Analysis and Optimization of the Asian Mobile and Terrestrial Digital Television Systems

LIU Ming

Directeur de Thèse: Jean-François Hélard Co-encadrant: Matthieu Crussière

Institut National des Sciences Appliquées de Rennes (INSA-Rennes) Institut d'Electronique et de Télécommunications de Rennes (IETR) Université Européenne de Bretagne (UEB)

March 30, 2011

Contents

Background

PN Sequence based Channel Estimation for TDS-OFDM

Data-aided Channel Estimation for TDS-OFDM

5 Conclusion

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Part I : Digital Television Broadcasting

- Context
- Digital TV broadcasting
- Channel Model
- Orthogonal Frequency-Division Multiplexing

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion

Milestones

Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

first commercial deployment

first satellite relay

only DTV in nearly 40 countries

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion

Transition to Digital TV

Motivations :

- Better view quality ⇒ high definition display
- Oiverse view interests ⇒ more programs and channels
- Improved spectrum efficiency \Rightarrow digital dividend
- Higher power efficiency ⇒ less power consumption & better coverage
- Novel viewing behaviors \Rightarrow interactive TV, 3 dimensional (3D) display etc.

Transition completed :

- Germany, Switzerland, Sweden, Norway, Spain, etc.
- Full-power analogue broadcasts ended :
 - the United States
- Transition in progress :
 - France, China, Japan, Canada, Australia, India etc.

Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion

Transition to Digital TV

Motivations :

- Better view quality ⇒ high definition display
- Oiverse view interests ⇒ more programs and channels
- Improved spectrum efficiency \Rightarrow digital dividend
- Higher power efficiency ⇒ less power consumption & better coverage
- Novel viewing behaviors \Rightarrow interactive TV, 3 dimensional (3D) display etc.

Context

Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Digital Television Terrestrial Broadcast

Main DTTB standards in the world :

- Advanced Television Standards Committee A/53 (ATSC)
- Digital Video Broadcasting–Terrestrial (DVB–T)
- Integrated Services Digital Broadcasting–Terrestiral (ISDB-T)
- Digital Terrestrial/Television Multimedia Broadcasting (DTMB)

イロト イヨト イヨト

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Digital Television Terrestrial Broadcast

Main DTTB standards in the world :

- Advanced Television Standards Committee A/53 (ATSC) ⇒ ATSC-M/H, MediaFLO
- Digital Video Broadcasting–Terrestrial (DVB–T) ⇒ DVB–T2
- Integrated Services Digital Broadcasting–Terrestiral (ISDB-T)⇒ISDB-T International
- Digital Terrestrial/Television Multimedia Broadcasting (DTMB)

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Multipath propagation

signal dispersion in the time domain

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Single frequency network

- Single transmitter
- Multiple transmitters in a Multi-Frequency Network (MFN)
- Multiple transmitters in a Single Frequency Network (SFN)

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Orthogonal Frequency-Division Multiplexing (OFDM)

Principle

One high-speed data stream \Rightarrow many parallel, low-speed data streams

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Orthogonal Frequency-Division Multiplexing (OFDM)

Principle

One high-speed data stream \Rightarrow many parallel, low-speed data streams

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Orthogonal Frequency-Division Multiplexing (OFDM)

Principle

One high-speed data stream \Rightarrow many parallel, low-speed data streams

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Different types of Guard Intervals (GI)

- Cyclic Prefix based OFDM (CP-OFDM)
- Zero Padding based OFDM (ZP-OFDM)
- Time Domain Synchronous OFDM (TDS-OFDM)

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Context Digital TV broadcasting Channel Model Orthogonal Frequency-Division Multiplexing

Equalization of TDS-OFDM signal

Remove PN sequence from the received signal

- Generate a perfect PN sequence
- Convolve with an estimated CIR
- Subtract the estimated PN sequence from received signal
- Turn TDS-OFDM signal to ZP-OFDM signal

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

13/62

Part II : Analysis and Comparison of DVB-T and DTMB Systems

- Introduction of the DVB-T and DTMB systems
- Comparisons of the DVB-T and DTMB systems
- BER performance of the DVB-T and DTMB systems

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

Introduction on DVB-T and DTMB systems

DVB-T system

- CP assisted OFDM modulation
- Frequency pilot symbol assisted channel estimation
- Concatenate RS and convolutional codes with interleaving (moderate depth)

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

Introduction on DVB-T and DTMB systems

DTMB system

- TDS-OFDM modulation
- PN sequence assisted channel estimation
- Concatenate BCH and LDPC codes with deep convolutional interleaver

Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

Main parameters of DVB-T and DTMB

		DVB-T		DTMB		
		2K mode	8K mode	Single carrier	Multicarrier	
Number of subcarrier		2048 8192		1	3780	
GI -	Length	1/4, 1/8, 1/16, 1/32		1/6	1/4, 1/9	
	Power	non-boost		non-boost	boost by 2	
Pilot		176	701	—		
Mapping		QPSK, 16QAM, 64QAM		4QAM-NR, QPSK, 16QAM, 32QAM	QPSK, 16QAM, 64QAM	
Interleaving	Outer	conv	convolutional —		_	
	Inner	bitwise	+ symbol	time domain	time & fre- quency domain	
Coding	Outer	Reed-Solomon (204, 188)		BCH (762, 752)		
	Inner	convolutional code		LDPC		
	Rate	1/2, 2/3, 3/4, 5/6, 7/8		0.4, 0.6, 0.8		

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

Power efficiency

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

18/62

Power efficiency factor

$\gamma = \frac{P_{data}}{P_{all}} = \frac{N_{data}}{N_{data} + N_{\text{TPS}} + N_{pilot} \times \eta_{\text{pilot}}} \times \frac{1}{1 + \nu \times \eta_{\text{GI}}}$							
N _{data} number of data subcarriers	→ 1512 (6048)	\rightarrow 3744					
 N_{TPS} number of TPS 	→ 17 (68)	ightarrow 36					
 N_{pilot} number of pilots 	→ 176 (701)	\rightarrow 0					
\sim v fraction of GI over data	\rightarrow 1/4, 1/8, 1/16, 1/32	\rightarrow 1/4, 1/9					
• η_{pilot} boost factor of pilots	ightarrow 16/9	\rightarrow 1					
• η_{GI} boost factor of GI	\rightarrow 1	\rightarrow 2					

• •

	DVB-T	DTMB
Power efficiency factor	0.66 (v=1/4), 0.73 (v=1/8), 0.77 (v=1/16), 0.79 (v=1/32)	0.66 (v=1/4), 0.81 (v=1/9)

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

Simulation parameters

Objective

Evaluate the transmission efficiency in terms of bit error rate (BER)

Simulation setups

- F1 (Ricean) and P1 (Rayleigh) channels
- DVB-T : GI=1/4, 2K mode
- DTMB : GI=1/4, boosted PN, interleaving time delay 170 OFDM symbols
- 3 pairs of working modes from each system

System	Modulation	Channel Coding	Code Rate	Bitrate (Mbps)
DVB-T	QPSK	RS code + Covolutional code R=1/2	0.46	4.98
	16QAM	RS code + Covolutional code R=3/4	0.69	14.93
	64QAM	RS code + Covolutional code R=3/4	0.69	22.39
DTMB	QPSK	BCH code + LDPC code (7493, 3048)	0.4	4.81
	16QAM	BCH code + LDPC code (7493, 4572)	0.6	14.44
	64QAM	BCH code + LDPC code (7493, 4572)	0.6	21.66

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

BER comparison of DVB-T and DTMB systems

Performance with perfect channel estimation

 DVB-T performs better in all cases of F1 channel

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

BER comparison of DVB-T and DTMB systems

• Performance with perfect channel estimation

- DVB-T performs better in all cases of F1 channel
- DTMB is robust in worse channel conditions

1.0 dB better in 16QAM case

DVB-T is more efficient than DTMB in perfect channel estimation case.

20/62

• • • • • • • •

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

BER comparison of DVB-T and DTMB systems

- Performance with real channel estimation
 - DVB-T : pilot-assisted channel estimation with 1-D Wiener filtering
 - DTMB : PN-correlation-based channel estimation

- Degradation due to channel estimation error :
 - DVB-T : 1.0 ~ 1.3 dB in F1,
 - DTMB : 0.2 ~ 0.6 dB in F1,

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

BER comparison of DVB-T and DTMB systems

- Performance with real channel estimation
 - DVB-T : pilot-assisted channel estimation with 1-D Wiener filtering
 - DTMB : PN-correlation-based channel estimation

- Degradation due to channel estimation error :
 - DVB-T : 1.0 ~ 1.3 dB in F1,
 - $1.1 \sim 1.5 \text{ dB}$ in P1
 - DTMB : 0.2 ~ 0.6 dB in F1,
 - $0.1 \sim 0.2 \text{ dB}$ in P1

DTMB benefits from the power boost of the PN sequence

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

BER comparison of DVB-T and DTMB systems

• Performance with shorter GI \Rightarrow DVB-T : 1/8, DTMB : 1/9

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

BER comparison of DVB-T and DTMB systems

• Performance with shorter GI \Rightarrow DVB-T : 1/8, DTMB : 1/9

- DTMB is more efficient with shorter GI
- Difference of the performance is not significant

22/62

The spectral efficiencies of the two systems are close.

• • • • • • • •

Summary

Introduction of the DVB-T and DTMB systems Comparisons of the DVB-T and DTMB systems BER performance of the DVB-T and DTMB systems

23/62

DTMB has more efficient data structure

- Higher spectrum utilization
- Higher power efficiency
- The overall performances of the two systems are very close in typical channel conditions
 - DVB-T performs better in perfect channel estimation cases
 - Channel estimation mechanism of DTMB is more reliable than that of DVB-T
 - DTMB is more efficient with shorter GI

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

24/62

Part III : PN Sequence based Channel Estimation for TDS-OFDM

- GI structure of DTMB
- Classical PN-based channel estimators
- Improved time domain channel estimators
- Estimator in the insufficient long CP case

Motivation

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Residual PN sequence in the OFDM data symbols

Motivation

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Residual PN caused by imperfect channel estimation :

$$\xi[n] = \sum_{l=0}^{L-1} \Delta h_l c[n-l]_{\nu}, \quad 0 \leqslant n < \nu$$

• Interference caused by residual PN for the k^{th} subcarrier : $I[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \xi[n] e^{-j\frac{2\pi}{N}nk} = \frac{1}{\sqrt{N}} \sum_{l=0}^{L-1} \Delta h_l \sum_{n=0}^{\nu-1} c[n-l]_{\nu} e^{-j\frac{2\pi}{N}nk}$

• Power of the interference for the k^{th} subcarrier :

$$\sigma_I^2[k] = \mathbb{E}\left[I^*[k]I[k]\right] = \frac{1}{N} \sum_{l=0}^{\infty} \sigma_{\Delta h_l}^2 \sum_{\substack{n_1, n_2=0 \\ n_1, n_2=0}} c_l^*[n_1]c_l[n_2]e^{-j\frac{2\pi}{N}(n_2-n_1)k}$$

Channel estimation accuracy is crucial for TDS-OFDM !

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Structure of the GI in DTMB

Definition :

- Maximum length sequence (m-sequence)
- Prefix & postfix

Equivalent :

- Shifted m-sequence
- CP

Structure of the GI in DTMB

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Channel estimation using m-sequence :

- FFT-based frequency domain estimator
- Correlation-based time domain estimator

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Frequency domain channel estimation method

● Circular convolution in time ⇒ Element-wise product in frequency

$$\mathbf{D} = \mathbf{P}_d \mathbf{H} + \mathbf{W}$$

Least square (LS) estimator :

$$\mathbf{\bar{H}} = (\mathbf{P}_{d}^{\mathcal{H}}\mathbf{P}_{d})^{-1}\mathbf{P}_{d}^{\mathcal{H}}\mathbf{D} = \mathbf{H} + \underbrace{(\mathbf{P}_{d}^{\mathcal{H}}\mathbf{P}_{d})^{-1}\mathbf{P}_{d}^{\mathcal{H}}\mathbf{W}}_{\boldsymbol{\xi}_{H}}$$

Mean square error (MSE) :

$$arepsilon_{ar{h}} = rac{1}{N_{_{\mathrm{PN}}}} \mathrm{Tr} \left(\mathbb{E} ig[oldsymbol{\xi}_{ar{h}} oldsymbol{\xi}_{ar{h}}^{\mathcal{H}} ig]
ight) = rac{\sigma_W^2}{N_{_{\mathrm{PN}}}^2} \sum_{k=0}^{N_{_{\mathrm{PN}}}-1} rac{1}{|P[k]|^2} = rac{2\sigma_W^2}{N_{_{\mathrm{PN}}}+1}$$
Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Time domain channel estimation method

PN sequence correlation based estimator :

$$\tilde{\mathbf{h}} = \frac{1}{N_{PN}} \mathbf{P}_{cor} \mathbf{d} = \frac{1}{N_{PN}} \mathbf{P}_{cor} \mathbf{P}_{circ} \mathbf{h} + \frac{1}{N_{PN}} \mathbf{P}_{cor} \mathbf{w},$$
denote $\mathbf{Q} \triangleq \frac{1}{N_{PN}} \mathbf{P}_{cor} \mathbf{P}_{circ} = \begin{bmatrix} 1 & -\frac{1}{N_{PN}} & \cdots & -\frac{1}{N_{PN}} \\ -\frac{1}{N_{PN}} & 1 & \cdots & -\frac{1}{N_{PN}} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{N_{PN}} & -\frac{1}{N_{PN}} & \cdots & 1 \end{bmatrix}$

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Time domain channel estimation method

$$\varepsilon_{\bar{h}} = \frac{1}{N_{\rm PN}} \operatorname{Tr} \left(\mathbb{E} \left[\xi_{\bar{h}} \xi_{\bar{h}}^{\mathcal{G}} \right] \right) = \underbrace{\frac{1}{N_{\rm PN}} \operatorname{Tr} \left((\mathbf{Q} - \mathbf{I}_{N_{\rm PN}}) \boldsymbol{\Lambda} (\mathbf{Q} - \mathbf{I}_{N_{\rm PN}})^{\mathcal{H}} \right)}_{\text{self interference}} + \underbrace{\frac{\sigma_{w}^{2}}{N_{\rm PN}^{3}} \operatorname{Tr} \left(\mathbf{P}_{\rm cor} \mathbf{P}_{\rm cor}^{\mathcal{H}} \right)}_{\text{noise}}$$
$$= \frac{N_{\rm PN} - 1}{N_{\rm PN}^{3}} + \frac{1}{N_{\rm PN}} \sigma_{w}^{2}$$

 \Rightarrow Estimation error floor @ $\frac{N_{\rm PN}-1}{N^3}$

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Frequency and time domain estimators

- Time domain estimator performs better in low SNR
- Time domain estimator suffers error floor in high SNR
- Better performance using longer PN sequence

29/62

- II-

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

30/62

Reduce estimation error floor, Method 1

• Idea 1 : Use a linear transformation Ω such that $\Omega \mathbf{Q} = \mathbf{I}_{N_{PN}} \Rightarrow \Omega = \mathbf{Q}^{-1}$

MSE :

$$_{h_1} = rac{\sigma_w^2}{N_{_{\mathrm{PN}}}^2} \mathrm{Tr}\left(\mathbf{Q}^{-1}\right) = rac{2\sigma_w^2}{N_{_{\mathrm{PN}}}+1}$$

No estimation error floor

Noise component power boosted by 2

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Reduce estimation error floor, Method 1 with truncation

• Truncate the estimate to real channel length L: $\tilde{\mathbf{h}} = \mathbf{I}_{L \times N_{\text{PN}}} \tilde{\mathbf{h}} = \tilde{\mathbf{Q}} \mathbf{h} + \frac{1}{N_{\text{PN}}} \mathbf{I}_{L \times N_{\text{PN}}} \mathbf{P}_{\text{cor}} \mathbf{w}$ • Improved estimator 1 with truncation : $\hat{\mathbf{h}}'_{1} = \tilde{\mathbf{Q}}^{-1} \tilde{\mathbf{h}} = \mathbf{h} + \frac{1}{N_{\text{PN}}} \tilde{\mathbf{Q}}^{-1} \mathbf{I}_{L \times N_{\text{PN}}} \mathbf{P}_{\text{cor}} \mathbf{w}$

$$\bar{\mathbf{Q}}^{-1} = \begin{bmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{bmatrix}$$
$$\begin{cases} a = 1 + \frac{L-1}{N_{PN}^2 + 2N_{PN} - N_{PN}L - L + 1} \\ b = \frac{N_{PN}}{N_{PN}^2 + 2N_{PN} - N_{PN}L - L + 1} \end{cases}$$

イロト イヨト イヨト イヨト

• MSE :

$$\varepsilon_{\hat{h}_{1}^{\prime}} = \frac{\sigma_{w}^{2}}{LN_{\text{PN}}} \text{Tr}\left(\tilde{\mathbf{Q}}^{-1}\right) = \frac{\overline{\lambda_{\text{PN}}^{\prime}}}{1 + \frac{1-L}{N_{\text{PN}}(N_{\text{PN}}-L+2)}} \sigma_{w}^{2}$$

No estimation error floor

$$\Rightarrow$$
 MSE $\approx rac{\sigma_w^2}{N_{
m PN}}$, when $N_{
m PN} \gg L$

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Reduce estimation error floor, Method 2

Idea 2 : Subtract interference using channel estimate

Improved estimator 2 :

$$\hat{\mathbf{h}}_2 = ilde{\mathbf{h}} - ar{\Delta} ilde{\mathbf{h}}$$

$$= \begin{vmatrix} 0 & -\frac{1}{N_{\rm PN}} & \cdots & -\frac{1}{N_{\rm PN}} \\ -\frac{1}{N_{\rm PN}} & 0 & \cdots & -\frac{1}{N_{\rm PN}} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{N_{\rm PN}} & -\frac{1}{N_{\rm PN}} & \cdots & 0 \end{vmatrix}$$

MSE :

$$\varepsilon_{h_2} = \frac{(L-1)(L^2 - 3L + 3)}{N_{\rm PN}^4 L} + \left(\frac{1}{N_{\rm PN}} + \frac{(L-1)(2 - L - N_{\rm PN})}{N_{\rm PN}^4}\right)\sigma_w^2.$$

Ā

 \Rightarrow Estimation error floor reduced by approximately $\left(\frac{L}{N_{PN}}\right)^2$

$$\Rightarrow$$
 MSE $\approx \frac{\sigma_w^2}{N_{\rm PN}}$, when $N_{\rm PN} \gg L$

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Improved time domain estimators

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Improved estimator in the insufficient CP case

Insufficient CP

・ロト・日本・日本・日本・日本・日本

34/62

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Improved estimator in the insufficient CP case

Received PN sequence :

$$\mathbf{d}^{(i)} = \mathbf{H}_{\text{circ}} \mathbf{p}^{(i)} - \underbrace{\mathbf{H}_{\text{comp}} \mathbf{p}^{(i)}}_{\text{loss of cyclicity}} + \underbrace{\mathbf{R}_{\text{cp}} \mathbf{H}_{\text{IBI}} \mathbf{x}^{(i-1)}}_{\text{IBI}} + \mathbf{w}$$

- Improved methods :
 - Compensate cyclicity :

$$\tilde{\mathbf{d}}^{(i)} = \mathbf{d}^{(i)} + \hat{\mathbf{H}}_{\text{comp}} \mathbf{p}^{(i)} pprox \mathbf{H}_{\text{circ}} \mathbf{p}^{(i)} + \mathbf{R}_{\text{cp}} \mathbf{H}_{\text{IB1}} \mathbf{x}^{(i-1)} + \mathbf{w}$$

Remove IBI :

$$\mathbf{\check{d}}^{(i)} = \mathbf{\tilde{d}}^{(i)} - \mathbf{R}_{\mathrm{cp}} \mathbf{\hat{H}}_{\mathrm{IBI}} \mathbf{\hat{x}}^{(i-1)} \approx \mathbf{H}_{\mathrm{circ}} \mathbf{p}^{(i)} + \mathbf{w}$$

・ロト・日本・モート・ヨー うくぐ

34/62

Insufficient CP

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

- Cyclicity compensation is more efficient than IBI removal.
- Combination of cyclicity compensation and IBI removal approaches the performance of perfect compensation and IBI removal.

Insufficient CP

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

- Cyclicity compensation is more efficient than IBI removal.
- Combination of cyclicity compensation and IBI removal approaches the performance of perfect compensation and IBI removal.
- Performance of IBI removal degrades with high order constellation

Interference caused by imperfect PN removal GI structure of DTMB Classical PN-based channel estimators Improved time domain channel estimators Estimator in the insufficient long CP case

Summary

- GI specified in DTMB is seen as a shifted m-sequence and a CP
- Time domain correlation-based estimator performs better but suffers an estimation error floor
- Improved time domain estimators with reduced estimation error floor
 - Method 1 : left multiplying by Q⁻¹
 - Method 1 with truncation : left multiplying by Q⁻¹
 - Method 2 : subtracting the interference caused by imperfect correlation property
- Improved estimator when CP is insufficient
 - Cyclicity compensation
 - IBI removal

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

37/62

Part IV : Data-aided Channel Estimation for TDS-OFDM

- Interference caused by imperfect PN removal
- Data-aided channel estimation
- Data-aided channel estimate refinement
- MMSE combination

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

Data-aided channel estimation

Data-aided channel estimation Data-aided channel estimate refinement

MMSE combination Simulation results

Data-aided channel estimation

- Turbo channel estimation
- Deep interleaver & complicated decoder e.g. in DTMB :
 - Convolutional interleaver with a delay of 170 or 510 OFDM symbols
 - Iterative LDPC decoder

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

Data-aided channel estimation

- Objective : low-complexity, low-time-delay channel estimation
- Proposed method :
 - Exclude interleaver, deinterleaver & decoder from the feedback loop
 - Feedback information from soft-output demapper
 - Refine the data-aided channel estimate

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

Soft data rebuilding

Log-likelihood ratio (LLR) from soft-output demapper :

$$\lambda_{l}[i,k] \triangleq \log \frac{P(b[i,k,l]=1|Z[i,k])}{P(b[i,k,l]=0|Z[i,k])} \Rightarrow \begin{cases} P(b[i,k,l]=1 \mid Z[i,k]) = \frac{e^{\lambda_{l}[i,k]}}{1+e^{\lambda_{l}[i,k]}} \\ P(b[i,k,l]=0 \mid Z[i,k]) = \frac{1}{1+e^{\lambda_{l}[i,k]}} \end{cases}$$

• a priori probability of each constellation point :

$$P\left(X[i,k] = \alpha_j | Z[i,k]\right) = \prod_{l=1}^{\log_2 \mu} P\left(b[i,k,l] = \kappa_l(\alpha_j) | Z[i,k]\right)$$

Soft data rebuilding :

$$\begin{split} \hat{X}[i,k] &= \sum_{\alpha_j \in \Psi} \alpha_j \cdot P\left(X[i,k] = \alpha_j | Z[i,k]\right) \\ \Rightarrow \begin{cases} \hat{X}[i,k] = \tanh\left(\frac{\lambda_1[i,k]}{2}\right) & \text{BPSF} \\ \hat{X}[i,k] = \frac{1}{\sqrt{2}} \left[\tanh\left(\frac{\lambda_1[i,k]}{2}\right) + j \tanh\left(\frac{\lambda_2[i,k]}{2}\right)\right] & \text{QPSF} \end{cases}$$

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

Soft data rebuilding

Log-likelihood ratio (LLR) from soft-output demapper :

$$\lambda_{l}[i,k] \triangleq \log \frac{P(b[i,k,l]=1|Z[i,k])}{P(b[i,k,l]=0|Z[i,k])} \Rightarrow \begin{cases} P(b[i,k,l]=1 \mid Z[i,k]) = \frac{e^{\lambda_{l}[i,k]}}{1+e^{\lambda_{l}[i,k]}} \\ P(b[i,k,l]=0 \mid Z[i,k]) = \frac{1}{1+e^{\lambda_{l}[i,k]}} \end{cases}$$

• a priori probability of each constellation point :

$$P\left(X[i,k] = \alpha_j | Z[i,k]\right) = \prod_{l=1}^{\log_2 \mu} P\left(b[i,k,l] = \kappa_l(\alpha_j) | Z[i,k]\right)$$

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

Instantaneous channel estimation

Received frequency domain data symbol :

$$\mathbf{Y} = \mathbf{X}\mathbf{H} + \mathbf{W}$$

LS estimator :

$$\hat{\mathbf{H}}^{\text{LS}} = \arg\min_{H} \mathbb{E} \left[\|\mathbf{Y} - \mathbf{X}\mathbf{H}\|^2 |\mathbf{Z}] \right]$$

 \Rightarrow

$$\mathbf{\hat{H}}^{LS} = \mathbb{E} \big[\mathbf{X}^{\mathcal{H}} \mathbf{X} \big| \mathbf{Z} \big]^{-1} \mathbb{E} \big[\mathbf{X}^{\mathcal{H}} \big| \mathbf{Z} \big] \mathbf{Y}$$

• Channel estimate for the *k*thsubcarrier :

$$\tilde{H_2}^{\text{LS}}[i,k] = \frac{\hat{X}[i,k]}{\mathbb{E}[|X[i,k]|^2 | Z[i,k]]} Y[i,k]$$

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

One-Dimensional (1-D) Moving average

- Average the instantaneous channel estimates within a "window"
- Obtain a more accurate estimate for the central frequency of this window
- Slide the window to the adjacent subcarrier

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

1-D Wiener filtering

- Select a bunch of subcarriers as "virtual pilots"
- Average instantaneous channel estimates over an averaging window
- Reliable estimate for virtual pilot position
- Repeat averaging over all virtual pilot positions
- Interpolate the estimates in virtual pilot positions

Wiener filtering based interpolation :

$$\hat{H}_2[k] = \sum_{k_p \in \Xi} \omega_f[k, k_p] \bar{H}_2[k_p]$$

Weighting coefficients :

$$\boldsymbol{\omega}_f = \arg\min_{\boldsymbol{\omega}_f} \mathbb{E}\{\|\mathbf{H} - \boldsymbol{\omega}_f^{\mathcal{H}} \bar{\mathbf{H}}_2\|^2\}$$

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

Two-Dimensional (2-D) refinements

2-D Moving average

 Expand the averaging region across several OFDM symbols

2-D Wiener filtering

- 2-D virtual pilot grid
- Expanded the averaging region
- Wiener filtering in frequency
- Wiener filtering in time

・ロト・(型ト・(ヨト・(ヨト・))の(?)

43/62

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

MMSE combination

Linear combination of PN-based & data-aided channel estimates :

$$\hat{H} = \beta \hat{H}_1 + (1 - \beta) \hat{H}_2$$

Minimum mean square error (MMSE) weighting factor :

$$\beta_{opt} = \arg\min_{\beta} \left\{ E\{|H - \hat{H}|^2\} \right\} = \arg\min_{\beta} \left\{ \beta^2 \varepsilon_{\hat{H}_1} + (1 - \beta)^2 \varepsilon_{\hat{H}_2} \right\}$$

$$\Rightarrow \ \beta_{opt} = \frac{\epsilon_{H_2}}{\epsilon_{\hat{H}_1} + \epsilon_{\hat{H}_2}}$$

- Combined channel estimate is used for :
 - initial channel estimate of the next iteration
 - channel estimate for equalization

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

MSE performance

Time domain initial estimation with 1-D refinement methods

- Converge after 3 iterations
- Wiener filtering is more effective
- Improvement to the initial channel estimate :

1-D Moving average : 3.0 dB 1-D Wiener filtering : 4.0 dB

 $@10^{-2}$

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

MSE performance

Time domain initial estimation with 1-D refinement methods

- Converge after 3 iterations
- Wiener filtering is more effective
- Improvement to the initial channel estimate :

1-D Moving average : 3.0 dB 1-D Wiener filtering : 4.0 dB

Improvement in severe SFN channel :

1-D Moving average : 4.9 dB 1-D Wiener filtering : 5.7 dB $\Im 5 \times 10^{-2}$

Data-aided method significantly improves the PN-based estimate

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

BER performance

Time domain initial estimation with 1-D refinement methods

QPSK, TU-6 channel with a velocity of 30 km/h L = 43, $M = L_f = 9$

 Gaps to the perfect channel estimation :

> 1-D Moving average : 0.4 dB 1-D Wiener filtering : 0.2 dB

 Improvements over PN-based channel estimation :

> 1-D Moving average : 0.2 dB 1-D Wiener filtering : 0.4 dB

Better than methods in literatures

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

BER performance

Time domain initial estimation with 1-D refinement methods

 Gaps to the perfect channel estimation :

> 1-D Moving average : 0.8 dB 1-D Wiener filtering : 0.8 dB

 Improvements over PN-based channel estimation :

> 1-D Moving average : 1.0 dB 1-D Wiener filtering : 1.1 dB

Better than methods in literatures

Data-aided methods acquire gains over PN-based method

> 4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q (や 46/62

MSE performance

I-D vs 2-D refinement methods

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

► Gains @MSE = 10⁻³ in TU-6 :

16QAM : 2.4 dB 64QAM : 4.2 dB

MSE performance

I-D vs 2-D refinement methods

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

► Gains @MSE = 10⁻³ in TU-6 :

16QAM : <mark>2.4 dB</mark> 64QAM : <mark>4.2 dB</mark>

- Improvement @SNR = 20 dB in SFN :
 - $\begin{cases} 16QAM : 1.1 \times 10^{-2} \Rightarrow 4.9 \times 10^{-3} \\ 64QAM : 2.0 \times 10^{-2} \Rightarrow 9.0 \times 10^{-3} \end{cases}$

2-D refinement methods are more effective than 1-D methods for higher order constellations

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

BER performance

Time domain initial estimation with 2-D refinement methods

64QAM, TU-6 channel with a velocity of 30 km/h $M_f = L_f = 9, M_t = L_t = 2$ Gaps to the perfect channel estimation : 2-D Moving average : 0.2 dB

2-D Wiener filtering : 0.2 dB

Improvements over PN-based channel estimation :

> 2-D Moving average : 0.3 dB 2-D Wiener filtering : 0.3 dB

> > 4 ロ ト 4 昂 ト 4 臣 ト 4 臣 ト 臣 の Q (や 48/62)

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

BER performance

Time domain initial estimation with 2-D refinement methods

64QAM, SFN channel with a velocity of 30 km/h $M_f = L_f = 3, M_t = L_t = 2$

- Gaps to the perfect channel estimation :
 2-D Moving average : 1.1 dB
 2-D Wiener filtering : 0.6 dB
- Improvements over PN-based channel estimation :

2-D Moving average : 1.8 dB 2-D Wiener filtering : 2.3 dB

2-D data-aided channel estimation is effective for higher order constellations

Summary

Data-aided channel estimation Data-aided channel estimate refinement MMSE combination Simulation results

- Proposition of an iterative data-aided channel estimation with low complexity & time delay
 - Exclusion of deinterleaving, interleaving & decoding from feedback loop
 - Rebuilding soft data symbols from demapper
 - Refining the channel estimate using channel correlation property
- 1-D & 2-D approaches for channel estimation refinement
 - Moving average
 - Wiener filtering
- Improved channel estimation performance
 - Better performance than PN-based method and reference methods
 - Robust in severe channel conditions

Conclusions Prospects Scientific Productions

Conclusions and Prospects

Conclusions Prospects Scientific Productions

Main contributions

Analysis and Optimization of the Asian DTTB Systems

Analysis and Comparison of DVB-T and DTMB

- DTMB has more efficient data structure
 - Higher spectrum utilization
 - Higher power efficiency
- The overall performance of the two systems is very close in typical channel conditions
 - DVB-T performs better in perfect channel estimation cases
 - Channel estimation mechanism of DTMB is more reliable than that of DVB-T
 - DTMB is more efficient with shorter GI

Conclusions Prospects Scientific Productions

Main contributions

Analysis and Optimization of the Asian DTTB Systems

PN sequence based channel estimation

- Time domain correlation-based estimator performs better but suffers an estimation error floor
- Improved time domain estimators with reduced estimation error floor
 - Method 1 : left multiplying by Q⁻¹
 - Method 1 with truncation : left multiplying by Q⁻¹
 - Method 2 : subtracting the interference
- Improved estimator in insufficient CP case
 - Cyclicity compensation
 - IBI removal

Conclusions Prospects Scientific Productions

Main contributions

Analysis and Optimization of the Asian DTTB Systems

A low-complexity data-aided channel estimation

- Proposal of an iterative data-aided channel estimation with low complexity & time delay
 - Exclusion of deinterleaving, interleaving & decoding from feedback loop
 - Rebuilding soft data symbols from demapper
 - Refining the channel estimate using channel correlation property
 - 1-D or 2-D
 - Moving average or Wiener filtering
- Improved channel estimation performance
 - Better performance than PN-based method and reference methods
 - Robust in severe channel conditions
Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion Conclusions Prospects Scientific Productions

Prospects

TDS-OFDM waveform

- Study of TDS-OFDM waveform in Multiple-Input Multiple-Output (MIMO) case
 - Optimal TDS-OFDM waveform design for MIMO transmission
 - Effective channel estimation algorithms for MIMO transmission
- Global comparisons between pilot-assisted CP-OFDM based systems and TDS-OFDM based ones
 - Transmission overhead
 - Power allocation
 - Accuracy of channel estimation and synchronization

DTMB system

- Enhanced reception algorithms in mobile reception scenarios
 - Mobile reception in urban areas
 - Reception in extremely high speed scenarios

Background Analysis and Comparison of DVB-T and DTMB Systems PN Sequence based Channel Estimation for TDS-OFDM Data-aided Channel Estimation for TDS-OFDM Conclusion

Conclusions Prospects Scientific Productions

Thank you !