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Abstract/Résumé

Abstract

In this thesis we study the flat model, the main buidling block for the spinfoam ap-
proach to quantum gravity, with an emphasis on its divergences. Besides a personal
introduction to the problem of quantum gravity, the manuscript consists in two part.
In the first one, we establish an exact powercounting formula for the bubble divergences
of the flat model, using tools from discrete gauge theory and twisted cohomology. In
the second one, we address the issue of spinfoam continuum limit, both from the lattice
field theory and the group field theory perspectives. In particular, we put forward a
new proof of the Borel summability of the Boulatov-Freidel-Louapre model, with an
improved control over the large-spin scaling behaviour. We conclude with an outlook
of the renormalization program in spinfoam quantum gravity.

Résumé

L’objet de cette thèse est l’étude du modèle plat, l’ingrédient principal du programme
de quantification de la gravité par les mousses de spins, avec un accent particulier sur
ses divergences. Outre une introduction personnelle au problème de la gravité quan-
tique, le manuscrit se compose de deux parties. Dans la première, nous obtenons une
formule exacte pour le comptage de puissances des divergences de bulles dans le modèle
plat, notamment grâce à des outils de théorie de jauge discrète et de cohomologie tor-
due. Dans la seconde partie, nous considérons le problème de la limite continue des
mousses de spins, tant du point de vue des théorie de jauge sur réseau que du point
de vue de la group field theory. Nous avano̧ns en particulier une nouvelle preuve de la
sommabilité de Borel du modèle de Boulatov-Freidel-Louapre, permettant un contrôle
accru du comportement d’échelle dans la limite de grands spins. Nous concluons par
une discussion prospective du programme de renormalisation pour les mousses de spins.
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On mathematical rigor

The level of mathematical rigor of the considerations presented in this thesis is variable:
while the chapters 3 to 5 and 7 are precise (in the sense of mathematical physics), the
chapters 2 and 6 contain many formal or heuristic arguments. This variability is consis-
tent with my conviction that, in physics, certain matters are more efficiently addressed
at the formal level, while others do require a full-fledged mathematical analysis.

Notations

For more clarity, we will therefore reserve the sign = for mathematical identites, and
will use the sign

.
= for formal identities. The symbol := will denote a definition, and

∼ an asymptotic equivalence.
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Et bien sûr, merci à mes parents, pour la première cellule, et pour les autres.
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Chapter 1

Introduction

1.1 Le problème de la gravité quantique

Aux yeux de la majorité des physiciens, la gravité quantique est et demeure un oxy-
more. Comment croire qu’une théorie quantique de l’interaction gravitationnelle soit
seulement possible, quand les méthodes de quantification perturbative sont vouées à
l’échec, en raison de la non-renormalisabilité du couplage entre gravitons1 [60] ? Quand
les approches non-perturbatives, théories des boucles [119, 132] ou des cordes [61, 98]
notamment, faillent à se montrer prédictives ? Quand les apports expérimentaux sont
inexistants, et pour longtemps sans doute ? Quatre-vingts ans après les premiers tra-
vaux de Rosenfeld et Bronstein [117], on est en droit de se demander si le programme de
quantification de la relativité générale n’est pas obsolète. Des voix aujourd’hui s’élèvent
pour réclamer [76] – et parfois proposer [138] – un changement de paradigme.

Quel est au fond le problème de la gravité quantique ? La physique contemporaine,
on le sait, donne à voir deux images du monde. L’une, soutenue par la théorie de la
relativité générale [85, 141], fait de l’univers un “mollusque” [42] dynamique au sein
duquel l’espace, le temps et la matière s’influencent mutuellement, selon les équations
locales et déterministes d’Einstein. L’autre, inspirée des règles opérationnelles de la
mécanique quantique [20], présente la matière comme étant animée de singulières fluc-
tuations, gouvernées par des lois holistiques et aléatoires. Au plan épistémologique, le
problème de la gravité quantique est donc un problème d’unification : il s’agit d’élaborer
une théorie capable de concilier les caractères apparemment contradictoires de la rela-
tivité générale et de la mécanique quantique – quelque chose comme la description d’un
espace-temps-matière fluctuant. La nécessité de cette unification se fait jour dès lors
qu’on considère la structure globale [72] d’un espace-temps relativiste. Si l’on s’en tient
à une description purement classique de la matière, par un tenseur d’énergie-impulsion
satisfaisant une condition d’énergie, les théorèmes de singularité d’Hawking-Penrose
[72, 141] montrent en effet qu’un tel espace-temps contient nécessairement une singu-
larité : une région où les géodésiques s’arrêtent, purement et simplement. Qu’elle passe
par des violations des conditions d’énergie [84] ou plus radicalement par le dépassement
de la relativité générale, la solution de cette “catastrophe spatio-temporelle” – comme
la divergence du potentiel de Coulomb en électrostatique ou de l’énergie thermique de
la radiation – fera certainement intervenir la mécanique quantique.

1Ceci n’excluant pas la possibilité de prédictions quantitatives à basse énergie, dans le cadre de la
théorie des champs effective [33].



6 Introduction

Le problème de la gravité quantique est aussi un problème de relativisation. On sait
comment les relativités galiléenne, restreinte et générale ont évacué de l’appareil concep-
tuel de la physique ces “idoles” [46] que sont, respectivement, l’espace absolu, le temps
absolu, et l’espace-temps absolu. De la même façon, la mécanique quantique a déposé
le concept d’état absolu, le remplaçant par celui, plus participatif, d’opération (ou ac-
tion [47], préparation/mesure [139], interaction [116], relation [25]...). L’enjeu d’une
théorie de la gravité quantique est de croiser et de prolonger ces relativisations. Pour
reprendre une image de Rovelli, avec la relativité générale (pour laquelle l’occurence
d’un événement est absolue), et la mécanique quantique (dans laquelle l’espace-temps
est donné a priori), nous sommes seulement “half-way through the woods” [117]. Les
résultats préliminaires de Hawking [71] et de Unruh [135], dans le cadre de la théorie
quantique des champs sur espace-temps courbes [140] (où l’on néglige la rétro-action
des champs quantiques sur l’espace-temps), suggèrent que cette nouvelle relativisation
affectera notamment les notions de particules, de température et d’entropie.

Enfin, et surtout, le problème de la gravité quantique est un problème physique. Loin
de se confiner à des spéculations extrapolant, malmenant parfois, notre connaissance de
l’univers,2 il perce dans de nombreuses questions issues de l’expérience, à la signification
opérationnelle claire, et dont nous ignorons la réponse :

• La pression de Casimir gravite-t-elle [56] ?

• Existe-t-il un Lamb shift gravitationnel [142] ?

• La propagation de la lumière dans le vide est-elle dispersive [3] ?

• La symétrie de Lorentz est-elle brisée [77] ? Déformée [4] ?

• ...

En un mot, nous ignorons la nature de la relation entre matière et espace-temps. A
mon sens, c’est ce problème fondamental – et pas un autre3 – qui devra être résolu par
une théorie de la gravité quantique. Qu’elle se présente comme une quantification de
la relativité générale ou pas, celle-ci n’aura rien d’un oxymore.

1.2 Quantification ou émergence ?

Pour aborder le problème de la gravité quantique, les approches théoriques s’organisent
en deux categories, que je qualifierais de réductionnistes et émergentistes. Les premières
proposent de réduire le problème de la gravité quantique à celui de la description de
la dynamique de l’espace-temps lui-même, dans un premier temps sans tenir compte
de la présence de la matière (la gravité pure). Elles se fondent en cela sur l’antique
dichotomie entre matière et géométrie, préservée dans la cinématique relativiste : l’ac-
tion d’Einstein-Hilbert est fonction de deux types de champs distincts – la métrique

2Exemples : la supersymétrie, le big bounce, le scénario ekpyrotique, le principe holographique, les
dimensions supplémentaires, la discrétude de l’espace-temps...

3Parmi les problèmes qui ne sont pas directement relié au problème de la gravité quantique, citons :
l’interprétation de la mécanique quantique, le problème de la constante cosmologique, les divergences
ultraviolettes en théorie quantique des champs, les conditions initiales en cosmologie, le problème du
temps, de la flèche du temps, etc.
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lorentzienne d’espace-temps d’une part, et les champs de matière d’autre part. La gra-
vité quantique à boucles, dont il sera question dans cette thèse, fait partie de cette
catégorie : elle s’attache à quantifier l’espace-temps, comme une champ dynamique à
part entière, avec ses degrés de liberté propres (dont les ondes gravitationnelles sont
la manifestation perturbative). Elle marche en cela dans les pas de Dirac, Feynman,
Wheeler, DeWitt etc. [118] : pour la théorie des boucles, l’espace-temps est un champ
classique comme les autres, qui doit être quantifié indépendamment de la matière.

Les approches émergentistes [138, 75, 133], initiées par Sakharov [126], prennent
le point de vue inverse : l’espace-temps n’existe qu’en présence d’un substrat micro-
scopique, matériel ou non, et apparâıt comme un type original de propriété collec-
tive. Les troublantes relations entre gravité et thermodynamique découvertes dans le
contexte de la mécanique des trous noirs, et approfondies par Jacobson [76] et Padma-
nabhan [133] grâce à l’interprétation des équations d’Einstein comme des équations
d’état, donne un crédit important à ce point de vue. (On trouve également une
forme d’émergentisme dans la théorie des cordes, pour laquelle les équations d’Ein-
stein semblent apparâıtre comme condition de cohérence pour la dynamique de cordes
supersymétriques.) Face aux difficultés rencontrées par les tentatives réductionnistes
de quantification de l’espace-temps, cet émergentisme apparâıt comme un contrepoint
salutaire. Cela étant, les résultats de Jacobson, Padmanabhan et d’autres dans cette
direction restent trop fragmentaires pour constituer un véritable “changement de pa-
radigme”, et en particulier ne prouvent pas que le “champ gravitationnel ne doit pas
être quantifié” [137]. Gageons simplement que les relations entre thermodynamique et
gravité seront naturellement intégrées dans une théorie future de la gravité quantique.4

Dans cette thèse, je m’inscrirai donc dans le cadre de la théorie des boucles,
conscient de l’hypothèse réductionniste qui la sous-tend. Rappelons aux sceptiques que
la procédure de quantification des champs classiques a été donnée pour morte à deux
reprises (dans les années 40, en raison des divergences ultraviolettes, puis dans les
années 60, à cause du fantôme de Landau) – et qu’elle est toujours bien vivante. La
non-renormalisabilité du développement perturbatif, dans le cas de la gravité, n’est
peut-être pas davantage rédhibitoire : elle indiquerait simplement qu’il faut non seule-
ment quantifier, mais aussi quantifier intelligemment.

1.3 Quantification et troncation

Si l’on considère le champ gravitationnel comme un champ classique fondamental,
comme les champs de Maxwell ou de Dirac, le problème de la gravité quantique consiste
à élaborer une procédure de quantification de l’espace-temps. On insiste souvent sur le
fait qu’une telle quantification est radicalement originale, en ceci qu’elle doit s’opérer
sans le cadre cinématique de la relativité restreinte (référentiels inertiels et transfor-
mations de Lorentz) ; on dit qu’elle doit être “background independent”. Les difficultés
propres à cette situation ont été soulignées par de nombreux auteurs, parmi lesquelles
Rovelli fait figure de référence. Je renvoie à son livre [119] pour une excellente discussion
de cet aspect.

4Certains chercheurs, à commencer par Einstein [41], ont imaginé une forme d’émergence inverse :
la matière serait une structure interne à l’espace-temps. Un scénario de ce type est étudié aujourd’hui
en théorie des boucles [24], ce qui montre que, dans ce contexte en tous cas, réduction et émergence
ne s’excluent pas nécessairement.



8 Introduction

Il est pourtant un aspect de la quantification de la métrique d’espace-temps qui
est similaire à celle des champs de matière usuels, au sein du modèle standard de
la physique des particules. Il s’agit de la nécessité de procéder à une troncation de
l’ensemble des degrés de liberté dynamiques. Comme l’électrodynamique ou la chro-
modynamique, la géométrodynamique (la relativité générale) est en effet une théorie
non-linéaire. Ceci signifie qu’il est impossible de scinder les équations du mouvement
en composantes indépendantes, comme on peut le faire par l’analyse de Fourier dans le
cas du champ libre de Klein-Gordon. Tous les degrés de liberté du champ sont couplés
entre eux, sans hiérarchie apparente.

Nous ignorons comment quantifier une telle infinité de degrés de liberté en inter-
action. Pour progresser vers une théorie quantique prédictive, il faut donc procéder à
une troncation de l’espace des phases, par laquelle on isole certains degrés de liberté,
identifiés comme plus pertinents pour le régime expérimental d’intérêt. On établit par
cette opération un schéma d’approximation, qui est d’autant plus fin que le nombre de
degrés de libertés conservés est important. Plusieurs type de troncation sont utilisées
couramment en physique des hautes énergies :

1. Le développement perturbatif [97]. Dans les théories faiblement couplées, comme
l’électrodynamique à basse énergie ou la chromodynamique à haute énergie, ou
peut utiliser le nombre de particules pour tronquer l’espace des phases. Rappelons
qu’une particule (virtuelle) est un mode de Fourier du champ, représentant un
état dans l’espace de Fock du champ libre correspondant. Le développement
perturbatif consiste à organiser les amplitudes quantiques en série de termes au
nombre de particules croissants. On tronque habituellement cette série à l’ordre 1
pour une première estimation des corrections quantiques, et à l’ordre ∼ 10 pour
les calculs les plus précis.

2. La discrétisation sur réseau [112]. Pour étudier les phénomènes résultant d’in-
teractions fortes entre particules élémentaires, comme le confinement des quarks
et des gluons au sein des hadrons, le développement perturbatif est inopérant.
Avec l’avènement des calculateurs numériques puissants, la troncation la plus
utile dans ce contexte est la discrétisation sur réseau : on réduit l’espace-temps
à un nombre fini de points sur un graphe régulier, séparés par une distance a
infime par rapport à la dimension caractéristique du phénomène que l’on sou-
haite étudier (la masse du hadron, par exemple). Dans cette approche, toutes les
fluctuations d’échelle inférieure à a sont supprimées.

3. Factorisation des symétries de jauge. Il existe une classe de théories de champs,
telles les célèbres théories de champs topologiques [12], dans lesquelles le nombre
infini de degrés de liberté est imputable à une symétrie de jauge. La réduction de
cette symétrie de jauge réduit le système à un nombre fini de degrés de libertés,
qu’on peut quantifier par les méthodes usuelles de mécanique quantique. A pro-
prement parler, cette opération n’est pas une troncation de l’espace des phases,
puisque les degrés de libertés éliminés sont redondants. Aucune information phy-
sique n’est donc perdue.

Dans le développement perturbatif et la mise sur réseau, la troncation d’un nombre
infini de degrés de liberté ne peut se faire sans tenir compte de leur résultante effective
sur les degrés de libertés préservés. Cette opération, qualifiée traditionnellement de
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renormalisation [104] dans le premier cas et de groupe de renormalisation [144] dans le
second, est à l’origine de l’essentiel des difficultés techniques et conceptuelles liées à la
troncation de l’espace des phases. Son résultat, la définition de constante de couplages
“habillées” ou “d’actions parfaites”, dépendant de l’échelle, doit s’interpréter comme la
condition de cohérence d’un schéma de troncation associant échelles spatiales et force
des interactions.

Comme tout schéma d’approximation, la troncation possède une limite exacte,
dans laquelle le couplage entre tous les degrés de libertés est rétabli. Dans le cas du
développement pertubatif, la définition et l’étude de cette limite est le sujet de la
théorie constructive [103] ; dans les approches sur réseau, on parle de limite continue.

Un point important à noter concernant cette limite exacte est la forme qu’elle prend
dans les cas 1 et 2, respectivement. La limite constructive du développement pertubatif
est essentiellement une somme : pour caricaturer un processus en vérité très subtil (et
sur lequel nous reviendrons plus tard), on peut dire qu’il s’agit d’ajouter la valeur de
tous les diagrammes de Feynman, à tous les ordres. La limite continue des théorie sur
réseau, à l’inverse, s’obtient en raffinant le graphe. Les deux schémas de troncation
apparaissent donc techniquement très différents, même s’ils correspondent tous deux à
l’élargissement de la section d’espace des phases préservée par la troncation.

En gravité quantique comme dans le modèle standard, il est nécessaire d’opérer une
troncation des degrés de liberté contenu dans la métrique pour réaliser la quantification
des équations d’Einstein. On peut considérer que la singulière difficulté de la gravité
quantique réside dans le fait qu’aucun des schémas cités précédemment ne s’applique
au cas de la relativité générale.

1. Non-renormalisabilité du développement perturbatif. La quantification perturba-
tive de la relativité générale, fondée sur le concept de graviton, consiste à supposer
que la métrique d’espace-temps fluctue peu autour de la métrique de Minkowski.
Ceci conduit à un développement des amplitudes en puissances de la constante de
Newton G pour lequel la procédure de renormalisation n’est pas close. Technique-
ment, on montre que l’interaction des gravitons entre eux est non-renormalisable.
En présence d’un cutoff en énergie Λ, on peut toutefois construire une théorie de
champs effective [33], consistant en un double développement en G et Λ. Celle-ci
permet de calculer notamment les premières corrections quantiques au potentiel
gravitationnel de Newton, mais ne possède pas de limite ultraviolette exacte.

2. Absence d’une métrique de fond. La mise sur réseau de la relativité générale est
rendue impossible par le fait qu’aucune métrique de fond ne permet de définir
le pas du réseau a. Cette voie de troncation est donc exclue pour la gravité
quantique.

3. Présence d’une infinité de degrés de liberté physiques. Même s’il est vrai que
quatre des six degrés de liberté par point de la métrique (en quatre dimen-
sions) sont redondants, du fait de la symétrie par difféomorphisme de la rela-
tivité générale, deux degrés de liberté par point sont physiques et doivent être
quantifiés. C’est dire que la relativité générale n’est pas à l’image de la théorie
de Chern-Simons [145] ou de la théorie BF [74] : son espace des phases réduit est
de dimension infinie.
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Une contribution essentielle à l’élaboration d’un schéma de troncation de la rela-
tivité générale qui dépasse ces difficultés est due à Regge [100]. S’appuyant sur une
triangulation ∆ de la variété d’espace-temps, il a en effet découvert une approxima-
tion simple de l’action d’Einstein-Hilbert, s’exprimant en fonction de la longueur le
des arêtes des simplex : pour un espace-temps de dimension d, notant t ∈ ∆d−2 un
(d − 2)-simplex (un “os” ou “charnière”) de ∆, At(le) son volume euclidien et ϵt(le)
l’angle de déficit autour de t, l’action de Regge s’écrit5

SR(le) =
∑

t∈∆d−2

At(le)ϵt(le). (1.1)

et approche l’action de Einstein-Hilbert d’autant mieux que le nombre de d-simplexes
est grand. Cette observation est aujourd’hui au fondement de plusieurs approches à
la gravité quantique, parmi lesquelles on peut citer la théorie des triangulations dyna-
miques causales [2] et le calcul de Regge quantique [143].

Un aspect remarquable de l’approche de Regge est sa capacité à décrire une
géométrie quadrimensionnelle sans devoir recourir à un choix de jauge, c’est-à-dire
de coordonnées sur l’espace-temps [120]. En localisant la courbure sur les “os” d’une
triangulation, elle offre en effet la possibilité d’exprimer la dynamique en termes de lon-
gueurs physiques – la dimension de ces “os”. Ainsi, le schéma de troncation de Regge
est également une solution (alternative à celle de Komar et Bergmann [22]) au problème
fondamental de la gravité pure : la difficulté d’identifier des observables invariantes par
difféomorphismes en l’absence de champs de matière.

1.4 Réseaux et mousses de spins

La théorie des boucles [119, 9, 132] développée à l’origine par Rovelli et Smolin [123,
113] sur la base du travail d’Ashtekar [7], promeut un schéma de troncation de la
relativité générale d’un genre différent, mêlant discrétisation sur réseau et factorisation
des symétries de jauge (exemples 2 et 3 ci-dessus). Elle se présente sous deux formes,
canonique et covariante, correspondant pour le cas gravitationnel aux quantifications
de Schrödinger et de Feynman utilisées en mécanique quantique.

Chronologiquement, la première version de la théorie des boucles est la version cano-
nique. S’inscrivant dans le sillage de Arnowitt, Deser et Misner [6], celle-ci s’appuie sur
une décomposition de l’espace-temps en feuilles d’espaces indexées par une coordonnées
de temps, et reformule les équations d’Einstein comme des équations de contraintes.
Sur chacune de ces feuilles d’espaces, elle utilise comme variables canoniques – c’est là
son originalité – la connexion SU(2) d’Ashtekar A et son champ électrique conjugué
E, et fait l’hypothèse que l’ensemble des holonomies H de A – les boucles – et des
flux bidimensionnels F de E forme un jeu de variables adaptées pour une troncation
des degrés de liberté du champ gravitationnel compatible avec sa symétrie sous les
difféomorphismes.

Cette hypothèse est motivée par la théorie des noeuds [123, 57, 14], qui sont
précisément des structures invariantes par difféomorphismes dans un espace tridi-
mensionnel [14]. En ne considérant que les holonomies supportées sur une classe
d’équivalence γ de graphes dirigés et plongés dans une feuille d’espace donnée, on
obtient ainsi un troncation finie de la relativité générale, qu’il est possible de quantifier

5On n’inclut pas ici de constante cosmologique.
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à l’instar du champ de Yang-Mills [57]. Ceci conduit à la représentation des holonomies
de A et des flux de E par des opérateurs sur l’espace de Hilbert des fonctions de carré
sommable pour la mesure de Haar

Hγ = L2
(
SU(2)L

)
/SU(2)N (1.2)

où N et L désignent respectivement le nombre de noeuds et de liens de γ, et où
le quotient correspond à la symétrie de jauge sur réseau traditionnelle (action aux
noeuds du graphe). Les états quantiques générant cet espace par la décomposition de
Peter-Weyl sont appelés réseaux de spins [114]. On peut considérer qu’ils décrivent
un “espace quantique tronqué”, dont les aires et volumes, essentiellement données par
les opérateurs de Penrose [94, 87], sont quantifiées [124]. Pour résumer, la théorie des
boucles fait du champ gravitationnel un champ de jauge sur un réseau dynamique. Son
point commun avec le calcul de Regge est qu’elle s’appuie sur des structures discrètes
pour définir des observables relationnelles internes au champs gravitationnel.

Dans cette approche, on obtient l’espace de Hilbert (cinématique, c’est-à-dire per-
mettant de représenter la contrainte hamiltonienne) total par une limite inductive sur
γ, qui est aussi une somme directe de sous-espaces H∗

γ ⊂ Hγ sur lesquels tous les spins
sont-nuls :6

H = lim
−→

Hγ =
⊕
γ

H∗
γ. (1.3)

Précisons ce point. Pour obtenir l’espace de Hilbert cinématique total, il faut considérer
des graphes “arbitrairement denses”. Pour ce faire, on peut observer que l’ensemble de
tous les graphes, équipé de la relation d’ordre ⪯ correspondant à l’inclusion d’un graphe
dans un autre, forme un ensemble ordonné filtrant (directed set en anglais) : pour toute
paire de graphes γ1 et γ2, il existe un graphe γ3 contenant γ1 et γ2 comme sous-graphes.
Grâce à cette structure, ainsi que les injections Hγ ↪→ Hγ′ quand γ ⪯ γ′ obtenues en
coloriant les arêtes de γ′ non contenues dans γ par un spin nul, on peut construire
la limite inductive (1.3). Nous reviendrons dans le paragraphe suivant sur le fait que,
dans le schéma de troncation en boucles, la limite continue est aussi une somme.

La limite de la formulation canonique de la théorie des boucles est la difficulté de
résoudre la contrainte hamiltonienne scalaire, qui génère les reparamatrisations de la
coordonnée temporelle dans l’espace-temps [132]. Pour contourner ce problème, Rei-
senberger et Rovelli [102] ont introduit une intégrale de chemins pour les réseaux de
spins. Dans ce schéma, une “trajectoire” d’un réseau de spins est représenteée par un
2-complexe colorées par des spins, appelé mousse de spins. On définira précisément ces
2-complexes, ou mousses, dans le chapitre 2. Pour notre propos présent, il suffit de
se représenter une mousse Γ comme un ensemble de vertex, arêtes et faces, attachées
le long de leurs bords, et possédant un graphe γ comme frontière (γ pouvant être le
graphe vide). De même que le graphe γ représente une troncation de la géométrie spa-
tiale dans l’approche canonique, la mousse Γ représente une troncation de la géometrie
spatio-temporelle. Suivant la logique de l’intégrale de chemin, on peut définir une dy-
namique pour l’espace-temps quantique en associant à chacune de ces mousses une

6Du point du vue de l’analyse fonctionnelle, cet espace H accompagné de sa représentation de
l’algèbre des holonomies et flux de la connection d’Ashtekar est isomorphe à un espace de fonctionnelles
de connections distributionnelles, de carré intégrable pour une mesure dite d’Ashtekar-Lewandowski
[8, 10]. (Cette dernière présentation est analogue à la formulation de Schrödinger de la mécanique
quantique.)
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amplitude complexe Z(Γ). En principe, cette amplitude devrait pouvoir être calculée
à partir des éléments de matrice de la contrainte hamiltonienne. Ceci a pu être réalisé
en trois dimensions [90], mais semble hors de portée en quatre dimensions. La stratégié
utilisée en théorie des boucles est donc de faire un ansatz pour cette amplitude : on
parle de modèles de mousses de spins.

Ces dernières années ont vu l’introduction d’une nouvelle classe de tels modèles en
quatre dimensions, par Engle, Pereira, Rovelli [44, 43] mais aussi par Freidel et Krasnov
[50] sur la base de travaux de Livine et Speziale [78], qui semblent prometteurs. Ainsi,
Barrett et ses collaborateurs [18] ont montré que, pour une mousse Γ contenant un seul
vertex et dont la frontière γ est le graphe complet sur 5 noeuds, correspondant aux 5
tétraèdres qui bordent un 4-simplex, la limite de grand spin de Z(Γ) est proportionnelle
à l’exponentielle de l’action de Regge pour un 4-simplex. Ceci montre que le schéma
de troncation en mousses de spins est lié au calcul de Regge, dont on sait qu’il est lui-
même une troncation de la relativité générale. Un autre résultat remarquable concerne
l’identification d’un régime perturbatif [86] : en utilisant un état cohérent sur γ piquant
la géométrie quantique sur l’espace-temps plat de Minkowski, Rovelli et al. ont pu
montrer que les fluctuations quantiques sur Γ ont la même structure que le graviton
en relativité générale linéarisée. Leur fonction de corrélation à 2 [23] et 3 points [125],
en particulier, ont la même structure tensorielle que celles du graviton.

Dans cette thèse, j’étudierai un modèle plus simple, le modèle plat, qui forme le
squelette de ces “nouveaux modèles” et en partage certaines propriétés, comme la limite
Regge [99, 37, 18]. Les motivations pour étudier dans un premier temps ce modèle-ci
plutôt que les nouveaux modèles sont nombreuses :

• l’essentiel des résultats supportant l’approche par mousses de spins portent sur
le modèle plat

• tous les modèles de mousses de spins étudiés dans la littérature sont des modifi-
cations du modèle plat

• techniquement, il est considérablement plus simple que les nouveaux modèles

• il est lié à la topologie quantique (et en est en quelque sorte à l’origine)

• son interprétation géométrique est claire : il décrit un système de connections de
jauge discrètes plates

J’étudierai en profondeur un aspect du modèle plat qui a été peu considéré jusqu’à
présent : celui de ses divergences. Le premier problème spécifique sur lequel je concentre-
rai mes efforts est ainsi celui des divergences de bulles. Certains résultats préliminaires
dûs à Perez et Rovelli [95] et Freidel et al. [51, 54, 53] suggèrent en effet que pour
une mousse Γ contenant des “bulles” (à définir précisément), la quantité Z(Γ) est di-
vergente. Cette situation, qui rappelle les divergences ultraviolettes des amplitudes de
Feynman en théorie quantique des champs, réclame une analyse quantitative : quel
est le degré de divergence d’une mousse Γ ? De quoi dépend-il ? De la topologie de Γ ?
D’autre chose ? Ces questions apparaissent essentielle pour une compréhension à la fois
rigoureuse et générale du modèle plat et, partant, des modèles de mousses de spins
en général. La seconde partie de ce manuscrit (chapitres 3 à 5) fournit une solution
détaillée à ce problème.
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1.5 Limite continue des mousses de spins

L’autre problème qui se pose quand on étudie le modèle plat est bien sûr celui de la
limite continue : de l’ensemble des amplitudes tronquées Z(Γ), comment obtient-on
une amplitude complète Z contenant tous les degrés de liberté du champ gravitation-
nel quantique ? On a vu précédemment qu’au niveau cinématique, la limite continue,
consistant à raffiner les graphes jusqu’à l’infini, prend aussi la forme d’une somme
directe d’espace de Hilbert. Qu’en est-il au niveau dynamique ? Faut-il définir Z en
sommant sur les mousses, formellement Z =

∑
Γ Z(Γ), comme dans un développement

perturbatif à la Feynman (cas 1) ? Ou raffiner Γ infiniment, Z = limΓ Z(Γ), comme en
théorie de jauge sur réseau (cas 2) ? Cette question a été la source de nombreux débats
entre spécialistes des mousses de spins [48].

L’implémentation la plus populaire de la somme sur les mousses est due à Boulatov
[31] et Ooguri [91], et est connue sous le nom théorie de champs sur le groupe (group field
theory) [48, 92]. Dans ce schéma, les amplitudes Z(Γ) apparaissent comme d’authen-
tiques amplitudes de Feynman [101] pour une théorie de champs auxiliaires, définies
sur une certaine puissance cartésienne d’un groupe de Lie compact, SU(2) le plus sou-
vent. C’est dire que, pour la théorie de champs sur le groupe, la divergence de Z(Γ) est
un problème de renormalisation, et la somme sur Γ un problème constructif. Le cal-
cul du degré de divergence d’une mousse Γ prend ainsi tout son sens, puisqu’il permet
d’étudier la renormalisabilité de la théorie de champs sur le groupe de Boulatov-Ooguri.
Rivasseau a également souligné que ce point de vue présente l’avantage remarquable
de fixer le coefficient de chaque mousse Γ dans la somme [107] : c’est le coefficient
combinatoire du développement de Feynamn de la théorie de champs sur le groupe.
Enfin, Oriti soutient que cette perspective permet de rapprocher la théorie des boucles
de la matière condensée [93], et ainsi de réduire la fracture entre réductionnisme et
émergentisme en gravité quantique.

Dans le chapitre 7 de cette thèse, je prendrai ce point de vue pour étudier la limite
continue des mousses de spins : je montrerai qu’il est possible, dans le cadre de la théorie
de champs sur le groupe de Boulatov (en trois dimensions), de réaliser la somme sur les
mousses dans un sens rigoureux, celui de la resommation de Borel. J’utiliserai pour cela
l’outil le plus récent de la théorie constructive, développés par Rivasseau et Magnen :
le développement en cactus [105, 82]. Ce résultat donne un crédit supplémentaire à la
viabilité de la théorie de champs sur le groupe.

Mais on peut également définir une forme de limite inductive pour les mousses de
spins [149, 121]. Celle-ci forme une alternative à la théorie de champs sur le groupe,
dont l’avantage est de préserver la relation entre somme et limite suggérée par l’idée,
fondamentale en théorie des boucles, qu’un espace-temps est un processus virtuel, et
non une structure a priori : une mousse est donc à la fois un diagramme de Feynman
(cas 1) et un réseau (cas 2). Cet argument sera présenté en détail au chapitre 6.
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Chapter 2

The flat spinfoam model

In this preparatory chapter, we introduce the Ponzano-Regge model, give a first ac-
count of its bubble divergences, discuss its relationship with three-dimensional quantum
gravity, and introduce a cellular generalization coined the flat spinfoam model.

2.1 The Ponzano-Regge model

The Ponzano-Regge model was put forward in 1968 as a simplicial model of quantum
gravity in three dimensions. Its influence over the later developments of theoretical
and mathematical physics cannot be overestimated: the spinfoam and group field the-
ory approaches to quantum gravity, as well as the mathematical theory of state-sum
topological invariants,1 are direct offsprings of the Ponzano-Regge model.

2.1.1 The Ponzano-Regge asymptotic formula

At the roots of these developments is a most surprising result: the Wigner {6j} symbol
(a key object in SU(2) recoupling theory [136], with applications in nuclear, atomic and
molecular physics) contains, in the large spin asymptotics, the three-dimensional Regge
action for a tetrahedron with edge lengths le = je + 1/2, where je are half-integers.
Explicitly, if V (le) is the volume of a Euclidean tetrahedron with edge lengths le, and
SR(le) the corresponding Regge action (1.1), one has in the uniform je → ∞ limit2{

j1 j2 j3
j4 j5 j6

}
∼ 1√

12πV (le)
cos
(
SR(le) +

π

4

)
. (2.1)

Moreover, when the spins ji do not define a Euclidean tetrahedron, the {6j} symbol is
exponentially suppressed in this limit.

Ponzano and Regge conjectured this asymptotic behavior on the basis of numerical
simulations [99]. An influential proof thereof, using geometric quantization, was given
by Roberts in [111]; see [5, 26] for the most recent advances on the semiclassics of
Wigner symbols. (Higher orders in the large-spin asymptotic expansion were also
investigated using saddle point techniques in my paper [27] and the subsequent [38].)

1Part of my work with Bonzom has been concerned with the topological features of the (generalized)
Ponzano-Regge model, and in particular with its relationship to twisted Reidemeister torsion. This
aspect of our work will not be addressed in this thesis.

2Meaning that the spins are scaled as je 7→ λje with a single λ → ∞. In this regime, the “shape”
of the tetrahedron, defined by the ratios je/je′ with e ̸= e′, is preserved in the limit.
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The remarkable character of the asymptotic formula (2.1) lies in the fact that, not
only it contains the Regge action SR (hence it is related to three-dimensional gravity),
but contains it within a cosine. This is reminiscent of the semiclassical (WKB) approx-
imation of quantum amplitudes (with the only difference that the eikonal exponential
eiS, where S is the Hamilton function, is replaced by the cosine.3) In other words, the
{6j} symbol appears to be related to semiclassical quantum gravity.

This striking connection between SU(2) representation theory and three-
dimensional quantum gravity prompted Ponzano and Regge to put forward the first
spinfoam model ever written.

2.1.2 A simplicial partition function

Since a {6j} symbol appears to represent a quantum tetrahedron,4 with quantized edge
lengths and Regge semiclassics, it is not unreasonable to surmise that a model of
(Riemannian) quantum gravity on a triangulated 3-manifold ∆ can be obtained by

• associating one {6j} symbol to each tetrahedron, and

• summing over the spins, in the spirit of Feynman’s path integral.

Indeed, Ponzano and Regge defined in [99] a partition function ZPR(∆) for the trian-
gulation ∆ by

ZPR(∆)
.
=

∑
(je)e∈∆1

(−1)χ
∏
e∈∆1

(2je + 1)
∏
t∈∆3

{6j}t. (2.2)

Here, ∆i denotes the set of i-simplices of ∆, {6j}t is the {6j} symbol based on the
spins coloring the 6 edges of the tetrahedron t ∈ ∆3, and χ is a linear function of the
spins je, left unspecified by Ponzano and Regge (except for very special cases) but fixed
in [19]. Note that, if ∆ has a boundary, this expression defines a transition amplitude
for a two-dimensional Regge geometry with fixed edge lengths.

The key input in this heuristic quantization of three-dimensional geometry is the
quantization of edge lengths. This follows from the quantization of irreducible repre-
sentations (spins) ji of SU(2), and the identification li = ji + 1/2 suggested by the
Ponzano-Regge asymptotic formula (2.1). As pointed out by Rovelli [115], this quanti-
zation hypothesis has a compelling justification in loop quantum gravity. We refer to
Rovelli’s book [119] for more details on this aspect.

2.1.3 Bubble divergences

It did not escape Ponzano and Regge’s attention that the multi-series in the definition
(2.2) is unlikely to converge for a general triangulation ∆ [99]. Unfortunately, it is
difficult to turn this concern into a precise mathematical statement. Even absolute
convergence of (2.2) is hard to check, mainly for two reasons.

3This difference can be traced back to the fact that 6 edge lengths define a tetrahedron up to
rotation and reflection [13].

4The notion of quantum tetrahedron was later expounded by Barbieri [15] and Baez and Barrett
[16] with applications in four-dimensional spinfoam gravity [17].
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• First, not all the values of the spins je actually contribute to the sum, because of
the triangle constraints which enter the definition of {6j} symbols. For instance,
a necessary condition for the {6j} symbol in (2.1) is that |j2 − j3 ≤ j1 ≤ j2 + j3.
Describing the domain D∆ of admissible spins for a general triangulation ∆ is by
no means straightforward.

• Even if D∆ could be described explicitly, as in the elementary cases studied in
[96], we would not know how the {6j} symbols behave there: the Ponzano-Regge
asymptotic formula only prescribes its behavior in the homogeneous limit, where
all the spins grow at the same rate.5 This is only a very restricted subdomain of
D∆.

Because of these difficulties, simple estimates based on a balance between the divergent
edge factors (2je + 1) and the convergent tetrahedra factors V (je)

−1/2 ∼ j
−3/2
e are not

reliable: the absolute convergence of the Ponzano-Regge partition function is an open
problem.

Worse still, even assuming that we can resolve these issues satisfactorily, the most
likely outcome is be that the Ponzano-Regge sum (2.2) is not absolutely convergent.
One would then ask whether it is perhaps semi-convergent, like the alternating series∑

(−1)n/n. Unfortunately, the complicated oscillation pattern induced by the fac-
tors (−1)χ and the Ponzano-Regge cosines cos

(
SR(li) +

π
4

)
make this question almost

impossible to answer in full generality.
This notwithstanding, one observation made in an attempt by Perez and Rovelli

[95] to describe the domain D∆ deserves to be mentioned. First, consider the dual cell
complex ∆∗ of the triangulation ∆, whose k-cells are in one-to-one correspondence with
the (3 − k)-simplices of ∆. (Since the partition function (2.2) only involves the edges
and tetrahedra of ∆, and not its vertices, we can actually restrict to the 2-skeleton of
∆∗.) Within ∆∗, the triangle constraints can be localized on the edges e∗, where three
spin-colored faces f ∗ meet. A moment of reflection then shows that, for one the spins
to be free, namely to have admissible values from zero to infinity, a necessary condition
is that there exists a closed set of faces within ∆∗: a bubble.

This insight has two immediate consequences. First, it suggests that the number of
bubbles of ∆∗ is somehow the driving parameter in the divergence degree of ZPR(∆),
if such a thing can be defined. Second, it gives a field-theoretic flavor to the issue
of divergences in the Ponzano-Regge model: bubbles are higher-dimensional analog
of loops – and we know that loops support the divergences of Feynman amplitudes.
This circumstance calls for an interpretation of the Ponzano-Regge model as a “higher
categorical” version of perturbative quantum field theory [13].

We shall see in this thesis that both intuitions are relevant.

2.2 A discrete gauge theory

So far, the only evidence we have given for the connection between the Ponzano-
Regge ansatz and three-dimensional quantum gravity is the Ponzano-Regge asymptotic
formula. There is however another argument to this effect, relying on the Palatini-
Cartan formulation of general relativity. The latter sheds a new light on the Ponzano-

5Recent work has improved this situation: we now know the asymptotic behavior of the {6j}
symbol with small angular momenta as well [148, 26].
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Regge model: it is a discrete gauge theory. This new perspective turns out to be the
key for understanding its bubble divergences, as we will see in the second part of this
thesis.

2.2.1 Palatini-Cartan gravity

Recall that, in a “first order” formulation of (Riemannian) three-dimensional general
relativity, the gravitational field can be represented by a pair of fields (e, ω), where ω
is an SU(2) connection 1-form on spacetime M , and e is an su(2)-valued 1-form over
M , or equivalently a triad field on M .6 The so-called Palatini-Cartan7 action is then
[14]

SPC(e, ω) :=

∫
M

⟨e ∧ F (ω)⟩. (2.3)

Here the bracket is the Killing form in the Lie algebra su(2). It is not hard to see that
the Euler-Lagrange equations for this action, namely

F (ω) = 0 and dω(e) = 0, (2.4)

are indeed the vacuum Einstein equation Rab = 0 in disguise: the first states that ω is
flat, and the second that it is the unique spin connection associated to e, see [14].

The Palatini-Cartan action is an instance of the BF models considered by Horowicz
[74], defined in dimension d by the analogue of (2.3) with e replaced by a (d− 2)-form
B. Like the latter, it is invariant under an extended gauge group which, besides the
diffeomorphisms and SU(2) gauge transformations, includes a shift symmetry generated
by

e 7→ e+ dωλ, (2.5)

where λ is an su(2)-valued 0-form over M and ω is a flat connection.
Let us now perform a formal path-integral “quantization” of the Palatini-Cartan,

according to

Z̃PC(M) :
.
=

∫
DeDω eiSPC(e,ω). (2.6)

Integrating out the e field gives

Z̃PC(M)
.
=

∫
Dω δ

(
F (ω)

)
. (2.7)

The tilde and quotes here are meant to remind us that no gauge-fixing has been per-
formed for the on-shell gauge symmetry (2.5) [51, 53], and so we cannot speak of a
genuine quantization in the usual sense of gauge theory [145, 74]. For clarity, the
operation performed in (2.6)-(2.7) should perhaps be called a “half-quantization” of
Palatini-Cartan gravity.

Before we move on to explain the connection between this procedure and the
Ponzano-Regge model, one more comment is in order. In quantizing a classical the-
ory à la Feynman, it is not uncommon that the space of histories has to be enlarged

6This is identification is possible due to the fact that the adjoint representation of SU(2) is also its
vector representation.

7The name given to various gravitational actions is very author-dependent. We use ”Cartan”
to mean that a vielbein is involved, and ”Palatini” to express the fact that the connection is an
independent variable.
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with respect to its classical counterpart. For instance, the quantum histories of a free
particle contains rough (viz. non-differentiable) paths in addition to the smooth ones
considered in the classical theory. Similarly, the quantum histories of a free field include
distributional fields as well as smooth ones. Now, the path-integral half-quantization of
the Palatini-Cartan action relies on a similar extension of the classical notion of a grav-
itational history, including torsion and degenerate metrics. Witten has argued [145]
that such configurations are essential in three-dimensional quantum gravity (showing
that they permit a renormalizable perturbative extension), but later changed his mind
[147]. All in all, it is fair to say that the status of torsion and degenerate metrics is
quantum gravity remains to be understood.8

2.2.2 Discrete gauge theory

Let us now consider the half-quantized expression (2.7), and discretize it. To this aim,
we must

1. introduce a triangulation ∆ of M , and its dual cell complex ∆∗, and

2. discretize the connection ω (resp. the curvature F ) on the edges (resp. the faces)
of the 2-skeleton Γ of ∆∗

3. Choose orientations for the edges and faces of Γ.

Recall that, given this data, discrete gauge theory is formulated in terms of parallel
transport operators and holonomies. For a given cell decomposition ∆∗ ofM , these are
defined respectively as assignments of group elements ge ∈ SU(2) to each edge e, and
of the products

Hf =
∏
e∈∂f

g
ϵfe
e (2.8)

to each face f , with ϵfe = ±1 depending on the relative orientation of e and f . Thus,
a discrete connection A = (ge)e is an element of SU(2)E and the curvature of A is the
family of holonomies

(
Hf

)
f
defined by (2.8).

Using these definitions, we can make the following ansatz for the discretization of
(2.7) on Γ:

z̃PC(Γ) :
.
=
∏
e∈Γ1

∫
SU(2)

dge
∏
f∈Γ2

δ(Hf ). (2.9)

Here, dg is the Haar measure on SU(2) and Γi denotes the set of i-cells of Γ. Just like the
formal path integral (2.7) described a system of flat SU(2) connections, the expression
(2.9) can be seen as the path-integral for a system of flat discrete connections.

Now comes the main result of this section: the half-quantized, discretized path in-
tegral (2.9) is formally identical to the Ponzano-Regge partition function (2.2). To
understand how this comes about, we must recall the basis of the Peter-Weyl theory
of Fourier analysis on compact groups.

Let f : G→ C be a smooth function on a compact group G, and ρj : G→ GL(V j)
be the sequence of unitary irreducible representations of G, labelled by a discrete index

8I thank Simone Speziale for drawing my attention to this point.
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j.9 For each j, pick a basis (vjm)m=0,...,dimVj
of Vj, and define the representative functions

Dj
mn : Vj → C by

Dj
mn(g) = ⟨vjm|ρj(g)vjn⟩. (2.10)

Then the Peter-Weyl theorem states that f can be decomposed over the representative
functions as

f(g) =
∑
j

∑
mn

f j
mnD

j
mn(g), (2.11)

with

f j
mn :=

∫
G

dg Dj
mn(g)

∗f(g). (2.12)

When f is a class function, viz. when it is conjugation invariant, this decomposition
reduces to

f(g) =
∑
j

f j
mnχ

j(g). (2.13)

where χj =
∑

mD
j
mm is the character of the representation ρj. These decompositions

extend to square-integrable functions and Schwartz distributions. In particular, one
computes that

δ(g) =
∑
j

(dimVj)χ
j(g). (2.14)

The second ingredient we need to derive the Ponzano-Regge model from the discrete
path-integral (2.9) is the recoupling identity∫

G

dg
k⊗

a=1

ρja(g) =
∑
ι

|ι⟩⟨ι|, (2.15)

in which ι ranges over an orthonormal basis of the G-invariant subspace of the tensor
product representation

⊗k
a=1 V

ja . For the case G = SU(2) and k = 3, there is only
one such ι: the Wigner (3jn)-symbol.

Let us now come back to the integral (2.9), and use (2.14) to decompose the delta
functions, noting that j is now a spin. This gives

z̃PC(Γ)
.
=

∑
(jf )f∈∆∗

2

∏
e∈∆∗

1

∫
SU(2)

dg
∏
f∈∆∗

2

(2jf + 1)χjf (Hf ). (2.16)

Now, since ∆ is the triangulation of a three-dimensional manifold, every edge e of the
dual decomposition is shared by exactly three faces. Therefore the recoupling identity
(2.15) can be applied along each edge e. Associating the vectors |ι⟩ and ⟨ι| to the
source and target of each e, this results in a contraction pattern whereby four invariant
vectors |ι⟩ are contracted at each vertex of ∆∗. Examination of this contraction pattern
shows that the corresponding invariant is nothing but the Wigner {6j} symbol. All in
all, we find that

z̃PC(∆) = ZPR(∆) (2.17)

This result clearly vindicates the relevance of the Ponzano-Regge for quantum grav-
ity. But it also provides us with a new interpretation of the bubble divergences discussed

9More precisely, j ranges over the set of equivalence classes of unitary irreps of G, and ρj is an
element of j.
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Figure 2.1: The propagator C and the interaction vertex T of the Boulatov model.
The box in the propagator represents the group averaging

∫
SU(2)

dh.

in sec. 2.1.3 [53]: they are the discrete remnants of the (non-compact) shift symme-
try of the Palatini-Cartan action. Building on this insight, these authors developed a
regularization scheme based on a tentative gauge-fixing of this symmetry. It appears,
however, that their ansatz is successful only in limited cases. Recent work by Barrett
and Naish-Guzman [19], and also by Bonzom and myself [28], has clarified the reasons
of this failure and the way to overcome it.

2.2.3 Boulatov’s group field theory

The presentation of the Ponzano-Regge model as a discrete gauge theory, with group
elements instead of spins as basic variables, has another interesting payoff: it puts
us on the right track to understand its bubble divergences as genuine field-theoretic
divergences.

To proceed in this direction, let us follow Boulatov [31] and introduce an auxiliary
field ϕ, defined over the configuration space SU(2)×SU(2)×SU(2) and invariant under
the right diagonal action of SU(2) and cyclic permutations c of its arguments, i.e.:

ϕ(g1h, g2h, g3h) = ϕ(g1, g2, g3) and ϕ(gc(1), gc(2), gc(3)) = ϕ(g1, g2, g3). (2.18)

Let us assume furthermore that the “dynamics” of this field is given by the non-local
action

SB(ϕ) :=
1

2

∫ 3∏
i=1

dgi ϕ
2(g1, g2, g3)

+
λ

8

∫ 6∏
i=1

dgi ϕ(g1, g2, g3)ϕ(g3, g4, g5)ϕ(g5, g2, g6)ϕ(g6, g4, g1), (2.19)

where dgi denotes the SU(2) Haar measure. Note that, in the quartic term, the six inte-
gration variables are repeated twice, following the pattern of the edges of a tetrahedron.
(The factor 8 is only for simpler final formulas.)

Consider now the perturbative quantization of this model, by mean of the formal
partition function

ZB :
.
=

∫
Dϕ e−SB(ϕ). (2.20)
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Examination of the corresponding Feynman rules reveals that the propagator is three-
stranded, with integral kernel

C(g1, g2, g3; g
′
1, g

′
2, g

′
3) =

∫
SU(2)

dh δ(g−1
1 hg′1)δ(g

−1
2 hg′2)δ(g

−1
3 hg′3). (2.21)

Likewise, the interaction vertex can be written a product of six delta functions, match-
ing twelve group elements pair-wise, as in fig. 2.1:

T (g1, . . . , g12) = δ(g1g
−1
12 )δ(g2g

−1
8 )δ(g3g

−1
4 )δ(g5g

−1
11 )δ(g6g

−1
7 )δ(g9g

−1
10 ). (2.22)

For a given stranded graph Γ, these Feynman rules correspond to a contraction
pattern which gives, after integration over all h variables, the Feynman amplitude (for
a vacuum diagram, viz. with no external leg)

AB(Γ)
.
=
(λ
8

)V ∏
e∈Γ1

∫
SU(2)

dge
∏
f∈Γ2

δ(Hf ), (2.23)

where V is the number of vertices of the stranded graph Γ, e denotes an edge Γ,
and f a face, i.e. a closed strand. Up to a multiplicative constant, this is nothing
but the Ponzano-Regge partition function (2.9) evaluated on the 2-complex defined by
the edges and faces of the stranded Feynman graph. If we interpret furthermore this
2-complex as dual to a three-dimensional space, as in [35], the connection with the
Ponzano-Regge model becomes transparent: Boulatov’s model is a generating function
for Ponzano-Regge amplitudes. (Note however that not all such 2-complexes define
a three-dimensional manifold : there can be point-like singularities, yielding what is
known as a pseudo-manifold. We refer the interested reader to [65, 128, 67] for a
discussion on this point.)

2.3 The flat spinfoam model

The upshot of the above discussion of the Ponzano-Regge model can be summarized
as follows:

1. Although originally defined on a triangulation ∆ of the spacetime manifold, the
structure of the partition function (and in particular its divergence) is better
understood in terms of the dual cell complex ∆∗, and in fact of the 2-skeleton Γ
of ∆∗.

2. The analytic structure of the Ponzano-Regge partition function is more trans-
parent when written as a group integral (2.9); its gauge-theoretic underpinning,
and in particular its connection to the Palatini-Cartan formulation of gravity, its
then manifest.

This motivates a generalization of the Ponzano-Regge model defined on more general
2-complexes: a kind of cellular gauge theory, with no reference to a particular space-
time manifold. This is concomitant with Boulatov’s approach, which, as we already
mentioned, departs from the strict setup of three-dimensional manifolds.
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2.3.1 Foams

Before we introduce this generalization, let us spell out what we mean by the expression
“2-complex” above.

The most general possible definition one can think of is a finite, connected two-
dimensional CW complex. Recall that a d-dimensional CW-complex X is the last of a
nested sequence of topological spaces X1 ⊂ X2 ⊂ · · · ⊂ Xd = X defined inductively
as follows. The 0-skeleton X0 is just a discrete set of points. For each integer k > 0,
the k-skeleton Xk is the result of attaching a set of k-dimensional balls Bk to Xk−1 by
gluing maps of the form σ : ∂Bk → Xk−1. For each k, the subspace Xk is called the
k-skeleton of X, and the interiors of the balls Bk attached to Xk−1 are the k-cells of
X.

Contrary to what one might expect (perhaps on the basis of the easy classification
of two-dimensional manifolds), two-dimensional CW complexes are very subtle objects,
about which several outstanding conjectures remain open.10 In order to stay away from
such mathematical difficulties, in this thesis we will stick to a more restricted context,
where the gluing maps are themselves cellular : we will assume that each ball Bk has
a cellular decomposition such that the (k − 1)-cells on the boundary of Bk are glued
onto (k − 1)-cells of Xk−1. This condition introduces a form of rigidity in the gluing
patterns, thereby removing most of the topological difficulties associated to general
CW complexes.

The most useful examples of such CW complexes can be found in the polyhedral
category, where the balls Bk are in fact convex polyhedra. Explicitly, a polyhedral
complex, or piecewise-linear cell complex, is a CW complex where each ball Bk is in fact
a k-dimensional convex polytope P k in some Rn, and the gluing maps σ : ∂P k → Xk−1

are cellular homeomorphisms onto their images. When all the polytopes are simplices,
one speaks of a ∆-complex [70].

One reason which makes two-dimensional polyhedral complexes, from now on called
foams, particularly convenient to deal with is that their structure can be described
purely combinatorially: attaching a polygon onto the 1-skeleton X1 amounts to choos-
ing a cycle in X1, i.e. a finite sequence of vertices (0-cells) such that, from each of
its vertices there is an edge (1-cell) to the next vertex in the sequence, and the start
and end vertices are the same. In other words, a two-dimensional polyhedral complex
Γ can be equivalently defined as a triple Γ = (VΓ, EΓ, FΓ) with VΓ a finite set of ver-
tices, EΓ a set of ordered pairs of vertices e = (v, v′), or edges, and FΓ a finite set of
cycles, or faces. This data uniquely defines a two-dimensional polyhedral complex up
to homeomorphism.

Note that this definition includes the stranded Feynman diagrams of the Boulatov
model, but is also much more general: unlike the former, the number of faces adjacent to
any edge can be arbitrary. It is in this sense that the flat spinfoam model, being defined
on general foams, generalizes the Ponzano-Regge model to “arbitrary dimensions”.

Finally, observe that there is a notion of boundary for foams. Indeed, let us call the
edges of EΓ appearing exactly once in only one face its links, and the other ones its
interior edges. Similarly, let us call the vertices appearing exactly once in an interior
edge its nodes, and the other ones its interior vertices. The sets of nodes and links of a
foam Γ generally do not form a graph, but when they do, and moreover the orientation
of each link matches the one induced by the unique face passing through it, we say that

10One of them, the Zeeman conjecture, actually implies the Poincaré conjecture.
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Γ is a proper foam. We then define the boundary ∂Γ as the subcomplex of Γ defined
by those faces of Γ which contain at least one link. The underlying graph of ∂Γ is the
boundary graph of Γ. In this language, foams with the same boundary graphs can still
have different boundaries, because the boundary faces can be different.

2.3.2 Definition of the model

We are now in the position to define the flat spinfoam model. Let Γ be a foam, and G
be a compact Lie group. Denote A(Γ, G) := GE the space of discrete G-connections
A = (ge)e∈Γ1 over Γ, and H = (Hf

)
f∈Γ2

its curvature as in (2.8). The flat model is

then defined formally by the expression

Z(Γ, G) :
.
=

∫
A(Γ,G)

dA
∏
f∈Γ2

δ(Hf ), (2.24)

where dA =
∏

e∈Γ1
dge is the Haar measure on A(Γ, G).

When Γ is the 2-skeleton of the cell complex dual to a triangulated 3-manifold, this
expression of course coincides with the Ponzano-Regge partition function. But this is
only a very special case of (2.24): there are many foams which cannot be constructed
in this way. Note in particular that, when there are more than three faces adjacent to
each edge, the Peter-Weyl transform of (2.24) does not consist of {6j}-symbols. For
instance, if Γ is the 2-skeleton of the dual cell complex of a triangulated 4-manifold,
these are replaced by {15j}-symbols: this is the so-called Ooguri model [91].

Another particular case of the flat spinfoam model is when Γ is the cellular decom-
position of a closed, orientable surface: the partition function (2.24) then corresponds
to the weak coupling limit of two-dimensional Yang-Mills theory, considered notably
by Witten in [146]. When the genus of Γ is greater or equal to 2, extensive studies of
(2.24) after [146] have showed that Z(Γ) is finite.11 We will re-derive this result in sec.
4.3.2.

2.3.3 Heat kernel regularization

Just like its Ponzano-Regge specialization, the flat spinfoam model is ill-defined. In
the definition (2.24), this is manifest from the fact that delta distributions supported
at coincident points are multiplied – a famously illicit operation.

Very roughly speaking, we can say that a troublesome situation will arise every time
the number of delta functions (F , the number of faces of Γ) does not match the number
of integrals in (2.24) (E, the number of edges). Thus, when F > E, we might expect
that the a possible regularization of Z(Γ, G) consists in removing some redundant delta
functions in (2.24). Indeed, this is the idea followed by Freidel and Louapre in [51, 53],
and later by Barrett and Naish-Guzman [19]. We will comment on this approach in
sec. 3.3.

For now, we will content ourselves with a more straightforward regularization, con-
sisting simply in replacing the delta functions by smooth functions, peaked on the unit
1 ∈ G. One way to construct such functions is by letting the delta diffuse over G for

11It is then equal to ζ(−χ(Γ)), with ζ the Riemann zeta function and χ(Γ) the Euler characteristic
of Γ.
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some small time τ > 0. This gives the so-called heat kernel12 Kτ , viz. the solution of
the heat equation

∂τKτ = ∆Kτ , (2.25)

with initial condition limτ→0 Kτ = δ. Here ∆ is the Laplace-Beltrami operator, defined
using some bi-invariant metric on G (e.g. the one induced by the Killing form on its
Lie algebra, when G is semi-simple).

Using the heat kernel on G, we thus define the regularized flat spinfoam model by

Zτ (Γ, G) :=

∫
A(Γ,G)

dA
∏
f∈Γ2

Kτ (Hf ). (2.26)

This ansatz turns the problem of understanding the bubble divergences of the flat
spinfoam model (and in particular of the Ponzano-Regge and Ooguri models) into a
well-posed analytical question: what is the τ → 0 asymptotic behavior of Zτ (Γ, G)?
Answering this question is the purpose of the next chapters of this thesis.

12Explicit expression of the heat kernel for simply connected and connected semi-simple groups are
known, see [45].



26 The flat spinfoam model



Part II

Homological powercounting of
bubble divergences





29

In this part of the thesis, we address the problem of computing the divergence degree
of the regularized flat spinfoam model Zτ (Γ, G) in the τ → 0 limit. The approach we
take has two ingredients, detailed in chapters 3 and 4 respectively:

1. study the τ → 0 asymptotics of (2.26) by means of a (generalized) Laplace ap-
proximation

2. use (twisted) cellular homology to disentangle the interplay between the topology
of Γ and the non-Abelian structure of G within Ω(Γ, G)

We will see that the divergence degree is given by the number of “bubbles” of Γ
only in very special cases; in general, the combinatorial structure of the foam does
not fix Ω(Γ, G) alone – the rôle played by the non-Abelian structure of G is crucial.
Applications of our result will be presented in chapter 5.
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Chapter 3

Powercounting by Laplace’s method

3.1 The amplitude as a Laplace integral

In this section, we define the divergence degree of a foam, and show that, in principle,
it can be computed by means of the Laplace method.

3.1.1 Divergence degree

The small-time asymptotic behaviour of the heat kernel on G is well-known, and easy
to understand: when τ → 0, a Brownian particle on G has no time to explore the
geometry of G and confuses the latter with the Euclidean space T1G. In this limit, the
heat kernel therefore takes a Euclidean form:

Kτ (g) ∼
τ→0

(4πτ)− dimG/2e−|g|2/4τ , (3.1)

where |g| is the Riemannian distance between g and the unit 1 of G. In particular, we
have

Kτ (1) ∼
τ→0

ΛdimG
τ , (3.2)

with
Λτ := (4πτ)−1/2 (3.3)

playing the rôle of a large-spin cutoff. This motivates the definition of the divergence
degree of Γ as the number Ω(Γ, G) such that the limit

Z ′(Γ, G) := lim
τ→0

Λ−Ω(Γ,G)
τ Zτ (Γ, G) (3.4)

is finite and non-vanishing. Let us emphasize that we do not assume a priori that
Ω(Γ, G) is a multiple of dimG, as would be implied by the notion that to regularize
the flat spinfoam model, one should remove redundant delta functions [53].

3.1.2 A Laplace integral

Denote V,E, F the number of vertices, edges and faces of the foam Γ. Using the
asymptotics (3.1), we can write the regularized amplitude Zτ (Γ, G) in the τ → 0 limit
as the integral

Zτ (Γ, G) ∼
τ→0

Λ(dimG)F
τ

∫
A(Γ,G)

dA e−S(A)/τ , (3.5)
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where

S(A) :=
1

4

∑
f∈Γ2

|Hf (A)|2. (3.6)

The function S : A(Γ, G) → R thus defined is smooth, non-negative, and vanishes on
flat connections where Hf (A) = 1 for every face f of Γ. This suggests that the integral
on the right-hand side of (3.5) can be estimated by means of Laplace’s method, which
we now review.

3.2 Degenerate Laplace asymptotics

Let M be a (closed) Riemannian manifold, dx the canonical volume form on M , and
f a smooth function. A point y ∈ M is a critical point of f if the differential of f
vanishes at y; it is non-degenerate if the Riemannian Hessian ∇2f(y) : TyM → TyM
is non-degenerate, i.e. if det∇2f(y) ̸= 0. If f has only non-degenerate critical points
(viz. it is a Morse function), Laplace’s method states that∫

M

dx e−f(x)/τ ∼
τ→0

(πτ)dimM/2
∑
i

e−f(y∗i )/τ√
det∇2f(y∗i )

. (3.7)

Here y∗i runs over the minima of f . This formula can be proved by Taylor-expanding
f to second order about y∗i , and performing the resulting Gaussian integral.

It is tempting to try to apply this well-know asymptotic formula to the amplitude
(3.5). Unfortunately, one sees easily that the function f defined by (3.6) does have
the required property. Indeed, the Morse lemma1 implies that non-degenerate critical
points are isolated. But we know that topologically non-trivial spaces admit a contin-
uum of flat connections, hence that F(Γ, G) consists of degenerate critical points. To
deal with this situation, we need a generalized Laplace method.

3.2.1 The generalized Laplace method

Let us consider the case where the critical set of f is a disjoint union of submanifolds of
M . Denote C the (possibly disconnected) critical manifold with maximum dimension.
Using the metric onM , we can split the tangent bundle ofM along C into its tangential
and normal sub-bundles, as

TM|C :=
⊔
y∈C

TyM = TC ⊕NC. (3.8)

Let us then define the normal Hessian ∇2
⊥f of f as the restriction of ∇2f to the normal

fibers NyC, and assume that ∇2
⊥f is non-degenerate (one says that f is a Morse-Bott

function). Laplace’s formula (3.7) then generalizes to∫
M

dx e−f(x)/τ ∼
τ→0

(πτ)(dimM−dimC)/2

∫
C

dy
e−f(y)/τ√
det∇2

⊥f(y)
, (3.9)

1If f : M → R is a Morse function and y∗ a critical point of f , there is a coordinate patch
(x1, . . . , xn) around y∗ in which f − f(y∗) =

∑p
j=1 x

2
j −

∑n
j=p+1 x

2
j for some p.
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where dy is the induced Riemannian volume form on C. Indeed, the orthogonal de-
composition (3.8) implies that, along C, the volume form on M factorizes as

dx = dy ∧ dz, (3.10)

where dz is the Riemannian volume form on the fibers normal to C. Using the exponen-
tial decay e−f/τ away from C to restrict the integral overM to a tubular neighborhood
U of C, in which x ∈ U is parametrized by (y, z) ∈ C × NyC, and then applying
Fubini’s theorem, we obtain∫

M

dx e−f(x)/τ ∼
τ→0

∫
U

dx e−f(x)/τ ∼
τ→0

∫
C

dy

∫
NyC

dz e−f(y,z)/τ . (3.11)

The usual Laplace formula (3.7) can then be applied to the normal integrals∫
NyC

dzy e
−f(y,zy)/τ ; this gives immediately (3.9).

3.2.2 Tame singularities

What if f is not a Morse-Bott function? Define a singularity of f as a critical point
were either C is not a manifold, or the normal Hessian ∇2

⊥f is degenerate. Following
[55], say that the singularities of f tame if for every ϵ-neighborhood Uϵ of the set D of
singularities,

lim
ϵ→0

lim
τ→0

(πτ)−(dimM−p)/2

∫
Uϵ

dx e−f(x)/τ = 0. (3.12)

(Unfortunately, there is no useful sufficient condition on f for this relation to hold; it
must be checked explicitly case by case.)

Assuming (3.12), we can apply the generalized Laplace method by simply excluding
the singularities from the integral:∫

M

dx e−f(x)/τ ∼
τ→0

(πτ)(dimM−dimC)/2

∫
C\D

dy
e−f(y)/τ√
det∇2

⊥f(y)
. (3.13)

In other words, for what concerns the τ → 0 asymptotic behaviour of a Laplace-type
integral, tame singularities are like no singularities at all.2

2That not all singularities are tame, however, can be seen on the two-dimensional example

zτ :=

∫
R2

dxdy e−
(xy)2

τ . (3.14)

Here, the critical set is the ‘cross’ {x = 0} ∪ {y = 0}, and has a singularity at (x, y) = (0, 0). A naive
application of the generalized Laplace method would give zτ ∝ τ1/2 as τ → 0, since the critical set is
of codimension one except at the origin. However, this is not the correct estimate, which turns out to
be zτ ∝ τ1/2 ln τ . In this case, indeed, integrating along the normal fibers yields a Hessian which is
not integrable at the singularity: formally,

zτ =

∫
R
dx

(∫
R
dy e−

(xy)2

τ

)
=

√
πτ

∫
R

dx

|x|
. (3.15)

It can be shown that isolated degenerate critical points always yield an asymptotic behaviour of the
form τa/2 lnb τ with a, b two integers, although computing the power of the logarithm is a difficult
task, which requires to expand f to orders higher than two. For extended degenerate critical sets,
there is no general result.
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3.3 The divergence degree: first results

3.3.1 A powercounting formula

Let us now come back to the regularized amplitude

Zτ (Γ, G) ∼
τ→0

Λ(dimG)F
τ

∫
A(Γ,G)

dA e−S(A)/τ , (3.16)

and assume that S has tame singularities. Applying the generalized Laplace method
described above then gives

Zτ (Γ, G) ∼
τ→0

Λ(dimG)(F−E)+dimF0(Γ,G)
τ

∫
F0(Γ,G)

dϕ√
det∇2

⊥S(ϕ)
, (3.17)

where F0(Γ, G) is the set of flat connections F(Γ, G) minus its singularities, and dϕ
is the induced Riemannian volume form on F0(Γ, G). Since the remaining integral
does not contain τ anymore, we can read off from (3.17) an explicit for the sought-for
divergence degree:

Ω(Γ, G) = (dimG)(F − E) + dimF0(Γ, G). (3.18)

Recall that from the formal expression (2.24), we inferred that a foam is potentially
divergent if it has more faces than edges, because then some of the delta functions are
redundant. This is confirmed by the first term in the above formula. But the latter
also shows how to sharpen this naive hunch, namely by studying the geometry of the
space of flat connections F(Γ, G). We will address this problem in some detail in the
next section. For now, let us ask: is the intuition of Perez and Rovelli [95] and Freidel
and Louapre [51, 53] that the divergence of a foam can be traced back to the presence
of bubbles vindicated by the formula (3.18)?

3.3.2 Bubbles from cellular homology: the simply connected
case

The notion of bubble has a precise mathematical definition: it is a 2-cycle in cellular
homology (see the appendix for a review of cellular homology). On a 2-complex Γ, the
space of 2-cycles coincides with the second homology group H2(Γ). Thus, a tentative
definition of the “number of bubbles” of Γ is b2(Γ) := dimH2(Γ), the second Betti
number of Γ. Is the divergence degree Ω(Γ, G) related to b2(Γ)?

Consider the case when the foam is simply connected, i.e. when its fundamental
group π1(Γ) is trivial. Then we have that

• the flat connections on Γ are all gauge-equivalent to the trivial one, hence

dimF0(Γ, G) = (dimG)(V − 1), (3.19)

• the first homology group of Γ vanishes3,

H1(Γ) = 0. (3.20)

3By virtue of the Hurewicz theorem, according to which H1(Γ) is the abelianization of π1(Γ).
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In this case, the result (6.6) gives therefore Ω(Γ, G) = (dimG)(F − E + V − 1). Fur-
thermore, the equations b0(Γ) = 1 (Γ connected) and b1(Γ) = 0 (Γ simply connected),
together with the Euler-Poincaré theorem, give F − E + V = 1 + b2(Γ). Hence

Ω(Γ, G) = (dimG) b2(Γ). (3.21)

That is, for simply connected foams, the divergence degree is – indeed – given by the
number of bubbles of Γ, times the dimension of G.
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Chapter 4

The (co)homology of flat
connections

Unfortunately, this identity between divergence degree and number of bubbles (second
Betti number) breaks down when Γ is not simply connected, because then the term
dimF0(Γ, G) in the divergence degree intertwines the topological structure of Γ with
the non-Abelian structure of G. (In particular, it does not factorize as dimG times a
function of Γ as in (3.19).) We will see in this section that, this notwithstanding, the
divergence degree can still be seen as counting the number of bubbles – only these are
not subsets of Γ. Rather, they are twisted bubbles, in the sense of twisted (co)homology.
To develop this perspective, we need to introduce more concepts from discrete gauge
theory. This is the goal of this chapter.

4.1 More on discrete gauge theory

Discrete gauge theory has been studied extensively in two dimensions, especially after
the seminal works of Atiyah and Bott [11], Goldman [59] and Witten [146]. In this
preliminary section, we extend this framework from triangulated 2-manifold to general
foams.

4.1.1 Further definitions

In the previous chapter, we called an element of A(Γ, G) := GE a (discrete) G-
connection on Γ, and defined the curvature map H : A(Γ, G) → GF by

H(A) :=
(
Hf (A) =

∏
e∈∂f

g
ϵfe
e

)
f∈Γ2

, ϵfe = ±1. (4.1)

Let us now complete these definitions.

Flat connections Let us say that A ∈ A(Γ, G) is flat if H(A) = 1, and denote
F(Γ, G) := H−1(1) the space of flat connections. (From now on, we shall write ϕ for a
generic element of F(Γ, G).) Moreover, in differential-geometric parlance we say that
a connection A is regular if the differential dHA has maximal rank, i.e.

rk dHA = dimG ·min{E,F}; (4.2)

else we say that A is critical.
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Parallel transport Let A = (ge)e∈Γ1 be a connection on Γ. If v and w are two
vertices of Γ, and γ = (eη11 , . . . , e

ηn
n ) is an edge-path connecting them, with ni = ±1 to

take into account the orientations of the edges, we define the parallel transport operator
from v to w by

PA(v, w; γ) :=
n∏

i=1

gηiei . (4.3)

If A is flat, two paths in the same homotopy class yield the same parallel transport
operator.

Gauge transformations Connections are by nature acted upon by gauge transfor-
mations. In this discrete setup, these correspond to the action of G at the vertices of
Γ, according to

h · A :=
(
ht(e) ge h

−1
s(e)

)
e∈Γ1

, (4.4)

where h = (hv)v∈Γ1 ∈ GV and s(e) and t(e) denote the source and target vertices
of e. For each connection A, the relation (4.4) defines a map γA from the gauge
group G := GV to A(Γ, G), the local gauge map. The set of gauge transformations
ζA := γ−1

A (A) fixing A is the stabilizer of A, and the image OA := γA(G) of γA is the
orbit of A; they are subgroups of G and A respectively. A connection A such that
ζA is only the center Z(G) of G is called irreducible; else it is reducible. Finally, two
connections A and A′ belonging to the same orbit are called gauge equivalent.

Moduli space The space of gauge orbits of flat connections is a very important
object in two-dimensional gauge theory: it is the semiclassical limit of the Yang-Mills
phase space. This space is usually called the moduli space of flat connections. Here,
we denote it

M(Γ, G) := F(Γ, G)/GV = {Oϕ ⊂ F(Γ, G), ϕ ∈ F(Γ, G)}. (4.5)

4.1.2 Reducing gauge symmetries

The moduli space of flat connections is best described after gauge transformations have
been reduced, in the following sense.

Since gauge transformations multiply the elements ge of a connection A = (ge)e∈Γ1

independently at each vertex, every connection A is gauge equivalent to one which has
ge = 1 on a subset T of Γ1 touching all the vertices of Γ without forming loops – a
spanning tree. In particular, the orbit of a flat connection on Γ is the same as the orbit
of a flat connection on Γ/T , and we can show that1

M(Γ/T,G) = M(Γ, G). (4.6)

The advantage of this reduction is that the action of gauge transformations on Γ/T is
simply the conjugation of each element ge of A ∈ A(Γ/T,G) by a single group element
h ∈ G:

h · A :=
(
hge h

−1
)
e∈(Γ/T )1

. (4.7)

1Note however F(Γ/T,G) ̸= F(Γ, G). The relation (6.6) and the gauge-invariance of the amplitude
shows that, unless the singularities are wild, dimF(Γ/T,G) = dimF(Γ, G) − (dimG)(V − 1), or
equivalently codimF(Γ/T,G) = codimF(Γ/T,G).
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Understanding the orbits of this action is usually much simpler than that of GV with
V > 1.

Moreover, since the integrand in Zτ (Γ, G) is gauge-invariant, we can safely replace
Γ by the foam Γ/T to compute the amplitude:

Zτ (Γ/T,G) = Zτ (Γ, G). (4.8)

For this reason, hereafter (and unless explicitly stated) we shall only consider foams
with one vertex, understanding that the reduction of the gauge symmetry has already
been performed.

4.1.3 Representations of the fundamental group

There is another benefit to this reduction of gauge transformations: it provides a very
useful algebraic interpretation of the space of flat connections. The latter is based on
the one-to-one relationship between foams with a single vertex and group presentations,
as follows.

If Γ is a foam with a single vertex, one can immediately read off a presentation of
the fundamental group π1(Γ) by associating a generator ae to each edge of Γ and one
relation per face:

π1(Γ) = ⟨(ae)e∈Γ1 | (
∏
e

a
ϵfe
e )f∈Γ2 = 1⟩. (4.9)

Reciprocally, a finite presentation of a group π unambiguously determines a foam Γ.
From a single vertex, draw an edge for each generator, and attach the faces according
to the relators.2

Furthermore, the obvious translation of the flatness conditions
∏

e∈∂f g
ϵfe
e = 1 into

relations in a presentation of π1(Γ) shows that a flat connection on Γ can be seen as a
homomorphism from π1(Γ) to G, hence that

F(Γ, G) ≃ Hom
(
π1(Γ), G

)
. (4.10)

Equipped with this algebraic interpretation, the space of flat connections is referred
to as the representation variety of π1(Γ) into G. Moreover, the moduli space of flat
connections

M(Γ, G) ≃ Hom
(
π1(Γ), G

)
/G. (4.11)

is called the character variety of π1(Γ).

4.1.4 The geometry of F(Γ, G) and M(Γ, G)

Unless all flat connections are regular, in which case the inverse function theorem
proves that F(Γ, G) = H−1(1) is a smooth submanifold of A(Γ, G), the space of flat
connections has singularities. Although little is known about the detailed structure of
these singularities in the general case, it is easy to see that F(Γ, G) has the structure
of an affine algebraic set whenever G is algebraic: the flatness relations Hf (ϕ) = 1 are
then polynomial equations in some affine space. This has various consequences.

2Note that trivial relations such as aa−1 = 1 must not be eliminated from the presentation of π for
this duality to hold. An example of this issue is provided by the ‘dunce hat’: while ⟨a|a2a−1 = 1⟩ is
obviously equivalent to ⟨a|a = 1⟩ as a group presentation, the corresponding 2-complexes, the dunce
hat and the disc respectively, are not.
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First, an algebraic set consists of several irreducible components, which by definition
do not decompose as the union of smaller algebraic sets. Each irreducible component,
also called an algebraic variety V , has a well-defined dimension, in spite of the fact
that it is not a manifold, viz. contains singular points: dimV is simply the dimension
of a suitable neighborhood of any point where it is a manifold.

Second, the singularities of an algebraic variety V can be identified by computing
the Zariski tangent space TvV at v ∈ V . This tangent space is defined as the joint
kernel of the differentials of all the polynomials which vanish on V . It is naturally a
vector space, and we have in general

dimV ≤ dimTvV . (4.12)

The smooth, or non-singular points of V are those saturating this inequality.3 To get a
feel for this definition, one can think of the cross {xy = 0} ⊂ R2 in the plane considered
in sec. 3.2.2. At each point different from (0, 0), there is one tangent direction to the
variety: the Zariski tangent space is one-dimensional. But at the origin, there are two
independent tangent vectors, spanning a two-dimensional Zariski tangent space: (0, 0)
is the unique singular point of the cross. The set of smooth points V0 of a variety V,
its smooth locus, always forms a manifold that is dense4 in V. For instance, the smooth
locus of the cross in R2 is the (disconnected) union of four half-lines.

In the case of the space of flat connections F(Γ, G), one sees immediately that the
smooth locus F0(Γ, G) contains all the regular connections ϕ: the map H is submersive
at ϕ, hence by the inverse function theorem ϕ has a manifold neighborhood. In fact,
the smooth locus is precisely the subset of F(Γ, G) where H has maximal rank, and
the Zariski tangent space is just TϕF(Γ, G) = ker dHϕ.

Note also that the singularities of F(Γ, G) in the algebraic-geometric sense coincide
with the analytic singularities of the function S defined in sec. 3.2.2. To see this, it is
enough to check that

∇2S(ϕ) =
1

2
dH†

ϕdHϕ, (4.13)

hence that the degeneracy of ∇2
⊥S corresponds to points where dimker dHϕ, the di-

mension of the Zariski tangent space, is larger than expected.
Observe that the smooth locus is stable under the action of G by conjugation:

if ϕ is non-singular and ϕ′ is gauge-equivalent to ϕ, then ϕ is also non-singular.
This fact turns F0(Γ, G) into a G-manifold, and allows to describe the quotient
M0(Γ, G) := F0(Γ, G)/G as consisting of a disjoint union of manifolds character-
ized by their orbit type H = ζϕ. Each such orbit stratum M0(Γ, G)(H) has dimension
dimM0(Γ, G)(H) = dimF0(Γ, G) − dimG + dimH. In particular, if there are irre-
ducible flat connections, they form the stratum with maximal dimensional dimension,
or top stratum of M0(Γ, G).

4.2 Twisted (co)homology

We are now ready to introduce the theory of twisted cohomology.5

3And in fact we can define dimV := miny∈V dimTvV.
4In the Zariski topology; we do not elaborate on this aspect here.
5Although Bonzom and I were unaware of their work when we started using this tool, the relevance

of twisted cohomology for the Ponzano-Regge model was first pointed out by Barrett and Naish-
Guzman in [19].
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4.2.1 Curvature as a coboundary operator

To understand the relationship between the space of flat connections and cohomol-
ogy in more general terms than in sec. 3.3.2, it is illuminating to compute explic-
itly the differential of the curvature map H at ϕ = 1, the trivial connection. For
X = (Xe)e∈Γ1 ∈ T1A(Γ, G), we find

dH1(X) =
(∑

e∈∂f

ϵefXe

)
f∈Γ2

, (4.14)

where ∂f denotes the family of edges of Γ lying on the boundary of the face f , and as
before ϵef is a sign encoding the relative orientation of e and f . Now, this map dH1

coincides with the first coboundary operator δ1 in the cellular cohomology C∗(Γ, g) of Γ
with coefficients in g, the Lie algebra of G (see the appendix for a reminder on cellular
cohomology):

0 −→ g
0−→ gE

δ1−→ gF −→ 0. (4.15)

Here δ0 vanishes because Γ has a single vertex.
This observation provides further insight into the fact that for simply connected

foams (which after gauge reduction admit a single flat connection, the trivial one), we
have

Ω(Γ, G) = (dimG)b2(Γ) = b2(Γ, g). (4.16)

Indeed, from H1(Γ) = ker δ1/ im δ0 = 0 we get ker δ1 = ker dH1 = 0, hence the flat
connection 1 is non-degenerate. The standard Laplace method then gives

Ω(Γ, G) = (dimG)F − rk dH1 = (dimG)F − rk δ1 = b2(Γ, g). (4.17)

That is, the corank of the curvature map H is the second Betti number of the cochain
complex (4.15), hence counts the number of “bubbles with coefficients in g”. This
explains the homological nature of the divergence degree Ω(Γ, G) for simply connected
foams.

4.2.2 Interlude: twisted deRham cohomology

IfM is a smooth d-manifold, it is well known that the exterior derivative di : Ωi(M) →
Ωi+1(M) defines a cochain complex

0 −→ Ω0(M)
d0−→ Ω1(M)

d1−→ . . .
dn−1

−−−→ Ωn(M)
dn−→ 0, (4.18)

whose cochain groups Ωi(M) are the space of i-forms on M . Its cohomology H∗
dR(M)

is called the de Rham cohomology of M .6

Now, if ϕ is flat connection on a principal G-bundle P → M , this construction
extends to forms over M valued in the adjoint bundle Ad(P ) = P ×Ad g, by means of
the covariant exterior derivative diϕ : Ωi

(
M,Ad(P )

)
→ Ωi+1

(
M,Ad(P )

)
. Indeed, the

flatness of ϕ entails di+1
ϕ diϕ = [F (A), · ] = 0, which means that

0 −→ Ω0
(
M,Ad(P )

) d0ϕ−→ Ω1
(
M,Ad(P )

) d1ϕ−→ . . .
dn−1
ϕ−−−→ Ωn

(
M,Ad(P )

) dn−→ 0, (4.19)

6Physically, the first de Rham cohomology group H1
dR(M) is the space of Maxwell fields up to

gauge; more generally, Hi
dR(M) is the solution space of ‘i-form electrodynamics’ [73].
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is also a cochain complex. The corresponding cohomology H∗
ϕ

(
M,Ad(P )

)
is the twisted

de Rham cohomology of M .7

4.2.3 Twisted cellular cohomology

Just like de Rham cohomology, there is a twisted version of cellular cohomology. Here
is one possible description of it. (The mathematically-oriented reader can consult
Turaev’s book [134] for a more algebraic presentation.)

Let K be a finite-dimensional CW complex, with cochain groups Ci(K), and let

C i(K, g) := Ci(K)⊗ g ≃ gci(K). (4.20)

Here ci(K) is the number of i-cells of K.
This space is the discrete counterpart of Ωi

(
M,Ad(P )

)
: it consists linear combina-

tions of i-cells of K with coefficients in g.
To describe the corresponding analogue of the covariant exterior derivative, first

pick a reference vertex viα on the boundary of each i-cell eiα of K. Then choose for each
(i + 1)-cell ei+1

β adjacent to eiα an edge-path connecting viα and vi+1
β on the boundary

of ei+1
β .

For each flat connection ϕ, consider the parallel transport operator Pϕ(v
i
α, v

i+1
β )

along a path of edges connecting viα and vi+1
β on the boundary of ei+1

β . (Since the
connection is flat, the operator is independent of the chosen path.) Via the adjoint
representation of G, these operators act on the cochain spaces Ci(K, g). Use them to
define the twisted coboundary operators δiϕ : C i(K, g) → C i+1(K, g) by

δiϕ(e
i
α ⊗X) :=

∑
β

[ei+1
β , eiα]

(
ei+1
β ⊗ AdPϕ(viα,v

i+1
β )(X)

)
, (4.21)

for X ∈ g. Here, [ei+1
β , eiα] is the incidence number of the pair of cells (ei+1

β , eiα) (the
higher-dimensional analogue of the numbers ϵef considered so far).

It can then be checked that δi+1
ϕ ◦δiϕ = 0, and that the ϕ-twisted cellular cohomology

groups
Hϕ(K, g) := ker δiϕ/ im δi−1

ϕ (4.22)

are well-defined, i.e. do not depend on the choice of reference vertices. Like the usual
cohomology groups, they are homotopy invariants of K; their dimensions biϕ(K, g) :=
dimHϕ(K, g) are the ϕ-twisted Betti numbers of K.

Let us emphasize that, in general, these are not simply related to the standard
Betti numbers bi(K). There is such a simple relationship, however, for the twisted
Euler characteristic, which satisfies

χϕ :=
d∑

i=0

(−1)i dimCi(K, g) = (dimG)χ(K). (4.23)

By the Euler-Poincaré theorem, it follows that

d∑
i=0

(−1)ibiϕ = (dimG)χ(K). (4.24)

7Twisted deRham cohomology describes non-Abelian gauge theory in a background field ϕ. For
instance, Hd−2

ϕ (M) is the space of solutions up to gauge of the equation of motion dd−2
ϕ B = 0 of BF

theory [74].
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4.2.4 Twisted cohomology in the flat model

Twisted cellular cohomology arises naturally in the flat spinfoam model. Thus, a
moment of reflection shows that the 0-th twisted coboundary operator δ0ϕ is nothing
but the differential of the local gauge map γϕ at the unit,

δ0ϕ = (dγϕ)1. (4.25)

That is to say that the space of 1-coboundaries im δ0ϕ is the tangent space of the gauge
orbit of ϕ, and the space of 0-cocycles ker δ0ϕ is the Lie algebra of its stabilizer ζ(Γ, G)ϕ.
In particular, H0

ϕ vanishes if and only if ϕ is irreducible.
Similarly, we can check that

δ1ϕ = dHϕ. (4.26)

Hence, the space of 1-cocycles ker δ1ϕ is the tangent space to F(Γ, G) at ϕ, and the first
cohomology group H1

ϕ(Γ, g) is the tangent space to M(Γ, G) at O(Γ, G)ϕ. Moreover,
H2

ϕ = 0 means that rk dHϕ = (dimG)F , i.e. that ϕ is regular.8

Note that, by definition of non-singular connections, the second twisted Betti num-
ber b2ϕ has a constant value

b20 := min
ϕ∈F(Γ,G)

b2ϕ (4.27)

on F0(Γ, G), given by

b20 = (dimG)F − rk dHϕ = (dimG)(F − E) + dimF0(Γ, G). (4.28)

Comparing with the result (3.18), we see that

Ω(Γ, G) = b20. (4.29)

In words: (provided the singularities of the curvature map are tame) the divergence
degree of a foam is given by the value of its second twisted Betti number on non-
singular connections. This is the main result of this chapter, and the precise sense in
which divergences in the flat model are counted by “bubbles”.

4.3 Examples

Let us now illustrate this result with several examples of interest.

4.3.1 Abelian structure group

Consider first the case where the structure groupG is Abelian. In this case the curvature
map H is a group homomorphism GE → GF , hence

• the space of flat connections F(Γ, G) = kerH is a Lie subgroup of A(Γ, G) = GE,
and in particular has no singularity,

8The reader might wonder whether the higher coboundary operators also have a gauge-theoretic
interpretation. From the perspective of discrete connections on a foam, the answer is negative. How-
ever, the flat spinfoam model can be analyzed as a discrete BF model, with an additional variable in
g on each face of Γ; the higher coboundary operators turn out to describe the (reducible) shift gauge
symmetry of the discrete B field. We will detail this point of view in [28].
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• the relation (4.14) holds for any flat connection ϕ ∈ F(Γ, G), i.e.

δ1ϕ(X) = dHϕ(X) =
(∑

e∈∂f

ϵefθ(Xe)
)
f∈Γ2

, (4.30)

where X = (Xe)e∈Γ1 ∈ TϕG
E and µ : TϕG→ g is the Maurer-Cartan form on G.

In other words,
δ1ϕ(X) = δ1

1

(
µ(X1), . . . , µ(XE)

)
. (4.31)

Both observations imply that b2ϕ = corank δ1ϕ is constant on F(Γ, G), equal to its value
on the trivial connection 1. But we saw in the previous section that the twisted cochain
complex of Γ at ϕ = 1 is just the cellular cochain complex of Γ with coefficients in g,
hence

Ω(Γ, G) = b20 = b2(Γ, G) = (dimG)b2(Γ). (4.32)

Thus, for Abelian groups like for simply connected foams, the relevant “bubbles” are
the cellular 2-cycles of Γ. The initial intuition that, in the flat spinfoam model, pow-
ercounting amounts to the chasing of “closed surfaces” within Γ is correct is this case
too.

4.3.2 Surface groups with G = SU(2)

Assume now that Γ is the cellular decomposition Γk of a (closed, orientable) surface
with genus k, and that G = SU(2). This is the case studied by Witten in the context
of two-dimensional Yang-Mills theory [146], and by Goldman [59] and Atiyah and Bott
[11] from the mathematical perspective.

As well-known, Γk can always be reduced to a flower graph with 2k edges supporting
only one face. This corresponds to the following presentation of the fundamental group:

π1(Γk) = ⟨a1, b1, . . . , ak, bk | [a1, b1] · · · [ak, bk] = 1⟩. (4.33)

Here the square brackets denote the group commutator in π1(Γg), [a, b] := aba−1b−1.
The space Fk := F(Γk, SU(2)) of discrete SU(2)-connections on Γk can therefore

be described as

Fk =
{
(a1, b1, . . . , ak, bk) ∈ SU(2)2k, [a1, b1] · · · [ak, bk] = 1

}
. (4.34)

Geometrically, the group elements ai and bi can be thought of as rotations with the
same axis of rotation n̂i ∈ S2, but ai and bj can have different axes for i ̸= j. Computing
the action of SU(2) on Fk by conjugation, we find that a gauge transformation is a
rotation of these axes.

It is not difficult to convince oneself that there are singular connections in Fk, as the
differential of the flatness relation is clearly not of constant rank. Yet, one circumstance
greatly simplifies the description of Fk with respect to the general case: its singularities
are classified by the orbit type ζϕ. This follows from Poincaré duality, which states
that H2

ϕ ≃ H0
ϕ. Hence, in this case a flat connection ϕ is non-singular (H2

ϕ = 0) if and
only if it is irreducible (H0

ϕ = 0).
To make this observation more concrete, we now describe explicitly the Zariski

tangent space ker dHϕ, for ϕ ∈ Fk. We treat the cases k = 1 (the torus) and k ≥ 2
separately (the sphere, which is simply connected, was already treated in sec. 4.2.1).
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Higher genera (k ≥ 2) Identifying the tangent space TϕA(Γ, G) with its Lie algebra
gE by means of the Maurer-Cartan form, we have in this case

dHϕ(u, v) = δ1ϕ(u, v) =

g∑
i=1

(
1− Adbi

)
ui −

(
1− Adai

)
vi. (4.35)

for algebra elements u := (ui)i=1,...,k ∈ gE and v := (vi)i=1,...,k ∈ gE. Considering ui and
vi as vectors in three-dimensional space, the adjoint action Adai is a rotation around
the axis n̂i. Thus, for each i, it is natural to decompose ui and vi into orthogonal and
parallel components to the direction n̂i, viz.

ui = u
∥
i + u⊥i , (4.36)

and similarly for vi.
All parallel components u

∥
i drop out from (4.35), since (1−Adai)vi = (1−Adai)v

⊥
i .

Moreover, the latter quantity belongs to the orthogonal plane to n̂i, where (1− Adai)
is invertible. This means that, varying ui and vi, each term of the sum in (4.35) spans
the orthogonal plane to n̂i. Finally, if at least two axes among the k directions are
distinct, then the span of δ1ϕ(ui, vi) is the whole algebra g.

Hence, there exist flat connections where the curvature map is submersive, i.e. there
are regular flat connections. (Note that they are irreducible.) Consequently, by the
implicit function theorem, the non-singular flat connections form a smooth manifold
of dimension

dimF0 = dimker δ1|F0
= 6k − 3, (4.37)

and therefore
Ω
(
Γk, SU(2)

)
= b20 = 0. (4.38)

Thus, we find that the regularized amplitude

Zτ (Γg, SU(2)) =

∫ g∏
i=1

dai dbi Kτ

(
[a1, b1] · · · [ag, bg]

)
(4.39)

has a finite limit as τ → 0. This is consistent with Witten’s formula [146]

lim
τ→0

Zτ

(
Γk, SU(2)

)
=
(
VolG

)2k∑
n≥1

n−(2k−2) =
(
VolG

)2k
ζ(2k − 2). (4.40)

We refer to the work of Sengupta [127] for details on why singularities are tame in this
case.

Let us also say a word about the singular connections. In this case, they are of two
kinds:

• Abelian connections. All group elements have the same axis n̂. These form a
submanifold of dimension 2k+2, on which rk δ1ϕ = 2. Such flat connections have
a U(1) stabilizer, corresponding to rotations around n̂.

• Central connections. All group elements are in the center of SU(2), i.e. ai, bi =
±1. They are isolated points, where rk δ1ϕ = 0. (Indeed, Ad±1 = 1, hence
dHϕ = 0.) They are completely reducible, viz. ζϕ = SU(2).

These observations are consistent Poincaré duality: the more a flat connection is re-
ducible, the more it is singular.
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The torus (k = 1) The case of the torus is more subtle, because all flat connections
are critical, and also more interesting, because Ω

(
Γk=1, SU(2)

)
is not a multiple of

dimG = 3.
To see this, recall first that the curvature map in this case is a single group commu-

tator, (a, b) 7→ [a, b] = aba−1b−1, hence flat connections ϕ consist in pairs of rotations
with angles 0 ≤ ψa, ψb < π and the same axis n̂ ∈ S2. Moreover, the coboundary
operator δ1ϕ (again pulled back to the Lie algebra g2) reads

δ1ϕ = d
(
[a, b]

)
=
(
1− Adb

)
−
(
1− Ada

)
. (4.41)

As before, let us distinguish between the Abelian and central connections:

• Abelian connections. Assume that either a or b (say b) is not ±1. Then the
operators (1 − Ada) and (1 − Adb) in (4.42), seen as linear maps on g ≃ R3,
have the same one-dimensional kernel, namely the direction parallel to n̂: this
corresponds to variations of the angles ψa, ψb for a fixed n̂. Restricted to the
orthogonal plane, the map (1 − Adb) is invertible, hence the equation for the
kernel of δ1ϕ reads

u⊥a = (1− Adb)
−1(1− Ada)u

⊥
b , (4.42)

and therefore fixes 2 real components of (ua, ub) ∈ R3 × R3. It expresses the
condition that the connection remains flat under variations of the directions of a
and b. It follows that rk δ1ϕ = 2, hence that b2ϕ = 3− 2 = 1.

• Abelian connections. If on the other hand both a and b are ±1, , the differential
(4.42) vanishes, hence rk δ1ϕ = 0, i.e. b2ϕ = 3.

Thus, the singular connections are the central ones, and

Ω
(
Γk, SU(2)

)
= b20 = 1. (4.43)

This confirms that the torus is divergent, as suggested by (4.40).

4.3.3 A foam with wild singularities

We close this section by an example of a foam presenting wild singularities, still with
G = SU(2). Consider the group9

π = ⟨a, b, h | [a, h] = [b, h] = 1⟩. (4.44)

The set of flat connections on the corresponding foam Γ with three edges and two faces
is determined by the relations

F =
{
(a, b, h) ∈ SU(2)3, [a, h] = [b, h] = 1

}
. (4.45)

This set has two irreducible components.

• If h is in the center of SU(2), i.e. h = ±1, then, a, b can be arbitrary:

Firred :=
{
(a, b,±1), (a, b) ∈ SU(2)2

}
. (4.46)

These are the irreducible flat connections.
9We do not know if this is the fundamental group of a 3-manifold. (But it is that of a 4-manifold,

like any other finitely generated group.)



4.3 Examples 47

• If h is not in the center, then a, b and h have to lie in a common U(1) subgroup
of SU(2). These are the Abelian representations. If we write a generic element
g = exp(iψn̂ · σ⃗), with n̂ ∈ S2 the direction of the rotation and 0 ≤ ψ ≤ π its
class angle, then

Fred := {(a = exp(±iψan̂h · σ⃗), b = exp(±iψbn̂h · σ⃗), h = exp(iψhn̂h · σ⃗))} ,
(4.47)

with 0 ≤ ψa, ψb, ψh < π and n̂h ∈ S2.

Quite obviously, Firred is of dimension 6, while Fred is 5-dimensional.10 It follows that

b2irred(Γ, SU(2)) = 3, and b2red(Γ, SU(2)) = 2. (4.48)

Applying Laplace’s method as in sec. 3.3 therefore suggests that

A(Γ, SU(2)) ∼
τ→0

Zτ (Γ, SU(2))irred + Zτ (Γ, SU(2))red (4.49)

with

Zτ (Γ, SU(2))irred ∼
τ→0

Λ3
τZ ′

irred(Γ, SU(2)) (4.50)

Zτ (Γ, SU(2))red ∼
τ→0

Λ2
τZ ′

red(Γ, SU(2)). (4.51)

In other words, it suggests that the divergence of the amplitude is controlled by ir-
reducible connections, and Ω(Γ, SU(2)) = 3. However, it so happens that reducible
connections actually spoil this result, because A′

red(Γ, SU(2)) = ∞. This was showed
in [29] by direct computation of the contribution of Fred to the Laplace asymptotics of

Zτ

(
Γ, SU(2)

)
=

∫
SU(2)3

dadbdhKτ ([a, h])Kτ ([b, h]). (4.52)

Explicitly, we showed in this reference that

Zred

(
Γ, SU(2)

)
∼

τ→0

1

4
Λ2

τ Vol(S2)

∫
[0,π]3

dψa dψb dψh

sin2 ψh

. (4.53)

The factor Vol(S2) corresponds to the integral over gauge orbits, which here correspond
to rotations of the common direction n̂h of the three group elements, the class angles
remaining fixed; the class angles ψa, ψb and ψh on the other hand parametrize the
moduli space. This integral is manifestly divergent. This is strictly analogous to the
wild singularity discussed in sec. 3.2.2, and shows that the divergence degree of Γ
cannot be estimated by Laplace’s method.

10Recall that, by definition, these are the dimensions of the kernel of dHϕ on non-singular flat
connections.
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Chapter 5

Applications of homological
powercounting

We found in the previous chapter that, except for a caveat related to possibly wild
singularities in the space of flat connections F(Γ, G), the divergence degree of a foam
Γ is the second twisted Betti number of Γ, evaluated on the non-singular elements of
F(Γ, G). We commented on the interpretation of this result as the actual realization
of the idea that the divergences of Z(Γ, G) can be traced back to the presence of
“bubbles”.

In this chapter, we discuss another aspect of this result: the clarification, unification
and generalization of all the earlier results on divergences in the Ponzano-Regge and
Ooguri models.

5.1 Sorting out topology from cell structure

One such clarification concerns the extent to which the divergence degree of a foam is
determined by the topology of spacetime. We now derive a decomposition of Ω(Γ, G)
which completely settles this question.

5.1.1 A useful decomposition

Part of the interest of the powercounting result obtained in the previous chapter is that
it holds for arbitrary foams. Suppose, however, that Γ is actually the 2-skeleton of a
cell decomposition KM of a n-pseudomanifold M .1 Then the result Ω(Γ, G) = b20 can
be sharpened considerably.

Consider indeed the twisted Euler-Poincaré formula for the 2-skeleton Γ,

χϕ = b0ϕ − b1ϕ + b2ϕ. (5.1)

From the discussion in sec. 4.2.4, we know that b0ϕ is the dimension of the stabilizer
ζϕ, and that b1ϕ is the local dimension of the moduli space M(Γ, G). Combining this
with (4.23), we get

Ω(Γ, G) = dimM(Γ, G)− dim ζ0 + (dimG)χ(Γ), (5.2)

1This includes the manifolds usually considered in general relativity, but also the more singular
spaces arising as Feynman diagrams of a group field theory.
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where ζ0 is the common stabilizer of non-singular flat connections ϕ ∈ F0(Γ, G). More-
over, by definition of the Euler characteristic, we have

χ(Γ) = V − E + F = χ(KM)−
n∑

i=3

(−1)ici(KM), (5.3)

where ci(KM) is the number of i-cells in KM . Hence,

Ω(Γ, G) = dimM(Γ, G)− dim ζ0 + (dimG)χ(KM)− (dimG)
n∑

i=3

(−1)ici(KM). (5.4)

Thus, we have a decomposition

Ω(Γ, G) = I(M,G) + ω(KM , G), (5.5)

where
I(M,G) := dimM(Γ, G)− dim ζ0 + (dimG)χ(M). (5.6)

is the ‘topological’ part of the divergence degree, depending only on the homeomor-
phism (and in fact homotopy) class of M , and

ω(KM , G) := −(dimG)
n∑

i=3

(−1)ici(KM) (5.7)

is its ‘cellular’ part, depending on the given cell decomposition KM of M .2 This
decomposition “sorts out topology from cell structure” in the divergence degree [30].

5.1.2 On the topological part of Ω(Γ, G)

The above decomposition should be contrasted with the result obtained in sec. 3.3.1,
where Ω(Γ, G) was written as the sum of a term proportional to (F −E) (the number
of “redundant” delta functions in the definition of the flat spinfoam model), and of
dimF0(Γ, G) (the dimension of the space of flat connections).

Indeed, unlike dimF0(Γ, G) in (3.18), the topological part I(M,G) in (5.5) only
depends on the fundamental group π1(M) (and the homotopy class of M via the Euler
characteristic χ(M)).

This fact makes the computation of the divergence degree much easier in the
form (5.5): in practice, it reduces the problem of computing I(M,G) for a given
(pseudo)manifoldM to that of identifying the representation variety of its fundamental
group Hom

(
π1(M), G

)
and computing the the orbits of ϕ ∈ Hom

(
π1(M), G

)
under the

conjugation action. Since these only depend on π1(M), any presentation of π1(M) can
be used to that effect; in particular, from the standard presentation (4.9) obtained by
retracting a tree T in Γ, as in sec. 4.1.2.

One more comment about the computation of I(M,G). It may happen that the
character variety M(Γ, G) = Hom

(
π1(Γ), G

)
/G has several irreducible components.

These lead to different values of I(M,G); in τ → 0 limit, the leading behaviour of the
amplitude Zτ (Γ, G) is of course given by the largest one. This phenomenon will be
illustrated in sec. 5.3.

2Note that this decomposition actually holds for any n-dimensional cell complex. The restriction
to pseudo-manifolds is made for comparison with the literature and as a natural choice in group field
theory.
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5.2 Comparison with previous results

Prior to our introduction of twisted cohomology in the discussion of powercounting in
the flat model, several results had been presented in the literature, mostly within the
context of the Boulatov and Ooguri models, where foams are “simplicial”: in dimension
d, exactly (d + 1) edges (resp. d faces) are incident on each vertex (resp. edge) of Γ,
corresponding to the number of faces of a d-simplex (resp. (d− 1)-simplex).

These results fall in four classes:

• Powercounting from Pachner moves. If one assumes that Γ arises from a triangu-
lation TM of a closed n-manifoldM , as the 2-skeleton of its dual cell complex, one
can see that Pachner moves on TM generate divergences in the partition function.
Ponzano and Regge [99], Boulatov [31] and Ooguri [91] relied on this observation
to relate the divergence degree to the combinatorics of Γ.

• Powercounting from bubble counting. A different approach to the divergences of
the flat spinfoam model was initiated by Perez and Rovelli [95], who realized
that they are related to the presence of “bubbles” within Γ. Freidel and Louapre
[51, 53], and later Freidel, Gurau and Oriti [49], pushed this intuition further
in three-dimensions and obtained a powercounting estimate for certain special
complexes, coined “type 1”. Within Gurau’s colored tensor models, this result
was then extended to higher dimensions by Ben Geloun et al. [58].

• Powercounting from vertex counting. Yet another approach relies on the field-
theoretic notion that the divergence degree of a Feynman diagram can be bounded
by the number of its vertices. Together with Magnen, Noui and Rivasseau, I
obtained such bounds in the Boulatov model [81]; these were adapted to the
colored tensor models in [21].

• Powercounting from jackets. The notion of “jacket” for a (colored) Boulatov-
Ooguri complex was introduced by Ben Geloun et al. in [58], and used by Gurau
and Rivasseau [68, 64] to obtain an upper bound on the divergence degree im-
proving the one obtained by vertex counting mentioned above.

In this section, we explain how our main formula (5.5) encompasses all the results
quoted above. One important should be stressed: except for the perturbative bounds
obtained from vertex counting, these results are all based on the (usually implicit)
assumption that Ω(Γ, G) is an integer multiple of dimG. An immediate consequence of
(5.6) and (5.7), however, is that this is not true in general, because neither dimM(Γ, G)
nor dim ζ(Γ, G) in the topological part I(M,G) are multiples of dimG.

5.2.1 Powercounting from Pachner moves

When Ponzano and Regge introduced their model in 1968, they considered a 3-manifold
M equipped with a triangulation TM , G = SU(2), and conjectured that the divergence
degree was given by three (i.e. dimSU(2)) times the number of vertices V (T ) in the tri-
angulation. They were guided in making this conjecture by the following consideration:
because of the Biedenharn-Elliot identity for {6j}-symbols, the formal amplitudes of
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two triangulations TM and P14TM of M related by a 1− 4 Pachner move satisfy

ZPR

(
P14TM

)
=
( ∞∑

j=0

(2j + 1)2
)
ZPR

(
TM
)
. (5.8)

Since
∑Λ

j=0(2j + 1)2 scales as Λ3 when Λ → ∞, and since the 1 − 4 move introduces
a single new vertex in the triangulation, the conclusion that each vertex contributes a
factor of Λ3 in the amplitude appears tantalizing. Indeed, Ponzano and Regge proposed
to cut off the sums in their state-sum to a maximal value Λ to obtain a finite value
ZPR,Λ

(
T
)
for the amplitude, and tentatively defined a regularized amplitude by

Z ′
PR(TM) = lim

Λ→∞
Λ−3V (TM )ZPR,Λ

(
TM
)
. (5.9)

The origin of the intuition that divergences in the Ponzano-Regge model are related
to the vertices of TM , but also the reason why this naive regularization is bound to fail,
is completely elucidated by our decomposition (5.5). Indeed, taking KM as the dual
cell complex to a triangulation TM , and noting that in three dimensions, a vertex is
dual to a 3-cell, we see that

ω(TM , G) = 3c3(KM) = 3V (TM). (5.10)

That is, the relationship between divergences of A(TM) and vertices of TM conjectured
by Ponzano and Regge is exact for the non-topological part of Ω(TM , G), but misses
completely its topological part I(M,G). This is because the argument based on the
1−4 Pachner move actually estimates not the divergence degree itself, but its variation
in the move, that is

Ω(P14TM)− Ω(TM) = ω(P14TM)− ω(TM) = 3
(
V (P14TM)− V (TM)

)
. (5.11)

In this variation, I(M) cancels.
A similar observation was made in the four-dimensional case by Ooguri in [91].

He considered separately the 1 − 5 move (in which the number of vertices and edges
increase by one and five respectively) and the 3 − 3 move (in which the number of
vertices is left unchanged while the number of edge is increased by one), and found that
ZO(TM) depends on the triangulation TM only through a divergent factor measured by
3
(
E(TM) − V (TM)

)
, where V (TM) and E(TM) are the number of vertices and edges

of TM . Although he could not show this result rigorously (because he could not make
sense of the amplitude as a finite number), we can interpret his argument along the
same lines as in three dimensions: it provides the correct non-topological divergent
degree ω(TM), but misses the topological part I(M). Indeed, in the dual complex KM

to TM , there is one 4-cell per vertex, and one 3-cell per edge in TM , so that

ω(KM) = 3
(
c3(KM)− c4(KM)

)
= 3
(
E(TM)− V (TM)

)
. (5.12)

5.2.2 Powercounting from bubble counting

Freidel, Gurau and Oriti defined in [49] a restricted class of foams Γ, which they called
“type 1”, for which they could show that the divergence degree is simply related to the
number B(Γ) of “bubbles” in Γ,

Ω(Γ) = 3
(
B(Γ)− 1

)
. (5.13)
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With the view that Γ is the 2-skeleton of a cell complex KM decomposing a 3-
pseudomanifold M , the “bubbles” of Γ in the sense of Freidel et al. correspond to
the 3-cells of KM , hence (5.13) reads

Ω(KM) = 3(c3(KM)− 1). (5.14)

Taking their cues from the Turaev-Viro model, they speculated that the “type 1”
condition should correspond to “topologically trivial manifolds”, i.e. to the 3-sphere.
Given the decomposition (5.5), the identity (5.14) is equivalent to

I(M) = dimM(Γ, G)− dim ζ(Γ, G) = −3. (5.15)

In other words, the “type 1” complexes are, for a given number of 3-cells in the cor-
responding complex KM , are minimally divergent. Moreover, they are such that their
flat connections up to gauge are isolated and completely reducible. We will see in the
next section that this last condition alone does not single out the 3-sphere (it is also
satisfied e.g. by the real projective space RP 3).

In [58], Ben Geloun et al. considered Gurau’s colored model, and used the corre-
sponding “bubble homology” to obtain the following formula for the divergence degree
in dimension d ≥ 3 for the Abelian structure groups G = R:3

Ω(G) =
d+1∑
k=3

(−1)k−1ck(G) +
d−1∑
k=2

(−1)kbk(G). (5.16)

Here, G is a (d + 1)-colored graph, ck(G) is for 0 ≤ n ≤ d the number of k-bubbles in
G , cd+1(G) := 1 and bk(G) is the k-th “bubble” Betti number of G. All the details are
given in the appendix.

The relationship with our result is based on the following correspondence. A (d+1)-
colored graph G naturally defines a d-dimensional CW complex ∆G with the following
property:

• the underlying graph of G is the 1-skeleton of ∆G,

• the number of k-bubbles of G equals the number of k-cells of ∆G,

• the “bubble” homology of G coincides with the cellular homology of ∆G.

With this correspondence, the relationship between (5.16) and our result (5.4) is
straightforward. First, note that what is denoted cd+1(G) in (5.16) is really bd(G) = 1,
so that it can (and should) be rewritten

Ω(G) =
d∑

k=3

(−1)k−1ck(G) +
d∑

k=2

(−1)kbk(G). (5.17)

Then, use the identities ck(G) = ck(∆G) and bk(G) = bk(∆G) and the Euler-Poincaré
relation

χ(∆G) =
d∑

k=0

(−1)kbk(∆G) (5.18)

3That R is non-compact introduces another source of divergences, which can be tamed with a
second cutoff.
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to get

Ω(G) =
d∑

k=3

(−1)k−1ck(∆G) + χ(∆G)− b0(∆G) + b1(∆G). (5.19)

This is the same as (5.4) in this particular case. Our result can therefore be described
as the generalization of (5.16) to general cell complexes, and non-Abelian groups.

5.2.3 Powercounting from vertex and jacket counting

Using tools from perturbative quantum field theory, and notably Cauchy-Schwarz in-
equalities, an upper bound on the divergence degree in the Boulatov model was ob-
tained in [81]. It is formulated in terms of the number of vertices rather than 3-cells
in the complex, and reads for a Boulatov complex Γ without generalized tadpole [21]

Ω(Γ) ≤ 3

2
c0(Γ) + 6. (5.20)

Within the colored model, this bound was then generalized to higher dimensions in
[21]. In dimension d, it becomes for a colored graph G with V (G) vertices

Ω(G) ≤ 3(d− 1)(d− 2)

4
V (G) + 3(d− 1) (5.21)

Using the notion of “jacket” introduced in [58], Gurau and Rivasseau further improved
this bound in [68, 64], obtaining

Ω(G) ≤ 3(d− 1)(d− 2)

4
V (G) + 3(d− 1)− 6(d− 2)

d!

∑
J

g(J ), (5.22)

where g(J ) is the genus of (orientable surface dual to) the jacket J .
Remarkably, the jacket bound (5.22) follows easily from our exact result (5.4).

Indeed, denoting E(G) the number of edges and F (G) the number of faces of G, the
formula (5.4) reads

Ω(G) = dimM(Γ, G)− dim ζ(Γ, G) + 3
(
V (G)− E(G) + F (G)

)
. (5.23)

Since a colored graph has no tadpole, we have 2E(G) = (d+ 1)V (G), hence

Ω(G) ≤ dimM(Γ, G)− 3(d− 1)

2
V (G) + 3F (G). (5.24)

Moreover, since

dimM(Γ, G) ≤ dimHom
(
π1(G), SU(2)

)
, (5.25)

and π1(G) is a subgroup of π1(J ) for each jacket J of G, we have

dimM(Γ, G) ≤ 1

J(G)
∑
J

dimHom
(
π1(J ), SU(2)

)
, (5.26)

where

J(G) = d!

2
(5.27)
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is the number of jackets of G. Now it is well-known that the dimension of the SU(2)
representation variety of a genus g surface is 6g − 3. Thus,

dimM(Γ, G) ≤ 2

d!

∑
J

(
6g(J )− 3

)
. (5.28)

Using the Euler relation

χ(J ) = 2− 2g(J ) = V (J )− E(J ) + F (J ), (5.29)

the combinatorial facts that V (J )−E(J ) = d−1
2
V (G) and that each face of G belongs

to (d− 1)! jackets, we have [69]

F (G) = d(d− 1)

4
V (G) + d− 2

(d− 1)!

∑
J

g(J ). (5.30)

Using this relation in (5.28) gives a bound on dimM(Γ, G) which, when inserted in
(5.24), immediately gives the jacket bound (5.22).

5.3 Three-dimensional examples

In this section, we illustrate how the divergence degree, and more specifically its topo-
logical part I(M,G), can be computed for certain three-dimensional manifolds M ,
always with G = SU(2). (Hence, hereafter we will drop the reference to G in the nota-
tion.) Most of them cannot be handled by the previous methods and do not saturate
the corresponding bounds [53, 19, 49, 58].

Closed 3-manifolds have χ(M) = 0, so I(M) = dimM−dim ζ and it is completely
determined by the fundamental group. It is also well-known that M is a finite set of
points, and hence dimM = 0, when the fundamental group π1(M) is finite (but we
will re-derive this feature in specific examples for illustrative purpose).

The method to compute I(M) for a cellular pseudomanifold (and in fact for any
cell complex) has been presented in the section 5.1.2. The steps are:

• Choose a presentation of π1(M) (e.g. from a deformation retract of the 2-skeleton
Γ).

• Identify the representation variety Hom
(
π1(M), G

)
using the chosen presentation.

In general, it has several irreducible components.

• Identify the orbit of the G-action on each irreducible component.

5.3.1 The 3-torus

The case of the 3-torus T 3 was discussed in Appendix C of [53]. Its fundamental group
has the presentation

π1(T
3) = ⟨a, b, c | [a, b] = [a, c] = [b, c] = 1⟩. (5.31)

The representations of this group in SU(2) are of the form

ϕ =
(
exp(ψan̂.τ⃗), exp(±ψbn̂.τ⃗), exp(±ψcn̂.τ⃗)

)
∈ SU(2)3, (5.32)
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with n̂ ∈ S2 their common direction of rotation, ψa,b,c ∈ [0, π] three class angles, and
τ⃗ the 3-vector formed by a set of (anti-Hermitian) generators of the algebra SU(2)(2).
They form a 5-dimensional manifold F .

The group action by conjugation rotates the direction n̂. For each representation
there is a stabilizer ζ isomorphic to U(1) (and larger if the three rotations are in the
center of SU(2)) which leaves it invariant: the subgroup generated by the direction n̂.
Hence, the dimension of the stabilizer is dim ζ = 1. Thus

dimM = 5− 2 = 3,

dim ζ = 1. (5.33)

Hence,
I(T 3) = 2. (5.34)

Note that this implies that the divergence degree of a cell decomposition of T 3 cannot
be a multiple of dimSU(2) = 3, as the procedure of [53] assumed implicitly.

5.3.2 Lens spaces

Lens spaces Lp,q are standard spherical manifolds, with Zp as their fundamental group
(we exclude the case of L(0, 1) = S1 × S2 which can be understood separately). They
include as a particular case the real projective space RP 3, which is the first example
in the appendix of [66].

The standard presentation of Zp is of course

Zp = ⟨a | ap = 1⟩. (5.35)

If 0 < r < π, let S2
r be the subset of SU(2) defined by

S2
r =

{
exp
(
r n̂.τ⃗

)
; n̂ ∈ S2

}
, (5.36)

consisting in those rotations of fixed angle r. In the topological picture induced by
the identification SU(2) ≃ B3/∂B3, S2

r is a sphere of radius r centered on the origin.
(In this picture, the central elements ±1 of SU(2) are the center and boundary of B3

respectively.)
Hence,

• If p = 1 (the 3-sphere), there is only one representation, the trivial one.

• If p = 2 (the real projective space), the representations of Z2 send its generator
to an element of the center of SU(2), i.e. {±1}.

• If p ≥ 3, the set of representations decomposes as Hom(Zp, SU(2)) = F (0)
p ⊔F (2)

p ,
with

F (0)
p =

{
{1} p odd
ζ(SU(2)) = {±1} p even

(5.37)

F (2)
p =

⊔
1≤k<p/2

S2
2πk/p (5.38)

This means that the class angles admit a finite number of values, r = 2kπ/p, for

k = 0, . . . , ⌊p
2
⌋. The set F (0)

p consists of points, while F (2)
p is a union of 2-spheres.
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The next step consists in finding the orbits generated by conjugation in SU(2). It
turns out that all of the above representations are reducible.

• In the cases p = 1, 2, and on F (0)
p when p ≥ 3, the representations are left

invariant by the group action (since they commute with the whole group): they
are central. Thus, the centralizer is ζ = SU(2), which is 3-dimensional.

• On F (2)
p for p ≥ 3, group conjugation corresponds to rotation of the axis n̂.

Similarly to the 3-torus case, the stabilizer is then ζ = U(1).

In all cases, the moduli spaceM consists in p distinct points, one for each connected
component of Hom(Zp, SU(2)), hence dimM = 0. However, when p ≥ 3, one can
compute two different values of the topological part of the divergence degree, one on
F (0)

p and another on F (2)
p . The relevant value is obviously that which gives the most

divergent contribution to the amplitude and thus the greatest value of I = dimM−
dim ζ. We get I = −3 on F (0)

p , to be compared with I = −1 on F (2)
p . This means that

the relevant value is the one computed on the less reducible representations, i.e. those
with the smallest stabilizer.

In conclusion

I
(
Lp,q

)
=

{
−3 if p = 1, 2

−1 if p ≥ 3.
(5.39)

5.3.3 Prism spaces

Prism manifolds Pm,n, with m ≥ 1, n ≥ 2, form a different class of spherical manifolds.
They are characterized by their fundamental group

π1(Pm,n) = ⟨x, y | xyx−1 = y−1, x2m = yn⟩. (5.40)

Let us first give the irreducible representations ϕ in the case of m even. The first
relation imposes the direction of the rotation ϕ(x) to be orthogonal to that of ϕ(y),
and its class angle to be π

2
. Then the second relation reduces to yn = 1, which only

constrains the class angle of ϕ(y) to be ψy = 2kπ/n for k = 1, . . . , ⌊n
2
⌋ (the case k = 0

gives a reducible representation). This way the set of irreducible representations is
identified as

F irr
m,n =

{(
ϕ(x) = exp

(π
2
n̂x · τ⃗

)
, ϕ(y) = exp

(2kπ
n
n̂y · τ⃗

))
; (5.41)

k = 1, . . . , ⌊n
2
⌋, (n̂x, n̂y) ∈ (S2)2, n̂x · n̂y = 0

}
(5.42)

Clearly this space is of dimension 3. Moreover, simultaneous conjugation of ϕ(x), ϕ(y)
by some SU(2) element induces a simultaneous rotation on n̂x, n̂y. Thus, the orbit
is 3-dimensional, isomorphic to SU(2)/{±1} = SO(3) and the centralizer is just the
center of SU(2). This leads to dimM = 0, dim ζ = 0, and hence:

I(Pm,n) = 0, (5.43)

when m is even, and evaluated on irreducible representations. The situation is similar
for m odd, only the specific values of the class angle of ϕ(y) are changed.
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As for reducible representations, they are obtained by taking ϕ(y) = ±1 ∈
ζ(SU(2)). Then, the image of the generator x lives on a sphere of the type S2

r (5.36) or
is ±1. One easily sees that dimM = 0 again, but dim ζ = 1 or dim ζ = 3. This pro-
duces a topological part for the divergence degree which is negative. Thus, the highly
divergent contribution to the amplitude comes from the irreducible representations of
the fundamental group.



Part III

On the spinfoam continuum limit
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The purpose of the third part of this thesis is to present two preliminary results
on the continuum limit of spinfoam models, viz. the problem of describing a quan-
tum spacetime with infinitely many dynamical degrees of freedom from the truncated
amplitudes A(Γ).

In chap. 6, we address a long-standing question in the spinfoam community: to
construct this continuum limit, should one sum over all foams Γ, or infinitely refine a
foam? We give a mathematical definition for each alternative, and an argument to the
effect that, as it happens, they could be two facets of the same solution.

In chap. 7, we consider a specific framework for the sum over all foams, in three
dimensions: Boulatov’s group field theory. Using a tool of constructive field theory –
Magnen’s and Rivasseau’s cactus expansion – we improve Freidel and Louapre’s proof
of Borel summability of the Boulatov series with a high-spin cutoff, and establish a
remarkable scaling limit.

The two sections are completely independent.
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Chapter 6

Spinfoams: refining or summing?

What is the mathematical definition of the operation of refining a foam to increase
the number of gravitational degrees of freedom? Does this process have a well-defined
limit? How is it related to the sum over foams sometimes advocated in the spinfaom
community?

These questions were addressed in collaboration with Carlo Rovelli [122]. Some
aspects of the arguments presented there, such as the emphasis on the structure of
directed sets and the rôle of zero-spin colorings, were already discussed in Zapata’s
earlier work.1

6.1 The refinement limit of spinfoams

We sketched in the introduction the Ashtekar-Lewandoswki construction of the Hilbert
space of loop quantum gravity as the inductive limit of truncated spaces Hγ labelled by
graphs. This defines the quantum kinematics of the gravitational field as a continuum
limit of lattice gauge fields.

It turns out that little work has been done to study the analogue of this construction
for spinfoams, viz. at the dynamical level. (The notable exception is Zapata’s papers
[83, 149].) This is surprising: such a hierarchical scheme, whereby more and more
degrees of freedom of the field are taken into account according to some notion of
scale, lies at the core of our modern understanding of quantum field theory, in the form
of the renormalization group.

The obvious stumbling block to apply Wilsonian techniques to study the dynamics
of quantum gravity is the absence of a background metric, which makes the notion the
scale difficult to assess.2 But there is a way out of this dead end: to think of the foams
themselves as generalized scales. Let us elaborate on this idea.

1We came to know Zapata’s work on the continuum limit of spinfoams on the occasion of the Loops
2011 conference, after the paper [122] was completed; the similarities between his approach and ours
are thus only fortuitous.

2Of course, one can run the functional renormalization equation with respect to a fixed, arbitrary,
background metric: this is the strategy underlying Weinberg’s and Reuter’s asymptotic safety scenario
[89]. The problem with this approach is the difficulty to extract physics from the truncated flow
equation.
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6.1.1 The directed set of generalized scales

Lattice field theory [112] is based on the discretization of (Euclidean) spacetime by
means of regular lattices: lattices where the distance between neighboring vertices is
constant, given by the lattice spacing a. To refine the lattice, one introduces new
vertices at the midpoints of edges and plaquettes, and constructs the corresponding
regular lattice with lattice spacing a/2. Note that both the choice of the initial lattice
and the refinement step rely on the metric structure of Euclidean space. (For instance,
the midpoint of an edge is singled out by the fact that it is located at a distance a/2
from the endpoints of the edge.)

The prominent feature of this metric notion of scale is its one-dimensional character,
which leads to sequences of discretizations. This can be expressed mathematically by
the statement that the set of distance scales S = R+ is a totally ordered set : for any
two scales s1 and s2, we have either s1 ≤ s2 or s2 ≤ s1, viz. s1 and s2 are mutually
comparable.

Non-metric discretizations generally do not share this one-dimensional character.
Consider for instance the set TM of triangulations of a given manifold M . There is a
natural order relation on this set, defined by T1 ⪯ T2 when all the simplices of T2 are
subsets of the simplices of T1; this corresponds to the intuitive notion that T2 is finer
than T1. It is obvious that not all triangulations are comparable with respect to this
relation: TM is only a partially ordered set, or poset.

The limit of a family of objects indexed by a poset is ill-defined, because non-unique.
Yet, in the case of triangulations of a manifold, we have the intuition that there is
only one continuum limit: roughly speaking, it corresponds to a “triangulation” with
infinitely many simplices. The reason why this intuition is meaningful is because the set
of triangulations is directed : for any two triangulations T1, T2, there is a triangulation
T3 which is finer than both T1 and T2, viz. T1 ⪯ T3 and T2 ⪯ T3. A poset satisfying
this condition is called a directed set. Roughly speaking, a directed order relation has
a single ‘asymptotic direction’: here, the continuum limit.

This observation provides a sound definition of the notion of generalized scale: it
is simply an element of some directed set, be it totally ordered or not. In this sense, a
triangulation is indeed a generalized scale.

6.1.2 Kinematical and dynamical continuum limits

Generally speaking, a quantum system can be described by an algebra of observables
A acting on a Hilbert space H, its kinematics, and a state over this algebra ω : A → C,
its dynamics. In particular, a truncation of the degrees of freedom by means of a
directed set S associates to each generalized scale s ∈ S an algebra As and a state ωs,
corresponding respectively to the truncated kinematics and dynamics of the system.

Thus, to obtain the continuum limit of a truncated system, we need two limits: an
algebraic one, for the family of algebras (As)s∈S and Hilbert spaces Hγ (kinematics),
and a topological one, for the family of states (ωs)s∈S (dynamics). The corresponding
mathematical notions are that of inductive limits and limit of nets. The definitions are
as follows.

• Let S be a directed set, and (As)s∈S a family of algebraic objects indexed by S.
Suppose that, for each s1 ⪯ s2, we have a homomorphism fs1s2 : As1 → As2 , such
that
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– fss is the identity of As

– fs1s3 = fs2s3 ◦ fs1s2 for all s1 ⪯ s2 ⪯ s3

These conditions ensure that the identification of as1 ∈ As1 with its images
fs1s2(as1) for all s2 ⪰ s1 defines an equivalence relation over the disjoint union⊔

s∈S As. The inductive limit A∞ of (As)s∈S is then the set of equivalence classes
for this relation. It naturally comes equipped with the same algebraic struc-
ture as the A′

s. For instance, if the latter are inner product spaces, then the
maps fs1s2 are isometric embeddings, and the inner product on A∞ is given by
⟨a1, a2⟩A∞ = ⟨fs1s3(as1), |fs2s3(as2)⟩A3 , where as1 ∈ As1 and as2 ∈ As2 are repre-
sentatives of a1 and a2 respectively, and s3 ⪰ s1, s2.

• Let X be a topological space, and N : S → X a function over a directed set S
valued in X, viz. a net over S. Then N converges to N∞ ∈ X, or that N∞ is
the limit of N , if for any neighborhood U of N∞ there exists sU ∈ S such that
N(s) ∈ U for any s ⪰ sU . It is easy to check that, thanks to the directedness of
S, the limit of a net over S, when it exists, is unique (assuming X is Hausdorff).3

These definitions clarify the general notion of refinement : in general terms, a set of
generalized scales is given in the form a directed set; kinematics (resp. dynamics) de-
fines an inductive system (resp. a net) over the set of generalized scales; the continuum
limit is the corresponding limit. No metric is involved in this process.

Although little known outside the mathematical community, the structure of di-
rected set plays a fundamental rôle in the conceptual architecture of physics. Indeed,
it captures in its general form the concept of approximation scheme: a hierarchical
structure directed towards a unique limit. Since physics is the science of approxima-
tions, we could say (paraphrasing Rivasseau on the renormalization group) that directed
sets are the soul of physics.

6.1.3 Loop quantization as a continuum limit

The kinematical truncation scheme used in loop quantum gravity is precisely of the
above type, with the notion of generalized scale provided by graphs.4 For each
graph γ, one considers the algebra Aγ of gauge-invariant functions on the cotan-
gent bundle T ∗SU(2)E(γ) and its standard quantization over the Hilbert space Hγ :=
L2(SU(2)E(γ)/SU(2)V (γ)). This defines the quantum kinematics of a system of discrete
connections on γ.

The kinematics of the quantum gravitational field is then constructed as the con-
tinuum limit of this system of discrete connections. To this effect, one uses the natural
order relation on the set of graphs G defined by γ1 ⪯ γ2 if γ1 is a subgraph of γ2.
The latter clearly equips G with a directed set structure: given any two graphs γ1 and

3Standard examples of nets are provided by Riemann sums. Let P denote the set of partitions
of the unit interval [0, 1] directed by inclusion, and f : [0, 1] → C a (continuous) function. The map
Nf : P → C associating to each partition p the corresponding Riemann sum of f is a net over P. Its

limit is the Riemann integral
∫ 1

0
dtf(t).

4Along the lines of the canonical formulation of general relativity, these are usually defined as
embedded in a three-dimensional Cauchy surface in some globally hyperbolic spacetime. Rovelli has
recently considered a purely combinatorial version of this construction, but it is not clear that the
inductive limit procedure is meaningful in this case.
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γ2, it is easy to construct γ3 ⪰ γ1, γ2 by adding all the vertices and edges of γ1 to γ2.
Moreover, each embedding γ1 ↪→ γ2 naturally induces maps Aγ1 → Aγ2 and Hγ1 → Hγ2

which turn the family of algebras and Hilbert spaces into inductive systems. Their in-
ductive limits A∞ and H∞ form the kinematical arena of loop quantum gravity, where
the action of (some extension of) the diffeomorphism group can be implemented.

Let us be more specific about the mappings iγ1γ2 : Hγ1 → Hγ2 induced by the
inclusion of γ1 into γ2. Let ψ ∈ Hγ1 and denote eγ1i (resp. eγ2j ) the edges of γ1 (resp.
γ2). Then

(iγ1γ2ψ)
(
geγ21 , . . . , ge

γ2
E(γ2)

)
:= ψ

(
geγ11 , . . . , ge

γ1
E(γ1)

)
. (6.1)

In other words, the image of iγ1γ2 in Hγ2 is the set of gauge-invariant functions on
SU(2)E(γ2) which are constant on those edges of γ2 that are not edges of γ1; equivalently,
it is the subspace ofHγ2 spanned by spin-network functions with zero spins on the edges
of γ2 \γ1. It follows from this definition that the inductive limit H∞ can be written as

H∞ =
⊥⊕
γ

H∗
γ, (6.2)

where H∗
γ denotes the subspace of Hγ spanned by spin-network functions with non-zero

spins. This is an interesting observation: at the kinematical level, the continuum limit
of loop quantum gravity consists of superselection sectors with non-zero spin colorings.
Pictorially, we can say that “refining the graphs” is the same as “summing over the
graphs with zero-spins excluded”.

6.1.4 The spinfoam continuum limit

To discuss the analogue construction for spinfoam models, we must begin by identify-
ing the relevant directed set. One possibility (explored by Zapata in [149]) is to work
with embedded foams and their diffeomorphisms classes. Let us use instead the com-
binatorial framework sketched in sec. 2.3.1, in which a foam Γ is defined as a triple of
sets (VΓ, EΓ, FΓ) enumerating its vertices, edges and faces.

In a given spinfoam model, to each foam Γ with boundary γ is associated a vector
Z(Γ) in the boundary Hilbert space Hγ. Now, this map Γ 7→ Z(Γ) defines a net over
the set Fγ of foams with fixed boundary γ.

Consider indeed the natural order relation defined by Γ1 ⪯ Γ2 if there is an embed-
ding ι : Γ1 ↪→ Γ2, namely a triple of injective maps ιv : VΓ1 → VΓ2 , ιe : EΓ1 → EΓ2 ,
ιf : FΓ1 → FΓ2 preserving the relations between vertices, edges and faces. It is easy
to see that any pair of foams with the same boundary has an upper bound Γ ⪰ Γ1,Γ2

with respect to this relation, given essentially by attaching the vertices, edges and faces
of Γ2 to Γ1. Thus, a spinfoam model is a net over the set of proper foams with a given
boundary.

Hence, the set Fγ is naturally a directed set, and Γ 7→ Z(Γ) a net over it. We can
therefore define formally, for each boundary γ, the spinfoam continuum limit as the
limit W∞

γ of this net:

Z∞
γ :

.
= lim

Γ∈Fγ

Z(Γ). (6.3)
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6.2 Refining = summing?

The spinfoam continuum limit defined above, if compelling, is at variance with Baez’s,
Rovelli’s and Reisenberger’s original idea that foams are “quantum histories” of the
gravitational field, like Feynman diagrams are “quantum histories” of systems of par-
ticles. Indeed, this latter conception suggests that the proper way to unfreeze the
truncated degrees of freedom is not by refining a foam, as in lattice field theory, but
rather by summing over the set of all foams. Is there a relationship between refinement
and sum over foams, similar to kinematical relation between refinement and sum over
graphs?

6.2.1 Spinfoam cylindrical consistency

From now, let us assume that the foam amplitudes Z(Γ) are given as sums over color-
ings of the faces of Γ by irreducible representations of a compact Lie group G (typically
G = SU(2)). More specifically, we assume that for each coloring σ of Γ, we have a
spinfoam amplitude Z(Γ, σ). This assignement defines two spinfoam models, depending
whether the trivial representations are included or not:

Z(Γ) :
.
=
∑

σ∈Col(Γ)

Z(Γ, σ), and Z∗(Γ) :
.
=
∑

σ∈Col∗(Γ)

Z(Γ, σ), (6.4)

Here, for a fixed foam Γ, we denoted Col(Γ) the set of all colorings σ, and Col∗(Γ) the
subset consisting of colorings by non-trivial (jf ̸= 0) representations.

Since trivial representations play no rôle in the kinematics of loop quantum gravity,
it is natural to impose a cylindrical consistency condition relating Z(Γ) to Z∗(Γ). To
state it, we must first observe that each coloring σ of a foam Γ comes with a multiplicity,
related to the symmetries of Γ. The multiplicity |σ|Γ of a coloring σ ∈ Col(Γ) is the
number of colorings σ′ such that σ = σ′ ◦ ϕ, with ϕ an automorphism of Γ, i.e. a foam
embedding of Γ into itself. Then we say that the amplitude

AΓ(σ) := |σ|Γ Z(Γ, σ), (6.5)

is cylindrically consistent if A(Γ, σ) = A(Γ′, σ′) when (Γ′, σ′) is a trivial extension of
(Γ, σ), that is when Γ is a subfoam of Γ′, σ and σ′ coincide on the faces of Γ and σ′ is
trivial on the other faces of Γ′.

6.2.2 Summing is refining

Under this cylindrical consistency condition, the relationship between the continuum
limit Z∞

γ and the sum of Z(Γ) over all the foams Γ with fixed boundary is the following:

Z(Γ) =
∑
Γ′⪯Γ
∂Γ′=γ

Z∗(Γ). (6.6)

If we assume furthermore that the net Z is convergent, then we have by passing to the
limit in the identity above

Z∞
γ

.
=
∑
∂Γ=γ

Z∗(Γ). (6.7)
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Thus, refining foams in the model Z is the same as summing over foams in the model
W ∗. Note that, due to the peculiar directed set structure, all foams appear in (6.7)
the following sense: every foam Γ with boundary ∂Γ = γ appears in one finite sum
(6.6) whose value can be chosen arbitrarily close to W∞

γ .
The proof of (6.6) is easy. First, observe that the subfoams of Γ index a partition

of Col(Γ), in which each each class is made of the trivial extensions of a given subfoam
Γ′ ⊂ Γ:

Col(Γ) =
⊔
Γ′⊂Γ

Col∗(Γ′). (6.8)

This implies that

Z(Γ) =
∑
Γ′⊂Γ

 ∑
σ′∈Col∗(Γ′)

|σ′|−1
Γ AΓ(σ

′)

 . (6.9)

Second, check that we have
|σ′|Γ = |σ′|Γ′NΓ′,Γ, (6.10)

with NΓ′,Γ the number of subfoams of Γ isomorphic to Γ′. Third, use cylindrical
consistency to get

Z(Γ) =
∑
Γ′⊂Γ

N−1
Γ′,ΓZ

∗(Γ′) (6.11)

and conclude to (6.6).

6.2.3 Discussion

But is there any rationale for assuming the cylindrical consistency condition and ex-
pecting it to be part of the quantum theory of gravity? There is. The spinfoam sum
is meant to be an implementation of the Misner-Hawking sum over geometries

Z =

∫
Metrics/Diff

Dgµν e
i
ℏS[gµν ]. (6.12)

Here the integral is not over metrics, but over equivalence classes of metrics under dif-
feomorphisms. In the truncation induced by the choice of a foam, the diffeomorphisms
are reduced to the automorphisms ϕ of the foam. Therefore the colorings σ and σ ◦ ϕ
have a natural interpretation as the discrete residual equivalent of diffeomorphism-
related metrics. This interpretation is reinforced by the fact that the amplitude is in
fact invariant. If we want to integrate over geometries, then, the contributions of σ and
σ ◦ ϕ represent an overcounting, and we must divide by the number of them, namely
by |σ|Γ. The same conclusion can be reached by interpreting colored spinfoams as
histories of nontrivial spin networks. Then colorings related by foam automorphisms
clearly represent the same history. For both these reasons, it is physically interesting to
consider the amplitudes modified as in (6.5) and the cylindrical consistency condition.
Then the sum over foams is equal to the continuum limit.



Chapter 7

Resummation of the Boulatov series

In this section, we address the issue of the continuum limit from the angle of group field
theory (GFT). In this scheme, the sum over foams is nothing but a Feynman series,
and the issue of convergence is a problem of constructive field theory. Is the sum over
foams the asymptotic expansion of a well-defined GFT correlation functions?

The first results in this direction were obtained in the Boulatov model by Freidel
and Louapre [52]. Here, using more advanced constructive techniques, we improve their
proof of Borel summability, notably by establishing the constructive scaling behaviour
of the correlation functions in the large cutoff limit. These results were obtained under
the lead of Rivasseau, in collaboration with Magnen and Noui [81].

7.1 Constructive field theory

Constructive field theory [103] is the name of a mathematical physics program launched
around 1970 by Wightman. It aims at defining rigorously certain field theory models, in
increasing order of difficulty, by checking that they obey the “Wightman axioms” [130].
The strategy is clear-cut: introduce as many cutoffs as necessary for the correlation
functions of these models to be well-defined, and then develop the necessary methods
to lift these cutoffs.

7.1.1 Current status of constructive field theory

Early constructive field theory succeeded in building rigorously super-renormalizable
field theories such as the emblematic ϕ4 model in two and three dimensions. It also
elucidated their relationship to perturbation theory: the Schwinger functions of these
models are the Borel sum of their perturbation theory [40, 80]. But four-dimensional
ϕ4 theory itself could not be built, because its coupling constant does not remain small
in the ultraviolet regime. Being asymptotically free, non-Abelian gauge theories do
not have this problem. Nevertheless, although some partial results were obtained, they
could not be built in the full constructive sense either, due to technical difficulties such
as Gribov ambiguities; neither could the interesting infrared confining regime of the
theory be understood rigorously. Probably the first four-dimensional field theory to be
built completely through constructive methods will be the Grosse-Wulkenhaar model
[63], a non-commutative field theory which, ironically, should not satisfy the Wightman
axioms of the initial constructive program.
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The constructive program is largely unknown in the quantum gravity community,
with the notable exception of [52]. However, it can be argued that constructive theory
embodies a deeper point of view on quantum field theory than the textbook one. A
modern constructive technique such as the cactus expansion used hereafter allows to
resum perturbation theory by reorganizing it in a precise, explicit manner.

7.1.2 Power series and Borel sums

Renormalized perturbation theory writes field-theoretic observables O(λ), notably cor-
relation functions, as formal power series in the coupling constant(s) λ:

O(λ)
.
=

∞∑
n=0

Onλ
n. (7.1)

The coefficients On are, in turn, given by a sum of Feynman amplitudes OG, where G
spans the set of Feynman graphs with V (G) = n vertices:

On =
∑

V (G)=n

OG. (7.2)

It was early realized by Dyson [39] that the construction of observables by power
series in λ is bound to remain heuristic, because (7.1) cannot converge. Indeed, if it
did, it would define an analytic function of λ in a disk around λ, and hence would be
equally well-defined for λ ≥ 0 and λ ≤ 0. But this is physically absurd. Think of λ as
the fine structure constant of quantum electrodynamics: λ ≤ 0 means that charge of
the same sign attract each other. But the vacuum is clearly unstable in this regime:
to decrease the energy of the field, create many electrons and as many positrons and
let them collapse on each other. The same argument can be run for λϕ4 theory.

The consequence of the non-analyticity of O(λ) at λ = 0 is irrevocable: the per-
turbative series (7.1) is, at best, an asymptotic expansion1 of O(λ) in the λ→ 0 limit.
But it is a classic theorem of Borel that there is an infinite number of smooth functions
asymptotic to any power series: the sequence of coefficients (On)n≥0 does not uniquely
defines the function O(λ), as it would if O(λ) were analytic in a disk centered on λ = 0.

But what if O(λ) is analytic in a disk tangent to λ = 0 in the Re λ > 0 half-
space, as in Fig. 7.1? This corresponds to the case mentioned above, where O(λ) has
singularities on the λ ≤ 0 axis (a branch cut), where the vacuum is unstable.

Borel summability states that, under certain conditions formulated by Nevanlinna
[88] and rediscovered by Sokal [129], the function O(λ) can be reconstructed from the
coefficients (On)n≥0. These conditions are that

• O is analytic in the disk CR := {λ ∈ C | Reλ−1 > 1/R}

• there are constants A,B such that the bound∣∣∣O(λ)− N∑
n=0

Onλ
n
∣∣∣ ≤ ABN+1(N + 1)!|λ|N+1 (7.3)

holds uniformly in r and λ.

1A formal power series
∑

n≥0 fnλ
n is an asymptotic expansion of a function f(λ) as λ → 0 if, for

any N > 0, f(λ) =
∑N

n=0 fnλ
n +O(λN+1). This does not imply that

∑
n≥0 fnλ

n converges.
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Figure 7.1: Typical analyticity domain of a Borel summable function O(λ): it is ana-
lytic in a disk where Re λ > 0, corresponding to a stable potential (right), and has a
branch cut along the λ ≤ 0 axis, corresponding to an unstable potential (left).

Then the power series

B(t) :=
∞∑
n=0

On
tn

n!
(7.4)

converges for |t| < 1
B
, and admits an analytic continuation in the strip

SB := {t ∈ C | dist (t,R+) <
1

B
}, (7.5)

satisfying the bound
|B(t)| ≤ Cet/R for t ≥ 0 (7.6)

for some constant C. Moreover, O is represented in CR by the absolutely convergent
integral

O(λ) =
1

λ

∫ ∞

0

dt e−t/λB(t). (7.7)

B is then called the Borel transform of O, and the complex t plane is called the Borel
plane.

There is a reciprocal to this theorem: consider the power series
∑

n≥0Onλ
n. If

the power series
∑

n≥0Ont
n/n! converges in a disk {|t| < 1

B
}, admits an analytic

continuation B(t) in the strip SB and satisfies the bound (7.6) in this strip, then the
function O defined by the integral representation (7.7) is analytic in CR, has

∑∞
n=0Onλ

n

as Taylor series at the origin and satisfies the uniform remainder estimates (7.3). In
this case we say that the series

∑
n≥0Onλ

n is Borel summable, and call the series∑
n≥0Ont

n/n! its Borel transform and the function O its Borel sum.
In other words, Borel summable series and Borel summable functions are in one-

to-one correspondence just like are ordinary series and germs of analytic functions.

7.1.3 Proliferating and non-proliferating species

Even when the perturbative series (7.1) is actually Borel summable, it is very difficult
to obtain the relevant information about its Borel transform, and in particular to show
that (7.4) converges. The main reason for this is purely combinatorial: there are too
many graphs at a fixed order n. Indeed, the typical bound for a Feynman amplitude
is of the type [103]

|OG| ≤ KV (G) (7.8)
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for some constant K. Hence, one usually has to deal with the series∑
n≥0

anK
nλn, (7.9)

where an is the number of Feynman graphs with n vertices. Its Borel summability is
in turn subject to the convergence of ∑

n≥0

anλ
n

n!
, (7.10)

which is known as the generating series of Feynman graphs. Unfortunately, it so hap-
pens that the latter has zero radius of convergence, because an grows too fast (typically
like n!2). Rivasseau has called proliferating [106] a combinatorial species whose gener-
ating series has zero radius of convergence.

Thus, to get started with the constructive program, one must abandon the Feynman
expansion and try to replace it by a series labelled by a non-proliferating species, such
as trees.2 Each such tree should resum an infinite number of Feynman amplitudes
[108]. This is precisely what the Magnen-Rivasseau cactus expansion does.

7.2 A constructive tool: the cactus expansion

Although it was initially designed to deal with matrix ϕ4 theory [105], the cactus
expansion applies to scalar models [79, 110] and higher-order interactions [108] as well.

An important mathematical prerequisite for constructive field theory is the notion
of degenerate Gaussian measure, which we now review.

7.2.1 Degenerate Gaussian measures

If A is a n × n positive-definite matrix, the Gaussian measure dµA associated to A is
usually defined by

dµA(x) =

√
detA

(2π)n/2
e−

x.Ax
2 dx (7.11)

where is x ∈ Rn and dx is the standard n-dimensional Lebesgue measure. The inverse
matrix C = A−1 is the covariance of the measure:∫

Rn

dµA(x) xixj = Cij. (7.12)

When A = C is the unit matrix, we call dµA the standard Gaussian measure on Rn.
The key property of Gaussian measures is expressed by Wick’s theorem3: for any

smooth, summable function f , we have∫
dµC(x) f(x) = exp

(1
2

∂

∂x
C
∂

∂x

)
f(x)|x=0 . (7.13)

This implies that dµA is completely determined by its covariance C.

2Cayley’s theorem states that there are nn−2 labelled trees over n vertices. The corresponding
generating series clearly has a non-zero radius of convergence.

3This is a slight generalization of the usual Wick theorem, which is stated for monomials only.
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Now, observe that unlike (7.11), (7.13) still makes sense if C is non-invertible, i.e.
only positive-semidefinite. For any such matrix C, we can thus define the degenerate
Gaussian measure dµC with covariance C by (7.13). When C actually has zero modes,
it is not be absolutely continuous with respect to the Lebesgue measure dx: it is a
Dirac delta along each zero mode.

One important observation about (degenerate) Gaussian measures is that they have
a well-defined functional counterpart – unlike the Lebesgue measure. The covariance
C is then a positive semi-definite operator, and by Minlos’ theorem dµC is supported
on a suitable space of distributions. (In this setup the zero modes of C are interpreted
as gauge modes.)

7.2.2 An absolutely convergent expansion

We are now ready to discuss the cactus expansion. Consider a quartic field theory λϕ4,
with partition function

Z(λ) :
.
=

∫
dµ(ϕ) e−λ

∫
ϕ4/8, (7.14)

Here, dµ is some Gaussian measure, and we leave the number of components of ϕ
(scalar, vector, matrix...) unspecified. The cactus expansion constructs Z(λ) as an
absolutely convergent series

Z(λ) =
∑
F

ZF (λ), (7.15)

where F ranges over the set of forests, i.e. graphs without loops. The amplitudes
ZF (λ) have the following properties:

1. They factorize over the connected components of F . It follows that the free
energy F(λ) := logZ(λ) is given by the very same expansion (7.15), with the
sum restricted to connected forests, viz. trees.

2. They are analytic functions of λ in a Nevanlinna-Sokal disk CR, hence so are
Z(λ) and F(λ).

3. They are easily bounded, and it is straightforward to check that the Taylor re-
mainders of (7.15) about λ = 0 satisfy the Nevanlinna-Sokal bound (7.3).

Thus, in addition to giving a rigorous definition of (single-scale, i.e. with a ultraviolet
cutoff) ϕ4 theory, the cactus expansion naturally shows that it is the Borel sum of its
perturbative series.

7.2.3 Four ingredients for a cactus expansion

The cactus expansion is a recipe with four ingredients: (1) an intermediate field rep-
resentation, (3) a replica trick, (3) a forest formula and (4) a resolvent bound.

(1) The intermediate field representation is a very useful trick to represent a quartic
interaction

∫
ϕ4 in terms of a cubic one

∫
ϕσϕ. Schematically, it reads

e−λ
∫
ϕ4/8 .

=

∫
dν(σ) e−

1
2
i
√
λ
∫
ϕσϕ, (7.16)
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where σ is a field with Gaussian ultralocal4 measure dν (which in zero dimension would
simply be the standard Gaussian measure over R). Performing the Gaussian integration
over ϕ, one can then express the original path integral Z(λ) in terms of σ only. For
instance, in zero spacetime dimension, viz. for the numerical integral

z(λ) :=

∫
R
dµ(ϕ) e−λϕ4/8, (7.17)

we have

z(λ) =

∫
R
dν(σ)

∫
R
dµ(ϕ) e−

1
2
i
√
λ
∫
R ϕσϕ =

∫
R
dν(σ) det(1 + i

√
λσ)−1/2 (7.18)

hence

z(λ) =

∫
R
dν(σ) e−

1
2
Log(1+i

√
λσ). (7.19)

The new interaction vertex Vλ(σ) := −1
2
Log(1 + i

√
λσ) was called a loop vertex in

[105]. In more than zero dimension, i.e. for a genuine field theory, a propagator C1/2

would typically sandwich the σ field on both sides, and the loop vertex would be given
by the trace of operator Log(1 + i

√
λC1/2σC1/2). This trick can be generalized to any

correlation functions and to more complicated models [109].

(2) The replica trick is a property of degenerate Gaussian measures. Let dν(σ)
denote the standard Gaussian measure on R, and V ∈ Ln(R). Now, ‘replicate’ n
times the variable σ, and consider the degenerate Gaussian measure dνn on Rn with
covariance Cij = ⟨σiσj⟩ = 1. The replica trick is then the statement that∫

R
dν(σ) V (σ)n =

∫
Rn

dνn(σ1, . . . , σn)
n∏

v=1

V (σv). (7.20)

Let us emphasize that this is not a form of Fubini’s theorem, which expresses an n-
dimensional integral as a product of n integrals. Here, we replace one 1-dimensional
integral by an n-dimensional one, with (n− 1) delta functions.

(3) Consider a smooth function H of n(n−1)
2

variables h = (hl), living on the lines
l of the complete graph over n vertices. The so-called Brydges-Kennedy Taylor forest
formula [1, 32] is a Taylor interpolation of H with integral remainders indexed by
labeled forests over n vertices:

H(1) =
∑
F∈Fn

(∏
l∈F

∫ 1

0

dhl

)(∏
l∈F

∂

∂hl

)
H(hF ). (7.21)

In this expression, Fn denotes the set of forests over n vertices, the products are over
lines l of each forest F , and hF is the n(n−1)

2
-uple defined by hFl := minp hp, where p

runs over the unique path in F connecting the source and target vertices of l. (If they
are not connected by F , then hFl := 0.)

One can easily check that for n = 2, this is nothing but the fundamental theorem
of calculus:

H(1) = H(0) +

∫ 1

0

dh H ′(h). (7.22)

4To say that a Gaussian measure is ultralocal means that, as a differential operator, its covariance
is of zeroth-order, viz. contains no derivatives.
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Figure 7.2: The complete graph over 3 vertices, and its 7 forests, matching the 7 terms
in (7.23).

For higher values of n, on the other hand, the outcome of (7.21) is genuinely non-trivial,
as the case n = 3 already demonstrates (Fig. 7.2):

H(1, 1, 1) = H(0, 0, 0)

+

∫ 1

0

dh1 ∂1H(h1, 0, 0) +

∫ 1

0

dh2 ∂2H(0, h2, 0) +

∫ 1

0

dh3 ∂3H(0, 0, h3)

+

∫ 1

0

dh1

∫ 1

0

dh2 ∂
2
12H(h1, h2,min(h1, h2))

+

∫ 1

0

dh1

∫ 1

0

dh3 ∂
2
13H(h1,min(h1, h3), h3)

+

∫ 1

0

dh2

∫ 1

0

dh3 ∂
2
23H(min(h2, h3), h2, h3).

(7.23)

(4) If λ is a complex number with positive real part, and σ a real number, one has

|1 + i
√
λσ|−1 ≤

√
2. (7.24)

Let Σ be a Hermitian matrix. Taking the supremum over the spectrum of Σ in (7.24)
gives the resolvent bound

∥(1 + i
√
λΣ)−1∥ ≤

√
2, (7.25)

where ∥ · ∥ denotes the operator norm, ∥A∥ := sup|x|=1 |Ax|.

7.2.4 A toy example: ϕ4 theory in 0 dimensions

To illustrate how these four ingredients can be combined to yield the cactus expansion,
we now consider the ϕ4 field theory in 0 dimension,5 i.e. the integral (7.17). The
functions z(λ) and f(λ) := log z(λ) it defines are analytic in the cut plane C \ R−,
and hence admit, at best, a Borel expansion about λ = 0. Using the four ingredients
presented above, we now show that this is indeed the case.

We start from the intermediate field representation

z(λ) =

∫
R
dν(σ) eVλ(σ), (7.26)

5For a historical perspective on constructive methods applied to this 0-dimensional model, see
[106].
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with loop vertex Vλ(σ) := −1
2
Log(1 + i

√
λσ).

First, expand the exponential in (7.26) in powers of Vλ(σ), swap integration and
summation6 and apply the replica trick to the order-n term to obtain

Z(λ) =
∞∑
n=0

1

n!

∫
Rn

dνn(σ1, . . . , σn)
n∏

v=1

Vλ(σv). (7.27)

Next, consider the matrix Ch, parametrized by an n(n−1)
2

-uple h and defined by
Ch

ii := 1 and Ch
l := hl, where l = {ij} (i ̸= j), and let dνhn (σ1, . . . , σn) be the Gaussian

measure with covariance Ch. Then apply the forest formula to the function

H(h) :=

∫
dνhn (σ1, . . . , σn)

n∏
v=1

Vλ(σv). (7.28)

This gives

z(λ) =
∞∑
n=0

1

n!

∑
F∈Fn

(∏
l∈F

∫ 1

0

dhl

)(∏
l∈F

∂

∂hl

)∫
Rn

dνh
F

n (σ1, . . . , σn)
n∏

v=1

Vλ(σv), (7.29)

or equivalently

z(λ) =
∑
F

zF (λ) (7.30)

with F ranging over the set of all forests, and

zF (λ) =
1

n(F )!

(∏
l∈F

∫ 1

0

dhl

)(∏
l∈F

∂

∂hl

)∫
Rn

dνh
F

n (σ1, . . . , σn)
n∏

v=1

Vλ(σv). (7.31)

As announced, the summand factorizes along connected components of each forest.
This implies that

f(λ) =
∑
T

zT (λ) (7.32)

where now T ranges over the set of all trees. It is these trees T over loop vertices Vλ(σv)
which we coin cacti.

Since the dependence of the covariance of dνh
T

n (σ1, . . . , σn) in the h variables is
linear, applying the derivative ∂/∂hl in (7.32) is easy using (7.13): it amounts to an
additional insertions of ∂2/∂σs(l)∂σt(l) in the integral, where s(l) and t(l) are respec-
tively the starting and ending vertices of the line l. Hence(∏

l∈T

∂

∂hl

)∫
Rn

dνh
T

n (σ1, . . . , σn)
n∏

v=1

Vλ(σv)

=

∫
Rn

dνh
T

n (σ1, . . . , σn)

(∏
l∈T

∂2

∂σs(l)∂σt(l)

)
n∏

v=1

Vλ(σv). (7.33)

6Of course, it is precisely such an interchange between integration and summation that
yields the divergent perturbative series. Note that here, however, the process is licit because∫
dµ(σ) e1/2|Log(1+i

√
λσ)| < ∞, and so Lebesgue’s dominated convergence theorem applies.
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Consider the loop vertex Vλ(σv), with coordination kv in the tree T . Thanks to the
resolvent bound, we have

∣∣∣ ∂kv
∂σkv

v

Vλ(σv)
∣∣∣ = (kv − 1)!|λ|kv/2|1 + i

√
λσv|−kv ≤ 2kv/2(kv − 1)!|λ|kv/2, (7.34)

and thus, since there are n− 1 lines in a tree over n vertices,

∣∣∣(∏
l∈T

∂2

∂σs(l)∂σt(l)

)
n∏

v=1

Vλ(σv)
∣∣∣ ≤ 2n−1|λ|n−1

n∏
v=1

(kv − 1)! (7.35)

This bound goes through the normalized integrals over the σ’s and the h’s. Using
Cayley’s formula for the number of trees over n labeled vertices with fixed coordinations
kv ∏n

v=1(kv − 1)!

n!
, (7.36)

we find that

zT (λ) ≤ 2n−1|λ|n−1. (7.37)

This shows that the cactus expansion (7.32) of f converges uniformly in a half-disk
DR = {λ ∈ C,ℜλ ≥ 0, |λ| ≤ R}, with R < 1

2
, which obviously contains the Nevanlinna-

Sokal disk CR/2.
Furthermore, the order-r Taylor-Lagrange remainder

Trf(λ) := f(λ)−
r−1∑
p=0

λp

p!
f (p)(0) (7.38)

can easily be shown to satisfy the Nevanlinna-Sokal criterion (7.3). Indeed, consider a
cactus amplitude zT (λ) with n loop vertices. By (7.33)-(7.34), each such amplitude is
made of an explicit factor λn−1 times an integral over dνh

T

n (σ1, . . . , σn) of a product of
2n− 2 resolvents

Rlv(λ, σv) := (1 + i
√
λσv)

−1, (7.39)

where lv denote a half-line hooked to a vertex v. Hence for r ≤ n−1, TrzT (λ) = zT (λ),
and for r ≥ n

TrzT (λ) =
1

n!
λn−1Tr−n+1

(∏
l∈T

∫ 1

0

dhl

)∫
Rn

dνh
T

n (σ1, . . . , σn)
2n−2∏
lv=1

Rlv(λ, σv). (7.40)

But by (7.13) and since F =
∏2n−2

lv=1 Rlv is solely a function of
√
λσ we have

∫
Rn

dνh
T

n (σ1, . . . , σn)
2n−2∏
lv=1

Rlv(λ, σv) = e
1
2
λ ∂

∂σ
ChT ∂

∂σ

2n−2∏
lv=1

Rlv(1, σ) |σv=0. (7.41)

Hence the Taylor-Lagrange formula applies to the exponential:

Tke
λH =

∫ 1

0

dt
(1− t)k−1

(k − 1)!
λkHkeλtH (7.42)
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and the operator Hk creates exactly k additional insertions of lines ∂2

∂σs(l′)∂σt(l′)
. The

combinatorics of 2k derivations on a product of 2n− 2 resolvents costs a factor (2r−1))!
(2n−1)!

times a new Gaussian integral with 2n− 2 + 2k resolvents of the same type Rl′v . The

λ factor can be then transferred back to a
√
λ factor in the resolvents:

e
1
2
λt ∂

∂σ
ChT ∂

∂σ

2n−2+2k∏
l′v=1

Rl′v(1, σv) |σv=0 = e
1
2
t ∂
∂σ

ChT ∂
∂σ

2n−2+2k∏
l′v=1

Rl′v(λ, σv) |σv=0. (7.43)

Hence, since k = r − n + 1 the convergent series
∑

T TrzT (λ) can be bounded exactly
as before, except for two facts: each term contains a factor λr and we have also to add
to the bounds a factor∫ 1

0

dt
(1− t)r−n

(r − n)!

(2r − 1))!

(2n− 1)!
=

(2r − 1))!

(r − n+ 1)!(2n− 1)!
. (7.44)

This last factor is maximal for the trivial tree with n = 1, and certainly bounded by
2r r!, from which it follows that for some constant K

|Trf(λ)| ≤ Krr!|λ|r. (7.45)

To summarize, the cactus expansion allows not only to trade the asymptotic per-
turbative series

f(λ) ≃
∞∑
n=0

1

n!
f (n)(0) (7.46)

for the convergent expression (7.32), but also to check the Sokal-Nevanlinna criteria,
proving Borel summability of (7.46). Of course, in this toy example, Borel summability
of z is obvious and Borel summability of f = log z could be shown by more elementary
methods; the power of the cactus expansion becomes manifest when it comes to the
constructive analysis of the ϕ4 field theory [79], and of the matrix ϕ4 model [105]. And
of Boulatov’s group field theory.

7.3 Borel summability and scaling behavior

Indeed, the fact that Boulatov’s group field theory has a quartic interaction allows to
use the cactus expansion to study its Borel summability. The great advantage of this
method over Freidel and Louapre’s [52] lies in the control it provides over the high-spin
cutoff: by this token, we can unravel the constructive scaling limit of this group field
theory.

7.3.1 A twofold regularization

We introduced Boulatov’s model in the first chapter of this thesis. In the language of
degenerate Gaussian measures, the Boulatov partition function is defined formally by

ZB(λ) :
.
=

∫
dµ[ϕ] e−λT [ϕ]/8, (7.47)

where ∫
SU(2)6

6∏
i=1

dgi ϕ(g1, g2, g3)ϕ(g3, g4, g5)ϕ(g5, g2, g6)ϕ(g6, g4, g1), (7.48)
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and dµ[ϕ] is the Gaussian measure with covariance Cϕ defined by

(Cϕϕ)(g1, g2, g3) :=
1

3

∑
c

∫
SU(2)

dh ϕ(gc(1)h, gc(2)h, gc(3)h). (7.49)

Here, c ranges over the cyclic permutations of three elements. This measure is
clearly degenerate: the covariance Cϕ is the orthogonal projector onto the subspace
of L2(SU(2)3) invariant under SU(2) averaging and cyclic permutations.

Of course, the partition function (7.47) is only formal and needs regularizations to
become mathematically well-defined. The problem is twofold:

• the Fourier space of the field ϕ is non-compact, although discrete, and hence
‘ultraviolet’ divergences arise,

• Boulatov’s quartic interaction T [ϕ] is not positive, hence unstable. This can be
seen from its Fourier space formulation where the interaction term reduces to an
oscillatory {6j} symbol.

To cure the first problem, we follow [52] and introduce a cutoff Λ truncating the
Peter-Weyl (or Fourier) decomposition of the field:

ϕ(g1, g2, g3) =
Λ∑

j1,j2,j3

tr
(
Φj1,j2,j3D

j1(g1)D
j2(g2)D

j3(g3)
)
. (7.50)

In this formula, the sum runs over the spins j1, j2, j3 up to Λ; Dj(g) denotes the
(2j + 1)-dimensional matrix representation of g; Φj1,j2,j3 are the Fourier modes of
the field ϕ viewed as complex-valued tensors and tr denotes the trace in the space
carrying the tensor product representation associated to the spins j1, j2, j3. In the
following, we denote H(Λ) the subspace of L2(SU(2)3) resulting from this truncation,

and H(Λ)
0 := H(Λ) ∩ imCϕ. The number of degrees of freedom left is thus given by

dimH(Λ)
0 = O(Λ6). (7.51)

Now for the second problem: the fact that Boulatov’s interaction T [ϕ] is not pos-
itive. To fix this shortcoming, Freidel and Louapre proposed to add the following
‘pillow’ term7 to the action [52], see Fig. 7.3

P [ϕ] :=

∫
SU(2)6

6∏
i=1

dgi ϕ(g1, g2, g3)ϕ(g3, g4, g5)ϕ(g5, g4, g6)ϕ(g6, g2, g1). (7.52)

Indeed, they showed that when |δ| ≤ 1, Iδ[ϕ] := P [ϕ] + δT [ϕ] is positive. To this
aim, they introduce the ‘squaring’ operator S mapping ϕ to the function Sϕ on SU(2)4

defined by

Sϕ(g1, g2, g3, g4) :=

∫
dg ϕ(g1, g2, g)ϕ(g, g3, g4). (7.53)

In terms of this new field, the modified interaction Iδ reads

Iδ[ϕ] = ⟨Sϕ|(1 + δT )Sϕ⟩4, (7.54)

7The word ‘pillow’ refers to the geometric interpretation of the GFT vertex: if Boulatov’s T [ϕ] is a
tetrahedron, then Freidel and Louapre’s P [ϕ] are two tetrahedra glued along two triangles – a pillow.
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where T is the involution transposing the central arguments of Sϕ:

T Sϕ(g1, g2, g3, g4) := Sϕ(g1, g3, g2, g4), (7.55)

and ⟨·|·⟩4 is the standard inner product in L2(SU(2)4). Since (1 + δT ) is a positive
operator, the modified quartic interaction Iδ is indeed positive.

Tetrahedron Pillow
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Covariance

Figure 7.3: The covariance Cϕ, the Boulatov tetrahedral vertex T [ϕ], and the Freidel-
Louapre pillow P [ϕ]. The labels on the vertices match the ordering of the group
elements in the integrand of T [ϕ] and P [ϕ].

Combining the cutoff on spins Λ and the Boulatov-Freidel-Louapre (BFL) interac-
tion, we get the (now well-defined) regularized partition function

Z(Λ)
BFL(λ) :=

∫
dµ(Λ)[ϕ] e−λIδ[ϕ]/8. (7.56)

The following bound on this model’s Feynman amplitudes, proved in [81], will useful
later on. Let G be a (vacuum, i.e. without external legs) Feynman graph of (7.56).
The corresponding Feynman amplitude ABFL(G) satisfies

8

|ABFL(G)| ≤ (λKδ)
V (G)Λ6+3V (G) (7.57)

for some δ-dependent constant Kδ.

7.3.2 Intermediate field representation

Let us now construct the cactus expansion of the BFL model. Following the recipe
explained in sec. 7.2.3, we start by introducing a ultralocal intermediate field σ on
SU(2)4 slicing the BFL ϕ4 vertices into two ϕ2σ vertices as in Fig. 7.4:

e−λIδ[ϕ]/8 =

∫
dν

(Λ)
δ [σ] e−

i
2

√
λ⟨Sϕ|σ⟩4 . (7.58)

In this intermediate field picture, the tetrahedral and pillow interactions are encapsu-
lated in the ultralocal Gaussian measure dν

(Λ)
δ through its covariance Cσ := (1 + δT ).

Let us then define the operator Σ coupling ϕ to σ

Σϕ(g1, g2, g3) :=

∫
dg4dg5 σ(g1, g2, g4, g5)ϕ(g3, g4, g5) (7.59)

8Rivasseau and Magnen later found a caveat in this theorem, see [21].
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PillowTetrahedron

Figure 7.4: Slicing the BFL vertices with an intermediate field σ over SU(2)4: the
dashed lines are combined in the covariance Cσ.

in such a way that
⟨Sϕ|σ⟩4 = ⟨ϕ|Σϕ⟩3, (7.60)

where ⟨·|·⟩3 is the standard inner product in L2(SU(2)3). After integration over the
original field ϕ, we obtain

Z(Λ)
BFL(λ) =

∫
dν

(Λ)
δ [σ] eVλ[σ], (7.61)

where the loop vertex is given by

Vλ[σ] := −1

2
Tr Log(1 + i

√
λCϕΣCϕ). (7.62)

One easily checks that Σ̃ := CϕΣCϕ is a Hermitian operator and therefore that the
resolvent bound applies to the derivatives of this loop vertex just like in the toy example.

7.3.3 Cactus expansion

Following the same steps as in sec. 7.2.4 yields the cactus expansion of the BFL free
energy:

F (Λ)
BFL(λ) =

∞∑
n=1

1

n!

∑
T∈Tn

(∏
l∈T

∫ 1

0

dhl

)∫
dνh

T

n (σ1, . . . , σn)(∏
l∈T

∫
d4gs(l)d4gt(l) Cσ(g

s(l); gt(l))
δ2

δσs(l)(gs(l))δσt(l)(gt(l))

)
n∏

v=1

Vλ(σv).

(7.63)

At this stage, the only difference with the 0-dimensional case is the insertion of a
covariance Cσ(gs(l); gt(l)) on each line l of the tree, and the integration with respect to

the corresponding 4-uples of group elements glv := (glvi )
4
i=1, attached to the half-lines

lv.
Computing the effect of the kv derivatives on the loop vertex Vλ[σv], labeled by the

half-lines lv connecting it to the tree, we obtain(
kv∏

lv=1

δ

δσv(glv)

)
Vλ(σv) =

(i
√
λ)kv

2
Tr

(
kv∏

lv=1

(1 + i
√
λΣ̃(σv))

−1 δΣ̃

δσv(glv)

)
. (7.64)
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Hence, the cactus amplitude FT (λ) is given by the following product of traces connected
by ultralocal covariances:

FT (λ) :=
1

n(T )!

(∏
l∈T

∫ 1

0

dhl

)∫
dνh

T

n (σ1, . . . , σn)

∏
l∈T

∫
d4gs(l)d4gt(l) Cσ(g

s(l); gt(l))
∏
v∈T

Tr

(
kv∏

lv=1

(1 + i
√
λΣ̃(σv))

−1 δΣ̃

δσv(glv)

)
.

(7.65)

7.3.4 Cauchy-Schwarz inequalities

To get some insight into this cactus amplitude, it is handy to introduce a ‘dual’ rep-
resentation of a tree T , as a planar partition of the disk. The boundary of the disk is
obtained by turning around T , while the dotted lines partitioning it cross the boundary
twice and each line of T exactly once, without crossing each other, see Fig. 7.5.

b

bb b

b

b
b

b

b

bb b

b

b
b

b

7−→

Figure 7.5: The planar representation of a tree.

In such a picture, the resolvents (1 + i
√
λΣ̃)−1 are attached to the arcs on the

boundary of the disk, while the covariances Cσ are attached to the dotted lines. To
bound (7.65), we can apply the Cauchy-Schwarz inequality along a line splitting the
disk in two parts with the same number of consecutive resolvents. Indeed, the number
of half-lines of a tree being even, it is always possible to pick two arcs with resolvents R1

and R2, and express (7.65) as the inner product ⟨A|R1⊗R2|B⟩, where A and B contain
the same number of arcs, and thus of resolvents (see Fig. 7.6). By the Cauchy-Schwarz
inequality, we have

|⟨A|R1 ⊗R2|B⟩| ≤ ∥R1∥|R2∥
√

⟨A|A⟩
√
⟨B|B⟩ ≤ 2

√
⟨A|A⟩

√
⟨B|B⟩. (7.66)

This process has two effects: thanks to the resolvent bound, it trades the original
tree for two trees, with the same number of vertices, but with two resolvents replaced
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Figure 7.6: Splitting the disk in two parts to apply the Cauchy-Schwarz inequality. On
the LHS, black squares are resolvents, dashed lines are covariances Cσ, and the thick
line expresses the amplitude (7.65) as the inner product between the upper and lower
parts A and B. On the right, white squares are Hermitian conjugates of resolvents and
dotted lines are covariances C ′

σ.

by the identity (∥R1∥∥R2∥ ≤ 2); each covariance Cσ which is sandwiched in the inner
product is replaced by a modified covariance C ′

σ := 1 + δT ′, where T ′ identifies the
two central arguments of σ instead of twisting them (Fig. 7.7):

T ′(g1, . . . , g4; g
′
1, . . . , g

′
4) := δ(g1g

′−1
1 )δ(g4g

′−1
4 )δ(g2g

−1
3 )δ(g′2g

′−1
3 ). (7.67)

Figure 7.7: Covariances Cσ (dashed lines) sandwiched in the inner product in the
Cauchy-Schwarz inequality (thick line) are replaced by modified covariances C ′

σ (dotted
lines).

We can iterate the process (n − 1) times, until all resolvents are removed, and all
covariances Cσ replaced by C ′

σ. We are then left with a BFL Feynman graph, hence

|FT (λ)| ≤ 2n(T )−1 supT ′∈Tn |ABFL(T
′)|, (7.68)

Now, from theorem (7.57) we have supT ′∈Tn |ABFL(T
′)| ≤ Kn

δ Λ
6+3n, hence

|FT (λ)| ≤ 2n(T )−1Kn
δ Λ

6+3n(T ). (7.69)

Before we can conclude, we should check that this estimate also holds for the
trivial tree with just one vertex (n = 1): since it contains no half-line, the loop vertex

Log(1 + i
√
λΣ̃) is not acted upon by a σ-derivative, and therefore the resolvent bound

does not apply. However, using standard convexity inequalities, we have for any z ∈ C

|Log(1 + z)| ≤ 1

2
+

1

2
(|z|2 + 4π2), (7.70)

hence

∥Log(1 + i
√
λΣ̃)∥ ≤ 1

2
+

1

2
(∥Σ̃∥2 + 4π2) ≤ 1

2
+

1

2
(sup |σ|2 + 4π2), (7.71)
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and therefore

|Tr
∫
dν

(Λ)
δ (σ) Log(1 + i

√
λΣ̃)| ≤ K dimH(Λ)

0 = O(Λ6). (7.72)

Absorbing the uniform factor dimH(Λ)
0 = O(Λ6) appearing in all estimates in the

definition of a free energy per degree of freedom

G(Λ)
BFL :=

1

dimH(Λ)
0

F (Λ)
BFL, (7.73)

we have proved that the cactus expansion of the BFL free energy per degree of freedom
G(Λ)
BFL is uniformly convergent in a half-disk

{λ ∈ C,ℜλ ≥ 0, |λ| ≤ KδΛ
−3}. (7.74)

Moreover, the Nevanlinna-Sokal criteria can be checked exactly as in the toy example,
hence G(Λ)

BFL defines the Borel sum of the BFL perturbative series.

7.3.5 A constructive scaling limit

The remarkable feature of this result lies in the control it provides over the summability
radius: it shows that, as the cutoff Λ is sent to infinity, the coupling constant should
shrink as Λ−3. This immediately suggests the definition of a scaling limit for the BFL
model, analogous to one discovered in matrix models by ’t Hooft at the perturbative
level [131], and confirmed by Rivasseau at the constructive level [105].

Define indeed a running coupling constant

λ′(Λ) =
λ

Λ3
. (7.75)

Then, seen as a function of λ′, the BFL free energy per degree of freedom G(Λ)
BFL(λ

′) has
a summability radius which is independent of Λ. This fact suggests the existence of a
limit

lim
Λ→∞

G(Λ)
BFL(λ

′) (7.76)

where λ′ → 0. Three comments are in order.

• This scaling behavior was beyond the scope of the Freidel-Louapre analysis [52].
It is only thanks to our use of the (much less elementary) cactus expansion that
we could establish this result.

• The constructive scaling (7.75) matches the perturbative scaling (7.57). In other
words, the sum over all foams does not introduce further divergences in the high-
spin limit.

• The presence of the pillow term in the BFL action is key to this result. Let us
emphasize however that the BFL scaling behavior does not coincide with the one
of the original Boulatov model. A perturbative estimate established in [81] shows
indeed that, in the pure Boulatov model, we have

|AB(G)| ≤ (λK)V (G)Λ6+3V (G)/2. (7.77)



7.3 Borel summability and scaling behavior 85

Let us conclude by remarking that, since we established in 2009 the perturbative
(7.57) and constructive (7.75) scaling behavior of three-dimensional group field the-
ory, Gurau and Rivasseau have made significant progress towards the identification of
dominant contributions in the Boulatov [68] and Ooguri models [68, 64], analogous to
’t Hooft’s planar diagrams [131].
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Chapter 8

Conclusion

8.1 Des fondations pour les mousses de spins

La viabilité du modèle plat en tant que théorie quantique de la géométrie est cruciale
pour le programme des mousses de spins. Dans cette thèse, nous avons abordé cer-
tains des aspects réputés obscurs de ce modèle, et notamment celui de ses divergences
: divergences de bulles d’une amplitude donnée, mais aussi divergence de la série per-
turbative, du moins dans le cadre de la group field theory de Boulatov. Nous avons
obtenus les résultats suivants :

• Le degré de divergence d’une mousse Γ, pour un groupe de structure compact
G, est donné par le deuxième nombre de Betti tordu par les G-connexions plates
non-singulières sur Γ. Ce résultat confirme l’intuition de Perez-Rovelli et de
Freidel-Louapre concernant le rôle des bulles pour ce comptage de puissance,
quoique dans un sens éminemment plus subtil que la notion de “surface fermée”
ne le laisse entendre a priori.

• Il existe une prescription combinatoire réalisant, dans les modèles de mousses
de spins, l’identité heuristique entre “limite de raffinement” et “somme sur les
histoires”. Ce résultat structurel suggère qu’en ce qui concerne la limite continue
des mousses de spins, raffiner ou sommer, telle n’est pas la question.

• La série perturbative du modèle de Boulatov, avec régularisation aux grands
spins et terme de “coussin”, n’est pas seulement sommable au sens de Borel : elle
possède une limite d’échelle où la constante de couplage s’annule.

Certes, ces résultats sont loin d’apporter une réponse, même partielle, au problème de
la gravité quantique évoqué dans l’introduction. Ils peuvent toutefois être vu comme
des fondements solides pour la théorie des mousses de spin.

8.2 Le modèle plat, une phase de la gravité quan-

tique ?

S’il est directement relié à la théorie de Yang-Mills en deux dimensions et à la gravité
de Palatini-Cartan en trois dimensions, le modèle plat n’est lié à la gravité quantique en
quatre dimensions qu’au niveau heuristique : modèle auxiliaire sans dynamique gravita-
tionnelle, il permet la construction des modèles du type EPRL ou FK par l’imposition
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de certaines contraintes dites “de simplicité”. On pourrait donc – légitimement –
s’interroger sur la pertinence physique des résultats obtenus dans cette thèse.

Il s’avère que la relation entre le modèle plat et la gravité quantique quadri-
dimensionnelle pourrait être plus étroite que ne le suggère la construction des modèles
EPRL-FK. Considérant le comportement d’une action invariante par reparamétrisation
sous l’effet d’une discrétisation de l’espace-temps, Rovelli a en effet suggéré récemment
l’existence d’une phase “topologique” de la gravité, où la géométrie serait plate : un
mécanisme qu’il a baptisé Ditt-invariance [120], en hommage au travail de B. Dittrich.

Une idée similaire a également été défendue par Rivasseau [107]. Inspiré par le
comportement du paramètre Ω de Grosse-Wulkenhaar [62] à haute énergie, il conjecture
un “running” du paramètre d’Immirzi dans le modèle EPRL vers la valeur critique 1, où
l’amplitude de mousse de spins se réduit à celle du modèle plat pourG = SU(2)×SU(2).
Ceci correspondrait selon lui à la phase “pré-géométrique” de la gravité quantique.

Il est clair que, si l’un de ces scénarios venait à se réaliser, le modèle plat reviendrait
naturellement sur le devant de la scène physique. Les résultats présentés dans cette
thèse deviendraient alors directement pertinents pour étudier le régime quantique de
la gravité.

8.3 Quel “groupe” de renormalisation ?

Pour faire sens d’une telle hypothèse, il reste toutefois à formuler une généralisation
du groupe de renormalisation adaptée au cadre des mousses de spins. Plusieurs pistes
semblent envisageables, parmi lesquelles :

• Adapter le groupe de renormalisation de Wilson-Kadanoff au filet des mousses de
spins. Comme nous l’avons rappelé au chap. 6, celui-ci repose dans sa formulation
traditionnelle sur la présence d’un réseau métrique. Le caractère background
independent de la relativité générale nécessite le recours à une notion d’échelle
généralisée ; nous postulons que la notion d’ensemble ordonné filtrant (directed
set) a un role essentiel à jouer dans ce programme. Nous renvoyons le lecteur
aux travaux préliminaires de Zapata [149], Oeckl et leurs collaborateurs [83] à ce
sujet, ainsi qu’aux résultats récents de Dittrich et al. [36].

• Une autre piste, poursuivie notamment par Rivasseau et ses collaborateurs,
s’appuie sur l’analogie structurelle entre la théorie des champs sur le groupe
(group field theory) et la théorie quantique des champs usuelle pour tenter de
construire un groupe de renormalisation généralisé. Pour mener à bien ce pro-
gramme, il est crucial de se doter d’une group field theory avec un propagateur
non-trivial, donc de mousses de spins non-plates [107]. Tout reste à faire dans
cette approche.

Développer ces points de vue, ou d’autres encore, afin de mieux mâıtriser la tron-
cation du champ gravitationnel en mousses de spins : c’est à mon sens le défi crucial
pour la théorie des boucles. Courage à ceux qui s’y attelleront, ou s’y attellent déjà !



Appendix A: Cellular homology

For the reader’s convenience, we recall here some basic definitions concerning cell com-
plexes and their (co)homology (a well-written, pedagogical reference is [70]). A cell
complex, or finite CW complex, is a topological space X presented as the disjoint
union of finitely many open cells, such that for each open p-cell σp there is a continu-
ous map f : Bp → X whose restriction to the interior of Bp is a homeomorphism onto
σp, and such that the image of the boundary of Bp is contained in the union of lower
dimensional cells. The dimension of X, dimX, is the maximal dimension of its cells.
If cp(X) is the number of p-cells of X, the Euler characteristic of X is defined as

χ(X) =
dimX∑
p=0

(−1)pcp(X). (1)

It is homotopy invariant.
Cellular homology associates to each cell complex X a sequence of homotopy in-

variant abelian groups, the homology groups of X, as follows. For each dimension p,
consider the set Cp(X) of formal linear combination of p-cells with integer coefficients
(the ‘free Abelian group’ over the p-cells of X); its elements are called p-chains. Define,
for each p, the boundary map ∂p : Cp(X) → Cp−1(X) by its action on p-cells σp

α

∂pσ
p
α =

∑
β

[σp
α, σ

p−1
β ]σp−1

β (2)

and linearity. Here, the sum runs over the (p − 1)-cells on the boundary of σp
α, and

[σp
α, σ

p−1
β ] is the incidence number of σp

α on σp−1
β – that is, the number of times σp

α

wraps around σp−1
β , with relative orientations taken into account (see [70] for a precise

definition). Elements of ker ∂p are called p-cycles, and elements of Im ∂p+1 are called
p-boundaries. The fundamental property of the boundary maps is that, for each p,

∂p∂p+1 = 0. (3)

This implies that Im ∂p+1 ⊂ ker ∂p, and allows to consider the quotients Hp(X) =
ker ∂p/Im ∂p+1 of p-cycles modulo p-boundaries. The sequence of Abelian groups
Cp(X), together with the boundaries maps ∂p

0 −→ CdimX(X) −→ . . . −→ Cp+1(X) −→ Cp(X) −→ . . . −→ C0(X) −→ 0 (4)

forms the cellular chain complex of X, and the Hp(X)’s are the homology groups of
X. They are homotopy invariant, and in particular so are their ranks bp(X), the Betti
numbers of X. Intuitively, bp(X) is the number of ‘independent p-holes’ of X. The
Euler-Poincaré theorem states that

χ(X) =
dimX∑
p=0

(−1)pbp(X). (5)
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Dualization of this construction leads to cellular cohomology. Explicitely, for each
p, the cochain group Cp(X) of X is defined as the set of linear maps from Cp(X) to
Z, and the coboundary operator δp as the transpose of ∂p+1. One checks that

δp+1δp = 0 (6)

and the resulting complex

0 −→ C0(X) −→ . . . −→ Cp(X) −→ Cp+1(X) −→ . . . −→ CdimX(X) −→ 0 (7)

is called the cellular cochain complex of X, and the quotients Hp(X) = ker δp/Im δp−1

its cohomology groups. They are homotopy invariant as well.
This construction can be generalized by replacing the integer coefficients in the

(co)chains by elements of an arbitrary Abelian group A. The corresponding homology
and cohomology groups are then denoted Hp(X,A) and Hp(X,A) respectively. One
shows in particular that, whenever A is actually a vector space, Hp(X,A) andH

p(X,A)
are dual to each other. Also, in this case (and more generally if A is torsion-free), it
holds that Hp(X,A) = Hp(X)⊗ A, and thus bp(X,A) = bp(X) dim(A).

Eventually, let us mention Poincaré duality: when X is the cell decomposition of
an oriented, closed d-manifold, we have

Hp(X) ≃ Hd−p(X). (8)
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Due to the several simplifications it provides, the recent literature on group field the-
ory has focused on Gurau’s colored model [66]. To ease the translation between this
framework and ours, based on finite CW complexes, we recall here the basics of cristal-
lization and colored graph theory, and explicit the relationship between colored and
cellular homology. Although it seems that Gurau did not know about this work, colored
homology was actually introduced in [34].

An (d + 1)-colored graph is a pair G = (G, c), where G = (V (G), E(G)) is a
connected multigraph (without tadpoles) regular of degree d + 1, and c : E(G) →
∆d = {0, 1, ..., d} is an edge-coloring such that c(e) ̸= c(f) for any pair e and f of
adjacent edges of G. For each proper subset B of ∆n, let GB denote the subgraph of
G defined by (V (G), c−1(B)); each connected component of GB is called a B-residue,
or B-bubble. If B has |B| = k elements, it is also called a k-bubble. The 0-bubbles of
G are its vertices.

The colored, or bubble, homology of such a colored graph G is defined as follows. Let
Ck(G) be the free Abelian group generated by the k-bubbles of G, and dk : Ck(G) →
Ck−1(G) the linear map defined by

dk(bk) :=
∑
q∈B

(−1)|B
<(q)|

∑
ck−1∈GB\{q}

ck−1 (9)

where bk is a B-bubble k colors, and

B<(q) := {p ∈ B , p < q} . (10)

It is not difficult to check that dkdk+1 = 0, and thus that

Ck(G)
dd−−→ Cd−1(G)

dd−1−−−−→ . . . C1(G)
d1−−→ C0(G)

d0−−→ 0, (11)

forms a chain complex. Its homology groups Hk(G) = ker dk/ im dk+1 are the colored
homology groups of G. We denote the corresponding Betti numbers bk(G).

Every (d + 1)-colored graph (G, c) determines a d-dimensional CW complex KG
as follows. For each vertex v of G, consider an d-simplex σd(v) and label its vertices
by ∆d. If v and w are joined in G by an i-colored edge, i ∈ ∆d, then identify the
(d − 1)-faces of σd(v) and σd(w) opposite to the vertex labelled by i, so that equally
labelled vertices coincide. The quotient space is KG. It is obviously connected.

The CW complex thus defined is special in that every cell ekα arises as the projection
of a k-simplex σk

α with vertices labelled in a subset Bα of ∆d. Moreover, the cells on the
boundary of ekα are the projections of the faces of σk

α. Such a CW complexes is called
a ∆-complex by Hatcher [70], and a pseudo-complex by other authors [34]. Thanks to
its simplicial character, its boundary operator is readily computed. For q ∈ Bα, denote
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ek−1
α(q) the (k − 1)-cell on the boundary of ekα arising as the projection of the face of σk

α

opposite to the vertex labelled by q. Then [ekα, e
k−1
α(q)] = (−1)|B

<
α (q)|, and thus

∂k(e
k
α) =

∑
q∈Bα

(−1)|B
<
α (q)|ek−1

α(q). (12)

Moreover, like a simplicial complex, KG possesses a dual CW complex ∆G, whose
k-cells fk

α are in one-to-one correspondence with the (d− k)-cells ed−k
α of KG (see [70]

for details). Let
Ek

α,q =
{
β , ekβ(q) = ekα

}
(13)

index the set of cofaces of ekα. Then ∆G is such that

∂k(f
k
α) =

∑
q∈Bα

(−1)|B
<
α (q)|

∑
β∈Ek

α,q

fk−1
β , (14)

i.e. the boundary operator ∂k of ∆G is the coboundary operator δd−k of KG. Hence,

Hk(∆G) = Hd−k(KG), (15)

as in Poincaré duality.
To relate the colored homology of the colored graph G to the cellular homology of

the corresponding complex, it suffices to note that the B-bubbles of G are in one-to-
one correspondence with the cells of KG arising from simplices with vertices labelled
in ∆d \ B. Indeed, let v be a vertex of a B-bubble b with |B| = k, and σd(v) the
corresponding simplex, with vertices labelled by ∆d. Let fB(σd(v)) be the (d − k)-
subsimplex of σd(v) defined by those of its vertices which are not in B, and ed−k

b (v)
the corresponding (d − k)-cell in KG. By definition of the quotient space KG, the cell
ed−k
b (v) actually does not depend on v. Thus, for each k-bubble b of G there is a
(d − k)-cell ed−k

b of KG, and therefore a k-cell fk
b of ∆G. It is not hard to check that

this correspondence is actually bijective. Moreover, inspection of (9) and (14) shows
that

Fk(dkb) = δd−kFk(b), (16)

where Fk the mapping b 7→ fk
b . In other words, we have an isomorphism of chain

complexes F = (Fk)
d
k=0 : C∗(G) → C∗(∆G), and thus

Hk(G) ≃ Hk(∆G) = Hd−k(KG). (17)

In particular, the colored Betti numbers of G coincide with the cellular Betti numbers
of ∆G. Note moreover that, since the 0-th Betti number of a topological space counts
the number of its connected components, we have bd(G) = b0(KG) = 1 and b0(G) =
b0(∆G) = 1.
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