
HAL Id: tel-00662511
https://theses.hal.science/tel-00662511

Submitted on 24 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of model driven engineering and ontology
approaches for solving interoperability issues

Hui Liu

To cite this version:
Hui Liu. Integration of model driven engineering and ontology approaches for solving interoperability
issues. Other. Ecole Centrale de Lille, 2011. English. �NNT : 2011ECLI0015�. �tel-00662511�

https://theses.hal.science/tel-00662511
https://hal.archives-ouvertes.fr

N° d’ordre : 165

ECOLE CENTRALE DE L ILLE

THESE

présentée en vue
d’obtenir le grade de

DOCTEUR

en

Spécialité : Génie Industriel

par

LIU Hui

DOCTORAT DELIVRE PAR L’ECOLE CENTRALE DE LILLE

Titre de la thèse :

Integration of model driven engineering and ontology approaches for solving
interoperability issues

Intégration des approches ontologiques et d'ingénierie dirigée par les modèles pour la

résolution de problèmes d'interopérabilité

Soutenue le 13 Octobre 2011 devant le jury d’examen :

 Président Henri BASSON, Professeur, Université du Littoral Côte d’Opale

 Rapporteur Hervé PINGAUD, Professeur, Université J.-F. Champollion

 Rapporteur Jean BEZIVIN, Professeur Emérite, Université de Nantes
 Examinateur David CHEN, Professeur, Bordeaux 1

 Examinateur Henri BASSON, Professeur, Université du Littoral Côte d’Opale

 Examinateur Michel BIGAND, Maître de Conférences HDR, EC-Lille

 Directeur de thèse Jean-Pierre BOUREY, Professeur, EC-Lille

Thèse préparée dans le Laboratoire de Modélisation et de Management des Organisations EA 4344

Ecole Doctorale SPI 287 (EC Paris, EC Lille, INT Evry)

PRES Université Lille Nord-de-France

2

3

Acknowledgements

During the last three years of my PhD study, I have met many people inside or outside our

lab LM²O who gave me the possibility to finish my thesis enjoyably. I would like to say THANK

YOU from my heart to all of YOU.

First of all, I am sincerely indebted to my supervisor Prof. Jean-Pierre BOUREY. Thank

you for offering me the opportunity to develop my doctoral study in LM²O. Thank you for

introducing me to the world of “enterprise interoperability” and sharing your precious time to

discuss problems encountered in my study. Besides, you have also recommended me some

interesting academic activities (seminars, workshops and conferences), and, these activities have

broadened my academic horizon. During the activities, I have also gotten acquainted with many

researchers in our research domain. This provides possibilities for me to collaborate with them in

the future. Thank you again, Prof. BOUREY.

Furthermore, I want to express my reconnaissance to my colleagues Prof. Anne-Françoise

CUTTING-DECELLE and Prof. Michel BIGAND. Thank you for your help to my PhD study.

I’d also like to thank Vincent MEISSNER, Karine GHESQUIER, Virginie LECLERCQ for

helping me in the administrative work.

To my PhD colleagues Youness LEMRABET and David CLIN, and three masters Xinxin

LI, Yinglong ZHAO and Jinzhou YANG, thank you for your valuable discussion during my

doctoral study. Especially, to Youness, thank you for your help in my published papers.

My special appreciation goes to Ms. Hélène CATSIAPIS. In your French courses, I have

learned much interesting French culture. Thanks to you, I have visited Paris, Loire Valley, the

Champagne Region and Giverny (the Garden of Claude Monet), etc. All of the trips are

extraordinary and memorable. They have enhanced my understanding of the French culture.

Besides, I gratefully thank all my friends, particularly, Xiaoting CHEN, Ling PENG, Lihui

YANG, Yifan WANG, Lian LIAN, Jin ZHAO, Pengfei MU, Jian LIU, Jinlin GONG, Dapeng

YANG, Jing YANG and Huarong WANG etc. All of you made my life not just filled with study

but with entertainment and happiness.

Most importantly, I would like to express my deep gratitude to my family, especially to my

parents. You are in China but you keep in close contact with me and encourage me all the time.

4

Finally, my doctoral study is based on the partnership agreement between the China

Scholarship Council (CSC) and the five-French-Ecoles-Centrales Intergroup. The partnership

agreement was signed on 12 September 2005. So I would like to thank all of the people who have

contributed to the construction of the agreement. I am also sincerely grateful to CSC and Ecole

Centrale de Lille who finance my academic activities.

In a word, the last three years in France will be my precious and unforgettable memory.

Thank China. Thank France.

5

Intégration des approches ontologiques et

d’ingénierie dirigée par les modèles pour la résolution

de problèmes d’interopérabilité

Résumé étendu en français
La mondialisation économique et l’accélération à l’échelle mondiale des échanges de biens

et services obligent les entreprises à collaborer entre elles pour améliorer leur compétitivité.

L’entreprise utilise les services disponibles des autres entreprises pour construire son propre

portefeuille de services. Ensuite, elle expose ses propres services aux autres entreprises. Les

entreprises doivent aussi être agiles au niveau métier en intégrant leurs ressources afin de fournir

une réponse rapide et efficace aux changements continus des exigences métier dictés par le

marché ou dirigés par les clients, les partenaires, ou les fournisseurs. Pour résoudre ces deux

défis, les entreprises considèrent leur système d'information (SI) comme un levier pour

automatiser leurs collaborations. De nos jours, l’utilisation de plusieurs SIs pour supporter la

collaboration entre plusieurs entreprises est un vrai défi connu sous le nom de problème

d'interopérabilité d'entreprise illustrée sur la Figure 1.

Dans son environnement métier, l’entreprise réalise et améliore son métier à travers des

activités métiers (Figure 1). Cet environnement contient toutes les activités et les informations de

l'entreprise. L’environnement collaboratif est créé par l’interaction entre plusieurs

environnements métiers. L’environnement IT a, quant à lui, la responsabilité d’automatiser ces

activités métier par des dispositifs de communication, des systèmes d'information, etc.

L’environnement d’interopérabilité est créé par l’interaction de plusieurs environnements IT.

Certaines activés métiers ne sont pas supportées par l’environnement IT, par exemple l’activité

« une société installe des téléphones pour une autre société ». Dans une collaboration, il y a aussi

d’autres types d’interactions qui ne sont pas automatisables, par exemple l’interaction entre les

personnes. Ainsi, d’une part la collaboration inter-entreprises doit être supportée par le biais des

interactions entre les environnements métiers et ITs de chacune des entreprises. D’autre part, la

collaboration d'entreprises doit être aussi supportée par des interactions entre des environnements

métiers et IT (interaction entre les environnements de collaboration et d'interopérabilité). En

6

effet, pendant la collaboration, l’environnement IT /d’interopérabilité a généralement besoin

d’interventions humaines pour saisir ou envoyer des informations.

Figure 1. Problème d’interopérabilité d’entreprise

Dans une collaboration interentreprises, il faut aligner les environnements de collaboration

et d’interopérabilité afin de réduire l’écart entre ces deux environnements. Les exigences de

collaboration dans l’environnement de collaboration doivent être réalisées par les SI dans

l’environnement d'interopérabilité. Cet alignement permet à l'environnement d'interopérabilité

d’être agile et de s’adapter plus facilement aux changements dans l'environnement de

collaboration. Cependant, les méthodes d'alignement sont influencées par les méthodes

d’implémentations dans l'environnement de l'interopérabilité. Par exemple, (Touzi 2007) propose

de générer un système d'information collaboratif dans un environnement d'interopérabilité à

travers la transformation des modèles dans un environnement de collaboration. Le système

d'information collaboratif joue un rôle de «médiateur» entre des systèmes d'information des

entreprises. Cette méthode a été également adoptée par (Truptil 2011) pour résoudre un problème

de gestion de crises. Mais il est possible de mettre en œuvre les exigences de collaboration sans

médiateur, en utilisant uniquement le système d'information de chaque entreprise. Cette méthode

d'alignement évite la dépendance au médiateur et permet aux entreprises plus de contrôle sur la

collaboration. Dans cette thèse nous proposons une telle méthode d’alignement.

7

Notre travail est basé sur Model Driven Engineering 1 (MDE) et sur l’utilisation des

ontologies. MDE est une méthodologie de développement logiciel, qui vise à élever le niveau

d'abstraction dans la spécification du programme pour favoriser l'automatisation dans le

développement (Batory 2006). MDE s’appuie sur deux notions fondamentales : les modèles et les

transformations de modèles. Cela permet la séparation des préoccupations par niveaux

d’abstraction. A chaque niveau d’abstraction des modèles sont élaborés en utilisant des domain-

specific languages2 ou des langages standardisés comme UML. Les transformations de modèles

sont utilisées pour automatiser autant que possible le développement de logiciels et pour

renforcer les liens entre les niveaux d’abstraction ce qui augmente la traçabilité. Cette démarche

initialement prévue pour le développement de logiciels peut être adaptée dans le cadre de

l’alignement. L’approche MDE est donc été retenue pour notre travail sur l'alignement métier et

IT. MDA 3(Model Driven Architecture) est la vue de l’OMG (Object Management Group) qui

entre dans le cadre MDE. Notre travail se focalise davantage sur MDA.

Dans les collaborations d’entreprises, les systèmes d'information, distribués et hétérogènes,

s’échangent des données qui peuvent être hétérogènes. Les problèmes de l'hétérogénéité des

données peuvent être divisés en deux niveaux : l'hétérogénéité syntaxique et l'hétérogénéité

sémantique. L'hétérogénéité syntaxique (Goh, 1997) peut être causée par des conflits de types de

données, des conflits d'étiquetage, des conflits d'agrégation, des conflits de généralisation entre

des différentes bases de données/systèmes d'information. L'hétérogénéité sémantique (Goh 1997)

provient principalement des conflits de noms, des conflits d’échelle et des unités et des conflits

d’interprétation entre des différents systèmes. Afin de réaliser l'interopérabilité sémantique, les

ontologies et les technologies basées sur la sémantique vont jouer un rôle clé (Wache, Vögele et

al 2001; Uschold et Grüninger 2004). Notre travail de recherche étant basé sur l’alignement, il est

nécessaire de prendre en compte également les aspects sémantiques. Notre travail est donc

naturellement lié aux ontologies.

Cette thèse apporte des éléments de réponse à la question principale suivante : comment

l’architecture dirigée par les modèles et l’étude des ontologies peuvent contribuer à résoudre les

problèmes d'interopérabilité d'entreprise ?

1 L’ingénierie dirigée par les modèles
2 Langues dédiées à un domaine
3 Architecture dirigée par les modèles

8

Tout d’abord, nous présentons une synthèse des travaux sur l'interopérabilité d’entreprise à

partir de quatre dimensions principales : sa définition, son cadre, ses solutions et ses modèles de

maturité. Ensuite, nous positionnons notre travail sur les trois dimensions suivantes : cadre,

solutions et modèles de maturité. Puis, nous soulignons l'interopérabilité d’entreprise à travers

l’alignement métier-IT pour soutenir des collaborations entre des entreprises.

Figure 2. Cadre pour des solutions IT aux problèmes d’interopérabilité pour une entreprise

Afin d'aligner le métier et l’IT, nous étudions cinq domaines de recherche sur

l'interopérabilité d’entreprises : les processus métier collaboratifs, MDA, SOA (Service Oriented

Architecture), ESB (Enterprise Service Bus) et l'ontologie. Ensuite, nous proposons un cadre

pour des solutions IT à des problèmes d'interopérabilité. Ce cadre, présenté sur la Figure 2, devra

être mis en œuvre dans toutes les entreprises participant à la collaboration. Le cadre commence à

partir de l'environnement métier et se termine à l'environnement IT. Au niveau méthodologique

(dans le rectangle supérieur rouge), le cadre utilise des processus métiers, MDA, SOA et

l'ontologie pour aligner les environnements métier et IT. Au niveau technique (dans le rectangle

inférieur rouge), le cadre s’appuie sur un ESB et l'ontologie (ESB sémantique) comme la plate-

9

forme / infrastructure de l'environnement IT. Ce cadre couvre également trois domaines clés sur

l'interopérabilité d'entreprise proposés dans (Chen et Doumeingts 2003) : la modélisation

d'entreprise, l'architecture & la plate-forme et l'ontologie. Ces trois domaines clés sont identifiés

dans les rectangles verts sur la Figure 2.

Afin de réaliser le cadre proposé précédemment, nous proposons une « Méthode Basée sur

des Processus pour l'Interopérabilité d'Entreprise » (MBPIE) au niveau méthodologique, et une

« Architecture Basée sur l’Ontologie et Dirigée par les Buts (BOGD) pour l’Interopérabilité

d’Entreprise » au niveau technique.

La MBPIE est basée sur l’ontologie et constituée de cinq étapes (niveaux) principales :

Etape 1 : le point de départ consiste à définir un processus collaboratif ;

Etape 2 : les activités sont annotées avec des informations précisant notamment quels sont

les collaborateurs. On obtient le processus collaboratif annoté par les collaborateurs ; ensuite, on

fusionne les activités voisines qui appartiennent au même collaborateur, puis on intègre les

activités qui appartiennent aux différents collaborateurs pour obtenir un processus global

simplifié d'interopérabilité et plusieurs sous-processus d'interopérabilité. Cette étape est basée sur

deux critères quantitatifs : le rang de processus collaboratif et le taux de coopération. Afin

d'expliquer cette étape, nous introduisons un cas d’étude appelé « ShoppingDrive ».

Les deux étapes précédentes sont globales pour tous les collaborateurs alors que les étapes

suivantes sont locales pour chaque collaborateur. Si, dans une collaboration d’entreprises, il n'y a

pas de coopérateur principal, le processus collaboratif est créé par la négociation de tous les

collaborateurs qui doivent respecter les étapes suivantes.

Etape 3 : chaque collaborateur transforme les (sous-)processus collaboratifs en ses propres

processus collaboratifs reposant sur sa propre définition des terminologies métiers ;

Etape 4 : chaque collaborateur fixe les types de messages dans ses propres (sous-)processus et

transforme les collaborateurs au niveau CIM (Computation Independent Model) en participants

au niveau PIM/PSM (Platform Independent Model/Platform Specific Model) ;

Etape 5 : tous les (sous-)processus d'interopérabilité sont développés en utilisant des langages de

description de processus et exécutés en respectant un même algorithme d’exécution de processus.

Les cinq étapes ci-dessus constituent la première variante de la MBPIE. Si, dans une

collaboration d’entreprises, il y a un coopérateur principal, le processus collaboratif est créé par

ce dernier. Après les première et deuxième étapes, le coopérateur principal exécute directement

10

les quatrième et cinquième étapes de la MBPIE. Les autres collaborateurs exécutent les troisième,

quatrième et cinquième étapes. Ceci constitue la deuxième variante de la MBPIE. Pour les deux

variantes de la MBPIE, l’usage de l’ontologie est différent.

Dans la MBPIE, les processus collaboratifs et leurs transformations (surtout les

transformations entre les deuxième, troisième, quatrième et cinquième étapes) sont tous basés sur

l'ontologie. Un processus collaboratif est annoté avec des informations sémantiques. Dans nos

travaux, un processus collaboratif est exprimé en BPMN2.0 et nous proposons quatre méthodes

basées sur l’ontologie pour ajouter des informations sémantiques dans des processus métier. Ces

annotations sémantiques seront utilisées dans des transformations de processus. Durant la

transformation des processus, de nouvelles informations ontologiques sont ajoutées dans les

processus. Elles contribueront au processus d'exécution.

Afin de réaliser le cadre de la Figure 2 au niveau technique, une architecture Basée sur

l'Ontologie et Dirigée par les Buts (BODB) est proposée. Le cœur de cette architecture est un bus

de services sémantiques. Ce bus est basé sur l'ontologie et dirigé par les buts. Il s’appuie sur un

mécanisme symétrique pour l’invocation de services sémantiques. Le mécanisme symétrique est

conçu en étendant le protocole SOAP (Simple Object Access Protocol). Cette extension est

appelée SOAP BODB. Ce protocole est constitué de trois parties : un format du message BODB,

un module SOAP BODB et un modèle de traitement de SOAP BODB. Le mécanisme symétrique

a trois propriétés de transparence (emplacement, sémantique et technique) qui sont essentielles à

l'interopérabilité et à l'exécution des processus d'interopérabilité. Cette architecture peut déployer

le bus BODB dans des styles différents pour supporter l'interopérabilité d’intra- ou d’inter-

entreprises. Notamment, il peut déployer le bus BODB dans un style fédéré pour supporter

interopérabilité d’inter-entreprise.

La MBPIE et l’architecture BODB ont une relation étroite. Dans la MBPIE, à la deuxième

étape, les processus métiers collaboratifs et ses sous-processus seront exposés à d'autres

collaborateurs. Cela dépend de la transformation horizontale du processus qui est prise en charge

par l'architecture BODB. Par ailleurs, dans la MBPIE, des processus d'interopérabilité

exécutables seront générés. L'exécution des processus est supportée par un moteur de processus

dans l'architecture BODB.

La MBPIE et l’architecture BODB sont tous fondés sur l'ontologie. L'influence de

l'ontologie sur la MBPIE et l’architecture BODB est présentée dans le tableau 1. Nous analysons

11

l'influence de l'ontologie à partir de trois préoccupations d'interopérabilité : l'interopérabilité de

données, l'interopérabilité de services et l'interopérabilité de processus. Les trois préoccupations

ont été définies dans (Chen et Daclin 2006). Selon le tableau 1, des obstacles conceptuels dans les

aspects de données, services et processus peuvent être supprimés par la MBPIE (au niveau

méthodologique sur la Figure 2). Les obstacles techniques aux aspects des données, services et

processus peuvent être supprimés par l'architecture BODB (au niveau technique sur la Figure 2).

Par ailleurs, la MBPIE et l’architecture BODB constituent ensemble une approche fédérée à

des problèmes d'interopérabilité d'entreprise. La méthode MBPIE est fédérée parce qu’à

l'exception de ses deux premières étapes, elle est respectée et exécutée séparément par tous les

collaborateurs. En plus, chaque collaborateur est autonome. Dans une architecture BODB le bus

peut être déployé pour supporter des collaborations entre des entreprises dans un style fédéré.

Donc, cette architecture peut soutenir la fédération pour résoudre des problèmes d'interopérabilité

d'entreprise.

Table 1. Influence de l’ontologie sur la MBPIE et l’architecture BODB

Préoccupations
d’interopérabilité

MBPIE l’architecture BODB

Processus Base d’ontologie (description
sémantique sur des processus, etc.);
annotations sémantiques dans des

processus;
transformation verticale basée sur

l’ontologie

Conteneur de composants
(moteur de processus base sur

l’ontologie); bus BODB
(transformation horizontale

basée sur l’ontologie)

Service Base d’ontologie (description
sémantique sur des services, etc.);
annotations sémantiques dans des

processus;

Bus BODB (STEP 2, et STEP
OI-2)

Données Base d’ontologie
(terminologie métier, etc.);

annotations sémantiques dans des
processus;

Bus BODB (STEP 1, STEP 3,
STEP OI-1 et STEP OI-3)

En résumé, notre travail propose la conception d’une approche fédérée pour résoudre des

problèmes d'interopérabilité d'entreprise. L'approche fédérée permet de réaliser l'interopérabilité

au niveau conceptuel et technique en prenant en considération trois préoccupations

d'interopérabilité : données, services et processus.

12

Notre proposition a cependant quelques limites. Tout d’abord, la MBPIE et l’architecture

BODB dépendent étroitement de l'ontologie. En effet, le niveau d'interopérabilité qu'ils peuvent

atteindre est déterminé par la qualité des ontologies et de la capacité de mapping entre les

ontologies. Mais aussi, l'architecture BODB est basée sur SOAP BODB, donc, son protocole de

transport est limité à SOAP.

Enfin, notre étude réalisée dans cette thèse constitue une première ébauche de solution.

Cependant d’autres pistes restent à explorer. D’un point de vue purement technique, il faut

construire des outils logiciels et des plates-formes pour supporter la MBPIE et l’architecture

BODB. D’autre part, ATL devrait être étendu pour pouvoir invoquer des services externes au

cours de la transformation de modèle. Cela est nécessaire dans la transformation des processus

basée sur l'ontologie. D’un point de vue scientifique, la découverte de services dirigée par les

buts et la découverte de fournisseurs de services doivent être étudiées. Elles sont utilisées dans le

bus BODB. Dans l'architecture BODB, un moteur de processus basés sur l'ontologie devrait

également être étudié pour supporter l'exécution des processus d'interopérabilité. En outre, la

composition des processus métier dirigée par des buts doit être étudiée. Dans notre étude, un

modèle de « buts » a été proposé, et ce modèle sera un bon début pour construire une telle

approche de composition automatique de processus métier collaboratifs.

Contents

13

Contents

Acknowledgements ... 3

Résumé étendu ... 5

Contents .. 13

Figure List .. 17

Table List .. 19

INTRODUCTION .. 21

CHAPTER 1: Enterprise Interoperability .. 27

I. What is interoperability? .. 29

II. Interoperability Framework ... 31

III. Federation ... 34

IV. Maturity Models for Enterprise Interoperability .. 37

V. Conclusions ... 40

CHAPTER 2: State-of-the-Art for the Research Domains Related With Enterprise

Interoperability 43

I. Business Process and Collaborative BP Tools .. 45

I.1. Literature study of Collaborative Business Process ... 45

I.1.a. Emergence of Collaborative Business Process ... 45

I.1.b. Comparison between Specification Languages of Collaborative Business Processes 47

I.1.c. BPMN ... 48

I.2. Comparison Framework ... 49

I.2.a. Modeling & Implementation ... 51

I.2.b. Simulation ... 53

I.2.c. Deployment ... 53

I.2.d. Execution .. 54

I.2.e. Monitoring & Analysis ... 55

I.3. Comparison of Collaborative Business Process Tools ... 55

I.3.a. BizAgi Xpress ... 55

I.3.b. jBPM... 57

Contents

14

I.3.c. Bonita .. 57

I.3.d. Oracle BPM Suite 11g .. 58

I.3.e. ADONIS ... 59

I.3.f. MEGA ... 59

I.3.g. Relationship between comparison framework and conceptual model for CBP tools 61

I.4. Comparison Result ... 62

I.5. Conclusions .. 63

II. Model Driven Architecture and Model Driven Interoperability 65

II.1. Model transformation .. 65

II.2. Model Driven Interoperability .. 67

II.3. Conclusions ... 68

III. SOA ... 68

III.1. SOA and service .. 70

III.2. Loose coupling in SOA ... 71

III.1. Conclusions ... 71

IV. Enterprise Service Bus (ESB) .. 72

V. Ontology .. 74

V.1. Why do we need ontology? ... 75

V.2. Research domains of ontology .. 75

V.2.a. Relationship between Ontology and information integration .. 76

V.2.b. Relationship between Ontology and Models ... 76

V.3. Conclusions ... 78

VI. Conclusions ... 79

CHAPTER 3: Process -Based Method for Enterprise Interoperability 83

I. Terminology Definition ... 85

I.1. Key concepts about enterprise collaboration/interoperability .. 85

I.2. Classification of business processes ... 86

I.3. Rank of collaborative process, NCA and NCP ... 88

I.4. Cooperation rate ... 89

II. Process based Method for Enterprise Interoperability .. 90

II.1. Decomposition of collaborative business process ... 91

II.1.a. Decomposition of a collaborative business process ... 92

II.1.b. Execution of interoperability process .. 94

II.2. Case study for decomposition of collaborative business process .. 96

III. Related Work ... 100

Contents

15

III.1. ebXML .. 100

III.2. Approach of Chebbi .. 100

IV. Conclusions ... 101

CHAPTER 4: Ontology-based PBMEI and its Model Transformation 103

I. Ontology-based PBMEI .. 105

I.1. Ontology-based PBMEI ... 105

I.2. Two variants of PBMEI ... 107

I.2.a. Ontology-based PBMEI for collaboration without core cooperator.................................. 108

I.2.b. Ontology-based PBMEI for collaboration with core cooperator 109

I.3. Content of ontologies in PBMEI .. 110

I.4. Conclusions .. 111

II. Ontology-based annotation for Collaborative Business Process 111

II.1. Literature study ... 111

II.2. Semantic Annotations for Business Processes in BPMN .. 112

II.2.a. “rootElement”-based Semantic Annotation ... 114

II.2.b. “extension”-based Semantic Annotation ... 115

II.2.c. Attribute/Element-based Semantic Annotation ... 116

II.2.d. “textAnnotation”-based Semantic Annotation .. 116

II.1. Conclusions ... 118

III. Semantic Annotations and Model Transformation .. 118

IV. Conclusions ... 119

CHAPTER 5: Goal-driven and Ontology-based architecture for enterprise

interoperability 121

I. Literature study ... 123

I.1. Semantic Web Service.. 123

I.2. Goal .. 125

II. Ontology-based and Goal-Driven Service Invocation .. 127

II.1. Goal Model ... 127

II.2. Ontology-based and Goal-driven SOAP ... 129

III. Ontology-Based and Goal-Driven Architecture for Enterprise Interoperability .. 133

III.1. Generation Mechanism of OBGD SOAP Messages .. 134

III.2. OBGD Architecture for Enterprise Interoperability .. 138

III.3. Deployment of OBGD-SSB for Intra-Enterprise Interoperability ... 139

III.4. Federated Deployment of OBGD-SSB for Inter-Enterprise Interoperability 141

Contents

16

IV. OBGD Architecture and PBMEI .. 142

V. Conclusions ... 143

CHAPTER 6: Conclusions and Perspectives ... 145

ACRONYMS .. 151

REFERENCES .. 157

APPENDIX .. 171

Appendix A:Overview of Business Rule Management System 172

Appendix B:Research domains in ontology .. 180

Appendix C:Graphical User Interfaces for Six CBP Tools... 186

Appendix D:Schema definition for semantic annotations of BPMN2.0 193

Appendix E:Goal Ontology .. 195

Figure List

17

Figure List

Figure 1. Enterprise Interoperability Problem .. 24

Figure 1-1. Information Exchange between Enterprises... 31

Figure 1-2. Enterprise Interoperability Frameworks .. 34

Figure 1-3. The Integrated, Unified and Federated Approaches (Berre, Hahn et al. 2004)

 .. 35

Figure 1-4. Three Kinds of Barriers in Enterprise Environment 41

Figure 2-1. Historical development of technical standards in CBP (adapted from

(Bartonitz 2010)) .. 48

Figure 2-2. BPM lifecycle... 50

Figure 2-3. Example of Coordination Business Process ... 51

Figure 2-4. Example for centralized view of Cooperation Business Process 52

Figure 2-5. Example for distributed view of Cooperation Business Process 52

Figure 2-6. BizAgi Method for Automatic Execution of BPMN Processes 56

Figure 2-7. Conceptual Model for CBP Tools .. 60

Figure 2-8. Relation between Comparison Framework and Partial Conceptual Model for

CBP Tools .. 61

Figure 2-9. Abstract Architecture for Model-to-Model Transformation 66

Figure 2-10. Example for ATL transformation rules developed in Topcased v4.3.0 67

Figure 2-11. Reference Model for MDI (Bourey, Grangel et al. 2007) 68

Figure 2-12. SOA evolution .. 69

Figure 2-13. Concept of ontology- based model transformation (Roser and Bauer 2006)

 .. 78

Figure 2-14. Overall approach of ontology-based model transformation (Roser and

Bauer 2006) .. 78

Figure 2-15. Framework for IT Solutions to Enterprise Interoperability Problems 80

Figure 2-16. Individual View of the Framework for IT Solutions to Enterprise

Interoperability Problems ... 81

Figure 3-1. Position of collaboration/interoperability concepts in the MDA framework

 .. 85

Figure 3-2. Position of the concepts: owner, controller and three types of processes 86

Figure List

18

Figure 3-3. Conceptual model for coordination and cooperation processes 89

Figure 3-4. Process-Based Method for Enterprise Interoperability 90

Figure 3-5. Cooperation Processes in BPMN ... 93

Figure 3-6. Simplified cooperation process in BPMN ... 93

Figure 3-7. Cooperation sub-process - B.P1 .. 94

Figure 3-8. Cooperation process for ShoppingDrive .. 97

Figure 3-9. Cooperation Sub-Processes for ShoppingDrive ... 98

Figure 3-10. Simplified Cooperation Process for ShoppingDrive 99

Figure 4-1. Ontology-based and Process-Based Method for Enterprise Interoperability

 .. 106

Figure 4-2. Ontology-based PBMEI for collaboration without core cooperator 108

Figure 4-3. Ontology-based PBMEI for collaboration with core cooperator 109

Figure 4-4. Ontology-based Semantic Annotations for Business Processes 113

Figure 4-5. Extensibility Model of BPMN2.0 .. 113

Figure 4-6. Structures of BPMN2.0 Files ... 114

Figure 4-7. Semantic Annotations in Business Process Transformation 119

Figure 5-1. Goal Model .. 128

Figure 5-2. Ontology-Based and Goal-Driven SOAP Message 130

Figure 5-3. Schema of SOAP module for locations of referenced ontology 131

Figure 5-4. Ontology-based and Goal-driven service invocation 132

Figure 5-5. Dependent ontology of OBGD SOAP message ... 133

Figure 5-6. Symmetric mechanism for OBGD service invocation 134

Figure 5-7. Service discovery in symmetric mechanism for OBGD service invocation

 .. 137

Figure 5-8. Message transformations in symmetric mechanism for OBGD service

invocation ... 138

Figure 5-9. OBGD architecture for enterprise interoperability 139

Figure 5-10. Deployment of OBGD architecture for enterprise interoperability 140

Figure 5-11. Federated deployment of OBGD-SSB for Inter-Enterprise Interoperability

 .. 142

Figure 6-1. Individual View of the Framework for IT solutions to Enterprise

Interoperability Problems ... 148

Table List

19

Table List

Table 1-1. Definitions of Interoperability ... 30

Table 1-2. Difference between Integrated, Unified and Federated Approaches............. 37

Table 1-3. Approximate Mapping between Two Maturity Models of Interoperability .. 40

Table 2-1. Comparison Result Between CBP Tools ... 64

Table 2-2. Seven Levels of Loose Coupling (adapted from (Schmelzer 2007)) 72

Table 3-1. Relationship between roles of collaborators in Collaborative Business

Processes .. 87

Table 3-2. Roles of Actors in Business Processes .. 87

Table 3-3. Relationship between three kinds of processes and their rank 88

Table 4-1. Content of ontologies in PBMEI ... 110

Table 4-2. Comparison between four semantic annotation methods of business

processes ... 117

Table 5-1. Overview of Goal-Based Research ... 126

Table 6-1. Influence of ontology on ontology-based PBMEI and OBGD architecture 150

Table List

20

Introduction

21

INTRODUCTION

Introduction

22

Introduction

23

Nowadays, with the deep development of economic globalization, enterprises tend to

collaborate closely with others to improve their competitiveness by using other enterprises’

valuable services as its own complement and make its own services potentially used by

others. In addition, as business requirements from market, customers and partners are often

changed, enterprises have to integrate their resources to provide fast and efficient responses,

i.e., realize business agility. In order to resolve the above two problems, enterprises usually

want to take advantage of their information systems to automate their collaboration and adapt

themselves to changes in the collaboration. How to support such collaboration and related

changes by information systems of different enterprises is a big problem, and it is described as

the enterprise interoperability problem, illustrated in Figure 1.

In Figure 1, a business environment of an enterprise is to realize and improve its own

business values through business activities, and it includes all the activities and information

about business. A business environment can interact with another business environment; such

interaction generates a collaboration environment between enterprises. Instead, IT

environment automates activities in the business environment by communication devices,

computers and information systems, etc. IT environment of an enterprise can also interact

with others and such interaction generates an interoperability environment. As not all of

collaboration tasks between enterprises can be supported by IT environment, such as “a

company installs telephones for another company”, hence during collaborations, there are also

interactions between enterprises (between persons). So, collaboration between enterprises

must be supported by interactions between business environments and by interactions

between IT environments. Furthermore, enterprise collaboration must also be supported by

interactions between business and IT environments or by interactions between collaboration

and interoperability environments, because during collaboration, IT/interoperability

environment usually needs persons to input some information or sends out some information

to persons.

In order to realize collaboration between enterprises, a gap between the collaboration

environment and interoperability environment should be aligned, that is to say collaboration

requirements in collaboration environment must be realized by information systems in

interoperability environments. The alignment will make interoperability environment adapted

more agilely to changes in collaboration environment. However, the alignment methods will

be influenced by implementation methods in interoperability environment. For example,

(Touzi 2007) generated a collaborative information system in interoperability environment

through model transformation from collaboration environment, and the collaborative

Introduction

24

information system plays a role “mediator” between different enterprise information systems.

This method is also adopted in (Truptil 2011) to resolve a crisis management problem.

Besides the above alignment method, collaboration requirements can also be implemented

without mediator, only with information system of each enterprise. This alignment method

avoids the dependency on mediators and makes enterprises have more control of their

collaboration. Our work is motivated by the desire to find such alignment method.

Figure 1. Enterprise Interoperability Problem

Our work is based on Model Driven Engineering (MDE) and Ontology. MDE is a

software development methodology, which aims to raise the level of abstraction in program

specification and increase automation in program development (Batory 2006). MDE has two

core concepts: model and model transformation. Model in domain-specific languages focuses

on higher-level specification of programs. Model transformation is used to automate software

development. So MDE is beneficial to our work when aligning business and IT. MDA is

Object Management Group (OMG)’s view on MDE. Our work focuses more on MDA.

In enterprise collaborations, distributed and heterogeneous information systems from

different enterprises will exchange data with each other. The exchanged data may be

heterogeneous. Problems caused from data heterogeneity can be divided into two levels:

syntactic heterogeneity and semantic heterogeneity. Syntactic heterogeneity (Goh 1997) may

be caused by data type conflicts, labeling conflicts, aggregation conflicts, generalization

conflicts between different databases/information systems. Semantic heterogeneity (Goh

1997) primarily comes from naming conflicts, scaling and units conflicts and confounding

Introduction

25

conflicts between different systems. In order to achieve semantic interoperability, ontologies

and semantics-based technologies in general will play a key role to overcome the problem of

semantic heterogeneity (Wache, Vögele et al. 2001; Uschold and Gruninger 2004). So our

work must be also related with ontology.

How can we integrate MDE and ontology to solve enterprise interoperability problems?

This thesis will respond to the question. Our work in this thesis is organized in the following

structure:

1) Chapter 1 summarizes the research about enterprise interoperability from four

main dimensions: its definition, framework, solutions and maturity models.

During the summarization, our work is positioned in the dimensions. Finally,

this chapter points out a research direction to enterprise interoperability: aligning

business and IT to support collaborations between enterprises.

2) In order to align business and IT for enterprise collaborations, Chapter 2

analyzes the related research domains about enterprise interoperability:

collaborative business process, MDA, SOA, ESB and ontology. Then, this

chapter proposes a framework for IT solutions to interoperability problems. The

framework integrates closely the above five research domains together to align

business and IT and meanwhile to satisfy enterprise collaboration requirements.

3) In order to realize the framework proposed in Chapter 2, Chapter 3 will propose

a “Process-Based Method for Enterprise Interoperability” (PBMEI), which

employs collaborative processes to represent collaboration requirements

between enterprises. PBMEI transforms a collaborative process to multiple

executable interoperability processes according to two quantitative criteria: rank

of collaborative process and cooperation rate. In order to explain PBMEI, a case

named “ShoppingDrive” cooperation process is studied.

4) Chapter 4 presents the ontology usage and contents in PBMEI. Collaborative

processes and process transformations in PBMEI are all grounded in ontology.

In PBMEI, collaborative process is annotated with semantic information. As

collaborative process is expressed in BPMN2.0, therefore this chapter proposes

our ontology-based methods to annotate semantic information into BPMN2.0-

based business processes. Such semantic annotations are used in process

transformations. During process transformation, new ontology information is

added into processes and such ontology information will contribute to process

execution.

Introduction

26

5) In order to support execution of interoperability processes generated in PBMEI,

Chapter 5 designs an ontology-based and goal-driven (OBGD) architecture for

enterprise interoperability. The core of the architecture is OBGD semantic

service bus. This service bus is based on a symmetric mechanism for OBGD

service invocation. The symmetric mechanism is designed according to OBGD

Simple Object Access Protocol (SOAP) which is composed of OBGD message

format definition, SOAP module definition and SOAP processing model

definition. In collaborations, enterprises are usually independent of each other,

so semantic service buses for enterprises are usually organized in a federated

style. The federated deployment of semantic service buses is also discussed in

this chapter. At last, this chapter analyzes the relationship between ontology-

based PBMEI and OBGD architecture.

Chapter 1 Enterprise Interoperability

27

CHAPTER 1: Enterprise Interoperability

Chapter 1 Enterprise Interoperability

28

Chapter 1 Enterprise Interoperability

29

Interoperability has been widely studied in many domains, such as e-Health (Stegwee

and Rukanova 2003; NEHTA 2005), e-Government (EIF 2004; Gottschalk 2009), enterprise

software applications (Chen and Doumeingts 2003), modeling and simulation domain (Wang,

Tolk et al. 2009) and military domain (C4ISR-Interoperability-Working-Group 1998), etc. In

different domains, researchers have described and defined interoperability from different

viewpoints and they have not achieved a general consensus. In order to study further,

researchers have also constructed different interoperability frameworks. The purpose of the

frameworks is to provide an organizing mechanism so that concepts, problems and knowledge

on interoperability can be represented in a more structured way (Chen, Doumeingts et al.

2008). Beside interoperability frameworks, researchers have also studied evaluation

mechanisms of interoperability. The mechanisms evaluate the extent to which the

interoperability can be achieved. The evaluation mechanisms are named differently in

different academic papers, for example stages-of-growth (Gottschalk 2009), maturity levels

(Gottschalk 2009), maturity model (C4ISR-Interoperability-Working-Group 1998),

conceptual model (Tolk and Muguira 2003; Tolk, Diallo et al. 2007) (Wang, Tolk et al. 2009)

or reference model (NATO 2003). This section will summarize some definitions and

frameworks and maturity models about interoperability, especially about enterprise

interoperability. This section will also position our work in these research domains.

I. WHAT IS INTEROPERABILITY?

During researching enterprise interoperability, many literatures have proposed their own

definitions of interoperability, some of which are listed in Table 1-1. According to the

definitions in Table 1-1, the interoperability entities can be components, devices or

communicating entities. All of them can be regarded as systems at different levels. So,

interoperability between enterprises can be regarded as a system of systems, and enterprise

interoperability will have some emergency properties (Fisher 2006), such as location

transparency, semantics transparency and technique transparency and these properties will be

discussed in more details in Chapter 4. In addition, except (Chen and Doumeingts 2003), all

of the definitions are focused on information1 exchange and use at the ICT (Information

Communication Technology) level. That is because, in enterprise interoperability, information

1 Information is data equipped with meaning (Schreiber et al 1999). The information can be simple, such

as a message (SOAP message), or complex, such as a model (a business process model in BPMN, or data model

in database). The information can be little, such as the value of a person’s salary, or very large, such as the

information of all the books in a library. The information can be plaintext, or can be encrypted/compressed.

Chapter 1 Enterprise Interoperability

30

systems2 (IS) from different enterprises are usually distributed and heterogeneous, and in

order to resolve interoperability problem, how to make such information systems exchange

information and understand and use the exchanged information is the first encountered

problem.

Table 1-1. Definitions of Interoperability

Reference Definition

(IEEE 1990) Interoperability is the ability of two or more systems or components to
exchange information and to use the information that has been exchanged.

(ISO-14258 1998) Interoperability may occur between two (or more) entities that are
related to one another in one of three ways:
• Integrated where there is a standard format for all constituent systems
• Unified where there is a common meta-level structure across

constituent models, providing a means for establishing semantic
equivalence

• Federated where models must be dynamically accommodated rather
than having a predetermined meta-model.

(IEC-TC65/290/DC

2002)

Interoperability is the ability of two or more devices, regardless of
manufacturer, to work together in one or more distributed applications.
The application data, their semantic and application related functionality
of each device is so defined that, should any device be replaced with a
similar one of different manufacture, all distributed applications involving
the replaced device will continue to operate as before the replacement, but
with possible different dynamic responses.

(Chen and Doumeingts

2003)

Interoperability is considered as achieved only if the interaction between
two systems can, at least, take place at the three levels: data, resource and
business process with the semantics defined in a business context.

(Morris, Levine et al.

2004)

Interoperability is defined as: the ability of a set of communicating entities
to (1) exchange specified state data and (2) operate on that state data
according to specified, agreed-upon, operational semantics.

(Fisher 2006) Interoperation, also called interoperability, has to do with the exchange
and use of information necessary for effective operation of a system of
systems.

For the aspect of information exchange (see Figure 1-1), numerous network3 devices

(e.g., hub, switch, router, gateway, etc) have been constructed and deployed all over the world

to connect devices (e.g., personal computers, computer servers) of different enterprises.

Meanwhile, some protocols and standards for describing information transport and

information format have also been proposed and widely used, for example, TCP/IP, HTTP,

2 This article follows the definition of information system in (Alter 1999).
3 Networks can be computer networks, wireless communication networks or TV/telephone networks, but

this paper will focus more on computer networks.

Chapter 1 Enterprise Interoperability

31

JMS, XML and SOAP and so on; especially, to support the information exchange at the

enterprise-level, some middleware and architecture styles have also been proposed, such as

EAI, CORBA, ESB, P2P, SOA (web service, RESTful service (Fielding 2000)) and SMDA

(Service Model Driven Architecture) (Xu, Mo et al. 2007). For the aspect of information

understanding and using, numerous ontology languages have been proposed, for example,

OKBC, OIL, OWL-S4, WSMO5, WSDL-S6, SAWSDL7, PIF (Polyak, Lee et al. 1998), some

of which are XML-based, some are not and some of which are used to represent knowledge,

some are used to describe Internet resources and some are used to describe business

processes. Ontology will be discussed in detail in Chapter 2-Section V.

Figure 1-1. Information Exchange between Enterprises

II. INTEROPERABILITY FRAMEWORK

With further study, enterprise interoperability can take place not only at ICT level but

also at other levels, such as process level, business level. Therefore, relevant interoperability

frameworks have been proposed, some of which are shown in Figure 1-2. In Figure 1-2, the

first framework is proposed in (Chen and Doumeingts 2003). In this framework,

interoperability must be achieved at three levels of an enterprise, including business

environment and business processes at business level, organizational roles, skills and

competencies of employees and knowledge assets at knowledge level, and applications, data

and communication components at ICT level. Semantics traverse the three levels and provide

necessary mutual understanding between enterprises (Chen and Doumeingts 2003). (Chen and

Doumeingts 2003) also proposed a roadmap for enterprise interoperability research, which

integrates three main research domains:

4 http://www.daml.org/services/owl-s/
5 http://www.wsmo.org/
6 http://www.w3.org/Submission/WSDL-S/
7 http://lsdis.cs.uga.edu/projects/meteor-s/SAWSDL/

Transport
Protocols

(Protocol family)

Application

Physical Device

Transport
Protocols

(Protocol family)

Application

Physical Device

Information

Data

Signal

Transmission

Transport

Exchange

Chapter 1 Enterprise Interoperability

32

a) enterprise modeling (EM) dealing with the representation of the inter-networked

organization to establish interoperability requirements;

b) architecture & platform (A&P) defining the implementation solution to achieve

interoperability;

c) ontologies addressing the semantics necessary to assure interoperability.

The roadmap is then supported by several European projects, such as ATHENA8,

CROSSWORK(Mehandjiev, Stalker et al. 2006), INTEROP9, ECOLEAD10, etc. INTEROP

has enriched the work of (Chen and Doumeingts 2003) and proposed its own interoperability

framework in (Kosanke 2006) (described in Figure 1-2 (b)); this framework identifies three

categories of barriers at four levels. The “barrier” means “incompatibility”, “mismatch” or

“heterogeneity” which impede the sharing and exchange of information (Chen and Daclin

2006). The three kinds of barriers are explained as follows (Chen and Daclin 2006):

• Conceptual barriers include syntactic and semantic incompatibility. For example,

different people or systems use different structures to represent information and

knowledge; or information in models or software has no clearly defined semantics to

avoid misunderstanding.

• Technical barriers are concerned with ICT level. They can be incompatibility of

communication protocols, operating systems, infrastructures, IT architecture &

platforms or techniques used to represent exchanged information, etc.

• Organizational barriers are related with the incompatibility of organization structures

and management techniques performed in different enterprises.

The relationship among the three kinds of barriers is orthogonal: conceptual barriers are

oriented to business information problems; technical barriers are oriented to machine

problems; organizational barriers are oriented to human problems. Instead, the four levels in

the framework: data, service, process and business have a dependency relationship between

them at the functional aspect. Data is used by services; services are employed in processes to

realize business objectives of enterprises. The four levels are shown in the following list

(adapted from (Chen and Daclin 2006)):

8 http://www.athena-ip.org
9 http://www.interop-vlab.eu/
10http://ecolead.vtt.fi/

Chapter 1 Enterprise Interoperability

33

• Data interoperability: operate together different data models/bases using different

query languages.

• Service interoperability: identify, compose and operate together various application

services.

• Process interoperability: make various processes work together.

• Business interoperability: make organizations or companies work in a harmonized way

in spite of different modes of decision-making, methods of work, legislations, company

cultures and commercial approaches etc.

In the above framework, developing interoperability solutions means to remove the

barriers according to enterprises’ ability (Chen and Daclin 2006). But how can we develop

interoperability solutions? There are three possible approaches defined in (ISO-14258 1998):

integrated, unified and federated approaches. The three approaches have been narrated in

Table 1-1. The integrated approach demands companies to share the same information

models; the unified approach requires the same meta-model; however, the federated approach

needs no common models or meta-models but it may need ontology to establish

interoperability. Generally speaking, each of the three approaches makes companies

increasingly more flexible to cope with interoperability problems.

When adding the three approaches into Figure 1-2 (b), then (Chen and Daclin 2006) has

generated a new enterprise interoperability framework shown in Figure 1-2 (c). Figure 1-2 (c)

makes the three approaches as the third dimension. Our work is focused on the conceptual and

technical barriers at the data, service process levels. For the third dimension, our work is

associated with the federated approach (see black cubes in Figure 1-2 (c)).

(a) Simplified Interoperability Framework from (Chen and Doumeingts 2003)

Chapter 1 Enterprise Interoperability

34

(b) Enterprise interoperability framework from INTEROP (Kosanke 2006)

(c) Enterprise Interoperability Framework (with three dimensions) from INTEROP (Chen and
Daclin 2006; Chen, Doumeingts et al. 2008)

Figure 1-2. Enterprise Interoperability Frameworks

III. FEDERATION

As our work is more about federation, this thesis will discuss more about it. In (ISO-

14258 1998), three interoperability approaches: integrated, unified and federated are defined,

and then they are adopted into the interoperability framework Figure 1-2 (c). However, the

three approaches are defined conceptually as their definitions are based on models of

exchanged information (model, meta-model, no model/meta-model). Their definitions are not

practical in a real project, so (Berre, Hahn et al. 2004) defines them as follows and

distinguishes them from the viewpoint of system architecture topology in Figure 1-3:

� Integrated approaches ensure interoperability by using shared execution environments

and shared communication conventions.

� Unified approaches ensure interoperability by using shared meta-models and concepts

and shared specification environments;

� Federated approaches establish and maintain collaboration between autonomous local

services, each of which runs a local business process.

Chapter 1 Enterprise Interoperability

35

Coupled individual models

(c) Federated

Figure 1-3. The Integrated, Unified and Federated Approaches (Berre, Hahn et al. 2004)

In this thesis, we propose five criteria in Table 1-2 to distinguish the three kinds of

approaches. In Table 1-2, “problem scope” describes whether the scope of a problem to be

treated is fixed or not. “Adaptability to changes” describes how a new system will influence

original systems when it is added. “Result” describes after the integrated, unified or federated

approaches are applied, which kind of system will be finally generated from original systems.

“Connector” means how to connect two different collaborators/participants. “Translator”

means how to do translation between different collaborators/participants as different

collaborators/participants may use different models to describe their business information.

In Table 1-2, for the approaches from integrated to federated, the boundary of problem

scopes becomes increasingly ambiguous. The result from the three kinds of approaches

become from a monolithic system to an autonomous system. The three kinds of approaches

become increasingly adaptable to changes.

In Table 1-2, as the integrated approaches use common model (same vocabulary)

between collaborators/participants, hence they need no translator but they should construct

connectors (a kind of software components) to establish connections between them.

Connectors in integrated approaches are technique-specific and vendor-specific. Besides,

information delivered by connectors is all based on common model.

In unified approaches, collaborators/participants have their own information models

(different vocabularies) and their collaboration is supported by mappings from individual

models to a common model. Since mappings from individual models to common model or

vice versa can be done by a unification bus, collaborators/participants are not required to

definitely know the common model. Therefore, one collaboration activity between two

collaborators/ participants will need two connectors and two translators (see Figure 1-3).

However, in unified approaches, it is not necessary to make the common model and

individual models have the same meta-model11. This is in conflict with the definitions of

unified approaches in (ISO-14258 1998) and (Berre, Hahn et al. 2004). In fact, meta-model in

11 Meta-model means the model of a modeling language in MDA (see in Chapter 2-Section II.1).

Chapter 1 Enterprise Interoperability

36

definitions of unified approaches in (ISO-14258 1998) and (Berre, Hahn et al. 2004) is more

concerned with common model, not with meta-model defined in MDA. Besides, in unified

approaches, all systems to be unified must be registered in a unification bus to facilitate

system management or governance. The registration information can be regarded as logic

connections between the unification bus and collaborators/participants.

In federated approaches, connections between collaborators/participants are supported

by standard transport protocols in their environment, so connectivity are no longer the focus,

and connections are established when needed. Relevant connectors are technique-independent

and protocol-specific. In federated systems, all constituent systems are autonomous and they

can freely join or leave from the federated systems, so it is unreasonable to ask all constituent

systems to use the same common model. As different collaborators/participants use different

models (vocabularies), so each collaborator/participant must have a translator. In federated

approaches, if N collaborators/participants want to collaborate directly with others, there are

at most N*(N-1)/2 translators12 between them.

According to Table 1-2, integrated and unified approaches are focused more on

syntactic and technical problems; instead, federated approaches are focused more on semantic

problems. In fact, there is no clear boundary between integrated and unified approaches or

between unified and federated approaches. These approaches are proposed in different

evolutionary phases of information systems in order to resolve interoperability problems. In

some cases, they even share some common points. For example, connectors in integrated

approaches can also be used in unified approaches to establish connections between

collaborators/participants. However, this makes the whole system tightly coupled. Some

traditional middlewares or EAI are examples under such situation (Bernstein 1996; IONA

2006). Since SOA and web service came out, the unification buses become more and more

service-oriented, such as the Enterprise Service Bus (ESB) Celtix13 , Petals14 , Mule15 or the

grid computing platform Globus16. SOA/Web service makes the whole unification system

loosely coupled. Under this situation, connectors between the unification bus and

collaborators/participants can be based on standard protocols, so they are protocol-specific

12 If collaborators/participants don’t share a translator between each other, then at most there are N*(N-1)

translators between them.
13 http://celtix.ow2.org/
14 http://petals.ow2.org/
15 http://www.mulesoft.org/
16 http://www.globus.org/

Chapter 1 Enterprise Interoperability

37

and technique-independent, and they do not need to be constructed specially for

collaborators/ participants. Currently, some ESB have the above two kinds of connectors at

the same time, such as Petals. The second kind of connectors (protocol-specific) can also be

used in federated approaches because systems to be federated must be autonomous and

loosely coupled. For example, (Baude, Filali et al. 2010) has proposed an ESB federation

architecture for large-scale SOA. The work of Baude and his colleagues is at the conceptual

level and it does not discuss in detail how to use semantic technologies to resolve semantic

problems. In this thesis, we will discuss ESB federation in Chapter 5.

Table 1-2. Difference between Integrated, Unified and Federated Approaches

 Integrated Unified Federated

Problem Scope Scope is fixed
(Systems to be

integrated have been
determined before)

Scope is manageable (all
systems must be registered in

a unification bus)

Scope is not fixed and
not manageable. (There
is no central manager)

Adaptability to
changes

If a new system is
integrated, then all

other systems will be
modified.

any new system to be unified
needs to be registered in a
unification bus; no other

systems will be influenced

If a new system is
added, it can make other

systems know itself
gradually

Result Generate a
monolithic system

Generate a loosely coupled
system (all unified systems

are managed but not
controlled by unification bus)

Generate an
autonomous system (all
constituent systems are

autonomous)

C
onnector

Collaboration
between two
collaborators

One connector
(technique-specific)

Two connectors No technique-specific
connector

Collaboration
between N

collaborators

At most N(N-1)/2
technique-specific

connectors

N connectors No technique-specific
connector

T
ranslator

Collaboration
between two
collaborators

No translator Two translators One translator

Collaboration
between N

collaborators

No translator N translators At most N(N-1)/2
translators

IV. MATURITY MODELS FOR ENTERPRISE

INTEROPERABILITY

Besides the above interoperability frameworks, there are some other interoperability

frameworks which have been resumed in (Chen, Doumeingts et al. 2008). When applying

enterprise interoperability frameworks to solving associated problems, it is better to evaluate

the extent to which interoperability can be achieved. That is to say, interoperability is not a

Chapter 1 Enterprise Interoperability

38

level (degree) as defined in compatibility levels of (IEC-TC65/290/DC 2002), but it is a

spectrum including several levels (degrees). There are many terms to describe such extent

(degree), such as, stages of growth, measurement model, maturity model, maturity levels and

reference model, etc. This thesis prefers using maturity model to measure interoperability.

Many maturity models have been proposed during evolution of interoperability. (Ford,

Colombi et al. 2007) has summarized 14 interoperability measurement (maturity) models and

it has also analyzed their types, strengths and weakness. Unfortunately Ford and his

colleagues have not identified mappings of maturity levels between different maturity models.

But two of the 14 maturity models have been aligned in (Tolk and Muguira 2003). This

chapter will discuss and align another two maturity models: interoperability maturity model in

e-government (Gottschalk 2009) and LCIM (Level of Conceptual Interoperability Model)

(Wang, Tolk et al. 2009). At last, this chapter will discuss the relationship between maturity

model and our work.

When researching interoperability in digital government, Petter Gottschalk defined five

maturity levels for interoperability (Gottschalk 2009):

1) Computer interoperability: based on physical connectivity and communication,

different systems can directly exchange messages and meaningful, context-driven

data;

2) Process interoperability: it aligns processes (sub-processes, complete processes and

sets of processes) in inter-operating organizations. Semantic interoperability must

be examined and resolved at computer and process interoperability levels;

3) Knowledge interoperability: knowledge about interoperating organizations is

collected and stored together by following a flow strategy;

4) Value interoperability: it is concerned with interactions between primary activities

in different value configurations (e.g., value chains, value shops and value

networks) present in different interoperating organizations;

5) Goal interoperability: synergy among interoperating organizations is important and

there are no conflicting goals.

Amongst the five maturity levels, goal interoperability is the highest and computer

interoperability is the lowest. The five levels are listed in Table 1-3.

LCIM (Level of Conceptual Interoperability Model) is another maturity model of

interoperability. It is originally proposed in (Tolk and Muguira 2003) and then it evolves to a

more mature model which is illustrated in (Wang, Tolk et al. 2009). LCIM has seven levels:

Chapter 1 Enterprise Interoperability

39

L0-No Interoperability, L1-Technical Interoperability (defining bits and bytes), L2-Syntactic

Interoperability (defining structured data), L3-Semantic Interoperability (defining meaning of

data), L4-Pragmatic Interoperability (defining use of data), L5-Dynamic Interoperability

(defining effect of data), and L6-Conceptual Interoperability (defining assumption,

constraints, etc). LCIM concentrates on and is limited to information (data) exchange. It can

be regarded as a maturity model to evaluate the interoperability and composability of existing

systems; in the maturity model, higher levels of LCIM will not be achieved until lower levels

are all satisfied (L6 is higher than L0). LCIM can also be used as a guidance model to

prescribe and guide the interoperability and composability design and implementation of

future systems. The above seven levels are listed in Table 1-3.

Table 1-3 also lists the barriers proposed in the interoperability framework Figure 1-2

(c) and establishes the mappings to levels of the above two maturity models. In fact, achieving

interoperability means removing barriers. The mapping between barriers and the two maturity

models is not precise and the mapping can also not be precise because, different maturity

models are established from different viewpoints of interoperability. The maturity model of

(Gottschalk 2009) can be regarded as proposed according to organization management (goal,

value, knowledge, process and computer); instead, the maturity model of (Wang, Tolk et al.

2009) can be regarded as proposed in terms of linguistics (syntactic, semantic and pragmatic).

Two examples for the imprecise mappings are as follows:

� process interoperability in (Gottschalk 2009) will deal with conceptual and

technical barriers and it is also relative to L2-syntactic, L3-semantic, L4-pragmatic

and L5-dynamic in (Wang, Tolk et al. 2009).

� L2-syntactic and L3-semantic in (Wang, Tolk et al. 2009) are related with

conceptual and technical barriers and they are also associated with computer

interoperability in (Gottschalk 2009).

Generally speaking, when collaboration/interoperability between enterprises is

supported by IT17 , a higher maturity level of interoperability must be based on the

achievement of all lower levels. If a certain maturity level of interoperability is achieved, the

corresponding barriers will be eliminated by following interoperability approaches (see Figure

1-2 (c)). Our work is interested in the maturity level “Process Interoperability” in Table 1-3.

However, our work is not limited to this level and it will also study problems at “Computer

17 Interoperability between enterprises may be supported only by humans, not by IT. Then conceptual or

organizational barriers will be coped with only by humans.

Chapter 1 Enterprise Interoperability

40

Interoperability” level. As “Goal Interoperability” is very important to collaborative

enterprises, this thesis will introduce the concept “goal” into lower levels: process and

computer interoperability levels.

Table 1-3. Approximate Mapping between Two Maturity Models of Interoperability

 Sources
Maturity levels

Barriers

(Gottschalk 2009) (Wang, Tolk et al.
2009)

O
rganizational

B
arriers

Different definitions about responsibility,
authorization, organizational structures

and organizational goals, etc.

Goal Interoperability

Value interoperability

Knowledge
Interoperability

C
onceptual B

arriers

Different terminologies or dictionaries;
different description of assumptions or

constraints in business, etc.

L6-Conceptual
Interoperability

Modeled in different languages; executed
in different methods (in series or parallel)

Process
Interoperability

L5-Dynamic
Interoperability

L4-Pragmatic
Interoperability

L3-Semantic
Interoperability

Different terminology definitions;
different representation methods for

semantics

Computer
interoperability

Data may be structured in different
methods and in different modeling

languages.

L2-Syntactic
Interoperability

T
echnical B

arriers

Incompatibility of programming
languages, coding formats (e.g., UTF-8,
ISO-8859-1), platforms /infrastructures,

etc; Incompatibility of operating systems;
Incompatibility of network devices and

network protocols, etc

L1-Technical
Interoperability

No connectivity device L0-No Interoperability

V. CONCLUSIONS

To resolve enterprise interoperability problems, the most important thing is to identify

technical, conceptual and organizational barriers (or heterogeneity) and then to align the

heterogeneity to achieve a certain maturity level of interoperability. Figure 1-4 positions the

Chapter 1 Enterprise Interoperability

41

barriers (heterogeneity) in an enterprise environment. An enterprise environment has business

environment and IT environment18. Conceptual barriers come from business environment, and

they are caused by different understanding and representation to the same world from

different humans/enterprises. Technical barriers stem from IT environment. Some technical

barriers are not related with business, such as incompatibility of different operating systems or

communication protocols. Some technical barriers are related with business, such as

incompatibility of different implementation of business concepts, and they are situated in “IT

solutions”. IT solutions occupy the overlap between business and IT environments and they

support business activities with the help of IT software and hardware. In fact, IT solutions

confront the barriers from IT and business environments. That is why some papers, such as

(Tolk and Muguira 2003; Wang, Tolk et al. 2009), cannot evade the discussion about

technical interoperability when talking about conceptual interoperability. Finally,

organizational barriers originate from enterprise environment, such as difference of

organization structures. Some of organizational barriers are related with business, such as

different authorization19 of employees, so they are located in business environment.

Organizational barriers will influence all collaboration/ interoperability activities in enterprise

environment.

Figure 1-4. Three Kinds of Barriers in Enterprise Environment

Our work is to find an IT solution to enterprise interoperability problem. The IT

solution will align business and IT environments to support collaboration between different

enterprises. In order to construct our IT solution, this thesis will study related research

18 Besides business and IT environments, an enterprise also has social, economic and legal environments.

They are not close to my work, so they are not in Fig. 1-3.
19 For example, some employees are authorized to launch a business process, but others may not.

Different enterprises may have different authorization.

Chapter 1 Enterprise Interoperability

42

domains: collaborative business process, SOA, MDA, ontology and ESB. After their study,

this chapter will conclude the landscape for IT solution to enterprise interoperability

problems.

Chapter 2 State of the Art for Related Research Domains

43

CHAPTER 2: State-of-the-Art for the Research

Domains Related With Enterprise

Interoperability

Chapter 2 State of the Art for Related Research Domains

44

Chapter 2 State of the Art for Related Research Domains

45

Although (Chen and Doumeingts 2003) have proposed three main research domains

about interoperability, but it also points out that the three main research domains are lack of

integration and one critical task is to develop an integrated view and approach that link three

domains together to find interoperability solutions. This chapter will provide an answer to the

above problem. It will study the research domains related with enterprise interoperability:

collaborative business process, MDA/MDI, SOA, ESB and ontology, and it will position the

roles of the research domains in a solution to enterprise interoperability problems.

I. BUSINESS PROCESS AND COLLABORATIVE BP TOOLS

In order to resolve business collaboration and business agility, collaborative business

process (CBP) is widely studied in the scientific domain and industrial domain. Collaborative

business process aims to define business collaboration requirements, not only between

different enterprises but also between different departments of one enterprise. Evidently CBP

includes inter- and intra-organizational workflows.

For business collaboration and agility, Service Oriented Architecture (SOA) is

recognized as the leading architectural approach and it also facilitates technical agility and

interoperability between information systems (IS) of enterprises (OMG 2008). So our

researches focus on collaborative business process in the SOA environment.

So far, there have been many languages for modeling collaborative business process, for

example, WSFL, XLANG, ebXML BPSS, WPDL, XPDL, BPMN, WS-CDL, BPDM and so

on. In order to model and execute the CBP expressed in the above languages, there are also

some CBP tools such as BizAgi, jBPM, BONITA, Oracle, MEGA and so on. This chapter

will compare them. The comparison work is the base for our further study.

Section I.1 will provide a brief history of business process and it will also resume the

research result of comparison between different collaborative business process languages. In

Section I.2, we will propose a comparison framework. Section I.3 will list the CBP tools to be

compared and Section I.4 will give the comparison result. At last, Section I.5 concludes this

section.

I.1. Literature study of Collaborative Business Process

I.1.a. Emergence of Collaborative Business Process

In order to discuss the appearance of CBP, we will discuss the brief history of business

processes. This thesis divides the history of business processes into four phases:

Chapter 2 State of the Art for Related Research Domains

46

1) The first phase is before 1970’s - the advent of information systems in computer

science domain (Avgerou 2000). Business processes were written in papers and

performed by human beings.

2) The second phase is from 1970’s to 1990’s. In this phase, before 1980’s, all

information and control flows about business process were hard-coded in

applications; and then in late 1980’s and early 1990’s, business processes could be

expressed by flexible scripts (Dayal, Hsu et al. 2001). In this phase, if business

processes were not able to be realized by IT applications, most enterprises wrote

them down into policy and procedure manuals, which were as hard to modify as

business processes encoded in applications (Bauer, Roser et al. 2005). In general,

implementation of business processes in this phase has improved management

efficiency and productivity of companies. However, business processes were not

observable or visible in information systems and they were not easy to monitor by

managers in companies.

3) The third phase is from the early to mid 1990’s. During this phase, business

processes were realized and managed by workflow management systems (WMS),

which were used to integrate applications, data and procedures. In this phase, there

was another important event – business process reengineering, which was promoted

by Hammer (Hammer 1990) and Davenport (Davenport 1993) to improve customer

service and cut operational costs. However, WMS did not support simulation,

verification and validation (V&V), analysis and optimization of business processes

(van der Aalst, ter Hofstede et al. 2003).

4) The fourth phase is up to now. In this phase, the WMSs were relabeled as Business

Process Management (BPM) system, suites or platforms (van der Aalst, ter Hofstede

et al. 2003) (Bartonitz 2010). The first appearance of BPM on the Internet is from

1997 in an announcement about the annual report of the American firm EDS

(Bartonitz 2010). BPM systems (BPMS) can design, implement, simulate, execute,

manage and analyze business processes (van der Aalst, ter Hofstede et al. 2003).

The third phase focuses on the intra-organizational business processes; instead, the

fourth phase focuses more on the inter-organizational business process. To realize the

objective of business processes, numerous languages have been proposed and standardized in

the research domain of WMS/BPMS. Most business processes description languages are

derived from the traditional programming languages and they are difficult for business

Chapter 2 State of the Art for Related Research Domains

47

analysts to learn and use (Jenz 2003). It means that there is a wide gap between business

domain and IT domain. During the alignment of business and IT, BPMS and SOA go together

to realize business agility (Ling and Xin 2009) – companies can be more rapidly adapted to

business changes from customers, market or themselves. As web service is de-facto

implementation protocol of SOA, nowadays BPMSs are more and more based on web

service-based XML execution languages (OMG 2011). However, these languages such as

WS-BPEL (Alve and Arkin 2007) are still oriented to IT engineers, not to business people. In

order to address the interoperation of business processes at human-level (OMG), BPMN

Version 1.1 was created and published out by OMG in 2008. In order to model collaborations

between companies, some important concepts such as “conversation” and “choreography”

were added into BPMN2.0 released in January 2011.

Section I.1.b will discuss some languages for business processes, especially for

collaborative business processes. And it will also give some existent comparison results

between the languages. Section I.1.c will introduce BPMN in detail and our study about

enterprise interoperability will be based on BPMN.

I.1.b. Comparison between Specification Languages of Collaborative

Business Processes

In order to describe and formalize the collaborative business processes, many

enterprises have proposed their own specification languages, such as Microsoft, IBM, SAP,

etc. Some specification languages have been delivered to standard organizations, such as

OASIS, W3C, OMG, WfMC and so on and have been published as standards. In November

2009, (Bartonitz 2010) described the relationship between some specification languages and

the related organizations. (Bartonitz 2010) also illustrated the development of the past decade

for these languages. This section extends the result of (Bartonitz 2010) in Figure 2-1.

In 2003, (Bernauer, Kramler et al. 2003) compared seven specification

languages/approaches (WSDL, WSFL, ebXML, BPML, XLANG, BPEL, WSCL, WSCI and

WPDL) according to a framework of requirements which has the seven perspectives:

functional perspective, operational perspective, behavioral perspective, informational

perspective, interaction perspective, organizational perspective and transactional perspective.

Each perspective defines detailed criteria, for example, interaction perspective defines three

criteria: interaction primitives, interaction implementation and interaction independence. The

comparison shows that none of seven languages fulfill all requirements of the framework.

And (Bernauer, Kramler et al. 2003) proposed two methods to solve the above problem:

Chapter 2 State of the Art for Related Research Domains

48

extending some language to address all of the requirements or combining several languages

together. It also pointed out that Model Driven Architecture (MDA) will be a research

direction about CBP for generating processes automatically.

Figure 2-1. Historical development of technical standards in CBP (adapted from

(Bartonitz 2010))

Figure 2-1 also implies that, over time, some specification languages are merged

together, some are replaced with new languages and some are created for the first time, for

example XLANG and WSFL were merged to WS-BPEL, WPDL was replaced officially with

XPDL v1.0 by the WfMC in 2002, and BPDM came out in 2003 and was finalized by OMG

in 2008. So in 2005, (Roser and Bauer 2005) compared and classified eight

languages/techniques (ARIS, BPDM, BPML, BPMN, ebXML-BPSS, WS-BPEL, WS-CDL

and J2EE) from five perspectives: MDA’s abstraction level (CIM, PIM, PSM), modeling of

business processes, notation, standardization and tool-support. Their research surrounded a

methodology for developing collaborative business processes from CIM to PIM and to PSM,

i.e., integrated collaborative business process languages into software engineering process.

I.1.c. BPMN

There are many languages for CBP and each language has its own supporting tool set.

However, we will focus on the CBP tools in BPMN. Why do we focus on BPMN? In Section

I.1.a, the evolutionary history of business processes has offered some reasons. Besides,

BPMN itself has some advantages. BPMN (OMG 2011) is a graphical notation whose aim is

Chapter 2 State of the Art for Related Research Domains

49

to model enterprise processes. It was developed by Business Process Management Initiative

(now a part of the OMG).

BPMN can be used to capture the business processes that can be shared between the

stakeholders. BPMN is very expressive and provides a notation that is intuitive to business

users. The latest BPMN specification (Version 2.0) adds enhancements to BPMN so that

execution engines would be able to interpret and execute business process models (Buelow,

Das et al. 2010). BPMN 2.0 permits business and IT alignment: Process analyst can use

BPMN 2.0 for modeling and models can be refined by IT developers so that the process

models can be executable. Contrariwise, IT developers can create lower processes which can

be combined by business users to support faster-to-market requirements. The enhancements

of BPMN 2.0 are as follows:

• BPMN 2.0 includes both diagram interchange as well as model interchange. It provides

a standard XML schema for interchanging BPMN models, both executable and non-

executable. Indeed, it is the same schema for both. An executable model just has more

technical details. (Buelow, Das et al. 2010)

• Non-interrupting events: interrupting Event Sub-Processes and boundary Events

interrupt normal execution of their parent activities and after their completion, the

parent activities are immediately terminated. However for non-interrupting Events,

during execution of a non-interrupting Event Sub-Process, the execution of the parent

activity continues as normal. For instance, a timer event permits do specify a task

deadline, but if the deadline expires we do not necessarily want to interrupt the task.

We can send a reminder to the performer, while letting the task continue (Silver 2009).

• As BPMN2.0 defines the formal execution semantics for BPMN elements, hence it can

be used to capture process models and to implement models (Buelow, Das et al. 2010).

• BPMN2.0 extends the definition of human interaction and aligns BPEL4people with

itself(Buelow, Das et al. 2010).

• BPMN2.0 defines new diagrams: Conversation Diagram, Choreography Diagram.

I.2. Comparison Framework

There are many views about BPM lifecycle. For example, (van der Aalst, ter Hofstede

et al. 2003; Brahmandam 2008) has proposed their own BPM lifecycle. In (van der Aalst, ter

Hofstede et al. 2003), a BPM lifecycle has four phases: process design ((re)modeling &

Chapter 2 State of the Art for Related Research Domains

50

simulation)20 , system configuration (implementation), process enactment (execution),

diagnosis (monitoring and analysis). In (Brahmandam 2008), business process lifecycle

contains six phases: business process discovery (definition & modeling), business process

analysis and modeling (modeling & implementation), business process simulation, business

process development (implementation), business process execution, business process

monitoring and optimization (monitoring, analysis & definition).

Figure 2-2. BPM lifecycle

This thesis prefers the BPM lifecycle depicted in Figure 2-2. The preferred BPM

lifecycle includes seven phases: “definition”, “modeling”, “simulation”, “implementation”,

“deployment”, “execution”, “monitoring and analysis” and at last back to “definition (with

optimization)”. In the “Definition” phase, requirements for business processes are defined,

including optimization requirements. In the “Modeling” phase, business processes are

modeled in a process language. In the “Simulation” phase, business processes are configured

with simulation parameters, such as expected time taken by a task, and then they are

simulated to find out process bottlenecks and performance. In the “Implementation” phase, all

necessary information for execution is integrated into business processes, such as data

models, business rules, web services, etc. In this phase, business processes will be represented

in an executable process language. In the “Deployment” phase, executable business processes

are deployed into a software infrastructure/platform. In the “Execution” phase, the

infrastructure/platform executes deployed business processes. In the “Monitoring & Analysis”

phase, the infrastructure/platform will monitor business process execution and analyze

20 The explanation in parenthesis is the corresponding phases in Figure 2-2.

Chapter 2 State of the Art for Related Research Domains

51

monitoring information to generate corresponding analysis reports. The reports will be used to

optimize business processes in the next life cycle.

When comparing CBP tools, this thesis is concerned about the phases “modeling”,

“simulation”, “implementation”, “deployment”, “execution” and “monitoring & analysis”.

For each phase, some related criteria will be added. As some CBP tools (e.g., BizAgi Studio,

Bonita Open Solution) combine together the modeling phase and the implementation phase,

hence in the comparison framework, we combine them together.

I.2.a. Modeling & Implementation

Coverage of BPMN. In BPMN v1.x, it defines four basic categories of elements: flow

objects (events, activities, and gateways), connecting objects (sequence flow, message flow,

and association), swimlanes (pools, lanes) and artifacts (data objects, group, and annotation).

And in BPMN 2.0, it adds new elements and attributes, for example, choreography,

collaboration and conversation. So to what extent the BPMN tools support these elements and

attributes is a problem.

Persistence. Now, CBP can be stored in XPDL, BPDM, BPEL and the BPMN 2.0

XML format. The CBP files can be managed by file systems (FS) of operating systems (OS)

or by database management systems (DBMS). The CBP files in JPG, DOC or HTML will be

ignored in this thesis.

Types of CBP. In this thesis, CBPs are more about coordination business processes

(CrBP) and cooperation business processes (CpBP) defined in Chapter 3-Section I. A

coordination business process is composed of the activities some of which take place between

enterprises, but the process execution is owned and controlled by only one enterprise. Figure

2-3 shows an example of CrBP, in which Enterprise A uses services provided by Enterprises

B and C.

Figure 2-3. Example of Coordination Business Process

Chapter 2 State of the Art for Related Research Domains

52

A cooperation business process is composed of the activities some of which take place

between enterprises. The process execution is owned and controlled by enterprises, but each

enterprise can only control the execution of its own activities. There are two expression views

for CpBP: centralized view and distributed view. For centralized view, the activities of all

enterprises in CpBP are modeled in one business process. For example, in Figure 2-4, the

activities of enterprises A and B are in the same process. This view was proposed and used by

(Qiming and Meichun 2001) and (Liu and Bourey 2010). For the distributed view, the

activities of each enterprise are included in its own business process, and the collaboration

between enterprises is expressed by their message exchange. For example, in Figure 2-4 the

activities of A or B are included in their own processes, and their collaboration is the message

exchange. This view has been studied by (van der Aalst and Weske 2001) and (Chebbi,

Dustdar et al. 2006).

Figure 2-4. Example for centralized view of Cooperation Business Process

Figure 2-5. Example for distributed view of Cooperation Business

Process

Human Tasks. In a collaborative business process, not all tasks can be performed

automatically by an IS. Some of them may be related with human beings and even only

manipulated by human beings, and they are called human tasks, for example, a task may ask a

person to input some information into IS, or a task may ask a telephone technician to install a

telephone at a customer location. So a CBP must model human tasks. It can provide a

graphical user interface (GUI) for human beings to input some data into IS, or it can send out

a notification (for example an e-mail) to a designated person.

Chapter 2 State of the Art for Related Research Domains

53

Business Rules. Business Rules are necessary in CBP, especially for their gateways and

script tasks. During the modeling phase, formal or informal business rules must be provided

in CBP. More information about business rules can be gotten in Appendix A.

Web Services. As de facto implementation of SOA, web service can be used as one

kind of implementations for service tasks in BPMN2.0.

I.2.b. Simulation

In CBP, some objects or attributes can be predefined for flow objects, such as the

instance number of CBP, the execution duration of a task or an input object for a “start” event.

After these configurations, the CBP can be simulated. The simulation process can be started,

stopped, paused and restarted. The simulation parameters can be stored in file systems or

databases.

I.2.c. Deployment

Deployment Style. If BPMN modeler can provide a “deploy” button and when the

button is clicked, the CBP is deployed on process engines automatically, this is automatic

deployment method. The automatic deployment method is usually supported by a database. If

the constructed CBP and relevant configuration files must be copied manually onto process

engines, this is the manual deployment method.

Deployment Topology. If a CBP is deployed only on one server which can be managed

by one of collaborators (organizations participating in CBP) or by a neutral third party, such

deployment is the centralized deployment. CrBP and CpBP can be deployed centrally.

If a CBP is deployed on servers of all collaborators (enterprises), such deployment is the

distributed deployment. Only CpBP can perform the distributed deployment. There are two

modes for distributed deployment corresponding to two views of CpBP: uniform mode and

discrete mode.

• If a CBP is under the centralized view, all collaborators’ servers will deploy the same

copies of CBP, and this situation is defined as uniform mode of distributed

deployment. For example, in Figure 2-4, on the servers of Enterprises A and B, there

will be a copy of the whole CBP. Under uniform mode, each collaborator can have a

global view of their collaboration.

• If a CBP is under the distributed view, each collaborator’s server will deploy part of the

CBP which belongs to the collaborator. This situation is defined as discrete mode of

distributed deployment. For example, in Figure 2-5, the process in the rectangle A will

Chapter 2 State of the Art for Related Research Domains

54

be deployed on Server A and the process in the rectangle B will be deployed on Server

B. Under discrete mode, each collaborator can only have its local (partial) view of their

collaboration.

I.2.d. Execution

Coverage of BPMN. Not all the process engines execute all of the elements and

attributes defined in BPMN 2.0.

Persistence. During the execution of process engines, runtime states and history

information of CBP instances and warning or error information can be made persistent into

files managed by file systems of OS or by DBMS. So if any failure occurs in process engines,

the CBP instances can be restored when process engines are restarted and the administrators

of process engines can follow logs to locate problems and find corresponding solutions.

Transaction. Transaction in business process is derived from that in database

management systems. There are three kinds of transaction models: traditional ACID

(Atomicity, Consistency, Isolation, Durability), extended transaction models (Sheth,

Rusinkiewicz et al. 1992; Shet and Rusinkiewicz 1993) for long-running workflows and

interoperable transaction model (Weigand and Ngu 1998).

� According to (Dayal, Hsu et al. 2001) and (Bernauer, Kramler et al. 2003),

traditional ACID is not suitable to treat an entire business process as a transaction;

� Extended transaction models are suitable for intra-organizational workflows;

� Only interoperable transaction model is a suitable technique for CBP.

During the execution of an interoperable transaction, steps have to be rolled back, or

compensated, and sometimes different alternatives must be tried and negotiated to fulfill the

given task instead of aborting the whole transaction. For example, BPMN provides

Transaction sub-processes. A transaction has three outcomes (OMG 2011): (1) successful

completion, (2) failed completion: the activities inside the transaction will be subjected to the

cancellation actions (rollback or compensation), (3) hazard: something went terribly wrong

and that a normal success or cancel is not possible (i.e. no rollback nor compensation).

Execution Modes of CBP. The execution mode of CBP depends on its deployment

topology. If a CBP is under centralized deployment, then the execution mode of CBP will be

centralized mode, i.e., there is only one execution engine who executes the CBP, especially

if a CBP is a CpBP, then the execution of each task is only controlled by its owner, i.e., no

enterprise can control the execution of the activities that do not belong to it.

Chapter 2 State of the Art for Related Research Domains

55

If a CBP is under distributed deployment, then the execution mode of CBP will be

distributed mode.

� Under the distributed execution mode, if a CBP is under centralized view, then the

CBP will be under uniform mode of distributed deployment and the server of each

collaborator (enterprise) in CBP will execute the whole CBP, but if it encompasses

the activities that do not belong to it, it will just wait notifications from the

activities’ owners and then skip them.

� Under the distributed execution mode, if a CBP is under distributed view, then the

CBP will be under discrete mode of distributed deployment and the server of each

collaborator will execute its local part in CBP and the servers will be responsible for

message exchange between collaborators.

Human Task. When a process execution engine comes across a human task in CBP, it

parses and executes the associated code or scripts, and then it interacts with people.

Business Rules. When a gateway in CBP is executed, related business rules must be

parsed and executed.

I.2.e. Monitoring & Analysis

The persistence of the monitoring information (for example, runtime states of CBP

instances, events during the execution of CBP) is discussed in Section I.2.d “Persistence”, so

this section will discuss the visualization of monitoring.

During execution of a CBP, the CBP management system can monitor the execution

progress of CBP visually by providing a GUI, for example a webpage or a dynamic picture. In

order to make monitoring information more meaningful, the CBP management system can

generate statistic reports after analyzing the monitoring information.

I.3. Comparison of Collaborative Business Process Tools

According to the comparison framework defined in Section I.2, this section will

compare six CBP tools: BizAgi Xpress, jBPM, Bonita, Oracle BPM, ADONIS and MEGA.

Their graphical user interfaces (GUI) can be seen in Appendix C. The comparison result is

concluded in Section I.4, which also provides the advantages and disadvantages of these tools.

I.3.a. BizAgi Xpress

BizAgi is one of the BPM Solutions, and it can model, execute and improve business

processes through a graphic environment and without the need of programming. BizAgi is

Chapter 2 State of the Art for Related Research Domains

56

available in multiple editions to support the varying needs of organizations. This section

focuses on the Xpress edition, which consists of three main modules: Process Modeler,

BizAgi Studio and BizAgi BPM Server.

Process Modeler is used to draw process flowcharts in BPMN 2.0. It supports most of

the elements and attributes defined in BPMN 2.0 but it does not support “conversation”, and

“choreography”, etc. It can construct CrBP and two views of CpBP. The processes can be

managed by file systems of OS.

BizAgi Studio is used to implement modules: input all necessary information for

process execution: required data types, web forms for human tasks, business rules, actors of

activities, invocation information of web services (see Figure 2-6). After that, business

processes are deployed automatically on the target BPM Server (under centralized

deployment), and in fact, business processes are stored in a database (ENIX 2006), and then

used at runtime for process execution by BizAgi BPM Server.

Figure 2-6. BizAgi Method for Automatic Execution of BPMN Processes

The BizAgi BPM Server directly executes BPMN processes stored in a database and

provides a work portal for end users. When it executes human tasks in business processes, it

will show out web pages for predefined actors or send out a notification to a designated

person. The execution mode is centralized. All running states and historical logs of business

processes are stored in a database.

The work portal provided by BizAgi BPM Server can generate a report to indicate

which tasks or processes are on-time, overdue or at risk. It can also generate statistical reports

to help business managers to find out bottlenecks, resource performance in business processes

(BizAgi 2009).

Chapter 2 State of the Art for Related Research Domains

57

I.3.b. jBPM

jBPM is an open-source BPM project from JBoss Community. It is based on

BPMN2.0.and it bridges business analysts and developers. This section focuses on the version

jBPM5.1.0.

jBPM5.1 provides three options to model business processes: two Eclipse plug-ins and

one web-based editor. One of the three modelers (BPMN Visual Editor) can support almost

all of the BPMN2.0 constructs and attributes, including collaboration, conversation,

choreography, etc. This is quite different from the other CBP tools. The created processes are

stored in the BPMN 2.0 XML format and they can be managed by file systems of OS or by

DBMS. jBPM prefers storing/deploying business processes into a knowledge database

“Guvnor”; hence, the deployment of processes is centralized and automated. So far, none of

the three modelers can simulate processes.

The process engine of jBPM5.1 can support a significant subset of elements and

attributes defined in BPMN2.0, which have been listed in (JBPMCommunity 2011).

However, the process engine does not support “message flow”, so it cannot execute the

distributed view of CpBP (collaboration diagrams in BPMN2.0). During its running, the

process engine can store running states and historical information into files on disks or in

tables of databases. It can make a task’s execution as an atomic transaction. As the process

engine can support compensation events, so it can support the interoperable transaction mode

to a certain extent. The process engine supports human tasks during the execution of CBP. It

can execute web pages for a human task, and it can also send out emails to designated persons

for human tasks. Evidently, the execution mode of jBPM is centralized.

Based on the running states of processes, jBPM can illustrate execution progress of

business progresses. According to historical information for execution of processes, jBPM5.1

can generate statistic reports for a process.

I.3.c. Bonita

Bonita Open Solution is a complete open source BPM Solution. Our work focuses on

Bonita Open Solution V5.5, which includes three integrated modules: Bonita Studio, Bonita

User Experience and Bonita Execution Engine. Bonita Studio is used to construct business

processes in BPMN 2.0. It implements most of important elements and attributes defined in

BPMN 2.0 and the implemented elements and attributes are listed in (BonitaSoft 2011).

Bonita Studio does not implement “conversation” or “choreography”. It can construct CrBP

and two views of CpBP. Bonita Studio also provides GUI to create web pages for human

Chapter 2 State of the Art for Related Research Domains

58

tasks. After creation, a process is stored in a file on disks. Bonita Studio can also simulate a

business process after configuring simulation parameters corresponding to processes, events,

tasks and transitions, etc. Bonita Studio can make business processes deployed automatically,

and the deployment topology is centralized.

Bonita Execution Engine is in charge of executing business processes and it can support

all elements and attributed used by Bonita Studio. It can store all running states and history

information of business processes into files on disks. It can also execute the webpage codes

for human tasks and send out notifications to a designated person. It adopts the centralized

mode to execute business processes and especially it can execute centrally the distributed

view of CpBP.

Bonita User experience provides a web console for users to view the processes currently

executed and the finished processes. It can also generate statistic reports for users.

I.3.d. Oracle BPM Suite 11g

Oracle BPM Suite 11g provides an integrated platform for SOA-enabled BPM. It

delivers in the same platform a treatment of all lifecycle phases of business processes in an

organization (Buelow, Das et al. 2010).

Oracle BPM 11g provides modeling tools that allow the business users to model and

manage their business processes. It includes two design tools: JDeveloper-based BPM Studio

and web-based Process Composer. Each tool provides different users with a different

experience: BPM Studio is targeted at process analysts/architects and developers; Process

Composer is targeted at process owners, business users, and business analysts. The two

designer tools can support most important elements and attributes defined in BPMN 1.2/2.0.

Oracle BPM Studio enables simulation for a given process by specifying various

metrics including cost, unit and time. It can also monitor and analyze interesting business

indicators during process execution. Oracle BPM Suite 11g includes many out-of-the-box

dashboards to analyze common business indicators such as cycle time, work distribution,

work performance, and so on. Oracle BAM (Business Activity Monitoring) is a real-time

monitoring product which enables modeling of various aspects of processes and their

supporting environments.

Oracle BPM products leverage a Service Component Architecture (SCA) server that

provides a unified service and event infrastructure. There are several service engines that

provide direct execution for different model types. For example, BPMN service engine

executes processes in BPMN 2.0, BPEL service engine executes processes in BPEL, business

Chapter 2 State of the Art for Related Research Domains

59

rules service engine executes business rules, and SCA server provides optimized binding

between these service engines. Moreover all aspects of BPM and related software components

can be managed from a web-based console. Actually, in Oracle BPM, created models are not

just business requirement documents, but part of their own implementations (Buelow, Das et

al. 2010). In addition, Oracle BPM 11g provides three options for automatic deployment: by

using JDeveloper, web-based console or using ant scripts.

Finally, in Oracle BPM Human Tasks are managed by the Human Task workflow

engine. When the BPMN component triggers a Human Task, the Human Workflow Service is

responsible for routing the task to users and notifying them. Once a last user approves or

completes the task, the Human Workflow Service returns to resume the corresponding

process.

I.3.e. ADONIS

ADONIS from BOC21 is a BPM toolkit for the design of products/services, processes,

organizational structures and information technology. ADONIS’s philosophy is the

continuous improvement of business processes, organizational structures as well as resources

and technologies. A successful implementation of ADONIS Model is ensured by open

interfaces such as XPDL, BPEL/WSDL, BPMN and XML). The professional edition of

ADONIS contains the following components: acquisition, modeling, analysis, import/export,

simulation, evaluation and documentation. Unfortunately, the functions “simulation” and

“evaluation” are just for business process models (described by another notation language),

not for BPMN models.

Graphic representations of processes lean on a reference database and the database

stores the graphical elements (process, event, and actor) and their attributes. The attributes are

helpful to realize the simulation and evaluation of business processes.

I.3.f. MEGA

MEGA22 is a set of integrated tools (MEGA Suite) used for modeling, controlling,

transforming and communicating. We will focus on the modeling tools covering from process

analysis to risk and control mapping to application analysis and design, and more especially

on the process modeling (MEGA Process). It makes it possible to model processes using

BPMN 1.2. MEGA distinguishes four types of processes:

21 http://www.boc-group.com/
22 http://www.mega.com/en

Chapter 2 State of the Art for Related Research Domains

60

a) business processes specifying a high-level structural view of the enterprise product

and service offerings, and the breakdown of the processes producing them;

b) organizational processes describing the sequence of operations executed by

enterprise organizational units;

c) functional processes describing a summary view, independent of organisational

structure, to represent steps in the value chain connected to enterprise business and

common to all organizational variants;

d) system processes describing the IT system process implemented when using an

application or service.

Organizational charts and business data modeling are also available with MEGA

processes. One of the main advantages of MEGA is the common multi-user repository

making it possible to link each model element with another one and to bridge all the tools of

the MEGA Suite. Therefore it is possible to navigate to one modeling element or view to

another one. It provides also the users with powerful customisable documentation tools.

Although it does not cover the process deployment phase MEGA Suite provides a simulation

tool for evaluating the organizational impacts and costs of a process improvement proposal

and for calculating the anticipated return on investment (MEGA Simulation BPMN Edition).

It also provides a synchronization of MEGA Process models with a SAP implementation.

Figure 2-7. Conceptual Model for CBP Tools

Chapter 2 State of the Art for Related Research Domains

61

I.3.g. Relationship between comparison framework and conceptual

model for CBP tools

According to the research about the architectures and implementations of the 6 CBP

tools, we can obtain a partial conceptual model for CBP tools in Figure 2-7. In Figure 2-7,

BPM Suite contains three environments: modeling, simulation and execution environments.

Each environment has its own components. For example, execution environment has process

engine(s), rule engine(s), monitor and analysis function, process lifecycle management,

scheduler(s) and a web console. The function of each component is indicated by its name.

Especially, scheduler is used to schedule execution of multiple business processes/rules.

Process life cycle management means starting, suspending, restarting and stopping instances

of business processes. This is the micro definition for process lifecycle management, which is

different from its macro definition in Section I.2. BPM Suite is based on SOA. That is to say

in its environments BPM Suite will use “service” concepts and follow SOA protocols (e.g.,

web service standards). BPM Suite must also depend on a persistence model in its three

environments. For example, constructed processes, simulation parameters or information

about monitoring must be stored in databases or in file systems. Besides, Figure 2-7 indicates

that the different CBP tools become more and more homogenous but they can be

implemented in different technologies.

Figure 2-8. Relation between Comparison Framework and Partial

Conceptual Model for CBP Tools

Chapter 2 State of the Art for Related Research Domains

62

The corresponding relationship between the conceptual model and the comparison

framework is provided in Figure 2-8. For example, the criterion “transaction” in the

comparison framework can be related with process engine, scheduler and process lifecycle

management in the conceptual model. Besides, process modeling tool in the conceptual model

can be evaluated according to the criteria: coverage of BPMN, persistence, types of CBP,

human task and business rules. In a word, one criterion in the comparison framework is

related with one or several concepts in the conceptual model; one concept in the conceptual

model can be evaluated from one or several criteria in the comparison framework.

I.4. Comparison Result

According to the introduction to six CBP tools in Section I.3, we can summarize their

comparison result, shown in Table 2-1. In Table 2-1, the CBP tools can be divided into two

kinds: one kind can only model (and simulate) CBP, the other kind can model (and simulate)

and also execute and monitor CBP. In the following analysis, we focus on the second kind.

For the criterion of coverage of BPMN, none of these tools can support all elements and

attributes defined in any version of BPMN, but they can support the important elements and

attributes in BPMN. The execution engines of these tools are almost in the same situation as

their CBP modeling tools.

For the persistence criterion, these tools can store CBP in XPDL, BPDM or BPMN 2.0

XML format, which can make CBP easily exchanged between different CBP designers. Some

tools, the storage of BPMN processes can be managed by DBMS, which makes CBP

manageable and easily shared by other information systems. At the execution phase of CBP,

persistence can also be supported by two methods: file systems of OS or DBMS.

Human tasks are supported in two phases: modeling and execution phases. They can be

modeled and executed by CBP management systems. This makes BPMN suitable to create

and automate human-centric CBP.

For the transaction criterion, BPMN itself can support interoperable transaction model

at the modeling phase, but not all of CBP tools can support such model. When executing basic

tasks in CBP, some CBP tools can make sure their atomic execution, for example jBPM and

Oracle BPM.

Execution mode of CBP depends on deployment topology. All of these tools can only

support centralized deployment and execution.

Chapter 2 State of the Art for Related Research Domains

63

For the monitoring criterion, all of these tools can support to visualize execution

progress of CBP instances and they can also generate statistical reports for further analysis of

CBP.

Generally speaking, since these CBP tools can only adopt centralized deployment and

centralized execution of CBP, in others words CBP can be deployed on and executed by only

one (logic) server, hence collaborators in CBP have to select one delegate among them or a

trusted third party to run their CBP. This limits the autonomy of collaborators.

In these tools, as CBP is executed on one server, this avoids technical interoperability

problem between information systems of collaborators. In such situation, the semantic

heterogeneity in business collaborations is resolved at the modeling phase by human being,

not automatically tackled by information systems.

Instead, the deployment and execution of CBP under the distributed mode will make

collaborators have more autonomy and will also make collaborators more dynamically

participate in CBP. How to realize the distributed mode of deployment and execution of CBP

will introduce new problems: semantic heterogeneity and negotiation mechanism between

collaborators, etc. This will be a hot research point in the future.

I.5. Conclusions

After analyzing the historical development of CBP’s appearance, we summarize the

existent CBP specification languages and their comparison result. This chapter focuses on

comparing implementation tools of CBP which are based on BPMN. In order to compare CBP

tools, we have proposed a framework inspired from CBP lifecycle. After introducing six CBP

tools: BizAgi Xpress, jBPM, Bonita, Oracle BPM, ADONIS and MEGA, we have compared

them and obtained a comparison result. In terms of the comparison result, we point out that

how to solve semantic heterogeneity and interoperability problems during the realization of

distributed deployment and execution of CBP will be a hot research point.

In order to solve the above problem, MDA will be a good framework. MDA is

introduced in detail in Section II. From the viewpoint of MDA, CBP can be regarded as

models, and after some transformation, they can be executable. This can improve enterprise

business agility. Besides, as MDA can make CBP models portable, collaborators of one

enterprise can also generate corresponding CBP which can help these enterprises collaborate

with each other. A possible MDA-based methodology to the problem has been proposed in

Chapter 3 and 4.

Chapter 2 State of the Art for Related Research Domains

64

T
ab

le
 2

-1
. C

om
pa

ri
so

n
R

es
ul

t
B

et
w

ee
n

C
B

P
 T

oo
ls

Chapter 2 State of the Art for Related Research Domains

65

II. MODEL DRIVEN ARCHITECTURE AND MODEL

DRIVEN INTEROPERABILITY

Model Driven Architecture (MDA) was firstly proposed by OMG in 2001 and the final

specification was adopted in 2003. It is an approach to using models in software development.

Its primary goal is to improve portability, interoperability and reusability of software solutions

through architectural separation of concerns and model transformations.

MDA divides models in three levels (Miller and Mukerji 2003):

� Computation Independent Model (CIM): a view of a system from its

environment and its business requirements.

� Platform Independent Model (PIM): a view of a system which focuses on the

operation of the system but hides the details necessary for a particular platform.

� Platform Specific Model (PSM): a view of a system which combines the

specifications in the PIM with the details of the use of a specific platform.

 MDA uses model transformation to generate models at a lower level from models at an

upper level. For example, MDA can use transformation rules to generate PSM models from

PIM models. During the model transformation, additional information may be added, such as

target platform description information captured in a Platform Model. At last, MDA will

generate executable code from PSM models. So, MDA improves degree of automation of

software development.

According to the above narration, model transformation is a key part of MDA, which

will be discussed in Section II.1. Section II.2 will discuss how MDA supports enterprise

interoperability. This problem is studied in the research domain Model-Driven

Interoperability (MDI).

II.1. Model transformation

Figure 2-9 provides an abstract architecture dedicated to “model to model”

transformation. In Figure 2-9, models have three abstraction levels: Model (M1), MetaModel

(M2) and MetaMetaModel (M3). Models at M1 level conform to models at M2 level and

models at M2 level conform to models at M3 level ("conform" means that both the elements

of a model at Mi level are instances of elements of a model at Mi+1 level and the well-formed

rules are satisfied). That is to say M3 and M2 defines the structure and semantics of metadata

for M2 and M1. In Figure 2-9, source mode at M1 level conforms to source metamodel at M2

level and source metamodel conforms to the metametamodel at M3 level. Target model and

Chapter 2 State of the Art for Related Research Domains

66

target metamodel are in the same situation as source model and source metamodel. The

transformation from source model to target model is based on transformation rules

(mappings) between source metamodel and target metamodel. The transformation rules

conform to a rule language. In addition, source and target metamodels are not necessary to

share the same metametamodel. In fact, there are numerous model transformation approaches

which have been studied in (Czarnecki and Helsen 2003). (Czarnecki and Helsen 2003) has

characterize the design features of the approaches and then classified the approaches into two

kinds: model-to-model approaches and model-to-code approaches.

Figure 2-9. Abstract Architecture for Model-to-Model Transformation

Nowadays, ATL23 language (Atlas Transformation Language) is prevalent as the

transformation rule language. ATL is supported for example by Topcased24, an eclipse-based

platform which provides a development environment and an execution environment for ATL

transformation rules (see Figure 2-10). When ATL is assessed by design features of model

transformation proposed in (Czarnecki and Helsen 2003), the following characteristics of

ATL can be outlined:

� ATL can be used to create declarative and imperative transformation rules; rules

are organized into modules;

� During execution, rules are selected by explicit conditions; and execution of

rules is deterministic;

� The model transformation is unidirectional and it can only create new targets;

the transformation has no traceability links.

23 http://www.eclipse.org/m2m/atl/doc/
24 http://www.topcased.org/

Chapter 2 State of the Art for Related Research Domains

67

Figure 2-10. Example for ATL transformation rules developed in Topcased v4.3.0

II.2. Model Driven Interoperability

Model Driven Interoperability Method (MDI Method) is based on MDA and it can be

used for two enterprises that need to interoperate not only at the code level but also at

Enterprise Modeling level with an ontological support (Bourey, Grangel et al. 2007).

Jean-Pierre Bourey and his colleagues have represented this method in Figure 2-11 as

Reference Model for MDI.

In this reference model, CIM level in MDA has been enriched and it is divided in two

levels: Top CIM level, which represents business requirements from the viewpoint of business

users, and Bottom CIM level, which represents business requirements from the viewpoint of

software developers. Besides, in order to solve interoperability problems, interoperability

model is established at each abstraction level. Interoperability model will be transformed from

upper level to lower level with the help of common interoperability ontology constructed by

two enterprises. In this reference model, the transformation from upper level to lower level is

defined as vertical transformation. Meanwhile, the transformation at the same level between

different enterprises is defined as horizontal transformation. Vertical transformation is

primarily for code generation; instead, horizontal transformation is primarily for model

exchange or consistency verification between different enterprises.

Chapter 2 State of the Art for Related Research Domains

68

Figure 2-11. Reference Model for MDI (Bourey, Grangel et al. 2007)

II.3. Conclusions

In theory, MDA can provide software developers with the benefits of reusability,

portability and interoperability. However, in practice, MDA is still far from its expectation. In

addition, MDA is doubted by some researchers, such as Scott W. Ambler. He is afraid of that

MDA will suffer from the same problem of its predecessor “Integrated Computer-Aided

Software Engineering (I-Case)” (Ambler 2003). For example, the I-Case tools generated 80 to

90 percent of the code, but the rest 10 percent required 90 percent of the efforts (Ambler

2003). So, when MDA/MDI is employed to solve enterprise interoperability problems, it is

better to generate executable models instead of codes. The target models can be executable

collaborative business processes which can be executed by business process engines.

Therefore, when modeling enterprise interoperability problems, MDA can be used as the

skeleton of related solutions (see Figure 2-15).

III. SOA

Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing

distributed capabilities that may be under the control of different ownership domains (OASIS

2006). SOA was firstly described by Gartner in 1996 (Natis 2003) in order to make

enterprises agilely adapted to business changes. However, at that time, SOA just stayed at the

ideological level. With the development of XML, SOAP and WSDL, web service was widely

Chapter 2 State of the Art for Related Research Domains

69

used in e-business domain, and many organizations were aware of that web service could not

only provide capability of distributed software applications, but it could also be regarded as an

architecture foundation. Therefore, web service became popular as an implementation

technology of SOA, and moreover the emergence of UDDI further enriched SOA. SOAP,

WSDL and UDDI are regarded as the first generation of web service protocols. These

protocols can guarantee web service interoperability to a certain extend.

Consequently, with active collaboration of many software vendors, the second

generation of web service protocols (WS-* protocol family) was gradually proposed, such as

WS-Addressing, WS-ReliableMessaging, WS-Policy, WS-Security, WS-Eventing, WS-BPEL

and WS-CDL, etc. These protocols provide some important and necessary capabilities for

enterprise software applications. Especially, WS-BPEL and WS-CDL can implement intra-

/inter-organizational business processes through service composition. This makes enterprises

easily adapted to business changes. So, SOA/web service gains attentions from more and

more enterprises, and the research about SOA/web service has been shift from registry-based

pattern to enterprise service bus25-based pattern (see Figure 2-12).

With the development of SOA/web services, many enterprises have published their

business logic as web services, but SOA is not just services. Danny Sabbah, general manager

of IBM Rational, said “SOA is 1% services and 99% governance”. So, governance is very

important in SOA and some aspects of SOA governance have been implemented by enterprise

service buses, such as JSSOA (Liu 2008).

Enterprise Service Bus

Service

Implementation

Service

Consumer

Registry

Message

routing

(a) Client-Server Pattern (b) Registry-based Pattern (c) ESB-based Pattern

Figure 2-12. SOA evolution

Around our research theme in this thesis, this section will concentrate on some SOA and

service characteristics which are relevant to enterprise interoperability.

25 The research about enterprise service bus is introduced in Section IV.

Chapter 2 State of the Art for Related Research Domains

70

III.1. SOA and service

The core of SOA is the notion “service”. A service is a mechanism to enable access to

one or more capabilities, where the access is provided using a prescribed interface and is

consistent with constraints and policies as specified by the service description (OASIS 2006).

According to the above definition, a service has at least three aspects (see Figure 2-12.a): a)

service implementation (capabilities, such as business functions), b) service description

including service interface, constraints and policies, and c) service interaction. The separation

of service implementation and service description makes services have several important

characteristics: autonomy, loose coupling, interoperability and reusability.

� Autonomy: as service interface is the only access way provided for a service

consumer, so any changes outside of services cannot influence service

implementations.

� Loose coupling: as service interface separates service implementation from

service consumers, so service consumers just need to know the address of the

service interface, do not need to know the address of the service implementation.

Furthermore, interaction between a service consumer and a service provider can

be asynchronous, that is to say, the consumer does not need to ask the provider

to immediately respond to his request. Besides, any change in a service

implementation will not influence service consumers if the corresponding

service interface is not changed.

� Interoperability: Service interfaces hide heterogeneity of service

implementations and service running environments. Therefore, service

consumers do not need to know how service is implemented and they just need

to follow service interface to access service. As service interface is usually based

on standards, such as WSDL, so the interoperability between service providers

and service consumers can be guaranteed.

� Reusability: as business functions (including business functions in legacy

systems) can be published as services and services are loosely coupled and

interoperable, so services can be reused by different service consumers.

The above service characteristics bring up some important characteristics for SOA, such

as composability and loose coupling.

Chapter 2 State of the Art for Related Research Domains

71

� Composability: as services are loosely coupled and interoperable, they can be

easily composed together to satisfy complex business requirements. Service

composition can make enterprises have business agility.

� Loose coupling: as services are loosely coupled, therefore in an SOA-based

information system, different software components do not closely depend on

each other and the relationship between them is grounded in their service

interfaces. So, the whole system is loosely coupled and has flexibility. This

characteristic will be discussed in detail in Section III.2.

SOA use services to establish mappings between business environment and IT

environment (see Figure 1-4). Services can be regarded as a modeling method for business

requirements. SOA provides some principles for software design; meanwhile it can also be

regarded as an architecture style to react against changes from business or IT environments.

III.2. Loose coupling in SOA

Loose coupling for services and SOA makes original monolithic systems developed and

deployed in a distributed method in computer networks. An SOA-based information system

can be loosely coupled in one aspect but tightly coupled in another aspect. (Schmelzer 2007)

has proposed seven levels of loose coupling. The seven levels are shown in Table 2-2. For

each level of loose coupling, Table 2-2 lists corresponding objective, encountered difficulties

and possible solutions. As the implementation technique of SOA, web service can realize

loose coupling at the implementation and process levels, but it cannot achieve loose coupling

at service contract/policy levels and semantic level. Because in web service, any service

invocation will ask service consumers to know WSDL definition (including service interface

and related data types) of the target web service. Any change of service interface or related

data types (for input or output messages) will influence service invocation of service

consumers. Hence, this tightly couples service consumers and service providers. In Chapter 5,

we will propose an SOA-based semantic service bus to realize loose coupling at the service

contract and semantic levels.

III.1. Conclusions

SOA and service are important to enterprise interoperability. On one hand, SOA and

service can provide loose coupling and interoperability between information systems of

different enterprises; on the other hand, SOA and service can react rapidly against changes of

collaboration requirements between different enterprises.

Chapter 2 State of the Art for Related Research Domains

72

Table 2-2. Seven Levels of Loose Coupling (adapted from (Schmelzer 2007))

Levels Objective Difficulties solutions

Im
plem

entation

Service consumers are
blind to the

implementation technology
used by service providers

and vice-versa

Different implementations:
Java, .NET, PHP, C++, or

Basic. Service implementation
may be changed

Service contract (standard-
based, interoperable

specifications or protocols)
(XML, Web service, REST

service)

Service
contract

Contract changes do not
cause service consumer

breakage

A simple change to acceptable
inputs or functional behavior of
the system can have profound
impact on service consumers.

Service contract change
management (late-binding,

intermediary-enabled,
registry-based systems)

Service
P

olicy
26

Policy changes do not
cause service consumer

breakage

A small change to a Service
policy can have tremendous

repercussions

Service policy versioning
and deprecation

P
rocess

Service consumer should
not have to know at all

when a process is
reconfigured.

 Expose a composite service
as a service

D
ata Schem

a

Organizations need to
further their loose coupling
goals by enabling dynamic
and heterogeneous change
to the data schema shared

between Service
consumers and providers.

If a service consumer and
provider need to have a

common understanding about
data schema, we have tight
coupling as defined above.

Exception management,
transformations, service
intermediaries, and Data

Services.

Infrastructure
Service implementation is

infrastructure neutral
If loose coupled systems move
their implementation from one
ESB or Service infrastructure
to another, then all hell will

break loose.

Many vendors promise this
sort of interchangeability,

but few deliver.

Sem
antic

L
ayer

Provide the promise of
seamless data integration

If the data structures of service
providers are imposed on

service consumers, the result is
as tightly coupled as previous

architectural approaches.

Dynamic service definitions
(the definition of a service

interface must change based
on the context of a service

consumer.)

IV. ENTERPRISE SERVICE BUS (ESB)

In order to effectively integrate systems distributed in computer networks, middlewares

emerged (Schantz and Schmidt 2001). However, traditional middlewares focus primarily on

the technical interoperability level, so in order to resolve syntactic, semantic and pragmatic

26 A policy is a form of metadata, as are contracts, and in fact, the only difference between a service

policy and a contract is that a policy can apply to any number of Services. Because policies control many aspects

of the non-functional parts of a Service. (Schmelzer 2007)

Chapter 2 State of the Art for Related Research Domains

73

interoperability problems, Enterprise Application Integration (EAI) was proposed

(Puschmann and Alt 2001). EAI can be used to integrate distributed and heterogeneous

information systems in an enterprise or across boundaries of enterprises. EAI has been

researched, implemented and used in many enterprises (Puschmann and Alt 2001; Losavio,

Ortega et al. 2002; Reiersgaard, Salvesen et al. 2005). However, EAI has at least two inherent

limitations (IONA 2006):

� Central control feature of its architecture causes its performance bottleneck.

Although central controller can be deployed in a computer cluster, the improved

performance is limited and a computer cluster is quite expensive.

� Continuous addition of new features makes EAI large, inflexible and hard to

manage.

The limitations of EAI have hampered its own development. As the next generation of

enterprise integration technology, Enterprise Service Bus (ESB) came out (see Figure 2-12.c).

ESB has some advantages over traditional EAI (IONA 2006):

� ESB is service-oriented and grounded in many open standards; all business

functionalities are published as services.

� ESB is light-weight and it is easy to be deployed in a distributed method. Hence,

there is no performance bottleneck caused by system architectures. Business

functionalities can be deployed into multiple ESBs; unlike in EAI, all of them can

only be deployed into one centralized hub.

So far, there is no precise definition about ESB, and many enterprises or researchers

have their own viewpoints about ESB. Generally speaking, ESB usually has the following

features:

� Support service creation, registration, discovery, invocation and composition. (ESB

examples: Celtix13, Mule15, JSSOA (Liu 2008), Petals14)

� Support message transformation from three aspects: data types in messages,

message formats (such as SOAP, XML) or message transport protocols (such as

HTTP, JMS); support message routing. (ESB examples: Mule and Petals)

� Support ESB governance (authorization/authentication, access control, service

deployment, monitoring service running, monitoring ESB nodes, etc). (ESB

examples: JSSOA)

� Support event-driven architecture (asynchronous production and consumption of

messages). (ESB examples: Celtix and Mule)

Chapter 2 State of the Art for Related Research Domains

74

The above features make ESB more loosely coupled and easier to integrate legacy

systems and they also make enterprises more agile to be adapted to business changes. Most

importantly, an ESB is an open system, that is to say, the ESB can invoke services provided

by other ESBs and the ESB can also make its own services invoked by other ESBs. So

collaborations between different enterprises can be supported by their ESBs. However, the

above ESBs (Celtix, Mule, Petals or JSSOA) cannot deal with problems of semantic

heterogeneity when they are used to integrate information systems or realize collaborations

between enterprises. Therefore, new ESB: semantic service bus has come out. Semantic

service bus has been studied in (Karastoyanova, Wetzstein et al. 2007; BEDNÁR, FURDÍK et

al. 2009). In (Karastoyanova, Wetzstein et al. 2007), semantic service bus is generated

through integration of a conventional ESB and two semantic web service platforms. This

semantic service bus uses semantic descriptions of services and exchanged messages to

automate service discovery, selection and invocation, and message transformation and

routing. The semantic service bus also annotates composite services with semantic

information and executes them according to the semantic information. (BEDNÁR, FURDÍK

et al. 2009) has proposed a design of a semantic service bus (named SPIKE) for networked

enterprises. SPIKE platform uses a semantic manager to do semantic information

manipulation, such as semantic search, matching, mediation, mapping and reasoning. In

Chapter 5 of this thesis, after analysis of semantic web services and goals, we will propose

our own semantic service bus for enterprise interoperability.

V. ONTOLOGY

The word “ontology” comes from the Greek “ontos” (for being) + “logos” (for word)

(Gasevic, Djuric et al. 2006). In philosophy, it refers to the subject of existence, i.e., the study

of being as such (Gasevic, Djuric et al. 2006). Ontology emerged in the domain of computer

science and technology some time ago as a means for sharing knowledge in Artificial

Intelligence (Gruber 1993). In (Gruber 1993), it defines ontology as a specification of a

conceptualization. This definition is the most widely cited one. There are also other

definitions, for example:

• Ontology can be seen as the study of the organization and the nature of the world

independently of the form of our knowledge about it (Guarino 1995).

• Ontology is the basic structure or armature around which a knowledge base can be

built (Swartout and Tate 1999).

Chapter 2 State of the Art for Related Research Domains

75

• Ontology is a set of knowledge terms, including the vocabulary, the semantic

interconnections, and some simple rules of inference and logic for some particular

topic (Hendler 2001).

• An ontology is an explicit representation of shared understanding of the important

concepts in some domain of interest (Kalfoglou and Schorlemmer 2003).

V.1. Why do we need ontology?

Research on ontologies has turned into an interdisciplinary subject including

Philosophy, Linguistics, Logics, and Computer Science (Jarrar and Meersman 2008). In

computer science, ontologies are becoming increasingly essential for nearly all applications.

Particularly, the Internet and other open connectivity environments create a strong demand for

sharing semantics of data (Jarrar and Meersman 2008).

Within computer science, the research on ontologies emerged “mainly” within two sub-

communities: artificial intelligence and database (Jarrar and Meersman 2008). For example,

in the AI community, ontologies have gained popularity as a means for establishing explicit

formal vocabulary to share between applications (Noy 2004). In the fields of databases and

information integration, researchers and practitioners have produced a large body of

research to facilitate interoperability between different systems. Among these studies,

ontology is one discipline that deals with semantic heterogeneity in structured data (Noy

2004).

Nowadays, the distributed and heterogeneous information systems between enterprises

also depend on “ontology” to make them meaningfully communicate to exchange data and

thus make their transactions interoperate independently of their internal technologies (Jarrar

and Meersman 2008). This is the problem of enterprise semantic interoperability. In order to

achieve semantic interoperability between heterogeneous information systems, the meaning of

interchanged information has to be understood across systems (Wache, Vögele et al. 2001).

The use of ontologies for the explication of implicit and hidden knowledge is a possible

approach to overcome the problem of semantic heterogeneity.

V.2. Research domains of ontology

When evaluating the approaches to ontology-based information integration, (Wache,

Vögele et al. 2001) has proposed four main criteria: role/architecture of ontologies, ontology

representation, ontology mapping and ontology engineering. Appendix B elaborates each

criterion in detail. The following sections will discuss relationship between ontology and

Chapter 2 State of the Art for Related Research Domains

76

other research domains, such as information integration/interoperability and MDA. The

relationship between ontology and business processes will be discussed in Chapter 4. The

relationship between ontology and SOA/ESB will be discussed in Chapter 5.

V.2.a. Relationship between Ontology and information integration

The problem of bringing together heterogeneous and distributed computer systems is

known as interoperability problem (Wache, Vögele et al. 2001). Interoperability has to be at

least provided at technical and informational levels. In short, information sharing not only

needs to provide full accessibility to data, but it also requires that the accessed data may be

processed and interpreted by remote systems. Problems that might arise owing to data

heterogeneity can be divided into two levels: schematic heterogeneity and semantic

heterogeneity. Schematic heterogeneity (Goh 1997) may be caused by data type conflicts,

labeling conflicts, aggregation conflicts, generalization conflicts between different

databases/information systems. Semantic heterogeneity (Goh 1997) primarily comes from the

naming conflicts, scaling and units conflicts and confounding conflicts between different

systems. In order to achieve semantic interoperability, ontologies and semantics-based

technologies in general will play a key role to overcome the problem of semantic

heterogeneity (Wache, Vögele et al. 2001; Uschold and Gruninger 2004). Uschold and

Grüninger mention interoperability as a key application of ontologies, and many ontology-

based approaches (Uschold and Grüninger 1996) to information integration in order to

achieve interoperability have been developed. (Wache, Vögele et al. 2001) has reviewed the

use on ontologies for the integration of heterogeneous information sources. Based on the

results of its analysis, it summarizes that: in a typical system, integration should be done at the

ontology level using either a common ontology that all source ontologies are related to or

fixed mappings between different ontologies.

V.2.b. Relationship between Ontology and Models

V.2.b.i. Ontology modeling with modeling language

RDFS, OWL, and Topic Maps (TM) are commonly used in the semantic web

community for expressing vocabularies, ontologies, and topics, respectively. The Ontology

Definition Meta-models (ODM) (OMG-ODM 2009), standardized by OMG, defines the

meta-models and UML profiles of the above three ontology languages in the modeling space

MOF. These meta-models and profiles enable the use of UML notation (and tools) for

ontology modeling and facilitate generation of corresponding ontology descriptions in RDF

Chapter 2 State of the Art for Related Research Domains

77

(Resource Description Framework), OWL, and TM, respectively. In addition, to support the

use of legacy models as a starting point for ontology development, and to enable ODM users

to make design trade-offs in expressivity based on application requirements, mappings among

a number of the meta-models are provided, such as the mappings from UML and TM to OWL

and from RDFS/OWL to Common Logic (CL).

In order to develop ontology, besides the above method, (Héon, Paquette et al. 2008)

also provides another methodology. Appendix B has explained it in detail. In general, the

above two methods are all based on MDA.

V.2.b.ii. Model transformation based on ontology

(Roser and Bauer 2006) has proposed an ontology-based approach to model

transformation, depicted in Figure 2-13 and Figure 2-14. This approach needs the following

parts to achieve ontology-based model transformation:

� Semantic Transformation: A semantic transformation is a transformation

specification describing a transformation between two ontologies. A semantic

transformation is specified between a source ontology and a target ontology (see

Figure 2-13), but it can also be bidirectional.

� Syntax-semantic Binding: The syntax-semantic binding specifies the connection

between syntax (metamodels) and semantics (ontologies).

• MO-Binding: (Metamodel-ontology) MO-Bindings specify how semantic

information can be derived from model elements.

• OM-Binding: (Ontology-metamodel) OM-Bindings specify how ontology

elements are expressed in models.

In Figure 2-14, a combination of one semantic transformation, one MO-Binding and one

OM-Binding form a transformation configuration. A generator for model transformations

takes a transformation configuration as well as appropriate metamodel- and ontology-

definitions as input. The generator outputs a model transformation specified in an

intermediate model transformation language. Such model transformation will be translated

into a specific transformation language.

Chapter 2 State of the Art for Related Research Domains

78

Figure 2-13. Concept of ontology- based model transformation (Roser and Bauer 2006)

Figure 2-14. Overall approach of ontology-based model transformation (Roser and Bauer

2006)

V.3. Conclusions

In (Wache, Vögele et al. 2001), after the analysis of 25 approaches to intelligent

information integration, it finds that there are still two important problems that should be

solved. For the first problem, there is a need to investigate mappings on a theoretical and an

empirical basis. That is because most of approaches in integration systems still use ad-hoc or

arbitrary mappings especially for the connection of different ontologies. There are approaches

that try to provide well-founded mappings, but they either rely on assumptions that cannot

always be guaranteed or they face technical problems. For the second problem, (Wache,

Vögele et al. 2001) finds a striking lack of sophisticated methodologies supporting the

development and use of ontologies. Such methodology has to be language-independent and

includes an analysis of the integration task. It also has to support the process of defining roles

of ontologies with respect to the requirements.

Chapter 2 State of the Art for Related Research Domains

79

In order to achieve fully automatic semantic interoperability among independently

developed and heterogeneous agents, individual researchers and practitioners will have to

initially make many assumptions, and then relax them one by one as technology progresses

(Uschold and Gruninger 2004).

Many semantic mapping, integration and/or interoperability projects take place more or

less in a vacuum because of lacking some general infrastructure in place where one can easily

register, access and use various things such as: ontologies, mappings between ontologies,

mapping languages, and translation engines.

It is also prevalent that ontology is closely connected with models. Nowadays, MDA

has been researched by numerous enterprises and universities, and how to add semantic

information into models and how to transform models with the help of ontology will be very

interesting and they are important in order to realize enterprise semantic interoperability. In

Chapter 4, we will provide a way to add ontology information into collaborative business

processes (models) and to transform collaborative business processes with the help of the

added ontology information.

VI. CONCLUSIONS

According to the study of business processes, MDA, SOA, ESB and ontology, we

propose a framework for IT solutions to enterprise interoperability problems in Figure 2-15.

Figure 2-16 provides an individual view of the framework. In Figure 2-16, for only one

enterprise, business requirement27 (replaced with collaboration requirement in Figure 2-15) is

proposed from business environments.

The realization of business requirement is the alignment between business environment

and IT environment. During the alignment,

� MDA is adopted as the skeleton of the IT solution framework. There are three

levels: CIM, PIM and PSM. Models at lower level will be transformed from

models at upper level. Model transformation will depend on information from

ontology. All results generated in different levels must respect and conform to

business collaboration requirement.

� Business process is adopted as the representation method for business

requirement. Business process will be annotated by ontology information.

27 Figure 2-16 uses “business requirement” instead of “collaboration requirement”. This makes Figure

2-16 more general, not only for collaboration but also for general business purpose.

Chapter 2 State of the Art for Related Research Domains

80

� SOA is adopted as the modeling principles. Information about services used in

business processes will be stored in ontology.

Ontology used in the above three techniques is constructed from business and IT

environments by following an ontology engineering methodology. Ontology is employed to

solve semantic problems about data, service and process.

After modeling business requirements according to the above three techniques, we

obtain executable collaborative business processes. The processes will be executed on a

platform or an infrastructure. Semantic service bus will be a good choice for the

platform/infrastructure as discussed in Section IV. Meanwhile, ontology will be also used

in IT environment when semantic service bus deals with exchanged messages, discovers

services or executes processes.

Figure 2-15. Framework for IT Solutions to Enterprise Interoperability Problems

In Figure 2-15, collaboration requirement (replacing business requirement in Figure

2-16) is generated from business environments of two enterprises. The interaction between the

two business environments means that their collaboration needs some human interactive

activities. Collaboration requirement is the motivation and the core of enterprise

interoperability because if there is no such requirement, there is no need to realize enterprise

interoperability.

In Figure 2-15, once collaboration requirement is modeled at CIM level in one

enterprise, the result models (collaborative business processes) will be delivered to its

Chapter 2 State of the Art for Related Research Domains

81

collaborator(s). The processes will be the blueprint for their collaboration and then each

collaborator will generate their own collaborative business processes. At last, each

collaborator will transform the processes to executable processes for their own

platform/infrastructure.

During execution of the target collaborative business processes, the

platforms/infrastructures from different enterprises will interact with each other and the

business environment (human) and IT environment (information system) may also interact

with each other. The interaction between business and IT environments is not indicated in

Figure 2-15 for the sake of clarity.

The process of modeling collaboration requirements according to business process,

MDA and SOA will be discussed in detail in Chapter 3 and 4. The platform/infrastructure for

running collaborative business processes will be discussed in Chapter 5.

During modeling and execution of collaborative business processes, ontology will be

employed and its usage will be discussed in Chapter 3, 4 and 5.

Figure 2-16. Individual View of the Framework for IT Solutions to Enterprise

Interoperability Problems

Chapter 2 State of the Art for Related Research Domains

82

CHAPTER 3 Process-Based Method for Enterprise Interoperability

83

CHAPTER 3: Process -Based Method for

Enterprise Interoperability

CHAPTER 3 Process-Based Method for Enterprise Interoperability

84

CHAPTER 3 Process-Based Method for Enterprise Interoperability

85

In order to realize the framework proposed in Chapter 2 for IT solutions to enterprise

interoperability problems, this chapter will propose a “Process-Based Method for Enterprise

Interoperability” (PBMEI) in Section II. PBMEI employs collaborative processes to represent

collaboration requirements between enterprises. PBMEI transforms a collaborative process to

multiple executable interoperability processes. The generated interoperability process will be

deployed and executed in an infrastructure. In order to explain PBMEI, a case named

“ShoppingDrive” cooperation process will be studied in Section II.2.

Before further discussion, some important terminologies widely used in the thesis will

be defined in Section I in order to avoid unnecessary misunderstanding.

I. TERMINOLOGY DEFINITION

I.1. Key concepts about enterprise collaboration/interoperability

Collaborative business process is used to model collaboration requirements between

enterprises and it is implemented by interoperability processes after some steps of

transformation. According to the MDA framework, we can see that collaborative business

process belongs to the level CIM and interoperability process belongs to PIM and PSM. The

actors in collaborative business process can be enterprises or departments, and such actors are

defined as collaborators; the actors in interoperability process can be information systems,

sub-systems, components or services, they are defined as participants. The above concepts

are positioned in MDA framework in Figure 3-1.

Figure 3-1. Position of collaboration/interoperability concepts in the MDA framework

CHAPTER 3 Process-Based Method for Enterprise Interoperability

86

I.2. Classification of business processes

To further analyze enterprise interoperability problems, we analyze the classification of

business processes. (Dumas, van der Aalst et al. 2005) has proposed several criteria to classify

business processes. We will classify business processes according to the following criterion:

the quantitative relationship between the owners and controllers of business activities. The

relationship between owners and controllers is indicated in Figure 3-2.

� The owner of business activity is the actor who is responsible for implementing

and performing this activity;

� The controller is the actor who starts the activity.

Following the above criterion, there are three kinds of processes in or between

enterprise information systems:

1) The internal process: it is composed of the activities which belong to the same

IS of an enterprise;

2) The coordination process: it is composed of the activities some of which take

place between several IS and/or enterprises, but the process execution is owned

and controlled by only one IS and/or enterprise;

3) The cooperation process: it is composed of the activities some of which happen

between several IS and/or enterprises and the process execution is owned and

controlled by several IS and/or enterprises, but each IS and/or enterprise can

only control the execution of its own activities.

Figure 3-2. Position of the concepts: owner, controller and three types of processes

CHAPTER 3 Process-Based Method for Enterprise Interoperability

87

According to Figure 3-1, Figure 3-2 and the definition of collaborative business process,

a collaborative process in the CIM package can be represented as each of the three types of

business processes. If the collaborative process is the internal process, i.e., the process is

across different departments in one enterprise, the collaborator is just the enterprise itself; if it

is the coordination process, the collaborator who controls the process execution is named the

coordinator (or mediator), other collaborators are named passive collaborators; if it is the

cooperation process, the collaborator who controls the process is named principal

cooperator and the collaborator who controls its own activities but does not control the

process is named secondary cooperator. The relationship between these concepts is

described in Table 3-1.

Table 3-1. Relationship between roles of collaborators in Collaborative Business Processes

Collaborator Controls its own activity in the process Has no activity in
the process no yes

Controls
process

no Passive
collaborator

Secondary cooperator X

yes X Coordinator, Principal
cooperator28

Coordinator

Note: “X” means no definition.

Table 3-2. Roles of Actors in Business Processes

Business process Collaborator29 Participant
Internal process X X
Coordination

process
Coordinator (mediator),

Passive collaborator
Requester, Provider

Cooperation
process

Principal cooperator,
Secondary cooperator

Requester, Provider,
Subscriber, Publisher

Note: “X” means no definition.

According to Figure 3-1and Figure 3-2, in the PIM/PSM package, for each of the last

two types of business processes, if one of its activities is the interoperability activity, then

the process is an interoperability process. In addition, with regard to an internal process, it

will be necessary to implement information exchanges between some modules of enterprises’

IS. These exchanges are carried out by the activities that can be considered as internal

interoperability activities. Hence, the three types of processes can be implemented as

28 If in a business process, there is only one collaborator who not only controls its own activity in the

process but also controls the process’ execution, such collaborator is coordinator; otherwise, it is principal

cooperator. So we can see that the quantity of principal cooperators must be more than or equal to 2.
29 In a collaborative business process, roles chosen for collaborators are determined by collaboration

requirements between enterprises.

CHAPTER 3 Process-Based Method for Enterprise Interoperability

88

interoperability processes. For an interoperability process, if it is the coordination process, its

participants can play the roles “requester” and “provider”; if it is the cooperation process, its

participants can play the roles “requester” and “provider”, “subscriber” and “publisher”; if it

is the internal process, it can be executed as coordination process or cooperation process and

its participants can be that of coordination or cooperation process. So we can get Table 3-2.

I.3. Rank of collaborative process, NCA and NCP

To characterize the complexity of enterprise collaboration/interoperability, we

distinguish two essential characteristics: the number of owners for collaborative activities

(called the Rank of collaborative process, noted as R) and the Number of Controllers for

collaborative Activities (noted as NCA). As each activity in a collaboration process must

belong to a collaborator, however, the execution of the activity may not necessarily be

controlled by its owner, therefore the number of controllers for a collaborative activity will be

less than or equal to R. If the number of controllers is 1, i.e., if only one enterprise is

responsible for controlling execution of all the activities in a collaborative process, the

process is actually an internal process or a coordination process. If the rank is greater than 1

and the NCA is 1, the process is a coordination process. In a coordination process, the

collaborator corresponding to the controller is defined as an active collaborator (or

coordinator, or mediator), and the other collaborators are defined as the passive

collaborators. Table 3-3 shows the above relationship.

Table 3-3. Relationship between three kinds of processes and their rank

Business Process Rank NCA

Internal Processus R=1 NCA=1

Coordination Processus R>1 NCA=1

Cooperation Processus R>1 NCA<=R but NCA>1

For a cooperation process, if NCA is also equal to R, the process is defined as a pure

cooperation process. In fact, the pure cooperation process is the initial definition of

cooperation process defined in Section I.2. If NCA is less than R, the cooperation process is

defined as a hybrid cooperation process, where there are passive collaborators. In a pure

cooperation process, if a cooperator not only controls its own activities but also controls the

execution of the process, the cooperator is defined as principal cooperator. If a cooperator

does not control the execution of the process but it controls its own activities, it is defined as a

secondary cooperator. A secondary cooperator is different from a passive collaborator

CHAPTER 3 Process-Based Method for Enterprise Interoperability

89

because the passive collaborator controls neither the execution of the process nor its own

activities: a passive collaborator only provides services for others. The Number of Controllers

for Processes is noted as NCP (evidently NCP <= NCA). In order to make the above

concepts easily understood, Figure 3-3 provides the conceptual models for coordination and

cooperation processes. In addition, the requester, provider, subscriber and notifier are defined

in (Berre, Hahn et al. 2004) and (OMG 2006).

(a) Conceptual model for coordination processes

(b) Conceptual model for cooperation processes

Figure 3-3. Conceptual model for coordination and cooperation processes

I.4. Cooperation rate

In a cooperation process, we define a concept “cooperation rate” as:

The concept indicates to which extent a cooperator participates in a cooperation process.

It will be used during decomposition of a collaborative process in Section II.1.

CHAPTER 3 Process-Based Method for Enterprise Interoperability

90

II. PROCESS BASED METHOD FOR ENTERPRISE

INTEROPERABILITY

In order to realize the framework for IT solutions to enterprise interoperability

framework, we propose the following method to solve interoperability problems, illustrated in

Figure 3-4. PBMEI describes a transformation method from a collaborative process to a set of

interoperability processes. This method starts from modeling collaboration requirements

between enterprises with collaborative process. After several steps of transformation, it ends

up with executable interoperability processes. It is a method in the modeling environment.

Figure 3-4. Process-Based Method for Enterprise Interoperability

There are 5 levels (steps) in this method:

1) The first level defines a collaborative process;

2) At the second level, the activities in the process are annotated with information

about collaborators. After that, we merge the adjacent activities which belong to

the same collaborators, and then we integrate the activities which belong to

different collaborators to generate a simplified global process and several sub-

processes;

3) At the third level, each collaborator transforms the (sub-)collaborative processes

to its own collaborative processes based on its own business terminology

definition;

4) At the fourth level PoIM (Protocol Independent Model), each collaborator fixes

data types for all the messages in its own processes and transforms collaborators

at CIM level to participants at PIM/PSM level; at last, each collaborator will

obtain its own interoperability processes.

CHAPTER 3 Process-Based Method for Enterprise Interoperability

91

5) At the fifth level PoSM (Protocol Specific Model), the interoperability processes

are implemented in an executable specification language of business processes.

At this level, message transport protocol must be fixed. When executing

interoperability processes, all the collaborators must respect the same execution

algorithm.

The above five levels all depend closely on ontology. Model transformations between

the adjacent levels, except the model transformation between Level 1 and Level 2, will also

depend on ontology. The two kinds of dependency relationships will be discussed in detail in

Chapter 4. Instead, in this chapter, we will focus on the transformation between Level 1 and

Level 2. The transformation between Level 1 and Level 2 is about decomposition of a

collaborative process. The decomposition is very important because after the decomposition,

the generated sub-processes will be reusable in other collaborations. In addition, the

decomposition will reduce the number of messages delivered between enterprises.

II.1. Decomposition of collaborative business process

Before continuing our study, we encounter the first problem: how to express

collaborative business processes. As the development mode of information systems has been

shifted from “programming” to “assembly” and from “data-centric” to “process-oriented”

(Dumas, van der Aalst et al. 2005), hence, business process will be a trend for information

(software) system development. In addition, according to the evolutionary history of business

processes in Chapter 2-Section I.1.a, BPMN is the trend in business process research domain.

Meanwhile BPMN itself has some advantages (elaborated in Chapter 2-Section I.1.c), so in

our study about enterprise interoperability, collaborated business process will be expressed in

BPMN. Furthermore, as described in Chapter 2-Section I, BPMN can also be regarded as an

executable specification language for business processes. That is to say, interoperability

processes in PBMEI will also be expressed in BPMN.

The second problem encountered is how to construct collaborative process at the first

level in PBMEI. Rajsiri and his colleagues have proposed a semi-automated way to construct

collaborative process at CIM level (Rajsiri, Lorré et al. 2008; Rajsiri, Lorre et al. 2009). The

semi-automated way starts from a collaboration knowledge base and at last it will generate a

BPMN collaborative process. This method is supported by a prototype. However, this method

has some limitations: 1) the method needs human’s efforts, such as creation of collaboration

knowledge base and verification of generated collaborative process; 2) the generated

CHAPTER 3 Process-Based Method for Enterprise Interoperability

92

collaborative process is possibly not valid. So in this thesis, we prefer manual creation of

collaborative processes at the first level of PBMEI.

In the following subsections, a method to decompose a collaborative process is

proposed. This method is based on annotated BPMN diagrams.

As the execution of internal business processes or coordination business processes is

controlled by only one enterprise, and it is only related with a series of information exchanges

between their partners, so such processes can be implemented with the help of WS-BPEL or

workflow models. Instead, in the following subsections, collaborative processes will focus

more on cooperation processes. In addition, in order to simplify our discussion, we assume

that: collaborative processes in the following subsections only contain their business flow

(data flow is omitted).

II.1.a. Decomposition of a collaborative business process

In a cooperation process (a collaborative business process), it is assumed that

1) there are N cooperators in the process, N>=2;

2) if the process is launched, all the cooperators will follow the process to carry out

corresponding activities, so all cooperators must know clearly the state of the

process execution;

3) the adjacent activities that belong to the same cooperator can be merged into one

activity node who delegates a sub-process for the corresponding cooperator.

Following the above assumptions, the cooperation process can be changed into a new

process with “sub-process” nodes and the new process has the following property: in the

process, each two neighboring activity nodes belong to different cooperators. A

transformation example is given in Figure 3-5.b which is obtained from Figure 3-5.a by

merging B.T11 and B.T12 into B.T1 and merging C.T31 and C.T32 into C.T3. In Figure 3-5,

the name of each activity has the format X.YZ, where X indicates the owner of the activity, Y

indicates the activity type and Z is the identifier of the activity.

(a) A collaborative process with the adjacent activities that belong to the same cooperator

CHAPTER 3 Process-Based Method for Enterprise Interoperability

93

(b) An collaborative process without any two adjacent activities that belong to the same cooperator

Figure 3-5. Cooperation Processes in BPMN

Then the following question will be more interesting: how to reduce the rank of the

interoperability process? In Figure 3-5.b, its R is equal to 4 and the designer has defined A

and B as principal cooperators, and C and E as secondary cooperators. The two branches of

the gateway G1 are related with cooperators B and C. They can be replaced with two sub-

processes (cf. Figure 3-6), and the 4 interoperability sub-processes of Figure 3-5.b (i.e.

B.T1�C.T2�B.T3/C.T4, C.T1�B.T2�C.T3, A.T1�E.T1 and E.T2�A.T2) are replaced

with B.P1, B.P2, A.P1 and A.P2, so the rank of the obtained process is 2 (cf. Figure 3-6).

Finally, the cooperators A and E have two sub-processes corresponding to (A.T1�E.T1) and

(E.T2�A.T2). Meanwhile, the cooperators B and C have two sub-processes

(B.T1�C.T2�B.T3/C.T4) and (C.T1�B.T2�C.T3). The cooperators B and C have one

internal process separately: (B.T11�B.T12) and (C.T31�C.T32). The cooperators A and B

also have one cooperation process illustrated in Figure 3-6.

Figure 3-6. Simplified cooperation process in BPMN

The process transformation from Figure 3-5.a to Figure 3-5.b and then to Figure 3-6

must respect the following principles:

1) The rank of generated (target) collaborative processes must be less than that of the

source collaborative process;

2) The rank of any new generated collaborative sub-process must be less than or equal to

that of the target collaborative process;

3) The rank of the target collaborative process must be more or equal to 2.

CHAPTER 3 Process-Based Method for Enterprise Interoperability

94

4) If in a generated sub-process, there are several collaborators who influence the

execution of the sub-process, the following criteria must be respected to choose one

collaborator as the representative in the sub-process:

� If the collaborators are already defined as a principal cooperators or secondary

cooperators, the principal cooperator is selected as the representative ;

� If there are several principal cooperators, the representative can be chosen by the

sub-process.

� If all the collaborators are the secondary cooperators, their cooperation rates will

be compared. The cooperator whose cooperation rate is the greatest will be

selected as the representative; if the cooperators have the same cooperation rate,

the representative can be selected arbitrarily from the cooperators.

According to the transformation described previously, we can see that the global

cooperation process (Figure 3-6) becomes simpler, and meanwhile new sub-processes are

generated. The transformation simplifies the implementation of cooperation process, but

meanwhile, it will increase the management complexity of the interoperability process

because more collaborative processes will be transformed to interoperability processes. Are

there other benefits brought from the transformation? To answer this question, we will

analyze the execution of cooperation process between enterprises in the following section.

II.1.b. Execution of interoperability process

To illustrate the execution of the cooperation process, consider the cooperation sub-

process B.P1 in Figure 3-6, whose detail is given in Figure 3-7.

Figure 3-7. Cooperation sub-process - B.P1

As B.P1 is owned and controlled by cooperators B and C, this thesis offers the

following execution process of the process B.P1:

1. When B.P1 is invoked, a participant, for example B, will create the instance of B.P1, and

meanwhile it informs all the other cooperators (cooperator C) to create the instance of P1

in their own IS;

CHAPTER 3 Process-Based Method for Enterprise Interoperability

95

2. After all the cooperators have completed the instantiation of P1, then execute the

following steps;

3. Each cooperator will check which cooperator executes the next activity, if B finds that it

charge the execution of B.T1, then it will execute it and all the other cooperators (C) will

wait for the notification from B;

4. If all the other cooperators (C) receive the notification from B, then each cooperator will

check which cooperator executes the next activity, if C finds that it charges the execution

of C.T2, then it will execute it and all other cooperators (B) will wait for a notification

from C;

5. If all the other cooperators (B) have received the notification from C, then each

cooperator will check which cooperator will execute the next activities (B.T3 and C.T4),

if B finds that it will execute B.T3 and C finds that it will execute C.T4, then all the other

cooperators (C and B) will wait for notifications from B and C;

6. If all the other cooperators (C and B) have received notifications from B and C, then the

execution process ends.

As described earlier, the executions of the cooperation process at different cooperators

are synchronized and collaborative. All the relevant cooperators follow the same method to

execute the cooperation process, but in the IS of each cooperator, the execution behaviour is

different. If any cooperator retreats from cooperation process or if any notification is not

received by a target cooperator, the execution of the process will be blocked or abort. If any

kind of failures comes out during the process execution, some measures must be taken to

make the process execution recover from the failure or make the process execution stop

elegantly. So, the execution engine of cooperation process should be based on distributed

computing and message-oriented computing (Berre, Hahn et al. 2004).

In addition, as all cooperators have been determined before the design and

implementation of cooperation process, the cooperation process can satisfy the requirements

of “static” collaboration between enterprises, i.e., all the collaborators have the fixed

relationship. If the collaboration is dynamic, i.e., some collaborators can often be replaced by

other candidates, the cooperation process in this thesis is not able to meet such requirement

directly. However, the cooperation process can be extended to support dynamic collaboration.

Firstly, at the level of business modeling, the cooperation activity belongs to a role, not to a

cooperator, and a role can have several cooperator candidates; secondly, during the execution

CHAPTER 3 Process-Based Method for Enterprise Interoperability

96

of the cooperation process, if a member quits, the execution promoter will choose another

candidate whose role is the same as that of the quitting cooperator.

After the introduction of the interoperability process execution, we can see, the

transformation which reduces the rank of the cooperation process can reduce many

notifications between cooperators. This will be verified in a case study in Section II.2.

II.2. Case study for decomposition of collaborative business

process

The decomposition and the execution of cooperation process will be explained further

by the example ShoppingDrive. In this example, we will model a cooperation process and

then apply onto it the transformation (decomposition) method whose principles have been

presented in Section II.1.a.

ShoppingDrive is an online shopping solution. Access to its website, and then choose

products with the same prices as those offered in the real shop “Shopping”. We can then fetch

the chosen products from ShoppingDrive very quickly. The concrete collaborative business

process is shown in Figure 3-8. In the process, there are three cooperators: the Client, the CS

(central server of “Shopping”) and Drive (ShoppingDrive). The “Client” can be considered as

a cooperator (who logins the website (CS), submit its order, and pay by its bank card). The

Drive is also a cooperator. In the process, we focus on cooperators. However, bank is a

passive collaborator (just providing financial service), so it is omitted.

Before analyzing the process, we define the CS and the Drive as the principal

cooperators and the client as a secondary cooperator. By traversing the process, we can

calculate the rank of the process which is equal to 3. If we reduce the rank, the rank of each

new generated sub-process and the rank of the target (global) process must be 2 according to

the third principle in Section II.1.a.

In the process, before the “fork parallel gateway”, the rank is 2 and after the “join

parallel gateway”, the rank is 3. Hence, our method regards the part before the “fork parallel

gateway” as a sub-process: it is the sub-process {CS, Client}.P1 (Figure 3-9.a). Here,

{x i}.PID means that each element xi influences the execution of the process PID.

For the part between the two “parallel gateways”, the rank is 3, but for each branch, the

rank is 2. Therefore, our method generates another two sub-processes: {CS, Drive}.P2 (Figure

3-9.b) and {CS, Client}.P3 (Figure 3-9.c).

CHAPTER 3 Process-Based Method for Enterprise Interoperability

97

F
ig

ur
e

3-
8.

 C
oo

pe
ra

ti
on

 p
ro

ce
ss

 f
or

 S
ho

pp
in

gD
ri

ve

CHAPTER 3 Process-Based Method for Enterprise Interoperability

98

(a
)

S
ub

-P
ro

ce
ss

 C
S

.P
1

(c
)

S
ub

-P
ro

ce
ss

 C
S

.P
3

(e
)

S
ub

-P
oc

es
s

D
riv

e.
P

5

F
ig

ur
e

3-
9.

 C
oo

pe
ra

ti
on

 S
ub

-P
ro

ce
ss

es
 fo

r
Sh

op
pi

ng
D

ri
ve

(b
)

S
ub

-P
ro

ce
ss

 C
S

.P
2

(d
)

S
ub

-P
ro

ce
ss

 C
S

.P
4

CHAPTER 3 Process-Based Method for Enterprise Interoperability

99

(a) Global Process (b) Internal Process CS.P6

Figure 3-10. Simplified Cooperation Process for ShoppingDrive

For the rest of the process in Figure 3-8, the rank is equal to 3. According to the

definition of the cooperation rate, the rates for Client, CS and Drive are 20%, 40% and 40%.

So, it must integrate the Client’s activities with the others’ during generating new processes.

At the same time, the “Client” is defined as a secondary cooperator. So, in the process, the

activity “Client.Tpay for the goods” is integrated with “CS.Tinvoice for the goods”. Before

the first nearest gateway and after the second nearest gateway, the two activities belong to

“Drive”, not to CS. Therefore, the sub-process {CS, Client}.P4 (Figure 3-9.d) is generated.

Then, the sub-process {CS, Drive}.P5 (Figure 3-9.e) is generated. The representatives for the

five sub-processes are indicated in Figure 3-9 according to the fourth principle in Section

II.1.a.

After generating the 5 sub-processes, the original process is transformed into the target

global process illustrated in Figure 3-10.a by generating an internal process CS.P6 (Figure

3-10.b). Why do we generate the internal process CS.P6? Because the transformation must

respect the third assumption at the beginning of Section II.1.a. Finally, the process in Figure

3-8 is transformed into a simple global process represented in Figure 3-10.a, whose rank is

equal to 2, and for all the sub-processes their ranks are all equal to 2.

We analyze the quantity of messages sent between cooperators. In Figure 3-8, the rank

of the process is 3, and each activity sends a message to the other two cooperators, so a total

of 15 * 2 = 30 messages are sent out. To calculate the quantity of messages sent out by the

simplified process, we must consider all sub-processes. In Figure 3-9.a, Figure 3-9.b and

Figure 3-9.c, there are a total of 6 +2 +2 = 10 messages sent out, and in Figure 3-9.d, Figure

3-9.e, there are 2+4 = 6 messages sent out. In Figure 3-10.b, there is no message sent out

(internal process in the enterprise), and in Figure 3-10.a there are 2 messages sent out.

In all, for the simplified process Figure 3-10.a, there are 18 messages sent during its

execution. The above calculation method does not consider messages that are irrelevant to

business transactions. We can see that after the process transformation from Figure 3-8 to

Figure 3-10.a, the number of business messages has already been reduced.

CHAPTER 3 Process-Based Method for Enterprise Interoperability

100

III. RELATED WORK

Different methods have been proposed to solve interoperability problems, especially for

enterprise collaboration, such as, WISE (Alonso, Fiedler et al. 1999), ebXML30, XLANG

(Thatte 2001), WSCL31 etc. However, many existing approaches are not flexible (Chebbi,

Dustdar et al. 2006). In addition, almost all solutions suppose the homogeneity of data

structures and business logic between different participants (Chebbi, Dustdar et al. 2006). In

these solutions, the inter-visibility of internal processes of organizations is not well controlled:

internal processes of organizations are either completely hidden or completely open (Chebbi,

Dustdar et al. 2006). (Chebbi, Dustdar et al. 2006) has proposed an approach for dynamic

inter-organizational workflow cooperation, and this approach can resolve the above three

problems: flexibility, heterogeneity and inter-visibility.

In this section, we compare ebXML and the approach of Chebbi with our method.

III.1. ebXML

The goal of ebXML is to provide an XML-based framework to enable XML to be

utilized in a coherent and uniform manner for exchange of electronic business data in order to

create a single global electronic market (ebXML 2001). The framework of ebXML is covered

by a set of specifications, which are “core component technical specification”, “Registry

Service” (OASIS-ebXML 2002b), “Business Process Specification Schema” (BPSS) (OASIS-

ebXML 2006) and “Collaboration Protocol Profile and Agreement” (CPP&CPA) (OASIS-

ebXML 2002a) etc.

The cooperation process in our method PBMEI is similar with ebXML BPSS but

different. The similarity is that in collaborative process, all cooperators execute one identical

copy of cooperation process. The primary difference is located at the execution level of

cooperation process: all cooperators know execution state of the other cooperators but in the

execution of BPSS, just the directly associated cooperators know mutually their execution

state (OASIS-ebXML 2001) and the direct collaboration relationship is determined by the

CPA which is generated from the CPPs of cooperators.

III.2. Approach of Chebbi

The objective of the approach of Chebbi is to provide support for organizations which

are involved in a shared but not pre-modeled cooperative workflow across organizational

30 http://ebxml.org
31 http://www.w3.org/TR/wscl10/

CHAPTER 3 Process-Based Method for Enterprise Interoperability

101

boundaries (Chebbi, Dustdar et al. 2006). The approach is inspired by SOA and it contains

three steps: workflow advertisement, workflow interconnection and workflow cooperation.

The approach depends on the transformation from an internal process to a cooperative process

and then to public processes.

This approach supposes that interactions between workflows in virtual organizations

cannot be specified before. However, in our method, enterprise collaboration must be

described at the beginning of modeling phase, and this situation is also supported by (Van der

Aalst 1999)32. In addition, in this approach, all enterprises execute their own workflows and

send messages if necessary; however, in our method PBMEI, all enterprises execute the same

interoperability process and send out messages.

IV. CONCLUSIONS

In this chapter, we have proposed and elaborated the Process-Based Method for

Enterprise Interoperability (PBMEI). As PBMEI is process-based, it makes relevant

enterprises more responsive to collaboration requirement changes.

In this chapter, before elaboration of PBMEI, we have defined some key concepts

widely used in the thesis and meanwhile we have also positioned the concepts in the MDA

framework. Consequently, we discussed why we select BPMN as the representation language

for collaborative business processes. With the help of BPMN, we have presented the

decomposition method for a collaborative process. The decomposition method is based on

two quantitative criteria: the rank of collaborative process and the cooperation rate. This

method allows making information exchanges between hierarchical processes. To explain the

transformation method, we have taken a collaborative process of the enterprise

“ShoppingDrive” as an example. The case study about “ShoppingDrive” has indicated that the

decomposition of a collaborative business process will reduce the number of exchanged

messages during the execution of the process.

In the next chapter, we will research how ontology influences our proposed method. We

will analyze the ontology content and then we will study how to do business process

transformation with the help of ontology. The ontology-based business process transformation

will be used between Level 2, Level 3, Level 4 and Level 5.

32 (van der Aalst 1999) says that “there are numerous situations where the organizations participating in a shared

workflow process feel the need to specify the coordination structure explicitly”.

CHAPTER 3 Process-Based Method for Enterprise Interoperability

102

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

103

CHAPTER 4: Ontology-based PBMEI and its

Model Transformation

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

104

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

105

The “Process-Based Method for Enterprise Interoperability” (PBMEI) proposed in

Chapter 3 is a method in modeling environment and it is inspired by MDA and ontology.

However, in Chapter 3, the use of ontology in PBMEI hasn’t been studied. The dependent

relationship between PBMEI and ontology will be discussed in this chapter. Section I shows

how ontology influences each level in PBMEI. It will discuss two variants of PBMEI thanks

to different uses of ontology. This section will also present the concrete content in the

dependent ontology of PBMEI. Section II will study the relationship between ontology and

collaborative processes in PBMEI. This section will propose four ontology-based methods for

semantic annotations in BPMN-based collaborative processes. Semantic annotations in

collaborative processes will be beneficial to process transformations in PBMEI, which will be

discussed in Section III.

I. ONTOLOGY-BASED PBMEI

In order to solve enterprise interoperability problems, a “Process-Based Method for

Enterprise Interoperability” (PBMEI) has been proposed in Chapter 3. In PBMEI, business

requirements about enterprise interoperability are represented in collaborative processes

among which the enterprises involved. As elaborated in Chapter 3-Section II.1, our method

employs the service-related process specification language BPMN (OMG 2011) to describe

collaborative processes. The collaborative process in PBMEI will finally be achieved through

interoperability processes which are still expressed in BPMN. In this section, we will discuss

how to apply ontology to PBMEI: ontology-based PBMEI.

I.1. Ontology-based PBMEI

The ontology-based PBMEI is illustrated in Figure 4-1. This section will study how

ontology influences each level of PBMEI.

At the first level, collaborative process must be defined from two aspects: business flow

and data/message flow, which is inspired by the article (Hamilton and Catania 2003).

According to (Hamilton and Catania 2003), US Army proposed an expansion of the system

architecture into three further sub-architectures: software architecture, data architecture and

network architecture. Software architecture defines the functionality of each modular, and

data architecture is related to data definition, and network architecture is related to software

deployment requirement. Furthermore, all business requirements must be mapped into system

architecture to be implemented. Collaborative process is one kind of business requirements,

so collaborative process must also be mapped into the above three sub-architectures, that is to

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

106

say collaborative process must have some aspects that can be mapped into the above three

sub-architectures. However, the network sub-architecture is determined by concrete business

requirements and related to the whole system, so this thesis will consider this problem in

Section I.3 from overall point of view, not in collaborative processes. Finally, collaborative

process will be constructed from two aspects: functionality and data. The business flow

describes the functionality of the collaborative process; and the data flow describes the data

exchanged in the process.

Figure 4-1. Ontology-based and Process-Based Method for Enterprise Interoperability

At the second level, collaborative process will be annotated with collaborators’

information, i.e., each activity in collaborative process must be charged by one collaborator.

This task depends on ontology. When searching the relevant collaborators for an activity,

ontology will be inspected to determine which collaborator can do such activity. If several

candidates are selected, the target candidate will be selected according to collaboration

policy/requirements, or according to predefined conditions, such as QoS, trust rank/belief

value etc. So ontology must contain such information about all collaborators (such as,

collaborator’s name, historical information about service running, responsibility, etc). After

being annotated with information of collaborators, the collaborative process will be

transformed into a set of collaborative sub-processes according to a transformation method.

At the third level, collaborative processes (including the generated collaborative sub-

processes) will be transformed into local collaborative processes by each collaborator. During

this transformation, the business terminologies will be transformed from global to local

terminologies and the process specification language will also be transformed from global to

local if necessary.

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

107

At the fourth level “PoIM” (Protocol Independent Model), message types in

collaborative process must be determined according to messages context (messages sender

and receiver, and relevant business context). Some messages types may also be partially

declared in collaboration requirement. The above two cases of message type determination are

ontology-based. So, the ontology must contain business messages definitions, which may

have some business context specifications.

After the determination of messages types, collaborators in a collaborative process will

be mapped into participants. The key of the mapping focuses on functionality and context of

an activity. After the mapping from collaborators to participants, the collaborator’s

information in the process must also be kept, because such information has semantics that is

not implied in participants. For example, semantics for roles of collaborators cannot be

represented by participant roles. The above tasks at this level also rely on ontology. As a

participant is an element of system architecture, ontology must also contain information about

each collaborator’s system architecture. At last, after message types are fixed and the mapping

from collaborator to participant is done, collaborative processes become interoperability

processes.

At the fifth level “PoSM” (Protocol Specific Model), interoperability process will be

implemented in an executable process specification language: BPMN. All message transport

protocols are explicitly specified at this level.

According to the above description, PBMEI closely depends on ontology and SOA. It

also has one assumption: interoperability process totally depends on original functions of each

collaborator’s information system. Of course, PBMEI also relies on a process execution

engine and a given infrastructure, such as semantic service bus. Semantic service bus will be

studied in Chapter 5.

I.2. Two variants of PBMEI

In Chapter 3-Section I.2, collaborative business processes are classified into three types:

internal process, coordination process, and cooperation process. As internal process and

coordination process can be easy to implement with the help of WS-BPEL or workflow

model, this thesis will focus on cooperation process in PBMEI.

When using PBMEI to solve interoperability problems, the first encountered problem is:

who will create cooperation process and in which style? In practice, if there is a core

cooperator, the cooperation (collaborative) process is created by the core cooperator. It will

not negotiate with any others. If there is no core cooperator, the cooperation (collaborative)

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

108

process is created through negotiation of all cooperators. When applying PBMEI into the

above two cases, two variants of PBMEI are generated and they are described below.

I.2.a. Ontology-based PBMEI for collaboration without core cooperator

If a collaborative process has no core cooperator, PBMEI becomes the following

variant, see Figure 4-2. At Level 1, all collaborators negotiate to create a collaborative

process. At Level 2, the collaborative process is annotated with collaborators’ information and

divided into several sub-processes. The first and second levels and the transformation between

them are global, which depends on the global ontology. The third, fourth and fifth levels and

the transformations between them are done locally by each separate collaborator, which

depends on the local ontology. After all collaborators generate their own interoperability

processes, they can execute them through an identical execution algorithm.

Figure 4-2. Ontology-based PBMEI for collaboration without core cooperator

The global ontology includes common sense necessary when collaborators negotiate

with each other to create collaborative process. The global ontology will also define the

syntax and semantics of collaborative process. The business expressions in all elements of

collaborative process must also respect business terminology definitions in the global

ontology. The global ontology must also contain collaborators’ information because which is

needed when collaborative process is annotated.

The local ontology contains all information about enterprise architecture for a

corresponding collaborator. It includes three basic ontologies: business ontology, model

ontology and network ontology. Business ontology contains all terminologies related with

local business requirements. Model ontology contains all models (architecture models and

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

109

data models) in different software development phases. Network ontology contains

information about software deployment.

Of course, there must be mappings between the global ontology and the local ontologies

for all collaborators and such mappings will be used by each collaborator when they

transform the global collaborative process into their own collaborative process. The mapping

between the global and local ontology will be stored and maintained in local ontologies.

I.2.b. Ontology-based PBMEI for collaboration with core cooperator

If a collaborative process in PBMEI has a core cooperator, once the core cooperator

finishes Level 1 and Level 2 in Figure 4-3, it will deliver them to its collaborators, and the

other collaborators will transform the received processes into processes described in their own

languages. For the core cooperator, it will follow Level 3 and Level 4 in the PBMEI described

in Figure 4-3. For all other collaborators, they will follow Level 3 to Level 5 in the PBMEI

described in Figure 4-2.

Figure 4-3. Ontology-based PBMEI for collaboration with core cooperator

Since collaborative process is created by the core cooperator, the process is only based

on the core collaborator’s ontology, and there is no need to transform the global collaborative

process into local collaborative process, which is why the variant depicted in Figure 4-3 does

not have the level “Local collaborative process”.

Note that besides the business ontology, model ontology and network ontology, the

ontology of the core cooperator also contains the collaboration ontology which offers

information about collaborators and their services.

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

110

I.3. Content of ontologies in PBMEI

As Section I.1 proposes suggestions about content of ontologies in PBMEI, and Section

I.2 provides the categories of ontologies in PBMEI, this section will present which ontology

should contain what. Table 4-1 gives a proposal. The construction of Table 4-1 is also based

on the study in Chapter 2-Section I (about business processes and relevant tools) and in

Appendix A (about business rules).

Table 4-1. Content of ontologies in PBMEI

Ontology Content Mapping

Global • information about all the collaborators: name,
business roles, and postal address, email address,
network address, offered business services,
published web services and related statistical
information about their offered services (e.g., QoS,
trust rank), etc

• common business object model
• specification language for collaborative processes

and business policies
• collaborative process, collaboration policies

L
ocal

Collaboration • information about all the collaborators: name,
business roles, and postal address, email address,
network address, offered business services,
published web services and related statistical
information about their offered services (e.g., QoS,
trust rank), etc

• common business object model
• collaborative process, collaboration policies

Business • all business concepts in its own domain and
relationships

• local business policies
• local collaborative process
• organizational information

Mapping to global
or collaboration
ontology;
Mapping to model
ontology;

Model • formal descriptions of business concepts, their
relationships

• formal descriptions of business rules and technical
rules

• formal descriptions at different levels about the
architecture of an enterprise information system

• formal descriptions about all physical components
of enterprise software systems

• Interoperability processes at “PoIM” and “PoSM”
levels

Mapping to
business
ontology;
Mapping to
network ontology;

Network • deployment information of all software
components of an enterprise information system

Mapping to model
ontology

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

111

In Table 4-1, there are mappings between global ontology/collaboration ontology and

business ontology, between business ontology and model ontology and between model

ontology and network ontology. These mappings should be maintained and managed and they

will be used when transforming business process (see Section III).

According to Table 4-1, the ontology contains information about collaboration,

business, model and deployment. In fact, data storage in ontology can be real or virtual. That

is to say, data can be directly stored in the ontology, but they can also be stored in remote

professional servers. In the latter case, the ontology only stores ontology-based description

about remote data. For example, business rules can be stored in Business Rule Management

System (BRMS) (Graham 2005) and the ontology only contains ontology-based descriptions

about business rules.

I.4. Conclusions

This section has presented how ontology influences each step of PBMEI. Because of

different uses of ontology, two variants of PBMEI have been analyzed. During analysis of the

two variants, categorization of ontology in PBMEI has been proposed: global ontology, local

ontology, collaboration ontology, business ontology, model ontology and network ontology.

At last, content for each ontology has been concluded according to studies about PBMEI,

business processes and business rules.

This section has primarily studied the relationship between ontology and PBMEI. In the

following two sections, we will discuss the relationship between ontology and collaborative

processes in PBMEI and study how to use the ontology-based relationship to do process

transformation.

II. ONTOLOGY-BASED ANNOTATION FOR

COLLABORATIVE BUSINESS PROCESS

II.1. Literature study

In order to research semantic information of business processes, two aspects should be

considered: which kind of information should be ontologized and how to represent the

information. For the first aspect, the work of (Filipowska, Hepp et al. ; Filipowska,

Kaczmarek et al.), which is based on European SUPER project (Semantics Utilised for

Process management within and between EnteRprise)33 , has proposed three kinds of

33 http://www.ip-super.org/

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

112

ontologies: process ontology, organisational ontology and domain ontology. Process ontology

describes the structure of business processes whereas organisation ontology describes the

artifacts involved in business processes (such as actors, resources etc), and domain ontology

provides information specific to a company. (Filipowska, Hepp et al. 2009) also shows that

the three kinds of ontologies have different contents in different phases of BPM lifecycle.
For the second aspect, we have two choices: firstly, represent whole business processes

as ontologies including structures and contents of business processes; secondly, add semantic

annotations for contents of business processes. (Lin and Ding 2005) has proposed a General

Process Ontology and an application domain ontology to ontologize the structure and content

of business processes. In order to do the experiments of semantic process retrieval, (Kiefer,

Bernstein et al.) has transformed approximately 5000 business processes into OWL described

by the concepts of MIT Process Handbook34. (SUPER-Project) has proposed semantic BPMN

which constructs BPMN concepts in OWL and uses these definitions to instantiate BPMN

processes. (SUPER-Project) has also proposed semantic BPEL (sBPEL), semantic Event

Process Chain (sEPC) to describe business processes and it wants to transform business

processes based on these ontologies into that based on BPMO and at last it hopes BPMO can

bridge sBPMN, sEPC and sBPEL together. To achieve the goal, (Norton, Cabral et al.) has

done the ontology-based translation of business process models from Business Process

Modeling Ontology (BPMO) to sBPEL and from sBPEL to BPMO. This thesis will discuss

the second choice, like SAWSDL35 realized by WSMO Studio36.

II.2. Semantic Annotations for Business Processes in BPMN

In this thesis, semantic annotations for business processes are based on ontologies, i.e.,

the annotations will refer to concepts, properties or instances in ontologies (shown in Figure

4-4). However, the construction and distribution of ontologies are beyond the scope of this

thesis, so this thesis will just focus on how to associate ontology with BPMN2.0-based

business processes. Before that, we provide a concrete example that indicates why a semantic

annotation is necessary to business processes: in a company, for the preparation of an

anniversary celebration, there are numerous tasks to do, one of which is to buy 5 beautiful

notebooks as awards. To the organisers of the preparation activity, “notebook” maybe means

34 http://ccs.mit.edu/ph/
35 http://www.w3.org/TR/sawsdl/
36 http://www.wsmostudio.org

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

113

“book with blank pages for recording notes or memoranda”37. However, if the preparation

process of the celebration is supported by information systems and the task, “buy 5

notebooks”, is implemented by IT engineers as “find a notebook provider on the Internet and

send electronic request”, to IT engineers, “notebook” may be “notebook computer (a small

compact portable computer)”37. That is to say “notebook” has ambiguity in the “preparation”

process. However, this is just one case for semantic heterogeneity (Xu and Lee 2002; Wang

and Liu 2009). So contents in business processes must be annotated with semantic

information for disambiguation between different people. The following will explain how to

realize semantic annotations for BPMN2.0-based business processes.

Figure 4-4. Ontology-based Semantic Annotations for Business

Processes

BPMN2.0 metamodel provides an extension mechanism (see Figure 4-5). This allows

business process metamodel to be extended but to be still BPMN-compliant. In BPMN2.0

metamodel, such extensibility is implied in the definitions of “baseElement” (Page 64 of

(OMG 2011)), “rootElement” (Page 65 of (OMG 2011)), “documentation” (Page 64 of (OMG

2011)), and “extension” (Page 60 of (OMG 2011)). This section proposes the following four

ontology-based methods of semantic annotations. Before the elaboration of the four methods,

the outline of BPMN2.0 files is provided in Figure 4-6 (a). BPMN2.0 files are based on XML,

and their root element is “definitions” (Page 54 of (OMG 2011)), and normally it contains two

scopes: one for the structure of collaborations/choreographies/processes and the other for the

visualization of all graphical notations in business collaborations/choreographies/ processes.

Figure 4-5. Extensibility Model of BPMN2.0

37 http://wordnetweb.princeton.edu/perl/webwn

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

114

(a) (b) (c) (d)

Figure 4-6. Structures of BPMN2.0 Files

II.2.a. “rootElement”-based Semantic Annotation

According to BPMN2.0 metamodel, “rootElement” is a child element of “definitions”

and it can be replaced by its subclasses, so we can define a subclass of rootElement’s data

type and create a corresponding element to replace “rootElement”. Part of the schema

definition for the scope of semantics is as follows. The complete schema definition is

provided in Appendix D.

Schema definition for semantic annotations of BPMN2.0

<xs:complexType name="tSemanticAnnotation">

<xs:complexContent>

<xs:extension base="bpmn20:tRootElement">

<xs:sequence>

<xs:element name="detail" type="tSemanticDetail" minOccurs="0"

maxOccurs="1"/></xs:sequence>

<xs:attribute name="bpmnElement" type="xs:QName"/>

<xs:attribute name="ontologyRef" type="xs:anyURI"/>

<xs:attribute name="level" type="tMDALevel"/>

</xs:extension></xs:complexContent>

</xs:complexType>

<xs:complexType name="tSemanticAnnotationList">

<xs:complexContent>

<xs:extension base="bpmn20:tRootElement">

<xs:sequence>

<xs:element name="semanticAnnotation" type="tSemanticAnnotation"

minOccurs="0" maxOccurs="unbounded"/> </xs:sequence></xs:extension>

</xs:complexContent>

</xs:complexType>

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

115

<xs:element name="semanticAnnotationList"

type="tSemanticAnnotationList"

substitutionGroup="bpmn20:rootElement"/>

In the above code, the type “tSemanticAnnotation” defines which attributes should be

included in the semantic annotation for an element in BPMN2.0-based business processes. Its

attribute “bpmnElement” points to a corresponding element in the scope of structure. The

attribute “ontologyRef” points to a concept defined in an ontology and the concept explains

what the above “bpmnElement” means. The attribute “level” means an MDA level at which

the semantic annotation is. The sub-element “detail” contains the detailed semantic

information of the annotated element and it can appear at most one time in a semantic

annotation, for example, for a certain task in a business process, there is not any

corresponding concept/instance in the dependent ontology, then the task can be described by

its actors, action, resources and other conditions which may have corresponding

concepts/instances. Besides, the list “semanticAnnotationList” contains all required

semantic annotations for elements in business processes.

After applying the above schema into a business process in BPMN2.0, the BPMN2.0

files will be like Figure 4-6 (b). The following gives an example of the scope of semantics

(the namespace in Italic is the namespace of the dependent ontology).

Example of “rootElement”-based semantic annotation

<bpmnsa:semanticAnnotationList id="sid-1">

<bpmnsa:semanticAnnotation id="sid-2_s" bpmnElement="sid-2"

ontologyRef="{namespace}/logisticOnto.owl#Notebook"

level="CIM"/>

</bpmnsa:semanticAnnotationList>

However, this method requires that the new schema and the original BPMN2.0 schema

(metamodel) share the same “targetNamespace”, and BPMN2.0 schema must include the new

schema. That is to say the original BPMN2.0 schema will be modified, and this is the

drawback of the method.

II.2.b. “extension”-based Semantic Annotation

According to BPMN2.0 metamodel, “extension” is a sub-element of “definitions”, and

it can be extended. So this method is to add semantic annotations into the “extension”

element. The definition of semantic annotations is the same as that in the first method. After

applying this method into a business process, the BPMN2.0 files will be like Figure 4-6 (c).

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

116

The following gives an example of the scope of semantics. In this method, the scope of

semantics is included in the scope of “extension”, not directly stored as the sibling scope of

business processes’ structures like “rootElement”-based method, so the representation style of

semantic annotations in this method is less clear than that in “rootElement”-based method.

Example of “extension”-based semantic annotation

<extension definition="semanticAnnotation">

<documentation>

<bpmnsa:semanticAnnotationList id="sid-1">

<bpmnsa:semanticAnnotation id="sid-2_s" bpmnElement="sid-2"

ontologyRef="{namespace}/logisticOnto.owl#Notebook"/>

</bpmnsa:semanticAnnotationList>

</documentation></extension>

II.2.c. Attribute/Element-based Semantic Annotation

In BPMN2.0 metamodel, the type of “baseElement” makes it possible to add new

attributes or new elements into it, and fortunately collaboration, choreography, process, task,

artefact, event, message, gateway, participant and expression are extended based on the type

of “baseElement”, so all of the above concepts can add a new attribute to point to a concept

defined in an ontology. The attribute can be defined as follows.

Attribute definition for semantic annotation

<xs:attribute name="ontologyRef" type="xs:anyURI" />

So after apply such annotation method, the extended business process is obtained and

the following shows one fragment:

Example of attribute-based semantic annotation

<dataObject id="sid-2" isCollection="false" name="ticket"

bpmnsa:ontologyRef= "{namespace}/logisticOnto.owl#Notebook"/>

In this method, all semantic annotations are scattered in BPMN2.0 files, not like the

above two methods where all semantic annotations are collected in one scope. The structure

of BPMN2.0 files is like Figure 4-6 (d). This method is similar to SAWSDL.

II.2.d. “textAnnotation”-based Semantic Annotation

As “textAnnotation” is extended from the type of “baseElement”, so it has extensibility

inherently. And “textAnnotation” can be associated with activities, events, gateways, message

flows, sequence flows and other objects whose type is derived from the type of

“baseElement”. So “textAnnotation” can be used as a method of semantic annotations.

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

117

However, “textAnnotation” is associated with an annotated element by an association, not like

the above three methods which associate semantic annotations and annotated elements by ID

mappings (“bpmnElement” in Section II.2.a). In a business process, the usage of

“textAnnotation”-based semantic annotation is as follows and the structure of BPMN2.0 files

will be like Figure 4-6 (d).

Example of “textAnnotation”-based semantic annotation

<textAnnotation id="sid-3" textFormat="text/plain">

<text>

<bpmnsa:semanticAnnotation id="sid-2_s"

ontologyRef="{namespace}/logisticOnto.owl#Notebook"/>

</text>

</textAnnotation>

In terms of the above elaboration of four methods, the first two methods collect all

semantic annotations together in the scope of semantics, instead the second two methods

merge semantic annotations within the scope of business processes’ structures. Table 4-2

compares the four methods in detail.

Table 4-2. Comparison between four semantic annotation methods of business processes

Semantic Annotation advantages disadvantages

“rootElement”-based Keep all semantic
annotations together;

Modify the meta-model of
BPMN2.0;

“extension”-based Keep all semantic
annotations together;

Less clear than
“rootElement”-based SA

attribute/element-

based

Semantic annotations
are attached directly to

designated BPMN
elements;

All semantic annotations are
scattered in the structure
scope of BPMN files;

“textAnnotation”-

based

Semantic annotations
are attached to

designated; BPMN
elements

Not directly mapped;
“textAnnotation” appears

everywhere in BPMN
graphical diagrams;

The above four ontology-based semantic annotation methods can be adopted by

BPMN2.0 Tools such as BizAgi Xpress38, Oracle BPM Suite39, Bonita Open Solution40 etc.

According to Table 4-2, the second method is preferable. If BPMN2.0 tools want to add

semantic annotations into business processes, they must provide a graphical user interface

38 http://www.bizagi.com/index.php?option=com_content&view=article&id=19&Itemid=100
39 http://www.oracle.com/us/corporate/press/079865
40 http://www.bonitasoft.com/

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

118

(GUI), which could show all concepts/instances in dependent ontologies and which should

also easily associate them with graphical elements in business processes. Of course, these

tools should also provide a GUI for IT engineers to create detailed semantic annotations --

“detail” in Section II.2.a, which can help generate new concepts/instances in dependent

ontologies.

II.1. Conclusions

Business processes need semantic information during the alignment between business

and IT. In order to supplement semantic information in BPMN2.0-based business processes,

this section has presented four methods of ontology-based semantic annotations and these

methods are all built on the existent extensibility mechanism of BPMN2.0. After the

comparison of the four methods, the “extension”-based semantic annotation method will be

preferable to the other three methods.

Apart from bringing benefits to BPMN2.0-based business processes, semantic

annotations are also beneficial to ontologies. This section has indicated that the detailed

semantic annotations will help to generate new concepts/instances to enhance contents of

ontologies. Furthermore, semantic annotations imply the reversible associations between

business processes and ontologies, hence some concepts/instances in ontologies have

corresponding structural elements in business processes and they can find their

preconditions/post-conditions through business processes. In fact, business processes can be

regarded as contexts for some concepts/instances in ontologies. So, BPMN2.0-based business

processes are one kind of structural annotations for ontologies.

III. SEMANTIC ANNOTATIONS AND MODEL

TRANSFORMATION

Besides facilitating process (or process fragment) discovery and reuse, semantic

information in business processes can also help model transformation in MDA research

domain. In Chapter 3, PBMEI has been proposed and it is integrated with MDA. At the CIM

level, this method uses collaborative business processes to describe collaboration

requirements between enterprises and after several model (business process) transformations,

it is expected to generate several executable business processes. The business process

transformations, especially between Level 2, Level 3, Level 4 and Level 5, will need semantic

information retrieved from ontologies and add new information into generated business

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

119

processes. Semantic Annotations for business processes can be a suitable method to support

such business process transformation.

Figure 4-7 shows a general model transformation in PBMEI and the transformation

takes advantage of semantic annotations. In Figure 4-7, Business Process i has the existing

semantic annotations which point to ontology, especially point to Ontology i, and the newly

generated Business Process j contains new semantic annotations besides the originals. The

new semantic annotations also point to ontology, especially points to Ontology j. During the

transformation from Business Process i to j (from MDA high level to MDA low level), the

mapping between Ontology i and j will be needed. With the help of the mapping, the

transformation will find the concepts/instances in Ontology j corresponding to

concepts/instances in existing semantic annotations of Business Process i. The new semantics

will be added into Business Process j.

From the above description, semantic annotations of business processes are very useful

for vertical model transformation (from MDA high level to low level).

Business Process i

Scope of Semantics

Existing

Semantics

Business Process j

Scope of Semantics

Existing

Semantics

New Semantics

Ontology

Ontology i

Ontology j

Model transformation
mapping

Figure 4-7. Semantic Annotations in Business Process

Transformation

IV. CONCLUSIONS

This chapter has presented some first developments about the method ontology-based

PBMEI, which uses ontology in modeling environment to solve enterprise interoperability

problems. This method also makes collaborators in collaborative process easily adapted to

CHAPTER 4 Ontology-based PBMEI and its Model Transformation

120

collaboration requirement changes. After analyzing the dependant information in PBMEI and

its two variants, the global ontology, local ontology, business ontology, model ontology and

network ontology are introduced and their contents are presented.

In order to associate collaborative business processes in PBMEI with ontologies, four

methods of ontology-based semantic annotations for business processes in BPMN2.0 have

been proposed in this chapter. These methods are all built on the existent extensibility

mechanism of BPMN2.0. After the comparison of the four methods, the “extension”-based

semantic annotation method will be preferable to the other three methods. This paper has also

shown that, in ontology-based PBMEI, semantic annotations are helpful to vertical

transformation of collaborative business processes (a business process is regarded as a

model).

According to the above discussion, ontology influences PBMEI from two aspects:

representation of collaboration process and process transformation. In fact, ontology can not

only influence vertical process transformation in PBMEI, but it can also influence horizontal

transformation in PBMEI. In Section I.2, when we discuss two variants of PBMEI, the

generated collaborative processes will be delivered to other collaborators. During this

procedure, horizontal transformation of collaborative processes is necessary. How to support

ontology-based horizontal transformation will be discussed in Chapter 5.

The research in this chapter is the foundation for further research on the way of using

ontology-based PBMEI in a concrete application case. In a word, our method ontology-based

PBMEI is ontology-based, process-based and model-driven and it is also ontology-language-

independent.

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

121

CHAPTER 5: Goal-driven and Ontology-based

architecture for enterprise

interoperability

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

122

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

123

Ontology-based PBMEI studied in Chapter 3 and 4, is designed to realize the modeling

space of the framework illustrated in Figure 2-15 (Chapter 2-Section VI). In this chapter, we

will propose an Ontology-Based and Goal-Driven (OBGD) architecture for enterprise

interoperability. This architecture is designed to realize the platform/infrastructure in the

framework.

In order to design the OBGD architecture, Section I will analyze problems existing in

semantic web services and in goal-based researches. Then in Section II, we will propose a

goal model. Based on the goal model, we will design an OBGD SOAP and OBGD service

invocation. Based on the research result in Section II, we will propose a symmetric

mechanism for OBGD service invocation in Section III. The symmetric mechanism is

implemented by OBGD semantic service bus, and the bus is the core of our proposed OBGD

architecture. In Section III, we will study deployment methods of OBGD semantic service bus

for intra- or inter- enterprise interoperability. In Section IV, we will study the relationship

between this chapter and the above two chapters.

I. LITERATURE STUDY

I.1. Semantic Web Service

Semantic web service comes out from two domains: semantic web and web services

(McIlraith, Son et al. 2001; McIlraith and Martin 2003). Originally, on the World Wide Web,

there were only static contents (web pages). Most of the web contents were designed for

humans to read, not for computer programs to manipulate meaningfully. So in 2001, semantic

web was proposed by Tim Berners-Lee to structure the meaningful content of web pages and

to create an environment where software agents roam from page to page (Tim, Hendler et al.

2001). Besides semantic extension of web, contents of web are also extended, from static web

pages to web-accessible programs/sensors/devices, and such extension is realized by web

services. Web services are supported by the specifications WSDL, SOAP, UDDI. These

specifications are at the syntactic level without well-defined semantics. So they are obviously

not powerful enough to support semantic interoperability of web services or automatic

discovery, selection and composition of web services. So, like the shift from web to semantic

web, in order to manipulate web services meaningfully, semantic extension of web services

should also be defined. This is studied in the arena of semantic web services. There are two

kinds of methods to extend web services semantically: one is to add semantic annotations into

existing specifications, such as WSDL-S (W3C 2005), SAWSDL (semantic annotations for

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

124

WSDL) (Farrell and Lausen 2007) and SAWS (Salomie, Chifu et al. 2008); the other is to

provide independent semantic descriptions for web services, such as OWL-S (The-OWL-

Services-Coalition 2003), WSMO (Roman, Lausen et al. 2006).

OWL-S (formerly DAML-S (Ankolenkar, Burstein et al. 2001)) was proposed in order

to support automatic discovery, invocation, composition and interoperation of semantic web

services. It includes three main parts: service profile describing what a service does (web

service capability), service model describing how a service works (web service programs) and

service grounding describing how to access it (web service access) (McIlraith and Martin

2003). Execution semantics of OWL-S is formalized by different methods in different papers

(Ankolekar, Huch et al. 2002; Narayanan and McIlraith 2002). OWL-S is implemented by a

loose collection of individual tools like OWL-S editor, OWL-S matchmaker, OWL-S virtual

machine, OWL-S IDE, etc (Shafiq, Moran et al. 2007). Reference (Paolucci, Ankolekar et al.

2003) also shows that use of OWL-S does not produce a performance penalty.

Following the research line of OWL-S, a more comprehensive framework named Web

Service Modeling Framework (WSMF) was proposed (Fensel and Bussler 2002). Then

WSMF was refined and extended by Web Service Modeling Ontology (WSMO). WSMO has

four main elements to describe semantic web services: ontology that provides the terminology

used by other elements, goals that define the problems that should be solved by web services,

web service description that defines various aspects of a web service, and mediators which

bypass interoperability problems. WSML is selected as the ontology language of WSMO.

WSMO has been implemented by two systems: IRS-III (Domingue, Cabral et al. 2004;

Hakimpour, Sell et al. 2005) and Web Service Execution Environment WSMX (Cimpian,

Vitvar et al. 2005).

In fact, semantic annotation methods of web services are used more to improve

automatic discovery and composition of services; however, besides service discovery and

composition (Sycara, Paolucci et al. 2003; da Silva Santos, da Silva et al. 2009), independent

semantic description of web services also pays attention to automatic service invocation. For

example, OWL-S defines service grounding and WSMO defines “choreography” for web

services and “goal” for clients. Furthermore, (Burstein 2004) discusses dynamic invocation of

semantic web services described by OWL-S, and service requesters and providers use

different ontologies. In this dynamic invocation method, a service requester must do

numerous things in order to send out a request message:

a) reading semantic description of a target service and loading related ontologies from

the service provider;

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

125

b) transforming service description to its own ontology according to mappings between

ontologies of the service requester and provider;

c) transforming its own request into ontologies of the target service and transforming

the request ontology to a WSDL message.

 But it is unreasonable for a service requester to do so many things. This thesis believes

that a service requester just needs to send out its request expressed by ontologies of service

provider, and when the service provider receives the request, it can understand and deal with

the request.

Besides, another invocation mechanism of semantic web services is realized by the

WSMO-based project, IRS-III, and the invocation mechanism is goal-centric (Domingue,

Cabral et al. 2004; Domingue, Cabral et al. 2008). In the invocation mechanism, a service

request is expressed as a goal and sent out to IRS-III platform and the platform, as a broker,

will discover, select and invoke the most appropriate service (Cabral, Domingue et al. 2006).

This research work is excellent, but the client side and server side in IRS-III use the same

ontology; furthermore its “goal” definition is limited to IOPE (input, output, precondition and

effect) as defined in WSMO, and it is not precise enough for describing a web service

semantically. This will be further discussed in Section I.2.

I.2. Goal

In different domains, goal has different definitions. In some sports, goal can be game

equipment consisting of the place toward which players of a game try to advance a ball or

puck in order to score points41. In enterprises, goal can have several types: mission, vision,

strategic goal, tactical goal and operative goal (Grangel, Chalmeta et al. 2008). In computer

science domain, a goal also has different definitions in different branches, e.g. artificial

intelligence (Russell and Norvig 2003) and requirement engineering (Lamsweerde and Letier

2004; Lapouchnian 2005). Especially, in SOA/semantic web service domain, a goal is defined

as a representation of an objective for which fulfillment is sought through execution of a web

service (Roman, Lausen et al. 2006).

When modeling goals, some researchers model a concrete goal (e.g. “book a flight”) as

a concept (da Silva Santos, Pires et al. 2008; Grangel, Chalmeta et al. 2008; da Silva Santos,

da Silva et al. 2009); some model it as an instance (Roman, Lausen et al. 2006); some model

it as a prescriptive assertions (Lamsweerde and Letier 2004). Researchers also model goals in

41 http://wordnetweb.princeton.edu/perl/webwn

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

126

different methods, such as, in UML/UML Profile (Supakkul and Chung 2005; da Silva

Santos, Pires et al. 2008; Grangel, Chalmeta et al. 2008; da Silva Santos, da Silva et al. 2009)

or in ontology (Roman, Lausen et al. 2006; Jokhio 2009). Some goals are just identified by

their name/id; and some goals have properties, for example, in (Roman, Lausen et al. 2006)

goals have the properties: capability, interface, etc. In different domains, there are different

related concepts surrounding the concept “goal”, e.g. in (da Silva Santos, Pires et al. 2008; da

Silva Santos, da Silva et al. 2009), the concepts related with “goal” are task, service and

agent: a “goal” is supported by a “task”, a “task” is performed by a “service” and a “service”

is provided by an “agent”; however, in (Supakkul and Chung 2005; Abid 2008), concepts

related with “goal” are about goals’ composition. Table 5-1 provides a short overview of

“Goal” in some domains of computer science.

Table 5-1. Overview of Goal-Based Research

Related Work Viewpoints of goal-based research

Domain Representation

Style

Form of a

concrete goal

Modeling Method Goal’s properties Related Concepts

(Lamsweerde
and Letier

2004)

Requirement
Engineering

Hybrid assertion Informal (natural
language); formal
(proposition logic)

N/A Agent, capability

(Supakkul and
Chung 2005)

Requirement
Engineering

Partially
explicit

class UML (Profile) name, criticality,
satisfaction level,
offspring goals,
parent

Softgoal, contribution,
claim, decomposition,
etc

(Abid 2008) Requirement
Engineering

Hybrid class URN/GRL/
UML (Profile)

Goal type,
decomposition
type, important
type, etc.

Decomposition,
dependency,
contribution, actor,
etc.

(Grangel,
Chalmeta et al.

2008)

Enterprise
modeling

Hybrid class UML (Profile) goal type, goal
level, children,
parent

Strategy, plan, variable

(da Silva
Santos, Pires et

al. 2008; da
Silva Santos,
da Silva et al.

2009)

WS
Discovery &
Composition

Partially
explicit

class UML (Profile) N/A Task, service, agent,
etc.

(Roman,
Lausen et al.
2006; Jokhio

2009)

WS Modeling
& Testing

Implicit instance WSMO/WSML Capability,
interface, etc.

Service, Mediator,
Ontology

According to related work listed in Table 5-1, a goal can be represented from three

aspects: 1) from its context, such as, IOPE or constraints of a goal, like descriptions in

(Lamsweerde and Letier ; Roman, Lausen et al. 2006; Jokhio); 2) from its natural properties,

such as, its name, criticality and relationship with other goals, etc, like that described in

(Supakkul and Chung 2005; Abid 2008; Grangel, Chalmeta et al. 2008); 3) from its capability

requirement, i.e., it wants to achieve what. Capability requirement of a goal can be expressed

by its identifier and the relationship with other identifiers, like description in (da Silva Santos,

Pires et al. 2008; da Silva Santos, da Silva et al. 2009). As a goal’s context does not describe

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

127

its semantics directly, so this representation style of a goal is implicit; although a goal’s

properties can directly describe its semantics, but such information cannot semantically reflect

its real purpose, so such representation style is partially explicit; a goal’s real purpose can be

represented by its identifier and relationship with other identifiers, but such identifier is just a

string, meaningful to people, but less meaningful to computers, so this representation style is

also partially explicit. Of course, a goal can also be represented by combination of the above

representation styles, and this is the hybrid representation style. But no above representation

styles can directly define a goal’s real purpose: its capability requirement. So in Section II,

this chapter will propose an explicit representation style of a goal to solve this problem.

II. ONTOLOGY-BASED AND GOAL-DRIVEN SERVICE

INVOCATION

II.1. Goal Model

After studies about goals in Section I.2, this chapter proposes goal ontology described in

Figure 5-1. In order to graphically represent the model, Figure 5-1 adopts UML rather than

ontology languages. The representation of the goal ontology in OWL can be gotten in

Appendix E. In Figure 5-1, a Goal can be achieved by several Tasks and a Task can be

performed by several Actors. The actors can be an Organization, a Person, Software or

Hardware. The multiplicity relationship between the three concepts has been identified in

Figure 5-1. There is an example to explain the multiplicity relationship between Goal and

Task. The Goal “translate French to Chinese” can be achieved by the task “translate French to

Chinese” and it can also be achieved by two tasks “translate French to English” and “translate

English to Chinese”.

In Figure 5-1.a, a goal’s real purpose is described by its property

capabilityRequirement, which is an instance of the concept “Capability”. Capability provides

a description of a certain capability or functionality (“do what”) by a list of verb and an

object, so capability must depend on a semantic dictionary to explain meaning of verbs and

objects used in Capability. This is the explicit representation style of a “Goal”. In this model,

a goal can also be described by its context (implicit style), such as, IOPE. But its precondition

(P) and effect (E) are not emphasized like that in the state-based goal model described in

(Stollberg and Hepp 2006; Stollberg and Norton 2007). Because precondition and effect

describe the state of the world before and after a goal’s achievement but the state of the world

at a certain time may not be known (Stollberg and Norton 2007). Furthermore, the state of the

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

128

world will be a significant burden on system designers and it will cause some issues during

collaboration of different information systems (Ankolekar, Huch et al. 2002). So in the goal

model of Figure 5-1, precondition and effect are used for mappings to other goal ontologies.

Besides, Goal has the property category which is based on a classification mechanism like the

North American Industry Classification System (NAICS) (US-Census-Bureau 2007). A goal’s

category will limit research scope during the discovery of targeted tasks or actors. In a world,

Goal in Figure 5-1 has a hybrid representation style (combining explicit style and implicit

style).

A goal is created and sent out from client side; when receiving it, a server side will find

an appropriate task to satisfy the required capability and then deliver the task to an actor to

realize the corresponding capability. Some tasks can be performed by organizations or

persons and the others can be performed by software (e.g., web services) or hardware (e.g.,

printers or sensors).

 (a) General Model (b) Composition Model

Figure 5-1. Goal Model

Figure 5-1.b is a composition model for goal model. It includes Goal composition, Task

composition and Actor composition. A goal can have several sub-goals, a task can have

several subtasks and an actor may have several sub-actors. For example, a goal “Organize a

trip” can have four sub-goals “find flight”, “find hotel”, “book flight” and “book hotel”

(Stollberg and Norton 2007); an actor, e.g., “organization” or “web service” can be composed

of sub-organizations (departments or branches) or sub web services. In fact, through analysis

of goal’s composition (Supakkul and Chung 2005; Stollberg and Norton 2007), task

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

129

composition (business process) (OMG 2011) and web service composition (Sycara, Paolucci

et al. 2003; da Silva Santos, da Silva et al. 2009), we can find that these three kinds of

compositions all revolve on capability composition, just from different viewpoints. Goal

composition is constructed from clients’ viewpoint to describe clients’ requirements; task

composition (business process) is constructed from organizations’ viewpoint to satisfy clients’

requirements and achieve business agility; web service composition is constructed from

software developers’ viewpoint to realize tasks’ capabilities and increase web services’

reusability and at the same time web service composition improves software development

efficiency and productivity. Goal is helpful to semi-automatic composition of web services as

described in (Hakimpour, Sell et al. 2005). But web service composition, like WS-BPEL2.0,

lacks human interactions, so BPEL4People42 and WS-HumanTask43 are proposed. The two

new specifications make web service composition nearer to task composition like BPMN2.0.

In fact, a composite task (business process) in BPMN2.0 can use atomic/composite web

services as implementation of some of its sub-tasks.

II.2. Ontology-based and Goal-driven SOAP

After construction of goal ontology in Section II.1, this section will discuss how to use

it to invoke target web services to realize tasks. As SOAP (Simple Object Access Protocol)

has been widely used as transport protocol of web services, the transport protocol in this

thesis is based on SOAP. Traditionally, when invoking a web service, a client will send out a

SOAP message to the web service server: the structure of the message is defined in SOAP and

information contained in the message is defined in a corresponding WSDL file. This means

that before invoking a wanted web service, a client has to manually find its location and

download its WSDL file and understand meaning of required information for its invocation

and then write invocation code. This will result in tight coupling between clients and web

services. Because if a web service operation changes its name or its input parameters for some

reasons, clients’ invocation code has to be changed correspondingly. How to solve the

problem about tight coupling is critical to enterprise interoperability.

After making full advantage of the extensibility mechanism of SOAP (W3C 2007), this

chapter proposes OBGD SOAP message illustrated in Figure 5-2. It contains three main

scopes. SCOPE 1 is in the “Header” element and it is defined in Figure 5-3. It contains the

elements that point to referenced ontologies. These ontologies are the foundation for the

42 http://www.oasis-open.org/committees/bpel4people/
43 http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

130

definition of goals and they are also necessary for SCOPE 2 and 3. SCOPE 2 contains a

concrete goal. The concrete goal is an instance of the concept Goal in Figure 5-1. SCOPE 3

contains all the information required to achieve the goal in SCOPE 2. The referenced

(dependent) ontology of OBGD SOAP messages can be provided by service requester, service

provider or third party. This will be discussed at the end of this section.

Figure 5-2. Ontology-Based and Goal-Driven SOAP

Message

When a web service provider receives an OBGD SOAP message, it must tackle the

message by the following steps:

STEP 1:

For an inbound message: If the referenced ontologies in SCOPE 1 come from service

provider, then go to STEP 2; if the referenced ontologies in SCOPE 1 are defined by others

but service provider has mappings from these ontologies to its own ontologies, then service

provider will transform SCOPE 2 and SCOPE 3 of the received message to its own

ontologies; otherwise, service provider will return a fault message to indicate that it cannot

understand the request.

For an outbound message: SCOPE 2 and SCOPE 3 of the message from STEP 2 will

be transformed to original ontology of the related inbound message; the corresponding SOAP

header block defined in Figure 5-3 will be updated in the outbound message if necessary.

STEP 2:

For an inbound message: Find an appropriate target task/service (operation)

according to the goal included in the inbound message, and go to STEP 3; if there is no

satisfied task/service, then return a fault message to indicate that it cannot satisfy the

requested capability.

For an outbound message: Just deliver the message to STEP 1.

STEP 3:

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

131

For an inbound message: Transform the message of STEP 2 from ontology description

to the XML description which is defined in the WSDL file of the target service. This step

depends on mappings between domain ontology and web services’ definitions.

For an outbound message: The message will be transformed from XML data types to

domain ontology and the referenced ontology locations will be added into the outbound

message, and then the message will be delivered to STEP 2.

STEP 4:

For an inbound message: The message from STEP 3 is tackled as a normal SOAP

message by some SOAP implementations, such as Apache Axis44 or CXF45. The message will

be transformed from XML message to a technique-specific message, for example, a java

object. The new generated message is delivered to the target service component.

For an outbound message: After execution of a target service component, a response

(an outbound message) will be returned. The response is transformed from a technique-

specific message to a normal SOAP message and then delivered to STEP 3.

Figure 5-3. Schema of SOAP module for locations of

referenced ontology

The above steps are positioned in an ontology-based and goal-driven service invocation

mechanism described in Figure 5-4. They form a Processor Chain including Processor 1,

Processor 2, Processor 3 and SOAP Processor. Processor 1 corresponds to STEP 1;

Processor 2 corresponds to STEP 2; Processor 3 corresponds to STEP 3; SOAP Processor

corresponds to STEP 4. In addition, in Figure 5-4, ontology base will contain domain

ontology, ontology-based service descriptions, mappings to external ontologies and mappings

to data types defined in WSDL files.

44 http://axis.apache.org/axis/

45 http://cxf.apache.org/

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

132

In Figure 5-4, an OBGD message sent out from a service requester respects the format

defined in Figure 5-2. After it (as an inbound message) is received by a service provider, it

will be treated by Processors 1, 2 and 3 and SOAP Processor. At the end, it will be delivered

to a target service component. After the execution of the service component, a response (an

outbound message) will be returned and then it will be treated by SOAP Processor and

Processor 3, 2 and 1. Finally, the response will be sent back to the service requester.

Furthermore, Processors 1, 2 and 3 have their admission condition: an inbound message, as a

request message, must have SCOPE 1; otherwise, the inbound message will bypass the three

processors and it will be directly treated by SOAP Processor as a normal SOAP message. The

admission condition makes the service invocation mechanism in Figure 5-4 also support

normal SOAP-based service invocation.

This invocation mechanism has two assumptions:

Assumption 1: All service providers must understand the header block for locations of

referenced ontology defined in Figure 5-3.

Assumption 2: Although service requesters do not need to know concrete service

addresses, they must at least know service providers’ addresses. The difference between

service address and service provider’s address will be discussed further in Section III.1.

Figure 5-4. Ontology-based and Goal-driven service invocation

From the above elaboration, it is evident that web service requesters just need to send

OBGD SOAP messages and do not need to know detailed definitions of web services.

Therefore, it makes service requesters and web service definitions loosely coupled. This

realizes loose coupling at service contract level (defined in Table 2-2).

In addition, when an OBGD SOAP message is sent out from a service requester, the

message can depend on ontologies from the service requester, a third party or a target service

provider. If the service requester makes sure that the target service provider can understand its

own ontology, then OBGD SOAP message can be constructed based on its own ontology

(Figure 5-5.a). If the service requester and the service provider have negotiated and decided to

use a common ontology, which may be created by themselves or come from a third party,

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

133

then during their communication, OBGD SOAP message can depend on such ontology

(Figure 5-5.c). If the service requester is not sure that the service provider can understand its

ontology, and meanwhile the service requester understands the service provider’s ontology,

then OBGD SOAP message can be constructed based on the service provider’s ontology

(Figure 5-5.b). No matter which ontology the OBGD SOAP messages depends on, the service

provider can tackle it by Processor 1. So loose coupling at semantic layer (defined in Table

2-2) can be achieved by OBGD service invocation.

However, there is another problem: how is OBGD SOAP message generated by a

service requester, especially if the service requester is an enterprise? This will be discussed in

Section III.1.

 (a) (b)

(c)

Figure 5-5. Dependent ontology of OBGD SOAP message

III. ONTOLOGY-BASED AND GOAL-DRIVEN

ARCHITECTURE FOR ENTERPRISE INTEROPERABILITY

Section II has proposed an ontology-based and goal-driven method of message transport

between web service requesters and providers. Such method can make requesters and

providers loosely coupled and make them understand each other, which is the foundation to

realize enterprise interoperability. If service requesters and providers are different enterprises,

then how to make them seamlessly interoperate without considering definitions or locations of

web services? Section II just discusses the problem from the viewpoint of service providers;

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

134

instead, this section will provide a full landscape by supplementation of the viewpoint of

client providers.

III.1. Generation Mechanism of OBGD SOAP Messages

In order to make a service requester generate OBGD SOAP messages automatically,

this section proposes a symmetric mechanism for OBGD service invocation in Figure 5-6. In

Figure 5-6, Enterprise A (as a service requester) wants to send a request to Enterprise B (as a

service provider). Enterprise B supports the OBGD service invocation mechanism described

in Figure 5-4. Enterprise A uses the similar mechanism to generate OBGD SOAP message

automatically and send the message to Enterprise B. The mechanism used by Enterprise A

seems the same as that used by Enterprise B, but, in detailed aspects, they are different.

Processor

2

SOAP

Processor

Processor

1

Processor

3

S
er
v
ic
e

co
m
p
o
n
en
t

Processor

2

SOAP

Processor

Processor

1

Processor

3

S
er
v
ic
e

co
m
p
o
n
en
t

E
n
te
rp
ri
se
 A

S
er
v
ic
e
R
eq
u
es
te
r

E
n
te
rp
ri
se
 B

S
er
v
ic
e
P
ro
v
id
er

Ontology

base

Ontology

base

Configuration

Information

Database

Configuration

Information

Database

Figure 5-6. Symmetric mechanism for OBGD service invocation

In Figure 5-6, a service component executed in Enterprise A depends on another service

provided by a service component in Enterprise B. During its execution, the service component

in Enterprise A will generate a technique-specific request message, such as, a java object,

including a concrete goal and necessary information to achieve the goal. Then the request (an

outbound message) will be tackled by the following steps:

STEP OI-4:

For an outbound message: The message will be transformed from a technique-specific

message to a SOAP message and then it will be delivered to STEP OI-3. As the goal model is

not defined by WSDL files, and related information may also not be defined by WSDL files, so

there must be a mapping of data types between programming language and XML. Such

mapping is stored in a Configuration Information Database (CI-DB).

For an inbound message: The message is transformed from a SOAP message to a

technique-specific message and then delivered to the related service component.

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

135

STEP OI-3:

For an outbound message: The message is transformed from XML data types to

domain ontology; the referenced ontology locations will be added into the message. Then the

message will be delivered to STEP OI-2.

For an inbound message: The message is transformed from domain ontology to XML

data types and then delivered to STEP OI-4.

STEP OI-2:

For an outbound message: Find out which service provider offers corresponding

capability to satisfy the goal in the message, and then deliver the message to STEP OI-1; if

there is no such service provider, then return a fault message. This step needs information

about all available service providers, including service providers’ addresses and their

capabilities; such information is stored in CI-DB.

Four an inbound message: Just deliver the message to STEP OI-3.

STEP OI-1:

For an outbound message: Check which ontology the OBGD SOAP message depends

on. If the message depends on ontology of service provider or a common ontology, then

SCOPE 2 and SCOPE 3 of the message will be transformed and meanwhile referenced

ontology locations will be updated. Finally, the message will be sent out to the service

provider designated in STEP OI-2. This step depends on configuration information about

ontology usage and such information is stored in CI-DB.

For an inbound message: If the message is based on external ontology, then SCOPE 3

of the message will be transformed onto internal ontology and meanwhile referenced ontology

locations will be updated. Then the message is delivered to STEP OI-2.

In Figure 5-6, for the service requester, SOAP Processor corresponds to STEP OI-4.

Processor 3 corresponds to STEP OI-3. Processor 2 corresponds to STEP OI-2. Processor 1

corresponds to STEP OI-1. Ontology base includes definition of external service providers.

CI-DB stores configuration information about ontology usage, mapping of data types between

programming languages and XML, etc. Obviously, functionality of the processors for the

service requester is not the same as but complementary to that for the service provider

(Enterprise B).

In Figure 5-6, a request message (indicated by red thick arrows) is an outbound

message for the service requester but it is an inbound message for the service provider. A

response message (indicated by blue thin arrows) is an outbound message for the service

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

136

provider but it is an inbound message for the service requester. So, the same request/response

message plays opposite roles for the service requester and provider.

Furthermore, when the service component in Enterprise A produces (generates) a

request, a processor chain in Enterprise A is created. Evidently, the creation of the processor

chain is driven by internal request. The processor chain transforms the request to an OBGD

SOAP message and sends the message to the service provider. When the service provider

consumes (receives) an OBGD SOAP message, a processor chain is also created. But the

creation of the processor chain is driven by external request. Evidently, the execution order

of processor chains for the service requester and provider is opposite.

Generally speaking, generation mechanism and consumption mechanism (OBGD

service invocation mechanism) for OBGD SOAP messages are different and complementary.

Their combination is defined in Figure 5-6 as symmetric mechanism for OBGD service

invocation.

In addition, in Figure 5-6, Enterprises A and B may exchange their roles (service

requester, service provider) in some situations, i.e. Enterprise A can also provide its services

to others, especially, Enterprise A can provide its services to itself. Thereby, for an enterprise,

it must implement symmetric mechanism for OBGD service invocation, not just one

mechanism (generation or consumption mechanism).

Symmetric mechanism for OBGD service invocation has an assumption:

Assumption 3: API for goal model and related business concepts must be implemented

by the techniques corresponding to service components of Enterprises. The API helps

software developers to create concrete goals and necessary information in programming

languages.

According to symmetric mechanism of OBGD service invocation, if a service

component wants to invoke a service, software developers just need to write some code to

send a concrete goal and related information to a processor chain and they do not need to

know what or where the target service is, which ontology the target service depends on or

how the target service is implemented. Hence, symmetric mechanism of OBGD service

invocation has the following properties: location transparency, semantics transparency and

technique transparency.

Location transparency is support by service discovery in symmetric mechanism for

OBGD service invocation. The service discovery is depicted in Figure 5-7. Enterprise A is a

service requester and Enterprise B is a service provider. A request message is sent out from a

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

137

service component46 in Enterprise A (generation mechanism). At the beginning, the request

message does not declare the address of the target service provider. After Processor 2 (STEP

OI-2: For an outbound message), the target service provider (target Enterprise) is determined

according to the goal of the request message. When Enterprise B (consumption mechanism)

receives the request message, Processor 2 (STEP 2: For an inbound message) will determine

the target service component according to the goal of the request message. Through the above

analysis, a service requester (service component in Enterprise A) does not need to know the

address of the target service provider (service component in Enterprise B). It just needs to

send out its request including its goal and necessary information. This is defined as location

transparency.

Figure 5-7. Service discovery in symmetric mechanism for OBGD service invocation

Semantic transparency is supported by message transformations in symmetric

mechanism of OBGD service invocation. The message transformations are depicted in Figure

5-8. Figure 5-8 just analyzes a request message sent out from Enterprise A and received by

Enterprise B. In Enterprise A (generation mechanism), a request message sent out from a

service component, and the message is technique-specific. It will be transformed to an XML-

based message by SOAP Processor (STEP OI-4: For an outbound message), and then

transformed to OBGD message by Processor 3 (STEP OI-3: For an outbound message). In

this moment, the message is based on the ontology constructed by Enterprise A. Finally, the

message will be sent out from Enterprise A. In Enterprise B (consumption mechanism), the

received message will be transformed by Processor 1 (STEP 1: For an inbound message) to

another OBGD message. The message now is based on the ontology constructed by

Enterprise B. Then, the message will be transformed to an XML-based message by Processor

3 (STEP 4: For an inbound message). Through analysis of the above message transformations,

service requester (service component in Enterprise A) does not need to know its own ontology

46 In fact, a service component in Enterprise A is the real service requester. Enterprise A is just the

representative of the service component when it invokes external services.

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

138

and service provider’s ontology; it just needs to send out its request including its goal and

necessary information. This is defined as semantic transparency.

Figure 5-8. Message transformations in symmetric mechanism for OBGD service

invocation

Figure 5-8 also implies technique transparency. Implementation techniques of a service

provider and a service requester are separated by ontology and SOAP protocols. When

sending a request message, a service requester does not need to know implementation

technique of a service provider. This is defined as technique transparency. For example, a

service requester can use JAVA technique and a service provider can use C# technique.

According to the above study, the three properties are realized by service requesters and

providers with the help of their processor chains, ontologies, ontology mappings and related

configuration information. These properties are significant to enterprise interoperability.

III.2. OBGD Architecture for Enterprise Interoperability

After the above research, we propose the ontology-based and goal-driven (OBGD)

architecture for enterprise interoperability in Figure 5-9. The core of the architecture is

semantic service bus (SSB). SSB implements the symmetric mechanism of OBGD service

invocation. SSB is in charge of construction, maintenance and destruction of processor chains.

In Figure 5-9, service components are managed by component containers from the

aspects: life-cycle management, instance pooling and instance persistence, etc. Service

components can be software components, business rules or business processes, etc.

Component containers can be software containers, business rule engines or business

process engines, etc. Ontology base used in an enterprise contains all domain ontologies,

ontology-based service descriptions, ontology-based descriptions of other enterprises,

mappings to ontologies of other enterprises, mappings to its own XML-based business

concepts, etc. Configuration information database (CI-DB) contains mappings of data types

between in programming languages and in XML, and it also contains locations of service

components and configuration information about ontology usage, etc. Normally, an enterprise

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

139

authenticates service requesters and controls their access, so CI-DB also contains service

requesters’ authentication information, access control information, etc. Such security

functionality can be implemented by processors and then added into processor chains. SSB,

component containers, ontology base and CI-DB can be deployed together or dispersedly. For

example, containers can be deployed with SSB or not, so SSB must be able to invoke local or

remote containers. This will be further discussed in Section III.3.

Figure 5-9. OBGD architecture for enterprise

interoperability

As the above architecture realizes the symmetric mechanism of OBGD service

invocation, therefore, it can support the properties: location transparency, semantic

transparency and technique transparency. That is to say, it can make enterprises collaborate

with others transparently in the above three aspects. In the above architecture, containers

make service components more manageable and make their invocation more efficient.

Besides, the above architecture is flexible. New functionalities can be added as

processors into processor chains. New containers can also be added as long as SSB can

invoke such new containers locally or remotely (from this viewpoint, SSB can also be

regarded as a container manager). New service components can also be deployed in

corresponding service containers.

III.3. Deployment of OBGD-SSB for Intra-Enterprise

Interoperability

OBGD-SSB can be used to support intra-enterprise interoperability. For a small

enterprise, the OBGD-SSB can be deployed in a centralized method. That is to say, SSB,

containers, service components, ontology base and configuration information database are

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

140

deployed just on a server. But if an enterprise is big and its departments/affiliates have their

own service containers and service components, then the OBGD architecture has at least three

other deployment methods described in Figure 5-10. The three deployment methods are all

decentralized.

S
S
B

S
S
B

S
S
B

S
S
B

S
S
B

Figure 5-10. Deployment of OBGD architecture for enterprise

interoperability

The first method is an integral style for decentralized deployment, described in Figure

5-10.a. In Figure 5-10.a, service containers deployed in all departments or affiliates are

registered into SSB. A service requester just needs to send a request message to SSB, and then

SSB will find an appropriate service and invoke it remotely. In this method, SSB looks like

glue to integrate all service containers (including service components) from different

departments/affiliates. Of course, one department/affiliate can use services offered by other

departments/affiliates through SSB, as described in Section III.1.

The second method is a decentralized style for decentralized deployment, described in

Figure 5-10.b. SSB is deployed for each department/affiliate, but all SSB share the same

information base (including ontology base and configuration information database), and this

will generate a virtual SSB (indicated by a dashed rectangle in Figure 5-10.b) among different

departments/affiliates. When a service requester wants to send a request message to the

enterprise, it can send the message to any department/affiliate of the enterprise. If one

department/affiliate receives a message and finds the requested service is on another

department/affiliate, then the message will be delivered from the current SSB to the target

SSB, but the whole transfer process is transparent to the service requester. In fact, this is also

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

141

a level of location transparency. In this method, all service components in different

departments/affiliates are invoked locally by their own SSB.

Comparing the above two styles for decentralized deployment, the first style physically

integrates information systems of all departments/affiliates by a single SSB. But, if SSB fails,

all departments/affiliates are disconnected and all service requesters cannot use services

published by SSB. The second style logically integrates information systems of all

departments/affiliates by their own SSB, so each SSB can be implemented in different

techniques. Most importantly, if one SSB fails, other available SSB can also interoperate, and

service requesters can also use services offered by available SSB. Evidently, the first style

does not influence original information system for each department/affiliate, but the second

style will influence them. In order to make full use of the two styles’ advantage, the third

method for decentralized deployment is created in Figure 5-10.c and it is a hybrid style:

combination of the integral and decentralized styles. Each department/affiliate has its own

SSB, and all SSB share the same information base and each SSB will remotely invoke its own

service components; if one SSB finds a required service is provided by another SSB, then it

will deliver the request message to the target SSB. The hybrid style has no single-point failure

like the integral style and does not influence original information system.

III.4. Federated Deployment of OBGD-SSB for Inter-Enterprise

Interoperability

Section III.3 has analyzed deployment methods for OBGD-SSB in one enterprise to

realize intra-enterprise interoperability. In fact, OBGD-SSB can also be deployed in a

federated style to support inter-enterprise interoperability. The federated deployment is

depicted in Figure 5-11. In Figure 5-11, OBGD-SSB is deployed by each enterprise in the

Internet. Each SSB is controlled and managed by the corresponding enterprise. Each SSB has

its own database (ontology base and CI-DB) for interoperability. Any SSB can be attached to

or leave from the Internet. The attachment or leaving of any SSB will not be managed or

controlled by a central manager. Therefore, each SSB is autonomous (see Figure 1-3.c and

Table 1-2 in Chapter 1-Section III). SSB is the facade of business functionalities for each

enterprise. That is to say, all internal business functionalities (service providers) have been

encapsulated by SSB. In the Internet, any service requester just sees a single (physical or

logical) SSB for an enterprise, and it cannot see internal implementations of services. Any

request to services will be delivered to SSB, and SSB will invoke an appropriate service to

respond to the request.

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

142

Enterprise C

Enterprise A

OBGD-SSB

OBGD-SSB

Enterprise B

OBGD-SSB

Internet

Figure 5-11. Federated deployment of OBGD-SSB for Inter-Enterprise Interoperability

IV. OBGD ARCHITECTURE AND PBMEI

OBGD architecture for enterprise interoperability is designed to realize the platform/

infrastructure in the framework for IT solutions to enterprise interoperability problems (see

Figure 2-15 in Chapter 2-Section VI). Ontology-based PBMEI is designed to realize the

modeling space of the framework (see Figure 2-15). OBGD architecture can support PBMEI

from two aspects: horizontal transformation of collaborative business processes and execution

of interoperability processes generated in PBMEI.

As studied in Section I.2.b, at Level 2 of PBMEI, the core cooperator will deliver

collaborative processes and its sub-processes to relevant collaborators. The deliverance can be

supported by OBGD architecture. As illustrated in Figure 5-8, the core cooperator can

transform XML-based collaborative processes into OBGD message and send the message to

relevant collaborators. The message sent out is based on ontology of the core cooperator.

When the message is received by a collaborator, the message will be transformed by

Processor 1 (STEP 1: For an inbound message). After the transformation, the message is

described based on ontology of the collaborator. Then, collaborative processes in the message

can be transformed to the XML-based processes that can be understood by the collaborator.

The above procedure is the horizontal transformation of collaborative processes. This

procedure is also required at CIM level in Figure 2-15.

Besides supporting horizontal transformation, OBGD architecture can also support

execution of interoperability processes generated in PBMEI. In OBGD architecture,

component container can be process engine and service component can be business processes.

So interoperability processes (in BPMN) can be deployed into (BPMN) process engines (like

BPMN engines discussed in Chapter 2-Section I.3). However, process engine for (BPMN)

interoperability processes in OBGD architecture is different from normal (BPMN) process

engines. Because in interoperability processes, there are numerous semantic annotations for

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

143

process elements, and process engine in OBGD architecture will use these annotations to help

generation of OBGD SOAP messages. It means that OBGD SOAP messages sent out from

process engine will bypass “SOAP Processor” in OBGD-SSB. Further study about process

engine in OBGD architecture will be done in the future.

V. CONCLUSIONS

After analyzing problems existing in semantic web services and goal-based researches,

we have proposed a goal model which can directly express semantics of goals. Based on the

goal model, we have designed an ontology-based and goal-driven SOAP which defines a

message format, a corresponding SOAP module (header block) and a related SOAP

processing model (OBGD service invocation mechanism). This makes a service requester be

able to invoke its desired services according to its goal and related necessary information. In

fact, OBGD SOAP makes service requesters and service definitions loosely coupled at the

contract and semantic levels (see Table 2-2).

In order to facilitate generation of OBGD SOAP message for service requesters, we

have proposed a symmetric mechanism for OBGD service invocation. This symmetric

mechanism makes service requesters invoke a desired service without knowledge of its

location, semantics or implementation technique.

Based on the symmetric mechanism of OBGD service invocation, OBGD architecture

for enterprise interoperability has been proposed. The architecture inherits properties of the

symmetric mechanism: location transparency, semantics transparency and technique

transparency. These properties are critical for enterprise interoperability. Besides these

properties, OBGD architecture also satisfies some general requirements, such as, making its

service components more manageable and making their invocation more efficient.

In order to deeply research usage of OBGD architecture, we have also studied its

deployment. For intra-enterprise interoperability, we have proposed three styles of

decentralized deployment. For inter-enterprise interoperability, we have proposed a federated

deployment method. The federated style is one objective of our research as described in

Chapter 1-Section II.

At last, we have studied the relationship between OBGD architecture and ontology-

based PBMEI (proposed in Chapter 3 and 4). OBGD architecture can at least support PBMEI

in two aspects: horizontal transformation of collaborative processes and execution of

interoperability processes.

CHAPTER 5 OBGD Architecture for Enterprise Interoperability

144

A prototype for OBGD SOAP should be constructed in the future. An algorithm of

OBGD service discovery used in STEP 2 (Section II) and an algorithm of OBGD service

provider discovery used in STEP OI-2 (Section III) should also be studied in the future. In

order to support PBMEI, the OBGD architecture should be integrated with business

process/rule engines. The architecture should also make human beings interact with business

processes during their execution.

CHAPTER 6 Conclusions and Perspectives

145

CHAPTER 6: Conclusions and Perspectives

CHAPTER 6 Conclusions and Perspectives

146

CHAPTER 6 Conclusions and Perspectives

147

When enterprises collaborate with others to achieve business objectives, enterprise

interoperability problems will be encountered. A mediator-based approach to enterprise

interoperability problems has been studied in (Touzi 2007) and (Truptil 2011). Instead, in this

thesis, we have proposed a federated approach to enterprise interoperability problems at

methodological and technical levels.

In this thesis, firstly, we have summarized enterprise interoperability in four

dimensions: its definition, framework, solutions and maturity models. Secondly, in order to

solve enterprise interoperability problems, we have analyzed five related research domains:

collaborative business process, MDA, SOA, ESB and ontology. Then, we have proposed a

framework for IT solutions to enterprise interoperability problems, see Figure 6-1. The

framework integrates the above five research domains together. Thirdly, in order to realize the

above framework at methodological and technical levels, we have proposed an ontology-

based and process-based method for enterprise interoperability (ontology-based PBMEI) and

an ontology-base and goal-driven (OBGD) architecture for enterprise interoperability.

Therefore, the main contribution of our work is the framework for IT solutions to enterprise

interoperability problem and its realizations at methodological and technical levels: ontology-

based PBMEI and OBGD architecture.

The framework (see Figure 6-1) starts from business environment and ends at IT

environment. At the methodological level (in the upper red rectangle), the framework

employs business process, MDA, SOA and ontology to align business and IT environments.

At the technical level (in the lower red rectangle), the framework employs ESB and ontology

(semantic ESB) as the platform/infrastructure in IT environment. This framework also covers

three key research domains about enterprise interoperability proposed in (Chen and

Doumeingts 2003): enterprise modeling, architecture & platform and ontology. The three key

research domains have been identified in green rectangles in Figure 6-1.

Ontology-based and Process-Based Method for Enterprise Interoperability (Ontology-

based PBMEI) is constructed to realize the framework in Figure 6-1 at the methodological

level. This method has five levels. At the first level, the method uses a collaborative process

to represent collaboration requirements between enterprises. At the second level, collaborative

process is annotated with collaborator’s information and it is transformed into sub-processes.

The above two levels are global for all collaborators while the rest steps are local for each

collaborator. The rest steps are affected by different uses of ontology in PBMEI. If, in

enterprise collaboration, there is not a core cooperator, then collaborative process is created

by negotiation of all collaborators. After the first and second levels, collaborative process and

CHAPTER 6 Conclusions and Perspectives

148

its sub-processes are delivered to all relevant collaborators and they are transformed to local

collaborative processes (at the third level). At the fourth level, message types in processes are

determined and mapping from collaborators to participants is finished. At the fifth level,

message transport protocols are fixed. At last, executable interoperability processes are

generated. The above levels constitute the first variant of PBMEI. If, in enterprise

collaboration, there is a core cooperator, then collaborative process is created by the core

cooperator. After the first and second levels, the core cooperator directly executes the fourth

and fifth levels of the first variant of PBMEI, but the other collaborators execute the third to

the fifth levels of the first variant of PBMEI. This constitutes the second variant of PBMEI.

Figure 6-1. Individual View of the Framework for IT solutions to Enterprise

Interoperability Problems

Ontology-based PBMEI also includes process transformations. The transformation

between the first and second levels is based on two quantitative criteria: rank of collaborative

process and cooperation rate. The transformation has been studied base on a case

“ShoppingDrive”. The case study indicates that the transformation can reduce message

numbers between collaborators in enterprise collaboration and it can also improve reusability

of collaborative processes. In ontology-based PBMEI, transformation between other levels is

CHAPTER 6 Conclusions and Perspectives

149

based on semantic annotations in collaborative processes. Semantic annotations in

collaborative processes have been studied based on the extension mechanism of BPMN2.0.

The ontology-based and goal-driven (OBGD) architecture is designed to realize the

framework in Figure 6-1 at the technical level. The core of the OBGD architecture is an

OBGD semantic service bus. This service bus is based on a symmetric mechanism for OBGD

service invocation. The symmetric mechanism is designed according to OBGD Simple Object

Access Protocol (SOAP). The OBGD SOAP is made up of three parts: OBGD message

format definition, SOAP module definition and SOAP processing model definition. Such

symmetric mechanism has three properties: location transparency, semantics transparency and

technique transparency. The properties are critical to enterprise interoperability, especially to

execution of interoperability processes. This architecture can deploy OBGD semantic service

bus in different styles to support intra- or inter- enterprise interoperability. Especially, it can

deploy OBGD semantic service bus in a federated style to support inter-enterprise

interoperability.

Ontology-based PBMEI and OBGD architecture have a close relationship. In ontology-

based PBMEI, at the second level, collaborative business processes and its sub-processes will

be delivered to other collaborators. This depends on horizontal process transformation. The

Horizontal transformation is supported by OBGD architecture. Besides, in PBMEI, executable

interoperability processes will be generated. Execution of these processes is supported by

process engines in OBGD architecture.

Ontology-based PBMEI and OBGD architecture are all grounded in ontology. The

influence of ontology on PBMEI and OBGD architecture is concluded in Table 6-1. We have

analyzed the influence of ontology from three interoperability concerns: data interoperability,

service interoperability and process interoperability. The three concerns have been defined in

(Chen and Daclin 2006). According to Table 6-1, conceptual barriers in data, service and

process aspects can be removed by ontology-based PBMEI (at the methodological level in

Figure 6-1). Technical barriers in data, service and process aspects can be removed by OBGD

architecture (at the technical level in Figure 6-1).

Besides, ontology-based PBMEI and OBGD architecture together constitute a federated

approach to enterprise interoperability problems. Firstly, as ontology-based PBMEI, except its

global levels, is respected and performed separately by all collaborators, and each collaborator

is autonomous, so this method is federated. Secondly, OBGD semantic service bus in OBGD

architecture can be deployed in a federated style to support collaborations between

CHAPTER 6 Conclusions and Perspectives

150

enterprises, so this architecture can support federation when solving enterprise interoperability

problems.

Table 6-1. Influence of ontology on ontology-based PBMEI and OBGD architecture

Interoperability
concerns

Ontology-based PBMEI OBGD architecture

Process Ontology base (semantic description
about processes, etc);

semantic annotations in processes;
Ontology-based vertical transformation

Component container
(ontology-based process
engine); OBGD semantic

service bus (ontology-based
horizontal transformation)

Service Ontology base (semantic description
about services, etc); semantic

annotations in processes;

OBGD semantic service bus
(STEP 2, and STEP OI-2)

Data Ontology base
(business terminology, etc);

semantic annotations in processes;

OBGD semantic service bus
(STEP 1, STEP 3, STEP OI-1

and STEP OI-3)

In a word, our work has proposed and designed a federated approach to enterprise

interoperability problems. The federated approach can achieve interoperability at conceptual

and technical level in three interoperability concerns: data, service and process.

In our work, there are also some limitations. For example, ontology-based PBMEI and

OBGD architecture all depend closely on ontology. The interoperability level they can

achieve is determined by quality of ontology and capability of ontology mapping. In addition,

OBGD architecture is based on OBGD SOAP, so its transport protocol is limited to SOAP.

In our study, there is still much engineering and scientific work to do in the future. In

engineering aspect, software tools and platforms must be constructed to support ontology-

based PBMEI and OBGD architecture. In addition, ATL should be extended to invoke

external services during model transformation. This is necessary in ontology-based process

transformation. In scientific research aspect, goal-driven service discovery and service

provider discovery should be studied. They are used in OBGD semantic service bus. In

OBGD architecture, ontology-based process engines should also be studied to support

execution of interoperability processes. In addition, goal-driven composition of business

processes should be studied. In our study, a goal model has been proposed, and the model will

be a good start to construct an approach to automatically composite (collaborative) business

processes.

ACRONYMS

151

ACRONYMS

ACRONYMS

152

API Application Programming Interface

BAL Business Action Language

BOM Business Object Model

BPDM Business Process Definition Metamodel
http://www.omg.org/technology/documents/br_pm_spec_catalog.htm

BPEL Business Process Execution Language

BPM Business Process Management

BPMS Business Process Management System (Suite)

BPMN Business Process Model and Notation

BPML Business Process Modeling Language
http://xml.coverpages.org/bpml.html

BPMO Business Process Modeling Ontology

BPSS Business Process Specification Schema
http://www.ebxml.org/specs/ebBPSS.pdf

BRLDF Business Rule Language Definition Framework

CBP Collaborative Business Process

CM Common Logic
http://cl.tamu.edu/

CORBA Common Object Request Broker Architecture
http://www.corba.org/

CIM Computation Independent Model

CI-DB Configuration Information DataBase

CpBP Cooperation Business Process

CrBP Coordination Business Process

DAML DARPA Agent Markup Language
http://www.daml.org/

DBMS DataBase Management System
ebXML electronic business using XML

ACRONYMS

153

EAI Enterprise Application Integration

ESB Enterprise Service Bus

XOM eXecution Object Model

XML eXtensible Markup Language

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IRL ILOG Rule Language

ICT Information and Communication Technology

IT Information Technology

IOPE Input, Output, Precondition and Effect

IDE Integrated Development Environment

JMS Java Message Service
http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html

KP Knowledge Representation

MOF Meta-Obejct Facility
http://www.omg.org/mof/

MDA Model-Driven Architecture
http://www.omg.org/mda/

OMG Object Management Group

ODM Ontology Definition Metamodel

OIL Ontology Inference Layer
http://www.cs.vu.nl/~frankh/abstracts/IEEE-IS01.html

OBGD Ontology-Based and Goal-Driven

OKBC Open Knowledge Base Connectivity
http://www.ai.sri.com/~okbc/

OS Operating System

ACRONYMS

154

OCML Operational Conceptual Modeling Language
http://technologies.kmi.open.ac.uk/ocml/

OASIS Organization for the Advancement of Structured Information Standards

P2P Peer-to-Peer

PIM Platform Independent Model

PSM Platform Specific Model

PIF Process Interchange Format

PBMEI Process-Based Method for Enterprise Interoperability

QoS Quality of Service

REST Representational State Transfer

RDFS Resource Description Framework Schema
http://www.w3.org/TR/PR-rdf-schema

RDF Resource Description Framework
http://www.w3.org/TR/PR-rdf-syntax

RES Rule Execution Server

RIF Rule Interchange Format
http://www.w3.org/2005/rules/wiki/RIF_Working_Group

SAWSDL Semantic Annotations for WSDL
http://www.w3.org/2002/ws/sawsdl/

sBPEL Semantic BPEL

sEPC Semantic Event-driven Process Chain

SUPER Semantics Utilised for Process management within and between EnteRprise

SCA Service Component Architecture
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

SMDA Service Model Driven Architecture

SOA Service Oriented Architecture

SHOE Simple HTML Ontology Extensions
http://www.cs.umd.edu/projects/plus/SHOE/

SOAP Simple Object Access Protocol

ACRONYMS

155

SSB Semantic Service Bus

TM Topic Maps

TCP/IP Transmission Control Protocol/Internet Protocol

TDS Transparent Decision Service

TMS Truth Maintenance System

UML Unified Modeling Language

UDDI Universal Description Discovery and Integration
http://www.oasis-open.org/committees/uddi-spec/

OWL Web Ontology Language
http://www.w3.org/TR/owl-features/

WSCI Web Service Choreography Interface

WSCL Web Service Conversation Language
http://www.w3.org/TR/wscl10/

WSMF Web Service Modeling Framework

WSMO Web Service Modeling Ontology
http://www.wsmo.org/

WS-BPEL Web Service-BPEL
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

WS-CDL Web Service-Choreography Description Language
http://www.w3.org/TR/ws-cdl-10/

WSDL Web Services Description Language

WSFL Web Services Flow Language
http://xml.coverpages.org/wsfl.html

WfMC Workflow Management Coalition

WMS Workflow Management System

WPDL Workflow Process Definition Language

W3C World Wide Web Consortium

ACRONYMS

156

XPDL XML Process Definition Language
http://www.xpdl.org/nugen/p/xpdl/public.htm

XOL XML-based Ontology exchange Language
http://www.ai.sri.com/pkarp/xol/

REFERENCES

157

REFERENCES

REFERENCES

158

Abid, M. R. (2008). UML Profile for Goal-Oriented Modeling. Ottawa-Carleton Institute for
Computer Science. Ottawa, Canada, University of Ottawa. Master

Alonso, G., U. Fiedler, et al. (1999). Wise: business to business e-commerce. Proceedings of
9th International Workshop on Research Issues on Data Engineering: Information
Technology for Virtual Enterprises, Sydney, NSW , Australia.

Alve, A. and A. Arkin (2007). Web Services Business Process Execution Language Version
2.0, OASIS, from http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

Ambler, S. W. (2003). "Agile model-driven development is good enough." IEEE
SOFTWARE 20(5): 71-73.

Ankolekar, A., F. Huch, et al. (2002). Concurrent Execution Semantics of DAML-S with
Subtypes. Proceedings of the First International Semantic Web Conference on The
Semantic Web, Springer-Verlag.

Ankolenkar, A., M. Burstein, et al. (2001). "DAML-S: Semantic Markup For Web Services."
from http://www.daml.org/services/daml-s/2001/10/daml-s.html.

Avgerou, C. (2000). "Information systems: what sort of science is it?" Omega 28(5): 567-579.

Bartonitz, M. (2010) "A brief history of business process management."

Batory, D. (2006). "Multilevel models in model-driven engineering, product lines, and
metaprogramming." IBM Syst. J. 45(3): 527-539.

Baude, F., I. Filali, et al. (2010). ESB federation for large-scale SOA. Proceedings of the 2010
ACM Symposium on Applied Computing. Sierre, Switzerland, ACM: 2459-2466

Bauer, B., S. Roser, et al. (2005). Adaptive Design of Cross-Organizational Business
Processes Using a Model-Driven Architecture. Wirtschaftsinformatik 2005 (7th
International Conference on WI). O. K. Ferstl, E. J. Sinz, S. Eckert and T. Isselhorst,
Physica-Verlag HD: 103-121.

BEDNÁR, P., K. FURDÍK, et al. (2009). Design of a Semantic Service Bus for Networked
Enterprises. AMIF 2009 - Ambient Intelligence Forum 2009. Hradec Králové, Czech
Republic, from http://web.tuke.sk/fei-cit/furdik/publik/amif09_spike.pdf.

Bernauer, M., G. Kramler, et al. (2003). Specification of Interorganizational Workflows - A
Comparison of Approaches. Proceedings of the 7th World Multiconference on
Systemics, Cybernetics and Informatics.

Bernstein, P. A. (1996). "Middleware: a model for distributed system services." Commun.
ACM 39(2): 86-98.

Berre, A.-J., A. Hahn, et al. (2004). State of the art for interoperability architecture
approaches, INTEROP VLab, from http://interop-
vlab.eu/ei_public_deliverables/interop-noe-deliverables/dap-domain-architecture-and-
platforms/D91/?searchterm=d9.1.

REFERENCES

159

BizAgi. (2009). "Functional Description v9." from
http://www.bizagi.com/docs/BizAgi%20Xpress%20Functional%20Description.pdf.

BonitaSoft. (2011). "BOS V5.5.1-User & Reference Guide." from http://www.bonitasoft.org/.

Borgida, A. (1996). "On the relative expressiveness of description logics and predicate
logics." Artif. Intell. 82(1-2): 353-367.

Bourey, J.-P., R. Grangel, et al. (2007). Deliverable DTG2.3 Report on Model-Driven
Interoperability, from http://interop-vlab.eu/ei_public_deliverables/interop-noe-
deliverables/dap-domain-architecture-and-platforms/D91/.

Brahmandam, P. (2008). Business Process Life-cycle, Princeton Blue, Inc., from
http://www.princetonblue.com/whitepapers/business_process_lifecycle.pdf.

Brickley, D. and R. V. Guha. (1999). "Resource Description Framework (RDF) Schema
Specification." from http://www.w3.org/TR/PR-rdf-schema.

Buelow, H., M. Das, et al. (2010) "Getting Started with Oracle BPM Suite 11gR1 A Hands-
On Tutorial."

Burstein, M. H. (2004). "Dynamic invocation of semantic Web services that use unfamiliar
ontologies." IEEE Intelligent Systems 19(4): 67-73.

C4ISR-Interoperability-Working-Group (1998). Levels of Information Systems
Interoperability (LISI). Department-of-Defense. Washington, DC

Cabral, L., J. Domingue, et al. (2006). IRS-III: A Broker for Semantic Web Services based
Applications. The 5th International Semantic Web Conference (ISWC 2006), Athens,
GA, USA.

Chandrasekaran, B. and T. Johnson (1993). "Generic tasks and task structures: history,
critique and new directions." Second Generation Expert Systems: 232-272.

Chaudhri, V. K., A. Farquhar, et al. (1997). Open Knowledge Base Connectivity 2.0,
Knowledge Systems Laboratory, Stanford University, from
http://www.ai.sri.com/~okbc/.

Chaudhri, V. K., A. Farquhar, et al. (1998). OKBC: A Programmatic Foundation for
Knowledge Base Interoperability. Proceedings of AAAI-98: 600-607

Chebbi, I., S. Dustdar, et al. (2006). "The view-based approach to dynamic inter-
organizational workflow cooperation." Data Knowl. Eng. 56(2): 139-173.

Chen, D. and N. Daclin (2006). Framework for enterprise interoperability. IFAC TC5.3
Workshop EI2N06, Bordeaux, France.

Chen, D. and G. Doumeingts (2003). "European initiatives to develop interoperability of
enterprise applications--basic concepts, framework and roadmap." Annual Reviews in
Control 27(2): 153-162.

REFERENCES

160

Chen, D., G. Doumeingts, et al. (2008). "Architectures for enterprise integration and
interoperability: Past, present and future." Comput. Ind. 59(7): 647-659.

Cimpian, E., T. Vitvar, et al. (2005). "Overview and Scope of WSMX. WSMX Deliverable
D13.0, WSMX Final Draft v0.2." from http://www.wsmo.org/TR/d13/d13.0/v0.2.

Corcho, O., M. Fernández-López, et al. (2003). "Methodologies, tools and languages for
building ontologies. Where is their meeting point?" Data & Knowledge Engineering
46(1): 41-64.

Corcho, O. and A. Gómez-Pérez (2000). Evaluating knowledge representation and reasoning
capabilities of ontology specification languages. Proceedings of the ECAI 2000
Workshop on Applications of Ontologies and Problem-Solving Methods. Berlin, from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.6867.

Czarnecki, K. and S. Helsen (2003). Classification of Model Transformation Approaches.
OOPSLA'03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture. Anaheim, from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.8124.

da Silva Santos, L. O. B., E. G. da Silva, et al. (2009). Towards a Goal-Based Service
Framework for Dynamic Service Discovery and Composition. Information
Technology: New Generations, 2009. ITNG '09. Sixth International Conference on.

da Silva Santos, L. O. B., L. F. Pires, et al. (2008). A Trust-Enabling Support for Goal-Based
Services. The 9th International Conference for Young Computer Scientists.

Davenport, T. H. (1993). Process Innovation. Reengineering Work through Information
technology. Boston.

Dayal, U., M. Hsu, et al. (2001). Business Process Coordination - State of the Art, Trends, and
Open Issues. Proc. of the 27th VLDB Conference, Roma, Italy, Morgan Kaufmann.

Dean, M. and G. Schreiber. (2004, 10 February). "OWL Web Ontology Language Reference."
from http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

Domingue, J., L. Cabral, et al. (2008). "IRS-III: A broker-based approach to semantic Web
services." Web Semantics: Science, Services and Agents on the World Wide Web
6(2): 109-132.

Domingue, J., L. Cabral, et al. (2004). Demo of IRS-III: A Platform and Infrastructure for
Creating WSMO-based Semantic Web Services. Proceedings of the Workshop on
WSMO Implementations (WIW 2004) Frankfurt, Germany.

Dumas, M., W. M. P. van der Aalst, et al. (2005). Process-Aware Information Systems:
Bridging People and Software through Process Technology, Wiley& Sons.

ebXML. (2001, May 8). " EbXML Requirement Specification v1.06." Retrieved July, 2011,
from http://www.ebxml.org/specs/ebREQ.pdf.

EIF (2004). European Interoperability Framework (White Paper). Brussels

REFERENCES

161

ENIX (2006) "BPM Focus-An independent evaluation of BizAgi."

Farrell, J. and H. Lausen (2007). Semantic Annotations for WSDL and XML Schema, W3C,
from http://www.w3.org/TR/sawsdl/.

Fensel, D. and C. Bussler (2002). "The Web Service Modeling Framework WSMF."
Electronic Commerce Research and Applications 1 (2).

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. Information and Computer Science. IRVINE, UNIVERSITY OF
CALIFORNIA. PhD, from
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Filipowska, A., M. Hepp, et al. (2009). Organisational Ontology Framework for Semantic
Business Process Management. Business Information Systems. W. Abramowicz,
Springer Berlin Heidelberg. 21: 1-12.

Filipowska, A., M. Kaczmarek, et al. (2009). Organizational ontologies to support semantic
business process management. Proceedings of the 4th International Workshop on
Semantic Business Process Management. Heraklion, Greece, ACM: 35-42

Fisher, D. A. (2006). An emergent perspective on interoperation in systems of systems.
Pittsburgh, Software Engineering Institute, Carnegie Mellon, from
http://www.sei.cmu.edu/reports/06tr003.pdf.

Flouris, G., D. Plexousakis, et al. (2006). Evolving Ontology Evolution. SOFSEM 2006:
Theory and Practice of Computer Science. J. Wiedermann, G. Tel, J. Pokorný, M.
Bieliková and J. Štuller, Springer Berlin / Heidelberg. 3831: 14-29.

Ford, T. C., J. M. Colombi, et al. (2007). A Survey on Interoperability Measurement. 12th
ICCRTS “Adapting C2 to the 21st Century”.

Gärdenfors, P. (1992). Belief Revision: An Introduction, Cambridge University Press.

Gasevic, D., D. Djuric, et al. (2006). Model Driven Architecture and Ontology Development.
Berlin Heidelberg, Springer-Verlag.

Geminiuc, K. (2006). "A Service-Oriented Approach to Business Rule Development."
Retrieved July 8, 2011, from
http://www.oracleimg.com/technetwork/articles/geminiuc-097530.html.

Goh, C. H. (1997). Representing and reasoning about semantic conflicts in heterogeneous
information systems. Sloan School of Management, Massachusetts Institute of
Technology. PhD: 180

Gómez-Pérez, A., M. Fernández-López, et al. (2004). Ontological Engineering, Springer.

Gottschalk, P. (2009). "Maturity levels for interoperability in digital government."
Government Information Quarterly 26(1): 75-81.

REFERENCES

162

Graham, I. (2005). "Service Oriented Business Rules Management Systems." from
http://www.trireme.com/whitepapers/Business%20rules/Trireme_Report_Service_Ori
ented_Business_Rules_Management_Systems_Ver2b.pdf.

Grangel, R., R. Chalmeta, et al. (2008). A Proposal for Goal Modelling Using a UML Profile.
Enterprise Interoperability III. K. Mertins, R. Ruggaber, K. Popplewell and X. Xu,
Springer London: 679-690.

Gruber, T. R. (1993). "A translation approach to portable ontology specifications." Knowl.
Acquis. 5(2): 199-220.

Guarino, N. (1995). "Formal ontology, conceptual analysis and knowledge representation."
Int. J. Hum.-Comput. Stud. 43(5-6): 625-640.

Haase, P. and L. Stojanovic (2005). Consistent Evolution of OWL Ontologies. The Semantic
Web: Research and Applications. A. Gómez-Pérez and J. Euzenat, Springer Berlin /
Heidelberg. 3532: 91-133.

Hakimpour, F., D. Sell, et al. (2005). Semantic Web service composition in IRS-III: the
structured approach. E-Commerce Technology, 2005. CEC 2005. Seventh IEEE
International Conference on.

Halpin, H. (2004). The Semantic Web: The Origins of Artificial Intelligence Redux. Third
Intern. Workshop on the History and Philosophy of Logic, Mathematics, and
Computation. Donostia San Sebastian, Spain

Hamilton, J. A. and M. G. A. Catania (2003). A Practical Application of Enterprise
Architecture for Interoperability. The 2003 International Conference on Information
Systems and Engineering ISE 2003, Quebec, Ca.

Hammer (1990). "Reengineering Work: Don't automate, Obliberate." Harvard Business
Review 68: 104-112.

Heflin, J., J. Hendler, et al. (1999). Coping with Changing Ontologies in a Distributed
Environment. Proceedings of AAAI-99 Workshop on Ontology Management.

Hendler, J. (2001). "Agents and the Semantic Web." IEEE Intelligent Systems 16(2): 30-37.

Héon, M., G. Paquette, et al. (2008). Transformation of Semi-formal Models into Ontologies
According to a Model Driven Architecture. 2èmes Journées Francophones sur les
Ontologies. Lyon, France

Horridge, M. and S. Bechhofer (2009). The OWL API: A Java API for Working with OWL 2
Ontologies. OWLED, CEUR-WS.org.

Horridge, M. and S. Bechhofer (2010). "The OWL API: A Java API for OWL Ontologies."
Semantic Web Journal 2(1): 11-21.

Horrocks, I., P. F. Patel-Schneider, et al. (2003). "From SHIQ and RDF to OWL: the making
of a Web Ontology Language." Web Semantics: Science, Services and Agents on the
World Wide Web 1(1): 7-26.

REFERENCES

163

IBM. (2009). "Deciding on an execution mode." Retrieved July 8, 2011, from
http://publib.boulder.ibm.com/infocenter/brjrules/v7r0/index.jsp?topic=/ilog.rules.jrul
es.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global96
3.html.

IEC-TC65/290/DC (2002). Device Profile Guideline, TC65: Industrial Process Measure-ment
and Control

IEEE (1990). IEEE : Standard Computer Dictionary- A Compilation of IEEE Standard
Computer Glossaries. New York, NY, Institute of Electrical and Electronics Engineers

ILOG. (2005a, Sept 31). "ILOG JRules Performance Analysis and Capacity Planning."
Retrieved July 8, 2011, from
http://logic.stanford.edu/POEM/externalpapers/iRules/jrules_cap_wp.pdf.

ILOG. (2005b, March). "ILOG JRules: leading the ways in Business Rule Management
Systems." Retrieved July 8, 2011, from http://www.docslibrary.com/leading-the-
way-in-business-rule-management-systems.

ILOG. (2006, 06). "Decision Services: the next SOA challenge." Retrieved July 8, 2011,
from http://logic.stanford.edu/POEM/externalpapers/WP-SOA.pdf.

IONA (2006). The evolution from EAI to ESB, from
http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/IONA_IE/I070809E.pdf.

ISO-14258 (1998). Industrial automation systems and integration – Concepts and rules for
enterprise models, ISO TC 184 SC5

Jarrar, M. and R. Meersman (2008). Ontology Engineering -The DOGMA Approach.
Advances in Web Semantics, Springer. I.

JBPMCommunity (2011). Jbpm User Guide, from http://docs.jboss.org/jbpm/v5.1/userguide/.

Jenz, D. E. (2003). Ontology-based business process management-the vision statement.
Erlensee, Jenz&Partner GmbH, from
http://www.bpiresearch.com/Resources/WP_BPMVision.pdf.

Jokhio, M. S. (2009). Goal-Based Testing of Semantic Web Services. Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering, IEEE
Computer Society.

Kalfoglou, Y. and M. Schorlemmer (2003). "Ontology mapping: the state of the art." Knowl.
Eng. Rev. 18(1): 1-31.

Karastoyanova, D., B. Wetzstein, et al. (2007). Semantic Service Bus: Architecture and
Implementation of a Next Generation Middleware. the Second International ICDE
Workshop on Service Engineering SEIW 2007, IEEE Computer Society.

Kiefer, C., A. Bernstein, et al. (2007). Semantic Process Retrieval with iSPARQL.
Proceedings of the 4th European conference on The Semantic Web: Research and
Applications. Innsbruck, Austria, Springer-Verlag: 609-623

REFERENCES

164

Kifer, M., G. Lausen, et al. (1995). "Logical foundations of object-oriented and frame-based
languages." J. ACM 42(4): 741-843.

Kosanke, K. (2006). Interoperability: INTEROP PROJECT- overview and results. INTEROP
Workshop. Helsinki, Finland, from http://www.cimosa.de/Modelling/01-
1_Interoperability_INTEROP_Project_-_Overview_and_Results.pdf.

Lamsweerde, A. v. and E. Letier (2004). From Object Orientation to Goal Orientation: A
Paradigm Shift for Requirements Engineering. Radical Innovations of Software and
Systems Engineering in the Future. M. Wirsing, A. Knapp and S. Balsamo, Springer
Berlin / Heidelberg. 2941: 153-166.

Lapouchnian, A. (2005). "Goal-Oriented Requirements Engineering: An Overview of the
current Research." from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.399&rep=rep1&type=pd
f.

Lassila, O. and R. Swick. (1999). "Resource Description Framework (RDF) Model and
Syntax Specification." from http://www.w3.org/TR/PR-rdf-syntax.

Lin, Y. and H. Ding (2005). Ontology-based Semantic Annotation for Semantic
Interoperability of Process Models. Proceedings of the International Conference on
Computational Intelligence for Modelling, Control and Automation and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce Vol-1
(CIMCA-IAWTIC'06) IEEE Computer Society.

Ling, C. and L. Xin (2009). Achieving Business Agility by Integrating SOA and BPM
Technology. 2009 International Forum on Information Technology and Applications,
Chengdu, China, IEEE Computer Society.

Liu, H. (2008). 基于 ESB的企业信息集成方法和技术研究 (RESEARCH ON METHODS
AND TECHNIQUES FOR ESB-BASED ENTERPRISE INFORMATION
INTEGRATION). Nanjing, Southeast University. Master, from
http://d.wanfangdata.com.cn/Thesis_Y1385661.aspx.

Liu, H. and J.-P. Bourey (2010). Transformation from a Collaborative Process to Multiple
Interoperability Processes. Enterprise Interoperability IV (Conference I-ESA'10). K.
Popplewell, J. Harding, R. Poler and R. Chalmeta, Springer London: 135-144.

Losavio, F., D. Ortega, et al. (2002). Modeling EAI [Enterprise Application Integration].
Computer Science Society, 2002. SCCC 2002. Proceedings. 22nd International
Conference of the Chilean.

Luke, S. and J. Heflin (2000). SHOE 1.01: Proposed Specification. University of Maryland,
from http://www.cs.umd.edu/projects/plus/SHOE/spec.html.

MacGregor, R. M. (1991). "Inside the LOOM description classifier." SIGART Bull. 2(3): 88-
92.

McIlraith, S. A. and D. L. Martin (2003). "Bringing Semantics to Web Services." IEEE
Intelligent Systems 18(1): 90-93.

REFERENCES

165

McIlraith, S. A., T. C. Son, et al. (2001). "Semantic Web Services." IEEE Intelligent Systems
16(2): 46–53.

Mehandjiev, N., I. D. Stalker, et al. (2006). Interoperability Contributions of CrossWork.
Interoperability of Enterprise Software and Applications. D. Konstantas, J.-P.
Bourrières, M. Léonard and N. Boudjlida, Springer London: 449-450.

Miller, J. and J. Mukerji (2003). MDA Guide Version 1.0.1, Object Management Group, from
http://www.omg.org/cgi-bin/doc?omg/03-06-01.

Morris, E., L. Levine, et al. (2004). System of Systems Interoperability (SOSI): final report.
Pittsburgh, Software Engineering Institute, Carnegie Mellon

Motta, E. (1999). Reusable Components for Knowledge Modelling: Case Studies in
Parametric Design Problem Solving. Amsterdam, The Netherlands, IOS Press.

Narayanan, S. and S. A. McIlraith (2002). Simulation, verification and automated
composition of web services. Proceedings of the 11th international conference on
World Wide Web, Honolulu, Hawaii, USA, ACM.

Natis, Y. V. (2003, April 16). "Service-Oriented Architecture Scenario." Retrieved July,
2011, from http://www.gartner.com/DisplayDocument?doc_cd=114358.

NATO (2003). NATO C3 Technical Architecture (NC3TA) Reference Model for
Interoperability. The Hague, The Netherlands

NEHTA (2005). Towards an interoperability framework, from
http://www.nehta.gov.au/component/docman/doc_download/26-towards-an-
interoperability-framework-v18.

Norton, B., L. Cabral, et al. (2009). Ontology-Based Translation of Business Process Models.
Proceedings of the 2009 Fourth International Conference on Internet and Web
Applications and Services, IEEE Computer Society: 481-486

Noy, N. F. (2004). "Semantic integration: a survey of ontology-based approaches." SIGMOD
Rec. 33(4): 65--70.

Noy, N. F. and M. Klein (2004). "Ontology Evolution: Not the Same as Schema Evolution."
Knowledge and Information Systems 6(4): 428-440.

OASIS-ebXML. (2001, Sept). "ebXML Technical Architecture Specification v1.0.4."
Retrieved July, 2009, from http://www.ebxml.org/specs/ebTA.pdf.

OASIS-ebXML. (2002a, Sept 23). "ebXML Collaboration-Protocol Profile and Agreement
Specification V2.0." Retrieved Sept, 2009, from http://www.oasis-
open.org/committees/ebxml-cppa/documents/ebCPP-2_0.pdf.

OASIS-ebXML. (2002b, April). " Registry Services Specification v2.0." Retrieved Sep,
2009, from http://www.oasis-
open.org/committees/regrep/documents/2.0/specs/ebRS.pdf.

REFERENCES

166

OASIS-ebXML. (2006, 21 Dec). "ebXML Business Process Specification Schema Technical
Specification v2.0.4." Retrieved Sept, 2009, from http://docs.oasis-open.org/ebxml-
bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf.

OASIS (2006). Reference Model for Service Oriented Architecture 1.0, from
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.

OMG-ODM (2009). Ontology Definition Metamodel: OMG Adopted Specification, from
http://www.omg.org/spec/ODM/1.0/PDF.

OMG (2006). CORBA Component Model v4.0, from
http://www.omg.org/spec/CCM/4.0/PDF

OMG (2008). Business Process Definition Metamodel, Process Definition, from
http://www.omg.org/cgi-bin/doc?dtc/2008-05-09.

OMG. (2011, 03 January). "Business Process Model and Notation (BPMN) Version 2.0."
from http://www.omg.org/spec/BPMN/2.0.

Paolucci, M., A. Ankolekar, et al. (2003). The DAML-S Virtual Machine. The Semantic Web
- ISWC 2003. D. Fensel, K. Sycara and J. Mylopoulos, Springer Berlin / Heidelberg.
2870: 290-305.

Patel-Schneider, P. F., P. Hayes, et al. (2004, 10 February). "OWL Web Ontology Language
Semantics and Abstract Syntax." from http://www.w3.org/TR/2004/REC-owl-
semantics-20040210/.

Polyak, S., J. Lee, et al. (1998). Applying the Process Interchange Format(PIF) to a Supply
Chain Process Interoperability Scenario. ECAI'98: Workshop on Applications of
Ontologies and Problem Solving Methods, Brighton, England.

Puschmann, T. and R. Alt (2001). Enterprise application integration-the case of the Robert
Bosch Group. System Sciences, 2001. Proceedings of the 34th Annual Hawaii
International Conference on.

Qiming, C. and H. Meichun (2001). Inter-enterprise collaborative business process
management. Proceedings. 17th International Conference on Data Engineering,
Germany.

Rajsiri, V., J.-P. Lorré, et al. (2008). Collaborative Process Definition Using An Ontology-
Based Approach. Pervasive Collaborative Networks. L. Camarinha-Matos and W.
Picard, Springer Boston. 283: 205-212.

Rajsiri, V., J. P. Lorre, et al. (2009). Prototype of an Ontology-Based Approach for
Collaborative Process Specification. Proceedings of the 2009 International Conference
on Interoperability for Enterprise Software and Applications China, IEEE Computer
Society: 53-59

Reiersgaard, N., H. Salvesen, et al. (2005). EAI Implementation Project and Shakedown: An
Exploratory Case Study. System Sciences, 2005. HICSS '05. Proceedings of the 38th
Annual Hawaii International Conference on.

REFERENCES

167

Roman, D., H. Lausen, et al. (2006, 21 October). "D2v1.3. Web Service Modeling Ontology
(WSMO)." from http://www.wsmo.org/TR/d2/v1.3/.

Roser, S. and B. Bauer (2005). A Categorization of Collaborative Business Process Modeling
Techniques. Proceedings of the Seventh IEEE International Conference on E-
Commerce Technology Workshops, IEEE Computer Society: 43-54

Roser, S. and B. Bauer (2006). Ontology-Based Model Transformation. Satellite Events at the
MoDELS 2005 Conference. J.-M. Bruel, Springer Berlin / Heidelberg. 3844: 355-356.

Russell, S. and P. Norvig (2003). Artificial Intelligence: A Modern Approach, Pearson
Education.

Salomie, I., V. R. Chifu, et al. (2008). SAWS: A tool for semantic annotation of web services.
IEEE International Conference on Automation, Quality and Testing, Robotics.

Schantz, R. E. and D. C. Schmidt (2001). "Middleware for distributed systems: Evolving the
common structure for network-centric applications." Encyclopedia of Software
Engineering: 1-9.

Schmelzer, R. (2007, November 28). "The seven levels of loose coupling." Retrieved July,
2011, from http://www.zapthink.com/2007/11/28/the-seven-levels-of-loose-coupling/.

Shafiq, O., M. Moran, et al. (2007). Investigating Semantic Web Service Execution
Environments: A Comparison between WSMX and OWL-S Tools. Internet and Web
Applications and Services, 2007. ICIW '07. Second International Conference on.

Shet, A. P. and M. Rusinkiewicz (1993). "On Transactional Workflows." Data Engineering
Bulletin 16/2.

Sheth, A., M. Rusinkiewicz, et al. (1992). Using polytransactious to manage interdependent
data. Database Transaction Models for Advanced Applications. A. K. Elmagarmid.
San Mateo, California.

Silver, B. (2009) "Things to Love About BPMN 2.0."

Smith, M. K., C. Welty, et al. (10 February). "OWL Web Ontology Language Guide." from
http://www.w3.org/TR/2004/REC-owl-guide-20040210/.

Stegwee, R. A. and B. D. Rukanova (2003). Identification of Different Types of Standards for
Domain-Specific Interoperability. Proceedings of the Workshop on Standard Making:
A Critical Research Frontier for Information Systems. J. L. King and K. Lyytinen.
Seattle, WA: 161- 170, from http://www.si.umich.edu/misq-
stds/proceedings/139_161-170.pdf.

Stineman, B. (2009, September). "Why Business Rules?: A Case for Business Users of
Information Technology." Retrieved July 8, 2011, from
ftp://public.dhe.ibm.com/common/ssi/ecm/en/wsw14061usen/WSW14061USEN.PDF
.

REFERENCES

168

Stojanovic, L., A. Maedche, et al. (2003). Ontology evolution as reconfiguration-design
problem solving. Proceedings of the 2nd international conference on Knowledge
capture. Sanibel Island, FL, USA, ACM: 162-171

Stollberg, M. and M. Hepp (2006). Goal Description Ontology. Deliverable D3.10, DIP

Stollberg, M. and B. Norton (2007). A Refined Goal Model for Semantic Web Services.
Proceedings of the 2nd International Conference on Internet and Web Applications
and Services, IEEE Computer Society.

Supakkul, S. and L. Chung (2005). A UML profile for goal-oriented and use case-driven
representation of NFRs and FRs. Software Engineering Research, Management and
Applications, 2005. Third ACIS International Conference on.

SUPER-Project (2007). D.1.1. Business Process Ontology Framework, SUPER Deliverable,

Swartout, W. R. and A. Tate (1999). "Guest editors' introduction: Ontologies." IEEE
Intelligent Systems 14(1): 18-19.

Sycara, K., M. Paolucci, et al. (2003). "Automated Discovery, Interaction and Composition of
Semantic Web Services." Journal of Web Semantics 1(1): 27-46.

Thatte, S. (2001, May). "XLANG: Web services for Business Proccess Design." Retrieved
July, 2011, from http://xml.coverpages.org/XLANG-C-200106.html.

The-OWL-Services-Coalition. (2003, Dec 27). "OWL-S: Semantic Markup for Web
Services." from http://www.daml.org/services/owl-s/1.0/owl-s.html.

Tim, B.-L., J. Hendler, et al. (2001). "The Semantic Web." Scientific American Magazine
284(5): 34-43.

Tolk, A., S. Diallo, et al. (2007). "Applying the Levels of Conceptual Interoperability Model
in Support of Integratability, Interoperability, and Composability for System-of-
Systems Engineering." Systemics, Cybernetics and Informatics 5(5): 65-74.

Tolk, A. and J. A. Muguira (2003). The levels of conceptual interoperability model.
Proceedings of the 2003 Fall Simulation Interoperability Workshop, Orlando, Florida.

Touzi, J. (2007). Aide à conception de système d'information Collaboratif support de
l'interopérabilité des enterprises. Centre de Génie Industriel, Ecole des Mines d'Albi
Carmaux. PhD

Truptil, S. (2011). Etude de l'approche de l'interopérabilité par médiation dans le cadre d'une
dynamique de collaboration appliquée à la gestion de crise. Centre de Génie Industriel.
Toulouse, Université de Toulouse - Mines Albi. PhD

US-Census-Bureau (2007). North American Industry Classification System (NAICS), from
http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2007.

Uschold, M. and M. Gruninger (2004). "Ontologies and semantics for seamless connectivity."
SIGMOD Rec. 33(4): 58-64.

REFERENCES

169

Uschold, M. and M. Grüninger (1996). "Ontologies: principles, methods, and applications."
Knowledge Engineering Review 11(2): 93-155.

Van der Aalst, W. M. P. (1999). "Process-oriented architectures for electronic commerce and
interorganizational workflow." Information Systems 24: 639–671.

van der Aalst, W. M. P., A. H. M. ter Hofstede, et al. (2003). Business Process Management:
A Survey. Proceedings of the International Conference of Business Process
Management, Eindhoven, The Netherlands, Springer.

van der Aalst, W. M. P. and M. Weske (2001). The P2P approach to Interorganizational
Workflows. Proceeding of the 13th Intl. Conf. on Advanced Information Systems
Engineering (CAiSE'01), Berlin.

W3C-RIF-WG. (2005). "List of Rule Systems." Retrieved July 8, 2011, from
http://www.w3.org/2005/rules/wg/wiki/List_of_Rule_Systems.

w3C-RIF-WG (2008). RIF Use Cases and Requirements, from
http://www.w3.org/TR/2008/WD-rif-ucr-20081218/.

W3C (2005). Web Service Semantics - WSDL-S, from
http://www.w3.org/Submission/WSDL-S/.

W3C (2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), from
http://www.w3.org/TR/2007/REC-soap12-part1-20070427.

Wache, H., T. Vögele, et al. (2001). Ontology-based integration of information --- a survey of
existing approaches. IJCAI--01 Workshop: Ontologies and Information Sharing,
Seattle, WA.

Wang, H. and J. N. K. Liu (2009). Analysis of Semantic Heterogeneity Using a New
Ontological Structure Based on Description Logics. Fuzzy Systems and Knowledge
Discovery, 2009. FSKD '09. Sixth International Conference on.

Wang, W., A. Tolk, et al. (2009). The levels of conceptual interoperability model: applying
systems engineering principles to M\&S. Proceedings of the 2009 Spring Simulation
Multiconference. San Diego, California, Society for Computer Simulation
International: 1-9

Weigand, H. and A. H. H. Ngu (1998). "Flexible specification of interoperable transactions."
Data & Knowledge Engineering 25.

Xu, X., T. Mo, et al. (2007). SMDA: A Service Model Driven Architecture. Enterprise
Interoperability II. London, Springer-Verlag: 291-302.

Xu, Z. and Y. C. Lee (2002). Semantic Heterogeneity Of Geodata ISPRS Commission IV,
WG IV/2, Ottawa, Canada.

REFERENCES

170

APPENDIX

171

APPENDIX

Appendix A Business Rule Management System

172

Appendix A: Overview of Business Rule Management System

Introduction
Rule-languages and rule-based systems have played seminal roles in the history of

computer science and the evolution of information technology. From expert systems to
deductive databases, the theory and practice of automating inference based on symbolic
representations have had a rich history and continue to be a key technology driver (w3C-RIF-
WG 2008). (W3C-RIF-WG 2005) lists many rule-based systems, such as FLORA-2, Hoolet
and JenaRules.

Business Rule Management System (BRMS) is one of the rule-based systems. As we know,
the periods of an application development and update are much longer than that of business
rule development and update. BRMS mainly solves the mismatching between the application
development life cycle and the business rule management life cycle.

Traditionally, the process of building an application system often requires freezing
business rules into software systems. This limits business sponsors’ flexibility to adapt their
operations to dynamic market conditions, individual customer demands or regulatory
environment changes (Stineman 2009). Furthermore, the traditional programming style about
business rules also makes developers not able to reuse business rules in other applications. If
a business rule is changed, it can’t be updated automatically in other relevant applications.
This will make business rule inconsistent. However, BRMSs can get rid of the above
disadvantages. BRMSs enable business people to define their business policies1 and business
rules. BRMSs also provide clear communication between policy managers2 and developers.
BRMS has a business rule repository for all the application systems in a whole enterprise. The
repository guarantees reusability and consistency of business rules and meanwhile it avoids
redundancy of business rules.

Nowadays, there are many BRMSs (Graham 2005), such as HaleyAutority, ILOG JRules,
Blaze Advisor, Drools3 and so on. ILOG JRules is much more widely used because of its
comprehensive feature set, reliability, customizability, extensibility, trace record and complete
offering (ILOG 2005b). Therefore this appendix will analyze BRMS based on ILOG JRules.

BRMS
Generally speaking, a BRMS must at least have its own rule language, rule editor, rule

execution/management system and rule repository, like Figure A-1. ILOG JRules, as the
market leading of BRMS, has done much more. ILOG JRules V7.0 contains a collection of
modules that work together to provide a comprehensive BRMS, see Figure A-2. JRules V7.0
has three broad areas:

� Business rule applications Development: it is focused on design, Java development,
rule project development, and troubleshooting about rules. It is supported by Rule
Studio and Decision Validation services;
� Business rule management and authoring: it is in charge of creation, maintenance,

testing, simulation and publication for business rules. It is supported primarily by
Rule Team Server and Rule Solutions for Office;

1 Business policies, business rules and their relationships are defined in (Stineman 2009).
2 (ILOG 2006) defines architects, developers, business analysts, policy managers and system administrators. It
also defines their responsibilities.
3 http://www.jboss.org/drools/

Appendix A Business Rule Management System

173

� Enterprise application: it executes, integrates, monitors and audit business rules. It
is supported mainly by rule execution server.

Figure A-1. Basic Components for BRMS

Figure A-2. Components in ILOG JRules V7.04

In order to support business rule application development, JRules proposes its own
conceptual model described in four figures (from Figure A-3 to Figure A-6). Figure A-3
shows two object models and vocabulary that are used by rule artifacts. Figure A-4 shows two
rule languages in ILOG JRules: BAL (Business Action Language) and IRL (ILOG Rule
Language). They are also defined by BRDLF (Business Rule Definition Language
Framework). Figure A-5 shows two rule models in JRules: business and technical rule
artifacts. The business rule artifacts (not executable) are created in BAL with the help of
BOM (Business Object Model) and vocabulary; the technical rule artifacts (executable) are
created in IRL with the help of XOM (eXecution Object Model). In fact, technical rule
artifacts can result from transformation of business rule artifacts. Figure A-6 describes the
contents of a ruleset archive. The archive will be deployed in BRMS.

4 http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp?topic=/com.ibm.websphere.ilog.jrules.doc/
Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global7.html

Appendix A Business Rule Management System

174

Figure A-3. Relationships between BOM and XOM in JRules

Figure A-4. Rule Languages in JRules

Figure A-5. Relationships between Business and Technical Rule Artifacts in JRules

Figure A-6. Ruleset Archive in JRules

After establishing the concept model, how does JRules support business rule application
development? The following steps are the simplest process: Firstly, business analysts create
the BOM, vocabulary and business rule artifacts according to business policies with the help
of JRules Rule Studio; then the business rule artifacts are translated automatically to technical

Appendix A Business Rule Management System

175

rule artifacts in terms of their mapping definition. Of course, the relevant BOMs are also
translated into XOMs. Then ruleflows will be orchestrated if necessary. After debug and test,
rulesets and relevant object models will be archived (Figure A-6) and deployed on Rule
Execution Server. After passing the test, rulesets will be made available for relevant
applications. The rulesets can also be maintained in Rule Team Server by policy managers
after their deployment.

Figure A-7. A Simple Architecture of the Rule Execution Server in JRules

For further study of business rule execution, the rule execution server and rule engine of
JRules are analyzed. Figure A-7 depicts a simple architecture of the Rule Execution Server4 of
JRules. In Figure A-7, the server provides other enterprise information systems with several
invocation ways to execute required rules: the interface of J2SE, the interface of J2EE, the
interface of web service, the interface of transparent decision service (TDS), etc. The server
also provides management/monitoring interfaces invoked by external applications (Ant task,
Rule Studio, Rule Team Server, JMX Server). The core of the server is the execution unit
(XU) and the persistence layer. When the server executes rules, XU will retrieve required
ruleset from the persistence layer and then it will invoke the rule engine to execute the ruleset.
Figure A-8 depicts the runtime environment of the rule engine in JRules.

Figure A-8. Runtime Environment of Rule Engine in JRules5

5 http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp?topic=/com.ibm.websphere.ilog.jrules.doc/
Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global737.html

Appendix A Business Rule Management System

176

In Figure A-8, a rule engine object has a working memory and an agenda. Working
memory contains the objects used in the ruleset execution, such as application objects and
parameter objects. Agenda contains the rule instances which are eligible to be fired in an order.
If a rule engine object is created, it will load the relevant ruleset (and compile the ruleset to
java byte code if required) and it will receive the application objects and parameter objects.
When application objects6 are added into the rule engine, two things happen5:

1) References to the native Java application objects are added to the rule engine. These
references enable the rule engine to monitor the application objects;

2) The conditions of all rules in the ruleset archive are evaluated. If the conditions of a
rule are met, the rule is declared eligible to be executed (added into agenda) or fired.

The following UML Class Diagram indicates the partial concepts used in the rule engine of
JRules.

Figure A-9. Concepts in the Rule Engine of JRules

In Figure A-9, the rule engine has three execution models7: RetePlus Model, Sequential
Model and FastPath Model. The execution mode determines which rules to fire and in what
sequence. RetePlus Model follows the RetePlus algorithm. Sequential Model follows the
sequential algorithm. FastPath model is a sequential mode of execution, but it also detects
semantic relations between rule tests during the pattern matching process, like RetePlus. So
FastPath Model depends on both of Rete algorithm and Sequential algorithm.

Each execution model has its own advantages and disadvantages. To make the best choice
of the execution model, the following questions need to be answered: what type of application
do your rules implement, what types of objects are used by your rules, what is the impact of
rule actions, what sort of tests do you find in rule conditions, and what priorities have you set
on your rules. (IBM 2009) has proposed some advice about how to make a good decision.

After analyzing rule engines, the following question is how to evaluate rule engines. There
are several academic benchmarks, such as Manners, Waltz or Fibonacci, but they are not very
representative of most eBusiness applications(ILOG 2005a). Thus (ILOG 2005a) tests its rule
engine under some conditions determined by itself, such as hardware configuration, test

6 Application data can be generated from java program, execution of rules, etc.
7 http://publib.boulder.ibm.com/infocenter/brdotnet/v7r1/index.jsp?topic=/com.ibm.websphere.ilog.brdotnet.doc
/Content/Business_Rules/Documentation/_pubskel/Rules_for_DotNET/ps_RFDN_Global261.html

Appendix A Business Rule Management System

177

content, working memory, the number of rules and average evaluation time. (ILOG 2005a)
also offers some test results about several activities of its rule engine under different
execution model.

After have evaluated rule engines, how to optimize rule engines will be interesting. (ILOG
2005a) proposed some optimization methods about rule engine execution, such as adopting
auto-hashing, hashers and finders, dynamic rule compilation, selecting a proper execution
model for ruleset, using rule task runner, configuring rule engine (caching, sharing working
memory, multi- threading and pooling, running in parallel, etc).

Rule Interchange Format
Rule Interchange Format (RIF) should enable interchange of rules8. The basic usage

scenario9 for RIF is as follows (see Figure A-10):

� a producer agent produces a set of rules in some rule language, serializes it in RIF
and publishes the resulting RIF document;

� a consumer agent gets the RIF document, deserializes it into some rule language
and deals with it for some purpose.

The general architecture for a RIF-based interchange can thus be represented as in Figure
A-11. Nowadays, Rule Interchange Format (RIF) is still being constructed by W3C RIF
Working Group (W3C RIP-WG).

Figure A-10. A Basic Usage Scenario for RIF10

Figure A-11. General Architecture for RIF-based Interchange11

 (The shared data model can be an XML schema, an OWL ontology or RDF vocabulary, etc)

8 http://www.w3.org/2005/rules/wg/wiki/UCR/What_is_a_Rule_Interchange_Format_And_Why_Create_One
9 Usage scenarios may vary in many ways with respect to the basic scenario. The interchange model may be
point-to-point, one-to-many and many-to-one. Another dimension is whether the interchange works in push
mode (send/receive or broadcast/receive) or in pull mode (publish/retrieve).
10 http://www.w3.org/2005/rules/wg/wiki/Arch/Using_RIF
11 http://www.w3.org/2005/rules/wg/wiki/UCR/Basic_RIF_Processing_Model

Appendix A Business Rule Management System

178

Relationship between BRMS and SOA/BPEL
SOA as an enterprise integration strategy has been widely used. In order to support SOA,

BRMS must be able to be accessed through SOA protocols (e.g., SOAP, WSDL) by other
information systems and meanwhile it must also be able to access the services deployed by
other information systems. For example, BRMS must be able to publish its rules as services;
it must also be able to make its rules invoke the services published out of its own system.

Currently, ILOG JRules can publish its rules as services through three ways: a simple web
service publish tool, hosted transparent decision service12 and monitored transparent decision
service and it can also make the action part of the rules invoke the web services. Further more,
JRules also extends SOA. As we know, traditionally in SOA, services are not visible, and they
are black boxes. However, in JRules, all services based on rules are visible and can be
changed easily and rapidly and they can also be monitored and audited (ILOG 2006).

WS-BPEL (Web Service-Business Process Execution Language) is one of the key
standards improving the wide adoption of SOA. WS-BPEL engine can make enterprises
automatically execute business processes which are composed of services. But if business
rules aren’t separated from business processes, they will also bring the same problems
elaborated in Section “Introduction” into the development and maintenance of business
processes. So rule engines can be introduced into the SOA environment where BPEL engine
is running. In this case, when a BPEL process reaches a decision point, it can invoke the
service corresponding to relevant business rules. It is very clear that rule engine and WS-
BPEL are complementary technologies. (Geminiuc 2006) provided an architecture separating
business rules from business process and it also illustrated how to implement the architecture
by integrating JRules rule engine with the Oracle BPEL Process Manager.

Relationship between BRMS/RIF and MDA/MDI
MDA provides a methodology to develop software system by model transformation. In

fact, developing a business rule application is similar to MDA. See Figure A-12, the top level
is about the business policies which are written in natural language. The second level is about
business rule artifacts based on vocabulary and BOM. Business rule artifacts are modelled in
BAL and they are created from business policies by policy mangers. The vocabulary and
BOM are also created from business policies by business analysts. All the outputs of this layer
are not executable. At the third level, technical rule artifacts written in IRL are generated from
transformation of the business rule artefacts. Meanwhile XOM will be generated from BOM
according to the predefined mappings between BOM and XOM. Of course, in this level, some
of the technical rule artifacts will be created by developers, such as functions or ruleflows. In
this level, all the outputs are executable. The bottom level is the running environment for all
technical rule artefacts and XOMs. According to the above narration, the level structure for
JRules/BRMS implicitly practices the methodology of MDA. Besides, RIF can also be
regarded as an application of MDI at the PSM level. From the side of MDA/MDI, model
transformation needs transformation rules which can be created, executed and managed by
BRMS. So BRMS/RIF and MDA/MDI are associated closely with each other.

12 (IBM 2009) proposed a table to compare the features and constraints of JRules web services and hosted/
monitored transparent decision services.

Appendix A Business Rule Management System

179

Business Rule

Artifacts

Technical Rule

Artifacts

JRules BRMS

BOM

Vocabulary

XOM

transform transform

Business Policy

transform transform

Figure A-12. Level structure for JRules

Appendix B Research domains about ontology

180

Appendix B: Research domains in ontology

Role/Architecture of ontologies
In (Wache, Vögele et al. 2001), the researched approaches of information integration use

ontologies not only for content explication, but also either as a global query model or for the
verification of integration description. When used for content explication, ontologies can be
employed in three possible ways (see Figure B-1 and Table B-1).

Figure B-1. Three Ways for Employing Ontologies (Wache, Vögele et al. 2001)

Table B-1. Three Ways for Employing Ontologies (adapted from (Wache, Vögele et al. 2001))

Approach Feature Advantage Disadvantage
single ontology
approach

Share the same view on a
domain.

It is straight-forward to
implement.

Subject to changes in
the information
sources.

multiple
ontology
approach

No common ontology with
the agreement of all sources
is needed.

This ontology architecture
can simplify the change,
i.e. modifications in one
information source.

In reality, the lack of a
common vocabulary
makes it extremely
difficult to compare
different source
ontologies.

hybrid approach Built upon one global
shared vocabulary which
contains the basic terms
(the primitives) and some
operators of a domain. The
operators combine the
primitives to construct
complex terms.

New sources can easily be
added without the need of
modification in the
mappings or in the shared
vocabulary.

Existing ontologies
cannot be reused
easily, but have to be
re-developed from
scratch because all
source ontologies have
to refer to the shared
vocabulary.

Appendix B Research domains about ontology

181

Ontology representation
There are lots of ontology languages, such as Ontolingua, OKBC, LOOM13, OCML,

FLogic, XOL, RDF(S), SHOE, OIL, DAML-ONTO, DAML+OIL, OWL and so on. Some of
them are traditional ontology languages and some are web-based ontology languages. All of
the web-based ontology languages are XML-based14 (see Figure B-2). Why do web-based
ontology languages are XML-based? Because there are some advantages (Corcho and
Gómez-Pérez 2000):

• They have the definition of a common syntactic specification;
• They can be easily read for human beings (compared with traditional ontology

languages);
• They represent distributed knowledge.

XML-based ontology languages also have some disadvantages:

• lack of structure for information;
• no standard tools for making inference for such language (Corcho and Gómez-

Pérez 2000).

Figure B-2. The Stack of Ontology Markup Languages (Corcho, Fernández-López et al. 2003)

Table B-2. Theories for Ontology languages (Corcho and Gómez-Pérez 2000; Horrocks, Patel-
Schneider et al. 2003) (Gruber 1993; Chaudhri, Farquhar et al. 1997; Chaudhri, Farquhar et al.
1998) (MacGregor 1991; Kifer, Lausen et al. 1995; Lassila and Swick 1999; Motta 1999; Luke

and Heflin 2000) (Brickley and Guha 1999) (Smith, Welty et al. ; Dean and Schreiber 2004;
Patel-Schneider, Hayes et al. 2004)

KR
Paradigms

Traditional Ontology languages Web-based Ontology Languages
Ontolingua OKBC OCML LOOM FLogic XOL RDF(S) SHOE OIL OWL

Description
Logic

 X X X

Object
Oriented

 X X

Frame
based

X X X X X X X X

first/second
order
(predicate
calculus)

X X

Model
theory

 X X X

Each ontology language has its own background theories - “knowledge representation
paradigms”. Table B-2 provides the knowledge representation paradigms for the traditional
and web-based ontology languages. There are five paradigms for the ontology languages:
description logic, object-oriented, frame-based, first/second order predicate, model theory. In
fact, description logic is a subset of first-order logic with well-known properties (Halpin

13 http://www.isi.edu/isd/LOOM/
14 Although SHOE was firstly an extension of HTML, now it is adapted in order to XML compliant.

Appendix B Research domains about ontology

182

2004). Unlike first-order logic, description logics have proved to be decidable and of a
tractable complexity class (Borgida 1996).

In a project, which ontology language should be chosen? (Corcho and Gómez-Pérez 2000)
has proposed an evaluation framework (see Figure B-3) for comparing the expressiveness and
inference mechanisms of potential ontology languages. It has applied the evaluation
framework to most of the ontology languages and found that:

• the traditional ontology languages are more expressive than web-based ontology
languages;

• the inference capabilities of each language are very different. Corcho and his
colleague have concluded that different needs in knowledge representation exist
nowadays for applications, and some languages are more suitable than others.

Figure B-3. Evaluation Framework for Ontology Languages (Corcho and Gómez-Pérez 2000)

Ontology mapping
According to (Wache, Vögele et al. 2001), there are two kinds of ontology mappings: the

mapping between ontology and information systems and the mapping between different
ontologies (inter-ontology mapping). For the former mapping, (Wache, Vögele et al. 2001)
lists four general approaches to establish the connection between ontology and information
systems: structure resemblance, definition of terms, structure enrichment and meta-annotation.
For the inter-ontology mapping, it is caused by the differences between ontologies, and such
mapping is researched in the context of semantic integration15/interoperability . Such
differences come from two levels (Noy 2004): Language-level and ontology-level.

� Language-level: the differences focus on the mismatching in expressiveness and
semantics of ontology languages, e.g., different syntax and constructs.

� Ontology-level: even for the ontologies expressed in the same language, there are
also some ontology-level mismatches including the same linguistic terms to
describe different concepts; using different terms to describe the same concepts;
using different modeling paradigms; using different modeling conventions and

15 Semantic integration is an active area of research in several disciplines, such as databases,
information-integration, and ontologies (Noy 2004). Most researchers agree that semantic
integration is one of the most serious challenges for the Semantic Web today (Noy 2004).

Appendix B Research domains about ontology

183

levels of granularity; having ontologies with different coverage of the domain, and
so on.

In order to research the problem of ontology mapping, (Noy 2004) starts from three
dimensions: mapping discovery, declarative formal representations of mapping and reasoning
with mappings.

� Mapping discovery: (Noy 2004) identifies two major approaches for mapping
discovery between ontologies: using a shared ontology and using heuristics-based
or machine learning technique16 . The second approach uses various
characteristics of ontology, such as concept names, natural-language description of
concepts, class hierarchy, property definitions, instances of classes and class
descriptions.

� Mappings representation: (Noy 2004) has discussed three methods:

o representing mappings as instances in an ontology;

o defining bridging axioms in first-order logic to represent transformations;

o using views to describe mappings from a global ontology to local ontology.

� Reason with mappings: Naturally, defining the mappings between ontologies, either
automatically, semi-automatically or interactively, is not a goal in itself. The
resulting mappings are used for various integration tasks: data transformation,
query answering or web-service composition.

Ontology Engineering
After the discussion of role/architecture of ontology, ontology representation and ontology

mapping, it is crucial to support ontology development - ontology engineering. In (Wache,
Vögele et al. 2001), ontology engineering contains three aspects: development methodology,
development tools and ontology evolution.

Ontology engineering methodology

According to (Héon, Paquette et al. 2008), ontology development implies three main
activities which are generally conducted by a knowledge engineer:

1) knowledge elicitation,

2) formalization of the elicited knowledge into an ontology,

3) syntactic and semantic validation of the ontology.

The whole process is complicated and requires knowledge engineers with high
competencies. The goal of knowledge engineers is to reduce as much as possible the gap
between the richness of the actual expertise of the domain experts and its formal ontological
representation. (Héon, Paquette et al. 2008) has proposed its own approach to develop
ontology. Its approach has three steps as follows:

1) The domain experts participate directly to the elicitation operation through semi-
formal visual knowledge modelling;

2) The engineer transforms the semi-formal model to a formal one taking the form of
ontology. An expert system is developed in (Héon, Paquette et al. 2008) to aid the
engineers in this transformation process. A “transformation ontology” serves as a

16 The task of finding mappings (semi-)automatically has been an active area of research in both database and
ontology communities (Rahm E. et al, 2001) (Kalfoglou Y. et al, 2003).

Appendix B Research domains about ontology

184

knowledge base for the transformation service to be carried out by the expert
system;

3) Finally, the knowledge engineer validates the result with the domain experts.

Besides the above work about ontology engineering, (Jarrar and Meersman 2008) has
proposed its own ontology engineering methodological framework and it points out the main
foundational challenge in ontology engineering: trade-off between ontology usability and
ontology reusability. The trade-off is caused by the fact that there doesn’t exist a strict line
between specific and generic knowledge (Chandrasekaran and Johnson 1993). In detail, from
a methodological viewpoint, if a methodology emphasizes usability perspectives or evaluates
ontologies based on how they fulfil specific application requirements, the resulting ontology
will be similar to a conceptual data schema (or a classical knowledge base) containing
application specific and thus, less reusable knowledge (Jarrar and Meersman 2008). Likewise,
if a methodology emphasizes the independency of the knowledge, the resulting ontology in
general will be less usable, since it has no intended use by ignoring application perspectives
(Jarrar and Meersman 2008). To tackle such a foundational challenge, (Jarrar and Meersman
2008) proposes a methodological framework - DOGMA. The idea of DOGMA is that:
ontology is doubly articulated into a domain axiomatization and application axiomatization.
A domain axiomatization is primarily related with characterizing the “intended meanings” of
domain vocabulary (typically shared and public); an application axiomatization (typically
local) is primarily associated with the usability of these vocabularies. The double
articulation implies that all concepts and relationships introduced in an application
axiomatization are predefined in its domain axiomatization (Jarrar and Meersman 2008).
Multiple application axiomatizations share and reuse the same intended meanings in a domain
axiomatization (Jarrar and Meersman 2008). This approach increases reusability of domain
axiomatization, as well as usability of application axiomatizations.

A general overview on ontology engineering methodologies is provided by (Gómez-Pérez,
Fernández-López et al. 2004), including short descriptions of the methods.

Ontology Development Tools

(Wache, Vögele et al. 2001) has sketched three available tools at that time: OntoEdit,
SHOE’s knowledge annotator and DWQ. The web site17 of Michael K. Bergman lists 185
ontology development tools, 35 of which are recently new and 45 added at various times since
the first release. For these 185 tools, there is diversity both in terms of scope and function
across the entire ontology development stack. The web site of Michael K. Bergman also
shows that nearly all of those 185 tools do not communicate with one another18. However,
recently, simpler, task-focused tools with intuitive interfaces18 are more demanded in the
market. Therefore, the general tools architecture needs to be shifted from IDEs and
comprehensive toolkits to APIs and Web services, such as OWL API (Horridge and
Bechhofer 2009; Horridge and Bechhofer 2010).

Ontology evolution

Ontology evolution is the problem of modifying ontology in response to a certain change
in the domain or its conceptualization (Flouris, Plexousakis et al. 2006). There are several
cases where ontology evolution is applicable:

� An ontology, just like any structure holding information, may need to change
simply because the world has changed (Stojanovic, Maedche et al. 2003);

17 http://www.mkbergman.com/904/listing-of-185-ontology-building-tools/
18 http://www.mkbergman.com/909/a-new-landscape-in-ontology-development-tools/

Appendix B Research domains about ontology

185

� We may need to change the perspective under which the domain is viewed (Noy
and Klein 2004);

� We may discover a problem in the original conceptualization of the domain
(Flouris, Plexousakis et al. 2006);

� We might also wish to incorporate additional functionality, according to a change
in users’ needs (Haase and Stojanovic 2005);

� Furthermore, new information, which was previously unknown, classified or
otherwise unavailable may become accessible, or different features of the domain
may become important (Heflin, Hendler et al. 1999).

(Flouris, Plexousakis et al. 2006) argues that the currently used ontology evolution model
has several weaknesses, and it presents an abstract proposition for a future research direction
that will hopefully resolve these weaknesses, based on the related field of belief change
(Gärdenfors 1992).

Appendix C Graphical User Interface for Six CBP Tools

186

Appendix C: Graphical User Interfaces for Six CBP Tools

The following sections list the graphical user interfaces for six collaborative business
process tools: BizAgi, jBPM, Bonita Open Solution, Oracle BPM Suit 11g, ADONIS and
MEGA. These figures illustrate the primary components for each CBP tools, such as business
process modeler, simulation, system console, business process monitoring, dependent
database, etc. For example, in Section “jBPM V5.1.0”, Figure C-5 depicts BPMN Visual
Editor for jBPM, which can construct conversation diagrams, choreography diagrams and
collaboration diagrams, etc. Figure C-6 depicts the knowledge base “Guvnor” and the web-
based BPMN editor for jBPM. All business processes in jBPM are stored and deployed in
Guvnor. If jBPM creates an instance for a process, it will retrieve the corresponding process
from Guvnor. Figure C-7 depicts the console of jBPM, which can configure, control and
monitor the jBPM process engine, execute personal tasks and generate statistic report for
process execution. Figure C-8 shows the execution progress of a business process in jBPM,
and Figure C-9 illustrates a statistical report of process execution.

BizAgi

Figure C-1. BizAgi Process Modeler V2.0.0.2

Figure C-2. BizAgi Studio V9.1.6.1005

Appendix C Graphical User Interface for Six CBP Tools

187

Figure C-3. BizAgi Console (Work portal)

Figure C-4. Database of BizAgi

jBPM V5.1.0

Figure C-5. BPMN Visual Editor (Eclipse plugin) for jBPM

Appendix C Graphical User Interface for Six CBP Tools

188

Figure C-6. Knowledge base (Guvnor) and web-based BPMN editor for jBPM

Figure C-7. jBPM Console

Figure C-8. Execution Progress of a Business Process in jBPM

Appendix C Graphical User Interface for Six CBP Tools

189

Figure C-9. Execution Report from jBPM BAM

Bonita Open Solution V5.5.1

Figure C-10. Bonita Studio

Figure C-11. Bonita Studio Simulation Report

Appendix C Graphical User Interface for Six CBP Tools

190

Figure C-12. Bonita User Experience

Oracle BPM Suite 11g

Figure C-13. Oracle JDeveloper 11g for BPMN2.0

Figure C-14. Simulation in Oracle JDeveloper 11g for BPMN2.0

Appendix C Graphical User Interface for Six CBP Tools

191

Figure C-15. Web console for Oracle BPM Suite 11g

ADONIS

Figure C-16. Process Modeling in ADONIS V3.90.01.98

Appendix C Graphical User Interface for Six CBP Tools

192

Figure C-17. Database for ADONIS

MEGA

Figure C-18. MEGA

Figure C-19. Databases for MEGA

Appendix D Schema definition for semantic annotations of BPMN2.0

193

Appendix D: Schema definition for semantic annotations of
BPMN2.0

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:bpmn20="http://www.omg.org/spec/BPMN/20100524/MODEL"
targetNamespace="http://www.omg.org/spec/BPMN/20100524/MODEL"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:include schemaLocation="Semantic.xsd"/>
 <xs:complexType name="tSemanticAnnotation">
 <xs:complexContent>
 <xs:extension base="bpmn20:tRootElement">
 <xs:sequence>
 <xs:element name="detail" type="tSemanticDetail"
minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="bpmnElement" type="xs:QName"/>
 <xs:attribute name="ontologyRef" type="xs:anyURI"
use="optional"/>
 <xs:attribute name="level" type="tMDALevel" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="tSemanticDetail">
 <xs:sequence>
 <xs:element name="actor" type="tSemanticRef" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="effect" type="tSemanticRef" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="do" type="tSemanticRef" minOccurs="1"
maxOccurs="unbounded"/>
 <xs:element name="what" type="tSemanticRef" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="where" type="tSemanticRef" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="when" type="tSemanticRef" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="how" type="tSemanticRef" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="tMDALevel">
 <xs:restriction base="xs:string">
 <xs:enumeration value="CIM"/>
 <xs:enumeration value="PIM"/>
 <xs:enumeration value="PSM"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="tSemanticRef" mixed="true">
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax" minOccurs="0"/>
 </xs:sequence>

Appendix D Schema definition for semantic annotations of BPMN2.0

194

 <xs:attribute name="ontologyRef" type="xs:anyURI" use="optional"/>
 </xs:complexType>
 <xs:complexType name="tSemanticAnnotationList">
 <xs:complexContent>
 <xs:extension base="bpmn20:tRootElement">
 <xs:sequence>
 <xs:element name="semanticAnnotation"
type="tSemanticAnnotation" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="semanticAnnotationList" type="tSemanticAnnotationList"
substitutionGroup="bpmn20:rootElement"/>
 <xs:attribute name="ontologyRef" type="xs:anyURI"/>

</xs:schema>

Appendix E Goal Ontology

195

Appendix E: Goal Ontology
This appendix explains the goal ontology defined in Chapter 5. In Figure E-1, the goal

ontology is created in OWL by Protégé 4.2.1. The corresponding OWL document for the goal
ontology is shown behind Figure E-1.

Figure E-1. Goal Ontology in Hierarchical style Developed by Protégé 4.2.1

OWL document for Goal Ontology:
<?xml version="1.0"?>

<!DOCTYPE owl2xml:Ontology [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY OntologyGoal "http://www.semanticweb.org/ontologies/2011/3/OntologyGoal.owl#" >
]>

<owl2xml:Ontology xmlns="http://www.semanticweb.org/ontologies/2011/3/OntologyGoal.owl#"
 xml:base="http://www.w3.org/2006/12/owl2-xml#"
 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
 xmlns:OntologyGoal="http://www.semanticweb.org/ontologies/2011/3/OntologyGoal.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 owl2xml:URI="http://www.semanticweb.org/ontologies/2011/3/OntologyGoal.owl">
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentActor"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>

Appendix E Goal Ontology

196

 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subActor"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 <owl2xml:ObjectMinCardinality owl2xml:cardinality="1">
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;realizedCapability"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Capability"/>
 </owl2xml:ObjectMinCardinality>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Capability"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;object"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Capability"/>
 <owl2xml:ObjectExactCardinality owl2xml:cardinality="1">
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;verb"/>
 </owl2xml:ObjectExactCardinality>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;effect"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;input"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;output"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;precondition"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Enterprise_Goal"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;context"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentGoal"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subGoal"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 <owl2xml:ObjectExactCardinality owl2xml:cardinality="1">
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;capabilityRequirement"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Capability"/>
 </owl2xml:ObjectExactCardinality>

Appendix E Goal Ontology

197

 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Hardware"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Human"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Mission"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Enterprise_Goal"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Operative_Goal"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Enterprise_Goal"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Organization"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Software"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Strategic_Goal"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Enterprise_Goal"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Tactical_Goal"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Enterprise_Goal"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentTask"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subTask"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 <owl2xml:ObjectExactCardinality owl2xml:cardinality="1">
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;context"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 </owl2xml:ObjectExactCardinality>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 <owl2xml:ObjectExactCardinality owl2xml:cardinality="1">
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;satisfiedCapability"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Capability"/>
 </owl2xml:ObjectExactCardinality>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Vision"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Enterprise_Goal"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Web_Service"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Software"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Web_Service_Goal"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Web_Service_Operation_Goal"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Goal"/>
 </owl2xml:SubClassOf>
 <owl2xml:SubClassOf>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 <owl2xml:DataAllValuesFrom>
 <owl2xml:DataProperty owl2xml:URI="&OntologyGoal;description"/>
 <owl2xml:Datatype owl2xml:URI="&xsd;string"/>
 </owl2xml:DataAllValuesFrom>
 </owl2xml:SubClassOf>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;Dependent_Resource"/>

Appendix E Goal Ontology

198

 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;Dependent_Resource"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;context"/>
 <owl2xml:ObjectAllValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;context"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 </owl2xml:ObjectAllValuesFrom>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;effect"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 </owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;effect"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;input"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 </owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;input"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;object"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;object"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;output"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 </owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;output"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentActor"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentActor"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:Declaration>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentActor"/>
 </owl2xml:Declaration>
 <owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentTask"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 </owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentTask"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:Declaration>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;parentTask"/>
 </owl2xml:Declaration>
 <owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;precondition"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Context"/>
 </owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;precondition"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subActor"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subActor"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Actor"/>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:Declaration>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subActor"/>
 </owl2xml:Declaration>
 <owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subTask"/>

Appendix E Goal Ontology

199

 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 </owl2xml:ObjectPropertyDomain>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subTask"/>
 <owl2xml:Class owl2xml:URI="&OntologyGoal;Task"/>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:Declaration>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;subTask"/>
 </owl2xml:Declaration>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;verb"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;verb"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectPropertyRange>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;who"/>
 <owl2xml:ObjectSomeValuesFrom>
 <owl2xml:ObjectProperty owl2xml:URI="&OntologyGoal;who"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:ObjectSomeValuesFrom>
 </owl2xml:ObjectPropertyRange>
 <owl2xml:DataPropertyDomain>
 <owl2xml:DataProperty owl2xml:URI="&OntologyGoal;description"/>
 <owl2xml:Class owl2xml:URI="&owl;Thing"/>
 </owl2xml:DataPropertyDomain>
 <owl2xml:DataPropertyRange>
 <owl2xml:DataProperty owl2xml:URI="&OntologyGoal;description"/>
 <owl2xml:Datatype owl2xml:URI="&xsd;string"/>
 </owl2xml:DataPropertyRange>
</owl2xml:Ontology>

<!-- Generated by the OWL API (version 2.2.1.1138) http://owlapi.sourceforge.net -->

Abstract

200

Résumé : Quand des entreprises collaborent entre elles pour atteindre leurs objectifs métiers, des problèmes
d'interopérabilité seront rencontrés. Afin de résoudre ces problèmes, nous étudions les domaines suivants : les
processus métier collaboratifs, MDA, SOA, ESB et l'ontologie. Nous proposons alors un cadre intégrant ces cinq
domaines pour les solutions TI (technologies de l’'information) aux problèmes d'interopérabilité. Pour construire ce
cadre, nous proposons une Méthode Basée sur des Processus pour l'Interopérabilité d'Entreprise (MBPIE), qui utilise
des processus collaboratifs pour représenter des exigences de collaboration. MBPIE transforme des processus
collaboratifs en plusieurs processus d'interopérabilité exécutables par des transformations de modèles. En MBPIE,
l'ontologie est utilisée pour annoter les processus collaboratifs. Pendant la transformation des processus, de nouvelles
informations ontologiques sont ajoutées dans les processus pour les rendre exécutables. Nous avons conçu un bus de
services sémantiques Basé sur l'Ontologie et Dirigé par des Buts (BODB) pour supporter l'exécution des processus
d'interopérabilité. Ce bus est basé sur un mécanisme symétrique pour l'invocation de services sémantiques. Ce
mécanisme utilise l’extension de SOAP (Simple Object Access Protocol) qui est composée de trois parties : le format
des messages BODB, le module BODB et le modèle de traitement BODB. Ce mécanisme a trois propriétés de
transparence (emplacement, sémantique et technique) qui sont essentielles à l'exécution des processus
d'interopérabilité. Ensemble, MBPIE et le bus constituent une approche fédérée pour résoudre les problèmes
d'interopérabilité.

Mots clés : interopérabilité d’entreprise, collaboration, processus métier, processus collaboratif, processus
d’interopérabilité, transformation, rang, taux de coopération, ontologie, annotation sémantique, bus de services
sémantiques, MDA, MDI, SOA, BPMN2.0, approche dirigée par les buts, SOAP, cadre de comparaison

Abstract: When enterprises collaborate with others to achieve business objectives, enterprise interoperability
problems will be encountered. In order to solve the problems, in this thesis, we analyze the five related research
domains: collaborative business process, MDA, SOA, ESB and ontology. Consequently, we propose a framework for
IT solutions to interoperability problems, which integrates the above five domains together. In order to realize the
framework, we propose a Process-Based Method for Enterprise Interoperability (PBMEI), which employs
collaborative processes to represent collaboration requirements between enterprises. PBMEI transforms collaborative
processes into multiple executable interoperability processes through model transformations. In PBMEI, ontology is
used to annotate collaborative processes. During model transformation, new ontology information will be added into
processes. Such information will contribute to process execution. In order to support execution of interoperability
processes, an ontology-based and goal-driven (OBGD) semantic service bus is designed. This bus is based on a
symmetric mechanism for OBGD service invocation. The mechanism is designed according to OBGD Simple Object
Access Protocol (SOAP) which is composed of three parts: OBGD message format, OBGD module and OBGD
processing model. This mechanism has three properties: location transparency, semantics transparency and technique
transparency, which are critical to execution of interoperability processes. The bus also supports federated
deployment for inter-enterprise interoperability. PBMEI and the OBGD bus together constitute a federated approach
for solving interoperability problems.

Keywords: Enterprise Interoperability, collaboration, business process, collaborative process, interoperability
process, transformation, rank, cooperation rate, ontology, semantic annotation, Semantic Service Bus, MDA, MDI,
SOA, BPMN2.0, goal-driven, SOAP, comparison framework

