
HAL Id: tel-00662500
https://theses.hal.science/tel-00662500

Submitted on 24 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the lambda calculus with constructors
Barbara Petit

To cite this version:
Barbara Petit. On the lambda calculus with constructors. Other [cs.OH]. Ecole normale supérieure
de lyon - ENS LYON, 2011. English. �NNT : 2011ENSL0628�. �tel-00662500�

https://theses.hal.science/tel-00662500
https://hal.archives-ouvertes.fr

N◦ d’ordre: 628

N◦ attribué par la bibliothèque: ENSL628

THÈSE

en vue d’obtenir le grade de

Docteur de l’Université de Lyon — École Normale Supérieure de Lyon

spécialité : Informatique

Laboratoire de l’Informatique du Parallélisme

École doctorale de mathématiques et informatique fondamentale

présentée et soutenue publiquement le 13/07/11

par Mademoiselle Barbara PETIT

Titre :

Autour du lambda calcul avec constructeurs.

Directeur de thèse : Monsieur Alexandre MIQUEL

Après avis de : Monsieur Antonio BUCCIARELLI

Monsieur Luke ONG

Devant la commission d’examen formée de :

Monsieur Antonio BUCCIARELLI, Membre/Rapporteur

Monsieur Horatiu CIRSTEA, Membre

Monsieur Guillaume HANROT, Membre

Monsieur Hugo HERBELIN, Membre

Monsieur Alexandre MIQUEL, Membre

Monsieur Luke ONG, Membre/Rapporteur

A mes Parents,

parce que c’est les plus forts du monde...

Merci qui?

Alexandre, tout d’abord,
pour son implication dans l’encadrement de cette thèse, pour son recul scien-
tifique sur le sujet et ses qualités pédagogiques.

Plume, le LIP, et puis aussi PPS,
qui m’ont offert un cadre de travail idéal: des chercheurs attentifs au tra-
vail des doctorants, une activité scientifique dynamique, le tout dans une am-
biance conviviale, favorisée par l’efficacité (et la patience!) des secrétaires et
des admin-sys.

Les Lamas, la Choco’team, le LIG,
tous ceux avec qui j’ai eu l’occasion de travailler, et notamment:

Alejandro, pour m’avoir intéressée aux calculs quantiques.

Paolo, pour l’expertise Tikz et les dessins de catégories, entre autre.

Colin, pour les tordages de cerveau devant le tableau barbouillé, qui pré-
cèdent l’arrivée de la lumière.

Olivier, pour les cours de logique linéaire et sa disponibilité pour des dis-
cutions au tableau avec les doctorants.

Les proggirls, Christine et Séverine, pour les séances devant ordi et surtout
pour les autres.

Elsa,
pour l’accueil enthousiaste lors des mes “mission sans frais d’hébergement” à
Paris. Faten et Mehdi pour les chouettes soirées à ces occasions.

Nache et Jano,
pour les mates et tout le reste, lors de mes missions à Grenoble (j’espère qu’il
y en aura d’autres).

Cliss, et la bibliothèque de Gennevilliers, pour leur bonne ambiance de
rédaction de thèse.

Enfin et surtout, puisque la thèse c’est toujours avec le moral en orange et
violet:

Tous ceux que j’aime, et qui font que la vie elle chante, à pleins poumons.
Aunque estén lejos, me pone pila en la vida conocerlos!

iii

Contents

Merci qui? iii

1 Introduction 1

2 Typed lambda-calculus with constructors 11

2.1 The lambda calculus with constructors 11

2.1.1 Informal presentation . 11

2.1.2 Syntax . 12

2.1.3 Operational semantics . 14

2.1.4 Values and defined terms 17

2.1.5 Properties of the untyped calculus 17

2.2 Type system . 19

2.2.1 Main ideas . 20

2.2.2 Type syntax . 21

2.2.3 Typing and sub-typing rules 22

2.3 Some non-properties of the typed λC -calculus 28

2.3.1 Discussion on Subject reduction 28

2.3.2 About strong normalisation and match failure 29

3 A Reducibility Model 33

3.1 Reducibility candidates . 33

3.1.1 Case normal form . 35

3.1.2 Closure property . 37

3.1.3 Reducibility candidates and values 38

3.1.4 Candidates operators . 40

3.2 Denotational model . 43

3.2.1 Types interpretation . 43

3.2.2 Soundness . 46

3.2.3 Perfect normalisation without CaseCase 48

4 Categorical model 51

4.1 A quick introduction to categories 51

4.1.1 Definitions and examples 52

4.1.2 Cartesian closed category 53

v

Contents

4.2 Categorical model of λC . 55
4.2.1 Lambda calculus and CCC 55
4.2.2 λC -models . 56
4.2.3 Soundness . 61

4.3 Completeness . 63
4.3.1 Partial equivalence relations 64
4.3.2 Category PerλC

. 65
4.3.3 Syntactic model in PerλC

. 68
4.3.4 Completeness result. 70

5 CPS and Classical model 75
5.1 λC -calculus and stack machines . 75

5.1.1 Abstract machines and commutation rules 75
5.1.2 Stack abstract machine for λC 78
5.1.3 Weak head reduction . 80

5.2 CPS translation . 81
5.2.1 The target calculus . 82
5.2.2 Continuation Passing Style 84
5.2.3 Correct Simulation . 86

5.3 Classical model . 90
5.3.1 Continuation λC -model . 91
5.3.2 From continuation λC -models to λC -models 92
5.3.3 A non syntactic model of the λC -calculus 97

A Some detailed proofs 99
A.1 Categorical models . 99

A.1.1 Proof of soundness of λC -models 99
A.1.2 Proof of correctness of PER-model 102
A.1.3 Proof of completeness of PER-model 104

A.2 Abstract machine and CPS translation 106
A.2.1 Abstract machine correction 106
A.2.2 From continuation model to λC -model 107

B Lambda calculus with pairs 111
B.1 Lambda calculus with pairs . 111
B.2 Lambda calculus generated by a CCC. 114

B.2.1 Definition . 115
B.2.2 From terms to morphisms 116

vi

Chapter 1

Introduction

The lambda calculus was introduced in the early 30s, by Alonzo Church and his
student Stephen Kleene. At this time several mathematicians were interested in a
question raised by Hilbert in 1928: the Entscheidungsproblem (decision problem,
in German). At a time when computers were only prototypes of analog computers
or punch cards engines, Hilbert was putting out the challenge of finding a way to
solve automatically any problem (expressed in a formal language). He had the
dream of a universal algorithm that would respond “true”or “false” (in a reliable
way, but not necessarily justified by a proof) to any mathematical question, even
those that mathematicians were not able to solve.

Many logicians were thus trying to establish a formal framework to define
automatic computing. Three different formalisms emerged almost simultane-
ously: the mu-recursive functions (developed by Herbrand and Gödel [Gö34] and
then reformulated by Kleene [Kle36a]), Church’s lambda calculus [Chu32] and
Turing machines [Tur36]. These three notions of computability were found to
be equivalent [Kle36b, Tur37]. Church’s thesis was then fully meaningful: the
problems that have automatically computable solutions exactly correspond to
the mathematical functions expressible in one of these three formal systems (or
an equivalent system, that would be called Turing-complete nowadays). The
Entscheidungsproblem was thereby negatively answered [God33, Chu36, Tur36]:
no algorithm can solve any arithmetic question (and there is a fortiori no uni-
versal algorithm).

Lambda calculus. Among these Turing-complete systems (whose computa-
tional power is still not exceeded by modern computers), the lambda calculus is
remarkable for its simplicity. It relies on a central idea:

Everything is a function.

As simple to express as it may be, this idea is far from intuitive. Take for example
an arithmetic expression 2×(3+4x). One can abstract this expression w.r.t. the
variable x, and obtain the function that maps the formal argument x to the value
of 2× (3+ 4x). In lambda calculus, this function is denoted by λx.2× (3+ 4x).

1

Chapter 1. Introduction

To compute its value at 7 for example, one applies the real argument 7 to the
function. The first step of the computation consists in replacing the formal
argument x with the real argument 7:

(λx.2× (3 + 4x)) (7) ; 2× (3 + 4× 7) .

This simple step is called the “beta”-reduction. Then, the “real” computation is
performed:

2× (3 + 4× 7) ; 62 .

With the lambda calculus, Church’s tour de force consists in decomposing
each step of pure computation into β-reductions, through some encodings. There
are no more integers nor arithmetic operations, but simply variables, abstractions
of an expression relatively to a variable, and applications of a function to an argu-
ment. Computing then amounts to replacing some variables by some expressions
(by terms).

Terms (written t, u etc.) can be constructed either with variables (denoted
by x, y, z), or by abstracting a term t w.r.t. a variable x, or by applying a term t
to another term u. In the so-called BNF notation, this is expressed as

t, u ::= x | λx.t | tu .

Just like an expression 2×(3+4x) may have an unknown x, a term may have a
free variable. On the contrary, x is not an unknown in the function λx.2×(3+4x),
but a formal argument. We say that x is bounded in λx.2× (3+4x) (that is why
the λ is sometimes called a variable binder). The substitution of the variable x
by the argument a in the expression e, written e [x := a], obviously replaces
only the free occurrences of x in e by a. When a function λx.t is applied to an
argument u, this substitution is performed by the β-reduction:

(λx.t) u → t[x := u] (β)

Since the function mapping x to 2×(3+4x) is the same than the one mapping y
to 2× (3 + 4y), we can freely rename the bounded variables of a term:

λx.t ≃α λy.(t[x := y]) .

In the lambda calculus this is called α-conversion. Terms are generally considered
up to α-equivalence.

The lambda calculus, like any other formal language, raises several natural
questions:

Confluence. A term is said to be confluent if any computation starting from
it leads to the same result. In the expression 2 × (3 + 4 × 7) for example,
we can simplify the multiplication 4 × 7 and get 2 × (3 + 28), or we can
distribute the multiplication by 2 over the addition and get 2×3+2×4×7.

2

The arithmetic is confluent: we know that if we continue the computation
of each expression, we will obtain the same result (62). Thus the choice
of the computational strategy does not matter. In the lambda calculus, a
term can also have several potential reductions, as this example shows:

λy.(λx.t)
(
(λz.u)y

)

λy.t[x := (λz.u)y] λy.(λx.t)(u[z := y])

It appears that the lambda calculus is confluent too [Bar84]: whatever
reduction we choose for a given term, we will always be able to continue
the computation until a common reduct:

t

t1 t2

u

∗∗

∗ ∗

Termination. When performing a computation on an expression, it might be
interesting to know whether it will terminate (and return a value) or not.
More precisely, given a term t, we may wonder if:

• there is a reduction of t that leads to a value (or to a non-reducible
term). In this case we say that t is normalising. In arithmetic, for
example, the expression 2× (3 + 4) is normalising:

2× (3 + 4) ; 2× 7 ; 14

• every reduction of t necessarily stops. We then say that t is strongly
normalising. If we consider the rules of distributivity of the multi-
plication over the addition and the factorisation, then the expression
2× (3 + 4) is not strongly normalising:

2× (3+4) ; 2× 3 + 2× 4 ; 2× (3+4) ; 2× 3 + 2× 4 ; · · ·

The confluence and the strong normalisation of a system are interesting
because the reduction strategy is irrelevant in such systems. No matter
which way we apply the reduction rules, the computation always yields a
value, which is always the same one.

In the lambda calculus there are some non normalising terms (that a fortiori
are not strongly normalising). The most notorious one is

Ω = (λx.xx) (λx.xx) .

It necessarily reduces to itself. However, it is possible to restrict the set
of terms that we consider with a typing system, that selects only strongly
normalising terms.

3

Chapter 1. Introduction

Types. In some programming languages, the programs are annotated (by a
type), so as to guide the programmer. For instance, if a program computes
the successor of an integer given as a parameter, the Boolean “true” has to be
prohibited as input. Similarly the logical negation function (which returns “false”
on the input “true”, and vice versa), cannot be applied to the integer 3. To deal
with this, some basic types are defined (such as nat for the integers, or bool for
the Booleans). It is then set out, in the annotation of the successor function,
that is only accepts arguments of type nat.

A function expecting to receive an input of type A and to return a result of
type B will be assigned the type A → B. In simply typed lambda calculus, a
type is defined by the following syntax:

A,B ::= α | A→ B

(where α is a basic type). Thus if nat is a type for the integers, the successor
function has type nat → nat :

Succ : nat → nat .

In order to apply an argument of type A to a function, it must be ensured
that it is annotated with a type A → B. This produces a result of type B. In
the simply typed lambda calculus, we thus have the following typing rule:

t : A→ B u : A

tu : B

(above the horizontal bar are the assumptions, or premises of the typing rule,
and below it is the conclusion).

Notice that it is not always possible to determine the type of a term in
absolute. Assigning a type to Succ (x) for instance, requires x to be of type nat.
Yet a free variable has no type a priori. Therefore some assumptions are necessary
concerning the type of the free variables of a term. We use a typing context
(usually written as Γ) that to some variables xi assigns a corresponding type Ai:

Γ = x1 : A1, . . . , xn : An .

If a term t has some free variables x1, . . . , xn, then we write

Γ ⊢ t : B

for “u has type B under the assumption Γ”(i.e. under the assumption that each
variable xi is of type Ai).

If a term t has type B under the assumption that x is of type A, then it can
be abstracted w.r.t. the variable x. This provides a function taking arguments
of type A and returning a result of type B:

x : A ⊢ t : B

λx.t : A→ B

4

Also the simply typed lambda calculus consists in typing the lambda terms
using the following typing rules:

xi : Ai ∈ Γ

Γ ⊢ xi : Ai
;

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ tu : B
;

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A→ B

Not all lambda terms are typable. In particular, there is no type for the diverg-
ing term Ω = (λx.xx) (λx.xx). Actually this type system only types strongly
normalising terms.

Encoding. The expressiveness of a Turing-complete language is achieved in
the lambda calculus through some encodings. An integer n, for instance, is
represented by a term taking as input a function f and an argument x, and
applying n times the function f at x:

0 = λf.λx.x
1 = λf.λx.fx
2 = λf.λx.f(fx)
3 = λf.λx.f(f(fx))

...

The successor function is then written like a function mapping an integer n,
to the integer n + 1, that is: the function that takes as input a function f and
an argument x, and that applies f to x one more time than n:

Succ = λn.λf ′.λx′.f ′(n f ′ x′) .

We can check that β-reduction actually computes the successor of 1:

Succ 1 =
(
λn.λf ′.λx′.f ′(n f ′ x′)

) (
λf.λx.fx

)

→ λf ′.λx′.f ′(n f ′ x′)[n := λf.λx.fx]
= λf ′.λx′.f ′

(
(λf.λx.fx) f ′ x′

)

→ λf ′.λx′.f ′
(
(fx) [f := f ′][x := x′]

)

= λf ′.λx′.f ′
(
f ′x′

)

Up to α-equivalence, Succ 1 becomes λf.λx.f(fx), i.e. 2.
In the same way, Booleans, pairs etc. can be encoded in the pure lambda

calculus. However, such encodings soon become tiresome, especially when com-
puting more elaborate functions than the successor of an integer. That is why
the so-called functional programming languages (i.e. with no side effect) that
are based on the lambda calculus (such as LISP [BB64] or ML [MTH90]) are
provided with some primitive constructions for the usual data structures, like
Booleans and integers. Hence it makes sense to add some constructors 0 and S

to the syntax of the lambda calculus, and then to represent unary integers by

n := 0 | S(n) .

5

Chapter 1. Introduction

Then comes the question of the interaction of such data structures with the pro-
gram environment (the context). Just like a function can generate a computation
when it is applied to an argument, a data structure can be analysed by a pat-
tern matching construct. Depending on the programming language, the pattern
matching mechanism can be more or less complex. The case instruction in Pas-
cal for instance, is rather basic. It can only match constants:

case i of
0 : First result ;

1 : Second result ;

· · ·
end;

On the other hand, the pattern matching à la ML can capture the arguments
of a constructor, and us them in the output. For example the predecessor function
is defined that way:

fun pred (n) =

case n of
ZERO => ZERO

| SUCC p => p

Pattern matching. Whereas the first functional programming languages have
emerged from the late 50’s [McC60], pattern matching has been hardly studied
in the theoretical framework of lambda calculus before the 90’s [vO90]. Several
approaches were then developed, among which:

• The rewriting calculus, or ρ-calculus [CK98, Cir01] was introduced in the
late 90s. In addition to lambda terms it has data structures, that are built
with constants. Like any term, these constants are patterns, and so they
can be analysed by a pattern matching construct. Their free variables can
then be instantiated, and so any rewriting rule can be simulated. The
calculus is confluent if the set of terms is restricted to the ones that en-
joy the rigid pattern condition. (a notion that was introduced earlier by
Van Oostrom [vO90]).

There is a typed version of the ρ-calculus [CK00], in which pattern matching
is indexed by the typing context. The type system ensures the strong
normalisation property and the subject reduction.

• The Pattern calculus appeared in the early 00’s [Jay04], together with a
polymorphic type system. A matchable pattern is either a variable (which
can be instantiated by any term —in that case pattern matching is in fact
the usual β-reduction) or a constant, or an application. This calculus is con-
fluent (subject to first reduce a term in head normal form before matching
it) and enjoys subject reduction. However it does not avoid match failure,
and the reduction rules are restricted to typed terms. It should be noted

6

that type inference is decidable for this system, and its implementation
gave birth to the programming language Bondi [Jay09].

There is also an untyped version of this calculus [JK06]. The reduction
is there parametrised by a set of free variables (that can be seen as con-
structors), and prevents match failure during the evaluation of closed terms
(they are intuitively caught by the identity function). What is more, this
calculus is confluent too.

In the pattern calculus, as well as in ρ-calculus, pattern matching uses
a “generalised” substitution operation. Thus a unification algorithm is
necessary for matching a term with a pattern during the evaluation.

• The (untyped) lambda calculus with constructors appeared in the mid-
00’s [AMR06]. Pattern matching is only performed on constants, and the
expressiveness of ML pattern matching is reached thanks to some commu-
tation rules. Unlike the two previous calculi, pattern matching does not
use any meta-operation. In addition it can deal with variadic constructors
(avoiding the problem of partial application for data structures). The calcu-
lus was proved confluent, and moreover it satisfies the separation property
(in the spirit of Böhm’s theorem [BDCPR79]).

A polymorphic type system (that we present in Chap. 2.2) was proposed
for this calculus [Pet11]. It ensures strong normalisation and the absence
of match failure during execution for a restriction of the calculus (the re-
striction consists in removing an “unessential” reduction rule).

None of these calculi can match non-linear patterns (such as patterns of the
form cxx, checking that the two arguments of c are identical), or to define the
“parallel”-or (also called por [Plo77], which returns true if at least one of its
arguments is true, even if the evaluation of the other one does not terminate).

Semantics. As far as we know, these calculus with pattern matching features
had never been studied from the point of view of the denotational semantics.
Defining a denotational model for a language consists in embedding its syntax
into some mathematical structure, (via an interpretation function). The model
is sound when two terms that are equivalent w.r.t. the evaluation rules are in-
terpreted by the same denotation in the mathematical structure. All programs
that return the same result for a given input are thus identified. Typically, two
programs implementing different list-sorting algorithms will not be distinguished
in the semantics (at least in the typed case). This way, it is possible to ignore
syntax considerations and to focus on the extensional properties of the programs
of a certain language (what is interesting is then what they compute, not how).

With denotational models, one can for example compare the expressive power
of different languages, or determine whether one rule of a calculus is redundant (it
does not calculate new values), or whether it is on the contrary inconsistent (by
adding it to the calculus, all terms can reduce to the same result). For instance

7

Chapter 1. Introduction

Scott’s domains [Sco70] (the first models for the untyped lambda calculus), have
entailed the consistency of the surjective pairing1 in the lambda calculus with
pairs, though this rule is not derivable in the pure lambda calculus with pairs
encoding.

Moreover, a denotational model may contain more objects than the denota-
tions that are strictly necessary to interpret the terms of the language. It might
be of interest to adopt the opposite approach: to start from the model and then
to enrich the syntax. That is how the coherent spaces, a mathematical structure
developed for a semantic study of the System F [GLT89, Chap. 14], led to the
development of Linear Logic [Gir87].

Denotational models for the simply typed lambda calculus can be relatively
simply constructed. In general a set model suffices: most of basic types α nat-
urally correspond to a set (that is denoted by |α|), with the terms of this type
representing an element of this set. The type nat is for instance interpreted by
the set of all integers, and each term of type nat actually corresponds to some
integer. The type A → B is the interpreted by |A → B|, the set of functions
from |A| to |B|. So the denotation for a lambda abstraction λx.t is a function
mapping an element x of |A| to the interpretation of t, and the denotation for
an application tu relies on a fundamental property of the simply typed lambda
calculus: if tu is of type A, then t necessarily has a type of the form B → A,
with u of type B:

t : B → A u : B

tu : A
Using an inductive reasoning, the denotation of t is an element of |B → A|. Hence
it is a function f from |B| to |A|. Similarly, u is interpreted as an element e of |B|.
So we can use the term f(e) as a denotation for tu.

On the other hand, things are not as simple in the pure lambda calculus: every
term can be an argument for any other term. This means that the mathematical
objectD in which terms are interpreted has to be the same (or at least isomorphic
to) the functions space from D to D (that is written DD). Hence the need of a
mathematical object satisfying the recursive equation

D ∼= DD .

The only set that is a solution of this equation is unit (the set with only one
element). Such a model would bring absolutely no information on the calculus, as
all terms would receive the same denotation.] That is why some more constrained
structures are required. The first construction solving this equation was proposed
by Scott [Sco70].

Outline of the Thesis

In this manuscript we first present the lambda calculus with constructors as it
was introduced in [AMR06]. It is based on a language that includes (constant)

1Given a construction (t1, t2) for the pair, and two primitive projections π1, π2 with rewriting
rules πi(t1, t2) → ti, the surjective pairing rule is (π1(t), π2(t)) → t.

8

constructors, a pattern matching construction, and a Daimon in addition to the
usual constructions of the lambda calculus. The Daimon is a constant with some
specific reduction rules, that behaves like the exit instruction of some program-
ming languages. The calculus has nine reduction rules, three of which are compu-
tationally essential (including the usual rule of β-reduction). An additional one is
necessary for the confluence and two other ones (that may be called administra-
tive rules) are only needed for the separation property (one these administrative
rules is the usual η-reduction). The last three rules describe the interaction of
the Daimon with the evaluation context. The Daimon and its reduction rules
can be removed from the calculus, but they are sometimes useful to express or
prove some properties of the lambda calculus with constructors.

We then describe a polymorphic type system for this calculus, with a sub-
typing order. This type system takes up a challenge set in [AMR06], since one
of the essential rules of the calculus was presented there as ill-typed. It is a very
expressive type system, that includes union and intersection operators, as well as
second order existential and universal quantification. However it does not ensure
strong normalisation of typable terms, and it does not prevent match failure at
the execution. This is due to one of the administrative rules. Moreover subject
reduction is not proved (union types raise some problems).

In Chap. 3 we overcome this weakness thanks to a realisability model for the
typed calculus without the problematic administrative rule. This model ensures
strong normalisation and absence of match failure in the restricted calculus. Fur-
thermore it guarantees that typable terms actually reduce on values, even without
the rule that we left out.

In Chap. 4, we then focus on denotational models for the untyped lambda
calculus with constructors. We first define a class of Cartesian closed categories,
that we call the λC -models, and we detail a sound interpretation of the lambda
calculus with constructors in such categories. We then show a completeness
result for these models (in the sense that the definition does not require the
identification of two terms which are not equivalent in the calculus—unless they
raise a match failure). Completeness is established using a syntactic model of
the calculus (the PER model, of Partial Equivalence Relations).

In the last chapter, we translate the lambda calculus with constructors into
the lambda calculus with pairs, whose denotational semantics in Cartesian closed
categories is well known. This translation is based on Continuation Passing Style
techniques (or CPS [Plo75]). By transposing the structure of this translation at
the level of models, we get a transformation of every continuation model [RS98]
of the pure lambda calculus into a model of lambda calculus with constructors
(i.e. a λC -model, as defined in Chap. 4). This enables the construction of non-
syntactic models of the lambda calculus with constructors.

9

Chapter 1. Introduction

10

Chapter 2

Typed lambda-calculus with

constructors

2.1 The lambda calculus with constructors

2.1.1 Informal presentation

The lambda calculus with constructors [AMR09] extends the pure lambda cal-
culus with pattern matching features: a countable set of constants c, c’ etc.
called constructors is added, with a simple mechanism of case analysis on these
constants (similar to the case instruction of Pascal):

{|c1 7→ t1; . . . ; ck 7→ tk|} ·ci → ti (CaseCons)

This enables a basic implementation of enumerated types. For instance, Booleans
are represented using two constructors t and f, and by setting:

if b then t1 else t2 = {|t 7→ t1; f 7→ t2|} · b .

The case analysis allows actually to reduce

(if t then t1 else t2) → t1, and (if f then t1 else t2) → t2.

Although only constant constructors can be analysed, a matching on variant
constructors can be performed via a commutation rule between case construction
and application:

{|θ|} ·(tu) → ({|θ|} ·t) u (CaseApp)

To understand how it works, consider the predecessor function (over unary inte-
gers) that maps 0 to 0, and S n to n. In the lambda calculus with constructors
this function is implemented as

pred = λn.{|0 7→ 0; S 7→ λx.x|} · n .

11

Chapter 2. Typed lambda-calculus with constructors

Applying this function to 0 or to Sn produces effectively the expected result:

pred 0 → {|0 7→ 0; S 7→ λx.x|} · 0 → 0

pred (S n) → {|0 7→ 0; S 7→ λx.x|} · (S n)
→ ({|0 7→ 0; S 7→ λx.x|} · S) n → (λx.x) n → n

The head occurrence of constructor S is captured by the case construct via the
reduction rule CaseApp, and its argument is bounded with a lambda abstraction
in the branch of the case analyser. In fact, the whole expressiveness of ML-style
pattern matching is reached with this mechanism:

In ML : In the λ-calculus with constructors :

match x with

| c1 x1 · · · xn -> r1
...
| ck y1 · · · ym -> rk

∣∣∣∣∣∣∣

c1 7→ λx1 . . . xn.r1
...

ck 7→ λy1 . . . ym.rk

∣∣∣∣∣∣∣

· x

Moreover, such a decomposition of pattern matching into a case analysis
on constants and a commutation rule allows the use of variadic constructors
(i.e. with no fixed arity).

Example 2.1.1 . We can chose a constructor c⋄ for initialising arrays (with
any number of elements). Then the function on arrays permuting the first two
elements is written

perm2 = λz.{|c⋄ 7→ λxy.c⋄yx|} · z

and if a = c⋄ t1 . . . tk represents an array with k elements (k ≥ 2), then

perm2(a)→∗
c⋄ t2t1t3 . . . tk :

perm2 (a) → {|c⋄ 7→ λxy.c⋄yx|} · (c⋄ t1 . . . tk) (AppLam)
→k ({|c⋄ 7→ λxy.c⋄yx|} · c⋄) t1 . . . tk (CaseApp)
→ (λxy.c⋄yx) t1t2 . . . tk (CaseCons)
→2 c⋄t2t1t3 . . . tk (AppLam)

Finally there is also a special constant: the Daimon z. It is inherited from
ludics [Gir01], and means immediate termination.

2.1.2 Syntax

Terms of the lambda calculus with constructors, or λC -calculus, are defined from
two disjoints sets of symbols: variables (denoted by x, y, z etc.) and constructors
(written with typewriter letters c, d, c1, c2 etc.). The set C of constructors is
countable and possibly infinite.

12

2.1. The lambda calculus with constructors

The syntax of the λC -calculus consists of two syntactic classes, defined by
mutual induction: terms (denoted by s, t.u, v etc.) and case-bindings (written
with Greek letters θ, φ, ψ etc.).

Definition 2.1.1 (Syntax of the λC -calculus)

s, t, u, v := x | tu | λx.t | c | {|θ|} · t | z

θ, φ := {c1 7→ u1; . . . ; cn 7→ un} (with n ≥ 0 and ci 6= cj for i 6= j)

A case-binding is just a finite (partial) function from constructors to terms
whose domain is written dom(θ). By analogy with sequential notation, we may
write θc for u when c 7→ u ∈ θ. In order to ease the reading, we may write
{|c1 7→ u1; . . . ; cn 7→ un|} · t instead of {|{c1 7→ u1; . . . ; cn 7→ un}|} · t.

Terms include the constructs of the lambda calculus, that have the usual
interpretation: application and λ-abstraction. A term can also be a constructor.
As well as any term, constructors can be applied to any number of arguments, and
thereby have no fixed arity. We call a data-structure a term on the form ct1 . . . tn.
The case construct {|θ|} · t represents the matching of t according to θ.

Writing conventions We extend the parenthesising conventions of [Bar84]:
application has priority over abstraction and case construct, and parentheses
associate on the left. Also the abstraction over several variables can be written
with only one lambda. For instance:

λx.c d x means λx.
(
(c d) x

)

λxy.{|θ|} · x z means λx.λy.({|θ|} · (x z))

Variables and substitution We write fv(t) (and fv(θ)) the set of free variables
of term t (resp. of case-binding θ). It is inductively defined in the standard way,
given that the λ-abstraction is the only variable binder.

fv(x) = {x} fv(t u) = fv(t) ∪ fv(u)
fv(c) = ∅ fv({|θ|} · t) = fv(θ) ∪ fv(t)
fv(z) = ∅

fv(λx.t) = fv(t) \ {x} fv(θ) =
⋃

c 7→u∈θ

fv(u)

As usual, the occurrences of a variable that appear non free in a term are said to
be bound. We call a closed term a term with no free variables. The set of closed
terms is written Λo.

We consider terms up to α-equivalence [Kri93, Chap. 1.2], i.e. we can freely
rename all the bound occurrences of a variable in a term. In particular, we con-
sider that terms do not have free and bound occurrences of the same variable.
Notice that constructors are not variables, and thereby not subject to α-conversion
nor substitution.

13

Chapter 2. Typed lambda-calculus with constructors

Substitution t[x := u] (or θ[x := u]) is defined as usual, by replacing all free
occurrences of the variable x by the term u in t (resp. in θ).

2.1.3 Operational semantics

Reduction rules of the lambda calculus with constructors are named according
to the constructs that are involved in the reduction. For instance, the usual
β-reduction, performing the substitution of the bound variable in the body of a
function by its argument, is now calledAppLam, since it describes the interaction
between an application and a λ-abstraction:

(λx.t) u _ t[x := u] (AppLam)

In the same way, the standard η-reduction rule is now called LamApp:

If x /∈ fv(t), λx.t x _ t (LamApp)

This rule is computationally useless in the sense that it is not necessary to com-
pute values, but it is necessary for the separation property (cf. Sec. 2.1.5).

In addition to these two rules of the usual lambda calculus, there are seven
rules, specific to the new constructions of the lambda calculus with constructors.
The whole system is given in Fig. 2.1.

Notations: The closure of the reduction relation _ by context is denoted
by →. When t _ t′ with a rule R, we say that t is a R-redex, and we say that t′

is a reduct of t (in one step) if t→ t′. We also may write t→R t′ to indicate that t
reduces to t′ with rule R, and t →n t′ (or t →∗ t′, or t →= t′) when t reduces
on t′ with n (resp. any number of, resp. zero or one) steps. A term is in normal
form (or normal, for short) if it has no reduct, and it is strongly normalising if
it necessarily reduces on a normal form (i.e. if it has no infinite reduction).

Case rules As we have seen in the presentation (Sec. 2.1.1), the key feature of
the λC -calculus is to decompose pattern matching into a case analysis on constant
constructors (rule CaseCons) and a commutation rule between case construct
and application (rule CaseApp). However this rule induces a critical pair:

{|θ|} · (λx.t) u

{|θ|} · (t[x := u])({|θ|} · λx.t) u

AppLamCaseApp

This critical pair is closed by a commutation rule between case construct and
λ-abstraction:

If x /∈ fv(θ), {|θ|} · λx.t _ λx.{|θ|} · t (CaseLam)

14

2.1. The lambda calculus with constructors

With this rule, it is possible to reduce (considering x /∈ fv(θ) up to α-conversion)

{|θ|} · (λx.t) u → (λx.{|θ|} · t) u → {|θ|} · t [x := u] = {|θ|} · (t[x := u])

There is also a rule of commutation between two case constructs:

{|θ|}·{|φ|}·t _ {|θ◦φ|}·t (CaseCons)

where the composition of two case-bindings θ ◦ φ means that the first one is
replicated in each branch of the second:

θ ◦ {c1 7→ u1; · · · cn 7→ un} = {c1 7→ {|θ|} · u1; · · · cn 7→ {|θ|} · un} .

Remark 2.1.2 (λC -calculus and commutative conversions) . Notice that neither
CaseApp nor CaseLam corresponds to the commuting conversions coming from
logic [GLT89, Sec. 10.4]. Indeed, a commuting conversion in our calculus would
amount to pushing the elimination context inside the case-binding. For instance,
the commutative conversion between case construct and application would be

({|c1 7→ u1; · · · ; cn 7→ un|} · t) s _ {|c1 7→ u1s ; · · · ; cn 7→ uns |} · t

Such a rule (let us call it AppCase) is not compatible with λC -calculus, because
it would lead to unifying any constructors t, f (and more generally any terms),
as follows.

({∣∣∣∣
c 7→ λz.t
d 7→ λz.f

∣∣∣∣
}
· λx.x

)
c d

({∣∣∣∣
c 7→ (λz.t)c
d 7→ (λz.f)c

∣∣∣∣
}
· λx.x

)
d

(
λx.

{∣∣∣∣
c 7→ λz.t
d 7→ λz.f

∣∣∣∣
}
· x

)
c d

({∣∣∣∣
c 7→ t

d 7→ f

∣∣∣∣
}
· λx.x

)
d

({∣∣∣∣
c 7→ λz.t
d 7→ λz.f

∣∣∣∣
}
· c
)
d

{∣∣∣∣
c 7→ t

d 7→ f

∣∣∣∣
}
· d

(λz.t) d

f

t

AppCase CaseLam

AppLam (×2) AppLam

CaseLam

AppLam
CaseCons

CaseCons

AppLam

15

Chapter 2. Typed lambda-calculus with constructors

From the point of view of typing, commutative conversions are more intuitive. In
rule AppCase,

(
({|c1 7→ u1; · · · ; cn 7→ un|}·t) s → {|c1 7→ u1s ; · · · ; cn 7→ uns |}·t

)

the term t has to be a matchable value in both sides, and the result of its matching
(one of the ui’s) is a function taking s as argument. Although in rule CaseApp,(
{|θ|} · ts → ({|θ|} · t) s

)
, the term t behaves as a function in the l.h.s. while it

is seen as a matchable value in the r.h.s. We will see how to treat this paradox
in Sec. 2.2.

On the other hand, rule CaseCase (where the external case-binding is du-
plicated in each branch of the head-position case-binding) is similar to the com-

mutative conversions of logic.

Daimon rules When it appears in head position of a term, the Daimon pro-
gressively destroys the whole term: a lambda abstraction is destroyed with rule
LamDai, an application with AppDai and a case construct with CaseDai. Such
a term always has z as normal form. Thereby we can see the Daimon as the
“exit” instruction in programming, that clears the evaluation context and ter-
minates the program.

Since the Daimon cannot appear during a reduction if it is not in the initial
term, it is possible to consider a sub-calculus of λC with no Daimon and no
Daimon rule. However it is useful to express the separation property (Sec. 2.1.5),
and we will also use it to prove a strong normalisation theorem (Sec. 3.2).

Beta-reduction
AppLam (AL) (λx.t)u _ t[x := x]u
AppDai (AD) zu _ z

Eta-reduction
LamApp (LA) λx.tx _ t (x /∈ fv(t))
LamDai (LD) λx.z _ z

Case propagation
CaseCons (CO) {|θ|} · c _ t ((c 7→ t) ∈ θ)
CaseDai (CD) {|θ|} ·z _ z

CaseApp (CA) {|θ|} · (tu) _ ({|θ|} · t)u
CaseLam (CL) {|θ|} · λx.t _ λx.{|θ|} · t (x /∈ fv(θ))

Case composition
CaseCase (CC) {|θ|} · {|φ|} · t _ {|θ ◦ φ|} · t

with θ ◦
{
c1 7→ t1; ...; cn 7→ tn

}
=

{
c1 7→ {|θ|} · t1; ...; cn 7→ {|θ|} · tn

}

Figure 2.1: Reduction rules for λC .

16

2.1. The lambda calculus with constructors

2.1.4 Values and defined terms

In pure the lambda calculus, a value is a function (i.e. a λ-abstraction). In
λC -calculus, it can also be a data-structure. Also the set V of values is given by:

V = {λx.t / t is a λC -term } ∪ {ct1 . . . tk / c ∈ C and t1, . . . tk are λC -terms }.

A match failure is a term of the form {|θ|} · c such that c /∈ dom(θ). We say
that a term is undefined when one of its sub-term is a match failure, and that
it is defined otherwise. A term whose all reducts (in any number of steps) are
defined is said to be hereditarily defined. This notion was introduced in [AMR09]
in order to express the separation property (cf. Sec. 2.1.5).

The set of irreducible defined terms is included in values (with the exception
of z).

Proposition 2.1.1. Every defined closed normal term is either z or a value.

Proof : Let t be a closed defined term in normal form. By structural induction
on t, we show that t is either z or λx.t0 or c t1 . . . tk for some constructor c, and some
terms ti. Since t is closed, it is not a variable. If it is a constructor, the Daimon or an
abstraction, the result holds. If it is an application, write h t1 . . . tk = t, where h is not an
application. Then h is necessarily closed, defined and normal. It is not an abstraction,
nor the Daimon (otherwise t would be reducible with AppLam or AppDai). Hence it is
a data-structure by induction hypothesis, and so is t.
Now assume t = {|θ|} · h. Then h is closed too, defined and normal. By induction
hypothesis it is a value or the Daimon. It cannot be the Daimon, nor an abstraction, nor
an application, otherwise t would be reducible with CaseDai, CaseLam or CaseApp.
So h is a constructor. If it is in the domain of θ, then t is reducible with CaseCons,
and if it is not in the domain, t is not defined. Finally t cannot be a case construct.

Notice that the proof does not use rule CaseCase (and rules LamApp,
LamDai neither), so the proposition holds for normal forms w.r.t. λ−

C
-calculus.

Finally, a term which is both strongly normalising and hereditarily defined is
said to be perfectly normalising. Perfect normalisation satisfies this usual lemma
of lambda-calculus:

Lemma 2.1.2. If t[x := u] is perfectly normalising, then so is t.

Proof : First if t → t′ then t[x := u] → t′[x := u] [AMR09, Lem. 9]. Thus, if
t[x := u] is strongly normalising, so is t. Then, if t[x := u] is defined, it has no sub-term
of the form {|θ|} · c with c /∈ dom(θ), and this property is preserved by replacing some
sub-terms u by x. So t is defined too. By induction on the reduction of t, we can easily
conclude that if t[x := u] is hereditarily defined, then so is t.

In the next part, we present a type system that will, to some extent, select
only perfectly normalising terms.

2.1.5 Properties of the untyped calculus

In this section, we briefly recall some important properties that have been estab-
lished in [AMR09].

17

Chapter 2. Typed lambda-calculus with constructors

Confluence

The confluence or non confluence of each sub-calculus of the lambda calculus has
been proved in [AMR09, Theo. 1]. et S be a subset of the nine reduction rules
given in Fig. 2.1. Then S is a confluent system if it satisfies the six following
conditions:

AppLam ∈ S ∧ LamDai ∈ S ⇒ AppDai ∈ S

LamApp ∈ S ∧ AppDai ∈ S ⇒ LamDai ∈ S

CaseApp ∈ S ∧ AppLam ∈ S ⇒ CaseLam ∈ S

CaseApp ∈ S ∧ AppDai ∈ S ⇒ CaseDai ∈ S

CaseLam ∈ S ∧ LamApp ∈ S ⇒ CaseApp ∈ S

CaseLam ∈ S ∧ LamDai ∈ S ⇒ CaseDai ∈ S

In particular the whole type system enjoys the Church-Rosser property. In this
document, we may need the following sub-systems of reductions, that all are
confluent:

• BC denotes the λC -calculus without rule AppLam.

• λ−
C
denotes the lambda calculus with constructors without case-composition.

• →B denotes a reduction step by a rule that is neitherCaseApp norCaseLam
nor CaseCase.

• ⇀ represents a reduction step with the rule CaseApp or CaseLam.

• →cc is the reduction system with only the rule CaseCase.

• The λC -calculus without Daimon and without rules LamDai, AppDai and
CaseDai is confluent too.

Separation

Arbiser, Miquel and Ŕıos have also proved in [AMR09, Theo. 2] that two dis-
tinct defined normal forms are weakly separable. That is, there is a context that
evaluates one of them on the Daimon, and the other one on a match failure.

Formally, an evaluation context for the lambda calculus with constructors is
given by the following grammar:

E[] := [] t1 . . . tk | {|θ|} · [] t1 . . . tk

Then, for any defined normal forms t and t′, either t = t′ (up to α-conversion),
or there exists an evaluation context E[] such that

E[t1]→
∗ z and E[t2] reduces on an undefined term, or

E[t2]→
∗ z and E[t1] reduces on an undefined term.

18

2.2. Type system

Remark that the Daimon absorbs any evaluation context: E[z]→∗ z. The same
holds for undefined terms: if c /∈ dom(θ), then for any evaluation context E[], all
reducts of E[{|θ|} · c] are undefined. That is informally why no evaluation context
is able to separate {|c 7→ t|} · d1 from {|c 7→ u|} · d2, and the separation property
does not hold for undefined terms.

Strong normalisation of BC .

The untyped lambda calculus with constructors is not normalising since it con-
tains the usual β-reduction rule. However, it is the only delicate rule for nor-
malisation, since the BC -calculus (the λC -calculus without rule AppLam) is
strongly normalising (that is, no term has an infinite reduction). This is proved
in [AMR09, Prop. 1], by showing that the structural measure s(·) (inductively
defined below) strictly decreases for each rule of λC -calculus, except AppLam.
Since this measure is positive, there is no infinite reduction.

Definition 2.1.2 (Structural measure)

s(x) = 1 s(λx.t) = s(t) + 1 s({|θ|} · t) = s(t)× (s(θ) + 2)
s(c) = 1 s(tu) = s(t) + s(u) s(θ) =

∑
c∈dom(θ) s(θc)

s(z) = 1

We shall later refer to the same measure to ensure that every sub-calculus of
the λC -calculus that does not contain rule AppLam is strongly normalising.

2.2 Type system

In natural languages some sentences are grammatically correct but semantically
not meaningful:

“Le silence vertébral indispose la voile licite” 1.

This relative freedom is certainly essential to great poetic creations, but computer
scientists usually prefer effectiveness to artistic beauty. That is to say, we do not
only ask a program to be syntactically correct, we also want its evaluation to
reach a value (that we can see as the meaning of the program).

For instance, we want to rule out the application of the function perm2 (that
permutes the first two elements of an array, cf. Ex. 2.1.1) to an integer S n. More
generally, we want to prevent match failure in the reduction. We consider that
they are incorrect terms.

Most programming languages come with a notion of correct program. In
order to restrict the set of programs that can be written, we can associate to the
language a type system: the challenge is to design a term annotation method that

1Example given by the French linguist Lucien Tesnière [Tes53], that was translated by Noam
Chomsky as “Colourless green ideas sleep furiously” [Cho57]... Unlike the sentence, we might
say that the translation is semantically correct, but is syntactically not exactly faithful.

19

Chapter 2. Typed lambda-calculus with constructors

enables annotating (with types) as many programs as possible, but only correct
ones. This is what is called the correctness of the type system. One might also
be interested in its completeness (“is every correct program typable?”) or in the
type inference (“is there an algorithm that decides what is the type of a program,
if it has some?”).

Unfortunately in this thesis we only deal with the first question: we consider
that a term has a well behaviour when its evaluation always terminates and does
not lead to match failure. With this view we now define a type system for the
lambda calculus with constructors, and we show in next chapter that it is correct,
up to some restrictions we shall explain in Sec. 2.3.2.

2.2.1 Main ideas

We propose a polymorphic type system for the lambda calculus with constructors.
It includes the simply typed λ-calculus: the main type construct is the arrow
type T → U , coming with its usual introduction and elimination rules for typing
λ-abstraction and application respectively:

x : T implies u : U

λx.u : T → U

t : U → T and u : U

tu : T

Types for data-structures are modelled on the syntax of terms: a term ct1 . . . tk
will have type cT1 . . . Tk if each ti has type Ti. So we associate to each constructor
c a constant type c (written with bold font), and we introduce the notion of ap-
plication type. At a first sight, the most natural way to introduce an application
type would be:

t : T and u : U

tu : TU

Yet it would allow typing “incorrect” application terms. For example a function
waiting for Boolean arguments could receive integer arguments. Furthermore,
since the term δ = λx.xx is typable in polymorphic type systems (one of its
possible type is ∆ = (∀X.X → X) → (∀X.X → X)), the diverging term δδ
would be typable with type ∆∆. That is why we restrict the application type,
and prevent a derivation such as

t : (U → T) and u : U ′

tu : (U → T)U ′

To do so, we distinguish a subclass of types that we call data-types. It contains
no arrow types, and it characterises the types of data-structures. Data-types are
the only ones that we apply to other types.

Since constructors are variadic, any data-structure can be viewed as a function
expecting one more argument. This is expressed by a sub-typing rule: any data-
type D is a subtype of T → DT . That is why the type system is provided with a
sub-typing relation, and “T is a subtype of U” means that every term of type T
has type U too.

20

2.2. Type system

Algebraic types are constructed with a union operator. Because of sub-typing,
we also use its dual: intersection operator. Finally, polymorphism is achieved
with type (and data-type) variables, and universal and existential quantification.

2.2.2 Type syntax

The lambda calculus with constructors is provided with a polymorphic type sys-
tem with union and intersection operators. Types (notation: T, U) and data-types
(notation: D,E) are defined by mutual induction in Fig. 2.2. Notice that quan-

T, U := X (Ordinary type variable)
| α | c | DT (Data-type)
| T → U (Arrow type)
| T ∪ U (Union type)
| T ∩ U (Intersection type)
| ∀α.T | ∀X.T (Universal type)
| ∃α.T | ∃X.T (Existential type)

D,E := α (Data-type variable)
| c | DT (Data-structure)
| D ∪ E (Union data-type)
| D ∩ E (Intersection data-type)
| ∀α.D | ∀X.D (Universal data-type)
| ∃α.D | ∃X.D (Existential data-type)

Figure 2.2: Syntax of Types

tification over data-types requires the use of two different kinds of type variables:
capital letters from the end of Latin alphabet (X,Y etc.) denote ordinary type
variables, whereas Greek letters from the beginning of the alphabet (α, β) denote
data-type variables. We may write ν a variable that is either an ordinary or a
data-type variable.

An arrow type U → T cannot be applied to another type. By analogy with
term convention, type application takes precedence over all the other operators
and is left associative, whereas arrow is right associative and has the less prece-
dence. In between, union and intersection take precedence over universal and
existential quantifier. So that:

∀X.cXT → T means
(
∀X.

(
(cX)T

))
→ T

∃α.αX ∪ αT → (X → T)→ T means
(
∃α.

(
(αX) ∪ (αT)

))
→

(
(X → T)→ T

)

21

Chapter 2. Typed lambda-calculus with constructors

Free type variables and substitution

The set TV(T) of all free type variables of a type T is defined as expected:

TV(X) = {X} TV(α) = {α} TV(c) = ∅
TV(T → U) = TV(T) ∪ TV(U) TV(DT) = TV(D) ∪ TV(T)
TV(T ∩ U) = TV(T) ∪ TV(U) TV(T ∪ U) = TV(T) ∪ TV(U)
TV(∀ν.T) = TV(T) \ {ν} TV(∃ν.T) = TV(T) \ {ν}

Types also are considered up to renaming of bound variables, and the substitution
of ν by a type U in T (written T{U/ν}) only deals with free occurrences of ν
in T .

Vectorial notation

In order to ease the reading, we may use a vectorial notation for terms and types.
It is an adaptation of the telescopic mappings of de Bruijn [dB91] in a system
with no dependent types but with type application. Intuitively, a type vector
(or a term vector) is just a (possibly empty) sequence of types ~T (or a sequence
of terms ~u), and we can telescope many arrows or many application in one by
writing ~T → U or D~T (or t~u):

~T , ~U := [] | ~T ;U ~t, ~u := [] | ~t;u

[]→ T = T D [] = D t [] = t

(~T ;U)→ T = ~T → (U → T) D (~T ;U) = (D~T)U t(~u;u) = (t~u)u

For convenience, we may write T1; . . . ;Tk instead of [];T1; . . . ;Tk for non-empty
vectors. For instance,

c(U1;U2)→ (T1;T2)→ T ′ denotes cU1U2 → T1 → T2 → T ′

We will see in next section that this notation makes sense with typing rules.

Remark 2.2.1 . Vectorial notation is not ambiguous: a type written with
vectors denotes only one type of the original syntax. Conversely, a type can have
many vectorial representations (when it has many successive arrows):

[]→ (U1 → U2 → T) , ([];U1)→ (U2 → T) , and ([];U1;U2)→ T

are three possible notations for U1 → U2 → T .

2.2.3 Typing and sub-typing rules

A typing judgement is on the form Γ ⊢ M : T , where M is a term or a case-
binding (the same syntax of types is used for both), and Γ is a context, i.e. an
unordered sequence of couples x : U assigning a type to a variable.

22

2.2. Type system

Typing rules are given in Fig. 2.3. They include the usual introduction and
elimination rules of typed λ-calculus for each type operator. Some of them —like
the elimination of universal quantifier— are indeed sub-typing rules (Fig. 2.4).
The sub-typing relation, written with the infix notation 4, is a preorder and we
write ≡ the induced equivalence relation: T ≡ U when T 4 U and U 4 T

Typing variadic constructors

Atomic data-structures (the constructors) are typed with rule Constr:

Γ ⊢ c : c.

Then, sub-typing rule Data allows to see this constructor as a function that can
be applied to any typable term:

Γ ⊢ c : c c 4 T → cT
Γ ⊢ c : T → cT Γ ⊢ t : T

Γ ⊢ ct : cT

By iterating this derivation, ct1 . . . tk gets type cT1 . . . Tk as soon as every ti has
type Ti. This way, we can type constructors with any number of arguments.

Remark 2.2.2 . Using vectorial notation, we can write a sub-typing rule that
generalises rule Data and that is derivable:

D 4 ~T → D~T .

Furthermore, if we write Γ ⊢ ~u : ~U when ~u = u1; · · · ;uk and ~U = U1; · · · ;Uk and
Γ ⊢ ui : Ui for all i ≤ k, then the following rule is derivable (by induction on the
length k of the vectors):

Γ ⊢ t : ~U → T Γ ⊢ ~u : ~U

Γ ⊢ t~u : T

By combining these two “generalised” rules, Γ ⊢ c~t : c~T immediately follows from

Γ ⊢ ~t : ~T .

Sub-typing ruleDiscr expresses in the type system that different constructors
can be discriminated. Indeed, if c1 6= c2 then c1 ~T and c2~U cannot type the same
term t, except if t also has type ∀α.a. (which means that t→∗ z —cf. page 3.2.1,
so it is not a data-structure).

Thus we can consider a union of data-types as a disjoint union if all construc-
tor types in head position are different. That is why we call algebraic type a type
on the form ⋃

i≤k

ci ~Ui with ci 6= cj if i 6= j.

23

Chapter 2. Typed lambda-calculus with constructors

Typing case-bindings

Types for case-bindings are the same as the ones for terms. A case-binding is
typed (with rule Cb) like a function waiting for a constructor of its domain as
argument, up to a possible conversion of arrow type into application type: from
a typing judgement Γ ⊢ u : T → U , both following derivations are valid:

Γ ⊢ u : U → T

Γ ⊢ {c 7→ u} : c→ U → T
Cb

Γ ⊢ u : U → T

Γ ⊢ {c 7→ u} : cU → T
Cb

That is because an arrow type can be decomposed in different ways, and thereby
have several vectorial denotations (cf. remark 2.2.1). This is the point that allows
CaseApp commutation rule to be well typed.

Example 2.2.3 (Ambiguity of rule Cb) . Again, consider the constructor c⋄

that initialises arrays. Then the case-binding θ = {c⋄ 7→ λxy.c⋄x} removes the
second element of any array:

{|θ|}·(c⋄t1t2t3) →
3
CaseApp ({|θ|}·c⋄)t1t2t3 →CaseCons (λxy.c⋄x)t1t2t3 →

2
AppLam c⋄t1t3

From ⊢ t1 : T1, ⊢ t2 : T2 and ⊢ t3 : T3 we can derive ⊢ {|θ|} · (c⋄t1t2t3) : c⋄T1T3:

⊢ λxy.c⋄x : T1→ T2→ c⋄T1

c⋄T1 4 T3 → c⋄T1T3

T1→ T2→ c⋄T1 4 T1→ T2→ T3→ c⋄T1T3
⊢ λxy.c⋄x : T1 → T2 → T3 → c⋄T1T3

Cb
⊢ θ : c⋄T1T2T3 → c⋄T1T3

⊢ θ : c⋄T1T2T3 → c⋄T1T3

⊢ t1 : T1
⊢ t2 : T2
⊢ t3 : T3

⊢ c⋄t1t2t3 : c⋄T1T2T3
case

⊢ {|θ|} · (c⋄t1t2t3) : c⋄T1T3

We can also give the same type to ({|θ|} · c⋄)t1t2t3 by choosing another possible
type for θ (we write ~T = T1;T2;T3):

⊢ λxy.c⋄x : ~T → c⋄T1T3
Cb

⊢ θ : c⋄ → ~T → c⋄T1T3 ⊢ c⋄ : c⋄
case

⊢ {|θ|} · c⋄ : ~T → c⋄T1T3

⊢ t1 : T1
⊢ t2 : T2
⊢ t3 : T3

⊢ ({|θ|} · c⋄)t1t2t3 : c⋄T1T3

In order to give the same type to {|θ|} · (c⋄t1t2t3) and ({|θ|} · c⋄)t1t2t3 we have
chosen different vectorial denotations for the type T1 → T2 → T3 → c⋄T1T3 when

applying the typing rule Cb.

24

2.2. Type system

In the same way, the typing rule (case) for a case construct {|θ|} · t allows t
to be a function that waits for an arbitrary number of arguments. This makes
CaseLam well typed. Indeed, if a case-binding θ has type T → U , then both
terms {|θ|} · λx.x and λx.({|θ|} · x) are typable with the same type:

x : T ⊢ x : T x : T ⊢ θ : T → U
case

x : T ⊢ {|θ|} · x : U

⊢ λx.({|θ|} · x) : T → U

⊢ λx.x : T → T ⊢ θ : T → U
case

⊢ {|θ|} · λx.x : T → U

However the typing judgement obtained by the derivation rule case is determined
by the premises, which is not the case when rule Cb is applied.

Algebraic types

If the case-binding we want to type (say θ = {ci 7→ ui/1 ≤ i ≤ n}) includes many
branches, we can either chose one of them (for instance cj 7→ uj) and apply only
once rule Cb: (

Γ ⊢ ui : ~Ui → Ti
)n
i=1

Γ ⊢ θ : cj ~Uj → Tj

(Actually in the premises, we only require that uj has type ~Uj → Tj and that
every ui is typable in context Γ). If we do so, we can only type a case con-
struct {|θ|} · t with a term t of type ~T → cj ~Uj for some type vector ~T . This means
that the constructor expected in head position to perform pattern matching is cj
(again this will be formally established thanks to the denotational model). If we
do not know in advance which constructor will be matched by θ we can give it
all possible types, using intersection operator: Γ ⊢ θ :

⋂
1≤i≤n(ci

~Ui → Ti) . Since
we need θ to have an arrow type in order to associate it to a term with typing
rule case, we then commute the intersection with the arrow:

Γ ⊢ θ :
⋂

1≤i≤n(ci
~Ui → Ti)

⋂
1≤i≤n(ci

~Ui → Ti) 4 (
⋃

1≤i≤n ci
~Ui)→ (

⋃
1≤i≤n Ti)

Γ ⊢ θ : (
⋃

1≤i≤n ci
~Ui)→ (

⋃
1≤i≤n Ti)

Then to type {|θ|} · t we just need t to have the algebraic type
⋃

1≤i≤n ci
~Ui, and

the constructor that will be analysed by θ can be any constructor of its domain.

Example 2.2.4 (Typing multi-branches case-bindings) . Assume nat is a type
satisfying nat ≡ 0 ∪ Snat. The predecessor case-binding

θ = {0 7→ 0 ; S 7→ λx.x}

has both types 0→ nat and Snat→ nat. Hence we can derive

⊢ θ : (0→nat) ∩ (Snat→nat) (0→nat) ∩ (Snat→nat) 4 (0 ∪ Snat)→nat

⊢ θ : (0 ∪ Snat)→ nat

and thus θ has type nat→ nat.

25

Chapter 2. Typed lambda-calculus with constructors

Rule Cb⊥ is a kind of generalisation of this typing derivation:
if θ = {ci 7→ ui / 1 ≤ i ≤ n}, with ⊢ ui : ~Ui → Ti, then for any J ⊆ J1..nK, the
judgement ⊢ θ :

⋃
i∈J ci

~Ui →
⋃

i∈J Ti is derivable. Taking J = ∅, this would be
written ⊢ θ : ∀α.α→ ∀X.X, as ∀α.α is the lower bound of data-types, and ∀X.X
the lower bound of types. In particular, Cb⊥ enables typing the empty case-
binding. Notice that the only way to type a term {|∅|} · t is that t has type ∀α.α,
and this means that t is (or reduces on) the Daimon —we will see that this is a
consequence of the denotational model at the end of Sec. 3.2.1 (page 45).

Terms:

Init
−

Γ ⊢ x : T
(x:T∈Γ) False

−

Γ ⊢ z : T
Constr

−

Γ ⊢ c : c

→intro
Γ, x : U ⊢ t : T

Γ ⊢ λx.t : U → T
→elim

Γ ⊢ t : U → T Γ ⊢ u : U

Γ ⊢ tu : T

case
Γ ⊢ t : ~U → T Γ ⊢ θ : T → T ′

Γ ⊢ {|θ|} · t : ~U → T ′

Case Binding: If θ = (ci 7→ ui)
n
i=1,

Cb⊥

(
Γ ⊢ ui : Ti

)n
i=1

Γ ⊢ θ : ∀α.α→ ∀X.X
Cb

(
Γ ⊢ ui : ~Ui → Ti

)n
i=1

Γ ⊢ θ : ci0 ~Ui0 → Ti0
(1≤i0≤n)

Shared rules: M is either a term t, either a case binding θ.

Univ
Γ ⊢M : T

Γ ⊢M : ∀ν.T
(ν /∈TV(Γ)) Inter

Γ ⊢M : T Γ ⊢M : U

Γ ⊢M : T ∩ U

Exist
Γ, x : T ⊢M : U

Γ, x : ∃ν.T ⊢M : U
(ν /∈TV(U)) Union

Γ, x : T1 ⊢M : U Γ, x : T2 ⊢M : U

Γ, x : T1 ∪ T2 ⊢M : U

Subs
Γ ⊢M : T T 4 U

Γ ⊢M : U

Figure 2.3: Typing rules

Commutation rules for type operators

Commutation rules between arrow and universal quantifier are usual in System F
with sub-typing [Mit88]. Commutation with union and intersection are also well
known [Pie91]. More generally, all these rules are guided by semantic intuitions:

26

2.2. Type system

Preorder relation:

Refl
−

T 4 T
Trans

T 4 T0 T0 4 T ′

T 4 T ′

Monotonicity and contravariance:

Arrow
U ′ 4 U T 4 T ′

U → T 4 U ′ → T ′
App

D 4 D′ T 4 T ′

DT 4 D′T ′

Elimination and introduction rules:

∩intro
T 4 U1 T 4 U2

T 4 U1 ∩ U2
∩elimL

−

U1 ∩ U2 4 U1
∩elimR

−

U1 ∩ U2 4 U2

∪introL
−

U1 4 U1 ∪ U2
∪introR

−

U2 4 U1 ∪ U2
∪elim

T1 4 U T2 4 U

T1 ∪ T2 4 U

∀intro
T 4 U

T 4 ∀ν.U
(ν/∈TV(T)) ∀elim

−

∀X.T 4 T{U/X}
∀elimD

−

∀α.T 4 T{D/α}

∃intro
−

T{U/X} 4 ∃X.T
∃introD

−

T{D/α} 4 ∃α.T
∃elim

U 4 T

∃ν.U 4 T
(ν/∈TV(T))

Data
−

D 4 T → DT
Discr

−

c1 ~T ∩ c2~U 4 ∀α.α
(c1 6=c2)

Commutation between type operators:

App/∩
−

DT ∩D′T ′ 4 (D ∩D′)(T ∩ T ′)
App/∀

−

∀ν.(DT) 4 (∀ν.D)(∀ν.T)

→/∩
−

(U → T) ∩ (U ′ → T ′) 4 (U ∩ U ′)→ (T ∩ T ′)
→/∀

−

∀ν.(T → U) 4 (∀ν.T)→ (∀ν.U)

→/∪
−

(U → T) ∩ (U ′ → T ′) 4 (U ∪ U ′)→ (T ∪ T ′)
→/∃

−

∀ν.(T → U) 4 (∃ν.T)→ (∃ν.U)

∩/∪
−

(U ∪ T) ∩ (U ∪ T ′) 4 U ∪ (T ∩ T ′)

∪/AppR
−

D(T ∪ T ′) 4 DT ∪DT ′
∪/AppL

−

(D ∪D′)T 4 DT ∪DT ′

∃/AppR
−

D(∃ν.T) 4 ∃ν.DT
(ν /∈TV(D)) ∃/AppL

−

(∃ν.D)T 4 ∃ν.DT
(ν /∈TV(T))

∪/∀
−

∀ν.(T ∪ U) 4 (∀ν.T) ∪ U
(ν /∈TV(U)) ∃/∩

−

(∃ν.T) ∩ U 4 ∃ν.(T ∩ U)
(ν /∈TV(U))

Figure 2.4: Sub-typing rules.

27

Chapter 2. Typed lambda-calculus with constructors

terms must have type T ∩U (resp. T ∪U) if and only if they have both (resp. one
of) types T and U . The idea is the same for quantifiers (universal quantification
is seen as a generalised intersection, and existential quantification as a generalised
union). Concerning arrow types, a term must have type U → T iff we can apply
it to any argument of type U and get a term of type T . This explains for instance
the commutation rule between intersection and arrow:

(U1 → T1) ∩ (U2 → T2) 4 (U1 ∪ U2)→ (T1 ∪ T2) .

If a term can be applied to a term of type U1 to form a term of type T1, and also
to a term of type U2 to form a term of type T2, then we can apply it to a term
that has type U1 or U2 and we will get a term of type T1 or of type T2. Notice
that this meaning of types also validates the rule

(U1 → T1) ∩ (U2 → T2) 4 (U1 ∩ U2)→ (T1 ∩ T2) .

The new construction of this type system, namely type application, is in-
terpreted in a very naive way: a term has type DT if it is the application
of a sub-term of type D and a sub-term of type T . This is why the rule
D(T1 ∪ T2) 4 DT1 ∪DT2 is valid, but not (D1 ∪D2)(T1 ∪ T2) 4 D1T1 ∪D2T2.

2.3 Some non-properties of the typed λC -calculus

2.3.1 Discussion on Subject reduction

Union types, seen as the dual of intersection types, are known to be problematic
w.r.t. subject reduction in the lambda calculus. Different formalisms exist for
the elimination rule of union: we use a left rule, inspired from sequent calculus,
but a right elimination rule is also often used [Pie91, FP91, Rib07a]. With a cut
rule, both presentations are equivalent [BDCd95, Theo. 1.5] (and rule case can
be seen as a cut-rule for algebraic types).

However the same problem always arises for subject reduction, typically when
a function expects two arguments on the same type: if this type is a union U1∪U2,
the function might require its arguments to be both of type U1 or both of type U2,
but this information can be “lost” during the reduction. We give an example
derived from [BDCd95] 2.

Example 2.3.1 (Typing lost by reduction) . Let

Γ = x : (U1 → U1 → T) ∩ (U2 → U2 → T) , y : U1 ∪ U2 .

Then Γ ⊢ λz.xzz : (U1 ∪ U2)→ T :

2For more complex union type system the counter-example to subject reduction is slightly
more complex, but the idea remain the same.

28

2.3. Some non-properties of the typed λC -calculus

Γ, z : U1 ⊢ x : U1 → U1 → T

Γ, z : U1 ⊢ xzz : T

Γ, z : U2 ⊢ x : U2 → U2 → T

Γ, z : U2 ⊢ xzz : T
Union

Γ, z : U1 ∪ U2 ⊢ xzz : T

Γ ⊢ λz.xzz : (U1 ∪ U2)→ T

Also it is possible to type Γ ⊢ (λz.xzz)y : T , but (λz.xzz)y β-reduces on xyy,
that is not typable under context Γ: in order to apply x to argument y we cannot
eliminate the intersection in its type, as we do not know whether y has type U1

or U2. We can neither commute the arrow and the intersection: we would obtain

(U1 → U1 → T) ∩ (U2 → U2 → T) 4 (U1 ∪ U2)→
(
(U1 → T) ∪ (U2 → T)

)

Γ ⊢ x : (U1 ∪ U2)→
(
(U1 → T) ∪ (U2 → T)

)
→elim

Γ ⊢ xy : (U1 → T) ∪ (U2 → T)

and then it is not possible to conclude (at this stage, we actually lost information:
even if we knew whether type of y is U1 or U2, we could not conclude that xyy

has type T knowing that xy has type (U1 → T) ∪ (U2 → T)).

Also there is no simple way to build a type system with union types that enjoys
subject reduction, and pattern matching requires union types. Yet, [BDCd95]
prove a kind of “big step subject reduction” for typed lambda calculus with
union: If a term t has type T , and t→β u, then there is a term s of type T such
that u →∗

β s. In next chapter, we will prove a similar result for data structures
of typed λC -calculus using a reducibility model.

2.3.2 About strong normalisation and match failure

Typed lambda calculus with constructors supports some non-terminating reduc-
tions, and also match failures can occur. This is due to one of the administra-
tive3rules: the composition of case-bindings. We first present a counter-example
to strong normalisation, before taking out rule CaseCase from the calculus.

The problem of case-composition

Typed λC -calculus does not prevent match failure. Indeed, rule CaseCase can
create sub-terms whose typing is not checked in the “dead branches” of a case-
binding. For instance, if φ = {d 7→ d′} and θ = {c 7→ d ; c′ 7→ c′}, then

⊢ φ : d→ d′ and ⊢ θ : c→ d.

So we can derive ⊢ {|θ|} · c : d and then ⊢ {|φ|} · {|θ|} · c : d′. This makes
sense because we can reduce {|φ|} · {|θ|} · c→∗ d′ using twice the rule CaseCons.
In θ, c′ 7→ c′ is a dead branch and is forgotten by the typing (once we know
that c′ itself is typable). However, we can also apply the rule CaseCase and get

3Rule CaseCase is not necessary in a reduction to reach a value, as it is formally expressed
in Sec. 3.2.3.

29

Chapter 2. Typed lambda-calculus with constructors

{|φ ◦ θ|} · c. Hence, the second branch of the case-binding is c′ 7→ {|φ|} · c′, which
raises a match failure and is definitely not typable.

The point is that, while typing a case binding, a choice can implicitly be made
concerning the branches that will be taken in consideration (if we had chosen type
c′ → c′ for θ, we would not have been able to type {|φ|} · {|θ|} · c′, that reduces on
the same match-failing term {|φ|} · c′). Yet rule CaseCase can create redexes in
branches that have been dropped by the typing.

For the same reason, rule CaseCase together with rule AppLam makes some
typable terms non-terminating: let φ = {d 7→ δ} and θ = {c 7→ d ; c′ 7→ dδ},
where δ = λx.xx. Then we can derive

Γ ⊢ φ : d→ ∆

Γ ⊢ d : d Γ ⊢ dδ : d∆
Γ ⊢ θ : c→ d Γ ⊢ x : c

Γ ⊢ {|θ|} · x : d

Γ ⊢ {|φ|} · {|θ|} · x : ∆

with Γ = x : c, and ∆ = (∀X.X → X) → (∀X.X → X). It appears that
{|φ|} · {|θ|} · x is in normal form without rule CaseCase, but with it we can
reduce

{|φ|} · {|θ|} · x→ {|φ ◦ θ|} · x =

{∣∣∣∣
c 7→ {|φ|} · d
c′ 7→ {|φ|} · dδ

∣∣∣∣
}
· x→∗

{∣∣∣∣
c 7→ δ
c′ 7→ δδ

∣∣∣∣
}
· x

Hence {|φ|} · {|θ|} · x is not normalising because of the sub-term δδ.

Restricted lambda calculus with constructors

The rule CaseCase was introduced in the lambda calculus with constructors
in order to satisfy the separation property [AMR09, Theo. 2] —and the same
for rule LamApp, the usual η-reduction. Yet it is unessential for computing
in the lambda calculus with constructors (cf. discussion of Sec. 3.2.3). Since it
leads to some match failure or non-terminating reduction in the typed calculus,
we take it away and we consider λ−

C
, the lambda calculus with constructors re-

stricted to eight reduction rules: AppLam, LamApp, CaseCons, CaseApp,
CaseLam, AppDai, LamDai and CaseDai. This calculus is known to be con-
fluent [AMR09, Theo. 1].

In next chapter, we provide a denotational model for typed λ−
C
-calculus, that

ensures its strong normalisation and guaranties the absence of match failure.

Conclusion and future work

The lambda calculus with constructors presents some reduction rules that do not
match with usual typing intuitions, in particular the commutation rule between
application and case construct. To cope with this peculiarity, we have defined
a complex type system, with a sub-typing rule transforming a data-type into an
arrow type. This type system is polymorphic, and includes intersection and union

30

2.3. Some non-properties of the typed λC -calculus

types. There is also a new construction: the type application. In the next chapter,
we show that it is a correct type system w.r.t. strong normalisation and prevention
of match failure for the restricted λC -calculus (without rule CaseCase).

A natural question would be the converse: is any perfectly normalising term
of λ−

C
-calculus typable in some context? In the pure lambda calculus, every

strongly normalising term is typable in the type system with arrow and inter-
section [Gal98, Kri93]. In λ−

C
-calculus the answer would be negative without

polymorphism. Consider for instance term t = λx.{|c 7→ d|}·{|c 7→ d|}·x . It is a
defined normal form (since we removed rule CaseCase). Without the rule Cb,
the only type we could give to u = {|c 7→ d|}·x would be d (with x of type c).
Then {|c 7→ d|}·u would not be typable. However, with the rule Cb we can
type the case bindings {c 7→ d} with type ∀α.α → ∀X.X, and then derive
⊢ t : ∀α.α→ ∀X.X (since ∀X.X 4 ∀α.α).

Also we have good hope that the type system described in this chapter is able
to type any perfectly normalising λ−

C
-term. A first attempt to show this could

be to assign type ∀X.X to every variable, and then follow the proof method
of [Gal98]: first show that every defined normal form (they are on the form λ~x.c ~u
or λ~x.{|θ1|} · · · · {|θk|} · y ~u with possibly empty vectors and k ≥ 0) has a type.
Then proceed by induction on derivation of a perfectly normalising term.

An other issue that we let open is the decidability of (a sub-system of) the
type system. Two questions can be asked:

1. Type Inference: Given a term t, is there a context Γ and a type T such
that Γ ⊢ t : T?

2. Type checking: Is a judgement Γ ⊢ t : T derivable?

Notice that, in general, the decidability of type checking entails the one of type
inference. Indeed, if we call contexted typability the question of knowing, given a
term t and a context Γ, if t can be typed in context Γ, then

- Type inference is decidable if contexted typability is. To know whether t
can be typed in some context, ask if λx1 . . . xn.t is typable in the empty
context (where {x1, . . . , xn} = fv(t)).

- Contexted typability is decidable if type checking is. To know if t is typable
in context Γ, ask if Γ, z : Z ⊢ (λxy.y) t z : Z is derivable.

If, as we conjectured previously, our type system is complete for perfectly
normalising terms, type inference is certainly undecidable. Indeed, within the
sub-family of pure lambda terms, the perfect normalisation is equivalent to the
strong normalisation, that is known to be undecidable (a nice proof can be found
in [Urz03]). It is not surprising as both type inference and type checking are
undecidable in Curry-style System F [Wel94]. Also the simply typed lambda
calculus with intersection types is complete for strong normalising terms [vB92,
Ghi96].

31

Chapter 2. Typed lambda-calculus with constructors

Yet the question can be asked for the type system without polymorphism
and without intersection type. This would require an other rule for typing case-
bindings (the one given in this chapter is too weak without intersections), such
as for instance

Γ ⊢ ui : ~Ui → Ti (1≤i≤n)

Γ ⊢ {ci 7→ ui/1 ≤ i ≤ n} :
(n⋃

i=1

ci ~Ui

)
→

(n⋃

i=1

Ti
)

However even with such a rule, an inference algorithm (if it exists) would probably
need a backtracking mechanism, since the arrow types (of the ui’s) can have
several (but a finite number of) vectorial notations (Rem. 2.2.1).

Altthough this question is essential in the prospect of implementing the
lambda calculus with constructors, it is far from being trivial.

32

Chapter 3

A Reducibility Model

In this chapter, we shall prove the strong normalisation theorem for the restricted
typed λC -calculus using Girard’s technique of reducibility candidates [GLT89,
Chap.14]. The main idea is to interpret every type T by a particular set |T |
of strongly normalising terms called reducibility candidates. We then prove that
this interpretation is sound w.r.t. typing, i.e. every term of type T is in its
interpretation —and thereby is strongly normalising.

Reducibility candidates allow a finer analysis of terms than types do. Some
properties (such as strong normalisation) we want to prove for typable terms can
actually be set in the definition of reducibility candidates. Their definition must
also include some closure properties, that ensure soundness.

The proof by reducibility candidates of this chapter presents three main nov-
elties. The first one is to focus not only on strong normalisation, but also on
well-definition. This implies to restrict candidates to closed terms (what would
it mean for {|θ|} · x to be defined?). This is why the Daimon shall play an im-
portant role. Next we need to adapt the usual definition of candidates to the
application types. Therefore we introduce a closure operator on candidates. It
shall also enable a fine-grained analysis of data-structures and data-types (in
particular we introduce the notion of data-candidates). Finally, we ensure that
candidates are closed under union, using Riba’s techniques [Rib07b].

For the reasons explained in Sec. 2.3.2, we consider here a restriction of the
calculus, without rule CaseCase, called the λ−

C
-calculus. Also, throughout this

chapter,

→ denotes a reduction step that does not use CaseCase .

3.1 Reducibility candidates

Reducibility candidates are defined by a predicate on terms: they must satisfy
some conditions that exclude “bad” terms, but also some closure conditions that
will entail soundness for the reducibility model. As usual, those are conditions
of closure under reduction, or under some expansion.

33

Chapter 3. A Reducibility Model

Notations: A term is said to be neutral if it is not a value. We write ND the
set of closed defined and neutral terms, and PNo the set of closed and perfectly
normalising terms. The set of closed terms is denoted by Λo. Given a term t,
Red(t) is the set of its reducts (for the rules of λ−

C
) in one step, and Red∗(t)

denotes the set of its reducts in any number of steps (including zero).

Definition 3.1.1 (Reducibility candidates)

A set S of closed terms is a reducibility candidate when it satisfies:

(cr1) Perfect normalisation: S ⊆ PNo.

(cr2) Stability by reduction: t ∈ S ⇒ Red(t) ⊆ S.

(cr3) Stability by neutral expansion:
if t ∈ ND, then Red(t) ⊆ S ⇒ t ∈ S.

(cr4) Stability by case-commutation:
if t→CaseApp t

′ or t→CaseLam t
′, and t′ ∈ S, then t ∈ S.

We call (cr) the conjunction of (cr1), (cr2), (cr3) and (cr4).

The first three conditions correspond to the ones of the original definition
of Girard, taking care to rule out undefined terms. The last one is necessary
for the soundness result, because of the “ill behaviour” of rules CaseApp and
CaseLam w.r.t. typing (cf. Rem. 2.1.2). In fact, (cr4) means that reducibility
candidates do not separate terms that are CaseApp or CaseLam equivalent.
Once we will have proved that this leads to a relevant notion of candidates (that
is, it is compatible with the property of perfect normalisation), it will informally
allow us to consider terms up to CaseApp and Case Lam. This requires to treat
these two rules with a special attention (which is the purpose of next section).

Taking up type terminology, we call data-candidate a reducibility candidate
whose values all are data-structures. In other words, a reducibility candidate is
a data-candidate if it contains no abstraction λx.t. We write CR the class of
reducibility candidates, and DC its sub-class of data candidates.

Reducibility candidates are usually not restricted to closed terms. On the
contrary, free variables are needed in reducibility candidates as hereditarily neu-
tral terms, i.e. as terms with no values in their reducts. Indeed, hereditarily
neutral terms insure that reducibility candidates are not empty (we detail this
in Rem. 3.1.4). Since the λ−

C
-calculus is provided with the Daimon, which is also

hereditarily neutral, open terms are useless in reducibility candidates. Moreover,
keeping only closed terms circumscribes candidates to terms whose meaning is
entirely known.

Condition (cr2) can be expressed in a slightly different way, that we may use
later. We call (cr′

2) this equivalent condition.

Lemma 3.1.1 (Condition (cr′
2)). For any set of terms S, the following condi-

tions are equivalent:

34

3.1. Reducibility candidates

(cr2) For every term t in S, Red(t) ⊆ S

(cr′
2) For every term t in S, Red∗(t) ⊆ S

Proof : Condition (cr′
2) obviously implies (cr2). Now assume S satisfies (cr2). By

induction on n it is trivial to show that t ∈ S and t →n t′ imply t′ ∈ S for all n ≥ 0.
So t ∈ S implies Red∗(t) ⊆ S.

3.1.1 Case normal form

This section gives some technical details about case-commutation. We first show
that every term has a normal form for case-commutation, and we give an explicit
definition of it. then we prove that case-commutation equivalence is compati-
ble with perfect normalisation, which provides a new definition of reducibility
candidates.

The case-commutation rules are CaseApp and CaseLam. Remember that
we note ⇀ a reduction step by one of them, and →B a reduction step by one
of the other rule of λ−

C
(AppLam, LamApp, CaseCons, AppDai, LamDai, or

CaseDai).
Every term is strongly normalising for ⇀. Indeed, reducing a term t with a

case-commutation rule decreases its structural measure s(t) (Def. 2.1.2). More-
over, ⇀ is confluent (Sec. 2.1.5). Thus every term t has a normal form for ⇀,
that we call its case normal form and that we write ↓ t. It is characterised by
the following equations:

↓x = x ↓{|θ|} · x = {| ↓θ|} · x
↓c = c ↓{|θ|} · c = {| ↓θ|} · c
↓z = z ↓{|θ|} ·z = {| ↓θ|} ·z
↓λx.t = λx. ↓ t ↓{|θ|} · λx.t = λx. ↓({|θ|} · t)
↓(tu) = ↓ t ↓u ↓{|θ|} · (tu) = ↓({|θ|} · t) ↓u

↓{ci 7→ ui / 1≤i≤n} = {ci 7→↓ui / 1≤i≤n} ↓
(
{|θ|} · {|φ|} · t

)
= ↓({|θ|}· ↓{|φ|} · t)

if ↓{|φ|} · t = {|φ|} · t, then ↓
(
{|θ|} · {|φ|} · t

)
= {| ↓θ|} · {|φ|} · t

To deal with perfect normalisation, we can consider terms up to case-commutation.
Indeed, both well-definition and strong normalisation are preserved by case-
commutation equivalence. That is what Cor. 3.1.4 expresses.

Lemma 3.1.2. If ↓ t is defined, so is t.

Proof : Using the characterisation of ↓ t, it is easy to check by induction on t that
if t is undefined, then ↓ t also is.

Remark 3.1.1 . Since t ∈ V implies ↓ t ∈ V , it follows that

↓ t ∈ ND =⇒ t ∈ ND

Lemma 3.1.3. For every terms t, t′, if t→B t
′ then ↓ t→+ ↓ t′

Proof : By structural induction on t.

35

Chapter 3. A Reducibility Model

1. If t is a variable, the Daimon or a constructor, then t is not reducible.

2. If t = λx.t0, then necessarily t′ = λx.t′0 with t0 →B t′0 and we conclude by
induction.

3. If t = t1t2, three different cases can occur:

(a) t′ = t1t
′
2 or t′1t2 with ti→Bt

′
i. Hence we conclude by induction

(b) t1 = z and t′ = z. In that case ↓ t = (z ↓ t2) reduces to z = ↓ t′.

(c) t1 = λx.t0 and t′ = t0[x := t2]. Then ↓ t = (λx. ↓ t0) ↓ t2, and it reduces
to (↓ t0)[x :=↓ t2], that has case normal form (and therefore reduces in 0 or
more steps on) ↓(t0[x := t2]).

4. If t = {|θ|} · t0, either t
′ = {|θ′|} · t0 or {|θ|} · t′0 with θ →B θ′ or t0 →B t′0 and we

conclude by induction, or t′ = u with t0 = c and c 7→ u ∈ θ, or t′ = z and t0 = z.
In both last cases, ↓ t = {| ↓θ|} · t0 →↓ t

′.

Corollary 3.1.4. If ↓ t ∈ PNo, then t ∈ PNo.

Proof : First u ∈ Red∗(t) implies ↓ u ∈ Red∗(↓ t) by Lem. 3.1.3. Thus Lem. 3.1.2
entails that all reducts of t are defined as soon as all reducts of ↓ t are. That is, t is
hereditarily defined if ↓ t is.
Now assume there is an infinite reduction t = t0 → t1 → t2 . . . Since ⇀ is strongly
normalising, this reduction chain contains an infinity of →B reduction steps: t = t0 ⇀

∗

ti1 →B tj1 ⇀
∗ ti2 →B tj2 . . .

For every k, ↓ tjk = ↓ tik+1
and ↓ tik →

+↓ tjk by Lem. 3.1.3. Hence there is an infinite
reduction

↓ t = ↓ ti1 →
+ ↓ tj1 = ↓ ti2 →

+ ↓ tj2 = ↓ ti3 →
+ ↓ tj3 . . .

This is absurd if ↓ t is strongly normalising. So finally if ↓ t is perfectly normalising then
t strongly normalises too.

This corollary allows us to formulate differently the last condition in the
definition of reducibility candidates. We call (cr′

4) this alternative condition.

Lemma 3.1.5 (Condition (cr′
4)). We say that a set of terms S satisfies (cr′

4)
when

for every term t, ↓ t ∈ S implies t ∈ S. (cr′
4)

Then, for any set of terms S, (cr2) ∧ (cr4) is equivalent to (cr′
2) ∧ (cr′

4).

Proof : First remember that (cr2) is equivalent to (cr
′
2) (Lem. 3.1.1). Now assume S

satisfies (cr4). If t is a term such that ↓ t ∈ S, we can see by induction on the reduction
t ⇀∗↓ t that t ∈ S. So (cr′

4) holds. Conversely, if S satisfies (cr′
2) and (cr′

4), then for
any t′ ∈ S and any t ⇀ t′, we have ↓ t = ↓ t′ is in S by (cr′

2) (since t
′ →∗↓ t′), thus t ∈ S

by (cr′
4).

In the following, to characterise a reducibility candidate, we may use either
(cr1)∧ (cr2)∧ (cr3)∧ (cr4), or (cr1)∧ (cr

′
2)∧ (cr3)∧ (cr

′
4) depending on what

is more convenient.

36

3.1. Reducibility candidates

Remark 3.1.2 . The set PNo is a reducibility candidate: it obviously satis-
fies (cr1) and (cr2), and also (cr3) since a defined closed term whose all reducts
are in PNo is in PNo itself. Last, Cor. 3.1.4 entails that PNo satisfies (cr′

4).

3.1.2 Closure property

In this section, we give a way to construct a reducibility candidate from a set
of perfectly normalising terms. A non-expanded candidate is a set of terms that
satisfies (cr1) and (cr2). Sets that satisfy (cr4) in addition (or equivalently
(cr′

4)) are called pre-candidates of reducibility. We write PCR for the family of
pre-candidates. For instance {c} is a pre-candidate for any constructor c. We
will see that such pre-candidates can be closed by (cr3) to obtain a reducibility
candidate.

Definition 3.1.2 (Closure)

For X ⊆ Λo, we note X its closure by (cr3). It is defined inductively by

t ∈ X

t ∈ X

t ∈ ND Red(t) ⊆ X

t ∈ X

Lemma 3.1.6 (Closure of a pre-candidate). If P ∈ PCR, then P is the smallest
reducibility candidate containing P .

Proof : P satisfies (cr3) by definition. Using the inductive definition, it is immediate
to check that it satisfies (cr1) and (cr2). Now we prove that it satisfies (cr′

4). Let t ∈ Λo

such that ↓ t ∈ P , and show that t ∈ P by induction on its derivation.

1. If ↓ t ∈ P then t ∈ P since P ∈ PCR and thus satisfies (cr′
4).

2. Else ↓ t ∈ ND and Red(↓ t) ⊆ P . In that case, t also is in ND (Rem. 3.1.1) and for
all u ∈ Red(t), ↓u ∈ Red∗(↓ t) (Lem. 3.1.3). Moreover, Red∗(↓ t) ⊆ P by (cr′

2),
thus ↓u ∈ P . By induction hypothesis, it implies that u ∈ P . Hence Red(t) ⊆ P ,
so t ∈ P for being neutral.

Finally P is a reducibility candidate. Moreover, if a reducibility candidate A contains P ,
it also contains P by (cr3). So P is the smallest candidate containing P .

In the previous lemma it would not be sufficient to assume that P is a non-
expanded candidate, to conclude P ∈ CR, as shown by the following example.

Example 3.1.3 . Let t = λy.{|c 7→ c|} · y and u = {|c 7→ c|} · λy.y. Then u ⇀ t.

The set S = {λx.t} satisfies (cr1) and (cr2) but S does not satisfy (cr4) since

λx.u /∈ S. So S is not a reducibility candidate.

We now characterise precisely when a non-expanded candidate can be closed
to obtain a reducibility candidate.

37

Chapter 3. A Reducibility Model

Lemma 3.1.7 (Closure of a non-expanded candidate). Let S be a non-expanded
candidate. Then S is a reducibility candidate if and only if, for any t, t′ ∈ Λo,

t ⇀ t′

t′ ∈ S

}
=⇒ t ∈ S

Proof : The implication (“only if” side) is trivial by (cr4). We prove the converse.
Assume that for any t, t′ ∈ Λo, t ⇀ t′ with t′ ∈ S implies t ∈ S. By definition S satisfies
(cr3). The closure operator · preserves (cr1) and (cr2), so these two properties also
hold in S. Now, we need to prove (cr′

4). Let ↓ t ∈ S. By Cor. 3.1.4, ↓ t ∈ PNo

implies t ∈ PNo. We prove by induction on its reduction that t ∈ S. If t =↓ t it is clear;
else let t′ such that t ⇀ t′ ⇀∗↓ t. By induction hypothesis, t′ ∈ S.

1. If t′ ∈ S then by hypothesis t ∈ S.

2. Otherwise t′ ∈ ND and Red(t′) ∈ S (by definition of the closure operator). Hence t
also is in ND (same as Rem. 3.1.1). Moreover given u ∈ Red(t), ↓ t →∗↓ u
by Lem. 3.1.3. So ↓ u ∈ S by (cr2), and u ∈ S by induction hypothesis.
Thus Red(t) ⊆ S and t ∈ S.

Hence S satisfies also (cr′
4), it is then a reducibility candidate.

Remark 3.1.4 . Stability under (cr3) also entails that all reducibility candi-
dates are infinite: first they are non-empty since they all contain the Daimon,
as neutral and irreducible term. Moreover, if A ∈ CR contains a term t, it also
contains {|c 7→ t|} · c. as a neutral term whose all reducts (by induction on the
reduction of t) are in A. So we can construct an infinite family of (different)
terms in A. Even the smallest reducibility candidate, the closure of the empty
set ∅ is infinite. In fact it is often more relevant to focus on the values of a

reducibility candidates, as it is formalised in next section.

Remember that a reducibility candidate whose all values are data-structures
is called a data-candidate. The class of data-candidates, DC, will be helpful to
interpret data-types.

Remark 3.1.5 . Since the closure by (cr3) only adds neutral terms, if P is a

pre-candidate whose all values are data-structures, then P ∈ DC. In particular

{c} is a data-candidate for any constructor c.

3.1.3 Reducibility candidates and values

In this section we show that reducibility candidates are completely defined by
their values, and also that they satisfy a property called the principal reduct
property, that will be needed in the following section.

First notice that Prop. 2.1.1 remains valid in λ−
C
-calculus.

Proposition 3.1.8. Every defined closed term that is irreducible for λ−
C
-rules is

either the Daimon or a value.

Proof : Same proof as the one of Prop. 2.1.1, as it does not use rule CaseCase.

38

3.1. Reducibility candidates

A reducibility candidate is stable under reduction and under expansion for
neutral terms. As a consequence, it is entirely determined by its values. We call
values of a term t (or of a set of terms S), and we write V(t) (resp. V(S)), the
set of values to which t (resp. a term of S) reduces:

V(t) = Red∗(t) ∩ V

Remark that, given A a reducibility candidate, V(A) is a priori not a pre-
candidate, even not a non-expanded candidate. Indeed, V is not necessarily
closed by reduction because of rules LamApp and LamDai. It is neither closed
by (cr4)because of rule CaseLam.

Example 3.1.6 . Consider the reducibility candidate S, with

S = { λx.{|c 7→ c|} · x ; {|c 7→ c|} · λx.x } .

(It is actually a reducibility candidate by Lem. 3.1.6 since S ∈ PCR). Then
{|c 7→ c|} · λx.x ⇀ λx.{|c 7→ c|} · x, whereas λx.{|c 7→ c|} · x is in V(S) and

{|c 7→ c|} · λx.x is not. So V(S) is not closed under (cr4).

Also it is generally not possible to use the closure operator on a set of values
V(S) to construct a reducibility candidate. However, the values of a reducibility
candidate are, to some extent, sufficient to define it (Cor. 3.1.10).

Lemma 3.1.9. If t ∈ PNo and A ∈ CR, then t ∈ A ⇔ V(t) ⊆ A .
In particular, if A ∈ CR, then A = V(A).

Proof : The implication is obvious using (cr′
2). We prove the converse by induction

on the reduction of t (that is well-founded for strongly normalising terms). Assume
V(t) ⊆ A and prove that t ∈ A. If t is a value it is clear since t ∈ V(t). Otherwise
t ∈ ND, and for all u in Red(t), u ∈ A by induction hypothesis (since V(u) ⊆ V(t) ⊆ A).
So t ∈ A by (cr3).

Corollary 3.1.10. Let A,B ∈ CR. Then V(A) = V(B) iff A = B.

Proof : We show the implication, the converse is obviously true. Let A,B ⊆ CR,
such that V(A) = V(B). By Lem. 3.1.9, t ∈ A ⇔ V(t) ⊆ A

⇔ V(t) ⊆ V(A)
⇔ V(t) ⊆ V(B)
⇔ V(t) ⊆ B
⇔ t ∈ B

The characterisation of a reducibility candidate by its values will be used in
the next section to prove that the class CR is stable under union. For that, we also
use a sufficient condition described in [Rib07b]: the principal reduct property.

Lemma 3.1.11 (Principal reduct property). Every reducible term t ∈ ND has
a reduct (in one step) u ∈ Λo such that

t→∗ v ∧ v ∈ V ⇒ u→∗ v

A term u that satisfies such a property is called a principal reduct of t.

39

Chapter 3. A Reducibility Model

Proof : We inductively define, for every t ∈ ND that can reduce on a value, the
term p(t):

p((λx.t0)t1 . . . tk) = t0[x := t1] t2 . . . tk
p(({|θ|} · t0)t1 . . . tk) = p({|θ|} · t0)t1 . . . tk

p({|θ|} · c) = u if c 7→ u ∈ θ
p({|θ|} · λx.t0) = λx.{|θ|} · t0
p({|θ|} · t1t2) = ({|θ|} · t1)t2

p({|θ|} · {|φ|} · t0) = {|θ|} · p({|φ|} · t0)

By structural induction on t, it is immediate to check that

1. t→ p(t), and

2. if t → u, either u = p(t), or p(t) →∗ p(u) (for the first case, remember that if
t0 → t′0 then t0[x := t1]→ t′0[x := t1] by [AMR09, Lem. 9])

This insures that p(t) is a principal reduct of t: we show that t→∗ v with v ∈ V implies
p(t)→∗ v by induction on the reduction t→∗ v. Since t is not a value, there is at least
one step in the reduction. Let u be the first reduct. By induction hypothesis, there is a
reduction p(u)→∗ v, and we can conclude since p(t)→∗ p(u):

t u

p(t) p(u)

v

∗

∗

∗

Hence for any t ∈ ND, and any v ∈ V, if t reduces on v, then p(t) also does. So p(t) is a
principal reduct of t.

3.1.4 Candidates operators

In the next part, we define a model of the λ−
C
-calculus, that interprets every

type by a reducibility candidate. Therefore, we need to interpret basic types
(Rem. 3.1.5 might give a hint), but also type operators in CR. In this section, we
define arrow, application, union and intersection for reducibility candidates.

Arrow. The arrow is defined in the usual way.

Definition 3.1.3

Given S and S′ two sets of terms, S → S′ is defined by

S → S′ = { t / ∀u ∈ S, tu ∈ S′ }

Lemma 3.1.12. If S is a non-expanded candidate (i.e. a set of terms satisfy-
ing (cr1)and (cr2)) that is non-empty, and A ∈ CR, then S → A ∈ CR.

Proof : (cr1) Let t ∈ S → A. There exists u ∈ S, and tu ∈ A ⊆ PNo. So t ∈ PNo.

(cr2) Let t ∈ S → A and t′ ∈ Red(t). For any u ∈ S, tu → t′u. So tu ∈ A implies
t′u ∈ A since A is closed under reduction. Hence t′ ∈ S → A.

40

3.1. Reducibility candidates

(cr3) For any t ∈ ND such that Red(t) ⊆ S → A, we prove that u ∈ S implies tu ∈ A
by induction on the reduction of u. Since t ∈ ND, tu is not a data-structure so
tu ∈ ND. Furthermore t is not an abstraction so every reduct of tu is either z (if
t = z), or t′u with t′ ∈ Red(t), or tu′ with u → u′. In any case it belongs to A:
z by (cr3), t

′u because t′ ∈ S → A, and tu′ by induction hypothesis. So tu ∈ A
by (cr3), thus t ∈ S → A.

(cr4) Let t ⇀ t′ such that t′ ∈ S → A. For any u ∈ S, tu ⇀ t′u and t′u ∈ A. So
tu ∈ A by (cr4) in A.

Finally S → A is a reducibility candidate.

This lemma is stronger than the one we usually need:

A,B ∈ CR implies A → B ∈ CR (3.1)

Indeed, this proposition is entailed by Lem. 3.1.12 because every reducibility
candidate is non-empty (they all contain the Daimon, cf. Rem. 3.1.4). However
we relax the hypothesis in the lemma for a subsequent need.

Application. The application of two sets of terms is defined in the expected
way: for S and S′ sets of terms,

S S′ = {t u / t ∈ S and u ∈ S′}

There is no reason for CR to be closed under application. Indeed, none of (cr1),
(cr2), (cr3) and (cr4) is preserved by application. However, the following lemma
will be sufficient to establish the model.

Lemma 3.1.13. If D ∈ DC and A ∈ CR, then DA ∈ DC.

Proof : First notice that DA = DA ∪ {z} (since z is neutral with no reduct, it is
in the closure of any set). We call S the set DA ∪ {z}, and we will first prove that it
is a non-expanded candidate. Then we will prove that t′ ∈ S and t ⇀ t′ imply t ∈ S.
Also S ∈ CR will result from Lemma 3.1.7.

1. Let t ∈ S. If t is the Daimon, it is perfectly normalising and it has no reduct.
Otherwise, t = t1t2 with t1 ∈ D and t2 ∈ A. We show by induction on their
reduction that t ∈ PNo and Red(t) ⊆ S. Term t1 is not an abstraction since it is
in a data candidate, so every reduct of t is either z (if t1 = z), or a term on the
form t′1t2 or t1t

′
2 with ti → t′i. All this reducts are in S, and they are perfectly

normalising (possibly by induction hypothesis). So Red(t) ⊆ S and t ∈ PNo.
Hence S satisfies (cr1) and (cr2).

2. Let t ⇀ t′ such that t′ ∈ S. Then t′ = t1t2 with t1 ∈ D and t2 ∈ A. Either t = t′1t2
or t1t

′
2 with t′i ⇀ ti (in that case t ∈ DA since D and A are closed by expansion

for ⇀), or t = {|θ|} · (t0t2) and t1 = {|θ|} · t0. In the last case, t ∈ ND: both
{|θ|} · t0 and t2 are defined (they are in reducibility candidates) so {|θ|} · (t0t2) also
is defined, and it is not a value. We show that all its reducts are in S. Note that
t0 is not an abstraction (if t0 = λx.t′0 then t1 → λx.{|θ|} · t′0 /∈ D), so a reduct u
of {|θ|} · (t0t2) may have three different forms:

(a) u = t′. Hence u ∈ S ⊆ S.

41

Chapter 3. A Reducibility Model

(b) u = {|θ|} · z (if t0 = z). In that case u ∈ ND and all its reducts in any
number of steps until z are in ND, so u is in S.

(c) u = {|θ′|} · (t′0t
′
2) with θ → θ′ and ti = t′i, or θ = θ′ and ti → t′i.

In that case, u ⇀ u′ = ({|θ′|} · t′0)t
′
2, and t′ → u′ so u′ ∈ S by (cr2).

Thus u ∈ S by induction hypothesis.

Hence any reduct of t is in S, and thus t ∈ S by (cr3).

By Lemma 3.1.7, DA = S ∈ CR. What is more, all values of DA are in DA, thus they
are applications, so they are data-structures. Finally, DA ∈ DC.

Notice that we consider the closure of set application for a data-candidate
and a candidate. In general, the closure of the application of two reducibility
candidates would not form a reducibility candidate, as shown in the following
example. This is intuitively due to the same reason why we do not consider
general type application, but we restrict it to data-types: good properties (among
which the perfect normalisation property) are insured to be preserved by applying
a term t to u if t is not (and does not reduce on) an abstraction.

Example 3.1.7 . Consider the reducibility candidate A = {I}, where I = λx.x

Then II ∈ AA, but II → I and I /∈ AA. Thus AA is not closed under (cr2) and

thereby is not a reducibility candidate.

Intersection. As usual1, reducibility candidates are well-designed for set in-
tersection.

Lemma 3.1.14. Let (Ai)i∈I be a family of reducibility candidates, and (Di)i∈I
a family of data-candidates. Then,

⋂
i∈I Ai ∈ CR and

⋂
i∈I Di ∈ DC.

Proof : Each of the conditions (cr1), (cr2), (cr3) and (cr4) is preserved by intersec-
tion, so

⋂
i∈I Ai and

⋂
i∈I Di are reducibility candidates. Moreover, the values of

⋂
i∈I Di

are values of data-candidates, hence they all are data-structures. Hence,
⋂

i∈I Di ∈
DC.

Union. For a long time, union has been considered as problematic for Girard’s
reducibility candidates (see for instance [Wer94, Sec. 3.8.4]). The main difficulty
is that condition (cr3) is not preserved by union: if S and S′ are two sets closed
under (cr3), and t is a normal term such that Red(t) ⊆ S ∪S′, it does not mean
that Red(t) ⊆ S or Red(t) ⊆ S′. That is why we cannot conclude in general
that t ∈ S ∪ S′.

However, [Rib07b] proposes a detailed analysis of reducibility candidates, and
highlights a sufficient condition for them to be stable under union: the so-called
principal reduct property. This condition is valid in our calculus (Lem. 3.1.11).
Also we adapt the proof of Riba to our definition of reducibility candidates in
order to get their stability under union.

1The different versions [GLT89, Tai67, Par93] of reducibility candidates aim to interpret
polymorphic type system, and the second-order universal quantification is always interpreted
by a generalised intersection.

42

3.2. Denotational model

Lemma 3.1.15. For any family (Pi)i∈I , of pre-candidates,
⋃
Pi ⊆

⋃
P i.

Proof : By induction on t ∈
⋃
Pi, we show that t ∈ P j for some j ∈ I.

1. If t ∈
⋃
Pi, then there is j ∈ I such that t ∈ Pj , hence t ∈ Pj

2. If t ∈ ND and Red(t) ⊆
⋃
Pi, let u be a principal reduct of t. Then V(t) = V(u)

(Lem. 3.1.11). Since u ∈ Red(t), u ∈ Pj for some j by induction hypothesis. So
V(u) ⊆ Pj by (cr2), and using Lem. 3.1.9 we get t ∈ Pj .

Corollary 3.1.16. Let (Ai)i∈I be a family of reducibility candidates, and (Di)i∈I
a family of data-candidates. Then,

⋃
i∈I Ai ∈ CR and

⋃
i∈I Di ∈ DC.

Proof : All candidates Ai satisfy (cr3), thus Ai = Ai for any i. By Lem. 3.1.15, it
means that

⋃
Ai is included in

⋃
Ai. The converse inclusion also holds by definition,

so
⋃
Ai =

⋃
Ai. Moreover,

⋃
Ai is pre-candidate since (cr1), (cr2) and (cr4) are

preserved by union. Thus
⋃
Ai is a reducibility candidate (by Lem. 3.1.6), and so

is
⋃
Ai. In the same way,

⋃
Di is a reducibility candidate, and all its values are in some

data-candidate Dj , so
⋃
Di ∈ DC.

Finally, we have provided family CR with operators arrow, union and intersec-
tion, and family DC with union and intersection. Thanks to the closure operator,
we also have an easy way to construct a new data-candidate by applying a data-
candidate to an other reducibility candidate. Also the interpretation of types by
reducibility candidates will be quite straightforward.

3.2 Denotational model

In this part we associate to every type T a reducibility candidate that contains all
the terms which are typable by T . Seeing typed terms as terms of a reducibility
candidate or a data-candidate will then enable a finer analysis of their properties.

3.2.1 Types interpretation

To achieve the definition of type interpretation, we need to give the interpretation
for type variables. For that, we use valuations, i.e. functions matching every
data-type variable to a data-candidate, and every type variable to a reducibility
candidate.

Given a valuation ρ, the interpretation of a type T in ρ, written [T]ρ, is
defined inductively in Fig. 3.1. We also associate to T (seen as a type for case
bindings) and ρ the set of case bindings JT Kρ.

Lemma 3.2.1. For every type T , if ρ is a valuation such that dom(ρ) ⊆ TV(T),
then [T]ρ ∈ CR. Moreover, if T is a data-type, then [T]ρ ∈ DC.

Proof : By structural induction on the type T , using Rem. 3.1.5 for constructor
types, Lem. 3.1.13 for application types, (3.1) for arrow types, Lem. 3.1.14 for intersec-
tion types and universal quantification, and Cor. 3.1.16 for union types and existential
quantification.

43

Chapter 3. A Reducibility Model

Type interpretation by reducibility candidates:
[α]ρ = ρ(α) [T ∩ U]ρ = [T]ρ ∩ [U]ρ

[X]ρ = ρ(X) [∀α.U]ρ =
⋂

A∈DC [U]ρ,α 7→A

[c]ρ = {c} [∀X.U]ρ =
⋂

A∈CR [U]ρ,X 7→A

[DT]ρ = [D]ρ [T]ρ [T ∪ U]ρ = [T]ρ ∪ [U]ρ

[T → U]ρ = [T]ρ → [U]ρ [∃α.U]ρ =
⋃

A∈DC [U]ρ,α 7→A

[∃X.U]ρ =
⋃

A∈CR [U]ρ,X 7→A

Type interpretation for case bindings:
JT Kρ = { θ / λx. {|θ|} · x ∈ [T]ρ}

Figure 3.1: Interpretation of types

Notice that we need to use the closure operator to interpret data types. In-
deed, for D ∈ DC and T ∈ CR, the set DT does not satisfy (cr3): if t ∈ D
and u ∈ T , with both terms in normal form, then the only reduct (assum-
ing t 6= z) of the term {|c 7→ tu|} · c is tu ∈ DT , but {|c 7→ tu|} · c itself is not an
application, and thus is not in DT . However, this interpretation of types gives a
very precise notion of data-types, considering their values.

Proposition 3.2.2. A term t is a value of [cT1 . . . Tk]ρ iff t = ct1 . . . tk
with ti ∈ [Ti]ρ for each i.

In particular, every t ∈ [cT1 . . . Tk]ρ is a perfectly normalising closed term, and
Prop. 3.1.8 insures that it reduces on a value or on the Daimon. An immediate
consequence is that t ∈ [cT1 . . . Tk]ρ implies

t→∗
ct1 . . . tk for some ti ∈ [Ti]ρ (i≤k) or t→∗ z

Proof : We show the implication, as the converse is straightforward from an induc-
tion on k. We proceed by induction on k. If k = 0, it is straightforward from the
definition of [c]ρ.

Else [cT1 . . . Tk]ρ = [cT1 . . . Tk−1]ρ[Tk]ρ, and

V([cT1 . . . Tk]ρ) = V([cT1 . . . Tk−1]ρ [Tk]ρ)

So, if t is a value of [cT1 . . . Tk]ρ it is on the form uu′ with u ∈ [cT1 . . . Tk−1]ρ and
u′ ∈ [Tk]ρ. Moreover, if uu′ is a value, it is necessarily a data structure, and u also
is a data structure. Hence u is a value of [cT1 . . . Tk−1]ρ. By induction hypothesis
u = ct1 . . . tk−1 with ti ∈ [Ti]ρ, and we conclude with tk = u′ ∈ [Tk]ρ.

Corollary 3.2.3. For any constructor c and any types T1, . . . , Tk,

[cT1 . . . Tk]ρ = c[T1]ρ . . . [Tk]ρ .

44

3.2. Denotational model

Proof : By Prop. 3.2.2, V([cT1 . . . Tk]ρ) = c[T1]ρ . . . [Tk]ρ. Since the closure operator

only adds neutral terms to a set, V(c[T1]ρ . . . [Tk]ρ) also is c[T1]ρ . . . [Tk]ρ, and Cor. 3.1.10
entails the equality.

Soundness w.r.t. sub-typing

Within this interpretation of types, the sub-typing relation becomes the usual
sub-set relation.

Lemma 3.2.4. For any types T1, T2, if T1 4 T2 then for any valuation ρ,
[T1]ρ ⊆ [T2]ρ .

Proof : By induction on the derivation of T1 4 T2. Rules Refl and Trans are trivial.
Union and intersection rules are straightforward from the definition. Introduction and
elimination rules for quantifiers ∀ and ∃ use the equality [T]ρ,ν 7→[U]ρ = [T{U/ν}]ρ.

Arrow is standard, and Discr comes from Proposition 3.2.2: [c1 ~T]ρ ∩ [c2~U]ρ has no
value if c1 6= c2 and thus is smallest than any candidate.
We detail rules App and Data, the other rules (commutation rules for type operator)
are easy to check: we actually introduced them in the calculus because they were valid
in the model (see page 26).

App:
D 4 D′ T 4 T ′

DT 4 D′T ′

Remark that D ⊆ D′ and T ⊆ T ′ imply DT ⊆ D′T ′, and notice that the closure
operator is monotonic on sets of terms.

Data: D 4 T → DT

Let ρ a valuation and t ∈ [D]ρ. Now choose u ∈ [T]ρ. Then tu ∈ [D]ρ[T]ρ, and

this set is included in [D]ρ[T]ρ = [DT]ρ. Hence tu ∈ [DT]ρ for all u in [T]ρ,
so t ∈ [T → DT]ρ.

Inhabitants of bottom

In System F , type False is represented by ∀X.X. In our type system, there is
the same False type, but also a False data-type ∀α.α. Since every data-type is a
type, ∀X.X 4 ∀α.α is, unsurprisingly, derivable:

∀−elim
∀X.X 4 α

∀−intro
∀X.X 4 ∀α.α

In the reducibility model these both types are actually identified:

[∀α.α]ρ = [∀X.X]ρ = ∅ .

Indeed, ∅ is included in every reducibility candidates (by (cr3)), so ∅ ⊆ [∀α.α]ρ.
Moreover, [∀α.α]ρ ⊆ [c]ρ∩[c

′]ρ (where c and c’ are any two different constructors),

and [c]ρ ∩ [c′]ρ is a reducibility candidates with no value. Hence [∀α.α]ρ ⊆ ∅.

Every term of ∅ is perfectly normalising, so it reduces on a normal form in ∅.
By Prop. 3.1.8, it necessarily reduces on the Daimon. In fact the semantics of
False type (and False data-type) contains all perfectly normalising terms that
are what is sometimes called hereditarily neutral : terms that never reduces on a
value.

45

Chapter 3. A Reducibility Model

3.2.2 Soundness

In this section we prove the adequacy of the model: if a λC -term has type T ,
then it belongs to the interpretation of T (and thus is perfectly normalising).

The reducibility candidates model deals with closed terms, whereas proving
the adequacy lemma by induction requires the use of open terms —with some as-
sumptions on their free variables, that will be guaranteed by a context. Therefore
we use substitutions σ, τ to close terms and case bindings M :

σ, τ := ∅ | x 7→ u;σ M∅ =M ; Mx 7→u;σ =M [x := u]σ,

We complete the interpretation of types with the one of judgements: given a
context Γ, we say that a substitution σ satisfies Γ for the valuation ρ (nota-
tion: σ ∈ [Γ]ρ) when

(x : T) ∈ Γ implies σ(x) ∈ [T]ρ .

A typing judgement Γ ⊢ t : T (or Γ ⊢ θ : T) is said to be valid (notation: Γ � t : T
or Γ � θ : T respectively) if for every valuation ρ and every substitution σ ∈ [Γ]ρ,

tσ ∈ [T]ρ (resp. θσ ∈ JT Kρ)

The proof of adequacy requires a kind of inversion lemma for CR. Remember
that Red∗(t) denotes the set of all reducts (in any number of steps) of a term t.

Lemma 3.2.5. For any A ∈ CR, any terms t, u, and every non-empty non-
expansed candidate S,

tu ∈ A ⇔ t ∈ Red∗(u)→ A (3.2)

λx.t ∈ S → A ⇔ for all s ∈ S, t[x := s] ∈ A (3.3)

Proof : (3.2) If tu ∈ A then for any u′ ∈ Red∗(u), tu →
∗ tu′, hence tu′ ∈ A

by (cr′
2). So t ∈ Red∗(u)→ A.

Conversely, if t ∈ Red∗(u)→ A then tu ∈ A since u ∈ Red∗(u).

(3.3) If λx.t ∈ S → A, then for any s ∈ S, (λx.t)s ∈ A, so (λx.t)s → t[x := s] implies
t[x := s] ∈ A by (cr2). Now, if t[x := s] ∈ A for some s ∈ S, then t ∈ PNo

by Lem. 2.1.2. Moreover, for any s′ ∈ S, we can easily check by induction on
the reduction of t and s′ that (λx.t)s′ ∈ A: it is in ND, and all its reducts are
in A.

Remark 3.2.1 . If u ∈ PNo, then Red∗(u) is a non-expansed candidate, and so
Red∗(u)→ A ∈ CR by Lem. 3.1.12. Also, if ui ∈ PNo for 1 ≤ i ≤ k, then

t u1 . . . uk ∈ A ⇔ t ∈ Red∗(u1)→ . . .→ Red∗(uk)→ A

directly results from (3.2) and an induction on k.

46

3.2. Denotational model

The following lemma will help proving the correctness of the typing rule Cb
in the model:

Cb
Γ ⊢ u : ~U → T θd typable for each d ∈ dom(θ)

Γ ⊢ θ : c~U → T
(c 7→u∈θ)

Lemma 3.2.6. Let A1, . . . ,Ak,B ∈ CR and θ ∈ PNo. Assume c 7→ u ∈ θ, with
u ∈ ~A → B (where ~A = A1; . . . ;Ak). Then

t ∈ cA1 . . .Ak =⇒ {|θ|} · t ∈ B

Proof : We prove that for all θ ∈ PNo with c 7→ u ∈ θ and u ∈ ~A → B, and for all
t ∈ cA1 . . .Ak, the term {|θ|} · t is in B.
If t is a value then t = ct1 . . . tk with ti ∈ Ai, so

{|θ|} · t ∈ B iff ({|θ|} · c)t1 . . . tk ∈ B (cr′
2), (cr

′
4)

iff {|θ|} · c ∈ Red∗(t1)→ · · · → Red∗(tk)→ B (Rem. 3.2.1)
But Red∗(ti) ⊆ Ai, so A1 → · · · → Ak → B ⊆ Red∗(t1) → · · · → Red∗(tk) → B. More-

over an immediate induction on the reduction of θ ensures that {|θ|} · c is in ~A → B:

this term is in ND and its reducts are either {|θ′|} · c with θ → θ′ (that is in ~A → B by

induction hypothesis), or u (that is in ~A → B by hypothesis). So {|θ|} · c is in ~A → B
by (cr3), thus it belongs to Red∗(t1)→ · · · → Red∗(tk)→ B and so {|θ|} · t ∈ B.

Now assume t is neutral. It has the form ht1 . . . tn with h = z or h = {|φ|} · h0 and
n ≥ 0, or h = λx.h0 and n ≥ 1. We prove that {|θ|} · t is in B by induction on the
reductions of θ and t.

1. First consider the cases where h =? or {|φ|} · h0, and n ≥ 0:
{|θ|} · t ∈ B iff ({|θ|} · h)t1 . . . tn ∈ B (cr′

2), (cr
′
4)

iff {|θ|} · h ∈ Red∗(t1)→ ··· → Red∗(tn)→ B (Rem. 3.2.1)
Note that {|θ|} · h ∈ ND and Red∗(t1) → · · · → Red∗(tn) → B is a reducibil-
ity candidate by Lem. 3.1.12. So it is sufficient to show that it contains all
reducts of {|θ|} · h. They are either z, or {|θ′|} · h′ with θ → θ′ and h = h′

or h → h′ and θ = θ′. The Daimon is in every reducibility candidate, and
{|θ′|} · h′ ∈ Red∗(t1) → · · · → Red∗(tk) → B by induction hypothesis. So
{|θ|} · h ∈ Red∗(t1)→ · · · → Red∗(tk)→ B by (cr3), and {|θ|} · t ∈ B.

2. Now consider the case where h = λx.h0 (with x /∈ fv(θ)), and n ≥ 1.
{|θ|} · t∈ B iff (λx.{|θ|} · h0)t1 . . . tn ∈ B (cr′

2), (cr
′
4)

iff λx.{|θ|} · h0 ∈ Red∗(t1)→· · ·→Red∗(tn)→B (3.2)
iff for all s ∈ Red∗(t1),

{|θ|} ·h0[x := s] ∈ Red∗(t2)→···→Red∗(tk)→B (3.3)
Furthermore, for any s ∈ Red∗(t1), t→

∗ (λx.h0) s t2 . . . tn → h0[x := s] t2 . . . tn ;
thus {|θ|} · (h0[x := s]t2 . . . tn) ∈ B by induction hypothesis.
Hence, ({|θ|} · h0[x := s])t2 . . . tn ∈ B by (cr′

2), and thus by (3.2), {|θ|} · h0[x := s]
belongs to Red∗(t2)→ · · · → Red∗(tk)→ B. Also {|θ|} · t ∈ B.

Finally, {|θ|} · t always belongs to B.

Adequacy lemma We finally prove that every derivable judgment is valid.

47

Chapter 3. A Reducibility Model

Proposition 3.2.7 (Adequacy). Given a term t, a case binding θ, a context Γ
and a type T ,

Γ ⊢ t : T ⇒ Γ � t : T (3.4)

Γ ⊢ θ : T ⇒ Γ � θ : T (3.5)

Proof : The proof is proceeds by induction on the derivation of Γ ⊢ t : T or Γ ⊢ θ : T .
If the judgement is introduced by the rule Init,False (remember that z is in every
reducibility candidate) or Constr,then it is obvious. If it comes from → elim it is a
direct consequence of the definition of arrow in CR, and the case→ intro is a consequence
of (3.3).
If it comes from Inter, Union, or Univ it is straightforward from induction hypothesis.
If it comes from Subs, it is a consequence of Lem. 3.2.4. We detail the proof in case the
derivation comes from rule CB or Exist (Inter is similar to this last one).

Cb:
(Γ ⊢ uj : ~Uj → Tj)

n
j=1

Γ ⊢ θ : ci ~Ui → Ti
with θ = {cj 7→ uj / 1 ≤ j ≤ n}

Remember that the interpretation of a type T , seen as a type for case bindings is
JT Kρ = {θ / λx.{|θ|} · x ∈ [T]ρ}. Note (Ui1 . . . Uik) = ~Ui, choose ρ a valuation and

σ ∈ [Γ]ρ, and show that λx.{|θσ|} · x ∈ [ci~Ui → Ti]ρ. Let t ∈ [ci~Ui]ρ. By induction
on the reduction of θσ and t, we show that (λx.{|θσ|} ·x)t ∈ [Ti]ρ. This is a neutral
term, so it is sufficient to show that all its reducts are in [Ti]ρ. Thanks to induction
hypothesis we just have to consider the reduct {|θσ|} · t.

By Cor. 3.2.3, t ∈ ci[Ui1]ρ . . . [Uik]ρ, and Γ ⊢ ui : ~Ui → Ti implies
uiσ ∈ [Ui1]ρ → . . . → [Uik]ρ → [Ti]ρ by induction hypothesis. All terms in θσ
are perfectly normalising, so we can use Lem. 3.2.6 to get {|θσ|} · t ∈ [Ti]ρ. Hence

λx.{|θσ|} · x ∈ [ci~Ui → Ti]ρ, wich means θσ ∈ Jci~Ui → TiKρ.

Exist:
Γ, x : T ⊢ t : U

Γ, x : ∃ν.T ⊢ t : U
ν /∈TV(U)

Choose a valuation ρ, and a substitution σ ∈ [Γ, x : ∃ν.T]ρ.
Then σ(x) ∈

⋃
A∈CR [T]ρ,ν 7→A. Hence there is some A ∈ CR such that

σ(x) ∈ [T]ρ,ν 7→A. Also σ ∈ [Γ, x : T]ρ,ν 7→A. By induction hypothesis,
(Γ, x : T) � t : U , so tσ ∈ [U]ρ,ν 7→A. Since ν /∈ TV(U), it means that tσ ∈ [U]ρ.

Remark 3.2.2 . For a closed term t and a closed type T we immediately get

[T] ∈ CR , and ⊢ t : T ⇒ t ∈ [T] .

3.2.3 Perfect normalisation without CaseCase

Remembering that reducibility candidates are included in PNo, an immediate
consequence of Rem. 3.2.2 is the perfect normalisation of typed λ−

C
-calculus.

Theorem 3.1. Every well typed term is perfectly normalising for λ−
C
.

48

3.2. Denotational model

Furthermore, every closed and defined normal form is a value or the Daimon
(Prop. 3.1.8). Since the Daimon is never created by a reduction step, typing a
term with no subterm z ensures that it strongly reduces —and without case
composition— to a value. We can even be more precise concerning data types:
if a term (written without z) has type cT1 . . . Tk, then it reduces on a data
structure ct1 . . . tk (Prop. 3.2.2).

Now let us call a pure value a data-structure whose all sub-terms are data-
structures (such as cons 0 (cons (S(S0)) nil) for instance) and a pure data type a
data type whose all sub-types are data-types.

A pure value is trivially typable by a pure data-type (just replace every con-
structor c in the term by the corresponding type constructor c to obtain the type,
and use Constr and Data to derive the typing judgement). Conversely, every
closed defined normal term without z in a pure data type is a pure value (by
induction on the structure of the term, using Prop. 3.2.2).

Hence, if t is a term written without the Daimon, and D is a pure data type,

⊢ t : D =⇒ t strongly reduces in λ−
C
on a pure value of D

(where a pure value of cD1 . . . Dk has form cv1 . . . vk with vi a pure value of Di).
In that sense, we can say that case composition is unessential in this calculus:

it is not necessary to reach pure values.

Conclusion and future work

The reducibility model we have presented here ensures all the properties we
expected for the type system proposed in previous chapter. It is a syntactical
model and we conjecture that the typed λ−

C
-calculus is complete for this model,

in the sense that if a term t is in the interpretation of a type T , then ⊢ t : T is
derivable. In Chap. 5 we construct a non-syntactic model for the untyped lambda
calculus with constructors in a category of domains.

However we did not deal with the issue of a non-syntactical model for the
typed (restricted) λC -calculus. In particular, the semantic meaning of type appli-
cation remains to be established (even in the realisability model its interpretation
is not straightforward, and we have to use a closure operator). More precisely,
it would be interesting to define a notion of application types in the categorical
setting.

49

Chapter 3. A Reducibility Model

50

Chapter 4

Categorical model

Denotational semantics aims to interpret programs (including programs that do
not have normal form) by some values (the denotations). It is not concerned with
the computational behaviour of a program, but with its extensional properties.
The denotations are objects of some mathematical structure. The most basic
one is the universe of sets and functions, but more structured classes such as
lattices or topologies are often considered. Category theory outlines an abstract
setting to describe those mathematical structures. It provides elementary tools
to express what are the essential properties that a model must satisfy.

In Chap. 3, we have defined a denotational model (of reducibility candidates)
for the typed lambda calculus with constructors, whom the perfectly normalising
theorem resulted from. Here, we establish a notion of a model for the untyped λC -
calculus. We define it in a categorical framework, so that it can be instanciated
in different “concrete” mathematical structures.

We first recall briefly the categorical notions that we may need in the course
of the chapter. Then we formalise what we call a λC -model, and we explain how
to interpret the λC -terms in such a model. We also prove that this interpretation
is sound, in the sense that two λC -equivalent terms receive the same denotation.
Finally we may present a λC -model (the PER-model) that is complete for terms
with no match failure, in the sense that it attributes different denotations to
defined terms that are not extensionally equal.

4.1 A quick introduction to categories

Category theory is predicated on the idea that many properties of different math-
ematical constructions can be expressed in a unified way. Concepts of different
fields of mathematics (such as Set theory, as well as Topology among others) are
abstracted and enunciated with objects (that are nothing more than vertexes of
a graph) and arrows. Category theory is then a study of how these objects and
morphisms are structured all together.

It appears that it also proposes an appropriate setting for situations that
concern computer scientists. In this thesis we only need very basic notions of

51

Chapter 4. Categorical model

category theory, that we introduce in this section. The interested reader might
refer to the Mac Lane’s monograph [Lan71] for a more in-depth presentation.

4.1.1 Definitions and examples

A category C is given by:

• A collection of objects Obj(C) written A,B,C etc.

• For each pair of objects (A,B), a collection of morphisms C[A,B] written
f, g, h, etc.
We may write f : A→ B when f is a morphism of C[A,B].

• For each object A, an identity morphism IdA : A→ A.

• For each objects A,B,C, a composition operation: if f : A → B and
g : B → C then f ; g : A → C. This composition is associative and has
identity morphisms as neutral elements:

f ; (g ; h) = (f ; g) ; h f ; IdB = f = IdA ; f

Example 4.1.1 (Category of sets) . Set is the category whose objects are sets,
and such that Set[A,B] is the set of functions from A to B. Identity morphisms
and composition are the usual identity functions and composition of functions.

Objects and morphisms of a category C are usually represented with a graph
(a graph is just a family of vertexes with a family of arrows between them): a
vertex represents an object, and an arrow from A to B represents a morphism
of C[A,B]. We call diagram the interpretation of a graph in a category. A path
from A to B in a graph is a sequence of arrows

A = A1 A2 A3 · · · An−1 An = B .
f1 f2 fn−1

The interpretation of a path in a category is the composition of the morphisms
represented by each edge. Also the path above, seen as a diagram, is the mor-
phism f1 ; f2 · · · ; fn−1. We say that a diagram commutes when each path
from A to B represents the same morphism, for any vertexes A and B.

Example 4.1.2 . In the category Set, let Nat and Bool be the sets of natural
numbers and of Booleans respectively. Write S the successor function on natural
numbers, even the function that says whether a natural number in argument
is even or not, and neg the negation function on Booleans. Then the following
diagram commutes:

Nat Bool

Nat Bool

even

negS

even

52

4.1. A quick introduction to categories

Isomorphisms An isomorphism between A and B is given by two morphisms
f : A→ B and g : B → A such that f ; g = IdA and g ; f = IdB. When such an
isomorphism exists we say that A and B are isomorphic, what we write A ∼= B,
or, to make the isomorphism explicit:

A B .∼=

f

g

To be isomorphic is an equivalence relation, also we may sometimes consider
objects up to isomorphisms.

4.1.2 Cartesian closed category

Products The categorical product is a generalisation of the Cartesian product
of sets. The product of two objects A and B of a category C is given by an
object A × B of C and two morphisms π1 : A × B → A and π2 : A × B → B
(respectively called the first and second projection of A × B) such that, for any
object C with morphisms f : C → A and g : C → B, there exists a unique
morphism h : C → A×B such that the following diagram commutes:

C

A×BA B

h
f g

π
1

π
2

The morphism h is the only one that makes the diagram
commutes, that is why we draw it with a dashed line. We
call it the pairing of f and g, and we denote it by 〈f, g〉.
Notice that because the uniqueness of h, the product of
two objects is unique up to isomorphism.

We can recognise the usual properties of the projections of Cartesian product:

f = 〈f, g〉 ; π1 g = 〈f, g〉 ; π2 h = 〈(h;π1) , (h;π2)〉

(The last equation results form the uniqueness of pairing, and is called the sur-
jective pairing property).

Notice that the categorical product is associative and commutative up to
isomorphisms:

(A×B)× C A× (B × C)∼=

〈(π
1
;π

1
) , 〈(π

1
;π

2
) , π

2
〉〉

〈〈π
1
, (π

2
;π

1
)〉 , (π

2
;π

2
)〉

A×B B ×A∼=

〈π
2
, π

1
〉

〈π
2
, π

1
〉

If A and B have a product, and A′ and B′ also, then for any f : A → B
and g : A′ → B′ we write f × g the morphism 〈(π1; f) , (π2; g)〉. It is called
the product of f and g, and it is the unique morphism such that the following

53

Chapter 4. Categorical model

diagram commutes:

A A×B B

A′ A′ ×B′ B′

f×g

π
1

π
1
′

f

π
2

π
2
′

g

Generalised product The definition of the categorical product can be easily
extended to generalised products. A family of objects (Ai)i∈I has a product if
there is an object Πi∈IAi and a family of projection morphisms πj :

(
Πi∈IAi

)
→

Aj indexed by I such that for any object C with morphisms fi : C → Ai, there
is a unique morphism h : C → Πi∈IAi such that fi = h;πi for all i ∈ I.

• Finite product: If I = J1..nK, then Πi∈IAi is called the n-ary product
of A1, . . . , An−1 and An. We might write it A1 × . . . × An, or A

n if all
the Ai’s are the same object A. We also write πni : A1× . . .×An → Ai the
ith projection morphisms.

• Terminal object: If I is the empty set, then Πi∈IAi is written 1, and is
called a terminal object. It is the unique object (up to isomorphism) such
that for any C there is a unique morphism !C : C → 1.

Definition 4.1.1 (Cartesian category)

A category C is Cartesian if it has a terminal object 1 and if, for any
objects A and B the product of A and B exists.
In such a category, there is a unique morphism !A in C[A,1] for each
object A, and a morphism in C[1, A] is called a point of A.

Remark 4.1.3 . A category is Cartesian iff it has all finite products of objects.
Indeed, in the same way that we showed the associativity up to isomorphism, we
can decompose any n-ary product in binary products:

A1 ×A2 × · · · ×An
∼= A1 ×

(
A2 × (· · · ×An)

)

Exponent In a Cartesian category C, the exponent of to objects A and B
is given by an object BA and a morphism ev : BA × A → B such that, for
any object C with a morphism f : C × A → B, there is a unique morphism
in C[C → BA] (that we write Λ(f)) such that the following diagram commutes:

C C ×A B

BA BA ×A

Λ(f)

f

Λ(f)×IdA ev

54

4.2. Categorical model of λC

The morphism Λ(f) is called the curried form of f . Since, conversely, the
morphism f is uniquely determined from Λ(f) (as f = (Λ(f)× Id) ; ev), we may
call it the uncurried form of Λ(f).

Definition 4.1.2 (Cartesian Closed Category)

A Cartesian category C is closed if every pair of objects has an exponent.
In that case we say that C is a CCC.

The category Set is Cartesian closed: for any two sets A and B, the object BA

is the set of functions form A to B, and ev is the evaluation function.
We give some trivial properties of Cartesian closed categories that will be

needed in the following.

Lemma 4.1.1. If A and A′ are isomorphic, as well as B and B′, then A × A′

and B ×B′ are isomorphic:

A B∼=

f

f ′
and A′ B′∼=

g

g′
implies A×A′ B ×B′∼=

f × g

f ′ × g′

Lemma 4.1.2. In a CCC, for any morphisms f : A → A′, g : B → B′ and
h : C → C ′ both following diagrams commute:

(A×B)× C A× (B × C)

(A′ ×B′)× C ′ A′ × (B′ × C ′)

∼=

(f×g)×h f×(g×h)

∼=

1×A A A× 1

1×A′ A′ A′ × 1

f

∼=

∼=

1×f

∼=

∼=

f×1

Lemma 4.1.3. In any CCC, given four objects A,B,C and C ′, and three mor-
phisms g : C ×A→ B, g′ : C ′ ×A→ B and h : C → C ′,

Λ(g) = h; Λ(g′) ⇐⇒ g = (h× IdA); g
′ .

Proof : By uniqueness of the exponent.

The following proposition corresponds to the currification of functions:

Proposition 4.1.4. In a CCC, for any three objects A, B and C,

CB×A ∼= (CB)A.

4.2 Categorical model of λC

4.2.1 Lambda calculus and CCC

In functional languages, functions are values. They can be either applied or
given as argument to other programs. In this sense, functions on programs live

55

Chapter 4. Categorical model

in the same universe as programs themselves. This intuition is well conveyed
in Cartesian closed categories: if two objects A and B represent certain classes
of programs, then there is also an object BA representing the functions on the
programs of A that return a program of B.

It is well known [AL91, Chap. 8] that Cartesian closed categories have exactly
the good structure to interpret the typed lambda calculus. The idea is to interpret
a type T by an object AT in a CCC and a judgement x1 : U1, . . . , xk : Uk ⊢ t : T
by a morphism [t] : AU1

× . . .×AUk
→ AT . In particular, a closed term of type T

is represented by a point of AT .
In the untyped lambda calculus, we artificially add a unique type T for all

terms, and we interpret it with an object D. A term t with free variables
in x1, . . . , xk is interpreted like the judgement x1 : T, . . . , xk : T ⊢ t : T in
the typed setting, i.e. by a morphism of Dk → D.

Without type, any term can be applied to an other one, which means that
any point t of D can be seen as a function on terms, i.e. as a point of DD. Let
us use the informal notation x̂.t to denotes the function u 7→ t[x := u]. Then we
need a morphism app : D → DD

t 7→ x̂.(tx)
(where x is fresh in t).

In the same way, a substitutive variable in an open term can be bound by a
λ-abstraction. Also we need a converse morphism lam : DD → D

x̂.t 7→ λx.t
.

Now, if the model validates the β-reduction, it means that for any points t, u
of D, (λx.t)u ≃ t[x := u]. One one hand,

(λx.t)u = (app (λx.t)) (u) = (app (lam (x̂.t))) (u) .

On the other hand, t[x := u] = x̂.t (u). Thus the β-reduction requires the
equality lam ; app = IdDD . This leads to the notion of reflexive object.

Definition 4.2.1 (Reflexive object)

In a Cartesian closed category, an object D is reflexive if there are two
morphisms app : D → DD and lam : DD → D such that lam; app = IdDD .

If in addition app; lam = IdD then D is isomorphic to DD. In this case the
η-rule is valid too. Indeed, for any point t of D with x /∈ fv(t), then

λx.(tx) = lam(x̂.(tx)) = lam(app(t)) .

Hence app; lam = IdD implies λx.(tx) ≃ t if t /∈ fv(t).

In the next section we constrain a CCC with a bit more structure in order to
build a model for the lambda calculus with constructors.

4.2.2 λC -models

From now on, we consider that the set of constructors is finite:

C = {c1, . . . , cn} .

56

4.2. Categorical model of λC

Furthermore, in this chapter we restrict the calculus: we drop out the Daimon
in order not to overload the definition of a λC -model. It is possible since the
λC -calculus with no Daimon is stable by reduction (cf. the paragraph on Daimon
rules page 16), and we will see in next chapter that z can be encoded with a
term having the same behaviour in pure λC -calculus.

Also in this chapter, λC denotes the lambda calculus with no Daimon and no
Daimon rules (but with rule CaseCase).

Like for the pure lambda calculus, a Cartesian closed category C that is
a model for the untyped λC -calculus is provided with an object D isomorphic
to DD. Terms are interpreted by points of D. In particular, each constructor c
is interpreted by a special morphism c∗ : 1→ D.

A case-binding θ = {ci 7→ ui/1 ≤ i ≤ n} is interpreted by a point of Dn.
Such a point is informally written ~u or (ui)

n
i=1, and we then denotes by {~c 7→ ~u}

the case-binding θ that it represents. The way we interpret θ if dom(θ) 6= J1..nK
is detailed in the discussion p. 58. In the syntax, the case construct builds a
term {|θ|} · t from a case-binding θ and a term t. It corresponds in the model to
this morphism:

case : Dn ×D → D
(~u, t) 7→ {|~c 7→ ~u|} · t

Then {|ci 7→ ui/1 ≤ i ≤ n|} · ci ≃ ui (rule CaseCons) means that
case (~u, ci) ≃ πni (~u). This amounts to the commutation of the diagram (D2)
(Fig. 4.1). In the same way, the rule CaseCase is valid if the diagram (D5)
commutes, i.e. if

Dn ×D ×D Dn ×DD ×D Dn ×D D

(~u, t, t′) (~u , x̂.tx , t′) (~u , tt′) {|~c 7→ ~u|} · (tt′)

×app× ×ev case

is equal to

Dn ×D ×D D ×D DD ×D D

(~u, t, t′) ({|~c 7→ ~u|} · t , t′)
(
x̂.({|~c 7→ ~u|} · t)x , t′

)
({|~c 7→ ~u|} · t) t′

case× app× ev

To express the rule CaseLam we need a morphism that abstracts the case con-
struct from a variable:

case◦ = Λ(fcase) : Dn ×DD → DD

(~u, x̂.t) 7→ x̂. {|~c 7→ ~u|} · t

where fcase = (Dn ×DD)×D Dn × (DD ×D) Dn ×D D
∼= IdDn×ev case

.

57

Chapter 4. Categorical model

Then the rule CaseLam is valid if (D4) commutes:

Dn ×DD DD D

(~u, x̂.t) x̂.{|~c 7→ ~u|} · t λx.{|~c 7→ ~u|} · t

case◦ lam
= Dn ×DD Dn ×D D

(~u, x̂.t) (~u, λx.t) {|~c 7→ ~u|} · λx.t

×lam case

In the same way, the rule CaseCase requires a morphism for the composition
of case-bindings:

• : Dn ×Dn → Dn

(~u, (ti)
n
i=1) 7→ ({|~c 7→ ~u|} · ti)

n
i=1

It is defined as the pairing of the morphisms (IdDn ×πni); case, for 1 ≤ i ≤ n. So
it is the unique morphism that makes the diagram on the following commute.

Dn ×Dn

Dn ×D · · · Dn ×D

D · · · D

Dn

Id×πn
1 Id×πn

n

case case

πn
1

πn
n

•

Then the commutation of the diagram (D5) validates the rule CaseCase.

Interpretation of incomplete case-bindings. Interpreting a case-binding
{ci 7→ ui/1 ≤ i ≤ n} like the n-tuple (ui)

n
i=1 raises the problem of how to

interpret an “incomplete” case-binding θ (with dom(θ) (J1..nK). The solution
we have chosen here consists in adding a constant ` in the model. Then we
interpret θ by the n-tuple (ui)

n
i=1, where ui = θci if ci ∈ dom(θ), and ui = `

otherwise.

This is not completely satisfactory, since it leads to unifying some non con-
vertible terms, such as for instance {|c1 7→ λx.x|} · c2 and {|c2 7→ λx.xx|} · c1: the
first term is represented by {|λx.x, `|} · c2 (assuming n = 2) which is equal to `,
and the second one by {|`, λx.xx|} · c1 which is also equal to `1.

Moreover, this design requires an additional equivalence in the model, that
corresponds to the propagation of undefined branches of a case-binding while
case-commutation. Indeed, if ci /∈ dom(φ), then ci /∈ dom(θ ◦ φ) for any case-
binding θ. Also θ ◦ φ should be represented by a n-tuple whose ith component
is `. Yet, θ ◦ φ is interpreted by a n-tuple whose ith component is {|θ|} · ui if
ci 7→ ui ∈ φ, and {|θ|} · ` if ci /∈ dom(φ). That is why we need the equivalence
{|θ|} · ` ≃ ` (which corresponds to the commutation of (D6)).

1We could also have chosen to add n different constants `1, . . . , `n in the model, each one to
complete only one branch of the case-binding. In that case {|c1 7→ λx.x|} · c2 would have receive
the denotation `2, and {|c2 7→ λx.xx|} · c1 the denotation `1. However, {|c1 7→ λx.x|} · c2 and
{|c1 7→ λx.xx|} · c2 would both be interpreted by `2 whereas they are not λC -equivalent.

58

4.2. Categorical model of λC

LamApp/AppLam CaseCons

(D1) D DD

app

lam

IdD Id
DD

(D2)

Dn Dn × 1

D Dn ×D

∼=

πn
i Id×c∗i

case

CaseApp CaseLam

(D3)

(Dn ×D)×D

D ×D

DD ×D

Dn × (D ×D)

Dn × (DD ×D)

Dn ×D

D

case×Id

app×Id

ev

∼=

Id×(app×Id)

Id×ev

case

(D4)

Dn ×DD DD

Dn ×D D

case◦

Id×lam lam

case

CaseCase

(D5)

(Dn ×Dn)×D

Dn ×D

Dn × (Dn ×D)

Dn ×D

D

•×Id

case

∼=

Id×case

case

(D6)

Dn × 1 Dn ×D

1 D

IdDn×`

`

π
2 case

Figure 4.1: Commuting diagrams in a λC -model

59

Chapter 4. Categorical model

Definition 4.2.2 (λC -model)

A categorical model for the untyped λC -calculus is
M = (C , D , app , lam , (c∗i)

n
i=1, `, case) where

• C is a Cartesian closed category,

• The object D of C is isomorphic to DD,

• All the c∗i ’s and ` are points of D,

• app is a morphism of D → DD, lam is a morphism of DD → D and
case a morphism of Dn ×D → D,

• The six diagrams of Fig. 4.1 commute ((D2) must commute for every
i ∈ J1..nK).

Equivalent definition. In fact we can simplify the definition of a λC -model,
since the diagrams (D3) and (D4) are equivalent within the isomorphism D ∼=
DD. This can be understood from a syntactical point of view, given that the
commutation of the diagram (D3) validates the rule CaseApp, and the one
of (D4) validates CaseLam. Remember that the rule CaseLam was introduced
in the calculus in order to close a critical pair (cf. Sec. 2.1.3). Thus considering
λC -equivalence instead of reduction steps, it entails thatCaseApp andCaseLam
are redundant in presence of AppLam:

{|θ|} · (λx.t) u

{|θ|} · t[x := u] ({|θ|} · λx.t) u

(λx.{|θ|} · t) u

AppLam CaseApp

CaseLamAppLam

Hence if CaseApp and AppLam are valid then ({|θ|} · λx.t) u ≃ (λx.{|θ|} · t) u,
and if CaseLam and AppLam are valid then {|θ|} · (λx.t)u ≃ ({|θ|} · λx.t) u.

This is formalised in the semantic setting by the following proposition.

Proposition 4.2.1. If lam and app form an isomorphism between D and DD,
then the diagram (D3) commutes if and only if the diagram (D4) commutes.

Proof : Since (D1) commutes, (D4) commutes iff the following diagram commutes:

Dn ×DD DD

Dn ×D D

case
◦

Id×lam app

case

.

60

4.2. Categorical model of λC

Write f = IdDn×lam; case; app. Since case◦ = Λ(∼=; IdDn×ev; case), and by uniqueness
of the exponent, f = case◦ if and only if the following diagram commutes:

(Dn ×DD)×D D

DD ×D

∼= ; IdDn×ev ; case

f×;IdD ev

We can detail this diagram as follows:

(Dn ×DD)×D Dn × (DD ×D) Dn ×D

(Dn ×D)×D Dn × (D ×D)

D ×D DD ×D D

(Id×lam)×Id ∼= (Id×app)×Id

∼= IdDn×ev

case

case×IdD

app×IdD
ev

∼=

IdDn×(app×IdD)

(D3)

�

Since the sub-diagram in the upper-left corner commutes (by Lem. 4.1.2), (D4) commutes
if and only if (D3) commutes.

So we can omit the commutation of (D3) or the one of (D4) in the definition
of a λC -model.

4.2.3 Soundness

Here we formalise the fact that the notion of λC -models we gave in the previous
section effectively defines sound models for the untyped λC -calculus. Remember
that ≃λC

denotes the reflexive, transitive and symmetric closure of →, the re-
duction relation in the λC -calculus (with no Daimon).

Theorem 4.1 (Soundness). If M = (C, D, lam, app, (c∗i)
n
i=1, case, `) is

a λC -model, then we can interpret each closed λC -term t by a point [t] of D
such that

t ≃λC
t′ =⇒ [t] = [t′]

The interpretation of a term is defined by structural induction, so we need to
consider open terms. Given Γ = x1, · · · , xk a list of variables and t a term (or θ a
case-binding) whose all free variables are in Γ, [t]Γ is a morphism of Dk → D (or
[θ]Γ is a morphism of Dk → Dn) defined by induction in Fig. 4.2. If a term t is
closed, we then write [t] = [t]∅ its denotation in 1→ D. We prove the Theo. 4.1
for all the λC -terms, included the open ones.

Within the framework of this interpretation, morphism • actually corresponds
to case-composition, as it is formalised by the following lemma.

61

Chapter 4. Categorical model

[xi]Γ = πki : Dk → D

[tu]Γ = Dk D ×D DD ×D D
〈[t]Γ;[u]Γ〉 app×IdD ev

[λxk+1.t]Γ = Dk DD D
Λ(ft) lam

where ft = Dk ×D Dk+1 D
∼= [t]Γ,xk+1

[c]Γ = Dk 1 D
!
Dk c∗

[{|θ|} · t]Γ = Dk Dn ×D D
〈[θ]Γ;[t]Γ〉 case

[θ]Γ = 〈f1; · · · ; fn〉 : D
k → Dn , where fi =

{
[ui]Γ if ci 7→ ui ∈ θ
!Dk ; ` if ci /∈ dom(θ)

Figure 4.2: Interpretation of λC -terms in a categorical model

Lemma 4.2.2 (Categorical case-composition). If the diagram (D6) commutes,
then for any case-bindings θ and φ, whose free variables are in Γ = {x1, . . . , xk},
the following diagram commute:

Dk Dn ×Dn

Dn

〈[θ]Γ,[φ]Γ〉

•
[θ◦φ]Γ

(4.1)

Proof : If φ = {ci 7→ ui/i ∈ J} (with J ⊆ J1..nK), then

[θ ◦ φ]Γ = 〈f1, . . . , fn〉 , with fi =

{
[{|θ|} · ui]Γ if i ∈ J
!Dk ; ` if i /∈ J

On the other hand, • = 〈
(
(IdDn × πn

1); case
)
, . . . ,

(
(IdDn × πn

1); case
)
〉. So

〈[θ]Γ, [φ]Γ〉 ; • = 〈g1, . . . , gn〉, with gi = 〈[θ]Γ, ([φ]Γ ; πn
i)〉 ; case .

If i ∈ J , [φ]Γ ; π
n
i = [ui]Γ and then gi = 〈[θ]Γ, [ui]Γ〉 ; case which is fi.

If i /∈ J , then [φ]Γ ; π
n
i = !Dk × `. Hence

gi = D Dn × 1 Dn ×D D

= D Dn × 1 1 D (by (D6))

= D 1 D

〈[θ]Γ,!D
k〉 IdDn×` case

〈[θ]Γ,!D
k〉 π2 `

!Dk
`

So gi = fi for any i ≤ n, and 〈[θ]Γ, [φ]Γ〉 ; • = [θ ◦ φ]Γ.

62

4.3. Completeness

Sound interpretation The proof of soundness requires some usual prelimi-
nary lemmas (corresponding to context manipulation in the typed setting, and
to variable substitution).

Lemma 4.2.3 (Contextual rules).
Exchange: Let Γ = {x1, . . . , xk} and σ a substitution over J1..kK. Write σ(Γ) =
{σ(1), . . . , σ(k)}. Then, for any term t whose free variables are in Γ,

[t]Γ = 〈πkσ(1), . . . , π
k
σ(k)〉 ; [t]σ(Γ) .

Weakening: Let Γ = {x1, . . . , xk} containing all free variables of a term t,
and y /∈ Γ. Then

[t]Γ,y = 〈πk+1
1 , . . . , πk+1

k 〉 ; [t]Γ .

Proof : By structural induction on t.

Lemma 4.2.4 (Substitution). Given Γ = {x1, . . . , xk}, and two terms t and u
such that fv(u) ⊆ Γ and fv(t) ⊆ Γ ∪ {y},

[t[y := u]]Γ = Dk Dk ×D Dk+1 D
〈Id,[u]Γ〉 ∼= [t]Γ,y

Proof : cf. appendix A.1.1.

The soundness theorem is then a direct corollary of the following proposition:

Proposition 4.2.5. If M = (C, D, lam, app, (ci∗)ni=1, case, `) is a λCmodel, then
for any Γ = {x1, . . . , xk} and any terms t1, t2 such that fv(t1) ⊆ Γ and t1 → t2,
the interpretation given in Fig. 4.2 satisfies [t1]Γ = [t2]Γ.

Proof : cf. appendix A.1.1.

Remark 4.2.1 . As it was explained in the discussion page 58, in a λC -model,
all match failing terms {|θ|} ·c (with c /∈ dom(θ)) receives the same interpretation:

[{|θ|} · c] = ` .

4.3 Completeness

In this part we shall prove the converse of Theo. 4.1:

Theorem 4.2 (Completeness). If t and t′ are two hereditarily defined λC -terms
such that in any categorical λC -model [t]=[t′], then

t ≃λC
t′ .

It means that, without match failure, the diagrams of Fig. 4.1 are minimal.
Notice that, because of Rem. 4.2.1, the completeness theorem does not hold for

63

Chapter 4. Categorical model

undefined terms. The completeness result is established using the same method
as [FM09]:

1. We define PerλC
, the Cartesian closed category of partial equivalence re-

lation compatible with ≃λC
.

2. In this syntactic category, we construct a λC -model Msynt.

3. Then we show that if [t] = [t′] in Msynt, then t ≃λC
t′.

4.3.1 Partial equivalence relations

Partial equivalence relations (PER) are commonly used to transform a model of
the untyped lambda calculus into a model of the typed lambda-calculus [Mit86,
TC87]. Yet we use them here to instantiate the definition of λC -models in the
category of PER on λC -terms. Thereby we construct a syntactic model of the
untyped λC -calculus.

Definition 4.3.1 (λC−per)

Given a set X, a partial equivalence relation on X is a binary relation R
that is symmetric and transitive. We may write x = y : R instead of
(x, y) ∈ R. A λC−per is a partial equivalence relation R on Λ (the set of
all λC -terms) that is compatible with λC , which means:

{
t = t′ : R
t0 ≃λC

t′
implies t = t0 : R

Given a partial equivalence relation R, the class of an element e modulo R is

eR = { e′ / e = e′ : R }.

An element e is accessible by R when its class modulo R is non empty. We may
write e ∈ R when e is accessible by R. Notice that if there is some e′ such that
e = e′ : R, then by symmetry and transitivity e = e : R. In particular, R is an
equivalence relation on the set of its accessible elements. The domain of R is the
set of its accessible elements modulo R:

dom(R) = { eR / e ∈ R }

Also all the following assertions are equivalent:

e = e : R ; e ∈ R ; eR 6= ∅ ; eR ∈ dom(R)

Notice that if a partial equivalence relation R is compatible with λC then by
definition

t ≃λC
t′ =⇒ t

R
= t′

R
. (4.2)

64

4.3. Completeness

The family of λC−pers can be provided with the usual semantic operators: arrow,
intersection and product.

Definition 4.3.2 (Arrow)

If R and R′ are two λC−pers, then R→ R′ is given by

t = t′ : R→ R′ when for any u, u′, u = u′ : R =⇒ tu = t′u′ : R′.

It is also a λC−per.

The definition of the arrow in the λC−pers is more fine than in many struc-
tures (such as reducibility candidates, cf. Def. 3.1.3). Indeed, for any t and
any R,R′,
t ∈ R → R′ implies ∀u ∈ R, tu ∈ R′ . However this condition is conversly
not sufficient to conclude that t ∈ R → R′. Take for instance R the closure
of {(c1, c1), (c2, c2)} under λC -equivalence, and let R′ be ≃λC

. Then for any
u ∈ R, (λx.x)u ∈ R′ (i.e. (λx.x)u ≃λC

(λx.x)u). Nevertheless λx.x /∈ R → R′,
since c1 = c2 : R and (λx.x)c1 6≃λC

(λx.x)c2.

The product on λC−pers is defined using the usual Church’s tuple encoding
in the lambda calculus:

Lx1, . . . , xkMk = λf.f x1 . . . xk
πki = λp.p (λx1 . . . xk.xi) (i∈J1..kK)

(We may write Lx, yM for Lx, yM2 and πi for π
2
i). It satisfies the expected equiva-

lence: πki Lt1, . . . , tkMk ≃λC
ti.

Definition 4.3.3 (Product)

Given (Ri)1≤i≤k a finite family of λC−pers, the λC−per R1× . . .×Rk is
defined by

t = u : R1 × . . .×Rk when for each i ∈ J1..kK, πki t = πki u : Ri

Remark 4.3.1 . In λC−pers, we get surjective pairing for free in any product
λC−per. Indeed, if Lπ1t, π2tM ∈ A1 × A2 where A1 and A2 are two λC−pers, it
means (by definition of A1 × A2) πiLπ1t, π2tM ∈ Ai. Since πiLπ1t , π2tM ≃λC

πit,
then πiLπ1t , π2tM = πit : Ai. Thus Lπ1t , π2tM = t : A1 ×A2.

4.3.2 Category PerλC

The category PerλC
is defined as follows:

• an object is a partial equivalence relation compatible with ≃λC
.

65

Chapter 4. Categorical model

• a morphism from A to B is an equivalence class in dom(A→ B).

We may write t : A → B instead of t
A→B

: A → B when it raises no
ambiguity.

• the identity morphism of a λC−per A is IdA = λx.x ∈ dom(A→ A).
Indeed, if t = t′ : A, then (λx.x)t ≃λC

t and (λx.x)t′ ≃λC
t′ and so

(λx.x)t = (λx.x)t′ : A by compatibility with ≃λC
.

• the composition of t : A→ B and t′ : B → C is t; t′ = λz.t′(tz)
A→C

.
It is well defined since (t; t′) ∈ dom(A → C). Indeed, for any u = u′ : A,
(λz.t′(tz))u reduces on t′(tu). But tu = tu′ : B, hence t′(tu) = t′(tu′) : C
and t′(tu′) ≃λC

(λz.t′(tz))u′. Since C is compatible with ≃λC
this entails

(λz.t′(tz))u = (λz.t′(tz))u′ : C and then λz.t′(tz) ∈ A → C. In the same

way, we can check that (t;λx.x
B→B

) = (λx.x
A→A

; t) = t, and also that
this definition of composition is associative.

This defines correctly the category PerλC
. We also provide it with the structure

of a Cartesian closed category:

Product The product A1 × A2 of two objects is their λC−per product
(Def. 4.3.3), and the ith projection morphism (for i ∈ {1, 2}) is πi

A1×A2→Ai .

Given t1 : C → A1 and t2 : C → A2, the pairing
of t1 and t2 is

〈t1 , t2〉 = λx.Lt1x, t2xM
C→A1×A2

.

C

A1 ×A2A1 A2

〈t1 ,t2 〉

t1 t2

π
1

π
2

The following proposition ensures that this pairing is well-defined (it does not
depends on the representative of t1 and t2 that we choose), and that it defines
effectively a product in the category PerλC

:

Proposition. If ti = t′i : C → Ai (for i = 1, 2) then

λx.Lt1x, t2xM = λx.Lt′1x, t
′
2xM : C → A1 ×A2.

Moreover, 〈t1 , t2〉 is the unique morphism such that the diagram above commutes.

Proof : The equality λx.Lt1x, t2xM = λx.Lt′1x, t
′
2xM : C → A1×A2 and the commuta-

tion of the diagram directly comes from the compatibility of A1 and A2 with ≃λC
. We

prove the uniqueness of the pairing. Assume there is a morphism h = th : C → A1 ×A2

such that h;πi = ti
C→Ai (for i = 1 and i = 2). This means λz.πi(thz) = ti : C → Ai.

Hence for any u = u′ : C we can deduce the following equations one after the other using
compatibility with ≃λC

: (λz.πi(thz))u = ti u
′ : Ai

πi(thu) = ti u
′ : Ai

πi(thu) = πiLt1 u
′, t2 u

′M : Ai

thu = Lt1u
′, t2u

′M : A1 ×A2

thu = (λx.Lt1x, t2xM)u
′: A1 ×A2

th = λx.Lt1x, t2xM : C → A1 ×A2

Also h = 〈t1, t2〉.

66

4.3. Completeness

By compatibility with the λC -equivalence for any t ∈ dom(B → C) and any
t′ ∈ dom(B′ → C ′), the product of t and t′ is

t × t′ = 〈(π1; t), (π2; t
′)〉 = λx.Lt(π1x), t

′(π2x)M (4.3)

We give the associativity and commutativity isomorphisms, that we may use in
the following:

(A×B)× C A× (B × C)∼=

λx.Lπ
1
(π

1
x),Lπ

2
(π

1
x),π

2
xMM

λx.LLπ
1
x,π

1
(π

2
x)M,π

2
(π

1
x)M

A×B B ×A∼=

λx.Lπ
2
, π

1
xM

λx.Lπ
2
, π

1
xM

All those definitions are naturally extended to n-ary products.

Remark 4.3.2 . There is an alternative definition for the product in PerλC
:

given two λC -pers A1, A2, define:

t = u : A1 ∗A2 when

{
t ≃λC

Lt1, t2M
u ≃λC

Lu1, u2M
with ti = ui : Ai (for i = 1, 2).

Together with projection morphisms πi
A1∗A2→Ai , this defines indeed a product

in PerλC
.

AlsoA1×A2
∼= A1∗A2 by uniqueness of the product (Sec. 4.1.2). Furthermore,

t = u : A1 ∗ A2 implies t = u : A1 × A2. The converse does not hold, and
also the surjective pairing (Rem. 4.3.1) is not valid for ∗: let Ai be the closure
of {(πic, πic)} under λC -equivalence for i = 1 and i = 2. Then Lπ1c, π2cM ∈ A1∗A2

and so Lπ1c, π2cM ∈ A1 × A2. By Rem. 4.3.1, c = Lπ1c, π2cM : A1 × A2. However
there is no terms t1, t2 such that c ≃λC

Lt1, t2M, and thus c 6= Lπ1c, π2cM : A1 ∗A2.

Terminal object The λC−per 1 = Λ × Λ is a terminal object in PerλC
. In

fact, for any λC−per A, the relation A → 1 is equal to 1, and thus the unique
equivalence class modulo A→ 1 is !A = Λ.
This terminal object is indeed neutral for the product (up to the isomorphisms
given in the diagram below).

A× 1 A 1×A∼= ∼=

π
1 λx.Lx,xM

λx.Lx,xM
π
2

67

Chapter 4. Categorical model

Exponent Given two λC−pers A and B, BA is the λC−per A→ B.

C ×A B

BA ×A

t

Λ(t)×Id
ev

The curried form of a morphism t : C ×A→ B is

Λ(t) = λx.λy.t Lx, yM
C→BA

and the morphism ev is λx.(π1x)(π2x) .

Again, Λ() is well-defined and together with ev it is indeed an exponent for A
and B:

Proposition. The definition of Λ(t) does not depend on the representative of
the class of t that we choose, and it is the unique morphism of C → BA such
that the diagram above commutes.

Proof : If t = u : C × A → B then λx.λy.t Lx, yM = λx.λy.u Lx, yM : C → BA by
compatibility with ≃λC

. We show the commutation of the diagram:

Λ(t)× Id = λx.L(λx′.λy.t Lx′, yM) (π1x) , π2xM
C×A→BA×A

(4.3)

= λx.Lλy.t Lπ1x, yM , π2xM
(C×A)→(BA×C)

(Λ(t)× Id); ev = λz.(λx.(π1x)(π2x))
(
(λx.Lλy.t Lπ1x, yM , π2xM)z

)C×A→B

= λz.(λx.(π1x)(π2x)) Lλy.t L(π1z), yM , π2zM
C×A→B

= λz.t Lπ1z, π2zM
(C×A)→B

Using Rem. 4.3.1, we conclude that λz.t Lπ1z, π2zM = t : (C × A) → B. Moreover,
Λ(t) is the unique morphism that makes the diagram above commute (same method of
proof as for the uniqueness of pairing).

Also those definitions provide actually a Cartesian closed category.

Proposition 4.3.1. The category PerλC
is a CCC.

4.3.3 Syntactic model in PerλC
.

The set of λC−pers forms a complete partial order for the inclusion order. The
least element is the empty relation, the greater one is Λ×Λ, and the least-upper
bound of a family of λC−pers is the transitive closure of its union. Within
these λC−pers, some are total : each term is accessible by them. They are the
equivalence relations on Λ compatible with ≃λC

. The smallest one is ≃λC
.

We call D the λC−per ≃λC
. We will see that it is a reflexive object in PerλC

,
and use it to construct a λC -model in PerλC

.

Lemma 4.3.2. In PerλC
, D = DD.

Proof : ⊆: If t = t′ : D, then u = u′ : D implies tu = t′u′ : D by definition of D.
This means t = t′ : DD

⊇: Assume t = t′ : DD, and choose x not free in t nor t′. Since x = x : D, then
tx = t′x : D. So λx.tx = λx.t′x : D by contextual closure, and t = t′ : D
by LamApp.

68

4.3. Completeness

Definition 4.3.4 (Syntactic model)

The syntactic model (or PER model) of the lambda calculus with con-
structors is Msynt = (PerλC

, D, IdD, IdD, (c
∗
i)1≤i≤n, case, `), where:

• D is the relation ≃λC
.

• for c ∈ C , c∗ = λx.c
1→D

.

• case = λx.{|(ci 7→ πni (π1x))1≤i≤n|} · π2x
(Dn×D)→D

• ` = λx.{| |} · c1
1→D

In fact we could have choosen any constructor ci instead of c1 in the definition
of `.

Proposition 4.3.3. Msynt is a λC -model.

Proof : We check every point of Def. 4.2.2.

• PerλC
is a Cartesian closed category by Prop. 4.3.1.

• D is equal (and thus isomorphic) to DD by Lem. 4.3.2.

• c∗ ∈ dom(1→ D) for each c ∈ C . Indeed, for any terms u, u′,
(λx.c) u ≃λC

c ≃λC
(λx.c) u′. Hence λx.c = λx.c : 1→ D.

In the same way, ` ∈ dom(1→ D).

• app = IdD (and lam = IdD) is trivially a morphism of D → DD (resp. of DD → D)
by Lem. 4.3.2. We show that λx.{|(ci 7→ πn

i (π1x))
n
i=1|} · π2x ∈ (Dn ×D)→ D.

Let t = u : (Dn ×D). By definition, πn
i (π1t) = πn

i (π1u) : D, and π2t = π2u : D.
Thus

(
λx.{|(ci 7→ πn

i (π1x))
n
i=1|} · π2x

)
t ≃λC

{|(ci 7→ πn
i (π1t))

n
i=1|} · π2 t

≃λC
{|(ci 7→ πn

i (π1u))
n
i=1|} · π2 u

≃λC

(
λx.{|(ci 7→ πn

i (π1x))
n
i=1|} · π2x

)
u

• By Prop. 4.2.1 the six diagrams of Fig. 4.1 commute since (D1) trivially commutes
for lam = app = IdD, and diagrams (D2), (D3), (D5) and (D6) commute too
(cf. appendix. A.1.2)

Remember that a term is defined if it has no blocking subterm {|θ|} · c where
c /∈ dom(θ), and it is hereditarily defined when all its reducts (including itself) are
defined. Notice that λC -models do not separate some undefined terms that are
not λC -equivalent. That is because the interpretation of a term first “completes”
each case-binding with branches cj 7→ ` if cj is not in its domain (cf. the discussion
page 58). So in the PER model, undefined terms are “unblocked” and the rule
CaseCons can be performed (and give {| |} · c1).

That is the reason why the completeness theorem (Theo. 4.2) is restricted
to hereditarily defined terms. In this section we first formalise the idea of case-
binding completion. This enables an explicit definition of the interpretation of a
term in the PER model, so that we can prove the completeness theorem.

69

Chapter 4. Categorical model

Definition 4.3.5 (Case-completion)

The case-completion of a term is defined by induction:

x̃ = x λ̃x.t = λx.t̃ {̃|θ|} · t = {|θ̃|} · t̃

c̃ = c̃ t̃u = t̃ũ

θ̃ = {ci 7→ u′i/1 ≤ i ≤ n} with u′i =

{
ũi if ci 7→ ui ∈ θ

{| |} · c1 if ci /∈ dom(θ)

Fact 4.3.3 . This case-completion does not unify different defined terms: if

two defined terms have the same case-completion, then they are equal.

Proposition 4.3.4. In the model Msynt, the interpretation of a term t in a
context Γ = x1; · · · ;xk is

[t]Γ = λx.t̃[xi := πki x]
Dk→D

,

with x fresh in t.

Proof : The proof proceeds by structural induction on t. If t = xi or t = c, we
just have to write the definition of [t]Γ. If t = λxk+1.t0 or t = t1t2, the equation is
straightforward from definition of [t]Γ and induction hypothesis. We detail the proof
when t = {|θ|} · u:
[t]Γ = 〈[θ]Γ; [u]Γ〉; case, with [θ]Γ = 〈f1, . . . , fn〉 where fj = [uj]Γ if cj 7→ uj ∈ θ, and

fj =!Dk ; ` (= λx.{| |} · c1
Dk→D

) if cj /∈ dom(θ). So

[t]Γ = λx.tcase Ltθx, tuxM
Dk→D

with case = tcase
Dn×D→D

, [θ]Γ = tθ
Dk→Dn

, and [u]Γ = tu
Dk→D

. By induction
hypothesis, we can chose tu = λx.ũ[xi := πk

i x], and tθ = λx.Lt1x, . . . , tnxMn with
tj = λx.ũj [xi := πk

i x] if cj 7→ uj ∈ θ, and tj = λx.{| |} · c1 if cj /∈ dom(θ).
Also λx.tcase , Ltθx, tuxM ≃λC

λx.tcase , L Lt1x, . . . , tnxMn , ũ[xi := πk
i x] M

≃λC
λx.{|(cj 7→ tjx)

n
j=1|} · ũ[xi := πk

i x]

≃λC
λx.{̃|θ|} · u [xi := πk

i]

Indeed, tjx ≃λC
ũj [xi := πk

i x] if cj 7→ uj ∈ θ, and tj ≃λC
{| |} · c1 if cj /∈ dom(θ).

Since Dk → D is compatible with ≃λC
, [t]Γ = λx.t̃[xi := πk

i x]
Dk→D

.

4.3.4 Completeness result.

As it is emphasised by Rem. 4.2.1, two match-failing terms can have the same
interpretation even if they are not λC -convertible. For instance,

[{||} · c2] = [{|c1 7→ λx.x|} · c2]Γ = ` .

Now we show that this problem is specific to undefined terms, and that two
hereditarily defined terms that are not λC -equivalent are separated in the PER-
model. In that view, we use the explicit definition of the interpretation of terms
in the syntactic model (Prop. 4.3.4) and we also prove the following proposition:

70

4.3. Completeness

Proposition 4.3.5. Let t1 and t2 be two hereditarily defined terms. Then

t̃1 ≃λC
t̃2 =⇒ t1 ≃λC

t2

The proof of this proposition uses rewriting techniques, and relies on several
lemmas (whose proofs are given in appendix A.1.3).

Fact 4.3.4 . The definition of case-completion (Def. 4.3.5) preserves all λC -

redexes. Also if t→ u then t̃→ ũ, and if t̃ is a normal form then so is t.

The two following lemmas establish to what extent the converse holds.

Lemma 4.3.6 (λ−
C
-reduction on completed terms). Let t be a defined term.

Then, for any term t′,

t̃→λ−

C

t′ implies t′ = t̃0 for some t0 such that t→ t0.

(Remember that λ−
C
denotes the λC -calculus without the rule CaseCase).

Lemma 4.3.7 (CaseCase reduction on completed terms). For any terms t, t′,

t̃→cc t
′ implies t′ →∗

cc t̃0 for some t0 such that t→cc t0

where →cc denotes a reduction with rule CaseCase.

Also the rule CaseCase does not have the same behaviour as the other rule
w.r.t. case-completion. In the following, we pay special attention to this rule.

Proposition 4.3.8. The reduction rule →cc forms a confluent and strongly nor-
malising rewriting system.

Proof : The confluence has been proved in [AMR09, Theo. 1] (cf. Sec. 2.1.5). This
reduction rule is also strongly normalising, since it makes the structural measure of terms
(Def. 2.1.2) decrease.

In this paragraph, we write ⇓ t the normal form of a term t w.r.t. →cc. It is
characterised by the following equations:

⇓ x = x ⇓ {ci 7→ ui / i∈I} = {ci 7→⇓ ui / i∈I}
⇓ c = c If t = x | c | λx.u | t1t2 , then

⇓ λx.t = λx. ⇓ t ⇓ {|θ|} · t = {| ⇓ θ|}· ⇓ t
⇓ (tu) = ⇓ t ⇓ u ⇓

(
{|θ|} · {|φ|} · t

)
= ⇓ ({|θ ◦ φ|} · t)

Lemma 4.3.9. Commutation case-completion/cc-normal form
For any term t,

⇓ (t̃) = ⇓̃ t .

Lemma 4.3.10. For any terms t, t′, if t→λ−

C

t′ then there exists a term u such

that
⇓ t →∗

λ−

C

u →∗
cc ⇓ t

′ .

71

Chapter 4. Categorical model

Corollary 4.3.11. If t is hereditarily defined, then for any t′,

t̃→∗ t′ implies ⇓ t′ = t̃0 for some t0 such that t→∗ t0 .

Proof : By induction on the reduction t̃→∗ t′.
If t̃ = t′, take t0 = t. Now assume t̃ →∗ u →R t′. By induction hypothesis, there is
some u0 such that ⇓ u = ũ0 and t→

∗ u0. If u reduces on t′ with the rule R = CaseCase,
then ⇓ t′ =⇓ u = ũ0, and t0 = u0 does the job. Otherwise, t̃→∗ u→λ−

C

t′.

t̃ u t′

⇓ u=ũ0 ũ1 ⇓ t′=⇓̃ u1

t u0 u1 ⇓ u1

∗ λ−
C

λ−
C

∗

cc∗

cc∗ cc∗

∗ ∗

cc∗

First of all, u →λ−
C

t′ implies ⇓ u →∗
λ−

C

u′ →∗
cc ⇓ t

′ for some u′ (Lem. 4.3.10).

Also ũ0 →
∗
λ−

C

u′, and thus u′ = ũ1 for some term u1 such that u0 →
∗
λ−

C

u1 (Lem. 4.3.6,

since u0 is defined). Moreover, ũ1 →
∗
cc⇓ t

′ implies that ⇓ t′ is the CaseCase normal

form of ũ1. Hence ⇓ t
′ = ⇓ ũ1 = ⇓̃ u1 (by Lem. 4.3.9). Also we can chose t0 =⇓ u1.

Now we have all the ingredients we need to prove that the case-completion
preserves the λC -equivalence on hereditarily defined terms.

Proof : (of Prop. 4.3.5).

Let t1, t2 hereditarily defined such
that t̃1 ≃λC

t̃2. Since the λC -
calculus satisfies the Church-Rösser
property, there is a term u such
that t̃1 →

∗ u and t̃2 →
∗ u.

Hence Cor. 4.3.11 provides a
term u′ such that ⇓ u = ũ′, and
ti →

∗ u′ for each i ∈ {1, 2}. Thus
t1 ≃λC

u′ ≃λC
t2.

t̃1 ≃λC
t̃2

t1 u t2

⇓ u=ũ′

u’

∗ ∗

cc∗

∗ ∗

Together with the explicit definition of the interpretation of a term in the
PER-model, this gives the result of completeness of λC -models for terms with no
match failure.

Corollary 4.3.12 (Completeness). Let t1 and t2 be two hereditarily defined terms
whose free variables are in Γ = {x1, . . . , xk} such that [t1]Γ = [t2]Γ in the syntactic
model Msynt, then t1 ≃λC

t2.

72

4.3. Completeness

Proof : By Prop. 4.3.4, if t1 and t2 have the same interpretation in Msynt, it means
that

λx.t̃1[xi := πk
i x]

Dk→D
= λx.t̃2[xi := πk

i x]
Dk→D

.

Hence (λx.t̃1[xi := πk
i x]) Lx1, . . . , xkMk = (λx.t̃2[xi := πk

i x]) Lx1, . . . , xkMk : D. Since D
is the λC -equivalence relation on terms, it means that t̃1 ≃λC

t̃2, which entails t1 ≃λC
t2

by Prop. 4.3.5.

A fortiori if two hereditarily defined terms have the same interpretation in
any λC -model then they are λC -equivalent, since Msynt is a λC -model. This
achieves the proof of Completeness theorem (Theo. 4.2).

Conclusion

The PER model does not separate every terms that are not λC -equivalent
(cf. Rem. 4.2.1), but it always assigns different denotations to two terms that
are separated by the separation theorem (Sec. 2.1.5) 2.

The restriction of the completeness theorem to terms with no match failure is
due to the manner in which we interpret the case-bindings. Since the denotation
we give to them is a point of Dn, it requires to “fill” artificially every undefined
branch of a case-binding.

A way to cope with this problem could be to first identify the domain
I ⊆ J1..nK of a case-binding θ = {ci 7→ ui/i ∈ I}, and interpret it by the
point (ui)i∈I of DnI (where nI is the cardinal of I). The object that represents
case-bindings would then be the sum (the dual notion of product)

∑
I⊆J1..nKD

nI .
However, some difficulties arise to define the case composition. Also a good no-
tion of λC -model that separates any non-equivalent terms, even the match failure,
remains to be defined.

2The syntactic model actually separates more terms than the separation property. For in-
stance, terms {| |} · c and {| |} · cu are not separable by any context, yet they do not receive the
same denotation in the PER model.

73

Chapter 4. Categorical model

74

Chapter 5

CPS and Classical model

Continuation passing style (CPS) is a programming paradigm in which the con-
trol flow (the continuation) is manipulated by the program as an explicit param-
eter. The CPS translation of the terms of a given language consists in making
explicit the evaluation context. Also translating terms in continuation passing
style amounts to describe their evaluation in an abstract machine [Plo75].

In the study of programming languages, these translations are mostly used
to translate a language with side effects and control into a purely functional
language [SF92], or to simulate a reduction strategy into an other one [Fis93,
OLT94]. Furthermore a new class of denotational models, the continuation se-
mantics, arises from these translations [Mog91]. Concerning Logic, Lafont [Laf91]
has shown that it corresponds to a ¬¬-translation of classical logic into (a frag-
ment of) intuitionistic logic.

In this chapter, we propose a CPS translation of the (complete) λC -calculus
into the lambda calculus with pairs. Therefore, we first describe an abstract
machine (inspired by the Krivine’s abstract machine) for the lambda calculus
with constructors. Then we show that the resulting CPS is a correct simulation.
Finally, we set up a notion of a continuation model for the λC -calculus, and we
show that it actually defines λC -models in the sense of the previous chapter. This
gives rise to some non syntactic models for the lambda calculus with constructors.

5.1 λC -calculus and stack machines

5.1.1 Abstract machines and commutation rules

A stack-based abstract machine represents the execution of a program (a closed
term t) in a context (a stack π). Also an execution state is represented by a pair

t ⋆ π .

The evaluation context consists of value eliminators, and an evaluation step de-
scribes the interaction between a value in head position of the program and the
eliminator at the top of the stack.

75

Chapter 5. CPS and Classical model

In the pure lambda-calculus, there is only one kind of values: functions.
They are constructed with a lambda-abstraction, and deconstructed by applying
an argument. When a lambda-abstraction “meets” an argument, a β-reduction
is performed:

λx.t ⋆ u · π ◮ t[x := u] ⋆ π (Pop)

When the evaluated program is not a lambda-abstraction it is necessarily an
application. The argument is then pushed on the stack:

tu ⋆ π ◮ t ⋆ u · π (Push)

With these two evaluation rules, the execution process exactly simulates the weak
head reduction evaluation. The process stops when a lambda-abstraction appears
in front of an empty stack: λx.t ⋆ [].
This is the only blocked configuration if the initial term was closed. We consider
then that the program has been executed properly and returns a value (λx.t).

Problems arise when the program uses different kinds of values. In the syntax
of lambda-calculus with constructors, functions coexist with data structures, each
coming with its construction method and its eliminator:

Construction Elimination

Functions lambda-abstraction application

Data-structures constructors pattern-matching

In an abstract machine for the λC -calculus, the stack contains arguments
(coming from applications) but also case-bindings (coming from case-constructs).
In addition to the Pop and Push rules for functions, there are similar rules for
constructed values:

c ⋆ θ · π ◮ θc ⋆ π (Popc)
{|θ|} · t ⋆ π ◮ t ⋆ θ · π (Pushc)

In most programming languages with case-analysis, those would be the only
rules (concerning functions and constructed values). In that setting, three blocked
situations can occur although the stack is not empty:

c ⋆ θ · π (with c /∈ dom(θ))
c ⋆ u · π

λx.t ⋆ θ · π

The first case corresponds to a match-failure. In the lambda-calculus with con-
structors we do not try to handle them, also we let this configuration as blocked.

76

5.1. λC -calculus and stack machines

The last two cases do not necessarily correspond to a blocked execution in the
lambda calculus with constructors. Indeed, the rule CaseApp enables the com-
mutation between an argument and a case-binding in the stack:

t ⋆ u · θ · π ◮ t ⋆ θ · u · π
{|θ|} · (tu) _ ({|θ|} · t)u

Remark 5.1.1 . Whereas the rule CaseApp exactly corresponds to the stack
transformation u · θ · π →֒ θ · u · π, there is no such a rule for the transformation
θ ·u ·π →֒ u ·θ ·π. However, it can be seen as a consequence of the rule CaseLam.
Indeed this rule allows the following execution:

λx.t ⋆ θ · u · π ≃ {|θ|} · (λx.t) ⋆ u · π
◮ λx.{|θ|} · t ⋆ u · π
◮ {|θ|} · t[x := u] ⋆ π
◮ t[x := u] ⋆ θ · π .

The same behaviour is obtained by

λx.t ⋆ θ · u · π ◮ λx.t ⋆ u · θ · π ◮ t[x := u] ⋆ θ · π .

Thus when a blocked configuration arises (a constructor with an argument
at the top of the stack, or a λ-abstraction with a case-binding at the top of the
stack), an abstract machine for λC -calculus should “swap” adjacent arguments
and case-bindings in the stack until a case-binding (resp. an argument) reaches
the top position. Rule Popc (resp. Pop) is then possible. Also we can consider
the stacks modulo these commutations:

θ1 · u1 · u2 · θ2 · u3 ≃ θ1 · θ2 · u1 · u2 · u3
≃ u1 · u2 · u3 · θ1 · θ2

Such a swapping between adjacent eliminators of different kinds amounts to split
the elimination context into two different stacks: one for the case-bindings and
one for the arguments. A configuration of the machine is then written

θ1 · θ2 · · · ⋆ t ⋆ u1 · u2 · · ·

Case context: a stack vs a case-bonding. The only reduction rules of the
λC -calculus (other than the daimon rules) that we did not consider so far in the
design of the machine are the η-reduction and the case composition. These two
rules have a similar role in the calculus: they are computationally useless, but
they are necessary for the separation property (Sec. 2.1.5). Also we can see the
rule CaseCase as the “η-reduction for case constructs”:

λx.tx → t x /∈ fv(t)
{|θ|} · {|φ|} · u → {|θ ◦ φ|} · u

77

Chapter 5. CPS and Classical model

Both terms λx.tx and t reduce on the same term if we apply them to an argument
(i.e. if t is seen as a function). In the same way, {|θ|} · {|φ|} ·u and {|θ ◦φ|} ·u have
the same reduct if u is a data-structure (matchable by φ).

In the stack abstract machine for the pure lambda calculus, the η-reduction
is not simulated. Nevertheless, we will not adopt the same choice concerning the
rule CaseCase, for some reasons explained in Rem. 5.1.4.

Hence the rule Pushc, that would be, in a two stacks abstract machine,

πc · θ ⋆ {|φ|} · t ⋆ π ◮ πc · θ · φ ⋆ t ⋆ π

will be replced by

πc · θ ⋆ {|φ|} · t ⋆ π ◮ πc · θ ◦ φ ⋆ t ⋆ π

In fact the whole stack of case-bindings θ1 · · · θk will be collapsed in only one
case-binding θ1 ◦ · · · ◦ θk.

5.1.2 Stack abstract machine for λC

The title of this section is cheating: the design we chose for the λC -abstract
machine (described in Fig. 5.1) uses a term, a stack of arguments and only one
(optional) case-binding. Indeed, the rule CaseCase enables wrapping a whole
(non empty) stack of case-bindings in only one case-binding. We justify this
choice at the end of Sec. 5.1.3.

Processes:
Stacks: π := ⋄ | t · π
Optional cases: 〈θ〉 := ⋄ | θ
(State of) processes: s := 〈θ〉 ⋆ t ⋆ π

Execution rules:

〈θ〉 ⋆ λx.t ⋆ u · π ◮ 〈θ〉 ⋆ t[x := u] ⋆ π (Pop)
〈θ〉 ⋆ tu ⋆ π ◮ 〈θ〉 ⋆ t ⋆ t · π (Push)

θ ⋆ c ⋆ π ◮ ⋄ ⋆ θc ⋆ π (Popc)
〈θ〉 ⋆ {|φ|} · t ⋆ π ◮ 〈θ〉 · φ ⋆ t ⋆ π (Pushc)

(where ⋄ ·φ = φ and θ · φ = θ ◦ φ.)
θ ⋆ z ⋆ π ◮ ⋄ ⋆ z ⋆ ⋄ (Exit)

Figure 5.1: λC -abstract machine

A state s is final when there is no state s′ such that s ◮ s′. Executing
a program consists in loading its term, running the machine until a final state
arises (if it does), and then unloading. Final states are of three different kinds:

78

5.1. λC -calculus and stack machines

• An error has occurred if a state 〈θ〉 ⋆ x ⋆ π (open term)
or θ ⋆ c ⋆ π (with c /∈ dom(θ), match failure) appears.

• Execution returns a value when one of these states appears:
〈θ〉 ⋆ λx.t ⋆ ⋄ (function) or ⋄ ⋆ c ⋆ π (data-structure).

• Program was exited if its evaluation leads to ⋄ ⋆ z ⋆ ⋄.

Definition 5.1.1 (Term evaluation)

The function load maps every term t to the process ⋄ ⋆ t ⋆ ⋄.
The function unload is defined from final states to terms as follows:

⋄ ⋆ x ⋆ u1 · · ·uk · ⋄
unload
−−−−→ xu1 . . . un

θ ⋆ x ⋆ u1 · · ·uk · ⋄
unload
−−−−→ ({|θ|} · x)u1 . . . un

θ ⋆ c ⋆ u1 · · ·uk · ⋄ (c/∈dom(θ))
unload
−−−−→ ({|θ|} · c)u1 . . . un

⋄ ⋆ λx.t ⋆ ⋄
unload
−−−−→ λx.t

θ ⋆ λx.t ⋆ ⋄ (x/∈fv(θ))
unload
−−−−→ λx.({|θ|} · t)

⋄ ⋆ c ⋆ u1 · · ·uk · ⋄
unload
−−−−→ cu1 . . . un

⋄ ⋆ z ⋆ ⋄
unload
−−−−→ z

The evaluation function is then partially defined on terms by

eval(t) = unload(s) if load(t) ◮∗ s, s final.

If such a state s exists it is unique, as the machine is deterministic. In this case
eval(t) is the weak head normal form of t (this is formalised in next section).

Example 5.1.2 (Evaluation of the predecessor.) . Remember that the prede-
cessor function is

pred = λx.{|θp|} · x , with θp = {0 7→ 0; S 7→ λy.y}

Write 2 = S(S 0) and 3 = S 2 the unary integers 2 and 3. Then pred 3 is
evaluated as follows:

load(pred 3) = ⋄ ⋆ pred 3 ⋆ ⋄
◮ ⋄ ⋆ pred ⋆ 3

◮ ⋄ ⋆ {|θp|} · 3 ⋆ ⋄
◮ θp ⋆ 3 ⋆ ⋄
◮ θp ⋆ S ⋆ 2

◮ ⋄ ⋆ λy.y ⋆ 2

◮ ⋄ ⋆ 2 ⋆ ⋄

Also eval(pred 3) is 2 as expected.

79

Chapter 5. CPS and Classical model

5.1.3 Weak head reduction

The λC -abstract machine executes a (call-by-name) weak head reduction strategy
on terms. We write _w the corresponding reduction for the λC -calculus, and it
is defined inductively by the following rules:

(λx.t)u _w t[x := u] {|θ|} · λx.t _w λx.{|θ|} · t {|θ|} · c _w u (if c 7→u∈θ)

zu _w z {|θ|} · tu _w ({|θ|} · t)u {|θ|} ·z _w z

{|θ|} · {|φ|} · t _w {|θ ◦ φ|} · t
t _w t′

tu _w t′u

Example 5.1.3 . Within this strategy, the reduction of a term {|θ|}·{|φ|}·(λx.t)u
is the following:

{|θ|} · {|φ|} · (λx.t)u _w {|θ ◦ φ|} · (λx.t)u
_w ({|θ ◦ φ|} · λx.t) u
_w (λx.{|θ ◦ φ|} · t) u
_w {|θ ◦ φ|} · (t[x := u])

Normal form for this reduction are called head normal form. They correspond
to the final states of the machine:

h := λx.t | c~u | z | x~u | ({|θ|} · x)~u | ({|θ|} · c)~u (c/∈dom(θ))

The CPS-translation we define in the next part is based on the stack-abstract
machine. Reduction _w just paraphrases the machine’s execution, as established
by the following proposition. However, we consider both: abstract machine for
the intuitive ideas, and weak-head reduction for the formalism.

Proposition 5.1.1. If a λC -term t has a head normal form h, then eval(t) = h.

Proof : See Appendix A.2.1.

Remark 5.1.4 . Replacing a stack of case-bindings by only one case-binding in
the stack machine remains to treat differently the eliminators of functions and the
eliminators of data-structures (cf. the discussion p. 77). There was an alternative
choice: to consider an abstract machine with to stacks, that would have executed
a variant of the weak head reduction _w (let us write it⇒w). Roughly speaking,
this variant consists in replacing the rule {|θ|} · {|φ|} · t _w {|θ ◦ φ|} · t by

t ⇒w t′

{|θ|} · t⇒w {|θ|} · t′

This last rule is, for the evaluation context of data-structures, the equivalent of
the following rule for the functional context:

t _w t′

tu _w t′u

80

5.2. CPS translation

It amounts to say that the head sub-term of a term λ~x.
(
{|θ1|} · · · · {|θk|} · h

)
~u

(where h is neither an application nor a case construct) is h. On the other hand,
the weak startegy _w that we defined behaves as if the head sub-term of such a
term was {|θ1|} · · · · {|θk|} · h.

Moreover, with the alternative weak strategy ⇒w, two reduction rules re-
main not performed: the η-reduction and the case-composition. This would be
coherent with the intuition that CaseCase is the η-reduction for case constructs
(cf. p. 77), whereas the reduction _w that we consider here performs CaseCase
reductions but no LamApp reduction.

However, the alternative weak strategy ⇒w raises some technical difficulties.
The first one is that it would require some precedence rules for beeing a strategy,
otherwise the reduction is not deterministic: {|θ|} · (λx.t)u ⇒w {|θ|} · (t[x := u])
and {|θ|} · (λx.t)u⇒w ({|θ|} · λx.t) u.

Then, the abstract machine (with one case-binding and one stack) simulat-
ing the weak strategy _w will be used in the next section, to describe a CPS
translation of the λC -calculus into the lambda calculus with pairs. We want this
translation to simulate every reduction of the lambda calculus with constructors,
including LamApp and CaseCase. The rule LamApp will be simulated by the
η-reduction of the lambda-calculus with pair, but there is no rule in this target
calculus to simulate the case-composition. Also the case-bindings are composed
during the translation. That is why we chose a stack machine that performs
the rule CaseCase, and that has thereby a stack of arguments and only one

case-binding for evaluation context.

5.2 CPS translation

In this section and the following one we consider that the set of constructors is
finite:

C = {c1, . . . , cn} .

We define a translation of the λC -calculus into the lambda calculus with no
constructors (and no case constructs), in the spirit of Plotkin’s Continuation
Passing Style (CPS) translation [Plo75]. The key difference is that continuations
(representing the evaluation context of the abstract machine) are composed of a
case-binding and a stack of arguments (and not only a stack):

Continuations = Case-bindings × Stacks .

A λC -term t is then translated by a lambda-term t∗ that takes a continuation as
argument, and then runs the abstract machine:

t∗ = λy.let 〈|xθ, xπ|〉 := y in |xθ ⋆ t ⋆ xπ| .

This translation relies on the inductive definition of

|Mθ ⋆ t ⋆ Mπ|

81

Chapter 5. CPS and Classical model

where:

• Mθ is the translation of the case-binding θ of the evaluation context.

• Mπ is the translation of the stack of arguments π of the evaluation context.

• t is the λC -term that is beeing evaluated

• |Mθ ⋆ t ⋆ Mπ| is the translation of the result of the evaluation of θ ⋆ t ⋆ π.

This will be formalised in Sec. 5.2.2.

We chose the simply typed lambda calculus with pairs (cf. appendix B) as
the target calculus. Indeed, a stack of terms will be implemented by overlapping
pairs:

t1 · t2 · t3 · · · ; 〈|t∗1, 〈|t
∗
2, 〈|t

∗
3, 〈|·, · · · |〉|〉|〉|〉

A case-binding θ is represented (as in the categorical models, cf. p. 58) by a
n-tuple of terms (encoded with pairs in the usual way, cf. p. 114):

θ ; 〈|M1, . . . ,Mn|〉n

where Mi represents θci if ci ∈ dom(θ), and is a special term representing match
failure otherwise (it is detailed in Sec. 5.2.2).

5.2.1 The target calculus

In appendix B.1 we define λP , the simply typed lambda-calculus with pairs
parametrised by a set of constant terms and a set of constant types, with some
relations between them.

To translate the untyped λC -calculus, we assume that the λP -calculus in-
cludes the following:

• a type C for the continuations, a type S for the stacks, and a type R
corresponding to (the encoding of) the results returned by the evaluation
of the stack machine.
Then the translation of a term is a function from continuations to results.
Also their type is D = C → R. We also write Dn the n-ary product of D.

• two terms ↓s and ↑s (sometimes called “cons” and “uncons” in program-
ming languages) for the implementation of a stack by overlapping pairs of
(translated) terms. They must satisfy the flolowing typing and rewriting
rules:

⊢p ↑s : S → (D × S) ↓s (↑s M) _p M
⊢p ↓s : (D × S)→ S ↑s (↓s M) _p M

• two terms to “unfold” a continuation into a pair of case-binding and a stack,
and conversely, that satisfy the following rules:

⊢p ↑c : C → (Dn × S) ↓c (↑c M) _p M
⊢p ↓c : (Dn × S)→ C ↑c (↓c M) _p M

82

5.2. CPS translation

Notice that this defines a well-designed parameter (Def. B.1.1 p. 112) for the
λP -calculus. Also adding these constants with these reduction and typing rules
to the λP -calculus preserves subject reduction (Lem. B.1.3).

Remark 5.2.1 . The terms to unfold a continuation or to uncons a list will be
necessary for the translated terms to be well-typed. We translate the λC -calculus
into the λP -calculus with types in order to get automatically a transformation
on Cartesian closed categories that builds a categorical model for the lambda
calculus with constructors (in Sec. 5.3). However, if we are not interested in the
semantic aspect of the translation, but only in a simulation of the λC -calculus by
the lambda-calculus, we can easily chose the untyped λP -calculus (or even the
pure lambda calculus, Rem. 5.2.2) as target: just remove every type, and all the

terms ↓s,↑s,↓c and ↑c in this section.

Some encoding In order to ease the reading of the CPS-translation, we may
use the following notations in the λP -calculus:

• let 〈|x, y|〉 := P in M means (λxy.M) π1(P) π2(P)
Notice that x and y are bound variables in this term.

• The notation for tuples is recalled p. 114. We also extend the previous
notation to any tuple, writing
let 〈|x1; . . . ;xk|〉k := N in M for (λx1 . . . xk.M) πk1 (N) · · ·πkk(N).

Those notations have the expected computational behaviour:

let 〈|x1, x2|〉 := 〈|N1, N2|〉 in M →∗
p M [xi := Ni]i=1,2

let 〈|x1; . . . ;xk|〉k := 〈|N1; . . . ;Nk|〉k in M →∗
p M [xi := Ni]

k
i=1

If x, y /∈ fv(M), let 〈|x, y|〉 := N in M [z := 〈|x, y|〉] →∗
p M [z := N]

Also the following typing rules are derivable

Γ, x : B1, y : B2 ⊢p M : B Γ ⊢p N : B1 ×B2

Γ ⊢p let 〈|x, y|〉 := N in M : B

Γ, x : B1, . . . xk : Bk ⊢p M : B Γ ⊢p N : B1 × · · · ×Bk

Γ ⊢p let 〈|x1, . . . , xk|〉k := N in M : B

In the (untyped) lambda calculus with constructors, we will use an encoding
for the Daimon before translating it in the λP -calculus:
• exit denotes MeMe, where Me = λxy.xx. Notice that

exit M →∗ exit .

Remark 5.2.2 (Constants vs. encoding) . Instead of the lambda-calculus with
pairs, we could have chosen the pure lambda-calculus as the target calculus, and

83

Chapter 5. CPS and Classical model

then used the Church-encoding for pairs [Chu41] given p. 65. Nevertheless, sur-
jective pairing (Lπ1(M) , π2(M)M →M) does not hold under this encoding, and
so the simulation theorem (Theo. 5.1) would have been weaker. In particular, the
rule LamApp would not have been simulated, but only the weak head reduction.

5.2.2 Continuation Passing Style

The CPS-translation is given in Fig. 5.2. It mainly paraphrases the description
of the stack abstract machine. Indeed, a λC -term t is translated by a λP -term t∗

that takes a continuation argument (we write k the variables of type C for more
clarity), unfold it (with term ↑c) to obtain an evaluation context (i.e. a pair of a
case-bindingMθ and a stackMπ) that it uses to run the stack-machine θ ⋆ t ⋆ π.
Finally t∗ returns the result |Mθ ⋆ t ⋆ Mπ| of this evaluation:

t∗ = λk.let 〈|xθ, xπ|〉 :=↑c k in |xθ ⋆ t ⋆ xπ|︸ ︷︷ ︸
λP

,

with | Mθ︸︷︷︸
λP

⋆ t︸︷︷︸
λC

⋆ Mπ︸︷︷︸
λP

| inductively defined in Fig. 5.2.

Remember (p. 81) that |Mθ ⋆ t ⋆ Mπ| is a λP -term where Mθ is the stack in
which all the arguments appearing in evaluation position will be pushed (after
being translated). Also its definition when t is an application is quite obvious:

|Mθ ⋆ t1t2 ⋆ Mπ| = |Mθ ⋆ t1 ⋆ ↓s 〈|t
∗
2,Mπ|〉| .

If t is an abstraction λx.u, the translation relies on the ambiguity of the vari-
able names, that can represent a variable of λC or of λP . Indeed, we expect
the evaluation to pop the first element of the stack Mπ and use it to replace
every occurrence of x in (the result of the evaluation of) u. That is exactly the
behaviour that is obtained:

|Mθ ⋆ λx.u ⋆ Mπ| = let 〈|x, xπ′ |〉 :=↑s Mπ in |Mθ ⋆ u ⋆ xπ′ | .

If the (λC -)variable x later comes in head position, we see it as a λP -variable
(that is then substituted by the first element of Mπ), and we give it the new
continuation as argument:

|M ′
θ ⋆ x ⋆ M

′
π| = x (↓c 〈|M

′
θ,M

′
π|〉)

Example 5.2.3 (Evaluation of the identity) .
|Mθ ⋆ (λx.x)t ⋆ Mπ| = |Mθ ⋆ λx.x ⋆ ↓s 〈|t

∗,Mπ|〉|
= let 〈|x, xπ′ |〉 :=↑s

(
↓s 〈|t

∗,Mπ|〉
)
in |Mθ ⋆ x ⋆ xπ′ |

= let 〈|x, xπ′ |〉 :=↑s
(
↓s 〈|t

∗,Mπ|〉
)
in x (↓c 〈|Mθ, x

′
π|〉)

→∗
p t∗ (↓c 〈|Mθ,Mπ|〉)

84

5.2. CPS translation

Remark that we could also have chosen a different space of variable names for
the λP -calculus (say ξ, ξ0 etc.) and mapped every variable x of the λC -calculus
to a variable ξx of the λP -calculus.

Now, to have an idea about how the translation works with constructors and
case-constructs, look at the following example:

Example 5.2.4 (Translation of a case construct) . In this example we assume
that there are n = 2 constructors.
|Mθ ⋆ {|c2 7→ t|} · c2 ⋆ Mπ| = |〈|N1, N2|〉 ⋆ c2 ⋆ Mπ|,

where N1 = ⊥D, and
N2 = λk′.let 〈|xθ′ , xπ′ |〉 :=↑c k

′ in |Mθ ⋆ t ⋆ xπ′ |
Also, |Mθ ⋆ {|c2 7→ t|} · c2 ⋆ Mπ| =

let 〈|x1, x2|〉 := 〈|N1, N2|〉 in |⊥Dn ⋆ x2 ⋆ Mπ|
= let 〈|x1, x2|〉 := 〈|N1, N2|〉 in x2(↓c 〈|⊥Dn ,Mπ|〉)
→∗

p N2 (↓c 〈|⊥Dn ,Mπ|〉)
→∗

p let 〈|xθ′ , xπ′ |〉 :=↑c (↓c 〈|⊥Dn ,Mπ|〉) in |Mθ ⋆ t ⋆ xπ′ |
→∗

p |Mθ ⋆ t ⋆ Mπ|

The translation of a constructor is given by the abstract machine:

|Mθ ⋆ ci ⋆ Mπ| = let 〈|x1; . . . ;xn|〉n :=Mθ in |⊥Dn ⋆ xi ⋆ Mπ|

We use ⊥Dn to denote any term of type Dn. It can be for instance Mθ, but we
write ⊥Dnto make clear that it will not be used if we translate well-defined terms
(i.e. terms with no match failure).

The translation of a case construct {|φ|} · t is then given by

|Mθ ⋆ {|φ|} · t ⋆ Mπ| = |〈|N1; · · · ;Nn|〉n ⋆ t ⋆ Mπ|

where

{
Ni = λk′.let 〈|xθ′ , xπ′ |〉 :=↑c k

′ in |Mθ ⋆ ui ⋆ xπ′ | if ci 7→ ui ∈ φ
Ni = M` if ci /∈ dom(φ)

Just like for ⊥Dn , M` denotes a term of type D that is never used if we
translate well-defined terms. However we force its definition as we shall need it
in the following (in Sec. 5.3) for the semantic interpretation of undefined terms:

M` = λk.let 〈|xθ, xπ|〉 :=↑c k in ⊥D

(
↓c 〈|〈⊥D, . . . ,⊥D〉, xπ|〉

)

where ⊥D = let 〈|x, x′π|〉 := xπ in x.

Notice that the application-context Mπ is used to evaluate t, while Mθ be-
comes the case-context of the terms ui’s in the branches of φ. The idea is that t
can interact with π, but not with the case-context θ until φ has been “opened”
and one of the ui’s has come in head position. This happens when a construc-
tor ci has been evaluated, and replaced by ui coming with its own case-context θ.
That is why the argument for case-context xθ′ is not used in Ni.

Finally the Daimon is translated using the pure lambda term exit that has
the same computational behaviour.

85

Chapter 5. CPS and Classical model

t∗ = λk.let 〈|xθ, xπ|〉 :=↑c k in |xθ ⋆ t ⋆ xπ| .

|Mθ ⋆ x ⋆ Mπ| = x (↓c 〈|Mθ,Mπ|〉)
|Mθ ⋆ tu ⋆ Mπ| = |Mθ ⋆ t ⋆ ↓s 〈|u

∗,Mπ|〉|
|Mθ ⋆ λx.t ⋆ Mπ| = let 〈|x, xπ′ |〉 :=↑s Mπ in |Mθ ⋆ t ⋆ xπ′ |

(if x /∈ fv(Mθ,Mπ))
|Mθ ⋆ ci ⋆ Mπ| = let 〈|x1; . . . ;xn|〉n :=Mθ in |⊥Dn ⋆ xi ⋆ Mπ|

|Mθ ⋆ {|φ|} · t ⋆ Mπ| = |〈|N1; · · · ;Nn|〉n ⋆ t ⋆ Mπ|(
where Ni = λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in |Mθ ⋆ ui ⋆ zπ| if ci 7→ ui ∈ φ
Ni = M` if ci /∈ dom(φ)

)

|Mθ ⋆ z ⋆ Mπ| = exit∗

Figure 5.2: Translation of λC -calculus into λP -calculus

Well typing of the translation We check that the translation is well defined
in the typed λP -calculus introduced in Sec. 5.2.1, in the sense that the translation
of every λC -term is well typed.

Proposition 5.2.1. Let t be a λC -term and Γ a context of the λP -calculus such
that x : D ∈ Γ for each x ∈ fv(t) (Remember that D = C → R). Then,

1. For any λP -terms Mθ and Mπ, if Γ ⊢p Mθ : Dn and Γ ⊢p Mπ : S, then
Γ ⊢p |Mθ ⋆ t ⋆ Mπ| : R

2. Γ ⊢p t
∗ : D

Proof : The second assertion is a direct consequence of the first one, that is proved
by structural induction on t.

5.2.3 Correct Simulation

Now we show that the lambda calculus with pairs can actually simulate the
lambda calculus with constructors via the CPS translation:

Theorem 5.1 (λP simutates λC). For any λC -terms t, t′,

t→ t′ implies t∗ →∗
p t

′∗ .

We first focus on the case when t is the redex involved in the reduction, we
care about a reduction in a strict sub-term of t subsequently.

Lemma 5.2.2. For any λC -terms t, u and any λP -terms Mθ,Mπ,

|Mθ ⋆ t ⋆ Mπ| [x := u∗] →∗
p | Mθ[x := u∗] ⋆ t[x := u] ⋆ Mπ[x := u∗] |

Proof : By induction on t.

86

5.2. CPS translation

Lemma 5.2.3. Let t, u be two λC -terms, and φ, ψ two case-bindings. Then for
any λP -terms Mθ,Mπ,

|Mθ ⋆
(
(λx.t)u

)
⋆ Mπ| →+

p |Mθ ⋆ t[x := u] ⋆ Mπ|
|Mθ ⋆ z u ⋆ Mπ| = |Mθ ⋆ z ⋆ Mπ|

|Mθ ⋆ {|φ|} · λx.t ⋆ Mπ| = |Mθ ⋆ λx.{|φ|} · t ⋆ Mπ| if x ∈ fv(φ)
|Mθ ⋆ {|φ|} · tu ⋆ Mπ| = |Mθ ⋆ ({|φ|} · t)u ⋆ Mπ|
|Mθ ⋆ {|φ|} · c ⋆ Mπ| →+

p |Mθ ⋆ u ⋆ Mπ| if c 7→ u ∈ φ
|Mθ ⋆ {|φ|} ·z ⋆ Mπ| = |Mθ ⋆ z ⋆ Mπ|

|Mθ ⋆ {|φ|} · {|ψ|} · t ⋆ Mπ| = |Mθ ⋆ {|φ ◦ ψ|} · t ⋆ Mπ|

Proof : 1. Up to α-conversion, we assume x /∈ fv(Mθ,Mπ).
|Mθ ⋆

(
(λx.t)u

)
⋆ Mπ| = |Mθ ⋆ (λx.t) ⋆ 〈|u∗,Mπ|〉|

= let 〈|x, xπ|〉 := 〈|u
∗,Mπ|〉 in |Mθ ⋆ t ⋆ xπ|

→+
p |Mθ ⋆ t ⋆ Mπ|[x := u∗]

Moreover |Mθ ⋆ t ⋆ Mπ|[x := u∗]→∗
p |Mθ ⋆ t[x := u] ⋆ Mπ| by Lem. 5.2.2.

2. |Mθ ⋆ z u ⋆ Mπ| = |Mθ ⋆ z ⋆ ↓s 〈|u
∗,Mπ|〉|

= exit∗

= |Mθ ⋆ z ⋆ Mπ|

3. |Mθ ⋆ {|φ|} · λx.t ⋆ Mπ| = |〈|N1; · · · ;Nn|〉n ⋆ λx.t ⋆ Mπ|
(with the Ni’s expected)

= let 〈|x, x′π|〉 :=Mπ in |〈|N1; · · · ;Nn|〉n ⋆ t ⋆ x′π|
= let 〈|x, x′π|〉 :=Mπ in |Mθ ⋆ {|φ|} · t ⋆ x

′
π|

= |Mθ ⋆ λx.{|φ|} · t ⋆ Mπ|
The second equation holds since x /∈ fv(φ) implies x /∈ fv(〈|N1; · · · ;Nn|〉n).

4. |Mθ ⋆ {|φ|} · tu ⋆ Mπ| = |Mθ ⋆ ({|φ|} · t) u ⋆ Mπ| by definition
(same as previous case).

5. Let φ = {cj 7→ uj/j ∈ J}.
Then |Mθ ⋆ {|φ|} · ci ⋆ Mπ| =

|〈|N1; · · · ;Nn|〉n ⋆ ci ⋆ Mπ| (with the Njs expected)
= let 〈|x1; . . . ;xn|〉n := 〈|N1; · · · ;Nn|〉n in |⊥Dn ⋆ xi ⋆ Mπ|
= let 〈|x1; . . . ;xn|〉n := 〈|N1; · · · ;Nn|〉n in xi 〈|⊥Dn ,Mπ|〉
→+

p Ni 〈|⊥Dn ,Mπ|〉
where Ni = λy.let 〈|xθ, xπ|〉 := y in |Mθ ⋆ ui ⋆ xπ|. Also
Ni 〈|⊥Dn ,Mπ|〉 →p let 〈|xθ, xπ|〉 := 〈|⊥Dn ,Mπ|〉 in |Mθ ⋆ ui ⋆ xπ|

→∗
p |Mθ ⋆ ui ⋆ Mπ|

6. |Mθ ⋆ {|φ|} ·z ⋆ Mπ| = |〈|N1; · · · ;Nn|〉n ⋆ z ⋆ Mπ|
(still with the Nj ’s expected)

= exit∗

= |Mθ ⋆ z ⋆ Mπ|

7. Let φ = {ci 7→ ti/i ∈ I} and ψ = {cj 7→ uj/j ∈ J} .
|Mθ ⋆ {|φ|} · {|ψ|} · t ⋆ Mπ| = |〈|M1; · · · ;Mn|〉n ⋆ {|ψ|} · t ⋆ Mπ|

where Mi =

{
λy.let 〈|xθ, xπ|〉 := y in |Mθ ⋆ ti ⋆ xπ| if i ∈ I
M` if i /∈ I

|Mθ ⋆ {|φ|} · {|ψ|} · t ⋆ Mπ| = |〈|N1; · · · ;Nn|〉n ⋆ t ⋆ Mπ|

87

Chapter 5. CPS and Classical model

where Nj =

{
λy′.let 〈|x′θ, x

′
π|〉 := y′ in |〈|M1; · · · ;Mn|〉n ⋆ uj ⋆ x

′
π| if j ∈ J

M` if j /∈ J

On the other hand, |Mθ ⋆ {|φ ◦ ψ|} · t ⋆ Mπ| = |〈|N ′
1; · · · ;N

′
n|〉n ⋆ t ⋆ Mπ|

where N ′
j =

{
λy′.let 〈|x′θ, x

′
π|〉 := y′ in |Mθ ⋆ {|φ|} · uj ⋆ x

′
π| if j ∈ J

M` if j /∈ J
If j ∈ J , N ′

j = λy′.let 〈|x′θ, x
′
π|〉 := y′ in |〈|M ′

1; · · · ;M
′
n|〉n ⋆ uj ⋆ x

′
π|

where M ′
i =

{
λy.let 〈|xθ, xπ|〉 := y in |Mθ ⋆ ti ⋆ xπ| if i ∈ I
M` if i /∈ I

Hence |Mθ ⋆ {|φ ◦ ψ|} · t ⋆ Mπ| = |Mθ ⋆ {|φ|} · {|ψ|} · t ⋆ Mπ| .

Converse simulation with strategies CPS-translations were introduced to
transform a call-by-name (c.b.n. for short) calculus into a call-by-value (c.b.v.)
calculus. If we restrict the lambda calculus with constructors to the weak strat-
egy _w (defined in Sec. 5.1.3), and the λP -calculus to the c.b.v. strategy _v (re-
called in appendix B.1), then the CPS-translation we have defined is a two-sided
simulation:

1. If t reduces weakly on t′, then for any λP -terms Mθ,Mπ,

|Mθ ⋆ t ⋆ Mπ|_
∗
v |Mθ ⋆ t

′ ⋆ Mπ|

2. If |xθ ⋆ t ⋆ xπ|_v N then t reduces weakly on a term t′ and

N _∗
v |xθ ⋆ t

′ ⋆ xπ| .

We do not detail the proof, but it is based on the one of Lem. 5.2.3 with the
remark that for all M,N1, N2,

let 〈|x1, x2|〉 := 〈|N1, N2|〉 in M _∗
v M [xi := Ni] .

Simulation result We now extend the result of Lem. 5.2.3 to reductions that
occur in a strict sub-term.

Lemma 5.2.4. For any λC -term t (with x /∈ fv(t)), and any λP -terms Mθ,Mπ

and N ,

|Mθ ⋆ t ⋆ Mπ| [x := N] = | Mθ[x := N] ⋆ t ⋆ Mπ[x := N] | (5.1)

For any λC -term t and any λP -terms Mθ,Mπ,

Mθ →p M
′
θ =⇒ |Mθ ⋆ t ⋆ Mπ| →p |M

′
θ ⋆ t ⋆ Mπ| (5.2)

Mπ →p M
′
π =⇒ |Mθ ⋆ t ⋆ Mπ| →

∗
p |Mθ ⋆ t ⋆ M

′
π| (5.3)

Proof : By induction on t.

Corollary 5.2.5. For any λC -terms t, t′ and any λP -terms Mθ,Mπ,

t→ t′ implies |Mθ ⋆ t ⋆ Mπ| →
∗
p |Mθ ⋆ t

′ ⋆ Mπ| .

88

5.2. CPS translation

Proof : By structural induction on t. In this proof we use the convention that s′

denotes a reduct (in one step) of s, for any λC -term s.
t = λx.u:

∗ If u = t′x, with x /∈ fv(t′) (i.e. t→al t
′) then

|Mθ ⋆ t ⋆ Mπ| = let 〈|x, xπ|〉 :=Mπ in |Mθ ⋆ t
′ ⋆ 〈|x∗, xπ|〉| .

Notice that x∗ = λy. let 〈|yθ, yπ|〉 := y in x〈|yθ, yπ|〉
→∗

p λy.x〈|π1(y), π2(y)|〉
→p λy.xy
→p x

Hence, |Mθ ⋆ t ⋆ Mπ| →
+
p let 〈|x, xπ|〉 :=Mπ in |Mθ ⋆ t

′ ⋆ 〈|x, xπ|〉| (5.3)
→∗

p |Mθ ⋆ t
′ ⋆ 〈|π1(Mπ), π2(Mπ)|〉| (5.1)

→∗
p |Mθ ⋆ t

′ ⋆ Mπ| (5.3)

∗ If u = z and t′ = z (i.e. t→ld t
′), then

|Mθ ⋆ t ⋆ Mπ| = let 〈|x, xπ|〉 :=Mπ in exit∗

→2
p exit∗

= |Mθ ⋆ t
′ ⋆ Mπ|

.

∗ If t′ = λx.u′, then

|Mθ ⋆ t ⋆ Mπ| = let 〈|x, xπ|〉 :=Mπ in |Mθ ⋆ u ⋆ Mπ|
→∗

p let 〈|x, xπ|〉 :=Mπ in |Mθ ⋆ u
′ ⋆ Mπ| (ind. hypothesis)

= |Mθ ⋆ t
′ ⋆ Mπ|

.

t = t1t2:

∗ If t1 = λx.t0 and t′ = t0[x := t2], or t1 = z and t′ = z we conclude with
Lem. 5.2.3.

∗ If t′ = t′1t2, we conclude with induction hypothesis.

∗ If t′ = t1t
′
2, then |Mθ ⋆ t ⋆ Mπ| = |Mθ ⋆ t1 ⋆ 〈|t

∗
2,Mπ|〉|.

But t∗2 →
∗
p λy.let 〈|yθ, yπ|〉 := y in |yθ ⋆ t

′
2 ⋆ yπ| by induction hypothesis. Also

|Mθ ⋆ t ⋆ Mπ| = |Mθ ⋆ t1 ⋆ 〈|t
∗
2,Mπ|〉|

→+
p |Mθ ⋆ t1 ⋆ 〈|t

′∗
2 ,Mπ|〉| (5.3)

= |Mθ ⋆ t
′ ⋆ Mπ|

.

t={|θ|} · u:

∗ If one of the rules CaseCons, CaseApp, CaseLam or CaseCase is performed
in head position, we conclude with Lem. 5.2.3.

∗ If t′ = {|θ|} · u′, we conclude with induction hypothesis.

∗ If t′ = {|θ′|} · u, where θ′ is θ = {cj 7→ sj/j ∈ I} in which one branch ci 7→ si has
been replaced by ci 7→ s′i, then |Mθ ⋆ t ⋆ Mπ| = |〈|N1; · · · ;Nn|〉n ⋆ u ⋆ Mπ|

where Nj =

{
λy.let 〈|xθ, xπ|〉 := y in |Mθ ⋆ sj ⋆ xπ| if j ∈ I
M` if j /∈ I

By induction hypothesis, Ni →
∗
p N

′
i = λy.let 〈|xθ, xπ|〉 := y in |Mθ ⋆ s

′
j ⋆ xπ|.

Hence |Mθ ⋆ t ⋆ Mπ| →
∗
p |〈|N1; · · ·N

′
i · · · ;Nn|〉n ⋆ u ⋆ Mπ| (5.2)

= |Mθ ⋆ {|θ
′|} · u ⋆ Mπ|

89

Chapter 5. CPS and Classical model

This achieves the proof of Theo. 5.1 since t→ t′ implies

t∗ = λk.let 〈|xθ, xπ|〉 :=↑c k in |xθ ⋆ t ⋆ xπ|
→∗

p λk.let 〈|xθ, xπ|〉 :=↑c k in |xθ ⋆ t
′ ⋆ xπ|

= t′∗

Consequences on models The theorem of simulation implies (since the λC -
calculus satisfies the Church-Rösser property) that if t ≃λC

t′ then t∗ ≃p t
′∗. Also

every model of the λP -calculus constitutes a sound model of the λC -calculus via
the CPS-translation:

λC -calculus −→ λP -calculus −→ λP -model
t ≃λC

t′ t∗ ≃p t
′∗ [t∗] = [t′∗]

The models of the typed lambda-calculus (with pairs) are the Cartesian closed
categories [AL91]. Also the CCC that can in addition interpret in a sound way
the atomic types and terms introduced in Sec. 5.2.1 provide a model for the
lambda calculus with constructors.

In the next section we remark that the continuation models for the untyped
lambda calculus are such categories, and we explicit how they interpret the λC -
calculus. We then check that they are indeed λC -models, in the sense of the
definition of the previous chapter.

5.3 Classical model

The untyped lambda calculus can be interpreted in any Cartesian closed category
with a reflexive object D ∼= D → D1 for the denotations. This equation can be
solved in any CCC with two objects R and C such that

C ∼= C ×RC .

Indeed, taking D = RC we get D ∼= RC×RC ∼= (RC)R
C
by Prop. 4.1.4. This cor-

responds to the continuation models of the lambda calculus2. In those semantics,
every term (i.e. every point of D) is seen as a function taking a continuation
argument in C and returning a result in R. A functional term (i.e. a point of

DD) is interpreted in (RC)R
C ∼= RC×RC

, also the continuation argument of a
function is a point of C×RC . It represents a pair composed of later continuation
(in C) and a term (in RC) that represents the argument of the function. That is
why we can see continuations as stacks of arguments, and interpret a term by a
process in a stack abstract machine.

1This main result of categorical semantic can be found in [AL91, Sec 9.3], [AC03, Sec. 4.6].
It is also informally explained in Sec. 4.2.1.

2We might also call them classical models, as their underlying logic is the classical
logic [LRS93]

90

5.3. Classical model

5.3.1 Continuation λC -model

To interpret the λC -calculus, we need continuations that are not only composed
by a stack of arguments, but also by a case-binding (cf. Sec. 5.2). Thus in
our model we also need an object S (for stacks of arguments). Case-bindings
are represented by n-tuples, i.e. points of Dn, also the following equations are
required:

C ∼= Dn × S (a continuation consists in a case-binding and a stack)

S ∼= D × S (a stack is made up of terms)

D = RC (a denotation is a function on continuations that returns a result)

We call a continuation λC -model (or classical λC -model) a CCC with ob-
jects C,R and S satisfying those isomorphisms.

C ∼= Dn × S

unfold

fold

; S ∼= D × S

uncons

cons

Remark that if C is such a continuation λC -model, then the lambda calculus
generated by C (written λC, cf. Sec. B.2) is a good target calculus for the CPS-
translation (cf. Sec. 5.2.1). Indeed, in the λC-calculus, C,R and S are the atomic
types for the objects C,R and S of C, the terms ↑c and ↓c are the atomic terms
for unfold and fold, and the terms ↑s and ↓s are the atomic terms for uncons
and cons. Then by definition of the λC-calculus,

⊢p ↑s : S → (D × S) λx. ↓s (↑s x) _p λx.x
⊢p ↓s : (D × S)→ S λx. ↑s (↓s x) _p λx.x

⊢p ↑c : C → (Dn × S) λx. ↓c (↑c x) _p λx.x
⊢p ↓c : (Dn × S)→ C λx. ↑c (↓c x) _p λx.x

The following proposition completes the other reductions that we need in the
target calculus:

Proposition 5.3.1. For any λP -term N , the following reduction are admissible
(Def. B.2.1):

↓s (↑s N) →C N ↑s (↓s N) →C N
↓c (↑c N) →C N ↑c (↓c N) →C N

Proof : We prove the admissibility of the first reduction, the other ones are proved by
the same method. Assume there is a context Γ and a type B such that Γ ⊢p↓s (↑s N) : B.
Then it means that Γ ⊢p↓s: A

′ → B′ and Γ ⊢p↑s N : A′ for some A′ and some B′ such
that B′ = B. Moreover, Γ ⊢p↓s: A

′ → B′ implies A′ → B′ = (D × S)→ S (since ↓scan
only be typed with the rule axT or subs), which means A′ = D × S and B′ = S by good
design of the parameter R in the λC-calculus (Lem. B.2.1). Thus Γ ⊢p↑s N : D×S, and
we conclude in the same way (using Γ ⊢p↑s: S → (D×S)) that Γ ⊢p N : S. Also we can
derive Γ ⊢p (λx. ↓s (↑s x))N : S

91

Chapter 5. CPS and Classical model

On the one hand, (λx. ↓s (↑s x))N →p↓s (↑s N) so ⌊(λx. ↓s (↑s x))N⌋Γ = f↓s(↑sn)

by Lem. B.2.3. On the other hand, (λx. ↓s (↑s x))N →p (λx.x)N →p N and then
⌊(λx. ↓s (↑s x))N⌋Γ = fn. Finally f↓s(↑sn) = fn.

From continuation λ-model to continuation λC -model Notice that any
continuation model of pure lambda calculus provides a continuation λC -model.
Indeed, with an isomorphism

C RC × C

i

p

∼= ,

we can chose S = C, D = RC and the following morphisms to get a continuation
λC -model:

C ∼= D × C ∼= D × (D×C) ··· ∼= D × (··· × (D×C)) ∼= Dn × S

i
Id×i Id×(···×(Id×i)) 〈〈π

1
,...,π

2...21〉,π2n
〉

〈(π
1
;πn

1
),...〈(π

1
;πn

n),π2
〉〉Id×(...×(Id×p))Id×p

p

S ∼= D × S

i

p

Also every continuation model induces a continuation λC -model. Next we
show that those continuation λC -models are indeed λC -models in sense of Def 4.2.2.
This provides a way to construct a λC -model from a classical model of pure
lambda calculus.

Continuation model
C ∼= C ×RC

Continuation λC -model
C ∼= (RC)n × S
S ∼= RC × S

Model of
pure λ-calculus

D ∼= DD

λC -model
M = (D, lam, app, (c∗i)

n
i=1, case, `)

S=C

D=RC

Sec. 5.3.2

5.3.2 From continuation λC -models to λC -models

In this Section, C is a Cartesian closed category with objects R,C and S such
that C ∼= Dn × S and S ∼= D × S (where D = RC). We define the morphisms
lam, app, c∗i ’s and ` and we prove that they form a λC -model with D. It might

92

5.3. Classical model

be heavy to express them within the structure of Cartesian closed categories, also
we use terms of the lambda-calculus generated by C (cf. appendix B.2), and their
image in C (defined in Fig. B.2) for the definition.

Mlam = λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|x, x′π|〉 :=↑s xπ in z x
(
↓c 〈|xθ, x

′
π|〉

)

Mapp = λx.λk.let 〈|xθ, xπ|〉 :=↑c k in z
(
↓c 〈|xθ, ↓s 〈|x, xπ|〉|〉

)

Mci = λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|x1; . . . ;xn|〉n := xθ in xi k

Mcase = λk.let 〈|xθ, xπ|〉 :=↑c k in
let 〈|yφ, y|〉 := z in y

(
↓c 〈|〈|M1, . . . ,Mn|〉n, xπ|〉

)
,

where Mi = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in

let 〈|x1; . . . ;xn|〉n := yφ in xi
(
↓c 〈|xθ, zπ|〉

)

M` = λk.let 〈|xθ, xπ|〉 :=↑c k in ⊥D

(
↓c 〈|〈⊥D, . . . ,⊥D〉, xπ|〉

)

with ⊥D = let 〈|x, x′π|〉 := xπ in x

Figure 5.3: Terms for the morphisms of a continuation λC -model

The morphisms that are used to build a λC -model in C correspond to the
terms defined in Fig. 5.3. Remark that M` is the same as the one we used in the
CPS-translation (p. 85). Moreover, Mci →C c∗i :

c
∗
i = λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|x1; . . . ;xn|〉n := xθ in xi (↓c 〈|⊥Dn , xπ|〉) ,

where ⊥Dn = xθ. Also both Mci and c∗i reduce on the same term

N = λk.πni (π1(↑c k)) k ,

hence ⌊c∗i ⌋ = fn = ⌊Mci⌋ by Lem. B.2.3. Thus Mci →C c∗i (and conversely).

Lemma 5.3.2. The terms defined in Fig. 5.3 are typable with the following deriv-
able judgements:

z : D → D ⊢p Mlam : D (5.4)

z : D ⊢p Mapp : D → D (5.5)

⊢p Mci : D (5.6)

z : Dn ×D, k : C ⊢p Mi : D and z : Dn ×D ⊢p Mcase : D (5.7)

⊢p M` : D (5.8)

93

Chapter 5. CPS and Classical model

This enables the definition of the morphisms of a λC -model.

Definition 5.3.1

In a continuation λC -model, the morphisms lam, app, c∗i , ` and case are
given by

lam = ⌊Mlam⌋z:D→D : DD → D
app = ⌊Mapp⌋z:D : D → DD

c∗i = ⌊Mci⌋ : 1→ D
case = ⌊Mcase⌋z:Dn×D : Dn ×D → D
` = ⌊M`⌋ : 1→ D

where Mlam,Mapp,Mc1 ,Mcase and M` are defined in Fig 5.3.

Now we check that this definition makes the diagrams of Fig. 4.1 p. 59 com-
mute.

Lemma 5.3.3. app ; lam = IdD.

Proof : By (B.2), ⌈ ˙app; lam⌉ →∗
p λz.Mlam[z :=Mapp] . Hence,

⌈ ˙app; lam⌉→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|x, x′π|〉 := xπ in Mapp x

(
↓c 〈|xθ, x

′
π|〉

)

→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|x, x′π|〉 :=↑s xπ in

let 〈|yθ, yπ|〉 :=↑c
(
↓c 〈|xθ, x

′
π|〉

)
in z

(
↓c 〈|yθ, ↓s 〈|x, yπ|〉|〉

)

→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|x, x′π|〉 :=↑s xπ in

z
(
↓c 〈|xθ, ↓s 〈|x, x

′
π|〉|〉

)

→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|x, x′π|〉 :=↑s xπ in

z
(
↓c 〈|xθ, ↓s 〈|x, x

′
π|〉|〉

)

→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in z

(
↓c 〈|xθ, ↓s (↑s xπ)|〉

)

→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in z

(
↓c 〈|xθ, xπ|〉

)

→∗
p λz.λk z

(
↓c (↑c k)

)

→∗
p λz.z

On the other hand, ˙IdD →p λz.z by definition ofR. Thus app ; lam = IdD by (B.1).

Lemma 5.3.4. lam ; app = IdDD .

Proof : By (B.2), ⌈ ˙lam; app⌉ →∗
p λz.Mapp[z :=Mlam] . Hence,

⌈ ˙lam; app⌉→∗
p λz.λxk.let 〈|xθ, xπ|〉 :=↑c k in Mlam

(
↓c 〈|xθ, ↓s 〈|x, xπ|〉|〉

)

→∗
p λz.λxk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|yθ, yπ|〉 := 〈|xθ, ↓s 〈|x, xπ|〉|〉 in

let 〈|y, y′π|〉 :=↑s yπ in z y
(
↓c 〈|yθ, y

′
π|〉

)

→∗
p λz.λxk.let 〈|xθ, xπ|〉 :=↑c k in

let 〈|y, y′π|〉 := 〈|x, xπ|〉 in z y
(
↓c 〈|xθ, y

′
π|〉

)

→∗
p λz.λxk.let 〈|xθ, xπ|〉 :=↑c k in z x

(
↓c 〈|xθ, xπ|〉

)

→∗
p λzxk.z x k

→∗
p λz.z

On the other hand, ˙IdDD →p λz.z, thus app ; lam = IdD by (B.1).

The following lemma ensures the commutation of the diagram (D2).

Lemma 5.3.5. For all i ≤ n, π2 ; π
n
i = (IdDn×c∗i) ; case : Dn×1→ Dn×D.

94

5.3. Classical model

Proof : On one hand, ⌈ ˙π2 ; πn
i ⌉ = λz.(λx.πn

i (x))
(
(λx.π2(x)) z

)

→∗
p λz.πn

i (π2(z))
On the other hand,

(IdDn × c
∗
i) = 〈π1 , (π2; c

∗
i)〉 = ⌊〈|π1(x),Mci |〉⌋x:Dn×1 : Dn × 1→ Dn ×D .

So ⌈ ˙(IdDn × c∗i) ; case⌉ →
∗
p λx.Mcase[z := 〈|π1(x),Mci |〉] by (B.2).

Hence
⌈ ˙(IdDn × c∗i) ; case⌉ →

∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|zθ, y|〉 := 〈|π1(x),Mci |〉 in

y
(
↓c 〈|〈|M1, . . . ,Mn|〉n, xπ|〉

)
,

where Mi = λk′.let 〈|yθ, yπ|〉 :=↑c k
′ in

let 〈|x1; . . . ;xn|〉n := zθ in xi
(
↓c 〈|xθ, yπ|〉

)

⌈ ˙(IdDn × c∗i) ; case⌉ →
∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in

Mci

(
↓c 〈|〈|M

′
1, . . . ,M

′
n|〉n, xπ|〉

)
,

where M ′
i = λk′.let 〈|yθ, yπ|〉 :=↑c k

′ in
let 〈|x1; . . . ;xn|〉n := π1(x) in xi

(
↓c 〈|xθ, yπ|〉

)

⌈ ˙(IdDn × c∗i) ; case⌉ →
∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in

let 〈|xθ, xπ|〉 := 〈|〈|M
′
1, . . . ,M

′
n|〉n, xπ|〉 in

let 〈|x1; . . . ;xn|〉n := xθ in xi k
→∗

p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in
let 〈|x1; . . . ;xn|〉n := 〈|M ′

1, . . . ,M
′
n|〉n in xi k

→∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in M

′
i k

→∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|yθ, yπ|〉 :=↑c k in

let 〈|x1; . . . ;xn|〉n := π1(x) in xi
(
↓c 〈|xθ, yπ|〉

)

→∗
p λx.λk.let 〈|x1; . . . ;xn|〉n := π1(x) in

xi
(
↓c 〈|π1(↑c k), π2(↑c k)|〉

)

→∗
p λx.λk.let 〈|x1; . . . ;xn|〉n := π1(x) in xi k

→∗
p λx.πn

i (π1(x))
Hence π2 ; πn

i = (IdDn × c∗i) ; case by (B.1).

The following lemma ensures the commutation of the diagram (D3).

Lemma 5.3.6. Let M∼= = 〈|π11(x), 〈|π21(x), π2(x)|〉|〉.
The typing judgement x : (Dn ×D)×D ⊢p M∼= : Dn × (D ×D) is derivable.
Write h∼= = ⌊M∼=⌋x:(Dn×D)×D. It is commutation isomorphism from (Dn×D)×D
to Dn × (D ×D). Then,

(case× IdD); (app× IdD); ev = h∼=; (IdDn × (app× IdD)); (IdDn × ev); case .

Proof : cf. appendix A.2.2.

For the commutation of (D5), remember that • = 〈. . . , ((IdDn×πni); case), . . .〉.

Lemma 5.3.7. Write M∼= = 〈|π11(z), 〈|π21(z), π2(z)|〉|〉,
and h∼= = ⌊Meq⌋z:(Dn×Dn)×D. It is the commutation isomorphism from
(Dn ×Dn)×D to Dn × (Dn ×D). Then,

(• × IdD) ; case = h∼= ; (IdDn × case) ; case .

Proof : cf. appendix A.2.2.

95

Chapter 5. CPS and Classical model

Finally, the following lemma ensures that the diagram (D6) commutes:

Lemma 5.3.8. In Dn × 1→ D the following equality holds:

(IdDn × `) ; case = π2 ; ` .

Proof : We show that the atomic terms associated to these morphisms reduce on a
same term.

⌈ ˙IdDn × `⌉ →∗
p λx.〈|π1(x),M`|〉 (B.7)

⌈ ˙(IdDn × `) ; case⌉→∗
p λx.Mcase[z := 〈|π1(x),M`|〉] (B.2)

= λx.λk.let 〈|xθ, xπ|〉 :=↑c k in
let 〈|yφ, y|〉 := 〈|π1(x),M`|〉 in y

(
↓c 〈|〈|M1, . . . ,Mn|〉n, xπ|〉

)
,

where Mi = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in

let 〈|x1; . . . ;xn|〉n := yφ in xi
(
↓c 〈|xθ, zπ|〉

)

⌈ ˙(IdDn × `) ; case⌉→∗
p λxk.let 〈|xθ, xπ|〉 :=↑c k in

M`

(
↓c 〈|〈|M

′
1, . . . ,M

′
n|〉n, xπ|〉

)
,

where M ′
i = λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in
let 〈|x1; . . . ;xn|〉n := π1(x) in xi

(
↓c 〈|xθ, zπ|〉

)

⌈ ˙(IdDn × `) ; case⌉→∗
p λxk.let 〈|xθ, xπ|〉 :=↑c k in

let 〈|yθ, yπ|〉 := 〈|〈|M
′
1, . . . ,M

′
n|〉n, xπ|〉 in

⊥′
D

(
↓c 〈|〈⊥

′
D, . . . ,⊥

′
D〉, yπ|〉

)

where ⊥′
D = let 〈|y, y′π|〉 := yπ in y

⌈ ˙(IdDn × `) ; case⌉→∗
p λxk.let 〈|xθ, xπ|〉 :=↑c k in

⊥D

(
↓c 〈|〈⊥D, . . . ,⊥D〉, xπ|〉

)

where ⊥D = let 〈|y, y′π|〉 := xπ in y

This means ⌈ ˙(IdDn × `) ; case⌉ →∗
p λx.M`.

By (B.2), ⌈ ˙π2 ; `⌉ →∗
p λx.M` (since M` is a closed term).

Also (IdDn × `) ; case = π2 ; `.

With all these lemmas we can conclude that any continuation model can be
turned into a λC -model.

Theorem 5.2. Given C a CCC with three objects R,C and S such that

C ∼= (RC)n × S and S ∼= RC × S ,

let Mcl = (C, D, app, lam, (c∗i)
n
i=1, `) where

- D = RC ,

- app, lam, (c∗i)
n
i=1 and ` are defined as in Def. 5.3.1.

Then Mcl is a λC -model in C, in the sense of Def. 4.2.2.

Proof : By Lem. 5.3.2, app, lam, ` and the c∗i ’s are all well defined morphisms between
the required objects. Moreover, the diagram (D1) commutes in C by Lem. 5.3.3 and

96

5.3. Classical model

Lem. 5.3.4. The diagram (D3) commutes by Lem. 5.3.6, which entails the commutation
of (D4) by Prop. 4.2.1. Finally, the commutations of the diagrams (D2), (D3) and (D6)
are ensured by Lem. 5.3.5, Lem. 5.3.7, and Lem. 5.3.8 respectively.

We call Mcl the classical λC -model in the category C.

5.3.3 A non syntactic model of the λC -calculus

Searching for a denotational semantics for the lambda calculus, Dana Scott elabo-
rated in the late 60’s a theory of domains, in which he developed a method [Sco70,
GS90] to embed any complete lattice D in a lattice D∞ satisfying

D∞
∼= D∞ → D∞ .

Domain theory emerged as a fruitful setting for the denotational semantics of
various families of lambda calculi, and has been well studied since then [SHLG94,
AC03].

Scott’s construction also works for complete partial orders (cpo, for short),
and enables to solve various recursive equations [Win93, Chap. 12] written with
the unit object 1, the product, the functional arrow and the sum.

In particular for a given cpo R, the equation X ∼= X × RX has a least
solution C. It is thus possible to construct a continuation model in Cpo, the
category of complete partial orders and continuous functions. As explained p. 92
this provides a continuation λC -model, by taking S = C. By Theo. 5.2 we
know then how to define the classical model Mcl of the lambda calculus with
constructors in Cpo. Unlike the PER model Msynt (Sec 4.3), it is not a syntactic
model.

Streicher and Reus have shown [RS98] that every Scott’s D∞-model is iso-
morphic to a continuation model RC (where R is in fact the initial cpo used for
the construction of D∞). Also there is few hope to construct a λC -model in a
category of partial orders that would not be equivalent to the classical model.

However continuation λC -models are probably not complete for the lambda
calculus with constructors: there might be some λC -models that are not equiv-
alent to the classical model. Hofmann and Streicher have shown [HS97] that
continuation models are complete for the λµ-calculus of Parigot [Par92]. Also
we conjecture that the continuation λC -models are complete for the λµ-calculus
with constructors (obtained by merging both calculi).

97

Chapter 5. CPS and Classical model

98

Appendix A

Some detailed proofs

A.1 Categorical models

A.1.1 Proof of soundness of λC -models

Lemma (4.2.4). Given Γ = {x1, . . . , xk}, and two terms t and u such that
fv(u) ⊆ Γ and fv(t) ⊆ Γ ∪ {y},

[t[y := u]]Γ = Dk Dk ×D Dk+1 D
〈Id,[u]Γ〉 ∼= [t]Γ,y

Proof : Remember that the equivalence morphism fromDk×D toDk+1 is 〈(π1;π
k
1), . . . , (π1π

k
k), π2〉.

Also what we want to show is

[t[y := u]]Γ = Dk Dk+1 D
〈πk

1 ,...,π
k
k ,[u]Γ〉 [t]Γ,y

.

We do it by structural induction on t:

• If t = y, [t]Γ,y = πk+1
k+1 so [u]Γ = 〈πk

1 , . . . , π
k
k , [u]Γ〉; [t]Γ,y.

• If t = xi, [t]Γ,y = πk+1
i so [xi]Γ = πk

i = 〈πk
1 , . . . , π

k
k , [u]Γ〉; [t]Γ,y.

• If t = c, [t]Γ,y =!Dk+1 ; c∗ and 〈πk
1 , . . . , π

k
k , [u]Γ〉; !Dk+1 =!Dk by uniqueness of the

morphism in 1. Thus the equality holds.

• If t = λxk+1.t0, then [λx.t0[y := u]]Γ = Λ(f); lam,

with f = Dk ×D Dk+1 D
∼= [t0[y:=u]]Γ,xk+1

. By induction hypothesis,

f = Dk ×D Dk+1 Dk+2 D
∼= 〈πk+1

1
,...,πk+1

k+1
,[u]Γ,xk+1

〉 [t0]Γ,xk+1,y

.

Since [λxk+1.t0]Γ,y = Λ(f ′); lam, with f ′ = Dk+1 ×D Dk+2 D
∼= [t0]Γ,y,xk+1

,

we just have to prove that Λ(f) = 〈πk
1 , . . . , π

k
k , [u]Γ〉; Λ(f

′).
By Lem. 4.1.3, this equation is equivalent to f = (〈πk

1 , . . . , π
k
k , [u]Γ〉× IdD); f ′. We

prove that the following diagram commutes:

99

Appendix A. Some detailed proofs

Dk ×D Dk+1 Dk+2

Dk+1 ×D Dk+2 D

∼=
〈πk+1

1
,...,πk+1

k+1
,[u]Γ,xk+1

〉

[t0]Γ,xk+1,y〈πk
1 ,...,π

k
k ,[u]Γ〉×IdD

∼= [t0]Γ,y,xk+1

It does commute, as merger of the three following diagrams:

Dk ×D Dk+1

Dk+1 ×D Dk+2

∼=

〈πk
1 ,...,π

k
k ,[u]Γ〉×IdD

〈πk+1

1
,...,πk+1

k
,[u]Γ,xk+1

,πk+1

k+1
〉

∼=

This diagram commutes
by weakening property
(Lem. 4.2.3) and by unique-
ness of product morphism.

This diagram com-
mutes by uniqueness
of product morphism.

Dk+1 Dk+2

Dk+2

〈πk+1

1
,...,πk+1

k+1
,[u]Γ,xk+1

〉

〈πk+1

1
,...,πk+1

k
,[u]Γ,xk+1

,πk+1

k+1
〉

〈πk+2

1
,...,πk+2

k
,πk+2

k+2
,πk+2

k+1
〉

This diagram commutes by exchange
property (Lem. 4.2.3).

Dk+2 D

Dk+2

[t0]Γ,xk+1,y

〈πk+2

1
,...,πk+2

k
,πk+2

k+2
,πk+2

k+1
〉

[t0]Γ,y,xk+1

• If t = t1t2, then [t[y := u]]Γ = 〈[t1[y := u]]Γ, [t2[y := u]]Γ〉 ; (app × IdD) ; ev. By
induction hypothesis,

〈[t1[y := u]]Γ, [t2[y := u]]Γ〉 = 〈
(
〈πk

1 , . . . , π
k
k , [u]Γ〉; [t1]Γ,y

)
,
(
〈πk

1 , . . . , π
k
k , [u]Γ〉; [t2]Γ,y

)
〉

which is equal to 〈πk
1 , . . . , π

k
k , [u]Γ〉 ; 〈[t1]Γ,y, [t2]Γ,y〉. Hence,

[t1t2[y := u]]Γ = 〈πk
1 , . . . , π

k
k , [u]Γ〉; [t1t2]Γ,y .

• If t = {|θ|} · u, it is similar to previous case.

Proposition (4.2.5). If M = (C, D, lam, app, (ci∗)ni=1, case, `) is a λCmodel,
then for any Γ = {x1, . . . , xk} and any terms t1, t2 such that fv(t1) ⊆ Γ and
t1 → t2, the interpretation given in Fig. 4.2 satisfies [t1]Γ = [t2]Γ.

Proof : Let t1, t2 be two λC -terms such that t1 → t2. We prove by induction on
the structure of t1 that for any Γ containing all free variables of t1, [t1]Γ = [t2]Γ. If
the reduction does not involve a head redex, we immediately conclude with induction
hypothesis. So we consider all possible reductions in head position:

• t1 = (λx.t)u and t2 = t[x := u].

[t1]Γ = Dk D ×D DD ×D D
〈(Λ(ft);lam),[u]Γ〉 app×IdD ev

100

A.1. Categorical models

with ft = Dk ×D Dk+1 D
∼= [t]Γ,x

. Thus

[t1]Γ = 〈IdD, [u]Γ〉 ; (Λ(ft); lam; app)× IdD ; ev
= 〈IdD, [u]Γ〉 ; Λ(ft)× IdD ; ev (D1)
= 〈IdD, [u]Γ〉 ; ft (Def. of exponential)
= [t[x := u]]Γ (Lem. 4.2.4)

• t1 = λx.tx (with x /∈ fv(t)) and t2 = t. Then [t1]Γ = Λ(ftx) ; lam

where ftx = Dk ×D Dk+1 D ×D DD ×D D
∼= 〈[t]Γ,x,[x]Γ,x〉 app×IdD ev

.

But x /∈ fv(t) implies [t]Γ,x = 〈πk+1
1 , . . . , πk+1

k 〉 ; [t]Γ by weakening property

(Lem. 4.2.3), and [x]Γ,x = πk+1
k+1 .

So ftx = Dk ×D Dk+1 Dk ×D DD ×D D
∼= 〈〈πk+1

1
,...,πk+1

k
〉,πk+1

k+1
〉 ([t]Γ; app)×IdD ev

Id
Dk×D

.

By uniqueness of the exponential, Λ(ftx) = [t]Γ; app, and [t1]Γ = [t]Γ; app; lam =
[t]Γ by (D1).

• t1 = {|θ|} · ci and t2 = ui, where θ = {cj 7→ uj/j ∈ J}, with J ⊆ J1..nK.

Then [t1]Γ = 〈 〈f1, . . . , fn〉 , [ci]Γ 〉 ; case with fj =

{
[uj]Γ if j ∈ J
!Dk ; ` otherwise

and [ci]Γ =!Dk ; c∗i .

The following diagram commutes: Dk Dn × 1 Dn ×D

Dn D

〈 〈f1,...,fn〉 , !Dk 〉 IdDn×c∗i

〈f1,... ,fn〉

πn
i

∼= case(D2)

,

so [t1]Γ = 〈f1, . . . , fn〉 ; π
n
i = fi = [ui]Γ.

• t1 = {|θ|} · (tu) and t2 = ({|θ|} · t) u.
[t1]Γ = 〈 [θ]Γ , [tu]Γ〉 ; case with [tu]Γ = 〈[t]Γ, [u]Γ〉 ; (app× IdD) ; ev
[t2]Γ = 〈

(
〈 [θ]Γ , [t]Γ〉 ; case

)
, [u]Γ〉 ; (app× IdD); ev

So [t1]Γ = [t2]Γ because the following diagram commutes:

Dn × (D ×D) Dn × (DD ×D) Dn ×D

Dk (D3) D

(Dn ×D)×D D ×D DD ×D

〈 [θ]Γ , 〈[t]Γ,[u]Γ〉〉

〈 〈[θ]Γ , 〈[t]Γ〉〉,[u]Γ〉

∼=

Id×(app×Id) Id×ev

case

case×Id app×Id

ev

• t1 = {|θ|} · λx.t and t2 = λx.{|θ|} · t with x /∈ fv(θ).

[t1]Γ = 〈[θ]Γ, (Λ(ft); lam)〉 ; case with ft = Dk ×D Dk+1 D
∼= [t]Γ,x

, and

[t2]Γ = Λ(f{|θ|}·t); lam with f{|θ|}·t = Dk ×D Dk+1 Dn ×D D
∼= 〈[θ]Γ,x,[t]Γ,x〉 case

.

So [t1]Γ = 〈[θ]Γ, (Λ(ft); lam)〉 ; case
= 〈[θ]Γ,Λ(ft)〉 ; (IdDn × lam) ; case
= 〈[θ]Γ,Λ(ft)〉 ; case

◦ ; lam by (D4)

101

Appendix A. Some detailed proofs

Hence [t1]Γ = [t2]Γ if 〈[θ]Γ,Λ(ft)〉 ; case
◦ = Λ(f{|θ|}·t).

Remember (page ??) that case◦ = Λ(fcase), with

fcase = (Dn ×DD)×D Dn × (DD ×D) Dn ×D D
∼= IdDn×ev case

Hence by Lem. 4.1.3, [t1]Γ = [t2]Γ if (〈[θ]Γ,Λ(ft)〉 × Idd) ; fcase = f{|θ|}·t.

Remark that (〈[θ]Γ,Λ(ft)〉 × Idd) ; fcase = lhs ; case, with

lhs = Dk×D Dn×(DD×D) Dn×D

= Dk×D Dn×(Dk×D) Dn×(DD×D) Dn×D

= Dk×D Dn×(Dk×D) Dn×D

(Dn×DD)×D
〈[θ]Γ,Λ(ft)〉×IdD ∼= IdDn×ev

〈(π1 ; [θ]Γ),Id〉 IdDn×(Λ(ft)×IdD) IdDn×ev

〈(π1 ; [θ]Γ),Id〉 IdDn×ft

On the other hand, f{|θ|}·t = rhs ; case, with

rhs = Dk×D Dk+1 Dk+1×Dk+1 Dn×D

= Dk×D Dk+1 Dk+1×Dk+1 Dk×Dk+1 Dn×D (Lem. 4.2.3)

= Dk×D (Dk×D)×(Dk×D) Dk×Dk+1 Dn×D

= Dk×D (Dk×D)×(Dk×D) Dn×D

∼= 〈Id,Id〉 [θ]Γ,x×[t]Γ,x

∼= 〈Id,Id〉 〈...,πk+1

k
〉×Id [θ]Γ×[t]Γ,x

〈Id,Id〉 π1×
∼= [θ]Γ×[t]Γ,x

〈Id,Id〉 (π1 ; [θ]Γ)×ft

Finally rhs = lhs = 〈(π1 ; [θ]Γ) , ft〉, and so [t1]Γ=[t2]Γ.

• t1 = {|θ|} · {|φ|} · t and t2 = {|θ ◦ φ|} · t.
[t1]Γ =

(
〈[θ]Γ, 〈[φ]Γ, [t]Γ〉〉

)
; (IdDn × case) ; case, and

[t2]Γ =
(
〈[θ ◦ φ]Γ, [t]Γ〉

)
; case.

Both terms have the same interpretation if the following diagram commute:

Dn × (Dn ×D) Dn ×D

Dk (Dn ×Dn)×D D

Dn ×D

〈[θ]Γ,〈[φ]Γ,[t]Γ〉〉

IdDn×case

case

〈[θ◦φ]Γ,[t]Γ〉
case

∼=

•×IdD

〈〈[θ]Γ,[φ]Γ〉,[t]Γ〉

(D5)�

(4.1)

The upper triangle commutes by uniqueness of the product, the triangle below
commutes if (D6) commutes (consequence of Lem. 4.2.2), and the right part of
the diagram is exactly (D5). Also the interpretation is correct w.r.t. CaseCase
if (D5) and (D6) commute.

A.1.2 Proof of correctness of PER-model

The following lemma achieves the proof of Prop. 4.3.3.

Lemma. In the category PerλC
, let D = ≃λC

, lam = app = IdD, c
∗ =

λx.c
1→D

, case = tcase
(Dn×D)→D

, with tcase = λx.{|(ci 7→ πni (π1x))
n
i=1|}·π2x, and

` = λx.{| |} · c1
1→D

. Then the diagrams (D2), (D3), (D5) and (D6) (of Fig. 4.1)
commute.

102

A.1. Categorical models

Proof : (D2): We show that rhs = πn
i , where rhs = h∼= ; (IdDn × c∗i) ; case

(with h∼= = λx.Lx, xM
Dn→Dn×1

). Remember that (IdDn × c∗i) = λx.Lπ1x, (λx.ci)(π2x)M
by Rem. ??. We simplify rhs, considering terms up to λC -equivalence (4.2).

rhs = λz.tcase
(
(λx.Lπ1x, (λx.ci)xM) ((λx.Lx, xM)z)

)Dn→D

= λz.tcase
(
Lπ1Lz, zM, (λx.ci)(π2Lz, zM)M

)Dn→D

= λz.tcase(Lz, ciM)
Dn→D

= λz.{|(ci 7→ πn
i (π1Lz, ciM))

n
i=1|} · π2Lz, ciM

Dn→D

= λz.{|(ci 7→ πn
i (π1Lz, ciM))

n
i=1|} · π2Lz, ciM

Dn→D

= λz.{|(ci 7→ πn
i z)ni=1|} · ci

Dn→D

= λz.πn
i z

Dn→D
by CaseCons

= πn
i

(D3): We show that lhs = rhs, where lhs = (case× IdD) ; (app× IdD) ; ev,
and rhs = h∼= ; (IdDn × (app× IdD)) ; (IdDn × ev); case, with

h∼= = λx.Lπ1(π1x), Lπ2(π1x), π2xMM
(Dn×D)×D→Dn×(D×D)

.
Notice that app× IdD = IdD×D, so lhs = (case× IdD) ; ev, and

rhs = h∼= ; (IdDn × ev); case.

lhs = λz.(λx.(π1x)(π2x))
(
(λx.Ltcase(π1x), π2xM)z

)

= λz.(λx.(π1x)(π2x)) Ltcase(π1z), π2zM

= λz.(tcase(π1z)) (π2z)

= λz.
(
{|(ci 7→ πn

i (π1(π1z)))
n
i=1|} · π2(π1z)

)
(π2z)

rhs = λz.tcase (λy.Lπ1y, (λx.(π1x)(π2x))(π2y)M) ((λx.Lπ1(π1x), Lπ2(π1x), π2xMM)z)

= λz.tcase (λy.Lπ1y, (π1(π2y))(π2(π2y))M) Lπ1(π1z), Lπ2(π1z), π2zMM

= λz.tcase Lπ1(π1z), (π2(π1z))(π2z)M

= λz.{|(ci 7→ πn
i (π1(π1z)))

n
i=1|} ·

(
π2(π1z) (π2z)

)

= λz.
(
{|(ci 7→ πn

i (π1(π1z)))
n
i=1|} · π2(π1z)

)
(π2z) by CaseApp

(D5): Let lhs = (• × IdD) ; case, and rhs = h∼= ; (IdDn × case) ; case, with

h∼= = λx.Lπ1(π1x) , Lπ2(π1x) , π2xMM
(Dn×Dn)×D→Dn×(Dn×D)

.
Then (D5) commutes means lhs = rhs.
Remember that • : Dn ×Dn → Dn is the pairing of all (IdDn × πn

i) ; case. Thus

• = λx.L. . . , (λy.tcase Lπ1y , π
i
n(π2y)M)x, . . .M

= λx.L. . . , tcase Lπ1x , π
i
n(π2x)M, . . .M

• × IdD = λx.L L. . . , tcase Lπ1(π1x) , π
i
n(π2(π1x))M, . . .M , π2x M

lhs = λz.tcase L L. . . , tcase Lπ1(π1z) , π
i
n(π2(π1z))M, . . .M , π2z M

= λz.{|(ci 7→ tcase Lπ1(π1z) , π
i
n(π2(π1z))M)

n
i=1|} · π2z

= λz.{|(ci 7→ tcase Lπ1(π1z) , π
i
n(π2(π1z))M)

n
i=1|} · (π2z)

= λz.{|(ci 7→ {|(cj 7→ πn
j (π1(π1z)))

n
j=1|} · (π

i
n(π2(π1z))))

n
i=1|} · (π2z)

rhs = λz.tcase
(
(λx.Lπ1x , tcase(π2x)M) Lπ1(π1z) , Lπ2(π1z) , π2zMM

)

= λz.tcase (Lπ1(π1z) , tcaseLπ2(π1z) , π2zMM)

= λz.{|(ci 7→ πn
i (π1(π1z)))

n
i=1|} · tcase Lπ2(π1z) , π2zM

= λz.{|(ci 7→ πn
i (π1(π1z)))

n
i=1|} · {|(cj 7→ πn

j (π2(π1z)))
n
j=1|} · (π2z)

= λz.{|(cj 7→ {|(ci 7→ πn
i (π1(π1z)))

n
i=1|} · π

n
j (π2(π1z)))

n
j=1|} · (π2z) (by CaseCase)

103

Appendix A. Some detailed proofs

(D6): This diagram commutes if lhs = rhs, with lhs = π2 ; `,
and rhs = (IdDn × `) ; case.

lhs = λz.(λx.{||} · c1) (π2z)
Dn×1→D

= λz.{||} · c1
Dn×1→D

rhs = λz.tcase Lπ1z, , (λx.{||} · c1) (π2z)M
Dn×1→D

= λz.tcase Lπ1z, , {||} · c1M
Dn×1→D

= λz.{|(ci 7→ πn
i (π1z))

n
i=1|} · {||} · c1

Dn×1→D

= λz.{||} · c1
Dn×1→D

(by CaseCase)

A.1.3 Proof of completeness of PER-model

In this section we give the proofs of all the lemmas of Sec. 4.3.4 that are needed
for the completeness result (Theo. 4.2). All of them rely on rewriting arguments,
although this thesis is not a thesis about rewriting.

Lemma (4.3.6). λ−
C
-reduction on completed terms

Let t be a defined term. Then, for any term t′,

t̃→λ−

C

t′ implies t′ = t̃0 for some t0 such that t→ t0.

(Remember that λ−
C
denotes the λC -calculus without rule CaseCase).

Proof : By structural induction on t. First notice that every CaseCons redex
present in t̃ corresponds to a CaseCons redex in t, as t is defined. Moreover, {| |} · c1 is
not reducible so every redex in a sub-term of t̃ corresponds to a redex in a sub-term of t
Also if the reduction t̃→ t′ is performed in a (strict) sub-term of t̃, we can immediately
conclude with induction hypothesis. So it is sufficient to check the lemma for the five
possible reductions in head position t̃ _ t′, which is trivial.

Lemma (4.3.7). CaseCase reduction on completed terms
For any term t, t′,

t̃→cc t
′ implies t′ →∗

cc t̃0 for some t0 such that t→cc t0

where →cc denotes a reduction with rule CaseCase.
Proof : By by structural induction on t. If the CaseCase reduction occurs in a strict

sub-term of t̃ then we conclude with induction hypothesis. Otherwise t = {|θ|} · {|φ|} · u,

and t′ = {|θ̃ ◦ φ̃|} · ũ. Then we take t0 = {|θ ◦ φ|} · u, since θ̃ ◦ φ̃ →∗
cc θ̃ ◦ φ. Indeed, if

φ = {ci 7→ ui/i ∈ I} then

θ̃ ◦ φ̃ = {ci 7→ {|θ̃|} · ũi/i ∈ I} ∪ {ci 7→ {|θ̃|} · {||} · c1/i /∈ I}

θ̃ ◦ φ = {ci 7→ {|θ̃|} · ũi/i ∈ I} ∪ {ci 7→ {||} · c1/i /∈ I}

Also t′ →∗
cc t̃0.

Lemma (4.3.9). Commutation case-completion/cc-normal form
For any term t,

⇓ (t̃) = ⇓̃ t .

104

A.1. Categorical models

Proof : By induction on the size of the maximal reduction t̃ →cc⇓ (t̃). If t̃ =⇓ (t̃),

then t̃ is CaseCase-normal, and so is t (Fact.4.3.4). Thus t =⇓ t and t̃ = ⇓̃ t. Otherwise
let t̃→cc t

′ →∗
cc⇓ (t̃). By Lem. 4.3.7, there is a term t0 such that t′ →∗

cc t̃0 and t→cc t0.

Hence t̃ →+
cc t̃0 →

∗
cc⇓ (t̃) =⇓ (t̃0). By induction hypothesis, ⇓ (t̃0) = ⇓̃ t0. Moreover

⇓ t0 =⇓ t, so (̃⇓ t) = (̃⇓ t0) =⇓ (t̃0) =⇓ (t̃).

Lemma (4.3.10). For any terms t, t′, if t→λ−

C

t′ then there exists a term u such

that
⇓ t→∗

λ−

C

u→∗
cc⇓ t

′ .

Proof : The proof proceeds by induction on s(t), the structural measure of t (Def. 2.1.2).
For any term s (or any case-binding θ), s′ (resp. θ′) represents a term (resp. a case-
binding) such that s →λC

s′ (resp. θc →λC
θ′c for some c ∈ dom(θ), and θc′ = θ′c′ for

c′ 6= c)

• If t is an application, either t = t1t2 and t′ = t′1t2 (or t′ = t1t
′
2) and we conclude

with induction hypotheses, or t = (λx.t1)t2 and t′ = t1[x := t2]. In that case,
⇓ t = (λx. ⇓ t1) ⇓ t2 →λ−

C

(⇓ t1)[x :=⇓ t2] →
∗
cc⇓ (⇓ t1)[x :=⇓ t2]. Moreover,

⇓ (⇓ t1)[x :=⇓ t2] =⇓ (t1[x := t2]). Thus ⇓ t→λ−
C

(⇓ t1)[x :=⇓ t2]→
∗
cc⇓ t

′.

• If t is an abstraction, either t = λx.t0 and t′ = λx.t′0 and we conclude with
induction hypothesis, or t = λx.t′x with x /∈ fv(t′). In that case, ⇓ t = λx. ⇓
t′x→λ−

C

⇓ t′.

• If t = {|θ|} · x, then t′ = {|θ′|} · x and we conclude with induction hypothesis.

• If t = {|θ|} · c, then either t′ = {|θ′|} · c and we conclude with induction hypothesis,
or t′ = θc and ⇓ t = {| ⇓ θ|} · c→λ−

C

⇓ θc.

• If t = {|θ|} · t1t2, then either t′ = {|θ′|} · t1t2 and we conclude with induction
hypothesis, or t′ = {|θ|} · t0 with t1t2 →λ−

C

t0 or t′ = ({|θ|} · t1)t2.

In the second case, by induction hypothesis there is some u0 such that
⇓ t1t2 →

∗
λ−

C

u0 →
∗
cc⇓ t0. Hence

⇓ t = {| ⇓ θ|}· ⇓ t1t2 →
∗
λ−

C

{| ⇓ θ|} · u0 →
∗
cc {| ⇓ θ|}· ⇓ t0 →

∗
cc⇓ {| ⇓ θ|}· ⇓ t0 .

Moreover, every sub-term of ⇓ t′ is in CaseCase normal form, so
⇓ t′ =⇓ {| ⇓ θ|}· ⇓ t0. Thus ⇓ t→

∗
λ−

C

{| ⇓ θ|} · u0 →
∗
cc⇓ t

′.

In the last case, ⇓ t = {| ⇓ θ|} · (⇓ t1 ⇓ t2), so

⇓ t→λ−
C

({| ⇓ θ|}· ⇓ t1) ⇓ t2 →
∗
cc⇓ ({| ⇓ θ|}· ⇓ t1) ⇓ t2 =⇓ {|θ|} · t1 ⇓ t2.

• If t = {|θ|} · λx.t0, idem as previous case.

• If t = {|θ|} · {|φ|} · t0, then either t′ = {|θ|} · {|φ′|} · t0, or t
′ = {|θ|} · {|φ|} · t′0, or

t′ = {|θ′|} · {|φ|} · t0.

In the first case, write t1 = {|θ ◦ φ|} · t0 and t′1 = {|θ ◦ φ′|} · t0. Remark that
s(t1) < s(t) (since the structural measure decreases by CaseCase-reduction),
and that t1 →λC

t′1. By induction hypothesis, there is some u such that
⇓ t1 →

∗
λ−

C

u→∗
cc⇓ t

′
1. Since ⇓ t =⇓ t1 and ⇓ t′ =⇓ t′1 we are done.

In the second case, same method but with t′1 = {|θ ◦ φ|} · t′0.

105

Appendix A. Some detailed proofs

In the last case, write t = {|θ|} ·{|φ1|} · · · · {|φk|} ·u0, where u0 is not a case construct
(thus k ≥ 1). Then ⇓ t = {| ⇓ (θ ◦ ψ)|}· ⇓ u0, with ψ = φ1 ◦ (· · · ◦ φk), and
⇓ t′ = {| ⇓ (θ′ ◦ ψ)|}· ⇓ u0 (since ((θ ◦ φ1) ◦ · · ·) ◦ φk →

∗
cc θ ◦ ψ).

Let us explicit ⇓ t and ⇓ t′: ⇓ t = {|c 7→⇓ {|θ|} · ψc / c ∈ dom(ψ)|}· ⇓ u0
⇓ t′ = {|c 7→⇓ {|θ′|} · ψc / c ∈ dom(ψ)|}· ⇓ u0

Remark that s({|θ|} · ψc) ≤ s(t) (the structural measure decreases by CaseCase-
reduction, and preserves the order of sub-term relation), and that
{|θ|} · ψc →λ−

C

{|θ′|} · ψc. Hence , by induction hypothesis, for each c ∈ dom(ψ)

there is a term uc such that ⇓ {|θ|} · ψc →
∗
λ−

C

uc →
∗
cc⇓ {|θ

′|} · ψc. Thus

⇓ t→∗
λ−

C

u→∗
cc⇓ t

′ for u = {|c 7→ uc / c ∈ dom(ψ)|}· ⇓ u0 .

A.2 Abstract machine and CPS translation

A.2.1 Abstract machine correction

Proposition (5.1.1). If a λC -term t has a head normal form h, then eval(t) = h.

Proof : By induction on the reduction t _∗
w h. If t itself is in normal form, it follows

from the definition. Now we prove that t _w t′ implies eval(t) = eval(t′), by structural
induction on t. Write t = t0 . . . tk, where t0 is not an application. Three cases can occur:

1. t0 = λx.u and k ≤ 1 and t′ = u[x := t1]t2 . . . tk.
Then both load (t) and load (t′) reach state ⋄ ⋆ u[x := t1] ⋆ t2 . . . tk. Hence
eval(t) = eval(t′).

2. t0 = z and k ≤ 1 and t′ = z t2 . . . tk. Then eval(t) = eval(t′) = z.

3. t0 _w t′0 and t′ = t′0t1 . . . tk

• If k = 0, five different cases may arise:

- t = {|θ|} · λx.u and t′ = λx.{|θ|} · u

- t = {|θ|} ·z and t′ = z

In both cases eval(t) = t′

- t = {|θ|} · c and c 7→ t′ ∈ θ

- t = {|θ|} · u1u2 and t′ = ({|θ|} · u1)u2

- t = {|θ|} · {|φ|} · u and t′ = {|θ ◦ φ|} · u
In those three cases, load (t) and load (t′) both reach a same state (resp. (⋄ ⋆ t′ ⋆ ⋄)
and (θ ⋆ u1 ⋆ u2 · ⋄) and (θ ◦ φ ⋆ u ⋆ ⋄)). Also eval(t) = eval(t′).

• If k ≥ 1, by induction hypothesis eval(t0) = eval(t′0). Moreover, writing ◮
\z

evaluation steps that are not 〈θ〉 ⋆ z ⋆ π ◮ ⋄ ⋆ z ⋆ ⋄, we can remark
that

〈θ〉 ⋆ t ⋆ π1 ◮∗
\z

〈θ〉′ ⋆ t′ ⋆ π′
1

implies
〈θ〉 ⋆ t ⋆ π1π2 ◮∗

\z
〈θ〉′ ⋆ t′ ⋆ π′

1π2

(A.1)

If eval(t0) 6= z, then

load(t0) = ⋄ ⋆ t0 ⋆ ⋄
load(t0) ◮∗

\z
〈θ〉 ⋆ u0 ⋆ π0

load(t′0) = ⋄ ⋆ t′0 ⋆ ⋄
load(t′0) ◮∗

\z
〈θ〉′ ⋆ u′0 ⋆ π′

0

106

A.2. Abstract machine and CPS translation

where 〈θ〉 ⋆ u0 ⋆ π0 (written s0) and 〈θ〉
′ ⋆ u′0 ⋆ π′

0 (written s′0) are final
and unload(s0) = unload(s′0) = eval(t0).
Write π = t1 · · · tk · ⋄. Hence (??) implies

load(t) ◮∗
\z

⋄ ⋆ t0 ⋆ π ◮∗
\z

〈θ〉 ⋆ u0 ⋆ π0π (= s)

load(t′) ◮∗
\z

⋄ ⋆ t′0 ⋆ π ◮∗
\z

〈θ〉′ ⋆ u′0 ⋆ π′
0π (= s′)

∗ If u0 is not an abstraction, then s0 is final and unload(s0) = unload(s′0)
implies s0 = s′0 so s = s′.

∗ If u0 is an abstraction, then either s0 = s′0 and we are done,
or s0 = θ ⋆ λx.u1 ⋆ ⋄ and s′0 = ⋄ ⋆ λx.{|θ|} · u1 ⋆ ⋄ (or conversely)
with x /∈ fv(θ). Then we can conclude like in case 1 (s and s′ produce the
same state).

If eval(t0) = z, then

load(t0) = ⋄ ⋆ t0 ⋆ ⋄ ◮∗
\z

〈θ〉 ⋆ z ⋆ π0 ◮ ⋄ ⋆ z ⋆ ⋄

Writing π = t1 · · · tk · ⋄, (??) implies

load(t) ◮∗
\z

⋄ ⋆ t0 ⋆ π ◮∗
\z

〈θ〉 ⋆ z ⋆ π0π ◮ ⋄ ⋆ z ⋆ ⋄

Also eval(t) = z. The same reasoning on t′ leads to eval(t′) = z.

A.2.2 From continuation model to λC -model

Lemma (5.3.6). Let M∼= = 〈|π11(x), 〈|π21(x), π2(x)|〉|〉.
The typing judgement x : (Dn ×D)×D ⊢p M∼= : Dn × (D ×D) is derivable.
Write h∼= = ⌊M∼=⌋x:(Dn×D)×D. Then,

(case× IdD); (app× IdD); ev = h∼=; (IdDn × (app× IdD)); (IdDn × ev); case .

Proof : On the one hand, let f = (case× IdD); (app× IdD); ev.
Then f =

(
(case; app)× IdD

)
; ev = 〈(π1; case; app) , π2〉; ev.

By (B.2), ⌈ ˙case; app⌉ →∗
p λz.Mapp[z :=Mcase]. Hence

⌈ ˙case; app⌉ →∗
p λz.λxk. let 〈|xθ, xπ|〉 :=↑c k in Mcase

(
↓c 〈|xθ, ↓s 〈|x, xπ|〉|〉

)

→∗
p λz.λxk. let 〈|xθ, xπ|〉 :=↑c k in let 〈|yθ, yπ|〉 := 〈|xθ, ↓s 〈|x, xπ|〉|〉 in

let 〈|yφ, y|〉 := z in y
(
↓c 〈|〈|M1, . . . ,Mn|〉n, yπ|〉

)
,

where Mi = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in

let 〈|x1; . . . ;xn|〉n := yφ in xi
(
↓c 〈|yθ, zπ|〉

)

⌈ ˙case; app⌉ →∗
p λzxk. let 〈|xθ, xπ|〉 :=↑c k in let 〈|yφ, y|〉 := z in

y
(
↓c 〈|〈|M

′
1, . . . ,M

′
n|〉n, ↓s 〈|x, xπ|〉|〉

)
,

where M ′
i = λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in
let 〈|x1; . . . ;xn|〉n := yφ in xi

(
↓c 〈|xθ, zπ|〉

)

Moreover π̇1 →p λz.π1(z), and so by (B.2),
⌈ ˙π1; case; app⌉ →

∗
p λz.λxk. let 〈|xθ, xπ|〉 :=↑c k in let 〈|yφ, y|〉 := π1(z) in

y
(
↓c 〈|〈|M

′
1, . . . ,M

′
n|〉n, ↓s 〈|x, xπ|〉|〉

) .

In the same way, π̇1 →p λz.π1(z) and so by (B.3),

107

Appendix A. Some detailed proofs

ḟ →∗
p λz.

(
λxk. let 〈|xθ, xπ|〉 :=↑c k in let 〈|yφ, y|〉 := π1(z) in

y (↓c 〈|〈|M
′
1, . . . ,M

′
n|〉n, ↓s 〈|x, xπ|〉|〉)

)
π2(z)

→∗
p λz.λk. let 〈|xθ, xπ|〉 :=↑c k in let 〈|yφ, y|〉 := π1(z) in

y (↓c 〈|〈|M
′
1, . . . ,M

′
n|〉n, ↓s 〈|π2(z), xπ|〉|〉)

→∗
p λzk. let 〈|xθ, xπ|〉 :=↑c k in π21(z) (↓c 〈|〈|N1, . . . , Nn|〉n, ↓s 〈|π2(z), xπ|〉|〉)

with Ni = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in let 〈|x1; . . . ;xn|〉n := π11(z) in xi

(
↓c 〈|xθ, zπ|〉

)

On the other hand, let g = h∼=; (IdDn × (app× IdD)); (IdDn × ev); case .
Then g = h∼=;

(
IdDn × (〈(π1; app) , π2〉 ; ev)

)
; case . Then

⌈ ˙〈(π1; app) , π2〉 ; ev⌉ →∗
p λx. Mapp[z := π1(x)] π2(x) (B.3)

⌈ ˙IdDn × (〈(π1; app) , π2〉 ; ev)⌉→
∗
p λy. 〈|π1(y),Mapp[z := π12(y)] π22(y)|〉 (B.7)

h∼=;
(
IdDn × (〈(π1; app) , π2〉 ; ev)

→∗
p λx. 〈|π1(M∼=),Mapp[z := π12(M∼=)] π22(M∼=)|〉 (B.2)

→∗
p λx. 〈|π11(x),Mapp[z := π21(x)] π2(x)|〉

Still by (B.2), ġ →∗
p λx.Mcase[z := 〈|π11(x),Mapp[z := π21(x)] π2(x)|〉], which means

ġ →∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|yφ, y|〉 := 〈|π11(x),Mapp[z := π21(x)] π2(x)|〉 in

y
(
↓c 〈|〈|M1, . . . ,Mn|〉n, xπ|〉

)

with Mi = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in let 〈|x1; . . . ;xn|〉n := yφ in xi

(
↓c 〈|xθ, zπ|〉

)
.

ġ →∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in

Mapp[z := π21(x)] π2(x)
(
↓c 〈|〈|N1, . . . , Nn|〉n, xπ|〉

)

with Ni = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in let 〈|x1; . . . ;xn|〉n := π11(x) in xi

(
↓c 〈|xθ, zπ|〉

)
.

Notice that Mapp[z := π21(x)] π2(x) →
∗
p

λk′.let 〈|yθ, yπ|〉 :=↑c k
′ in π21(x)

(
↓c 〈|yθ, ↓s 〈|π2(x), yπ|〉|〉

)
.

Hence ġ →∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|yθ, yπ|〉 := 〈|〈|N1, . . . , Nn|〉n, xπ|〉 in

π21(x)
(
↓c 〈|yθ, ↓s 〈|π2(x), yπ|〉|〉

)

→∗
p λx.λk.let 〈|xθ, xπ|〉 :=↑c k in π21(x)

(
↓c 〈|〈|N1, . . . , Nn|〉n, ↓s 〈|π2(x), xπ|〉|〉

)
.

Finally ḟ and ġ reduce on the same term (up to α-equivalence), thus f = g by (B.1).

Lemma (5.3.7). Write M∼= = 〈|π11(z), 〈|π21(z), π2(z)|〉|〉,
and h∼= = ⌊Meq⌋z:(Dn×Dn)×D. It is the commutation isomorphism from
(Dn ×Dn)×D to Dn × (Dn ×D). Then,

(• × IdD) ; case = h∼= ; (IdDn × case) ; case .

Proof : Let f = (•×IdD) ; case. Remember that • = 〈. . . , ((IdDn×πn
i); case), . . .〉.

Hence,
⌈ ˙IdDn × πn

i ⌉ →∗
p λz.〈|π1(z), π

n
i (π2(z))|〉 (B.7)

⌈ ˙(IdDn × πn
i) ; case⌉ →

∗
p λz.Mcase[z := 〈|π1(z), π

n
i (π2(z))|〉] (B.2)

•̇ →∗
p λz.M• (B.5)

with M• = 〈| . . . ,Mcase[z := 〈|π1(z) , π
n
i (π2(z))|〉], . . . |〉n

⌈ ˙• × IdD⌉ →∗
p λz.〈|M•[z := π1(z)] , π2(z)|〉 (B.7)

ḟ →∗
p λz.Mcase[z := 〈|M•[z := π1(z)] , π2(z)|〉] (B.2)

Remember that
Mcase = λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|yφ, y|〉 := z in y

(
↓c 〈|〈|M1, . . . ,Mn|〉n, xπ|〉

)

where Mi = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in let 〈|x1; . . . ;xn|〉n := yφ in xi

(
↓c 〈|xθ, zπ|〉

)
.

108

A.2. Abstract machine and CPS translation

Hence
ḟ →∗

p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in let 〈|yφ, y|〉 := 〈|M•[z := π1(z)] , π2(z)|〉 in
y
(
↓c 〈|〈|M1, . . . ,Mn|〉n, xπ|〉

)

ḟ →∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in π2(z)

(
↓c 〈|〈|M

′
1, . . . ,M

′
n|〉n, xπ|〉

)

where M ′
i = λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in let 〈|x1; . . . ;xn|〉n :=M•[z := π1(z)] in
xi

(
↓c 〈|xθ, zπ|〉

)

→∗
p λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in Mcase[z := 〈|π11(z), π
n
i (π21(z))|〉]

(
↓c 〈|xθ, zπ|〉

)

→∗
p λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in let 〈|x′θ, x
′
π|〉 := 〈|xθ, zπ|〉 in

let 〈|yφ, y|〉 := 〈|π11(z), π
n
i (π21(z))|〉 in y

(
↓c 〈|〈|N1, . . . , Nn|〉n, x

′
π|〉

)

where Ni = λk′.let 〈|z′θ, z
′
π|〉 :=↑c k

′ in let 〈|x1; . . . ;xn|〉n := yφ in xi
(
↓c 〈|x

′
θ, z

′
π|〉

)

M ′
i →∗

p λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in

let 〈|yφ, y|〉 := 〈|π11(z), π
n
i (π21(z))|〉 in y

(
↓c 〈|〈|N

′
1, . . . , N

′
n|〉n, zπ|〉

)

where N ′
i = λk′.let 〈|z′θ, z

′
π|〉 :=↑c k

′ in let 〈|x1; . . . ;xn|〉n := yφ in xi
(
↓c 〈|xθ, z

′
π|〉

)

M ′
i →∗

p λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in πn

i (π21(z))
(
↓c 〈|〈|N

′′
1 , . . . , N

′′
n |〉n, zπ|〉

)

where N ′′
i = λk′.let 〈|z′θ, z

′
π|〉 :=↑c k

′ in let 〈|x1; . . . ;xn|〉n := π11(z) in xi
(
↓c 〈|xθ, z

′
π|〉

)

Finally,
ḟ →∗

p λzk.let 〈|xθ, xπ|〉 :=↑c k in π2(z)
(
↓c 〈|〈|M

′′
1 , . . . ,M

′′
n |〉n, xπ|〉

)
,where

M ′′
i = λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in πn
i (π21(z))

(
↓c 〈|〈|N

′′
1 , . . . , N

′′
n |〉n, zπ|〉

)
, and

N ′′
i = λk′.let 〈|z′θ, z

′
π|〉 :=↑c k

′ in let 〈|x1; . . . ;xn|〉n := π11(z) in xi
(
↓c 〈|xθ, z

′
π|〉

)

On the other hand, let g = h∼= ; (IdDn × case) ; case.
⌈ ˙IdDn × case⌉ →∗

p λx.〈|π1(x),Mcase[z := π2(x)]|〉 (B.7)

⌈ ˙h∼=; (IdDn × case)⌉ →∗
p λz.〈|π1(M∼=),Mcase[z := π2(M∼=)]|〉 (B.2)

→∗
p λz.〈|π11(z),Mcase[z := 〈|π21(z), π2(z)|〉]|〉

Hence, ġ→∗
p λz.Mcase[z := 〈|π11(z),Mcase[z := 〈|π21(z), π2(z)|〉]|〉] (B.2)

= λz.λk.let 〈|xθ, xπ|〉 :=↑c k in
let 〈|yφ, y|〉 := 〈|π11(z),Mcase[z := 〈|π21(z), π2(z)|〉]|〉 in

y
(
↓c 〈|〈|M1, . . . ,Mn|〉n, xπ|〉

)

with Mi = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in

let 〈|x1; . . . ;xn|〉n := yφ in xi
(
↓c 〈|xθ, zπ|〉

)

ġ→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in

Mcase[z := 〈|π21(z), π2(z)|〉]
(
↓c 〈|〈|N1, . . . , Nn|〉n, xπ|〉

)

with Ni = λk′.let 〈|zθ, zπ|〉 :=↑c k
′ in

let 〈|x1; . . . ;xn|〉n := π11(z) in xi
(
↓c 〈|xθ, zπ|〉

)

ġ→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in

let 〈|x′θ, x
′
π|〉 := 〈|〈|N1, . . . , Nn|〉n, xπ|〉 in

let 〈|yφ, y|〉 := 〈|π21(z), π2(z)|〉 in y
(
↓c 〈|〈|M

′
1, . . . ,M

′
n|〉n, x

′
π|〉

)

where M ′
i = λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in let 〈|x1; . . . ;xn|〉n := yφ in
xi

(
↓c 〈|x

′
θ, zπ|〉

)
.

109

Appendix A. Some detailed proofs

Also,
ġ→∗

p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in
let 〈|yφ, y|〉 := 〈|π21(z), π2(z)|〉 in y

(
↓c 〈|〈|M

′
1, . . . ,M

′
n|〉n, xπ|〉

)

where M ′
i = λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in let 〈|x1; . . . ;xn|〉n := yφ in
xi

(
↓c 〈|〈|N1, . . . , Nn|〉n, zπ|〉

)

ġ→∗
p λz.λk.let 〈|xθ, xπ|〉 :=↑c k in π2(z)

(
↓c 〈|〈|M

′′
1 , . . . ,M

′′
n |〉n, xπ|〉

)

where M ′′
i = λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in let 〈|x1; . . . ;xn|〉n := π21(z) in
xi

(
↓c 〈|〈|N1, . . . , Nn|〉n, zπ|〉

)

→∗
p λk′.let 〈|zθ, zπ|〉 :=↑c k

′ in πn
i (π21(z))

(
↓c 〈|〈|N1, . . . , Nn|〉n, zπ|〉

)

Finally ġ reduces on the same term as ḟ , thus f = g

110

Appendix B

Lambda calculus with pairs

B.1 Lambda calculus with pairs

In this appendix we recall the lambda calculus with pairs (or λP -calculus), and
we detail its different variants that we may use. We parametrise it with some
P = (A,AT , T ,R, E) where:

• A is a set of atomic terms,

• AT is a set of atomic types.

The set of terms L(P) and the set of types LT (P) are then given by the grammars
of Fig. B.1. Reduction rules include the usual β-reduction and projections, as well
as the atomic reduction of R ⊆ L(P)×L(P). There is also a set T ⊆ A×AT of
axiomatic typing rules, and an equivalence relation E on types that contextually
closed. We may write A = B for (A,B) ∈ E . The whole calculus is described in
Fig. B.1.

The reduction relation→p in the λP -calculus is the contextual closure of _p.
As usual, we write→∗

p the transitive closure of→p, and ≃p its reflexive symmetric
and transitive closure.

A value in λP -calculus is an abstraction or a pair:

V := λx.M | 〈|M,N |〉

We write _v the weak call-by-value strategy (c.b.v. for short) in the λP -calculus:

(λx.M) V _v M [x := V] πi(〈|M1,M2|〉) _v Mi

M _v M
′

MN _v M ′N

N _v N
′

(λx.M)N _v (λx.M)N ′

(M,N) ∈ R

M _v N

Well-designed parameter The simply typed lambda calculus with pairs sat-
isfies the uniqueness of typing and the subject reduction property. We define a

111

Appendix B. Lambda calculus with pairs

Terms. M,N, P := ȧ | x | λx.M | MN | 〈|M,N |〉 | πi(M) (i∈{1,2})

where ȧ ∈ A

Types. A,B := Ṫ | A→ B | A×B where Ṫ ∈ AT

Contexts. Γ := {x1 : A1, . . . , xk : Ak}

Reduction rules: M _p N if (M,N) ∈ R

(λx.M) N _p M [x := N] πi(〈|M1,M2|〉) _p Mi

If x /∈ fv(M), λx.Mx _p M 〈|π1(M), π2(M)|〉 _p M

Typing rules:
x : A ∈ Γ

Γ ⊢p x : A
ax

(M,A) ∈ T

Γ ⊢p M : A
axT

Γ ⊢p M : A Γ ⊢p A = B

Γ ⊢p M : B
subs

Γ, x : A ⊢p M : B

Γ ⊢p λx.M : A→ B
→intro

Γ ⊢p M : A Γ ⊢p N : B

Γ ⊢p 〈|M,N |〉 : A×B
×intro

Γ ⊢p M : A→ B Γ ⊢p N : A

Γ ⊢p MN : B
→elim

Γ ⊢p M : A1 ×A2

Γ ⊢p πi(M) : Ai
×elim

Figure B.1: Lambda calculus with pairs parametrised with P

notion of good design for P that preserves those properties for the parametrised
λP -calculus.

Definition B.1.1

The parameter P = (A,AT , T ,R, E) is well designed when:

• if (M,N) ∈ R, then Γ ⊢p M : B implies Γ ⊢p N : B for each
context Γ and each type B,

• T associates only one type to each atomic term: if (ȧ, Ṫ) ∈ T and
(ȧ, Ṫ ′) ∈ T , then Ṫ = Ṫ ′.

• E is stable by sub-type: A1×A2 = B1×B2 (or A1 → A2 = B1 → B2)
implies Ai = Bi (for i = 1 and i = 2).

Remark that the minimal lambda-calculus with pairs (where A,R, T and E
are empty, and where there is only one atomic type) is well-designed.

Lemma B.1.1 (Substitution). For any terms M,N , any types A,B and any
context Γ, if Γ, x : A ⊢p M : B and Γ ⊢p N : A then Γ ⊢p M [x := N] : B.

Proof : By induction on (the derivation of) Γ, x : A ⊢p M : B.

Lemma B.1.2 (Weakening). For any terms M such that x /∈ fv(M), if Γ, x :
A ⊢p M : B then Γ ⊢p M : B.

112

B.1. Lambda calculus with pairs

Proof : By induction on Γ, x : A ⊢p M : B.

Lemma B.1.3 (Subject Reduction). If P is well-designed, then for any termsM,N ,
any context Γ and any type B,

{
Γ ⊢p M : B
M →p M

′ =⇒ Γ ⊢p M
′ : B

Proof : By induction on Γ, x : A ⊢p M : B. If the last step of the derivation uses
the rule subs, or if the redex involved in M →p M

′ is a strict sub-term of M then we
conclude with the induction hypothesis. Otherwise, M _p M

′ and the structure of M
determines the last rule involved in the derivation of Γ ⊢p M : B:

• If (M,M ′) ∈ R then Γ ⊢p M
′ : B since P is well-designed.

• IfM = (λx.M0)N andM ′ =M0[x := N], with
Γ ⊢p λx.M0 : A→ B Γ ⊢p N : A

Γ ⊢p (λx.M0)N : B
,

then Γ ⊢p M0[x := N] : B by Lem. B.1.1.

• If M = λx.M ′x, with x /∈ fv(M ′), and

Γ, x : B1 ⊢p Mx : B2

Γ ⊢p λx.Mx : B1 → B2
where B1 → B2 = B,

then the derivation of Γ, x : B1 ⊢p Mx : B2 necessarily ends with

Γ, x : B1 ⊢p M : A1 → A2 Γ, x : B1 ⊢p x : A1
→elim

Γ, x : B1 ⊢p Mx : A2
subs

Γ, x : B1 ⊢p Mx : B2

The dashed line represent zero, one or several deduction step with the rule subs,
also A2 = B2. Moreover Γ, x : B1 ⊢p x : A1 implies A1 = B1, hence B = B1 →
B2 = A1 → A2 . Also Γ, x : B1 ⊢p M : A1 → A2 implies Γ, x : B1 ⊢p M : B
(Lem. B.1.2).

• If M = πi(〈|N1, N2|〉), with M
′ = Ni, and

Γ ⊢p 〈|N1, N2|〉 : B1 ×B2

Γ ⊢p πi(〈|N1, N2|〉) : Bi
where Bi = B,

then the derivation of Γ ⊢p 〈|N1, N2|〉 : B1 ×B2 necessarily ends with

Γ ⊢p N1 : A1 Γ ⊢p N2 : A2
×intro

Γ ⊢p 〈|N1, N2|〉 : A1 ×A2
subs

Γ ⊢p 〈|N1, N2|〉 : B1 ×B2

Also B1 ×B2 = A1 ×A2, which means that Bi = Ai if P is well-designed. Hence
we can derive Γ ⊢p Ni : Bi.

• If M = 〈|π1(M
′), π2(M

′)|〉, and

Γ ⊢p π1(M
′) : B1 Γ ⊢p π2(M

′) : B2

Γ ⊢p 〈|π1(M
′), π2(M

′)|〉 : B1 ×B2
where B1 ×B2 = B,

then the derivation of Γ ⊢p πi(M
′) : Bi necessarily ends with

113

Appendix B. Lambda calculus with pairs

Γ ⊢p M
′ : A1 ×A2

×elim

Γ ⊢p πi(M
′)Ai

subs

Γ ⊢p πi(M
′)Bi

Also Ai = Bi and thus B = B1 ×B2 = A1 ×A2. Hence Γ ⊢p M
′ : B.

Lemma B.1.4 (Unique type). If P is well designed, then Γ ⊢p M : B and
Γ ⊢p M : B′ imply B = B′

Proof : By induction on Γ ⊢p M : B.

Generalised pairs In the following we may need tuples of terms a numerable
products of types. Therefore we extend the notation of pairs and product:

For any k ≥ 1, A1 × · · · ×Ak = ((A1 ×A2)× · · ·)×Ak

〈|x1; . . . ;xk|〉k = 〈|〈|〈|x1, x2|〉, · · · |〉, xk|〉

If all Ai’s are the same type A we may write An the n-ary product A× · · · ×A.
We also generalise the projection:

πkk(M) = π2(M) if k > 1
π11(M) = M

πki (M) = πk−1
i (π1(M)) if 1 ≤ i < k

Within these notations, the following rules (that generalise the rules ×intro and
×elim) are derivable:

Γ ⊢p M1 : A1 · · · Γ ⊢p Mk : Ak

Γ ⊢p 〈|M1, . . . ,Mk|〉k : A1 × · · · ×Ak

Γ ⊢p M : A1 × · · · ×Ak

Γ ⊢p πki (M) : Ai

Moreover,

πki (〈|M1, · · · ,Mk|〉n)→
∗
p Mi, and 〈|πk1 (M), · · · , πkk(M)|〉n →

∗
p M .

B.2 Lambda calculus generated by a CCC.

Cartesian closed categories exactly correspond to simply typed lambda calculus
with pairs [AC03, Sec. 4.4]. Here we formalise the fact that we can use the
language of lambda calculus with pairs to speak about the morphisms and the
objects of a CCC.

In this section, C denotes a Cartesian closed category. In order to mimic the
type notation for the n-ary product, we use the following notation for the objects
of C:

A1 × · · · ×Ak = ((A1 ×A2)× · · ·)×Ak

It is the limit of the discrete diagram A1 · · ·Ak with the projection morphisms
πki , where

π1k = π1; · · · ;π1︸ ︷︷ ︸
k−1 times

; πik = π1; · · · ;π1︸ ︷︷ ︸
k−i times

;π2

If k = 1, the projection morphism is IdA1
, and if k = 0 the k-ary product

is 1, the terminal object.

114

B.2. Lambda calculus generated by a CCC.

B.2.1 Definition

The lambda-calculus generated by C consists in adding one atomic term ḟ for
each morphism f of Cand one atomic type Ȧ for each object A. We may write ⌈ḟ⌉
for ḟ when the expression of f is too long. It is the λP -calculus where:
• A = {ḟ/f is a morphism of C}.

• AT = {Ȧ/A is an object of C}.

• R = {(ḟ , ġ)/f = g} ∪ { (˙IdA , λx.x) / IdA : A→ A }
∪ { (ėv , λx.π1(x)π2(x)) / ev : A×BA → B }

∪ { (˙Λ(f) , λxy.ḟ〈|x, y|〉) / f : A× C → B }

∪ { (⌈ ˙f ; g⌉ , λx.ġ (ḟx)) / f : A→ B, g : B → C }
∪ { (π̇i , λx.πi(x)) / i∈{1,2} , πi : A1 ×A2 → Ai}

∪ {(⌈ ˙〈f, g〉⌉ , λx.〈|ḟx, ġx|〉) / f : C → A, g : C → B }

• T = {(ḟ , ḂA) / f : A→ B}.

• E is the symmetric reflexive transitive and contextual closure of

{(ḂA, Ȧ→ Ḃ)/A,B objects of C} ∪ {(⌈ ˙A×B⌉, Ȧ× Ḃ)/A,B objects of C} .

This calculus is called the λC-calculus. It enjoys the subject reduction prop-
erty (Lem. B.1.3) and uniqueness of type (for typable terms, Lem: B.1.3) since P
is well-designed.

Lemma B.2.1. In the definition of the λC-calculus, P is well designed.

Proof : We check that for any (M,N) ∈ R, if Γ ⊢p M : B then Γ ⊢p N : B (the
other points of Def. B.1.1 are trivially true):

• If M = ḟ and g = ġ with f = g : B → C then necessarily A = ĊB and thus
Γ ⊢p ġ : A.

• If M = ėv and N = λx.π1(x)π2(x) with ev : A × BA → B, then necessarily

B = ˙BA×BA = (Ȧ× (Ȧ→ Ḃ))→ Ȧ. Moreover we can derive

Γ ⊢p λx.π1(x)π2(x) : (Ȧ× (Ȧ→ Ḃ))→ Ȧ .

• If M = ˙Λ(f) and N = λxy.ḟ〈|x, y|〉, with f : C ×A→ B, then Λ(f) is a morphism

of C → BA and so B = ˙(BA)C = Ċ → Ȧ→ Ḃ. Moreover we can derive

Γ ⊢p λxy.ḟ〈|x, y|〉 : Ċ → Ȧ→ Ḃ .

• If M = ⌈ ˙f ; g⌉ and λx.ġ (ḟx), with f : A → B and g : B → C then necessarily
B = Ȧ→ Ċ and we can derive Γ ⊢p λx.ġ (ḟx) : Ȧ→ Ċ.

• IfM = π̇i and N = λx.πi(x) with πi : A1×A2 → Ai then Γ ⊢p N : Ȧ1× Ȧ2 → Ȧi.

• If M = ⌈ ˙〈f, g〉⌉ and N = λx.〈|ḟx, ġx|〉 with f : C → A and g : C → B, then

necessarily B = ⌈ ˙(A×B)C⌉. Hence we can derive Γ ⊢p λx.〈|ḟx, ġx|〉 : B

115

Appendix B. Lambda calculus with pairs

To any object and any morphism of C correspond respectively a type and a
term of the λC-calculus. We will see that the converse holds.

Lemma B.2.2. For any type A of the λC-calculus, there is a unique object A′

of C such that A = Ȧ′.

Proof : By structural induction on A.

In the following we may make the confusion between the object and the type,
and write the object A′ with A too:

A denotes the object A and the type Ȧ.

In particular, 1 is the atomic type representing the terminal object of C.

B.2.2 From terms to morphisms

Now we attribute a morphism to each typable term. For any context
Γ = {x1 : A1, . . . , xk : Ak}, we also write Γ the object A1 × . . . × Ak (in partic-
ular if Γ is the empty context, then Γ denotes the terminal object 1). Given a
judgement Γ ⊢p M : B, the morphism ⌊M⌋Γ : Γ → B is inductively defined in
Fig. B.2. Notice that Lem. B.1.4 ensures that we do not need to specify B in
the notation ⌊M⌋Γ. We might also denote this morphism by fm when there is no
ambiguity concerning the context Γ.

Admissible rules Remember that if to morphisms f and g are equal, then
ḟ →p ġ, by definition of R. We extend the notion of reduction in order to get
the converse.

Definition B.2.1 (Admissible rule)

Given two λP -terms N and N ′, we say that a reduction rule fromM to N
is admissible (what we write N →C N

′) when for any context Γ and any
type B,

Γ ⊢p N : B =⇒

{
Γ ⊢p N

′ : B, and
fn = fn′

Remark this notion of admissible reduction is contextually closed: a trivial
induction on M ensures that

N →C N
′ =⇒ M [x := N]→C M [x := N ′] .

Also the admissible rules constitute a rewriting system. The following lemma
shows that they include all reduction rules of the λP -calculus.

Lemma B.2.3. For any terms M,N such that M →p N , and any context Γ and
any type B such that Γ ⊢p M : B,

Γ ⊢p N : B and fm = fn .

116

B.2. Lambda calculus generated by a CCC.

Γ is the context {x1 : A1, . . . , xk : Ak}, and denotes also the object A1× . . .×Ak.

Γ ⊢p M : B ; fm = ⌊M⌋Γ : Γ→ B

• Γ ⊢p xi : Ai(ax). Then fxi
= πki

•
f : A→ B in C

Γ ⊢p ḟ : A→ B
axT . Then ⌊ḟ⌋Γ = (!Γ ; Λ(π2; f)) : Γ→ BA

(where (π2; f) : 1×A→ B).

•
Γ ⊢p M : A Γ ⊢p A = B

Γ ⊢p M : B
subs. By induction, fm : Γ→ A.

By uniqueness (Lem. B.2.2), types A and B represent the same object in C,
so we use the same morphism fm for Γ ⊢p M : B.

•
Γ, xk+1 : Ak+1 ⊢p M : B

Γ ⊢p λx.M : Ak+1 → B
→intro. By induction, fm : Γ×Ak+1 → B.

Then fλxk+1.M = Λ(fm) : Γ→ BAk+1 .

•
Γ ⊢p M1 : B1 Γ ⊢p M2 : B2

Γ ⊢p 〈|M1,M2|〉 : B1 ×B2
×intro. By induction, fmi

: Γ→ Bi

(for both i).
Then f〈|M1,M2|〉 = 〈fm2

, fm2
〉 : Γ→ B1 ×B2.

•
Γ ⊢p M : A→ B Γ ⊢p N : A

Γ ⊢p MN : B
→elim. By induction, fm : Γ→ BA

and fn : Γ→ A.
Then fmn = 〈fm, fn〉; ev : Γ→ B.

•
Γ ⊢p M : B1 ×B2

Γ ⊢p πi(M) : Bi
×elim. By induction, fm : Γ→ B1 ×B2.

Then fπi(M) = fm;πi : Γ→ Bi.

Figure B.2: From typable terms to morphisms

117

Appendix B. Lambda calculus with pairs

Proof : First, Γ ⊢p N : B by subject reduction (Lem. B.1.3). Then the equality
fm = fn is proved by induction on M .

Remark B.2.1 . In terms of binary relations, the previous lemma means that

→p ⊆ →C .

Moreover, the transitivity of the equality on morphisms ensures that→∗
C ⊆→C .

Hence →∗
p ⊆ →C. Yet, remark that ≃p 6⊆ →C, since ←p 6⊆ →C. For instance,

if ⊢p Mi : Ai (for i = 1 and i = 2), then

⊢p 〈|M1,M2|〉 : A1 ×A2 , and λx.〈|M1,M2|〉x →p 〈|M1,M2|〉 .

However, 〈|M1,M2|〉 6→C λx.〈|M1,M2|〉x, since λx.〈|M1,M2|〉x is not typable.

The following proposition is quite obvious, but it is a key point in the use of
the syntax of the lambda calculus with pairs to show equalities of morphisms in
a CCC.

Proposition B.2.4. For any objects A, B of C, and any morphisms f and g
in C[A,B],

∃M ∈ L(P) , (ḟ →C M ∧ ġ →C M) =⇒ f = g. (B.1)

Proof : First, ḂA = Ȧ → Ḃ (= A → B), also ⊢p ḟ : A → B and ⊢p ġ : A → B.

Then ⊢p M : A → B and ⌊ḟ⌋ = ⌊M⌋ = ⌊ġ⌋. By definition, it means that
Λ(π2; f) = Λ(π2; g) . Hence π2; f = π2; g : 1 × A → B. Since π2 is an isomorphism
between 1×A and A (with the inverse 〈!A, IdA〉), this implies that f = g.

Finally, this function from typable terms to morphisms of C is to, some extent,
reversible with the interpretation of morphisms by atomic terms.

Proposition B.2.5. Let Γ = {x1 : A1, . . . , xk : Ak}. Remember that Γ ⊢p M : B
implies fm = ⌊M⌋Γ : Γ→ B . Moreover,

ḟm →∗
p λz.M [xi := πki (z)]

k
i=1.

The proof relies on the following lemmas, and then proceeds by induction on
the derivation of Γ ⊢p M : B.

Lemma B.2.6 (Substitution is composition). Given two morphisms f : C → A
and g : A→ B, and two terms M,N , then

{
ḟ →∗

p λx.N

ġ →∗
p λz.M

=⇒

x : C ⊢p N : A
z : A ⊢p M : B

⌈ ˙f ; g⌉ →∗
p λx.M [z := N]

(B.2)

118

B.2. Lambda calculus generated by a CCC.

Lemma B.2.7 (Application is evaluation). Given two morphisms f : C → BA

and g : C → A, and two terms M and N , then

{
ḟ →∗

p λx.M

ġ →∗
p λx.N

=⇒

x : C ⊢p M : A→ B
x : C ⊢p N : A

⌈ ˙〈f, g〉 ; ev⌉ →∗
p λx.MN

(B.3)

The following lemma requires to prove with a trivial induction that

z : A× C ⊢p M [x := π1(z)][y := π2(z)] : B =⇒ x : C, y : A ⊢p M : B

Lemma B.2.8 (Abstraction is curried form). Given a morphism f : C×A→ B
and a term M ,

ḟ →∗
p λz.M [x := π1(z)][y := π2(z)] =⇒

{
x : C, y : A ⊢p M : B
˙Λ(f)→∗

p λx.λy.M
(B.4)

Lemma B.2.9 (Pair is pairing). Given two morphisms fi : C → Ai (for i = 1, 2),
then for any M1, M2,

ḟi →
∗
p λx.Mi for both i =⇒

{
x : C ⊢p Mi : Bi for both i

⌈ ˙〈f, g〉⌉ →∗
p λx.〈|M1,M2|〉

(B.5)

Lemma B.2.10 (Projection is projection). Given a morphism f : C → B1×B2,
then for any term M , and any i ∈ {1, 2},

ḟ →∗
p λx.M =⇒

{
x : C ⊢p M : B1 ×B2

⌈ ˙f ;πi⌉ →
∗
p λx.πi(M)

(B.6)

Corollary B.2.11. Given two morphism f1, f2 from Ai to Bi (for i = 1, 2), then
for any terms M1,M2,

{
ḟ1 →

∗
p λx.M1

ḟ2 →
∗
p λx.M2

=⇒

{
x : Ai ⊢p Mi : Bi

⌈ ˙f1 × f2⌉ →
∗
p λz.〈|M1[x := π1(z)],M2[x := π2(z)]|〉

(B.7)

119

Appendix B. Lambda calculus with pairs

120

Index

algebraic type, 23
application (in CR), 41
arrow (on λC−pers), 65
arrow (in CR), 40

candidate
(cr), 34
(cr′

2), 35
(cr′

4), 36
data-candidate, 34
non-expanded candidate, 37
pre-candidate, 37
reducibility candidate, 34

case-binding, 13
case-commutation, 35

case normal form, 35
case-composition, 15
category, 52
classical λC -model, 91
closure operator for (reducibility candi-

dates), 37
commuting diagram, 52
constructor, 12
Continuation Passing Style (CPS), 84

Daimon, 12
data-structure, 13
defined term, 17
diagram (in a category), 52

exponent, 54

free variable, 13

head normal form, 80
hereditarily defined term, 17

intersection (in CR), 42

λ−
C
-calculus, 30

model
classical model, 97

λC -model, 60

neutral term, 34
hereditarily neutral, 34, 45

pairing, 53
per

category PerλC
, 65

λC−per, 64
partial equivalence relation, 64

PER model, 69
perfect normalisation, 17
point of an object, 54
principal reduct, 40
categorical product, 53
projection, 53
projection morphism, 53

reflexive object, 56

strong normalisation, 14
structural measure, 19
substitution, 46
syntactic model, 69

telescopes, 22
terminal object, 54

undefined term, 17
union (in CR), 42

valid typing judgement, 46
valuation, 43
value, 17, 38

value of a term, 39

121

Index

weak head reduction, 80

122

Bibliography

[AC03] Roberto Amadio and Pierre-Louis Curien. Domains and Lambda-
calculi. Cambridge University Press, 2003.

[AL91] Andrea Asperti and Giuseppe Longo. Categories, Types and Struc-
tures. M.I.T. Press, 1991.

[AMR06] Ariel Arbiser, Alexandre Miquel, and Alejandro Ŕıos. A lambda-
calculus with constructors. In RTA, pages 181–196, 2006.

[AMR09] Ariel Arbiser, Alexandre Miquel, and Alejandro Ŕıos. The lambda-
calculus with constructors: Syntax, confluence and separation.
Journal of Functional Programming, 19(5):581–631, 2009.

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and The Foundations of Mathemat-
ics. North-Holland, 1984.

[BB64] Edmund C. Berkeley and Daniel G. Bobrow. The Programming
Language LISP: Its Operation and Applications. MIT Press, 1964.

[BDCd95] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo
de’Liguoro. Intersection and union types: Syntax and semantics.
Information and Computation, 119(2):202–230, 1995.

[BDCPR79] Corrado Böhm, Mariangiola Dezani-Ciancaglini, P. Peretti, and
Simona Ronchi Della Rocca. A discrimination algorithm inside
lambda-beta-calculus. Theor. Comput. Sci., 8:265–292, 1979.

[Cho57] Noam Chomsky. Syntactic Structures. The Hague/Paris: Mouton,
1957.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic.
Annals of Mathematics, 33(2):346–366, 1932.

[Chu36] Alonzo Church. A note on the entscheidungsproblem. Journal of
Symbolic Logic, 1(1):40–41, 1936.

[Chu41] Alonzo Church. The Calculi of Lambda Conversion. Annals of Math-
ematics Studies (AM-6). Princeton University Press, 1941.

123

Bibliography

[Cir01] Horatiu Cirstea. Calcul de Réécriture : Fondements et Applications.
PhD thesis, Université de Nancy, 2001.

[CK98] Horatiu Cirstea and Claude Kirchner. The rewriting calculus as a
semantics of elan. In ASIAN, pages 84–85, 1998.

[CK00] Horatiu Cirstea and Claude Kirchner. The simply typed rewriting
calculus. Electr. Notes Theor. Comput. Sci., 36, 2000.

[dB91] Nicolaas Govert de Bruijn. Telescopic mappings in typed lambda
calculus. Information and Computation, 91(2):189–204, 1991.

[Fis93] Michael J. Fischer. Lambda-calculus schemata. Lisp and Symbolic
Computation, 6(3-4):259–288, 1993.

[FM09] Germain Faure and Alexandre Miquel. A categorical semantics for
the parallel lambda-calculus. Technical Report 7063, INRIA, Octo-
ber 2009.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ml. In
Programming Language Design and Implementation, pages 268–277,
1991.

[Gal98] Jean H. Gallier. Typing untyped lambda-terms, or reducibility
strikes again! Annals of Pure and Applied Logic, 91(2-3):231–270,
1998.

[Ghi96] Silvia Ghilezan. Strong normalization and typability with intersec-
tion types. Notre Dame Journal of Formal Logic, 37(1):44–52, 1996.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Gir01] Jean-Yves Girard. Locus solum: From the rules of logic to the logic
of rules. In CSL, page 38, 2001.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge University Press, 1989.

[God33] Kurt Godel. Zum entscheidungsproblem des logischen funktio-
nenkalküls. Monatshefte für Mathematik, 40(1):433–443, 1933.

[GS90] Carl A. Gunter and Dana S. Scott. Semantic domains. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and
Sematics (B), pages 633–674. 1990.

[Gö34] Kurt Gödel. On Undecidable Propositions of Formal Mathematical
Systems, pages 39–74. B. Meltzer, 1934. Lecture Notes Taken by
Kleene and Rosser at the Institute for Advanced Study.

124

Bibliography

[HS97] Martin Hofmann and Thomas Streicher. Continuation models are
universal for lambda-mu-calculus. In LICS, pages 387–395, 1997.

[Jay04] C. Barry Jay. The pattern calculus. ACM TOPLAS, 26(6):911–937,
2004.

[Jay09] Barry Jay. Pattern Calculus: Computing with Functions and Struc-
tures. Springer, 2009.

[JK06] C. Barry Jay and Delia Kesner. Pure pattern calculus. In ESOP,
pages 100–114, 2006.

[Kle36a] Stephen C. Kleene. General recursive functions of natural numbers.
Mathematische Annalen, 112(1):727–742, 1936.

[Kle36b] Stephen C. Kleene. Lambda-definability and recursiveness. Duke
Mathematical Journal, 2:340–353, 1936.

[Kri93] Jean-Louis Krivine. Lambda-Calculus, Types and Models. Ellis Hor-
wood Ltd, 1993.

[Laf91] Yves Lafont. Negation versus implication. In Logical Frameworks,
page 223, 1991.

[Lan71] Saunders Mac Lane. Categories for the Working Mathematician.
Springer, 1971.

[LRS93] Yves Lafont, Bernhard Reus, and Thomas Streicher. Continuation
semantics or expressing implication by negation. Technical report,
University of Munich, 1993.

[McC60] John McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part i. Communications of the ACM,
3(4):184–195, 1960.

[Mit86] John C. Mitchell. A type-inference approach to reduction properties
and semantics of polymorphic expressions (summary). In LISP and
Functional Programming, pages 308–319, 1986.

[Mit88] John C. Mitchell. Polymorphic type inference and containment.
Information and Computation, 76(2/3):211–249, 1988.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information
and Computation, 93(1):55–92, 1991.

[MTH90] R. Milner, M. Tofte, and R. Harper. The definition of Standard ML.
MIT Press, 1990.

125

Bibliography

[OLT94] Chris Okasaki, Peter Lee, and David Tarditi. Call-by-need
and continuation-passing style. Lisp and Symbolic Computation,
7(1):57–82, 1994.

[Par92] Michel Parigot. Lambda-my-calculus: An algorithmic interpretation
of classical natural deduction. In LPAR, pages 190–201, 1992.

[Par93] Michel Parigot. Strong normalization for second order classical nat-
ural deduction. In LICS, pages 39–46, 1993.

[Pet11] Barbara Petit. Semantics of typed lambda-calculus with construc-
tors. Logical Methods in Computer Science, 7(1:2), 2011.

[Pie91] Benjamin C. Pierce. Programming with intersection types, union
types, and polymorphism. Technical report, Carnegie Mellon Uni-
versity, 1991.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-
calculus. Theoretical Computer Science, 1(2):125–159, 1975.

[Plo77] Gordon D. Plotkin. Lcf considered as a programming language.
Theor. Comput. Sci., 5(3):223–255, 1977.

[Rib07a] Colin Riba. Définitions par réécriture dans le lambda-calcul : con-
fluence, réductibilité et typage. PhD thesis, Université de Nancy,
2007.

[Rib07b] Colin Riba. On the stability by union of reducibility candidates. In
FoSSaCS, pages 317–331, 2007.

[RS98] Bernhard Reus and Thomas Streicher. Classical logic, continuation
semantics and abstract machines. Journal of Functional Program-
ming, 8(6):543–572, 1998.

[Sco70] Dana Scott. Outline of a mathematical theory of computation. Tech-
nical report, Princeton University, 1970.

[SF92] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. In LISP and Functional Programming,
pages 288–298, 1992.

[SHLG94] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edwrad R. Grif-
for. Mathematical Theory of Domains. Number 22 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, New York, NY, USA, 1994.

[Tai67] William W. Tait. Intensional interpretation of functionals of finite
type. Journal of Symbolic Logic, 32(2):198–212, 1967.

126

Bibliography

[TC87] Val Tannen and Thierry Coquand. Extensional models for polymor-
phism. In TAPSOFT, Vol.2, pages 291–307, 1987.

[Tes53] Lucien Tesnière. Esquisse d’une syntaxe structurale. Klincksieck,
1953.

[Tur36] Alan M. Turing. On computable numbers, with an application to
the entscheidungsproblem. In London Mathematical Society, volume
42(2), pages 230–265, 1936.

[Tur37] Alan M. Turing. Computability and lambda-definability. Journal
of Symbolic Logic, 2(4):153–163, 1937.

[Urz03] Pawel Urzyczyn. A simple proof of the undecidability of strong nor-
malisation. Mathematical Structures in Computer Science, 13(1):5–
13, 2003.

[vB92] Steffen van Bakel. Complete restrictions of the intersection type
discipline. Theoretical Computer Science, 102(1):135–163, 1992.

[vO90] Vincent van Oostrom. Lambda calculus with patterns. Technical
report, Vrije Universiteit, Amsterdam, 1990.

[Wel94] J. B. Wells. Typability and type-checking in the second-order
lambda-calculus are equivalent and undecidable. pages 176–185,
1994.

[Wer94] Benjamin Werner. Une Théorie des Constructions Inductives. PhD
thesis, Université Paris 7, 1994.

[Win93] Glynn Winskel. The formal semantics of programming languages -
an introduction. Foundation of computing series. MIT Press, 1993.

127

Bibliography

128

Abstract

The lambda calculus with constructors (or λC -calculus) was introduced by Ar-
biser, Miquel and Ŕıos in the early 2000’s as an extension of lambda calculus
with pattern matching features. It decomposes the pattern matching “à la ML”
into a case-analysis on constant constructors (in the spirit of the case instruction
in Pascal), and a commutation rule between case construction and application.
This commutation rule between two different kinds of constructions designs a
surprising computational behaviour, a priori not compatible with usual typing
intuitions. However the whole calculus was proved confluent, and as far as we
know it is the only calculus with pattern matching facilities that enjoys the sep-
aration property (a version of Böhm’s lemma).

In this thesis, we first present the λC -calculus, and we propose a polymorphic
type system for it. Then we develop a realisability model, based on Girard’s
reducibility candidates. This leads to a strong normalisation result for the typed
calculus. It also guaranties that the type system prevents match failure.

Next we focus on semantics for the untyped λC -calculus. We start with
defining a generic notion of λC -models in Cartesian closed categories, that we
show to be sound. We then establish the syntactic model in the category of
partial equivalence relations, and deduce a completeness result from it.

Finally, we consider a translation of the lambda calculus with constructors
into the pure lambda lambda calculus (or well-known variants of it) relying on
continuation passing style techniques. We introduce it throw a stack abstract
machine for λC -calculus. This abstract machine (Sec. 5.1) can also be taken
as a first presentation of the calculus itself, as it might give some intuitions
about how it computes. After showing the simulation of λC -calculus by pure
lambda calculus, we come back to categorical models: we use the CPS-translation
to obtain a λC -model from any continuation model of lambda calculus. There
comes out an equation in categories (in the spirit of lambda calculus characteristic
equation D ∼= DD), whose every solution provides a λC -model. Resolving this
equation in domains category (using Scott’s construction of D∞ domain) finally
leads to a non syntactic model of untyped lambda calculus with constructors.

	Merci qui?
	Introduction
	Typed lambda-calculus with constructors
	The lambda calculus with constructors
	Informal presentation
	Syntax
	Operational semantics
	Values and defined terms
	Properties of the untyped calculus

	Type system
	Main ideas
	Type syntax
	Typing and sub-typing rules

	Some non-properties of the typed `lC-calculus
	Discussion on Subject reduction
	About strong normalisation and match failure

	A Reducibility Model
	Reducibility candidates
	Case normal form
	Closure property
	Reducibility candidates and values
	Candidates operators

	Denotational model
	Types interpretation
	Soundness
	Perfect normalisation without CaseCase

	Categorical model
	A quick introduction to categories
	Definitions and examples
	Cartesian closed category

	Categorical model of `lC
	Lambda calculus and CCC
	`lC-models
	Soundness

	Completeness
	Partial equivalence relations
	Category Per`lC
	Syntactic model in Per`lC.
	Completeness result.

	CPS and Classical model
	`lC-calculus and stack machines
	Abstract machines and commutation rules
	Stack abstract machine for `lC
	Weak head reduction

	CPS translation
	The target calculus
	Continuation Passing Style
	Correct Simulation

	Classical model
	Continuation `lC-model
	From continuation `lC-models to `lC-models
	A non syntactic model of the `lC-calculus

	Some detailed proofs
	Categorical models
	Proof of soundness of `lC-models
	Proof of correctness of PER-model
	Proof of completeness of PER-model

	Abstract machine and CPS translation
	Abstract machine correction
	From continuation model to `lC-model

	Lambda calculus with pairs
	Lambda calculus with pairs
	Lambda calculus generated by a CCC.
	Definition
	From terms to morphisms

