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Introduction

Many domains have greatly benefited from the processing power of computers for decades. As
new levels of computing power were unleashed, scientific progress gained momentum. However, a
processor needs memory to be able to compute: since their invention, processor and memory were
deeply tangled. Back in the early 1940’s, pioneer computers, like the ENIAC, were limited to a few bytes
of memory stored in vacuum tube accumulators. The next generation of memory, Delay line memory,
significantly increased the capacity, but remained volatile: it required power to maintain the information.
This deeply impacted the reliability of such systems. Non-volatile memory were discovered in the late
1940’s with Magnetic core memory, thus allowing information recovery after a power loss. Hard disk
drives were introduced by IBM in 1956 and still dominates the storage market nowadays. During almost
twenty years, non-volatile memory replaced volatile memories and satisfied processors’ needs, until
semiconductor-based memories supplanted them.

Though the power of a single processor was steadily increasing, it did not meet tremendous re-
quirements of scientific applications. Multiple processors were embedded within a single machine, the
Burroughs D825 being the first true multiprocessor system. However, semiconductors memories were
scarce and expensive. To remedy this issue, complex hierarchies of memory were introduced, ranging
from semi-conductor memories, magnetic cores, to hard disk drives. For commodity reasons, all these
memories were mapped into a single flat space called Virtual memory. This space was shared among all
processors. The processing power was significantly improved. Though an upper bound on the achieved
speed-up has been derived for parallel systems [8], it does not take the underlying memory layout into
account. Furthermore, dealing with multiple parallel accesses to a single shared memory was in itself a
challenging task and led to numerous algorithmic problems.

Because of hardware constraints, adding processors within a single machine comes at a high price. In
order to push processing power further, those multi-processor machines were interconnected: computer
clusters were born. Sadly, memory layouts became even more intricate: some processors, residing in
the same machine, were sharing the same memory while some other processors were working within
distributed memories. Modeling such platforms became very complex, related algorithmic problems
bewildering. Furthermore, before the 1980’s, memory access was slightly slower than internal register
access. However the gap between processor and memory has been growing since. Memory became a
serious bottleneck, processors facing the well-known memory wall. This led to the introduction of cache
memories: a large inexpensive low-speed memory associated with a small high-speed memory called
cache. This allowed to alleviate the penalty of memory accesses at a reasonable cost.

Following the advances in semiconductors lithography, each new generation of processors were
twice as faster as the previous one, leading to the famous “Moore’s law”. During the previous century,
clock speed and processing power were tightly coupled, and evolved fast. The pace has regrettably
slowed down at the beginning of the twenty-first century. Mainly because of heat dissipation and tran-
sistor leakages due to miniaturization, it was very hard to increase clock speed further. To cope with
these constraints, several processing units were embedded within a single multicore processor. The

i



ii INTRODUCTION

last decade has seen the advent of multicore processors in every computer and electronic device, from
personal laptops to supercomputers. Multicore architectures deeply impacted cache hierarchies by intro-
ducing the notion of shared/distributed cache even within a single processor. Furthermore, as opposed
to what has been done for decades, being oblivious of cache hierarchy began to impact performance.

Nowadays, heterogeneous multicore processors are emerging in order to cope with electronic con-
straints while offering ever increasing performance. This heterogeneity also resides in memory archi-
tectures: new processors embed always deeper cache hierarchies. From now on, cache hierarchies need
to be finely taken into consideration to unleash their full capabilities. Storage has gone through similar
changes: the cost of non-volatile semiconductor memories has decreased enough so as to allow its use
for storage devices. While these solid state disks are nowadays available, they are often mixed with hard
disk drives and tape drives. This hierarchy of non-volatile memories resembles that of volatile memories
found within processors. In terms of performance, this trend has definitively moved the focus from the
hardware to the software. Deploying an application on such platforms becomes a challenging task due
to the increasing heterogeneity at every level. In addition, the crucial need to squeeze the most out of
every resource leads to revisit many problems and to introduce new algorithms.

In this thesis, we focus on designing memory-aware algorithms and schedules tailored for hierarchi-
cal memory architectures. Indeed, these memory layouts can be found from within multicore processors
to the storage architectures of supercomputers. Various platforms have thus been studied in order to as-
sess the impact of such memory architectures on both performance and peak memory usage. Our main
contributions are sketched in the following paragraphs.

Complexity analysis and performance evaluation of matrix product on multicore
architectures

In Chapter 1, we study both the complexity and the performance of matrix product on multicore
architectures. Indeed, dense linear algebra kernels are the key to performance for many scientific appli-
cations. Some kernels, like matrix multiplication, have extensively been studied on parallel 2D processor
grid architectures. However, they are not well suited for multicore architectures, as memory is shared
and data accesses are performed through a hierarchy of caches. Taking further advantage of data lo-
cality is crucial to increase performance. To this end, we introduce a realistic but still tractable model
of a multicore processor with two levels of cache, and derive multiple lower bounds on the commu-
nication volume, based on the work of [95]. We extend the Maximum Reuse Algorithm, introduced
in [77], to multicore architectures, by taking into account both cache levels. We thus present the Multi-
core Maximum Reuse Algorithm (MMRA). Therefore, the focus is set on minimizing communications
by adapting the data allocation scheme. We assess both model relevance and algorithms performance
through an extensive set of experiments, ranging from simulation to real implementation on a GPU.

Tiled QR factorization

In Chapter 2, we revisit existing algorithms for the QR factorization of rectangular matrices com-
posed of p×q tiles, where p ≥ q. This dense linear algebra kernel lies at the foundation of many scientific
applications. It is more complex than the matrix product kernel studied in Chapter 1: parallelism needs
to be fully exploited on multicore processors in order to reach high levels of performance.

Within this framework, we study the critical paths and performance of algorithms such as SAMEH-
KUCK, FIBONACCI, GREEDY, and those found within PLASMA, a state-of-the-art dense linear algebra
library. Although neither FIBONACCI nor GREEDY is optimal, both are shown to be asymptotically
optimal for all matrices of size p = q2f(q), where f is any function such that lim+∞ f = 0. This
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novel and important complexity result applies to all matrices where p and q are proportional, p = λq,
with λ ≥ 1, thereby encompassing many important situations in practice (least squares). We provide
an extensive set of critical path lengths obtained through simulation, as well as real experiments that
show the superiority of the new algorithms for tall matrices both in terms of theoretical and practical
performance.

Well known algorithms like matrix product, where memory behavior could be precisely handled,
could benefit from having total control over caches. Having such a control over caches is equivalent
to consider them as fast local memories. Such memories are often encountered on today’s accelerator
architectures like the Cell processor [61] or GPUs. Moreover, on more complex kernels like QR fac-
torization, multicore processors bring a new level of parallelism that needs to be exploited. Processor
computing power increases much faster than memory bandwidth. As this well-known memory wall is
closing in, the need of such algorithms is getting more important. Both previous studies prove that good
results can be obtained using a high level, analytical and architecture-independent approach.

Scheduling streaming applications on a complex multicore platform

Streaming applications represent another example of widely used applications that could benefit
from multicore processors. In Chapter 3, we consider the problem of scheduling such streaming appli-
cations on a heterogeneous multicore platform, the IBM QS 22 platform, embedding two STI Cell BE
processors, so as to optimize the throughput of the application.

A stream is a sequence of instances, such as images in the case of a video stream. We show that de-
ploying a complex streaming application on a heterogeneous multicore architecture (the QS 22 platform)
under the objective of throughput maximization, that is the number of instances processed per time-unit,
is NP-complete in the strong sense. We thus present a mixed integer programming (MIP) approach that
allows to compute a mapping with optimal throughput. This extends the study introduced in [39] which
rather focuses on computing Grids, although new issues have to be solved due to the completely differ-
ent granularity of the tasks. We also propose simpler scheduling heuristics to compute mapping of the
application task-graph on the platform.

In order to assess the performance of our MIP approach and heuristics on the QS 22, a complex
software framework is needed: it has to map tasks on different types of processing elements and to handle
all communications. Although there already exist some frameworks dedicated to streaming applications,
none of them is able to deal with complex task graphs while allowing to statically select the mapping.
Thus, we have decided to develop our own framework. Experiments were conducted on 25 random task
graphs, having various depths, widths, and branching factors. The smallest graph has 20 tasks while
the largest has 135 tasks. For all graphs, we generated 10 variants with different Communication-to-
Computation Ratio (CCR), resulting in 250 different random applications and 230 hours of computation.

In the experiments, our MIP strategy is usually close to the throughput predicted by the linear pro-
gram, while displaying a good and scalable speed-up when using up to 16 SPEs. Some of the proposed
heuristics are also able to reach very good performance.

We have shown that considering load-balancing among processing elements, and carefully estimat-
ing communications between the different components of this bi-Cell platform, is the key to perfor-
mance. Overall, this demonstrates that scheduling a complex application on a heterogeneous multicore
processor is a challenging task, but that scheduling tools can help to achieve good performance.
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On optimal tree traversals for sparse matrix factorization

As already said, communication and memory architectures must be considered in order to offer a
high level of performance, especially for scientific applications. Moreover, on most hardware platforms,
the available memory or storage space determines the size of the problems that could be solved by such
applications. Therefore, for a given application, it is crucial to minimize the amount of required space.
This work is presented in Chapter 4.

Applications are often modeled by complex DAGs. However in a first step, we will study the com-
plexity of traversing tree-shaped workflows whose tasks require large I/O files. Such workflows typically
arise in the multifrontal method of sparse matrix factorization. Therefore, they impact a significant range
of scientific applications. We target a classical two-level memory system, where the main memory is
faster but smaller than the secondary memory. In this context, I/O represent transfers from a memory to
the other.

The traversal of a tree plays a key role in determining which amount of main memory and I/O
volume are needed for a successful execution of the whole tree. We propose a new exact algorithm
called MinMem to determine the minimum amount of main memory that is required to execute the tree
without any access to secondary memory, based upon a novel approach that systematically explores the
tree with a given amount of memory. Although the worst-case complexity of the proposed MinMem

algorithm is the same as that of Liu’s [69], it is much more efficient in practice, as demonstrated by
our experiments with elimination trees arising in sparse matrix factorization. We also show that there
exist trees where commonly used postorder based traversals require arbitrarily larger amounts of main
memory than the optimal one.

As for the determination of the minimum I/O volume to execute the tree with a given memory of
size M , we show that the problem is NP-hard, both for postorder based and for arbitrary traversals. We
provide a set of heuristics to solve this problem. Our heuristics use various greedy criteria to select the
next node to be scheduled, and those files to be temporarily written to secondary memory. All these
heuristics are evaluated using assembly trees arising in sparse matrix factorization methods.

Comparing archival policies for BLUE WATERS

Hierarchical memory architectures can be found from within multicore processors, to the storage
system of cutting-edge supercomputers where parallel hard disk drives are connected to archival devices.

In Chapter 5, we focus on BLUE WATERS, a supercomputer developed by the University of Illinois at
Urbana-Champaign, the NCSA, IBM, and the Great Lakes Consortium for Petascale Computation [19].
Indeed, BLUE WATERS implements a hierarchical storage system heavily relying upon a novel tape
storage system. The main objective of this study is to write data to tapes efficiently and resiliently. We
thus introduce two archival policies tailored for the tape storage system of BLUE WATERS and adapt
the well known RAIT strategy. We provide an analytical model of the tape storage platform of BLUE
WATERS, and use it to assess and analyze the performance of the three policies through simulations. We
use random workloads whose characteristics model various realistic scenarios. The average (weighted)
response time for each user is the main objective.

The experiments were performed using a discrete event based simulator: SimGrid [90, 67], on a
platform embedding 500 tape drives, matching the scale of BLUE WATERS. We show that PARALLEL
strategy outperforms the state-of-the-art RAIT policy when using the same policy for every request. We
introduce the HETERO policy and show that a significant benefit can be gained from using multiple
policies depending on the request’s characteristics.

Altogether these research topics led to several contributions, and allowed us to assess the impact of



v

hierarchical memory architectures on application performance. Admittedly, this work represents a first
step toward the design of high-level, architecture-independent, algorithms, capable of efficiently taking
memory layout into consideration.
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Chapter 1

Impact of cache misses on multicore matrix
product algorithms

1.1 Introduction

In this chapter, we study the matrix-matrix product on multicore architectures, and assess the impact
of cache misses on the performance of these algorithms. Indeed, dense linear algebra kernels are the key
to performance for many scientific applications.

Some of these kernels, like matrix multiplication, have extensively been studied on parallel architec-
tures. Two well-known parallel versions are Cannon’s algorithm [23] and the ScaLAPACK outer product
algorithm [17]. Typically, parallel implementations work well on 2D processor grids: input matrices are
sliced horizontally and vertically into square blocks; there is a one-to-one mapping of blocks onto phys-
ical resources; several communications can take place in parallel, both horizontally and vertically. Even
better, most of these communications can be overlapped with (independent) computations. All these
characteristics render the matrix product kernel quite amenable to an efficient parallel implementation
on 2D processor grids.

However, algorithms based on a 2D grid (virtual) topology are not well suited for multicore archi-
tectures. In particular, in a multicore architecture, memory is shared, and data accesses are performed
through a hierarchy of caches, from shared caches to distributed caches. To increase performance, we
need to take further advantage of data locality, in order to minimize data movement. This hierarchical
framework resembles that of out-of-core algorithms [95] (the shared cache being the disk) and that of
master-slave implementations with limited memory [77] (the shared cache being the master’s memory).
The latter paper [77] presents the Maximum Reuse Algorithm which aims at minimizing the communi-
cation volume from the master to the slaves. Here, we extend this study to multicore architectures, by
taking both the shared and distributed cache levels into account. We analytically show how to achieve
the best possible tradeoff between shared and distributed caches.

We implement and evaluate several algorithms on two multicore platforms, one equipped with one
Xeon quad-core, and the second one enriched with a GPU. It turns out that the impact of cache misses
is very different across both platforms, and we identify what are the main design parameters that lead
to peak performance for each target hardware configuration. For the sake of reusability, the source code
for the implementation and comparison of all algorithms is publicly available 1.

The rest of this chapter is organized as follows. Section 1.2 introduces the model for multicore
platforms, and derives new bounds on the number of shared and distributed cache misses of any ma-
trix product algorithm. These bounds derive from a refined analysis of the CCR (Communication-to-

1. http://graal.ens-lyon.fr/~mjacquel/mmre_cpu_gpu.html

1

http://graal.ens-lyon.fr/~mjacquel/mmre_cpu_gpu.html
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Computation Ratio) imposed by the underlying architecture. Section 1.3 presents the new algorithms
designed to optimize shared cache misses, distributed cache misses, or a combination of both. In sec-
tion 1.4 we evaluate the behavior of all algorithms on various cache configurations using a dedicated
simulator. In Section 1.5 we proceed to an experimental evaluation of these algorithms, together with a
bunch of reference algorithms and with the vendor library routines, on a CPU platform. Section 1.6 is
the counterpart for a GPU platform. Finally in Section 1.7, we provide final remarks, and directions for
future work.

1.2 Problem statement

1.2.1 Multicore architectures

. . .Corei

CD . . . CD

Corep2 Processing cores

Shared cache

Distributed caches

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1

Figure 1.1: Multicore architecture model.

A major difficulty of this study is to come up with a realistic but still tractable model of a multicore
processor. We assume that such a processor is composed of p2 cores, and that each core has the same
computing speed. The processor is connected to a memory, which is supposed to be large enough to
contain all necessary data (we do not deal with out-of-core execution here). The data path from the
memory to a computing core goes through two levels of caches. The first level of cache is shared among
all cores, and has size CS , while the second level of cache is distributed: each core has its own private
cache, of size CD. Caches are supposed to be inclusive, which means that the shared cache contains at
least all the data stored in every distributed cache. Therefore, this cache must be larger than the union of
all distributed caches: CS ≥ p2 × CD. Our caches are also “fully associative”, and can therefore store
any data from main memory. Figure 1.1 depicts the multicore architecture model.

The hierarchy of caches is used as follows. When a data is needed in a computing core, it is first
sought in the distributed cache of this core. If the data is not present in this cache, a distributed-cache
miss occurs, and the data is then sought in the shared cache. If it is not present in the shared cache
either, then a shared-cache miss occurs, and the data is loaded from the memory in the shared cache
and afterward in the distributed cache. When a core tries to write to an address that is not in the caches,
the same mechanism applies. Rather than trying to model this complex behavior, we assume in the
following an ideal cache model [38]: we suppose that we are able to totally control the behavior of each
cache, and that we can load any data into any cache (shared of distributed), with the constraint that a data
has to be first loaded in the shared cache before it could be loaded in the distributed cache. Although
somewhat unrealistic, this simplified model has been proven not too far from reality: it is shown in [38]
that an algorithm causing N cache misses with an ideal cache of size L will not cause more than 2N

cache misses with a cache of size 2L implementing a classical LRU replacement policy.
In the following, our objective is twofold: (i) minimize the number of cache misses during the

computation of matrix product, and (ii) minimize the predicted data access time of the algorithm. To
this end, we need to model the time needed for a data to be loaded in both caches. To get a simple and
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yet tractable model, we consider that cache speed is characterized by its bandwidth. The shared cache
has bandwidth σS , thus a block of size S needs S/σS time-unit to be loaded from the memory in the
shared cache, while each distributed cache has bandwidth σD. Moreover, we assume that concurrent
loads to several distributed caches are possible without contention. Since we assume an ideal cache
model with total control on the cache behavior, we also suppose that coherency mechanisms’ impact on
performance can be neglected.

Finally, the purpose of the algorithms described below is to compute the classical matrix product
C = A × B. In the following, we assume that A has size m × z, B has size z × n, and C has size
m×n. We use a block-oriented approach, to harness the power of BLAS routines [17]. Thus, the atomic
elements that we manipulate are not matrix coefficients but rather square blocks of coefficients of size
q × q. Typically, q ranges from 32 to 100 on most platforms.

1.2.2 Communication volume

The key point to performance in a multicore architecture is efficient data reuse. A simple way to
assess data locality is to count and minimize the number of cache misses, that is the number of times each
data has to be loaded in a cache. Since we have two types of caches in our model, we try to minimize
both the number of misses in the shared cache and the number of misses in the distributed caches. We
denote by MS the number of cache misses in the shared cache. As for distributed caches, since accesses
from different caches are concurrent, we denote by MD the maximum of all distributed caches misses:
if M (c)

D is the number of cache misses for the distributed cache of core c, MD = maxcM
(c)
D .

In a second step, since the former two objectives are conflicting, we aim at minimizing the overall
time Tdata required for data movement. With the previously introduced bandwidth, and assuming a fully
balanced load, it can be expressed as Tdata =

MS
σS

+
MD
σD

. Depending on the ratio between cache speeds,
this objective provides a tradeoff between both cache miss quantities.

1.2.3 Lower bound on communications

In [95], Irony, Toledo and Tiskin propose a lower bound on the number of communications needed
to perform a matrix product. We have extended this study to the hierarchical cache architecture. In what
follows, we consider a computing system (which consists of one or several computing cores) using a
cache of size Z. We estimate the number of computations that can be performed owing to Z consecutive
cache misses, that is owing to Z consecutive load operations. We recall that each matrix element is in
fact a matrix block of size q × q. We use the following notations :

– Let ηold, νold, and ξold be the number of blocks in the cache used by blocks of A, B and C just
before the Z cache misses.

– Let ηread, νread, and ξread be the number of blocks of A, B and C read in the main memory when
these Z cache misses occurs.

– Let comp(c) be the amount of computation done by core c

Before the Z cache misses, the cache holds at most Z blocks of data, therefore, after Z cache misses,
we have: �

ηold + νold + ξold ≤ Z

ηread + νread + ξread = Z
(1.1)

Loomis-Whitney’s inequality

The following lemma, given in [59] and based on Loomis-Whitney inequality, is valid for any con-
ventional matrix multiplication algorithm C = AB, where A is m × z, B is z × n and C is m × n.



4 CHAPTER 1. IMPACT OF CACHE MISSES ON MULTICORE MATRIX PRODUCT ALGORITHMS

A processor that contributes to NC elements of C and accesses NA elements of A and NB elements of
B can perform at most

√
NANBNC elementary multiplications. According to this lemma, if we let K

denote the number of elementary multiplications performed by the computing system, we have:

K ≤

�
NANBNC

No more than (ηold+ ηread)q
2 elements of A are accessed, hence NA = (ηold+ ηread)q

2. The same
holds for B and C: NB = (νold + νread)q

2 and NC = (ξold + ξread)q
2. Let us simplify the notations

using the following variables: 




ηold + ηread = η × Z

νold + νread = ν × Z

ξold + ξread = ξ × Z

(1.2)

Then we derive K ≤
√
ηνξ × Z

√
Z × q3. Writing K = kZ

√
Zq3, we obtain the following system

of equations:

MAXIMIZE k SUCH THAT
�
k ≤

√
ηνξ

η + ν + ξ ≤ 2

Note that the second inequality comes from Equation (1.1). This system admits a solution which is

η = ν = ξ =
2

3
and k =

�
8
27 . This gives us a lower bound on the Communication-to-Computation

Ratio (in terms of blocks) for any matrix multiplication algorithm:

CCR ≥
Z

k × Z
√
Z

=

�
27

8Z

Bound on shared-cache misses

We will first use the previously obtained lower bound to study shared-cache misses, considering
everything above this cache level as a single processor and the main memory as a master which sends
and receives data. Therefore, with Z = CS and K =

�
c comp(c), we have a lower bound on the

Communication-to-Computation Ratio for shared-cache misses:

CCRS =
MS

K
=

MS�
c comp(c)

≥

�
27

8CS

Bound on distributed-caches misses

In the case of the distributed caches, we first apply the previous result, on a single core c, with cache
size CD. We thus have

CCR
(c)

≥

�
27

8CD

We define the overall distributed CCR as the average of all CCR(c), so this result also holds for the
CCRD:

CCRD =
1

p2

p2�

c=1

(
MD

(c)

comp(c)
) ≥

�
27

8CD

Indeed, we could even have a stronger result, on the minimum of all CCR(c).
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Bound on overall data access time

The previous bound on the CCR can be extended to the data access time, as it is defined as a linear
combination of both MS and MD:

Tdata =
MS

σS
+

MD

σD

We can bound MS using the bound on the CCR:

MS = CCRS ×mnz ≥ mnz ×

�
27

8CS

As for distributed-cache misses, it is more complex, since MD is the maximum of all misses on
distributed caches, and CCRD is the average CCR among all cores. In order to get a tight bound, we
consider only algorithms where both computation and cache misses are equally distributed among all
cores (this applies to all algorithms developed in this chapter). In this case, we have

MD = max
c

M
(c)
D = M

(0)
D =

mnz

p2
× CCR

(0 )
≥

mnz

p2
×

�
27

8CD

Thus, we get the following bound on the overall data access time:

Tdata ≥ mnz ×

�
1

σS
×

�
27

8CS
+

1

p2σD
×

�
27

8CD

�
.

1.3 Algorithms

In the out-of-core algorithm of [95], the three matrices A, B and C are equally accessed throughout
time. This naturally leads to allocating one third of the available memory to each matrix. This algorithm
has a Communication-to-Computation Ratio of O

�
mnz√
M

�
for a memory of size M but it does not use the

memory optimally. The Maximum Reuse Algorithm [77] proposes a more efficient memory allocation:
it splits the available memory into 1 + µ + µ2 blocks, storing a square block Ci1...i2,j1...j2 of size µ2 of
matrix C, a row Bi1...i2,j of size µ of matrix B and one element Ai,j of matrix A (with i1 ≤ i ≤ i2 and
j1 ≤ j ≤ j2). This allows to compute Ci1...i2,j1...j2+ = Ai,j × Bi1...i2,j . Then, with the same block of
C, other computations can be accumulated by considering other elements of A and B. The block of C is
stored back only when it has been processed entirely, thus avoiding any future need of reading this block
to accumulate other contributions. Using this framework, the Communication-to-Computation Ratio is
2√
M

for large matrices.
To extend the Maximum Reuse Algorithm to multicore architectures, we must take into account

both cache levels. Depending on the objective, we modify the previous data allocation scheme so as
to fit with the shared cache, with the distributed caches, or with both. This will lead to three versions
of a new multicore Maximum Reuse Algorithm, or MMRA: SHAREDMMRA, DISTRIBUTEDMMRA
and TRADEOFFMMRA. In all cases, the main idea is to design a “data-thrifty” algorithm that reuses
matrix elements as much as possible and loads each required data only once in a given loop. Since the
outermost loop is prevalent, we load the largest possible square block of data in this loop, and adjust the
size of the other blocks for the inner loops, according to the objective (shared-cache, distributed-cache,
tradeoff) of the algorithm. We define two parameters that will prove helpful to compute the size of the
block of C that should be loaded in the shared cache or in a distributed cache:
• λ is the largest integer with 1 + λ+ λ2 ≤ CS ;
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• µ is the largest integer with 1 + µ+ µ2 ≤ CD.
In the following, we assume that λ is a multiple of µ, so that a block of size λ2 that fits in the shared
cache can be easily divided in blocks of size µ2 that fit in the distributed caches.

1.3.1 Minimizing shared-cache misses

Algorithm 1: SHAREDMMRA.
for Step = 1 to m×n

λ2 do
Load a new block C[i, . . . , i+ λ; j, . . . , j + λ] of C in the shared cache
for k = 1 to z do

Load a row B[k; j, . . . , j + λ] of B in the shared cache
for i� = i to i+ λ do

Load the element a = A[k; i�] in the shared cache
foreach core c = 1 . . . p2 in parallel do

Load the element a = A[k; i�] in the distributed cache of core c

for j� = j + (c− 1)×
λ
p2 to j + c×

λ
p2 do

Load Bc = B [k; j�] in the distributed cache of core c

Load Cc = C [i�; j�] in the distributed cache of core c

Compute the new contribution: Cc ← Cc + a×Bc

Update block Cc in the shared cache

Write back the block of C to the main memory

To minimize the number of shared-cache misses MS , we extend the Maximum Reuse Algorithm
with the new parameter λ. A square block Cblock of size λ2 of C is allocated in the shared cache,
together with a row of λ elements of B and one element of A. Then, each row of Cblock is divided into
sub-rows of λ

p2 elements, which are then distributed to the computing cores together with corresponding
element of B and one element of A, updated by the different cores, and written back in shared cache.
As soon as Cblock is completely updated, it is written back in main memory and a new Cblock is loaded.
This is described in Algorithm 1, and the memory layout is depicted in Figure 1.2.

Note that the space required in each distributed-cache to process one block of q2 elements of C is
1 + 1 + 1 blocks. For now, we have not made any assumption on the size of distributed caches. Let
SD be the size of each distributed cache, expressed in the number of matrix coefficients (remember that
CD is expressed in blocks): the constraint 3 ≤ CD simply translates into 3q2 ≤ SD. We compute the
number of cache misses of SHAREDMMRA as follows:

– Shared-cache misses
In the algorithm, the whole matrix C is loaded in the shared cache, thus resulting in mn cache
misses. For the computation of each block of size λ2, z rows of size λ are loaded from B, and
z×λ elements of A are accessed. Since there are mn/λ2 steps, this amounts to a total number of
shared cache misses of:

MS =
mn

λ2
×

�
z × (λ+ λ) + λ

2
�
= mn+

2mnz

λ

The Communication-to-Computation Ratio is therefore:

CCRS =
mn+

2mnz
λ

mnz
=

1

z
+

2

λ
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A
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λ

B

λ
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k

a

Cblock

Crow

in core c

Figure 1.2: Data layout for Algorithm 1.

For large matrices, this leads to a shared-cache CCR of 2/λ, which is close to the lower bound
derived earlier.

– Distributed-caches misses
In the algorithm, each block of C is sequentially updated z times by rows of λ elements, each
row is distributed element per element, thus requiring λ

p2 steps. Therefore, each distributed cache
holds one element of C. This results in mnz

p2 cache misses. For the computation of each block of
size λ2, z ×

λ
p2 elements are loaded from B in each distributed cache, and z × λ elements of A

are accessed. Since there are mn/λ2 steps, this amounts to a total number of:

MD =

mn
λ2 × z × λ× p2 ×

�
1 +

λ
p2 +

λ
p2

�

p2
=

2mnz

p2
+

mnz

λ

The Communication-to-Computation Ratio is therefore:

CCRD =

2mnz
p2 +

mnz
λ

mnz
p2

= 2 +
p2

λ

This Communication-to-Computation Ratio does not depend upon the dimensions of the matrices,
and is the same for large matrices. Moreover, it is far from the lower bound on distributed cache
misses.

1.3.2 Minimizing distributed-cache misses

The next objective is to minimize the number of distributed-cache misses. To this end, we use the
parameter µ defined earlier to store in each distributed cache a square block of size µ2 of C, a fraction
of row (of size µ) of B and one element of A. Contrarily to the previous algorithm, the block of C will
be totally computed before being written back to the shared cache. All p2 cores work on different blocks
of C. Thanks to the constraint p2 × CD ≤ CS , we know that the shared cache has the capacity to store
all necessary data.

The µ × µ blocks of C are distributed among the distributed caches in a 2-D cyclic way, because it
helps reduce (and balance between A and B) the number of shared-cache misses: in this case, we load a
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Algorithm 2: DISTRIBUTEDMMRA.
offseti = (My_Core_Num()− 1) (mod p)

offsetj = �
My_Core_Num()−1

p �

for Step = 1 to m×n
p2µ2 do

Load a new block C[i, . . . , i+ pµ; j, . . . , j + pµ] of C in the shared cache
foreach core c = 1 . . . p2 in parallel do

Load
Cc = C[i+offseti×µ, . . . , i+(offseti+1)×µ; j+offsetj ×µ, . . . , j+(offsetj +1)×µ]

in the distributed cache of core c

for k = 1 to z do
Load a row B[k; j, . . . , j + pµ] of B in the shared cache
foreach core c = 1 . . . p2 in parallel do

Load Bc = B[k; j + offsetj × µ, . . . , j + (offsetj + 1)× µ] in the distributed cache
of core c

for i� = i+ offseti × µ to i+ (offseti + 1)× µ do
Load the element a = A[k; i�] in the shared cache
Load the element a = A[k; i�] in the distributed cache of core c

Compute the new contribution: Cc ← Cc + a×Bc

foreach core c = 1 . . . p2 in parallel do
Update block Cc in the shared cache

Write back the block of C to the main memory

pµ×pµ block of C in shared cache, together with a row of pµ elements of B. Then, p×µ elements from
a column of A are sequentially loaded in the shared cache (p non contiguous elements are loaded at each
step), then distributed among distributed caches (cores in the same “row” (resp. “column”) accumulate
the contribution of the same (resp. different) element of A but of different (resp. the same) p×µ fraction
of row from B). We compute the number of cache misses of DISTRIBUTEDMMRA (see Algorithm 2)
as follows:

– Shared-cache misses
The number of shared-cache misses is:

MS =
mn

p2µ2
×
�
p
2
µ
2
+ z × 2pµ

�
= mn+

2mnz

µp

Hence, the Communication-to-Computation Ratio is:

CCRS =
mn+

2mnz
µp

mnz
=

1

z
+

2

µp

For large matrices, the Communication-to-Computation Ratio is 2
µp =

�
32

8×pCD
. This is far from

the lower bound since pCD ≤ p2CD ≤ CS .
– Distributed-caches misses

The number of distributed-cache misses is:

MD =

mn
p2µ2 × p2 ×

�
µ2 + z × 2µ

�

p2
=

mn

p2
+

2mnz

µ× p2
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Therefore, the Communication-to-Computation Ratio is:

CCRD =

mn
p2 +

2mnz
µ×p2

mnz
p2

=
1

z
+

2

µ

For large matrices, the Communication-to-Computation Ratio is asymptotically close to the value
2
µ =

�
32

8CD
, which is close to the lower bound

�
27

8CD
.

1.3.3 Minimizing data access time

The two previous objectives are antagonistic: for both previous algorithms, optimizing the number
of cache misses of one type leads to a large number of cache misses of the other type. Indeed, mini-
mizing MS ends up with a number of distributed-cache misses proportional to the common dimension
of matrices A and B, and in the case of large matrices this is clearly problematic. On the other hand,
focusing only on MD is not efficient since we dramatically under-use the shared cache: a large part of it
is not utilized.

This motivates us to look for a tradeoff between the latter two solutions. However, both kinds of
cache misses have different costs, since bandwidths between each level of the memory architecture are
different. Hence we introduce the overall time for data movement, defined as:

Tdata =
MS

σS
+

MD

σD

Depending on the ratio between cache speeds, this objective provides a tradeoff between both cache
miss numbers. To derive an algorithm optimizing this tradeoff, we start from the algorithm presented
for optimizing the shared-cache misses. Looking closer to the downside of this algorithm, which is
the fact that the part of MD due to the elements of C is proportional to the common dimension z of
matrices A and B, we see that we can reduce this amount by loading blocks of β columns (resp. of
rows) of A (resp. B). This way, square blocks of C will be processed longer by the cores before being
unloaded and written back in shared-cache, instead of being unloaded after that every element of the
column of A residing in shared-cache has been used. However, blocks of C must be smaller than before,
and instead of being λ2 blocks, they are now of size α2 where α and β are defined under the constraint
2α× β + α2 ≤ CD. The sketch of the TRADEOFFMMRA (see Algorithm 3) is the following:

1. A block of size α × α of C is loaded in the shared cache. Its size satisfies p2 × µ2 ≤ α2 ≤ λ2.
Both extreme cases are obtained when one of σD and σS is negligible in front of the other.

2. In the shared cache, we also load a block from B, of size β×α, and a block from A of size α×β.
Thus, we have 2α× β + α2 ≤ CD.

3. The α × α block of C is split into sub-blocks of size µ × µ which are processed by the different
cores. These sub-blocks of C are cyclically distributed among every distributed-caches. The same
holds for the block-row of B which is split into β × µ block-rows and cyclically distributed, row
by row (i.e. by blocks of size 1× µ), among every distributed-caches.

4. The contribution of the corresponding β (fractions of) columns of A and β (fractions of) lines of
B is added to the block of C. Then, another µ × µ block of C residing in the shared cache is
distributed among every distributed-caches, going back to step 3.

5. As soon as all elements of A and B have contributed to the α × α block of C, another β

columns/lines from A/B are loaded in shared cache, going back to step 2.
6. Once the α × α block of C in shared cache is totally computed, a new one is loaded, going back

to step 1.
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Figure 1.3: Data distribution of matrices A, B and C: light gray blocks reside in shared-cache, dark
gray blocks are distributed among distributed-caches (α = 8, µ = 2, p2 = 4).

We compute the number of cache misses as follows:
– Shared-cache misses

The number of shared-cache misses is given by:

MS =
mn

α2

�
α
2
+

z

β
× 2αβ

�
= mn+

2mnz

α

The Communication-to-Computation Ratio is therefore:

CCRS =
1

z
+

2

α

For large matrices, the Communication-to-Computation Ratio is asymptotically close to 1
α

�
32
8

which is farther from the lower bound than the shared-cache optimized version since α ≤ λ ≈
√
CS .

– Distributed-caches misses
In the general case (i.e. α > pµ), the number of distributed-cache misses achieved by TRADE-
OFFMMRA is:

MD =
1

p22
×

mn

α2
×

�
α2

µ2
×

�
µ
2
×

z

β
+

z

β
× 2βµ

��
=

mn

p2
×

z

β
+

2mnz

p2µ

The Communication-to-Computation Ratio is therefore 1
β +

2
µ , which for large matrices is asymp-

totically close to 1
β +

�
32

8CD
. This is farther from the lower bound

�
27

8CD
derived earlier than with

the dedicated algorithm. To optimize this CCR, we could try to increase the value of β. However,
increasing the parameter β implies a lower value of α, resulting in more shared-cache misses.
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Algorithm 3: TRADEOFFMMRA
offseti = (My_Core_Num()− 1) (mod p)

offsetj = �
My_Core_Num()−1

p �

for Step = 1 to m×n
α2 do

Load a new block C[i, . . . , i+ α; j, . . . , j + α] of C in the shared cache
for Substep = 1 to z

β do
k = 1 + (Substep− 1)× β

Load a new block row B[k, . . . , k + β; j, . . . , j + α] of B in the shared cache
Load a new block column A[i, . . . , i+ α; 1 + (k − 1)× β, . . . , 1 + k × β] of A in the
shared cache
foreach core c = 1 . . . p2 in parallel do

for subi = 1 to subi =
α
pµ do

for subj = 1 to subj =
α
pµ do

Load
Cµc = C[i+ offseti ×

α
p + (subi− 1)× µ, . . . , i+ offseti ×

α
p + (subi)×

µ; j + offsetj ×
α
p + (subj − 1)× µ, . . . , j + offsetj )×

α
p + (subj)× µ] in

the distributed cache of core c

for k� = k to k� = k + β do
Load
Bc = B[k�; j+offsetj×

α
p+(subj−1)×µ, . . . , j+offsetj×

α
p+(subj)×µ]

in the distributed cache of core c

for i� = i+ offseti ×
α
p + (subi− 1)× µ to i+ offseti ×

α
p + (subi)× µ

do
Load the element a = A[i�, k�] in the distributed cache of core c

Compute the new contribution: Cc ← Cc + a×Bc

Update block Cµc in the shared cache

Write back the block of C to the main memory

Remark In the special case α = pµ, we only need to load each µ × µ sub-block of C once,
since a core is only in charge of one sub-block of C, therefore the number of distributed-caches
misses becomes:

MD =
1

p2
×

mn

α2
×

�
α2

µ2
×

�
µ
2
× 1 +

z

β
× 2βµ

��
=

mn

p2
+

2mnz

p2µ

In this case, we come back to the distributed-cache optimized case, and the distributed CCR is
close to the bound.

– Data access time
With this algorithm, we get an overall data access time of:

Tdata =
MS

σS
+

MD

σD
=

mn+
2mnz
α

σS
+

mnz
p2β +

2mnz
p2µ

σD

Together with the constraint 2α × β + α2 ≤ CD, this expression allows us to compute the best
value for parameters α and β, depending on the ratio σS/σD. Since we work under the assumption



12 CHAPTER 1. IMPACT OF CACHE MISSES ON MULTICORE MATRIX PRODUCT ALGORITHMS

of large matrices, the first term in mn can be neglected in front of the other terms: in essence the
problem reduces to minimizing the following expression:

2

σSα
+

1

p2σDβ
+

2

p2σDµ

The constraint 2βα+ α2 ≤ CS enables us to express β as a function of α and CS . As a matter of
a fact, we have:

β ≤
CS − α2

2α

Hence, the objective function becomes:

F (α) =
2

σSα
+

2α

p2σD(CS − α2)

Note that we have removed the term 2
p2σDµ because it only depends on µ and therefore is minimal

when µ = �
�
CS − 3/4− 1/2�, i.e. its largest possible value.

The derivative F �(α) is:

F
�
(α) =

2(CS + α2)

p2σD(CS − α2)2
−

2

σSα
2

And therefore, the root is

αnum =

�����CS

1 + 2
p2σD
σS

−

�
1 + 8

p2σD
σS

2

�
p2σD
σS

− 1

�

Altogether, the best parameters values in order to minimize the total data access time in the case
of square blocks are: 





α = min (αmax,max (pµ, αnum))

β = max

��
CS − α2

2α

�
, 1

�

where:
αmax =

�
CS + 1− 1

Parameter α depends on the values of bandwidths σS and σD. In both extreme cases, it will take
a particular value indicating that tradeoff algorithm will follow the sketch of either shared-cache
optimized version or distributed-caches one:
– When bandwidth σD is significantly higher than σS , the parameter α becomes:

αnum ≈

�
CS =⇒ α = αmax, β = 1

which means that the tradeoff algorithm chooses the shared-cache optimized version whenever
distributed caches are significantly faster than the shared cache.

– On the contrary, when the bandwidth σS is significantly higher than σD, α becomes:

αnum ≈

�

CS
2p2σD

−σS
=⇒ α = pµ, β = 1

which means that the tradeoff algorithm chooses the distributed optimized version whenever
distributed caches are significantly slower than the shared cache (although this situation does
not seem realistic in practice).
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1.4 Performance evaluation through simulation

We have presented three algorithms minimizing different objectives (shared cache misses, distributed
cache misses and overall time spent in data movement) and provided a theoretical analysis of their per-
formance. However, our simplified multicore model makes some assumptions that are not realistic on
a real hardware platform. In particular it uses an ideal and omniscient data replacement policy instead
of a classical LRU policy. This led us to design a multicore cache simulator and implement all our al-
gorithms, as well as the outer-product [17] and Toledo [95] algorithms, using different cache policies.
The goal is to experimentally assess the impact of the policies on the actual performance of the algo-
rithms, and to measure the gap between the theoretical prediction and the observed behavior. The main
motivation behind the choice of a simulator prior to a real hardware platform resides in commodity rea-
sons: simulation enables to obtain desired results faster and allows to easily modify multicore processor
parameters (cache sizes, number of cores, bandwidths, . . . ).

1.4.1 Simulation setting and cache management policies

The driving feature of our simulator was simplicity. It implements the cache hierarchy of our model,
and basically counts the number of cache misses in each cache level. It offers two data replacement
policies, LRU (Least Recently Used) and ideal. In the LRU mode, read and write operations are made at
the distributed cache level (top of hierarchy); if a miss occurs, operations are propagated throughout the
hierarchy until a cache hit happens. In the ideal mode, the user manually decides which data needs to be
loaded/unloaded in a given cache; I/O operations are not propagated throughout the hierarchy in case of
a cache miss: it is the user responsibility to guarantee that a given data is present in every caches below
the target cache.

Algorithms We have implemented two reference algorithms: (i) ScaLaPack outer-product, the algo-
rithm in [17], for which we organize cores as a (virtual) processor torus and distribute square blocks of
data elements to be updated among them; and (ii) the equal-layout algorithm, inspired by [95], which
uses a simple equal-size memory scheme: one third of distributed caches is equally allocated to each
loaded matrix sub-block. In fact, the algorithm in [95] deals with a single cache level, hence we divide it
in two main versions, Shared Equal for shared cache optimization, and Distributed Equal for distributed
cache optimization. This led to four versions of the equal-layout algorithm: shared/distributed version,
and ideal/LRU cache. We have also implemented the three versions of the Multicore Maximum Reuse
Algorithm : SHAREDMMRA, DISTRIBUTEDMMRA and TRADEOFFMMRA for each management
policy.

Altogether, this leads to 11 versions, which are labeled as follows:
– OUTERPRODUCT is the outer product algorithm
– SHAREDOPT is SHAREDMMRA using the entire CS

– SHAREDOPT-LRU is SHAREDMMRA using half of CS , the other half being used as a buffer for
LRU policy

– DISTRIBUTEDOPT is DISTRIBUTEDMMRA using the entire CD

– DISTRIBUTEDOPT-LRU is DISTRIBUTEDMMRA using half of CD (other half for LRU)
– TRADEOFF is TRADEOFFMMRA using the entire CS and CD

– TRADEOFF-LRU is the TRADEOFFMMRA using half of CS and CD (other half for LRU)
– DISTRIBUTEDEQUAL is the equal-layout algorithm [95] using the entire CD

– DISTRIBUTEDEQUAL-LRU is the equal-layout algorithm [95] using half of CD (other half for
LRU)
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– SHAREDEQUAL is the equal-layout algorithm [95] using the entire CS

– SHAREDEQUAL-LRU is the equal-layout algorithm [95] using half of CS (other half for LRU)

Simulated platform In the experiments, we simulated a "realistic" quad-core processor with 8MB
of shared cache and four distributed caches of size 256KB dedicated to both data and instruction. We
assume that two-thirds of the distributed caches are dedicated to data, and one-third for the instructions.
Results using a more pessimistic repartition of one half for data and one-half for instructions are also
given. Recall that square blocks of matrix coefficients have size q × q. Depending on the chosen unit
block size, caches sizes communicated to our algorithms will thus be the following:

– For q = 32: we derive CS = 977 and CD = 21 (or CD = 16 for the pessimistic assumption)
– For q = 64: CS = 245 & CD = 6 (or CD = 4)
– Finally, for q = 80: CS = 157 & CD = 4 (or CD = 3).

1.4.2 Cache management policies: LRU vs. ideal

Here we assess the impact of the data replacement policy on the number of shared cache misses
and on the performance achieved by the algorithm. Figure 1.4 shows the total number of shared cache
misses for SHAREDOPT, in function of the matrix dimension. Figure 1.5 is the counterpart of Figure
1.4 but for DISTRIBUTEDOPT. The same holds for Figure 1.6 and TRADEOFF.

SHAREDOPT-LRU (2CS)

SHAREDOPT-LRU (CS)

Formula (CS)

2× Formula (CS)
150000000

250000000

M
S

50 100 150 200

50000000

100000000

200000000

250 300 350 400 450 500 550 600
Matrix Order (In block units)

0

Figure 1.4: Impact of LRU policy on the number of shared cache misses MS of SHAREDOPT with
CS = 977

While LRU (CS) (the LRU policy with a cache of size CS) achieves significantly more cache-misses
than predicted by the theoretical formula, LRU (2CS) is quite close and always achieve less than twice
the number of cache misses predicted by the theoretical formula, thereby experimentally validating the
prediction of [38]. Furthermore, similar results are obtained for SHAREDEQUAL and DISTRIBUTED-
EQUAL. Note that OUTERPRODUCT is insensitive to cache policies, since it is not focusing on cache
usage.

This leads us to run our tests using the following two simulation settings:
– The IDEAL setting, which corresponds to the use of the omniscient ideal data replacement policy

assumed in the theoretical model. It relies on the ideal mode of the simulator and declares entire
cache sizes (CS and/or CD) to the algorithms
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DISTRIBUTEDOPT-LRU (2CS)

DISTRIBUTEDOPT-LRU (CS)

2× Formula (CS)

Formula (CS)

250 450 500 550 600
Matrix Order (In block units)

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

M
D

50 100 150 200 300 350 400

Figure 1.5: Impact of LRU policy on the number of distributed cache misses MD of DISTRIBUTEDOPT
with CD = 21

TRADEOFF-LRU (2CS)

TRADEOFF-LRU (CS)

Formula (CS)

2× Formula (CS)40000000

60000000

T
da

ta

50 100 150 200 250

20000000

30000000

50000000

300 350 400 450 500 550 600
Matrix Order (In block units)

0

10000000

Figure 1.6: Impact of LRU policy on Tdata of TRADEOFF with CS = 977 and CD = 21

– The LRU setting, which relies on a LRU cache data replacement policy, but declares only one
half of cache sizes to the algorithms. The other half is thus used by the LRU policy as kind of an
automatic prefetching buffer.

1.4.3 Performance results

SHAREDMMRA Figure 1.7 depicts the number of shared cache misses achieved by SHAREDOPT ver-
sions LRU and IDEAL, in comparison with OUTERPRODUCT, SHAREDEQUAL and the lower bound
m3

�
27
8CS

, according to the matrix dimension m. For every block sizes q, we see that SHAREDOPT

performs significantly better than OUTERPRODUCT and SHAREDEQUAL for the LRU setting. Under
the IDEAL setting, it is closer to the lower bound, but this latter setting is not realistic.

DISTRIBUTEDMMRA Figure 1.8 is the counterpart of Figure 1.7 for distributed caches. On Fig-
ure 1.8a and Figure 1.8b, we similarly see that DISTRIBUTEDOPT performs significantly better than
OUTERPRODUCT and DISTRIBUTEDEQUAL for the LRU setting. Under the IDEAL setting, it is very
close to the lower bound m3

p2

�
27

8CD
.
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However, if we increase the size of the unit block, say q = 64 instead of 32, DISTRIBUTEDOPT has
not enough space in memory to perform better than OUTERPRODUCT and DISTRIBUTEDEQUAL: as a
matter of a fact, in that case µ = 1. This is shown on Figure 1.8c.

Altogether, unit block of size q = 64 or larger is not a relevant choice for Distributed Opt., but with
q = 32, it will always outperform other algorithms in terms of distributed cache misses.

TRADEOFFMMRA The overall time spent in data movement Tdata of all six LRU algorithms is shown
for each cache configuration on Figure 1.9, Figure 1.10 and Figure 1.11. Using q = 32 and LRU setting,
as shown on Figures 1.9a and 1.9c , TRADEOFF offers the best overall performance, although SHARE-
DOPT is very close. Moreover, looking at Figures 1.9b and 1.9d, we see that TRADEOFF outperforms
even more significantly other algorithms with the IDEAL setting.

However, using q = 64 and LRU setting, as shown on Figures 1.10a and 1.10c , TRADEOFF only
offers the best overall performance under the pessimistic distributed-cache usage assumption (data can
only occupy one half of distributed caches), although SHAREDOPT is once again very close. If we use
the loosened cache usage constraint, SHAREDOPT takes the lead over TRADEOFF. This is due to the fact
that the LRU policy with a larger distributed-cache benefits more to SHAREDOPT (which is unaware of
distributed caches) than to TRADEOFF. This is confirmed by Figures 1.10b and 1.10d, on which we see
that TRADEOFF and SHAREDOPT are tie with the IDEAL setting.

Finally, using q = 80 with LRU setting, as depicted on Figures 1.11a and 1.11c , TRADEOFF never
ranks better than SHAREDOPT under both cache usage assumptions. This trend is probably due to the
artificial constraints set on cache-related parameters: for instance we require that α divides m and is a
multiple of both p and µ. In the implementations, parameters λ and α can be significantly lower than
their optimal numerical value. This is confirmed by Figures 1.11b and 1.11d, on which we see that
SHAREDOPT significantly outperforms TRADEOFF even using the IDEAL setting.

We also run another experiment to assess the impact of cache bandwidths on Tdata. We introduce the
parameter r defined as: r =

σS
σD+σS

. Figure 1.12 reports results for square matrices of size m = 384

and the several caches configurations used before.
With q = 32 we see that TRADEOFF performs best, and still offers the best performance even after

distributed misses have become predominant under both optimistic and pessimistic distributed-caches
usage assumptions. When the latter event occurs, plots cross over: SHAREDOPT and DISTRIBUTEDOPT
achieve the same Tdata. We also point out that when r = 0, TRADEOFF achieves almost the same Tdata
than SHAREDOPT, while when r = 1, it ties DISTRIBUTEDOPT.

However, with q = 64 and q = 80 TRADEOFF does not offer the lowest Tdata, SHAREDOPT ties
or outperforms while shared cache misses are predominant under both distributed-caches assumptions.
This is probably because our implementation suffers from the rounding of cache parameters: parameters
α and β cannot be adjusted adequately.

1.5 Performance evaluation on CPU

We have designed and analytically evaluated three algorithms minimizing shared cache misses, dis-
tributed cache misses, and the overall time spent in data movement. The behavior of all three algorithms
has been validated through simulation in Section 1.4. In this section, we provide an implementation of
these algorithms on a real quad-core CPU platform. Section 1.6 is the counterpart for a GPU platform.

The goal of this experimental section is to evaluate the impact of real hardware caches, which are not
fully associative in practice. Also, we made the hypothesis that the cost of cache misses would dominate
execution time, and this hypothesis need be confronted to reality.
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Figure 1.12: Cache bandwidth impact on Tdata in function of r, the ratio between σS and σD. Results
are given for a square matrix of dimension m = 384.
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1.5.1 Experimental setting

Hardware platform The hardware platform used in this study is based on two Intel Xeon E5520
processors running at 2.26 GHz. The Intel Xeon E5520 processor is a quad core processor with a 3

level cache hierarchy, L1 and L2 caches being private while L3 cache is shared across all cores. Quite
naturally, we ignore the L1 cache and focus on the L2 cache that plays the role of the distributed cache
CD, while the L3 cache will be denoted CS .

However, despite this simplification, there remains differences between this architecture and the
theoretical model. First, these caches are not fully associative : CD is 8-way associative while CS is
16-way associative. Moreover, they do not implement an optimal omniscient data replacement policy,
but instead they operate with the classical LRU policy. Furthermore, CD is used to cache both data and
instructions, while we considered only data in our study.

Processors 2x Intel Xeon E5520
Core arrangement Processor 0: core 0-3

Processor 1: core 4-7
Core frequency 2.26GHz
QPI bandwidth 23.44 GB/s per link

L1 cache size 32 KB (data) / 32 KB (instruction)
L2 cache size 256 KB
L3 cache size 8 MB

Cache line size 64 B
Page size 4 KB / 2 MB (small/huge pages)

L1 data TLB 48/32 entries for small/huge pages
L2 TLB 512 entries for small pages

Memory type 8x 2 GB DDR3-1066, registered, ECC
3 channels (12 GB)on processor 0
2 channels (4 GB) on processor 1
8.53 GB/s per channel

Operating System Ubuntu 8.04, Kernel 2.6.28.10 NUMA

Table 1.1: System configuration

The system also embeds 16GB of memory, 12GB being connected to the first processor, and 4GB
to the second. This somewhat peculiar memory repartition is explained by the fact that our experiments
will be conducted on the first processor only, thus giving it more local memory seems natural. Detailed
characteristics of the system are displayed in Table 1.1.

Software framework For the experiments, the following software stack has been used:
– GCC 4.4.2 for compilation
– Numactl and Libnuma [65] for affinity
– Hwloc [20] for hardware topology detection (number of cores, cache sizes, . . . )
– GotoBLAS2 [24] for BLAS Level 3 routines
– Intel MKL [57] for BLAS Level 3 routines
– Intel VTune [58] for cache misses sampling
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Algorithms In the following experiments, we compare a large number of algorithmic versions. In
addition to the vendor library, we have implemented five algorithms: two reference algorithms, the
ScaLaPack outer-product [17] and the equal-layout algorithm [95], and the three optimized algorithms
SHAREDMMRA, DISTRIBUTEDMMRA and TRADEOFFMMRA. Each of the latter three algorithms
comes in two versions that differ in the size of the cache allocation: either we use the whole cache, as in
the ideal versions described in Section 1.3, or we use half of it, the other half being used as a buffer for
LRU policy. The equal-layout algorithm is derived along four versions: shared/distributed version, and
ideal/LRU cache. Altogether, this leads to 12 versions, which are labeled as follows:

– PARALLEL is the vendor library (MKL or GotoBLAS2) parallel matrix product implementation
– OUTERPRODUCT is the outer product algorithm
– SHAREDOPT is SHAREDMMRA using the entire CS

– SHAREDOPT-LRU is SHAREDMMRA using half of CS , the other half being used as a buffer for
LRU policy

– DISTRIBUTEDOPT is DISTRIBUTEDMMRA using the entire CD

– DISTRIBUTEDOPT-LRU is DISTRIBUTEDMMRA using half of CD (other half for LRU)
– TRADEOFF is TRADEOFFMMRA using the entire CS and CD

– TRADEOFF-LRU is the TRADEOFFMMRA using half of CS and CD (other half for LRU)
– DISTRIBUTEDEQUAL is the equal-layout algorithm [95] using the entire CD

– DISTRIBUTEDEQUAL-LRU is the equal-layout algorithm [95] using half of CD (other half for
LRU)

– SHAREDEQUAL is the equal-layout algorithm [95] using the entire CS

– SHAREDEQUAL-LRU is the equal-layout algorithm [95] using half of CS (other half for LRU)

1.5.2 Performance results: execution time

The first performance metric that we naturally evaluate is the running time. Since our analysis is
based on the assumption that execution time is limited by the cost of cache misses, we aim here at
validating this hypothesis.

In Figures 1.13a and 1.13b, we plot the runtime of every algorithms using square blocks of 96 by
96 elements for BLAS calls. Indeed, it is widely assumed that memory latencies are hidden when using
that block size. We also plot the running times of libraries when called on the whole matrices.

With both libraries, every algorithm offers almost the same performance: the gap between the slow-
est algorithm and the fastest one is only 5%. Moreover, using those parameters, all algorithms are able to
reach up to 89% of the performance of libraries, TRADEOFF-LRU being the best performing algorithm
in that experiment.

However, this low difference between each algorithms is increased when calling BLAS on smaller
blocks. On Figures 1.13c and 1.13d, we did use 48 by 48 blocks of matrix coefficients as the block unit
of our algorithms. We can see that the algorithms behave differently to that change, and that algorithms
taking CS into consideration offer the best performance. TRADEOFF-LRU being the best of them.

Altogether, the performance offered by our algorithms do not hold the comparison with both vendor
libraries. Considering the fact that libraries are really low-level implementations whereas we aimed at
design higher-level strategies, it seems natural. However, developing such low-level libraries requires
a huge effort for the programmers, and everything needs to be done from scratch for each architecture.
In addition, the scalability of both our algorithms and of these libraries should also be checked, but it is
still hard to find general purpose x86 multicore processors with more than 8 cores, thus postponing the
assessment for further work.

Furthermore, if we restrict the comparison to the algorithms that we have implemented, there is a
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significant difference between them only for the smallest block sizes, which are not used in practice
because with such blocks, data reads and writes are not overlapped with computations.

In conclusion, cache misses do not seem to have an important impact on run-times (but MS appears
more important than MD, as expected). Several other mechanisms interact in modern multicore proces-
sors, and a cache miss does not necessarily lead to a longer run-time than a cache hit because it might
improve prefetching. Unfortunately, refining the model and taking other metrics like TLB misses of
prefetching into consideration would render the analysis intractable.

Finally, we observe that three blocks of 96 by 96 matrix elements entirely fill CD, thus diminishing
the ability of MMRA to handle distributed caches properly, because the value of µ is obviously forced
to 1. For the same reason, the value of λ is also limited. From this observation we think that MMRA
would benefit a lot from larger caches, increasing the decision space.

1.5.3 Performance results: cache misses

We also study the behavior of our algorithms in terms of cache misses. The objective is twofold: we
aim at validating the behavior of our algorithms, while giving a more precise analysis of the impact of
cache misses on run-time.

Figures 1.14a, 1.14b, 1.14c and 1.14d show that for MS , we observe what we expected: algorithms
focusing on CS are the best alternatives and algorithms focusing on distributed caches are the worst
alternatives. For big matrices, MMRA sometimes performs better than libraries on this precise metric.
Moreover, diminishing block size increases the gap between algorithms, similarly to what we observe
for run-time.

Interestingly, in some cases, increasing the size of the matrices decreases the number of shared
cache misses. This behavior is due to the fact that CS is 16-way associative whereas we assume full-
associativity in our study. Fully-associative caches are extremely costly, and makes the mapping be-
tween cache and memory a combinatorial problem. That is why real hardware rather implement limited
associativity caches. In those cases, the associativity has a non negligible impact on MS .

However, even though we are able to reduce MS , the run-time of our algorithms does not follow
the same trend. On Figures 1.15a, 1.15b, 1.15c and 1.15d, we measure the number of shared caches
misses that are not prefetched by the processor. Theses misses are the ones that actually slowdown the
processor, thus having a direct impact on run-time. Our algorithms suffer from their more complicated
access pattern, which drastically reduce prefetching. Conversely, libraries and outer product keep their
access patterns simple enough, to fully benefit from hardware prefetchers, thus making most of their
cache misses for free.

When considering the total number of distributed caches misses, the experiments (see Figures 1.16a,
1.16b, 1.16c and 1.16d) show that with blocks of 96 by 96 elements, the difference in performance
between each algorithm is low, and algorithms focusing on CD do not significantly reduce the number
of distributed cache misses. Surprisingly in that case, both libraries make significantly higher MD.

When we use smaller blocks, the difference in performance increases but we cannot observe the
dominance of DISTRIBUTEDMMRA, though it is theoretically optimal. This small impact of algorithms
on MD is probably due to the fact that CD are not dedicated to data only but also cache instructions.
Therefore we do not benefit of the entire space for our tiling algorithms. It also seems that the behavior
of data replacement policy is biased because data gets evicted in order to load instructions.

We now focus on the number of unprefetched distributed caches misses depicted in Figures 1.17a,
1.17b, 1.17c and 1.17d. Libraries clearly prefetch most part of their distributed cache misses and
therefore pay significantly less misses than the other algorithms. Moreover, the algorithms focusing on
MD are the best alternatives with both block sizes, though results using smaller blocks are more regular.
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Furthermore, for distributed cache oriented algorithms, we may face false sharing issues. This prob-
lem occurs when two matrix elements of two different blocks of C are within the same cache line. The
line gets modified by a core, thus triggering coherency protocol between the cores sharing that same line
of cache. On Intel Nehalem processors, the cost is twice that of an unshared access [82], thus implying
significant impact on run-time. Note that here again, the lower associativity of CD has a higher impact
on cache misses and significantly increases MD.

Finally, it is difficult to ensure total ownership on the processor to a given application. Therefore, a
few other processes sometimes “trash” the cache with their data, thus evicting matrix data from cache.
On top of this, BLAS libraries often reorganize data so as to fulfill their own requirements, by sometimes
making copies. All in all, these two trends disturb the behavior of our algorithms and increase the number
of cache misses at each level.

As a conclusion, these experiments show that on current CPU architectures, it is hard to precisely
predict and thus control the cache behavior of a given algorithm. Well known algorithms like matrix
product, where memory behavior could be precisely handled, could benefit from having total control
over caches. Having such a control over caches is equivalent to consider them as fast local memories.
Such memories are often encountered on today’s accelerator architectures like the Cell processor [61] or
GPUs [6] [75]. We study the latter platform in Section 1.6.

1.6 Performance evaluation on GPU

As outlined above, one of the main drawbacks of current CPU architectures is the fact that caches
are always managed by hardware, and hence cannot be used as regular low-latency memories. However,
in the context of simple linear algebra kernels like matrix product, data could be handled manually at
reasonable cost. Such low-latency memories can be found and programmed on GPUs. In this part,
we hence focus on the adaptation of MMRA to GPUs and assess its performance on such hardware
platforms.

1.6.1 Experimental setting

For the experiments, we use the same hardware platform as in Section 1.5.1, with an additional GPU
card based on GT200 architecture from NVidia. The system runs on Yellow Dog Enterprise Linux for
NVIDIA CUDA based on the 2.6.18 Linux kernel. The GT200 architecture is widespread in the HPC
community through Tesla GPU computing devices, and is therefore a representative candidate for this
study.

The card is a GeForce GTX 285, which embeds 240 cores running at 1.48 GHz, and 2GB of GDDR3
memory; CUDA 2.3 has been chosen as the programming environment. The 240 cores or Stream Pro-
cessors (SPs) are grouped in 30 clusters called multi-processors (MPs). These multi-processors have a
“shared” memory of 16KB shared across every SPs within the multi-processor. They also have 16384
32-bit private registers distributed among the SPs. Finally, the card has a memory space called “global”
memory (of 2GB with in this setup) which is shared among every SPs, but which is significantly slower
than “shared” memory and registers. The interested reader can find more details on GT200 and CUDA
thread management model in [74].

1.6.2 Adaptation of MMRA to the GT200 Architecture

The hardware architecture of GPUs leads to revisit our tiling algorithm in order to cope with its
specifics. GPUs have several levels of memory, including on-board RAM memory as well as on-chip
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memory, which is order of magnitudes faster than on-board memory. This speed heterogeneity should
therefore be taken into account, by fine tuning memory accesses at every level, thus leading us to choose
TRADEOFFMMRA. The main idea of this adaptation is to consider the on-board RAM memory (or
“global memory”) as a shared cache of size CS whereas each multi-processor will have a distributed
cache of size CD located in on-chip memory (which are called “shared” memories and registers in
CUDA vocabulary).

Moreover our algorithm was originally designed for p2 processors, which is not flexible and leads to
underuse of the hardware. Therefore, we decided to modify TRADEOFFMMRA so as to handle p × q

processors. Instead of tiling the α× α block of C in p2 subblocks of size α/p× α/p, we rather cut the
block of C in p× q subblocks of size α/p× α/q (represented as light gray blocks in Figure 1.18).

Furthermore, we need to reserve additional memory in CS for blocks of A and B in order to over-
lap PCI-E transfers between host and GPU with computation. We thus need to consider this in the
computation of α. The new equation becomes:

α
2
+ 4αβ ≤ CS

For the computation of µ, it is necessary to consider both the fact that GPUs are efficient only with
a high number of concurrent threads, and the fact that the block of C is not partitioned in square tiles
anymore.

On GT200, the best hardware occupation is obtained when running more than 512 threads per multi-
processor. Note that on GPUs, threads truly are lightweight, which means that in the context of this
study, a thread will process only a few matrix elements. Let γ be the number of threads around the first
dimension (i.e. number of lines), and τ be the number of threads around the second dimension.

In order to handle rectangular tiles, let η be the number of columns of the block in CD, and χ be its
counterpart for the number of rows. Altogether, η must divide α/q and be a multiple of τ ; while χ must
divide α/p and be a multiple of γ. Such blocks are depicted in dark grey in Figure 1.18. All in all, each
thread will process (η × χ)/(τ × γ) matrix elements of C.

elements of A, B and C in CS processed by this MP
elements of A, B and C in CD (‘’shared‘’ memory or registers)
elements of A and B loaded in ‘’shared‘’ memory by thread T
elements of C in registers processed by thread T

χ

α/q

η
γ

β
B

C

β

A α/p

γ

Figure 1.18: Tiling of matrices within a multi-processor

However, contrarily to the original TRADEOFFMMRA, χ× η subblocks of C will not reside in the
same memory than subblocks of A and B: in fact, CD is no longer a homogeneous memory space. This
feature comes from the fact that C is not shared among cores (or SPs), and can therefore be stored in
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the private registers available on GT200. The red squares in Figure 1.18 are the elements of C loaded in
registers and processed by a given thread T.

Conversely, A and B coefficients are shared, hence stored in “shared” memory. Moreover, for
efficiency reasons, instead of loading only one column of A and one row of B, block-columns and block-
rows of respectively γ × χ and η × γ elements are loaded. Each thread loads therefore χ/γ elements of
A and η/τ elements of B in “shared” memory at each step. For a given thread T, it corresponds to the
blue circles depicted in Figure 1.18. Altogether, the parameter used by MMRA on GTX285 are given
in Table 1.2.

Multi-processors on lines p = 6

Multi-processors on columns q = 5

Thread count on lines γ = 16

Thread count on columns τ = 32

Total number of threads τ × γ = 512

Number of lines per MP χ = 80

Number of columns per MP η = 96

Registers used by elements of C per MP 50%

“Shared” memory used by elements of A and B per MP 70%

Table 1.2: Parameters for GeForce GTX 285 (GT200)

1.6.3 Performance results: execution time

In the following experiments, the results are obtained using three different algorithms:
– TRADEOFF is the adaptation of MMRA to GT200 architecture.
– SHAREDEQUAL allocates one third of CS to each matrix. This setup is built on top of the MMRA

kernel with different tiling parameters.
– CUBLAS calls the so-called vendor library made by NVidia. The calls are made in the same order

than the classical outer product algorithm.
Every result given in the following corresponds to the average of 10 experimental results.

The first experiment focuses on the efficiency as well as the scalability of TRADEOFF compared
to NVidia’s library CUBLAS. As depicted on Figure 1.19, the run times of each algorithm is depicted
according to the matrix dimension. TRADEOFF is the fastest algorithm in two cases, reducing the time
required by CUBLAS by up to 13%. In the other cases, TRADEOFF is slower than CUBLAS by up to
40%. SHAREDEQUAL always is slower to TRADEOFF, but remains close.

Note that the runtime of CUBLAS does not scale linearly when the size of the matrices increases. In
order to understand this behavior, the execution of each case was profiled using CUDA Visual Profiler,
allowing the identification of the actual computation kernel call underlying below CUBLAS calls. As
expected, different kernels are called, as shown on Table 1.3, and every case where TRADEOFF out-
performs CUBLAS, CUBLAS uses the same CUBLAS computation kernel, which does not make any
usage of GPU’s specific hardware features like texture units. Moreover, in the adaptation of TRADE-
OFFMMRA to GPU, this kind of hardware units were ignored on purpose, in order to stay close to
the theoretical model, and to keep the independence of the approach with respect to to the underlying
hardware architecture. However, in order to be able to compete with vendor’s libraries like CUBLAS,
it would be necessary to use these specific dedicated hardware units (but it is not in the scope of this
study).
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Figure 1.19: Running times on GTX285

19200 sgemmNN
19680 sgemm_main_gld_hw_na_nb
20160 sgemm_main_gld_hw_na_nb_fulltile
20640 sgemm_main_gld_hw_na_nb
21120 sgemmNN
21600 sgemm_main_gld_hw_na_nb
22080 sgemm_main_gld_hw_na_nb_fulltile

Table 1.3: CUBLAS kernel used in function of matrix size

1.6.4 Performance results: cache misses

In the next experiment, the number of shared cache misses MS committed by each algorithm is
evaluated. Results are depicted on Figure 1.20. As expected, TRADEOFF provide the best result since
it makes up to 70% less shared cache misses than CUBLAS, thus proving the efficiency of our approach
on GPUs. SHAREDEQUAL provides the same results than CUBLAS since it uses the same tiling at this
level of cache.

On Figure 1.21, the actual time spent by the GPU moving data in order to serve the shared cache
(i.e. the time penalty associated to MS) is depicted. Unsurprisingly, TRADEOFF spend the least time,
reducing the time spent by CUBLAS and SHAREDEQUAL by up to 32%.

Finally, in the last experiment, whose results are given in Figure 1.22, the number of distributed
caches misses MD committed by a multi-processor is depicted. In that case, the lowest number of
MD is given by SHAREDEQUAL. This is due to the fact that, even though they share the same kernel,
SHAREDEQUAL uses a higher value of β than TRADEOFF. However in most cases, TRADEOFF ties
SHAREDEQUAL, depending on its value of β. CUBLAS experiences between 1.9 and 3.4 times more
distributed caches misses. However, if we consider for instance the performance on a matrix of size
21120, CUBLAS offers the best execution time while encountering the highest MD. Therefore, the
impact of MD on performance seems to be low.

Altogether, the approach used by the MMRA proves its efficiency on alternative architectures like
GPUs leading to cache efficient computation kernels. As the memory wall is closing in, the need of such
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Figure 1.20: MS on GTX285
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Figure 1.21: Time penalty caused by MS on GTX285

algorithms is getting more important. This study proves that good results can be obtained using a high
level, analytical and architecture-independent approach.

1.7 Conclusion

In this chapter, we have proposed cache-aware matrix product algorithms for multicore processors.
Using a simple yet realistic model for multicore memory layout, we have extended a lower bound on
cache misses, and proposed cache-aware algorithms. For both types of caches, shared an distributed,
our algorithms reach a CCR which is close to the corresponding lower bound for large matrices. We
also propose an algorithm for minimizing the overall data access time, which realizes a tradeoff between
shared and distributed cache misses.

Using a dedicated cache simulator, we have assessed the impact of cache management policy on
the number of cache misses. We have also verified that reserving half of the cache for prefetching
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Figure 1.22: MD on GTX285

alleviates the impact of LRU replacement policy. All algorithms have been validated on various cache
sizes. Altogether, simulations have confirmed the dominance of our cache-aware algorithms in terms of
cache misses and overall data access time.

We have also provided an extensive set of experimental results to compare the effective performance
of the previous algorithms on actual multicore platforms. The objective was twofold: (i) assess the im-
pact of cache misses onto runtime performance; and (ii) validate our high-level approach by comparing
the algorithms to the vendor library routines. We have obtained mixed results with CPU platforms: due
to intensive prefetching, cache misses have a lesser impact than the theoretical analysis has predicted.
On the contrary, results with GPU platforms were quite encouraging and have nicely demonstrated
the accuracy of our model, and the efficiency of our architecture-independent partitioning approach.
Low-latency memories such as those provided by GPUs are much more promising devices than general
purpose LRU caches for the tiling and partitioning strategies that lie at the heart of state-of-the-art linear
algebra kernels.
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Chapter 2

Tiled QR factorization algorithms

2.1 Introduction

In the previous chapter, we studied the matrix-matrix product on a multicore architecture, focusing
on the impact of cache misses on performance. This kernel plays an important part in many scientific
applications. In particular, it is generally used as a building block of more complex and widely used
linear algebra operations. In this chapter, we aim at characterizing precisely the performance of such an
operation: the QR factorization. However, contrarily to the previous chapter the focus of this study will
not be set on the memory architecture. As a matter of a fact, QR algorithms rely on several highly opti-
mized kernels which are themselves optimized for cache hierarchies. We will rather focus on exploiting
the potential parallelism of QR factorization so as to match that offered by multicore processors.

In this context, we will study the QR factorization especially in the case of tall rectangular matrices.
More precisely, given an m-by-n matrix A with n ≤ m, we consider the computation of its QR factor-
ization, which is the factorization A = QR, where Q is an m-by-n unitary matrix (QHQ = In), and R

is upper triangular.
The QR factorization is the time consuming stage of some important numerical computations. The

QR factorization of an m-by-n matrix with n ≤ m is needed for solving a linear least squares with
m equations (observations) and n unknowns. The QR factorization of an m-by-n matrix with n ≤ m

is used to compute an orthogonal basis (the Q-factor) of the column span of the initial matrix A. For
example, all block iterative methods (used to solve large sparse linear systems of equations or computing
some relevant eigenvalues of such systems) require orthogonalizing a set of vectors at each step of the
process. For these two usage examples, while n ≤ m, n can range from n � m to n � m. We note
that the extreme case n = m is also relevant: the QR factorization of a matrix can be used to solve
(square) linear systems of equations (in that case n = m). While this requires twice as many flops as
an LU factorization, using a QR factorization (a) is unconditionally stable (Gaussian elimination with
partial pivoting or pairwise pivoting is not) and (b) avoids pivoting so it may well be faster in some cases
(despite requiring twice as many flops).

To obtain a QR factorization, we consider algorithms which apply a sequence of m-by-m unitary
transformations, Ui, (UH

i Ui = I), i = 1, . . . , �, on the left of the matrix A, such that after � transforma-
tions the resulting matrix R = U� . . . U1A is upper triangular, in which case, R is indeed the R-factor
of the QR factorization. The Q-factor (if needed) can then be obtained by computing Q = UH

1 . . . UH
� .

These types of algorithms are in regular use, e.g. in the LAPACK and ScaLAPACK libraries, and are
favored over others algorithms (Cholesky QR or Gram-Schmidt) for their stability.

The unitary transformation Ui is chosen so as to introduce some zeros in the current update matrix
Ui−1 . . . U1A. The two basic transformations are Givens rotations and Householder reflections. One

37
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Givens rotation introduces one additional zero; the whole triangularization requires mn − n(n + 1)/2

Givens rotations for n < m. One elementary Householder reflection simultaneously introduces m − i

zeros in position i+ 1 to m in column i; the whole triangularization requires n Householder reflections
for n < m. (See LAPACK subroutine GEQR2 .) The LAPACK GEQRT subroutine constructs a com-
pact WY representation to apply a sequence of ib Householder reflections, this enables one to introduce
the appropriate zeros in ib consecutive columns and thus leverage optimized Level 3 BLAS subroutines
during the update. The blocking of Givens rotations is also possible but is more costly in terms of flops.

The main interest of Givens rotations over Householder transformations is that one can concurrently
introduce zeros using disjoint pairs of rows, in other words, two transformations Ui and Ui+1 may be
applicable concurrently. This is not possible using the original Householder reflection algorithm since
the transformations work on whole columns and thus does not exhibit this type of intrinsic parallelism
forcing this kind of Householder reflections to be applied sequentially. The advantage of Householder
reflections over Givens rotations is that, first, Householder reflections perform less flops, and second,
the compact WY transformation enables high sequential performance of the algorithm. In a multicore
setting, where data locality and parallelism are crucial algorithmic characteristics for enabling perfor-
mance, the tiled QR factorization algorithm combines both ideas: use of Householder reflections for high
sequential performance and use of a scheme ala Givens rotations to enable parallelism within cores. In
essence, one can think (i) either of the tiled QR factorization as a Givens rotation scheme but on tiles
(mb-by-nb submatrices) instead of on scalars (1-by-1 submatrices) as in the original scheme, (ii) or of
it as a blocked Householder reflection scheme where each reflection is confined to an extent much less
than the full column span, which enables concurrency with other reflections.

Tiled QR factorization in the context of multicore architectures has been introduced in [21, 22,
81]. Initially the focus was on square matrices and the sequence of unitary transformations presented
was analogous to SAMEH-KUCK [83], which corresponds to reducing the panels with flat trees. The
possibility of using any tree in order to either maximize parallelism or minimize communication is
explained in [31].

The focus of this work is in maximizing parallelism. Stemming from the observation that a binary
tree is best for tall and skinny matrices and a flat tree is best for square matrices, Hadri et al. [46],
propose to use trees which combine flat trees at the bottom level with a binary tree at the top level in
order to exhibit more parallelism. Our theoretical and experimental work explains that we can adapt
FIBONACCI [73] and GREEDY [27, 28] to tiles, resulting in yet better algorithms in terms of parallelism.
Moreover our new algorithms do not have any tuning parameter such as the domain size in the case
of [46].

The focus of this study is not in trying to reduce communication (data movement between memory
hierarchy) to a minimum. Relatively low level of communication is naturally achieved by the algorithm
by tiling the operations. How to optimize the trade-off communication and parallelism is out of the
scope of this chapter. For this reason, we consider square tiling with constant tile size. In order to
increase parallelism, we use so called TT kernels which are more parallel but performs potentially more
communication and are less efficient in sequential than the TS kernels. (A longer discussion on the
issue can be found in Section 2.2.1.) This is another trade-off that we made and we opted for as much
parallelism as possible.

We can quote three studies which use some kind of rectangular tiling. Demmel et al. [31] sequen-
tially process rectangular tiles with a recursive QR factorization algorithm (which is communication
optimal in sequential) and then uses reduction trees to perform the QR factorization in parallel. Experi-
mental results are given using a binary tree on tall and skinny matrices. The same algorithms is used on
the grid (grid of clusters) in [1]. The ScaLAPACK algorithm is used independently on each cluster on a
large parallel distributed rectangular tile; then, a binary tree is used at the grid level among the clusters.
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Demmel et al. [32] use a binary tree on top of a flat tree for tall and skinny matrices. The binary tree is
therefore used on rectangular tiles. The flat tree is used locally on the nodes to reduce sequential com-
munication, while the binary tree is used within the nodes to increase parallelism. Finally, the approach
of Hadri et al. [46] is not only interesting in term of parallelism to tackle various matrix shapes, it is also
interesting in reducing communication (same approach in this case as in [32]) and enables the use of TS
kernels.

The sequential kernels of the Tiled QR factorization (executed on a core) are made of standard
blocked algorithms ala LAPACK encoded in kernels; the development of these kernels is well under-
stood. The focus of this chapter is on improving the overall degree of parallelism of the algorithm. Given
a p-by-q tile matrix, we seek to find an appropriate sequence of unitary transformations on the tiled ma-
trix so as to maximize parallelism (minimize critical path length). We will get our inspiration in previous
work from the 70s/80s on Givens rotations where the question was somewhat related: given an m-by-n
matrix, find an appropriate sequence of Givens rotations as to maximize parallelism. This question is
essentially answered in [27, 28, 73, 83]; we call this class of algorithms “coarse-grain algorithms.”

Working with tiles instead of scalars, we introduce four essential differences between the analysis
and the reality of the tiled algorithms and the coarse-grain algorithms. First, while there are only two
states for a scalar (nonzero or zero), a tile can be in three states (zero, triangle or full). Second, there are
more operations available on tiles to introduce zeros; we have a total of three different tasks which can
introduce zeros in a matrix. Third, the factorization and the update are dissociated to enable factorization
stages to overlap with update stages. In the coarse-grain algorithm, the factorization and the associated
update are considered as a single stage. Fourth and last, while coarse-grain algorithms have only one
task, we end up with six different tasks, which have different computational weights; this dramatically
complicates the critical path analysis of the tiled algorithms.

While the GREEDY algorithm is optimal for “coarse-grain algorithms”, we show that it is not in the
case of tiled algorithms. We are unable to devise an optimal algorithm at this point, but we can prove that
both GREEDY and FIBONACCI are asymptotically optimal for all matrices of size p = q2f(q), where f

is any function such that lim+∞ f = 0. This result applies to all matrices where p and q are proportional,
p = λq, with λ ≥ 1, thereby encompassing many important situations in practice (least squares).

This chapter is organized as follows. Section 2.2 reviews the numerical kernels needed to perform
a tiled QR factorization, and introduces elimination lists, which enable us to formally define tiled algo-
rithms. Section 2.3 presents the core algorithmic contributions of this chapter. One major result is the
asymptotic optimality of two new tiled algorithms, FIBONACCI and GREEDY. Section 2.4 is devoted to
numerical experiments on multicore platforms. For tall matrices (p ≥ 2q), these experiments confirm the
superiority of the new algorithms over state-of-the-art solutions of the PLASMA library [21, 22, 31, 46].
Finally, we provide some concluding remarks in Section 2.5.

2.2 The QR factorization algorithm

Tiled algorithms are expressed in terms of tile operations rather than elementary operations. Each
tile is of size nb × nb, where nb is a parameter tuned to squeeze the most out of arithmetic units and
memory hierarchy. Typically, nb ranges from 80 to 200 on state-of-the-art machines [3]. Algorithm 4
outlines a naive tiled QR algorithm, where loop indices represent tiles:

In Algorithm 4, k is the panel index, and elim(i, piv(i, k), k) is an orthogonal transformation that
combines rows i and piv(i, k) to zero out the tile in position (i, k). However, this formulation is some-
what misleading, as there is much more freedom for QR factorization algorithms than, say, for Cholesky
algorithms (and contrarily to LU elimination algorithms, there are no numerical stability issues). For
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Algorithm 4: Naive QR algorithm for a tiled p× q matrix.
for k = 1 to min(p, q) do

for i = k + 1 to p do
elim(i, piv(i, k), k)

Operation Panel Update
Name Cost Name Cost

Factor square into triangle GEQRT 4 UNMQR 6
Zero square with triangle on top TSQRT 6 TSMQR 12
Zero triangle with triangle on top TTQRT 2 TTMQR 6

Table 2.1: Kernels for tiled QR. The unit of time is n3
b
3 floating-point operations, where nb is the block-

size.

instance in column 1, the algorithm must eliminate all tiles (i, 1) where i > 1, but it can do so in several
ways. Take p = 6. Algorithm 4 uses the transformations

elim(2, 1, 1), elim(3, 1, 1), elim(4, 1, 1), elim(5, 1, 1), elim(6, 1, 1)

But the following scheme is also valid:

elim(3, 1, 1), elim(6, 4, 1), elim(2, 1, 1), elim(5, 4, 1), elim(4, 1, 1)

In this latter scheme, the first two transformations elim(3, 1, 1) and elim(6, 4, 1) use distinct pairs of
rows, and they can execute in parallel. On the contrary, elim(3, 1, 1) and elim(2, 1, 1) use the same
pivot row and must be sequentialized. To complicate matters, it is possible to have two orthogonal
transformations that execute in parallel but involve zeroing a tile in two different columns. For instance
we can add elim(6, 5, 2) to the previous transformations and run it concurrently with, say, elim(2, 1, 1).
Any tiled QR algorithm will be characterized by an elimination list, which provides the ordered list of
the transformations used to zero out all the tiles below the diagonal. This elimination list must obey
certain conditions so that the factorization is valid. For instance, elim(6, 5, 2) must follow elim(6, 4, 1)

and elim(5, 4, 1) in the previous list, because there is a flow dependence between these transformations.
Note that, although the elimination list is given as a totally ordered sequence, some transformations can
execute in parallel, provided that they are not linked by a dependence: in the example, elim(6, 4, 1) and
elim(2, 1, 1) could have been swapped, and the elimination list would still be valid.

Before formally stating the conditions that guarantee the validity of (the elimination list of) an algo-
rithm, we explain how orthogonal transformations can be implemented.

2.2.1 Kernels

To implement a given orthogonal transformation elim(i, piv(i, k), k), one can use six different ker-
nels, whose costs are given in Table 2.1. In this table, the unit of time is the time to perform n3

b
3 floating-

point operations.
There are two main possibilities to implement an orthogonal transformation elim(i, piv(i, k), k):

The first version eliminates tile (i, k) with the TS (Triangle on top of square) kernels, as shown in
Algorithm 5:
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Algorithm 5: Elimination elim(i, piv(i, k), k) via TS (Triangle on top of square) kernels.
GEQRT (piv(i, k), k)

TSQRT (i, piv(i, k), k)

for j = k + 1 to q do
UNMQR(piv(i, k), k, j)

TSMQR(i, piv(i, k), k, j)

Here the tile panel (piv(i, k), k) is factored into a triangle (with GEQRT ). The transformation is
applied to subsequent tiles (piv(i, k), j), j > k, in row piv(i, k) (with UNMQR). Tile (i, k) is zeroed
out (with TSQRT ), and subsequent tiles (i, j), j > k, in row i are updated (with TSMQR). The flop
count is 4 + 6 + (6 + 12)(q − k) = 10 + 18(q − k) (expressed in same time unit as in Table 2.1).
Dependencies are the following:

GEQRT (piv(i, k), k) ≺ TSQRT (i, piv(i, k), k)

GEQRT (piv(i, k), k) ≺ UNMQR(piv(i, k), k, j) for j > k

UNMQR(piv(i, k), k, j) ≺ TSMQR(i, piv(i, k), k, j) for j > k

TSQRT (i, piv(i, k), k) ≺ TSMQR(i, piv(i, k), k, j) for j > k

Note that TSQRT (i, piv(i, k), k) and UNMQR(piv(i, k), k, j) can be executed in parallel, as well as
UNMQR operations on different columns j, j� > k. With an unbounded number of processors, the
parallel time is thus 4 + 6 + 12 = 22 time-units.

The second approach to implement the orthogonal transformation
elim(i, piv(i, k), k) is with the TT (Triangle on top of triangle) kernels, as shown in Algorithm 6:

Algorithm 6: Elimination elim(i, piv(i, k), k) via TT (Triangle on top of triangle) kernels.
GEQRT (piv(i, k), k)

GEQRT (i, k)

for j = k + 1 to q do
UNMQR(piv(i, k), k, j)

UNMQR(i, k, j)

TTQRT (i, piv(i, k), k)

for j = k + 1 to q do
TTMQR(i, piv(i, k), k, j)

Here both tiles (piv(i, k), k) and (i, k) are factored into a triangle (with GEQRT ). The correspond-
ing transformations are applied to subsequent tiles (piv(i, k), j) and (i, j), j > k, in both rows piv(i, k)
and i (with UNMQR). Tile (i, k) is zeroed out (with TTQRT ), and subsequent tiles (i, j), j > k, in
row i are updated (with TTMQR). The flop count is 2(4+ 6(q− k))+ 2+6(q− k) = 10+18(q− k),
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just as before. Dependencies are the following:

GEQRT (piv(i, k), k) ≺ UNMQR(piv(i, k), k, j) for j > k

GEQRT (i, k) ≺ UNMQR(i, k, j) for j > k

GEQRT (piv(i, k), k) ≺ TTQRT (i, piv(i, k), k)

GEQRT (i, k) ≺ TTQRT (i, piv(i, k), k)

TTQRT (i, piv(i, k), k) ≺ TTMQR(i, piv(i, k), k, j) for j > k

UNMQR(piv(i, k), k, j) ≺ TTMQR(i, piv(i, k), k, j) for j > k

UNMQR(i, k, j) ≺ TTMQR(i, piv(i, k), k, j) for j > k

Now the factor operations in row piv(i, k) and i can be executed in parallel. Moreover, the UNMQR

updates can be run in parallel with the TTQRT factorization. Thus, with an unbounded number of
processors, the parallel time is 4 + 6 + 6 = 16 time-units.

In Algorithm 5 and 6, it is understood that if a tile is already in triangle form, then the associated
GEQRT and update kernels are not applied.

All the new algorithms introduced in this chapter are based on TT kernels. From an algorithmic
perspective, TT kernels are more appealing than TS kernels, as they offer more parallelism. More pre-
cisely, we can always break a TS kernel into two TT kernels: We can replace a TSQRT (i, piv(i, k), k)

(following a GEQRT (piv(i, k), k)) by a GEQRT (i, k) and a TTQRT (i, piv(i, k), k). A similar trans-
formation can be made for the updates. Hence a TS-based tiled algorithm can always be executed with
TT kernels, while the converse is not true. However, the TS kernels provide more data locality, they
benefit form a very efficient implementation (see Section 2.4), and several existing algorithms use these
kernels. For all these reasons, and for comprehensiveness, our experiments will compare approaches
based on both kernel types.

Currently (April 2011), the PLASMA library only contains TS kernels. We have mapped the
PLASMA algorithm to TT kernel algorithm using this conversion. Going from a TS kernel algorithm to
a TT kernel algorithm is implicitly done by Hadri et al. [45] when going from their “Semi-Parallel” to
their “Fully-Parallel” algorithms.

2.2.2 Elimination lists

As stated above, any algorithm factorizing a tiled matrix of size p×q is characterized by its elimina-
tion list. Obviously, the algorithm must zero out all tiles below the diagonal: for each tile (i, k), i > k,
1 ≤ k ≤ min(p, q), the list must contain exactly one entry elim(i, �, k), where � denotes some row
index piv(i, k) . There are two conditions for a transformation elim(i, piv(i, k), k) to be valid:

– both rows i and piv(i, k) must be ready, meaning that all their tiles left of the panel (of indices
(i, k�) and (piv(i, k), k�) for 1 ≤ k� < k) must have already been zeroed out: all transformations
elim(i, piv(i, k�), k�) and elim(piv(i, k), piv(piv(i, k), k�), k�) must precede elim(i, piv(i, k), k)

in the elimination list
– row piv(i, k) must be a potential annihilator, meaning that tile (piv(i, k), k) has not been zeroed

out yet: the transformation elim(piv(i, k), piv(piv(i, k), k), k) must follow elim(i, piv(i, k), k)

in the elimination list
Any algorithm that factorizes the tiled matrix obeying these conditions is called a generic tiled algorithm
in the following.

A critical result is that no matter what elimination list is used the total weight of the tasks for
performing a tiled QR factorization algorithm is constant and equal to 6pq2 − 2q3. Using our unit
task weight of n3

b/3, with m = pnb, and n = qnb, we obtain 2mn2 − 2/3n3 flops which is the exact
same number as for a standard Householder reflection algorithm as found in LAPACK (e.g., [18]). We
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note that this results is true if (a) we use TS kernels as well and if (b) we use any tiling, (e.g. rectangular
tiles).

2.2.3 Execution schemes

In essence, the execution of a generic tiled algorithm is fully determined by its elimination list.
This list is statically given as input to the scheduler, and the execution progresses dynamically, with
the scheduler executing all required transformations as soon as possible. More precisely, each trans-
formation involves several kernels, whose execution starts as soon as they are ready, i.e., as soon as all
dependencies have been enforced. Recall that a tile (i, k) can be zeroed out only after all tiles (i, k�),
with k� < k, have been zeroed out. Execution progresses as follows:

– Before being ready for elimination, tile (i, k), i > k, must be updated k − 1 times, in order to
zero out the k − 1 tiles to its left (of index (i, k�), k� < k). The last update is a transformation
TTMQR(i, piv(i, k− 1), k− 1, k) for some row index piv(i, k− 1) such that elim(i, piv(i, k−

1), k − 1) belongs to the elimination list. When completed, this transformation triggers the
transformation GEQRT (i, k), which can be executed immediately after the completion of the
TTMQR. In turn, GEQRT (i, k) triggers all updates UNMQR(i, k, j) for all j > k. These
updates are executed as soon as they are ready for execution.

– The elimination elim(i, piv(i, k), k) is performed as soon as possible when both rows i and
piv(i, k) are ready. Just after the completion of GEQRT (i, k) and GEQRT (piv(i, k), k), kernel
TTQRT (i, piv(i, k), k) is launched. When finished, it triggers the updates
TTMQR(i, piv(i, k), k, j) for all j > k.

Obviously, the degree of parallelism that can be achieved depends upon the eliminations that are
chosen. For instance, if all eliminations in a given column use the same factor tile, they will be
sequentialized. This corresponds to the flat tree elimination scheme described below: in each col-
umn k, it uses elim(i, k, k) for all i > k. On the contrary, two eliminations elim(i, piv(i, k), k) and
elim(i�, piv(i�, k), k) in the same column can be fully parallelized provided that they involve four dif-
ferent rows. Finally, note that several eliminations can be initiated in different columns simultaneously,
provided that they involve different pairs of rows, and that all these rows are ready (i.e., they have the
desired number of leftmost zeros).

The following lemma will prove very useful; it states that we can assume w.l.o.g. that each tile is
zeroed out by a tile above it, closer to the diagonal.

Lemma 2.1. Any generic tiled algorithm can be modified, without changing its execution time, so that
all eliminations elim(i, piv(i, k), k) satisfy to i > piv(i, k).

Proof. Define a reverse elimination as an elimination elim(i, piv(i, k), k) where i < piv(i, k). Con-
sider a generic tiled algorithm whose elimination list contains some reverse eliminations. Let k0 be the
first column to contain one of them. Let i0 be the largest row index involved in a reverse elimination in
column k0. The elimination list in column k0 may contain several reverse eliminations elim(i1, i0, k0),
elim(i2, i0, k0), . . . , elim(ir, i0, k0), in that order, before row i0 is eventually zeroed out by the transfor-
mation elim(i0, piv(i0, k0), k0). Note that piv(i0, k0) < i0 by definition of i0. We modify the algorithm
by exchanging the roles of rows i0 and i1 in column k0: the elimination list now includes elim(i0, i1, k0),
elim(i2, i1, k0), . . . , elim(ir, i1, k0), and elim(i1, piv(i0, k0), k0). All dependencies are preserved, and
the execution time is unchanged. Now the largest row index involved in a reverse elimination in column
k0 is strictly smaller than i0, and we repeat the procedure until there does not remain any reverse elim-
ination in column k0. We proceed inductively to the following columns, until all reverse eliminations
have been suppressed. �
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2.3 Critical paths

In this section we describe several generic tiled algorithms, and we provide their critical paths,
as well as optimality results. These algorithms are inspired by algorithms that have been introduced
twenty to thirty years ago [83, 73, 28, 27], albeit for a much simpler, coarse-grain model. In this
“old” model, the time-unit is the time needed to execute an orthogonal transformation across two matrix
rows, regardless of the position of the zero to be created, hence regardless of the length of these rows.
Although the granularity is much coarser in this model, any existing algorithm for the old model can be
transformed into a generic tiled algorithm, just by enforcing the very same elimination list provided by
the algorithm. Critical paths are obtained using a discrete event based simulator specially developed to
this end, based on the Simgrid framework [90, 67]. It carefully handles dependencies across tiles, and
allows for the analysis of both static and dynamic algorithms. 1

2.3.1 Coarse-grain algorithms

We start with a short description of three algorithms for the coarse-grain model. These algorithms
are illustrated in Table 2.2 for a 15× 6 matrix.

SAMEH-KUCK algorithm The SAMEH-KUCK algorithm [83] uses the panel row for all eliminations
in each column, starting from below the diagonal and proceeding downwards. Time-steps indicate the
time-unit at which the elimination can be done, assuming unbounded resources. Formally, the elimina-
tion list is ��

elim(i, k, k), i = k + 1, k + 2, . . . , p

�
, k = 1, 2, . . . ,min(p, q)

�

FIBONACCI algorithm The FIBONACCI algorithm is the Fibonacci scheme of order 1 in [73]. Let
coarse(i, k) be the time-step at which tile (i, k), i > k, is zeroed out. These values are computed
as follows. In the first column, there are one 5, two 4’s, three 3’s, four 2’s and four 1’s (we would
have had five 1’s with p = 16). Given x as the least integer such that x(x + 1)/2 ≥ p − 1, we have
coarse(i, 1) = x− y + 1 where y is the least integer such that i ≤ y(y + 1)/2 + 1. Let the row indices
of the z tiles that are zeroed out at step s, 1 ≤ s ≤ x, range from i to i + z − 1. The elimination
list for these tiles is elim(i + j, piv(i + j, 1), 1), with piv(i + j) = i + j − z for 0 ≤ j ≤ z − 1.
In other words, to eliminate a bunch of z consecutive tiles at the same time-step, the algorithm uses
the z rows above them, pairing them in the natural order. Now the elimination scheme of the next
column is the same as that of the previous column, shifted down by one row, and adding two time-units:
coarse(i, k) = coarse(i− 1, k − 1) + 2, while the pairing obeys the same rule.

GREEDY algorithm At each step, the GREEDY algorithm [28, 27] eliminates as many tiles as possible
in each column, starting with bottom rows. The pairing for the eliminations is done exactly as for
FIBONACCI. There is no closed-form formula to compute coarse(i, k), the time-step at which tile (i, k)
is eliminated, but it is possible to provide recursive expressions (see [28, 27]).

Consider a rectangular p × q matrix, with p > q. With the coarse-grain model, the critical path of
SAMEH-KUCK is p+ q− 2, and that of FIBONACCI is x+2q− 2, where x is the least integer such that
x(x+ 1)/2 ≥ p− 1. The critical path of GREEDY is unknown, but two important results are known: (i)
the critical path of GREEDY is optimal; (ii) its value tends to 2q if p is negligible in front of q2, i.e., if

1. The discrete event based simulator, together with the code for all tiled algorithms, is publicly available at http:
//graal.ens-lyon.fr/~mjacquel/tiledQR.html

http://graal.ens-lyon.fr/~mjacquel/tiledQR.html
http://graal.ens-lyon.fr/~mjacquel/tiledQR.html


2.3. CRITICAL PATHS 45

(a) SAMEH-KUCK (b) FIBONACCI (c) GREEDY

� � �

1 � 5 � 4 �

2 3 � 4 7 � 3 6 �

3 4 5 � 4 6 9 � 3 5 8 �

4 5 6 7 � 3 6 8 11 � 2 5 7 10 �

5 6 7 8 9 � 3 5 8 10 13 � 2 4 7 9 12 �

6 7 8 9 10 11 3 5 7 10 12 15 2 4 6 9 11 14
7 8 9 10 11 12 2 5 7 9 12 14 2 4 6 8 10 13
8 9 10 11 12 13 2 4 7 9 11 14 1 3 5 8 10 12
9 10 11 12 13 14 2 4 6 9 11 13 1 3 5 7 9 11

10 11 12 13 14 15 2 4 6 8 11 13 1 3 5 7 9 11
11 12 13 14 15 16 1 4 6 8 10 13 1 3 4 6 8 10
12 13 14 15 16 17 1 3 6 8 10 12 1 2 4 6 8 10
13 14 15 16 17 18 1 3 5 8 10 12 1 2 4 5 7 9
14 15 16 17 18 19 1 3 5 7 10 12 1 2 3 5 6 8

Table 2.2: Time-steps for coarse-grain algorithms.

we have p = q2f(q) where f is any function such that lim+∞ f = 0 (and f(q) > 1/q so that p > q).
In particular, let p and q be proportional, p = λq, with a constant λ > 1: FIBONACCI is asymptotically
optimal, because x is of the order of √q, hence its critical path is 2q + o(q). On the contrary, SAMEH-
KUCK is not asymptotically optimal since its critical path is (1 + λ)q − 2. For square q × q matrices,
critical paths are slightly different (2q − 3 for SAMEH-KUCK, x + 2q − 4 for FIBONACCI), but the
important result is that all three algorithms are asymptotically optimal in that case.

2.3.2 Tiled algorithms

As stated above, each coarse-grain algorithm can be transformed into a tiled algorithm, simply by
keeping the same elimination list, and triggering the execution of each kernel as soon as possible. How-
ever, because the weights of the factor and update kernels are not the same, it is much more difficult to
compute the critical paths of the transformed (tiled) algorithms. Table 2.3 is the counterpart of Table 2.2,
and depicts the time-steps at which tiles are actually zeroed out. Note that the tiled version of SAMEH-
KUCK is indeed the FLATTREE algorithm in PLASMA [21, 22], and we have renamed it accordingly.
As an example, Algorithm 7 shows the GREEDY algorithm for the tiled model.

A first (and quite unexpected) result is that GREEDY is no longer optimal, as shown in the first two
columns of Table 2.4a for a 15 × 2 matrix. In each column and at each step, “the ASAP algorithm”
starts the elimination of a tile as soon as there are at least two rows ready for the transformation. In
the following, s denotes the number of tiles ready to be eliminated. When s ≥ 2 eliminations can start
simultaneously, ASAP pairs the 2s rows just as FIBONACCI and GREEDY, the first row (closest to the
diagonal) with row s + 1, the second row with row s + 2, and so on. As a matter of a fact, when
processing the second column, both ASAP and GREEDY begin with the elimination of lines 10 to 15
(at time step 20). However, once tiles (13, 2), (14, 2) and (15, 2) are zeroed out (i.e. at time step 22),
ASAP eliminates 4 zeros, in rows 9 through 12. On the contrary, GREEDY waits until time step 26 to
eliminate 6 zeros in rows 6 through 12. In a sense, ASAP is the counterpart of GREEDY at the tile level.
However, ASAP is not optimal either, as shown in Table 2.4a for a 15× 3 matrix. On larger examples,
the critical path of GREEDY is better than that of ASAP, as shown in Table 2.4b.

We have seen that, for a 15× 2 matrix, ASAP is better than GREEDY and that, for a 15× 3 matrix,
GREEDY is better than ASAP. We can further improve upon GREEDY in the 15× 3 case. We consider
the GRASAP(k) algorithm defined as: following the GREEDY algorithm up from columns 1 to q− k and
then switching in ASAP mode for the last k columns. GRASAP(0) is GREEDY, while GRASAP(q) is



46 CHAPTER 2. TILED QR FACTORIZATION ALGORITHMS

Algorithm 7: GREEDY algorithm via TT kernels.
for j = 1 to q do

/* nz(j) is the number of tiles which have been eliminated in column j */
nZ(j) = 0
/* nT (j) is the number of tiles which have been triangularized in column j */
nT (j) = 0

while column q is not finished do
for j = q down to 1 do

if j == 1 then
/* Triangularize the first column if not yet done */
nTnew = nT (j) + (p− nT (j))
if p− nT (j) > 0 then

for k = p down to 1 do
GEQRT (k, j)
for jj = j + 1 to q do

UNMQR(k, j, jj)

else
/* Triangularize every tile having a zero in the previous column */
nTnew = nZ(j − 1)
for k = nT (j) to nTnew − 1 do

GEQRT (p− k, j)
for jj = j + 1 to q do

UNMQR(p− k, j, jj)

/* Eliminate every tile triangularized in the previous step */

nZnew = nZ(j) + �
nT (j)− nZ(j)

2
�

for kk = nZ(j) to nZnew − 1 do
piv(p− kk) = p− kk − nZnew + nZ(j)
TTQRT (p− kk, piv(p− kk), j)
for jj = j + 1 to q do

TTMQR(p− kk, piv(p− kk), j, jj)

/* Update the number of triangularized and eliminated tiles at the next step */
nT (j) = nTnew
nZ(j) = nZnew

ASAP. In Table 2.4a(c), we give the results for GRASAP(1). In this case (a 15× 3 matrix), GRASAP(1)
is better than GREEDY. GRASAP(1) finishes at time-step 62, while GREEDY finishes at time-step 64. Of
course it would be interesting to determine the best value of k as a function of p and q, for the execution
of GRASAP(k) on a p× q matrix.

We have a closed-form formula for the critical path of tiled FLATTREE, but not for that of tiled
FIBONACCI (contrarily to the coarse-grain case). But we provide an asymptotic expression, both for
FIBONACCI and for GREEDY. More importantly, we show that both tiled algorithms are asymptotically
optimal. We state our main result:

Theorem 2.1. For a tiled matrix of size p× q, where p ≥ q:
1. The critical path length of FLATTREE is

2p+ 2 if p ≥ q = 1

6p+ 16q − 22 if p > q > 1

22p− 24 if p = q > 1

2. The critical path length of FIBONACCI is at most 22q + 6�
√
2p�, and that of GREEDY is at most

22q + 6�log2 p�



2.3. CRITICAL PATHS 47

(a) SAMEH-KUCK (b) FIBONACCI (c) GREEDY (d) BINARYTREE (e) PLASMATREE (BS = 5)
� � � � �

6 � 14 � 12 � 6 � 6 �

8 28 � 12 48 � 10 42 � 8 28 � 8 28 �

10 34 50 � 12 46 70 � 10 40 64 � 6 36 56 � 10 34 50 �

12 40 56 72 � 10 42 68 92 � 8 36 62 86 � 10 34 70 90 � 12 40 56 72 �

14 46 62 78 94 � 10 40 64 90 114 � 8 34 56 84 106 � 6 44 68 104 124 � 14 46 62 78 94 �

16 52 68 84 100 116 10 40 62 86 112 136 8 34 56 78 102 128 8 28 78 102 138 158 6 54 74 90 106 122
18 58 74 90 106 122 8 36 62 84 108 134 8 30 52 78 100 122 6 42 62 112 136 172 8 28 82 102 118 134
20 64 80 96 112 128 8 34 58 84 106 130 6 28 50 72 100 118 12 40 76 96 146 170 10 34 50 110 130 146
22 70 86 102 118 134 8 34 56 80 106 128 6 28 50 72 94 116 6 46 74 110 130 180 12 40 56 72 138 158
24 76 92 108 124 140 8 34 56 78 102 128 6 28 50 68 94 116 8 28 80 108 144 164 16 52 68 84 100 166
26 82 98 114 130 146 6 28 56 78 100 122 6 28 44 66 88 110 6 36 56 114 142 178 6 56 80 96 112 128
28 88 104 120 136 152 6 28 50 78 100 122 6 22 44 66 88 110 10 34 64 84 148 176 8 28 84 108 124 140
30 94 110 126 142 158 6 28 44 72 100 122 6 22 44 60 82 104 6 38 62 92 112 182 10 34 50 112 136 152
32 100 116 132 148 164 6 22 44 60 94 116 6 22 38 60 76 98 8 28 66 90 114 134 12 40 56 72 140 164

Table 2.3: Time-steps for tiled algorithms.

(a) GREEDY (b) ASAP (c) GRASAP(1)
� � �

12 � 12 � 12 �

10 42 � 10 40 � 10 42 �

10 40 64 10 36 86 10 40 62
8 36 62 8 34 80 8 36 58
8 34 56 8 32 74 8 34 56
8 34 56 8 30 68 8 34 56
8 30 52 8 28 62 8 30 50
6 28 50 6 28 56 6 28 50
6 28 50 6 26 50 6 28 48
6 28 50 6 24 46 6 28 46
6 28 44 6 24 44 6 28 44
6 22 44 6 22 44 6 22 44
6 22 44 6 22 40 6 22 40
6 22 38 6 22 38 6 22 38

(a) GREEDY nor ASAP are optimal.

q

p Algorithm 16 32 64 128

16 GREEDY 310
ASAP 310

32 GREEDY 360 650
ASAP 402 656

64 GREEDY 374 726 1342
ASAP 588 844 1354

128 GREEDY 396 748 1452 2732
ASAP 966 1222 1748 2756

(b) GREEDY generally outperforms ASAP.

Table 2.4: Neither GREEDY nor ASAP are optimal.

3. The optimal critical path length is at least 22q − 30

4. FIBONACCI is asymptotically optimal if p = q2f(q), where lim+∞ f = 0

5. GREEDY is asymptotically optimal if log2 p = qf(q), where lim+∞ f = 0

Proof. Proof of (1). Consider first the case p ≥ q = 1. We shall proceed by induction on p to show that
the critical path of FLATTREE is of length 2p + 2, If p = 1, then from Table 2.1 the result is obtained
since only GEQRT (1, 1) is required. With the base case established, now assume that this holds for all
p − 1 > q = 1. Thus at time t = 2(p − 1) + 2 = 2p, we have that for all p − 1 ≥ i ≥ 1 tile (i, 1) has
been factorized into a triangle and for all p − 1 ≥ i > 1, tile (i, 1) has been zeroed out. Therefore, tile
(p, 1) will be zeroed out with TTQRT (p, 1) at time t+ 2 = 2(p− 1) + 2 + 2 = 2p+ 2.

Consider now the case p > q > 1. We show by induction on k that tile (i, k), for i > k ≥ 2, is
zeroed out in FLATTREE at time unit 6i+16k− 22. For k = 2, tile (2, 2) is updated from step k = 1 at
time 4+6+6 = 16, and it is factored into a triangle at time 20. Tile (3, 2) is updated from step k = 1 at
time 22 factored into a triangle at time 26 and then zeroed out at time 26+2 = 28 = 6×3+16×2−22. A
new tile in column 2 is zeroed out every 6 time units, hence the initialization of the induction for k = 2.
Assume now that the formula holds up to column k, and let t = 6(k+1)+16k−22 be the time at which
tile (k + 1, k) is zeroed out. Tile (k + 1, k + 1) is updated from step k at time t− 2 + 6 + 6 = t+ 10



48 CHAPTER 2. TILED QR FACTORIZATION ALGORITHMS

and factored into a triangle at time t+14. By induction, tile (k+2, k) is zeroed out at time t+6, hence
triangularized at time t + 4. The corresponding UNMQR update of tile (k + 2, k + 1) ends at time
t + 10, its TTMQR update ends at time max(t + 14, t + 10) + 6 = t + 20. Hence tile (k + 2, k + 1)

can indeed be zeroed out at time max(t+ 12, t+ 20) + 2 = t+ 22. A new tile in column k + 1 can be
zeroed out every 6 time units, hence the induction formula for k + 1.

Finally, for a square matrix of size q × q, consider the above formula for a rectangular matrix with
p = q+1. Instead of zeroing out the last tile (q+1, q) with tile (q, q), simply need to factor tile (q, q) into
a triangle with GEQRT (q, q). This costs 4 time units instead of 6 when adding TTQRT (q + 1, q, q),
and explains the difference of 2 in the formula for square matrices.

Proof of (2). FIBONACCI and GREEDY are more difficult to analyze than FLATTREE, but we provide
an upper bound of their critical path. The approach is the same for both algorithms, and hereafter ALG
denotes either FIBONACCI or GREEDY. Let coarse(i, k) be the time-step at which tile (i, k) is zeroed
out in ALG with the coarse-grain model (see Table 2.2 for examples). We derive a “slowed down”
version of the tiled version of ALG by terminating the zeroing out of tile (i, k) at time-step

6coarse(2, 1) + 22(k − 1)− 6(coarse(k + 1, k)− coarse(i, k)).

We say that this version is slowed down because we do not start the zeroing out of the tiles as soon as
possible. For instance in the first column, tile (i, 1) is zeroed out at time 6coarse(i, 1), which is larger
than the value given in Table 2.3. However, we keep the same elimination list as in the original version of
ALG, and we trigger the update and factor operations as soon as possible when the zeroing out operation
is completed. We only delay these latter operations.

The intuitive idea for delaying the eliminations is that the corresponding updates will be fully over-
lapped, within a given column, or when proceeding from one column to the next: in this case, allowing
for a time-shift of 22 smooths the chaining of the updates. The regular and repetitive spacing of the
eliminations allows us to check (just as we did to prove (1)) that all dependencies are enforced in the
slowed down version of ALG. Because the case-analysis is tedious, we have written a program for a
sanity check of the validity of ALG 2.

In the coarse-grain model, ALG terminates the first column in time x, so the critical path of its slowed
down version is 6x + 22(q − 1). For FIBONACCI, x is the least integer such that x(x + 1)/2 ≥ p − 1,
hence x ≤ �

√
2p�. For GREEDY, x = �log2(p− 1)� ≤ �log2 p�, hence the result.

Proof of (3). Consider a square q × q matrix B, with q ≥ 2. Assume that there are only three non-
zero sub-diagonals, i.e., that tile (i, k) is initially zero in B for i > k + 3. Because there are only three
non-zero tiles below the diagonal, there is a constant number of possible row pairings in each column.
An exhaustive search is to try all possible pairings in the first column, followed by all possible pairings
in the second column, and so on. After a few columns, a pattern emerges, and we can identify that any
optimal algorithm (there are several of them) needs at least 22 time-steps to proceed from one column
to the next. It is possible to save a few steps at the beginning and end of the execution, and the optimal
critical path is 22q − 30. Here also, because the case-analysis is long and tedious, we have written a
program for a sanity check of the latter value.

Now we show that the optimal critical path for a general p× q matrix A, with p ≥ q ≥ 2, is at least
equal to the critical path of the previous q × q matrix B with three sub-diagonals. Indeed, Lemma 2.1
shows that there exist optimal algorithms for factoring A without any reverse elimination. Consider
such an algorithm, and discard all eliminations that involve zeroing out elements below the third sub-
diagonal, or outside the q × q top square: the critical path cannot increase, and we have an elimination
scheme for B, which proves the desired result.

2. All program sources are publicly available at http://graal.ens-lyon.fr/~mjacquel/tiledQR.html

http://graal.ens-lyon.fr/~mjacquel/tiledQR.html
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Note that using B instead of A is the key to the proof: in each column of B, there is only a constant
number of possible row pairings, which makes it possible to try all combinations for several consecutive
columns. Reasoning with A instead would need a completely different proof (yet to be invented).

Proof of (4) and (5). These are a direct consequence of (3) and (4). �

Remarks:
1. We express all critical path lengths in terms of p and q, with an unit of n3

b/3 floating-point op-
erations. It is easy to get critical path lengths in term of m, n, and nb, and with elementary
floating-point operations as unit, assuming that all tiles are full. (In other words, m and n are
multiple of nb.) For example for FLATTREE, we get (2/3)mn2

b + (2/3)n3
b if m ≥ n = nb,

2mn2
b + 16/3nn2

b − (22/3)n3
b if m > n > nb and (22/3)nn2

b − (24/3)n3
b if m = n > nb.

2. From this formula, it is clearer that, if one wants to minimize the number of floating-point op-
erations on the critical path, one needs to take nb = 1. However, such an action would have
disastrous consequences. The communication increase would be way too high, and the increase
gain in parallelism would not be worth the overhead. More importantly, the efficiency of the elim-
ination kernels would be much lower. In this chapter, we consider nb constant, large enough so
that elimination kernels operate at full Level 3 BLAS performance, and so that communication
costs remain relatively low.

3. In the square case, we see that the critical path length of the tiled algorithms is typically in O(nn2
b).

This is in sharp contrast with the current LAPACK algorithm GEQRF . If we assume that the
panel is not parallelizable, and that the block size for the LAPACK algorithm is nb, then counting
the length of the chain of panel factorization steps leads to a critical path length in O(n2nb). There
is therefore much more parallelism to exploit in the tiled algorithms than in the current LAPACK
algorithms. Or, stated differently [21, 22], the granularity of the tiled algorithms is finer than that
of the LAPACK algorithm.

In Table 2.3 we also report time-steps for the BINARYTREE algorithm. As its name indicates, this
algorithm performs a binary tree reduction to zero out tiles in each column. Here is an asymptotic
expression of its critical path:

Proposition 2.1. Consider a tiled matrix of size p × q, where p ≥ q. The critical path length of
BINARYTREE is 6q log2 p+ o(q log2 p).

Proof. It is possible to derive an exact expression for the critical path length of BINARYTREE in the
special case where p and q are both exact powers of two, with q < p. We obtain the value (10 +

6 log2 p)q − 4 log2 p− 6. As before, the proof goes by (tedious) induction. Here again, we have written
a program for a sanity check of the latter value. The asymptotic value follows easily for an arbitrary
matrix, by enlarging each dimension to the nearest power of two. �

Proposition 2.1 shows that BINARYTREE is not asymptotically optimal. The PLASMA library pro-
vides more algorithms, that can be informally described as trade-offs between FLATTREE and BINA-
RYTREE. (We remind the reader that FLATTREE is the same as algorithm as SAMEH-KUCK.) These
algorithms are referred to as PLASMATREE in all the following, and differ by the value of an input
parameter called the domain size BS . This domain size can be any value between 1 and p, inclusive.
Within a domain, that includes BS consecutive rows, the algorithm works just as FLATTREE: the first
row of each domain acts as a local panel and is used to zero out the tiles in all the other rows of the
domain. Then the domains are merged: the panel rows are zeroed out by a binary tree reduction, just
as in BINARYTREE. As the algorithm progresses through the columns, the domain on the very bottom
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is reduced accordingly, until such time that there is one less domain. For the case that BS = 1, PLAS-
MATREE follows a binary tree on the entire column, and for BS = p, the algorithm executes a flat tree
on the entire column. It seems very difficult for a user to select the domain size BS leading to best
performance, but it is known that BS should increase as q increases. Table 2.3 shows the time-steps of
PLASMATREE with a domain size of BS = 5. In the experiments of Section 2.4, we use all possible
values of BS and retain the one leading to the best value.

So far our study has only been concerned with algorithms based on TT kernels. Indeed, in this
chapter, FLATTREE stands for TT-FT. We now give the critical path of the algorithm TS-FT. This
corresponds to the FLATTREE algorithm (i.e., SAMEH-KUCK) with TS kernels. This algorithm was
introduced in [21, 22, 81] and is available in PLASMA for performing the QR factorization of a matrix
on multicore architecture.

Proposition 2.2. The critical path length for TS-FT is

6p− 2 for p ≥ q = 1

12p+ 18q − 32 for p > q > 1

30p− 34 for p = q > 1

Proof. Consider the case of p ≥ q = 1. In order to show that for any p, with q = 1, the critical path
is of length 6p − 2, we shall proceed by induction on p. If p = q = 1, then from Table 2.1 the result
is obtained since only GEQRT (1, 1) is required. With the base case established, now assume that this
holds for all p− 1 > q = 1. Thus at time t = 6(p− 1)− 2 = 6p− 8, we have that tile (1, 1) has been
factorized into a triangle and for all p− 1 ≥ i > 1, tile (i, 1) has been zeroed out. Therefore, tile (p, 1)

will be zeroed out with TSQRT (p, 1) at time t+ 6 = 6(p− 1)− 2 + 6 = 6p− 2.
Assume that p > q > 1. We show by induction on k that tile (i, k), for i > k ≥ 2, is zeroed out

at time unit 12i + 18k − 32. Tile (2, 2) is updated from step k = 1 at time 6(2) − 2 + 12 = 22, it is
factored into a triangle at time 28. Tile (3, 2) is zeroed out at time 28+12 = 40 = 12×3+18×2−32,
and a new tile in column 2 is zeroed out every 12 time units, hence the initialization of the induction for
k = 2.

Assume now that the formula holds up to column k, and let t = 12(k + 1) + 18k − 32 be the time
at which tile (k + 1, k) is zeroed out. Tile (k + 1, k + 1) is updated from step k at time t + 12 and
factored into a triangle at time t+ 18. By induction, tile (k + 2, k) is zeroed out at time t+ 12. Hence
tile (k + 2, k + 1) can indeed be zeroed out at time max(t + 12, t + 18) + 12 = t + 30. A new tile in
column k + 1 can be zeroed out every 12 time units, hence the induction formula for k + 1.

For a square matrix of size q×q, consider the above formula for a rectangular matrix with p = q+1.
Instead of zeroing out the last tile (q + 1, q) with tile (q, q) in 6 time units with TSQRT (q + 1, q), we
simply need to factor tile (q, q) into a triangle with GEQRT (q, q). This costs 4 time units instead of 6,
and explains the difference of 2 in the formula for square matrices. �

As we can see, the critical path of TS-FT (Proposition 2.2) is longer than the one of FLATTREE
(Theorem 2.1(1)). This stems from the facts that (1) a TS algorithm can be converted into a TT algorithm,
and (2) this conversion increases the parallelism, and, consequently, reduces the critical path length.

2.4 Experimental results

All experiments were performed on a 48-core machine composed of eight hexa-core AMD Opteron
8439 SE (codename Istanbul) processors running at 2.8 GHz. Each core has a theoretical peak of 11.2
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Gflop/s with a peak of 537.6 Gflop/s for the whole machine. The Istanbul micro-architecture is a NUMA
architecture where each socket has 6 MB of level-3 cache and each processor has a 512 KB level-2 cache
and a 128 KB level-1 cache. After having benchmarked the AMD ACML and Intel MKL BLAS libraries,
we selected MKL (10.2) since it appeared to be slightly faster in our experimental context. Linux 2.6.32
and Intel Compilers 11.1 were also used in conjunction with PLASMA 2.3.1.

For all results, we show both double and double complex precision, using all 48 cores of the machine.
The matrices are of size m = 8000 and 200 ≤ n ≤ 8000. The tile size is kept constant at nb = 200, so
that the matrices can also be viewed as p× q tiled matrices where p = 40 and 1 ≤ q ≤ 40. All kernels
use an inner blocking parameter of ib = 32.

Asymptotically all operations in a QR factorization are FMAs (“fused multiply-add”, y ← αx+ y).
In real arithmetic, an FMA involves three double precision numbers for two flops, but these two flops
can be combined into one FMA instruction and thus completed in one cycle. In complex arithmetic, the
operation y ← αx + y involves six double precision numbers for eight flops; we also note that there
is no such thing as a complex-arithmetic FMA. The ratio of computation/communication is therefore,
potentially, four times higher in complex arithmetic than in real arithmetic. Communication aware
algorithms are much more critical in real arithmetic than in complex arithmetic. This is the reason why
we present results in complex arithmetic and in real arithmetic. Our new algorithms will be at their best
in the complex arithmetic case where parallelism is most important while communication less. In the
real arithmetic case, we will see that TS kernels which perform potentially less communication than TT
kernels have the advantage as soon as there is enough parallelism from the algorithm (q large enough).

The PLASMA interface allows one to specify the dependencies between tasks by designating the
data as either INPUT, OUTPUT, INOUT, or NODEP. Currently, the update kernels (UNMQR,
TTMQR, and TSMQR) introduced false dependencies between the tasks which sequentializes the
execution of update with the factorization kernels TTQRT or TSQRT . In order to alleviate these, we
altered the dependency designation within each of the update kernels for the matrix of Householder re-
flectors, V, from INPUT to NODEP as is further explained in [66]. The dependencies between the tasks
are still consistent since the T matrix within each update kernel continues to be designated as INPUT so
that any subsequent task which overwrites this T matrix cannot be executed.

For each experiment, we provide a comparison of the theoretical performance to the actual perfor-
mance. The theoretical performance is obtained by modeling the limiting factor of the execution time as
either the critical path, or the sequential time divided by the number of processors. This is similar in ap-
proach to the Roofline model [97]. Taking γseq as the sequential performance, T as the total number of
flops, cp as the length of the critical path, and P as the number of processors, the predicted performance,
γpred, is

γpred =
γseq · T

max
�
T
P , cp

�

Figures 2.1a and 2.1c depict the predicted performance of all algorithms which use the Triangle on top
of triangle kernels. For double complex precision, sequential kernels reach 3.1860 GFlop/s while in
double precision, the peak performance is 3.8440 GFlop/s. Since PLASMATREE provides an additional
tuning parameter of the domain size, we show the results for each value of this parameter as well as the
composition of the best of these domain sizes. Again, it is not evident what the domain size should be
for the best performance, hence our exhaustive search.

Part of our comprehensive study also involved comparisons made to the Semi-Parallel Tile and Fully-
Parallel Tile CAQR algorithms found in [45] which are much the same as those found in PLASMA. As
with PLASMA, the tuning parameter BS controls the domain size upon which a flat tree is used to zero
out tiles below the root tile within the domain and a binary tree is used to merge these domains. Unlike
PLASMA, it is not the bottom domain whose size decreases as the algorithm progresses through the
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columns, but instead is the top domain. In this study, we found that the PLASMA algorithms performed
identically or better than these algorithms and therefore we do not report these comparisons.

p q GREEDY PLASMATREE (TT) BS Overhead Gain
40 1 36.9360 37.5020 1 1.0153 -0.0153
40 2 58.5090 52.7180 3 0.9010 0.0990
40 4 103.2670 90.7940 10 0.8792 0.1208
40 5 115.3060 100.5540 5 0.8721 0.1279
40 10 153.5180 145.8200 17 0.9499 0.0501
40 20 170.8730 171.8270 27 1.0056 -0.0056
40 40 184.5220 182.8160 19 0.9908 0.0092

Table 2.5: Experimental performance of GREEDY versus PLASMATREE (TT) (double)

p q GREEDY PLASMATREE (TT) BS Overhead Gain
40 1 42.0710 42.7120 1 1.0152 -0.0152
40 2 60.4420 52.1970 5 0.8636 0.1364
40 4 95.1820 84.1120 5 0.8837 0.1163
40 5 107.6370 96.7530 5 0.8989 0.1011
40 10 135.0270 128.4320 17 0.9512 0.0488
40 20 144.4010 146.4220 28 1.0140 -0.0140
40 40 152.9280 151.9090 8 0.9933 0.0067

Table 2.6: Experimental performance of GREEDY versus PLASMATREE (TT) (double complex)

p q GREEDY FIBONACCI Overhead Gain
40 1 36.9360 26.5610 0.7191 0.2809
40 2 58.5090 49.4870 0.8458 0.1542
40 4 103.2670 100.1440 0.9698 0.0302
40 5 115.3060 115.0020 0.9974 0.0026
40 10 153.5180 152.0090 0.9902 0.0098
40 20 170.8730 170.4780 0.9977 0.0023
40 40 184.5220 180.2990 0.9771 0.0229

Table 2.7: Experimental performance of Greedy versus FIBONACCI (double)

Figure 2.1b and 2.1d illustrate the experimental performance reached by
GREEDY, FIBONACCI and PLASMATREE algorithms using the TT (Triangle on top of triangle) ker-
nels. In both cases, double or double complex precision, the performance of GREEDY is better than
PLASMATREE even for the best choice of domain size. Moreover, as expected from the analysis in
Section 2.3.2, GREEDY outperforms FIBONACCI the majority of the time. Furthermore, we see that, for
rectangular matrices, the experimental performance in double complex precision matches the prediction.
This is not the case for double precision because communications have higher impact on performance.
Detailed results are given in Tables 2.5, 2.6, 2.7 and 2.8.

While it is apparent that GREEDY does achieve higher levels of performance, the percentage may
not be as obvious. To that end, taking GREEDY as the baseline, we present in Figure 2.2 the theoretical,
double, and double complex precision overhead for each algorithm that uses the Triangle on top of
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p q GREEDY FIBONACCI Overhead Gain
40 1 42.0710 30.2280 0.7185 0.2815
40 2 60.4420 48.9570 0.8100 0.1900
40 4 95.1820 97.1650 1.0208 -0.0208
40 5 107.6370 105.9610 0.9844 0.0156
40 10 135.0270 134.5500 0.9965 0.0035
40 20 144.4010 145.5530 1.0080 -0.0080
40 40 152.9280 150.0980 0.9815 0.0185

Table 2.8: Experimental performance of GREEDY versus FIBONACCI (double complex)

triangle kernel as compared to GREEDY. These overheads are respectively computed in terms of critical
path length and time. At a smaller scale (Figure 2.3), it can be seen that GREEDY can perform up to
13.6% better than PLASMATREE.

For all matrix sizes considered, p = 40 and 1 ≤ q ≤ 40, in the theoretical model, the critical
path length for GREEDY is either the same as that of PLASMATREE (q = 1) or is up to 25% shorter
than PLASMATREE (q = 6). Analogously, the critical path length for GREEDY is at least 2% to 27%
shorter than that of FIBONACCI. In the experiments, the matrix sizes considered were p = 40 and
q ∈ {1, 2, 4, 5, 10, 20, 40}. In double precision, GREEDY has a decrease of at most 1.5% than the best
PLASMATREE (q = 1) and a gain of at most 12.8% than the best PLASMATREE (q = 5). In double
complex precision, GREEDY has a decrease of at most 1.5% than the best PLASMATREE (q = 1) and
a gain of at most 13.6% than the best PLASMATREE (q = 2). Similarly, in double precision, GREEDY
provides a gain of 2.6% to 28.1% over FIBONACCI and in double complex precision, GREEDY has a
decrease of at most 2.1% and a gain of at most 28.2% over FIBONACCI. Detailed results are given in
Table 2.9.

Although it is evidenced that PLASMATREE does not vary too far from GREEDY or FIBONACCI, one
must keep in mind that there is a tuning parameter involved and we choose the best of these domain sizes
for PLASMATREE to create the composite result, whereas with GREEDY, there is no such parameter to
consider. Of particular interest is the fact that GREEDY always performs better than any other algorithm 3

for p � q. In the scope of PLASMATREE, a domain size BS = 1 will force the use of a binary tree so
that both GREEDY and PLASMATREE behave the same. However, as the matrix tends more to a square,
i.e., q tends toward p, we observe that the performance of all of the algorithms, including FLATTREE,
are on par with GREEDY. As more columns are added, the parallelism of the algorithm is increased and
the critical path becomes less of a limiting factor, so that the performance of the kernels is brought to the
forefront. Therefore, all of the algorithms are performing similarly since they all share the same kernels.

In order to accurately assess the impact of the kernel selection towards the performance of the al-
gorithms, Figures 2.4 and 2.5 show both the in cache and out of cache performance using the No Flush
and MultCallFlushLRU strategies as presented in [2, 96]. Since an algorithm using TT kernels will need
to call GEQRT as well as TTQRT to achieve the same as the TS kernel TSQRT , the comparison is
made between GEQRT + TTQRT and TSQRT (and similarly for the updates). For nb = 200, the ob-
served ratio for in cache kernel speed for TSQRT to GEQRT + TTQRT is 1.3374, and for TSMQR

to UNMQR + TTMQR is 1.3207. For out of cache, the ratio for TSQRT to GEQRT + TTQRT

is 1.3193 and for TSMQR to UNMQR + TTMQR it is 1.3032. Thus, we can expect about a 30%
difference between the selection of the kernels, since we will have instances of using in cache and out of

3. When q = 1, GREEDY and FLATTREE exhibit close performance. They both perform a binary tree reduction, albeit
with different row pairings.
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p q GREEDY PLASMATREE (TT) BS Overhead Gain FIBONACCI Overhead Gain
40 1 16 16 1 1.0000 0.0000 22 1.3750 0.2727
40 2 54 60 3 1.1111 0.1000 72 1.3333 0.2500
40 3 74 98 5 1.3243 0.2449 94 1.2703 0.2128
40 4 104 132 5 1.2692 0.2121 116 1.1154 0.1034
40 5 126 166 5 1.3175 0.2410 138 1.0952 0.0870
40 6 148 198 10 1.3378 0.2525 160 1.0811 0.0750
40 7 170 226 10 1.3294 0.2478 182 1.0706 0.0659
40 8 192 254 10 1.3229 0.2441 204 1.0625 0.0588
40 9 214 282 10 1.3178 0.2411 226 1.0561 0.0531
40 10 236 310 10 1.3136 0.2387 248 1.0508 0.0484
40 11 258 336 20 1.3023 0.2321 270 1.0465 0.0444
40 12 280 358 20 1.2786 0.2179 292 1.0429 0.0411
40 13 302 380 20 1.2583 0.2053 314 1.0397 0.0382
40 14 324 402 20 1.2407 0.1940 336 1.0370 0.0357
40 15 346 424 20 1.2254 0.1840 358 1.0347 0.0335
40 16 368 446 20 1.2120 0.1749 380 1.0326 0.0316
40 17 390 468 20 1.2000 0.1667 402 1.0308 0.0299
40 18 412 490 20 1.1893 0.1592 424 1.0291 0.0283
40 19 432 512 20 1.1852 0.1562 446 1.0324 0.0314
40 20 454 534 20 1.1762 0.1498 468 1.0308 0.0299
40 21 476 554 20 1.1639 0.1408 490 1.0294 0.0286
40 22 498 570 20 1.1446 0.1263 512 1.0281 0.0273
40 23 520 586 20 1.1269 0.1126 534 1.0269 0.0262
40 24 542 602 20 1.1107 0.0997 556 1.0258 0.0252
40 25 564 618 20 1.0957 0.0874 578 1.0248 0.0242
40 26 586 634 20 1.0819 0.0757 600 1.0239 0.0233
40 27 608 650 20 1.0691 0.0646 622 1.0230 0.0225
40 28 630 666 20 1.0571 0.0541 644 1.0222 0.0217
40 29 652 682 20 1.0460 0.0440 666 1.0215 0.0210
40 30 668 698 20 1.0449 0.0430 688 1.0299 0.0291
40 31 684 714 20 1.0439 0.0420 710 1.0380 0.0366
40 32 700 730 20 1.0429 0.0411 732 1.0457 0.0437
40 33 716 746 20 1.0419 0.0402 754 1.0531 0.0504
40 34 732 762 20 1.0410 0.0394 776 1.0601 0.0567
40 35 748 778 20 1.0401 0.0386 798 1.0668 0.0627
40 36 764 794 20 1.0393 0.0378 820 1.0733 0.0683
40 37 780 810 20 1.0385 0.0370 842 1.0795 0.0736
40 38 796 826 20 1.0377 0.0363 862 1.0829 0.0766
40 39 812 842 20 1.0369 0.0356 878 1.0813 0.0752
40 40 826 856 20 1.0363 0.0350 892 1.0799 0.0740

Table 2.9: Critical path lengths of GREEDY versus PLASMATREE (TT) and FIBONACCI
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cache throughout the run. Most of this difference is due to the higher efficiency and data locality within
the TT kernels as compared to the TS kernels.

Having seen that kernel performance can have a significant impact, we also compare the TT based
algorithms to those using the TS kernels. The goal is to provide a complete assessment of all currently
available algorithms, as shown in Figure 2.6. For double precision, the observed difference in kernel
speed is 4.976 GFLOP/sec for the TS kernels versus 3.844 GFLOP/sec for the TT kernels which pro-
vides a ratio of 1.2945 and is in accordance with our previous analysis. It can be seen that as the number
of columns increases, whereby the amount of parallelism increases, the effect of the kernel performance
outweighs the benefit provided by the extra parallelism afforded through the TT algorithms. Compara-
tively, in double complex precision, GREEDY does perform better, even against the algorithms using the
TS kernels. As before, one must keep in mind that GREEDY does not require the tuning parameter of the
domain size to achieve this better performance.

From these experiments, we showed that in double complex precision, GREEDY demonstrated better
performance than any of the other algorithms and moreover, it does so without the need to specify a
domain size as opposed to the algorithms in PLASMA. In addition, in double precision, for matrices
where p � q, GREEDY continues to excel over any other algorithm using the TT kernels, and continues
to do so as the matrices become more square.

2.5 Conclusion

In this chapter, we have presented FIBONACCI, and GREEDY, two new algorithms for tiled QR
factorization. These algorithms exhibit more parallelism than state-of-the-art implementations based
on reduction trees. We have provided accurate estimations for the length of their critical path, and we
have proven that they were asymptotically optimal for a wide class of matrix shapes, including all cases
where the number of tile rows p and tile columns q are proportional, p = λq, λ ≥ 1. To the best of
our knowledge, this proof is the first complexity result in the field of tiled algorithms, and it lays the
theoretical foundations for a comparative study of tiled algorithms.

Comprehensive experiments on multicore platforms confirm the superiority of the new algorithms
for p × q matrices, as soon as, say, p ≥ 2q. This holds true when comparing not only with previous
algorithms using TT (Triangle on top of triangle) kernels, but also with all known algorithms based
on TS (Triangle on top of square) kernels. Given that TS kernels offer more locality, and benefit from
better elementary arithmetic performance, than TT kernels, the better performance of the new algorithms
is even more striking, and further demonstrates that a large degree of a parallelism was not exploited in
previously published solutions.
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Chapter 3

Scheduling streaming applications on a
complex multicore platform

3.1 Introduction

In the previous two chapters, we have focused on linear algebra kernels for traditional homogeneous
multicore platforms. Streaming applications represent another example of widely used applications that
could benefit from multicore processors. In this chapter, we consider the problem of scheduling such
applications on a heterogeneous multicore platform, the IBM QS 22 platform, embedding two STI Cell
BE processors, so as to optimize the throughput of the application.

As a matter of a fact, heterogeneous multicore processor has become widespread. Future processors
are likely to embed several special-purpose cores –like networking or graphic cores– together with gen-
eral cores, in order to tackle problems like heat dissipation, computing capacity or power consumption.
Deploying an application on this kind of platform becomes a challenging task due to the increasing
heterogeneity.

Heterogeneous computing platforms such as Grids have been available for a decade or two. How-
ever, the heterogeneity is now likely to exist at a much smaller scale, that is within a single machine,
or even a single processor. Major actors of the CPU industry are already planning to include a GPU
core to their multicore processors [7]. Classical processors are also often provided with an accelera-
tor (like GPUs, graphics processing units), or with processors dedicated to special computations (like
ClearSpeed [26] or Mercury cards [72]), thus resulting in a heterogeneous platform. The best example is
probably the IBM RoadRunner, the first supercomputer to break the petaflop barrier, which is composed
of an heterogeneous collection of classical AMD Opteron processors and Cell processors.

The STI Cell BE processor is an example of such an heterogeneous architecture, since it embeds
both a PowerPC processing unit, and up to eight simpler cores dedicated to vectorial computing. This
processor has been used by IBM to design machines dedicated to high performance computing, like the
Bladecenter QS 22. We have chosen to focus our study on this platform because the Cell processor is
nowadays widely available and affordable, and it is to our mind a good example of future heterogeneous
processors.

Deploying an application on such a heterogeneous platform is not an easy task, especially when the
application is not purely data-parallel. In this work, we focus on applications that exhibit some regularity,
so that we can design efficient static scheduling solutions. We thus concentrate our work on streaming
applications. These applications usually concern multimedia stream processing, like video edition soft-
ware, web radios or Video On Demand applications [98, 49]. However, streaming applications also exist
in other domains, like real time data encryption applications, or routing software, which are for example

61
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required to manage mobile communication networks [94]. A stream is a sequence of data that have to
go through several processing tasks. The application is generally structured as a directed acyclic task
graph, ranging from a simple chain of tasks to a more complex structure, as illustrated in the following.

To process a streaming application on a heterogeneous platform, we have to decide which tasks will
be processed onto which processing elements, that is, to find a mapping of the tasks onto the platform.
This is a complex problem since we have to take platform heterogeneity, task computing requirements,
and communication volume into account. The objective is to optimize the throughput of the application:
for example in the case of a video stream, we are looking for a solution that maximizes the number of
images processed per time-unit.

Several streaming solutions have already been developed or adapted for the Cell processor.
DataCutter-Lite [48] is an adaptation of the DataCutter framework for the Cell processor, but it is limited
to simple streaming applications described as linear chains, so it cannot deal with complex task graphs.
StreamIt [47, 91] is a language developed to model streaming applications; a version of the Streamit
compiler has been developed for the Cell processor, however it does not allow the user to specify the
mapping of the application, and thus to precisely control the application. Some other frameworks allow
to handle communications and are rather dedicated to matrix operations, like ALF (part of the IBM
Software Kit for Multicore Acceleration [56]), Sequoia [37], CellSs [15] or BlockLib [5].

3.2 General framework and context

Streaming applications may be complex: for example, when organized as a task graph, a simple
Vocoder audio filter can be decomposed in 140 tasks. All the data of the input stream must be processed
by this task graph in a pipeline fashion. On a parallel platform, we have to decide which processing ele-
ment will process each task. To optimize the performance of the application, which is usually evaluated
using its throughput, we have take into account the computation capabilities of each resource, as well
as the incurred communication overhead between processing elements. The platform we target in this
study is a heterogeneous multicore processor, which adds to the previous constraints a number of spe-
cific limitations (limited memory size on some nodes, specific communication constraints, etc.). Thus,
the optimization problem corresponding to the throughput maximization is a complex duty. However,
the typical run time of a streaming application is long: a video encoder is likely to run for at least several
minutes, and probably several hours. Besides, we target a dedicated environment, with stable run time
conditions. Thus, it is worth taking additional time to optimize the application throughput.

In [14], the authors have developed a framework to schedule large instance of similar jobs, known
as steady-state scheduling. It aims at maximizing the throughput, that is, the number of jobs processed
per time-unit. In the case of a streaming application like a video filter, a job may well represent the
complete processing of an image of the stream. Steady-state scheduling is able to deal with complex
jobs, described as directed acyclic graphs (DAG) of tasks. The nodes of this graph are the tasks of
the applications, denoted by T1, . . . , Tn, whereas edges represent dependencies between tasks as well
as the data associated to the dependencies: Dk,l is a data produced by task Tk and needed to process
Tl. Figure 3.1a presents the task graph of a simplistic stream application: the stream goes through
two successive filters. Applications may be much more complex, as depicted in Figure 3.1b. Computing
resources consist in several processing elements PE 1, . . . ,PE p, connected by communication links. We
usually adopt the general unrelated computation model: the processing time of a task Tk on a processing
element PE i, denoted by wPE i(Tk) is not necessarily function of the processing element speed, since
some processing elements may be faster for some tasks and slower for some others. Communication
limitations are taken into account following one of the existing communication models, usually the
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one-port or bounded multiport models.
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Figure 3.1: Applications and mapping.

The application consists of a single task graph, but all data sets of the stream must be processed
following this task graph. This results in a large number of copies, or instances, of each task. Consider
the processing of the first data set (e.g., the first image of a video stream) for the application described
in Figure 3.1b. A possible mapping of all these tasks to processing elements is described on Figure 3.1c,
which details on which processing element each task will be computed. For the following data sets, there
is two possibilities. A possibility is that all data sets use the same mapping, that is, in this example, all
tasks T1 will be processed by processing element PE 1, etc. In this case, a single mapping is used for all
instances. Another possibility is that some instances may be processed using different mappings. This
multiple-mapping solution allows to split the processing of T1 among different processors, and thus can
usually achieve a larger throughput. However, the control overhead for a multiple-mapping solution is
much larger than for a single-mapping solution.

The problem of optimizing the steady-state throughput of an application on heterogeneous platform
has been studied in the context of Grid computing. It has been proven that the general problem, with
multiple mappings, is NP-complete on general graphs, but can be solved in polynomial time provided
that the application graph has a limited depth [13]. Nevertheless, the control policy that would be needed
by a multiple-mapping solution would be far to complex for a heterogeneous multicore processor: each
processor would need to process a large number of different tasks, store a large number of temporary
files, and route messages to multiple destinations depending on their type and instance index. In partic-
ular, the limited memory of the Synergistic Processing Element makes it impossible to implement such
a complex solution.

Thus, single-mapping solutions are more suited for the targeted platform. These solution have also
been studied in the context of Grid computing. In [39], the authors have proven that the general solution
is NP-complete, but can be computed using a mixed integer linear program; several heuristics have also
been proposed to compute an efficient mapping of the application onto the platform. The present chapter
aims at studying the ability of adapting the former solution for heterogeneous multicore processors, and
illustrates this on the Cell processor and the QS 22. The task is challenging as it requires to solve the
following problems:

– Derive a model of the platform that both allows to accurately predict the behavior of the applica-
tion, and to compute an efficient mapping using steady-state scheduling techniques.
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– As far as possible, adapt the solutions presented in [39] for the obtained model: optimal solution
via mixed linear programming and heuristics.

– Develop a light but efficient scheduling software that allows to implement the proposed scheduling
policies and test them in real life conditions.

3.3 Adaptation of the scheduling framework to the QS 22 archi-
tecture

In this section, we present the adaptation of the steady-state scheduling framework in order to cope
with streaming applications on the Cell processor and the QS 22 platform. As outlined, the main changes
concern the computing platform. We first briefly present the architecture, and we propose a model for
this platform based on communication benchmarks. Then, we detail the application model and some
features related to stream applications. Based on these models, we adapt the optimal scheduling policy
from [39] using mixed linear programing.

3.3.1 Platform description and model

We detail here the multicore processor used in this study, and the platform which embeds this proces-
sor. In order to adapt our scheduling framework to this platform, we need a communication model which
is able to predict the time taken to perform a set of transfers between processing elements. As outlined
below, no such model is available to the best of our knowledge. Thus, we perform some communication
benchmarks on the QS 22, and we derive a model which is suitable for our study.

Description of the QS 22 architecture

The IBM Bladecenter QS 22 is a bi-processor platform embedding two Cell processors and up
to 32 GB of DDR2 memory [80]. This platform offers a high computing power for a limited power
consumption. The QS 22 has already been used for high performance computing: it is the core of IBM
RoadRunner platform, leader of the Top500 from November 2008 to June 2009, the first computer to
reach one petaflop [12].

As mentioned in the introduction, the Cell processor is a heterogeneous multicore processor. It
has jointly been developed by Sony Computer Entertainment, Toshiba, and IBM [61], and embeds the
following components:

– Power Processing Element (PPE) core. This two-way multi-threaded core follows the Power
ISA 2.03 standard. Its main role is to control the other cores, and to be used by the operating
system due to its similarity with existing Power processors.

– Synergistic Processing Elements (SPE) cores. These cores constitute the main innovation of
the Cell processor and are small 128-bit RISC processors specialized in floating point, SIMD
operations. These differences induce that some tasks are by far faster when processed on a SPE,
while some other tasks can be slower. Each SPE has its own local memory (called local store)
of size LS = 256 kB, and can access other local stores and main memory only through explicit
asynchronous DMA calls.

– Main memory. Only PPEs have a transparent access to main memory. The dedicated memory
controller is integrated in the Cell processor and allows a fast access to the requested data. Since
this memory is by far larger than the SPE’s local stores, we do not consider its limited size as a
constraint for the mapping of the application. The memory interface supports a total bandwidth
of bw = 25 GB/s for read and writes combined.
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– Element Interconnect Bus (EIB). This bus links all parts of the Cell processor to each other. It
is composed of 4 unidirectional rings, 2 of them in each direction. The EIB has an aggregated
bandwidth BW = 204.8 GB/s, and each component is connected to the EIB through a bidirec-
tional interface, with a bandwidth bw = 25 GB/s in each direction. Several restrictions apply on
the EIB and its underlying rings:

– A transfer cannot be scheduled on a given ring if data has to travel more than halfway around
that ring

– Only one transfer can take place on a given portion of a ring at a time
– At most 3 non-overlapping transfers can take place simultaneously on a ring.

– FLEXIO Interfaces. The Cell processor has two FLEXIO interfaces (IOIF 0 and IOIF 1 ).
These interfaces are used to communicate with other devices. Each of these interfaces offers an
input bandwidth of bwioin = 26 GB/s and an output bandwidth of bwioout = 36.4 GB/s.

Both Cell processors of the QS 22 are directly interconnected through their respective IOIF 0 in-
terface.We will denote the first processor by Cell0, and the second processor Cell1. Each of these pro-
cessors is connected to a bank of DDR memory; these banks are denoted by Memory0 and Memory1.
A processor can access the other bank of memory, but then experiences a non-uniform memory access
time.
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Figure 3.2: Schematic view of the QS 22.

Since we are considering a bi-processor Cell platform, there are nP = 2 PPE cores, denoted by
PPE 0 and PPE 1. Furthermore, each Cell processor embedded in the QS 22 has eight SPEs, we thus
consider nS = 16 SPEs in our model, denoted by SPE 0, . . . ,SPE 15 (SPE 0, . . . ,SPE 7 belong to
the first processor). To simplify the following computations, we gather all processing elements under
the same notation PE i, so that the set of PPEs is {PE 0,PE 1}, while {PE 2, . . . ,PE 17} is the set of
SPEs (again, PE 2 to PE 9 are the SPEs of the first processor). Let n be the total number of processing
elements, i.e., n = nP + nS = 18. All processing elements and their interconnection are depicted on
Figure 3.2. We have two classes of processing elements, which fall under the unrelated computation
model: a PPE can be fast for a given task Tk and slow for another one Tl, while a SPE can be slower for
Tk but faster for Tl. Each core owns a dedicated communication interface (a DMA engine for the SPEs
and a memory controller for the PPEs), and communications can thus be overlapped with computations.

Benchmarks and model of the QS 22

We need a precise performance model for the communication within the Bladecenter QS 22. More
specifically, we want to predict the time needed to perform any pattern of communication among the
computing elements (PPEs and SPEs). However, we do not need this model to be precise enough to pre-
dict the behavior of each packet (DMA request, etc.) in the communications elements. We want a simple
(thus tractable) and yet accurate enough model. To the best of our knowledge, there does not exist such a
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model for irregular communication patterns on the QS 22. Existing studies generally focus on the aggre-
gated bandwidth obtained with regular patterns, and are limited to a single Cell processor [64]. This is
why, in addition to the documentation provided by the manufacturer, we perform communication bench-
marks. We start by simple scenarios with communication patterns involving only two communication
elements, and then move to more complex scenarios to evaluate communication contention.

To do so, we have developed a communication benchmark tool, which is able to perform and time
any pattern of communication: it launches (and pins) threads on all the computing elements involved in
the communication pattern, and make them read/write the right amount of data from/to a distant memory
or local store. For all these benchmarks, each test is repeated a number of times (usually 10 times), and
only the average performance is reported. We report the execution times of the experiments, either in
nanoseconds (ns) or in cycles: since the time-base frequency of the QS 22 Bladecenter is 26.664 MHz,
a cycle is about 37.5 ns long.

In this section, we will first present the timing result for single communications. Then, since we need
to understand communication contention, we present the results when performing several simultaneous
communications. Thanks to these benchmarks, we are finally able to propose a complete and tractable
model for communications on the QS 22.

Note that for any communication between two computing elements PE i and PE j , we have to choose
between two alternatives: (i) PE j reads data from PE i local memory, or (ii) PE i writes data into PE j

local memory. In order to keep our scheduling framework simple, we have chosen to implement only
one of these alternatives. When performing the tests presented in this section, we have noticed a slightly
better performance for read operations. Thus, we focus only on read operations: the following bench-
marks are presented only for read operations, and we will use only these operations when implementing
the scheduling framework. However, write operations would most of the time behave similarly.

Single transfer performance. First, we deal with the simplest kind of transfers: SPE to SPE data
transfers. In this test, we choose a pair of SPE in the same Cell, and we make one read in the local store
of the other, by issuing the corresponding DMA call. We present in Figure 3.3 the duration of such a
transfer for various data sizes, ranging from 8 bytes, to 16 kB (the maximum size for a single transfer).
When the size of the data is small, the duration is 112 ns (3 cycles), which we consider as the latency
for this type of transfers. For larger data sizes, the execution time increases quasi-linearly. For 16 kB,
the bandwidth obtained (around 25 GB/s) is close the theoretical one.
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Figure 3.3: Data transfer time between two SPE from the same Cell
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When performing the same tests among SPEs from both Cells of the QS 22, the results are not the
same.

We measured both bandwidth and latency when performing a “read” operation from a SPE to a
distant local store. Table 3.1 presents the average latency for such a transfer, while Table 3.2 shows the
obtained bandwidth for a large transfer.

Reader Distant local store
SPE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 120 128 120 128 113 128 113 113 428 443 443 450 450 443 443 450
1 113 128 113 120 113 143 113 128 458 420 450 443 450 413 465 465
2 113 113 128 120 128 120 113 113 450 443 428 420 443 435 443 450
3 120 113 128 120 120 128 113 128 450 458 450 443 435 435 428 435
4 120 135 128 113 113 113 113 128 465 458 458 435 443 443 443 443
5 113 113 113 113 113 113 113 120 450 450 443 435 450 450 458 450
6 113 113 113 113 113 120 113 113 458 435 443 435 405 443 450 450
7 113 113 128 113 113 113 113 120 435 450 450 450 435 458 450 450
8 480 458 488 473 473 473 458 443 113 113 113 113 113 113 113 113
9 450 480 473 495 428 458 480 458 113 113 113 113 113 113 113 113
10 443 443 428 465 443 450 443 443 113 113 113 113 113 113 113 113
11 480 473 458 488 465 473 443 465 113 120 113 113 113 113 113 113
12 458 450 450 458 458 465 443 435 113 113 113 113 113 113 113 128
13 458 420 435 450 480 443 443 450 113 113 120 113 113 113 113 113
14 443 443 428 450 458 443 435 450 128 113 120 113 113 113 113 113
15 450 488 435 435 443 450 458 435 113 113 113 113 113 113 113 113

Table 3.1: Latency when a SPE reads from a distant local store, in nanoseconds.

The results can be summarized as follows: when a SPE from Cell0 reads from a local store located
in Cell1, the average latency of the transfer is 444 ns, and the average bandwidth is 4.91 GB/s. When on
the contrary, a SPE from Cell1 reads some data in local store of Cell0, then the average latency is 454 ns,
and the average bandwidth is 3.38 GB/s. This little asymmetry can be explained by the fact that both
Cells do not play the same role: the data arbiter and address concentrators of Cell0 act as masters for
communications involving both Cells, which explains why communications originating from different
Cells are handled differently.

Finally, we have to study the special case of a PPE reading from a SPE’s local store. This transfer
is particular, since it involves multiple transfers: in order to perform the communication, the PPE adds
an DMA instruction in the transfer queue of the corresponding SPE. Then, the DMA engine of the SPE
reads this instruction and perform the copy into the main memory. Then, in order for the data to be
loaded available for the PPE, it is loaded in its private cache. Due to this multiple transfers, and to the
fact that DMA instructions issued by the PPE have a smaller priority than the local instructions, the
latency of these communications is particularly large, about 300 cycles (11250 ns). With such a high
latency, the effect of the size of the data on the transfer time is almost negligible, which makes it difficult
to compute a maximal bandwidth.

Concurrent transfers. The previous benchmarks gives us an insight of the performance for a single
transfer. However, when performing several transfers at the same time, other effect may appear: con-
current transfers may be able to reach a larger aggregated bandwidth, but each of them may also suffer
from the contention and have its bandwidth reduced. In the following, we try to both exhibit the maxi-
mum bandwidth of each connecting element, and to understand how the available bandwidth is shared
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Reader Distant local store
SPE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 23.1 23.4 24.2 24.8 24.8 23.9 23.5 23.9 4.9 4.8 4.9 4.9 4.9 5.1 4.9 5.1
1 23.9 23.7 23.4 24.5 23.2 24.5 23.6 24.2 4.9 4.9 4.8 4.9 5.0 4.8 4.9 4.8
2 23.9 24.2 23.1 24.2 23.0 23.4 23.7 23.9 5.0 4.9 4.9 4.8 5.0 4.9 5.0 4.9
3 24.5 23.9 24.2 23.5 22.3 24.0 25.1 24.8 5.1 4.7 4.9 5.0 4.9 4.9 4.9 5.0
4 25.4 25.4 23.9 25.1 25.4 25.4 25.4 25.4 4.9 5.0 5.0 5.0 5.0 5.0 4.8 4.8
5 25.4 25.4 24.0 25.4 25.4 25.4 24.8 25.4 4.9 4.8 4.8 4.8 5.0 4.9 4.9 4.9
6 25.1 25.1 25.1 25.4 24.8 25.4 25.4 24.8 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.0
7 24.3 25.1 24.5 25.1 23.1 24.6 25.1 24.5 4.9 5.0 4.8 4.8 4.9 4.8 4.9 5.1
8 3.3 3.3 3.5 3.4 3.4 3.4 3.5 3.5 25.4 25.4 24.8 25.1 25.4 25.4 25.4 25.4
9 3.5 3.3 3.5 3.3 3.3 3.4 3.5 3.5 25.4 25.4 24.8 25.1 24.5 25.1 25.4 25.4
10 3.3 3.3 3.4 3.4 3.4 3.4 3.5 3.3 25.4 25.4 24.6 25.1 24.8 25.4 25.4 25.1
11 3.5 3.3 3.4 3.3 3.4 3.4 3.3 3.4 25.4 25.4 25.1 25.4 25.4 25.4 25.4 25.4
12 3.3 3.3 3.4 3.3 3.5 3.4 3.4 3.4 25.4 25.4 25.4 25.1 25.4 25.4 24.6 25.4
13 3.3 3.2 3.4 3.3 3.3 3.3 3.3 3.4 25.4 25.4 25.1 24.8 25.4 25.4 25.4 25.4
14 3.4 3.3 3.4 3.4 3.4 3.3 3.5 3.5 25.4 25.1 24.8 25.4 25.4 25.4 25.4 25.4
15 3.4 3.4 3.5 3.4 3.4 3.3 3.4 3.4 25.1 25.4 24.3 25.4 25.4 25.1 25.1 25.4

Table 3.2: Bandwidth when a SPE reads from a distant local store, in GB/s.

between concurrent flows.
In a first step, we try to see if the bandwidths measured for single transfers and presented above can

be increased when using several transfers instead of one. For SPE-SPE transfers, this is not the case:
when performing several read operations on different SPEs from the same local store (on the same Cell),
the 25 GB/s limitation makes it impossible to go beyond the single transfer performance.

The Element Interconnect Bus (EIB) has a theoretical capacity of 204.8 GB/s. However, its structure
consisting of two bi-directional rings makes certain communication pattern more efficient than others.
For patterns which are made of short-distance transfers, and for which can be performed without overlap
within one ring, we can almost get 200GB/s out of the EIB. On the other hand, if we concurrently sched-
ule several transfers between elements that are far away from each other, the whole pattern cannot be
scheduled on the rings without overlapping some transfers, and the bandwidth is reduced substantially.

We illustrate this phenomenon by two examples. Consider the layout of the SPEs as depicted by
Figure 3.2. In the first scenario, we perform the following transfers (SPE i ← SPE j means “SPE i

reads from SPE j”): SPE 1 ← SPE 3, SPE 3 ← SPE 1, SPE 5 ← SPE 7, SPE 7 ← SPE 5, SPE 0 ←

SPE 2, SPE 2 ← SPE 0, SPE 4 ← SPE 6, and SPE 6 ← SPE 4. Then, the aggregated bandwidth
is 200 GB/s, that is all transfers get their maximal bandwidth (25 GB/s). Then, we perform another
transfer pattern: SPE 0 ← SPE 7, SPE 7 ← SPE 0, SPE 1 ← SPE 6, SPE 6 ← SPE 1, SPE 2 ← SPE 5,
SPE 5 ← SPE 2, SPE 3 ← SPE 4, and SPE 4 ← SPE 3. In this case, the aggregated bandwidth is
only 80 GB/s, because of the large overlap between all transfers. However, these cases are extreme
ones; Figure 3.4 shows the distribution of the aggregated bandwidth when we run one hundred random
transfer patterns. The average bandwidth is 149 GB/s.

We have measured earlier that the bandwidth of a single transfer between the two Cells (through the
FlexIO) was limited to either 4.91 GB/s or 3.38 GB/s depending on the direction of the transfer. When
we aggregate several transfer through the FlexIO, a larger bandwidth can be obtained: when several
SPEs from Cell0 reads from local stores on Cell1, the maximal cumulated bandwidth is 13 GB/s, where
as it is 11.5 GB/s for the converse scenario. Finally, we have measured the overall bandwidth of the
FlexIO, when performing transfers in both direction. The cumulated bandwidth is only 19 GB/s, and it
is interesting to note that all transfers initiated by Cell0 gets an aggregated bandwidth of 10 GB/s, while
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Figure 3.4: Bandwidth distribution

all transfers initiated by Cell1 gets 9 GB/s. Except for the last scenario, bandwidth is always shared
quite fairly among the different flows.

Toward a communication model for the QS 22. We are now able to propose a communication
model of the Cell processor and its integration in the Bladecenter QS 22. This model has to be a trade-
off between accuracy and tractability. Our ultimate goal is to estimate the time needed to perform a
whole pattern of transfers. The pattern is described by the amount of data exchanged between any pair
of processing elements. Given two processing elements PE i and PE j , we denote by δi,j the size (in
GB) of the data which is read by PE j from PE i’s local memory. If PE i is a SPE, its local memory is
naturally its local store, and for the sake of simplicity, we consider that the local memory of a PPE is
the main memory of the same Cell. Note that the quantity δi,j may well be zero if no communication
happens between PE i and PE j . We denote by T the time needed to complete the whole transfer pattern.

We will use this model to optimize the schedule of a stream of task graphs, and this purpose has
an impact on the model design. In our scheduling framework, we try to overlap communications with
computations: a computing resource processes a task while it receives the data for the next task, as
outlined later when we discuss about steady-state scheduling. Thus, we are more concerned by the
capacity of the interconnection network, and the bandwidth of different resources underlined above,
than by the latencies. In the following, we approximate the total completion time T by the maximum
occupation time of all communication resources. For the sake of simplicity, all communication times
will be expressed linearly with the data size. This restriction may lower the accuracy of our model, as the
behavior of communication in the Cell may not always follow linear laws: this is especially true in the
case of multiple transfers. However, a linear model renders the optimization of the schedule tractable.
A more complex model would result in more complex, thus harder, scheduling problem. Instead, we
consider that a linear model is a very good trade-off between the simplicity of the solution and its
accuracy.

In the following, we denote by chip(i) the index of the Cell where processing element PE i lies
(chip(i) = 0 or 1):

chip(i) =

�
0 if i = 0 or 2 ≤ i ≤ 9

1 if i = 1 or 10 ≤ i ≤ 17

We first consider the capacity of the input port of every processing element (either PPE or SPE),
which is limited to 25 GB/s:

∀PE i,

17�

j=0

δi,j ×
1

25
≤ T (3.1)
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The output capacity of the processing elements and the main memory is also limited to 25 GB/s.

∀PE i,

17�

j=0

δj,i ×
1

25
≤ T (3.2)

When a PPE is performing a read operation, the maximum bandwidth of this transfer cannot exceed
2 GB/s.

∀PE i such that 0 ≤ i ≤ 1), ∀PE j , δi,j ×
1

2
≤ T (3.3)

The average aggregate capacity of the EIB of one Cell is limited to 149 GB/s.

∀Cellk,
�

0≤i,j≤17 with
chip(i)=k or chip(j)=k

δi,j ×
1

149
≤ T (3.4)

When a SPE of Cell0 reads from a local memory in Cell1, the bandwidth of the transfer is to 4.91 GB/s.

∀PE i such that chip(i) = 0,

�

j, chip(j)=1

δj,i ×
1

4.91
≤ T (3.5)

Similarly, when a SPE of Cell1 reads from a local memory in Cell0, the bandwidth is limited to
3.38 GB/s.

∀PE i such that chip(i) = 1,

�

j, chip(j)=0

δj,i ×
1

3.38
≤ T (3.6)

On the whole, all processing elements of Cell0 cannot read data from Cell1 at a rate larger than 13 GB/s.

�

PE i,PE j ,
chip(i)=0andchip(j)=1

δj,i ×
1

13
≤ T (3.7)

Similarly, all processing elements of Cell1 cannot read data from Cell0 at rate larger than 11.5 GB/s/

�

PE i,PE j ,
chip(i)=1andchip(j)=0

δj,i ×
1

11.5
≤ T (3.8)

The overall capacity of the FlexIO between both Cells is limited to 19 GB/s.

�

PE i,PE j

chip(i) �=chip(j)

δi,j ×
1

19
≤ T (3.9)

We have tested this model on about one hundred random transfer patterns, comprising between 2
and 49 concurrent transfers. We developed a simple testing tool which enables us to transfer a given
amount of (random) data between any pair of nodes (PPE or SPE), and more generally to perform any
pattern of communication. For each randomly generated transfer pattern, using this tool, we measured
the time texp needed to perform all communications. This time is compared with the theoretical time
tth predicted by the previous constraints, and the ratio tth/texp is computed. We consider the theoretical
time tth required to perform one communication pattern to be the minimum T satisfying Equations 3.1
to 3.9
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Figure 3.5 presents the distribution of this ratio for all transfer patterns. This figure shows that on
average, the predicted communication time is close to the experimental one (the average absolute be-
tween the theoretical and the experimental time is 13%). We can also notice that our model is slightly
pessimistic (the average ratio is 0.89). This is because the congestion constraints presented above corre-
spond to scenarios where all transfers must go through the same interface, which is unlikely. In practice,
communications are scattered among all communication units, so that the total time for communications
is slightly less than what is predicted by the model. However, we choose to keep our conservative model,
to prevent an excessive usage of communications.
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Figure 3.5: Model accuracy

Communications and DMA calls

The Cell processor has very specific constraints, especially on communications between cores.
Even if SPEs are able to receive and send data while they are doing some computation, they are not
multi-threaded. The computation must be interrupted to initiate a communication (but the computation
is resumed immediately after the initialization of the communication). Due to the absence of auto-
interruption mechanism, the thread running on each SPE has regularly to suspend its computation and
check the status of current DMA calls. Moreover, the DMA stack on each SPE has a limited size. A
SPE can issue at most 16 simultaneous DMA calls, and can handle at most 8 simultaneous DMA calls
issued by the PPEs. Furthermore, when building a steady-state schedule, we do not want to precisely
order communications among processing elements. Indeed, such a task would require a lot of syn-
chronizations. On the contrary, we assume that all the communications of a given period may happen
simultaneously. These communications correspond to edges Dk,l of the task graph when tasks Tk and
Tl are not mapped on the same processing element. With the previous limitation on concurrent DMA
calls, this induces a strong limitation on the mapping: each SPE is able to receive at most 16 different
data, and to send at most 8 data to PPEs per period.

3.3.2 Mapping a streaming application on the Cell

Thanks to the model obtained in the previous section, we are now able to design an efficient strategy
to map a streaming application on the target platform. We first recall how we model the application. We
then detail some specifics of the implementation of a streaming application on the Cell processor.
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Complete application model

As presented above, we target complex streaming applications, as the one depicted on Figure 3.1b.
These applications are commonly modeled with a Directed Acyclic Graph (DAG) GA = (VA, EA). The
set VA of nodes corresponds to tasks T1, . . . , TK . The set EA of edges models the dependencies between
tasks, and the associated data: the edge from Tk to Tl is denoted by Dk,l. A data Dk,l, of size datak,l (in
bytes), models a dependency between two task Tk and Tl, so that the processing of the ith instance of
task Tl requires the data corresponding to the ith instance of data Dl,k produced by Tk. Moreover, it may
well be the case that Tl also requires the results of a few instances following the ith instance. In other
words, Tl may need information on the near future (i.e., the next instances) before actually processing
an instance. For example, this happens in video encoding software, when the program only encodes
the difference between two images. We denote by peekk the number of such instances. More formally,
instances i, i + 1, . . . , i + peekk of Dk,l are needed to process the ith instance of Tl. This number
of following instances is important not only when constructing the actual schedule and synchronizing
the processing elements, but also when computing the mapping, because of the limited size of local
memories holding temporary data.
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Figure 3.6: Mapping and schedule

Given an application, our goal is to determine the best mapping of the tasks onto the processing
element. Once the mapping is chosen, a periodic schedule is automatically constructed as illustrated on
Figure 3.6. After a few periods for initialization, each processing element enters a steady state phase.
During this phase, a processing element in charge of a task Tk has to simultaneously perform three
operations. First it has to process one instance of Tk. It has to send the result Dk,l of the previous
instance to the processing element in charge of each successor task Tl. Finally, it has to receive the
data Dj,k of the next instance from the processing element in charge of each predecessor task Tj . The
exact construction of this periodic schedule is detailed in [13] for general mappings. In our case, the
construction of the schedule is quite straightforward: a processing element PE i in charge of a task Tk

simply processes it as soon as its input data is available. In other words, as soon as PE i has received the
data for the current instance and potentially the peekk following ones. For the sake of simplicity, we do
not consider the precise ordering of communications within a period. On the contrary, we assume that
all communications can happen simultaneously in one period as soon as the communication constraints
expressed in the previous section are satisfied.

Complexity of the problem

In the previous section, we have seen that the mapping of an application onto the computing platform
totally defines the schedule and its throughput. In this section, we discuss the complexity of the problem
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of finding a mapping with optimal throughput. In this section, we forget about memory constraints, and
constraints on the number of DMA transfers: those constraints are not needed to prove that the problem
is difficult. The associated decision problem is formally defined as follows.

Definition 3.1 (Cell-Mapping). Given a directed acyclic application graph GA, a Cell processor with
nP PPE cores and nS SPE cores and a bound B, is there a mapping with throughput ρ ≥ B?

Theorem 3.1. Cell-Mapping is NP-complete in the strong sense.

Proof. First note that we can check in polynomial time if a mapping has a given throughput: we simply
have to make sure that the occupation time of each resource (processing element or communication
interface) for processing one instance is not larger than 1/B. Thus, this problem belongs to the NP
class.

We prove the NP-completeness using a straightforward reduction from the Minimum Multiprocessor
Scheduling problem restricted to two machines, which is known to be NP-complete even with a fixed
number of machines [40]. An instance I1 of Minimum Multiprocessor Scheduling with two machines
consists in n tasks T1, . . . , Tn provided with a length l(k, i) for each task Tk and each processor i =

1, 2, and a bound B�. The goal is to find an allocation f of the tasks on the processors such that�
k,f(k)=i l(k, i) ≤ B for each processor i = 1, 2.
We construct an instance I2 of our problem with one PPE (corresponding to processor 1) and one

SPE (corresponding to processor 2). The streaming application consists in a simple chain of n tasks:
VA = {T1, . . . , Tn} and there is a dependency Dk,k+1 for all k = 1, . . . n−1. The computation times are
wPPE(Tt) = l(t, 1) and wSPE(Tt) = l(t, 2), and communication costs are neglected: datak,k+1 = 0

for all k = 1, . . . n− 1. Finally, we set B = 1/B�. The construction of I2 is obviously polynomial.
Assume that I1 has a solution f . Then, f defines a mapping of the tasks onto the processing ele-

ments. Using this mapping, the maximum occupation time of each processing element is at most B.
Therefore, the throughput of this mapping is at least 1/B = B�. f is thus a solution for instance I1.
Similarly, a solution for I2 is to a solution for I1. �

The proof does not make use of communications:the problem is NP-complete even without any
communication costs. Note that the restriction of Minimum Multiprocessor Scheduling with a fixed
number of machines admits a fully polynomial approximation scheme (FPTAS) [54]. However, when
considering a general application, communications have to be mapped together with computations, and
the previous FPTAS cannot be applied.

Determining buffer sizes

Since SPEs have only 256 kB of local store, memory constraints on the mapping are tight. We need
to precisely model them by computing the exact buffer sizes required by the application.

Mainly for technical reasons, the code of the whole application is replicated in the local stores of
SPEs (of limited size LS) and in the memory shared by PPEs. We denote by code the size of the code
deployed on each SPE, so that the available memory for buffers is LS − code . A SPE processing a task
Tk has to devote a part of its memory to the buffers dedicated to hold incoming data Dj,k, as well as for
outgoing data Dk,l. Note that both buffers have to be allocated into the SPE’s memory even if one of the
neighbor tasks Tj or Tl is mapped on the same SPE. In a future optimization, we could save memory by
avoiding the duplication of buffers for neighbor tasks mapped on the same SPE.

As presented above, before computing an instance of a task Tk, a processing element has to receive
all the corresponding data, that is the data Dj,k produced by each predecessor task Tj , both for the current
instance and for the peekk following instances. Moreover processing elements are not synchronized on
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the same instance. Thus, the results of several instances need to be stored during the execution. In order
to compute the number of stored data, we first compute the index of the period in the schedule when
the first instance of Tk is processed. The index of this period is denoted by firstPeriod(Tk), and is
expressed by:

firstPeriod(Tk) =

�
0 if Tk has no predecessor,
max
Dj,k

�
firstPeriod(Tj)

�
+ peekk + 2 otherwise.

All predecessors of an instance of task Tk are processed after maxDj,k

�
firstPeriod(Tj)

�
+1 periods.

We have also to wait for peekk additional periods if some following instances are needed. An additional
period is added for the communication from the processing element handling the data, hence the re-
sult. By induction on the structure of the task graph, this allows to compute firstPeriod for all tasks.
For example, with the task graph and mapping described on Figure 3.6, we have firstPeriod(1) = 0,
firstPeriod(2) = 2, and firstPeriod(3) = 4. Again, we could have avoided the additional pe-
riod dedicated for communication when tasks are mapped on the same processor (e.g., we could have
firstPeriod(3) = 3). However, we left this optimization as a future work to keep our scheduling frame-
work simple.

Once the firstPeriod(Tk) value of a task Tk is known, buffer sizes can be computed. For a given
data Dk,l, the number of temporary instances of this data that have to be stored in the system is
firstPeriod(Tl) − firstPeriod(Tk). Thus, the size of the buffer needed to store this data is tempk,l =

datak,l × (firstPeriod(Tl)− firstPeriod(Tk)).

3.3.3 Optimal mapping through mixed linear programming

In this section, we present a mixed linear programming approach that allows to compute a theoreti-
cally optimal mapping. We recall that our objective is to map the task of the application on the available
processing elements to get the largest throughput for the application, that is to maximize the number of
instances that can be processed by time-unit. Typically, for a visual application, our goal is to deliver
the maximum number of images per second.

The solution proposed in this section allows to compute a mapping of the tasks onto the processing
elements which achieve the optimal throughput according to the model presented in the previous section.
It is derived from [39], but takes into account the specific constraints of the QS 22 platform. The problem
is expressed as a linear program where integer and rational variables coexist. Although the problem
remains NP-complete, in practice, some software are able to solve such linear programs [29]. Indeed,
thanks to the limited number of processing elements in the QS 22, we are able to compute the optimal
solution for task graphs of reasonable size (up to a few hundreds of tasks).

Our linear programming formulation makes use of both integer and rational variables. The integer
variables are described below. They can only take values 0 or 1.

– α’s variables which characterize where each task is processed: αk
i = 1 if and only if task Tk is

mapped on processing element PE i.
– β’s variables which characterize the mapping of data transfers: βk,l

i,j = 1 if and only if data Dk,l is
transferred from PE i to PE j (note that the same processing element may well handle both task if
i = j).

Obviously, these variables are related. In particular, βk,l
i,j = αk

i × αl
j , but this redundancy allows us

to express the problem as a set of linear constraints. The objective of the linear program is to minimize
the duration T of a period, which corresponds to maximizing the throughput ρ = 1/T . The constraints
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of the linear program are detailed below. Remember that processing elements PE 0, . . . ,PEnP−1 are
PPEs whereas PEnP , . . . ,PEn are SPEs.

– α and β are integers.

∀Dk,l, ∀PE i and PE j , α
k
i ∈ {0, 1}, β

k,l
i,j ∈ {0, 1} (3.10)

– Each task is mapped on one and only one processing element.

∀Tk,
�n−1

i=0 αk
i = 1 (3.11)

– The processing element computing a task holds all necessary input data.

∀Dk,l, ∀j, 0 ≤ j ≤ n− 1,
�n−1

i=0 (β
k,l
i,j ) ≥ αl

j (3.12)

– A processing element can send the output data of a task only if it processes the corresponding
task.

∀Dk,l, ∀i, 0 ≤ i ≤ n− 1,
�n−1

j=0 (β
k,l
i,j ) ≤ αk

i (3.13)

– The computing time of each processing element (PPE or SPE) is no larger that T .

∀i, 0 ≤ i < nP ,
�

Tk
(αk

iwPPE(Tk)) ≤ T (3.14)

∀i, nP ≤ i < n,
�

Tk
(αk

iwSPE(Tk)) ≤ T (3.15)

– All temporary buffers allocated on the SPEs fit into their local stores.

∀i, nP ≤ i < n,
�

Tk

�
αk
i

��
Dk,l

tempk,l +
�

Dl,k
templ,k

��
≤ LS − code (3.16)

– A SPE can perform at most 16 simultaneous incoming DMA calls, and at most eight simultaneous
DMA calls are issued by PPEs on each SPE.

∀j, nP ≤ j < n,
�

0≤i<n,i �=j

�
Dk,l

β
k,l
i,j ≤ 16 (3.17)

∀i, nP ≤ i < n,
�

0≤j<nP

�
Dk,l

β
k,l
i,j ≤ 8 (3.18)

– The amount of data communicated among processing elements during one period can be deduced
from β.

∀PE i and PE j , δi,j =
�

Dk,l

β
k,l
i,j datak,l (3.19)

Using this definition, Equations (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) ensure
that all communications are performed within period T .

The size of the linear program depends on the size of the task graphs: it counts n |VA|+n2 |EA|+1

variables.
We denote by ρopt = 1/Topt the optimal throughput, where Topt is the value of T in any optimal

solution of the linear program.This linear program computes a mapping of the application that reaches
the maximum achievable throughput. By construction, α is a valid mapping, and all possible mappings
can be described as α and β variables, which obey the constraints of the linear program.
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3.4 Low-complexity heuristics

For large task graphs, solving the linear program may not be possible, or may take a very long
time. This is why we propose in this section heuristics with lower complexity to find a mapping of the
task graph on the QS 22. As explained in Section 3.3.2, the schedule which takes into account prece-
dence constraints, naturally derives from the mapping. We start with straightforward greedy mapping
algorithms, and then move to more involved strategies.

We recall a few useful notations for this section: wPPE(Tk) denotes the processing time of task Tk

on any PPE, while wSPE(Tk) is its processing time on a SPE. For data dependency Dk,l between tasks
Tk and Tl, we have computed tempk,l, the number of temporary data that must be stored in steady state.
Thus, we can compute the overall buffer capacity needed for a given task Tk, which corresponds to the
buffers for all incoming and outgoing data: buffers[k] =

�
j �=k(tempj,k + tempk,j).

3.4.1 Communication-unaware load-balancing heuristic

The first heuristic is a greedy load-balancing strategy, which is only concerned with computation,
and does not take communication into account. Usually, such algorithms offer reasonable solutions
while having a low complexity.

This strategy first consider SPEs, since they hold the major part of the processing power of the
platform. The tasks are sorted according to their affinity with SPEs, and the tasks with larger affinity are
load-balanced among SPEs. Tasks that do not fit in the local store of SPEs are mapped on PPEs. After
this first step, some PPE might be underutilized. In this case, we then move some tasks which have
affinity with PPEs from SPEs to PPEs, until the load is globally balanced. This heuristic will be referred
to as GREEDY in the following, and is detailed in Algorithm 8.

3.4.2 Prerequisites for communication-aware heuristics

When considering complex task graphs, handling communications while mapping tasks onto proces-
sors is a hard task. This is especially true on the QS 22, which has several heterogeneous communication
links, and even within each of its Cell processors. The previous heuristic ignore communications for the
sake of simplicity. However, being aware of communications while mapping tasks onto processing el-
ement is crucial for performance. We present here a common framework to handle communications in
our heuristics.

Partitioning the Cell in clusters of processing elements

As presented above, the QS 22 is made of several heterogeneous processing elements. In order to
handle communications, we first simplify its architecture and aggregate these processing elements into
coarse-grain groups sharing common characteristics.

If we take a closer look on the QS 22, we can see that some of the communication links are likely to
become bottlenecks. This is the case for the link between the PPEs and their respective set of SPEs, and
for the link between both Cell chips. Based on this observation, the QS 22 can therefore be partitioned
into four sets of processing elements, as shown in Figure 3.7. The communications within each set are
supposed to be fast enough. Therefore, their optimization is not crucial for performance, and only the
communications among the sets will be taken into account.

In order to estimate the performance of any candidate mapping of a given task graph on this platform,
it is necessary to evaluate both communication and computation times. We adopt a similar view as
developed above for the design of the linear program. Given a mapping, we estimate the time taken by
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Algorithm 8: GREEDY(GA)

foreach Tk do affinity(Tk) ←
wSPE(Tk)
wPPE(Tk)

foreach SPE i do
workload [SPE i] ← 0

memload [SPE i] ← 0

foreach PPE j do
workload [PPE j ] ← 0

foreach Tk in non decreasing order of affinity do
Find SPE i such that workload [SPE i] is minimal and memload [SPE i] + buffers[k] ≤ LS

if there is such a SPE i then
mapping [Tk] ← SPE i /* Map Tk onto SPE i */
workload [SPE i] ← workload [SPE i] + wSPE(Tk)

memload [SPE i] ← memload [SPE i] + buffers[k]

else
Find PPE j such that workload [PPE j ] is minimal
mapping [Tk] ← PPE j /* Map Tk onto PPE j */
workload [PPE j ] ← workload [PPE j ] + wPPE(Tk)

while the maximum workload of PPEs is smaller than the maximum workload of SPEs do
Let SPE i be the SPE with maximum workload
Let PPE j be the PPE with minimum workload
Consider the list of tasks mapped on SPE i, ordered by non-increasing order of affinity
Find the first task Tk in this list such that workload [PPE j ] + wPPE(Tk) ≤ workload [SPE i]

and workload [SPE i]− wSPE(Tk)) ≤ workload [SPE i]

if there is such a task Tk then
Move Tk from SPE i to PPE j :
mapping [Tk] ← PPE j

workload [PPE j ] ← workload [PPE j ] + wPPE(Tk)

workload [SPE i] ← workload [SPE i]− wSPE(Tk)

memload [SPE i] ← memload [SPE i]− buffers[k]

else
get out of the while loop

return mapping
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Figure 3.7: Partition of the processing elements within the Cell

all computations and communications, and we compute the period as the maximum of all processing
times.

As far as computations are concerned, we estimate the computation time t
comp
P of each part P of

processing element as the maximal workload of any processing element within the set. The workload of
a processing element PE is given by

�
Tk∈S wSPE(Tk) in case of SPE, and by

�
Tk∈S wPPE(Tk) in

case of a PPE, where S is the set of tasks mapped on the processing element.
For communications, we need to estimate the data transfer times on every link interconnecting the

sets of processing elements, as represented on Figure 3.7. For each unidirectional communication link
between two parts P1 and P2, we define tcomm

P1→P2
as the time required to transfer every data going through

that link. We adopt a linear cost model, as in the previous section. Hence, the communication time is
equal to the amount of data divided by the bandwidth of the link. We rely on the previous benchmarks
for the bandwidths:

– The links links between the two Cell chips have a bandwidth of 13 GB/s (C1 → C2) and 11.5 GB/s
(C2 → C1), as highlighted in Equations (3.7) and (3.8);

– The links from a PPE to the accompanying set of SPEs (PPE 1 → C1 and PPE 2 → C2), which
correspond to a read operation from the main memory, have a bandwidth of 25 GB/s (see Equa-
tion (3.2)).

The routing in this simplified platform is straightforward: for instance, the data transiting between
PPE 1 and PPE 2 must go through links PPE 1 → C1, C1 → C2 and finally C2 → PPE 2. Formally,
when DP1→P2 denotes the amount of data transferred from part P1 to part P2, the communication time
of link C1 → C2 is given by:

t
comm
C1→C2

=
DC1→C2 +DPPE1→C2 +DC1→PPE2 +DPPE1→PPE2

13

Load-balancing procedure among the SPEs of a given Cell

All heuristics that will be introduced in the following need to know whether the load-balancing of
a given task list across a set of SPEs is feasible or not, and what is the expected computation time. We
thus propose a handy greedy mapping policy which balances the load on each SPE, and will be used in
more complex heuristics. The provided task list L is first sorted using task weights wSPE(Tk). Then
we map the heaviest task Tk on the least loaded SPE SPE i, provided that it has enough memory left to
host Tk. If there is no such SPE, we return an error. Otherwise, we repeat this step until every tasks are
mapped onto a given SPE. This procedure is described in Algorithm 9.
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Algorithm 9: CELLGREEDYSET(L,Cj)

Input: a list L of tasks, a set Cj of SPEs
Sort L in non increasing order of wSPE(Tk);
foreach SPE i ∈ Cj do

workload [SPE i] ← 0

memload [SPE i] ← 0

foreach Tk in L do
Search SPE i in Cj such that workload [SPE i] is minimal and
memload [SPE i] + buffers[k] ≤ LS

if there is such a SPE i then
mapping [Tk] ← SPE i /* Map Tk on SPE i */
memload [SPE i] ← memload [SPE i] + buffers[k]

workload [SPE i] ← workload [SPE i] + wSPE(Tk)

else
return FAILURE

return mapping

3.4.3 Clustering and mapping

A classical approach when scheduling a complex task graph on a parallel platform with both com-
munication and computation costs is two use a two-step strategy. In a first set, the tasks are grouped
into clusters without considering the platform. In a second step, these clusters are mapped onto the ac-
tual computation resources. In our case, the computing resources are the groups of processing elements
determined in the previous sections: PPE 1, PPE 2, C1, and C2.

The classical greedy heuristic due to Sarkar [84] is used to build up task clusters. The rationale
of this heuristic is to consider each expensive communication, and when it is interesting, to group the
tasks involved in this communication. This is achieved by merging the clusters containing the source
and destination tasks. The merging decision criterion is based on the makespan obtained for a single
instance of the task graph. To estimate this makespan, it is assumed that each cluster is processed by a
dedicated resource. The processing time of task Tk on a resource is set to (wSPE(Tk) +wPPE(Tk))/2,
and that the communication bandwidth between these resources is set to bw = 10 GB/s (the available
bandwidth between both Cell chips). In addition, when building clusters, Algorithm 11 bounds the
memory footprint of each cluster so that it can be mapped onto any resource (PPE or set of SPEs). In
a second step, this heuristic maps the clusters onto the real resources by load-balancing cluster loads
across PPEs and sets of SPEs, as described in Algorithm 12.

3.4.4 Iterative refinement using DELEGATE

In this Section, we present an iterative strategy to build an efficient allocation. This method, called
DELEGATE, is adapted from the heuristic introduced in [39]. It consists in iteratively refining an alloca-
tion by moving some work from a highly loaded resource to a less loaded one, until the load is equally
balanced on all resources. Here, resources can be either PPEs (PPE 1 or PPE 2) or set of SPEs (C1 or
C2). In the beginning, all tasks are mapped on one of the PPE (PPE 1). Then, a (connected) subset of
tasks is selected and its processing is delegated to another resource. The new mapping is selected if it
respects memory constraints and improves the performance. This refinement procedure is then repeated
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Algorithm 10: EPT (C): Estimated parallel time of the clustering C

foreach task Tk in reverse topological order do
max

out
local = max

�
bl(Tm) such that (Tk, Tm) ∈ E and C(Tk) = C(Tm)

�

max
out
remote = max

�
bl(Tm) +

datak,m

bw
such that (Tk, Tm) ∈ E and C(Tk) �= C(Tm)

�

bl(Tk) =
wPPE(Tk) + wSPE(Tk)

2
+ max(max

out
local ,max

out
remote)

foreach task Tk in topological order do

max
in
local = max

�
tl(Tm) +

wPPE(Tm) + wSPE(Tm)

2
such that (Tm, Tk) ∈

E and C(Tm) = C(Tk)

�

max
in
remote = max

�
tl(Tm) +

wPPE(Tm) + wSPE(Tm)

2
+

datam,k

bw
such that (Tm, Tk) ∈

E and C(Tm) �= C(Tk)

�

tl(Tk) = max(max
in
local ,max

in
remote)

return max(bl(Tk) + tl(Tk))

Algorithm 11: CellClustering(GA)

In the initial clustering, each tasks of GA has its own cluster:
foreach task Tk do Clustering(Tk) = k

compute EPT (Clustering)

L ← list of edges of the task graph
Sort L by non-increasing communication weight
foreach edge (Tk, Tl) in L do

newClustering ← Clustering

Merge the clusters containing Tk and Tl:
foreach task Ti do

if Clustering(Ti) = Clustering(Tl) then
newClustering(Ti) ← Clustering(Tk)

compute EPT (newClustering)

if EPT (newClustering) ≤ EPT (Clustering) and the CELLGREEDYSET greedy heuristic
successfully maps cluster newClustering(Tk) on a set of SPEs then

Clustering ← newClustering
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Algorithm 12: CellMapClusters(Clustering) : Map clusters into computing resources
Consider a set of clusters Clustering built with Algorithm 11
foreach cluster C in Clustering do

Compute the weight of cluster C: w(c) =
�

Tk∈C
wPPE(Tk) + wSPE(Tk)

Sort L by non-increasing weights
load(PPE 1) ← 0, load(PPE 2) ← 0

foreach cluster C in Clustering do (we try to map C on each resource)
newload(PPE 1) ← load(PPE 1) +

�
Tk∈C wPPE(Tk)

newload(PPE 2) ← load(PPE 2) +
�

Tk∈C wPPE(Tk)

Run CELLGREEDYSET on C1 using the clusters already mapped to C1 plus C, compute
newload(C1) as the maximum load of all SPEs in C1 (let newload(C1) ← ∞ if
CELLGREEDYSET fails)
Do the same on C2 to compute newload(C2)

Select the resource R such that newload(R) is minimum
Map C on resource R: mapping [C] ← R

if R is a PPE then load(R) ← newload(R)

return mapping

until no more transfer is possible. If the selected resource for a move is a PPE, it is straightforward
to compute the new processing time. If it is a set of SPEs, then the procedure CELLGREEDYSET is
used to check memory constraints and compute the new processing time. The algorithm is given in
Algorithm 14.

As in [39], at each step, a large number of moves are considered: for each task, all d-neighborhoods
of this task are generated (with d = 1, 2 . . . dmax), and mapped onto each available resource. Among this
large set of moves, we select the one with best performance. This heuristic needs a more involved way to
compute the performance than simply using the period. Consider for example that both PPEs are equally
loaded, but all SPEs are free. Then no move can directly decrease the period, but two moves are needed
to decrease the load of both PPEs. Thus, for a given mapping, we compute all contributions to the period:
the load of each resource, and the time needed for communications between any pair of resources (the
period is the maximum of all contributions). The list of these contributions is sorted by non-increasing
value. To compare two mappings, the one with the smallest contribution list in lexicographical order is
selected, as described in Algorithm 13.

Algorithm 13: Eval(mapping)

Compute the list Score of every computation time and communication times of this initial
solution :

Score ={t
comp
C1

, t
comp
C2

, t
comp
PPE1

, t
comp
PPE2

, t
comm
C1→C2

, t
comm
C2→C1

,

t
comm
PPE1→C1

, t
comm
C1→PPE1

, t
comm
PPE2→C2

, t
comm
C2→PPE2

}

Sort Score in non increasing order.
return Score
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Algorithm 14: DELEGATE(GA)

Map all tasks on PPE 1: foreach Tk do mapping [Tk] ← PPE 1

move_possible ← 1

while move_possible do
best_move ← ∅

foreach Tk do
foreach neighborhood N of Tk do

foreach S ∈ {PPE 1,PPE 2, C1, C2} do
move ← mapping

move[N ] ← S

if S is a set of SPEs and CELLGREEDYSET fails to map N on S then
Try another S

if Eval(move) <lex Eval(best_move) then
best_move ← move

if Eval(best_move) <lex Eval(mapping) then
mapping ← best_move

move_possible ← 1

else
move_possible ← 0

3.5 Experimental validation

This section presents the experiments conducted to validate the scheduling framework introduced
above. We first present the scheduling software developed to run steady-state schedules on the QS 22,
then the application graphs in use, and finally report and comment the results.

3.5.1 Scheduling software

In order to run steady-state schedules on the QS 22, a complex software framework is needed: it
has to map tasks on different types of processing elements and to handle all communications. Although
there already exists some frameworks dedicated to streaming applications [47, 48], none of them is able
to deal with complex task graphs while allowing to statically select the mapping. Thus, we have decided
to develop our own framework 1. Our scheduler requires the description of the task graph, its mapping
on the platform, and the code of each task. Even if it was designed to use the mapping returned by the
linear program, it can also use any other mapping, such as the ones dictated by the previously described
heuristic strategies.

For now, our scheduling framework is able to handle only one PPE. For the following, we thus
consider nP = 1 PPE and nP = 16 SPE.

Once all tasks are mapped onto the right processing elements and the process is properly initialized,
the scheduling procedure is divided into two main phases: the computation phase, when the scheduler
selects a task and processes it, and the communication phase, when the scheduler performs asynchronous

1. An experimental version of our scheduling framework is available online, at http://graal.ens-lyon.fr/
~mjacquel/cell_ss.html

http://graal.ens-lyon.fr/~mjacquel/cell_ss.html
http://graal.ens-lyon.fr/~mjacquel/cell_ss.html
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communications. These steps, depicted on Figure 3.8, are executed by every processing element. More-
over, since communications have to be overlapped with computations, our scheduler cyclically alternates
between those two phases.

Signal new Data

Wait for Resources

Process Task

Select a Task

Communicate

C
om
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tio
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Communicate

(a) Computation Phase.

No
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For each inbound comm.

(b) Communication Phase.

Figure 3.8: Scheduler state machine.

The computation phase, which is shown on Figure 3.8a, begins with the selection of a runnable
task according to the provided schedule, and waits for the required resources (input data and output
buffers) to be available. If all required resources are available, the selected task is processed, otherwise,
it moves to the communication phase. Whenever a new data is produced, the scheduler signals it to every
dependent processing elements. Note that in our framework, computation tasks are not implemented as
OS tasks but rather as function calls. One computing thread is launched on each processing element
(PPE or SPEs). Each thread then internally chooses the next function (or node of the task graph) to run
according to the provided schedule. This allows us to avoid fine task scheduling at the OS level.

The communication phase, depicted in Figure 3.8b, aims at performing every incoming communica-
tion, most often by issuing DMA calls. Therefore, the scheduler starts watching every previously issued
DMA calls in order to unlock the output buffer of the sender as soon as data had been received. Then,
the scheduler checks whether there is new incoming data. In that case, and if enough input buffers are
available, it issues the proper “Get” command.

Libnuma [65] is used for both thread and memory affinity. Since a PPE can simultaneously handle
two threads, the affinity of every management threads is set to the first multi-threading unit, while PPE
computing thread’s affinity is set to the second multi-threading unit. Therefore, management threads
and computing thread runs on different multi-threading units, and do not interfere. Moreover, the data
used by a given thread running on a PPE is always allocated on the memory bank associated to that PPE.

To obtain a valid and efficient implementation of this scheduler, we had to overcome several issues
due to the very particular nature of the Cell processor. First, the main issue is heterogeneity: the Cell
processor is made of two different types of cores, which induces additional challenges for the program-
mer:

– SPE are 32-bit processors whereas the PPE is a 64-bit architecture;
– Different communication mechanisms have to be used depending on which types of processing

elements are implied in the communication. To properly issue our “Get” operations, we made use
of three different intrinsics: mfc_get for SPE to SPE communications, spe_mfcio_put for
SPE to PPE communication, and memcpy for communication between PPE and main memory.

Another difficulty lies in the large number of variables that we need to statically initialize in each lo-
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cal store before starting the processing of the stream: the information on the mapping, the buffer for
data transfer, and some control variables such as addresses of all memory blocks used for communica-
tions. This initialization phase is again complicated by the different data sizes between 32-bit and 64-bit
architectures, and the run-time memory allocation.

All these issues show that the Cell processor is not designed for such a complex and decentralized
usage. However, our success in designing a complex scheduling framework proves that it is possible to
use such a heterogeneous processor for something else than pure data-parallelism.

3.5.2 Application scenarios

We test our scheduling framework on 25 random task graphs, obtained with the DagGen gener-
ator [92]. This allows us to test our strategy against task graphs with different depths, widths, and
branching factors.

The smallest graph has 20 tasks while the largest has 135 tasks. The smallest graph is a simple chain
of tasks, and the largest graph is depicted on Figure 3.9a. On the communication side, the number of
edges goes from 19 to 204, the graph with 204 edges is depicted on Figure 3.9b.

We classified the generated graphs into two sets, one for the smaller graphs, having up to 59 tasks,
and one for the larger graphs (87 - 135 tasks).

For all graphs, we generated 10 variants with different Communication-to-Computation Ratio
(CCR), resulting in 250 different random applications and 230 hours of computation. We define the
CCR of a scenario as the total number of transferred elements divided by the total number of operations
on these elements. In the experiments, the CCR ranges from 0.001 (computation-intensive scenario) to
0.1 (communication-intensive scenario).
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Figure 3.9: Largest task graphs used in the experiments

In the experiments, we denote by MIP the scheduling strategy using Mixed Integer Programming to
compute an optimal mapping, and described in Section 3.3.3. ILOG CPLEX [29] is used to solve the
linear program with rational and integer variables. To reduce the computation time for solving the linear
program, we used the ability of CPLEX to stop its computation as soon as its solution is within 5% of
the optimal solution. While this significantly reduces the average resolution time, it still offers a very
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good solution.

3.5.3 Experimental results

In this section, we present the performance obtained by the scheduling framework presented above.
We first focus on the initialization phase of streaming applications using our framework, showing that
steady-state operation is reached for a reasonably small length of stream. Then, we compare the
throughput obtained by the heuristics introduced in Section 3.4 and the algorithm MIP, both using
the model of the QS 22 and using experiments on a real platform. Finally, we discuss the impact of the
communication-to-computation ration, and estimate the time required to compute mappings using each
strategy. Note that except when we study the influence of the number of SPEs, all the results presented
below are computed using all 16 SPEs in the QS 22.

Entering steady-state

First, we show that our scheduling framework succeeds in reaching steady-state, and that the
throughput is then similar to the one predicted by the linear program. Figure 3.10 shows the through-
put obtained with streams of different sizes: for a short stream containing few data sets, or instances,
the start-up cost is important, and the overall throughput is small. However, as soon as the number of
instances reaches a few thousands, the obtained throughput is stable. Note that the input data of one
instance only consists of a few bytes, so the duration of the transient phase before reaching the steady-
state throughput is small compared to the total duration of the stream. In steady state, the experimental
throughput achieves 95% of the theoretical throughput predicted by the linear program. The small gap is
explained by the overhead of our framework, and the synchronizations induced when communications
are performed. The schedules given by other mappings, computed using heuristics, also reaches steady
state after a comparable transient phase. We discuss their steady-state throughput below.
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Figure 3.10: Throughput achieved depending on the length of the stream, using the task graph described
in Figure 3.9b, with a CCR of 0.004, on the QS 22 using all 16 SPEs.

In Table 3.3, we present the number of instances that are required to reach steady state, that is, to
reach 99% of the maximum (experimental) throughput, for all possible scenarios. The average value
is around 2000 instances, but the mapping computed using MIP reaches steady state faster than the
other solutions. We have observed the same behavior on small and large task graphs. This shows that
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our scheduling framework is able to reach steady-state operation for any mapping within a reasonable
amount of instances compared to the usual length of streaming applications.

Algorithm Min. Max. Average Std. dev.
GREEDY 300 18,500 2,234 2,589

DELEGATE 250 16,500 2,249 2,381
CLUSTER 300 14,600 2,214 2,586

MIP 300 14,500 2,050 2,182

Table 3.3: Number of instances required to reach steady state for all scenarios.

Figure 3.11a presents the distribution of the ratio ρMIP
exp /ρMIP

th , where ρMIP
exp is the experimental

throughput of MIP, and ρMIP
th is the theoretical throughput (the one predicted by the linear program). The

average ratio is 0.91, but we can observe that the experimental throughput is sometimes very different
from the theoretical one (as less as 20% or as much as 597%). Cases when the experimental throughput
is 5 times smaller than the predicted one mainly happen for small task graphs, when the very few tasks
are scheduled on each processing element, which leads to a high synchronization cost. Figure 3.11b
shows the results for large task graphs, when the accuracy of the predicted throughput is larger (the
average ratio is 1.10). There still remain some cases with a high ratio (the experimental throughput is
larger than the predicted throughput). This corresponds to communication-intensive scenarios: in a few
cases, our communication model is very pessimistic for communications and overestimates bandwidth
contention.
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Figure 3.11: Distribution of the ratio between experimental and theoretical throughputs for the MIP
strategy.

Theoretical comparison of heuristics with MIP

We first start by comparing the expected throughput of the heuristics described in Section 3.4 with
the theoretical throughput of MIP, detailed in Section 3.3.3. This allows to measure the quality of
the mapping produced by heuristics without the particularities of the scheduling framework, and the
inaccuracies of the QS 22 model.

For this purpose, we first compute the theoretical throughput of all mappings produced by the heuris-
tics. A mapping is first described using the α and β variables from the linear program presented in
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Section 3.3.3. The expected period of the mapping can then be computed using Constraints (3.14)
and (3.15) (for computations) and Constraints (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9)
(for communications).

This theoretical comparison also helps to assess the limitation of the constraints on DMA calls. In
the design of the MIP strategy, the limited number of simultaneous DMA calls for PPEs and SPEs
is taken into account with two Constraints (Equations (3.17) and (3.18)). This limitation is not taken
into account while designing heuristics, because we want to keep their design simple. Our scheduling
framework assigns DMA calls dynamically to communication requests, and is able to deal with any
number of communications. Of course, when the number of simultaneous communications exceeds
the bounds, communications are delayed, thus impacting the throughput. The comparison of theoretical
throughput of mappings allows us to measure the limitation on the expected throughput induced by these
constraints, which only exist for MIP.

We hence compute the ratio ρH
th/ρ

MIP
th , where ρHth is the predicted throughput of any heuristic H, and

ρMIP
th is the predicted throughput of MIP. Detailed results are given in Table 3.4.

All task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.55 1.49 0.82 0.12 6%

DELEGATE 0.75 1.05 0.97 0.07 60%
CLUSTER 0.00 2.46 0.32 0.28 1%

MIP 1.00 1.00 1.00 0.00 80%

Small task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.55 1.49 0.82 0.13 8%

DELEGATE 0.87 1.05 0.99 0.04 71%
CLUSTER 0.05 2.46 0.32 0.26 1%

MIP 1.00 1.00 1.00 0.00 78%

Large task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.63 0.98 0.79 0.10 0%

DELEGATE 0.75 1.04 0.91 0.09 27%
CLUSTER 0.00 0.81 0.33 0.33 0%

MIP 1.00 1.00 1.00 0.00 88%

Table 3.4: Predicted throughput of heuristics normalized to the predicted throughput of MIP

These results show that in some cases, the limitation on the number of DMA calls has an impact on
the throughput: there are cases when the CLUSTER strategy finds a mapping with an expected throughput
twice the one of MIP. The MIP strategy is able to reach the best throughput among all strategies in only
80% of the scenarios, due to this limitation. However, MIP still gives a better average throughput than
all other strategies. Thus, this limitation has a little impact on performance.

Among heuristics, the DELEGATE strategy ranks first: it is almost within 25% of the performance
of MIP, and on average gives the same results, and gives the best performance on 60% of the scenarios.
(Note that several heuristics may give the best throughput for a scenario, hence leading to a sum larger
than 100%). Quite surprisingly, the CLUSTER strategy gives very poor results: on average its throughput
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is only one third of the MIP throughput, whereas the simple GREEDY strategy performs better, with an
average throughput around 80% of the MIP throughput. All heuristics perform better on small task
graphs, and have more difficulties to tackle the higher complexity of large task graphs.

The bad performance of CLUSTER is surprising because this heuristics takes communication into
account, as opposed to GREEDY. However, the communications are considered only when building
clusters in the first phase. In the second phase, when clusters are mapped on the resources, communi-
cations are totally neglected. However, all communications do not have the same impact, because the
communication graph has heterogeneous links. Moreover, since clusters have been made to cancel out
the impact of large communications, the load balancing procedure in the second phase has less freedom,
and is unable to reach a well balanced mapping. This explains why the mapping produced by CLUSTER
are usually worse than the one given by DELEGATE or GREEDY.

Experimental comparison of heuristics with MIP

We move to the experimental comparison of heuristics and MIP, when all mappings are scheduled
with our scheduling software on the real QS 22 platform. For the sake of comparison, all throughputs
are normalized by the throughput of MIP, and we present in Table 3.5 the ratio ρH

exp/ρ
MIP
exp , where ρH

exp
is the experimental throughput of any heuristic H, and ρMIP

exp is the experimental throughput of MIP.

All task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.32 3.28 0.91 0.39 8%

DELEGATE 0.75 2.63 1.06 0.27 48%
CLUSTER 0.00 1.80 0.41 0.28 0%

MIP 1.00 1.00 1.00 0.00 54%

Small task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.32 3.28 0.93 0.43 11%

DELEGATE 0.78 2.63 1.10 0.28 56%
CLUSTER 0.08 1.80 0.44 0.26 0%

MIP 1.00 1.00 1.00 0.00 46%

Large task graphs
Algorithm Min. Max. Average Std. dev. Best cases
GREEDY 0.64 1.73 0.85 0.21 0%

DELEGATE 0.75 1.89 0.95 0.20 23%
CLUSTER 0.00 0.82 0.33 0.34 0%

MIP 1.00 1.00 1.00 0.00 80%

Table 3.5: Experimental throughput of heuristics normalized to the experimental throughput of MIP

The comparison between heuristics and MIP is close to the one with expected throughputs. How-
ever, the gap between MIP and each heuristic is smaller: heuristics perform somewhat better on the real
platform that on the model. The average throughput of DELEGATE is very close to MIP’s throughput
(larger for small task graphs, but smaller for large task graphs), and GREEDY gets around 90% of the
MIP’s throughput. Once again, CLUSTER gives a very limited average throughput, with only 41% of the
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MIP’s throughput. On large task graphs, MIP is above all heuristics, and reaches the best throughput in
80% of the cases. However, on average, DELEGATE is able to achieve 95% of the MIP’s throughput.

Scaling and influence of the communication-to-computation ratio

In this section, we present the speed-up obtained by MIP and heuristics. We also study the influence
of the Communication-to-Computation Ratio (CCR), both on the duration of the transient phase before
reaching steady state, and on the accuracy of the model.

A
ve

ra
ge

sp
ee

du
p

12 14 16
Number of SPE used

0

1

2

3

4

5

6

0 2 4 6 8 10

GREEDY

Experimental MIP
DELEGATE

CLUSTER

(a) With CCR=0.001

A
ve

ra
ge

sp
ee

du
p

12 14 16
Number of SPE used

0

1

2

3

4

5

6

0 2 4 6 8 10

GREEDY

Experimental MIP
DELEGATE

CLUSTER

(b) With CCR=0.1

Figure 3.12: Average speed-up vs. number of SPEs in use.

We first present the performance obtained by all strategies, with different number of SPEs. In the
MIP solution, the number of SPEs is a parameter, which may vary between 0 and 16. For all heuristics
developed above, it is quite straightforward to adapt them to deal with a variable number of SPEs.
Figure 3.12 present the average speed-up of each heuristic obtained for different number of SPEs. We
observe that all heuristics are able to take advantage of an increasing number of SPEs. When the CCR is
high, the resulting speed-up is smaller than when the CCR is low, because large communications make
it more difficult to distribute tasks among processing elements. This is also outlined by Figure 3.13b,
which presents the variation of the average speed-up of heuristics (for 16 SPEs) with the CCR. For a
CCR smaller than 0.02, the average speed-up is almost constant, while it decreases for a larger CCR.
We can observe that DELEGATE is a little less sensitive to the increase of the CCR than MIP. For some
strategies, the speed-up slightly increases when the CCR increases from 0.001 to 0.02. This is because to
increase the CCR, we first decrease the computation amount of tasks, which makes the overhead of the
scheduling software (launching tasks, checking buffers, etc.) more visible when all tasks are scheduled
on the PPE.

All task graphs, CCR of 0.001
Algorithm Min. Max. Average Std. dev.
GREEDY 300 400 367 38

DELEGATE 300 400 367 42
CLUSTER 300 400 361 40

MIP 300 400 375 35

All task graphs, CCR of 0.1
Algorithm Min. Max. Average Std. dev.
GREEDY 200 4750 788 974

DELEGATE 200 4200 750 850
CLUSTER 150 2950 702 681

MIP 150 3200 646 670

Table 3.6: Number of instances required to reach steady state

All mapping heuristics produce a periodic schedule, which needs to be initialized: the first data
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of the stream have to be processed specifically before the periodic schedule can be started. Table 3.6
presents the number of instances that are processed in this transient phase, for the two extreme values of
CCR: 0.001 (computation-intensive scenario) and 0.1 (communication-intensive scenario). We observe
that the larger the CCR, the longer the duration of the transient phase: when communications are pre-
dominant, it is more difficult to reach a steady state phase even if communications are well overlapped
with computations.
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Figure 3.13: Evolution of the model accuracy and the speedup with the CCR.

Figure 3.13a presents the evolution of the ratio between the experimental throughput of MIP over
its predicted throughput in function of the CCR. We notice that for all CCR smaller than 0.05, our
model is slightly optimistic, and predicts a throughput at most 30% larger than the one obtained in
the experiments. For larger CCRs, corresponding to communication-intensive scenarios, the model is
pessimistic and larger throughputs are obtained in the experiments. Our model is thus best suited for
average values of the CCR. In case of extreme values, it is necessary to modify the model, either by
taking into account synchronization costs, when CCR is very small, or by better modeling contention
between communications, in case of a very large CCR.

Time required to compute schedules

When considering streaming application, it is usually assumed that streams have very long durations.
This is why it is worth spending some time to optimize the schedule before the real data processing. Yet,
since we are using mixed linear programming, we report the time needed to compute the schedules, to
prove that this is done in reasonable time.

Table 3.7 presents the time required to compute mappings using each algorithm. On average, the
MIP strategy requires twice as much time than all heuristics, and runs for less than two minutes. In some
cases, corresponding to large graphs, the run time of MIP can reach 12 minutes, whereas DELEGATE
need at most 3 minutes. These running, although large, are very reasonable in the context of streaming
applications that are supposed to run for several minutes or hours.

3.6 Related Work

Streaming applications. Scheduling streaming applications is the subject of a vast literature. Sev-
eral models and frameworks had been introduced like StreamIt [91], Brook [30] or Data Cutter Lite [16].



3.7. CONCLUSION 91

Algorithm Min. Max. Average
GREEDY 2.7 189 39
CLUSTER 2.6 190 39

DELEGATE 2.9 205 48
MIP 3.6 706 80

Table 3.7: Scheduling time in seconds

However, our motivation for this work was rather to extract a simple and yet relevant model for the Cell
processor, so as to be able to provide a way to compute interesting mapping for pipeline applications. To
the best of our knowledge, this has never been considered for the Cell processor, nor for another multi-
core architecture that exhibits a similar heterogeneity. Note that the small scale of the target architecture
makes the problem very particular, and that it was not clear that such complex mapping techniques could
result in a feasible and competitive solution for streaming applications. To the best of our knowledge,
none of the existing frameworks which target the Cell processor make it possible to implement our
own static scheduling strategies. The main two limitations of existing frameworks are the restriction
to simple pipeline applications (chain task graphs), whereas we target any DAG, and the fact that only
SPEs are used for computation, the PPE being restricted to control, whereas we take advantage of the
heterogeneity.

It is worth mentioning that the problem studied in this chapter is close to some research in the Digital
Signal Processing (DSP) community. For example, Hoang et al. consider the problem of scheduling a
flow graph on such a parallel DSP platform [52]. The advance of multicore DSP [62] makes the problems
even closer. However, in DSP literature, it is usually assumed that the program to be implemented on the
platform is at hand, and can be modified when needed: code can be rewritten to split tasks, etc., whereas
we consider a fixed task graph. Moreover, DSP literature is often concerned with other constraints like
energy consumption and heat dissipation for mobile devices or real-time constraints.

Task graph scheduling. When scheduling tasks which have dependencies between them, it is natu-
ral to model the resulting problem as a Directed Acyclic Graph (DAG). There are a lot of DAG schedul-
ing studies that are related to the present chapter, especially the ones targeting a heterogeneous envi-
ronment. The most used techniques are list scheduling [25], clustering [76], and task duplication [4].
However, these studies usually consider a single DAG, and try to minimize the completion time of this
DAG, whereas we consider a pipelined version of the problem, when several instances of a common
DAG have to be processed.

Memory access and computation overlap. Hiding memory accesses latencies is a crucial need
when considering the Cell processor. In [44], the authors introduce an improvement to the Decoupled
Threaded Architecture [43] consisting in a prefetch mechanism. They propose an implementation of this
mechanism on the Cell processor through the use of DMA calls and extensions to compiler instructions
set, which interest is demonstrated through simulation (no real implementation seems to be available).
In our scheduler, we propose a real implementation of a similar prefetch mechanism.

3.7 Conclusion

In this chapter, we have studied the scheduling of streaming applications on a heterogeneous plat-
form: the IBM Bladecenter QS 22, made of two heterogeneous multicore Cell processors. The first
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challenge was to come up with a realistic and yet tractable model of the Cell processor. We have de-
signed such a model, and we have used it to express the optimization problem of finding a mapping with
maximal throughput. This problem has been proven NP-complete, and we have designed a formulation
of the problem as a mixed linear program. By solving this linear program with appropriate tools, we can
compute a mapping with optimal throughput. We have also proposed a set of scheduling heuristics to
avoid the complexity of mixed linear programing.

In a second step, we have implemented a complete scheduling framework to deploy streaming appli-
cations on the QS 22. This framework, available for public use, allows the user to deploy any streaming
application, described by a potentially complex task graph, on a QS 22 platform or single Cell processor,
given any mapping of the application to the platform. Thanks to this scheduling framework, we have
been able to perform a comprehensive experimental study of all our scheduling strategies. We have
shown that our MIP strategy usually reaches 90% of the throughput predicted by the linear program,
that it has a good and scalable speed-up when using up to 16 SPEs. Some of the proposed heuristics, in
particular DELEGATE, are also able to reach very good performance. When the task graph to schedule is
large, MIP is the one which offers the best performance, but DELEGATE achieves 95% of its throughput
on average. We have shown that considering load-balancing among processing elements, and carefully
estimating communications between the different components of this bi-Cell platform, is the key to
performance.

Overall, this demonstrates that scheduling a complex application on a heterogeneous multicore pro-
cessor is a challenging task, but that scheduling tools can help to achieve good performance.



Chapter 4

On optimal tree traversals for sparse matrix
factorization

4.1 Introduction

As already said in chapters 1 and 3, communication and memory architectures highly impact perfor-
mance, and must be considered in order to offer high levels of performance. This is especially true for
scientific applications. Moreover, on most hardware platforms, the available memory or storage space
determines the size of the problems that could be solved by such applications. Therefore, for a given
application, it is crucial to minimize the amount of required space.

Generally, applications are modeled by complex data structures, like Directed Acyclic Graphs (or
DAGs). However, the problem of scheduling a general DAG so as to minimize the amount of required
memory has been shown to be NP-hard in [88]. We will rather focus on applications modeled by rooted
trees, which are often encountered in practice, for instance in the multifrontal method of sparse matrix
factorization.

In this chapter, we consider the following memory-aware traversal problem for rooted trees. The
nodes of the tree correspond to tasks, and the edges correspond to the dependencies among the tasks.
The dependencies are in the form of input and output files: each node accepts a large file as input, and
produces a set of large files, each of them to be accepted by a different child node. We are to execute
such a set of tasks on a two-level memory system. The execution scheme corresponds to a traversal of
the tree where visiting a node translates into reading the associated input file and producing output files.
How one can traverse the tree so as to optimize memory usage? For convenience we refer to the two-
levels of storage as the main memory and the secondary memory, and also as in-core and out-of-core.
Many combinations such as cache and RAM, or RAM and disk, or even disk and tape, lead to the same
association of a faster but smaller storage device together with a larger but slower device. The difficulty
remains the same for all combinations: find an execution scheme that makes the best use of the main
memory, and minimizes accesses to the secondary memory.

Throughout the chapter, we consider out-trees where a task can be executed only if its parent has
already been executed. However, we show in Section 4.3 that all results equivalently apply to in-trees,
where tasks are processed from the leaves up to the root. Each task (or node) i in the tree is characterized
by the size fi of its input file (data needed before the execution and received from its parent), and by the
size ni of its execution file.

During execution, non-leaf nodes generate several output files, one for each child, which can have
different sizes. A task can be processed only in-core; its execution is feasible only if all its files (input,
output, and execution) fit in currently available memory. More formally, let M be the size of the main

93
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memory, and S the set of files stored in this memory when the scheduler decides to execute task i. Note
that S must contain the input file of task i. The processing of task i is possible if we have:

MemReq(i) = fi + ni +
�

j∈Children(i)

fj ≤ M −

�

j∈S,j �=i

fj (4.1)

where MemReq(i) denotes the memory requirement of task i (and Children(i) its child nodes in the
tree). Once i has been executed, its input file and execution file can be discarded, and replaced by other
files in main memory; the output files can either be kept in main memory, in order to execute some
child of the task, or they can temporarily be stored into secondary memory (and retrieved later when the
scheduler decides to execute the corresponding child of i). The volume of accesses (reads or writes) to
secondary memory is referred to as the I/O volume.

Clearly, the traversal, i.e., the order chosen to execute the tasks, plays a key role in determining
which amount of main memory and I/O volume are needed for a successful execution of the whole tree.
More precisely, there are two main problems which the scheduler must address:
MINMEMORY Determine the minimum amount of main memory that is required to execute the tree

without any access to secondary memory.
MINIO Given the size M of the main memory, determine the minimum I/O volume that is required to

execute the tree.
Obviously, a necessary condition for the execution to be successful is that the size M of main memory
exceeds the largest memory requirement over all tasks:

max
i

MemReq(i) ≤ M

However, this condition is not sufficient, and a much larger main memory size may be needed for the
MINMEMORY problem.

The main motivation for this work comes from numerical linear algebra. Tree workflows (assembly
or elimination trees) arise during the factorization of sparse matrices, and the huge size of the files
involved makes it absolutely necessary to reduce the memory requirement of the factorization. The trees
arising in this context are in-trees (as said before, and as we will discuss later, there is no difference
between in-trees and out-trees). We build upon two key results from the literature [68, 69]. Liu [68]
discusses how to find the best traversal for the MINMEMORY problem when the traversal is required
to correspond to a postorder traversal of the tree. In the follow-up study [69], an exact algorithm is
proposed to solve the MINMEMORY problem, without the postorder constraint on the traversal.

In this chapter, we propose a new exact algorithm called MinMem for the MINMEMORY problem.
The MinMem algorithm is based upon a novel approach that systematically explores the tree with a
given amount of memory. This approach is quite different from the techniques used in [69]. Although the
worst-case complexity of the proposed MinMem algorithm is the same as that of Liu’s, i.e., quadratic in
the number of nodes in the tree, it turns out that it is much more efficient in practice, as demonstrated by
our experiments with elimination trees arising in sparse matrix factorization (see Section 4.6 for details).
We also compare MinMem and Liu’s algorithms with the best postorder traversal (common in sparse
matrix factorization packages), in terms of both quality (memory needed) and execution time. We report
that the best postorder traversals result in only a little additional memory requirement than the optimal
one in practice, which is good news for the current sparse matrix factorization libraries. However, we
show that there exist trees where postorder based traversals require arbitrarily larger amounts of main
memory than the optimal one.

As for the MINIO problem, we show that it is NP-hard, both for postorder based and for arbitrary
traversals, even for simple harpoon graphs, while it is polynomial for arbitrary trees with unit-size files
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(in which case MINIO reduces to the I/O pebble game introduced by Hong and Kung [53]). This shows
that introducing files of different sizes does add a level of difficulty in memory-aware scheduling of tree
workflows. We provide a set of heuristics to solve the MINIO problem. Our heuristics use various greedy
criteria to select the next node to be scheduled, and those files to be temporarily written to secondary
memory. All these heuristics are evaluated using assembly trees arising in sparse matrix factorization
methods.

The chapter is organized as follows. We start with an overview of related work in Section 4.2.
Then we describe the framework in Section 4.3. The next three sections constitute the heart of this
chapter. We deal with the MINMEMORY problem in Section 4.4, presenting complexity results for
postorder traversals and proposing the exact MinMem algorithm. Then we consider the MINIO problem
in Section 4.5, assessing the NP-hardness of this problem, and designing heuristics. The experimental
evaluation of all MINMEMORY algorithms and MINIO heuristics is conducted in Section 4.6. Finally
we provide some concluding remarks and hints for future work in Section 4.7.

4.2 Background and Related Work

4.2.1 Elimination tree and the multifrontal method

As mentioned above, determining a memory-efficient tree traversal is very important in sparse nu-
merical linear algebra. The elimination tree is a graph theoretical model that represents the storage
requirements, and computational dependencies and requirements, in the Cholesky and LU factoriza-
tion of sparse matrices. Here we give a brief description of such trees; we refer to [87] for the first
formalization of elimination trees, and to [70] for an excellent survey on the subject.

There are at least two interpretations of elimination trees [70]. Among those, the one describing
the dependencies of numerical values among the columns of the Cholesky factor serves well for our
purposes in this chapter. Assume that A is an n × n sparse, symmetric, positive definite matrix with a
lower triangular Cholesky factor L such that A = LLT . It is known that for i > j, the numerical values
of column i of L depend on column j of L if and only if �ij �= 0. Consider building a directed graph
on n vertices with edges representing the column dependencies, i.e., we add an edge from the vertex vj

to the vertex vi whenever the column i of L depends on the column j. The transitive reduction (if there
is a directed path of length at least two from vj to vi, then the edge (vj , vi) is discarded) of this graph
yields the elimination tree. Given such a model, it is clear that the column i of L can only be computed
after all the columns corresponding to the children of vi in the elimination tree.

The multifrontal method of sparse matrix factorization [36, 71] organizes the computations of sparse
factorizations as a sequence of dense matrix operations using the elimination tree. The method associates
a block 2 × 2 matrix with each node of the elimination tree—the block matrix contains a diagonal ele-
ment and the nonzeros in the corresponding row and column of the matrix currently being eliminated.
The (1, 1)-block of a node can be eliminated (it is called fully summed) only if all the updates to the
corresponding diagonal entry have been computed. The Schur complement formed by the elimination
of the fully summed variable on the (2, 2)-block of a node cannot be eliminated until later in the factor-
ization. This Schur complement is called the contribution block, and it is passed to the father node for
the assembly operation. Therefore the operations that are at the heart of the multifrontal method are as
follows. The first one is to assembly the contribution blocks from the children nodes, and the original
entries from the matrix (if we are at a leaf, there is no contribution block); the second one is to eliminate
the fully summed variable; and the third one is to compute and send the contribution block to the father.
This leads to an in-tree where the computations proceed from the leaves to the root.

Since the elimination tree is defined with one variable (row/column) per node, it only allows one
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elimination per node and the (1,1) block would be of order one. Therefore, there would be insufficient
computation at a node for efficient implementation. It is thus advantageous to combine or amalgamate
nodes of the elimination tree. The amalgamation can be restricted so that two nodes of the elimina-
tion tree are amalgamated only if the corresponding columns of the L factor have the same structure
below the diagonal [36]. As even this technique may not give a large enough (1,1) block, a threshold
based amalgamation strategy can be used in which the columns to be amalgamated are allowed to have
discrepancies in their patterns [11]. The resulting tree is often called the assembly tree.

4.2.2 Pebble game and its variants

On the more theoretical side, this work builds upon the many papers that have addressed the pebble
game and its variants. The MINMEMORY problem amounts to revisiting the I/O pebble game with
pebbles of arbitrary sizes that must be loaded into main memory before firing (executing) the task. The
pioneering work of Sethi and Ullman [89] deals with a variant of the pebble game that translates into
the simplest instance of MINMEMORY, with fi = 1 and ni = 0 for any task i. The concern in [89] was
to minimize the number of registers that must be used while computing an arithmetic expression. The
problem of determining whether a general DAG can be executed with a given number of pebbles has
been shown NP-hard by Sethi [88] if no vertex is pebbled more than once (the general problem allowing
recomputation, that is, re-pebbling a vertex which have been pebbled before, has been proven PSPACE
complete by Gilbert, Lengauer and Tarjan [41]). However, this problem has a polynomial complexity
for tree-shaped graphs [89].

A variant of the game with two levels of storage has been introduced by Hong and Kung [53] under
the name of I/O pebble game, which was used to derive lower bounds on I/O operations and study the
trade-off between I/O operation and main memory size for particular graphs. A comprehensive summary
of results for pebble games can be found in the book by Savage [85].

In [89], the algorithm proposed by Sethi and Ullman for processing tree-shaped graphs and minimiz-
ing the number of allocated registers also has a minimum number of store instructions, which makes it
optimal both for memory and for I/O minimization. It is quite interesting to see that the classical pebble
game problem with trees remains polynomial with files of arbitrary sizes instead of pebbles (this is the
MINMEMORY problem,) while the I/O pebble game becomes NP-hard (see Theorem 4.2).

On the application side, there are many variants of MINMEMORY, some of which being discussed in
Section 4.3.3. The execution model summarized by Equation (4.1) applies to a large variety of scenar-
ios, including divide-and-conquer algorithms. For high-degree trees, simultaneously loading all children
files into main memory may be a bottleneck requirement. While some applications could allow for pro-
cessing the children one after the other, like in map-reduce problems, other scenarios call for generating
all children data concurrently. Along the same line, a relaxation of the MINIO problem would allow
to write fractions of files into secondary memory, leading to a divisible version of the problem. Again,
while this may make sense in some cases (e.g., when the main memory is naturally divided into small
pages, and if it is possible to unload some pages containing fractions of files), it is not always possible
(e.g., when the main memory is a complex file system).

4.3 Models and Problems

4.3.1 Application model

The tree workflow T is composed of p nodes, or tasks, numbered from 1 to p. Nodes in the tree have
an input file, an execution file (or program), and several output files (one per child). More precisely:
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– Each node i has an input file of size fi. If i is not the root, its input file is produced by its parent
parent(i); if i is the root, its input file can be of size zero, or contain input from the outside world.

– Each node i in the tree has an execution file of size ni.
– Each non-leaf node i in the tree, when executed, produces a file of size fj for each j ∈ Children(i).

Here Children(i) denotes the set of the children of i. If i is a leaf-node, then Children(i) = ∅

and i produces a file of null size: we then consider that the terminal data produced by leaves are
directly written to the secondary memory or sent to the outside world, independently from the I/O
mechanism.

The memory requirement MemReq(i) of node i is the total amount of main memory that is needed to
execute node i, as underlined in Equation (4.1). After i has been processed, its input file and program
can be discarded, while its output files can either be kept in main memory (to process the children of i)
or be stored in secondary memory temporarily.

Algorithm 15: Checking an in-core traversal.
Input: tree T with p nodes, available memory M , ordering σ of the nodes
Output: whether the traversal is feasible
Ready ← {root}

Mavail ← M − froot

for step = 1 to p do
Let i be the task such that σ(i) = step

if i /∈ Ready , or MemReq(i) > Mavail + fi then
return FAILURE

Mavail ← Mavail + fi −
�

j∈Children(i) fj

Ready ← Ready \ {i} ∪
�

j∈Children(i){j}

return SUCCESS

4.3.2 In-core traversals and the MINMEMORY problem

For the MINMEMORY problem, we are given a tree T with p nodes and an initial amount of memory
M . A traversal is an ordering of the p nodes that specifies at which step they are executed. A traversal
must obey precedence constraints (a node is always scheduled after its parent) and must never exceed the
available memory. Algorithm 15 checks if a given traversal is feasible: it computes the memory Mavail

that is available at each step, which corresponds to the original memory M minus the size of the files
of ready nodes (nodes which are not executed yet, but whose parents have been processed). A formal
definition of a traversal is given below.

Definition 4.1 (INCORETRAVERSAL). Given a tree T and an amount M of available memory, the
problem INCORETRAVERSAL(T ,M) consists in finding a feasible in-core traversal σ described by a
permutation of the nodes of a tree T such that:
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∀i �= root , σ(parent(i)) < σ(i) (4.2)

∀i,

�

σ(j)<σ(i)




�

k∈Children(j)

(fk)− fj





+ ni +
�

k∈Children(i)

fk ≤ M

(4.3)

In this definition, Equation (4.2) accounts for precedence constraints and Equation (4.3) deals with
memory constraints. A postorder traversal is a traversal where nodes are visited according to some top-
down postorder ordering of the tree nodes. Hence, in a postorder traversal, after processing a vertex i,
the whole subtree rooted in i is completely processed.

Definition 4.2 (MINMEMORY). Given a tree T , determine the minimum amount of memory M such
that INCORETRAVERSAL(T ,M) has a solution. MINMEMORY-POSTORDER is the same problem
restricted to postorder traversals.

4.3.3 Model variants

In this section, we discuss three variants of the model.

Bottom-up traversals for in-trees Let T be an in-tree with p nodes and M the amount of main
memory. As the tasks have to be executed from the leaves to the root, a task now has many input files
and a single output file. We do not change the notations and assume that the output file has size fi (to
the parent, instead of from the parent in an out-tree), and the input files have the size fj for each child j

of i. A valid traversal of such an in-tree should respect the order of the tasks (from the leaves to the root)
and should satisfy Equation (4.1) for each task i. Suppose σ(T , p,M) is a valid traversal of the in-tree
T . Then �σ(�T , p,M) is a valid traversal of the out-tree �T where �σ denotes the reverse permutation of
σ, defined as �σ(i) = p− σ(i) + 1 for all i. This is easy to verify as the reverse permutation guarantees
the order of the tasks for �T , and the memory constraint is satisfied for any task. The relation between a
valid traversal of an in-tree T and the inverted traversal of the out-tree �T holds for the other way round
too.

Model with replacement In some variants of the pebble game, the player is allowed to move a
pebble from one pebbled node to an unpebbled node. Extending the game to pebbles with non-unit
costs, this amounts to the variant of the model where the memory occupied by the input file of node i

(of size fi) is replaced by the memory occupied by the output files of node i (of size
�

j∈Children(i) fj).
The amount of memory needed to process node i is max(fi,

�
j∈Children(i) fj) (note that in the pebble

game, there is no cost ni). This variant can be simulated by our model as follows: given an instance of
the problem with the replacement policy, we add a negative weight ni = −min(fi,

�
j∈Children(i) fj) to

each node i (an example is given in Figure 4.1).

Liu’s model In [69], the author introduces a bottom-up framework modelling sparse matrix LU

factorization. In this framework, the tree T modelling the application is modified as follows: each
original node x of T is expanded in two nodes x+ and x−. Here x+ represents x during the processing
of a column, x− being x after its processing. Note that in this model, parameter fx is not used.
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Model with replacement
max(fi,

�
j∈Children(i) fj) ≤ M

E

1
1 2
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Current model
fi + ni +

�
j∈Children(i) fj ≤ M
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Figure 4.1: Transformation from the model with replacement.

The cost nx+ associated to node x+ represents the number of nonzeros in columns of the matrix
L from the subtree of T rooted in x, that are required during the processing of the column x in the
factorization: in other words the memory peak associated to node x. Conversely, the cost nx− is the
number of nonzeros in columns of matrix L associated with the subtree of T rooted in x that are still
required after the processing of x, which is the storage requirement of the subtree of T rooted in x.

This variant can be simulated in our framework by merging back each pair of nodes (i+,i−) into
node i, with an input file of size fi = ni− and an extra memory cost during processing ni = ni+ −ni− −�

j−∈Children(i+) nj− . An example is given in Figure 4.2.
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Figure 4.2: Reduction for Liu’s model.

4.3.4 Out-of-core traversals and the MINIO problem

Out-of-core processing enables solving large problems, when the size of the data cannot fit into the
main memory. In this case, some temporary data are copied into the secondary memory, and unloaded
from the main memory, so as to leave room for other computations. Since secondary memory has a
smaller access rate, the usual objective is to limit the volume of I/O operations.

Defining traversals that perform I/O operations is more complicated than defining in-core traversals:
in addition to determining the ordering of the nodes (the permutation σ), at each step we have to identify
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Algorithm 16: Checking an out-of-core traversal.
Input: tree T with p nodes, available memory M , ordering σ of the nodes, ordering τ of the

output transfers to secondary memory
Output: whether the traversal is feasible, and the amount of I/O
Ready ← {root}

Mavail ← M − froot

IO ← 0

Written ← ∅

for step = 1 to p do
foreach i such that τ(i) = step do

if σ(i) ≥ step then
return FAILURE

Written ← Written ∪ {i}

Mavail ← Mavail + fi

IO ← IO + fi

Let i be the task such that σ(i) = step

if i ∈ Written then
Written ← Written \ {i}

Mavail ← Mavail − fi

if i /∈ Ready , or MemReq(i) > Mavail + fi then
return FAILURE

Mavail ← Mavail + fi −
�

j∈Children(i) fj

Ready ← Ready \ {i} ∪
�

j∈Children(i){j}

return (SUCCESS, IO)

which files are written into secondary memory (if necessary). When a task i is scheduled for execution
but its input file was moved to secondary memory, that file must be read and loaded back into the main
memory before processing task i. Thus, a given file is written at most once in the main memory. The
ordering of the I/O operations is done via a second function τ , such that τ(i) is the step when the input
file of task i (of size fi) should be moved to secondary memory (τ(i) = ∞ means that this file is never
moved to the secondary memory).

Algorithm 16 is used to check whether an out-of-core traversal is feasible. It makes use of Written ,
the set of files that have been moved to secondary memory. Similarly to the in-core case, Mavail denotes
the memory which is available at a current step, and Ready the set of ready nodes. The algorithm also
computes IO , the total amount of data transferred from/to main memory. Note that each data written
(once) to the secondary memory is read only once. At each step, the algorithm checks that the files
written to secondary memory have been produced earlier, that precedence constraints are satisfied, and
that there is enough memory to process the chosen node. More formally, a valid out-of-core traversal
can be defined as follows.

Definition 4.3 (OUTOFCORETRAVERSAL). Given a tree T and a fixed amount of main memory M ,
the problem OUTOFCORETRAVERSAL(T ,M) consists in finding an out-of-core traversal, described
by a permutation σ of the nodes in T (corresponding to the schedule of computations), and a set F ⊂



4.4. THE MINMEMORY PROBLEM 101

{1, . . . , n} (corresponding to the input files of tasks which are written to secondary memory), such that:

∀i �= root , σ(parent(i)) < σ(i) (4.4)

∀i,

�

σ(j)<σ(i)








�

k∈Children(j)

fk



− fj





−

�

j∈F
σ(j)>σ(i)

σ(parent(j))<σ(i)

fj + ni +
�

k∈Children(i)

fk ≤ M
(4.5)

Then the amount of data written in secondary memory is given by

IO =

�

i∈F
fi

In Equation (4.5), the term
�

j∈F,σ(j)>σ(i),σ(parent(j))<σ(i) fj corresponds to the files that have been
written into secondary memory at step σ(i). We now define the MINIO problem, which asks for an
out-of-core traversal with the minimum amount of I/O volume.

Definition 4.4 (MINIO). Given a tree T , and a fixed amount of main memory M , determine the mini-
mum I/O volume IO needed by a solution of OUTOFCORETRAVERSAL(T ,M).

4.4 The MINMEMORY Problem

In this section, we present algorithms for the MINMEMORY problem. We first present the best
possible postorder traversal, and show that its performance can be arbitrarily bad. Then we propose an
alternative to the optimal algorithm introduced by Liu [69].

4.4.1 Postorder traversals

Postorder traversals are very natural for the MINMEMORY problem, and they are widely used in
sparse matrix software like MUMPS [9, 10]. Liu [68] has characterized the best postorder traversal,
leading to a fast but sub-optimal solution for MINMEMORY. In a nutshell, the best postorder is obtained
by guaranteeing that in the resulting order, the children of a node are listed in the increasing order of
the memory requirement of their respective subtrees. The algorithm is called PostOrder . In another
study, Liu [69] has also provided an optimal algorithm for MINMEMORY whose worst case execution
time is O(p2), where p is the number of tree nodes. The algorithm that finds the best postorder runs
in O(p log(p)) time, which calls for a tradeoff between speed and performance. But while postorder
traversals are widely used in practice, their efficiency has never been thoroughly assessed (to the best of
our knowledge). We now show that the best postorder may require arbitrarily more main memory than
the optimal traversal.

Theorem 4.1. Given any arbitrarily large integer K, there exist trees for which the best postorder
traversal requires at least K times the amount of main memory needed by the optimal traversal for
MINMEMORY.
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Figure 4.3: First levels of the graph for the proof of Theorem 4.1. Here b is the number of children of
the nodes with more than one child.

Proof. Consider the harpoon graph with b branches in Figure 4.3a. All branches are identical and all
tasks have a zero length execution file. Any postorder traversal requires an amount of M+ε+(b−1)M/b

main memory, while the optimal traversal (which alternates between branches) only requires Mmin =

M + bε. Now replace each leaf by a copy of the harpoon graph, as shown in Figure 4.3b. The value of
Mmin becomes M + ε+2(b− 1)ε, while a postorder traversal requires MPO = M + ε+2(b− 1)M/b.
When iterating the process L times, postorder requires MPO = M + ε+ L(b− 1)M/b while Mmin =

K(b − 1)ε + M . Thus, for any ratio K, there exists L such that when iterating the process L times,
MPO/Mmin > K. �

4.4.2 The Explore and MinMem algorithms

Liu [69] proposes an algorithm for MINMEMORY which is optimal among all possible traversals,
not only postorder ones. It is a recursive bottom-up traversal of the tree which, at each node of the
tree, combines the optimal traversals built for all subtrees. The combination is based on the notion of
Hill-Valley Segments and requires some sophisticated multi-way merging algorithm, in order to reach the
O(p2) complexity. In this section, we introduce MinMem , another exact algorithm which proceeds top-
down and maintains the best reachable cut of the tree at each step. While the worst-case complexity of
MinMem is the same as Liu’s exact algorithm, it runs faster in practical cases resulting from multifrontal
methods (see Section 4.6). The MinMem algorithm is based on an advanced tree exploration routine:
the Explore algorithm.

The Explore algorithm requires a tree T , a node i to start the exploration, and an amount of available
memory Mavail . The last two parameters (Linit and Tr init ) are optional, and useful to speed-up the
algorithm by avoiding the repeated exploration of some parts of the tree. With these parameters, the
algorithm computes the minimal memory consumption that can be reached. If the whole tree can be
processed, then the minimal memory is zero. Otherwise, the algorithm stops before reaching the bottom
of the tree, because some parts of the tree require more memory than what is available. In this case,
the state with minimal memory corresponds to a cut in the tree: some subtrees are not yet processed,
and the input files of their root nodes are still stored in memory. The Explore algorithm outputs the cut
with minimal memory occupation, as well as a possible traversal to reach this state with the provided
memory. In the case where the whole subtree cannot be executed, it also gives the minimum amount of
memory (called memory peak) which is needed to explore an additional node in the subtree.
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Algorithm 17: Explore (T, i,M avail, Linit,Tr init)
Input: tree T , root i of the subtree to explore, available memory M avail, initial set of nodes Linit,

initial traversal Tr init
Output: �Mi, Li,Tr i,M

peak
i �, where:

Mi: the minimum memory requirement in the subtree rooted in i, reachable with memory M ,
Li: set of input files related to Mp,
Tr i: the traversal from node i to L

M
peak
i : minimum memory to be able to visit a new node

1 if node i is a leaf and ni + fi ≤ M avail then
2 return �0, ∅, [i],∞�

3 if ni + fi +
�

j∈Children(i) fj > M avail then
4 M

peak
i ← ni + fi +

�
j∈Children(i) fj

5 return �∞, ∅, [ ],M
peak
i �

6 if Linit �= ∅ then
7 Li ← Linit
8 Tr i ← Tr init

9 else
10 Li ← Children(i)

11 Tr i ← [i]

12 Candidates ← Li

13 while Candidates �= ∅ do
14 foreach j ∈ Candidates do
15 �Mj , Lj ,Tr j ,M

peak
j � ← Explore(T, j,M avail −

�
k∈Li\{j} fk, ∅, ∅) /* Process j

*/
16 if Mj ≤ fj then
17 Li ← Li\{j} ∪ Lj

18 Tr i ← Tr i ⊕ Tr j /* append traversal Tr j to the end of Tr i */

19 Candidates ←

�
j ∈ Li such that M avail −

�
k∈Li\{j} fk ≥ M

peak
j

�

20 Mi ←
�

j∈Li
fj

21 M
peak
i ← minj∈Li

�
M

peak
j +

�
k∈Li\{j} fk

�

22 return
�
Mi, Li,Tr i,M

peak
i

�
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When called on a node i, the algorithm first checks if the current node can be executed. If not, the
algorithm stops and returns the current requirement as memory peak. Otherwise, it recursively proceeds
in its subtree. The optimal cut is initialized with its children, and iteratively improved. All the nodes in
the cut are explored: if the cut Lj found in the subtree of a child j has a smaller memory occupation
than the child itself, the cut is updated by removing child j, and by adding the corresponding cut Lj .
When no more nodes in the cut can be improved (which is easily tested using their respective memory
peak), then the algorithm outputs the current cut.

Algorithm 18: MinMem (T )
Input: tree T

Output: minimum memory M needed to process the whole tree, traversal Tr
1 Mpeak ← maxi∈T MemReq(i) /* lower bound */
2 M avail ← 0

3 L ← ∅

4 Tr ← [ ]

5 while Mpeak < ∞ do
6 M avail ← Mpeak

7 �M,L,Tr ,Mpeak� ← Explore(T, root ,M avail, L,Tr)

8 return �M avail,Tr�

The Explore algorithm can be used to check whether a given tree can be processed using a given
memory. If not, it provides a refined lower bound on the necessary memory. The MinMem algorithm
makes use of this information to solve the MINMEMORY problem.

To assess the complexity of the MINMEMORY problem, we consider the moment when each node is
first visited by Explore, that is, for each node i, the first call on Explore(T, i). There are p such events,
which we denote as F1, . . . , Fp. We observe that between two such events, no node is visited more than
twice by Explore. Firstly, in Explore, a subtree is re-visited only if the available memory is larger than
its peak, which induces that a new node will be visited. Secondly, MinMem asks Explore to re-visit
the whole tree with its peak value, which similarly leads to visit a new node. Thus, there are at most 2p
calls to Explore between two events Fi and Fi+1. Altogether, the overall complexity of the algorithm is
O(p2).

4.5 The MINIO Problem

Contrarily to MINMEMORY, the MINIO problem turns out to be combinatorial. The difficulty goes
beyond finding the best traversal. Indeed, even when the traversal is given, it is hard to determine which
files should be transferred into secondary memory at each step.

4.5.1 NP-completeness

We prove that the following three variants of the problem are NP-complete.

Theorem 4.2. Given a tree T with p nodes, and a fixed amount of main memory M , consider the
following problems:

(i) given a postorder traversal σ of the tree, determine the I/O schedule so that the resulting I/O
volume is minimized,
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(ii) determine the minimum I/O volume needed by any postorder traversal of the tree,

(iii) determine the minimum I/O volume needed by any traversal of the tree.

The (decision version of) each problem is NP-complete.
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Figure 4.4: Graph corresponding to Inst2 in the proof of Theorem 4.2.

Note that (iii) is the original MINIO problem. Also note that the NP-completeness of (i) does not a
priori imply that of (ii), because the optimal postorder traversal could have a particular structure. The
same comment applies for (ii) not implying (iii).

Proof. We use the same reduction for the three problems, which clearly all belong to NP. Consider an
instance Inst1 of 2-Partition [40], with n integers {a1, a2, . . . , an|

�
i ai = S}. The instance Inst2,

common for all three problems, consists in the harpoon graph depicted on Figure 4.4, with 2n+3 nodes.
We let M = 2S, which is the largest memory requirement of a node (the root node Tin ). We let the I/O
bound be IO = S/2. The construction of Inst2 is clearly polynomial in the size of Inst1.

Note that all traversals are postorder traversals. Any traversal must start with the root Tin . After it
has been processed, 2S units of memory are occupied. In order to process the rest of the tree, one has
two main choices:

– either execute one of the n tasks Ti first, with 1 ≤ i ≤ n. This requires loading the output file of
Ti of size S into main memory, hence to transfer some files whose total sizes are at least S into
secondary memory. This violates the I/O bound.

– either execute task Tbig first. This requires to load its output file of size S/2 into main memory,
hence to transfer some files whose total sizes are at least S/2 into secondary memory.

For (ii) and (iii), the reduction from 2-Partition goes as follows. Suppose first that Inst1 has a solution,
with

�
i∈I ai =

�
i/∈I ai = S/2. Then, after unloading files of size ai with i ∈ I (thus increasing the

available memory by S/2), one is able to process the entire branch of Tbig up to the root. This means
Inst2 has a solution.

Suppose now that Inst2 has a solution. That means that some files were unloaded in order to process
Tbig . The amount of memory to free is at least S/2. It is also at most S/2 so as to meet the bound IO.
Therefore, exactly S/2 units of memory were unloaded to be able to host Tbig . If I is the set of the
unloaded files, then

�
i∈I ai = S/2, which means that Inst1 has a solution and concludes our proof.

Now for (i), take any ordering of the nodes σ which executes Tbig just after the root task Tin . The
proof is the same, independently of the rest of the ordering. �
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4.5.2 Heuristics

The NP-completeness of problem (i) in Theorem 4.2 shows that it is difficult to select which files to
unload to secondary memory, even when the traversal is given. We introduce six heuristics that greedily
choose such files. In the following, j denotes the next node to be processed. First, if fj has been
previously unloaded, it must be stored back into main memory. Then an amount of MemReq(j) − fj

of main memory must be available to execute node j. Let M avail be the currently available memory. If
MemReq(j) − fj ≤ M avail, then node j can be processed without I/O. Otherwise, we have to unload a
volume IOReq(j) = M avail − (MemReq(j) − fj). In that case, we order the set S = {fi1 , fi2 , . . . , fij}

of the files already produced and still residing in main memory, so that σ(i1) > σ(i2) > · · · > σ(ij).
Hence fi1 is the file which will be used at the latest iteration in the traversal, and so on. We greedily
select the first files from S according to various criteria which we describe below.

Last Scheduled Node First (LSNF) We select the first files from S until their total size is at least
IOReq(j). The rationale is to unload the files that will be used the latest in the traversal, in order to avoid
swapping intermediate files. This heuristic can easily be shown to be optimal for the divisible version of
MINIO, where fractions of file can be written from and to secondary memory (see Section 4.2.2.)

First Fit This heuristic writes out the first file in S whose size is at least IOReq(j). If no such file
exists, the LSNF strategy is used.

Best Fit This heuristic writes out the file in S whose size is the closest of IOReq(j): it chooses ik

such that |IOReq(j)− fik | is minimal. This step is repeated until enough space has been freed.

First Fill This heuristic writes out the first file in S whose size is smaller than IOReq(j). This step is
repeated until enough space has been freed. If not enough space can be freed, the LSNF strategy is then
used. The rationale here is to avoid unduly writing big files out to secondary memory, thus significantly
increasing I/O volume. Instead this heuristic tries to ‘’fill‘’ out the required I/O volume with the first
eligible files.

Best Fill This heuristic writes out the file whose size is the closest to IOReq(j) among those files
in S whose size is smaller than IOReq(j). This step is repeated until enough space has been freed. If
not enough space can be freed, the LSNF strategy is then used. The rationale here is to ‘’fill‘’ out the
required I/O volume, but this time with the best eligible files.

Best K Combination This last heuristic considers the first K files in S (we use K = 5 in the
experiments) and selects the best combination, i.e., the subset whose size is the closest to IOReq(j).
This step is then repeated until enough memory has been freed.

4.6 Experiments

In this section, we experimentally compare the three algorithms for MINMEMORY,
namely PostOrder (which finds the best postorder traversal of the tree) and the two optimal variants
Liu (exact algorithm of [69]) and MinMem . We evaluate the deviation of PostOrder form the optimal
solution, and we study the execution cost of each algorithm. Next we report on the performance of the
heuristics for MINIO.
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4.6.1 Setup

Each algorithm has been implemented in highly optimized C++ versions. The PostOrder and Liu

algorithms are written as iterative codes while MinMem is a recursive code. Their behavior has been
validated on a platform based on an Intel Xeon 5250 processor. Source code for all the algorithms,
heuristics and experiments is publicly available 1.

Experiments were conducted within the Matlab environment for commodity reasons, especially ease
of access to various data sets. We use a generic tool called performance profiles [33] to assess the pro-
posed algorithms and heuristics. The main idea behind performance profiles is to use a cumulative
distribution function as the performance metric, instead of taking averages over all test cases. We in-
vestigate the performance of the algorithms and heuristics in terms of running times and the quality of
the solution (the memory requirement, or the total I/O volume). For a given metric, a profile plot shows
the fraction of cases where a specific method gives results which are within some value τ of the best
result reached by all algorithms. Therefore the higher the fraction, the more preferable the method. For
example, for the runtime metric, a τ value shows the fraction of cases where the running time of the
target algorithm is within τ of the fastest algorithm shown in the same plot. Similarly, for the memory
requirement metric, a τ value shows the fraction of cases where the memory requirement of the target
algorithm is within τ of the best result found by any algorithm shown in the same plot.

4.6.2 The Data Set

The data set contains assembly trees of a set of sparse matrices obtained from the University of
Florida Sparse Matrix Collection 2. The matrices satisfy the following assertions: square, number of
rows is between 2× 104 and 2× 105, the number of nonzeros per row is at least 2.5, and the number of
nonzeros is at most 5 × 106. At the time of testing there were 291 matrices satisfying these properties.
We use the symmetrized pattern of the matrices, e.g., the pattern of |A| + |A|T + I . We first order the
matrices using MeTiS [63] (through MeshPart toolbox [42]) and amd (available in Matlab), and then
build the corresponding elimination trees using the symbfact routine of Matlab. We also perform
relaxed node amalgamation on these elimination trees to create assembly trees. We have created a large
set of instances by allowing 1, 2, 4, and 16 (if n > 1.6 × 105) relaxed amalgamations per node. We
always realize perfect amalgamations, e.g., when a node is the only child of its parent and the parent has
only one less entry in the associated column in L, the two nodes are amalgamated. When the current
amalgamated node does not contain more than the allowed amalgamation per node, we amalgamate the
node with its densest child. At the end we compute the weight of a node as η2+2η(µ−1), where η is the
number of nodes amalgamated, and µ is the number of nonzeros in the column of L which is associated
with the highest node (in the starting elimination tree). Edge weights are computed as (µ − 1)2. These
numbers correspond respectively to ni and fi as described in Section 4.3.

4.6.3 Results for MINMEMORY

The first objective is to evaluate the performance of PostOrder in terms of the memory requirement
of the resulting traversal with respect to the optimal value. In 95.8% of the cases, PostOrder is optimal.
Only the non-optimal cases are depicted on Figure 4.5, PostOrder requiring up to 18% more memory
than the optimal solution. Detailed statistics are given in Table 4.1. As a conclusion, PostOrder statis-
tically gives very good results for assembly trees, except in rare cases where it can require up to 20%
more main memory than the optimal traversal.

1. http://graal.ens-lyon.fr/~mjacquel/minmem.html
2. http://www.cise.ufl.edu/research/sparse/matrices/

http://graal.ens-lyon.fr/~mjacquel/minmem.html
http://www.cise.ufl.edu/research/sparse/matrices/
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Figure 4.5: Performance profile for comparing the memory requirement obtained by PostOrder with
the optimum values for the assembly trees for which PostOrder does not find an optimal solution.

Non optimal PostOrder traversals 4.2%
Max. PostOrder to opt. cost ratio 1.18
Avg. PostOrder to opt. cost ratio 1.01
Std. Dev. of PostOrder to opt. cost ratio 0.01

Table 4.1: Statistics on memory cost of PostOrder for assembly trees.
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Figure 4.6: Performance profiles for comparing the running time of the three algorithms for the MIN-
MEMORY problem on the assembly trees.

The second objective is to compare the running times of the three algorithms. We observe on Fig-
ure 4.6 that MinMem is the fastest algorithm in 80% of the cases, and clearly outperforms Liu .

Altogether, these experiments show that in the context of sparse matrix assembly trees, PostOrder

frequently offers optimal or near-optimal results. When PostOrder is not optimal, it is reasonably close
to the minimum memory required to process the tree. Nevertheless, whenever memory becomes a key
resource, MinMem can compete with PostOrder in terms of running time, and it always produces the
optimum memory requirement, therefore constituting an interesting alternative.

4.6.4 Results for MINIO

This experiment aims at evaluating the six heuristics introduced in Section 4.5.2 for the MINIO
problem. Tree traversals are obtained using PostOrder , Liu and MinMem for the MINMEMORY prob-
lem. The available memory ranges from maxi∈T MemReq(i), to the minimal memory required for the
traversal.

On Figure 4.7, the performance profile of all heuristics applied on traversals produced by MinMem

is depicted. The best heuristic is clearly First Fit, which is almost tied by Best K Combination. Then Best
Fill and First Fill provide almost the same I/O volume, and in turn perform better than Last Scheduled
Node First and Best Fit, which are very close. As a consequence, because of its good behavior and low
complexity, First Fit represents the best alternative among the six policies. This conclusion remains true
when applying the heuristics to traversals produced by PostOrder or Liu .

The next experiment aims at characterizing the behavior of the algorithms designed for MINMEM-
ORY in the context of out-of-core traversals. The policy used for I/O is First Fit. The performance profile
of every traversal is reported on Figure 4.8. The best results are provided by PostOrder . This experi-
ment also shows that MinMem does not produce good out-of-core tree traversals, and is outperformed
by Liu which provides better traversals for MINIO. This interesting result is due to the fact that contrar-
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Figure 4.7: Performance profiles for comparing the resulting I/O volume of the heuristics for the
MinMem algorithm on the assembly trees.
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ily to MinMem , Liu produces long chains of dependent tasks by construction. These chains reduce the
pressure on main memory since files produced by a task will be consumed soon, thereby reducing the
I/O volume. PostOrder also benefits from this phenomenon.

4.6.5 More on PostOrder Performance

This last experiment comes almost as a digression, because we do not use assembly trees here. The
objective is to further assess the performance of PostOrder in terms of the resulting memory require-
ment. While the theory tells us that PostOrder can be arbitrarily bad (see Theorem 4.1), it turns out that
its performance on assembly trees is very good (see Table 4.1). We wanted to assess the performance of
PostOrder on randomly generated trees. We keep the structure of every actual assembly tree from the
data set discussed above, and assign random integers ranging from 1 to N/500 to the node weights and
from 1 to N for the edge weights (N denoting the number of tree nodes). This leads to a comprehen-
sive data set containing more than 3200 trees, and allows for a more refined performance evaluation of
PostOrder .

The experiment (see Figure 4.9 for details on the non-optimal cases) shows that PostOrder requires
more than the minimum memory in 61% of the cases. In some cases, PostOrder may require more than
twice as much memory as the optimal solution. More details are given in in Table 4.2. All in all, this
experiment shows that when dealing with general trees, it is mandatory to use an optimal algorithm if
main memory is a scarce resource.
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Figure 4.9: Performance profile for comparing the memory requirement obtained by PostOrder with
the optimum values on the random trees.

4.7 Conclusion

We have discussed how to traverse the nodes of a tree-shaped workflow so as to optimize the memory
used in a two-level memory system. We have investigated two main problems. In the MINMEMORY
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Non optimal PostOrder traversals 61%
Max. PostOrder to opt. cost ratio 2.22
Avg. PostOrder to opt. cost ratio 1.12
Std. Dev. of PostOrder to opt. cost ratio 0.13

Table 4.2: Statistics on memory cost of PostOrder for random trees.

problem, the aim is to minimize the memory requirement, while in the MINIO problem, the aim is to
minimize the I/O volume, given a limited memory. Our motivating application was the multifrontal
method of sparse matrix factorization in which elimination (or assembly) trees are used to reorganize
the computations. The MINMEMORY problem corresponds to the problem of minimizing the memory
requirement of an in-core execution of the multifrontal method, while the MINIO problem corresponds
to the problem of minimizing the I/O requirement in an out-of-core execution.

For the MINMEMORY problem, we have proposed an exact algorithm which runs faster than the
reference alternative of Liu [69]. The current state of the art software for sparse matrix factorization
finds the best postorder as a solution to the MINMEMORY problem. This is done both for convenience
and for the in-core memory requirement. We have investigated how good this choice is, and concluded
that in most practical cases, the minimum memory requirement due to a postorder is usually close to the
optimal one (in a large set of instances we have seen at most 18% increase with respect to the memory
minimizing traversal). However, we also showed that on general trees, the best postorder can result in
memory requirements that are arbitrarily large.

We have shown that the MINIO problem is NP-complete, as well as some of its variations (for
example, we have shown that finding the postorder traversal that minimizes the I/O volume is NP-
complete). We have designed heuristics for the problem and have performed thorough experimental
comparisons. Our experiments are based on highly optimized versions of three tree traversal algorithms,
and precisely assess the quality of each proposed algorithm and I/O heuristic. We have shown that our
MinMem algorithm outperforms the running time of Liu’s exact algorithm, but we have also observed
that it was less suited for out-of-core execution.



Chapter 5

Comparing archival policies for BLUE WATERS

5.1 Introduction

Hierarchical memory architectures can be found from within multicore processors, as seen in Chap-
ters 1 and 3, up to the storage systems of cutting-edge supercomputers. Indeed, these large scale
platforms are likely to also exhibit a two level memory hierarchy made of fast but low capacity storage
devices, like hard disk drives, and a higher capacity but slower archival level made of magnetic tape
drives for instance.

The new generation of petascale supercomputers will need exabyte-scale archival storage. For ex-
ample, the BLUE WATERS petascale system that is being installed at the University of Illinois, Urbana-
Champaign [19] will have a peak performance of over 10 petaflop/s, over a petabyte of DRAM, and
over 18 petabytes of disk storage; yet most of the storage – up to half an exabyte – will be on tapes.

This is consistent with a recent report [50], based on eight year experience at several major High
Performance Computing (HPC) centers, that shows a need to archive about 35 TB of new data each year
for every TB of memory, not counting archived data that are deleted (20-50%). In a such a system, there
is a crucial need for efficient archival policies for writing to and reading from the tape system.

In addition, archive systems need to be reliable. Experience shows that a significant fraction of jobs
in HPC centers fail because of some errors in the archive system: inability to load the tape, metadata
errors on the tape, tensioning errors, breaking tape, etc. It is estimated in large centers that 1 out of
100 tape handling events leads to a job failure [55]. Moreover, tapes may face unrecoverable data errors
leading to permanent data loss. The current solution to prevent data loss and avoid the propagation of a
failed tape handling event is RAIT, which stands for Redundant Array of Independent Tapes [35] – in
analogy to RAID.

On BLUE WATERS, the disk space will be managed by GPFS [86], while the archival tape system
will be managed by HPSS [93]. The GPFS-HPSS Interface (GHI) integrates the tape archive into the
GPFS namespace, so that the disk storage essentially is a cache for the tape storage, and data migrates
transparently between disk and tape.

HPSS supports RAIT Level 0 (mirroring, for reliability) and RAIT Level 1 (stripping, for increased
transfer speed). Mirroring doubles the amount of tape storage needed – an expensive proposition. There
is ongoing work on HPSS support for schemes similar to RAID 6 [55], Such a RAIT architecture
requires X+Y tape drives for archiving a single file. The file is split into blocks; for each X consecutive
blocks one computes Y Erasure Code (EC) blocks. The X + Y blocks are written on X + Y distinct
tapes, with EC blocks rotated across tapes. Such a design can recover from the failure of any Y tapes,
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and speed up transfer rate, by a factor of X . (However, start-up time increases, as X + Y tapes need to
be loaded.) Values being considered include X + Y = 4 + 1, 4 + 2 or 8 + 2.

The main drawbacks of such RAIT architecture are the following:
– Because X consecutive blocks of the (currently written) file are stored in parallel, files are scat-

tered across many tapes.
– Each archival request monopolizes X +Y tape drives, which considerably reduces the number of

user requests that can be simultaneously processed by the system.
The first problem (file fragmentation) is expected to have a dramatic impact on performance. Con-

tiguous access is faster when reading from tapes, just as it is for disks, but the speedup ratio is much
larger. Suppose that, in order to use a tape efficiently, one needs to access a contiguous block of size
at least S; then, with RAIT, one needs to access at least X × S contiguous data to use the tapes effi-
ciently. Many files might be shorter than this threshold. It is possible to solve this issue for writes, by
concatenating multiple short files into one larger “container file”. However, subsequent reads will have
low performance unless all the files concatenated in one container are accessed together – something
that is not always true, and cannot be guaranteed, especially in a system such as BLUE WATERS where
archival is initiated by the system, not by a user.

The second problem (several tape drives per request) will drastically limit the access concurrency
of the system, by increasing the response time when many users aim at archiving their data. If, say,
500 tape drives are available, and if the archival policy requires 10 tape drives per request, then at most
50 requests can be served simultaneously. This may well prove a severe limitation for some usage
scenarios of the target supercomputer platform. Furthermore, the average start-up time for file transfers
can increase significantly, since the number of robotic arms to move tapes is often lower than the number
of tape drives, and the transfer can start only after the last tape was mounted.

Note that, unlike for RAID, it is not always necessary to read the redundancy blocks when a file is
accessed: Since tape blocks are long, one can compute and store longitudinal codes to ensure that data
read is valid. Also, one can leverage the fact that disk storage (unlike main memory) is persistent to delay
the storage of error correcting information to tape, thus enabling more asynchrony. These differences
allow for new policies, different from classical RAID.

To overcome the shortcomings of RAIT, we have designed two new archival policies. The first of
them, PARALLEL, still uses the same number X + Y of tape drives, and hence suffers from the same
problem that it reduces the servicing capacity of the system and increases start-up time. But it does
reduce the fragmentation of files, by pre-partitioning such files into X stripes that will be written in
contiguous mode on the tapes. Subsequent reads will be able to access larger segments from each tape.

The second policy, VERTICAL, is more drastic and solves both problems, at the price of lower
transfer rates. The idea is to write data contiguously and sequentially on X tapes, filling up the tapes
one by one, and to delay the archival of the redundancy data on Y tapes after X tapes have been actually
written. This requires to update the contents of the Y redundancy tapes on-the-fly. This scheme allows
for serving as many requests as the number of available tape drives. However, each request is processed
without any parallelism in writing, hence transfer rate decreases. (The problem can be avoided, for very
long files, by simultaneously writing or reading tape-sized segments; it is not an issue for very short
files, where tape load and seek time dominates access time; it affects files in a range in between these
extremes.)

In this chapter, the focus will mainly be set on the evaluation of the three RAIT, PARALLEL
and VERTICAL policies within an event-driven simulator, and to compare their performance through
extensive simulations. The simulation setting corresponds to realistic execution scenarios (in terms of
both hardware platform parameters and I/O request rates) for the future exploitation of BLUE WATERS.
After studying their relative performance on different file sizes, we propose a last strategy, which mixes
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the best two candidates (PARALLEL and VERTICAL) to outperform them.
This chapter is organized as follows. We first briefly review related work in Section 5.2, and we

outline the framework in Section 5.3. Then we detail the three archival policies in Section 5.4. The
main scheduler and load balancer are described in Section 5.5. The simulation setting is provided in
Section 5.6, as well as the results of the comprehensive simulations. Finally, we state some concluding
remarks and hints for future work in Section 5.7.

5.2 Related work

We classify related work into two main categories, those dealing with resilient storage policies, and
those discussing tape request scheduling strategies.

Resilient storage policies The first fault-tolerant policy proposed for tapes was inspired from
disks. It adapts the classical disk RAID policy for tapes, and thus was called RAIT [35]. An important
difference between RAID and RAIT is that the erasure code is computed from disk blocks on RAID
5 and RAID 6, while RAIT compute the erasure code from file stripes. Notes that this approach of
encoding the data has also been proposed recently to overcome the issues related to RAID 5 and RAID
6.

Jonhson and Prabhakar proposed to decouple the stripes used to write files to the tapes from the
ones used to compute parity, called regions [60]. Their basic idea is to group a number of regions from
different tapes into a parity group and to compute and store the parity of these regions on another tape.
The proposed framework allows for a wide variety of policies, such as the ones introduces in this chapter.

Scheduling tape requests Together with designing tape storage policies, we also need to schedule
I/O requests. Some specific problems to I/O on tapes have been considered in the literature. In [51],
Hillyer et al. consider the problem of scheduling retrieval requests to data stored on tapes. Using
a precise model for the performance of the tape drives, they proved the problem of minimizing the
completion time for a set of request NP-hard, and proposed a complex heuristic to solve it.

In [78], Prabhakar et al. consider the problem of scheduling a set of storage requests using a simple
model of tape storage, with the objective of minimizing the average waiting time. An optimal scheduling
policy is provided for the one tape drive case, and the problem is proven NP-complete for multiple drives.

To the best of our knowledge, this work is the first aimed at designing innovative tape archival
policies for petascale computers like BLUE WATERS, and assessing their performance.

5.3 Framework

In this section, we first describe the platform model, and then we state the optimization problem
under consideration.

5.3.1 Platform model

We derive a model that is representative of a system such as BLUE WATERS, but does not match
exactly its (currently confidential) configuration. Our goal is to simulate the maximum capacity of the
BLUE WATERS archival storage (0.5 Exabytes), that is much higher than its initial capacity. Here is a
list of key parameters describing the platform:
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Tapes The archival system counts 5000,000 serpentine tapes. Each tape stores up to 1 TB of uncom-
pressed data.

Tape Drives There are 500 tape drives to perform read/write operations on these tapes.
Tape Libraries Tapes are gathered into 3 tape libraries, with passthrough to transfer tapes between

different libraries
Mover Nodes 50 mover nodes are dedicated to process I/O requests and compute redundancy blocks.

Each mover node has 24 cores and 96 GB of RAM; a mover mode is connected to 10 tape drives.
We assume that a mover node has access to 10 TB of local disk storage.

Additional computing resources are used by HPSS, e.g., to schedule transfers, and by GPFS to run
file system code.

5.3.2 Problem statement

The focus of this study is to handle I/O requests in an efficient way. An I/O request can be sent in the
system in response to an explicit user command (to archive or delete data, or move it to disk or off-site);
by the automatic disk management system (to migrate from disk data not touched recently); or by the
job scheduler (to load to disk files needed by scheduled batch jobs).

An I/O request is characterized by the file that it is accessing, and therefore by the size of this file.
The request is also associated with a resiliency scheme X + Y , where X denotes the number of data
blocks corresponding to Y Erasure Code (EC) blocks. The Y EC blocks are computed by using any EC
algorithm over X blocks of data. Finally, an I/O request is defined by the I/O policy which it is using,
i.e., the way data and EC blocks are organized onto tapes. As already stated, three I/O policies will be
considered in this study: RAIT, VERTICAL and PARALLEL.

The most natural objective function is the average response time for a request, which measures the
time between the arrival of a request in the system and the completion of its processing. However, this
objective is known to unduly favor large request over smaller ones, and the objective of choice is rather
the average weighted response time, where the response time for a request is divided by its size. The
weighted response time is close to the stretch, which is a widely used fairness objective [79]. The stretch
is the slow-down experienced by the request, i.e., its response time in the actual system divided by its
response time if it were alone in the system (this later quantity being roughly proportional to the file size
if we neglect all latencies). Another important, platform-oriented objective, is the aggregate throughput,
or aggregated bandwidth of I/O operations, achieved by the system.

5.4 Tape archival policies

Writing data to tapes is a challenging task, and particular care is required to design and implement
efficient archival policies. In this section, we first review the well-known RAIT policy. Then we intro-
duce two novel I/O policies, VERTICAL and PARALLEL.

5.4.1 RAIT

The first policy is called RAIT, for “Redundant Array of Independent Tapes”, and is the counter-
part of RAID for tapes [35]. In order to overcome the performance and reliability limitations of each
individual tape drives, RAIT writes data in parallel while keeping the usage of all tapes balanced. In
addition to the resiliency scheme X+Y , which requires X+Y tape drives, RAIT is characterized by a
block size B which defines the transfer unit. In order to ensure resiliency, RAIT computes Y EC blocks
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Figure 5.1: Writing data with RAIT policy for X = 4 and Y = 1.

from X data blocks. These EC blocks are computed in memory before data blocks are actually written
to tapes. This implies a memory footprint of (X+Y )×B for each RAIT request running concurrently.

The behavior of RAIT is depicted on Figure 5.1: if all tapes are empty, the first X blocks are written
on tape drives TD1 to TDX , while the Y EC blocks are written on TDX+1 to TDX+Y . The following
sets of X data and Y EC blocks are then periodically shifted (see Figure 5.1). Note that when several
consecutive requests of the same policy and resiliency scheme are served using the same tapes, they
are processed with consecutive unit shifts as if we had a single large request. Note that in the example
depicted on Figure 5.1, the file is made of 37 data blocks.

Note that tape drives generally offer a hardware compression mechanism. Hence, although every
block has a size of B, the space occupied on tape may differ from block to block. In particular, EC
blocks are expected to be much less compressible than data blocks. RAIT balances tape occupation
through its periodical shifting mechanism.

The use of X + Y tapes for each file transfer reduces the number of concurrent transfers possible,
and increases start-up time. Moreover, as data and EC blocks are periodically shifted across all tape
drives, it is not possible to bypass EC blocks on reads.

5.4.2 PARALLEL

One of the main drawbacks of RAIT is that data on tapes is fragmented. In order to solve this issue,
we introduce a novel policy called PARALLEL. This policy keeps the parallel I/O operations offered
by RAIT but rather writes data as much contiguously as possible.

Just like RAIT, PARALLEL is characterized by a block size B. For a given resiliency scheme
X+Y , it also requires X+Y tape drives for writing data along with Y tape drives for writing EC blocks.
These EC blocks are computed in memory from X data blocks before being actually written to tapes.
The memory footprint is therefore (X + Y ) × B for each PARALLEL request running concurrently.
However, unlike RAIT, (i) all EC blocks are written on Y separate tapes; and (ii) the system writes on
each of the X data tapes the longest possible sequence of consecutive data blocks. Thus, if the file has
S blocks, then each of the X data tapes will store either �S/X� or �S/X� consecutive data blocks. In
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Figure 5.2: Writing data with PARALLEL policy with X = 4 and Y = 1.

the simpler case where S = W × X then, at step i, the system transfers to X data tapes the X file
blocks Di, Di+W , . . . , Di+(X−1)W , and transfers to the Y EC tapes the Y EC blocks computed from
the X data blocks. The scheme is depicted on Figure 5.2: first, blocks D1, D7, D13 and D19 are held
in memory and EC block P1 is computed. Everything is then written on distinct tape drives. Then,
next sets of blocks are processed the same way until a tape dedicated to data gets filled. Whenever this
happens, every tapes are replaced by new empty tapes. However, it may happen that some (or all) of the
tapes dedicated to store EC blocks get filled before data tapes (as depicted on Figure 5.2a), EC blocks
being generally less compressible. In such a case, these tapes are ejected and replaced by new ones.
Overflowing EC blocks are then written onto those new tapes. This is what happens on Figure 5.2b.

Altogether, PARALLEL maintains the same level of concurrency in the transfer of files to/from
tape, but stores contiguously as much data as possible. Because of the hardware compression mechanism
embedded in tape drives, and given that EC blocks are generally less compressible than data blocks, tape
occupation is slightly unbalanced. This can lead in some cases to the use of extra tapes to hold the Y

EC blocks, which could have an effect on performance. Like RAIT, PARALLEL also has a significant
impact on the level of parallelism of the system, although lower than RAIT, since X + Y tape drives
are required for write operations but only X tape drives are needed for read operations.

5.4.3 VERTICAL

With both previous policies, parallelism and resiliency are tightly coupled, which tends to decrease
the overall level of service provided by the system. In order to break this coupling, we propose the
VERTICAL policy, which also keeps data entirely contiguous on tapes.

For a given X + Y resiliency scheme, VERTICAL writes X data tapes before writing Y EC tapes
(or more, according to the compression rate). All writes are performed serially, on one tape drive. In
order to do so, VERTICAL requires enough local storage space to store Y uncompressed tapes. Each
time a data block is written, the corresponding Y EC blocks are updated; the computation of these
EC blocks is completed after X data blocks have been written. The scheme is depicted on Figure 5.3.
Several areas are allocated on disk dedicated to hold the Y ECs. As data is received, ECs areas are
updated and data is written onto tape. When the tape (holding data) is filled, it is replaced (as shown on
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Figures 5.3a, 5.3b and 5.3c).
When the X th data tape has been filled or there is no more data to be written (Figure 5.3d), the

tape is replaced by the first tape dedicated to ECs. EC block is then written onto tape (as depicted on
Figure 5.3e). However, similarly to the PARALLEL policy, it may happen that this EC tape gets filled
before the entire EC block has been written. Whenever this happens, the tape is ejected and replaced
by a new tape which will hold the remaining part of the EC block. This case is depicted on Figure 5.3f.
This step is then repeated for each remaining EC blocks.

It is clear that VERTICAL has a minimal impact on the level of parallelism of the system since it
requires only one tape drive, regardless of the resiliency scheme used. Data is contiguous on tape and
EC blocks need not be read when data is read.

However, this approach has several limitations: (i) the erasure code cannot be computed in mover
memory because at least Y + 1 entire tapes should fit in this memory, which is not possible. Therefore,
these tapes must instead be stored on disks. Like the PARALLEL policy, EC blocks are written onto
dedicated tapes, meaning that tape occupancy may be less balanced than with RAIT. (ii) although the
entire system may be able to handle more requests concurrently, each request will take more time to
complete since there is no data parallelism with VERTICAL. (iii) the tape drive is unavailable for
application I/O when writing the EC blocks.

5.5 Scheduling archival requests

Scheduling I/O requests on a petascale platform is a hard task. Indeed, the tremendous number of
parameters that need to be taken into account makes it challenging.

We introduce an online scheduler which basically maps tape I/O requests submitted to the system
onto a mover node. This scheduling process, denoted as MAIN-SCHEDULER in the following, works
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hand in hand with a load balancing process, denoted as LOAD-BALANCER, responsible for handling
requests which were impossible to schedule by MAIN-SCHEDULER at the time of their arrival.

We choose a “dynamic” approach, where processes corresponding to different I/O policies are cre-
ated on-the-fly onto the mover nodes, rather than being statically allocated. This creation process is done
either by MAIN-SCHEDULER or LOAD-BALANCER whenever a new process is required.

The MAIN-SCHEDULER process works as follows: as soon as a request R is submitted to the system,
it is handled by MAIN-SCHEDULER. MAIN-SCHEDULER first checks whether R can be served now, i.e.,
if there is no previous request(s) regarding the same file or, if R is a read request, if the tapes containing
the concerned file are not currently in use. If R is in use, it is delayed and placed in the waiting list.

Requests are identified by their type, which is defined as their archival policy together with their
resiliency scheme. For instance (PARALLEL, 4 + 1) or (RAIT, 8 + 2) are possible request types. If
the request R can be scheduled, MAIN-SCHEDULER tries the following actions:

– first, MAIN-SCHEDULER tries to find a currently running process which matches the type of R.
If such a process P exists, and if no more than MAXLIGHTLOAD requests are already scheduled
onto this process, then R is mapped on process P ;

– otherwise, MAIN-SCHEDULER tries to find a mover node having enough idle tape drives to host
a new process for R, and it creates this process;

– then, if MAIN-SCHEDULER is unable to create a new process for handling R, it tries to schedule
it on a currently running process P matching the type of R, but this time regardless of the number
of requests already mapped onto P .

The rationale is to allocate requests to already running processes, provided that their load remains rea-
sonable, otherwise it might be better to create new processes. The role of the system parameter MAX-
LIGHTLOAD is to tune the load threshold of the processes. Finally, if MAIN-SCHEDULER is still not
able to schedule R, the request is delayed and placed in the waiting list.

In order to schedule the requests in the waiting list, as well as to keep the load balanced across the
system, the LOAD-BALANCER is periodically executed every MINLBINTERVAL units of time. How-
ever, in order to keep the number of interventions of LOAD-BALANCER within a reasonable amount,
one of the following conditions must be met:

– the oldest request has been delayed for more than MAXWAITINGTIME, and its file is not currently
in use;

– the number of non-scheduled pending requests in the waiting list exceeds MAXREQCOUNT;
– the maximum imbalance of the system exceeds MAXIMBALANCE. Here, the imbalance is defined

as the difference between the most and the least loaded types, were the load of a given type is the
ratio between the number of requests and the number of processes of that type.

Whenever LOAD-BALANCER is triggered, it resets all pending requests and marks them as unsched-
uled. Only those requests that are currently executed are not modified (and continue their execution), but
their processes are terminated, while all other existing processes are canceled. Then LOAD-BALANCER
analyzes which process types are required by the set of unscheduled requests. For each required type, a
new process is created on a mover node. Then, if idle tape drives able to host a process still remain, a
new process is created, matching the type of the most loaded type. This action is then repeated until no
new process can be created.

Once LOAD-BALANCER has created new processes, it tries to map each unscheduled request R.
If the file concerned by R is not currently used, or, if R is a read request, if the tapes containing the
concerned file are not currently in use, R is mapped on the least loaded process matching its type.
Otherwise, R is delayed and placed in the new waiting list.
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5.6 Performance evaluation

In order to assess the performance of each I/O policy, and the behavior of our I/O request scheduling
algorithm, we have simulated an entire platform resembling that of a current petascale supercomputer.
We first describe the environmental framework. We then conduct experiments where all requests obey
the same archival policy (RAIT, PARALLEL or VERTICAL), and we discuss the influence of file
sizes on the performance. Based upon the results of these experiments, we evaluate a scenario mixing
policies, which associates the best-suited policy to each file size category.

5.6.1 Experimental framework

We have developed our own simulator using SimGrid [90, 67], a discrete event simulator framework,
in its 3.5 version. The platform is simulated using distributed processes running in parallel on multiple
virtual hosts. Each component of the model is represented by such processes. For instance, I/O policies
running concurrently on a single mover are simulated by parallel processes on a single host, whereas
each tape drive is represented by a host and a dedicated process. The same holds for the main scheduling
and the load balancing processes, which are running concurrently on a single host.

The simulated platform is depicted on Figure 5.4. The user process simulates the arrival of the
requests in the system. Those requests are handled by the MAIN-SCHEDULER process, which may
create new I/O processes on the mover nodes and assign tape drives to them. Unscheduled requests
are handled by the LOAD-BALANCER process. Finally, the tape library controls multiple robotic arms
dedicated to move the tapes back and forth from the library to the tape drives.
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Figure 5.4: Model of the simulated platform

In the experiments, the platform is instantiated using one tape library managing 20 robotic arms and
500 tape drives. These tape drives are connected 10-by-10 to 50 mover nodes, responsible for handling
I/O operations. These parameters match the size of today’s petascale supercomputers.

Moreover, in order to simulate a typical workload running on such a supercomputer, we generated
random workloads following a Poisson process with an arrival rate λ. File sizes are chosen according to
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X + Y 1 + 0 2 + 1 3 + 1 3 + 2

pX+Y 0.025 0.025 0.05 0.1

X + Y 4 + 1 4 + 2 6 + 2 8 + 2

pX+Y 0.1 0.3 0.2 0.2

Table 5.1: Resiliency schemes used in the experiments.

a random log uniform distribution, which is a simple approximation of the lognormal distribution of file
sizes observed in file systems [34] for large file sizes (files smaller than a few KB do not participate to
the archival process). The type of the I/O operation is chosen uniformly between read and write. A new
file is created in 90% of the cases if the request is a write operation, and an existing file is written again
otherwise. Each request is provided with a resiliency scheme X + Y , which is randomly chosen among
a set of representative schemes. These schemes and their respective probability are given in Table 5.1.
Finally, for each file, the compression rate of data blocks CD is chosen within [1, 3] while the EC blocks
compression rate CP belongs to [1, CD].

5.6.2 Results with a single policy

In a first step, only homogeneous scenarios are considered: requests may have different resiliency
schemes but use only one I/O policy, either RAIT, PARALLEL or VERTICAL.
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Figure 5.5: Impact of RAIT block size B on average weighted response time.

The first experiment aims at analyzing the impact of the block size B for the RAIT policy (contrarily
to PARALLEL and VERTICAL, RAIT requires a block size to be tuned, since it impacts how data is
written onto tape). The performance of RAIT is computed in terms of the average weighted response
time. Request arrival rate is set to 180 requests per hour, and file sizes range from 1 GB to 1 TB, while
B varies between 1 MB and 8 GB.

Results presented on Figure 5.5 show that B has a significant impact on the average weighted re-
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sponse time of RAIT. For the smallest values, RAIT performs worse than VERTICAL whereas it
almost ties PARALLEL for larger values. With B = 1 MB, RAIT is about 80 times slower than with
B = 192 MB, while the performance is constant between 192 MB and 8 GB. Altogether, this exper-
iment outlines the importance of B value for RAIT policy, which clearly benefits from large enough
blocks in order to offer competitive performance. In all the following experiments, B will be chosen
according to these results.

The next experiment intends to compare the performance of all I/O policies for various arrival rates.
The objective is twofold : assessing the average performance of each policy, and in particular, determin-
ing the maximum arrival rate which can be handled by each policy. File sizes are chosen among three
subsets: small file sizes range from 10 MB to 1 GB, medium file sizes from 1 GB to 100 GB, and large
file sizes from 1 TB to 100 TB. Arrival rates are chosen with respect of these files sizes between a few
requests per hour to hundreds of requests per hour.
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Figure 5.6: Impact of arrival rates on the average weighted response time for small files (B = 16 MB
for RAIT).

For small files, as depicted in Figure 5.6, the best average weighted response time is offered by
VERTICAL, which can sustain higher arrival rates than the other policies. RAIT is able to serve re-
quests with reasonable response time for rates lower than 420 requests per hour. PARALLEL performs
better than RAIT since it can keep up with rates lower than 600 requests per hour. The best policy in that
case is VERTICAL, which can tolerate rates up to 800 requests per hour. This is due to the fact that with
small files, extra latencies paid by data parallel policies (RAIT and PARALLEL) are not negligible.
Also, recall that more files can be written concurrently throughout the entire system with VERTICAL.
Contrarily to its contenders, VERTICAL can pipeline a large number of files before having to write EC
tapes, thereby increasing average performance.

For medium sizes, results presented on Figure 5.7 show that, as expected, the system benefits more
from data parallelism, latencies being now negligible. PARALLEL dominates other policies in this
case, being able to handle up to 150 requests per hour while RAIT gets overloaded with arrival rates
higher than 95 requests per hour. The extra tape drives used by RAIT as well as extra latencies when
reading data have a significant impact on the average weighted response time. In that case, VERTICAL
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Figure 5.7: Impact of arrival rates on the average weighted response time for medium-size files (B =

256 MB for RAIT).

is the worst policy since it can only sustain up to 80 requests per hour.
Finally for large files, results presented on Figure 5.8 outline a behavior similar to that observed for

medium sized files. PARALLEL represents the best policy in terms of average weighted response time.
Using this policy, the system is able to cope with 1.3 requests per hour while the second competitor,
RAIT, can only serve up to 1 request per hour without being overloaded. Unsurprisingly, VERTICAL
suffers from the lack of parallelism with these huge files, and can only bear 0.1 request per hour.

As a conclusion, these experiments show that PARALLEL offers the best results overall. RAIT
outperforms VERTICAL whenever files are large enough. The fact that PARALLEL dominates the
other solutions means not only that data parallelism is crucial, but also (and less expectedly) that bal-
ancing parity across tapes (as in RAIT) has a negligible impact compared to that of enforcing data
sequentiality.

The next experiment aims at measuring how the difference of compressibility between data and EC
blocks affects the overall performance of each I/O policy. Indeed, neither PARALLEL nor VERTICAL
can balance the EC blocks across tapes, possibly leading to more tape loads/unloads for tapes dedicated
to EC blocks. The underlying objective of this experiment is therefore to assess the impact of this pitfall
on the average weighted response time. In order to do so, the arrival rate is set to 65 requests per hour,
RAIT block size is B = 192 MB, and file sizes range between 1 GB and 1 TB. The compression rate
of data is set to be 3x. The EC compression rate varies between 1x (no compression) and 3x (same
compression rate as data).

As shown on Figure 5.9, I/O policies do not display the same sensitivity to EC compression rate.
Both PARALLEL and RAIT are more affected by compression than VERTICAL. As a matter of a fact,
while the later almost maintains its performance regardless of EC compression rate, the average weighted
response time displayed by RAIT and PARALLEL increases when EC blocks are less compressed.
The lower sensitivity of VERTICAL to EC compression comes from the fact that several requests are
served before writing EC blocks, because these are aggregated. This is not the case for PARALLEL
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Figure 5.8: Impact of arrival rates on the average weighted response time for large files (B = 8 GB for
RAIT).
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Figure 5.9: Impact of EC blocks compression rates on performance.
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Figure 5.10: Impact of LOAD-BALANCER period on performance.

and RAIT.

Moreover, with both PARALLEL and VERTICAL, data tapes are always entirely filled, and EC
blocks are written onto dedicated tapes. When EC blocks are far less compressed than data, tapes
dedicated to EC are filled faster and require more frequent EJECT/LOAD operations. This also explain
the higher sensitivity of PARALLEL to EC compression. On the contrary, with RAIT, the difference
of compression between data and EC blocks degrades the balance of tape occupancy, leading to extra
EJECT/LOAD operations on every tape drive (with RAIT, when a tape is filled, all loaded tapes are
ejected).

Altogether, this experiment shows that both RAIT and PARALLEL display higher sensitivity to
compression than VERTICAL. Whenever data is highly compressible, VERTICAL ties PARALLEL.

The following experiment focuses on the evaluation of the impact of the load balancing period
MINLBINTERVAL on the average weighted response time. Indeed, this setting might significantly influ-
ence the behavior of the system under intensive workloads. Therefore, MINLBINTERVAL needs to be
precisely tuned in order to fully exploit the archival architecture. In this experiment, file sizes are chosen
between 1 GB and 1 TB, RAIT block size is B = 192 MB, while the mean arrival rate is set to λ = 65

requests per hour. Results depicted on Figure 5.10 show that the load balancing period indeed has a
significant impact on performance: all three policies reach a minimum average weighted response time
for a particular value of MINLBINTERVAL. Interestingly, the best value of MINLBINTERVAL is not the
same for every policy: although both RAIT and PARALLEL perform better when LOAD-BALANCER
is called at most every 6 days, VERTICAL benefit from a significantly higher value: 24 days. This is
due to the fact that VERTICAL often has more pending requests than the other policies, and requires
more time to serve each request. Remember that whenever an I/O process is destroyed by LOAD-
BALANCER, loaded tapes are ejected. Therefore, calling the load balancing process too frequently may
cause (in the worst case) tapes to be unloaded after each request has been served, leading to higher re-
sponse times. All in all, this experiment shows that the load balancing period MINLBINTERVAL need
to be precisely tuned in order to fully benefit from the parallel storage system.
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5.6.3 Results with multiple policies
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Figure 5.11: Impact of arrival rates on the average weighted response time (with small, medium-size
and large file together, and B = 512 MB for RAIT).

Based on the previous results, a novel strategy using multiple policies is introduced: HETERO.
As seen above, VERTICAL represents the best solution when writing small files, while PARALLEL
is the best choice for larger files. In the following experiment, the I/O policy used to write a file is
now dynamically chosen by the system, based on its size. The purpose here is to fully benefit from
both policies in order to enhance the overall performance of the storage system. In order to assess the
corresponding improvement, the impact of the arrival rate on the average weighted response time is
again evaluated. File sizes are now chosen among a broader range: from 10 MB to 10 TB. A file smaller
than 1 GB will be processed using VERTICAL, while larger files will use PARALLEL.

Results depicted on Figure 5.11 show that the HETERO strategy clearly outperforms all single
policy strategies. HETERO can handle up to 7 requests of any size per hour while the best single policy
strategy, PARALLEL, is limited to 0.6 requests per hour. The single strategy using VERTICAL does
not perform well, since it is able to maintain a reasonable average weighted response time until arrival
rate reaches 0.003 requests per hour. RAIT does better with a maximum of 0.3 requests per hour.

Altogether, this experiment shows that a strategy using multiple policies, carefully choosing the I/O
policy that will be used to handle a file based on its size, brings a dramatic performance increase. The
performance is sustained at significantly higher rates than with any singly policy strategy.

5.7 Conclusion

In this chapter, we have first discussed the well-known RAIT policy for tape archival on a petascale
supercomputer, and we have identified its shortcomings. We have introduced two new I/O policies,
PARALLEL and VERTICAL, that either reduce file fragmentation, or increase the number of requests
that can be served simultaneously, or both. Contrarily to RAIT which requires to carefully choose a
blocksize, the new policies do not require any tuning.
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We have conducted a comprehensive set of experiments to assess the performance of the three RAIT,
PARALLEL and VERTICAL policies. We observed that for small files, VERTICAL provides the best
weighted response time, while for medium-size and large files, PARALLEL is the clear winner. This
has led us to propose a heterogeneous solution mixing policies (VERTICAL for small files, PARAL-
LEL otherwise). Altogether, this latter approach provides a dramatic ten-fold improvement over each
policy taken separately.

We hope that the lessons learnt in this study will help guide the final design decisions of the BLUE
WATERS supercomputer, and more generally, of future large-scale platforms that will require even larger
storage capacities, and always more efficient archival scheduling policies.



Conclusion

Throughout this thesis, we have focused on designing memory-aware algorithms and schedules tai-
lored for hierarchical memory architectures. Nowadays, these memory layouts can be found from within
the heart of a multicore processor, up to the storage architectures of larger-scale platforms and super-
computers. During this thesis, we have studied several platforms of various scales, in order to assess the
impact of such memory architectures on performance and peak memory usage. Our main contributions
are recalled in the following paragraphs.

Complexity analysis and performance evaluation of matrix product on multicore
architectures

The first contribution of this thesis is the complexity analysis and performance evaluation of matrix
product on multicore architectures. By introducing a simple and yet realistic model for multicore hi-
erarchical memory layout, we were able to extend lower bounds on cache misses. We have introduced
cache-aware matrix product algorithms tailored for multicore processors each focusing on a specific
level of cache. These result in a CCR close to their respective lower bound. We have also realized a
tradeoff between shared and distributed cache misses through the overall data access time, and proposed
an algorithm minimizing this objective.

Another contribution is the experimental validation of this theoretical model, through simulation and
using actual hardware platforms. Indeed, thanks to a dedicated cache simulator, we have assessed the
impact of cache management policy on the number of cache misses. We have also verified that reserving
half of the cache for prefetching alleviates the impact of LRU replacement policy and all algorithms have
been validated using various cache sizes. Moreover, we have compared the effective performance of all
algorithms on actual multicore platforms by conducting an extensive set of experiments. Even though
we have obtained mixed results with CPU platforms, we have discussed how the intricate and opaque
mechanisms they use affect performance. For instance, due to intensive prefetching, cache misses have
a lesser impact than predicted. On the contrary, on GPU platforms, we have nicely demonstrated both
the accuracy of our model and the efficiency of our architecture-independent partitioning approach.
Low-latency memories such as those provided by GPUs are much more promising devices than general
purpose LRU caches for the tiling and partitioning strategies that lie at the heart of state-of-the-art linear
algebra kernels.

Tiled QR factorization

In this chapter, we have proposed two new algorithms for tiled QR factorization: FIBONACCI and
GREEDY. These algorithms exhibit a higher parallelism than that of state-of-the-art implementations.
An important contribution is the accurate estimations for the length of their critical path. We have
proven that they were asymptotically optimal for a wide class of matrix shapes, including all cases
where the number of tile rows p and tile columns q are proportional, p = λq, λ ≥ 1. To the best of

129



130 CONCLUSION

our knowledge, this proof is the first complexity result in the field of tiled algorithms, and it lays the
theoretical foundations for a comparative study of tiled algorithms.

Comprehensive experiments on multicore platforms confirm the superiority of the new algorithms
for p × q matrices, as soon as, say, p ≥ 2q. This holds true when comparing not only with previous
algorithms using TT (Triangle on top of triangle) kernels, but also with all known algorithms based
on TS (Triangle on top of square) kernels. Given that TS kernels offer more locality, and benefit from
better elementary arithmetic performance, than TT kernels, the better performance of the new algorithms
is even more striking, and further demonstrates that a large degree of a parallelism was not exploited in
previously published solutions.

Scheduling streaming applications on a complex multicore platform

We have studied the scheduling of streaming applications on a heterogeneous platform: the IBM
Bladecenter QS 22, made of two heterogeneous multicore Cell processors. The first contribution is a
realistic and yet tractable model of the Cell processor. We have used this model to express the opti-
mization problem of finding a mapping with maximal throughput. We have proven this problem to be
NP-complete, and have designed a formulation of the problem as a mixed linear program. Solving this
linear program with appropriate tools allowed us to compute a mapping with optimal throughput. We
have also proposed a set of scheduling heuristics exhibiting a lower complexity.

Another important contribution is the experimental validation of both the model and our strategies.
To this end, we have implemented a complete scheduling framework to deploy streaming applications
on the QS 22, which is available for public use. It allows the user to deploy any streaming application,
described by a potentially complex task graph, on a QS 22 platform or single Cell processor, given
any mapping of the application to the platform. Using this scheduling framework, we have been able
to perform a comprehensive experimental study of all our scheduling strategies. We have shown that
our MIP strategy usually reaches 90% of the throughput predicted by the linear program, and has a
good and scalable speed-up when using up to 16 SPEs. Some of the proposed heuristics, in particular
DELEGATE, are also able to reach very good performance. Altogether, we have demonstrated that even
though scheduling a complex application on a heterogeneous multicore processor is a challenging task,
scheduling tools can help to achieve good performance.

On optimal tree traversals for sparse matrix factorization

We have discussed how to traverse the nodes of a tree-shaped workflow so as to optimize the memory
used in a two-level memory system. We have investigated two main problems. In the MINMEMORY
problem, the aim is to minimize the memory requirement, while in the MINIO problem, the aim is to
minimize the I/O volume, given a limited memory. Our motivating application was the multifrontal
method of sparse matrix factorization in which elimination (or assembly) trees are used to reorganize
the computations.

Our first contribution is an exact algorithm for the MINMEMORY problem, which runs faster than the
reference alternative of Liu [69]. The current state of the art software for sparse matrix factorization finds
the best postorder as a solution to the MINMEMORY problem. This is done both for convenience and
for the in-core memory requirement. We have investigated the relevance of this choice, and concluded
that in most practical cases, the minimum memory requirement due to a postorder is usually close to the
optimal one (in a large set of instances we have seen at most 18% increase with respect to the memory
minimizing traversal). However, we also showed that on general trees, the best postorder can result in
memory requirements that are arbitrarily large.
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The MINIO problem has been proven to be NP-complete, as well as some of its variations (for
example, we have shown that finding the postorder traversal that minimizes the I/O volume is NP-
complete). We have proposed heuristics for the problem and have thoroughly evaluated them through
experiments. Our experiments are based on highly optimized versions of three tree traversal algorithms,
and precisely assess the quality of each proposed algorithm and I/O heuristic.

Altogether, we have shown that our MinMem algorithm outperforms the running time of Liu’s exact
algorithm, but we have also observed that it was less suited for out-of-core execution.

Comparing archival policies for BLUE WATERS

All previous chapters focus on taking into consideration memory hierarchy in order to increase per-
formance. Chapter 5 rather focuses on the performance of hierarchical storage systems. Our first con-
tribution is the discussion of the state-of-the-art RAIT policy and the identification of its shortcomings.
We have also introduced two novel I/O policies, PARALLEL and VERTICAL, either reducing file
fragmentation, or increasing the number of requests that can be served simultaneously, or both. These
new policies do not require any tuning since that, unlike RAIT, they do not require to carefully choose
a block-size.

We have conducted a comprehensive set of experiments to assess the performance of the three
archival policies. Either VERTICAL or PARALLEL policy is best suited to respectively small, or
from medium up to large files. This observation led us to introduce a heterogeneous solution mixing
policies (VERTICAL for small files, PARALLEL otherwise), providing a ten-fold improvement over
each policy taken separately.

Altogether, this study should be considered as a tool which may help guide the final design decisions
of the BLUE WATERS supercomputer, and more generally, of future large-scale platforms. Indeed,
such platforms will require even larger storage capacities, and always more efficient archival scheduling
policies.

Perspectives

In this thesis, we have studied several problems in the context of hierarchical memory architectures.
There are multiple possible extensions to this work.

Multicore algorithms

On the short term, we would like to run comparisons of matrix product algorithms on larger scale
platforms, with 32 or 64 cores. Indeed, on such platforms, memory accesses are likely to have a higher
cost and might significantly impact performance. The need of memory aware algorithms therefore
becomes more important. Regarding tiled QR factorization, several directions seems promising. First,
using rectangular tiles instead of square tiles could lead to efficient algorithms, with more locality and
still the same potential level of parallelism. Another extension would be to refine the model in order to
account for communications, and extending it to fully distributed architectures. It would lay the ground
to the design of MPI implementations of the new algorithms, unleashing their high level of performance
on larger platforms.

On the longer term, we envision to design efficient linear algebra algorithms for clusters of multi-
cores. Indeed, we expect yet another level of hierarchy (or tiling) in the algorithmic specification to be
required in order to match the additional complexity of such platforms. Such an approach could also
benefit to streaming applications. The model of the QS 22 could indeed be refined to more complex
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platforms, like a cluster of QS 22, of other multicore platform. Furthermore, the increasing number of
cores embedded within these multicore (or many-core) platforms will inevitably increase the failure rate
and introduce variations in processor speeds. The design of robust algorithms, for both matrix product
and tiled QR factorization, and capable of achieving efficient performance despite such variations, or
even resource failures, is a challenging but crucial task to fully benefit from future platforms with a huge
number of cores.

Scheduling with two memory levels

There are several direct extensions to the study of optimal tree traversals for sparse matrix factor-
ization. Many problems are still waiting to be tackled with respect to the MINIO problem. Among
those, finding a lower bound for the minimum I/O volume when a fixed amount of main memory is
permitted seems to be very promising. Indeed, this would allow to assess the absolute performance of
the heuristics. Furthermore, though such a result seems out of reach for general traversals, derive an ap-
proximation algorithm for postorder traversals would be a very interesting contribution. More generally,
multicore platforms with non-uniform memory access are now becoming widespread. They introduce
new levels of hierarchy in the whole memory system, from distributed caches to shared caches, to main
memory, and to disk. Such platforms call for re-designing the whole computational chain of sparse
matrix factorization, by introducing memory-aware computational kernels at every level.

A longer term direction would be to extend this study to more complex applications, modeled by
Directed Acyclic Graphs (DAGs). Although both MINIO and MINMEMORY problems have been shown
NP-complete in this context, finding efficient heuristics, or even better, approximation algorithms, would
significantly impact a wider range of applications.

Moreover, allowing for parallel tree traversals would be a major contribution. Indeed, parallel explo-
rations with a single shared memory are required to exploit the computing power offered by multicore
processor or even larger shared memory or Non Uniform Memory Accesses (NUMA) platforms, and
would significantly impact sparse matrix factorization. A more ambitious study would be to handle
parallel traversals with distributed memories, thus allowing for larger-scale platforms through MPI im-
plementations of the multifrontal method for sparse matrix factorization. Such a study would also greatly
benefit to hybrid methods, where multiple lower subtrees are processed in parallel using the multifrontal
method, before that the upper part of the main tree is processed using iterative methods.

Archival policies for BLUE WATERS

The comparative study of archival policies for BLUE WATERS has a natural and important extension,
namely to collect real application traces. Such real-world traces would give the opportunity to better
assess the performance of all three policies.

Moreover, on the long term, hard disk drives are likely to be considered as a level of cache for the
archival system, thus calling for the design of an ambitious data management policy. In this context, real-
life application traces would be a strong prerequisites for an “automated” policy, moving data between
hard disks and magnetic tapes. Analyzing these traces, and designing a hard disk management policy
based on this information, would represent a dramatic advance toward seamlessly exposing hierarchical
storage architectures to the user.
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Résumé :
L’ensemble de cette thèse s’articule autour de la conception d’algorithmes et d’ordonnancements de
calculs adaptés aux architectures mémoire hiérarchiques, rencontrées notamment dans le contexte des
processeurs multi-cœurs. Nous étudions plusieurs plates-formes de tailles différentes afin de mesurer
l’impact de ces hiérarchies mémoire et de leur hétérogénéité sur les performances.

Dans un premier temps, nous nous intéressons aux performances du produit de matrices sur les proces-
seurs multi-cœurs. En effet, c’est au cœur de ce type de noyau de calcul que résident les performances
de la plupart des applications scientifiques. Nous adaptons donc le produit de matrices aux hiérarchies
de caches des architectures multi-cœur. Nous présentons un modèle d’un tel processeur et calculons des
bornes inférieures sur le volume de communication du produit de matrices. Nous introduisons trois al-
gorithmes ayant pour but de minimiser ce volume de communication et validons leurs performances à
travers une large campagne expérimentale.
Dans un deuxième temps, nous étudions un algorithme plus complexe : la factorisation QR, couramment
utilisée dans de nombreuses applications scientifiques. Nous nous plaçons dans le contexte des matrices
ayant significativement plus de lignes que de colonnes. Nous revisitons les algorithmes existants dans
le but d’exploiter le niveau de parallélisme supplémentaire offert par les processeurs multi-cœurs. Nous
évaluons la longueur de leurs chemins critiques et montrons que certains d’entre eux sont asymptotique-
ment optimaux. Enfin, nous analysons expérimentalement leurs performances.
Nous nous intéressons ensuite à une plate-forme multi-cœur hétérogène, le QS 22, à travers l’ordonnan-
cement d’applications pipelinées. Nous établissons un modèle de la plate-forme fondé sur des mesures
de performances expérimentales. Nous appliquons alors les techniques d’ordonnancement en régime
permanent afin de maximiser le débit de traitement. Nous introduisons un programme linéaire mixte
permettant d’obtenir un ordonnancement optimal, ainsi qu’un ensemble d’heuristiques. Nous validons
de manière expérimentale les performances de l’ensemble des stratégies proposées.
Dans l’étude suivante, nous visons d’abord à minimiser la quantité de mémoire nécessaire à une appli-
cation donnée. Nous nous concentrons sur les applications modélisées par des arbres, tels que ceux ren-
contrés lors de la factorisation de matrices creuses. La plate-forme étudiée est un système à deux niveaux
de mémoire, les entrées/sorties correspondent aux transferts d’un niveau à un autre. Nous présentons un
algorithme optimal, offrant de meilleures performances en pratique qu’un algorithme optimal existant.
Nous montrons en outre qu’il existe des arbres tels que les parcours postfixes nécessitent arbitrairement
plus de mémoire que la quantité optimale. Nous étudions ensuite le problème de la minimisation du vo-
lume d’E/S à quantité de mémoire donnée, et montrons que ce problème est NP-complet que le parcours
soit restreint aux parcours postfixes ou non. Nous présentons plusieurs heuristiques elles-aussi validées
expérimentalement.
Enfin, le dernier chapitre est dédié à la comparaison de politiques d’archivage pour BLUE WATERS. En
effet, les hiérarchies mémoire sont également présentes au sein des systèmes de stockage des derniers
supercalculateurs, tels que BLUE WATERS. Nous introduisons deux nouvelles politiques d’archivage
améliorant les performances de la politique classique RAIT. Nous modélisons totalement la plate-forme
et simulons son fonctionnement. Nous montrons alors que RAIT n’offre jamais de meilleures perfor-
mances que les deux politiques proposées, et qu’une politique hétérogène mêlant ces deux nouvelles
politiques offre des performances 10 fois supérieures aux autres politiques testées.

Mots-clés :
Multi-cœur, hiérarchies mémoire, ordonnancement, régime permanent, plates-formes hété-
rogènes, optimisation, heuristiques, algèbre linéaire, programmes linéaires, maximisation du
débit, contraintes mémoire.



Abstract:
Throughout this thesis, we focus on designing memory-aware algorithms and schedules tailored for
hierarchical memory architectures. Nowadays, these memory layouts can be found from within the
heart of a multicore processor to the storage architectures of larger-scale platforms like supercomputers.
Several platforms of various scale are studied in order to assess the impact on performance of such
memory architectures.

We first study both the complexity and the performance of matrix product on multicore architectures.
Indeed, dense linear algebra kernels are the key to performance for many scientific applications. We
introduce a realistic but still tractable model of a multicore processor, and derive lower bounds on the
communication volume. We adapt matrix product algorithm to multicore architectures by taking caches
into account, leading to three algorithms. Hence, the focus is set on minimizing cache misses. We assess
both model relevance and performance of algorithms through an extensive set of experiments, ranging
from simulation to real implementation on a GPU.
We then target a more complex operation: the QR factorization of rectangular matrices composed of
p × q tiles, where p ≥ q. This dense linear algebra kernel lies at the foundation of many scientific
applications. We thus revisit existing algorithms so as to better exploit the additional level of parallelism
offered by multicore processors. Within this framework, we study the critical paths and performance of
several algorithms and prove some of them to be asymptotically optimal. We conclude this study by an
extensive set of experiments that show the superiority of the new algorithms for tall matrices.
In the next study, we focus on scheduling streaming applications onto a heterogeneous multicore plat-
form, the QS 22. We experimentally evaluate communication performance within the QS 22 and intro-
duce a model of the platform based upon these results. We then use steady-state scheduling techniques
in order to maximize the throughput, that is the number of instances processed per time-unit. We then
present a mixed integer programming (MIP) approach that allows to compute a mapping with optimal
throughput, propose simpler heuristics, and experimentally assess the performance of all approaches on
the QS 22.
We then focus on minimizing the amount of required memory for a given application. We study the
traversal of tree-shaped workflows, which typically arise in sparse matrix factorization, and target a
classical two-level memory system. In this context, I/O represent transfers from a memory to the other.
We propose a new exact algorithm which is more efficient in practice than an existing optimal algorithm.
We also show that there exist trees where commonly used postorder based traversals require arbitrarily
larger amounts of main memory than the optimal one. We then study the problem of minimizing the
I/O volume for a given memory, and show that it is NP-hard, both for postorder based and for arbi-
trary traversals. We provide a set of heuristics to solve this problem, and experimentally assess their
performance on existing trees.
Finally, we compare archival policies for BLUE WATERS. Indeed hierarchical memory architectures
are also found into the storage system of cutting-edge supercomputers, like BLUE WATERS. We hence
introduce two archival policies tailored for the tape storage system of BLUE WATERS and adapt the well
known RAIT strategy. We provide an analytical model of the tape storage platform, and use it to assess
and discuss the performance of the three policies through simulation. We show that RAIT is always
outperformed by either VERTICAL or PARALLEL, and introduce the HETERO policy which uses
the two latter policies, bringing a ten-fold performance improvement.

Keywords:
Multicore, memory hierarchy, scheduling, steady-state, heterogeneous platforms, optimiza-
tion, heuristics, linear algebra, linear programs, throughput maximization, memory con-
straints.
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