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I

Résumé

Les lubrifiants contiennent des particules qui sont à la fois initialement
présentes dans le lubrifiant et dans le mécanisme (fabrication, stockage. . . );
générées durant le rodage, par usure ou corrosion; ou bien issues de sources
externes.

Les particules détériorent les surfaces en créant des indents lorsqu’elles
sont piégées dans les contacts. Ces indents augmentent le risque de rupture
par fatigue en induisant des perturbations de pression et de contraintes.

Ce travail est basé sur une étude des contacts indentés secs et lubrifiés
(EHD). L’équation de Reynolds en fluide Newtonien est utilisée. Les tech-
niques mutigrilles et multi-intégration sont employées.

L’objectif de ce travail est de proposer un modèle de prédiction des per-
turbations des champs de pression et de contraintes, et finalement un modèle
de réduction de durée de vie des contacts indentés en fonction de la géométrie
des indents et des conditions de contact.

Mot-clés : contact ponctuel, contact elliptique, contact sec, lubrifica-
tion, EHD, élastohydrodynamique, Reynolds, multigrilles, multi-intégration,
réduction d’amplitude, pollution, contamination, débris, particule, indent,
indentation, prédiction de durée de vie, roulement, fatigue

Abstract

All lubricants contain particles. These particles are both initially present
in the lubricant and mechanisms (manufacturing process, storage. . . ); gen-
erated during running-in, through wear and corrosion; or come from external
sources.

These particles damage the surfaces, creating indents when they are
squashed in the contact. These indents increase the fatigue failure risk
inducing pressure and stress perturbations.

This work is based on a dry and lubricated (EHL) contact study. The
Reynolds equation for Newtonian fluids is used. Multigrid and multi-integra-
tion techniques are used to limit computing time.

The aim is to predict pressure and stress distribution perturbations, and
finally to predict the life reduction of indented contacts as a function of the
indent geometry and the operating conditions.

Keywords: point contact, elliptical contact, dry contact, lubrication,
EHL, elastohydrodynamic, Reynolds, multigrid, multi-integration, ampli-
tude reduction theory, pollution, contamination, debris, particle, indent,
indentation, life prediction, rolling element bearing, fatigue
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Notation

α pressure viscosity index [Pa−1]
ᾱ dimensionless viscosity index [.] = αpH

δ correction [.]
∆P dimensionless additional pressure amplitude [.]
S∆P initial slope of the dimensionless

additional pressure [.] =
d∆P (D/Φ)

d(D/Φ)

∣

∣

∣

∣

D/Φ→0

η viscosity [Pa.s]
η dimensionless viscosity [.] = η/η0

η0 viscosity at ambient pressure [Pa.s]
κ ellipticity [.] = b/a
λ roughness wavelength [m]

λ parameter of Reynolds equation [.]
= 12umη0R

2
x/(b3pH)

∇ dimensionless wavelength parameter [.]

= λ/b ·
√

M/L
∇Φ dimensionless indent parameter [.]

∝ Φ ·
√

M/L
ν function of the decay coefficient K [.]
ν1, ν2 Poisson coefficient for body 1 and 2 [.]
ω adjustment coefficient [.]
ω under relaxation coefficient [.]
Ω integration domain [.]
φ indent diameter [m]
Φ dimensionless indent diameter [.] = φ/b
ρ radius of curvature [m]
ρ density [kg/m3]
ρ0 density at ambient pressure [kg/m3]
ρ dimensionless density [.] = ρ/ρ0

σ′ stress [Pa]
σ dimensionless stress [.] = σ′/pH

τ stress criterion for the stress risk integral [Pa]
ϑ failure probability [.]
ξ dimensionless coefficient in Reynolds equation [.]
ζ function of the decay coefficient K [.]
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a Hertzian contact half width along y (major axis ellipse) [m]
A line relaxation matrix
b Hertzian contact half width along x (minor axis ellipse) [m]
c stress exponent [.]
d indent depth [m]
D dimensionless indent depth [.] = dRx/b2

e Weibull slope [.]
E1, E2 Young modulus for body 1 and 2 [Pa]
E′ equivalent Young modulus [Pa]
E elliptical integral of the second kind [.]
f right member [.]
F ratio between initial and deformed indent depth [.] = Dd/Di

F failure probability [.]
h depth exponent [.]
h gap height [m]
hX , hY dimensionless mesh size [.]
hT dimensionless time step [.]
H dimensionless gap height [.] = hRx/b2

H0 dimensionless mutual approach [.]
i, j index in space [.]
I risk integral

Ī dimensionless risk integral [.] = (I/(b3 pc
H))1/c

IH
h , Ih

H restriction and interpolation operators
IIh

H , IIH
h restriction and interpolation operators (MLMI)

k index in time [.]
K decay coefficient [.]
K elastic kernel [.]
L differential operator

L Moes parameter [.] = α E′ · ((2 η0 um)/(E′ Rx))1/4

m adjustment coefficient [.]

M Moes parameter [.] = w/(E′ R2
x) · ((2 η0 um)/(E′ Rx))−3/4

n adjustment coefficient [.]
nX , nY number of points along X and Y [.]
p pressure [Pa]
P dimensionless pressure [.] = p/pH

pH maximum Hertzian pressure [Pa]
PREF dimensionless reference pressure [.]
qK function of the decay coefficient K [.]
qT∞

function of the dimensionless infinite life [.]
r residual term [.]

r radius [m] =
√

x2 + y2

rh shoulder top radius [m]
rhX , rhY dimensionless inverse mesh size [.] = 1/hX , = 1/hY

rhT dimensionless inverse time step [.] = 1/hT

R dimensionless radius [.]
Rx1, Rx2 radii of curvature along X for body 1 and 2 [m]
Ry1, Ry2 radii of curvature along Y for body 1 and 2 [m]
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Rx, Ry reduced radii of curvature [m]
R roughness or indent [m]
R̄ dimensionless roughness or indent [.]
s adjustment coefficient [.]
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t time [s]
T dimensionless time [.] = tum/b
T dimensionless stress criterion for the stress risk integral [.] = τ/pH

u speed [m/s]
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v numerical error [.]
w load [N]
x, y, z coordinates [m]
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Xa, Xb dimensionless domain boundaries along X [.]
Ya, Yb dimensionless domain boundaries along Y [.]

©DRY dry contact
©EHL EHL contact
©V M Von Mises
©PA Papadopoulos

©̃ not converged
©̄ corrected

©̂ coarse grid variable
© discrete

©h fine grid
©H coarse grid
©b hole
©d deformed
©h hydrostatic
©h shoulder
©H Hertzian
©i initial
©GS Gauss-Seidel
©JA Jacobi
©PT pseudo-transient
©∞ infinite life limit
©m mean
©FRONT front indent shoulder (first in the contact)
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©CENT indent center
©D dented
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Chapter 1

General introduction

Tribology is literally the study of friction between two contacting surfaces.
By extension, tribology treats the associated problems of lubrication and
surface deterioration (wear, fatigue. . . ). It includes phenomena that occur
in everyday life and is implicated in a wide range of mechanisms. Actu-
ally, every contact is subjected to friction (desirable or not) and surface
deterioration. The understanding of the underlying mechanisms requires a
combination of knowledge from various fields (physics, chemistry, material
science, mechanical engineering, mathematics. . . ). This work is restricted
to the domain of elastohydrodynamic lubrication (EHL).

EHL contacts are encountered when a lubricant (frequently oil or grease)
separates the two contacting bodies and the contact pressure is so high that
both surfaces are elastically deformed. The lubricant limits friction and
wear. The lubricant film formed between the two surfaces is very thin,
typically thinner than 1 µm. The high contact pressure leads to a radical
change in the lubricant behavior which becomes almost solid (piezoviscous
effect). These two aspects characterize EHL contacts: important surface
deformation and important piezoviscous effects.

This kind of contact is found in various applications: cam tappet, gears,
rolling element bearings. . . This work is mainly dedicated to the study of
contacts in rolling element bearings.

5
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The function of a rolling element bearing is to enable a relative rotation
between two elements with precision and minimum frictional power losses.
Rolling element bearings are constituted by two concentric rings, a set of
rollers and a cage, see figure 1.1. The two rings rotate at different speeds.
The rollers adapt this velocity difference and transmit the load minimizing
the friction. Decreasing friction has been a crucial aspect1. The load is
transmitted between the rings and the rollers by pressures created on the
contact areas. The cage separates the rollers.

Figure 1.1: Tapered roller bearing

The system of equations describing the EHL problem is complicated.
Some advanced numerical techniques have to be used. The chapter 2 gives
an overview of the equations and of the numerical techniques used. Figure
1.3 represents a typical EHL pressure and film thickness distribution along
the rolling direction. The lubricant is dragged into the contact sticking to
the surfaces. The contact can be divided in three zones: the inlet, where
the pressure builds up but the viscosity remains sufficiently small to enable
viscous flow; the high pressure region, where the viscosity is so high that the
lubricant is almost rigid; and the outlet, with the characteristic constriction.

1Looking at figure 1.2, the reader probably wonders what the link is between rolling
element bearings and ten guys pulling a big stone lain on tree trunks. Well, it emerges
from a literature survey starting 15 years ago with comics, that the figure 1.2 represents
one of the oldest rolling-element-bearing-like documented applications (Iron Age).
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Figure 1.2: Struggle against friction

1.1 Pollution

The contact life prediction is a major industrial issue. A large proportion of
real mechanisms are subjected to contact deteriorations which affect their
overall performance. Contact lives are important regarding economical as-
pects; the user safety is also sometimes involved. Increased understanding
of the contact behavior has enabled improvement of the reliability and the
efficiency of industrial or individual mechanisms. In most engineering appli-
cations, contact conditions become increasingly severe (higher loads, lower
viscosities. . . ). Some contradictory interests are involved: on one hand in-
creasingly severe operating conditions and power loss diminution, and on
the other, reliability and security improvements. To achieve the best com-
promise in design, the theoretical models have to be continuously improved.

Manufacturing processes have evolved during the last decades. A bearing
which would have failed forty years ago because of very dangerous inclusions
in the material, has more chance nowadays to fail because of surface defects
(roughness. . . ). Progress in material manufacturing has resulted in an in-
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Figure 1.3: Typical EHL pressure distribution and film thickness along the
rolling direction

crease in the relative importance of other failure sources, and especially the
lubricant pollution problems. Ai [5] reports that almost 75% of premature
bearing failures are related to pollution problems.

Lubricants contain particles. These particles are both initially present in
the lubricant (due to manufacturing process, storage. . . ); initially present in
mechanisms (manufacturing residual particles. . . ); generated during running
in, wear and corrosion; or come from external sources (incomplete sealing
and environment pollution, pollution during maintenance). The concentra-
tion, size and material properties of these particles can vary substantially,
see Ai [5]. Ville [119] gives a simple example of the initial pollution of the
same fresh oil which has been bought in a one liter packaging or two hun-
dred liter packaging. The number of particles is multiplied by more than a
factor four. Moreover, manufacturing residual particle specifications become
more and more important. A strict process cleanliness is required to avoid
particles exceeding 400 µm for series production bearings.

Very different particles can be encountered in real lubricants. Both
the particle shape and properties can vary substantially. Table 1.1 briefly
presents different particles encountered in real devices and their usual con-
sequences. Figures 1.4 and 1.5 show a picture of ductile metallic spheres
and fragile sand particles from Ville [119]. The bearing surface indentation
caused by ductile metallic particles is the main object of this work.
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Nature Origins Frequency Indentation

metallic–
ductile

machining,
assembling,
wear, damag-
ing

very important for
new parts, important
during running-in

large and shal-
low indents (lam-
inated particles)

carbides–
tough

machining moderate and lim-
ited to new parts

sharp and small
indents (difficult
to predict)

mineral–
fragile

foundry sand,
environment

limited to very im-
portant depending
on the environment

very small indents
(particle fracture)

Table 1.1: Particle origins and consequences on indentation [119]

Figure 1.4: M50 particles [119]
(distribution 0 − 100 µm)

Figure 1.5: SiC particles [119]
(mean size 45 µm)

These particles can be much larger than the film thickness. Typically,
the particles can reach a few hundred micrometers, whereas the usual film
thickness is less than one micrometer. When a particle enters the contact, it
is squashed between the surfaces and plastically deforms them. The remain-
ing deformed surface geometry (a hole surrounded by shoulders) is called an
indent. The indents perturb the contact pressure distribution. These pres-
sure perturbations cause additional stresses in the material; these additional
stresses increase the fatigue failure risk (crack and spalling). Figure 1.6 rep-
resents a fatigue failure initiated in the vicinity of an artificial indent.

The magic solution to the pollution problem does not exist. Several pos-
sibilities are available: material development / thermochemical treatments,
filters. . . However, even if all these approaches can bring great improvements
in mechanism life, the failure prediction remains a question of great inter-
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Figure 1.6: Spalling due to an artificial indent [82]

est. For example, a classical filtering size in the automobile industry is 40 m.
Webster et al. [124] still report a ratio of 7 between the characteristic L10
life with a 40 µm filter and a 3 µm filter on a ball bearing life test bench.
The use of very small filtering size is questionable because of the choking
risk and the pressure drop. In this study, the aim is to predict indented
contact life assuming: that the surface indentation is known, and that the
material behavior is accounted for by an adjustment to experimental tests.

1.2 Modeling the pollution impact

1.2.1 Lubricant pollution and surface indentation

An important aspect is the link between a specific lubricant pollution and
the indentation which will be observed on the surfaces. Several studies have
been conducted concerning the link between the lubricant pollution and
the surface indentation. On carefully designed experimental devices, under
strictly controlled conditions, some clear conclusions have been obtained. A
direct link between the particle concentration and the indent surface density
has been established by Ville and Nelias [122].

However the next step, which consists in applying these results to real
cases, is not trivial at all. For example, the study mentioned above con-
tradicted results obtained by Dwyer-Joyce [37] who related a ratio between
particle concentration and surface indentation density until 10 000 times
higher.

Moreover, the relation between the indent geometry and the particle
shape, the particle nature, the material behavior and the operating condi-
tions is not clearly known. For example, the elastoplastic model which is
used, strongly influences the calculated residual stresses. The prediction of
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the surface indentation from oil contamination in a real device is difficult.
To be reliable, such a prediction in real cases would imply to know the con-
centration and the nature of particles which will enter the contact. It is not
only strongly dependent of the particular bearing technology, but also from
the polluted lubricant supply. Indeed, studies mentioned above, on the link
between particle concentration and indentation density, have been obtained
taking many precautions concerning the lubricant supply and the mixing of
particles in the lubricant. Let us imagine the complexity of an automobile
gear box lubricant repartition which is often ensured by oil projection and
carter grooves. . .

Moreover, the way the particles will indent the surfaces depends on many
parameters such as the material properties or the contact conditions. For
example, Ville [119] shows the major impact of particle material (shallow and
wide indent for ductile particle versus sharper and smaller indent for tough
carbide particle). In this work, the surface indentation is supposed to be
known. For example, from a real mechanism or from predenting process as
presented by Nixon and Zantopoulos [93] or Girodin et al. [41], the surfaces
can be analyzed using topography measures to quantify the indentation
geometry and density. With such data, the contact lives can be estimated
using the model developed in this work.

Figure 1.7 gives a glimpse of where this work is situated in the entire
contact pollution problem. The example of an automobile gear box is taken.
The surface indentation is assumed to be known. The contact condition and
the indent geometry are numerically modeled to obtain the pressure and
stress distribution. A life model is then used to predict the life from the
stress distribution.
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Figure 1.7: Pollution modeling in a real device
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1.2.2 Life prediction

Prediction of rolling contact fatigue is complex. Many physical phenomena
are coupled at different scales. This work is focused on the macroscopic
pressure and the stress distribution in indented contacts.

One of the major problems is to account for the cumulative damage.
At each loading cycle, the material is submitted to stress variations. A
part of the energy provided to the material is converted in microstructural
changes (dislocation movements, grain interactions, microstructural phase
changes. . . ) and other dissipative phenomena (heat generation, oil degra-
dation. . . ). This microscopic view has a physical basis. However, even with
very simple loading cycles, the microscopic material behavior prediction is
extremely difficult. Steel is an extremely complex material because of its het-
erogeneity, several phases coexists, various defects are randomly distributed,
and the microstructure is not continuous at all at the grain scale and evolves
with time and load cycles. Figure 1.8 represents the microstructure of a case
carburized quenched 16NiCrMo13 steel (residual austenite and martensite
lath). However, a homogeneous and isotropic material will be considered in
this work, the phenomena mentioned above are more or less averaged and,
the variability will be accounted for by a statistical model see chapter 4.

Figure 1.8: Microstructure of a case carburized quenched 16NiCrMo13 steel
[108]

Important variations are observed in contact life. Some variations can be
attributed to complicated loading cycles and stress distributions, material
properties, manufacturing process influence. . .With so many variables and
coupled effects some restrictive assumptions have to be made. Neglecting
some variation causes and considering intrinsically random material proper-
ties, implies to accept a large statistical dispersion in experimental results.
The models used are idealized problems, and only attempt to highlight some
of the principal physical trends and several order of magnitude variations.
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Actually, the kind of theoretical models developed in this work have to be
correlated with experimental validations.

The statistical dispersion is unavoidable for many reasons: the prin-
cipal one is that the material defects such as inclusions are intrinsically
randomly distributed and influenced by many parameters; the bearing ge-
ometry varies also; the operating conditions are not completely controlled;
the defect shapes (such as indentations) are submitted to random distribu-
tions. . . All these aspects have to be kept in mind when looking at all the
future considerations. Conclusions derived from models presented in this
work have to be sufficiently significant to be experimentally correlated. It
is irrelevant to highlight a 5% difference in the calculated life. Indeed, the
90% confidence band of a standard life test campaigns2 is wide. If one re-
peats the standard life test, one will obtain several characteristic lives. The
life interval which regroups 90% of the characteristic lives is spread roughly
from half to twice the median value.

Finally, the intermediate step of the pressure analysis will be studied
here for two main reasons: first, understanding the role of different parame-
ters is easier when proceeding step-by-step (pressure distribution, subsurface
stress, life reduction). Moreover, the pressure results do not depend on the
fatigue life model. The calculated pressure distributions, which are already
obtained using several assumptions, are certainly less questionable than fa-
tigue lives and can be more easily experimentally validated.

1.3 Objectives

Different bearing technologies exist. The contact conditions can change
enormously. So, a life prediction tool as accurate as possible is of great in-
terest to avoid time consuming and expensive test campaigns. Moreover, for
practical (and cost) reasons, the products are tested on a certain range of life
and operating conditions. The extrapolation from these experimental data
to a larger range of operating conditions is done using a theoretical model.
The theoretical models developed here use three major steps: the devel-
opment or the extension of numerical tools (elliptical dry contact pressure,
transient elliptical EHL contact pressure, contact stress. . . ), the analysis of
the calculated results and the development of models.

This work focuses on three points considering the pressure and stress
distribution: the ellipticity influence, the indent geometry including the
shoulder role and the operating conditions. As explained previously, the
final step of the life prediction is strongly dependent on material properties.
So, only general trends will be presented.

• Chapter 1 gives the context and some limitations of this study. It

2six failures, in first in four tests
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restricts the question of the life prediction of a bearing in a real de-
vice under polluted environment, to the simpler3 question: knowing
the indentation distribution (density and geometry), what will be the
pressure and the subsurface stress distributions as a function of the
operating conditions?

• Chapter 2 presents the dry contact and EHL contact models. It
presents the main equations and a brief overview of the numerical
techniques.

• Chapter 3 studies the contact ellipticity influence. It presents some
conclusions about the contact ellipticity influence on the pressure dis-
tribution. The dry and EHL indented contact pressure distribution
are compared. A dry contact pressure distribution model is presented.
The lubrication condition influence is also detailed.

• Chapter 4 presents the stress distribution and life prediction results.
The life model is presented.

• Chapter 5 summarizes this study and presents the future work.

3nevertheless sufficiently complex
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Chapter 2

Modeling and numerical

methods

2.1 Introduction

This work is a numerical study of indented contacts. The main equations
are presented below. An effort will be made to point out the advantages
and the limits of the models. The goal of this study is to predict indented
contact behavior for a wide range of geometries and operating conditions.
It means that hundreds of calculations are required. The other side of the
coin is that some restrictive choices have to be made to be able to obtain
these results in a reasonable time.

The EHL problem is governed by a complex set of equations. It requires
a very detailed solution. A fine mesh implies a large number of unknowns
and the solution time can become unacceptable unless advanced numerical
techniques are used. The numerical techniques should enable to deal with
the numerical difficulties of the set of equations. Moreover, obtaining a
solution is not sufficient, an idea of the numerical error should be known
as well. Below, an overview of the following aspects will be given: dry
contact pressure, EHL contact pressure and subsurface stress distribution
calculation.

17
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2.2 Dry contact

The contact pressure distribution under dry contact conditions has been
studied by Hertz [53]. The dry contact solution referred as Hertzian contact
solution is considered as a limit case of lubricated contacts. Actually, when
films become very thin and hydrodynamic effects decrease (high loads, low
speeds, and low viscosities), the Hertzian pressure distribution is the asymp-
totic solution.

The Hertzian solution is the extension of the work of Boussinesq [13] who
has formulated several assumptions: the bodies are semi-infinite half space
(the contact zone is small compared with the body sizes); the bodies are
elastic, homogeneous and isotropic; the stresses are normal to the surface.

The equations below will be presented twice: initial equations and di-
mensionless equations. The equations are solved using dimensionless vari-
ables for two main reasons: first, the dimensionless parameters enable to
obtain variables of the order of magnitude of 1 which is crucial for numerical
precision; second, they enable to use the opportunity of similarity groups.

2.2.1 Gap height equation

Ry2

Ry1

Rx1

Rx2

h0

E1

E2

x

E’

E’

y
h0

RxRy

O

Figure 2.1: Contacting body geometries – real geometry (left) and equivalent
geometry (right) [28]

The contacting body geometries can be well approximated by paraboloids
because the contacting body radii of curvature are large in comparison with
the contact dimensions. Since the surfaces are approximated by paraboloids,
the equivalent radii of curvature Rx and Ry can be defined for a non-
conforming contact by equation 2.1. Figure 2.1 represents, on the left the
“real” geometry, and on the right the equivalent geometry.
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1

Rx
=

1

Rx1
+

1

Rx2

1

Ry
=

1

Ry1
+

1

Ry2
(2.1)

The gap height equation represents the separation between the two bod-
ies. When the two bodies come into contact, a pressure is generated. The
pressure deforms the initial undeformed surfaces. This deformation is calcu-
lated using the deformation integral which is function of the contact pressure
over the domain Ω.

h (x, y, t) = h0 +
x2

2Rx
+

y2

2Ry
+ R (x, y, t) +

2

πE′

∫∫

Ω

p (x′, y′, t) dx′ dy′
√

(x − x′)2 + (y − y′)2
(2.2)

The term h0 is the mutual approach of two remote points in the solids.
The indent geometry will be introduced through R. The equivalent Young
modulus corresponds to:

2

E′
=

1 − ν2
1

E1
+

1 − ν2
2

E2
(2.3)

The dimensionless gap height equation reads:

H (X, Y, T ) = H0 +
X2

2
+

Rx

Ry

Y 2

2
+ R̄ (X, Y, T ) +

1 + Rx/Ry

2πE
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Ω
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√
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(2.4)
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)

(2.7)
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The elliptical integral approximation E in equation 2.7 is from Ham-
rock and Brewe [52] and Moes [88]. For circular contacts, Rx/Ry = 1 ,
the elliptical integral E tends asymptotically to π/2 while the ellipticity κ
becomes 1.

E (0) =
π

2
(2.8)

2.2.2 Force balance equation

The force balance equation represents the load equilibrium. The applied
load is compensated by the pressure which is generated on the surfaces. The
force balance is considered in a quasi-static approximation. It means that
no inertia is considered, and the load balance is exactly and immediately
verified.

∫∫

Ω
p (x, y, t) dx dy = w · f(t) (2.9)

The dimensionless force balance equation reads:

∫∫

Ω
P (X, Y, T ) dX dY =

2π

3κ
· f(t) (2.10)

2.3 EHL contact

The fundamental equation of thin film lubrication has been established by
Reynolds [98]. This equation is derived from the Navier-Stokes fluid dy-
namics equations using some simplifications and assumptions. The major
shortcuts are: a very thin lubricant film thickness in comparison with the
contact dimensions, a continuous fluid which sticks to the surfaces, a lami-
nar flow, a constant pressure through the film thickness, volume and surface
forces are neglected in comparison with viscous forces. The Reynolds equa-
tion describes the mass flow conservation of a viscous fluid flow between
two parallel surfaces. It links the pressure to the contact geometry and the
lubricant properties.

A major step forward in EHL understanding was in the work of Ertel [38]
the combination of Hertzian solution and a piezoviscous lubricant behavior
from the work of Barus [8]. The first numerical solution of an EHL con-
tact is proposed by Petrusevich [96] who solved simultaneously the elastic
deformation and the Reynolds equation. The smooth contact film thickness
study was published by Dowson and Higginson [32] for line contacts; and
later by Hamrock and Dowson for elliptical contacts [49, 50, 51].

The experimental measurement were improved with the interferometric
techniques. The gap height between the two surfaces is reconstituted from
the interference pattern of light rays see Gohar and Cameron [43] and Foord
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et al. [40]. Thin film measurements (5 nm) were made possible by Johnston
et al. [68].

The EHL contact equations are complex. Three equations are simulta-
neously solved: the two previous dry contact equations (gap height equation
2.4 and force balance equation 2.10) and the Reynolds equation. This set of
equations presents some pathological behaviors:

• A strong coupling between these three equations: for example, a mod-
ification of the mutual approach from the force balance equation in-
duces a global variation of the film thickness and so, of the pressure
distribution.

• Very non-linear behavior of the viscosity with pressure.

• Nature change of the Reynolds equation between low and high pressure
regions (from elliptical to hyperbolic).

• The integral part of the elastic deformation equation: a pressure vari-
ation in a single point affects the entire deformed geometry.

A major step forward in the solution of these equations is due to the
development of multigrid techniques by Brandt [14, 15]. These techniques
were applied to the EHL problem by Lubrecht [79, 80, 81]. To speed up
the elastic deformation calculation, Brandt and Lubrecht [16] developed
the multigrid multi-integration scheme (MLMI). Venner [109] optimized the
relaxation process of the multigrid solver. The improvement concerning the
stability and the convergence speed enabled to solve transient problems.

The transient problem has been studied for various geometrical patterns
and especially harmonic roughness, see Lubrecht [86], Venner [110, 112,
111, 113, 114]. A different approach is developed by Greenwood [44, 45]
and Morales-Espejel [89]. Hooke [54, 55, 56] proposed several studies where
the importance of the ratio between the geometry wavelength and the in-
let length is highlighted. Ai [1] calculates the effect of a moving indent
traversing an EHL contact.

The experimental validation was done in parallel of the development
of high speed camera and interferometric measurement Kaneta et al [71,
72], Wedeven and Cusano [126]. The lubricant behavior is at center of
attention of latest developments, see Chapkov [18, 19] and Hooke [61, 62].
An important number of publications are also related to the microgeometry
optimization as a function of the operating conditions by surface texturing
(especially on coatings), both on numerical and experimental aspects [123],
[90]. The lack of lubricant referred as starved contacts is also numerically
studied for example by Chevalier [22] and Damiens [28].
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Figure 2.2: Comparison of experimental (left) and numerical (right) results
of a transverse ridge under pure-rolling, experimental result by Kaneta [71]
and numerical result by Lubrecht [110]

2.3.1 Lubricant

An important aspect of the EHL lubrication is the lubricant behavior. The
operating conditions are extreme in terms of pressure (several GPa) and
sometimes shear rate. Some very sophisticated lubricant behavior model
exist. For example, the lubricant viscosity-pressure relationship η is often
very dependent on the shear rate. However, for the range of small slide to
roll ratio (encountered in rolling element bearings < 5%), a simple model of
Newtonian behavior is a reasonable simplification. Moreover, with a zero or
small sliding speed, the thermal effects are expected to be small and will be
negliged.

The Roelands viscosity [99] is used:

η (P ) =
η

η0
= e

αpr
z



−1 +

(

1 +
Pph

pr

)

z




αpr

z
= ln η0 + 9.67 (2.11)

pr = 1.96 108

The fluid compressibility appears to have a small effect on the indented
contact behavior. The simplest and most common density relation, which
was proposed by Dowson and Higginson [33], is used:

ρ =
ρ

ρ0
=

0.59 · 109 + 1.34 · Pph

0.59 · 109 + Pph
(2.12)
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2.3.2 Reynolds equation

The Reynolds equation is written for a constant speed, the transient term
comes from non smooth patterns traversing the contact:

∂

∂x

(

ρh3

η

∂p

∂x

)

+
∂

∂y

(

ρh3

η

∂p

∂y

)

= 12um
∂ρh

∂x
+ 12

∂ρh

∂t
(2.13)

To make the Reynolds equation dimensionless, the parameter λ̄ is defined
in equation 2.15. The transient dimensionless Reynolds equation with a
Newtonian fluid reads:

∂

∂X

(

ρH3

ηλ

∂P

∂X

)

+
∂

∂Y

(

ρH3

ηλ

∂P

∂Y

)

=
∂ρH

∂X
+

∂ρH

∂T
(2.14)

λ =
12 umη0R

2
x

b3ph
(2.15)

2.4 Subsurface stress distribution

The contact elastic tensor (CET) is defined as the elastic stress distribution
associated with the deformation in the contact. One can approximate the
CET in each point of the semi-infinite half space which is submitted to a
given pressure field on the top surface. The influence coefficient method is
used to compute the stress integrals. The problem is solved by meshing the
loaded region on the top surface as a finite union of squares. The kernels used
in those integrations are deduced from Boussinesq and Cerruti equations
[13]. The CET is calculated assuming homogeneous and isotropic bodies,
small deformations and linearity between deformations and stresses.

MLMI techniques are used to calculate the integrals of the elastic stress
field to ensure a reasonable calculation time. The scheme used is from
Lubrecht [84] with appropriate kernels, see Kalker [69]. The domain has been
meshed as shown in the figure 2.3 to ensure both a sufficient discretisation
of the high gradient region (close to the surface) and a coarser meshing
deeper (to maintain reasonable calculation times). The contact pressures
and subsurface stresses are calculated assuming no friction at the surface.
The principal stresses are calculated according to Fenner [39].

The residual stress distribution and the contact elastic stress distribution
due to indent pressure perturbations are considered separately. The residual
stress is the stress distribution in the material without any loading obtained
after running-in. The real stress state in the material during loading is the
sum of the residual stress distribution and the CET.

To predict the residual stress field one needs several steps: initial residual
stress of the bodies (manufacturing residual stress, thermochemical treat-
ment residual stress, hoop stress), the elastoplastic behavior of the two
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Figure 2.3: Stress meshing

bodies and the particles, the particle geometry and nature, the indenta-
tion residual stress, the running-in residual stress (geometry stabilization).
Moreover, as said in section 2.5, the particle indentation modeling is still a
challenging problem. The indentation conditions are generally not known.

Finally, the residual stress distribution will be omitted. Two main justifi-
cations can be given. Firstly, it would be very costly considering the number
of parameters (and so, very time-consuming). For example, elasto-plastic
calculations would no longer remain dimensionless. . . Secondly, most of the
fatigue criteria are based on the stress amplitude seen by the material. The
residual stress is expected to be stabilized very quickly in comparison of the
contact life. With a fatigue criterion like the Dang Van criterion [29], the
residual stresses do not act on this stress amplitude because it is a constant
stress tensor shift. The impact is only on the residual hydrostatic stress.
The validity of this particular point for high compressive hydrostatic stress
is contested see Desimone et al. [30].

2.5 Indent geometry

EHL film thickness is classically thinner than one micrometer. Pollution
particles can reach few hundreds of micrometers. When these particles enter
the contact, they are squashed between the two surfaces. The particles
plastically deform the two surfaces and the remaining geometry is called
an indent. The indent geometry is difficult to predict. Several numerical
and experimental studies treat the indent geometry aspect. These studies
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use both artificial indents (Rockwell indenter) or natural indents (polluted
contact).

The understanding of the indent creation is interesting for two reasons:
first, the pressure and stress perturbations induced by an indent traversing a
contact depend obviously on its geometry; second, the indentation residual
stress can be correctly evaluated.

2.5.1 Natural indentation observations

Figure 2.4: Ductile particle indent 3D mapping by Cogdell [23]

Figure 2.5: Ductile particle indent [119]

A comprehensive study of the indentation especially with ductile parti-
cles was made by Ville [119]. Some of the results are reported and are linked
to some experimental observations in tapered roller bearings performed by
Cogdell at the Timken company metrology laboratory.

Ville [119] describes the major impact of the particle nature (ductile,
fragile, tough) and the operating conditions (especially sliding) on the in-
dentation. For example, brittle particles (sand) explode in the contact inlet
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and produce numerous small indents; tough ceramic (carbide) particles pro-
duce sharp indents and seem to be a harmful type of contaminant; the
metallic – ductile spheres produce large shallow indents, see figure 2.4, 2.5.
For pure-rolling conditions and ductile particles, these indents are roughly
axysymmetrical. The shoulder height seems to be a little higher on the rear
shoulder.

• The Hertzian pressure seems to have a small influence on the indent
geometry.

• The particle diameter has an important influence on the indent diam-
eter, however a more moderate influence on the indent depth.

• The mean velocity has a moderate impact on the indent depth and
diameter. The difference concerning the indent depth seems to be
linked with the central film thickness variation. Moreover, the indent
shoulders are much higher with decreasing speed.

• The slide to roll ratio has a very important impact on the indent
geometry. The indent shape becomes very irregular and stretched
along the sliding direction even for small slide to roll ration (6%).

Particle diameter (µm) 10-20 20-32 32-40 40-50

Indent diameter (µm) 20-30 30-40 40-80 60-100

Indent depth (µm) 1.5-1.7 1.7-1.8 1.8-3.0 2.0-3.0

Indent slope (◦) 8.7-6.7 6.7-5.2 5.2-3.8 3.8-3.0

Table 2.1: Experimental observation of the indent diameter, depth and slope
as function of the particle diameter [119]

Table 2.1 represents the indent slope and diameter distribution as a
function of the particle size. These measures have been obtained by Ville
[119] on a twin disc pollution bench. The particles are M50 spheres, they
cross once the contact creating a unique indent. Pure-rolling conditions
have been used. The discs are made of 52100 steel with a similar hardness
as the particles. When the particle size increases, the indent diameters are
larger and the indent slopes are shallower. Observations of bearings which
have run under controlled polluted environment show also that the sharpest
indents are systematically the smallest.

For a given class of particle diameters, the variation of the indent geom-
etry is relatively limited. Moreover, the results presented above have been
obtained ensuring that the particles traverse only once the contact. How-
ever, when a particle traverses several times the contact, it creates each time
a shallower indent. In a rolling element bearing, particles can be trapped
in the bearing and traverse many contacts. It can be an explanation why
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numerous very shallow indents are measured on the surfaces of a bearing
which runs under controlled polluted environment.

2.5.2 Indent creation modeling

Artificial indentations (Rockwell indenter) have been modeled in several
studies. The indentation residual stress influence on contact life which is
studied by Ko and Ioannides [74], Lubrecht et al. [85], Xu et al. [129].
The authors observe a moderate impact of the indentation residual stress
distribution, only Hamer et al. [48] predicts an important impact. For dry
contacts or pure-rolling EHL contacts, the residual stresses have a beneficial
effect on calculated life. The predicted life can roughly be multiplied at the
most by a factor four (for low loads, and almost constant for high loads
and/or very severe indents). At first sight, it could seem important but the
reduction in life presented in these studies between smooth and indented
contacts is about 103. The calculated indentation is strongly dependent
on the material properties (elastoplastic behavior). The friction coefficient
seems to have no influence on the indent hole, and a moderate influence on
the shoulder geometry, see Nelias et al. [92].

However, concerning natural indentation, the study conducted by Kang
et al. [73] shows that the friction coefficient between the particle and the
bodies seems to have an important effect on the dent geometry. Particle
indentation is also studied by Sayles and Ioannides [103], and Xu et al. [129]
who confirm the moderate impact on indented contact life of the indentation
residual stress.

2.5.3 Analytical description

Indents present a hole surrounded by shoulders. The indent geometry has
to be modeled as precisely as possible, but keeping a reasonable number of
parameters. Two problems are encountered: First, the indent geometry de-
pends on the operating conditions (nature of particles, sliding, . . . ); second,
the indent geometry evolves during the bearing life. When an indent is cre-
ated, the initial indent geometry evolves during a few thousand overrolling
cycles until the pressure perturbations around the indent induce only elastic
deformations. It leads to the stabilized geometry. It is assumed that only
very few cycles compared to the total life are sufficient to obtain the stabi-
lized geometry, which will be subjected to high cycle fatigue, see Bhargava
et al. [9, 10], Hahn et al. [47], Coulon [24].

Two major approaches exist, on one hand, the use of the measured indent
geometry and on the other, the use of simplified geometries such as analyti-
cal indent geometry. The use of measured geometries has two disadvantages.
First, the quality of the solution is not easy to evaluate and second, general
trends are difficult to extract. The analytical indent description used in this
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work is obviously an important simplification, see figure 2.6. However, it
enables a parametric study (reduced number of parameters). The continu-
ous geometry facilitates the numerical accuracy. Finally, the analysis uses
the indent geometry used by Coulon [24] which uses three parameters, see
equation 2.16.

R̄ = −De
−K

R2

Φ2 cos

(

πR

Φ

)

(2.16)

These three parameters control the indent shape: the diameter Φ, the
depth D and the attenuation factor K for the shoulder shape. The analytical
function 2.16 is a good compromise between the number of parameters, the
correct emulation of the indent geometry and good numerical properties.
Real surface indents under polluted environment present so many different
geometries (variability in particle nature, size, operating conditions, . . . )
that for the moment, no clear observation justifies a more sophisticated
analytical description.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

R

Z

 

 

K=3

K=4

K=5

K=8

Figure 2.6: Indent profiles for different decay coefficients K from 3 to 8,
D = 1, Φ = 1

2.6 Numerical techniques

Following the modeling, the continuous equations have to be solved. These
continuous equations are too complex to find an analytical solution, so the
equations are discretised and the discrete solution computed in nodes of a
mesh grid. The accuracy of this step is determined by the discretisation
error. The equations are solved using an iterative process. At each itera-
tion, the variables converge to the solution. The difference between the last
iteration and the discrete solution is the numerical error.
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The first crucial point in a numerical study is to ensure that the solution
represents accurately the continuous equations. In other words, the error
which comes from the numerical techniques used to solve the continuous
problem, should be controlled. The solution trends should be caused by the
physical parameter variations, not by numerical artifacts. An example of a
numerical artifact is clearly demonstrated by Venner [116] where artificial
trends for low speeds in EHL contacts appear as a result of poor accuracy.

The end of this chapter is a very quick overview of the basics of the
numerical techniques used in this work. A complete description and analysis
can be found in the literature especially Venner and Lubrecht [115]. This
work started with the implementation of the transient terms in the EHL
multigrid solver: the Gauss-Seidel line relaxation and the distributive Jacobi
line relaxation. Validation of the numerical accuracy is also presented.

The solution of the EHL equations requires: first, a fine meshing which
implies a large number of unknowns N ; second, numerical techniques which
can overcome pathological behavior of these equations (especially in terms
of stability); finally, efficiency in terms of computation time. The notion of
algorithm complexity is at the heart of the problem1.

2.6.1 MLMI principles

The calculation of the deformation integral and of the stress integrals are
made using the technique of influence coefficients. The calculation of the
deformation integral and of the stress integrals corresponds to a convolution
between an integration kernel K (influence coefficients) and the pressures
Pi,j . The kernel gives the influence of a ponctual pressure in every point
of the half-space domain. A naive implementation of these integrals gives a
complexity of N2 for the deformation integral. MLMI2 enables a complexity
of N · ln(N) for the deformation integral.

The main idea consists in taking advantage of the kernel smoothness.
The kernel involved here are asymptotically smooth kernels. It means that
the kernel gradient can become very small far from the singularity. In this
conditions, the kernel can be interpolated with a negligible accuracy lost.
The crucial point is to note that the smoothness assumption is only made on
the kernel, and not on the pressures. This subtlety is referred as anterpola-
tion [115]. In the zones where the kernel is not smooth enough, a correction

1The answer of the increasing computer speed is deceptive. For example, a fine 2D
discretisation of 1024×1024 points corresponds to 220 unknowns. A classic algorithm with
a complexity of N

2 requires 240 operations. An “efficient” algorithm with a complexity
of N · ln(N) requires roughly 224 operations. If the efficient method solves the problem
in one minute, it means that the classic algorithm will require about one month and half.
The CPU speed increase is expected to reach its limit in 10 to 15 years. Anyway, in 15
years, CPU should be roughly 210 faster. So don’t hold your breath, it means that you
still will have to wait more than one hour to obtain your result.

2MultiLevel-Multi-Integration
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is used. The correction has a complexity cost, so the correction has to be
made only when a gain is obtained on the discretisation error.

The continuous integral is:

w(x) =

∫

Ω
K(x, y)u(y) dy (2.17)

A piecewise integration is used:

wh
i,j = hd

∑

j

Khh
i,j uh

j (2.18)

wH
i,J = Hd

∑

j

KhH
i,J uH

J (2.19)

uH
J = 2−d[(IIh

H)T uh
. ]J (2.20)

Then, the fine grid integral wh
i,j is approximated by the coarse grid inte-

gral wH
i,J and a correction is applied around the singularity:

wh
i ≃ wH

I + hd
∑

|j−i|6m

(Khh
i,j − K̃hh

i,j )uh
j (2.21)

K̃hh
i,j = [(IIh

H)KhH
i,. ]j (2.22)

The deformation kernel is calculated using the equations 2.23 and 2.24.
The stress kernels can be found in [69].
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(2.24)

2.6.2 Multigrid principles

The discrete problem is solved iteratively. Each iteration is called a re-
laxation. A crucial aspect of the relaxation process used is that the high
frequencies of the error converge much faster than the low frequencies. It
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means that after few relaxations the high frequencies of the error have van-
ished whereas the lower frequencies remain unchanged. The multigrid algo-
rithm uses this characteristic. The algorithm works on several levels which
corresponds to different mesh sizes. It is much more efficient for two rea-
sons: first, obviously a coarser grid is synonym of less unknowns and a
smaller amount of work per relaxation; second, the ratio between the error
wavelength and the mesh size decreases and a low frequency on the fine
grid corresponds to a less smooth error on a coarse grid. It means that the
coarser levels will speed up the convergence of the low frequencies of the
error.

The EHL problem is non linear so the Full Approximation Scheme (FAS)
has to be used.

FAS scheme

A general way of writing a differential equation is:

L 〈u〉 = f (2.25)

with:

• L – continuous differential operator

• u – continuous unknown

• f – continuous right hand side function (known)

After discretisation on a grid with mesh size h, the discrete equation
reads:

Lh
〈

uh
〉

= fh (2.26)

with:

• Lh – discrete differential operator

• uh – discrete unknown

• fh – discrete right hand side function (known)

The resolution starts, the initial unknown ûh is transformed after each
relaxation in the incompletely converged unknown ũh. The exact solution
of the discrete problem is uh. It enables to define the residual rh and the
numerical error vh.

rh = fh − Lh
〈

ũh
〉

(2.27)

vh = uh − ũh (2.28)
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Substituting equations 2.27 and 2.28 in 2.26 gives:

Lh
〈

ũh + vh
〉

= Lh
〈

ũh
〉

+ rh (2.29)

The coarse grid H is now used to calculate a correction to apply to the
fine level h. The restriction and interpolation operators are respectively IH

h

and Ih
H .

LH
〈

ûH
〉

= f̂
H

(2.30)

ûH = IH
h ũh + vH (2.31)

f̂
H

= LH
〈

IH
h ũh

〉

+ IH
h rh (2.32)

After a number of relaxations on the coarse grid, a good approximation
ũH to the coarse grid variable ûH is found. The fine grid old approximation
ũh is then corrected according to:

ūh = ũh + Ih
H(ũH − IH

h ũh) (2.33)

This scheme is applied recursively on several grid levels see figure 2.7,
typically on five levels from 256 grid points for the finest grid to 16 points
for the coarsest grid. The choice of intergrid transfer operators is not with-
out consequences, see [115]. An efficient way to obtain a first guess of the
unknown on the finest grid is to solve at lower cost the problem on coarser
grids and interpolate it recursively on finer grids. This scheme is referred as
Full Multigrid Cycle (FMG), see figure 2.8.
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Figure 2.7: Example of a V (ν1, ν2)-cycle with 4 levels [115]

Line relaxation

As said previously, the efficiency of the relaxation process is strongly depen-
dent on the error wavelength. It is detailed in the local mode analysis in
[115]. A local relaxation scheme is used. The equation will be discretised
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Figure 2.8: FMG with one V-cycle [115]

using finite differences. It means that the discrete equations in the grid point
i, j will only make appear few neighboring unknowns. As the equations are
non linear, a local linearisation is used. The current approximation ũh

i,j in

the grid point i, j will be corrected in uh
i,j by the correction δh

i,j :

uh
i,j = ũh

i,j + ωδh
i,j (2.34)

δh
i,j =

(

∂ Lh
〈

uh
〉

i,j

∂ uh
i,j

)−1

uh=ũh

rh
i,j (2.35)

Relaxing every points of the grid, if the very last corrected values are
used, a Gauss-Seidel relaxation is performed; if the corrected values are
updated only at the end of each grid relaxation, a Jacobi relaxation is per-
formed.

The EHL equations present a strong coupling in the direction X. Instead
of solving the equations changing one unknown at the time, a line relaxation
can be performed. It means that the corrections of the locally linearised
problems will be calculated on an entire line. An important gain in the
relaxation efficiency is obtained. A smart choice of the important coupling
terms enable to obtain an hexadiagonal linear problem with nX unknowns
which can be solved without impairing the overall complexity:

Ajδh
j = rh

j (2.36)

with:

• Aj – hexadiagonal linear system matrix

• δh
j – correction in all points i of the line j

• rh
j – residual in all points i of the line j
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It has been shown in section 2.6.1 that the deformation in one point is a
function of the pressures in all grid points through the influence coefficient
matrix. It means that a change in pressure in one grid point will affect all the
other grid points through the deformation integral. It leads to important
numerical difficulties (convergence and stability). To overcome this, the
distributive relaxation is used in the high pressure zone. The distributive
relaxation is based on the deformation kernel properties. The influence of
a local change in pressure on the deformation in the other grid points is
limited by the distributive relaxation. When a correction is applied in one
grid point, an opposite smaller correction in the other direction is applied
to the neighboring points. Two schemes are employed, the Gauss-Seidel
line relaxation for the low pressure zones and the distributive Jacobi line
relaxation for the high pressure zones.

rh
j = fh

j
− Lh

〈

. . . ; uh
j−1;

〈

. . . ; uh
i−1,j ; ũ

h
i,j ; ũ

h
i+1,j ; . . .

〉

; ũh
j+1; . . .

〉

(2.37)

r̃h
j = fh

j
− Lh

〈

. . . ; ũh
j−1;

〈

. . . ; ũh
i−1,j ; ũ

h
i,j ; ũ

h
i+1,j ; . . .

〉

; ũh
j+1; . . .

〉

(2.38)

Depending on which relaxation scheme is used, the correction matrix system
is constructed:

• Gauss-Seidel line relaxation:

Ajδh
j = rh

j (2.39)

Aj
i,k =

∂ Lh
〈

uh
〉

i,j

∂ uh
k,j

(2.40)

uh
j = ũh

j + ωGS δh
j (2.41)

• Jacobi distributive line relaxation:

Ajδh
j = r̃h

j (2.42)

Aj
i,k =

∂ Lh
〈

uh
〉

i,j

∂ uh
k,j

− 1

4

(

∂ Lh
〈

uh
〉

i,j

∂ uh
k+1,j

+

∂ Lh
〈

uh
〉

i,j

∂ uh
k−1,j

+
∂ Lh

〈

uh
〉

i,j

∂ uh
k,j+1

+
∂ Lh

〈

uh
〉

i,j

∂ uh
k,j−1

)

(2.43)

uh
i,j = ũh

i,j + ωJA

(

δh
i,j −

1

4

(

δh
i+1,j+

δh
i−1,j + δh

i,j+1 + δh
i,j−1

))

(2.44)



2.6. NUMERICAL TECHNIQUES 35

2.6.3 Transient calculation implementation

Transient calculations face some specific numerical difficulties. The direct
SU2 discretising of the transient term in finite differences leads to numer-
ical damping, see Wijnant [127], Venner and Lubrecht [110], Venner and
Morales-Espejel [114] and Venner et al. [114]. A more sophisticated NU2
scheme is used. A detailed implementation of the Gauss-Seidel and the
Jacobi line relaxation is given using the NU2 scheme in appendix A.
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2.6.4 Numerical accuracy

Some results about the numerical accuracy are presented below. The evo-
lution of numerical errors as a function of the number of points is studied.
Several curves represent the error in the pressure calculation, the stress cal-
culation and the stress risk integral calculation.

When an indent crosses a contact, it creates a pressure perturbation
(positive over the shoulders and negative in the hole). The additional pres-
sure amplitudes are defined in figure 2.9 for a centered indent. For dry
contacts, this pressure distribution is axysymmetric, this is no longer true
for EHL contacts.
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Figure 2.9: Additional pressure amplitude definition
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Dry contact

The domain is [−2 2] × [−2 2]. Figure 2.10 shows that the error in the
additional pressure amplitude for Φ = 0.25 is roughly twice the error for
Φ = 0.5. A minimum of 16 points per diameter is required to ensure an
accuracy of 1% on the additional pressure amplitude. A similar conclusion
was obtained by Coulon [24].
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Figure 2.10: Error in ∆PDRY for a dry contact as a function of nX . Indent
geometry Φ = 0.25 0.5, D/Φ = 2, K = 4

EHL contact

EHL indented contact calculations are transient. A steady-state problem
with a longitudinal groove is first used, see equation 2.45 and figures 2.11,
2.12. Then, the error in the full transient problem is presented in figures
2.13, 2.14. The domain is [−2.5 1.5] × [−2 2].

These plots show that a finer discretisation for the EHL problem is
needed. The error in the solution depends also on the operating condi-
tions. The transient problem requires a minimum of 256 points to ensure
an accuracy better than 10% on the additional pressure amplitude and of-
ten enables an accuracy close to 2% for Φ = 0.5 and 4 − 5% for Φ = 0.25.
A similar conclusion for harmonic wavelength was published by Lubrecht
and Venner [86]. During the convergence process, an additional convergence
condition has been used. Usually, a condition on the mean residual is used.
However, some locally large errors appeared close to the indent. A specific
condition on this maximum residual was added.
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R̄ = −De
−K

Y 2

Φ2 cos

(

πY

Φ

)

(2.45)
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Figure 2.11: Error in ∆PEHL
LAT for a stationary EHL contact M = 200, L = 19

as a function of nX . Groove geometry Φ = 0.125 0.25 0.5, D/Φ = 1/4,
K = 4
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Figure 2.12: Error in ∆PEHL
LAT for a stationary EHL contact M = 800, L = 8

as a function of nX . Groove geometry Φ = 0.125 0.25 0.5, D/Φ = 1/4,
K = 4
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Subsurface stress calculation

Pressure perturbations induce stress perturbations. High stress zones appear
close to the surface as shown in figure 2.15. The error in the maximum stress
is presented in figure 2.16. Figure 2.17 represents the evolution of the error
in the stress risk integral3 ID with a constant mesh size in the subsurface.
A 256× 256 top grid is required to ensure a sufficient accuracy of 1% on the
maximum stress and the stress risk integral.
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Figure 2.15: Example of a stress distribution in a vertical plane for a dry
contact with a centered indent

3The stress risk integral definition will be detailed in chapter 4.
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max for a dry contact as a function of nX . Indent
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2.7 Conclusion

This chapter has presented the models and the main assumptions for the
contact pressure and stress distribution calculation. Both the dry and the
EHL models have been exposed. These two approaches will be used in this
work. The simplifications have been emphasized. These simplifications are
often due to calculation time constraints and are the result of a compromise
in the model. Classical transient Newtonian Reynolds assumptions are used.
Pure-rolling conditions are assumed. Only pure elastic deformations are
considered. The indent geometry is approximated by an analytical function.

A brief overview of the numerical solution techniques is given. Multigrid
techniques are used for the deformation/stress integral calculations and for
pressure calculation. The implementation details for the transient EHL
solver has been given. Finally, a rapid overview of the numerical accuracy
is presented.
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Chapter 3

Dry and EHL pressure in

indented contacts

3.1 Introduction

The prediction of the indented contact pressure is an intermediate step in the
life prediction. The pressure distribution in dry and lubricated contacts is
interesting for several reasons. First, it is intuitively directly linked with the
contact severity. Second, the theoretical model is well established and film
thickness predictions are correlated by experimental observations. Finally,
the understanding of the lubrication influence is more direct concerning
pressure than stress or even risk integrals.

In this section, the indent geometry and the operating condition influence
are studied. The aim is to analyze the influence of different parameters
(indent diameter, indent depth, shoulder geometry, contact ellipticity, speed,
viscosity, load. . . ) over a certain range of operating conditions. It represents
hundreds of calculations which means hundreds of computing days. It also
tries to give a physical interpretation of the influence of these parameters.

Some results are presented using a reference pressure PREF . This refer-
ence is used for reasons of confidentiality and has no physical meaning. It
has a constant value and does not affect the different conclusions. The main
interest of these results is in the relative influence of the different parame-
ters and in the physical interpretations rather than the numerical values of
pressure.

This chapter is divided in two main sections. First, dry contact as-
sumptions are used. Then, lubricated contacts are studied. Each of these
two sections addresses three points: How does pressure evolve when an in-
dent traverses the contact? What is the influence of the contact ellipticity?
And finally, what are the important parameters concerning indented contact
pressure and how can one predict the pressure perturbations induced by an
indent?

45
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3.2 Dry contact pressure

The dry contact is used as a first approximation of the lubricated case. It
is seen as an asymptotic case of an EHL contact for low speed and viscosity
and high load. There are also some practical advantages: the calculation is
rapid, stable and quasi static (the pressure distribution for an indent position
does not depend on previous solutions). The interpretation is easier and it
provides a reference for the future study of the lubrication influence.

Figure 3.1: 2D pressure distribution in an indented dry contact Φ = 0.5,
K = 4
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Figure 3.2: Additional pressure amplitude definition for dry contacts Φ =
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Figure 3.3: Indent traversing a dry contact Φ = 0.5
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D

Φ
= 1

D

Φ
= 2

Φ = 0.5 < 1% < 1%
Φ = 1 < 1% 2%

Table 3.1: Difference in the additional pressure amplitude during indent

crossing for dry contacts =
∣

∣

∣∆PDRY
XD=0 − ∆PDRY

max(T )

∣

∣

∣ /∆PDRY
max(T ) as a function

of the indent diameter Φ and the indent slope D/Φ for K = 4

When an indent traverses a contact, it is deformed. A pressure dis-
tribution is associated with this deformation. Figure 3.1 represents a 2D
pressure distribution in an indented contact. Figure 3.2 represents the pres-
sure distribution and the additional pressure distribution along the rolling
direction X of an indented dry contact. Figure 3.3 represents the pressure
distribution along the rolling direction at different indent locations: from
a smooth contact to a centered indent. If the pressure is divided into the
smooth pressure and the additional pressure distribution, one can observe
that the additional pressure is almost constant for an indent traversing the
contact. The additional pressure is only shifted in the contact along the
rolling direction. One could have foreseen this result. It is convenient for
several reasons. All the information about the additional pressure distri-
bution during the entire crossing is obtained from a single centered indent
calculation, and the additional pressure amplitude for a centered indent is
representative of the entire crossing. It saves calculation time and memory
because only one position is required.

This is true only for sufficiently small indents. It is quite obvious that if
the indent is larger than the contact itself, it would be difficult to measure
pressure over the shoulders outside the contact. More reasonably, the indent
should be sufficiently small to not perturb the force balance too much. Table
3.1 presents the error in the maximum additional pressure amplitude during
the indent crossing. For example, one can read that for a diameter Φ = 1 and
an indent slope D/Φ = 2, the approximation error between the additional
pressure amplitude for a centered position and the maximum value during
the indent crossing is 2%.

3.2.2 Ellipticity

The equations presented in chapter 2 are solved using dimensionless param-
eters. These dimensionless parameters are especially useful because they al-
low the complexity of the problem to be reduced. For example for a smooth
circular dry contact, the dimensionless equations enable one to obtain a
unique solution which is applicable to every smooth circular dry contact
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regardless1 of the radius of curvature, load, Hertzian pressure, contact half
width. . . The smooth circular dry contact pressure distribution is calculated
once for all. Moreover, it demonstrates the level of understanding of the
problem which is reduced to its minimum expression.

The classical Hertzian dimensionless parameters are used. It means that
parameters describing indents depend on the contact conditions. For exam-
ple a given “physical” indent will not have the same dimensionless depth
and diameter if the contact half width changes.

P =
p

pH

H =
hRx

b2

X =
x

b

Y =
y

b

Elliptical contacts are commonly encountered in rolling element bearings.
The ellipticity can vary substantially. A simple question2 appears: when
varying the ellipticity, how do the pressure perturbations induced by a given
indent evolve? Actually, it depends on how one varies the ellipticity κ.
There are three free parameters in the dry elliptical smooth contact. Several
arbitrary choices can be made; only one is presented here. The ellipticity
variation will be obtained with the contact half width b along the minor axis
(rolling direction X) and the Hertzian pressure pH remaining unchanged.

Several reasons justify this choice: First, the ratio between the harmonic
roughness wavelength and the contact half width b was identified by sev-
eral authors as a key parameter for the deformation in lubricated contacts,
see section 2.3. As the dry contact study is the basis of the lubrication
study, the choice which was expected to simplify the lubrication study was
made. Moreover, it maintains the dimensionless indent diameter constant
when varying the ellipticity κ. Finally, the Hertzian pressure pH appeared
intuitively to be an important parameter. A constant Hertzian pressure
when varying the ellipticity simplifies the comparison of the dimensionless
pressures3.

The consequence is that the radius of curvature along the rolling direc-
tion Rx is imposed and varies with the ellipticity κ. Equation 3.1 is obtained
from Hertzian equations; the left handside is constant when varying the el-
lipticity.

1Actually, there are only two independent variables.
2Because a simple question does not systematically give rise to a simple answer.
3Certainly, they are made dimensionless with the same Hertzian pressure
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bE′

πpH
=

4

π

E

1 +
Rx

Ry

Rx (3.1)

The above equation is used in equation 2.4. For the two asymptotic cases
of a circular and an infinitely long contact, one obtains:

circular contact:
bE′

πpH
= Rx

line contact:
bE′

πpH
=

4

π
Rx
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Figure 3.4: Dry contact pressure distribution around an indent as a function
of the ellipticity Φ = 0.5

The result is that the additional pressure distribution remains almost
constant when varying the ellipticity. An example of the pressure distribu-
tion around an indent when varying the ellipticity is given in figure 3.4, the
additional pressure distribution are perfectly superimposed. This is true up
to a certain indent size. The force balance should not be perturbed sig-
nificantly. Table 3.2 gives an idea of the validity of this observation. For
example, one can see that the difference between the additional pressure
amplitude for κ = 1 and κ = 0.1 for an indent with diameter Φ = 1 and
indent slope D/Φ = 1 is 3%.

For sufficiently small indents, the ellipticity does not change the ad-
ditional pressure amplitude. This is interesting for two reasons: First, it
eliminates on one parameter of the parametric study. There is no need to
calculate all the different indent geometry pressures for several ellipticities.
Second, wide elliptical calculations are time and memory consuming because
the number of unknowns is proportional to 1/κ.
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D

Φ
= 1

D

Φ
= 2

Φ = 0.5 < 1% < 1%
Φ = 1.0 3% 7%

Table 3.2: Difference in the additional pressure amplitude for two ellipticities
κ = 1.0 and κ = 0.1 for dry contacts =

∣

∣∆PDRY
κ=1.0 − ∆PDRY

κ=0.1

∣

∣ /∆PDRY
κ=1.00 as a

function of the indent diameter Φ and the indent slope D/Φ for K = 4

3.2.3 Analytical model for dry contacts

The previous section shows that the indent location question and the ellip-
ticity variation question can be sidestepped. The next point is to highlight
the important parameters: the indent slope D/Φ and the shoulder geometry
K, and to propose a predictive model for the pressure perturbations.

The analytical model developed below is based on the model developed
by Coulon [24], Coulon et al. [25, 26] and Gupta et al. [46]. This model is
based on the elastic deformation of harmonic waviness studied by Johnson
[67]. Coulon classified the indent in three categories: Zone A, indents are
completely flattened in the contact; Zone B, the pressure becomes zero in
the indent hole and indents are no longer entirely flattened; Zone C, the load
is entirely carried by the shoulders. Coulon proposed an analytical model for
the additional pressure amplitude in zone A and C. This model is extended
to account for the shoulder influence in zone A and for the zero pressure in
zone B, see figure 3.5.
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Figure 3.5: Zone A - B typical pressure distribution

Johnson shows that the additional pressure amplitude associated with
the complete deformation of a harmonic waviness is proportional to the
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slope. The same observation was made by Coulon, concerning indents in
zone A. The additional pressure amplitude in zone A is linear in the indent
slope D/Φ. The main assumption for the zone A model was that the load
not carried by the hole because of the lack of material is totally compensated
by an annular additional pressure distribution referred to as the “not carried
load”, see figure 3.6.

Figure 3.6: Analytical model pressure distribution

However, analysis of the additional pressure shows that the additional
pressure amplitude ∆P depends on the shoulder geometry (controlled by
K). Moreover, the “not carried load” is only partially compensated by the
annular additional pressure. The load carried by the annular additional
pressure around the hole represents roughly 60% of the “not carried load”.
The remaining load is spread over the entire contact area. Finally, the model
can be extended to account for the partially flattened indents of zone B.

Table 3.3 presents the additional pressure amplitude evolution as a func-
tion of the indent slope D/Φ, the shoulder geometry K and the indent di-
ameter Φ. For example, an indent slope of 0.5, a shoulder parameter K = 3
and an indent diameter Φ = 0.25 lead to an additional pressure amplitude
∆P/PREF of 1.82. For this case, when varying the indent diameter Φ from
0.25 up to 1.0, the additional pressure amplitude varies between 1.82 and
1.72. Two conclusions can be drawn: first, the indent slope D/Φ and the
shoulder geometry K have an important influence on the additional pressure
amplitude ; second, the indent diameter Φ has a limited impact.

Extension of the zone A model

The aim is to include the shoulder influence in the analytical zone A model.
Several simplifications are made, the geometry of the hole and the shoul-
ders is approximated. The contribution of the pressure needed to flatten
the shoulders is modeled separately of the pressure needed to flatten the
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D

Φ
= 0.5

D

Φ
= 1

D

Φ
= 2

K = 3
Φ = 0.25
Φ = 0.50
Φ = 1.00

1.82
1.82
1.72

3.27
3.25
2.96

5.83
5.78
4.83

K = 4
Φ = 0.25
Φ = 0.50
Φ = 1.00

1.59
1.59
1.58

2.83
2.82
2.72

4.82
4.80
4.41

K = 8
Φ = 0.25
Φ = 0.50
Φ = 1.00

1.26
1.26
1.30

2.05
2.05
2.09

3.10
3.10
3.16

Table 3.3: Evolution of the dry contact additional pressure amplitude
∆PDRY /PREF as a function of the indent slope D/Φ, the shoulder geometry
K and the indent diameter Φ

hole. The global additional pressure over the dent shoulder is divided in two
contributions:

∆Ptot = ∆Phole + ∆Pshoulder (3.2)

Figure 3.7: Shoulder approximation

The analytical approach of the shoulder influence uses a parabolic ap-
proximation of the shoulder geometry, see figure 3.7. The shoulder radius of
curvature and the shoulder height are used for the parabolic approximation.
These two parameters are functions of D, Φ and K. The analytical addi-
tional pressure amplitude is proportional to the indent slope with respect to
a coefficient ν which is a function of the attenuation factor K, see equation
3.3. A “circular” line contact of length 2πrh is assumed. Concerning the
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hole, the factor ζ in equation 3.4 is a function of K only, it depends also on
the simplified geometry used.

∆P ′
shoulder ∝ D

Φ
ν(K) (3.3)

∆P ′
hole ∝

D

Φ
ζ(K) (3.4)

Details about the calculation of ν and ζ are given in appendix B. Several
possibilities have been tried to approximate the shoulder and hole geometry.
However, they only lead to modify the proportionality coefficient in equa-
tions 3.3 and 3.4. Two coefficients n and m are used to adjust the analytical
model to numerical results of zone A in equation 3.5.

Figure 3.8 represents the ratio between the additional pressure amplitude
and the indent slope as a function of the indent slope in zone A. Different
shoulder geometries are presented from K = 3 corresponding to high shoul-
ders to K = 8 corresponding to flat shoulders. The model in dashed lines
correctly matches the full numerical results.

∆Ptot = n∆P ′
hole + m∆P ′

shoulder (3.5)
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Figure 3.8: Ratio between the additional pressure amplitude and the indent

slope ∆P
D/Φ in zone A (completely flattened indents) as a function of the

indent slope D/Φ and the decay coefficient K
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Zone B model

Zone B corresponds to partially flattened indents. When the indent is suf-
ficiently deep, it is not entirely flattened and a non contact zone remains in
the indent center where the pressure is zero. Figure 3.9 represents a typical
initial and deformed indent geometry in zone B. The direct extension of the
zone A model to zone B decreases progressively the hole contribution when
the hole geometry is less and less flattened. The main idea of the zone A
model is to compensate the “not carried load”. If the hole is no longer com-
pletely flattened, the “not carried load” decreases. Keeping a sufficient hole
deformation, it is expected that the shoulder influence remains constant.
So, the transition from zone A to zone B is seen as a modulation of the hole
additional pressure contribution.

Figure 3.9: Example of deformed indent geometry in zone B (partially flat-
tened indent)

A study of the ratio between deformed and initial indent depth Dd/Di

shows that it depends only on the indent slope, see figure 3.10. Two steps
are needed: first, linking the remaining hole depth with the indent slope;
second adjusting the modulation of the hole additional pressure (coefficient
s and σ in equation 3.6). More details can be found in appendix B. The
additional pressure reads:



56CHAPTER 3. DRY AND EHL PRESSURE IN INDENTED CONTACTS

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

D/Φ

D
d/D

i

numerical
model

Z
O

N
E

 A

Z
O

N
E

 B
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F = Dd/Di

∆Ptot = n
D

Φ
ζ(K) (1 − sFω) + m

D

Φ
ν(K) (3.6)

Figure 3.11 represents the ratio between the additional pressure ampli-
tude and the indent slope as a function of the indent slope in zone B. A
good correlation is obtained between the numerical results and the analyti-
cal predictions (dashed lines). The difference increases with increasing slope.
Indeed, with a remaining hole depth exceeding 80% of the indent depth, the
model is less accurate. Figure 3.12 recaps the good correlation obtained
between the full numerical calculations and the analytical model.



3.2. DRY CONTACT PRESSURE 57

0 0.5 1 1.5
0  

1.0

2.0

3.0

4.0

∆ 
P

 / 
(D

/Φ
) 

/ P
R

E
F

D/Φ

K = 3
K = 4
K = 5
K = 8
model
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3.3 EHL contact pressure

The previous section studied the dry indented contact pressure. Below, the
lubricated study is proposed.

Lubrecht et al. [83] presented a numerical work on the indented rolling
bearing life. The contact was modeled by an EHL 1D line contact and
the indent by a transverse groove. The groove was chosen without any
sharp corners and with significant shoulders emulating real indents. The
parametric study of the life prediction focused on the Hertzian pressure,
the relative size of the indent related to the contact size, and the indent
slope. The dry contact assumption was said to approximate closely the pure-
rolling lubricated contacts. 2D point contacts were studied by Lubrecht et
al. [85] and the authors concluded that previous studies using 1D geometries
were not able to reproduce accurately 2D results. Ai and Cheng [1] studied
rolling sliding indented point contacts and highlighted the induced dent
phenomenon described in section 3.3.4.

Figure 3.13 represents the pressure distribution in a pure-rolling EHL
indented contact. The indent is centered. The additional pressure ampli-
tudes are defined. The pressure distribution is more complex than in dry
contacts. It is no longer symmetric and a plateau appears in the indent hole
whereas a dry contact calculation would have given a zero pressure in the
indent hole.
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Figure 3.13: Additional pressure amplitude definition for EHL contacts Φ =
0.5, M = 400, L = 5
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3.3.1 Indent crossing
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Figure 3.14: Indent traversing an EHL contact M = 400, L = 5

Similar results as for dry contacts in section 3.2.1 have been obtained for
EHL pure-rolling contacts. Figure 3.14 shows that the additional pressure
distribution remains almost constant when an indent traverses the contact.
For pure-rolling conditions, the geometrical deformation in EHL contacts
has been studied by several authors especially for harmonic waviness. The
transition between the low and high pressure region is associated with an
important increase in the lubricant viscosity. The fluid becomes so viscous
that its geometry is “frozen”. The lubricant separating the two surfaces
(indent, roughness. . . ) can no longer be deformed, it traverses the contact
without any change in shape. For pure-rolling conditions, the lubricant
traverses the contact at the same velocity as the surfaces. That explains
why the additional pressure is almost constant.

Table 3.4 gives the error of the additional pressure amplitude over the
rear shoulder when approximating the maximum additional pressure ampli-
tude during indent crossing by the centered position value. For example, one
can see in table 3.4 that the error in the additional pressure amplitude over
the rear shoulder between a centered indent position and the real maximum
for an indent diameter Φ = 0.5 and an indent slope D/Φ = 0.5 is equal to
2%.

Similar conclusions as in the dry contact study are obtained. However,
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D

Φ
= 0.5

D

Φ
= 1

Φ = 0.5 2% 4%
Φ = 1 3% 6%

Table 3.4: Difference in the additional pressure amplitude over
the rear shoulder during indent crossing for EHL contacts =
∣

∣

∣
∆PEHL

XD=0 − ∆PEHL
max(T )

∣

∣

∣
/∆PEHL

max(T ) as a function of the indent diameter Φ

and the indent slope D/Φ for K = 4, M = 400, L = 5

two differences exist: calculations are still transient even if one considers
only the centered indent position and it is correct only for Newtonian pure-
rolling conditions neglecting the outlet pressure spike.

3.3.2 Ellipticity
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Figure 3.15: Pressure distribution around an indent when varying the ellip-
ticity in an EHL contact, Φ = 0.5, M = 400, L = 10

For EHL contacts, the ellipticity variation is made in accordance with
the dry contact study. The radius of curvature is changed according to the
ellipticity. As for dry contacts, this change appears in the equation 2.4, but
also in the equation 2.15.
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D

Φ
= 0.5

D

Φ
= 1

M = 200 L = 6.3
Φ = 0.50
Φ = 1.00

< 1%
< 1%

2%
4%

M = 400 L = 10
Φ = 0.50
Φ = 1.00

1%
< 1%

3%
2%

Table 3.5: Difference in the additional pressure amplitude over the rear
shoulder for two ellipticities κ = 1.0 and κ = 0.2 for EHL contacts =
∣

∣∆PEHL
κ=1.0 − ∆PEHL

κ=0.2

∣

∣ /∆PEHL
κ=1.0 as a function of the operating conditions M ,

L, the indent diameter Φ and the indent slope D/Φ for K = 4

Additional pressure distributions in indented contacts are hardly affected
by an ellipticity variation. Figure 3.15 gives an example of the pressure dis-
tribution around an indent in a circular and an equivalent elliptical contact.
Table 3.5 presents some examples of the relative difference between elliptical
and circular indented contacts as a function of the indent geometry and the
operating conditions. It can be noticed that the difference remains small and
is of the same order of magnitude as the discretisation error. For example,
for M = 400 and L = 10, Φ = 0.5 and D/Φ = 1.0, the difference between
κ = 1.0 and κ = 0.2 is 3%. The ellipticity influence is thus neglected. Hooke
and Venner [56] have presented results in accordance with this conclusion.
The authors explain that when varying the ellipticity, the modification of
the inlet flow leads to a negligible modification of the harmonic waviness
deformation.
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3.3.3 Pure-rolling EHL pressure prediction

The important parameters of the indented lubricated contact study are pre-
sented. The dry contact study and existing lubricated contact deformation
theory will be used and extended.

The amplitude reduction theory predicts the deformation of harmonic
waviness in EHL contacts. Some differences between the amplitude reduc-
tion theory and the indented contact pressure study exist. The amplitude
reduction theory studies harmonic waviness of small amplitudes. Typically,
the initial waviness amplitude does not exceed 10% of the smooth central
film thickness, whereas, indent depth can exceed by a factor of ten or more
the film thickness. Under these conditions, the linear relation between de-
formed and initial amplitude is no longer true. A second difference is the
complexity of the 2-D indent geometry. Moreover, the harmonic waviness
deformation is studied for a periodic signal. For indents, no “established”
regime can be defined because indents are not periodic.

Depending on the operating conditions and the indent geometry, the
pressure perturbation amplitude can vary substantially. This work presents
an analysis of the parameter influence and shows an approach to predict
these pressure perturbation amplitudes. Existing theory for roughness de-
formation is extended to pure-rolling EHL indented contact pressure pertur-
bations. First, a study of shallow indents is proposed, then sharper indents
are studied. Key parameters are presented permitting theoretical predic-
tions.

Figure 3.16 is an example of the additional pressure amplitude over the
rear shoulder in an EHL contact as a function of the dry contact value.
Different speeds have been represented (all the other parameters remain un-
changed). When the speed decreases, M increases and L decreases. Two
points are interesting: first, it shows the importance of the operating con-
ditions because the additional pressure amplitude varies substantially with
the speed variation; second, for pure-rolling contacts the dry contact is an
upper boundary. When decreasing the speed, the EHL additional pressure
amplitude approaches the dry contact value.

Shallow indent

For small amplitudes, the harmonic waviness deformation is linear. It jus-
tifies the use of the ratio between the deformed and the initial amplitudes.
Hooke proposed a dimensionless parameter ∇, representing the ratio be-
tween the waviness wavelength and the inlet contact length. This param-
eter is proportional to λ/b ·

√

M/L, which corresponds to the parameter
resulting from numerical studies conducted by Venner and Lubrecht.

The amplitude reduction curve presents two asymptotes: for small ∇, the
roughness is associated with a small deformation (small pressure perturba-
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Figure 3.16: Additional pressure amplitude over the rear shoulder in ehl
contacts compared to a dry contact when varying the mean speed, Φ = 0.5

tion), and large ∇ corresponds to a completely flattened geometry (pressure
perturbation close to the dry contact). So, to account for these asymptotes,
the curve fit presented is based on the following functions:

S∆PEHL

S∆PDRY
∝ 1 − 1

1 + f(∇Φ)
(3.7)

f(0) = 0

df(∇Φ)

d∇Φ
> 0 for ∇ > 0

∇Φ ∝ Φ

√

M

L
(3.8)

In the case of indents, the deformed amplitude is difficult to define.
The deformed geometry is not harmonic, so the ratio between initial and
deformed amplitude is not clearly defined. That is an other reason why the
pressure perturbation amplitudes (positive and negative) are used, instead
of the deformed amplitudes. For pure-rolling EHL contacts, the dry contact
pressure is an upper limit.

The main idea is to assume that, similarly to small waviness deformation,
the small indent additional pressure can be described as a function of the
operating conditions and the indent diameter (which corresponds to a pseudo
wavelength used to define ∇Φ). As mentioned before, indents can be very
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deep. In order to use the linearity of small indent pressure variations, the
initial slopes S∆PEHL of the curves ∆PEHL as a function of indent slope
D/Φ are used. For given operating conditions, if the indent slope tends to
zero, it means that the indent depth will become much smaller than the film
thickness, given Φ constant.

S∆P =
d∆P (D/Φ)

d(D/Φ)

∣

∣

∣

∣

D/Φ→0

(3.9)

The indent geometry and the associated transient phenomena are com-
plex. The pressure perturbation amplitudes are not constant around the
indent. That is why several sets of curves will be proposed to model the
additional pressure amplitudes.

Figures 3.17 and 3.18 recap results (initial slope) of numerous calcu-
lations representing a relatively wide range of indent sizes and operating
conditions. Every point represents several hours of computing time. A
single curve can be clearly observed. The pressure excursion slope ratio
S∆PEHL/S∆PDRY increases with the dimensionless indent diameter pa-
rameter ∇Φ

4. As mentioned above, the two asymptotes of the pressure
perturbations also exist: on the one hand, contact conditions yielding small
deformations and small pressure perturbations; on the other, the indent is
completely flattened and the dry contact pressure amplitude is reached.

4The numerical value of S∆P
DRY is known as a function of K from the dry contact

study
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Figure 3.17: Relative initial slope S∆PEHL
REAR/S∆PDRY as a function of

the dimensionless indent diameter parameter ∇Φ, for M = 100 − 1200,
L = 3 − 19, Φ = 0.25 − 1.0, K = 3
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Figure 3.18: Relative initial slope S∆PEHL
FRONT /S∆PDRY as a function of

the dimensionless indent diameter parameter ∇Φ, for M = 100 − 1200,
L = 3 − 19, Φ = 0.25 − 1.0, K = 3
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Figure 3.19: Relative initial slope S∆PEHL
CENT /S∆PDRY as a function of

the dimensionless indent diameter parameter ∇Φ, for M = 100 − 1200,
L = 3 − 19, Φ = 0.25 − 1.0, K = 3

A similar analysis is possible for the negative pressure perturbation.
However, as the behavior of the pressure in the indent hole is very non-
linear, results are less satisfying. Nevertheless, several results are interest-
ing. The initial slopes of numerous calculations have been extracted and are
represented in figure 3.19.

Figure 3.20 enables one to predict the initial slope of the curves ∆PEHL

as a function of D/Φ. It represents in a single plot the three previous
equations. This initial slope is a function of the indent diameter and the
operating conditions through the parameter ∇Φ. When ∇Φ increases, the
ratio S∆PEHL/S∆PDRY increases. When this ratio is close to 1, the ad-
ditional pressure amplitude initial slope is close to the dry contact. The
three curves are very similar and no clear difference can be extracted when
accounting for the numerical accuracy.
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Figure 3.20: Relative initial slope S∆PEHL/S∆PDRY as a function of the
dimensionless indent diameter parameter ∇Φ, for M = 100 − 1200, L =
3 − 19, Φ = 0.25 − 1.0, K = 3

Moreover, the shoulder influence appears in figure 3.21, which compares
results obtained previously (K = 3) with an indent with very flat shoulders
(K = 8)5. The additional pressure amplitude initial slope is lower when
the shoulders are flatter. However the two curves show similar trends and
this difference can also be partially associated with the slight hole geometry
variation when varying K.

The similarity of the curves in figure 3.21 does not mean that the pressure
perturbations will be the same between K = 3 and K = 8. The curves
represent the ratio between S∆PEHL and S∆PDRY . Note that S∆PDRY

for K = 3 and K = 8 are very different. Hence, S∆PEHL between K = 3
and K = 8 is also very different.

5The intermediate fit curves for K = 4 and K = 5 are also plotted
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REAR/S∆PDRY as a function of the di-

mensionless indent diameter parameter ∇Φ and of the shoulder parameter
K, for M = 100 − 1200, L = 3 − 19, Φ = 0.25 − 1.0

Sharp indent

The next step is to account for the non-linearity associated with deeper in-
dents. The behavior of the additional pressure amplitude when increasing
the indent depth is complex and depends on the contact conditions. Ac-
tually, the non-linear behavior is linked to the interaction between several
factors. Complex piezoviscous effects are involved in the transition from the
high pressure region over the indent shoulders to the medium pressure in the
indent hole. The analysis is difficult because of important transient effects.
Moreover, the fluid compressibility introduces an additional non-linearity.
For the range of operating conditions and indent geometries used, figure
3.22 represents the dispersion of the pressure perturbations over the front
shoulder ∆PEHL

FRONT . For readability, only a few operating conditions and
indent geometries are reported. A similar dispersion can be observed for the
pressure over the rear shoulder ∆PEHL

REAR in figure 3.23. Figure 3.24 repre-
sents this dispersion concerning the negative additional pressure amplitude
in the indent hole ∆PEHL

CENT . Only relatively sharp indents are represented.
Concerning the negative additional pressure amplitude, a horizontal asymp-
tote is relatively rapidly reached. It coincides with the pressure forming a
plateau in the indent hole.
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Figure 3.22: Additional pressure amplitude over the front shoulder
∆PEHL

FRONT /PREF for sharper indents K = 4. Blue curves for Φ = 0.25,
red curves for Φ = 0.5 and green curves for Φ = 1
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Figure 3.23: Additional pressure amplitude over the rear shoulder
∆PEHL

REAR/PREF for sharper indents K = 4. Blue curves for Φ = 0.25,
red curves for Φ = 0.5 and green curves for Φ = 1
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Figure 3.24: Additional pressure amplitude in the indent hole
∆PEHL

CENT /PREF for sharper indents K = 4. Blue curves for Φ = 0.25,
red curves for Φ = 0.5 and green curves for Φ = 1

The additional pressure is divided by the predicted initial slope from
curve fits presented previously in the shallow indent study S∆PEHL

FIT . An
asymptote appears logically for shallow indents. Figure 3.25 enables one to
predict the pressure perturbations around sharp indents as a function of the
indent geometry and the operating conditions.

Some efforts have been made to quantify the non linear effects when
increasing the indent slope as a function of the operating conditions. How-
ever, the accuracy of the initial slope prediction and of the calculations
themselves have not permitted a noticeable improvement in the final dis-
persion in figure 3.26 and 3.27. Moreover, these limited improvements lead
to complex parameters without any physical interpretation. Figures 3.26
and 3.27 represent the correlation between full numerical results and fit-
ted model predictions. The obtained correlation is considered satisfactory
regarding the problem complexity.
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Figure 3.26: Full numerical prediction versus model predictions of the ad-
ditional pressure amplitude over the front shoulder ∆PEHL

FRONT /PREF for
M = 100 − 1200, L = 3 − 19, Φ = 0.25 − 1, D/Φ = 0 − 2 and K = 3 − 8
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Figure 3.27: Full numerical prediction versus model predictions of the
additional pressure amplitude over the rear shoulder ∆PEHL

REAR/PREF for
M = 100 − 1200, L = 3 − 19, Φ = 0.25 − 1, D/Φ = 0 − 2 and K = 3 − 8

3.3.4 Sliding influence

Even if tapered roller bearings operate very close to pure-rolling, sliding ex-
ists (almost negligible). Moreover, other bearing technologies lead to sliding
which can reach about 5%. The Newtonian fluid assumption can be not
realistic in these cases. However, Newtonian calculations are a asymptotic
case for high shear limit fluids. This section propose a limited study of the
sliding influence. Only some major trends will be presented. Several authors
present sliding as an important parameter Kaneta et al. [70], Ai and Cheng
[1], Ai and Lee [2], Ai and Nixon [3, 4], Ville and Nelias [121], Nelias and
Ville [91], Diab et al. [31]. The examples below show how a small amount
of sliding of 4% can double the additional pressure amplitude.

Figure 3.28 represents an example of the pressure distribution for a cen-
tered indent for different slide to roll ratios. The slide to roll ratio is defined
as the speed difference between the dented and the smooth surface divided
by the velocity sum:

uD − uS

uD + uS
(3.10)

One can see that the pressure distribution is noticeably affected by sliding.
Sliding has an obvious detrimental effect because of larger pressure pertur-
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bations. In this example, the pressure amplitude is almost doubled between
pure-rolling and 4% sliding conditions.
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Figure 3.28: Pressure distribution for a centered indent for different slide
to roll ratios 0%, +2%, +4%. Indent on the fast surface Φ = 0.4, M = 500,
L = 8

When comparing different slide to roll ratios, the mean speed remains
the same and the indent is on the slow or the fast surface. The induced
dent phenomenon can not be observed clearly with such small slide to roll
ratios. However, the same physical phenomenon occurs: the lubricant be-
comes extremely viscous when pressure increases and the lubricant travels
at the mean speed. When the lubricant geometry is shifted from the sur-
face geometry, the edge of the surface indent is deformed by the lubricant
geometry. It leads to a larger pressure perturbation.

However, even if this numerical observation was confirmed by experi-
mental film thickness measurements, the impact of sliding on life seems to
be more complex. Several authors present experimental results where the
failure initiation spots are not in accordance with the largest calculated
pressure and stress locations. Sliding seems to be an important parameter;
however, the numerical model used in this work fails to correctly explain all
details of the experimental observations. The role of the residual stresses,
the friction forces and the crack propagation seem to be required to explain
the life results in sliding conditions (whereas these aspects are neglected in
this work). Kaneta et al. [70] studied the crack propagation directions. The
orientation of the friction forces appears to be determinant. Moreover, the
hydraulic pressure influence (when oil is trapped in the crack) can increase
the crack propagation speed.

Sliding studies are more complex than pure-rolling conditions. For ex-
ample, the pressure maximum above indent shoulders can no longer be ap-
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proximated by the centered indent value. Indeed, this maximum appears
at a different indent location. Figure 3.29 represents the pressure distribu-
tion at different indent locations. The additional pressure amplitudes are no
longer constant during the indent crossing, the dash-dotted and the dotted
curves represent the additional pressure over the front and the rear shoulder
during the crossing. Jacq [65] presents an experimental work using several
artificial indent sizes and operating conditions under pure-rolling or small
slide to roll ratios. The author showed that the relative severity ranks of the
different indents remain unchanged when introducing a small slide to roll
ratio. As the model developed here will be adjusted to experimental data,
one can expect that the pure-rolling calculations will be able to describe
the relative severity of indents observed on bearing surfaces. Finally, in this
work, the indent geometry is axysymmetric. It is already a simplification
of the real indent geometry. Sliding conditions lead to much more complex
natural indent geometries and pressure distributions.
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Figure 3.29: Indent traversing a +4% rolling sliding EHL contact. Indent
on the fast surface Φ = 0.4, M = 500, L = 8
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3.4 Conclusion

Several results have been described concerning the pressure distribution in
indented contacts. First, the additional pressure distribution is almost con-
stant when an indent traverses a contact. This is both true for dry and
pure-rolling EHL contacts. Therefore, most of the pressure results are pre-
sented for a centered indent. This observation will be used in the next
chapter for the stress calculation. Second, some dimensionless elliptical pa-
rameters have been presented. These parameters enable one to generalize
the pressure results obtained in circular contacts to wide elliptical contacts
for sufficiently small indents. One dimension (especially time consuming) of
the parametric study is therefore avoided. Moreover, an analytical model
of the dry contact pressure perturbation was presented. Finally, curves pre-
dicting pure-rolling EHL additional pressure amplitude as a function of the
indent geometry and the operating conditions were proposed. The detri-
mental effect of the (small) slide to roll ratio has been briefly presented.
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Chapter 4

Indented contact stress and

life

4.1 Introduction

The goal of this chapter is to propose a life model of indented bearings. The
study of the indented contact pressure distribution in the previous chapter
allowed to outline and to model some important phenomena. The step be-
tween pressure distribution and component fatigue life is not trivial. The
rolling contact fatigue behavior is complex. Test campaigns are expensive
(and time consuming) and lead to relatively large experimental dispersions.
The numerous existing models are rarely universal and usually require ex-
perimental adjustments. It is not that easy to prove statistically that a
model is better suited than another. A very brief presentation of life models
is given; a discussion about the stress criteria is proposed. Some convenient
applications of the conclusions of chapter 3 are proposed to facilitate the
stress and life calculation. A compromise between computing time, memory
requirement and numerical accuracy is presented. Moreover, stress and life
prediction results are presented and a life model is proposed.

The life prediction model developed has to be correlated and adjusted to
experimental data. An experimental adjustment procedure is briefly men-
tioned. Some experimental results concerning “natural” indentation statis-
tics are proposed. An example is detailed.

77
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4.2 Contact stress and life

4.2.1 Stress and life criteria

The material (steel) is far from simple. At a sufficiently small scale, it is
very heterogeneous. Many defects are present. The defects vary substan-
tially in terms of nature, size, depth and finally severity. Fatigue failure is
associated with crack initiation and finally spalling. Defects play the role of
stress raisers and cracks are initiated in their vicinity. These weak points
are randomly distributed throughout the material. Depending on the load-
ing cycle, these defects are activated or not. Dudragne and Girodin [34],
Piot et al. [97] present a model which is based on material defect statistics
and crack propagation calculations. However, the defect “severity” is not
easy to evaluate. The microscopical behavior modeling often requires the
identification of material parameters.

Some macroscopic fatigue criteria assume that the time between crack
initiation and its propagation is sufficiently small to be neglected. The
random distribution of material defects can be modeled using a statistical
Weibull approach. The Weibull approach was developed for rolling contact
fatigue (RCF) by Lundberg and Palmgren [87]. The authors experimentally
linked the failure probability F to the τxz stress amplitude under Hertzian
loading, to the stressed volume v and to the maximum stress depth z, see
equation 4.1. Four parameters are adjusted to fit the experimental data:
the stress exponent c, the Weibull slope e, the depth exponent h and the
constant cst.

F = 1 − cst Le τ c
xz v

zh
(4.1)

Ioannides and Harris [64] propose a criterion which is the extension of
Lundberg and Palmgren’s work. The stress distribution is integrated over
the volume instead of considering only its maximum, see equation 4.2. The
dimensionless risk integral is defined in equation 4.4. Since then, the study
of various surface patterns or defects was possible. The notion of infinite
life was also introduced. Lubrecht et al. [82] demonstrated that the depth
term zh had no physical meaning and lead to a singular behavior close to
the surface.

F = 1 − cst Le

∫∫∫

Ω

max (τ − τ∞ ; 0)c

zh
dxdy dz (4.2)

I =

∫∫∫

Ω
max (τ − τ∞ ; 0)c dxdy dz = pc

Hb3Īc (4.3)

Īc =

∫∫∫

Ω
max (T − T∞ ; 0)c dX dY dZ (4.4)
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Several choices are possible concerning the stress criterion. Tresca and
Von Mises are commonly used in RCF studies. Actually, these criteria are
more plasticity than fatigue criteria. Most recent studies are based on more
sophisticated multiaxial fatigue criteria. Multiaxial criteria, for example
Dang Van [29] or Papadopoulos [95], are based on the stress variation am-
plitude in every material point. These multiaxial criteria consider that every
material point is submitted to a stress cycle. At a microstructural scale, the
material accommodates this stress cycle by changing its microstructure. The
variation around this stabilized stress state is studied for fatigue predictions.
A coupling with the hydrostatic stress is then made 1.
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Figure 4.1: Stress distribution σV M/σV M
S max at different indent locations a-

d, and stress amplitude history e-f in the vertical plane along the rolling
direction for a circular dry contact (e smooth, f dented), Φ = 0.5, K = 3

1Without entering in too many details, the residual stresses (manufacturing, running
in. . . ) or constant stress like hoop stress play no role in the variation around the stabilized
stress state. Actually, they appear only in the hydrostatic pressure coupling.
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Figure 4.1 shows the stress amplitude history around an indent. This
figure represents the stress distribution at different indent locations (plots
4.1 a-d) in a vertical plane along the rolling direction X. For every contact
location, the stress distribution in the volume is calculated. One can see
that the pressure perturbation on the surface due to an indent induces a
high stress zone close to the surface. For a simple criterion like Von Mises,
the stress amplitude history is defined as the maximum stress endured by
each point during the contact crossing. For a multiaxial criterion, a more
sophisticated treatment is used. However, it is shown further on that rela-
tively similar results are obtained. If a smooth contact is used, horizontal
isovalues are obtained, see plot 4.1 e. For an indented contact, one ob-
tains a more complex distribution, see plot 4.1 f. To be able to compare
the stress distribution between different criteria, every stress value has been
normalized by the smooth contact maximum stress amplitude.

Several remarks concerning RCF predictions can be made. First, the
Dang Van or Papadopoulos multiaxial criterion evaluation is much more
complex and requires to calculate and to store the stress of every mate-
rial point at every time step. Second, RCF tests are submitted to such
large confidence intervals that it is very difficult to prove the benefits in life
prediction accuracy from one criterion to an other, unless their predictions
differ significantly. However, if the beneficial coupling effect of high com-
pressive hydrostatic stress is generally accepted, Desimone et al. [30] show
that under certain condition high compressive hydrostatic stresses have an
adverse effect on fatigue life. Finally, the RCF life predictions are not made
as “absolute” life, but with respect to a material constant which is experi-
mentally adjusted. If different criteria give “homothetical” stress histories,
the material constant will more or less integrate the different proportionality
coefficients. It is especially true for the Tresca, Von Mises, Dang Van and
Papadopoulos criteria used in Hertzian smooth rolling contacts.

Figure 4.2 represents the stress amplitude history for Papadopoulos’ mul-
tiaxial criterion around an indent in a dry contact in a vertical plane along
the rolling direction axis X. The indent is centered in X = Y = 0. One can
see that far from the indent, the maximum value returns logically to 1. In-
deed, the stress perturbations due to the indent are sufficiently far to vanish
and the stress distribution becomes that of a smooth contact. The stress
amplitude history for the Papadopoulos multiaxial criterion looks similar to
the stress distribution obtained with a simple Von Mises criterion in figure
4.1 f. A more detailed comparison is made in the next section.
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Figure 4.2: Indented contact stress amplitude history σPA/σPA
S max for Pa-

padopoulos’ multiaxial criterion for a circular dry contact, Φ = 0.5, K = 3

4.2.2 Pseudo-transient calculation
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Figure 4.3: Indented contact stress amplitude history σV M
PT /σV M

S max in the
vertical plane along the axis X for a pseudo-transient calculation for a cir-
cular dry contact, Φ = 0.5, K = 3

Pure elastic deformation is assumed. The associated stress distribution
is an elastic stress field. This means that the stress tensor can be linearly
divided into two tensors using the superposition principle. A considerable
shortcut can be made if this decomposition is chosen carefully.
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σtot = σS + σD (4.5)

Chapter 3 presented two important results for the stress calculation.
First, the additional pressure distribution is constant during the indent
crossing. Second, the ellipticity hardly modifies this additional pressure
distribution for sufficiently small indents. This leads to two interesting re-
sults:

First, the complete stress history around an indent can be emulated
using only the centered indent stress distribution and the smooth stress
distribution. This will be referred to as a “pseudo-transient” calculation.
Instead of calculating and storing the pressure values at every time step
and also the stress distribution, only two time steps are needed: the one of
smooth contact and the centered indent. It represents an important gain in
computing time and memory2.

Second, the smooth stress distribution can be replaced by the smooth
stress distribution of any ellipticity3. It leads to the same conclusions as for
the pressure. The elliptical analysis, an especially time consuming parameter
because of the number of unknowns, is thus avoided.

Of course, the pseudo-transient calculation has a drawback in terms of
result accuracy. Moreover, some special care is needed when the two stress
distributions are assembled emulating every time step. For example, the
additional stress distribution σD has absolutely no meaning when the indent
is out of the contact.

Figure 4.3 represents the stress history around an indent in a vertical
plane along the rolling direction X for a simple Von Mises pseudo-transient
approximation. The corresponding complete Von Mises calculation is rep-
resented in figure 4.1 f and the Papadopoulos multiaxial calculation in fig-
ure 4.2. The stress distributions are relatively similar. The complete Von
Mises calculation and pseudo-transient approximation are almost identical.
A slight difference is found in the stress distribution under the indent hole. It
can undoubtedly be neglected because the stress is especially small in this
very region. Concerning the comparison between the multiaxial criterion
and the pseudo-transient approximation, the difference is more significant.
The stressed volume seems more important for the Papadopoulos criterion.
However, the maximum stress value is similar. The maximum stress has an
important weight in the stress risk because of the power c in the equation
4.2.

2Typical calculations use a 256 × 256 grid on the surface, an equivalent of about 24
grids in depth for each stress tensor component and about 256 time steps. These two
stress distributions are artificially shifted to simulate the indent movement. It represents
about 2.5 billion numbers (20 Go of data if all the values are needed as in the Dang Van
or Papadopoulos criteria).

3The infinitely elongated contact stress distribution is detailed in appendix C.



4.2. CONTACT STRESS AND LIFE 83

D/Φ = 1 D/Φ = 2

Φ = 0.25
K = 3
K = 8

5%
3%

6%
4%

Φ = 0.5
K = 3
K = 8

8%
7%

7%
7%

Table 4.1: Difference between different stress criteria
(

σPA
D max/σPA

S max − σV M
D max/σV M

S max

)

/
(

σV M
D max/σV M

S max

)

as a function of
the indent diameter Φ, the indent slope D/Φ and the decay coefficient K
for dry contacts

Table 4.1 represents the comparison between two stress criteria (Pa-
padopoulos’ multiaxial and Von Mises) of the maximum indented contact
stress amplitude normalized by the maximum smooth contact stress ampli-
tude as a function of the indent geometry. The Von Mises complete calcu-
lation is used as a reference. The difference between a Von Mises complete
calculation and a Von Mises pseudo-transient approximation is less than
1%, thus it is not reported. The Papadopoulos and the Von Mises cases
give similar variations. For this study and the range of parameters used,
the multiaxial Papadopoulos criterion is systematically more severe. For
example, the difference between the Papadopoulos multiaxial criterion and
the Von Mises criterion for an indent diameter Φ = 0.25, an indent slope
D/Φ = 1 and a shoulder parameter K = 3 is 5%.

The difference is limited and only much better experimental campaigns
can reduce experimental confidence intervals and justify a more sophisticated
stress criterion. The goal is only to show that the different criteria lead to
similar results4. The computational effort of a multiaxial criterion was not
justified regarding the assumptions and above remarks. Thus a simple Von
Mises criterion with a pseudo-transient approximation is used.

4.2.3 Stress and life prediction

The additional pressure amplitude study was justified for several reasons.
First, the maximum elastic stress is linearly proportional with the additional
pressure amplitude. Figure 4.4 represents the maximum stress σD max/σS max

as a function of the additional pressure amplitude ∆P/PREF for dry con-
tacts. This figure confirms that the maximum stress varies linearly as a
function of the additional pressure amplitude. The results from chapter 3
concerning the additional pressures are thus relevant to the contact sever-

4Note that the residual stress influence is not investigated here. Lubrecht et al. [85]
show some results using the indentation residual stress. They conclude that for pure-
rolling conditions and the obtained indent geometries, the indentation residual stress is
beneficial because of high compressive stress under the indent shoulders.
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ity. Second, the additional pressure study enables one to have a more direct
understanding of the different phenomena. An important part of chapter 3
is based on the shallow indent pressure perturbation study. The equivalent
study in terms of stress would be difficult.

0 1 2 3 4 5 6
1

1.2

1.4

1.6

1.8

2

2.2

∆ P / P
REF

T
D

 m
ax

 / 
T S

 m
ax

 

 

Φ=0.25
Φ=0.50
Φ=1.00
FIT

Figure 4.4: Maximum stress TD max/TS max as a function of the additional
pressure amplitude ∆P/PREF for dry contacts, Φ = 0.25 − 1.0, D/Φ =
0.25 − 2 and K = 3 − 8

The reader has probably noticed that most results are presented using
dimensionless parameters. When the dimensional maximum stress is cal-
culated from its dimensionless value, a question can arise: How can the
calculated dimensional stress exceed the material plasticity limit? Figure
4.4 shows that some of the calculated dimensionless stresses reach twice the
maximum Hertzian stress for the range of parameters used in this study.
If this particular indent was measured from a contact run under a 2.5 GPa
Hertzian pressure, it would mean that it could induce a shear stress close
to 1.8 GPa. A common plasticity limit for bearing steel is 1.5 GPa. This
particular indent geometry can not exist in this contact. It would have been
deformed during the running in process until the induced stress is lower
than the local plasticity limit (including isotropic and kinematic harden-
ing). However, if this indent geometry is effectively measured after running
in, it means that it does not induce any plastic deformation. The ma-
terial has been locally hardened and the residual stresses are opposed to
the stress distribution associated with the indent deformation. The global
stress distribution does not lead to plastic deformation. Moreover, the stress
amplitude endured by each material point during the loading cycle can be
approximated by the elastic stress amplitude.

Figure 4.5 represents the dimensionless risk integral ĪD/ĪS as function
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Figure 4.5: Dimensionless risk integral ĪD/ĪS as a function of the indent ge-
ometry Φ, D/Φ and K and of the dimensionless infinite life limit T∞/TS max

for dry contacts

of the indent geometry K, D/Φ, Φ and the dimensionless infinite life limit
T∞. The curves presented in figure 4.5 show that all these parameters have
a significant impact on the dimensionless risk integral. The indent geometry
influences both the stress amplitude and the stressed volume. For example,
the first, second and fourth curves show how the stressed volume (increasing
with Φ) influences the risk integral. The second and third curves compare
two different shoulder shapes. Finally, the second and fifth curves compare
two T∞/TS max ratios. The dimensionless infinite life limit influences the
relative weight between the high stressed zone under the indent shoulders
and the Hertzian smooth contact stressed zone. The highly stressed zone
influence increases with this dimensionless infinite life limit (for example
decreasing the Hertzian pressure).

The detrimental impact of an indent increases (relatively) for low Hertzian
pressures. First, the indent slope and diameter are inversely proportional
to the contact half width. Second, the dimensionless infinite life limit in-
creases when decreasing the Hertzian pressure. These two points increase
the dimensionless risk integral ratio.

The stress distribution can be schematically divided into two contribu-
tions: an annular highly stressed zone close to the surface due to the indent
pressure perturbations and a Hertzian smooth contact stress distribution
zone. The following equation is proposed to approximate the corresponding
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risk integral:

(

ĪD

ĪS

)c

= qK(K) · qT∞

(

T∞

TS max

)

· Φ3 ·









TD max
TS max

− T∞
TS max

1 − T∞

TS max









c

+ 1 (4.6)

The functions qK(K) and qT∞
(T∞/TS max) in equation 4.6 are adjusted

to fit the numerical results. They account respectively for two points: first,
the highly stressed volume depends on K (because the additional pressure
half width is a function of K); second, the stress integration domain is a
function of T∞/TS max and an adjustment is required. Figures 4.6 a, b and
c represent respectively the function qK(K), the function qT∞

(T∞/TS max)
and ĪS/ĪS T∞=0 as a function of T∞/TS max. The figures and the equation
4.6 allow to predict the dimensionless risk integral for dry contacts. The
maximum stress TD max is known from the figure 4.4 and finally from the
additional pressure amplitude predictions of chapter 3. The correlation be-
tween full numerical calculations and the simplified model is good, see figure
4.7.
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Figure 4.7: Full numerical dimensionless risk integral as a function of the
model prediction for dry contacts, c = 6.3 − 11.3, T∞/TS max = 0.3 − 0.7,
Φ = 0.25 − 1.0, K = 3 − 8

4.3 Experimental indentation and life calculation

4.3.1 Natural indentation and model adjustment

Surface indentation from lubricant pollution is a very complex process.
Chapters 1 and 2 presented some of the difficulties encountered for the
indentation prediction. For example, particle nature and geometry vary
substantially; operating conditions (speed, slide to roll ratio. . . ) and lubri-
cant supply (particle mixing. . . ) are decisive but very difficult to evaluate.
The aim of this work is not to try to predict bearing life from oil clean-
liness. Our analysis starts with the indented surface geometry measured
using interferometric microscopy.

Two possibilities exists: first, the indentations are formed in a real device
(gear box. . . ); second, reference pollution test conditions are used to indent
the surfaces. Both methods enable one to sidestep the indentation prediction
issue. The first method yields representative results of pollution in a real
application. The second is well suited to compare different bearings on a
common basis. For example, the influence of the heat treatment in a polluted
environment can be studied this way.

The standard pollution test consists of running several bearings in a
controlled polluted environment. The size class, the particle material and
the particle concentration are chosen in order to reproduce indentations
observed for example in an automotive gear box. The damage should be
appropriate to correctly evaluate the indented bearing lives. After the in-
dentation procedure, the bearings are cleaned and mapped. Many spots on
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the surface are measured. Pit statistics (geometry, density, location) are
obtained from the numerical treatment of the surface mapping. Then, the
bearings are life tested and compared to clean bearing lives using a standard
life test procedure. A correlation between measured surface indentation and
component lives is made. The numerical constants are adjusted to these
experimental results.
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Figure 4.8: Indent slope d/φ (left) and indent diameter φ (right) cumulative
distribution from a standard pollution test

A common ratio between clean and standard pollution life tests5 with
90 − 125 µm ductile particles is a factor 10. Figure 4.8 shows indent pa-
rameters of indented bearing topography results. It represents on the left,
the slope and on the right, the diameter sorted in descending order. For
example, one can see that 50% of the measured pits have a slope exceeding6

0.018 and that 50% of the measured pits have a diameter exceeding 85 µm.
These median values should be taken with precaution. They depend sensi-
bly on the surface mapping interpretation. Distinguishing roughness from
flat indents is not always trivial7.

Figure 4.9 (left) represents the correlation between the indent diameter
and the indent slope. For each class of indent slopes, the maximum, the
median and the minimum indent diameters are plotted. One can clearly see
that the sharpest indents have the smallest diameter. For the 0.02 indent
slope class, indent diameters are distributed between 50 and 180µm, the
median value is around 80µm. This example agrees with Ville [119] table

5Depends obviously on many parameters as particle concentration, operating condi-
tions. . .

6corresponding to 2◦

7Several criteria are used: depth, circularity. . .
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2.1 where the sharpest indents have the smallest diameters and correspond
to the smallest particles.

However, these results are obtained in an experimental device where par-
ticles pass the contact only once. Under Ville’s conditions, the indent slope
dispersion was small. In a rolling element bearing, a particle is trapped
in the bearing and it is laminated several times. Therefore, even for the
unique particle size class used here, the indent slopes vary between zero and
the maximum slope. The smallest sharp indents correspond certainly to the
first particle squashing and large shallow indents to the next overrollings.
Figure 4.9 (right) represents the probability of every indent slope class used
for the left plot. The cumulative distribution and density probability func-
tions are plotted. For example, the 0.02 indent slope class represents 35% of
the entire indent population and 70% of the entire indent population belongs
to this class or a shallower indent slope class.
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Figure 4.9: Indent diameter as a function of the indent slope (left) and prob-
ability of every indent slope class (right) from a topography measurement
of a standard pollution test

The indent distribution of inner and outer ring are very close. The inner
ring indents seem slightly larger and deeper, perhaps due to a slightly higher
Hertzian pressure. Rolling bearings have specific kinematics: rotating or
fixed inner and outer rings, and cage and roller relative motion. The number
of indents (or the indent density) can be estimated using these kinematics:
overrolling contact frequency and loaded surface. This study is not detailed
here, as the results are not completely satisfying. The inner ring density
prediction is too small compared to measurements.

An example of common contact conditions is detailed below. It is a sim-
plification of contact conditions in a bearing. For clarity, a unique Hertzian
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pressure amplitude and approximated operating conditions are used. How-
ever, these values are representative of common contact conditions in ta-
pered roller bearings. The mean bearing cone diameter is set to 5 cm and
the mean roller diameter to 7.8 mm. The bearing rotates at 2000 revs/mn.

Rx κ=∞ ≈ 3.9e-3m
E′ = 226e9Pa
b ≈ 152e-6m
pH ≈ 2.2e9Pa
Rx κ=1 ≈ 5e-3m

T∞

TS max
≈ 0.7

α = 20e-9Pa−1

η0 = 40e-3Pa.s
us ≈ 5.9 m/s
M ≈ 350
L ≈ 17
α ≈ 44

λ ≈ 4.5e-3

The dimensionless median indent slope is 0.6. The dimensionless median
indent diameter is 0.56. One can now associate a dimensionless risk integral
to the indent geometry and the contact conditions. For a dry contact as-
sumption, figure 4.10 represents the dimensionless risk integral distribution
as a function of the dimensionless indent slope and the dimensionless indent
diameter. The color of each point represents the risk integral value8. Red
points indicate the most severe indents.

The second step is to recalculate the risk integrals using EHL conditions.
The operating conditions and the indent geometry lead to intermediate ∇Φ.
It means that the lubricant plays an important role and modifies significantly
the pressure and stress distributions. Figure 4.11 is similar to figure 4.10
using dimensionless risk integrals for EHL contacts. The most dangerous
indents are shifted towards larger diameters. The explanation is straightfor-
ward using the results from chapter 3. A larger indent diameter increases
the ∇Φ value and the pressure perturbations tend to the dry contact val-
ues. However, the color scale is deceptive. As explained, for the range of
parameters used in this work, the pure-rolling EHL contacts are less severe
than dry contacts. If the same color scale were used for figures 4.10 and
4.11, figure 4.11 would show only blue points. The lubricated contact risk
integrals certainly underestimate the contact risk in comparison with dry
contact results9.

8Several points which are very close in terms of slope and diameter can have different
colors because of different shoulder shapes K.

9The indentation data is based on measured surface topographies and yields a signifi-
cant experimental life reduction under well lubricated conditions. So, both the operating
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Figure 4.10: Dimensionless risk integral ĪD/ĪS as a function of the indent
geometry for a dry contact applied to a topography measurement of a stan-
dard pollution indentation test (90 − 125 µm ductile particles)
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Figure 4.11: Dimensionless risk integral ĪD/ĪS as a function of the indent
geometry for an EHL contact applied to a topography measurement of a
standard pollution indentation test (90 − 125 µm ductile particles)

conditions and the indent statistics are realistic. Tapered roller bearings run very close to
pure-rolling; measured indents are relatively axisymmetrical (an other indirect confirma-
tion of pure-rolling). A non Newtonian rheology would smooth pressure excursions and
underestimate EHL predictions even more. Experimental tests are conducted ensuring an
important lubricant supply; thus contacts are not starved. . .
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The adjustment to experimental data uses the same type of analysis. The
more complex bearing operating conditions and bearing kinematics (rotat-
ing ring or not, loading zone. . . ) is accounted for. A Weibull probabilistic
approach is used to calculate the life reduction due to the surface indenta-
tion.

4.3.2 Life calculation

The life calculation with a Weibull approach is relatively simple since the risk
integrals are known as a function of the indent geometry and the operating
conditions. Considering a non rotating ring and a constant loading, each
point of the ring is submitted to a constant stress cycle. The ring can be
meshed using elementary surfaces Si. Every surface Si is associated with a
risk integral Ii. The Ii distribution is made accordingly to the indentation
statistics and the operating conditions over surfaces Si. The life Lϑi is
defined as the life which corresponds to a failure probability ϑ before Lϑi.

The failure probability Fi and the Lϑi life for surfaces Si assuming a
constant Weibull slope e reads :

Fi = 1 − e
ln(1 − ϑ)

(

L

Lϑi

)e

(4.7)

Le
ϑi ∝

1

Ii
∝ 1

pc
Hi b

3
i Īc

i

(4.8)

The surface S fails when the first elementary surface Si fails, it corre-
sponds to a product of survival probabilities. The entire surface Lϑ life
reads :

Le
ϑ =

1
∑ 1

Le
ϑi

(4.9)

Finally, it is possible to write the ratio between the dented surface life
and the smooth surface life :

(

Lϑ

LϑS

)e

=

∑

pc
Hi b

3
i Īc

Si
∑

pc
Hi b

3
i Īc

i

(4.10)

An adjustment to experimental life tests can be made using the param-
eter c. This parameter appears explicitly in the terms pc

Hi and implicitly in
the dimensionless risk integrals Īi.
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4.4 Conclusion

Several fatigue life prediction models exist. A classic Weibull approach is
used in this work because of its high efficiency to simplicity ratio. Different
stress criteria are briefly presented. They lead to similar results, thus the
simplest one is preferred. An approximate calculation is proposed referred to
as pseudo-transient. It is based on the conclusions from chapter 3 concerning
the pressure in elliptical contacts and during the contact crossing. The
accuracy of this approximation is satisfactory and it allows a substantial
time and memory saving.

The maximum stress due to the indent is directly linked to the additional
pressure amplitude. Moreover, the risk integral is studied. A predictive
model is proposed and a good correlation is obtained. The risk integral is
written as a function of the stressed volume, the maximum stress value and
the infinite life limit. This model allows the prediction of the risk integral
as a function of the indent geometry and the operating conditions.

Finally, a glimpse of the experimental work concerning indentation mea-
surement and life prediction model adjustment is shown. Some results con-
cerning natural indentation in a tapered roller bearing are presented, espe-
cially statistical results on indent geometry. An adjustment procedure used
for indented bearing life tests is briefly mentioned.
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Chapter 5

General conclusion

In industrial applications, lubricant pollution can not be avoided. Controlled
manufacturing processes or lubricant filters can limit this pollution. Material
resistance to pollution is also constantly improved. However, the necessity to
predict the life reduction due to lubricant pollution persists. The lubricant
film thickness is usually much less than the particle size. When the particles
enter the contact, they are squashed between the two surfaces. The surfaces
are deformed plastically creating an indent.

The indent geometry is complex to predict because it is a function of
many parameters: particle nature and size, material properties, operating
conditions, particle mixing and lubricant supply. . . The aim of this work is
to predict the indent severity as a function of the indent geometry and the
operating conditions. The surface indentation is supposed to be known from
a surface measurement.

Chapter 2 presents the main equations and the simplifications used for
the contact pressure calculation (dry and EHL contacts) and for stress dis-
tribution calculation. The indent analytical description is presented. A
compromise between description precision and calculation capability (time,
stability, accuracy. . . ) is necessary. Multigrid techniques1 are used to solve
contact equations and to calculate deformation and risk integrals.

Chapter 3 studies the indented contact pressure. Dry and pure-rolling
lubricated contacts are both studied. Three questions are asked: What
happens when the indent traverses the contact? What is the influence of
the contact ellipticity? What are the important parameters to model the
indented contact pressure?

• For the range of parameters used in this work (indent geometry and
operating conditions), the centered indent calculation allows to pre-

1Appendix A presents an implementation of a transient EHL line relaxation solver.

95
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dict the entire indent crossing. The additional pressure distribution
remains almost constant during the crossing2.

• Ellipticity hardly modifies the additional pressure for sufficiently small
indents (small force balance perturbation). Some elliptical results are
presented.

• An analytical model is presented for dry contacts and outlines the
important phenomena and parameters3. The indent slope and the
shoulder geometry are the important parameters. The lubricated con-
tact study is based on the amplitude reduction theory which has been
extended to shallow indents. The lubrication substantially modifies
the pressure perturbations, from a complete damping to almost no
changes. Some curves are presented to predict the EHL indented con-
tact pressure perturbations.

Sliding, even limited, has an important detrimental effect. Some re-
sults are briefly presented. No detailed study is proposed as indents
that are created under rolling sliding conditions have complex geome-
tries (not correctly described by the axisymmetrical model).

Chapter 4 presents some indented contact stress results and life predic-
tion calculations. A brief study concerning the choice of the stress criterion
and convenient application of some results of chapter 3 are presented. A
simple Von Mises stress criterion is used; however, more sophisticated mul-
tiaxial criteria give similar results.

The maximum stress varies linearly with the additional pressure ampli-
tude. A Weibull life prediction approach is presented; some curves for the
risk integral prediction are presented as a function of the operating condi-
tions, the indent geometry and the material infinite life limit.

Some results on natural indentation consecutive to a standard indenta-
tion test with 90−125 µm ductile particles are shown. The sharpest indents
are found to be the smallest. The indentation geometry statistics for rolling
element bearings is specific because of the numerous overrollings. A simpli-
fied example for a gear box tapered roller bearing is also presented.

A life prediction tool for (indented) rolling element bearings has been
developed and implemented. First, the surface topography analysis has
been improved and is still being studied; second, the specific kinematic and
loading cycle has been accounted for.

2neglecting the outlet Newtonian pressure spike for EHL contacts
3some details in appendix B
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First and foremost, the next step is an experimental validation and cor-
relation. Such validations are time consuming and expensive. The tests
should at the same time show statistically significant differences and respect
realistic conditions. Typically, one should obtain simultaneously the same
damage type as observed in real applications, show statistically significant
(quite large) differences between tested groups and be feasible on a practical
time scale (especially for “clean” condition reference tests).

A very ambitious project is a more physical RCF model, where mate-
rial RCF properties are extracted from the microstructural behavior. It
is certainly the4 Achilles heel of current RCF prediction in rolling element
bearings.

4The reader can substitute “the” by “the principal”; however, historically speaking
Achilles had only one.
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Appendix A

Transient EHL solver

implementation

Discrete equations

ξ =
ρH3

ηλ
(A.1)

ξi+1/2,j =
ξi,j + ξi+1,j

2
rh2

X

ξi−1/2,j =
ξi−1,j + ξi,j

2
rh2

X

ξi,j+1/2 =
ξi,j + ξi,j+1

2
rh2

Y

ξi,j−1/2 =
ξi,j−1 + ξi,j

2
rh2

Y

Σ ξ = ξi−1/2,j + ξi+1/2,j + ξi,j−1/2 + ξi,j+1/2 (A.2)

The NU2 scheme is composed of two schemes depending on the hX/hT

ratio. The operator Lh is defined in the implementation 1 as:

• if hX 6 hT one gets2:

Lh
〈

uh
〉

=rh2
X

(

ξi+1/2,jPi+1,j −
(

ξi+1/2,j + ξi−1/2,j

)

Pi,j − ξi−1/2,jPi−1,j

)

+rh2
Y

(

ξi,j+1/2Pi,j+1 −
(

ξi,j+1/2 + ξi,j−1/2

)

Pi,j − ξi,j−1/2Pi,j−1

)

− (rhX − rhT ) (1.5 ρHi,j − 2.0 ρHi−1,j + 0.5 ρHi−2,j)

−rhT 1.5 ρHi,j (A.3)

1to clarify the notation a little, the third subscript k related to the time step is omitted
for the terms corresponding to the current time step k

2for the finest level if hT = hX
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• if hX > hT one gets3:

Lh
〈

uh
〉

=rh2
X

(

ξi+1/2,jPi+1,j −
(

ξi+1/2,j + ξi−1/2,j

)

Pi,j − ξi−1/2,jPi−1,j

)

+rh2
Y

(

ξi,j+1/2Pi,j+1 −
(

ξi,j+1/2 + ξi,j−1/2

)

Pi,j − ξi,j−1/2Pi,j−1

)

−rhX 1.5 ρHi,j − (rhT − rhX) 1.5 ρHi,j (A.4)

All the terms which correspond to previous time step are put in the
right hand side of the equation. The residual terms for FAS scheme are not
changed and coarsening routine is not changed. The right hand member
reads:

• if hX 6 hT one gets:

fh
i,j = rhT (−2.0 ρHi−1,j,k−1 + 0.5 ρHi−2,j,k−2)

(A.5)

• if hX > hT one gets:

fh
i,j = rhX (−2.0 ρHi−1,j,k−1 + 0.5 ρHi−2,j,k−2) +

(rhT − rhX) (−2.0 ρHi,j,k−1 + 0.5 ρHi,j,k−2) (A.6)

Gauss Seidel line relaxation

One can define the terms dH
(k)
X and dH

(k)
T . They will be used to build the

line relaxation matrix.

3for all the coarser levels
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• if hX 6 hT one gets:

dH
(−3)
X = (rhX − rhT ) (1.5 ρ̄i,jK3,0 − 2.0 ρ̄i−1,jK2,0 + 0.5 ρ̄i−2,jK1,0)

dH
(−3)
T = rhT 1.5 ρ̄i,jK3,0

dH
(−2)
X = (rhX − rhT ) (1.5 ρ̄i,jK2,0 − 2.0 ρ̄i−1,jK1,0 + 0.5 ρ̄i−2,jK0,0)

dH
(−2)
T = rhT 1.5 ρ̄i,jK2,0

dH
(−1)
X = (rhX − rhT ) (1.5 ρ̄i,jK1,0 − 2.0 ρ̄i−1,jK0,0 + 0.5 ρ̄i−2,jK1,0)

dH
(−1)
T = rhT 1.5 ρ̄i,jK1,0

dH
(0)
X = (rhX − rhT ) (1.5 ρ̄i,jK0,0 − 2.0 ρ̄i−1,jK1,0 + 0.5 ρ̄i−2,jK2,0)

dH
(0)
T = rhT 1.5 ρ̄i,jK0,0

dH
(+1)
X = (rhX − rhT ) (1.5 ρ̄i,jK1,0 − 2.0 ρ̄i−1,jK2,0 + 0.5 ρ̄i−2,jK3,0)

dH
(+1)
T = rhT 1.5 ρ̄i,jK1,0

dH
(+2)
X = (rhX − rhT ) (1.5 ρ̄i,jK2,0 − 2.0 ρ̄i−1,jK3,0 + 0.5 ρ̄i−2,jK4,0)

dH
(+2)
T = rhT 1.5 ρ̄i,jK2,0 (A.7)

• if hX > hT one gets:

dH
(−3)
X = rhX 1.5 ρ̄i,jK3,0

dH
(−3)
T = (rhT − rhX)1.5 ρ̄i,jK3,0

dH
(−2)
X = rhX 1.5 ρ̄i,jK2,0

dH
(−2)
T = (rhT − rhX)1.5 ρ̄i,jK2,0

dH
(−1)
X = rhX 1.5 ρ̄i,jK1,0

dH
(−1)
T = (rhT − rhX)1.5 ρ̄i,jK1,0

dH
(0)
X = rhX 1.5 ρ̄i,jK0,0

dH
(0)
T = (rhT − rhX)1.5 ρ̄i,jK0,0

dH
(+1)
X = rhX 1.5 ρ̄i,jK1,0

dH
(+1)
T = (rhT − rhX)1.5 ρ̄i,jK1,0

dH
(+2)
X = rhX 1.5 ρ̄i,jK2,0

dH
(+2)
T = (rhT − rhX)1.5 ρ̄i,jK2,0 (A.8)

The matrix Aj in equation 2.39 reads:
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Aj
i,i−3 = −dH

(−3)
X − dH

(−3)
T

Aj
i,i−2 = −dH

(−2)
X − dH

(−2)
T

Aj
i,i−1 = −dH

(−1)
X − dH

(−1)
T + ξi−1/2,j

Aj
i,i = −dH

(0)
X − dH

(0)
T − Σ ξ

Aj
i,i+1 = −dH

(+1)
X − dH

(+1)
T + ξi+1/2,j

Aj
i,i+2 = −dH

(+2)
X − dH

(+2)
T (A.9)

Jacobi distributive line relaxation

dK0 = K0,0 −
1

4
(2K1,0 + 2K0,1)

dK1 = K1,0 −
1

4
(K2,0 + K0,0 + 2K1,1)

dK2 = K2,0 −
1

4
(K3,0 + K1,0 + 2K2,1)

dK3 = K3,0 −
1

4
(K4,0 + K2,0 + 2K3,1)

dK4 = K4,0 −
1

4
(K5,0 + K3,0 + 2K4,1) (A.10)

• if hX 6 hT one gets:

dH
(−3)
X = (rhX − rhT ) (1.5 ρ̄i,jdK3 − 2.0 ρ̄i−1,jdK2 + 0.5 ρ̄i−2,jdK1)

dH
(−3)
T = rhT 1.5 ρ̄i,jdK3

dH
(−2)
X = (rhX − rhT ) (1.5 ρ̄i,jdK2 − 2.0 ρ̄i−1,jdK1 + 0.5 ρ̄i−2,jdK0)

dH
(−2)
T = rhT 1.5 ρ̄i,jdK2

dH
(−1)
X = (rhX − rhT ) (1.5 ρ̄i,jdK1 − 2.0 ρ̄i−1,jdK0 + 0.5 ρ̄i−2,jdK1)

dH
(−1)
T = rhT 1.5 ρ̄i,jK1,0

dH
(0)
X = (rhX − rhT ) (1.5 ρ̄i,jdK0 − 2.0 ρ̄i−1,jdK1 + 0.5 ρ̄i−2,jdK2)

dH
(0)
T = rhT 1.5 ρ̄i,jdK0

dH
(+1)
X = (rhX − rhT ) (1.5 ρ̄i,jdK1 − 2.0 ρ̄i−1,jdK2 + 0.5 ρ̄i−2,jdK3)

dH
(+1)
T = rhT 1.5 ρ̄i,jdK1

dH
(+2)
X = (rhX − rhT ) (1.5 ρ̄i,jdK2 − 2.0 ρ̄i−1,jdK3 + 0.5 ρ̄i−2,jdK4)

dH
(+2)
T = rhT 1.5 ρ̄i,jdK2 (A.11)
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• if hX > hT one gets:

dH
(−3)
X = rhX 1.5 ρ̄i,jdK3

dH
(−3)
T = (rhT − rhX)1.5 ρ̄i,jdK3

dH
(−2)
X = rhX 1.5 ρ̄i,jdK2

dH
(−2)
T = (rhT − rhX)1.5 ρ̄i,jdK2

dH
(−1)
X = rhX 1.5 ρ̄i,jdK1

dH
(−1)
T = (rhT − rhX)1.5 ρ̄i,jdK1

dH
(0)
X = rhX 1.5 ρ̄i,jdK0

dH
(0)
T = (rhT − rhX)1.5 ρ̄i,jdK0

dH
(+1)
X = rhX 1.5 ρ̄i,jdK1

dH
(+1)
T = (rhT − rhX)1.5 ρ̄i,jdK1

dH
(+2)
X = rhX 1.5 ρ̄i,jdK2

dH
(+2)
T = (rhT − rhX)1.5 ρ̄i,jdK2 (A.12)

The matrix Aj in equation 2.42 reads:

Aj
i,i−3 = −dH

(−3)
X − dH

(−3)
T

Aj
i,i−2 = −dH

(−2)
X − dH

(−2)
T − 1

4
ξi−1/2,j

Aj
i,i−1 = −dH

(−1)
X − dH

(−1)
T + ξi−1/2,j +

1

4
Σ ξ

Aj
i,i = −dH

(0)
X − dH

(0)
T − 5

4
Σ ξ

Aj
i,i+1 = −dH

(+1)
X − dH

(+1)
T + ξi+1/2,j +

1

4
Σ ξ

Aj
i,i+2 = −dH

(+2)
X − dH

(+2)
T − 1

4
ξi+1/2,j (A.13)
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Appendix B

Dry contact analytical model

The approximation of the hole and shoulder geometry influences additional
pressure results. No study concerning the best approximation has been
made. The aim was not to get the most accurate prediction of the additional
pressure, but to introduce a physical approach of the shoulder influence in
zone A, and to account for the zero pressure in zone B. The functions of
the geometrical approximation functions are briefly reported below. These
functions have no simple analytical expressions, but are easy to evaluate
numerically.

The indent geometry and its derivatives read:

R = −de
−K

r2

φ2
cos

(

πr

φ

)

(B.1)

R′ =
∂R
∂r

= de
−K

r2

φ2
{

2Kr

φ2
cos

(

πr

φ

)

+
π

φ
sin

(

πr

φ

)}

(B.2)

R′′=
∂2R
∂r2

=
2dK

φ2
e
−K

r2

φ2
{

cos

(

πr

φ

) (

1 − 2Kr2

φ2

)

− 2πr

φ
sin

(

πr

φ

)}

(B.3)
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Shoulder approximation

To calculate the shoulder additional pressure amplitude , a parabolic ap-
proximation of the shoulders has been used see figure B.3 and equation B.4.
The shoulder approximation reads :

Figure B.1: Shoulder model diagram

Rapprox = − 1

ρh

r

2

2
+ sh (B.4)

The values rh, sh and ρh reads :











R′ (rh) = 0

rh ∈ ]
φ

2

3φ

2
[

⇔



























tan (r̂h) = −2K

π2
r̂h

r̂h =
π rh

φ

r̂h ∈ ]
1

2

3

2
[

The equation above is evaluated numerically, and the solution enables
to deduce the numerical values below :

rh = β(K)φ (B.5)

sh = R (rh) = γ(K) d (B.6)

ρh =
1

R′′ (rh)
= µ(K)

φ

d

2

(B.7)

ν(K) =

√

γ(K)

µ(K)
(B.8)
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Two parameters which are function of K are used to calculate ν(K).
The radius of curvature of the shoulder ρh appears through the parameter
µ(K) and γ(K) corresponds to the shoulder height sh. The factor ν(K) is
given in figure B.2. It is used to calculate the shoulder influence.

3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K

ν

Figure B.2: ν as a function of K

Hole approximation

To calculate the hole additional pressure amplitude , the choice has been
made to represent the hole with a parabolic approximation see figure B.3.
The hole approximation reads :

Rapprox = − 1

ρb

r

2

2
+ d (B.9)

Two parameters which are function of K are used to compute ζ(K). The
radius of curvature at the hole bottom ρb appears through the parameter
λ(K), and β(K) is related to the radius rh.

ρb = λ(K)
φ

d

2

(B.10)

ζ(K) =
2
√

λ(K)

β(K)
(B.11)



























if R(φ/4)= Rapprox(φ/4)

λ(K) = 1

32

(

1 − e−K/16

√
2

)

When an approximation like the one represented figure B.3 is used, ζ(K)
is almost constant and equal to 0.78.
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Figure B.3: Hole approximation with R̄(Φ/4) = R̄approx(Φ/4)

Zone A coefficient adjustment

The coefficients of proportionality m and n of the shoulder and the hole
influence in equation 3.5 are adjusted in zone A using the method of least
squares see equations B.12, B.13.

x = ∆P ′
hole

y = ∆P ′
shoulders

f = ∆Pnum
tot

T =
∑

x2
i ·

∑

y2
i −

(

∑

xi yi

)2

n =
(

∑

y2
i ·

∑

fi xi −
∑

xi yi ·
∑

fi yi

)

/ T (B.12)

m =
(

∑

x2
i ·

∑

fi yi −
∑

xi yi ·
∑

fi xi

)

/ T (B.13)

(B.14)

Zone B coefficient adjustment

As mentioned before, the ratio between deformed and initial indent depth F
is directly linked to the indent slope D/Φ. The zero pressure in the indent
hole appears for a slope of 0.25. Moreover, an horizontal asymptote appears
when the slope is large because the hole will be less and less deformed.
When the slope decreases to 0.25, a second asymptote correctly matches



121

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

D/Φ

D
d/D

i

numerical
model

Z
O

N
E

 A

Z
O

N
E

 B

Figure B.4: Ratio between deformed and initial indent depth Dd/Di as a
function of the indent slope D/Φ

the numerical results. The parameters k and θ of equation B.15 have been
adjusted accordingly. The final equations reads:

F =
Dd

Di

θ = 1.1

k = 2.1

F =
k (D/Φ − 0.25)

θ

√

1 + {k (D/Φ − 0.25)}θ
for D/Φ > 0.25 (B.15)

F = 0 for D/Φ 6 0.25

∆Ptot = n
D

Φ
ζ(K) (1 − sFω) + m

D

Φ
ν(K) (B.16)
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Appendix C

Line contact stress

For infinitely elongated Hertzian contact without friction, the stress distri-
bution in the material has a simple analytical expression C.1, see Smith and
Liu [104]. The authors detail also a more complicated set of equations to
account for Hertzian contact with friction. Elliptical contacts were studied
by Sackfields and Hills [100, 101].

C1 = (1 + X)2 + Z2

C2 = (1 − X)2 + Z2

ψ =
π

C1

1 −
√

C2

C1
√

C2

C1

√

2

√

C2

C1
+

C1 + C2 − 4

C1

ψ =
π

C1

1 +

√

C2

C1
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C2

C1

√

2

√

C2

C1
+

C1 + C2 − 4

C1

σxx = −Z

π

(

ψ (1 + 2X2 + 2Z2) − 2 π − 3 Xψ
)

σyy = ν (σxx + σzz)

σzz = −Z

π

(

ψ − Xψ
)

σxz = −Z2ψ

π
(C.1)
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