we have used the procedure to run
several experiments. Although the implementation works quite fast for checking if one symbolic
trace is trace-included in a determinate process, the number of symbolic traces of a process can
be exponential and therefore an exponential number of such trace-inclusions need to be verified in
order to check that two processes are trace-equivalent. We have used our tool to provide the first
provably sound and automatic 1 proof of vote privacy in the FOO e-voting protocol (Section 5.9.3).
As future work, there are several tracks which deserve to be investigated:

1. Prove that the saturation procedure presented in the second part of the chapter terminates.
This would provide a very nice theoretical result that is also easy to implement in practice.

2. Get rid of the explicit enumeration of symbolic traces. The definition of a process as a set
of all its symbolic traces is fine from a theoretical point of view, as long as complexity does
not enter the picture. However, from a practical point of view, the unavoidable exponential
blowup is very bad for the running time and the explicit enumeration of symbolic traces is
very error-prone.

3. Get rid of the hypothesis of determinate processes. E-voting protocols, which represent the
most important application for checking equivalence properties, are naturally not determi-
nate. This means that approximations must be used in order to prove equivalences, such as
the approximation that we used when verifying the FOO e-voting protocol.

4. Get rid of the “no else branch” hypothesis. In our current work, we only allow processes
that perform tests and, if the test succeeds, they continue; otherwise they block. In practice,
there are protocols which may do arbitrary actions in the “otherwise” branch. Verifying
such protocols is a worthwhile goal.

1The work in Chapter 5 of [119] also allows automatic verification of FOO by using an add-on to ProVerif
called ProSwapper; however the soundness of the add-on itself was never proven and therefore there is not formal
guarantee of the result of the verification.
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5. Perform sound abstractions. Instead of having fully-abstract models of traces, construct
sound models that allow proving equivalence properties. Not having to be fully-abstract may
allow for better efficiency and could allow a tool to make security proofs for an unbounded
number of sessions.

6. Work modulo AC or other equational theories. There are a number of cryptographic primi-
tives such as Diffie-Hellman or XOR which cannot be oriented as a convergent term rewriting
system. Working modulo AC (associative-commutative) operators could allow a tool to prove
security properties under such cryptographic primitives.



Chapter 6

Composability

6.1 Introduction

Most of existing techniques for proving protocols secure are dedicated to the analysis of a protocol,
without taking into account other protocols which may be used at the same time. However,
most cryptographic protocols do not run in isolation. Instead, several protocols can run on the
same network and there might be undesirable interactions between protocols which cause security
problems.

Even apparently isolated protocols might interact in unexpected ways. For example, a user
might choose the same password for two different network services, or a server might use the
same key for different protocols. Even if the network services (or the different protocols) were
proven secure in isolation, there is no security guarantee which carries over when they share keys
or passwords.

Furthermore, a number of protocols are verified under the assumption that agents share some
pre-distributed keys (e.g. public keys or symmetric keys between agents and servers). But these
keys might have been established by some other sub-protocols. There is no guarantee that a
protocol remains secure if a specific key-exchange protocol is used to establish the keys, even if
both protocols have been proven secure in isolation.

Even assuming that we could produce a global model of all protocols which are used in a certain
setting, it might be unrealistic to formally verify such a collection of protocols in its entirety due
to computational constraints.

Therefore more modular reasoning about security is desirable, where we can infer security
guarantees for the composition of protocols from the security guarantees of the individual protocols.
The goal of this chapter is to study the composition of protocols. Which security properties should
P1 and P2 have such that running P1 and P2 on the same network (with possible information being
passed between P1 and P2) is secure. In particular, given a protocol P1 that has been proven secure
assuming pre-established keys or assuming some secure channel, under which conditions does P1

remain secure if it uses P2 as a sub-protocol to establish some of keys?

6.1.1 Related Work

One of the first papers studying the composition of protocols in the Dolev-Yao model is [93]. In
the formalism of strand spaces [85], Guttman and Thayer show that two protocols which make use
of concatenation and encryption can be safely executed together without damaging interactions,
as soon as the protocols are “independent”. Also, an assumption is made that all keys are atomic
and not generated for example by hashing some message. The independence hypothesis requires
in particular that the sets of encrypted messages handled by the two protocols be disjoint. This
is a semantic hypothesis on all possible executions of the two protocols which needs to be checked
by hand.

141
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In [57], Cortier et al show that tagging is sufficient to avoid collusion between protocols sharing
common keys and making use of standard cryptographic primitives: concatenation, signature, hash
functions and encryption. This framework allows to compose processes symmetrically; however,
it does not allow to securely compose e.g. a key exchange protocol with another protocol which
makes use of the shared key. In particular, this is because the shared keys should never appear as
payloads.

In [92], Guttman provides a non-trivial characterization which ensures that two protocols can
run securely together when sharing some data such as keys or payloads. The main improvement
over [93] is that keys are allowed to be non-atomic. The characterization is syntactic but has to
be computed for each pair of protocols. As cryptographic primitives, the protocols are allowed to
contain encryptions and concatenations. The proof method in our result is roughly similar to the
proof methods described here: an attack against the composition is transformed into an attack
against one of the two protocols.

In [71], Delaune et al use a derivative of the applied-π calculus to model off-line guessing
attacks. They show that in the passive case resistance against guessing attacks is preserved by the
composition of two protocols which share the weak secret against which the attack is mounted. This
result (in the passive case) holds for arbitrary equational theories. However, for the active case this
is no longer the case: it is however proven that tagging the weak secret enforces secure composition
(in the sense of guessing attacks). Again, this framework applies to parallel composition only.

Mödersheim and Viganò [109] have proposed a framework for composing protocols sequentially.
They propose a criterion for a protocol P1 to safely use P2 as a sub-protocol (for implementing a
secure channel). However, their criterion is a semantic criterion, for which no decision procedure
has been provided yet. In [91], Groß and Mödersheim introduce vertical protocol compositions,
where a key-exchange protocol is coupled with a protocol (called application protocol) which uses
the exchanged key. Vertical compositions are similar to the sequential compositions we have used
in this work. They identify a number of preconditions which, if satisfied by a set P of key-exchange
protocols and application protocols, allow arbitrary vertical compositions among the protocol in
P. Their work also allows for self-composition, in the sense that an application protocol can serve
as a key-exchange protocol for yet another application protocol.

In [70], Delaune et al use a simulation based approach inspired by work in the computational
model [33] to provide a framework for securely composing protocols in the applied-π calculus.
This involves defining for each sub-protocol an ideal functionality and then showing that a certain
implementation securely emulates the ideal functionality. Another line of work is represented by
the Protocol Composition Logic [67], which can be used to modularly prove security properties of
protocols using a fixed set of primitives. However, the proofs may be rather involved and are not
automatic.

6.1.2 Contribution

In this chapter, we propose a generic composition result for arbitrary cryptographic primitives
which can be modeled by equational theories. More precisely, we show that an attack trace
against the composition of two protocols can be transformed into an attack trace against one of
the two protocols.

The composition theorem holds for any cryptographic primitives which can be modeled by
equational theories, provided that the signatures of the two composed protocols are disjoint.
This allows us to handle many cryptographic primitives: symmetric and asymmetric encryption,
hash functions, messages authentication codes, signatures, blind signatures, re-encryption, zero-
knowledge proofs and others [18, 72]. We can also allow some common primitives between the
two protocols, such as encryption and hash, provided that they are tagged. In order to formally
describe and reason about protocols and their compositions, we introduce in Section 6.2 a slightly
different process algebra than in the previous chapter. This (new) process algebra contains actions
such as νn and | and is more adapted to describing compositions of protocols than the one used
in the previous chapter. We concentrate on proving secrecy properties of compositions although
we believe that our result carries over to other trace properties such as authentication.
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Our main theorem is generic in the sense that the composition can be any interleaving of actions
from the two protocols: for example, the composition can be parallel or sequential, possibly with
nested replication. In particular, we capture the case where a protocol uses a sub-protocol to
e.g. establish keys. As a consequence, we can for example easily compose a protocol using Diffie-
Hellman exponentiation for establishing symmetric keys, together with any protocol making use
of pre-established keys.

Applications. Our main composition result can be used in different contexts. As an application,
we study the case of key-exchange protocols. We first consider the case where a key-exchange
protocol is used to establish shared long-term keys.

Assume that P = νn.(P1 | P2) is a protocol that establishes a key between two participants.
The process P denotes the parallel execution of a participant modeled by P1 and another partici-
pant modeled by P2. The two agents P1 and P2 share the previously distributed key n. The goal
of the protocol P is to establish a fresh shared session key between P1 and P2. Assume that the
key will be stored in the variable y1 for P1 and the variable y2 for P2.

We identify which properties should be satisfied by P in order to be safely used within any
other protocol. As expected, we retrieve the fact that the established key (stored in y1 for P1

and in y2 for P2) should remain secret to an attacker, but we also point out two other important
properties which are not always checked when verifying key-exchange protocols.

We show that whenever P satisfies our identified properties and if a protocol Q is secure
assuming pre-established keys (e.g. if Q preserves the secrecy of some data s):

Q = νk.((y1 := k).Q1 | (y2 := k).Q2) |= Secret(s)

then Q remains secure when running P as subprotocol for establishing the secret key (in y1 for
the first participant and in y2 for the second participant):

νn · (P1 ·Q1 | P2 ·Q2) |= Secret(s).

We also consider the case where a key-exchange protocol is used within each session for estab-
lishing a secure channel. We show that if a protocol Q′ is secure assuming a secure channel:

Q′ =!(νk.((y1 := k).Q1 | (y2 := k).Q2)) |= Secret(s)

then Q′ remains secure when running P as subprotocol:

!(νn.(P1.Q1 | P2.Q2)) |= Secret(s).

Our approach has several advantages over prior work. As opposed to [93, 57, 92, 109, 91], our
result allows not only the standard cryptographic primitives like encryption and hash functions,
but arbitrary primitives expressible as equational theories. Furthermore, unlike [57, 71], our result
allows to compose protocols asymmetrically (i.e. not just in parallel). A difference between our
approach and [70] is that we do not need to prove anything about the protocols we are trying to
compose except standard reachability properties. In particular, we do not have to provide a key
exchange functionality and prove that an implementation satisfies this functionality. However, [70]
can be used to reason about protocols which do share primitives.

This chapter is based on work [49] that has been published at CSF 2010.

Plan of the Chapter. In Section 6.2 we introduce a process algebra which is suitable for defin-
ing composition of protocols. In Section 6.3 we identify difficulties in composing protocols and
we give examples of compositions that “go wrong”. Once we rule out the problematic cases that
we identified, we propose a generic composition theorem for protocols employing disjoint crypto-
graphic primitives in Section 6.4. We present applications of this theorem to key establishment
protocols in Section 6.5. We show that a form of tagging is sufficient to enforce disjointness of
cryptographic protocols making use of symmetric encryption and hash functions in Section 6.6.
We conclude our work in Section 6.7 with perspectives for further work.
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6.2 Process Algebra

We now introduce the process algebra that we use to describe protocols and their composition.
As opposed to the process algebra that we have used in the previous chapter, this process algebra
is tailored to easily describe protocol compositions and reason about their security. The process
algebra closest to ours is the applied π-calculus [3]. However, the applied π-calculus is not adequate
in our case since it makes formulating our main theorem unnecessarily cumbersome. The main
differences between our calculus and the applied π-calculus are the following ones:

• we add a synchronization phase, so that we can write P.Q for arbitrary processes P and Q.
This is important to express the fact that a protocol first runs P before continuing with Q,

• we consider only one public channel,

• only positive tests are allowed (no else branches).

Processes are defined inductively in Figure 6.1.

P,Q . . . ::= processes
| 0 (null process)
| νx for x ∈ X (fresh name)
| receive(x) for x ∈ X (input)
| (x := t) for x ∈ X , x 6∈ Var(t), t ∈ T (F ,X ) (assignment)
| send(t) for t ∈ T (F ,M∪X ) (output)
| [s = t] for s, t ∈ T (F ,M∪X ) (test)
| (P.Q) (sequential composition)
| (P | Q) (parallel composition)
| !P (replication)

Figure 6.1: Process Algebra

The null process (or the empty process) 0 does nothing. The process νx binds x to a fresh
private name. The process receive(x) reads a term t from the public channel, and binds x to t.
The assignment process (x := t) instantiates x with t. The process send(t) outputs the term t
on the public channel. The test process [s = t] blocks if s 6=E t and does nothing otherwise. The
sequential composition process P.Q executes P followed by Q. The parallel composition process
(P | Q) runs P and Q in parallel. The replication process !P will act as an infinite number of P s
in parallel. We may write ν{x1, . . . , xk} instead of νx1. . . . .νxk.

When we write processes, we assume that “!” binds strongest, followed by “|” and then by “.”.
We assume that the variables introduced by νx, receive(x) and (x := t) are bound throughout
sequential composition (denoted by “.”) as far to the right as possible. By fv(P ) we denote the
set of free variables of P . We identify processes up to α-renaming of bound variables and up to
the following structural equivalence rules in Figure 6.2.

P ≡ P.0 ≡ 0.P P | 0 ≡ P (P | Q) | R ≡ P | (Q | R)
!0 ≡ 0 P | Q ≡ Q | P !P ≡ P |!P

Figure 6.2: Structural Equivalence Rules

Example 6.1. Let FDH = {f, g,mac} be a signature where g is a function symbols if arity
1 and where f,mac are function symbols of arity 2. Together with the equational theory

EDH = {f(g(y), x) = f(g(x), y)}
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the function symbols f and g model the Diffie-Hellman primitives (f(x, y) = xy mod p,
g(y) = αy mod p for a generator α) and mac denotes a keyed hash function.

We have that the process PDH = νxk.(P1 | P2) models for the Diffie-Hellman protocol if

P1 = νx.send(g(x)).send(mac(g(x), xk)).receive(z).receive(z′).
[z′ = mac(z, xk)].y1 := f(x, z)

and
P2 = νy.send(g(y)).send(mac(g(y), xk)).receive(z).receive(z′).

[z′ = mac(z, xk)].y2 := f(y, z).

The process P1 models the first participant in an authenticated Diffie-Hellman key exchange
while P2 models the second participant. The free variable xk should be previously shared
by the two participants to ensure authentication.

Processes are executed within an environment formed of a frame ϕ that contains messages
sent over the network (as in the applied π-calculus) and a binding substitution σ whose domain
is a subset of the free variables of the process. The formal operational semantics is given by the

transition relations −→F,E and
t
−→F,E (where t is a label receive(r)) described in Figure 6.3.

New
P = νx.R x 6∈ Dom(σ) n ∈ N fresh

(P,ϕ, σ) −→F,E (R,ϕ, σ ∪ {x 7→ n})

Input
P = receive(x).R ϕ ⊢rF,E t x 6∈ Dom(σ)

(P,ϕ, σ)
receive(r)
−−−−−−−→F,E (R,ϕ, σ ∪ {x 7→ t})

Assgn
P = (x := t).R x 6∈ Dom(σ) Var(t) ⊆ Dom(σ) tσ =E t

′

(P,ϕ, σ) −→F,E (R,ϕ, σ ∪ {x 7→ t′})

Output
P = send(t).R Var(t) ⊆ Dom(σ) t′ =E tσ

(P,ϕ, σ) −→F,E (R,ϕ ∪ {w|Dom(ϕ)|+1 7→ t′}, σ)

Test
P = [s = t].R sσ =E tσ Var(s),Var(t) ⊆ Dom(σ)

(P,ϕ, σ) −→F,E (R,ϕ, σ)

Parallel
P = (Q0 | Q1).R (Q0, ϕ, σ)

§
−→F,E (Q′0, ϕ

′, σ′)

(P,ϕ, σ)
§
−→F,E ((Q′0 | Q1).R, ϕ′, σ′)

Figure 6.3: Operational Semantics.

The New operation chooses a fresh name n, binds x to n and moves to the next action. The
Input operation waits for a term t constructible by the recipe r from the frame ϕ containing the
messages already exchanged on the network, binds x to t and moves to the next action. The
Assign operation binds x to tσ and continues to the next action. The Output operation adds
to the frame the term tσ being output. The Test operation moves to the next operation if the
two terms being compared are equal and blocks otherwise. The Parallel operation states that a
parallel composition can proceed as either of the two processes being run in parallel.

In Figure 6.3, § is a meta-variable denoting either the empty string, in which case
§
−→F,E=−→F,E,

or a label x = receive(r), in which case
§
−→F,E=

receive(r)
−−−−−−−→F,E. The relation

l1·...·ln−−−−→
∗

F,E is defined

as −→∗
F,E

l1−→F,E−→
∗
F,E

l2−→F,E−→
∗
F,E . . . −→

∗
F,E

ln−→F,E−→
∗
F,E. We omit F and E when they are clear from

the context.
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Examples of process executions can be found in Section 6.3. We conclude this section by
defining secrecy and freshness. Secrecy and freshness are two properties that we require of protocols
in order to compose them securely. Intuitively, a variable is secret if in any protocol execution,
its instantiation remains not deducible. We will require variables that are shared between two
protocols to be kept secret by both protocols in order to securely compose them. Otherwise, if a
protocol reveals a shared variable, it might create a dangerous situation for the other protocol as
exemplified in Section 6.3.1.

Definition 6.1 (secrecy). We say that a process P preserves the secrecy of x ∈ Var(P ) in the
equational theory E, and we denote it by P |=E Secret(x), if whenever

(P, ∅, ∅)
l1,...,ln

→∗ (Q,ϕ, σ)

we have that ϕ 6⊢E xσ.

Freshness of a variable with respect to a set of variables is another security property that
we will demand of the two protocols in order to secure compose them. Intuitively, freshness of a
variable means that protocols do not reuse one of the older secrets to instantiate this variable. The
reuse by a protocol of some older secret in shared variable might create an equality unexpected
by the second protocol and might lead to an insecure situation as exemplified in Section 6.3.3.

Definition 6.2 (freshness). We say that a process P guarantees the freshness of x ∈ Var(P )
w.r.t. {y1, . . . , yk} ⊆ Var(P ) in the equational theory E if whenever

(P, ∅, ∅)
l1,...,ln
−−−−→ (Q,ϕ, σ)

we have that xσ 6=E yiσ for all 1 ≤ i ≤ k.

In the above definitions we assume that the variables in the processes have been conveniently
α-renamed before application of the definition. If the above definitions concern variables appearing
under replications, we assume that the conditions hold for any of the variables denoted by x (and
resp. y1, . . . , yk). This can be achieved formally by coloring all bound variables with different
colors; whenever a variable is α-renamed it preserves its color. We would then say that a certain
color c is secret when all variables colored with c remain secret. As this technicality is not essential
in our approach, we prefer to use the less formal version.

6.3 Difficulties

Of course, two protocols P,Q cannot in general be (securely) composed in arbitrary ways. We
illustrate several cases where composing two secure protocols yields an attack. For readability, in
this section we use the notation {s}t for the term enc(s, t).

6.3.1 Revealing Shared Keys

If a protocol P is establishing a (secret) key k, then a protocol Q using the key k should not reveal
it. This would clearly compromise the security of P but it could also compromise the security
of Q. Assume for example that a protocol P1 (playing the role of P above) generates two fresh
(secret) data x and y and reveals the encryption of x under y:

P1 = νx.νy.send({x}y)

Note that P1 may compute x and y in a more complicated way, but we consider just the rather
trivial case where x and y are instantiated to fresh nonces for the sake of clarity. Then P1 preserves
the secrecy of both x and y. Assume now that a process Q1 (playing the role of Q above) reveals
y and uses x for encrypting a secret z:

Q1 = νz.send(y).send({z}x).
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Then νx′.νy′.(x := x′).(y := y′).Q1 preserves the secrecy of z, while the composition P1.Q1 of
both processes does not preserve the secrecy of z. Indeed

(P1.Q1, ∅, ∅) −→
∗ (0, ϕ, σ = {x 7→ k1, y 7→ k2, z 7→ k3})

for fresh private names k1, k2, k3 ∈ N , where ϕ = {w1 7→ {k1}k2
, w2 7→ k2, w3 7→ {k3}k1

}. We

have ϕ ⊢
dec(w3,dec(w1,w2))
Eenc

zσ and thus P1.Q1 6|=Eenc Secret(z), where Eenc = {dec(enc(x, y), y) = x}
models symmetric encryption.

Note that this attack works even if P1 and Q1 actually use different encryption symbols (thus
even if they use disjoint signatures).

6.3.2 Sharing Primitives

The interaction of two protocols using common primitives may yield an attack, even if each of the
protocols is secure when executed in isolation. Indeed, consider again the process P1 described
above and let Q2 be a process that uses x for encrypting a secret z and outputs m for any m
received under the encryption of y.

Q2 = νz.send({z}x).receive(z′).send(dec(z′, y)).

Then νx′.νy′.(x := x′).(y := y′).Q2 preserves the secrecy of z, while the composition P1.Q2 of
both processes does not preserve the secrecy of z. Indeed

(P1.Q2, ∅, ∅)
receive(w1)
−−−−−−−−→

∗

(0, ϕ′, σ ∪ {z′ 7→ {k1}k2
})

where σ has been defined above and ϕ′ = {w1 7→ {k1}k2
, w2 7→ {k3}k1

, w3 7→ k1}. We have

ϕ′ ⊢
dec(w2,w3)
Eenc

zσ, thus P1.Q2 6|=Eenc Secret(z).
So, in what follows, we will assume that the composed protocols use disjoint primitives. In

Section 6.6, we extend our result to the case where the protocols may share some primitives such
as encryption and hash, provided they are tagged.

6.3.3 Key Freshness

It is important that shared variables (that are assumed to be fresh) are indeed instantiated by
fresh values. Assume for example that a protocol R = R1.R2.R3 is composed of three phases:

• it first generates a fresh key x: let R1 = νx;

• it then runs a sub-protocol R2 to establish some secret y;

• it outputs a fresh value z if x = y: let R3 = νz.[x = y].send(z).

Then R preserves the secrecy of z when R2 = νk.(y := k) chooses y to be a fresh key:

R1.νk.(y := k).R3 |= Secret(z)

while it is not secure for all sub-protocols R2 establishing a secret key y. Indeed, for R′2 = (y := x),
we have that νk.(x := k).R′2 preserves the secrecy of the shared key y but, because y is not fresh,

R1.R
′
2.R3 6|= Secret(z).

In what follows, we will see that the three situations that we have described in Section 6.3.1,
Section 6.3.2 and respectively Section 6.3.3 are actually the only problematic cases and we will
therefore require in our composition theorem that sub-protocols do not introduce such equalities.
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6.4 Composing Disjoint Protocols

In our composition theorem, we show that under appropriate conditions, protocols that use disjoint
cryptographic primitives compose well. We formalize the fact that two protocols use disjoint
cryptographic primitives by ensuring that the protocols run over two distinct signatures, each
equipped with its own equational theory.

6.4.1 Combination of Equational Theories

We will therefore consider that the signature F consists of the union of two disjoint signatures
Fa and Fb, i.e. F = Fa ∪ Fb where Fa ∩ Fb = ∅. We also consider an equational theory Ea over
Fa and an equational theory Eb over Fb. We define the equational theory E = Ea ∪ Eb (over F)
to be the union of the equational theories Ea and Eb. Note that the relation =E (as defined in
Chapter 2) is not in general the union of =Ea

and =Eb
. We will assume w.l.o.g. that the two

equational theories Ea and Eb are not trivial:

Definition 6.3. An equational theory E0 is trivial if s =E0
t for any terms s, t.

Trivial equational theories are not very interesting since any two terms are rendered equal by
the theory. If one of Ea or Eb is trivial, then so is E = Ea ∪ Eb. Under a trivial equational theory,
the intruder trivially knows all terms and implicitly all “secrets”.

We also consider Na ⊎ Nb ⊎ Nc = N to be a partition of the set of private names and Ma ⊎
Mb ⊎Mc = M to be a partition of the set of public names. We let Da = Fa ∪ Na ∪Ma be the
a-domain, Db = Fb ∪ Nb ∪Mb be the b-domain and Dc = Mc ∪ Nc ∪ W ∪ X be the c-domain.
Note that while the a-domain Da and the b-domain Db contain function symbols, the c-domain
Dc does not. However, the c domain Dc contains all parameters wi ∈ W, while Da and Db do not
contain any parameter. For symmetry with the other two domains, we define Fc to be the empty
signature and Ec = {} to be the empty equational theory.

For every d ∈ {a, b, c}, we define the set of pure d-terms to be T (Fd, Dd \ Fd ∪ X ). A term is
pure if it is a pure d-term for some d ∈ {a, b, c}. We say that a process is over the d-domain (with
d ∈ {a, b}) if all terms appearing in the process are pure d-terms.

6.4.2 Composition Theorem

Since a run of the protocol involves only a finite number of replications and determines the schedul-
ing in parallel composition, we simply need to state our main result on traces, that is processes that
contain neither parallel composition nor replication. In order to state our composition theorem in
a general way, we simply need to show that any execution trace on two combined processes can be
transformed into an execution trace on one of the two processes. Then a trace of the composition
leading to an attack can be transformed into a trace of one of the individual protocols leading to
an attack. The fact of stating the main composition theorem on traces is not a limitation, since
our theorem can be used to securely compose processes with arbitrary replications and parallel
compositions, as illustrated in Section 6.5.

We say that a process is atomic if it is one of send(t), receive(x), [s = t], x := t, νx for some
terms s, t and some variable x.

Let P = P1. . . . .Pn be a trace over the a-domain with free variables {x1, . . . , xp} where Pi is an
atomic process (1 ≤ i ≤ n). Let Q = Q1. . . . .Qm be a trace over the b-domain with free variables
{y1, . . . , yq} where Qi is an atomic process (1 ≤ i ≤ n). Intuitively, the free variables of Q are
established by P and conversely, the free variables of P are established by Q.

Let R = R1. . . . .Rn+m be a ground interleaving of P1, . . . , Pn, Q1, . . . , Qm, that is fv(R) = ∅
and {R1, . . . , Rn+m} = {P1, . . . , Pn, Q1, . . . , Qm} (as multi-set equality). We consider R′ to be
a copy of R where the shared variables of P and Q are duplicated. More precisely, let R′ =
R′1. . . . .R

′
n+m be such that

1. R′i = Pj{x 7→ xa} if Ri is Pj for some j and where x ranges over all variables in Pj
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2. R′i = Qj{x 7→ xb} if Ri is Qj for some j and where x ranges over all variables in Qj

Example 6.2. We consider for the roles of P and Q the processes P1 and Q1 in Section 6.3.1:

P = νx.νy. send({x}y)
Q = νz. .send(y).send([z]x),

where {·}· and [·]· denote distinct encryption function symbols. We have that fv(P ) = ∅
and fv(Q) = {x, y}. We also consider the following ground interleaving of P and Q:

R = νx.νy.νz.send({x}y).send(y).send([z]x).

We have then that

R′ = νxa.νya.νzb.send({xa}ya).send(yb).send([zb]xb).

We consider a run of the composition of P and Q.

(R, ∅, ∅)
l1,...,lk−−−−→

∗

(S0, ϕ0, σ0)
§
−→ (S, ϕ, σ) (6.1)

where § is receive(rk+1) for some recipe rk+1 if the last action was an input and then empty
string otherwise.

Assume w.l.o.g. that x1, . . . , xp′ are the variables from {x1, . . . , xp} which appear in Dom(σ0)
and that y1, . . . , yq′ are the variables from {y1, . . . , yq} which appear in Dom(σ0). This means
that x1, . . . , xp′ , y1, . . . , yq′ are the shared variables that were instantiated before the last action
of the execution.

Let {zi}1≤i≤p′ and {zi}p+1≤i≤p+q′ be fresh variables such that

zi = zj iff xiσ0 =E yjσ0 for all 1 ≤ i ≤ p′ and all p+ 1 ≤ j ≤ p+ q′

zi = zj iff xiσ0 =E xjσ0 for all 1 ≤ i, j ≤ p′

zi = zj iff yiσ0 =E yjσ0 for all p+ 1 ≤ i, j ≤ p+ q′

and let
R′′ = ν{zi}1≤i≤p′,p+1≤i≤p+q′ .

xa1 := z1. . . . .x
a
p′ := zp′ .

yb1 := zp+1. . . . .y
b
q′ := zp+q′ .

R′.

Example 6.3. Continuing the previous example, we consider the run

(R, ∅, ∅) →4 (send(y).send([z]x), {w1 7→ {k1}k2}, {x 7→ k1, y 7→ k2, z 7→ k3})
→ (send([z]x), {w1 7→ {k1}k2 , w2 7→ k2}, {x 7→ k1, y 7→ k2, z 7→ k3}),

where k1, k2, k3 are fresh names, σ0 = {x 7→ k1, y 7→ k2, z 7→ k3} and ϕ = {w1 7→
{k1}k2

, w2 7→ k2}. As xσ0 = k1 6= k2 = yσ0, we obtain that

R′′ = ν{z1, z2}.x
b := z1.y

b := z2.R
′

= ν{z1, z2}.x
b := z1.y

b := z2.νx
a.νya.νzb.send({xa}ya).send(yb).send([zb]xb).

R′′ corresponds to an interleaving of P and Q where P and Q do not share any variable
anymore (since they are duplicated) and where the previously shared variables are instantiated by
fresh distinct names. Note that whenever the execution of R instantiates two shared variables by
the same value (e.g. xiσ0 =E xjσ0) then the (duplicated version of) xi and xj are instantiated in
R′′ by the same fresh name. This corresponds e.g. to the case where the same key is distributed
among several participants (thus is assigned to distinct variables).

We are now ready to state our main theorem which says that we can mimic on R′′ the execution
trace of R (as in Equation 6.2) unless P or Q do not preserve the secrecy or the freshness of the
shared variables.
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Theorem 6.1. Assume ϕ0 6⊢ tσ for any t ∈ {x1, . . . , xp′ , y1, . . . , yq′} and that xiσ0 6=E yjσ0 for
all 1 ≤ i ≤ p′, 1 ≤ j ≤ q′. Then there exist S′, ϕ′, σ′ such that

(R′′, ∅, ∅)
l1,...,lk,§−−−−−→

∗

(S′, ϕ′, σ′) (6.2)

and

1. if r is a minimal recipe such that ϕ ⊢r xσ0 for some x ∈ {x1, . . . , xp′ , y1, . . . , yq′}, then
ϕ′ ⊢r xdσ′0 for some d ∈ {a, b}.

2. otherwise, if ϕ ⊢r xσ for x ∈ Var(P ) ∪ Var(Q) \ {x1, . . . , xp′ , y1, . . . , yq′} then ϕ′ ⊢r xdσ′

for some d ∈ {a, b}.

Furthermore, if x, y ∈ Dom(σ) are such that xσ =E yσ and xd, yd ∈ Dom(σ′) for some
d ∈ {a, b}, then xdσ′ =E y

dσ′.

Intuitively, R′′ is a composition of P and Q where the two processes do not share variables
anymore. Theorem 6.1 says that we can mimic on R′′ the execution trace of R. Furthermore, if
R reveals a shared variable, R′′ reveals some (duplicated) shared variable as well. It will be used
in the next section to conclude that one of the two processes P or Q (executed alone) reveals one
of its (shared) variables thus is not secure. Indeed, assume w.l.o.g. that R′′ reveals the variable
xai . Since R′′ corresponds to P executed in parallel (and independently) of Q, the process Q can
be entirely simulated by the adversary; thus P reveals xi, that is P 6|=E Secret(xi).

Example 6.4. Continuing our previous example, we had that

(R, ∅, ∅) →5 (send([z]x), ϕ, σ0),

and that

R′′ = ν{z1, z2}.x
b := z1.y

b := z2.R
′

= ν{z1, z2}.x
b := z1.y

b := z2.νx
a.νya.νzb.send({xa}ya).send(yb).send([zb]xb).

By Theorem 6.1, we obtain that there exist a process S′, a frame ϕ′ and a substitution σ′

such that
(R′′, ∅, ∅) →5 (S′, ϕ′, σ′).

Let r = w2 be a minimal for yσ0 in the frame ϕ. By Item 1, we have that w2 is recipe in
ϕ′ of ybσ′.

The final remark in Theorem 6.1 (that xσ =E yσ implies xdσ′ =E y
dσ′) is important to be

able to completely separate the processes P and Q in R′′: as the variable xai (1 ≤ i ≤ p′) and ybi
(1 ≤ i ≤ q′) are instantiated in the process R′′ by fresh names such that xai and ybj receive the
same name if xiσ =E yjσ, it is important that such an equality does not happen. Otherwise, the
two processes still share data and therefore we cannot conclude about either of them individually.

6.4.3 Proof of Theorem 6.1

This subsection consists of the proof of Theorem 6.1, which requires several non-trivial steps:

1. we define (Definition 6.5) a canonical form for each term that is called the collapsed form
and which is obtained by replacing each term with an alien subterm to which it is equal, if
such an alien subterm exists. An alien subterm is a subterm whose root symbol comes from
a different signature than the root symbol of the term itself.

The collapsed form of a term enjoys the property that each subterm has a canonical domain
by avoiding spurious patterns such as h−1(h(·)) as shown in Example 6.5. Furthermore, in
two collapsed terms which are equal modulo =E, alien subterms can be abstracted by names
and the equality modulo =E still holds (Lemma 6.6).
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2. having terms in collapsed form, we can intuitively decide depending on the signature of the
root symbol which of the two protocols created the term (even if subterms were created by
the other protocol). Whenever a signature change occurs in a term, it means that either the
subterm where the signature change occurs is the instantiation of one of the variables shared
by the two protocols or that it was transmitted by the intruder to the protocol.

Since our goal is to show that from the run of the composition, we can produce a run where
the shared variables are duplicated and the free variables instantiated by fresh names, we
define (Definition 6.4) a function Rñ

d,s̃ which replaces the occurrences of the instantiations
s̃ of the shared variables by the fresh names ñ for the shared variables instantiated by the
protocol from signature d ∈ {a, b}.

3. using the previously defined function Rñ
d,s̃, we transform the collapsed run of the interleaving

of the two traces into a run on the same interleaving, but where all shared variables are
duplicated and where free variables are instantiated with fresh names.

Using the properties of col and of Rñ
d,s̃ proved in Lemma 6.7, Lemma 6.8, Lemma 6.9 and

Lemma 6.10, we can prove that the new run succeeds (i.e. it obeys the operational semantics)
and that if the initial run ended with an attack, the newly defined run has a similar attack.

Disjoint Equational Theories

Note that we have assumed that the two equational theories Ea and Eb are not trivial. Non-trivial
equational theories enjoy the following property:

Lemma 6.1. If E0 is not trivial then a 6=E0
b for any distinct atoms a 6= b.

Proof. By contradiction, we assume a 6= b but a =E0 b. We consider two arbitrary terms s and t
and the replacement σ = {a 7→ s, b 7→ t}. As E0 is stable by replacement of atoms by terms, we
have that s = aσ =E0

bσ = t. Therefore s =E0
t for arbitrary terms s and t. Therefore E0 is trivial,

which contradicts the hypothesis. Therefore our assumption was false and we have a 6=E0
b.

If t is a term, we let root(t) denote the topmost symbol of the term:

root(t) =

{

f if t = f(t1, . . . , tn)
a if t = a ∈ A

If t is a term, we define the domain of t to be the domain of its topmost symbol:

domain(t) = d ∈ {a, b, c} iff root(t) ∈ Dd.

If d ∈ {a, b}, then a context C ∈ T (Fd, Dd ∪ {
1, . . . , k}) is called a pure d-context. If C 6= 1 is

not the empty context, then we define domain(C) to be the domain of the topmost element in C.
We write C[[s1, . . . , sk]] for the term C[s1, . . . , sk] if C is a pure non-empty context and if

domain(C) 6= domain(si) for all 1 ≤ i ≤ k. The terms s1, . . . , sk are then called the alien subterms
of C[s1, . . . , sk]. Note that in order to write C[[s1, . . . , sk]] for the term C[s1, . . . , sk], C cannot
be the empty context. Furthermore, for each term t there is a unique (up to renaming of holes)
context C such that t = C[[s1, . . . , sk]] for some terms s1, . . . , sk.

Replacing Terms

In the proof of the theorem, we will be “abstracting away” the keys generated by a protocol and
we will replace them with fresh names. This replacement is captured by the function Rñ

d,s̃, defined
below.

Let e ∈ {a, b} be a domain, let s̃ = s1, . . . , sk be terms, let ñ = na
1 , . . . , n

a
k, n

b
1, . . . , n

b
k ∈ N be

fresh private names such that nd
i = nd

j iff si =E sj for all d ∈ {a, b}, 1 ≤ i, j ≤ k.

We define the function Rñ
e,s̃ as follows:
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Definition 6.4.

Rñ
e,s̃(t) =







ne
i if root(t) 6∈ De and t =E si for some 1 ≤ i ≤ k
f(Rñ

d,s̃(t1), . . . , Rñ
d,s̃(tl)) otherwise, when t = f(t1, . . . , tl) with f ∈ Fd

t otherwise (when t ∈ A is an atom)

The function Rñ
e,s̃ is designed to replace the terms s1, . . . , sk occurring at places where the

signature changes from Fa to Fb (or vice-versa). The term si will be replaced by either nai or by
nbi , depending on what signature appears directly above si. The argument e is used to “initialize”
the signature, i.e. define what signature is “above” the entire term.

We extend Rñ
e,s̃ to frames as expected:

Rñ
e,s̃({w1 7→ t1, . . . , wn 7→ tn}) = {w1 7→ Rñ

e,s̃(t1), . . . , wn 7→ Rñ
e,s̃(tn)}.

Collapsed Form

Since we do not make any assumption on Ea and Eb, there is no normal form. Following Chap-
ter 9 of [14], we define a canonical form col(t) of a term t modulo E, called the collapsed form of
t.

The idea of the collapsed form is to assign a canonical domain to the topmost symbol of a
term. As shown in the following example, rewriting modulo E might change the signature of the
topmost symbol, as the following examples shows:

Example 6.5. Let Ea = {h−1(h(x)) = x} and Eb = {dec(enc(x, y), y) = x}. We have that
h−1(h(enc(s, k))) =E enc(s, k). The topmost symbol h−1 ∈ Fa changed to enc ∈ Fb during
the rewrite step.

The idea of the collapsed form is to simplify the term by removing spurious parts such as
h−1(h(·)).

Formally, to obtain the collapsed form of a term, the term is (recursively) replaced with any
of its alien subterms to which it is equal modulo E as follows,

Definition 6.5.

col(t) =







































t if t ∈ A is an atom
si if t = f(t1, . . . , tl),

f(col(t1), . . . , col(tl)) = C[[s1, . . . , sk]] and
C[[n1, . . . , nk]] =Ed

ni where n1, . . . , nk are fresh names
such that ni = nj iff si =E sj for all 1 ≤ i, j ≤ l
and d = domain(C)

f(col(t1), . . . , col(tl)) if t = f(t1, . . . , tl) but the above condition does not hold.

We can prove that the collapsed form of a term is equal modulo the equational theory to the
term itself:

Lemma 6.2. For any term t, we have that col(t) =E t.

Proof. By induction on the size of t.

1. For the base case, if t is an atom, then col(t) = t by the definition of col and therefore
col(t) =E t.

2. For the inductive case, if t = f(t1, . . . , tl), we have that t1 =E col(t1), . . . , tl =E col(tl)) by
the induction hypothesis. Therefore t = f(t1, . . . , tl) =E f(col(t1)), . . . , col(tl)).

We distinguish two cases:

(a) if col(t) = f(col(t1), . . . , col(tl)) (i.e. the third case of the definition of col) we have
already shown that t =E col(t).
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(b) otherwise, f(col(t1), . . . , col(tl)) = C[[s1, . . . , sk]] for some context C and some terms
s1, . . . , sk and there exists an index 1 ≤ i ≤ k such that C[n1, . . . , nk] =Ed

ni for
some fresh names n1, . . . , nk such that nx = ny iff sx =E sy for all 1 ≤ x, y ≤ k and
col(t) = si, where d = domain(C). As C[n1, . . . , nk] =Ed

ni and Ed ⊆ E, it follows that
C[n1, . . . , nk] =E ni.

For all 1 ≤ x ≤ k, let [x] denote the smallest index 1 ≤ y ≤ k such that nx = ny. As
the equational theory E is stable by replacement of names by arbitrary terms, we have
that C[n1, . . . , nk] =E ni implies C[n1, . . . , nk]{n1 7→ s[1], . . . , nk 7→ s[k]} =E ni{n1 7→
s[1], . . . , nk 7→ s[k]}, which is equivalent to C[s[1], . . . , s[k]] =E s[i]. But by choice of the
names n1, . . . , nk and the definition of [x], we have that s[x] =E sx for all 1 ≤ x ≤ k.
Therefore we obtain C[s1, . . . , sk] =E si.

We have that t =E f(col(t1), . . . , col(tl)), that f(col(t1), . . . , col(tl)) = C[[s1, . . . , sk]],
that C[s1, . . . , sk] =E si and that col(t) = si for some index 1 ≤ i ≤ k.

By transitivity of =E, we immediately obtain that t =E col(t).

We also have that the size of term does not increase by collapsing.

Lemma 6.3. For any term t, |col(t)| ≤ |t|.

Proof. By well-founded induction on the size of t. We distinguish among three cases:

1. if t ∈ A, then col(t) = t and therefore |col(t)| = |t|.

2. if t = f(t1, . . . , tl) and col(t) = f(col(t1), . . . , col(tl)) we have that |col(ti)| ≤ |ti| for all
1 ≤ i ≤ l by the induction hypothesis and therefore

|col(t)| = 1 +
∑

1≤i≤l

|col(ti)| ≤ 1 +
∑

1≤i≤l

|ti| = |t|.

3. otherwise t = f(t1, . . . , tl), f(col(t1), . . . , col(tl)) = C[[s1, . . . , sk]], C[[n1, . . . , nk]] =Ed
nm

where n1, . . . , nk are fresh names such that ni = nj iff si =E sj for all 1 ≤ i, j ≤ l,
col(t) = sm and c = domain(C).

By the definition of C[[. . .]], C cannot be the trivial context and therefore sm is a subterm
of col(tx) for some tx ∈ {t1, . . . , tl}. Therefore |sm| ≤ |col(tx)|. By the induction hypothesis,
we also have that |col(tx)| ≤ |tx| and, as tx is a subterm of t, we have that |tx| ≤ |t|. By
transitivity, we obtain that |sm| ≤ |t| or equivalently |col(t)| ≤ |t|.

We also have that any subterm of a collapsed term is collapsed:

Lemma 6.4. Any subterm t ∈ st(col(s)) of col(s) is such that t = col(t).

Proof. By induction on the size of s. We distinguish among the following cases:

1. if s is an atom, then col(s) = s ∈ A and its only subterm t ∈ st(col(s)) is t = col(s).
Therefore t = s and col(t) = t.

2. if s = f(t1, . . . , tl) and col(s) = f(col(t1), . . . , col(tl)), then any subterm t ∈ st(col(s)) is
either:

(a) a subterm t ∈ st(col(ti)) of the term col(ti) for some i, in which case t = col(t) by the
induction hypothesis,

(b) or t = col(s) is the entire term, in which case col(t) = col(f(col(t1), . . . , col(tl)) and it
follows by the definition of col that col(t) = t.
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3. otherwise it must be that s = f(t1, . . . , tl), f(col(t1), . . . , col(tl)) = C[[s1, . . . , sk]], col(s) = sx
and C[n1, . . . , nk] =Ed

nx for some x ∈ {1, . . . , k} where n1, . . . , nk are fresh names such that
ni = nj iff si =E sj for all 1 ≤ i, j ≤ k and c = domain(C).

As C is not the empty context, we have that sx is a subterm of col(ty) for some y. We
conclude by the induction hypothesis, since any subterm t of col(ty) (and therefore any
subterm t of sx = col(s)) is such that t = col(t).

We also trivially have that first collapsing the direct subterms does not change the final result
of collapse.

Lemma 6.5. For any function symbol f ∈ Fd and for any terms s1, . . . , sk we have that

col(f(s1, . . . , sk)) = col(f(col(s1), . . . , col(sk)).

Proof. Let C, t1, . . . , tl be such that f(col(s1), . . . , col(sk)) = C[[t1, . . . , tl]]. By Lemma 6.4 we
have that col(col(si)) = col(si) for all 1 ≤ i ≤ k and therefore f(col(col(s1)), . . . , col(col(sk))) =
f(col(s1), . . . , col(sk)) = C[[t1, . . . , tl]].

Let n1, . . . , nl be fresh names such that nx = ny iff tx =E ty for all 1 ≤ x, y ≤ l. We distinguish
two cases:

1. if C[n1, . . . , nl] =Ed
nx for some 1 ≤ x ≤ l, we have that

col(f(s1, . . . , sk)) = col(f(col(s1), . . . , col(sk))) = sx.

2. if C[n1, . . . , nl] 6=Ed
nx for any 1 ≤ x ≤ l, we have that

col(f(s1, . . . , sk)) = col(f(col(s1), . . . , col(sk))) = f(col(s1), . . . , col(sk)).

Furthermore, two terms which are equal modulo E have collapsed forms that enjoy the following
property:

Lemma 6.6 (Fundamental Collapse Lemma). If s =E t, then col(s) = C[[s1, . . . , sk]], col(t) =
D[[sk+1, . . . , sk+l]] such that domain(C) = domain(D) and C[n1, . . . , nk] =Ed

D[nk+1, . . . , nk+l]
where d = domain(C) and n1, . . . , nk+l are fresh names such that ni = nj iff si =E sj for all
1 ≤ i, j ≤ k + l.

The full proof of Lemma 6.6 can be found in Appendix A.1.
We extend col to frames as expected: if ϕ = {w1 7→ t1, . . . , wn 7→ tn}, then col(ϕ) = {w1 7→

col(t1), . . . , wn 7→ col(tn)}.
We next show that Rñ

d,s̃ preserves equality modulo E when applied on collapsed terms.

Lemma 6.7. If s =E t, then R
ñ
d,s̃(col(s)) =E R

ñ
d,s̃(col(t)) for any d ∈ {a, b}.

Proof. By well-founded induction on max(|s|, |t|). As s =E t, we have by Lemma 6.6 that

1. either col(s) = col(t) ∈ A and in this case we can immediately conclude: col(s) = col(t)
implies Rñ

d,s̃(col(s)) = Rñ
d,s̃(col(t)) which implies Rñ

d,s̃(col(s)) =E R
ñ
d,s̃(col(t)),

2. or there exists c ∈ {a, b} and two pure c-contexts C,D such that

col(s) = C[[t1, . . . , tk]]
col(t) = D[[tk+1, . . . , tk+l]]

and such that C[[n1, . . . , nk]] =Ec
D[[nk+1, . . . , nk+l]] where n1, . . . , nk+l are fresh names

such that ni = nj iff ti =E tj for all 1 ≤ i, j ≤ k + l.

We further distinguish two cases:
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(a) if c 6= d and there exists si ∈ s̃ such that s =E t =E si ∈ s̃, we have by the definition of
Rñ

d,s̃ that Rñ
d,s̃(col(s)) = ndi = Rñ

d,s̃(col(t)) and we are done;

(b) otherwise, Rñ
d,s̃(col(s)) = Rñ

d,s̃(C[[t1, . . . , tk]]) = C[Rñ
c,s̃(t1), . . . , Rñ

c,s̃(tk)] (by the defini-

tion of Rñ
d,s̃) and similarly Rñ

d,s̃(col(t)) = D[Rñ
c,s̃(tk+1), . . . , Rñ

c,s̃(tk+l)].

By the definition of C[[t1, . . . , tk]] and D[[tk+1, . . . , tk+l]], we have that neither C nor
D are the empty context. Therefore ti is a strict subterm of col(s) = C[[t1, . . . , tk]] for
all 1 ≤ i ≤ k and that tk+i is a strict subterm of col(t) = D[[tk+1, . . . , tk+l]] for all
1 ≤ i ≤ l.

Therefore |ti| < |col(s)| for all 1 ≤ i ≤ k and |tk+i| < |col(t)| for all 1 ≤ i ≤ l. By
Lemma 6.3, we have that |col(s)| ≤ |s| and |col(t)| ≤ |t|. Therefore |ti| < |s| for all
1 ≤ i ≤ k and |tk+i| < |t| for all 1 ≤ i ≤ l.

We can therefore apply the induction hypothesis on every pair ti, tj 1 ≤ i, j ≤ k + l to
obtain that if ti =E tj then Rñ

c,s̃(col(ti)) =E R
ñ
c,s̃(col(tj)). Furthermore, by Lemma 6.4,

we have that col(ti) = ti for all 1 ≤ i ≤ k + l. Therefore ti =E tj implies Rñ
c,s̃(ti) =E

Rñ
c,s̃(tj) for all 1 ≤ i, j ≤ k + l.

Let [i] denote the smallest index j such that Rñ
c,s̃(ti) and Rñ

c,s̃(tj) are equal modulo E:

[i] = min{j | Rñ
c,s̃(tj) =E R

ñ
c,s̃(tj)}.

As C[[n1, . . . , nk]] =Ec
D[[nk+1, . . . , nk+l]], we have by enlarging the equational theory

that C[[n1, . . . , nk]] =E D[[nk+1, . . . , nk+l]] and, as E is stable by replacement of names
with arbitrary terms, we obtain

C[[n1, . . . , nk]]σ =E D[[nk+1, . . . , nk+l]]σ

where σ = {ni 7→ Rñ
c,s̃(t[i])}1≤i≤k+l.

As Rñ
c,s̃(ti) =E R

ñ
c,s̃(t[i]) by the definition of [i] for all 1 ≤ i ≤ k + l, we have that

C[[Rñ
c,s̃(t1), . . . , Rñ

c,s̃(tk)]] =E D[[Rñ
c,s̃(tk+1), . . . , Rñ

c,s̃(tk+l)]]

as well. Equivalently, Rñ
d,s̃(col(s)) =E R

ñ
d,s̃(col(t)), which is what we had to prove.

We also need the following easy technical result.

Lemma 6.8. Let t be a term such that t 6=E si for any si ∈ s̃. Then Rñ
a,s̃(t) = Rñ

b,s̃(t).

Proof. We distinguish among the three cases of the definition of Rñ
c,s̃ (with c ∈ {a, b}). As t 6=E si

for any si ∈ s̃, we cannot be in the first cases.
If t = f(t1, . . . , tl), we have that Rñ

a,s̃(t) = f(Rñ
d,s̃(t1), . . . , Rñ

d,s̃(tl)) = Rñ
b,s̃(t) where d ∈ {a, b}

is such that f ∈ Fd.
Otherwise, Rñ

a,s̃(t) = t = Rñ
b,s̃(t).

Lemma 6.9. Let s̃ = s1, . . . , sn be terms, let ϕ be a frame and let r be a recipe over ϕ such that
ϕ 6⊢r

′

E
si for any 1 ≤ i ≤ n and for any subrecipe r′ ⊑ r of r. Then for any c ∈ {a, b} we have that

rRñ
c,s̃(col(ϕ)) =E R

ñ
c,s̃(col(rϕ)).

Proof. We make the proof by induction on the size of r.

1. if r = wi ∈ Dom(ϕ), we immediately have that

rRñ
c,s̃(col(ϕ)) = wiR

ñ
c,s̃(col(ϕ)) = Rñ

c,s̃(col(wiϕ)) = Rñ
c,s̃(col(rϕ)).
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2. otherwise, if r = a ∈ A is an atom other than a parameter wi ∈ Dom(ϕ), we have that a 6∈ s̃
(because ϕ ⊢r a). Therefore Rñ

c,s̃(col(a)) = Rñ
c,s̃(a) = a.

We have rRñ
c,s̃(col(ϕ)) = aRñ

c,s̃(col(ϕ)) = a = Rñ
c,s̃(col(a)) = Rñ

c,s̃(col(aϕ)) = Rñ
c,s̃(col(rϕ)).

3. otherwise, r = f(r1, . . . , rk) for some recipes r1, . . . , rk. By the definition of col, we have
that:

(a) either col(rϕ) = f(col(r1ϕ), . . . , col(rkϕ)), in which case by the definition of Rñ
c,s̃ and

because rϕ 6=E si for any 1 ≤ i ≤ n, we obtain

Rñ
c,s̃(col(rϕ)) = f(Rñ

d,s̃(col(r1ϕ)), . . . , Rñ
d,s̃(col(rkϕ))),

where d ∈ {a, b} is such that f ∈ Dd.

By the induction hypothesis, we have that riR
ñ
d,s̃(col(ϕ)) =E Rñ

d,s̃(col(riϕ)) for all
1 ≤ i ≤ l.

ThenRñ
c,s̃(col(rϕ)) =E f(r1R

ñ
d,s̃(col(ϕ)), . . . , rkR

ñ
d,s̃(col(ϕ))) = f(r1, . . . , rk)Rñ

d,s̃(col(ϕ)),

which is equal, by Lemma 6.8, to rRñ
c,s̃(col(ϕ)).

(b) or f(col(r1ϕ), . . . , col(rkϕ)) = C[[t1, . . . , tm]], C[n1, . . . , nm] =Ed
nx for some 1 ≤ x ≤ m

where n1, . . . , nm are fresh names such that ni = nj iff ti =E tj (for all 1 ≤ i ≤ m)
where d ∈ {a, b} is such that f ∈ Fd, and col(rϕ) = tx. As C[n1, . . . , nm] =Ed

nx and
Ed ⊆ E, we have that C[n1, . . . , nm] =E nx.

Note that, as C is not the empty context, we have that for any 1 ≤ i ≤ m, ti is a subterm
of some col(rjϕ) (1 ≤ j ≤ k). Therefore, by Lemma 6.4, we have that col(ti) = ti for
all 1 ≤ i ≤ m.

We have that the right-hand side of the equality we are trying to prove is Rñ
c,s̃(col(rϕ)) =

Rñ
c,s̃(tx).

The left-hand side (from hereon, lhs) of the equality is

r(Rñ
c,s̃(col(ϕ))) = f(r1, . . . , rk)Rñ

c,s̃(col(ϕ)) = f(r1R
ñ
d,s̃(col(ϕ)), . . . , rkR

ñ
d,s̃(col(ϕ)))

where d ∈ {a, b} is such that f ∈ Fd. By the induction hypothesis, riR
ñ
d,s̃(col(ϕ)) =E

Rñ
d,s̃(col(riϕ)) for all 1 ≤ i ≤ l.

Therefore the lhs is r(Rñ
c,s̃(col(ϕ))) =E f(Rñ

d,s̃(col(r1ϕ)), . . . , Rñ
d,s̃(col(rkϕ))), which, as

f(col(r1ϕ), . . . , col(rkϕ)) =E rϕ 6=E si for any 1 ≤ i ≤ n, is equal by the definition of
Rñ

c,s̃, to Rñ
c,s̃(f(col(r1ϕ), . . . , col(rkϕ))). But by assumption f(col(r1ϕ), . . . , col(rkϕ)) =

C[[t1, . . . , tm]]. As C starts with f ∈ Fd, we obtain

Rñ
c,s̃(f(col(r1ϕ), . . . , col(rkϕ))) = Rñ

c,s̃(C[t1, . . . , tm]) = C[Rñ
d,s̃(t1), . . . , Rñ

d,s̃(tm)].

We have shown that the lhs of the equality is r(Rñ
c,s̃(col(ϕ)) =E C[Rñ

d,s̃(t1), . . . , Rñ
d,s̃(tm)].

But C[n1, . . . , nm] =E nx. As ni = nj implies ti =E tj (by choice of ni) and ti =E tj
implies Rñ

d,s̃(col(ti)) =E R
ñ
d,s̃(col(tj)) by Lemma 6.7. But ti = col(ti) for all 1 ≤ i ≤ m

and therefore ni = nj implies Rñ
d,s̃(ti) =E R

ñ
d,s̃(tj) for all 1 ≤ i, j ≤ m. Therefore, as

C[n1, . . . , nm] =E nx and as the equational theory E is stable by replacement of names
by arbitrary terms, we obtain that C[Rñ

d,s̃(t1), . . . , Rñ
d,s̃(tm)] =E R

ñ
c,s̃(tx). Therefore the

lhs of the equality is r(Rñ
c,s̃(col(ϕ))) =E R

ñ
c,s̃(tx).

We have shown that the right-hand side of the equality is Rñ
c,s̃(col(rϕ)) = Rñ

c,s̃(tx) and

that the left-hand side of the equality is r(Rñ
c,s̃(col(ϕ))) =E R

ñ
c,s̃(tx). As both the rhs

and the lhs are equal modulo E to the same term, we conclude by transitivity that
r(Rñ

c,s̃(col(ϕ))) =E R
ñ
c,s̃(col(rϕ)).
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Lemma 6.10. Let c ∈ {a, b} be a domain, let ϕ be a frame, let s1, . . . , sk be ground terms and let

r1, . . . , rl be recipes over ϕ such that ϕ 6⊢
r′i
E
si for any 1 ≤ i ≤ k and for any subrecipe r′i ⊑ ri of

ri. Let σ = {xi 7→ si}1≤i≤k and let τ = {yi 7→ riϕ}1≤i≤l. If s is a pure c-term, then

Rñ
c,s̃(col(sστ)) =E sσ

′τ ′,

where σ′ = {xi 7→ Rñ
c,s̃(col(si))}1≤i≤k and τ ′ = {yi 7→ Rñ

c,s̃(col(riϕ))}1≤i≤l.

Proof. By induction on the size of s:

1. if s = xi ∈ Dom(σ), then sστ = si and Rñ
c,s̃(col(sστ)) = Rñ

c,s̃(col(si)).

Similarly, sσ′τ ′ = σ′(xi) = Rñ
c,s̃(col(si)) and therefore Rñ

c,s̃(col(sστ)) = sσ′τ ′.

2. if s = yi ∈ Dom(τ), then sστ = riϕ and Rñ
c,s̃(col(sστ)) = Rñ

c,s̃(col(riϕ)).

But sσ′τ ′ = yiσ
′τ ′ = yiτ

′ = riR
ñ
c,s̃(col(ϕ)). By Lemma 6.9, riR

ñ
c,s̃(col(ϕ)) =E R

ñ
c,s̃(col(riϕ)).

Therefore sσ′τ ′ =E R
ñ
c,s̃(col(riϕ)).

Therefore Rñ
c,s̃(col(sστ)) =E sσ

′τ ′.

3. if s = a ∈ A \ (Dom(σ) ∪ Dom(τ)) is an atom not in the domains of σ and τ , we have that
sστ = a and sσ′τ ′ = a.

By the definition of col, we have that col(sστ) = col(a) = a. As s is a pure c-term, we have
that a ∈ Dc and therefore Rñ

c,s̃(a) = a. Therefore Rñ
c,s̃(col(sστ)) = Rñ

c,s̃(col(a)) = Rñ
c,s̃(a) =

a.

Therefore Rñ
c,s̃(col(sστ)) = a = sσ′τ ′.

4. otherwise s = f(t1, . . . , tn) for some pure c-terms t1, . . . , tn and we distinguish between two
cases:

(a) either col(sστ) = f(col(t1στ), . . . , col(tnστ)), in which case Rñ
c,s̃(col(sστ)) is by defini-

tion f(Rñ
c,s̃(col(t1στ)), . . . , Rñ

c,s̃(col(tnστ))). By the induction hypothesis,

Rñ
c,s̃(col(tiστ)) =E tiσ

′τ ′ for all 1 ≤ i ≤ n

and therefore Rñ
c,s̃(col(sστ)) =E f(t1σ

′τ ′, . . . , tnσ
′τ ′) = sσ′τ ′.

(b) or f(col(t1στ), . . . , col(tnστ)) = C[[u1, . . . , um]], C[n1, . . . , nm] =Ed
nx where n1, . . . , nm

are fresh names such that ni = nj iff ui =E uj (1 ≤ i, j ≤ m), where c ∈ {a, b} is such
that f ∈ Fd and col(sστ) = ux. As C[n1, . . . , nm] =Ed

nx and Ed ⊆ E, we have that
C[n1, . . . , nm] =E nx.

As C is not the empty context, we have that each ui (1 ≤ i ≤ m is a subterm of some
term col(tjστ) (for 1 ≤ j ≤ n). Therefore, by Lemma 6.4, we have that col(ui) = ui.

Therefore the left-hand side of the equality we are trying to prove is Rñ
c,s̃(col(sστ)) =

Rñ
c,s̃(ux).

But the right-hand side (from hereon rhs) of the equality is sσ′τ ′ = f(t1σ
′τ ′, . . . , tnσ

′τ ′).
By the induction hypothesis tiσ

′τ ′ =E R
ñ
c,s̃(col(tiστ)) for all 1 ≤ i ≤ n.

Therefore the rhs is sσ′τ ′ =E f(Rñ
c,s̃(col(t1στ)), . . . , Rñ

c,s̃(col(tnστ))), which is equal, by

the definition of Rñ
c,s̃, to Rñ

c,s̃(f(col(t1στ), . . . , col(tnστ))).

But f(col(t1στ), . . . , col(tnστ)) = C[[u1, . . . , um]] and therefore the rhs is sσ′τ ′ =E

Rñ
c,s̃(C[u1, . . . , um]). As C is a pure c-context, it follows that Rñ

c,s̃(C[u1, . . . , um]) =

C[Rñ
c,s̃(u1), . . . , Rñ

c,s̃(um)].

By the choice of n1, . . . , nm, we have that ni = nj implies ui =E uj , which implies,
by Lemma 6.7, Rñ

c,s̃(col(ui)) =E R
ñ
c,s̃(col(uj)). As col(ui) = ui for all 1 ≤ i ≤ m, we

obtain that ni = nj implies Rñ
c,s̃(ui) =E R

ñ
c,s̃(uj). As C[n1, . . . , nm] =E nx and as the
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equational theory E is stable by replacement of names by arbitrary terms, we obtain
that C[Rñ

c,s̃(u1), . . . , Rñ
c,s̃(um)] =E R

ñ
c,s̃(ux).

Therefore sσ′τ ′ =E C[Rñ
c,s̃(u1), . . . , Rñ

c,s̃(um)] =E R
ñ
c,s̃(ux).

We have shown that both the lhs Rñ
c,s̃(col(sστ)) = Rñ

c,s̃(ux) and the rhs sσ′τ ′ =E

Rñ
c,s̃(ux) are equal modulo E to the same term and therefore Rñ

c,s̃(col(sστ)) =E sσ
′τ ′.

We are now ready to prove Theorem 6.1.

Theorem 6.1. Assume ϕ0 6⊢ tσ for any t ∈ {x1, . . . , xp′ , y1, . . . , yq′} and that xiσ0 6=E yjσ0 for
all 1 ≤ i ≤ p′, 1 ≤ j ≤ q′. Then there exist S′, ϕ′, σ′ such that

(R′′, ∅, ∅)
l1,...,lk,§−−−−−→

∗

(S′, ϕ′, σ′) (6.2)

and

1. if r is a minimal recipe such that ϕ ⊢r xσ0 for some x ∈ {x1, . . . , xp′ , y1, . . . , yq′}, then
ϕ′ ⊢r xdσ′0 for some d ∈ {a, b}.

2. otherwise, if ϕ ⊢r xσ for x ∈ Var(P ) ∪ Var(Q) \ {x1, . . . , xp′ , y1, . . . , yq′} then ϕ′ ⊢r xdσ′

for some d ∈ {a, b}.

Furthermore, if x, y ∈ Dom(σ) are such that xσ =E yσ and xd, yd ∈ Dom(σ′) for some
d ∈ {a, b}, then xdσ′ =E y

dσ′.

Proof.

Assumption 1. We assume w.l.o.g. that fresh names chosen by actions Pj = νx (1 ≤ j ≤ n) in
R′′ coming from P are from Na and that fresh names chosen by actions Qj = νx (1 ≤ j ≤ m) in
R′′ coming from Q are from Nb.

Let {ni}1≤i≤p′ , {mi}1≤i≤q′ be fresh names such that:

1. ni = nj iff xiσ0 =E xjσ0 for all 1 ≤ i, j ≤ p′,

2. ni = mj iff xiσ0 =E yjσ0 for all 1 ≤ i ≤ p′, 1 ≤ j ≤ q′ and

3. mi = mj iff yiσ0 =E yjσ0 for all 1 ≤ i, j ≤ q′.

Let s̃ denote the sequence of secrets shared between the two protocols

s̃ = x1σ0, . . . , xp′σ0, y1σ0, . . . , yq′σ0

and ñ denote the fresh names chosen above associated with these shared secrets:

ñ = n1, . . . , np′ ,m1, . . . ,mq′ .

Let ϕ′ = Rñ
a,s̃(col(ϕ)) and let σ′ be defined as follows:

1. σ′(xa) = Rñ
a,s̃(col(σ(x))) for all variables x ∈ Var(P ) of P ,

2. σ′(xb) = Rñ
b,s̃(col(σ(x))) for all variables x ∈ Var(Q) of Q,

3. σ′(zi) = ni for all 1 ≤ i ≤ p′ and

4. σ′(zi) = mi for all 1 ≤ i ≤ q′.
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Let Wi = Ri. . . . .Rn+m and W ′
i = R′i. . . . .R

′
n+m denote suffixes of the traces R and R′ for all

1 ≤ i ≤ n+m. We let Wn+m+1 = W ′
n+m+1 = 0. We have by hypothesis that

(R, ∅, ∅)
l1,...,lk−−−−→

∗

(S0, ϕ0, σ0)
§
−→ (S, ϕ, σ). (6.3)

Therefore there exist ϕ1, . . . , ϕl, σ1, . . . , σl such that:

(W1, ϕ1, σ1)
§1
−→ (W2, ϕ2, σ2)

§2
−→ . . .

§l−1
−−−→ (Wl, ϕl, σl)

§
−→ (S, ϕ, σ),

where ϕ1 = {} is the empty frame and σ1 = {} is the identity substitution. We also have that
ϕl = ϕ0 and that σl = σ0.

We have that for all 1 ≤ i ≤ l, ϕi = ϕ[Wi] for some Wi ∈ W is a restriction of ϕ and
σi = σ[fv(Wi)] is a restriction of σ. For all 1 ≤ i ≤ l, let ϕ′i = ϕ′[Wi] and σ′i = σ′[fv(W ′

i )] be the
corresponding restriction on ϕ′ and σ′.

Claim 6.1. Let T (a) = P and T (b) = Q. For all 1 ≤ i ≤ l, for all d ∈ {a, b}, for all pure d-terms
t ∈ T (Fd, (fv(Wi) ∩ Var(T (d))) ∪Nd ∪Md), we have that there exist:

1. a pure d-term sid(t) with Var(sid(t)) ⊆ {z1, . . . , zr} ⊎ {z
′
1, . . . , z

′
r′} for some set of variables

{z1, . . . , zr, z
′
1, . . . z

′
r′},

2. a substitution πi
d(t) with Dom(πi

d(t)) = {z1, . . . , zr} such that

πi
d(t)(zj) ∈E {x1σ0, . . . , xp′σ0, y1σ0, . . . , yq′σ0}

for all 1 ≤ j ≤ r where ∈E denotes membership modulo E and

3. a substitution τ id(t) with Dom(τ id(t)) = {z′1, . . . , z
′
r′} such that

τ id(t)(z′j) = rdjϕi

for some recipe rdj for all 1 ≤ j ≤ r′

such that
tσ =E s

i
d(t)πi

d(t)τ id(t) (6.4)

and
tRñ

a,s̃(col(σ)) =E s
i
d(t)Rñ

a,s̃(col(π
i
d(t)))Rñ

a,s̃(col(τ
i
d(t))). (6.5)

Proof. We will show that the claim holds by induction on (i, |t|) equipped with the lexicographic
order.

1. for i = 1, we have that fv(Wi) = fv(R) = ∅ and therefore t ∈ T (Fd,Nd ∪Md). We choose
sid(t) = t, πi

d(t) = {} and τ id(t) = {} to conclude.

2. for i ≥ 2, we distinguish between the following cases:

(a) if t = n ∈ Nd ∪Md, we choose sid(t) = t, πi
d(t) = {} and τ id(t) = {} to conclude.

(b) if t = x ∈ fv(Wi−1), we choose sid(t) = si−1
d (t), πi

d(t) = πi−1
d (t) and τ id(t) = τ i−1

d (t) to
conclude.

(c) if t = x ∈ fv(Wi) \ fv(Wi−1), we have one of the following cases:

i. either Wi = νx.Wi+1, in which case we distinguish between the following cases:

A. if x ∈ {x1, . . . , xp′ , y1, . . . , yq′} then we let sid(x) = zd for a fresh variable
zd ∈ Xd, πi

d(x) = {zd 7→ σ(x)} and τ id(x) = {} to conclude.

B. otherwise x appears in only one of P = T (a) or Q = T (b). Assume that it only
appears in T (e) for e ∈ {a, b}. By Assumption 1, we have that σ(x) = n ∈ Ne.
We define sie(x) = σ(x) = n, πi

e(x) = {} and τ ie(x) = {} to conclude.
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ii. or Wi = receive(x).Wi+1, in which case we let sid(x) = zd for a fresh variable
zd ∈ Xd, πi

d(x) = {} and τ id(x) = {zd 7→ riϕi} to conclude.

iii. or Wi = (x := s).Wi+1 for some term s, in which case we distinguish two cases:

A. if x ∈ {x1, . . . , xp′ , y1, . . . , yq′}, then we let sid(x) = zd for a fresh variable
zd ∈ Xd, πi

d(x) = {zd 7→ σ(x)} and τ id(x) = {} to conclude.

B. otherwise x appears in only one of P = T (a) or Q = T (b). Assume that it only
appears in T (e) for e ∈ {a, b}. In this case, s is a pure e-term and we choose
sie(x) = si−1

e (s), πi
e(x) = πi−1

e (s) and τ ie(x) = τ i−1
e (s) to conclude.

(d) if t = f(t1, . . . , tk) for a function symbol f ∈ Fa of arity ar(f) = k, then we choose
sid(t) = f(sid(t1), . . . , sid(tk)), πi

d(t) =
⋃

1≤j≤k π
i
d(tj) and τ id(t) =

⋃

1≤j≤k τ
i
d(tj) to con-

clude.

In each of the cases, Equation (6.4) and Equation (6.5) follows by syntactic simplifications.

We next show that:

(R′′, ∅, ∅) −→∗ (W ′
1, ϕ

′
1, σ

′
1)

§1
−→ (W ′

2, ϕ
′
2, σ

′
2)

§2
−→ . . .

§l−1
−−−→ (W ′

l , ϕ
′
l, σ

′
l)
§
−→ (S′, ϕ′, σ′)

We have that σ′1 = σ[fv(R′)] = {zi 7→ ni}1≤i≤n∪{zp+i 7→ mi}1≤i≤m∪{x
a
i 7→ ni}1≤i≤p′∪{y

b
i 7→

mi}1≤i≤q′ where fv(R′) = {zi}1≤i≤p+q ∪ {x
a
i }1≤i≤p′ ∪ {y

b
i }1≤i≤q′ . We immediately have that the

transitions (R′′, ∅, ∅) −→∗ (R′, ϕ′1, σ
′
1) succeed by definition ofR′′ and choice of n′1, . . . , n

′
p,m

′
1, . . . ,m

′
q.

But R′ = W ′
1 by choice of W ′

1 and therefore (R′′, ∅, ∅) −→∗ (W ′
1, ϕ

′
1, σ

′
1).

For all 1 ≤ i ≤ l, we prove that

(Wi, ϕi, σi)
§i
−→ (Wi+1, ϕi+1, σi+1) implies (W ′

i , ϕ
′
i, σ

′
i)

§i
−→ (W ′

i+1, ϕ
′
i+1, σ

′
i+1). (6.6)

We assume that Wi = Pj .Wi+1 with Pj being an action in P , since the case where Wi =
Qj .Wi+1 with Qj being an action in Q is completely analogous. We distinguish among five cases:

1. if Pj = νx, then Wi = νx.Wi+1. As (Wi, ϕi, σi)
§i
−→ (Wi+1, ϕi+1, σi+1), we have that §i is

the empty string, ϕi+1 = ϕi and σi+1 = σi ∪ {x 7→ n} where n ∈ Na is a fresh name.

By definition, we have that W ′
i = νxa.W ′

i+1, ϕ′i+1 = Rñ
a,s̃(col(ϕi+1)) = Rñ

a,s̃(col(ϕi)) = ϕ′i
and σ′i+1 = σ′i ∪ {x

a 7→ Rñ
a,s̃(col(σ(x)))} = σ′i ∪ {x

a 7→ n}.

As n was chosen to be fresh and as xa 6∈ Dom(σ′i), it follows that (νxa.W ′
i+1, ϕ

′
i, σ

′
i)

§i
−→

(W ′
i+1, ϕ

′
i, σ

′
i ∪ {x

a 7→ n}). But W ′
i = νxa.W ′

i+1, ϕ′i+1 = ϕ′i and σ′i+1 = σ′i ∪ {x
a 7→ n} and

therefore

(W ′
i , ϕ

′
i, σ

′
i)

§i
−→ (W ′

i+1, ϕ
′
i+1, σ

′
i+1),

which is what we had to prove.

2. if Pj = receive(x), then Wi = receive(x).Wi+1. As (Wi, ϕi, σi)
§i
−→ (Wi+1, ϕi+1, σi+1), we

have that §i = receive(ri) for some recipe ri, ϕi+1 = ϕi and σi+1 = σi ∪ {x 7→ riϕi}.

By definition, we have thatW ′
i = receive(xa).W ′

i+1, ϕ′i+1 = Rñ
a,s̃(col(ϕi+1)) = Rñ

a,s̃(col(ϕi)) =

ϕ′i and σ′i+1 = σ′i ∪ {x
a 7→ Rñ

a,s̃(col(σ(x)))} = σ′i ∪ {x
a 7→ Rñ

a,s̃(col(riϕi))}.

As ϕi is a restriction of ϕ0 = ϕl to a smaller domain, we have that ϕi 6⊢ t for any t ∈
{x1σ0, . . . , xp′σ0, y1σ0, . . . , yq′σ0}. Therefore, by Lemma 6.9, we have that riR

ñ
a,s̃(col(ϕi)) =E

Rñ
a,s̃(col(riϕi)). This is equivalent to riϕ

′
i =E R

ñ
a,s̃(col(σ(x)), which is equivalent to ϕ′i ⊢

ri

Rñ
a,s̃(col(σ(x))). Therefore (receive(xa).W ′

i+1, ϕ
′
i, σ

′
i)

§i
−→ (W ′

i+1, ϕ
′
i, σ

′
i∪{x

a 7→ Rñ
a,s̃(col(σ(x)))}).

But W ′
i = receive(xa).W ′

i+1, ϕ′i+1 = ϕ′i and σ′i+1 = σ′i ∪ {x
a 7→ Rñ

a,s̃(col(σ(x)))} and there-
fore

(W ′
i , ϕ

′
i, σ

′
i)

§i
−→ (W ′

i+1, ϕ
′
i+1, σ

′
i+1),

which is what we had to prove.
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3. if Pj = (x := t), then Wi = (x := t).Wi+1. As (Wi, ϕi, σi)
§i
−→ (Wi+1, ϕi+1, σi+1), we have

that §i is the empty string, ϕi+1 = ϕi and σi+1 = σi ∪ {x 7→ tσi}.

By definition, we have thatW ′
i = (xa := t{y 7→ yA}y∈Var(t)).W

′
i+1. Therefore (W ′

i , ϕ
′
i, σ

′
i)

§i
−→

(W ′
i+1, ϕ

′
i, σ

′
i ∪ {x

a 7→ t{y 7→ ya}y∈Var(t)σ
′
i}). But we have that:

t{y 7→ ya}y∈Var(t)σ
′
i = tRñ

a,s̃(col(σ)) (by choice of σ′)
=E sia(t)Rñ

a,s̃(col(π
i
a(t)))Rñ

a,s̃(col(τ
i
a(t))) (by Claim 6.1)

=E Rñ
a,s̃(col(s

i
a(t)πi

a(t)τ ia(t))) (by Lemma 6.10)
=E Rñ

a,s̃(col(tσ)) (by Claim 6.1, Lemma 6.7)
=E Rñ

a,s̃(col(σ(x))) (by choice of σ)
=E σ′(xa) (by definition of σ′)

Figure 6.4: Transformation of t{y 7→ ya}y∈Var(t)σ
′
i

and therefore σ′i+1 =E σi∪{t{y 7→ ya}y∈Var(t)σ
′
i}. We also have that ϕ′i+1 = Rñ

a,s̃(col(ϕi+1)) =

Rñ
a,s̃(col(ϕi)) = ϕ′i and therefore

(W ′
i , ϕ

′
i, σ

′
i)

§i
−→ (W ′

i+1, ϕ
′
i+1, σ

′
i+1),

which is what we had to prove.

4. if Pj = send(t), we have that Wi = send(t).Wi+1. As (Wi, ϕi, σi)
§i
−→ (Wi+1, ϕi+1, σi+1),

we have that §i is the empty string, ϕi+1 = ϕi ∪ {w|Dom(ϕi)|+1 7→ tσi} and σi+1 = σi.

By definition, we have that W ′
i = send(t{y 7→ yA}y∈Var(t)).W

′
i+1. Therefore (W ′

i , ϕ
′
i, σ

′
i)

§i
−→

(W ′
i+1, ϕ

′
i ∪ {w|Dom(ϕ′

i
)|+1 7→ t{y 7→ ya}y∈Var(t)σ

′
i}, σ

′
i).

By a transformation identical to Figure 6.4, we have that t{y 7→ ya}y∈Var(t)σ
′
i =E R

ñ
a,s̃(col(tσ)).

Therefore ϕ′i+1 = ϕ′i ∪ {w|Dom(ϕ′
i
)|+1 7→ Rñ

a,s̃(col(tσ))} =E t{y 7→ ya}y∈Var(t)σ
′
i. Moreover,

σ′i+1 = σ′i and therefore

(W ′
i , ϕ

′
i, σ

′
i)

§i
−→ (W ′

i+1, ϕ
′
i+1, σ

′
i+1),

which is what we had to prove.

5. if Pj = [s = t], we have that Wi = [s = t].Wi+1. As (Wi, ϕi, σi)
§i
−→ (Wi+1, ϕi+1, σi+1), we

have that §i is the empty string, ϕi+1 = ϕi, σi+1 = σi and sσ =E tσ.

By definition, we have that W ′
i = [s{y 7→ yA}y∈Var(s) = t{y 7→ yA}y∈Var(t)].W

′
i+1. By

transformations identical to those in Figure 6.4, we have that t{y 7→ ya}y∈Var(t)σ
′
i =E

Rñ
a,s̃(col(tσ)) and that s{y 7→ ya}y∈Var(s)σ

′
i =E R

ñ
a,s̃(col(sσ)). But as s =E t, we have that

Rñ
a,s̃(col(sσ)) =E Rñ

a,s̃(col(tσ)) by Lemma 6.7. Therefore t{y 7→ ya}y∈Var(t)σ
′
i =E s{y 7→

ya}y∈Var(s)σ
′
i and we have that (W ′

i , ϕ
′
i, σ

′
i)

§i
−→ (W ′

i+1, ϕ
′
i, σ

′
i). But ϕ′i+1 = ϕ′i and σ′i+1 = σ′i

and therefore

(W ′
i , ϕ

′
i, σ

′
i)

§i
−→ (W ′

i+1, ϕ
′
i+1, σ

′
i+1),

which is what we had to prove.

We have shown that Equation (6.2) holds. It remains to show that:

1. if r is a minimal recipe such that ϕ ⊢r xσ0 for some x ∈ {x1, . . . , xp′ , y1, . . . , yq′}, then
ϕ′ ⊢r xdσ′0 for some d ∈ {a, b}.

As ϕ0 6⊢E xσ0 for any variable x ∈ {x1, . . . , xp′ , y1, . . . , yq′} and as ϕ ⊢r
E
xσ0 for some

variable x ∈ {x1, . . . , xp′ , y1, . . . , yq′}, it follows that ϕ 6=E ϕ0. As (S0, ϕ0, σ0)
§
−→ (S, ϕ, σ),
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we have that S0 = send(t).S for some action send(t) = Pj ∈ P (for some 1 ≤ j ≤ n) or
send(t) = Qj ∈ Q (for some 1 ≤ j ≤ m), ϕ = ϕ0 ∪ {w|Dom(ϕ0)|+1 7→ tσ0} and that σ = σ0.

We will show that ϕ′ ⊢r xdσ′ for some d ∈ {a, b}. Clearly the recipe r 6∈ M is not a
name, since otherwise ϕ0 ⊢

r xσ0. If r = wk for some 1 ≤ k ≤ |Dom(ϕ)|, then ϕ′ ⊢r

Rñ
a,s̃(col(tσ0)) by the definition of ϕ′. But as ϕ ⊢r tσ0, we have that tσ0 =E xσ and

xdσ′ = Rñ
a,s̃(col(xσ)) by definition of σ′ and we obtain xaσ′ = Rñ

a,s̃(col(tσ0)) by Lemma 6.7.
Therefore ϕ′ ⊢r xaσ. Otherwise r = f(r1, . . . , rl) for some recipes r1, . . . , rl. By minimality
of r, we have that any subrecipe r′ ⊑ ri (1 ≤ i ≤ l) of r1, . . . , rl is not a recipe for any
yσ with y ∈ {x1, . . . , xp′ , y1, . . . , yq′}. Let d = domain(f) and let s = f(z1, . . . , zl) be
a pure d-term. Let π = {} and τ = {zi 7→ riϕ}1≤i≤l. By Lemma 6.8, we have that
Rñ

a,s̃(col(ϕ)) = Rñ
b,s̃(col(ϕ)) = Rñ

d,s̃(col(ϕ)). Therefore we can apply Lemma 6.10 to obtain

that Rñ
d,s̃(col(sπτ)) = sRñ

d,s̃(col(π))Rñ
d,s̃(col(τ)). But π = {} and therefore Rñ

d,s̃(col(sτ)) =

sRñ
d,s̃(col(τ)) which implies

Rñ
d,s̃(col(rϕ)) = f(r1R

ñ
d,s̃(col(ϕ)), . . . , rlR

ñ
d,s̃(col(ϕ))) = rRñ

d,s̃(col(ϕ)).

But Rñ
d,s̃(col(rϕ)) = Rñ

d,s̃(col(xσ)) = xdσ′ and rRñ
d,s̃(col(ϕ)) = rϕ′. Therefore ϕ′ ⊢r xdσ′,

which is what we had to prove.

2. otherwise, if ϕ ⊢r xσ for x ∈ Var(P )∪Var(Q) \ {x1, . . . , xp′ , y1, . . . , yq′} then ϕ′ ⊢r xdσ′ for
all d ∈ {a, b}.

We have that rϕ =E xσ. By Lemma 6.7 we obtain that Rñ
a,s̃(col(rϕ)) =E Rñ

a,s̃(col(xσ)).

We have by Lemma 6.9 that Rñ
a,s̃(col(rϕ)) =E rR

ñ
a,s̃(col(ϕ)) and therefore we obtain that

rRñ
a,s̃(col(ϕ)) =E R

ñ
a,s̃(col(xσ)). But ϕ′ = Rñ

a,s̃(col(ϕ)) and xdσ′ = Rñ
a,s̃(col(xσ)) by defini-

tion. Therefore rϕ′ =E x
dσ which immediately implies ϕ′ ⊢r xdσ′, what we had to show.

It remains to show that if x, y ∈ Dom(σ) are such that xσ =E yσ and xd, yd ∈ Dom(σ′)
for some d ∈ {a, b}, then xdσ′ =E ydσ′. This follows immediately since xdσ′ = Rñ

a,s̃(col(xσ))

and ydσ′ = Rñ
a,s̃(col(yσ)) by definition. But Rñ

a,s̃(col(xσ)) =E R
ñ
a,s̃(col(yσ)) (from xσ =E yσ by

Lemma 6.7), which implies xdσ′ =E y
dσ′.

6.5 Applications

6.5.1 Some Further Useful Lemmas

Theorem 6.1 is our key result for composing processes. We list here some other useful (and rather
straightforward) results that we will use in our applications to secure protocol composition.

Theorem 6.1 is stated for traces. Given an arbitrary process P , we say that Q1. . . . .Qn is a trace

of P if P
Q1
→֒ P1

Q2
→֒ . . .

Qn

→֒ Pn where the the transitions
§
→֒ are defined in Figure 6.5. Intuitively, a

process is equivalent to its set of traces.

We denote by T races(P ) the set of traces of P . It intuitively consists of the set of all possible
interleaving for the executions of P . We will use this set of reason about protocols containing
parallel composition and replications using Theorem 6.1.
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New
P = νx.R

P
νx
→֒ R

Input
P = receive(x).R

P
receive(x)
→֒ R

Assgn
P = (x := t).R

P
x:=t
→֒ R

Test
P = [s = t].R

P
[s=t]
→֒ R

Output
P = send(t).R

P
send(t)
→֒ R

Parallel
P = (Q0 | Q1).R Q0

§
→֒ Q′0

P
§
→֒ Q′0 | Q1

Figure 6.5: Obtaining the Set of Traces of a Process.

We can immediately obtain the follows useful lemmas. A process P preserves a secret if and
only if all its traces preserve the secret.

Lemma 6.11. Let P be a process. Then for any equational theory E, P |=E Secret(x) iff for all
Q ∈ T races(P ) we have that Q |=E Secret(x).

Proof. By induction on the number of transitions and case analysis.

One can also notice that if a protocol reveals a secret then it a fortiori reveals it when projecting
two names on a single one.

Lemma 6.12. For any equational theory E, if νx1.νx2.P 6|=E Secret(x) then νx1.(x2 := x1).P 6|=E

Secret(x).

Proof. By induction on the number of transitions in the trace leading to the revelation of x.

We also need to show that, when mounting an attack on a process P over the d-domain (for
some d ∈ {a, b}), the adversary is not more powerful when using the combined theory E = Ea∪Eb.
This is captured by the following lemma.

Lemma 6.13. If P is a trace over the d-domain and

(P, ∅, ∅)
§1
−→F,E (P1, ϕ1, σ1)

§2
−→F,E . . .

§n
−→F,E (Pn, ϕn, σn)

then

(P, ∅, ∅)
§′1−→Fd,Ed

(P1, ϕ
′
1, σ

′
1)

§′2−→Fd,Ed
. . .

§′n−→Fd,Ed
(Pn, ϕ

′
n, σ

′
n))

for some ϕ′n, σ
′
n and §′ such that ϕn ⊢E xσn implies ϕ′n ⊢Ed

xσ′n and xσn =E yσn implies
xσ′n =Ed

yσ′n for all x, y ∈ Dom(σn).

Note that this lemma relies on the assumption we made that Eb is not trivial (it does not
equate all terms). Otherwise Ea ∪ Eb would be trivial and therefore all terms would be deducible.
The proof of Lemma 6.13 is technical and can be found in Appendix A.2. From the above lemma,
we immediately obtain:

Corollary 6.1. If P is a process over the d-domain (for some d ∈ {a, b}) and P |=Fd,Ed
Secret(x),

then P |=F,E Secret(x).

6.5.2 Key-exchange Protocol

We are now ready to present some applications of Theorem 6.1. Our first application is the
composition of a key-exchange protocol with another protocol that relies on the exchanged key.

It is often the case that a security protocol is verified assuming that some keys are already
shared between the principals, abstracting away from the process by which these keys have been
established. We can use our result to show that if a key exchange protocol was used to establish
the key and if the two protocols use disjoint cryptographic primitives, their composition is secure
provided that neither the key exchange protocol nor the main protocol reveal the established keys.

To state our result, we first need the following definition:
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Definition 6.6. We say that P binds x if P = P1.P2. . . . .Pn and Pj ∈ {receive(x), x := t, νx}
for some 1 ≤ j ≤ n and some term t (note that P1, . . . , Pn are not necessarily atomic).

Theorem 6.2. Let P = νk1. . . . .νkn.(P1 | P2) be a process over the a-domain and let Q =
νk.(xk := k.Q1 | yk := k.Q2) be a process over the b-domain such that:

• P1 binds xk and P2 binds yk

• fv(P ) = ∅, fv(Q) = ∅ and Var(P ) ∩ Var(Q) = {xk, yk}

• P |=Ea
Secret(xk) and P |=Ea

Secret(yk)

• Q |=Eb
Secret(xk) and Q |=Eb

Secret(yk).

If Q |=Eb
Secret(xs) then W = νk1. . . . .νkn.(P1.Q1 | P2.Q2) |=E Secret(xs).

Intuitively, the protocol P corresponds to two roles P1 and P2 that establish a key k stored
respectively in xk for P1 and in yk for P2. Then each of the two roles Q1 and Q2 of Q uses
respectively its version of the key. Theorem 6.2 ensures that the protocol P can be safely abstracted
by the generation of a single fresh key, distributed among the participants.

This result could easily be extended to an arbitrary number of roles. Note that Q1 and Q2

may contain replications thus the key k may be used in several distinct sessions.

Proof. If d ∈ {a, b} and if P is a process, we denote by P d the process in which any occurrence of
a variable x ∈ Var(P ) has been replaced by the variable xd.

We do a proof by contradiction. We assume that W 6|=E Secret(xs). Then, by Lemma 6.11, we
have that there exists a trace R ∈ T races(W ) of W such that R 6|=E Secret(xs).

The trace R is then a ground interleaving of a trace P0 ∈ T races(P ) and a trace Q0 ∈
T races(Q1 | Q2). We denote by R′ the same ground interleaving of P a

0 and Qb
0.

As R 6|=E Secret(xs), there is a run

(R, ∅, ∅)
§1
−→ (R1, ϕ1, σ1)

§2
−→ . . .

§m
−−→ (Rm, ϕm, σm)

such that ϕm ⊢ xsσm.

Let 1 ≤ l ≤ m be the first index such that ϕl ⊢ xkσl or ϕl ⊢ ykσl or ϕl ⊢ xsσl.

We can then apply Theorem 6.1 to obtain that the process

R′′ = ν{za, zb}.(x
b
k := za).(ybk := zb).R

′

reveals xak, yak , xbk, ybk or xbs in the equational theory E. (We do not know if za and zb are the same
variable). In either case, by Lemma 6.12, we have that

R′′′ = νkb.(xbk := kb).(ybk := kb).R′

reveals xak, yak , xbk, ybk or xbs.

But R′′′ is an interleaving of some trace of P a and Qb. Therefore R′′′ is a trace of P a | Qb.

Therefore P a | Qb reveals xak, yak , xbk, ybk or xbs. Assume P a | Qb reveals xak or yak . Since P a

and Qb share no data, Qb can be simulated by the adversary and thus P a 6|=E Secret(z) for some
z ∈ {xak, y

a
k}. If P a | Qb reveals xbk, ybk or xbs, we similarly deduce that Qb 6|=E Secret(z) for some

z ∈ {xbk, y
b
k, x

b
s}. By Corollary 6.1, we obtain that P 6|=Ea

Secret(z) for some z ∈ {xk, yk} or that
Q 6|=Eb

Secret(z) for some z ∈ {xk, yk, xs}. In both cases, this contradicts the hypotheses. We
thus deduce that W |=E Secret(xs).
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6.5.3 Secure Channels

Another composition scenario is when a protocol is proven secure assuming some secure channels,
that is, assuming that some secret key is established on the fly. We show that the secure channel
can be implemented by any sub-protocol provided that neither the main protocol nor the sub-
protocol reveal the key.

Theorem 6.3. Let P = νk1. . . . .νkn.!(P1 | P2) be a process over the a-domain and let Q =
!(νk.(xk := k.Q1 | yk := k.Q2)) be a process over the b-domain such that:

1. P1 binds xk and P2 binds yk

2. fv(P ) = fv(Q) = ∅

3. P |=Ea
Secret(xk) and P |=Ea

Secret(yk)

4. Q |=Eb
Secret(xk) and Q |=Eb

Secret(yk) and Q |=Eb
Secret(xs)

Then R = νk1. . . . .νkn.!(P1.Q1 | P2.Q2) |=E Secret(xs).

Compared to Theorem 6.2, the two roles Q1 and Q2 now use a different key k in each session.

Proof. We prove the result by contradiction along the same lines as the proof of Theorem 6.2. We
assume that W 6|=E Secret(xs). Then, by Lemma 6.11, we have that there exists a trace R of W
such that R 6|=E Secret(xs).

R is then a ground interleaving of a trace P0 ∈ T races(P ) and a trace Q0 ∈ T races(!(Q1 | Q2)).
We denote by R′ the same ground interleaving of P a

0 and Qb
0.

As R 6|=E Secret(xs), there is a trace

(R, ∅, ∅)
§1
−→ (R1, ϕ1, σ1)

§2
−→ . . .

§m
−−→ (Rm, ϕm, σm)

such that ϕm ⊢ xsσm.

Let 1 ≤ l ≤ m be the first index such that ϕl ⊢ xkσl or ϕl ⊢ ykσl or ϕl ⊢ xsσl.
We can then apply Theorem 6.1 to obtain that the process

R′′ = νza, zb.(x
b
k := za).(ybk := zb).R

′

reveals xak, yak , xbk, ybk or xbs in the equational theory E. (We do not know if za and zb are the same
variable). In either case, by Lemma 6.12, we have that

R′′′ = νkb.(xbk := kb).(ybk := kb).R′

reveals xak, yak , xbk, ybk or xbs.

But R′′′ is an interleaving of some trace of P a and some trace of Qb. Therefore R′′′ is a trace
of P a | Qb.

Therefore P a | Qb reveals xak, yak , xbk, ybk or xbs. Assume P a | Qb reveals xak or yak . Since P a

and Qb share no data, Qb can be simulated by the adversary and thus P a 6|=E Secret(z) for some
z ∈ {xak, y

a
k}. If P a | Qb reveals xbk, ybk or xbs, we similarly deduce that Qb 6|=E Secret(z) for some

z ∈ {xbk, y
b
k, x

b
s}. By Corollary 6.1, we obtain that P 6|=Ea

Secret(z) for some z ∈ {xk, yk} or that
Q 6|=Eb

Secret(z) for some z ∈ {xk, yk, xs}. In both cases, this contradicts the hypotheses. We
thus deduce that W |=E Secret(xs).
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Example 6.6. Consider the process PDH defined in Example 6.1, over the signature FDH.
Consider any other protocol

Q = νyk.(y1 := yk.Q1 | y2 := yk.Q2)

in which a participant Q1 sends a secret xs to the second participant using a shared key yk.
Assume that Q is defined over the signature Fenc and that Q |=Eenc

Secret(xs). Then the
sequential composition of PDH and Q, where PDH is used to establish the shared key used
in Q is defined by

W = νxk.(P1.Q1 | P2.Q2)

Applying Theorem 6.2, W |=EDH∪Eenc
Secret(xs), that is W does not leak xs in the theory

EDH ∪ Eenc.

6.6 Tagging

We have shown so far how to compose processes that use disjoint equational theories. However,
this hypothesis is not always realistic since protocols often share usual cryptographic primitives
such as symmetric encryption (for example, many protocols use AES). In this section, we show
that protocols which do share common cryptographic primitives, such as encryption and hash
functions, can also be securely composed in the same manner, as long as the two protocols are
tagged differently.

Tagging is a syntactic transformation of a protocol in order to make it, for example, more
resistant against attacks. Many ways to tag protocols have been proposed in different contexts,
e.g. for composing protocols [93, 57] as discussed in introduction, to facilitate the analysis [28, 116]
or to prevent type-flow attacks [94]. Typically, tagging a security protocol consists in appending
a tag (e.g. a number, a nonce or a protocol identifier) to each plaintext before encrypting it and
removing the tag after decryption. Tagging a protocol does not introduce additional attacks in
the protocol, while preserving its communication goals.

We show that if two protocols share cryptographic primitives such as symmetric encryption
and hash functions are tagged differently, then their composition is secure as long as the same
problems detailed in Section 6.3.1 and Section 6.3.3 are avoided.

Our proof technique relies on our previous theorems, in that we show that an attack against
the composition of two differently tagged protocols can be transformed into an attack where the
protocols use disjoint encryption and hash functions. Therefore, tagging essentially enforces the
disjointness of the two protocols.

6.6.1 Tagging a Protocol

We consider protocols over the signature Fenc,h = {enc, dec, h} where enc and dec model respec-
tively encryption and decryption and are of arity 2 and h models a hash function and is of arity
1. We also consider the signatures Fa

enc,h = {enca, deca, ha} and Fb
enc,h = {encb, decb, hb}. We

consider the associated equational theory Eenc = {dec(enc(x, y), y) = x} and the equational theo-
ries Ea

enc = {deca(enca(x, y), y) = x} and Eb
enc = {decb(encb(x, y), y) = x}. The signatures Fa

enc,h

and Fb
enc,h, together with the associated equational theories Ea

enc and Eb
enc, can be considered to

intuitively model different implementations of the encryption/decryption/hash functions.
In order to define tagging, we first consider the signature renaming transformation d (d ∈

{a, b}) which assigns to a protocol P over Fenc,h a protocol P d (d ∈ {a, b}) over the signature
Fd

enc,h such that the two protocols are identical modulo bijective renaming of functions symbols
(enc, dec and h are transformed into encd, decd and hd, respectively, and this transformation is
extended homomorphically to the entire protocol).
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Example 6.7. If P = νy.receive(x).send(dec(x, y)), then

P a = ν(y).receive(x).send(deca(x, y)).

For every d ∈ {a, b} we consider a tagging function symbol tagd and an untagging function
symbol untagd contained in the signature Fd = {tagd, untagd} (where both function symbols have
arity 1). The role of the tagd function is to tag its argument with the tag d. Typically, this means
appending d to the argument but the precise implementation of the tagging function does not need
to be specified. The role of the untagd function is to remove the tag. To model this interaction
between tagd and untagd we consider the equational theories Ed = {untagd(tagd(x)) = x} (for
d ∈ {a, b}).

If A ∈ {receive(x), send(t), νx, x := t, s = t} is an atomic process over Fd
enc,h (with d ∈ {a, b}),

we let [|A|] be a trace over Fenc,h ∪ Fd denoting the d-tagged version of A, defined as follows:

[|receive(x)|] = receive(x)
[|send(t)|] = testsd(H(t)) · send(H(t))
[|νx|] = νx
[|x := t|] = testsd(H(t)) · x := H(t)
[|s = t|] = testsd(H(s)) · testsd(H(t)) · x := H(t)

where H(t) tags the term t with d as defined below:

H(encd(t1, t2)) = enc(tagd(H(t1)),H(t2))
H(decd(t1, t2)) = untagd(dec(H(t1),H(t2)))
H(hd(t1)) = h(tagd(H(t1)))
H(a) = a where a is an atom

and where testsd(t) is a sequence of tests which ensure that every decryption and every untagging
performed by the protocol is successful:

testsd(enc(t1, t2)) = testsd(t1) · testsd(t2)
testsd(h(t1)) = testsd(t1)
testsd(tagd(t1)) = testsd(t1)
testsd(dec(t1, t2)) = [enc(dec(t1, t2), t2) = t1]·

testsd(t1) · testsd(t2)
testsd(untagd(t1)) = [tagd(untagd(t1)) = t1] · testsd(t1)
testsd(a) = 0 where a is an atom.

The transformation [| |] is extended homomorphically from atomic actions to traces.

Example 6.8. Continuing Example 6.7, we have that

H(deca(x, y)) = untaga(dec(x, y)))

and that
testsa(untaga(dec(x, y))) =

[taga(untaga(dec(x, y))) = dec(x, y)].
[enc(dec(x, y), y) = x].

Finally, we have that

[|P a|] = νy.receive(x).[taga(untaga(dec(x, y))) = dec(x, y)].
[enc(dec(x, y), y) = x].send(untaga(dec(x, y))).

Note that before performing the decryption, the process [|P a|] verifies that it is decrypting
a message which has been tagged with a.
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6.6.2 Composing Tagged Protocols

Our next lemma shows why tagging two protocols is essentially the same as forcing them to use
disjoint equational theories. It allows us to reduce the security problem for differently tagged
processes to the security problem for processes which use disjoint equational theories. It states
that if there is an attack on a composition of two differently tagged protocols [|P a|] and [|Qb|],
there is an attack on the composition of the same protocols before tagging (P a and Qb), where
the encryption and hash functions come from disjoint equational theories.

Lemma 6.14. Let P and Q be traces over Fenc,h. Let W be an arbitrary interleaving of P a and
Qb and let R = [|W |]. If R reveals x then W reveals x.

Furthermore, we have that if a protocol is secure then its c-tagged version is secure.

Lemma 6.15. If P is a protocol over Fenc,h, then P |=Eenc
Secret(x) implies [|P d|] |=Eenc∪Ed

Secret(x).

We can now state a generic theorem, in the spirit of Theorem 6.1, but for tagged protocols.
Let P = P1 · . . . ·Pn be a trace over Fenc,h with free variables {x1, . . . , xp} where Pi is an atomic

process (1 ≤ i ≤ n). Let Q = Q1 · . . . ·Qm be a trace over Fenc,h with free variables {y1, . . . , yq}
where Qi is an atomic process (1 ≤ i ≤ n).

Let R = R1. . . . .Rn+m be a ground interleaving of [|P d
1 |], . . . , [|P

d
n |], [|Q

d
1|], . . . , [|Q

d
m|]. We

consider R′ a un-tagged copy of R where the shared variables of P and Q are duplicated as in
Theorem 6.1 such that P and Q access disjoint variables. More precisely, let R′ = R′1. . . . .R

′
n+m

be such that:

1. R′i = Pj{x 7→ xa} if Ri is [|P a
j |] for some j and where x ranges over all variables in Pj

2. R′i = Qj{x 7→ xb} if Ri is [|Qb
j |] for some j and where x ranges over all variables in Qj

We consider an execution of the composition of [|P a|] and [|Qb|] in the equational theory
Eenc ∪ Ea ∪ Eb.

(R, ∅, ∅)
l1,...,lk−−−−→

∗

Eenc∪Ea∪Eb
(S0, ϕ0, σ0)

§
−→ (S, ϕ, σ) (6.7)

where § is receive(rk+1) for a recipe rk+1 if the last action was an input and the empty string
otherwise.

Assume w.l.o.g. that x1, . . . , xp′ are the variables from {x1, . . . , xp} which appear in Dom(σ0)
and that y1, . . . , yq′ are the variables from {y1, . . . , yp} which appear in Dom(σ0). This means
that x1, . . . , xp′ , y1, . . . , yq′ are the shared variables which were instantiated before the last action
of the execution.

Let {zi}1≤i≤p′ and {zi}p+1≤i≤p+q′ be fresh variables such that

zi = zj iff xiσ0 =E yjσ0 for all 1 ≤ i ≤ p′ and all p+ 1 ≤ j ≤ p+ q′

zi = zj iff xiσ0 =E xjσ0 for all 1 ≤ i, j ≤ p′

zi = zj iff yiσ0 =E yjσ0 for all p+ 1 ≤ i, j ≤ p+ q′

and let
R′′ = ν{zi}1≤i≤p′,p+1≤i≤p+q′ .

xa1 := z1. . . . .x
a
p′ := zp′ .

yb1 := zp+1. . . . .y
b
q′ := zp+q′ .

R′.

Then we have:

Theorem 6.4. Assume ϕ0 6⊢ xσ0 for any x ∈ {x1, . . . , xp′ , y1, . . . , yq′} and that xiσ0 6=Eenc∪Ea∪Eb

yjσ0 for all xi, yj ∈ Dom(σ0). Then there exist S′, ϕ′, σ′, l′1, . . . , l
′
k, §

′ such that

(R′′, ∅, ∅)
l′1,...,l

′
k,§
′

−−−−−−→
∗

(S′, ϕ′, σ′) (6.8)

is a run in the equational theory Eenc and such that:
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1. if r is a minimal recipe such that ϕ ⊢r xσ0 for some x ∈ {x1, . . . , xp′ , y1, . . . , yq′}, then
ϕ′ ⊢r xdσ′ for some d ∈ {a, b}.

2. otherwise, if ϕ ⊢r xσ for x ∈ Var(P ) ∪ Var(Q) \ {x1, . . . , xp′ , y1, . . . , yq′} then ϕ′ ⊢r xdσ′

for some d ∈ {a, b}.

Furthermore, if x, y ∈ Dom(σ) are such that xσ =E yσ and xd, yd ∈ Dom(σ′) for some
d ∈ {a, b}, then xdσ′ =E y

dσ′.

In this tagged setting, the above theorem intuitively states that any trace on the tagged
composition of two protocols can be transformed into a trace of the un-tagged composition, but
where the two protocols no longer share secrets.

Example 6.9. We illustrate the above theorem with an example where the untagged com-
position of two protocols is not secure. However, using the theorem, we can conclude that
the tagged composition is secure.

We consider the processes

P1 = νx.νy.send({x}y)

and

Q2 = νz.send({z}x).receive(z′).send(dec(z′, y))

previously defined in Section 6.3. We have seen that νx′.νy′.(x := x′).(y := y′).Q2 preserves
the secrecy of z, while the sequential composition P1.Q2 (where P1 is used to create the
keys x and y) does not preserve the secrecy of z.

However, the sequential composition [|P a
1 |].[|Q

b
2|] does preserve the secrecy of z by Theo-

rem 6.4.

We can also use Theorem 6.4 to prove tagged variants of Theorem 6.2 and Theorem 6.3:

Theorem 6.5 (Tagged version of key-exchange theorem). Let P = νk1. . . . .νkn.(P1 | P2) and
Q = νk.((xk := k).Q1 | (yk := k).Q2) be processes over Fenc,h such that:

1. P1 binds xk and P2 binds yk

2. fv(P ) = ∅, fv(Q) = ∅ and Var(P ) ∩ Var(Q) = {xk, yk}

3. P |=Eenc Secret(xk) and P |=Eenc Secret(yk)

4. Q |=Eenc
Secret(xk) and Q |=Eenc

Secret(yk) and Q |=Eenc
Secret(xs)

Then W = νk1. . . . .νkn.([|P
a
1 |].[|Q

b
1|] | [|P a

2 |].[|Q
b
2|]) |=Eenc∪Ea∪Eb

Secret(xs).

Theorem 6.6 (Tagged version of secure channel theorem). Let P = νk1. . . . .νkn.!(P1 | P2) be a
process over Fenc,h and let Q =!(νk.(xk := k.Q1 | yk := k.Q2)) be a process over Fenc,h such that:

1. P1 binds xk and P2 binds yk

2. fv(P ) = fv(Q) = ∅

3. P |=Ea
Secret(xk) and P |=Ea

Secret(yk)

4. Q |=Eb
Secret(xk) and Q |=Eb

Secret(yk) and Q |=Eb
Secret(xs)

Then R = νk1. . . . .νkn.!([|P
a
1 |].[|Q

b
1|] | [|P a

2 |].[|Q
b
2|]) |=Eenc∪EaEb

Secret(xs).
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Theorems 6.5 and 6.6 allow us to securely compose key-exchange protocols which make use of
symmetric encryption with protocols which use the exchanged keys, as long as the two protocols
are tagged differently and if they obey the security requirements detailed above.

We have seen that Example 6.9 explains the need to tag the encryptions in order to obtain
secure composition. One might think that tagging encryptions is sufficient to ensure the security
of the composition and that it is not necessary to tag the hash function as well. Unfortunately,
this is not true. We end this section on tagging by an example which illustrates why tagging is
necessary for the hash function as well.

Example 6.10. ex:hashneedtag

We consider the processes
P = νx.send(h(x))

and
Q = νz.receive(y).[y = h(x)].send(z).

We have that the protocol P does not reveal x. The protocol νx.Q reveals neither z nor x.
However, if P is used to instantiate the variable x for Q, we have that

P.Q 6|= Secret(z).

By Theorem 6.4, we have however that the tagged composition does satisfy the secret of z:

[|P a|].[|Qb|] |= Secret(z).

6.7 Conclusion and Future Work

6.7.1 Conclusion

We have shown in this chapter that protocols can be securely composed provided that they use
primitives modeled by disjoint equational theories or provided that their only primitives are tagged
encryptions or tagged hash functions.

Our result is a generic composition result: any trace leading to an attack on the composition
of the two protocols is transformed into a trace that leads to an attack in one of the individual
protocols, even if the two protocols share secrets such as keys. This allows us to securely perform
several kinds of compositions. We can have secure parallel composition under shared secrets or
we can have an asymmetric composition, where one of the protocols is used as a sub-protocol.
As a matter of fact, our combination theorem could actually be used in any context where two
protocols are arbitrarily interleaved and use shared data.

As an application, we have shown how our main composition theorem can be used in order to
securely refine a protocol that uses pre-established keys or secure channels.

For the sake of simplicity, the only security property that we have considered is secrecy. We
believe however that our result extends to general trace properties (e.g. authentication). This
is because our trace transformation proof technique transforms any trace of the composition of
two protocols under shared secrets (as long as a shared key is not revealed) into a trace on
the composition under no shared secrets. This means that any violation of authentication in the
composed protocol would be transformed into a violation of authentication on one of the individual
protocols.

We have proven that primitives can be shared between the protocols provided they are tagged,
in the case of symmetric encryption and hash. Even though we prove this only for symmetric
encryption and hash functions, we believe that our technique can be extended to other usual cryp-
tographic primitives such as asymmetric encryption and digital signature. Other cryptographic
primitives can pose more problems (for example it is not obvious if/how the eXclusive OR can be
tagged). It is an interesting open problem to give a generic definition of tagging and characterize
which cryptographic primitives can be tagged.
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6.7.2 Dishonest Participants

As we have shown in Section 6.3.1, one of the hypothesis that we use in order for our composition
theorem to work is that the two processes involved do not leak shared keys. Unfortunately, this
makes our composition theorem unable to cope with dishonest participants because dishonest
participants leak everything to the intruder (in some sense, they are the intruder). Let

P = νk.(P1 | P2)

is a key-exchange protocol with two participants P1 and P2, with P1 storing the exchanged key in
variable xk and P2 storing the exchanged key in variable yk. Let

Q = νx.((xk := x).Q1 | (yk := y).Q2)

be a protocol which uses the exchanged keys xk, yk (assumed to be freshly chosen in Q). We
have shown that the sequential composition of P and Q is secure as long as P and Q are over
disjoint equational theories and do not leak the shared keys. However, assuming for example that
the participant playing the role P2 and Q2 is dishonest, all of the keys involved are leaked and
therefore we cannot apply our composition theorem.

This is the main limitation of our work. Therefore the most important direction for future work
is to investigate which additional conditions are needed to handle composition in the presence of
dishonest participants. It is clear that the assumption that shared keys are not revealed needs to
be weakened, but there needs to be a condition that replaces it.

One of the main ingredients of our composition theorem is that a sequence l1, . . . , lk of intruder
actions leading to an attack in an interleaving of two traces leads to the same attack when the
traces no longer share anything. In the case of dishonest participants, this is no longer the case and
the sequences of intruder actions needs to be slightly altered as shown in the following example:

Example 6.11. Let P = νz.send(z) and Q = send(z).receive(x1).receive(x2).[x1 =
x2].send(s). The variable z is supposed to be a key generated by P for Q and s is a
private name. However a ”participant” detaining the key z is dishonest and leaks it as soon
as possible on the network. We have that

(P.Q, ∅, ∅)
receive(w1),receive(w2)
−−−−−−−−−−−−−−−−→

∗

(0, ϕ, σ)

for some substitution σ and with ϕ = {w1 7→ k1, w2 7→ k1, w3 7→ s} where k1 is a fresh
name. In the spirit of our composition theorem, we would like that the same intruder
actions receive(w1), receive(w2) to work in the case where P and Q used disjoint variables.
However, we have that

P.νz′.(Q{z 7→ z′}) = νz.send(z).νz′.send(z′).receive(x1).receive(x2).[x1 = x2].send(s)

blocks at the test [x1 = x2] since x1 will be bound to k1 and x2 bound to k2 for fresh
names k1, k2. Therefore the same intruder actions that were used to get P.Q to output s
will not work to get P.νz′.(Q{z 7→ z′}) to output s. In this case, it is easy to see that

it is possible to easily tweak the intruder actions (i.e. change
receive(w1),receive(w2)
−−−−−−−−−−−−−−−−→

∗

to
receive(w1),receive(w1)
−−−−−−−−−−−−−−−−→

∗

) in order to get the disjoint protocol

P.νz′.(Q{z 7→ z′})
receive(w1),receive(w1)
−−−−−−−−−−−−−−−−→

∗

(0, {w1 7→ k1, w2 7→ k2, w3 7→ s}, σ′)

to output s. However, finding a generic way to change the intruder actions in order to obtain
the same attack is an open problem and would allow to have a theorem for composition
which is sound even in the presence of dishonest participants.
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6.7.3 Directions for Future Work

A direction for future work is to investigate if composition with disjoint equational theories pre-
serves trace equivalence, as defined e.g. in Chapter 5 and more generally other behavioral equiv-
alences which can be used to reason about security properties such as anonymity. As in our
composition theorem we reason about recipes, there is hope that the our result carries over to
equivalence properties.

We have shown that protocols which have disjoint equational theories compose well and pro-
tocols that are tagged compose well. A possible direction for future work is a straightforward
generalization of our composition result which combines the equational composition result and
the tagging composition result as follows: show that the composition of two protocols which make
use of some common cryptographic primitives (and possibly other primitives which are individual
to each protocol) compose well as longs as the common primitives are tagged (and the primitives
which are particular to each protocol are kept intact).

Also, certain primitives which seem harmless enough that they may be shared without tagging
them. For example, the concatenation defined through the equational theory:

fst(pair(x, y)) = x snd(pair(x, y)) = y.

is a candidate. However, let us consider the processes

P = νx.νy.z := pair(x, y)

Q = νk.send(enc(z, k)).receive(y).send(pair(fst(dec(y, k)), snd(dec(y, k)))).

The process νz.Q does not reveal z. However, if the generation of z is handled by P , we have
that P · Q does reveal z. This is because Q was only verified secure when z is instantiated to a
name. We are trying to prove that the equational theory of pair can be safely shared between two
protocols as long as neither of the protocols instantiates a shared key to a pair.

Finally, many relevant equational theories are not so easy to tag. In particular, tagging ex-
clusive or is particularly difficult. Finding a way to securely compose two protocols which both
make use of this primitive (the exclusive or) is a challenging open problem.



Chapter 7

Conclusion and Perspectives

We have presented methods that allow us to increase our confidence in the security of cryptographic
protocols with applications to e-voting protocols. We have seen that e-voting protocols are different
from other previously analyzed protocols in two aspects:

1. they employ novel cryptographic primitives such as blind signatures, trapdoor commitment
and homomorphic encryption and

2. the security properties desirable of them are fundamentally different from confidentiality and
authentication, which were the most studied security properties.

In this thesis, we show that automated verification of security protocols with respect to equiv-
alence properties is feasible and that protocols making use of arbitrary disjoint cryptographic
primitives compose well with respect to confidentiality. Chapters 3 to 5 consist of techniques for
the automated verification of equivalence properties and Chapter 6 consists of the composition
result. We believe that both directions (automated verification and compositionality) provide
fruitful ground for further research.

In Chapter 3 we have introduced and motivated the notion of strongly complete set of vari-
ants. This notion is used as a base brick in Chapter 5 for the automated procedure for proving
equivalence properties. Strongly complete sets of variants allow to get rid of the equational theory
modeling the properties of the cryptographic primitives and solve the resulting problem in the free
term algebra.

Therefore, in order to be able to handle a greater variety of cryptographic primitives, a first
step is to prove that the equational theory modeling the new primitives still has the strong finite
variant property. However, for cryptographic primitives such as XOR, this cannot be the case
because they contain associative-commutative (AC) function symbols. Therefore no convergent
term rewriting system can model XOR. Instead, the notion of strongly complete set of variants
should be extended to a convergent rewrite system R modulo an equational theory E. The primitive
XOR could then be split into two parts: E would model the AC property of XOR while R would
model that 0 is a neutral element and that by XORing a value with itself we obtain the neutral
element 0.

As it might be cumbersome to establish the strong finite variant property, it would be nice to
obtain a combination result: assuming two disjoint rewrite systems (Fa,Ra) and (Fb,Rb) have the
strong finite variant property (eventually modulo an equational theory), does (Fa∪Fb,Ra∪Rb) also
have the SFVP? Are strongly complete sets of variants for mixed terms (with function symbols
from Fa and from Fb) effectively constructible from strongly complete sets of variants of pure
terms (with function symbols only from Fa or only from Fb)?

In Chapter 4 we have presented a decision procedure for static equivalence. The procedure is
sound and complete for any convergent equational theory, but termination currently needs to be
established on a case-by-case basis. We have shown termination for several (classes of) equational
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theories, but it would be interesting to obtain an exact characterization of the class of equational
theories for which the saturation procedure terminates.

The procedure we present does not terminate for an equational theory modeling re-encryption,
a cryptographic primitives which can be used in designated verifier proofs of re-encryption as
in [72]. The reason for non-termination is illustrated in Example 4.11 using a toy equational
theory which presents the same difficulties as re-encryption. Extending the procedure to handle
this equational theory in a generic fashion is an interesting open problem and it would allow
(partial) automation of security proof for electronic voting protocols which make use of designated
verifier proofs.

Another direction for future work would be to extend the procedure to handle cryptographic
primitives such as XOR which cannot be modeled by a convergent rewrite system. To handle
such theories, an idea is to keep the current structure of the saturation procedure but to perform
matching and unification modulo AC. Soundness, completeness and termination for this approach
should be investigated.

In Chapter 5 we have presented a procedure for verifying trace equivalence for determinate
processes. This procedure has allowed us to obtain the first automated proof of vote privacy for
the electronic voting protocol FOO. However, the procedure presents several limitations which
should be lifted:

1. We have conjectured that the saturation procedure always terminates for subterm convergent
rewrite systems. Due to the highly complex form of Horn clauses generated during saturation,
we have not been able to prove this. However, this should be further investigated. Proving
termination would imply a strict theoretical extension of previous results [44, 19] from traces
to determinate processes.

2. Currently, our procedure only handles bounded processes. This restriction can be lifted by
allowing sound abstractions in the style of [25]. Abstractions would allow to obtain proofs
of equivalence for unbounded protocols, but with the possibility of false attacks.

3. Currently in our process algebra only tests of the form [s = t] are permitted. If a test
fails, the process blocks. However, some protocols need else branches in order to perform a
operation if a test does not succeed. An idea for handling else branches is to use strongly
complete set of variants in order to build complete sets of disunifiers for some notion of
completeness. This complete sets of disunifiers would then allow to describe exactly for
which instantiation of the terms the else branch would be taken.

Handling else branches would allow to obtain security proofs for protocols for the private
authentication protocol in [4] or the e-passport protocol in [9].

4. Even assuming that the saturation procedure terminates, our procedure can establish a proof
of equivalence or provide a counter-example for determinate processes only. For processes
which are not known to be determinate, we provide a sound proof method to establish
equivalence; however, if the proof method fails, we do not know if the processes are equivalent
or not.

These situations are caused by negative tests as illustrated bellow. Consider the following
traces:

T1 = send(c, n).send(c,m)
T2 = send(c, n).send(c, n)
S = send(c, k).send(c, k),

where n,m, k ∈ N are private names. The process {T1, T2} is not trace-equivalent to the
process S (but we cannot prove this using our procedure) intuitively because the intruder
can check if the first output is different from the second output and in this case conclude
that he is dealing with {T1, T2} instead of S. This “negative test” is exactly what the current
procedure does not handle; instead it only captures positive tests using the predicate i. One
idea is to extend the saturation procedure to include a predicate ni which states that two
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recipes are not the same. This would allow the procedure to directly handle non-determinate
processes as well.

5. As we have already pointed out, our procedure works only for convergent rewrite systems but
there are cryptographic primitives such as XOR which cannot be modeled by such rewrite
systems. Therefore it is necessary to work with a convergent rewrite system modulo a
theory of associativity-commutativity (AC). It would be interesting to extend the procedure
to handle strongly complete sets of variants, matching and unification modulo AC. The result
should be again proven sound and complete.

6. As the equational theory gets more complex, the chances that a given method automatically
proves an equivalence between processes diminish. Therefore it is desirable to obtain combi-
nation results: if the equational theory is split into two parts and for each part a procedure
for proving equivalence is known, can the two procedures be combined into a procedure for
verifying equivalence for the larger equational theory?

7. The equivalences that our procedure can prove are in the Dolev-Yao model as opposed to the
more realistic computational model. However, there is a result [52] which links equivalence
in the Dolev-Yao model to equivalence in the computational model. As a more distant
perspective, bridging the gap between the equivalences that our procedure proves and the
equivalences of the computational model is a desirable goal. This could be achieved for
example either by a computational soundness result or by modifying the tool so that to fit
the computational model better or both.

8. Other perspectives for further research are to extend our procedure to check if a protocol
implements an ideal functionality as in [70] or to check more complex properties such as
individual or universal verifiability of voting protocols as formalized in [99].

In Chapter 6, we have shown that protocols which use disjoint cryptographic primitives can
be securely composed with respect to confidentiality of data if they do not reveal or reuse shared
secrets.

We have seen that due to our hypothesis (that shared secrets are not revealed), the main
limitation is that the composition theorem cannot be applied for dishonest participants (because
they reveal secrets to the adversary as soon as possible). Therefore the most important extension
of the composition result in Chapter 6 is to allow composition even in the presence of dishonest
users. We have shown (Section 6.7.2) that our theorem does not hold for dishonest participants.
Therefore, in order to obtain a composition result in this context, the hypothesis needs to be
altered.

Another hypothesis that we make is that the protocols use disjoint primitives. This is not
always the case, as both might use, for example, the same encryption algorithms. We mitigate
this by proving (for a limited set of primitives) that composition still holds as long as the primitives
are tagged. Enlarging the set of primitives for which this is shown is the subject of future work.
Furthermore, it would be nice to obtain a composition result in which the primitives which are
shared between the two protocols are tagged, while all the other primitives (which are used by
one of the two protocols) remain as they are.

Obtaining composition results for indistinguishability properties such as trace equivalence is
another natural extension. This would be particularly useful in the case of e-voting protocols,
where it could be used to show that vote privacy is preserved even in the presence of other
protocols. Other minor extension is to prove the same composition result in the presence of else
branches.

More generally, we would like to apply the techniques that we have developed in this thesis to
other contexts. We would like to prove other equivalence-based security properties of electronic
voting protocols such as coercion-resistance or receipt-freeness [72]. Furthermore, the same tech-
niques for verifying trace equivalence could be used in a different context to prove unlinkability [9].
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Unlinkability is a privacy property which intuitively means that an attacker cannot trace a par-
ticipant by linking together several uses of a protocol such as the protocol run by the participant
during the checking of his electronic passport. Equivalence of processes seems to be well-suited for
the verification of privacy properties like anonymity, unlinkability and vote privacy and we would
like to investigate other potential applications of trace equivalence such as for verifying privacy in
web services or anonymity in routing protocols.
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[46] Ş. Ciobâcă. AKiSs, 2011. http://www.lsv.ens-cachan.fr/~ciobaca/akiss.
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[50] Ş. Ciobâcă, S. Delaune, and S. Kremer. Computing knowledge in security protocols under
convergent equational theories. In R. Schmidt, editor, Proceedings of the 22nd International
Conference on Automated Deduction (CADE’09), Lecture Notes in Artificial Intelligence,
pages 355–370, Montreal, Canada, Aug. 2009. Springer.
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Appendix A

Technical Proofs from Chapter 6

A.1 Proof of Lemma 6.6

This section consists of the proof of Lemma 6.6, which requires several helper lemmas. The proof
makes use of techniques developed in [14]. We first recall the lemma that we are proving.

Lemma 6.6 (Fundamental Collapse Lemma). If s =E t, then col(s) = C[[s1, . . . , sk]], col(t) =
D[[sk+1, . . . , sk+l]] such that domain(C) = domain(D) and C[n1, . . . , nk] =Ed

D[nk+1, . . . , nk+l]
where d = domain(C) and n1, . . . , nk+l are fresh names such that ni = nj iff si =E sj for all
1 ≤ i, j ≤ k + l.

In Section A.1.1, we introduce several helper concepts, including a ≃ relation between terms
which under-approximates =E. In Section A.1.2, we introduce the canonical form of a term, similar
to the collapsed form that we have already seen. Section A.1.3 includes a few technical results
that we use further on. Section A.1.4 contains the main proof of this Appendix, namely that ≃ is
complete with respect to =E in the sense that two terms that are equal modulo E have canonical
forms that are in the ≃ relation. Section A.1.5 provides the link between the canonical form and
the collapsed form and contains the proof of Lemma 6.6.

A.1.1 Preliminaries

Before proceeding to the proof, we need to define a few concepts.

Definition A.1 (Equivalence classes). If ≡ is an equivalence relation on terms, we let

[t]≡ = {s | s ≡ t}

denote the equivalence class of t w.r.t. to ≡. We let A≡ = {[t]≡ | t ∈ T (F ,A)} denote all such
equivalence classes.

For any equivalence relation ≡, we authorize the elements of A≡ (i.e. the equivalence classes)
to be used as atoms in any term algebra T (F ,A) where A≡ ⊆ A.

Definition A.2 (Abstraction by equivalence classes). If ≡ is an equivalence relation on terms in
T (F ,A0), we define the abstraction of s ∈ T (F ,A0) w.r.t. the domain d ∈ {a, b, c} to be

[s]d≡ = C[[s1]≡, . . . , [sk]≡] if s = C[s1, . . . , sk]

is a term such that C is a pure d-context and s1, . . . , sk are terms with domain(si) 6= d for any
1 ≤ i ≤ k. We extend abstractions to substitutions as expected:

[σ]d≡ = {x1 7→ [t1]d≡, . . . , xn 7→ [tn]d≡}

if σ = {x1 7→ t1, . . . , xn 7→ tn} is a substitution.
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Lemma A.1. For any function symbol f of arity ar(f) = k and any sequence of terms t1, . . . , tk,
we have that

[f(t1, . . . , tk)]d≡ =

{

f([t1]d≡, . . . , [tk]d≡) if f ∈ Fd

[f(t1, . . . , tk)]≡ if f 6∈ Fd.

Proof. Let C be a pure d-context and let s1, . . . , sl be terms with domain(i) 6= d for any 1 ≤ i ≤ l
such that f(t1, . . . , tk) = C[s1, . . . , sl]. We distinguish between the two cases above:

1. if f ∈ Fd, we have that C = f(C1, . . . , Ck) for some pure d-contexts C1, . . . , Ck such that
ti = Ci[s1, . . . , sl]. By definition [f(t1, . . . , tk)]d≡ = C[[s1]≡, . . . , [sl]≡]. By the choice of
C1, . . . , Ck, we have that C[[s1]≡, . . . , [sl]≡] = f(C1[[s1]≡, . . . , [sl]≡], . . . , Ck[[s1]≡, . . . , [sl]≡]).
But [ti]

d
≡ = Ci[[s1]d≡, . . . , [sl]

d
≡] for 1 ≤ i ≤ k. by definition. We obtain therefore that

f(C1[[s1]≡, . . . , [sl]≡], . . . , Ck[[s1]≡, . . . , [sl]≡]) = f([t1]d≡, . . . , [tk]d≡). By transitivity we can
conclude that [f(t1, . . . , tk)]d≡ = f([t1]d≡, . . . , [tk]d≡), which is what we had to show.

2. if f 6∈ Fd, it follows that C = i for some 1 ≤ i ≤ k is a hole and C[s1, . . . , sl] = si =
f(t1, . . . tk). Therefore [f(t1, . . . , tk)]d≡ = [si]≡ = [f(t1, . . . , tk)]≡, which is what we had to
prove.

Lemma A.2 (Equivalence implication). Let d ∈ {a, b, c} be a domain. If ≡1 and ≡2 are equiva-
lence classes on terms in T (F ,A0) such that s ≡1 t implies s ≡2 t for all terms s, t ∈ T (F ,A0),
then

[s]d≡1
=Ed

[t]d≡1
implies [s]d≡2

=Ed
[t]d≡2

for any two terms s, t ∈ T (F ,A0).

Proof. Let s, t ∈ T (F ,A0) be arbitrary terms such that

[s]d≡1
=Ed

[t]d≡1
.

We will show that [s]d≡2
=Ed

[t]d≡2
. Let C and D be pure d-contexts and s1, . . . , sk, sk+1, . . . , sk+l be

terms with domain(si) 6= d (for 1 ≤ i ≤ k+l) such that s = C[s1, . . . , sk] and t = D[sk+1, . . . , sk+l].
By definition, we have [s]d≡1

= C[[s1]≡1
, . . . , [sk]≡1

] and that [t]d≡1
= D[[sk+1]≡1

, . . . , [sk+l]≡1
],

which implies
C[[s1]≡1 , . . . , [sk]≡1 ] =Ed

D[[sk+1]≡1 , . . . , [sk+l]≡1 ].

By the assumption of ≡1 and ≡2, we have that [si]≡1
= [sj ]≡1

implies [si]≡2
= [sj ]≡2

for all
1 ≤ i, j ≤ k + l. Therefore the replacement σ = {[si]≡1

7→ [si]≡2
}1≤i≤k+l is well-defined. As the

equational theory Ed is stable by replacement of atoms by terms, we have that

C[[s1]≡1 , . . . , [sk]≡1 ]σ =Ed
D[[sk+1]≡1 , . . . , [sk+l]≡1 ]σ.

But by definition

[s]d≡2
= C[[s1]≡2

, . . . , [sk]≡2
] = C[[s1]≡1

, . . . , [sk]≡1
]σ and

[t]
d
≡2

= D[[sk+1]≡2 , . . . , [sk+l]≡2 ] = D[[sk+1]≡1 , . . . , [sk+l]≡1 ]σ.

This implies [s]d≡2
=Ed

[t]d≡2
, which is what we had to prove.

For every n ≥ 0, we let ≃n to be an equivalence relation on terms defined as follows:

Definition A.3. For two terms s and t, we write s ≃n t if s and t have the same domain
d = domain(s) = domain(t) and

[s]d≃n−1
=Ed

[t]d≃n−1
when n > 0

[s]d= = s =Ed
t = [t]d= when n = 0.
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We first show that two terms which are in the ≃n relation are equivalent modulo E.

Lemma A.3. For any n ∈ N, for any terms s, t we have that s ≃n t implies s =E t.

Proof. By well-founded induction on n. If n = 0 we have that s =Ed
t which immediately implies

s =E t since Ed ⊆ E.

If n > 0, we have by definition that domain(s) = domain(t) = d for some d ∈ {a, b, c} and that
[s]d≃n−1

=Ed
[t]d≃n−1

. By the induction hypothesis we have that u ≃n−1 v implies u =E v for all

terms u, v. Therefore, by Lemma A.2, we have that [s]d
E

=Ed
[t]d

E
.

Let C,D be pure d-contexts such that s = C[[s1, . . . , sk]] and t = D[[sk+1, . . . , sk+l]] for some
terms s1, . . . , sk, sk+1, . . . , sk+l. From the fact that [s]d

E
= [t]d

E
we obtain that C[[s1]E, . . . , [sk]E] =Ed

D[[sk+1]E, . . . , [sk+l]E], which implies C[[s1]E, . . . , [sk]E] =E D[[sk+1]E, . . . , [sk+l]E]. Let first(i) =
min{j | sj =E si}. The replacement σ = {[si]E 7→ sfirst(i)} is then well defined. As E is stable
by replacement of atoms by terms, we obtain that C[[s1]E, . . . , [sk]E]σ =E D[[sk+1]E, . . . , [sk+l]E]σ.
This is equivalent to C[sfirst(1), . . . , sfirst(k)] =E D[sfirst(k+1), . . . , sfirst(k+l)]. But sfirst(i) =E si for
all 1 ≤ i ≤ k + l and therefore C[s1, . . . , sl] =E D[sk+1, . . . , sk+l]. This is equivalent to s =E t
which is what we wanted to prove.

We have that:

Lemma A.4. Let s, t be two terms such that s ≃n t. Then s ≃n+1 t.

Proof. By well-founded induction on n.

If n = 0, s ≃0 t implies [s]d= = s =Ed
t = [t]d=. As [s]d= = s and [t]d= = t, it follows that s and t

are pure d terms and therefore [s]d≃0
= s and [t]d≃0

= t by definition. But s =Ed
t and we obtain

[s]d≃0
= [t]d≃0

which is the definition of s ≃1 t.

If n > 0, as s ≃n t, we have that the terms s and t have the same domain d = domain(s) =
domain(t) and that

[s]d≃n−1
=Ed

[t]d≃n−1
.

By the induction hypothesis, we have that u ≃n−1 v implies u ≃n v for all terms u, v. Therefore
by Lemma A.2, we have that

[s]d≃n
=Ed

[t]d≃n
,

which implies s ≃n+1 t.

We now define ≃ to be a binary relation between terms:

Definition A.4. We write that s ≃ t if there exists n such that s ≃n t.

It is easy to see that ≃ is an equivalence relation: symmetry and reflexivity are immediate
from the definition of ≃n and transitivity is easily proved using Lemma A.4.

Lemma A.5. For any terms s, t, we have that s ≃ t implies s =E t.

Proof. Immediate by the definition of ≃ and Lemma A.3.

We now directly characterize when s ≃ t, without going through ≃n.

Lemma A.6. We have that s ≃ t iff s and t have the same domain d = domain(s) = domain(t)
and [s]d≃ =Ed

[t]d≃.

Proof. We prove each implication separately:
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1. First assume that s ≃ t. We will show that s and t have the same domain d = domain(s) =
domain(t) and that [s]d≃ =Ed

[t]d≃.

If follows by the definition of ≃ that there exists an integer n ∈ N such that s ≃n t. By
Lemma A.4 we have that s ≃n+1 t. By the definition of ≃n+1, we have that s and t have
the same domain. Let d = domain(s) = domain(t). Furthermore, by the definition of ≃n+1,
it follows that

[s]d≃n
=Ed

[t]d≃n
.

By the definition of ≃, we have that u ≃n v implies u ≃ v for any two terms u and v.
Therefore by Lemma A.2 we have that

[s]d≃ =Ed
[t]d≃,

which is what we had to show.

2. We now assume that s and t have the same domain d = domain(s) = domain(t) and that
[s]d≃ =Ed

[t]d≃. We will show that s ≃ t.

Let C and D be pure d-contexts and s1, . . . , , sk+l be terms with domain(si) 6= d (for 1 ≤
i ≤ k + l) such that s = C[s1, . . . , sk] and t = D[tk+1, . . . , tk+l]. We then have by definition
that [s]d≃ = C[[s1]≃, . . . , [sk]≃] and that [t]d≃ = D[[sk+1]≃, . . . , [sk+l]≃]. As [s]d≃ =Ed

[t]d≃, we
have that

C[[s1]≃, . . . , [sk]≃] =Ed
D[[sk+1]≃, . . . , [sk+l]≃].

By the definition of ≃, we have that for any 1 ≤ i, j ≤ k + l, [si]≃ = [sj ]≃ iff there exists
ni,j ∈ N such that [si]≃ni,j

= [sj ]≃ni,j
. Let n = max{ni,j | 1 ≤ i, j ≤ k + l}. We have that

[si]≃ = [sj ]≃ implies [si]≃ni,j
= [sj ]≃ni,j

which implies by Lemma A.4 [si]≃n
= [sj ]≃n

for all

1 ≤ i, j ≤ k + l. The replacement

σ = {[si]≃ 7→ [si]≃n
}1≤i≤k+l

is therefore well-defined and, as Ed is stable by replacement of atoms by terms, we have that

C[[s1]≃, . . . , [sk]≃]σ =Ed
D[[sk+1]≃, . . . , [sk+l]≃]σ.

But by the definitions of [s]d≃n+1
and [t]d≃n+1

we have

[s]d≃n+1
= C[[s1]≃n

, . . . , [sk]≃n
] = C[[s1]≃, . . . , [sk]≃]σ and

[t]
d
≃n+1

= D[[sk+1]≃n
, . . . , [sk+l]≃n

] = D[[sk+1]≃, . . . , [sk+l]≃]σ.

and therefore [s]d≃n+1
=Ed

[t]d≃n+1
. As domain(s) = domain(t) = d, we have by definition that

s ≃n+2 t. But s ≃n+2 t implies by the definition of ≃ that s ≃ t, which is what we had to
show.

Lemma A.7. If s ≃ t then [s]d≃ =Ed
[t]d≃ for any domain d ∈ {a, b, c}.

Proof. As s ≃ t, it follows by Lemma A.6 that domain(s) = domain(t). If domain(s) = d, then
we get our conclusion by Lemma A.6. Otherwise, if domain(s) 6= d, we have that [s]d≃ = [s]≃ and
[t]d≃ = [t]≃ by the definition of [·]d≃. But s ≃ t and therefore [s]≃ = [t]≃. We immediately obtain
[s]d≃ = [t]d≃.

Lemma A.8. If f ∈ F is a function symbol of arity k and s1 ≃ t1, . . . , sk ≃ tk are terms, we
have that

f(s1, . . . , sk) ≃ f(t1, . . . , tk).
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Proof. Let d = domain(f) be the domain of f . We have that [f(s1, . . . , sk)]d≃ = f([s1]d≃, . . . , [sk]d≃)
and [f(t1, . . . , tk)]d≃ = f([t1]d≃, . . . , [tk]d≃) by Lemma A.1. As si ≃ ti we have by Lemma A.7
that [si]

d
≃ =Ed

[ti]
d
≃ for all 1 ≤ i ≤ k. Therefore [f(s1, . . . , sk)]d≃ =Ed

[f(t1, . . . , tk)]d≃. Combined
with the fact that domain(f(s1, . . . , sk)) = domain(f(t1, . . . , tk)) = domain(f) = d, we obtain by
Lemma A.6 that f(s1, . . . , sk) ≃ f(t1, . . . , tk), which is what we had to prove.

A.1.2 Canonical Form

We now introduce the canonical form can(t) of a term t, defined as follows:

Definition A.5.

can(t) =







































t if t is an atom
si if t = f(t1, . . . , tl),

f(can(t1), . . . , can(tl)) = C[[s1, . . . , sk]] and
C[[n1, . . . , nk]] =Ed

ni where n1, . . . , nk are fresh
names such that ni = nj iff si ≃ sj for all 1 ≤ i, j ≤ l
and d = domain(C)

f(can(t1), . . . , can(tl)) if t = f(t1, . . . , tl) but the above does not hold.

We say that a term t is in canonical form if t = can(t). The difference between the collapsed
form of a term and the canonical form is the choice of the fresh names n1, . . . , nk in the second
and third cases of the definition. In the case of col, two names ni and nj are chosen to be equal
(ni = nj) iff si =E sj , while in the case of the canonical form ni = nj iff si ≃ sj . As we will see
later, =E and ≃ coincide on canonical forms and therefore the canonical form is identical to the
collapsed form. However, this definition of canonical form is required for the proofs. We extend
can to substitutions as expected:

can(σ) = {x1 7→ can(t1), . . . , xk 7→ can(tk)}

whenever σ = {x1 7→ t1, . . . , xk 7→ tk}. We will first show that the canonical form of a term is
equal modulo E to the term.

Lemma A.9. For any term t, we have that can(t) =E t.

Proof. By induction on the size of t.

1. For the base case, if t is an atom, then can(t) = t by the definition of can and therefore
can(t) =E t.

2. For the inductive case, if t = f(t1, . . . , tl), we have that t1 =E can(t1), . . . , tl =E can(tl)) by
the induction hypothesis. Therefore t = f(t1, . . . , tl) =E f(can(t1)), . . . , can(tl)).

We distinguish two cases:

(a) if can(t) = f(can(t1), . . . , can(tl)) (i.e. the third case of the definition of can) we have
already shown that t =E can(t).

(b) otherwise, f(can(t1), . . . , can(tl)) = C[[s1, . . . , sk]] for some context C and some terms
s1, . . . , sk and there exists an index 1 ≤ i ≤ k such that C[n1, . . . , nk] =Ed

ni for
some fresh names n1, . . . , nk such that nx = ny iff sx ≃ sy for all 1 ≤ x, y ≤ k and
can(t) = si, where d = domain(C). As C[n1, . . . , nk] =Ed

ni and Ed ⊆ E, it follows that
C[n1, . . . , nk] =E ni.

For all 1 ≤ x ≤ k, let [x] denote the smallest index 1 ≤ y ≤ k such that nx = ny. As
the equational theory E is stable by replacement of names by arbitrary terms, we have
that C[n1, . . . , nk] =E ni implies C[n1, . . . , nk]{n1 7→ s[1], . . . , nk 7→ s[k]} =E ni{n1 7→
s[1], . . . , nk 7→ s[k]}, which is equivalent to C[s[1], . . . , s[k]] =E s[i]. But by choice of the
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names n1, . . . , nk and the definition of [x], we have that s[x] ≃ sx for all 1 ≤ x ≤ k. By
Lemma A.5, we have that s[x] ≃ sx implies s[x] =E sx for all 1 ≤ x ≤ k and therefore
we obtain C[s1, . . . , sk] =E si.

We have that t =E f(can(t1), . . . , can(tl)), that f(can(t1), . . . , can(tl)) = C[[s1, . . . , sk]],
that C[s1, . . . , sk] =E si and that can(t) = si for some index 1 ≤ i ≤ k.

By transitivity of =E, we immediately obtain that t =E can(t).

We now prove some properties of the canonical form. First of all, any subterm of a canonicalized
subterm is canonicalized.

Lemma A.10. Any subterm t ∈ st(can(s)) of can(s) is such that t = can(t).

Proof. By induction on the size of s. We distinguish among the following cases:

1. if s is an atom, then can(s) = s and its only subterm t ∈ st(can(s)) is t = can(s). Therefore
t = s and can(t) = t.

2. if s = f(t1, . . . , tl) and can(s) = f(can(t1), . . . , can(tl)), then any subterm t ∈ st(can(s)) is
either:

(a) a subterm t ∈ st(can(ti)) of the term can(ti) for some i, in which case t = can(t) by the
induction hypothesis,

(b) or t = can(s) is the entire term, in which case can(t) = can(f(can(t1), . . . , can(tl)) and
it is easy to see that can(t) = t.

3. otherwise we have that s = f(t1, . . . , tl), f(can(t1), . . . , can(tl)) = C[[s1, . . . , sk]], can(s) = sx
and C[n1, . . . , nk] =Ed

nx for some x ∈ {1, . . . , k} where n1, . . . , nk are fresh names such that
ni = nj iff si ≃ sj for all 1 ≤ i, j ≤ k and c = domain(C).

As C is not the empty context, we have that sx is a subterm of can(ty) for some y. We
conclude by the induction hypothesis, since any subterm t of can(ty) (and therefore any
subterm t of sx = can(s)) is such that t = can(t).

We will now show that canonicalizing the direct subterms of a term does not change the
canonical form of the term.

Lemma A.11. For any function symbol f ∈ Σ of arity ar(f) = k and any terms s1, . . . , sk, we
have that can(f(s1, . . . , sk)) = can(f(can(s1), . . . , can(sk)).

Proof. By the definition of can,

1. either can(f(s1, . . . , sk)) = f(can(s1), . . . , can(sk)), in which case f(can(s1), . . . , can(sk)) is
a canonicalized term (as it is the same term as can(f(s1, . . . , sk))). Therefore

f(can(s1), . . . , can(sk)) = can(f(can(s1), . . . , can(sk))).

By transitivity of =, we immediately obtain can(f(s1, . . . , sk)) = can(f(can(s1), . . . , can(sk))).

2. or we have that
can(f(s1, . . . , sk)) = uj (A.1)

for some term uj where f(can(s1), . . . , can(sk)) = C[[u1, . . . , ul]] and C[n1, . . . , nl] =Ed
nj ,

where d = domain(C) and n1, . . . , nl are fresh names such that nx = ny iff ux ≃ uy for all
1 ≤ x, y ≤ l.
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In this case, let us analyze the canonicalized form of the term t = f(can(s1), . . . , can(sk)).
We have that

f(can(can(s1)), . . . , can(can(sk)))
by Lemma A.10

= f(can(s1), . . . , can(sk)) = C[[u1, . . . , ul]].

As C[n1, . . . , nl] =Ed
nj , we have that the canonicalized form of t = f(can(s1), . . . , can(sk))

is by definition

can(f(can(s1), . . . , can(sk))) = uj . (A.2)

From Equation (A.1) and Equation A.2, we have that

can(f(s1, . . . , sk)) = can(f(can(s1), . . . , can(sk)),

which is what we had to prove.

We can now show that canonicalization of any set of subterms of a term does not change the
canonical form of the term.

Lemma A.12. For any context C and any terms s1, . . . , sk, we have that

can(C[s1, . . . , sk]) = can(C[can(s1), . . . , can(sk)]).

Proof. By induction on C:

1. if C is a hole i for some 1 ≤ i ≤ k, then C[s1, . . . , sk] = si and C[can(s1), . . . , can(sk)] =
can(si). Therefore

can(C[s1, . . . , sk]) = can(si) = C[can(s1), . . . , can(sk)]. (A.3)

As can(si) is canonicalized by Lemma A.10, we have that C[can(s1), . . . , can(sk)] (which is
the same term as can(si)) is canonicalized as well. Therefore

C[can(s1), . . . , can(sk)] = can(C[can(s1), . . . , can(sk)]). (A.4)

From Equation (A.3) and Equation (A.4), we obtain by the transitivity of = that

can(C[s1, . . . , sk]) = can(C[can(s1), . . . , can(sk)]),

which is what we had to prove.

2. if C = a is an atom, then C[s1, . . . , sk] = a and C[can(s1), . . . , can(sk)] = a. As can(a) = a
by the definition of can, we immediately obtain

can(C[s1, . . . , sk]) = can(a) = a = can(a) = can(C[can(s1), . . . , can(sk)]),

which is what we had to prove.

3. otherwise, C = f(C1, . . . , Cl) for some function symbol f of arity ar(f) = l and some contexts
C1, . . . , Cl. Let s̃ denote the sequence of terms s1, . . . , sk and can(s̃) denote the sequence of
terms can(s1), . . . , can(sk). By the induction hypothesis we have that

can(Ci[s̃]) = can(Ci[can(s̃)])) for all 1 ≤ i ≤ l. (A.5)
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We have that

can(C[s̃]) = can(f(C1[s̃], . . . , Cl[s̃]))
(by choice of C1, . . . , Cl)

= can(f(can(C1[s̃]), . . . , can(Cl[s̃])))
(by Lemma A.11)

= can(f(can(C1[can(s̃)]), . . . , can(Cl[can(s̃)])))
(by Equation (A.5))

= can(f(C1[can(s̃)], . . . , Cl[can(s̃)]))
(by Lemma A.11)

= can(C[can(s̃)]).
(by choice of C1, . . . , Cl)

In summary, we obtained can(C[s̃]) = can(C[can(s̃)]), which is what we had to prove.

We immediately obtain as a corollary another way to state the above lemma.

Corollary A.1. For any term s and any substitution σ, we have that can(sσ) = can(s(can(σ))).

Proof. Let C be a context obtained from s by replacing all variables x ∈ Dom(σ) with holes i

(1 ≤ i ≤ n) such that sσ = C[x1σ, . . . , xnσ] and s(can(σ)) = C[x1(can(σ)), . . . , xn(can(σ))] where
Dom(σ) = {x1, . . . , xn}.

By Lemma A.12, we have that can(C[x1σ, . . . , xnσ]) = can(C[can(x1σ), . . . , can(xnσ)]. This is
equivalent to can(sσ) = can(s(can(σ))), which is what we had to prove.

A.1.3 Abstraction and Canonicalization

We now study the interaction between abstraction and canonical forms. We first need a technical
lemma:

Lemma A.13. Let d ∈ {a, b} be a domain and f ∈ Fd be a function symbol of arity ar(f) = k.
For any terms s1, . . . , sk, we have that

[can(f(s1, . . . , sk))]d≃ =Ed
f([can(s1)]d≃, . . . , [can(sk)]d≃).

Proof. By the definition of can, we distinguish between two cases:

1. either can(f(s1, . . . , sk)) = f(can(s1), . . . , can(sk)), in which case

[can(f(s1, . . . , sk))]d≃ = [f(can(s1), . . . , can(sk))]d≃.

But as f ∈ Fd, we have by Lemma A.1 that

[f(can(s1), . . . , can(sk))]d≃ = f([can(s1)]d≃, . . . , [can(sk)]d≃).

By transitivity of =, we obtain that [can(f(s1, . . . , sk))]d≃ = f([can(s1)]d≃, . . . , [can(sk)]d≃),
which immediately implies the equality modulo Ed of the two terms:

[can(f(s1, . . . , sk))]d≃ =Ed
f([can(s1)]d≃, . . . , [can(sk)]d≃).

2. or f(can(s1), . . . , can(sk)) = D[[t1, . . . , tl]] for some context D and some terms t1, . . . , tl such
that D[n1, . . . , nl] =Ed

ni for some 1 ≤ i ≤ l, where n1, . . . , nl are fresh names such that
nx = ny iff tx ≃ ty for all 1 ≤ x, y ≤ l. In this case can(f(s1, . . . , sk)) = ti and we have by
definition that

[can(f(s1, . . . , sk))]d≃ = [ti]≃ (A.6)
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because domain(ti) 6= domain(D) = d.

On the other hand, we have that

f([can(s1)]d≃, . . . , [can(sk)]d≃) = [f(can(s1), . . . , can(sk))]d≃ (by Lemma A.1)
= [D[t1, . . . , tl]]

d
≃ (by choice of D, t1, . . . , tl)

= D[[t1]≃, . . . , [tl]≃]. (by definition)

But D[n1, . . . , nl] =Ed
ni and, as Ed is stable by replacement of names by terms, we ob-

tain that D[n1, . . . , nl]σ =Ed
niσ, where σ = {nx 7→ [tx]≃}1≤x≤l. The replacement σ

is well-defined since nx = ny implies [tx]≃ = [ty]≃ for all 1 ≤ x, y ≤ l. The fact that
D[n1, . . . , nl]σ =Ed

niσ is equivalent to D[[t1]≃, . . . , [tl]≃] =Ed
[ti]≃ and therefore we con-

clude that
f([can(s1)]d≃, . . . , [can(sk)]d≃) =Ed

[ti]≃. (A.7)

From Equation (A.6) and Equation (A.7), we immediately obtain what we had to prove:

[can(f(s1, . . . , sk))]d≃ =Ed
f([can(s1)]d≃, . . . , [can(sk)]d≃).

Using the above technical lemma, we can now prove:

Lemma A.14. If C is a pure d-context for some d ∈ {a, b, c} and s1, . . . , sk are canonicalized
terms (i.e. si = can(si) for all 1 ≤ i ≤ k), we have that

[C[s1, . . . , sk]]d≃ =Ed
[can(C[s1, . . . , sk])]d≃.

Proof. By induction on C:

1. if C = a is an atom, then C[s1, . . . , sk] = a and [C[s1, . . . , sk]]d≃ = [a]d≃ = a since C = a is in
the d-domain. Moreover can(C[s1, . . . , sk]) = can(a) = a and therefore [can(C[s1, . . . , sk])]d≃ =
a. As both the left-hand side [C[s1, . . . , sk]]d≃ and right-hand side [can(C[s1, . . . , sk])]d≃ are
equal to a, we immediately conclude that they are equal modulo Ed:

[C[s1, . . . , sk]]d≃ =Ed
[can(C[s1, . . . , sk])]d≃.

2. if C = i for some 1 ≤ i ≤ k is a hole, we have that C[s1, . . . , sk] = si and that can(C[s1, . . . , sk]) =
can(si) = si (since si are canonicalized by hypothesis). Therefore the right-hand side
[C[s1, . . . , sk]]d≃ = [si]

d
≃ and the left-hand side [can(C[s1, . . . , sk])]d≃ = [si]

d
≃ are the same

term [si]
d
≃. We immediately conclude that they are equal modulo Ed:

[C[s1, . . . , sk]]d≃ =Ed
[can(C[s1, . . . , sk])]d≃.

3. if C = f(C1, . . . , Cl), we have that f ∈ Fd. By the induction hypothesis we have that

[Ci[s1, . . . , sk]]d≃ =Ed
[can(Ci[s1, . . . , sk])]d≃ for all 1 ≤ i ≤ l. (A.8)

We have that

[can(C[s1, . . . , sk])]d≃ = [can(f(C1[s1, . . . , sk], . . . , Cl[s1, . . . , sk]))]d≃
(by choice of C1, . . . , Cl)

=Ed
f([can(C1[s1, . . . , sk])]d≃, . . . , can(Cl[s1, . . . , sk]))]d≃
(by Lemma A.13)

=Ed
f([C1[s1, . . . , sk]]d≃, . . . , [Cl[s1, . . . , sk]]d≃)
(by Equation (A.8))

= [f(C1[s1, . . . , sk], . . . , Cl[s1, . . . , sk])]d≃
(by Lemma A.1)

= [C[s1, . . . , sk]]d≃
(by choice of C1, . . . , Cl)

which implies:
[C[s1, . . . , sk]]d≃ =Ed

[can(C[s1, . . . , sk])]d≃.
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We obtain the following corollary, which is just another way to state the lemma above.

Corollary A.2. If s is a pure d-term for some d ∈ {a, b, c} and σ is a canonicalized substitution
(i.e. can(σ) = σ), then

[sσ]d≃ =Ed
[can(sσ)]d≃.

Proof. Let C be a context obtained from s by replacing all variables x ∈ Dom(σ) with holes i

(1 ≤ i ≤ n) such that sσ = C[x1σ, . . . , xnσ] where Dom(σ) = {x1, . . . , xn}.
Because can(σ) = σ, it follows that xiσ is canonicalized for all 1 ≤ i ≤ n. By Lemma A.14, we

then have that

[C[x1σ, . . . , xnσ]]d≃ =Ed
[can(C[x1σ, . . . , xnσ])]d≃.

But this is equivalent to [sσ]d≃ =Ed
[can(sσ)]d≃, which is what we had to prove.

We now need a lemma to characterize the canonical form of a non-atomic term.

Lemma A.15. Let d be a domain d ∈ {a, b}, let f ∈ Fd be a function symbol of arity ar(f) = k
and let t1, . . . , tk be terms. Then

can(f(t1, . . . , tk)) =























f(can(t1), . . . , can(tk)) if C[[s1]≃, . . . , [sl]≃] 6=Ed
[si]

for any 1 ≤ x ≤ l
sy if C[[s1]≃, . . . , [sl]≃] =Ed

[sx]≃
for some 1 ≤ x ≤ l

for some 1 ≤ y ≤ l such that [sx]≃ = [sy]≃,

where C, s1, . . . , sl are such that f(can(t1), . . . , can(tk)) = C[[s1, . . . , sl]].

Proof. We distinguish the two cases:

1. First assume that C[[s1]≃, . . . , [sl]≃] =Ed
[sx]≃ for some 1 ≤ x ≤ l. We will show that

can(f(t1, . . . , tk)) = sy for some 1 ≤ y ≤ l such that [sx]≃ = [sy]≃.

Let n1, . . . , nl be fresh names such that ni = nj iff si ≃ sj for all 1 ≤ i, j ≤ l. Let
σ = {[si]≃ 7→ ni}1≤i≤k be a replacement (σ is well-defined since [si]≃ = [sj ]≃ implies
ni = nj for all 1 ≤ i, j ≤ l). As Ed is stable by replacement of atoms by terms, we have that
C[[s1]≃, . . . , [sl]≃]σ =Ed

[sx]≃σ, which is equivalent to C[n1, . . . , nl] = nx. Therefore, by the
definition of can, we have that can(f(t1, . . . , tk)) = sy for some 1 ≤ y ≤ l such that nx = ny.
But nx = ny implies sx ≃ sy, which concludes what we wanted to show.

2. Next assume that

C[[s1]≃, . . . , [sl]≃] 6=Ed
[sx]≃ for any 1 ≤ x ≤ l. (A.9)

We will show that can(f(t1, . . . , tk)) = f(can(t1), . . . , can(tk)).

Let n1, . . . , nl be fresh names such that ni = nj iff si ≃ sj for all 1 ≤ i, j ≤ l. We will show
by contradiction that C[n1, . . . , nl] 6=Ed

nx for any 1 ≤ x ≤ l. Assume by contradiction that
C[n1, . . . , nl] =Ed

nx for some 1 ≤ x ≤ l. We consider the replacement σ = {ni 7→ [si]≃}.
The replacement is well-defined since ni = nj implies [si]≃ = [sj ]≃. Since the equational
theory Ed is stable by replacement of atoms by terms, we obtain that C[n1, . . . , nl]σ =Ed

nxσ, i.e. C[[s1]≃, . . . , [sl]≃] =Ed
[sx]≃. But this is false by Equation (A.9). Therefore our

assumption was false and we have that C[n1, . . . , nl] 6=Ed
nx for any 1 ≤ x ≤ l.

Therefore, by the definition of can, we have that can(f(t1, . . . , tk)) = f(can(t1), . . . , can(tk)),
which is what we wanted to show.
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Lemma A.16. Let s be a term such that can(s) = C[[t1, . . . , tk]] with domain(C) = d ∈ {a, b, c}.
Then

C[[t1]≃, . . . , [tk]≃] 6=Ed
[tx]≃ for any 1 ≤ x ≤ k.

Proof. By the definition of C[[t1, . . . , tk]], C cannot be a hole i for any 1 ≤ i ≤ k. Therefore we
distinguish two cases:

1. if C = a is an atom, then C[[t1, . . . , tk]] = a 6=Ed
[tx]≃ for any 1 ≤ x ≤ k by Lemma 6.1.

2. if C = f(C1, . . . , Cl) for some contexts C1, . . . , Cl, let t̃ = t1, . . . , tk denote the sequence of
terms t1, . . . , tk. We have that can(s) = f(C1[t̃], . . . , Cl[t̃]).

By Lemma A.10, we have that can(C[t1, . . . , tk]) = can(can(s)) = can(s) = C[t1, . . . , tk].
Therefore can(C[t̃]) = can(f(C1[t̃], . . . , Cl[t̃])) = f(C1[t̃], . . . , Cl[t̃]).

Since Ci[t̃] is a subterm of C[t̃], by Lemma A.10 we have can(Ci[t̃]) = Ci[t̃] for all 1 ≤ i ≤ l.
Therefore can(f(C1[t̃], . . . , Cl[t̃])) = f(C1[t̃], . . . , Cl[t̃]) = f(can(C1[t̃]), . . . , can(Cl[t̃])). By
Lemma A.15, we have therefore that C[[t1]≃, . . . , [tk]≃] 6=Ed

[tx]≃ for any 1 ≤ x ≤ k, which
is what we wanted to prove.

Lemma A.17. Let d ∈ {a, b, c} be a domain, let C be a pure d-context and let t1, . . . , tk be terms
in canonical form such that domain(ti) 6= d for any 1 ≤ i ≤ k. Then

can(C[t1, . . . , tk]) = D[t1, . . . , tk]

for some pure d-context D such that C[[t1]≃, . . . , [tk]≃] =Ed
D[[t1]≃, . . . , [tk]≃].

Proof. We will proceed by well-founded induction on C. We distinguish three cases:

1. if C = a is an atom then C[t1, . . . , tk] = a and can(C[t1, . . . , tk]) = can(a) = a = C[t1, . . . , tk].
We conclude by choosing D = C: can(C[t1, . . . , tk]) = D[t1, . . . , tk] and C[[t1]≃, . . . , [tk]≃] =
a =Ed

a = D[[t1]≃, . . . , [tk]≃].

2. if C = i for some 1 ≤ i ≤ k, we have that can(C[t1, . . . , tk]) = can(ti) = ti = C[t1, . . . , tk].
We trivially conclude by choosing D = C = i: can(C[t1, . . . , tk]) = D[t1, . . . , tk] and
C[[t1]≃, . . . , [tk]≃] = [ti]≃ =Ed

[ti]≃ = D[[t1]≃, . . . , [tk]≃].

3. if C = f(C1, . . . , Cl) for a function symbol f and contexts C1, . . . , Cl, let t̃ = t1, . . . , tk
denote the sequence of terms t1, . . . , tk and [t̃]≃ = [t1]≃, . . . , [tk]≃ denote the sequence of
terms [t1]≃, . . . , [tk]≃. We have by the induction hypothesis that there exist pure d-contexts
Ei (1 ≤ i ≤ l) such that can(Ci[t̃]) = Ei[t̃] and Ci[[t̃]≃] =Ed

Ei[[t̃]≃] for all 1 ≤ i ≤ l.

We then have that f(can(C1[t̃]), . . . , can(Cl[t̃])) = f(E1[t̃], . . . , El[t̃]). Let E = f(E1, . . . , El).
We have that f(can(C1[t̃]), . . . , can(Cl[t̃])) = E[[t̃]] by the choice of E.

We distinguish two cases:

(a) if E[[t1]≃, . . . , [tk]≃] =Ed
[tx]≃ for some 1 ≤ x ≤ k, then by Lemma A.15 we have that

can(f(C1[t̃], . . . , Cl[t̃])) = ty for some 1 ≤ y ≤ k such that ty ≃ tx. If we choose D = y,
we immediately obtain our conclusion:

can(C[t1, . . . , tk]) = ty = D[t1, . . . , tk]

and, as Ci[[t̃]≃] =Ed
Ei[[t̃]≃] for all 1 ≤ i ≤ l by the induction hypothesis,

C[[t̃]≃] = f(C1[[t̃]≃], . . . , Cl[[t̃]≃]) =Ed
f(E1[[t̃]≃], . . . , El[[t̃]≃]) = E[[t̃]≃] =Ed

[tx]≃ = [ty]≃ = D[[t̃]≃].
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(b) if E[[t1]≃, . . . , [tk]≃] 6=Ed
[tx]≃ for any 1 ≤ x ≤ k, then by Lemma A.15 we have that

can(f(C1[t̃], . . . , Cl[t̃])) = E[t̃]. If we choose D = E, we immediately conclude:

can(C[t1, . . . , tk]) = D[t1, . . . , tk]

and, as Ci[[t̃]≃] =Ed
Ei[[t̃]≃] for all 1 ≤ i ≤ l by the induction hypothesis,

C[[t̃]≃] = f(C1[[t̃]≃], . . . , Cl[[t̃]≃]) =Ed
f(E1[[t̃]≃], . . . , El[[t̃]≃]) = E[[t̃]≃] = D[[t̃]≃].

Lemma A.18. Let d ∈ {a, b, c} be a domain, let C be a pure d-context and let t1, . . . , tk be terms
in canonical form such that domain(ti) 6= d for any 1 ≤ i ≤ k. Then

can(C[t1, . . . , tk]) ≃















tx if C[[t1]≃, . . . , [tk]≃] =Ed
[tx]≃

for some 1 ≤ x ≤ k
C[t1, . . . , tk] if C[[t1]≃, . . . , [tk]≃] 6=Ed

[tx]≃
for any 1 ≤ x ≤ k.

Proof. By Lemma A.17, we have that there exists a pure D-context such that can(C[t1, . . . , tk]) =
D[t1, . . . , tk] and such that C[[t1]≃, . . . , [tk]≃] =Ed

D[[t1]≃, . . . , [tk]≃]. We distinguish between two
cases:

1. if C[[t1]≃, . . . , [tk]≃] =Ed
[tx]≃ for some 1 ≤ x ≤ k, then D[[t1]≃, . . . , [tk]≃] =Ed

[tx]≃ as well.
We will show by contradiction that D = y is a hole y for some 1 ≤ y ≤ l. Assume by contra-
diction that D is not such a hole. Then by Lemma A.16 we have that D[[t1]≃, . . . , [tk]≃] 6=Ed

[tx]≃, which is not the case. Therefore our assumption was false and D = y is a hole for
some 1 ≤ y ≤ l. Then D[[t1]≃, . . . , [tk]≃] = [ty]≃. As D[[t1]≃, . . . , [tk]≃] =Ed

[tx]≃, we have
that [ty]≃ =Ed

[tx]≃. By Lemma 6.1, we obtain that [ty]≃ = [tx]≃, which implies tx ≃ ty.

We have that can(C[t1, . . . , tk]) = D[t1, . . . , tk] = ty ≃ tx, which is what we had to show.

2. if C[[t1]≃, . . . , [tk]≃] 6=Ed
[tx]≃ for some 1 ≤ x ≤ k, then D[[t1]≃, . . . , [tk]≃] 6=Ed

[tx]≃ for all
1 ≤ x ≤ k as well.

Therefore D cannot be a hole x for some 1 ≤ x ≤ k. This implies domain(C[t1, . . . , tk]) =
domain(D[t1, . . . , tk]) = d. As [C[t1, . . . , tk]]d≃ = C[[t1]≃, . . . , [tk]≃] =Ed

D[[t1]≃, . . . , [tk]≃] =
[D[t1, . . . , tk]]d≃, we obtain by Lemma A.6 that D[t1, . . . , tk] ≃ C[t1, . . . , tk]. But we have
can(C[t1, . . . , tk]) = D[t1, . . . , tk] and therefore can(C[t1, . . . , tk]) ≃ C[t1, . . . , tk], which is
what we had to show.

A.1.4 Main Proof

We have now proved all technical results and we are ready to get into the main proof. We show
that a rewrite step performed at the top of a term preserves the ≃ relation between the canonical
forms.

Lemma A.19. If l ≈ r ∈ E is an identity and σ is a substitution, we have that can(lσ) ≃ can(rσ).

Proof. As l ≈ r ∈ E, we have that there exists d ∈ {a, b} such that l ≈ r ∈ Ed.
We have that

[can(lσ)]d≃ = [can(lcan(σ))]d≃ (Corollary A.1)
=Ed

[lcan(σ)]d≃ (Corollary A.2)
= l[can(σ)]d≃ (Definition of [·]d≃).
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We obtained that [can(lσ)]d≃ = l[can(σ)]d≃. By a similar reasoning, we have that [can(rσ)]d≃ =Ed

r[can(σ)]d≃. But as l ≈ r ∈ Ed, trivially have that r[can(σ)]d≃ =Ed
l[can(σ)]d≃. Therefore we

conclude that
[can(lσ)]d≃ =Ed

[can(rσ)]d≃. (A.10)

Let t1, . . . , tk be terms with domain(ti) 6= d (for any 1 ≤ i ≤ k) such that

x(can(σ)) = Cx[t1, . . . , tk]

for some pure d-context Cx for any variable x ∈ Dom(σ). Then there exist pure d-contexts C,D
such that lcan(σ) = C[t1, . . . , tk], rcan(σ) = D[t1, . . . , tk], [lcan(σ)]d≃ = C[[t1]≃, . . . , [tk]≃] and
[rcan(σ)]d≃ = D[[t1]≃, . . . , [tk]≃].

We will show that C[[t1]≃, . . . , [tk]≃] =Ed
D[[t1]≃, . . . , [tk]≃]. Indeed, as l and r a pure d-

terms, we have by Lemma A.1 that [lcan(σ)]d≃ = l[can(σ)]d≃ and that [rcan(σ)]d≃ = r[can(σ)]d≃. As
l ≈ r ∈ Ed, we have that l[can(σ)]d≃ =Ed

r[can(σ)]d≃. Therefore [lcan(σ)]d≃ =Ed
[rcan(σ)]d≃. But

[lcan(σ)]d≃ = C[[t1]≃, . . . , [tk]≃] and [rcan(σ)]d≃ = D[[t1]≃, . . . , [tk]≃] and therefore

C[[t1]≃, . . . , [tk]≃] =Ed
D[[t1]≃, . . . , [tk]≃].

We will now show that domain(can(lcan(σ))) = domain(can(rcan(σ))). We distinguish between
two cases:

1. if C[[t1]≃, . . . , [tk]≃] =Ed
[tx]≃ or if D[[t1]≃, . . . , [tk]≃] =Ed

[tx]≃ for some 1 ≤ x ≤ k, we have
that

C[[t1]≃, . . . , [tk]≃] =Ed
[tx]≃ =Ed

D[[t1]≃, . . . , [tk]≃]

since we have already shown C[[t1]≃, . . . , [tk]≃] =Ed
D[[t1]≃, . . . , [tk]≃].

By Lemma A.18 we obtain that can(lcan(σ)) = can(C[t1, . . . , tk]) ≃ tx and that can(rcan(σ)) =
can(D[t1, . . . , tk]) ≃ tx. Therefore we have that domain(can(lcan(σ))) = domain(tx) and
that domain(can(rcan(σ))) = domain(tx) which immediately implies what we want to show:
domain(can(lcan(σ))) = domain(can(rcan(σ))).

2. otherwise, C[[t1]≃, . . . , [tk]≃] 6=Ed
[tx]≃ and D[[t1]≃, . . . , [tk]≃] 6=Ed

[tx]≃ for any 1 ≤ x ≤ k.
By Lemma A.18, we obtain that can(lcan(σ)) = can(C[t1, . . . , tk]) ≃ C[t1, . . . , tk] and that
can(rcan(σ)) = can(D[t1, . . . , tk]) ≃ D[t1, . . . , tk].

Neither of the contexts C and D can be a hole i (for any 1 ≤ i ≤ k) since otherwise
C[[t1]≃, . . . , [tk]≃] = [ti]≃ or D[[t1]≃, . . . , [tk]≃] = [ti]≃, which would contradict our assump-
tion.

Therefore domain(C[t1, . . . , tk]) = domain(D[t1, . . . , tk]) = d. As can(lcan(σ)) ≃ C[t1, . . . , tk]
and can(rcan(σ)) ≃ D[t1, . . . , tk], we obtain domain(can(lcan(σ))) = domain(can(rcan(σ))),
which is what we wanted to prove.

In either case, we have shown that domain(can(lcan(σ))) = domain(can(rcan(σ))). As we have
can(lcan(σ)) = can(lσ) and can(rcan(σ)) = can(rσ) by Corollary A.1, we obtain that

domain(can(rσ)) = domain(can(lσ)). (A.11)

From Equation (A.10) and Equation (A.11), we obtain by Lemma A.6 that can(lσ) ≃ can(rσ),
which is what we had to prove.

Lemma A.20. If s1 ≃ t1, . . . , sk ≃ tk and s1, . . . , sk, t1, . . . , tk are terms in canonical form, then
can(f(s1, . . . , sk)) ≃ can(f(t1, . . . , tk)).

Proof. Let the contexts C,D and the terms u1, . . . , ul be such that f(s1, . . . , sk) = C[[u1, . . . , ul]]
and f(t1, . . . , tk) = D[[u1, . . . , ul]]. Let d = domain(C) = domain(D) = domain(f) be the domain
of the function symbol f . By Lemma A.15, we distinguish between the following situations:
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1. if C[[u1]≃, . . . , [ul]≃] =Ed
[ux]≃ for some 1 ≤ x ≤ l we have that can(f(s1, . . . , sk)) = uy for

some 1 ≤ y ≤ l such that uy ≃ ux. This implies can(f(s1, . . . , sk)) ≃ ux.

By Lemma A.8, we have that f(s1, . . . , sk) ≃ f(t1, . . . , tk) and by Lemma A.6 we have that
[f(s1, . . . , sk)]d≃ =Ed

[f(t1, . . . , tk)]d≃. But [f(s1, . . . , sk)]d≃ = C[[u1]≃, . . . , [ul]≃] =Ed
[ux]≃.

Therefore [f(t1, . . . , tk)]d≃ =Ed
[ux]≃ and, by Lemma A.15, can(f(t1, . . . , tk)) = uz for some

1 ≤ z ≤ l such that uz ≃ ux. As we already have that can(f(s1, . . . , sk)) ≃ ux, we obtain
can(f(t1, . . . , tk)) ≃ can(f(s1, . . . , sk)).

2. if C[[u1]≃, . . . , [ul]≃] 6=Ed
[ux]≃ for any 1 ≤ x ≤ l we have that can(f(s1, . . . , sk)) =

f(can(s1), . . . , can(sk)).

By Lemma A.8, we have that f(s1, . . . , sk) ≃ f(t1, . . . , tk) and by Lemma A.6 we have that
[f(s1, . . . , sk)]d≃ =Ed

[f(t1, . . . , tk)]d≃. But [f(s1, . . . , sk)]d≃ = C[[u1]≃, . . . , [ul]≃] 6=Ed
[ux]≃

for any 1 ≤ x ≤ l. Therefore by Lemma A.15, can(f(t1, . . . , tk)) = f(can(t1), . . . , can(tk)).

As we have that can(f(s1, . . . , sk)) = f(can(s1), . . . , can(sk)) and also can(f(t1, . . . , tk)) =
f(can(t1), . . . , can(tk)), we immediately conclude that can(f(s1, . . . , sk)) ≃ can(f(t1, . . . , tk)).

Corollary A.3. If can(s) ≃ can(t), then can(C[s]) ≃ can(C[t]).

Proof. We show by induction on C that can(C[can(s)]) ≃ can(C[can(t)]). We distinguish among
the following cases:

1. if C = a is an atom then C[can(s)] = C[can(t)] = a and can(C[can(s)]) = a = can(C[can(t)])
from where we immediately conclude.

2. if C = 1 is the empty context, we have that C[can(s)] = can(s) and that C[can(t)] = can(t).
Therefore can(C[can(s)]) = can(can(s)) and can(C[can(t)]) = can(can(t)). By Lemma A.10,
can(can(s)) = can(s) and can(can(t)) = can(t). Therefore can(C[can(s)]) = can(s) ≃
can(t) = can(C[can(t)]), which is what we had to prove.

3. if C = f(C1, . . . , Ck), we have by the induction hypothesis that

can(Ci[can(s)]) ≃ can(Ci[can(t)]) for all 1 ≤ i ≤ k.

Therefore, by Lemma A.20, we have that

can(f(can(C1[col(s)]), . . . , can(Ck[col(s)]))) ≃ can(f(can(C1[col(t)]), . . . , can(Ck[col(t)]))),

i.e. can(C[col(s)]) ≃ can(C[col(t)]), which is what we have to prove.

We have shown that can(C[can(s)]) ≃ can(C[can(t)]). By Lemma A.12, we have that can(C[s]) =
can(C[can(s)]) and that can(C[t]) = can(C[can(t)]). As we have shown that can(C[can(s)]) ≃
can(C[can(t)]), it follows that can(C[s]) ≃ can(C[t]), which is what we had to prove.

Proposition A.1. For two terms s, t ∈ T (F ,A), we have that

s =E t iff can(s) ≃ can(t).

Proof. The reverse implication, that can(s) ≃ can(t) implies s =E t, follows by Lemma A.5 and
Lemma A.9.

For the direct implication, as s =E t, it follows that there exist an integer n ∈ N and terms
t1, . . . , tn ∈ T (F ,A) such that

s = t1 →E t2 →E t3 . . .→E tn = t.
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For any 1 ≤ i ≤ n− 1, we have that ti = Ci[liσi] and ti+1 = Ci[riσi] for some equation li ≈ ri ∈ E

(or ri ≈ li ∈ E), some context Ci and some substitution σi.
We now show that can(Ci[liσi]) ≃ can(Ci[riσi]) for all 1 ≤ i ≤ n − 1. By Lemma A.19, we

have that can(liσ) ≃ can(riσ). By Corrolary A.3, we have that can(Ci[liσ]) ≃ can(Ci[riσ]). We
have shown that can(Ci[liσi]) ≃ can(Ci[riσi]) for all 1 ≤ i ≤ n. But for all 1 ≤ i ≤ n − 1, either
ti = Ci[liσi] and ti+1 = Ci[riσi] or ti = Ci[riσi] and ti+1 = Ci[liσi]. Either way, we have that
can(ti) ≃ can(ti+1) for all 1 ≤ i ≤ n− 1.

As s = t1 and t = tn and can(ti) ≃ can(ti+1) for all 1 ≤ i ≤ n− 1, we obtain by transitivity of
≃ that can(s) ≃ can(t), which is what we had to show.

A.1.5 Linking Canonical and Collapsed Forms

We will now show that col and can are the same function up to ≃.

Lemma A.21. For any term s, we have that col(s) ≃ can(s).

Proof. By induction on the size of s.

1. if s = a is an atom, then col(s) = a = can(s) by definition and therefore col(s) ≃ can(s).

2. if s = f(t1, . . . , tl) for some function symbol f ∈ Fd of arity ar(f) = l, we have by
Lemma A.11, that can(f(t1, . . . , tl)) = can(f(can(t1), . . . , can(tl))). By the induction hy-
pothesis that col(ti) ≃ can(ti) for every 1 ≤ i ≤ l and therefore, by Lemma A.20, we have
that can(f(t1, . . . , tl)) ≃ can(f(col(t1), . . . , col(tl)))).

Let C, s1, . . . , sk be such that

f(col(t1), . . . , col(tl)) = C[[s1, . . . , sk]]

and let n1, . . . , nk be fresh names such that nx = ny iff sx ≃ sy for all 1 ≤ x, y ≤ k.

As C cannot be the empty context (by the definition of C[[s1, . . . , sk]]), we have that
s1, . . . , sk are subterms of the terms col(t1), . . . , col(tl), which implies that for all 1 ≤ i ≤ k
there exists a 1 ≤ j ≤ l such that |si| ≤ |col(tj)|. By Lemma 6.3, we have that for all
1 ≤ i ≤ l, |col(ti)| ≤ |ti|. Therefore for all 1 ≤ i ≤ k, there exists a 1 ≤ j ≤ l such that
|si| ≤ |tj |. But tj (1 ≤ j ≤ l) are strict subterms of t and therefore we can apply the
induction hypothesis on si (1 ≤ i ≤ k) to obtain that can(si) ≃ col(si) for all 1 ≤ i ≤ k.

By Lemma 6.4, as si is a subterm of some term col(t1), . . . , col(tl), we have that col(si) = si
for all 1 ≤ i ≤ k. Therefore can(si) ≃ si for all 1 ≤ i ≤ k. By Proposition A.1, we have
that sx ≃ can(sx) ≃ can(sy) ≃ sy iff sx =E sy for all 1 ≤ x, y ≤ k. Therefore nx = ny iff
sx =E sy.

We distinguish two situations:

(a) if C[[n1, . . . , nk]] =Ed
ni for some i, by definition can(f(col(t1), . . . , col(tl))) = sx for

some index 1 ≤ x ≤ k such that nx = ni. By the definition of col, we have that
col(f(col(t1), . . . , col(tl))) = sy for some index 1 ≤ y ≤ k such that ny = ni. As
nx = ni = ny we obtain that sx ≃ sy by choice of n1, . . . , nk, from which we obtain
that can(f(col(t1), . . . , col(tl))) ≃ col(f(col(t1), . . . , col(tl))). But we have already seen
that

can(f(t1, . . . , tl)) ≃ can(f(col(t1), . . . , col(tl))))

and therefore can(f(t1, . . . , tl))) ≃ col(f(col(t1), . . . , col(tl))). By Lemma 6.5 we have
that col(f(col(t1), . . . , col(tl))) = col(f(t1, . . . , tl)). Therefore we obtain what we wanted
to prove: can(f(t1, . . . , tl))) ≃ col(f(t1, . . . , tl)).
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(b) if C[[n1, . . . , nk]] 6=Ed
ni for any i, by definition we have can(f(col(t1), . . . , col(tl))) =

f(can(t1), . . . , can(tl)). We already have can(f(col(t1), . . . , col(tl))) ≃ can(f(t1, . . . , tl)).
Therefore can(f(t1, . . . , tl)) ≃ f(can(t1), . . . , can(tl)).

By the definition of col, we have that col(f(col(t1), . . . , col(tl))) = f(col(t1), . . . , col(tl)).
But by Lemma 6.5, we have that col(f(col(t1), . . . , col(tl))) = col(f(t1, . . . , tl)). There-
fore col(f(t1, . . . , tl)) = f(col(t1), . . . , col(tl)). By the induction hypothesis col(ti) ≃
can(ti) for all 1 ≤ i ≤ l and therefore f(col(t1), . . . , col(tl)) ≃ f(can(t1), . . . , can(tl)).
Therefore col(f(t1, . . . , tl)) ≃ f(can(t1), . . . , can(tl)).

We have already seen that can(f(t1, . . . , tl)) ≃ f(can(t1), . . . , can(tl)) and therefore we
conclude that can(f(t1, . . . , tl)) ≃ col(f(t1, . . . , tl)), which is what we wanted to show.

Corollary A.4. For any terms s, t we have that s =E t iff col(s) ≃ col(t).

Proof. We have that s =E t iff, by Proposition A.1, can(s) ≃ can(t). But can(s) ≃ col(s) and
can(t) ≃ col(t) by Lemma A.21. Therefore s =E t iff col(s) ≃ col(t).

We are now ready to prove the fundamental lemma:

Lemma 6.6 (Fundamental Collapse Lemma). If s =E t, then col(s) = C[[s1, . . . , sk]], col(t) =
D[[sk+1, . . . , sk+l]] such that domain(C) = domain(D) and C[n1, . . . , nk] =Ed

D[nk+1, . . . , nk+l]
where d = domain(C) and n1, . . . , nk+l are fresh names such that ni = nj iff si =E sj for all
1 ≤ i, j ≤ k + l.

Proof. If s =E t, we have that col(s) ≃ col(t) by Corollary A.4. As col(s) ≃ col(t), it follows by
Lemma A.6 that domain(col(s)) = domain(col(t)) = d for some d ∈ {a, b, c} and that [s]d≃ =Ed

[t]d≃.

Let C,D be contexts such that col(s) = C[[s1, . . . , sk]] and col(t) = D[[sk+1, . . . , sk+l]]. Let
n1, . . . , nk+l be fresh names such that nx = ny iff sx =E sy for all 1 ≤ x, y ≤ k+l. By Corollary A.4,
we obtain that nx = ny iff col(sx) ≃ col(sy) for all 1 ≤ x, y ≤ k + l.

As s1, . . . , sk+l are subterms of col(s) and col(t), it follows by Lemma 6.4 that col(si) = si for
all 1 ≤ i ≤ k + l. Therefore we obtain that nx = ny iff sx ≃ sy for all 1 ≤ x, y ≤ k + l.

As [s]d≃ =Ed
[t]d≃, we have that C[[s1]≃, . . . , [sk]≃] =Ed

D[[sk+1]≃, . . . , [sk+l]≃]. As nx = ny
iff sx ≃ sy (for all 1 ≤ x, y ≤ k + l), the replacement σ = {[sx] 7→ nx}1≤x≤k+l is well-
defined. As Ed is stable by replacement of atoms by terms, we obtain that C[[s1]≃, . . . , [sk]≃]σ =Ed

D[[sk+1]≃, . . . , [sk+l]≃]σ. This is equivalent to C[n1, . . . , nk] =Ed
D[nk+1, . . . , nk+l], which is what

we wanted to prove.

A.2 Proof of Lemma 6.13

This section consists of the proof of Lemma 6.13.

Lemma 6.13. If P is a trace over the d-domain and

(P, ∅, ∅)
§1
−→F,E (P1, ϕ1, σ1)

§2
−→F,E . . .

§n
−→F,E (Pn, ϕn, σn)

then

(P, ∅, ∅)
§′1−→Fd,Ed

(P1, ϕ
′
1, σ

′
1)

§′2−→Fd,Ed
. . .

§′n−→Fd,Ed
(Pn, ϕ

′
n, σ

′
n))

for some ϕ′n, σ
′
n and §′ such that ϕn ⊢E xσn implies ϕ′n ⊢Ed

xσ′n and xσn =E yσn implies
xσ′n =Ed

yσ′n for all x, y ∈ Dom(σn).
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Proof. We assume w.l.o.g. that d = a since the case where d = b is analogous. Let init/0 be any
constant in Fa. The idea is to obtain the second trace from the first trace by abstracting any
elements that starts with a symbol from Fb by the constant init. This abstraction is formalized
by the function abs, which is defined inductively on ground terms as follows:

1. abs(f(t1, . . . , tk)) = f(abs(t1), . . . , abs(tk)) if f ∈ Fa

2. abs(f(t1, . . . , tk)) = init if f ∈ Fb

The function abs enjoys the following two properties:

Claim A.1. If s =E t and s and t are collapsed, we have that abs(s) =Ea
abs(t).

Proof. Let s = C[[s1, . . . , sk]] and t = D[[sk+1, . . . , sk+l]]. As s =E t and s and t are collapsed, by
Lemma 6.6, we have that root(C) and root(D) come from the same signature Fd. If d = b, then
abs(s) = abs(t) = init and we are done.

Otherwise c = a and abs(s) = C[init, . . . , init] and abs(t) = D[init, . . . , init]. By Lemma 6.6,
we have that C[n1, . . . , nk] =Ea

D[nk+1, . . . , nk+l], where {ni}1≤i≤k+l are fresh names such that
nx = ny iff sx =E sy for all 1 ≤ x, y ≤ k + l. As E is stable by replacement of arbitrary terms for
names, we have that C[n1, . . . , nk]{ni 7→ init}1≤i≤k =Ea

D[nk+1, . . . , nk+l]{ni 7→ init}k+1≤i≤k+l

and therefore abs(s) =Ea
abs(t).

Claim A.2. If t is a pure Fa term and σ is a collapsed substitution, we have that abs(col(tσ)) =Ea

abs(tσ).

Proof. We do the proof by induction on the size of tσ. If t is a variable then col(tσ) = tσ (since
we assumed σ to be collapsed) and we are done. Otherwise, root(t) ∈ Da. Let t = f(t1, . . . , tk).
We distinguish two cases by the definition of col:

1. either col(tσ) = col(f(t1σ, . . . , tkσ)) = f(col(t1σ), . . . , col(tkσ)), in which case we can easily
conclude by the induction hypothesis

2. or f(col(t1σ), . . . , col(tkσ)) = C[[s1, . . . , sl]] for some context C and some terms s1, . . . , sl
such that C[[n1, . . . , nl]] =E nx for some 1 ≤ x ≤ l. In this case, col(tσ) = sx.

We have therefore by Claim A.1 that abs(col(tσ)) = abs(sx) = init. By the induction
hypothesis, we have that abs(tσ) =Ea

f(abs(col(t1σ)), . . . , abs(col(tkσ))). By the defi-
nition of abs, the latter is equal to abs(f(col(t1σ), . . . , col(tkσ))). Therefore abs(tσ) =
abs(f(col(t1σ), . . . , col(tkσ))) and we obtain abs(tσ) = abs(C[s1, . . . , sl]) = C[init, . . . , init].
As E is stable by replacement of names for terms and C[[n1, . . . , nl]] =E nx, it follows that
C[init, . . . , init] =E init. and therefore we can conclude abs(col(tσ)) =Ea

abs(tσ).

We now define σ′i and ϕ′i (for 1 ≤ i ≤ n). We assume w.l.o.g. that σi and ϕi are collapsed
(1 ≤ i ≤ n) and let σ′i(x) = abs(σ(x)) and ϕ′i(w) = abs(ϕ(w)) (for all 1 ≤ i ≤ n, x ∈ Dom(σi),
w ∈ Dom(ϕi)).

Definition A.6. We say that a collapsed term t = C[[t1, . . . , tk]] is i-good (1 ≤ i ≤ n) if there
exist pure Fa recipes r1, . . . , rk such that ϕ′i ⊢

rj
Ea

abs(tj) and if tj is an i-good term (1 ≤ j ≤ k).

It is easy to see that a (i − 1)-good term is also an i-good term. We now prove by induction
on i that there exist §′1, . . . , §

′
i such that the recipes in §′1, . . . , §

′
i are pure Fa-recipes and:

(P, ∅, ∅)
§′1→ (P1, ϕ

′
1, σ

′
1)
§′2→ . . .

§′i→ (Pi, ϕ
′
i, σ

′
i)

and that ϕi(w) and σi(x) are i-good (for all w ∈ Dom(ϕi) and for all x ∈ Dom(σi)). We proceed
with the proof distinguish among the possible actions at step i:
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1. if the i-th action is νx, then §i is the empty string. We choose §′i also to be the empty string.

By the operational semantics, we have that σi = σi−1 ∪{x 7→ n} for some fresh name n. We
only need to show that σi(x) is an i-good term, since the other terms are i-good directly by
the induction hypothesis. We consider the context C = n (a context with 0 holes) and k = 0
in the definition of i-good and we can trivially conclude that σi(x) is i-good.

We also need to establish that the transition works, which is obviously the case, since σ′i(x) =
abs(σi(x)) = n.

2. if the i-th action is an assignment x := t, then §i is the empty string. We choose §′i also as
the empty string.

By the operational semantics, we have that σi = σi−1 ∪ {x 7→ col(tσi−1)}. As t is a term
appearing in the protocol, it is a pure Fa-term.

Let C be the context obtained from t by replacing all variables with holes. Then σi(x) =
C[t1, . . . , tk] for some i-good terms tj (1 ≤ j ≤ k) – the terms tj are equal to σi−1(yj) for

some yj ∈ Dom(σi−1) (1 ≤ j ≤ k). Let tj = Cj [[t
j
1, . . . , t

j
kj

]].

If C is the empty context we have that σi(x) = σi−1(y) for some y ∈ Dom(σi−1) and
therefore we can conclude by the induction hypothesis.

Otherwise, if C 6= , let d be such that root(C) ∈ Fd. For 1 ≤ j ≤ k, let C ′j = Cj if root(Cj) ∈
Fd and let Cj = otherwise. Let C ′ = C[C ′1, . . . , C

′
k]. We have that tσi−1 = C ′[[s1, . . . , sl]]

such that sj is an i-good term (each sj (1 ≤ j ≤ l) is either some tj′ (1 ≤ j′ ≤ k) which is

i-good by the induction hypothesis or some tj
′

z (1 ≤ j′ ≤ k, 1 ≤ z ≤ kj′) which is i-good
because it is an alien term of tj′ , which is i-good by the induction hypothesis).

Then col(tσi−1) is either equal to some sj (1 ≤ j ≤ l) or to C[s1, . . . , sl]. In the first case, we
conclude because we have already seen that all sj (1 ≤ j ≤ l) are i-good. In the second case,
we have that root(C) ∈ Fa and therefore root(sj) ∈ Fb (1 ≤ j ≤ l). Therefore abs(sj) = init
and it is sufficient to choose rj = init to obtain ϕ′i ⊢

rj
Ea

abs(sj) (1 ≤ j ≤ l). Furthermore
we already know that all sj are i-good and therefore we can conclude that C[s1, . . . , sl] is
i-good.

We also need to show that this transition in the conclusion works, i.e. that xσ′i =Ea
tσ′i−1.

We know that col(xσi) =E col(tσi−1) (by the hypothesis). We also have that xσ′i = abs(xσi)
and that tσ′i−1 = abs(tσi−1). Using Claim A.2 and Claim A.1, we immediately conclude.

3. if the i-th action is a test [s = t], then §i is the empty string. We choose §′i also as the empty
string.

As ϕi = ϕi−1 and σi = σi−1, it is sufficient to show that sσ′i−1 =Ea
tσ′i−1. But sσ′i−1 =

abs(sσi−1) and tσ′i−1 = abs(tσi−1) by the definition of σ′i−1 and abs.

By Claim A.2 we have that abs(col(sσi−1)) =Ea
abs(sσi−1) and analogously for t.

We conclude by Claim A.1 that col(tσi−1) =E col(sσi−1) (which is true by the hypothesis)
implies abs(col(tσi−1)) =Ea

abs(col(sσi−1)).

4. if the i-th action is an output send(t), we have that ϕi = ϕi−1∪{w|Dom(ϕ)|+1 7→ col(tσi−1)}
and that §i is the empty string. We choose §′i also as the empty string.

We first have to establish that ϕi(w|Dom(ϕ)|+1) = col(tσi−1) is an i-good term, which is
exactly the same as in the case of the assignment x := t (see second item above).

We also have to establish that this transition works in the conclusion, i.e. that ϕ′i(w|Dom(ϕ)|+1) =Ea

tσ′i−1 knowing that ϕi(w|Dom(ϕ)|+1) = col(tσi−1) (i.e. that the transition works in the
hypothesis). We can conclude by Claim A.2 (ϕ′i(w|Dom(ϕ)|+1) = abs(ϕi(w|Dom(ϕ)|+1)) =
abs(col(tσi−1)) =Ea

abs(tσi−1) = tσ′i−1).
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5. if the i-th action is an input receive(x), we have that σi = σi−1 ∪ {x 7→ col(rϕi−1)} for
some recipe r such that §i = receive(r).

We prove by induction on r that col(rϕi−1) is an i-good term and at the same time we con-
struct a pure Fa-recipe r′ such that r′ϕ′i−1 =Ea

abs(rϕi−1). We choose §i to be receive(r′).
This means in particular that the transition in the hypothesis will work (xσ′i =Ea

r′ϕ′i−1).

Therefore all we need is the proof of i-goodness and the construction of r′ by induction.

(a) base case: If r is a parameter w ∈ W, we have that rϕi−1 is i-good by the induction
hypothesis (the outer induction). We choose r′ = w and we obtain r′ϕ′i−1 = wϕ′i−1 =
abs(wϕi−1) = abs(rϕi−1).

(b) Let rϕi−1 = C[[t1, . . . , tk]]. Let c be such that root(C) ∈ Fc.

Each tj (1 ≤ j ≤ k) is such that tj = rjϕi−1 for some recipe rj ⊂ r or an alien
subterm of ϕi−1(w) for some parameter w ∈ Dom(ϕi−1). In the first case we know
that tj = col(tj) is an i-good term by the outer induction hypothesis (tj is an alien
subterm of ϕi−1(w) for some w ∈ Dom(ϕi−1)) and in the second case we that col(tj) is
an i-good term by the inner induction hypothesis. Similarly, there exist pure Fa-recipes
over ϕ′i−1 for abs(col(tj)).

Let col(tj) = Cj [[t
j
1, . . . , t

j
kj

]] and let C ′j = Cj if root(Cj) ∈ Fc and let C ′j = otherwise

(1 ≤ j ≤ k). Let C ′ = C[C1, . . . , Ck]. As tjj′ are the alien subterms of an i-good term,

it follows that tjj′ are i-good terms (1 ≤ j ≤ k, 1 ≤ j′ ≤ kj) and there exist pure

Fa-recipes over ϕ′i−1 for abs(tjj′).

Then rϕi−1 = C ′[[s1, . . . , sl]] where each sj (1 ≤ j ≤ l) is either some tj′ (1 ≤ j′ ≤ k)

or some tj
′

z (1 ≤ j′ ≤ k, 1 ≤ z ≤ kj′). In either case sj (1 ≤ j ≤ l) are i-good terms
and there exist pure Fa-recipes over ϕ′i−1 for abs(sj). As col(rϕi−1) is

i. either some sj , in which case we conclude directly that it is an i-good term and
there is a pure Fa-recipe over ϕ′i−1 for abs(sj)

ii. or it is C ′[[s1, . . . , sl]], in which it is also easy to establish that C ′[[s1, . . . , sl]] is
an i-good term (its alien subterms are i-good terms and there are pure Fa-recipes
over ϕ′i−1 for their abstractions).
We also need to show that there is a pure Fa-recipe over ϕ′i−1 for C ′[[s1, . . . , sl]].
In the case root(C ′) ∈ Fb, we simply choose the recipe r′ = init. Otherwise, if
root(C ′) = root(r) = f ∈ Fa and r = f(r1, . . . , rm), we let r′ = f(r′1, . . . , r

′
m). It is

then easy to show by induction that r′ϕ′i−1 =Ea
abs(rϕi−1).


