
HAL Id: tel-00663317
https://theses.hal.science/tel-00663317

Submitted on 26 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tolerating Transient, Permanent, and Intermittent
Failures

Swan Dubois

To cite this version:
Swan Dubois. Tolerating Transient, Permanent, and Intermittent Failures. Distributed, Parallel, and
Cluster Computing [cs.DC]. Université Pierre et Marie Curie - Paris VI, 2011. English. �NNT : �.
�tel-00663317�

https://theses.hal.science/tel-00663317
https://hal.archives-ouvertes.fr

UNIVERSITÉ PIERRE ET MARIE CURIE – PARIS 6

ÉCOLE DOCTORALE EDITE
ÉCOLE DOCTORALE INFORMATIQUE,

TÉLÉCOMMUNICATIONS ET ÉLECTRONIQUE

T H È S E
pour obtenir le grade de

Docteur en Sciences

de l’Université Pierre et Marie Curie – Paris 6
Mention : Systèmes Informatiques

Présentée et soutenue par

Swan Dubois

Tolérer les fautes transitoires,
permanentes et intermittentes

Thèse dirigée par Sébastien Tixeuil
et co-encadrée par Maria Potop-Butucaru

préparée au Laboratoire d’Informatique de Paris 6 (LIP6),
équipe-projet INRIA REGAL,

soutenue publiquement le 1er décembre 2011,

après avis des rapporteurs :

Bertrand Ducourthial – Professeur, UTC
Ted Herman – Professeur, Université de l’Iowa

et devant le jury composé de :
Rapporteur Bertrand Ducourthial – Professeur, UTC
Examinateurs Carole Delporte-Gallet – Professeur, Université Paris 7

Rachid Guerraoui – Professeur, EPFL
Nicolas Hanusse – Directeur de Recherche, CNRS
Pierre Sens – Professeur, UPMC

Directeur Sébastien Tixeuil – Professeur, UPMC
Co-encadrant Maria Potop-butucaru – MCF, HDR, UPMC

UNIVERSITÉ PIERRE ET MARIE CURIE – PARIS 6

ÉCOLE DOCTORALE EDITE
ÉCOLE DOCTORALE INFORMATIQUE,

TÉLÉCOMMUNICATIONS ET ÉLECTRONIQUE

T H È S E
pour obtenir le grade de

Docteur en Sciences

de l’Université Pierre et Marie Curie – Paris 6
Mention : Systèmes Informatiques

Présentée et soutenue par

Swan Dubois

Tolerating Transient, Permanent,
and Intermittent Failures

Thèse dirigée par Sébastien Tixeuil
et co-encadrée par Maria Potop-Butucaru

préparée au Laboratoire d’Informatique de Paris 6 (LIP6),
équipe-projet INRIA REGAL,

soutenue publiquement le 1er décembre 2011,

après avis des rapporteurs :

Bertrand Ducourthial – Professeur, UTC
Ted Herman – Professeur, Université de l’Iowa

et devant le jury composé de :
Rapporteur Bertrand Ducourthial – Professeur, UTC
Examinateurs Carole Delporte-Gallet – Professeur, Université Paris 7

Rachid Guerraoui – Professeur, EPFL
Nicolas Hanusse – Directeur de Recherche, CNRS
Pierre Sens – Professeur, UPMC

Directeur Sébastien Tixeuil – Professeur, UPMC
Co-encadrant Maria Potop-butucaru – MCF, HDR, UPMC

Computer Science is no more about computers
than astronomy is about telescopes.

Edsger W. Dijkstra

Résumé

Un système réparti est un système constitué d’un ensemble d’unités de calcul
autonomes dotées de capacités de communication afin de résoudre une tâche glo-
bale. Ce modèle est suffisament général pour décrire tout type de réseau physique
(réseau local, réseau de capteurs, ...). Lorsque la taille d’un système réparti devient
importante ou lorsque ce système est déployé dans un environnement non contrôlé,
la probabilité que certains éléments du système subissent des fautes (panne, cor-
ruption de mémoire, piratage, ...) devient non négligeable. Ces fautes peuvent être
classifiées en fonction de leur durée, de leur étendue et de leur nature. Dans cette
thèse, nous nous intéressons aux systèmes répartis capables de tolérer simultané-
ment plusieurs types de fautes à travers l’étude de trois problèmes fondamentaux.
Nous présentons ainsi un protocole réparti simulant un registre atomique mono-
écrivan multi-lecteurs en présence de fautes transitoires et de fautes permanentes
de type crash. Ce protocole repose sur deux outils ré-utilisables : un protocole de
communication et un système d’estampillage borné. Ensuite, nous proposons une
étude de la synchronisation faible d’horloges logiques en présence de fautes transi-
toires et de fautes intermittentes Byzantines. Nous prouvons de nombreux résultats
d’impossibilité et nous fournissons un protocole optimal dans les cas non couverts
par ces résultats. Finalement, nous définissons trois nouveaux concepts de tolérance
pour les systèmes répartis sujets à des fautes transitoires et des fautes intermittentes
Byzantines. Nous donnons un protocole de construction d’une vaste classe d’arbres
couvrants optimal selon ces trois concepts.

Abstract

A distributed system is a system composed of a set of autonomous computation
units endowed with communication abilities in order to solve a global task. This
model is general enough to describe any kind of network (LAN, sensor network,
...). When the size of a distributed system gets larger or when it is deployed in
hazardous environments, the possibility that some elements of the system are subject
to faults (failure, memory corruption, hacking, ...) become impossible to elude.
Faults can be classified according to duration, span, or nature. In this thesis, we
focus on distributed systems that simultaneously tolerate several kinds of faults
using three classical problems as case studies. We present first a distributed protocol
simulating a single-writer multi-reader atomic register in the presence of transient
faults and of permanent crash faults. This protocol relies on two re-usable tools: a
communication primitive and a bounded timestamp scheme. Then, we study logical
clock weak synchronization in the presence of transient faults and of intermittent
Byzantine faults. We prove several impossibility results and provide a protocol that
is optimal both with respect to impossibility result and with respect to recovery
time. Finally, we define three new fault tolerance schemes in distributed systems
that are subject to transient faults and to intermittent Byzantine faults. We design
a protocol constructing a wide class of spanning trees that is optimal with respect
to fault tolerance metrics defined for these three schemes.

Contents

1 Introduction 1
1.1 Context of the Thesis . 2
1.2 Thesis Contributions . 4

I Context 7

2 Model 9
2.1 Distributed System . 9

2.1.1 Characteristics . 10
2.1.2 Advantages . 10

2.2 Communication Graph . 11
2.3 Models Used in this Thesis . 13

2.3.1 Generic Model . 13
2.3.2 State Model . 15
2.3.3 Message Passing Model . 16

2.4 Fault Taxonomy . 18
2.4.1 Faults . 18
2.4.2 Fault Patterns . 21

3 Taxonomy of Daemons 27
3.1 Characterization of Daemons . 30

3.1.1 Distribution . 30
3.1.2 Fairness . 31
3.1.3 Boundedness . 35
3.1.4 Enabledness . 37

3.2 Comparing Daemons . 41
3.2.1 Comparing daemon classes 42
3.2.2 Preserving execution properties 44
3.2.3 The Case of the Synchronous Daemon 48
3.2.4 A map of classical daemons 50

3.3 Daemon Transformers . 51

4 Fault Tolerance 57
4.1 Tolerating Transient Fault Patterns 59

x Contents

4.1.1 Weakening Self-Stabilization 60
4.1.2 Enhancing Self-Stabilization 61

4.2 Tolerating Composite Fault Patterns 62
4.2.1 Fault-Tolerant Self-Stabilization 62
4.2.2 Byzantine Tolerant Self-Stabilization 63
4.2.3 Strict Stabilization . 64

4.3 Summary . 66

II Atomic Register 69

5 Introduction of Part II 71
5.1 Problem and Related Works . 72

5.1.1 Problem . 72
5.1.2 Related Works . 74
5.1.3 Specification . 76

5.2 Contributions of Part II . 77

6 Preliminaries 79
6.1 Data-Link Protocol . 79

6.1.1 Problem and Related Works 80
6.1.2 Specification . 81
6.1.3 Lower Bounds . 83
6.1.4 Optimal Solution . 85
6.1.5 Correctness Proof . 88

6.2 Bounded Labelling Systems . 93
6.2.1 Problem and Related Works 93
6.2.2 Solution . 96

7 Atomic Register Simulation 101
7.1 The ABD Simulation . 101
7.2 The FTPS Simulation . 103

7.2.1 Distributed Protocol . 104
7.2.2 Proof of Correctness . 106
7.2.3 Conclusion . 111

8 Conclusion of Part II 113
8.1 Summary of Contributions . 113
8.2 Concluding Remarks . 114

III Unison 117

9 Introduction of Part III 119
9.1 Problem and Related Works . 120

Contents xi

9.1.1 Problem . 120
9.1.2 Related Works . 120
9.1.3 Specification and Definitions 121

9.2 Contributions of Part III . 124
9.3 Fault-Tolerant Self-Stabilization . 125

10 Impossibility Results 127
10.1 General Results . 129

10.1.1 Two and more Byzantine Faults 129
10.1.2 Unfair Daemon . 129

10.2 Minimal Unison Related Results . 130
10.2.1 Weakly Fair Daemon . 130
10.2.2 Strongly Fair Daemon and Maximal Degree greater than 3 . . 133

10.3 Priority Unison Related Results . 136
10.3.1 Weakly Fair Daemon . 137
10.3.2 Strongly Fair Daemon and Maximal Degree greater than 3 . . 138

10.4 Summary of Impossibility Results . 140

11 Strictly Stabilizing Solution 141
11.1 Strictly Stabilizing Solution . 141

11.1.1 Distributed Protocol Description 142
11.1.2 Correctness Proof . 143

11.2 Optimality of Convergence Time . 149
11.2.1 Upper bound . 149
11.2.2 Lower Bound . 150
11.2.3 Conclusion . 155

12 Conclusion of Part III 157
12.1 Summary of Contributions . 157
12.2 Concluding Remarks . 158

IV Spanning Tree 161

13 Introduction of Part IV 163
13.1 Problem and Related Works . 164

13.1.1 Related Works . 164
13.1.2 Specification . 166

13.2 Contributions of Part IV . 170
13.3 Containing Byzantine Faults in Self-Stabilization 172

13.3.1 Strict Stabilization . 172
13.3.2 Strong Stabilization . 173
13.3.3 Topology-Aware Stabilization 175
13.3.4 Discussion . 177

xii Contents

14 Two Case Studies 179
14.1 Spanning Tree without Constraints 180

14.1.1 Strongly Stabilizing Distributed Protocol 181
14.1.2 Proof of Strong Stabilization 182

14.2 BFS Spanning Tree . 185
14.2.1 Impossibility of Strong Stabilization 186
14.2.2 Topology-Aware Stabilizing Solution 187
14.2.3 Proof of Topology-Aware Strict Stabilization 188
14.2.4 Proof of Topology-Aware Strong Stabilization 192

14.3 Summary . 195

15 General Case 197
15.1 Topology-Aware Stabilizing Solution 200

15.1.1 Distributed Protocol . 201
15.1.2 Proof of Topology-Aware Strict Stabilization 204
15.1.3 Proof of Topology-Aware Strong Stabilization 211

15.2 Optimality of Containment Areas . 215
15.2.1 Topology-Aware Strict Stabilization 215
15.2.2 Topology-Aware Strong Stabilization 217

15.3 Strong Stabilization . 219
15.4 Summary . 225

16 Conclusion of Part IV 227
16.1 Summary of Contributions . 227
16.2 Concluding Remarks . 229

17 Conclusion 231
17.1 Overview of Thesis Contributions . 231

17.1.1 Part One: Context . 231
17.1.2 Part Two: Atomic Register 232
17.1.3 Part Three: Unison . 233
17.1.4 Part Four: Spanning Tree . 233
17.1.5 Summary . 234

17.2 Perspectives . 234

A Version française 239
A.1 Contexte de la thèse . 240

A.1.1 Généralités . 240
A.1.2 Modèles et tolérance aux fautes 243

A.2 Registre atomique . 245
A.2.1 Contexte . 245
A.2.2 Contributions . 246
A.2.3 Perspectives . 246

A.3 Unisson . 247

Contents xiii

A.3.1 Contexte . 247
A.3.2 Contributions . 248
A.3.3 Perspectives . 248

A.4 Arbre couvrant . 249
A.4.1 Contexte . 249
A.4.2 Contributions . 250
A.4.3 Perspectives . 251

A.5 Conclusion . 251

Index 255

List of Notations 257

Bibliography 259

List of Figures

1.1 Dependencies between chapters of this thesis. 6

2.1 Some classical communication graphs: (i) a chain, (ii) a ring, (iii) a
tree, and (iv) a complete communication graph. 12

2.2 Illustration of Definition 2.5. 19

2.3 Given two actions α1 and α2, we have α1⊗α2 = {α1, α2, α3, α4, α5, α6}
(each number represents the value of a member of the system). . . . 22

2.4 Fault patterns FP = {f1, f2, f3} and FP ′ = {f ′1, f ′2, f ′3, f ′4} describe
the same set of faults if all considered faults have the same behavior. 23

3.1 Mutual exclusion vs. asynchronous scheduling 28

3.2 Vertex coloring vs. synchronous scheduling 29

3.3 Inclusions of sets of daemons with respect to distribution. 31

3.4 Inclusions of sets of daemons with respect to fairness. 32

3.5 Inclusions of sets of daemons with respect to boundedness. 36

3.6 Inclusions of sets of daemons with respect to enabledness. 38

3.7 Relationship between classical daemons (an arrow from a daemon d
to a daemon d′ means that d′ 4 d, note that we remove all arrows
obtained by transitivity). 51

3.8 Summary of existing daemon transformers. An arrow from a daemon
to another one means that the related work provides a transformer
from the first to the second. 53

4.1 Summary of respective constraints on permanent or intermittent fault
tolerance schemes in self-stabilization. An arrow from a scheme to
another means that the first is more constrained than the second.
Note that we remove all arrows deductible from transitivity. 68

5.1 Illustartion of concurrent or consecutive operations. 73

5.2 If r2 returns the value written by w1 and r1 returns the value written
by w2, we have a new/old inversion. 74

6.1 General organization of our data-link distributed protocol. 88

xvi List of Figures

6.2 An example of the bounded labeling system of [IL93] of rank 3. An
arrow from a set of vertices to another one indicates that any vertex
of the first set is dominated by any vertex of the second. The red
arrow indicates a possible pebble move. 95

6.3 An example of the bounded labeling system of [IL93] of rank 3. An
arrow from a set of vertices to another one indicates that any vertex
of the first set is dominated by any vertex of the second. The red
arrow indicates a possible pebble move. 96

6.4 An example of the bounded labeling system of [IL93] of rank 4 in
an arbitrary initial configuration (an arrow from a set of vertices to
another one indicates that any vertex of the first set is dominated by
any vertex of the second). 97

10.1 The three configurations used in the proof of Lemma 10.2 (the num-
bers represent clock values and the double circles represent crashed
vertices). 131

10.2 The three configurations used in the proof of Lemma 10.3 (the num-
bers represent clock values and the double circles represent crashed
vertices). 133

10.3 The three configurations used in the proof of Theorem 10.4 (the num-
bers represent clock values and the double circles represent crashed
vertices). 135

10.4 Example of the execution constructed in case 1 of Theorem 10.4 when
r = 1 (the numbers represent clock values and the double circles
represent crashed vertices). 136

10.5 Initial configuration used in the proof of Theorem 10.5 (the numbers
represent clock values and the double circles represent crashed vertex).137

10.6 The initial configuration for the proof of Theorem 10.6 (the numbers
represent clock values and the double circles represent crashed vertices).139

11.1 An example operation sequence of SSU on a chain with no faults.
Numbers represent clock values. Squared vertex has an enabled rule
to be executed. 144

11.2 An example operation sequence of SSU on a chain with a Byzantine
vertex. Numbers are vertex clock values. The Byzantine vertex is in
double circle. Squared vertex has an enabled rule to be executed. . . 144

11.3 An example operation sequence of SSU on a ring with no faults.
Numbers represent clock values. Squared vertex has an enabled rule
to be executed. 145

11.4 An example operation sequence of SSU on a chain with a Byzantine
vertex. Numbers are vertex clock values. The Byzantine vertex is in
double circle. Squared vertex has an enabled rule to be executed. . . 145

11.5 The transitions of in-unison neighbor vertices l and v. An illustration
for the proof of Lemma 11.2. 146

11.6 Configuration used in proof of Lemma 11.9 (clock values appear inside
vertices and the double circles represent Byzantine vertex). 150

11.7 Configuration used in proof of Lemma 11.10 (clock values appear
inside vertices and the double circles represent Byzantine vertex). . . 151

11.8 Configuration used in proof of Lemma 11.11 (clock values appear
inside vertices and the double circles represent Byzantine vertex). . . 152

11.9 Configurations used in proof of Proposition 11.4 (clock values appear
over vertices and the double circles represent Byzantine vertex). . . . 153

11.10Configurations used in proof of Proposition 11.5 (clock values appear
over vertices and the double circles represent Byzantine vertex). . . . 154

13.1 Summary of respective constraints on Byzantine containment schemes
in self-stabilization. An arrow from a scheme to another means that
the first is more constrained than the second. 178

14.1 A 0-legitimate configuration for specNCT (numbers denote the dist
variable of vertices while the arrow attached to each vertex points
the neighbor designated as its parent by the variable prnt). Note
that r is the (real) root and b is a Byzantine vertex which acts as a
(fake) root. 181

14.2 Example of containment areas for BFS spanning tree construction
(vertices b1 and b2 are Byzantine and vertex r is the root). 186

14.3 Configurations used in proof of Theorem 14.2. 188

15.1 Examples of containment areas for SP. 200
15.2 Examples of containment areas for F 201
15.3 Examples of containment areas for R. 202
15.4 Configurations used in proof of Theorem 15.3. 216
15.5 Configurations used in proof of Theorem 15.4. 219
15.6 Example of containment areas for MET. 220
15.7 Illustration of configurations used in proof of Lemma 15.15, case 1

for the metric MET with c = 1. 221
15.8 Configurations used in proof of Lemma 15.15, cases 2 and 3. 223

16.1 Summary of respective constraints on Byzantine containment schemes
in self-stabilization. An arrow from a scheme to another means that
the first is more constrained than the second. 228

17.1 Summary of respective constraints on fault-tolerance schemes used in
this thesis. An arrow from a scheme to another means that the first
is more constrained than the second. Note that we remove all arrows
deductible from transitivity. 237

List of Tables

4.1 Comparison of fault tolerance schemes presented in Chapter 4 67

10.1 Summary of impossibility results . 140

12.1 Summary of impossibility results of Chapter 10 157

15.1 Summary of results of Chapter 15 related to specIMMT with C(M, c)

a predicate that is true if and only if M = (M,W,mr,met,≺) is a
strongly maximizable metric and c ≥ max{0, |M(g)| − 2}. 225

16.1 Summary of results of Chapter 15 related to specIMMT with C(M, c)

a predicate that is true if and only if M = (M,W,mr,met,≺) is a
strongly maximizable metric and c ≥ max{0, |M(g)| − 2}. 229

List of Protocols

6.1 Send functions used by our data-link protocol. 87
6.2 Receive functions used by our data-link protocol. 87
6.3 SDL, a self-stabilizing distributed protocol for specDLC over c-bounded

channels with a (0, 1, 1, 1)-message performance 89
6.4 Next: the labeling protocol of our stabilizing bounded labeling system. 98
7.1 PSARS: FTPS single-writer multi-reader atomic register simulation

(read operation for any vertex vi, write operation for the writer w =

v0 only). 104
7.2 PSARS: Auxiliary functions (for any vertex vi). 105
11.1 SSU : Minimal and priority (1, 0)-strictly stabilizing distributed pro-

tocol for specAU on chains and rings for vertex v. 143
14.1 SSST : (t, 0, n−1)-strongly stabilizing distributed protocol for specNCT

for vertex v. 182
14.2 SSBFS: (SB, n− 1)-TA strictly and (t, S∗B, n− 1)-TA strongly sta-

bilizing distributed protocol for specBFST for vertex v. 189
15.1 SSMMT : (SB, n − 1)-TA strictly and (t, S∗B, n − 1)-TA strongly

stabilizing distributed protocol for specIMMT for vertex v. 203

Chapter 1

Introduction

A distributed system is one in which the failure
of a computer you didn’t even know existed can
render your own computer unusable.

Leslie Lamport

Contents
1.1 Context of the Thesis . 2
1.2 Thesis Contributions . 4

A long time after his victory against the Lord of the Rings Sauron [Tol37, Tol54a,
Tol54b, Tol55], Frodo Baggins got lost in a large labyrinth deep in the Shire. When
Samwise Gamgee realized his disappearance, he requested all Hobbits to help him
save Frodo. In turn, they entered the labyrinth and spread as evenly as possible.
The Hobbits were sufficiently many to cover the whole labyrinth (there was at least
one Hobbit per intersection). Each Hobbit was only able to speak with Hobbits
that were located at neighboring intersections due to the background noise in the
labyrinth. Their goal was to indicate the path of the exit to Frodo by telling him the
way he should go at each intersection. However, as it is well known Hobbits love beer
and cider, they were all drunk when they entered the labyrinth and after reaching
their positions they all fell asleep. When they woke up a few hours later, they were
disoriented and each of them indicated an arbitrary neighboring direction to Frodo.
Now, even if Hobbits were disoriented, they still wanted to help Frodo. To this
purpose, they collaborated to recover from their disoriented state. The Hobbit that
was located at the exit of the labyrinth claimed his distinguished status. Hobbits
that were located on neighboring intersections heard about it, choose to indicate his
way for locating the exit, and propagated the information. Should all Hobbits have
done so, they could eventually have indicated a correct path to the exit to Frodo
independently of Frodo’s initial location in the labyrinth.

Imagine now that some of the very Hobbits that entered the labyrinth were
in fact traitors and wanted to get Sauron a revenge by forever loosing Frodo in
the labyrinth. When “honest” Hobbits wake up and are disoriented, these “traitor”
Hobbits may lie to them in order to reach their goal. These liars do not longer have
the same goal than other Hobbits: they want to prevent Frodo to reach the exit
while “honest” Hobbits want him to exit. Liar Hobbits may claim that they are
located at the exit of the labyrinth even if it is not the case. Then, “honest” Hobbits

2 Chapter 1. Introduction

propagate this information as previously (they have no mean to decide whether the
claim is true). Then, “traitor” Hobbits can attract Frodo to them if he is initially
nearer from a liar than from the real exit of the labyrinth.

Building on this intuitive illustration, the core goal of this thesis is to study the
impact of the combination of the disorientation of “honest” Hobbits and of lies of
“traitor” ones with respect to the ability of “honest” Hobbits to achieve their objective
(in our example, indicating a correct path to the exit to Frodo). The sequel of this
Introduction is devoted to explain the analogy between this illustrative example and
the context of this thesis (Section 1.1) and to the description of contributions of this
thesis (Section 1.2).

1.1 Context of the Thesis

Distributed systems and fault-tolerance Distributed computing is a branch of
computer science that studies distributed systems. Intuitively, a distributed system
is a system constituted from autonomous computational units (called processors,
processes, or vertices) enhanced with some communication abilities. Each process
can communicate with a subset of other processes. Hence, it is natural to represent
communication possibilities of such a system by a graph. Main characteristics of this
kind of system are the locality of information (each process have only a local view on
the system and must communicate with other processes in order to obtain any global
information) and the locality of time, a.k.a. asynchronism (each process executes its
instructions at its own pace). This model is sufficiently general to capture the main
characteristics of any kind of network (LAN, sensor network, peer-to-peer system,
...). In our example, the Hobbits disseminated in the labyrinth may be seen as a
distributed system. Indeed, we can represent the labyrinth by a graph (each vertex
represents an intersection point) and Hobbits can be viewed as computational units
enable to communicate with those located at nearest intersections.

The goal of distributed computing is the design of protocols that solve some
problems in distributed systems. Such protocols are called distributed protocols.
Generally, the difficulty comes from the fact that considered problems are about
achieving global properties of the system. Hence, processes cannot solve it locally
and must communicate and cooperate to reach a satisfying global state. In our
example, Hobbits in the labyrinth have a global problem to solve: finding a path for
Frodo to exit. As no Hobbit has a solution locally, they must cooperate to find such
a path. In distributed computing, this problem is well know as the spanning tree
construction. A particular process is distinguished as the root of the system (the
exit of the labyrinth) and each process must choose as its parent one of its neighbors
that is the first process of the path between it and the root (this pointer is denoted
in our example by the way each Hobbit indicates to Frodo).

When the size of a distributed system increases or when it is deployed in a
dangerous environment, we cannot neglect the probability that some components of
the system misbehave (for instance, communications may interfere, some processes

1.1. Context of the Thesis 3

may stop to execute instructions, be subject to attacks or to viruses, ...). Any
abnormal comportment of any component of a distributed system is captured by
the concept of fault. As the concept of fault is very general, it is classically admitted
to classify faults according to several criteria. For instance, duration of the fault
can be considered. We distinguish transient faults (that is, faults of finite duration),
permanent faults (that is, faults of infinite duration), or intermittent faults (that
is, affected processes exhibit successively correct and faulty behavior). We can also
distinguish faults by their nature. For example, we can consider crash faults (that
is, affected processes simply stop to execute instruction), Byzantine faults (that is,
affected processes exhibit an arbitrary behavior), or memory corruption. In our
example, the drunkenness of Hobbits can be seen as a transient fault (Hobbits wake
up disoriented in a finite time) that induces a memory corruption (Hobbits are
disoriented when they wake up) while the betrayal of “traitor” Hobbits can be seen
as a permanent Byzantine fault (these Hobbits do not longer cooperate with others
to achieve a global task).

Distributed fault-tolerance is the sub-branch of distributed computing that fo-
cuses on distributed protocols that are resilient to faults. That is, a fault-tolerant
distributed protocol ensures that some properties are satisfied even if faults strike
the system. There exists several notions in fault-tolerance depending on the toler-
ated classes of faults. In the following, we present the most important fault-tolerance
schemes studied in this thesis.

Self-stabilization In our illustrative example, when all Hobbits are honest, they
eventually succeed to indicate Frodo a (shortest) path to the exit even if they are
disoriented after waking up. This ability to recover a correct behavior in a finite time
from any arbitrary initial state is called self-stabilization in distributed computing.
Self-stabilization allows transient fault tolerance (whatever the nature of this fault
is). Indeed, when a transient fault ends, the state of the system may be arbitrary
(due to abnormal actions during the fault, memory corruption, ...). Then, a self-
stabilizing distributed protocol ensures that it recovers a correct behavior in a finite
time without any external or manual help. However, a self-stabilizing distributed
protocol can only deal with transient faults. Indeed, such a distributed protocol
relies on the assumption that the protocol of each process is not corrupted during
the transient fault (only the volatile memory may be affected by transient faults)
and that each process executes correctly its protocol after the end of transient faults.
Otherwise, the distributed protocol may never return to a desirable behavior.

Containment of crash/Byzantine faults in self-stabilization To ensure bet-
ter fault resilience, it is possible to consider self-stabilizing distributed protocols that
are moreover able to deal with a (limited) number of permanent or intermittent
faults after the end of transient faults. Due to this challenging model of distributed
systems, we cannot ensure that the whole distributed system retrieves a correct be-
havior in a finite time as in self-stabilization (at least, some faulty processes may

4 Chapter 1. Introduction

exhibit abnormal behavior infinitely). In our example, when there are some “traitor”
Hobbits that want to loose Frodo, the protocol used by honest Hobbits only ensures
that Frodo finds the exit if he is initially (strictly) nearer from the exit than from
a liar Hobbit. This fault-tolerance property could be seem weak at the first glance
but we prove in this thesis that we cannot ensure a stronger one if honest Hobbits
are initially disoriented.

The main problem addressed in this thesis is joint tolerance to transient faults
and to permanent or intermittent faults in distributed systems. The main difficulty
comes from the following fact: in such systems, it is impossible to distinguish a
(permanently or intermittently) faulty process (that does not cooperate to reach the
global goal of the distributed system) from a badly initialized but honest process
(that still cooperate to reach the common goal in spite of transient faults). In our
illustration, “traitor” Hobbits may attract Frodo to the wrong direction because
honest Hobbits cannot distinguish the honest Hobbit at the exit of the labyrinth
from a liar and thus propagate the information in a similar way in both cases.

1.2 Thesis Contributions

This section summarizes this thesis’ contributions in the context of joint tol-
erance to transient faults and to permanent or intermittent faults in distributed
systems. This thesis is organized in four parts. The first one presents the context
of the thesis while the three others focus on three independent fundamental prob-
lems in distributed systems: the simulation of a strong computational model over a
weaker one, clock synchronization, and spanning tree construction.

Part One: Context The first part of this thesis is devoted to the formal defi-
nition of a distributed system and to a survey on fault-tolerance in such systems.
First, Chapter 2 provides a detailed description of distributed systems, a formal
presentation of computational models used in this thesis, and a model for faults.
Then, Chapter 3 focuses on a particular notion of our model, called daemon, that
gather assumptions related to scheduling. We provide a general taxonomy that al-
lows the comparison of every daemon already defined in self-stabilization. Finally,
Chapter 4 surveys fault-tolerance in distributed systems focusing mainly on variants
of self-stabilization that tolerate moreover permanent or intermittent faults.

Part Two: Atomic Register The second part of this thesis extends results
presented in [AAD+10, DDPBT11a, AAD+11, DDPBT11b]. We focus on a compu-
tational model transformer. As a matter of fact, there exists several computational
models in distributed systems (that are mainly characterized by their atomicity
level, i.e., by actions that are assumed to be executed atomically). The higher the
atomicity model, the simpler the design of a distributed protocol, the lower its re-
alism. Computational model transformers allow the design of distributed protocols
in a high atomicity computational model while permitting to execute them in low

1.2. Thesis Contributions 5

atomicity ones. Chapter 7 presents such a computational model transformer for dis-
tributed systems subject to transient and permanent crash faults. This transformer
makes use of two independent tools that are presented in Chapter 6.

Part Three: Unison The third part of this thesis is related to results from
[DPBT09, DPBNT10, DPBT11]. We focus on clock synchronization in distributed
systems that are simultaneously subject to transient and intermittent Byzantine
faults. This challenging environment obviously prevents perfect synchronization for
every process. Hence, we concentrate on a weaker synchronization problem that
only requires that clocks of neighboring processes are “close” from each other. Even
with this weaker problem, Chapter 10 lists numerous impossibility results related
to the number of faults, the scheduling, and the topology of the distributed system.
We provide in Chapter 11 an optimal distributed protocol for the remaining possible
cases.

Part Four: Spanning Tree The fourth part of this thesis summarizes results
presented in [DMT10c, DMT10a, DMT10b, DMT11a, DMT11c, DMT11b]. The
main goal of this part is the construction of spanning trees in presence of both
transient and intermittent Byzantine faults. Spanning tree construction consists in
the construction of a communication subgraph that spans the whole system with a
minimal number of communication links. To this purpose, we introduce three new
concepts of joint tolerance to transient and intermittent Byzantine fault tolerance.
These concepts are characterized by the fact that the effects of Byzantine faults are
contained in some portions of the distributed system. In Chapter 14, we present
distributed protocols for two particular cases of spanning trees while Chapter 15
deals with a large class of spanning trees. We prove that all distributed protocols
presented in this part achieve the best possible Byzantine containment.

Reading map Even if the three last parts of this thesis are independent, there
exists some dependencies between chapters of this thesis. Figure 1.1 summarizes
them.

6 Chapter 1. Introduction

+ s

Context

Atomic Register Unison Spanning Tree

Model

Taxonomy of Daemons Fault Tolerance

Introduction IntroductionIntroduction

Preliminaries

Strictly Stabilizing

Solution

Two case

Studies

General Case
Atomic Register

Simulation

Impossibility

Results

?

?

?=

?

?

~

?

?

Figure 1.1: Dependencies between chapters of this thesis.

Part I

Context

Chapter 2

Model

Essentially, all models are wrong, but some are
useful.

George E. P. Box

Contents
2.1 Distributed System . 9

2.1.1 Characteristics . 10
2.1.2 Advantages . 10

2.2 Communication Graph . 11
2.3 Models Used in this Thesis . 13

2.3.1 Generic Model . 13
2.3.2 State Model . 15
2.3.3 Message Passing Model . 16

2.4 Fault Taxonomy . 18
2.4.1 Faults . 18
2.4.2 Fault Patterns . 21

In this chapter, we first present generalities about distributed systems (Section
2.1) and we provide then the model used in this thesis. This model is composed of
the following elements:

– a communication graph that represents the communication capacities of the
distributed system (see Section 2.2),

– a computational model that gathers assumptions on asynchronism, atomicity
of executions, etc. of the distributed system (see Section 2.3), and

– a fault model that allows to describe any abnormal behavior in the distributed
system (see Section 2.4).

This chapter introduces numerous definitions and notations that are extensively
used in this thesis. For convenience, the reader can find at the end of this thesis an
index and a list of notations that summarize those that are used in the remainder
of this thesis.

2.1 Distributed System

In computer science, a distributed system (see e.g. [Tel10, Lyn96]) is a set of
computation unit (potentially disseminated geographically) enhanced with commu-
nication capacities. These computation units, usually called processes, cooperate

10 Chapter 2. Model

together in order to solve a given task. This cooperation includes intern computa-
tions and information exchanges. Information is exchanged using communication
links that connect processes.

Note that this definition is enough general to enclose systems such that computer
networks, sensor networks, parallel computers, or peer-to-peer systems. Actually,
such systems share some common properties such as information and time locality.
In this section, we first describe characteristics of distributed systems (with respect
to centralized systems, that is system containing only one process) and we present
main advantages to use such systems.

2.1.1 Characteristics

As distributed systems are potentially composed of a large number of heteroge-
neous elements, their main characteristic is locality. We can mainly distinguish two
localities: the information locality and the time locality.

Information locality Each process has access only to its local information at a
given time. If it needs supplementary information, it must communicate with
its neighbors (that is, processes that share a communication link with it). In
other words, no process has a global knowledge on the system.

Time locality As elements of a distributed system may be heterogeneous, their
clocks are not synchronized and may deviate from each others at any speed
during the system life time. Moreover, communication speed may be very
different between two pairs of neighbors. In other words, distributed systems
are fully asynchronous.

These characteristics are the main challenge to overcome when designing dis-
tributed protocols (that is, description of actions that processes must execute) that
solve global problems on distributed systems.

2.1.2 Advantages

Whereas characteristics of a distributed system lead to larger difficulties in de-
veloping protocols as in a centralized system, the former provides some advantages
that we present in the following.

Information exchange The first motivation of a distributed system is to allow
data exchange at large scale. For example, the Internet allows nowadays mil-
lions of people to communicate (via e-mail, chatting, etc.) and to share huge
amount of data.

Resource sharing A distributed system allows its users to access to any resource
(memory, computation power, hard disk space, etc.) disseminated in the whole
distributed system. In this way, each user of the distributed system can access
to a greater amount of resources than with a centralized system. On the other
hand, that implies that we must deal with problems due to the concurrent
access to resources.

2.2. Communication Graph 11

Increasing the computation power Peer-to-peer systems (P2P, see e.g. [Ora01,
LMSM09]) are a particular class of distributed systems that allows to share its
computation power between its users. In this way, distributed systems allows
concurrent computations that lead to a reduction of computation time (if the
computation can be parallelized).
For example, the project SETI@HOME of the University of Berkeley uses the
computation power of over 3 millions of computers connected to the Internet
in order to detect intelligent life outside Earth by analyzing radio signals from
space.

Fault tolerance A fault is a temporary or permanent failure of a component of the
distributed system. With contrast to a centralized system, a part of services
may continue to work correctly after a fault in a distributed system.
On the other hand, note that the probability of a failure increases with the
number of components of the system. Note also that, in case of failures, the
validity of the results or of the behavior of the whole distributed system may
be not guaranteed. We describe in Chapter 4 main techniques to ensure fault
tolerance in distributed systems.

2.2 Communication Graph

As we previously discussed, a distributed system consists of a set of processes
that have some communication capacities. The most natural way to model these
communication capacities is to use a graph. The processes are vertices in this graph
(V denotes the set of vertices) and the edges of this graph are pairs of processes that
can communicate with each other (E denotes the set of edges with E ⊆ V 2). Such
pairs of vertices are called neighbors. Hence, g = (V,E) forms the communication
graph of the distributed system. In this thesis, we use some graph theory notions
to describe properties of distributed systems (for more informations about graph
theory, see [Ber67]).

We will consider only non oriented and simple communication graph, that is, for
any edge {u, v} of E, the vertex u is able to communicate with v and the vertex v
is able to communicate with u (we also talk of bi-directional communication) and
there exists no loop in g (that is, edges of the form {v, v} are forbidden).

Communication graphs considered in this thesis may be either identified or
anonymous. In the first case, each vertex of the communication graph has a distinct
identity whereas in the second case, vertices are indistinguishable from each other.

In the following, we present some useful definitions and notations.
A path (v1, v2, . . . , vk) of g is a sequence of vertices of V such that, for any

i ∈ {1, . . . , k − 1}, we have {vi, vi+1} ∈ E. The length of a path (v1, v2, . . . , vk) of
g is the number of edges of this path (i.e. k − 1). A path (v1, v2, . . . , vk) of g is
elementary if, for any i ∈ {1, . . . , k} and any j ∈ {1, . . . , k} \ {i}, we have vi 6= vj .
A cycle (v1, v2, . . . , vk) of g is a path of g such that v1 = vk. A cycle (v1, v2, . . . , vk)

of g is elementary if (v1, v2, . . . , vk−1) is an elementary path.

12 Chapter 2. Model

m m m m m
(i)

m
m m
m m

(ii)m
mm m
m m

(iii)

m
m m
m m

(iv)

Figure 2.1: Some classical communication graphs: (i) a chain, (ii) a ring, (iii) a
tree, and (iv) a complete communication graph.

A communication graph g is connected if, for any pair of disjoints vertices u and
v, there exists a path (v1, v2, . . . , vk) of g such that v1 = u and vk = v.

We can now introduce some classical communication graph topologies used in
this thesis. A communication graph is a chain when it is reduced to an elementary
path. A communication graph is a ring when it is reduced to an elementary cycle.
A communication graph is a tree when it is a connected communication graph and
|E| = |V | − 1. A communication graph is complete when E = V 2 \ {{v, v}|v ∈ V }.
Some examples of such topologies are provided by Figure 2.1.

Given a communication graph g = (V,E), the communication subgraph induced
by a subset V ′ ⊆ V is the communication graph g′ = (V ′, E′) where E′ = {{u, v} ∈
E|u ∈ V ′ ∧ v ∈ V ′}.

Given a communication graph g = (V,E), a spanning tree of g is a commu-
nication subgraph induced by V that is a tree and a spanning forest of g is a
communication subgraph induced by V such that each of its connected components
is a tree.

Given a communication graph g, we introduce the following set of notations.
Firstly, n denotes the number of vertices of the graph whereasm denotes the number
of edges (n = |V | andm = |E|). For any vertex v, Nv denotes the set of neighbors of
v. The distance between two vertices u and v (that is, the length of a shortest path
between u and v in g) is denoted by dist(g, u, v). The diameter of g (that is, the
maximal distance between two vertices of g) is denoted by diam(g). For any vertex
v, the degree of v (that is, the number of neighbors of v) is denoted by deg(g, v).
The maximal degree of g (that is, the maximal number of neighbors of a vertex in
g) is denoted by deg(g).

2.3. Models Used in this Thesis 13

2.3 Models Used in this Thesis

It is usually admitted to describe the distributed system communication capac-
ities by a communication graph (see Section 2.2). However, there exists several
computational models for distributed systems. These models are distinguished by
their atomicity level. Atomicity depends on actions that are allowed in a single
atomic step. A few examples of classical computational models follow (from higher
to lower atomicity level):

1. State model (or shared memory model) [Dij74]: this is the classic model for
self-stabilization area (see Section 4.1) for which in one atomic step, a vertex
can read the state of all its neighbors, and update its own state;

2. Shared register model [DIM93]: in one atomic step, a vertex can read the state
of one of its neighbors, or update its own state, but not both simultaneously;

3. Message passing model [Tel10]: this is the classical model for distributed sys-
tems for which in one atomic step, a vertex sends a message to one of its
neighbors, or receives a message from one of its neighbors, but not both si-
multaneously.

In this thesis, we use only the message passing model in Part II and the state
model in Parts III and IV. We formally describe them in the following of this section.
First, we provide a generic model for distributed system in Section 2.3.1 that needs
some supplementary definitions to describe both models (see respectively Sections
2.3.2 and 2.3.3).

2.3.1 Generic Model

This section presents a generic computational model for distributed systems.
Once this generic computational model defined, we can instantiate an actual com-
putational model by providing a few ad-hoc definitions.

Distributed Protocol Given the communication graph that describes the com-
munication capacities of the distributed system, the state of this communication
graph (values of variables, registers, communication links...) at a given time is a
configuration. The actual definition of a configuration depends on the chosen com-
putational model. Each variable, register, communication link, etc. of the system
is called a member. Each member of the system is attached to several vertices that
have the ability to modify the value of this member. We denote by M the set of
members of the whole system. The set of configurations of g is denoted by Γ. For
any configuration γ ∈ Γ and any member µ ∈M , γ(µ) denotes the value of µ in γ.

An action α of g transitions the graph from one configuration to another. The set
of actions of g is denoted by Ã (Ã = Γ2). Depending on the chosen computational
model, there exists some constraints on actions allowed by the computational model
(maximal number of modifications of variables by a vertex, operations on registers or
communication links...). We denote the set of allowed actions by the computational

14 Chapter 2. Model

model by A. A constraint shared by any computational model is the following: any
action modifies the configuration of the system. In other words, A ⊆ Ã \{(γ, γ)|γ ∈
Γ}.

A distributed protocol π on g is defined as a subset of A that gathers all actions of
g allowed by π. The set of distributed protocols on g is denoted by Π (Π = P (A) 1).

Execution Given a communication graph g, a distributed protocol π on g, an
execution σ of π on g starting from a given configuration γ0 is a maximal sequence
of actions of π of the following form σ = (γ0, γ1)(γ1, γ2)(γ2, γ3) An execution is
maximal if it is either infinite or finite but, in this last case, the last configuration
of the execution is terminal (that is, there exists no actions of π starting from this
configuration). The set of all executions of π on g starting from all configurations
of Γ is denoted by Σπ. The set of all executions of all distributed protocols on g

starting from all configurations of Γ is denoted by ΣΠ (ΣΠ = {Σπ|π ∈ Π}).

Daemon The asynchronism of executions is captured by an abstraction called
daemon (this abstraction was introduced by [Dij74]). Intuitively, a daemon restricts
executions of distributed protocols to a set of executions that share some given
properties. Formal definition follows.

Definition 2.1
Given a communication graph g, a daemon d on g is a function that associates
to each distributed protocol π on g a subset of executions of π.

d : Π −→ P (ΣΠ)

π 7−→ d(π) ∈ P (Σπ)

The set of all daemons on g is denoted by D.

Hence, the daemon allows us to define some restrictions on the scheduling of
executions as we consider only a subset of executions as allowed by the daemon.
That is, we assume that possible executions of the distributed system are only those
defined by the daemon. More formally,

Definition 2.2
Given a communication graph g, a daemon d on g and a distributed protocol π
on g, an execution σ of π (σ ∈ Σπ) is allowed by d if and only if σ ∈ d(π).

Definition 2.3
Given a communication graph g, a daemon d on g and a distributed protocol π
on g, we say that π runs on g under d if we consider that only possible executions
of π on g are those allowed by d.

1. where, for any set S, P (S) denotes the set of parts of S.

2.3. Models Used in this Thesis 15

Whereas it is possible to define arbitrary daemons, only few of them are in-
teresting in practice. Interesting properties of daemons and classical daemons are
discussed in details in Chapter 3. Two main criteria are usually distinguished:

1. Spatial assumptions: at each action, we can make restrictions on the loca-
tion of vertices chosen by the daemon (e.g. no two neighboring vertices are
simultaneously chosen by a locally central daemon).

2. Temporal assumptions: we can restrict choices of the daemon on the whole
execution (e.g. no vertex can be chosen more than k times between two
consecutive choices of any other vertex by a k-bounded daemon).

Other Notations Given a communication graph g and a distributed protocol π
on g, we introduce the following set of notations.

Each action of g is characterized by the set of vertices that are activated (or
scheduled) during this action, i.e. that modify the value of at least one member
attached to them. The actual definition of the activation depends on the chosen
model. We define the following function:

Act : A −→ P (V)

α 7−→ {v ∈ V |v is activated during α}

A vertex v is enabled by π in a configuration γ if and only if there exists an
action α = (γ, γ′) ∈ π such that v is activated during α.

Each configuration of g is characterized by the set of vertices enabled by π in
this configuration. We define the following function:

Ena : Γ×Π −→ P (V)

(γ, π) 7−→ {v ∈ V |v is enabled by π in γ}

2.3.2 State Model

This section is devoted to the definition of the state model using our generic
model (see Section 2.3.1). Recall that the state model is the classical model for the
self-stabilization area and is a high-atomicity model. Indeed, in each action, any
vertex can read the state of each of its neighboring vertices and modifies its own
state.

Characteristics of the State Model Each vertex of g has a set of variables,
each of them ranges over a fixed domain of values. A state γ(v) of a vertex v is the
vector of values of all variables of v at a given time. An assignment of values to all
variables of the graph is a configuration.

In this model, any action is allowed provided that it effectively modifies the
configuration of the communication graph, that is A = Ã \ {(γ, γ)|γ ∈ Γ}.

A vertex v is activated during an action α = (γ, γ′) if and only if γ(v) 6= γ′(v).

16 Chapter 2. Model

Guarded Representation of Distributed Protocols For the sake of clarity, we
cannot describe distributed protocols by enumerating all their actions. Therefore, we
choose to present distributed protocols using a local description of actions borrowed
from [Dij74]. Each vertex has a local protocol consisting of a set of guarded rules of
the following form:

< label > :: < guard > −→ < action >

where:
– < label > is a name to refer to the rule in the text.
– < guard > is a predicate that involves variables of the vertex and of its neigh-

bors. This predicate is true if and only if the vertex is enabled in the current
configuration. We say that a rule is enabled in a configuration when its guard
is evaluated to true in this configuration.

– < action > is a set of instructions modifying the state of the vertex. This set
of instructions must describe the changes of the vertex state if this latter is
activated by the daemon.

2.3.3 Message Passing Model

In this section, we define the message passing model using our generic model
(see Section 2.3.1). The message passing model is a low-atomicity model. Indeed,
in each atomic action any vertex can only execute an internal instruction and one
communication operation (namely send or receive a message) with respect to only
one neighbor.

This model is more realistic than the state model since actual distributed systems
exchange information by message passing. There exists several variants of this model
according to assumptions on communication channels properties (see e.g. [Lyn96]).
Main common assumptions follow.

1. the communication channels are either synchronous (their delivery time is
bounded) or asynchronous (their delivery time is not bounded);

2. the communication channels are reliable (each sent message is delivered) or
not;

3. the capacity of each communication channel (the number of distinct messages
that the channel can contain) is either unbounded or bounded; and

4. the communication channels are FIFO (First In-First Out: the delivery order
of messages is identical to the sending order) or not.

In this thesis, we consider a message passing model in which:

1. the communication channels are asynchronous (their delivery time cannot be
bounded);

2. the communication channels are not reliable but are fair (a message that is
infinitely often sent is infinitely often delivered);

2.3. Models Used in this Thesis 17

3. the capacity of each communication channel is bounded by an integer c (each
communication channel may contain up to c messages), we assume that the
capacity c is known to the protocol and is fixed over time and that the sending
of a message through a full communication channel leads to the loose of an
arbitrary message; and

4. the communication channels are non-FIFO. That is, the order of delivery of
messages is independent from the order of sending.

In the following of this section, we only provide the description of the message
passing model used in this thesis with our generic model (the derivation to any other
message passing model is straightforward).

Characteristics of the Message Passing Model Each vertex of g has a set of
variables, each of them ranges over a fixed domain of values. Moreover, each vertex
has a program counter that indicates the next instruction to execute. A state γ(v)

of a vertex v is the vector of values of all variables and of the program counter of v
at a given time. Each edge e = {u, v} of g has 4 c-sets of messages where c is an
integer (rather than a queue in order to reflect the non-FIFO property), namely −→uv
(that stores messages sent by u to v), ←−uv (that stores acknowledgments sent by v to
u), −→vu (that stores messages sent by v to u), and ←−vu (that stores acknowledgments
sent by u to v). Acknowledgments are a particular class of messages that are used
to confirm the reception of a given message to the sender. Each acknowledgment
contains a copy of the original message in order to track the message that causes its
sending. A state γ(e) of an edge e is the vector of values of all m-sets of e at a given
time. An assignment of values to all variables of vertices and all c-sets of edges of
the graph is a configuration.

An action is allowed by the message passing model if and only if, during this
action, each vertex v modifies its state and executes only one of the following com-
munication operation:
send(m,s): (where m is an arbitrary message and s ∈ {−→vu,←−uv}) that places the

message m in the c-set s. That is, s is replaced by s ∪ {m} (if the obtained
union does not respect the bound |s∪ {m}| ≤ c, then an arbitrary message in
the obtained union is deleted).

receive(m,s): (where m is a variable of v that can contain an arbitrary message
and s ∈ {−→uv,←−vu}) that removes an arbitrary message from the c-set s and
copies it on m (if the c-set s is empty then the function returns ⊥, the null
message).

A vertex v is activated during an action α = (γ, γ′) if and only if γ(v) 6= γ′(v)

or v executes a communication operation during α.

Representation of Distributed Protocols As in the state model, we cannot
provide a full description of a distributed protocol by enumerating all actions that
compose it. We choose to provide a local description of distributed protocols using
a classical pseudo-code.

18 Chapter 2. Model

2.4 Fault Taxonomy

When the number of components in a distributed system increases, the possibil-
ity that some of them fail also increases. In other words, the probability of failure
in a large-scale distributed system cannot be ignored. In the same way, we cannot
ignore failures in distributed systems like sensor networks (since components have
limited energy, are deployed in dangerous environments...). Distributed systems
may also encounter attacks, viruses, etc.. A fault is the consequence of a failure or
of any undesirable event on the distributed system. For example, a vertex stops to
operate (crash fault) due to a power failure.

As many works interest in fault-tolerance in distributed systems, there exists
several models of faults (see e.g. [Lyn96, Dol00, Tel10, AW04, GR06, ADGF+07,
Tix09, Ray10, Ray00]). However, it is generally admitted to classify faults according
to several criteria that we describe in the following.

Nature: Faults are characterized by the kind of perturbation they introduce in the
distributed system. For example, a crash fault leads affected components to
stop their execution, a Byzantine fault induces an arbitrary (and potentially
malicious) behavior while de-sequencing faults arbitrarily re-order messages
in a communication channel. Note that there exists many classes of faults for
describing any undesirable behavior of a distributed system.

Duration: We can distinguish faults by their duration. A fault can be permanent
(of infinite duration), transient (of finite duration), or intermittent (affected
components are successively faulty and correct).

Span: This third characteristic focuses on the number of components affected by
the fault.

Note that, unlike works on dependability (see e.g. [ALRL04]), we do not consider
what caused the fault (failure, hacking, bug, cosmic radiation,...) but only its impact
on the distributed system behavior (memory corruption, erroneous execution,...).

The aim of this section is to formally define a taxonomy for faults in our generic
computational model (see Section 2.3.1) that allows to describe this informal classi-
fication. We first provide a formal definition of a fault and a possible classification
for them (see Section 2.4.1). Then, we define a fault pattern as a set of faults that
describe all possible faulty behaviors in an execution. This is sufficient to formally
define all fault models considered in this thesis (see Section 2.4.2).

2.4.1 Faults

In this section, we define formally a fault in our generic model of distributed sys-
tem (see Section 2.3.1). Then, we provide illustrations of our definition by modeling
classical faults as transient faults, permanent faults, Byzantine faults,...

Definition Intuitively, a fault is a portion of execution (finite or not) in which
a subset of vertices executes only actions that do not belong to the protocol (in

2.4. Fault Taxonomy 19

A
∣∣
Vf

Ã
∣∣
Vf

π
∣∣
Vf πf

Figure 2.2: Illustration of Definition 2.5.

some cases, these actions may be not allowed by the model as a message lost in
the message passing model). For example, a Byzantine fault may allow any actions
while a crash fault allows only void actions (that is, actions that do not modify the
state of affected components) that are normally not allowed by the computational
model. This modeling of faults by actions is borrowed from [KA98]. A fault is hence
characterized by its bounds (in time and in space) and by a set of actions that are
executed during this fault.

Before stating the formal definition of a fault, we need to introduce a tool called
projection. The projection of an action on a communication subgraph induced by
V ′ ⊆ V is the action of this communication subgraph that modifies only members
of the communication subgraph in the same way as the original action.

Definition 2.4 (Projection)
Given a communication graph g, a configuration γ ∈ Γ of g, an action α =

(γ, γ′) ∈ Ã of g, a set of actions S ∈ P (Ã), an execution σ = α0α1 . . . of a
distributed protocol π on g, and a subset V ′ ⊆ V that induces the communication
subgraph g′ of g,

– the projection of γ on V ′ denoted by γ
∣∣
V ′

is the configuration of g′ such
that for any µ ∈M ′, we have γ

∣∣
V ′

(µ) = γ(µ) where M ′ denotes the set of
members of g′.

– the projection of α on V ′ denoted by α
∣∣
V ′

is the action of g′ defined by
α
∣∣
V ′

= (γ
∣∣
V ′
, γ′
∣∣
V ′

).
– the projection of S on V ′ denoted by S

∣∣
V ′

is the set of actions of g′ defined
by S

∣∣
V ′

= {α
∣∣
V ′
|α ∈ S}.

– the projection of σ on V ′ denoted by σ
∣∣
V ′

is the execution of g′ defined by
σ
∣∣
V ′

= α0

∣∣
V ′
α1

∣∣
V ′
. . ..

Definition 2.5 (Fault)
Given a communication graph g and a distributed protocol π on g, a fault f
is a quadruplet (Vf , bf , ef , πf) where Vf ⊆ V is the span of f , bf ∈ N is the
beginning point of f , ef ∈ {bf + 1, bf + 2, . . .} ∪ {∞} is the end point of f , and
πf ∈ P ((Ã \ π)

∣∣
Vf

) is the behavior of f .

20 Chapter 2. Model

Figure 2.2 illustrates the definition of the behavior of a fault: πf is a subset of
actions of the communication subgraph induced by Vf that has no intersection with
the projection of the distributed protocol. Note that some actions not allowed by
the computational model may belong to πf .

We say that a fault f = (Vf , bf , ef , πf) affects an execution σ = (γ0, γ1)(γ1, γ2) . . .

(or that the execution σ is subject to the fault f) if vertices of Vf exhibit the be-
havior πf in the portion of execution delimited by γbf and γef (that is, vertices of
Vf execute actions of πf only during this portion of execution while other vertices
executes always actions of the protocol).

Definition 2.6 (Execution subject to a fault)
Given a communication graph g, an execution σ = (γ0, γ1)(γ1, γ2) . . . of a dis-
tributed protocol π is subject to a fault f = (Vf , bf , ef , πf) if:

∀i ∈ N,

i < bf ⇒ (γi, γi+1) ∈ π
bf ≤ i < ef ∧ (∃v /∈ Vf , v ∈ Act(γi, γi+1))⇒ (γi, γi+1)

∣∣
V \Vf

∈ π
∣∣
V \Vf

bf ≤ i < ef ∧ (∃v ∈ Vf , v ∈ Act(γi, γi+1))⇒ (γi, γi+1)
∣∣
Vf
∈ πf

i ≥ ef ⇒ (γi, γi+1) ∈ π

Modeling of classical faults As we already stated, there exists some classical
criteria to distinguish faults from each other. In the following, we describe them
using our fault model. The first one is localization in time. Usually, two kinds
of faults are distinguished. Transient faults are faults of finite duration whereas
permanent faults have infinite duration. With our model of faults, given a fault
f = (Vf , bf , ef , πf), we have:

– f is transient if and only if ef 6=∞.
– f is permanent if and only if ef =∞.
Secondly, we can characterize faults by their span, that is the number and the

location of vertices that are affected. For example, a fault is global if the whole
system is affected and is local if only one vertex is affected. With our model of
faults, given a fault f = (Vf , bf , ef , πf), we have:

– f is local if and only if |Vf | = 1.
– f is global if and only if Vf = V .
A third criterion is the nature of the fault, that is the behavior of faulty vertices.

Two classical examples are crash faults in which affected vertices simply stops to
execute actions and Byzantine faults in which affected vertices can exhibit an arbi-
trary behavior (this kind of faults can obviously cause the most harm). With our
model of faults, given a fault f = (Vf , bf , ef , πf), we have:

– f is a crash fault if πf = {(γ, γ)
∣∣
Vf
|γ ∈ Γ}.

– f is a Byzantine fault if πf = (Ã \ π)
∣∣
Vf
.

2.4. Fault Taxonomy 21

Other examples This model of faults allows us to describe any fault. For ex-
ample, in the message passing model, an omission fault (that is, a fault in which
a vertex “forgot” to execute some action) can be described by a set of actions that
corrupt the program counter without modifying other variables. Messages looses
are described by a set of actions that delete messages in channels whereas no vertex
executes the receive communication operation.

2.4.2 Fault Patterns

In the previous section, we define the notion of fault but we do not consider
executions that may be subject to several faults (see Section 2.4.1). This is the
goal of this section. We first define a fault pattern as a set of faults that affects
simultaneously an execution and we provide examples of classical fault patterns.

Definition A fault pattern is simply a set of faults. Note that we add no con-
straints on this definition in order to keep the possibility to describe any set of faults
by a fault pattern.

Definition 2.7 (Fault pattern)
Given a communication graph g, a fault pattern FP is a set of fault FP =

{f1, f2, . . .}.

Intuitively, an execution is subject to a fault pattern if this execution is simul-
taneously subject to all faults of the fault pattern. In order to define formally this
notion, we must first define the behavior of a system simultaneously subject to sev-
eral faults. We provide an operator to describe this behavior given the behavior of
each fault of the fault pattern.

Given two actions α1 = (γ, γ1) and α2 = (γ, γ2), we define a merged action of
α1 and α2 as the action α1 itself, the action α2 itself, or an action corresponding to
the simultaneous execution of α1 and α2. Note that, in the last case, this merged
action is not unique since it may exists some conflicts between α1 and α2 (that is,
both actions may modify the same member in two different ways). In this case, the
value of each member of the resulting configuration of the merged action:

– is equal to its value in γ if neither α1 nor α2 modify this member,
– is equal to its value in γ1 if only α1 modifies this member,
– is equal to its value in γ2 if only α2 modifies this member, and
– is equal to its value in γ1 or in γ2 if both actions modifies this member.

Finally, given two actions α1 = (γ1, γ
′
1) and α2 = (γ2, γ

′
2) with γ1 6= γ2, we define a

merged action of α1 and α2 as the action α1 itself or the action α2 itself only.
The formal statement of this definition follows.

Definition 2.8 (Merged actions)

Given a communication graph g and two actions of g α1 = (γ1, γ
′
1) ∈ Ã and

α2 = (γ2, γ
′
2) ∈ Ã, the set of merged actions of α1 and α2 denoted by α1 ⊗ α2 is

22 Chapter 2. Model

��������

��������
��������

��������
��������

��������
��������

��������

��������

��������
��������

��������

��������

��������

γ1 γ2

γ

γ3 γ4 γ5 γ6

1 1

1

1

2 3

4

1

2

5

6

1

2

2

2

2

2

2 2

23

4

3

6

5

4

5

6

O�

??� ^

α1 α2

α3

α4 α5

α6

Figure 2.3: Given two actions α1 and α2, we have α1⊗α2 = {α1, α2, α3, α4, α5, α6}
(each number represents the value of a member of the system).

defined by:

α1⊗α2 =

{α1,α2} if γ1 6= γ2

{α1,α2}
⋃

{α = (γ, γ′)|∀µ ∈M,

(γ′1(µ) = γ(µ) ∧ γ′2(µ) = γ(µ)⇒ γ′(µ) = γ(µ))

∧(γ′1(µ) = γ(µ) ∧ γ′2(µ) 6= γ(µ)⇒ γ′(µ) = γ′2(µ))

∧(γ′1(µ) 6= γ(µ) ∧ γ′2(µ) = γ(µ)⇒ γ′(µ) = γ′1(µ))

∧(γ′1(µ) 6= γ(µ) ∧ γ′2(µ) 6= γ(µ)⇒ γ′(µ) = γ′1(µ) ∨ γ′(µ) = γ′2(µ))}
if γ1 = γ2 = γ

Figure 2.3 provides an illustration of this definition. Given the two actions α1

and α2 depicted by the figure, we obtain the set of merged actions of α1 and α2

by the following way. Each action of this set is either α1, α2, or a merged action
in which each member is modified as by α1 or by α2. For example, the two left
members of γ3 to γ6 are modified to 2 since each of them is modified only by α1

or only by α2 while right members are modified in two different ways by these two
actions (that leads to 4 different merged actions).

2.4. Fault Taxonomy 23

-

6

time

vertex

-

6

time

vertex

f1

f2

f3

f ′1

f ′2

f ′3

f ′4

Figure 2.4: Fault patterns FP = {f1, f2, f3} and FP ′ = {f ′1, f ′2, f ′3, f ′4} describe the
same set of faults if all considered faults have the same behavior.

We can now define the behavior of a system subject to several faults as the
merged set of actions of the behavior of each fault. Given two sets of actions S1 and
S2, the merged set of actions of S1 and S2 is the union of merged actions of each
action of S1 with each action of S2.

Definition 2.9 (Merged set of actions)

Given a communication graph g and two sets of actions of g S1 ∈ P (Ã) and
S2 ∈ P (Ã), the merged set of actions of S1 and S2 denoted by S1⊗S2 is defined
by:

S1 ⊗ S2 =
⋃

α1∈S1
α2∈S2

α1 ⊗ α2

Before stating the formal definition of an execution subject to a fault pattern,
we need to introduce some notations.

For any fault pattern FP , we define the following set of fault patterns:

∀i ∈ N, FP (i) = {f ∈ FP |bf ≤ i < ef}

Intuitively, FP (i) denotes the set of faults that are active at time i (i.e. that begins
before i and that finishes after i).

We define the following notations:

∀i ∈ N, VFP (i)=
⋃

f∈FPi

Vf

∀i ∈ N, πFP (i)=
⊗

f∈FPi

πf

Intuitively, VFP (i) denotes the set of faulty vertices at time i and πFP (i) denotes the
behavior of active faults at time i. We say that a vertex v is correct at configuration
γi if v /∈ VFP (i).

We can now formally define an execution subject to a fault pattern. Each action
of such an execution is:

24 Chapter 2. Model

– either an action of the protocol if there is no active fault during this action in
the fault pattern,

– or an action of the merged set of actions of faulty behavior for the communi-
cation subgraph induced by faulty vertices and an action of the protocol for
the communication subgraph induced by non-faulty vertices otherwise.

Definition 2.10 (Execution subject to a fault pattern)
Given a communication graph g, an execution σ = (γ0, γ1)(γ1, γ2) . . . of a dis-
tributed protocol π is subject to a fault pattern FP if:

∀i ∈ N,

FP (i) = ∅
⇒ (γi, γi+1) ∈ π

FP (i) 6= ∅∧∃v ∈ V \ VFP (i), v ∈ Act(γi, γi+1)

⇒ (γi, γi+1)
∣∣
V \VFP (i)

∈ π
∣∣
V \VFP (i)

FP (i) 6= ∅∧∃v ∈ VFP (i), v ∈ Act(γi, γi+1)

⇒ (γi, γi+1)
∣∣
VFP (i)

∈ πFP (i)

Observations on fault patterns The generality of our definition of a fault pat-
tern allows us to describe any abnormal behavior of a distributed system but we
can make some observations about our definitions.

First, note that the description of a set of faults by a fault pattern is not unique.
Indeed, two fault patterns can describe the same set of faults and be different (see
example of Figure 2.4).

On the other hand, that implies that, given an execution subject to an unknown
fault pattern, there exists several fault patterns that may produce this execution.
For example, we cannot distinguish, as external observers, the following situations:
a vertex is faulty but not activated and a vertex is not faulty but no activated.

In our case, such ambiguities introduced by the definition of fault patterns is
not a drawback since our goal is to design distributed protocols tolerant to a class
of fault patterns (that share some common characteristics) and not to a given and
predefined fault pattern.

Modeling of classical fault patterns We illustrate our definition of fault pat-
tern by providing the modeling of some classical fault model.

A fault pattern is transient if it contains only transient faults that end before
a given point of the execution. More precisely, a fault pattern FP is a k-transient
fault pattern if and only if:

∀f ∈ FP, ef ≤ k

A fault pattern is a permanent crash fault pattern if there are only permanent
crash faults that affect at most a given number of vertices and that begin after a
given point of the execution. In other words, a fault pattern FP is a (t, `)-permanent

2.4. Fault Taxonomy 25

crash fault pattern if and only:{
∀i ∈ N,

∣∣VFP (i)

∣∣ ≤ t
∀f ∈ FP, bf ≥ ` ∧ ef =∞∧ πf = {(γ, γ)

∣∣
Vf
|γ ∈ Γ}

In a similar way, we can define a permanent Byzantine fault pattern as a fault
pattern where there are only Byzantine faults that affect at most a given number
of vertices and that begin after a given point of the execution. Formally, a fault
pattern FP is a (t, `)-permanent Byzantine fault pattern if and only if:{

∀i ∈ N,
∣∣VFP (i)

∣∣ ≤ t
∀f ∈ FP, bf ≥ ` ∧ ef =∞∧ πf = (Ã \ π)

∣∣
Vf

A fault pattern is intermittent if affected vertices are infinitely often strike by
faults of the fault pattern after a given point of the execution (note that permanent
fault patterns are a particular case of intermittent fault patterns). A fault pattern
FP is a (t, `)-intermittent Byzantine fault pattern if and only if:

∃V ′ ⊆ V, |V ′| ≤ t ∧ ∀i ∈ N,

{
VFP (i) ⊆ V ′

∀v ∈ VFP (i), ∃j > i, v ∈ VFP (j)

∀f ∈ FP, bf ≥ ` ∧ πf = (Ã \ π)
∣∣
Vf

Composite fault patterns The aim of this thesis is to study distributed systems
subject to composite fault patterns, that is fault patterns that gather several classical
fault patterns. For example, we study distributed systems simultaneously subject to
a transient fault pattern and a permanent crash fault pattern in Part II and subject
to a transient fault pattern and an intermittent Byzantine fault pattern in Parts III
and IV.

In the following, we provide some definitions of composite fault patterns:
– FP is a (k, t, `)-transient and permanent crash fault pattern if there exists a

partition of FP in FP1 and FP2 such that FP1 is a k-transient fault pattern
and FP2 is a (t, `)-permanent crash fault pattern.

– FP is a (k, t, `)-transient and permanent Byzantine fault pattern if there exists
a partition of FP in FP1 and FP2 such that FP1 is a k-transient fault pattern
and FP2 is a (t, `)-permanent Byzantine fault pattern.

– FP is a (k, t, `)-transient and intermittent Byzantine fault pattern if there
exists a partition of FP in FP1 and FP2 such that FP1 is a k-transient fault
pattern and FP2 is a (t, `)-intermittent Byzantine fault pattern.

Conclusion Our set of definitions allows us to describe any possible fault in our
generic computational model. However, the goal of this fault model is to characterize
fault tolerance of distributed protocols. To be useful, a fault-tolerant distributed
protocol must be resilient to a (as large as possible) class of fault patterns rather

26 Chapter 2. Model

than a single fault. Therefore, we introduced a classification of fault patterns to
characterize fault-tolerance properties of distributed protocols. For example, we will
see in Section 4.1 that self-stabilizing distributed protocols tolerate any k-transient
fault pattern.

The goal of this thesis is to study distributed protocols tolerant to any (k, t, `)-
transient and permanent crash fault pattern (Part II) or to any (k, t, `)-transient
and intermittent Byzantine fault pattern (Parts III and IV).

Chapter 3

Taxonomy of Daemons

Time is that quality of nature which keeps events
from happening all at once. Lately it doesn’t
seem to be working.

Anonymous

Contents
3.1 Characterization of Daemons . 30

3.1.1 Distribution . 30
3.1.2 Fairness . 31
3.1.3 Boundedness . 35
3.1.4 Enabledness . 37

3.2 Comparing Daemons . 41
3.2.1 Comparing daemon classes 42
3.2.2 Preserving execution properties 44
3.2.3 The Case of the Synchronous Daemon 48
3.2.4 A map of classical daemons 50

3.3 Daemon Transformers . 51

Daemon (defined in Section 2.3.1) are one of the most central yet less understood
concepts in self-stabilization. Indeed, self-stabilizing protocols have to fight against
two main adversaries that are interdependent. The first adversary is the initial
arbitrary configuration. The second adversary is the amount of asynchrony amongst
vertices. In classical fault-tolerant (e.g. crash fault tolerant) distributed systems,
more asynchrony usually means more impossibilities [FLP85]. In self-stabilization,
more synchrony can also be the source of more impossibilities.

Consider for example the mutual exclusion distributed protocol proposed by
Herman [Her90] and depicted in Figure 3.1. The distributed protocol operates under
the assumption that the communication graph is a unidirectional ring (vertices may
only obtain information from their predecessor on the ring, and send information
on their successor on the ring). Vertices may hold tokens depending on their initial
state, and the goal of the distributed protocol is to ensure that regardless of the
initial configuration, the distributed system converges to a point where a single
token is present and circulates infinitely often thereafter. Informally, the distributed
protocol can be described as follows: whenever a vertex holds a token, it keeps the
token with probability p, and sends the token to its immediate successor on the

28 Chapter 3. Taxonomy of Daemons

A

B

A

B

A

B

Asynchronous
Schedule

Asynchronous
Schedule

Token Empty Space

p
1-p

Asynchronous
Schedule

Mutually Exclusive
Configuration

Figure 3.1: Mutual exclusion vs. asynchronous scheduling

ring with probability 1 − p. If a vertex holding a token receives a token from its
predecessor, the two tokens are merged. This distributed protocol was well studied
assuming synchronous scheduling for all vertices [DHT04, FMP06] and convergence
to a single token configuration is expected in Θ(n2) time units. Now, if vertex
scheduling can be asynchronous, the protocol may not self-stabilize, i.e. there may
exist an initial configuration and a particular schedule that prevent tokens from
merging. Such an example is presented in Figure 3.1: Consider that there exists
two initial token in a ring of size five at positions A and B. The scheduling is as
follows: the vertex at position A is scheduled for execution until it passes its token
(this happens in O(1) expected time), then the vertex at position B is scheduled
for execution until it passes its token (again, this happens in O(1) expected time).
The new configuration is isomorphic to the first one, and the schedule repeats. As
a result, the two initial tokens never merge, and the distributed protocol does not
stabilize.

Another example is the vertex coloring distributed protocol of Potop-Butucaru
and Tixeuil [PBT00] that is depicted in Figure 3.2. This distributed protocol oper-
ates on arbitrary communication graphs under the assumption that no two neigh-
boring vertices are scheduled simultaneously. The distributed protocol colors the
communication graph using deg(g) + 1 colors in a greedy manner (recall that deg(g)

denotes the maximum degree of the communication graph g). Whenever a ver-
tex is scheduled for execution, it checks whether its color conflicts with one of its
neighbors (i.e. it has the same color as at least one neighbor). If so, it takes the
minimal (assuming arbitrary global order on colors) available color to recolor itself.
When the scheduling precludes neighbors to be simultaneously activated, the dis-
tributed protocol converges to a vertex coloring of the communication graph. When
the scheduling is synchronous, the distributed protocol may not stabilize. Consider

29

Symmetric White
Configuration

Symmetric Black
Configuration

Colored Configuration

Synchronous
Schedule

Available colors

Figure 3.2: Vertex coloring vs. synchronous scheduling

the example presented in Figure 3.2: the initial configuration is symmetric white,
that is, all vertices have white color. If all vertices are scheduled for execution in
this context, they all choose the minimal available color (here, black) and the dis-
tributed system reaches a symmetric black configuration. Again, if all vertices are
scheduled for execution in this context, they all choose the minimal available color
(here, white) and the distributed system reaches a symmetric white configuration.
The scheduling repeats and the distributed protocol never stabilizes.

Those two examples are representative of the assumptions made to ensure sta-
bilization of particular distributed protocols. They also show that depending on
the problem to be solved, depending on the distributed protocol used to solve the
problem, the class of scheduling hypotheses made is quite different. It is neverthe-
less appealing yet difficult to relate those two scheduling assumptions in a common
framework (one relates to temporal constraints, while the other relates to spatial
constraints). Literature presenting self-stabilizing distributed protocols typically
abstract scheduling assumptions under the notion of daemon. Intuitively, a dae-
mon is just a predicate on global executions, that could in principle be any possible
predicate. Recall that we already provide the formal definition of daemon in Sec-
tion 2.3.1. If every execution of a particular distributed protocol that satisfies the
daemon’s properties converges to a legitimate configuration, the protocol is self-
stabilizing under this daemon.

This approach has the advantage of clearly separating the distributed protocol
(that is designed to solve a particular problem) and the scheduling assumptions
(that can be seen as an adversary of the distributed protocol, hence the term dae-
mon). However, the problem of comparing possibly unrelated daemons may occur
e.g. when choosing a particular distributed protocol for implementation in a partic-
ular environment (i.e. assuming a particular daemon). One would generally like to
design a distributed protocol for the strongest adversary (that is, the most inclusive

30 Chapter 3. Taxonomy of Daemons

defining predicate), while impossibility results should be given for the weakest ad-
versary (that is, the least inclusive defining predicate). Obviously, checking whether
a particular solution supports a particular environment (that is, the daemon sup-
ported by the solution includes the daemon defining the target environment) or
whether a particular problem is solvable in a particular environment (that is, the
daemon that makes the problem impossible to solve intersects with the daemon
defining the target environment) are important questions to which a self-stabilizing
protocol designer or implementer should be able to answer.

This chapter presents a taxonomy of daemons already used in the self-stabilizing
literature. We review in Section 3.1 the four characteristic traits of daemons existing
in the literature. In Section 3.2, we show how our taxonomy can be used to compare
daemons in particular contexts with a “more powerful” relation, and maps classi-
cal daemons according to their respective power. Section 3.3 reviews algorithms
transformations for turning a daemon into another and depicts the influence of the
transformation with respect to all four characteristic daemon traits. From now, we
consider a distributed system defined by the generic computational model defined
in Section 2.3.1.

3.1 Characterization of Daemons

In this section, we review the four characteristic traits of daemons existing in the
literature, namely distribution (Section 3.1.1), fairness (Section 3.1.2), boundedness
(Section 3.1.3), and enabledness (Section 3.1.4).

3.1.1 Distribution

Constraints about the spatial scheduling of vertices appeared since the seminal
paper of Dijkstra [Dij74], as both the central (a single vertex is scheduled for exe-
cution at any given action) and the distributed (any subset of enabled vertices may
be scheduled for execution at any given action) daemons are presented. Subsequent
literature [DPBT00, KY02, DNT09] enriched the initial model with intermediate
steps. Intuitively a daemon is k-central if no two vertices less than k hops away are
allowed to be simultaneously scheduled. A formal definition follows.

Definition 3.1
Given a communication graph g, a daemon d is k-central if and only if

∃k ∈ N,∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π), ∀i ∈ N,∀(u, v) ∈ V 2,

[u 6= v ∧ u ∈ Act(γi, γi+1) ∧ v ∈ Act(γi, γi+1)]⇒ dist(g, u, v) > k

The set of k-central daemons is denoted by k-C.

In the literature, a 0-central daemon is often called distributed, and a diam(g)-
central daemon is either called central or sequential.

3.1. Characterization of Daemons 31

0-C = D1-C2-C. . .(diam(g)− 1)-Cdiam(g)-C

Figure 3.3: Inclusions of sets of daemons with respect to distribution.

Proposition 3.1
Given a communication graph g, we have:

∀k ∈ {0, . . . , diam(g)− 1}, (k + 1)-C (k-C

Proof : Let g be a communication graph and k ∈ {0, . . . , diam(g)− 1}. We first prove
that (k + 1)-C ⊆ k-C.

Let d be a daemon such that d ∈ (k + 1)-C. Then, by definition, we have:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀i ∈ N,∀(u, v) ∈ V 2,

[u 6= v ∧ u ∈ Act(γi, γi+1) ∧ v ∈ Act(γi, γi+1)]⇒ dist(g, u, v) > k + 1

As we have k < k + 1, we obtain that: ∀(u, v) ∈ V 2, dist(g, u, v) > k + 1 ⇒
dist(g, u, v) > k. As a consequence, we have:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀i ∈ N,∀(u, v) ∈ V 2,

[u 6= v ∧ u ∈ Act(γi, γi+1) ∧ v ∈ Act(γi, γi+1)]⇒ dist(g, u, v) > k

By definition, this implies that d ∈ k-C and shows us that (k + 1)-C ⊆ k-C.
Then, we prove that (k + 1)-C 6= k-C. To reach this goal, it is sufficient to

construct a daemon d such that: d ∈ k-C and d /∈ (k + 1)-C.
Let d be a daemon of k-C that satisfies the following property:

∃π ∈ Π,∃σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∃i ∈ N,∃(u, v) ∈ V 2,

u 6= v ∧ u ∈ Act(γi, γi+1) ∧ v ∈ Act(γi, γi+1) ∧ dist(g, u, v) = k + 1

Note that d exists since the execution σ is not contradictory with the fact that
d ∈ k-C. On the other hand, we can observe that d /∈ (k + 1)-C since the execution
σ cannot satisfy the definition of an execution allowed by a (k+ 1)-central daemon.
This finishes the proof of the proposition.

Figure 3.3 renders Proposition 3.1 graphically.

3.1.2 Fairness

The fairness properties of daemons was not discussed in the seminal paper of
Dijkstra [Dij74], as “executing and action” was tantamount to “using critical section”
in its mutual exclusion schemes. So, only global progress was assumed, i.e. any set

32 Chapter 3. Taxonomy of Daemons

DWFSFGF

Figure 3.4: Inclusions of sets of daemons with respect to fairness.

of enabled vertices could be scheduled for execution. This very weak assumption
was later referred to as an “unfair” daemon [KY97, DPBT00, KY02, DPBT04], since
it may happen that a continuously enabled vertex is never scheduled for execution.
In our taxonomy, this “unfair” property is simply having no assumptions besides
“distributed”. The notion of weak fairness [Kar01, HLCW10] prevent such behaviors,
as it mandates continuously enabled vertices to eventually be scheduled by the
daemon. A formal definition follows.

Definition 3.2
Given a communication graph g, a daemon d is weakly fair if and only if

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ Σπ,

[∃i ∈ N, ∃v ∈ V, (∀j ≥ i, v ∈ Ena(γj , π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))]

⇒ σ /∈ d(π)

A weakly fair daemon is also called a fair daemon. The set of (weakly) fair
daemons is denoted by WF or by F . A daemon which is not fair is called
unfair. The set of unfair daemons is denoted by F̄ (F̄ = D \ F).

For some distributed protocols (including distributed protocols involving Byzan-
tine behaviors [DPBNT10, DPBT11]), weak fairness is not sufficient to guarantee
convergence, and the notion of strong fairness was defined [KC98, Kar01]. Intuitively
a daemon is strongly fair if any vertex that is enabled infinitely often is eventually
scheduled for execution by the daemon. A formal definition follows.

Definition 3.3
Given a communication graph g, a daemon d is strongly fair if and only if

∀π∈ Π, ∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ Σπ,

[∃i ∈ N,∃v ∈ V, (∀j ≥ i,∃k ≥ j, v ∈ Ena(γk, π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))]

⇒ σ /∈ d(π)

The set of strongly fair daemons is denoted by SF .

The strongest notion of fairness (in distributed systems of finite size) is due to
Gouda [Gou01]. In short, a weakly stabilizing protocol (i.e. a protocol such that
from any initial configuration, there exists an execution that leads to a legitimate
configuration, see Section 4.1.1) is in fact self-stabilizing assuming Gouda’s notion of

3.1. Characterization of Daemons 33

fairness. Intuitively, a daemon is Gouda fair if from any configuration that appears
infinitely often in an execution, every action is eventually scheduled for execution.
A formal definition follows.

Definition 3.4
Given a communication graph g, a daemon d is Gouda fair if and only if

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ Σπ, ∀(γ, γ′) ∈ π
[∃i ∈ N, (∀j ≥ i,∃k ≥ j, γk = γ) ∧ (∀j ≥ i, (γj , γj+1) 6= (γ, γ′))]

⇒ σ /∈ d(π)

The set of Gouda fair daemons is denoted by GF .

Proposition 3.2
Given a communication graph g, we have:

GF (SF
SF (WF
WF (D

Proof : Firstly, we prove that GF (SF . We begin by proving that GF ⊆ SF .
Let d be a daemon of GF . Assume that we have π ∈ Π and σ = (γ0, γ1)

(γ1, γ2) . . . ∈ Σπ such that

∃i ∈ N,∃v ∈ V, (∀j ≥ i,∃k ≥ j, v ∈ Ena(γk, π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))

Since π is a finite subset of actions of g, this property implies the following:

∃(γ, γ′) ∈ π,∃i ∈ N, (∀j ≥ i,∃k ≥ j, γk = γ) ∧ (∀j ≥ i, (γj , γj+1) 6= (γ, γ′))

As d ∈ GF , we can deduce that σ /∈ d(π) by definition. Consequently, we have:

∀π∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ Σπ,

[∃i ∈ N,∃v ∈ V, (∀j ≥ i,∃k ≥ j, v ∈ Ena(γk, π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))]

⇒ σ /∈ d(π)

This proves that d ∈ SF and hence that GF ⊆ SF .
It remains to prove that GF 6= SF . It is sufficient to construct a daemon d

such that d ∈ SF and d /∈ GF .
Let g be a communication graph and π be a distributed protocol such that:

∃(γ, γ′, γ′′) ∈ Γ3, (γ, γ′) ∈ π ∧ (γ, γ′′) ∈ π ∧Act(γ, γ′) = Act(γ, γ′′)

Then, it is possible to define a daemon d ∈ SF and an execution σ = (γ0, γ1)

(γ1, γ2) . . . ∈ Σπ such that:

∃i ∈ N, (∀j ≥ i,∃k ≥ j, γk = γ) ∧ (∀j ≥ i, γj = γ ⇒ (γj , γj+1) = (γ, γ′′) 6= (γ, γ′))

34 Chapter 3. Taxonomy of Daemons

We can conclude that d /∈ GF since the execution σ cannot satisfy the definition
of an execution allowed by a Gouda fair daemon. That proves the result (since
d ∈ SF by assumption).

Now, we prove that SF (WF . We first prove that SF ⊆ WF .
Let d be a daemon of SF . Assume that we have π ∈ Π and σ = (γ0, γ1)

(γ1, γ2) . . . ∈ Σπ such that

∃i ∈ N,∃v ∈ V, (∀j ≥ i, v ∈ Ena(γj , π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))

This property implies the following:

∃i ∈ N,∃v ∈ V, (∀j ≥ i,∃k = j, v ∈ Ena(γk, π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))

As d ∈ SF , we can deduce that σ /∈ d(π) by definition. Consequently, we have:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ Σπ,

[∃i ∈ N,∃v ∈ V, (∀j ≥ i, v ∈ Ena(γj , π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))]

⇒ σ /∈ d(π)

This proves that d ∈ WF and hence that SF ⊆ WF .
It remains to prove that SF 6= WF . It is sufficient to construct a daemon d

such that d ∈ WF and d /∈ SF .
Let g be a communication graph, π be a distributed protocol and u, v be two

vertices such that:

∃(γ, γ′) ∈ Γ2,

v ∈ Ena(γ, π) ∧ u ∈ Ena(γ, π) ∧ v /∈ Ena(γ′, π) ∧ u ∈ Ena(γ′, π)

v /∈ Act(γ, γ′) ∧ u ∈ Act(γ, γ′) ∧ v /∈ Act(γ′, γ) ∧ u ∈ Act(γ′, γ)

(γ, γ′) ∈ π ∧ (γ′, γ) ∈ π

Then, it is possible to define a daemon d ∈ WF and an execution σ = (γ0, γ1)

(γ1, γ2) . . . ∈ Σπ such that:

σ ∈ d(π) ∧ (∀p ∈ N, γ2p = γ ∧ γ2p+1 = γ′)

We can observe that σ satisfies the following property:

∃i = 0 ∈ N, [(∀j ≥ i, (∃k ≥ j, v ∈ Ena(γk, π)) ∧ (∃k′ ≥ j, v /∈ Ena(γk′ , π)))∧
(∀j ≥ i, v /∈ Act(γj , γj+1))]

We can conclude that d /∈ SF since the execution σ cannot satisfy the definition
of an execution allowed by a strongly fair daemon. That proves the result (since
d ∈ WF by assumption).

Finally, we prove that WF (D. As the definition implies that WF ⊆ D, it
remains to prove that WF 6= D. It is sufficient to construct a daemon d such that
d ∈ D and d /∈ WF .

Let g be a communication graph and π be a distributed protocol such that there
exists v ∈ V satisfying:

∀(γ, γ′) ∈ π, v ∈ Ena(γ, π)⇒ |Ena(γ, π)| ≥ 2

Then, it is possible to define a daemon d and an execution σ = (γ0, γ1)(γ1, γ2) . . . ∈

3.1. Characterization of Daemons 35

Σπ such that:
∀i ∈ N, v /∈ Act(γi, γi+1) ∧ σ ∈ d(π)

We can conclude that d /∈ WF since the execution σ cannot satisfy the definition
of an execution allowed by a weakly fair daemon. That proves the result (since d ∈ D
by definition).

Figure 3.4 renders Proposition 3.2 graphically. Devismes et al. [DTY08] observe
that in infinite distributed systems, Gouda fairness is not the strongest form of
fairness.

3.1.3 Boundedness

Boundedness was first presented in [BCD95] and later refined in [DPBT00] as
a property achieved by a daemon transformer (see also Section 3.3) and was also
used as a benchmark to evaluate the performance of self-stabilizing distributed pro-
tocols under various kinds of daemons [BDPBM02, BPBJ01]. Intuitively a daemon
is k-bounded if no vertex can be scheduled more than k times between any two
consecutive scheduling of any other vertex. Note that this does not imply that there
exists a bound on the “speed” ratio between any two vertices: in particular if a
vertex is never scheduled in a particular execution, another vertex may be sched-
uled more than k times in the execution sequel without breaking the k-boundedness
constraint. As a matter of fact, a daemon can be both k-bounded and unfair. A
formal definition follows.

Definition 3.5
Given a communication graph g, a daemon d is k-bounded if and only if

∃k ∈ N∗,∀π ∈ Π, ∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀(i, j) ∈ N2,∀v ∈ V,[
[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` < i⇒ v /∈ Act(γ`, γ`+1))]

⇒ ∀u ∈ V \ {v}, |{` ∈ N|` < i ∧ u ∈ Act(γ`, γ`+1)}| ≤ k
]
∧[

[i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)∧
(∀` ∈ N, i < ` < j ⇒ v /∈ Act(γ`, γ`+1))]

⇒ ∀u ∈ V \ {v}, |{` ∈ N|i ≤ ` < j ∧ u ∈ Act(γ`, γ`+1)}| ≤ k
]

The set of k-bounded daemons is denoted by k-B. The set of bounded daemons is
denoted by B (B =

⋃
k∈N∗

k-B). A daemon that is not k-bounded for any k ∈ N∗ is

called unbounded. The set of unbounded daemons is denoted by B̄ (B̄ = D\B).

Proposition 3.3
Given a communication graph g, we have:

∀k ∈ N∗,
{
k-B ((k + 1)-B
k-B (D

36 Chapter 3. Taxonomy of Daemons

1-B 2-B 3-B 4-B . . . D

Figure 3.5: Inclusions of sets of daemons with respect to boundedness.

Proof : Let g be a communication graph and k ∈ N∗. We first prove that k-B ⊆
(k + 1)-B.

Let d be a daemon such that d ∈ k-B. Then, by definition, we have:

∃k ∈ N∗,∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀(i, j) ∈ N2,∀v ∈ V,[
[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` < i⇒ v /∈ Act(γ`, γ`+1))]

⇒ ∀u ∈ V \ {v}, |{` ∈ N|` < i ∧ u ∈ Act(γ`, γ`+1)}| ≤ k
]
∧[

[i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)∧
(∀` ∈ N, i < ` < j ⇒ v /∈ Act(γ`, γ`+1))]

⇒ ∀u ∈ V \ {v}, |{` ∈ N|i ≤ ` < j ∧ u ∈ Act(γ`, γ`+1)}| ≤ k
]

As we have k < k + 1, we obtain that:

∃k ∈ N∗,∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀(i, j) ∈ N2,∀v ∈ V,[
[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` < i⇒ v /∈ Act(γ`, γ`+1))]

⇒ ∀u ∈ V \ {v}, |{` ∈ N|` < i ∧ u ∈ Act(γ`, γ`+1)}| ≤ k + 1
]
∧[

[i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)∧
(∀` ∈ N, i < ` < j ⇒ v /∈ Act(γ`, γ`+1))]

⇒ ∀u ∈ V \ {v}, |{` ∈ N|i ≤ ` < j ∧ u ∈ Act(γ`, γ`+1)}| ≤ k + 1
]

By definition, this implies that d ∈ (k + 1)-B and shows us that k-B ⊆ (k + 1)-B.
Now, we must prove that k-B 6= (k+ 1)-B. To reach this goal, it is sufficient to

construct a daemon d such that: d ∈ (k + 1)-B and d /∈ k-B.
Let d be a daemon of (k + 1)-B which satisfies the following property:

∃π ∈ Π,∃σ =(γ0, γ1)(γ1, γ2) . . . ∈ d(π),∃(i, j) ∈ N2,∃v ∈ V,
i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)

∧(∀` ∈ N, i < ` < j ⇒ v /∈ Act(γ`, γ`+1))

∧(∃u ∈ V \ {v}, |{` ∈ N|i ≤ ` < j ∧ u ∈ Act(γ`, γ`+1)}| = k + 1)

Note that d exists since the execution σ is not contradictory with the fact that
d ∈ (k+ 1)-B. On the other hand, we can observe that d /∈ k-B since the execution
σ cannot satisfy the definition of an execution allowed by a k-bounded daemon.
This finishes the proof of the first property.

Finally, we prove that k-B (D. By definition, we have: k-B ⊆ D, it remains to
prove that k-B 6= D. By the first property, we know that there exists a daemon d
such that d ∈ (k + 1)-B and d /∈ k-B. As (k + 1)-B ⊆ D by definition, we have the
result.

Figure 3.5 renders Proposition 3.3 graphically.

3.1. Characterization of Daemons 37

3.1.4 Enabledness

Enabledness is a characterization of daemon properties that is introduced in
this thesis. It is defined to be related to the intuitive notion that the ratio between
the “speed” of the fastest vertex and that of the slowest vertex is bounded. In
an asynchronous setting where we use configurations and time-independent actions
between configurations, k-enabledness intuitively means that a particular vertex
cannot be enabled more than k times before being activated. A formal definition
follows.

Definition 3.6
Given a communication graph g, a daemon d is k-enabled if and only if

∃k ∈ N, ∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀(i, j) ∈ N2,∀v ∈ V,[
[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` < i⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|` < i ∧ v ∈ Ena(γ`, π)}| ≤ k
]
∧[

[i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)

∧(∀` ∈ N, i < ` < j ⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|i < ` < j ∧ v ∈ Ena(γ`, π)}| ≤ k
]
∧[

[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` > i⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|` > i ∧ v ∈ Ena(γ`, π)}| ≤ k
]

The set of k-enabled daemons is denoted by k-E . The set of daemons of bounded
enabledness is denoted by E (E =

⋃
k∈N

k-E). A daemon that is not k-enabled for

any k ∈ N has an unbounded enabledness. The set of daemons of unbounded
enabledness is denoted by Ē (Ē = D \ E).

Proposition 3.4
Given a communication graph g, we have:

∀k ∈ N,
{
k-E ((k + 1)-E
k-E (D

Proof : Let g be a communication graph and k ∈ N. We first prove that k-E ⊆ (k+1)-E .
Let d be a daemon such that d ∈ k-E . Then, by definition, we have:

∃k ∈ N,∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀(i, j) ∈ N2,∀v ∈ V,[
[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` < i⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|` < i ∧ v ∈ Ena(γ`, π)}| ≤ k
]
∧[

[i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)

∧(∀` ∈ N, i < ` < j ⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|i < ` < j ∧ v ∈ Ena(γ`, π)}| ≤ k
]
∧[

[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` > i⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|` > i ∧ v ∈ Ena(γ`, π)}| ≤ k
]

38 Chapter 3. Taxonomy of Daemons

0-E 1-E 2-E 3-E . . . D

Figure 3.6: Inclusions of sets of daemons with respect to enabledness.

As we have k < k + 1, we obtain that:

∃k ∈ N,∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀(i, j) ∈ N2,∀v ∈ V,[
[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` < i⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|` < i ∧ v ∈ Ena(γ`, π)}| ≤ k + 1
]
∧[

[i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)

∧(∀` ∈ N, i < ` < j ⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|i < ` < j ∧ v ∈ Ena(γ`, π)}| ≤ k + 1
]
∧[

[v ∈ Act(γi, γi+1) ∧ (∀` ∈ N, ` > i⇒ v /∈ Act(γ`, γ`+1))]

⇒ |{` ∈ N|` > i ∧ v ∈ Ena(γ`, π)}| ≤ k + 1
]

By definition, this implies that d ∈ (k+1)-E and shows us that k-E ⊆ (k+1)-E .
Now, we must prove that k-E 6= (k + 1)-E . To reach this goal, it is sufficient to

construct a daemon d such that: d ∈ (k + 1)-E and d /∈ k-E .
Let d be a daemon of (k + 1)-E which satisfies the following property:

∃π ∈ Π,∃σ =(γ0, γ1)(γ1, γ2) . . . ∈ d(π),∃(i, j) ∈ N2,∃v ∈ V,
i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)

∧(∀` ∈ N, i < ` < j ⇒ v /∈ Act(γ`, γ`+1))

∧|{` ∈ N|i < ` < j ∧ v ∈ Ena(γ`, π)}| = k + 1

Note that d exists since the execution σ is not contradictory with the fact that
d ∈ (k+1)-E . On the other hand, we can observe that d /∈ k-E since the execution σ
cannot satisfy the definition of an execution allowed by a k-enabled daemon. This
finishes the proof of the first property.

Finally, we prove that k-E (D. By definition, we have: k-E ⊆ D, it remains to
prove that k-E 6= D. By the first property, we know that there exists a daemon d
such that d ∈ (k + 1)-E and d /∈ k-E . As (k + 1)-E ⊆ D by definition, we have the
result.

Figure 3.6 renders Proposition 3.4 graphically. Unlike previous characteristic
properties of daemons, enabledness is not completely independent from others. Re-
lationship between enabledness and fairness and boundedness are depicted in the
sequel.

Relationship between fairness and enabledness Daemons with bounded en-
abledness cannot ignore scheduling vertices more than k times, implying that the
overall schedule is at least weakly fair. Nevertheless, the following proposition shows
that the converse is not true (i.e. there exist daemons that are weakly fair but do

3.1. Characterization of Daemons 39

not have bounded enabledness, furthermore these daemons are not strongly fair ei-
ther). There also exist daemons that are strongly fair or Gouda fair, yet do not have
finite enabledness.

Proposition 3.5
For any given communication graph g, the following properties are satisfied:

∀d ∈ D, d ∈ E ⇒ d ∈ WF
∃d ∈ WF \ (E ∪ SF)

∃d ∈ SF \ (E ∪ GF)

∃d ∈ GF \ E

Proof : Let g be a communication graph. Let d be a daemon such that d ∈ E . Then,
there exists k ∈ N such that d ∈ k-E . We are going to prove that d ∈ WF .

Assume that π is a distributed protocol and σ = (γ0, γ1)(γ1, γ2) . . . is an execu-
tion of d(π) satisfying the following property:

∃i ∈ N∗,∃v ∈ V, v ∈ Act(γi−1, γi)∧(∀j ≥ i, v ∈ Ena(γj , π))

∧(∀j ≥ i, v /∈ Act(γj , γj+1))

Then, we have:

[v ∈ Act(γi−1, γi) ∧ (∀` ∈ N,` > i⇒ v /∈ Act(γ`, γ`+1))]

∧|{` ∈ N|` > i ∧ v ∈ Ena(γ`, π)}| =∞ > k

This property is contradictory with σ ∈ d(π) and d ∈ k-E . hence, we deduct
that:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ Σπ,

[∃i ∈ N,∃v ∈ V, (∀j ≥ i, v ∈ Ena(γj , π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))]

⇒ σ /∈ d(π)

That means that d ∈ WF . It follows that: ∀d ∈ D, d ∈ E ⇒ d ∈ WF .
Now, we prove that ∃d ∈ GF \ E . To this goal, consider a daemon d such that

d ∈ GF and a distributed protocol π1 such that:

∃(γ0, γ1, γ2) ∈ Γ3,∃v ∈ V,

(γ0, γ1) ∈ π1 ∧ v ∈ Ena(γ0, π1) ∧ v ∈ Act(γ0, γ1)

(γ1, γ2) ∈ π1 ∧ v ∈ Ena(γ1, π1) ∧ v /∈ Act(γ1, γ2)

(γ2, γ1) ∈ π1 ∧ v ∈ Ena(γ2, π1) ∧ v /∈ Act(γ2, γ1)

Let σ be an execution of d(π1) starting from γ2. Now, we define the following
set of executions of π1 (where the product operator denotes the concatenation of
portions of executions):

∀k ∈ N, σk = (γ0, γ1)(γ1, γ2).
[
(γ2, γ1)(γ1, γ2)

]k
.σ

We can define a daemon d′ in the following way:{
∀π ∈ Π \ {π1}, d′(π) = d(π)

d′(π1) = d(π1) ∪ {σk|k ∈ N}

40 Chapter 3. Taxonomy of Daemons

Then, we can observe that d′ ∈ GF by construction and that, for any k ∈ N, the
execution σk ∈ d′(π1) does not satisfy the definition of k-enabledness. Consequently,
we prove that: d′ ∈ GF \E . If we follow the same reasoning starting from a daemon
d in WF \ SF (respectively in SF \ GF), we prove that d′ ∈ WF \ (E ∪ SF)

(respectively that d′ ∈ SF \ (E ∪ GF)), that ends the proof.

Relationship between boundedness and enabledness As previously men-
tioned, there is not relationship between boundedness and fairness. In this section,
we prove that there is a connexion between (finite) enabledness and (finite) bound-
edness. In particular, if a daemon is both k-enabled and k′-bounded (for some
particular integers k and k′), we have k ≤ (n − 1) × k′ (where n denotes the num-
ber of vertices in the system). However, there exist daemons that are k-enabled
(for some integer k) but do not have finite boundedness, and daemons that are
k′-bounded (for some integer k′) but do not have finite enabledness.

Proposition 3.6
For any given communication graph g, we have:

∀d ∈ D,∀(k, k′) ∈ N× N∗, (d ∈ k-E ∧ d ∈ k′-B)⇒ k ≤ (n− 1)× k′
∀k ∈ N, ∃d ∈ k-E \ B
∀k ∈ N∗, ∃d ∈ k-B \ E

Proof : Firstly, we prove that ∀d ∈ D,∀(k, k′) ∈ N × N∗, (d ∈ k-E ∧ d ∈ k′-B) ⇒ k ≤
(n− 1)× k′. In this goal, consider a daemon d such that d ∈ k-E and d ∈ k′-B for
two given (k, k′) ∈ N× N∗.

As d is k′-bounded, we know by definition that between two consecutive actions
of any vertex v, any vertex u such that u 6= v takes at most k′ actions. This implies
that there exists at most (n − 1) × k′ actions between two consecutive actions of
v (since the daemon must ensure the progress). This implies that, between two
consecutive actions of v, there exists at most (n − 1) × k′ configurations where v
is enabled (without being activated by construction). As we know that d has a
bounded enabledness k, we can deduce that k ≤ (n−1)×k′, that proves the result.

Secondly, we prove that ∀k ∈ N,∃d ∈ k-E \ B. To this goal, consider k ∈ N, a
daemon d such that d ∈ k-E and a distributed protocol π1 such that:

∀` ∈ N∗,∃(γ`+1, γ`, . . . , γ1, γ0) ∈ Γ`+2,

∃v ∈ V,
{
∀i ∈ {0, . . . , `}, (γi+1, γi) ∈ π1
∀i ∈ {0, . . . , `},Act(γi+1, γi) = Ena(γi+1, π1) = V

Let σ be an execution of d(π1) starting from γ0. Now, we define the following
set of executions of π1 (where the product operator denotes the concatenation of
portions of executions):

∀k′ ∈ N∗, σk′ = (γk′+1, γk′)(γk′ , γk′−1) . . . (γ2, γ1)(γ1, γ0).σ

Note that, for any k′ ∈ N∗, the portion of execution (γk′+1, γk′)(γk′ , γk′−1) . . .

(γ2, γ1)(γ1, γ0) is 0-enabled. Hence, any execution of {σk′ |k′ ∈ N∗} is k-enabled.

3.2. Comparing Daemons 41

We can define a daemon d′ in the following way:{
∀π ∈ Π \ {π1}, d′(π) = d(π)

d′(π1) = d(π1) ∪ {σk′ |k′ ∈ N∗}

Then, we can observe that d′ ∈ k-E by construction and that, for any k′ ∈
N∗, the execution σk′ ∈ d′(π1) does not satisfy the definition of k′-boundedness.
Consequently, we prove that: d′ ∈ k-E \

⋃
k′∈N∗

k′-B = k-E \ B.

Finally, we prove that ∀k ∈ N∗,∃d ∈ k-B \ E . To this goal, consider k ∈ N∗, a
daemon d such that d ∈ k-B and a distributed protocol π1 such that:

∃(γ0, γ1, γ2) ∈ Γ3,∃v ∈ V,

(γ0, γ1) ∈ π1 ∧ v ∈ Ena(γ0, π1) ∧Act(γ0, γ1) = {v}
(γ1, γ2) ∈ π1 ∧ v ∈ Ena(γ1, π1) ∧ v /∈ Act(γ1, γ2)

(γ2, γ1) ∈ π1 ∧ v ∈ Ena(γ2, π1) ∧ v /∈ Act(γ2, γ1)

Act(γ1, γ2) = Act(γ2, γ1)

Let σ be an execution of d(π1) starting from γ2. Now, we define the following
set of executions of π1 (where the product operator denotes the concatenation of
portions of executions):

∀k′ ∈ N, σk′ = (γ0, γ1)(γ1, γ2).
[
(γ2, γ1)(γ1, γ2)

]k′
.e

Note that, for any k′ ∈ N, the portion of execution (γ0, γ1)(γ1, γ2).
[
(γ2, γ1)(γ1, γ2)

]k′
is 1-bounded. Hence, any execution of {σk′ |k′ ∈ N} is k-bounded.

We can define a daemon d′ in the following way:{
∀π ∈ Π \ {π1}, d′(π) = d(π)

d′(π1) = d(π1) ∪ {σk′ |k′ ∈ N}

Then, we can observe that d′ ∈ k-B by construction and that, for any k′ ∈
N, the execution σk′ ∈ d′(π1) does not satisfy the definition of k′-enabledness.
Consequently, we prove that: d′ ∈ k-B \

⋃
k′∈N

k′-E = k-B \ E .

3.2 Comparing Daemons
The four main characteristics presented in Section 3.1 provide a convenient way

to define a particular class of daemons: this class simply combines the four charac-
teristic properties. A formal definition follows.

Definition 3.7 (Daemon class)
Given a communication graph g and four sets of daemons

C ∈ {k-C|k ∈ {0, . . . , diam(g)}}
B ∈ {D, k-B|k ∈ N∗} ,

E ∈ {D, k-E|k ∈ N}
F ∈ {D,WF ,SF ,GF}

the class of daemons D(C,B,E, F) is defined by D(C,B,E, F) = C∩B∩E∩F .

42 Chapter 3. Taxonomy of Daemons

3.2.1 Comparing daemon classes

Now, each particular daemon instance d may belongs to several classes (those
which include all possible executions under d). It is convenient to refer to the
minimal class of d as the set of characteristics that strictly define d. A formal
definition follows.

Definition 3.8 (Minimal class)
Given a communication graph g and a daemon d, the minimal class of d is the
class of daemons D(C,B,E, F) such that:{

d ∈ D(C,B,E, F)

∀D(C ′, B′, E′, F ′) (D(C,B,E, F), d /∈ D(C ′, B′, E′, F ′)

In any particular class, the canonical daemon of this class is a representative
element of that class such that for any daemon d in the class, any execution allowed
by d is also allowed by the canonical daemon. Simply put, the canonical daemon
of a class is the largest element of this class with respect to allowed executions. A
formal definition follows.

Definition 3.9 (Canonical Daemon)
For a given communication graph g and a class of daemons D(C,B,E, F), the
canonical daemon d(C,B,E, F) of D(C,B,E, F) is the daemon defined by:{

d(C,B,E, F) ∈ D(C,B,E, F)

∀d ∈ D(C,B,E, F),∀π ∈ Π,∀σ ∈ Σπ, σ ∈ d(π)⇒ σ ∈ d(C,B,E, F)(π)

This way of viewing daemons as a set of possible executions (for a particular
communication graph g) drives a natural “more powerful” relation definition. For
a particular communication graph g, a daemon d is more powerful than another
daemon d′ if all executions allowed by d′ are also allowed by d. Overall, d has more
scheduling choices than d′. A formal definition follows.

Definition 3.10 (More powerful relation)
For a given communication graph g, we define the following binary relation 4
on D:

∀(d, d′) ∈ D, d 4 d′ ⇔ (∀π ∈ Π, d(π) ⊆ d′(π))

If two daemons d and d′ satisfy d 4 d′, we say that d′ is more powerful than d.

As with set inclusions, this “more powerful” relation induces a partial order,
which is formally presented in the sequel.

Proposition 3.7
For any communication graph g, the binary relation 4 is a partial order on D.

3.2. Comparing Daemons 43

Proof : Let g be a communication graph. We are going to prove that the binary
relation 4 is reflexive, antisymmetric and transitive. Then we show that this order
is not total (i.e. that there exists some incomparable elements by 4 in D).

For any daemon d ∈ D, we have ∀π ∈ Π, d(π) ⊆ d(π), that proves that ∀d ∈
D, d 4 d (reflexivity of the binary relation 4).

Let d and d′ be two daemons such that d 4 d′ and d′ 4 d. Then, by definition,
we have:

∀π ∈ Π, d(π) ⊆ d′(π)

∀π ∈ Π, d′(π) ⊆ d(π)

}
⇒ ∀π ∈ Π, d(π) = d′(π)

In other words, we have d = d′ (antisymmetry of the binary relation 4).
Let d, d′ and d′′ be three daemons such that d 4 d′ and d′ 4 d′′. Then, by

definition, we have:

∀π ∈ Π, d(π) ⊆ d′(π)

∀π ∈ Π, d′(π) ⊆ d′′(π)

}
⇒ ∀π ∈ Π, d(π) ⊆ d′′(π)

In other words, we have d 4 d′′ (transitivity of the binary relation 4).
Let d be a daemon, π1 and π2 be two distributed protocols and σ1 and σ2 be

two executions such that:
π1 6= π2
σ1 /∈ d(π1)

σ2 /∈ d(π2)

Then, we can construct two daemons d1 and d2 in the following way:{
∀π ∈ Π \ {π1}, d1(π) = d(π)

d1(π1) = d(π1) ∪ {σ1}
, and

{
∀π ∈ Π \ {π2}, d2(π) = d(π)

d2(π2) = d(π2) ∪ {σ2}

Then, we can deduce that d2(π1) (d1(π1) and d1(π2) (d2(π2), that proves
that d1 and d2 are not comparable using the binary relation 4.

Another natural intuition is that if d is more powerful than d′ and d belong
to a particular daemon class, then d′ also belongs to this class. This is formally
demonstrated in the following.

Proposition 3.8

For a given communication graph g, for any daemons d and d′ and for any class
of daemons D(C,B,E, F), we have:

d′ 4 d

d ∈ D(C,B,E, F)

}
⇒ d′ ∈ D(C,B,E, F)

Proof : Let g be a communication graph, d and d′ be two daemons and D(C,B,E, F)

be a class of daemons such that: d′ 4 d and d ∈ D(C,B,E, F).
Assume that C = k-C with k ∈ {0, . . . , diam(g)}. As d ∈ D(C,B,E, F) =

C ∩B ∩ E ∩ F , we know that d ∈ k-C. By definition, we have:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀i ∈ N,∀(u, v) ∈ V 2,

[u 6= v ∧ u ∈ Act(γi, γi+1) ∧ v ∈ Act(γi, γi+1)]⇒ dist(g, u, v) > k

44 Chapter 3. Taxonomy of Daemons

As d′ 4 d, we know by definition that: ∀π ∈ Π, d′(π) ⊆ d(π). Then, we obtain:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d′(π) ⊆ d(π),∀i ∈ N,∀(u, v) ∈ V 2,

[u 6= v ∧ u ∈ Act(γi, γi+1) ∧ v ∈ Act(γi, γi+1)]⇒ dist(g, u, v) > k

This implies that d′ ∈ k-C = C. We can prove in a similar way that d′ ∈ B,
d′ ∈ E and d′ ∈ F . Consequently, we obtain that d′ ∈ C∩B∩E∩F = D(C,B,E, F),
that proves the result.

3.2.2 Preserving execution properties

Meaningful distributed protocols provide non-trivial properties when operated.
A property can be defined as a predicate on executions, valued with true when the
predicate is satisfied and false otherwise. A distributed protocol satisfies a property
if its every executions satisfy the corresponding predicate. Conversely, a property
is impossible to satisfy if no distributed protocol is such that any of its executions
satisfies the corresponding predicate. Formal definitions follow.

Definition 3.11 (Execution property)
For a given communication graph g, a property of execution p is a function that
associates to each execution a Boolean value.

p : ΣΠ −→ {true, false}
σ 7−→ p(σ) ∈ {true, false}

Definition 3.12 (Property satisfaction)
For a given communication graph g, a distributed protocol π satisfies a property

of execution p under a daemon d (denoted by π
d

|= p) if and only if ∀σ ∈
d(π), p(σ) = true.

Definition 3.13 (Property impossibility)
For a given communication graph g, it is impossible to satisfy a property of
execution p under a daemon d (denoted by d 6|= p) if and only if ∀π ∈ Π, ∃σ ∈
d(π), p(σ) = false.

The “more powerful” meaning that is associated to the 4 relation permits to
intuitively understand the two following theorems. If a property is guaranteed by
a distributed protocol under a daemon d, it is also guaranteed using the same dis-
tributed protocol under any “less powerful” daemon d′ (the executions allowed by d′

are a – possibly strict – subset of those allowed by d). Similarly, if a property cannot
be guaranteed by any distributed protocol under a daemon d, it is also impossible
to guarantee this property under a “more powerful” daemon d′ (the executions that
falsifies the property in those allowed by d are also present in those allowed by d′).
A formal treatment follows.

3.2. Comparing Daemons 45

Theorem 3.1
For a given communication graph g, let p be a property of execution satisfied by
a distributed protocol π under a daemon d. Then,

∀d′ ∈ D, d′ 4 d⇒ π
d′

|= p

Proof : Let g be a communication graph, p be a property of execution satisfied by a
distributed protocol π1 under a daemon d. By definition, we have:

∀σ ∈ d(π1), p(σ) = true

Assume now that d′ is a daemon such that d′ 4 d. By definition, we have:

∀π ∈ Π, d′(π) ⊆ d(π)

Consequently, we have:

∀σ ∈ Σπ1
, σ ∈ d′(π1)⇒ σ ∈ d(π1)⇒ p(σ) = true

By definition, we obtain that: π1
d′

|= p, that proves the theorem.

Theorem 3.2
For a given communication graph g, let p be a property of execution impossible
under a daemon d. Then,

∀d′ ∈ D, d 4 d′ ⇒ d′ 6|= p

Proof : Let g be a communication graph, p be a property of execution impossible under
a daemon d. By definition, we have:

∀π ∈ Π,∃σ ∈ d(π), p(σ) = false

Assume now that d′ is a daemon such that d 4 d′. By definition, we have:

∀π ∈ Π, d(π) ⊆ d′(π)

Consequently, we have:

∀π ∈ Π,∃σ ∈ d(π) ⊆ d′(π), p(σ) = false

By definition, we obtain that: d′ 6|= p, that proves the theorem.

A less obvious result shows that dealing with canonical daemons (rather than
with the classes they represent) is sufficient for comparison purposes. The two
derived corollaries demonstrate that using characteristic daemons is also valid for
proving properties (or lack hereof) executions. This is formalized in the sequel.

46 Chapter 3. Taxonomy of Daemons

Theorem 3.3

For a given communication graph g, let d(C,B,E, F) and d(C ′, B′, E′, F ′) be
two canonical daemons. Then,

d(C,B,E, F) 4 d(C ′, B′, E′, F ′)⇔

C ⊆ C ′
B ⊆ B′
E ⊆ E′
F ⊆ F ′

Proof : We first prove the “⇐” part of the theorem.
Assume that we have a communication graph g and two canonical daemons

d(C,B,E, F) and d(C ′, B′, E′, F ′) such that:
C ⊆ C ′
B ⊆ B′
E ⊆ E′
F ⊆ F ′

We can deduce that C ∩B ∩E ∩F ⊆ C ′ ∩B′ ∩E′ ∩F ′. Then, by the definition
of a class of daemons, we have:

D(C,B,E, F) ⊆ D(C ′, B′, E′, F ′)

By the definition of a canonical daemon, we know that:

d(C,B,E, F) ∈ D(C,B,E, F)

Hence, we have:
d(C,B,E, F) ∈ D(C ′, B′, E′, F ′)

As d(C ′, B′, E′, F ′) is the canonical daemon of the class D(C ′, B′, E′, F ′), we
know by definition that:

∀π ∈ Π,∀σ ∈ Σπ, σ ∈ d(C,B,E, F)(π)⇒ σ ∈ d(C ′, B′, E′, F ′)(π)

In other words,

∀π ∈ Π, d(C,B,E, F)(π) ⊆ d(C ′, B′, E′, F ′)(π)

This means that: d(C,B,E, F) 4 d(C ′, B′, E′, F ′), that ends the first part of
the proof.

Then, we prove the “⇒” part of the theorem.
Assume that we have a communication graph g and two canonical daemons

d(C,B,E, F) and d(C ′, B′, E′, F ′) such that: d(C,B,E, F) 4 d(C ′, B′, E′, F ′).
By definition of the 4 relation, we know that:

∀π ∈ Π, d(C,B,E, F)(π) ⊆ d(C ′, B′, E′, F ′)(π)

Let d be a daemon of D(C,B,E, F). As d(C,B,E, F) is the canonical daemon

3.2. Comparing Daemons 47

of the class of daemons D(C,B,E, F), we know that:

∀π ∈ Π,∀σ ∈ Σπ, σ ∈ d(π) ⇒ σ ∈ d(C,B,E, F)(π)

⇒ σ ∈ d(C ′, B′, E′, F ′)(π)

In other words, we have: ∀π ∈ Π, d(π) ⊆ d(C ′, B′, E′, F ′)(π). By the definition
of the 4 relation, that implies that:

∀d ∈ D(C,B,E, F), d 4 d(C ′, B′, E′, F ′)

As d(C ′, B′, E′, F ′) is the canonical daemon of the class of daemons D(C ′, B′,

E′, F ′), we know that d(C ′, B′, E′, F ′) ∈ D(C ′, B′, E′, F ′) and Proposition 3.8 allow
us to state that:

∀d ∈ D(C,B,E, F), d ∈ D(C ′, B′, E′, F ′)

In other words, C ∩B ∩E ∩F = D(C,B,E, F) ⊆ D(C ′, B′, E′, F ′) = C ′ ∩B′ ∩
E′ ∩ F ′.

Assume by contradiction that C ′ (C. By the properties of boundedness,
enabledness and fairness (see propositions of Section 3), we know that (C \ C ′) ∩
B ∩ E ∩ F 6= ∅. In this way, we know that there exists a daemon d such that
d ∈ C ∩ B ∩ E ∩ F and d /∈ C ′. Then, we can deduce that d /∈ C ′ ∩ B′ ∩ E′ ∩ F ′,
that contradicts C ∩B ∩ E ∩ F ⊆ C ′ ∩B′ ∩ E′ ∩ F ′.

By the same way, we can prove that:
C ⊆ C ′
B ⊆ B′
E ⊆ E′
F ⊆ F ′

This result ends the proof.

Corollary 3.1

For a given communication graph g, let d(C,B,E, F) and d(C ′, B′, E′, F ′) be
two canonical daemons. Then, for any property of execution p satisfied by a
distributed protocol π under d(C,B,E, F), we have:

C ′ ⊆ C
B′ ⊆ B
E′ ⊆ E
F ′ ⊆ F

⇒ π
d(C′,B′,E′,F ′)

|= p

Proof : This result is a direct corollary from Theorems 1 and 3.

Corollary 3.2

For a given communication graph g, let d(C,B,E, F) and d(C ′, B′, E′, F ′) be
two canonical daemons. Then, for any property of execution p impossible under

48 Chapter 3. Taxonomy of Daemons

d(C,B,E, F), we have:

C ⊆ C ′
B ⊆ B′
E ⊆ E′
F ⊆ F ′

⇒ d(C ′, B′, E′, F ′) 6|= p

Proof : This result is a direct corollary from Theorems 2 and 3.

3.2.3 The Case of the Synchronous Daemon

Although we did not describe it in the previous sections, the synchronous dae-
mon plays a very important part in the self-stabilization literature. First introduced
by Herman [Her90] to enable analytical tractability of probabilistic self-stabilizing
distributed protocols, it was later used in a number of works, either to demon-
strate impossibility results (due to initial symmetry [PBT00]) or to enable efficient
solution to existing problems (due to the single execution generated [DHT04]). A
synchronous daemon simply executes every enabled vertex at every action. A formal
definition follows.

Definition 3.14
Given a communication graph g, the synchronous daemon (denoted by sd) is
defined by:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ sd(π),∀i ∈ N, ∀v ∈ V, v ∈ Ena(γi, π)

⇒ v ∈ Act((γi, γi+1))

We first show that there is a connection between enabledness and synchrony.
Indeed the synchronous daemon cannot prevent an enabled vertex from being acti-
vated, even for a single action.

Proposition 3.9
For any given communication graph g, we have: 0-E = {sd}.

Proof : Let g be a communication graph and d be a daemon such that d ∈ 0-E . We
are going to prove that d = sd. By definition, we have:

∃k ∈ N,∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀(i, j) ∈ N2,∀v ∈ V,[
[v ∈ Act(γi, γi+1) ∧ (∀l ∈ N, l < i⇒ v /∈ Act(γl, γl+1))]

⇒ |{l ∈ N|l < i ∧ v ∈ Ena(γl, π)}| = 0
]
∧[

[i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)∧
(∀l ∈ N, i < l < j ⇒ v /∈ Act(γl, γl+1))]

⇒ |{l ∈ N|i < l < j ∧ v ∈ Ena(γl, π)}| = 0
]
∧[

[v ∈ Act(γi, γi+1) ∧ (∀l ∈ N, l > i⇒ v /∈ Act(γl, γl+1))]

⇒ |{l ∈ N|l > i ∧ v ∈ Ena(γl, π)}| = 0
]

3.2. Comparing Daemons 49

In other words, no action (γ, γ′) of any execution of d(π) for any distributed
protocol π can satisfy: ∃v ∈ V, v ∈ Ena(γ, π) ∧ v /∈ Act(γ, γ′). Hence:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀i ∈ N,∀v ∈ V,
v /∈ Ena(γi, π) ∨ v ∈ Act(γi, γi+1)

As v ∈ Act(γi, γi+1) implies that v ∈ Ena(γi, π), this property is equivalent to
the following:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∀i ∈ N,∀v ∈ V,
v ∈ Ena(γi, π)⇒ v ∈ Act(γi, γi+1)

By the definition of the synchronous daemon, this means that d = sd, that ends
the proof.

It may first come to a surprise that boundedness is absolutely not related to
synchrony, but as we pointed out previously, boundedness is also not related to
fairness. The exact characteristics of the synchronous daemon are captured by the
following proposition.

Proposition 3.10
Given a communication graph g, D(0-C,D, 0-E ,SF) is the minimal class of sd.
Moreover, sd = d(0-C,D, 0-E ,SF).

Proof : In a first time, we prove that sd ∈ 0-C \ 1-C. It is obvious that sd ∈ 0-C = D.
By contradiction, assume that sd ∈ 1-C. Let π ∈ Π be a distributed protocol such
that:

∃(γ, γ′) ∈ π,Ena(γ, π) = V

Then, by definition of the synchronous daemon, the first action of any execution
σ = (γ0, γ1)(γ1, γ2) . . . ∈ sd(π) starting from γ0 = γ satisfies: Act(γ0, γ1) = V .
Consequently, σ does not satisfy the property of executions allowed by a 1-central
daemon, that contradicts sd ∈ 1-C and proves the result.

In a second time, we prove that sd ∈ B̄. As it is obvious that sd ∈ D, assume
by contradiction that there exists k ∈ N∗ such that sd ∈ k-B. Then, consider a
distributed protocol π such that:

∃(v, u) ∈ V 2,∃(γ0, . . . , γk+3) ∈ Γk+4,

(γ0, γ1) ∈ π ∧ Ena(γ0, π) = {v}
∀i ∈ {1, . . . , k + 1}, (γi, γi+1) ∈ π
∀i ∈ {1, . . . , k + 1},Ena(γi, π) = {u}
(γk+2, γk+3) ∈ π ∧ Ena(γk+2, π) = {v}
Ena(γk+3, π) = ∅

We can observe that the execution σ defined by σ = (γ0, γ1)(γ1, γ2) . . . (γk+2,

γk+3) satisfies σ ∈ sd(π). But, on the other hand, we have:

∃π ∈ Π,∃σ = (γ0, γ1)(γ1, γ2) . . . ∈ d(π),∃(i = 0, j = k + 2) ∈ N2,∃v ∈ V,
[i < j ∧ v ∈ Act(γi, γi+1) ∧ v ∈ Act(γj , γj+1)∧
(∀l ∈ N, i < l < j ⇒ v /∈ Act(γl, γl+1))]

∧∃u ∈ V \ {v}, |{l ∈ N|i ≤ l < j ∧ u ∈ Act(γl, γl+1)}| = k + 1

50 Chapter 3. Taxonomy of Daemons

By the definition of a k-bounded daemon, this implies that sd /∈ k-B.
In a third time, we prove that sd ∈ 0-E . By Proposition 8, we know that

0-E = {sd}. This implies that sd ∈ 0-E .
In a fourth time, we prove that sd ∈ SF \ GF . We start by proving that

sd ∈ SF . By the definition of the synchronous daemon, we know that:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ Σπ,∀v ∈ V, (∃i ∈ N, v ∈ Ena(γi, π))

⇒ v ∈ Act(γj , γj+1)

Consequently, we have:

∀π ∈ Π,∀σ = (γ0, γ1)(γ1, γ2) . . . ∈ Σπ,

[∃i ∈ N,∃v ∈ V, (∀j ≥ i,∃k ≥ j, v ∈ Ena(γk, π)) ∧ (∀j ≥ i, v /∈ Act(γj , γj+1))]

⇒ σ /∈ sd(π)

By the definition of a strongly fair daemon, this implies that sd ∈ SF . Now,
we prove that sd /∈ GF . Consider a distributed protocol π such that:

∃(γ, γ′, γ′′) ∈ Γ3,

(γ, γ′) ∈ π ∧Act(γ, γ′) (Ena(γ, π)

(γ, γ′′) ∈ π ∧Act(γ, γ′′) = Ena(γ, π)

(γ′′, γ) ∈ π ∧Act(γ′′, γ) = Ena(γ′′, π)

We can construct an execution σ of π starting from γ in the following way:
σ = (γ, γ′′)(γ′′, γ)(γ, γ′′) We can observe that σ ∈ sd(π) (since at each action,
any enabled vertex is activated). Consequently, we have:

∃π ∈ Π,∃σ = (γ0, γ1)(γ1, γ2) . . . ∈ sd(π),∃(γ, γ′) ∈ π,
∃i = 0 ∈ N, (∀j ≥ i,∃k = 2j ≥ j, γk = γ) ∧ (∀j ≥ i, (γj , γj+1) 6= (γ, γ′))

By the definition of a Gouda fair daemon, this implies that sd /∈ GF .
The four previous results imply that D(0-C,D, 0-E ,SF) is the minimal class of

sd. As D(0-C,D, 0-E ,SF) ⊆ 0-E by definition and 0-E = {sd} by Proposition 3.9,
we can deduce that D(0-C,D, 0-E ,SF) = {sd}. Then, the definition of a canonical
daemon implies that sd = d(0-C,D, 0-E ,SF), that ends the proof.

3.2.4 A map of classical daemons

We are now ready to present our map for “classical” daemons (i.e. daemons
most frequently used in the literature). Using our taxonomy, these daemons can be
defined as follows.

Definition 3.15 (Classical daemons)
Given a communication graph g, the classical daemons of the literature are
defined as follows:

– The unfair daemon (denoted by ufd) is d(D,D,D,D).
– The weakly fair daemon (denoted by wfd) is d(D,D,D,WF).
– The strongly fair daemon (denoted by sfd) is d(D,D,D,SF).
– The Gouda fair daemon (denoted by gfd) is d(D,D,D,GF).

3.3. Daemon Transformers 51

ufd

wfd

sfd

gfd

sd

1-ufd

1-wfd

1-sfd

1-gfd

0-ufd

0-wfd

0-sfd

0-gfd

-

? ?

?

?

?

?

?

?

?

��

�

�

��

�

�

Figure 3.7: Relationship between classical daemons (an arrow from a daemon d
to a daemon d′ means that d′ 4 d, note that we remove all arrows obtained by
transitivity).

– The locally central unfair daemon (denoted by 1-ufd) is d(1-C,D,D,D).
– The locally central weakly fair daemon (denoted by 1-wfd) is d(1-C,D,D,
WF).

– The locally central strongly fair daemon (denoted by 1-sfd) is d(1-C,D,D,
SF).

– The locally central Gouda fair daemon (denoted by 1-gfd) is d(1-C,D,D,
GF).

– The central unfair daemon (denoted by 0-ufd) is d(0-C,D,D,D).
– The central weakly fair daemon (denoted by 0-wfd) is d(0-C,D,D,WF).
– The central strongly fair daemon (denoted by 0-sfd) is d(0-C,D,D,SF).
– The central Gouda fair daemon (denoted by 0-gfd) is d(0-C,D,D,GF).

Now, our main theorem (Theorem 3.3) permits to map the relationships between
all classical daemons in the literature is a rather compact format. For any given
communication graph g, Figure 3.7 depicts graphically those relationships.

3.3 Daemon Transformers

As it is easier to write distributed protocols under daemons providing strong
properties (that is, under weak daemons that allow only a limited set of possible
executions, such as a central or a bounded daemon), many authors provide dis-
tributed protocols to simulate the operation of a weak daemon under a strong one.
Such distributed protocols are called daemon transformers. Note that several works
in the area of self-stabilization may be used as daemon transformers although they
were not initially designed with this goal in mind (e.g. a self-stabilizing token circu-
lation distributed protocol that performs under the unfair distributed daemon can
easily be turned into a daemon transformer that provides a central daemon out of
an unfair distributed one).

In the following, we propose a survey of the main daemon transformers that

52 Chapter 3. Taxonomy of Daemons

also preserve the property of self-stabilization. That is, the distributed protocol
transforming the daemon is a self-stabilizing one. Figure 3.8 summarizes this survey
and maps for each daemon transformer the initial daemon and the simulated one.
We restrict ourselves to deterministic daemon transformers in order to be able to
exactly compute the characteristics of the simulated daemon. Note that features of
the emulated daemon (centrality, fairness, boundedness, and enabledness) provided
in the following are satisfied only after the stabilization of the daemon transformer.
In the sequel, we use the notation d 7−→ d′ to denote that a daemon transformer
simulates d′ while operating under d.

Alternator-based daemon transformers. In 1997, Gouda and Haddix [GH97]
introduced the alternator problem. Roughly speaking, the aim is to design a dis-
tributed protocol such that no neighbors are enabled simultaneously yet ensures
that some fairness property holds (namely, between any two actions of a partic-
ular vertex, any of its neighbors may execute at most one action). They claim
that this distributed protocol is useful to simulate a locally central daemon under
a distributed one. Actually, this distributed protocol ensures the following daemon
transformation: ufd 7−→ d(1-C,WF , n2-B, n2-E) and works only on communication
graphs reduced to chains. Johnen et al. [JADT02] later designed an alternator for
any oriented tree but require the initial daemon being weakly fair. In other words,
they provide the following daemon transformer: wfd 7−→ d(1-C,WF , n2-B, n2-E).
Finally, Gouda and Haddix [GH07] provided an alternator for an arbitrary un-
derlying communication graph that provides the following daemon transformation:
wfd 7−→ d(1-C,WF , diam(g)-B, (n × diam(g))-E). This last transformer makes the
following assumption: the graph is identified (that is, every vertex has a unique
identifier) and each vertex knows the cyclic distance of the graph (the cyclic dis-
tance is defined as the number of edges of the longest simple cycle if the graph has
cycles, and two otherwise).

Mutual exclusion-based daemon transformers. The classical mutual exclu-
sion problem requires that no two vertices are simultaneously in critical section
and that every vertex infinitely often enters critical section. In this way, any
self-stabilizing mutual exclusion distributed protocol may be turned into a dae-
mon transformer that provides a central weakly fair daemon. In his seminal work
on self-stabilization [Dij74], Dijkstra proposed a self-stabilizing mutual exclusion
distributed protocol for ring topologies (using a token circulation) under a dis-
tributed unfair daemon. His distributed protocol needs however a distinguished
vertex (that is, one vertex executes a protocol that is different from every other).
Formally, we can derive the following daemon transformation from this distributed
protocol: ufd 7−→ d(diam(g)-C,WF , 1-B, n-E). From this first distributed protocol,
several works later revisited the mutual exclusion problem. From a daemon trans-
formation viewpoint, the most interesting ones follow. Using a token circulation,
Beauquier et al. ([BPBJDL02]) provide a ufd 7−→ d(diam(g)-C,WF , deg+(g)-B, n×

3.3. Daemon Transformers 53

�

I

�

-

-

�]

� ^ j

*Y

�

�

6

d

D,
D,
D,
D

d

k-C,
WF ,⌈
diam(g)

k

⌉
-B,⌈

n−1
k

⌉
-E

d

D,
WF ,
D,
D

d

1-C,
WF ,
diam(g)-B,
n× diam(g)-E

d

diam(g)-C,
WF ,
1-B,
n-E

d

diam(g)-C,
WF ,
deg(g)-B,
2m-E

d

diam(g)-C,
WF ,
deg+(g)-B,
n× deg+(g)-E

d

k-C,
WF ,
D,
deg(g)k-E

d

2-C,
WF ,
m× n2-B,
m× n2-E

d

k-C,
WF ,
O(n2)-B,
O(n2)-E

d

1-C,
D,
D,
D

d

1-C,
WF ,
(n− 1)-B,
n(n−1)

2
-E

d

1-C,
WF ,
n2-B,
n2-E

d

D,
WF ,
k-B,
n× k-E

d

1-C,
WF ,
D,
D

 d

2-C,
SF ,
n× deg(g)2-B,
deg(g)2-E

[BP08]
[Dij74] [BPBJDL02]

[GGH+04]

[GHJT08]

[PBT07]
[BDPBM02][GH97]

[DPBT04]

[BPBJ01]

[DNT09]

[GH07]

[DJPV00] [JADT02]

[Kar01, Kar05]

Figure 3.8: Summary of existing daemon transformers. An arrow from a daemon
to another one means that the related work provides a transformer from the first to
the second.

54 Chapter 3. Taxonomy of Daemons

deg+(g)-E) daemon transformation on oriented communication graph whenever the
communication graph is strongly connected. Still on communication graphs with
a distinguished vertex, Datta et al. [DJPV00] provided a self-stabilizing depth-
first token circulation that perform the following daemon transformation: wfd 7−→
d(diam(g)-C,WF , deg(g)-B, 2m-E). Finally, Datta et al. [DPBT04] improved this
result enabling the same daemon transformation but starting from an unfair dae-
mon (more formally, they achieve the following daemon transformation: ufd 7−→
d(diam(g)-C,WF , deg(g)-B, 2m-E)) and they do not require the existence of a dis-
tinguished vertex.

Local mutual exclusion-based daemon transformers. Local mutual exclu-
sion refines mutual exclusion since it requires the same exclusion and liveness prop-
erties but only within a vicinity around each vertex (and not for the whole commu-
nication graph as for the – global – mutual exclusion problem). In other words, a
k-local mutual exclusion distributed protocol ensures that no two vertices are simul-
taneously in critical section if their distance is less than k and that any vertex enters
infinitely often in critical section. Hence, we can easily design a daemon transformer
providing a weakly fair k-central daemon from such a distributed protocol. Note
that the aforementioned alternator distributed protocols solve a particular instance
of 1-local mutual exclusion.

A classical solution to 1-local mutual exclusion has been proposed by Beauquier
et al. [BDPBM02] using unbounded memory at each vertex. This distributed
protocol ensures the following daemon transformation: ufd 7−→ d(1-C,WF , (n −
1)-B, n(n−1)

2 -E). Using only a bounded memory, Gairing et al. provided [GGH+04] a
2-local mutual exclusion that can be turned into a ufd 7−→ d(2-C,WF ,m×n2-B,m×
n2-E) daemon transformer.

Several works give more general solutions dealing with k-local mutual exclu-
sion for any integer k. For example, Goddart et al. generalize [GHJT08] the
work of Gairing et al. [GGH+04]. Their solution performs the ufd 7−→ d(k-C,WF ,
O(n2)-B, O(n2)-E) daemon transformation. Using a local clock synchronization,
Boulinier and Petit provide [BP08] a wavelets distributed protocol that can be used
for k-local mutual exclusion. In this way, their distributed protocol gives the follow-
ing daemon transformation: ufd 7−→ d(k-C,WF ,

⌈
diam(g)

k

⌉
-B,
⌈
n−1
k

⌉
-E). Danturi et

al. [DNT09] deal with dining philosophers with generic conflicts under a distributed
weakly fair daemon. The main idea is to clearly distinguish the communication
graph from the conflict graph. If we consider that two vertices are in conflict if they
are at distance less than k from each other, this protocol ensures k-local mutual
exclusion. This distributed protocol provides the wfd 7−→ d(k-C,WF ,D, deg(g)k-E)

daemon transformation but requires each vertex to be the root of a tree spanning
its k-neighborhood.

Finally, Potop-Butucaru and Tixeuil introduced in [PBT07] a weaker version of
1-local mutual exclusion by replacing the fairness property by a progress property.
This new problem was called a conflict manager and leads to the ufd 7−→ 1-ufd

3.3. Daemon Transformers 55

daemon transformation. To our knowledge, this daemon transformer is the only one
to perform a transformation according to a single identifier daemon characteristic.

Note that all solutions presented in this paragraph require the communication
graph to be identified.

Other daemon transformers. Even if they transform several characteristics of
daemons (with the notable exception of [PBT07]), all previously mentioned daemon
transformers are designed for transforming only the distribution of daemons. Indeed,
only a few works dealt with transforming other daemon characteristics.

Regarding fairness transformation, Karaata [Kar01] provided a daemon trans-
former to perform strong fairness under weak fairness. More formally, this dis-
tributed protocol is a 1-wfd 7−→ d(2-C,SF , n×deg(g)2-B, deg(g)2-E) daemon trans-
former. This distributed protocol needs the graph to be identified and each vertex to
have an unbounded memory. Karaata later refined [Kar05] the distributed protocol
to perform exactly the same daemon transformation but requiring only an identified
graph.

Using cross-over composition, Beauquier et al.[BPBJ01] gave a generic trans-
former for enabledness. More precisely, they design a ufd 7−→ d(D,WF , k-B, n×k-E)

daemon transformer whenever a transformer that provides k-boundedness is avail-
able.

Chapter 4

Fault Tolerance

Focus on remedies, not faults.

Jack Nicklaus

Contents
4.1 Tolerating Transient Fault Patterns 59

4.1.1 Weakening Self-Stabilization 60
4.1.2 Enhancing Self-Stabilization 61

4.2 Tolerating Composite Fault Patterns 62
4.2.1 Fault-Tolerant Self-Stabilization 62
4.2.2 Byzantine Tolerant Self-Stabilization 63
4.2.3 Strict Stabilization . 64

4.3 Summary . 66

In Chapters 2 and 3, we presented in details our models of distributed systems
and of faults. In particular, we defined a taxonomy of faults that can capture any
incorrect behavior of any component of the distributed system using our concept
of fault pattern (see Section 2.4.2). Now, we are able to present fault-tolerant
distributed protocols. That is, distributed protocols that have the ability to still
behave correctly (in some extent) in spite of the occurrence of faults. Obviously, it
is impossible to provide a distributed protocol that can tolerate any fault pattern
without any incidence on its behavior or its results. Therefore, numerous fault
tolerance schemes have been proposed so far in distributed systems. Each of them
is convenient to tolerate a given class of fault patterns with some properties and
sometimes it is tricky to compare these fault tolerance schemes with each other.

According to [Tix09], we can classify fault tolerance schemes according to their
masking property. A fault tolerance scheme is masking when an external observer
of the distributed system cannot be aware of the occurrence of faults (in other
words, a masking fault tolerant scheme hides the occurrence of faults to the external
observer). In the other hand, a non-masking fault tolerance scheme does not fulfill
this requirement: the external observer may see the effects of faults over a certain
period of time.

Even if a masking solution may appear preferable at the first glance (since it
corresponds to the intuition of fault tolerance), we must consider other aspects of
the problem. Indeed, masking solutions are usually more costly (in time and in
system resources), more difficult to design, and tolerated classes of fault patterns

58 Chapter 4. Fault Tolerance

is often more restricted. Hence, according to the application and to the context, it
is sometimes preferable to use a non-masking fault tolerant scheme. For problems
such as routing, where incorrect behavior for a short period of time does not have
catastrophic consequences, it may be useful to design a light non-masking fault
tolerant distributed protocol. But, at the contrary, one must choose a masking
approach for a critical application (e.g. train traffic control application). Two
major categories of fault tolerance schemes can be distinguished:

Robust distributed protocols: this class of distributed protocols guarantees that
the distributed protocol works correctly in spite of the occurrence of faults.
Note that such distributed protocols perform their properties only if a limited
number of faults of a given nature strike the distributed system. Typically, ro-
bust distributed protocols are masking since correct elements of the distributed
system still behave correctly until faults remain in the tolerated range. Usu-
ally, robust distributed protocols are designed to deal with permanent crash or
Byzantine fault patterns. In the first case, we say that they are fault-tolerant,
in the second they are Byzantine-tolerant.

Self-stabilizing distributed protocols: this class of distributed protocols relies
on the hypothesis that the considered fault patterns are transient (with no
other assumption on nature or span). A distributed protocol is self-stabilizing
[Dij74] if it guarantees that, starting from any arbitrary configuration (that
models the effects of transient faults on the distributed system), any execution
eventually reaches a correct behavior. Typically, a self-stabilizing distributed
protocol is non-masking since the distributed system has an erratic behavior
between the end of transient faults and the stabilization of the system.

In this thesis, we focus mainly on the non-masking fault tolerance approach but
we consider more severe fault model than the one tolerated by self-stabilization.
Indeed, our goal is the design of distributed protocols able to handle any transient
and permanent crash fault pattern or any transient and intermittent Byzantine fault
pattern. Therefore, we focus on self-stabilizing distributed protocols that are more-
over resilient to permanent or intermittent faults. In the following of this chapter,
we survey fault tolerance schemes that allow to deal with such fault patterns.

First, Section 4.1 defines formally self-stabilization and surveys its main variants
existing in the literature. Then, we present self-stabilizing distributed protocols re-
silient to permanent or intermittent faults (see Section 4.2), namely fault-tolerant
and self-stabilizing distributed protocols (see Section 4.2.1), Byzantine-tolerant and
self-stabilizing distributed protocols (see Section 4.2.2), and strictly-stabilizing dis-
tributed protocols (see Section 4.2.3). Finally, we compare these different fault
tolerance schemes in Section 4.3.

Specification In the remainder of this chapter, we assume that we have a dis-
tributed task (a.k.a. problem) to solve. Some classical examples of these distributed
tasks are leader election (the distributed system must agreed on a distinguished ver-
tex in a finite time), token circulation (a particular message must circulate and reach

4.1. Tolerating Transient Fault Patterns 59

infinitely often each vertex), mutual exclusion (all vertices must execute infinitely
often a critical section with the guarantee that no two vertices execute it at the
same time), and so on (see [Tel10] for some other examples).

In order to prove correctness or fault-tolerance of a given distributed protocol
with respect to a task, we need a formal definition of this task. The specification of
a task is a predicate that states if an execution of a distributed protocol is legitimate
with respect to the task (i.e. if this execution is a solution of the task). Note that
a given task may admit several specifications.

4.1 Tolerating Transient Fault Patterns

As mentioned previously, self-stabilization is convenient to tolerate any transient
fault pattern. This section is devoted to the description of this fault tolerance scheme
and its main variants (at the notable exception of those tolerating composite fault
patterns that are described in Section 4.2).

Self-stabilization was defined by Dijkstra in [Dij74]. Intuitively, to be self-
stabilizing, a distributed protocol must satisfy the two following properties:
Closure: there exists some configurations from which any execution of the dis-

tributed protocol satisfies the specification; and
Convergence: starting from any arbitrary configuration, any execution of the dis-

tributed protocol reaches in a finite time a configuration that satisfies the
closure property.

We can use a self-stabilizing distributed protocol to perform fault-tolerance due
to the following observations. At the end of a burst of transient faults, the configu-
ration of the system may be arbitrary (recall that we do not add assumptions on the
nature or the span of the transient faults, hence any vertex may be Byzantine during
the fault and arbitrarily modifies its state). Then, a self-stabilizing distributed pro-
tocol ensures that after a finite time (called the convergence or stabilization time),
the distributed protocol recovers from itself a correct behavior (by convergence prop-
erty) and keeps this correct behavior until there is no faults (by closure property).
In the same situation, a classical (i.e. not fault-tolerant) distributed protocol may
never recover as well as a robust distributed protocol (since the fault may not be
included in its tolerated range). In conclusion, a self-stabilizing distributed protocol
is well-suited for tolerating any transient fault pattern.

We state below the formal definition of self-stabilization that we use in the sequel
of this thesis.

Definition 4.1 (Self-stabilization [Dij74])
A distributed protocol π is self-stabilizing for specification spec if and only if
starting from any arbitrary configuration every execution of π contains a config-
uration from which every execution of π satisfies spec.

The literature related to self-stabilization is too large to do an exhaustive state-
of-the-art ([Her02] lists over 500 papers but stops in referencing self-stabilizing works

60 Chapter 4. Fault Tolerance

in 2002). The interested reader is referred to the book of Dolev [Dol00] or the book
chapter of Tixeuil [Tix09]. Note that there exists few surveys in the self-stabilizing
area with the notable exceptions of a survey from Gärtner about spanning tree
construction [Gär03] and a survey from Guellati and Kheddouci on independence,
domination, coloring, and matching [GK10].

In the following, we quickly present main variants of self-stabilization that are not
related to permanent fault tolerance (these variants are the subject of the following
section). We present first some variants of self-stabilization that exhibits weaker
properties (see Section 4.1.1) and then variants that exhibits stronger properties
(see Section 4.1.2) than self-stabilization. Note that a survey on variants of self-
stabilization is provided by Devismes, Petit, and Villain [DPV11a, DPV11b].

4.1.1 Weakening Self-Stabilization

This section presents a (non-exhaustive) survey on variants that weaken self-
stabilization using different approaches. The main goal of these variants is obviously
to allow to solve a larger class of problem than self-stabilization.

Pseudo-stabilization First, we present pseudo-stabilization introduced by Burns,
Gouda, and Miller in [BGM93]. They remove the guarantee of reaching a config-
uration from which the execution satisfies the specification. Instead, a pseudo-
stabilizing distributed protocol guarantees that every execution has a suffix that
satisfies the specification. Formal statement of this concept follows.

Definition 4.2 (Pseudo-stabilization [BGM93])
A distributed protocol π is pseudo-stabilizing for specification spec if and only
if starting from any arbitrary configuration every execution of π has a suffix
satisfying spec.

The main weakening with respect to self-stabilization is the following: when
a portion of execution satisfies the specification, we have no guarantee that any
subsequent execution satisfies the specification (due to the implicit weakening of
the closure property). However, for an external observer, the execution is eventually
correct that motivates pseudo-stabilization from a practical point of view when self-
stabilization is not possible. For instance, [BGM93] proves that the alternating bit
protocol (see Section 6.1.1) is pseudo-stabilizing.

Probabilistic stabilization Although this thesis focuses only on deterministic
distributed protocols, we quickly discuss probabilistic stabilization. Probabilistic
stabilizing distributed protocols are introduced in [Her90] as distributed protocols
that ensure the convergence property with probability 1. Later, [DPBT04] distin-
guished a strong and a weak variant of probabilistic stabilization. The original
definition of [Her90] corresponds to strong probabilistic stabilization while weak
probabilistic stabilization weakens also the closure property since this latter is only

4.1. Tolerating Transient Fault Patterns 61

probabilistic. For instance, the mutual exclusion distributed protocol provided by
[DHT04] falls in weak probabilistic stabilizing distributed protocols category.

Weak-stabilization Gouda introduced in [Gou01] another weakening of self-stab-
ilization called weak-stabilization. Starting from any arbitrary configuration, a
weakly stabilizing distributed protocol only ensures that there exists at least one
execution that reaches in a finite time a configuration from which any execution sat-
isfies the specification. In other words, weak-stabilization weakens the convergence
property by requiring only the existence of executions that satisfies the convergence
property (and not that each execution satisfies it).

The main result of [Gou01] is to establish that a weakly-stabilizing distributed
protocol is in fact self-stabilizing if we consider a distributed system such that Γ

is finite under a Gouda fair daemon (see Section 3.1.2). Another result related
to weak-stabilization is due to [DTY08]. It proves a strong connection between
weak-stabilization and probabilistic stabilization: a weakly-stabilizing distributed
protocol can be automatically turned into a probabilistic stabilizing one under a
probabilistic daemon (i.e. a distributed daemon whose choices are probabilistic).

4.1.2 Enhancing Self-Stabilization

In this section, we present some of the variants of self-stabilization that exhibit
stronger fault tolerance than self-stabilization (by requiring supplementary proper-
ties). Note that we do not consider here permanent or intermittent fault tolerance
issues since they are described in details in the following section of this chapter.

Snap-stabilization Bui et al. defined snap-stabilization in [BDPV07]. A snap-
stabilizing distributed protocol ensures that, starting from any arbitrary state, any
execution of the distributed protocol satisfies the specification. In other words, a
snap-stabilizing distributed protocol is a self-stabilizing distributed protocol with
a stabilization time of 0. The main interest of snap-stabilization is the stronger
safety properties provided to the user of the distributed system. Snap-stabilization
was essentially studied through the propagation of information with feedback (PIF)
problem [BDPV07], the token circulation problem [PV07], or the message forwarding
problem [CDV09].

Super-stabilization Super-stabilizing distributed protocols have been introduced
by Dolev and Herman in [DH97] as self-stabilizing distributed protocols that more-
over satisfies a safety predicate when a topological change occurs during a legitimate
execution. Note that constraints on topological changes are strong since they cannot
occur during the stabilization phase (in this case, the distributed protocol may never
stabilize). We can generalize this approach by defining classes of self-stabilizing dis-
tributed protocols that moreover satisfies a given predicate (either during or after
the stabilization phase) in spite of the occurrence of new faults (of defined nature,
duration, and/or span). For instance, [JT03] proposes a shortest path spanning tree

62 Chapter 4. Fault Tolerance

construction that ensures moreover a property of route-preservation (intuitively,
once a path is constructed towards a vertex, no message for this vertex can be lost).

Fault-containing self-stabilization With a self-stabilizing distributed protocol,
even a local transient fault may cause corrections in the whole distributed system.
In order to avoid such an undesirable behavior, some works [GGHP07, BDH06]
define a fault-containing self-stabilizing distributed protocol as a distributed protocol
that, in addition to providing self-stabilization, contains the effects of faults. This
ensures that disruption during recovery from faults, is proportional to the extent
of the faults. Note that this notion can be adapted to variants of self-stabilization.
For instance, [DGX11] shows that some weakly-stabilizing distributed protocols of
[DTY08] may be adapted to become fault-containing.

The notion of fault-containment must not be confused with containment of strict-
stabilization (see Section 4.2.3) that assumes arbitrary transient and intermittent
Byzantine fault patterns (recall that a fault-containing self-stabilizing distributed
protocol is unable to tolerate such fault patterns).

4.2 Tolerating Composite Fault Patterns

This section aims to present existing fault tolerance schemes that are able to
deal with composite fault patterns (see Section 2.4.2). Recall that a composite
fault pattern gathers several classical fault patterns. In the following, we focus on
tolerance to transient and permanent crash fault patterns (see Section 4.2.1) and to
transient and intermittent Byzantine fault patterns (see Sections 4.2.2 and 4.2.3).

4.2.1 Fault-Tolerant Self-Stabilization

Fault-tolerant self-stabilization is the most natural way to gather robust and
self-stabilizing distributed protocols properties. Indeed, this fault tolerance scheme
defined simultaneously by [AH93] and by [GP93] ensures that distributed protocols
satisfies closure and convergence properties of Section 4.1 in presence of any arbitrary
transient and permanent crash fault pattern. In other words, a fault-tolerant self-
stabilizing (FTSS for short) distributed protocol recovers a correct behavior in a
finite time after transient faults in spite of crashes of a given proportion of vertices.

We can state the formal definition of fault-tolerant self-stabilization in the fol-
lowing way:

Definition 4.3 (Fault-tolerant self-stabilization [AH93, GP93])
A distributed protocol π is f -fault-tolerant and self-stabilizing (f -ftss for short)
for specification spec if and only if starting from any arbitrary configuration every
execution of π involving at most f crashed vertices contains a configuration from
which every execution of π satisfies spec.

Due to strong fault tolerance properties ensured by FTSS distributed protocols,
there exists numerous impossibility results related to this fault tolerance scheme. For

4.2. Tolerating Composite Fault Patterns 63

example, the seminal work of [AH93] proves the impossibility of the computation
of the size of the communication graph or of the leader election in an asynchronous
environment (it also proposes randomized distributed protocols that fall outside
the scope of this survey). On the other hand, the second work that introduces
FTSS distributed protocols [GP93] proposes a transformer that turns fault-tolerant
distributed protocols into FTSS ones in a synchronous distributed system. This
transformer relies on a strong clock synchronization (see Section 9.1.1) FTSS dis-
tributed protocol. Concerning asynchronous distributed systems, [GP93] provides
a FTSS consensus distributed protocol using a failure detector (abstraction that
induces some extent of synchronism [CT96]).

Other works about FTSS distributed protocols confirm the difficulty to design
deterministic FTSS distributed protocols in fully asynchronous environment. For
instance [BDKM96] proves the impossibility of orienting an uniform ring in such
a context. In contrast, it provides a randomized 1-ftss distributed protocol that
solves this task. Finally, [BKM97b] and [BKM97a] extend some previous results by
showing that it is impossible to provide a similar transformer as the one of [GP93]
in an asynchronous distributed system and that it is impossible to compute the size
of a large class of communication graphs using a FTSS distributed protocol. They
also provide a FTSS distributed protocol for computing the ring size using failure
detectors.

In a similar way that we can provide variants of self-stabilization by weakening
convergence or closure property (see Section 4.1.1), we can define variants of fault-
tolerant self-stabilization. In this avenue of research, Delport-Gallet et al. define
in [DGDF10] the fault-tolerant pseudo-stabilization (FTPS for short) using the key
idea of the pseudo-stabilization. Indeed, they focus on the leader election problem
(that is proved impossible to solve in a FTSS way by [AH93]). Hence, they must
weaken the fault tolerance model to bypass this impossibility result. The formal
definition of fault-tolerant pseudo-stabilization follows.

Definition 4.4 (Fault-tolerant pseudo-stabilization [DGDF10])
A distributed protocol π is f -fault-tolerant and pseudo-stabilizing (f -ftps for
short) for specification spec if and only if starting from any arbitrary config-
uration every execution of π involving at most f crashed vertices has a suffix
satisfying spec.

4.2.2 Byzantine Tolerant Self-Stabilization

Once the fault-tolerant self-stabilization was defined, it was very natural to ex-
tend the definition in order to tolerate intermittent Byzantine faults instead of per-
manent crash faults. We call this new fault tolerance scheme byzantine-tolerant
self-stabilization (BTSS for short). To the best of our knowledge, the first work
dealing with simultaneous tolerance to transient and intermittent Byzantine faults
is [DW95]. It introduces a definition similar to the following.

64 Chapter 4. Fault Tolerance

Definition 4.5 (Byzantine-tolerant self-stabilization [DW95])
A distributed protocol π is f -byzantine-tolerant and self-stabilizing (f -btss for
short) for specification spec if and only if starting from any arbitrary configu-
ration every execution of π involving at most f Byzantine vertices contains a
configuration from which every execution of π satisfies spec.

The seminal work of Dolev and Welch [DW95] (also appearing in [DW04]) fo-
cuses on a variant of weak clock synchronization (see Section 9.1.1) in presence of
any transient and intermittent Byzantine fault pattern. Note that they assume a
complete communication graph. In this context, they provide two randomized n

3 -
btss distributed protocols (the first for synchronous distributed systems, the second
for asynchronous ones). Unfortunately, these two distributed protocols exhibit an
exponential expected convergence time.

Two other interesting results in this context are due to Daliot and Dolev in
[DD05] and [DD06]. Based on a BTSS strong clock synchronization distributed
protocol, [DD05] proposes a transformer that turns a Byzantine-tolerant distributed
protocol into its BTSS equivalent. The obtained distributed protocol requires an
eventually synchronous distributed system. The main idea of the transformer is the
following: at each communication round, vertices executes a Byzantine agreement.
If an inconsistency is discovered, then they execute a reset in the following round.
Also in the eventually synchronous model, [DD06] provides a n

3 -btss agreement
distributed protocol.

Finally, note that the most studied problem in Byzantine-tolerant self-stabilizing
setting was clock synchronization (and some variants), see e.g. [PT97, DW97,
DW04, HDD06, DH07, BODH08]. Section 9.1.2 proposes a survey of these works.

The challenging combination between transient and intermittent Byzantine faults
obviously leads to huge difficulties in developing BTSS distributed protocols. In
particular, we are not aware of the existence of any deterministic BTSS distributed
protocol for asynchronous distributed systems. In the following section, we present
another fault tolerance scheme that allows the design of deterministic distributed
protocols for asynchronous distributed systems resilient to any transient and inter-
mittent Byzantine fault pattern.

4.2.3 Strict Stabilization

As emphasized by the surveys presented in the two previous sections about fault-
and Byzantine-tolerant self-stabilization, the design of distributed protocols simul-
taneously tolerant to transient and permanent or intermittent faults is a difficult
(and sometimes impossible) task, in particular in a deterministic way and in asyn-
chronous distributed systems.

Therefore, Nesterenko and Arora introduced in [NA02] another approach to joint
transient and intermittent Byzantine fault tolerance using the notion of containment.
Intuitively, the idea is to provide self-stabilizing distributed protocols that moreover
ensure that the effects of Byzantine faults are isolated within a region of the com-

4.2. Tolerating Composite Fault Patterns 65

munication graph (that is, some vertices around Byzantine ones are allowed to never
reach a correct behavior while all other vertices must reach a correct behavior in
a finite time). In other words, this approach is non masking both for transient
faults (since there exists a period of time where all vertices may have an erratic
behavior) and for Byzantine faults (since vertices around Byzantine ones may have
an erratic behavior during the whole execution). In contrast, Byzantine-tolerant
self-stabilization is non masking for transient fault (due to the self-stabilizing ap-
proach) but masking for Byzantine faults (since any execution must satisfies the
specification after convergence in spite of occurrence of Byzantine faults, like in
Byzantine-tolerance).

Nesterenko and Arora defined in [NA02] strict-stabilization in the following way.
A distributed protocol is strictly-stabilizing if it is self-stabilizing and if it guarantees
that there exists an (unweighted) containment radius c outside which vertices are
not affected by Byzantine vertices. In other words, a strictly-stabilizing distributed
protocol reaches in a finite time a configuration after which the behavior of any
vertex located at a distance greater than c from any Byzantine vertex is legitimate.
This approach provides tolerance to any transient and intermittent Byzantine fault
pattern since the effects of transient faults are contained in time (due to the con-
vergence property) and the effects of Byzantine faults are contained in space (due
to the existence of the containment radius).

We can now provide the formal definition of strict-stabilization in the following
way. For any natural number c, we define gc as the communication subgraph of g
induced by the set Vc defined by (where B denotes the set of Byzantine vertices):

Vc = {v ∈ V |min
b∈B
{dist(g, v, b)} > c}

Intuitively, Vc gathers the set of correct vertices that must eventually have a correct
behavior in any execution of a strictly-stabilizing distributed protocol that has a
containment radius of c.

Definition 4.6 (Strict-stabilization [NA02])
A distributed protocol π is (c, f)-strictly stabilizing for specification spec if and
only if starting from any arbitrary configuration every execution of π involving at
most f Byzantine vertices contains a configuration from which every execution
σ of π satisfies: the projection of σ on gc satisfies spec.

The parameter c of Definition 4.6 refers to the containment radius of the strictly-
stabilizing distributed protocol. The parameter f refers explicitly to the number of
tolerated Byzantine vertices, while [NA02] dealt with unbounded number of Byzan-
tine faults (that is f ∈ {0 . . . n}).

To prove the effectiveness of strict-stabilization, Nesterenko and Arora present in
[NA02] two deterministic strictly-stabilizing distributed protocols for asynchronous
distributed systems. The first one focuses on vertex coloring (that is, each vertex
must decide on a color with the constraint that no two neighboring vertices decide
on the same color) and exhibits a containment radius of 1. This distributed protocol

66 Chapter 4. Fault Tolerance

is very simple since each vertex modifies its color when it detects a conflict with one
of its neighbors in order to take a color carried by none of its neighbors (the set of
available colors is of size deg(g) + 1 such that this color choice is always possible).
The containment radius of 1 can be easily deduced from the following observations.
Once correct vertices execute at most one time their rule, no two correct neighbors
can be in conflict (note that the distributed protocol runs under the locally central
daemon) and Byzantine vertices can only trigger color changes on their neighbors
(since each of them does not choose a color conflicting with the ones of its own
neighbors). The second distributed protocol proposed by [NA02] focuses on dining
philosophers problem (i.e. local mutual exclusion) and performed a containment
radius of 2.

An essential question about strict-stabilization is the optimality of the contain-
ment radius for a given problem. Indeed, smaller is the containment radius of a
strictly-stabilizing distributed protocol, better is its fault-tolerance. Nesterenko and
Arora provides a generic impossibility result that provides a beginning of answer to
this question. First, they defined the notion of r-restrictive specification. Intuitively,
a specification is r-restrictive if it prevents combinations of configurations that dif-
fer by the state of two vertices that are at least r hops away. Then, they prove
the following result: any strictly-stabilizing distributed protocol for a r-restrictive
specification has a containment radius of at least r. Note that this result is not
a characterization of the optimal containment radius. For instance, both vertex
coloring and dining philosophers problems admit a 1-restrictive specification. This
is sufficient to prove the optimality of the containment radius of the previously
presented strictly-stabilizing distributed protocol for vertex coloring. On the other
hand, a result from [CS96] proves the optimality of the containment radius of the
strictly-stabilizing solution of [NA02] for dining philosophers (while this optimality
cannot be deduced from the result about r-restrictive specifications).

Note that there are very few works about strict-stabilization. At our knowledge,
only [SOM05] and [MT07] provide strictly-stabilizing distributed protocols before
this thesis. They focus on the link coloring problem (each edge of the communication
graph must receive a color with the constraint that no two adjacent edges have the
same color) respectively on trees and on general communication graphs.

4.3 Summary

In this chapter, we survey numerous fault tolerance schemes in distributed sys-
tems. Classically, we distinguish robust distributed protocols (that ensure a mask-
ing fault tolerance to permanent crash or intermittent Byzantine fault patterns) and
self-stabilizing distributed protocols (that ensures a non masking fault tolerance to
transient fault patterns). We presented many variants (and composition) of these
two approaches. We can compare these various fault tolerance schemes by the class
of tolerated fault patterns and by their masking properties with respect to perma-
nent crash or intermittent Byzantine faults and/or with respect to transient faults.

4.3. Summary 67

Fault tolerance scheme Tolerated class of Masking for Masking for
fault patterns transient faults other faults

Self-stabilization Transient No –
Fault-tolerant Permanent crash – Yes

Byzantine-tolerant Intermittent Byzantine – Yes

FTSS / FTPS Transient and No Yespermanent crash

BTSS Transient and No Yesintermittent Byzantine

Strict-stabilization Transient and No Nointermittent Byzantine

Table 4.1: Comparison of fault tolerance schemes presented in Chapter 4

Table 4.1 presents a comparison of fault tolerance schemes presented in this chapter.
In this thesis, we concentrate on fault tolerance schemes that enhance self-

stabilization with properties of permanent crash or intermittent Byzantine fault
tolerance. Another way to compare this class of fault tolerance schemes is to de-
fine a relation of constraint between them. We say that a fault tolerance scheme
is more constrained that another if any distributed protocol that satisfies the first
satisfies the second. For instance, self-stabilization is more constrained than pseudo-
stabilization since any self-stabilizing distributed protocol is also pseudo-stabilizing
(by definition). Figure 4.1 sums up these relations between permanent or intermit-
tent fault tolerance schemes in self-stabilization. Note that this relation of constraint
is transitive but not total since some fault tolerance schemes are not comparable. For
instance, self-stabilization and fault-tolerant pseudo-stabilization are not compara-
ble since the first does not tolerate permanent crash faults but provides a stronger
convergence property than the second. It is natural to conjecture that the more
constrained is a scheme the more difficult is to provide a distributed protocol ac-
cording to this scheme (this conjecture is well illustrated by impossibility results in
fault-tolerant self-stabilization).

68 Chapter 4. Fault Tolerance

Self-Stabilization

Pseudo-Stabilization

Fault-Tolerant
Pseudo-Stabilization

Fault-Tolerant
Self-Stabilization

Strict-Stabilization

Byzantine-Tolerant
Self-Stabilization

s

?

?

j

?s

?

Figure 4.1: Summary of respective constraints on permanent or intermittent fault
tolerance schemes in self-stabilization. An arrow from a scheme to another means
that the first is more constrained than the second. Note that we remove all arrows
deductible from transitivity.

Part II

Atomic Register

Chapter 5

Introduction of Part II

The function of modeling is to arrive at descrip-
tions which are useful.

Richard Bandler and John Grinder

Contents
5.1 Problem and Related Works . 72

5.1.1 Problem . 72
5.1.2 Related Works . 74
5.1.3 Specification . 76

5.2 Contributions of Part II . 77

In the second part of this thesis, we deal with a fundamental problem in dis-
tributed systems: the simulation of a computational model over another one. The
main interest of this problem comes from the following observation: higher is the
atomicity of a computational model, simpler is the design of distributed protocols
but, on the other hand, lower is the realness of this distributed protocol. In order to
keep the simplicity of a high atomicity computational model in a low atomicity one,
an interesting solution is to design a transformer from the second to the first. In
this way, one can design distributed protocols for the high atomicity computational
model (enjoying its simplicity) but executes it in the low atomicity computational
model (enjoying its realness) by composing it with the transformer.

For instance, [DIM97a] studies the simulation of the state model over the mes-
sage passing model (see Section 2.3) in a self-stabilizing context. There exists also
transformers from very specific computational models to more classical ones in order
to re-use all existing distributed protocols (designed for the classical computational
model) in the specific computational model. For example, [KA06] proposes a trans-
former from a computational model specific to wireless distributed systems (the
local diffusion model with collisions) to the classical state model.

The main drawback of these model transformers is that they generally introduce
an important overhead (in time and in space) with respect to a distributed pro-
tocol directly designed for the low atomicity computational model. On the other
hand, they allow to prove computability equivalences between different computa-
tional model since any task solvable in the high atomicity computational model is
solvable in the low atomicity one using the suitable transformer.

In this part, we focus on the simulation of a classical computational model of
fault-tolerant distributed systems, the atomic register model (see e.g. [Lyn96]), over

72 Chapter 5. Introduction of Part II

the message passing model (see Section 2.3.3). The atomic register model is charac-
terized by the fact that communications between vertices are only performed by read
and write operations on shared variables (called registers) that provide atomicity
[Lam86a, Lam86b] (see Section 5.1.1). This computational model transformation
(also called simulation) is well-studied in distributed systems subject to permanent
crash or intermittent Byzantine fault patterns (see Section 5.1.2). We propose to
study this simulation in distributed systems subject to any transient and permanent
crash fault pattern.

This chapter aims to define the atomic register simulation problem and to present
our contribution with respect to existing works. Section 5.1 provides a survey on
atomic register model simulation while Section 5.2 summarizes assumptions and
contributions of Part II.

5.1 Problem and Related Works

We present in details the register model (see Section 5.1.1), provide a survey
of existing simulations of atomic registers both in distributed systems subject to
classical and composite fault patterns (see Section 5.1.2), and specify formally the
problem solved in this part (see Section 5.1.3).

5.1.1 Problem

Registers have been introduced by Lamport [Lam86a, Lam86b] as a model of
communication between vertices of a distributed system. A register is a variable
(over a domain D) shared by all vertices of the distributed system that provides two
operations: a read operation that returns the value of the register to the invoking
vertex and a write operation that allows the invoking vertex to modify the value
of the register. Using registers, it is possible to define a computational model (see
Section 2.3) such that vertices only communicate by registers and in which read
and write operations are assumed atomics. From now, we refer to this computa-
tional model as the register model. This computational model is extensively used
in distributed system literature (see e.g. [Lyn96]).

Given a register, we call readers the vertices that are able to invoke the read
operation of the register and writers the vertices that are able to invoke the write
operation of the register. According to [Lam86a, Lam86b], we can classify registers
using several criteria:

1. size of the domain of the register: a d-ary register has a domain of size d (that
is |D| = d);

2. maximal number of writers of the register: a single-writer register has only
one writer while a multi-writer register has an arbitrary number of writers;

3. maximal number of readers of the register: a single-reader register has only
one reader while a multi-reader register has an arbitrary number of readers;
and

5.1. Problem and Related Works 73

u

v

-Time

op1

op2

op3

op4 op5

Figure 5.1: Illustartion of concurrent or consecutive operations.

4. nature of the register (defined by the value returned by a read operation).

In the following, we discuss this last criterion.

Nature of the register As readers of a register may be distinct from its writers,
read and write operations may be interleaved in some executions of the distributed
system. Then, we must clarify the result of read operations in such cases. Lamport
[Lam86a, Lam86b] distinguishes three types of registers according to read operation
properties: safe, regular and atomic. In the following, we define each of them.

In the low atomicity computational model, read and write operations on the
register are not instantaneous and then need the execution of several instructions.
Each operation starts when a vertex invokes it and ends when it returns. We say
that an operation op1 happens before an operation op2 if op1 ends before op2 starts.
Two operations op1 and op2 are concurrent if they satisfies: op1 does not happen
before op2 and op2 does not happen before op1. Two operations op1 and op2 are
consecutive if op1 is the most recent operation that happens before op2. Figure 5.1
provides an example of a set of operations performed by two vertices u and v. We
can observe that op1 happens before op2 while op3 is concurrent with op2, op4, and
op5. Operations op2 and op4 are consecutive.

Now, we can define properties of registers in the following way:

Safe register: A safe register can be written by one writer only. Moreover, a read
operation on such a register returns the current value of the register if no
write operation is concurrent with that read. In case of concurrency with a
write operation, the read operation can return any value of D, the domain of
the register (note that a read operation concurrent with a write operation can
return a value that has never been written).

Regular register: A regular register can have any number of writers. A regu-
lar register is a safe register (a read operation not concurrent with a write
operation returns the actual value of the register) such that a read operation
concurrent with a write operation returns either the old value (the value of the
register before the write operation starts) or the new value (the value written
by the write operation) of the register. Hence, a regular register is stronger
than a safe register since the value returned in presence of concurrent write
operations is no longer arbitrary.

74 Chapter 5. Introduction of Part II

u

v

-Time

w1 w2

r1 r2

Figure 5.2: If r2 returns the value written by w1 and r1 returns the value written
by w2, we have a new/old inversion.

Nevertheless, a regular register can exhibit new/old inversions. Consider two
consecutive read operations r1, r2 and two consecutive write operations w1,
w2 such that r1 is concurrent with both w1 and w2 and r2 is concurrent only
with w2 (see Figure 5.2). The regularity property allows r2 to return the value
written by w1 and r1 to return the value written by w2.

Atomic register: An atomic register is a regular register without new/old inver-
sion. For instance, for the execution illustrated by Figure 5.2, the atomicity
of the register implies that, if r1 returns the value written by w2, then r2 must
return the same value. This means that an atomic register is such that all its
read and write operations appear as if they have been executed sequentially,
this sequential total order respecting the real time order of the operations.

Classification of registers As highlighted by [Lam86a, Lam86b], this set of def-
initions allows us to define a partial order over registers. We say that a register is
stronger than another one if it provides stronger properties. For example, a multi-
writer multi-reader binary regular register is stronger than a multi-writer multi-
reader binary safe register. Note that some registers are not comparable using this
order.

5.1.2 Related Works

As register computational model is largely used in distributed systems (see
[Lyn96] for some examples), the simulation of registers over lower atomicity com-
putational model was well-studied. Due to its stronger properties, the multi-writer
multi-reader atomic register is a kind of “holy grail” of this avenue of research.

Due to the number of related works, it is quite impossible to do an exhaustive
survey of register simulation. In the following, we focus on atomic register simula-
tion (over message passing model) in distributed systems subject to various fault
patterns. To construct an atomic register, there exists mainly two methods:

– simulate an atomic register over a weaker register computational model (safe,
regular, single writer,...); or

– directly simulate the atomic register over message passing model.

5.1. Problem and Related Works 75

However, note that these two approaches are not exclusive since we can simulate
a given register computational model over message passing model and then use
it to simulate another stronger register computational model. We present works
related to these two approaches under various assumptions of fault-tolerance in the
following.

Simulation over a weaker register computational model A well-studied
approach to provide atomic registers is to construct it on the top of a weaker register
(according to the partial order defined in Section 5.1.1). In the following, we describe
main results on this topic in distributed systems subject to various fault patterns
(note that there also exists such simulations in fault-free distributed systems, see
e.g. [Lam86b]).

First, atomic register simulation was well-studied in a fault-tolerant context. We
can cite a few examples of simulation from a weaker register computational model.
There exists simulations that focuses on the nature of the register as [HV95] that
simulates a single-writer multi-reader atomic register from a single-writer multi-
reader regular register. Some other transformations look at the number of readers
and of writers as [Blo88] that constructs a 2-writer multi-reader atomic register
from two single-writer multi-reader atomic registers. Another possible simulation is
about the domain of the register as [CKW00] that simulates a d-ary regular register
using d(d−1)

2 binary regular registers.
Regarding tolerance to transient fault patterns, only few works deal with self-

stabilizing simulation of register. Whereas they fall outside the scope of this survey
on atomic registers, we can cite [DH01] that provides self-stabilizing simulations of
safe and regular registers and [JH09] that emulates a self-stabilizing regular regis-
ter from a safe one. At our knowledge, the only self-stabilizing simulation of an
atomic register from a weaker register is due to [IS92] that provides space-optimal
simulations of a multi-writer multi-reader register respectively from a single-writer
single-reader atomic register and from a single-writer multi-reader atomic register.

Finally, [HPT02] is interested in atomic register simulation in distributed sys-
tems subject to transient and permanent crash fault patterns. First, it proves the
impossibility to provide a FTSS single-writer single-reader regular or atomic regis-
ter simulation over a single-reader single-writer safe register computational model.
Note that this result does not hold for fault-tolerant (and not self-stabilizing) simula-
tions. Then, it designs a FTSS single-writer single-reader regular or atomic register
simulation over a 2-reader single-writer safe register computational model.

Simulation over message passing model The second main way to design an
atomic register simulation is to directly write this simulation in a lower atomicity
computational model (e.g. the message passing model). As previously, we interest
in simulations tolerating various fault patterns.

Existing works in this area mainly deal with tolerance to permanent crash fault
patterns. The first simulation of a single-writer multi-reader atomic register in such

76 Chapter 5. Introduction of Part II

an environment is due to Attiya, Bar-Noy, and Dolev in [ABND90, ABND95] and
was nicknamed the ABD simulation. This simulation assumes that a majority of
vertices remains correct in any execution (that is, n > 2f where f is the maximal
number of crashed vertices) and introduces a general tool that was extensively re-
used: the communication by quorum. Essentially, the key ideas of the simulation
follow. Each vertex stores a copy of the register (the actual value and a version
number). When the writer invokes its write operation, it sends the new value (with
the new version number) to all other vertices. The write operation ends when the
writer receives n−f acknowledgments (each vertex that acknowledged the new value
updates its own copy of the register). When a reader invokes its read operation,
it asks to all vertices their current value of the register. When the reader receives
n − f answers, at least one of them contains the last value written by the writer
and has the greatest version number. Hence, the reader can return this value. To
avoid new/old inversions, the reader must write the value just before return it. This
simulation is first proposed with unbounded version numbers (natural numbers with
the classical total order) and then adapted to deal with bounded time-stamps (see
e.g. [IL93] and Section 6.2) in order to use only a finite memory.

This simulation was further declined to deal with more challenging environments.
For instance, [GLS10] adapts it to dynamic distributed systems and [MR98] gen-
eralizes the quorum communication to distributed systems subject to intermittent
Byzantine fault pattern. For more details on these variations of the ABD simulation,
the interested reader is refereed to [Att10].

If we focus now on register simulation over message passing model tolerating
other fault patterns, Dolev, Israeli, and Moran present in [DIM97a] a self-stabilizing
simulation of a single-writer, single-reader atomic register. In particular, note that
we are not aware of the existence of any atomic register simulation tolerant to
transient and permanent crash fault patterns.

5.1.3 Specification

We can now formally specify the problem that we solve in this part. We choose to
focus on single-writer multi-reader atomic register simulation over message passing
model. Consequently, we assume that there exists a distinguished vertex, the writer
that is supplied with two operations: read and write while other vertices, the readers,
are supplied with only one operation: read. Each read invocation needs no parameter
and returns a value from D, the domain of the register. Each write invocation needs
a parameter from D and returns no value. We say that a value v is written to the
register when the operation write(v) returns.

Specification 5.1 (1-writer n-reader atomic register simulation specARS)
An execution σ satisfies specARS if and only if it complies with the following
two properties:

(Regularity) Each read operation returns either the value written by the most
recent write operation that happens before it or a value written by a con-

5.2. Contributions of Part II 77

current write operation.

(No new/old inversion) If a read operation r returns a value written by a
concurrent write operation w then no read operation that happens after r
returns a value written by a write operation that happens before w.

5.2 Contributions of Part II

Position of Part II As pointed out in Section 5.1.2, we are not aware of the
existence of any work studying the simulation of an atomic register over a lower
atomicity computational model in distributed systems subject to transient and per-
manent crash fault patterns. The main contribution of the Part II of this thesis is
to remedy to this fact by providing such a simulation.

More precisely, we assume from now that our distributed system is modeled
by a complete and identified communication graph and that it may be subject to
any (k, f, `)-transient and permanent crash fault pattern with n > 2f . We choose
to provide a single-writer multi-reader atomic register simulation over the message
passing model presented in Section 2.3.3.

Overview of Part II The contribution of the Part II of this thesis is twofold.
First, we need to design two tools that are necessary to our simulation. However, we
believe that these tools are sufficiently independent to be useful in another context.
Hence, Chapter 6 presents the following results:

1. a self-stabilizing communication protocol over unreliable and non-FIFO com-
munication links that performs the optimal fault resilience; and

2. a stabilizing bounded labeling system that improves existing bounded labeling
systems (like the one of [IL93]) by tolerance to arbitrary initial configuration.

Second, using the two preliminary tools of Chapter 6, we show that the ABD sim-
ulation needs only few changes to handle transient and permanent crash fault pat-
terns instead of permanent crash fault patterns. Indeed, Chapter 7 proves that the
bounded memory version of the ABD simulation can be turned into a fault-tolerant
pseudo-stabilizing single-writer multi-reader atomic register simulation.

Results of Chapter 6 appear in Information Processing Letters [DDPBT11b], in
proceedings of the 24th International Symposium on Distributed Computing (DISC
2010) [AAD+10], and in proceedings of the 13èmes Rencontres Francophones sur les
Aspects Algorithmiques des Télécommunications (Algotel 2011) [DDPBT11a]. Re-
garding Chapter 7, preliminary versions of the presented simulation are published in
proceedings of the 24th International Symposium on Distributed Computing (DISC
2010) [AAD+10] and of the 13th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS 2011) [AAD+11].

Chapter 6

Preliminaries

Be convinced that, if man were able to reach
the end without preparatory studies, such stud-
ies would not be preparatory but tiresome and
utterly superfluous.

Maimonides

Contents
6.1 Data-Link Protocol . 79

6.1.1 Problem and Related Works 80
6.1.2 Specification . 81
6.1.3 Lower Bounds . 83
6.1.4 Optimal Solution . 85
6.1.5 Correctness Proof . 88

6.2 Bounded Labelling Systems . 93
6.2.1 Problem and Related Works 93
6.2.2 Solution . 96

In this chapter, we study two different tools that are necessary to our solution
of atomic register simulation of Chapter 7. These two tools are independent of our
problem and may be re-used in another context.

The first tool we present in Section 6.1 is a communication primitive. Its goal
is to simulate better properties than those exhibited by communication channels of
our message passing model (see Section 2.3.3). In particular, our communication
primitive minimizes the number of undesired lost, duplication, creation, and re-
ordering of messages.

The second tool presented in Section 6.2 is a new bounded labeling system
that provided properties suitable for a self-stabilizing setting whereas any existing
bounded labeling scheme cannot handle an arbitrary initial configuration.

6.1 Data-Link Protocol

Recall that the message passing communication model presented in Section 2.3.3
assumes that communication channels are asynchronous, not reliable (but fair),
bounded, and not-FIFO. Moreover, the arbitrary initial configuration due to tran-
sient faults may lead communication channels to contain fake messages.

80 Chapter 6. Preliminaries

The goal of our communication primitive, that we called a data-link protocol,
is to provide the best possible properties on message delivery in this challenging
environment.

6.1.1 Problem and Related Works

As self-stabilization is usually considered a hard property to satisfy, most related
works used the state model (see Section 2.3.2) in which any vertex can determine
the current state of every neighbors (and update its own state accordingly) in an
atomic manner. Asynchronous message passing is a more realistic way, compared
to the state model, for the communication of vertices in distributed systems. In
such settings vertices communicate by exchanging messages, where sending and
receiving message are two separate atomic actions (see Section 2.3.3). Transform-
ers for distributed protocols from state model to message passing model, assum-
ing the existence of FIFO communication channels, have been suggested, see e.g.
[DIM93, Dol00]. At the core of those transformers are the data-link protocols, that
permit to reliably exchange information between neighboring vertices in the mes-
sage passing model. In addition, several self-stabilizing distributed protocols (e.g.
[DT06, AAD+10]) that are directly written in the message-passing model use an
underlying data-link protocol as a building block.

Related Works The most studied data-link protocol, namely the alternating bit
protocol (ABP), was proved to satisfy some stabilization properties [AB93, DIM97b,
BGM93]: in any execution of ABP, there exists a suffix that satisfies the specifi-
cation (i.e. the ABP is pseudo-stabilizing [BGM93], see Section 4.1). However,
the impossibility to bound the amount of time before this suffix is reached makes
the ABP unsuitable for most tasks. In [GM91, DIM93], Gouda and Multari and
Dolev, Israeli, and Moran independently prove that for a wide class of problems
(including data-link construction) guaranteeing self-stabilization when communica-
tion channels have unbounded initial capacity requires some kind of unboundedness
in the protocol (either unbounded memory in [GM91], the existence of some aperi-
odic function [AB93], or access to a probabilistic variable [AB93]). In other words,
those approaches require to implement unbounded capacities with finite memory,
and are thus unlikely to be actually used in real distributed systems. Also, the
expected time before reaching a stable global state depends on the initial contents
of communication channels, and is thus unbounded.

Most recent works took the more realistic approach of assuming communication
channels with bounded initial capacity. The token passing protocol in [DIM97b] can
be used as a self-stabilizing ABP on bounded communication channels and only uses
bounded memory. Howell et al. [HNM99] provide another data-link protocol over
bounded communication channels with the additional assumption that the under-
lying communication channels are unreliable (i.e. they may loose or duplicate mes-
sages). Later, Varghese [Var00] presented self-stabilizing solutions for a wide class
of problems (including data-link) in the same setting using only bounded memory.

6.1. Data-Link Protocol 81

The FIFO ordering is crucial for the stabilization since solution relies on the fact
that a sequence number that is unique in the system is eventually generated and
flushes every stale message in transit. A common drawback of all aforementioned
self-stabilizing data-link solutions is that they assume a FIFO order on messages in
the underlying communication channels.

A notable exception are the protocols provided in [BKM97a] that assumed a
non-FIFO message passing model. The main difference with our approach stands in
the fact that their distributed system is enhanced with some failure detector whereas
we assume a fully asynchronous distributed system.

Another drawback of previously mentioned self-stabilizing data-link solutions is
that they do not consider the quantitative impact of faults from the perspective of
the upper layer distributed protocol (i.e. the layer that actually uses the data-link).
Indeed, starting from an arbitrary global state where communication channels may
initially contain messages of arbitrary content, being able to bound the number of
sent messages that are lost or duplicated, or the number of fake messages that are
actually delivered to the destination is a very important matter. The bound on the
number of faulty messages delivered by a data-link protocol is an important criteria
for the data-link usability in larger application, in order to ensure the fault-resiliency
of the global protocol stack. To our knowledge, only [DT06, DDNT10] addresses,
to some extent, this concern. A snap-stabilizing data-link (and global reset) for
bounded capacity FIFO communication channels appears in [DT06]. In [DDNT10]
a snap-stabilizing solution to the propagation of information with feedback (PIF)
problem is presented. The solution can be seen as a data-link protocol when re-
duced to a 2-vertex system. Snap-stabilization implies that any message that is
actually sent by the sender vertex is eventually received by the receiver vertex, so
the number of lost messages is 0. However, we cannot provide bounds on the num-
ber of duplications of a given message or on the number of ghost messages (that is,
messages that are not sent by the sender but received by the receiver due to the
arbitrary content of communication channels in the initial configuration). Concern-
ing the self-stabilizing protocols, only an order of magnitude on those numbers can
be inferred from the stabilization time (if m messages sent or received are required
to enter a legitimate global state from any arbitrary initialization, then at most m
messages could be lost, duplicated, or wrongly delivered). To our knowledge, the
question of fault-resilience optimality (with respect to lost, duplicated, ghost or re-
ordered messages) for data-link protocols has never been raised before, although it
has important practical consequences.

6.1.2 Specification

The specification we provide in this section is borrowed from [Lyn96] but we
adapt it to the self-stabilizing context. In particular, we introduce the idea to bound
the number of lost, duplicated, ghost and re-ordered messages by some constants.

Consider a system of two vertices vi and vj . A distributed application needs to
send some messages from vi to vj . We say that the application layer of vi sends

82 Chapter 6. Preliminaries

a message when it requests the communication protocol to carry this message to
vj . This message is delivered to vj when the communication protocol releases this
message to the application layer of vj . A ghost message is a message delivered to vj
whereas vi did not send it previously (due to the arbitrary content of communication
channels in the initial configuration). A duplicated message is a message that is
delivered several times to vj whereas vi sent it only once. A message is lost when
vi sends it but vj never delivers it. A message m is reordered when it is delivered
to vj before a message m′ whereas m has been sent after m′ by vi. Intuitively, the
goal of a data-link protocol is to provide a communication black box that ensures
there is no lost, duplicated, ghost, or reordered messages during any execution. In
the sequel, we formally specify the data-link problem.

We associate to any execution σ the sequence S(σ) = m0m1m2 . . . of messages
sent by vi in σ and the sequence R(σ) = m′0m

′
1m
′
2 . . . of messages delivered to

vj in σ. Note that we consider that all sent messages are different (even if their
actual content are identical, we can distinguish them as external observer of the
distributed system). We introduce the following notations. For any sequence W
and any integers i and j, W j is the prefix ofW of length j andWi is the suffix ofW
such thatW = W i−1.Wi (where . denotes the concatenation operator). The notation
ε denotes the empty sequence. For example, R(σ)0 = ε for any execution σ. For any
message m, we define the sequence m∗ as the repetition of m an arbitrary number
of times (possibly 0). For any sequence W , the sequence W ∗ is the result of the
application of the ∗ operator to each message of W . For instance, if W = m1m2m3,
then W ∗ = m∗1m

∗
2m
∗
3.

We can now state the specification of the data-link problem borrowed form
[Lyn96] using our notations.

Specification 6.1 (Data-link communication specDLC)
An execution σ satisfies specDLC over c-bounded channels (with vi and vj being
respectively the sender and the receiver) if:

1. No message sent by vi is lost.

2. No message delivered to vj is a duplicated message.

3. No message delivered to vj is a ghost message.

4. No message delivered to vj is a reordered message.

Note that a self-stabilizing distributed protocol for specDLC ensures that only a
finite number of messages are lost, duplicated, ghost, or reordered starting from any
configuration but does not ensure any bounds on these numbers. From the applica-
tion layer viewpoint, these guarantees are not sufficient. Therefore, we introduce the
notion of message performance of a self-stabilizing distributed protocol for specDLC.
Intuitively, a self-stabilizing distributed protocol for specDLC over c-bounded chan-
nels has a (α, β, γ, δ)-message performance if the number of lost, duplicated, ghost,
and re-ordered messages in any execution are respectively bound by α, β, γ, and δ.
The formal definition follows.

6.1. Data-Link Protocol 83

Definition 6.1 (Message performance for specDLC)
For any non negative integers α, β, γ, and δ, a self-stabilizing distributed
protocol π for specDLC over c-bounded channels (with vi and vj being respectively
the sender and the receiver) has a (α, β, γ, δ)-message performance if for any
execution σ of π satisfies the following properties starting from an arbitrary
configuration:

– α-Loss: The first α messages sent by vi (in the worst case) may be lost.

∃a ≤ α,∀m ∈ S(σ)a,m ∈ R(σ)

– β-Duplication: The first β messages delivered to vj (in the worst case)
may be duplicated ones.

∃b ≤ β,∀m ∈ S(σ),
∣∣{m′i = m|m′i ∈ R(σ)}

∣∣ > 1⇒ m ∈ R(σ)b

– γ-Creation: The first γ messages delivered to vj (in the worst case) may
be ghost messages.

∃c ≤ γ,∀m ∈ R(σ),m /∈ S(σ)⇒ m ∈ R(σ)c

– δ-Reordering: The first δ messages delivered to vj (in the worst case)
may be reordered.

∃d ≤ δ,R(σ)d ∈ S(σ)∗

In the following section, we show that it is impossible to provide a self-stabilizing
distributed protocol for specDLC that has a (α, β, γ, δ)-message performance with
β = 0, γ = 0, or δ = 0. Then, we can deduce that a self-stabilizing distributed
protocol for specDLC that has a (0, 1, 1, 1)-message performance achieves optimal
fault-resiliency. The above definitions imply that such a communication protocol
ensures that either R(σ) = S(σ) or R(σ) = m.S(σ) (where m is an arbitrary
message, it may be present in S(σ) and . denotes the concatenation operator) for
any execution σ. In other words, the sequence of received messages by vj is identical
to the sequence of emitted messages by vi excepted the first delivery in the worst
case.

6.1.3 Lower Bounds

In this section, we propose three impossibility results related to the possible
values for the parameters β, γ, and δ. We prove that the lower bounds for β, γ, and
δ parameters is 1. These results confirm the claim that the protocol we propose is
optimal since it implements a self-stabilizing distributed protocol for specDLC with
a (0, 1, 1, 1)-message performance.

Theorem 6.1
There exists no self-stabilizing distributed protocol for specDLC over c-bounded

84 Chapter 6. Preliminaries

channels with a (α, β, γ, δ)-message performance such that γ = 0.

Proof : By contradiction, let π be any self-stabilizing distributed protocol for specDLC
over c-bounded channels with a (α, β, 0, δ)-message performance. By definition
π must have an instruction that delivers messages to the receiver vertex. As the
program counter may be corrupted and channels may contain up to c ghost messages
in the initial configuration, the receiver vertex may execute this instruction during
the first action of an execution σ. In consequence, the first message of R(σ) may
be a ghost message m. Hence, we can assume that R(σ)1 = m.

It is possible to construct the execution σ such that m /∈ S(σ). In conclusion,
we have: ∃m ∈ R(σ),m /∈ S(σ) ∧m /∈ R(σ)0 = ε (recall that ε denotes the empty
sequence). This is contradictory with the 0-Creation property of π and implies
that γ ≥ 1 for any self-stabilizing distributed protocol for specDLC over c-bounded
channels.

Theorem 6.2
There exists no self-stabilizing distributed protocol for specDLC over c-bounded
channels with a (α, β, γ, δ)-message performance such that β = 0.

Proof : By contradiction, let π be any self-stabilizing distributed protocol for specDLC
over c-bounded channels with a (α, 0, γ, δ)-message performance. Following Theo-
rem 6.1, we have γ > 0. This implies that the first message delivered to vj in an
execution σ by π may be a ghost messagem. Hence, we can assume that R(σ)1 = m.

It is possible to construct an execution σ such that the first (real) message sent
by vi to vj and delivered to vj by π is the same message m. This message has
been sent by vi only once but has been delivered to vj at least twice. In conclusion,
we have: ∃m ∈ S(σ),

∣∣{m′i = m|m′i ∈ R(σ)}
∣∣ > 1 ∧m /∈ R(σ)0 = ε (recall that ε

denotes the empty sequence). This is contradictory with the 0-Duplication property
of π and implies that β ≥ 1 for any self-stabilizing distributed protocol for specDLC
over c-bounded channels.

Theorem 6.3
There exists no self-stabilizing distributed protocol for specDLC over c-bounded
channels with a (α, β, γ, δ)-message performance such that δ = 0.

Proof : By contradiction, let π be any self-stabilizing distributed protocol for specDLC
over c-bounded channels with a (α, β, γ, 0)-message performance. Following Theo-
rem 6.1, we have γ > 0. This implies that the first message delivered to vj by π in
an execution σ may be a ghost message m. Hence, we can assume that R(σ)1 = m.

It is possible to construct the execution σ such that S(σ)α+2 = m0m1 . . .mα−1
mαm and ∀i ∈ {0, . . . , α},mi 6= m. As π satisfies the α-Loss and the 0-Reordering
properties, it follows that ∃i ∈ {0, . . . , α}, R(σ)1 = mi (otherwise, either π lost at
least α + 1 messages or reordered at least one message, that is contradictory). As
mi 6= m, we obtain a contradiction that shows that δ ≥ 1 for any self-stabilizing
distributed protocol for specDLC over c-bounded channels.

6.1. Data-Link Protocol 85

In the following, we present a distributed protocol that is optimal with respect to
message performance parameters. That is, our distributed protocol is self-stabilizing
for specDLC over c-bounded channels with a (0, 1, 1, 1)-message performance.

6.1.4 Optimal Solution

This section aims to present in details our self-stabilizing distributed protocol
for specDLC over c-bounded channels with a (0, 1, 1, 1)-message performance.

Key ideas of the distributed protocol The rationale of the distributed protocol
consists in adding safety extensions to the well-known alternating bit protocol (a.k.a.
ABP). The concept used in the design of the data-link protocol is to let the sender
use a mechanism based on the capacity c of communication channels so that the
sender can ensure the execution of an operation in the receiver side. More precisely,
the receiver acts only upon receiving a packet from the sender. The sender may
repeatedly send a particular packet, and each time the receiver receives a packet it
acknowledges the packet arrival.

First, the receiver can deliver a message only if c+ 1 copies of this message have
been previously received: this ensures that at least one of them is genuine (i.e. was
actually sent by the sender). Moreover, a message is delivered only if the expected
bit alternates with the one of the previously received message (similarly to the ABP)
in order to ensure that no message is duplicated. Indeed, the sender may still send
copies of the message with the same alternating bit value until it receives a sufficient
number of acknowledgments.

Second, the sender will expect for each message sent at least 3c+ 2 acknowledg-
ments with a matching alternating bit. As up to c acknowledgments could be ghost,
this implies that 2c+2 of these acknowledgments were actually sent by the receiver.
One such acknowledgment could be sent by the receiver due to bad initialization, c
of them could be due to c initial ghost messages in the reverse direction, and the
remaining c + 1 can only originate from genuine messages from the sender, that
triggered a delivery at the receiver.

At this stage, the distributed protocol does not ensure the 0-Loss property due
to the use of the alternating bit. Indeed, if the alternating bit values of the sender
and of the receiver are not synchronized at the first delivery, the receiver drops
the first message. To avoid this message loss, the sender alternates between actual
messages and synchronization messages. In other words, to send a message m, the
sender first sends a synchronization message (denoted by < SYNCHRO >) until it
receives 3c+ 2 acknowledgments of this synchronization message and then send the
actual message m until it receives 3c+2 acknowledgments of m. It follows that only
the synchronization message may be lost and the actual message is always delivered
to the receiver.

General organization of the system Our system is organized as follows. The
application layer generates messages to be send from vi to vj . To perform this

86 Chapter 6. Preliminaries

goal, it invokes our data-link distributed protocol. Furthermore, this layer invokes
functions that use communication primitives provided by the physical channel (send
and receive, see Section 2.3.3).

The architecture of our system is summarized in Figure 6.1. In more details,
the data-link distributed protocol is composed of two functions: SDL-Send (which
is executed on the sender side) and SDL-Receive (which is executed on the re-
ceiver side). When the application layer on the sender side wants to send a message
m, it invokes SDL-Send(m). Note that SDL-Send procedure is blocking, that
is if SDL-Send is already in execution, the application layer waits its termination
whereas the SDL-Receive function is always executed on the receiver side. When
the SDL-Receive function has a message to deliver at the application layer on
the receiver side, it executes DeliverMessage(m) that transmits m to the appli-
cation layer. When the SDL-Receive function wants to discard a synchronization
message (since this kind of messages is useless to the application layer), it uses the
DropMessage function that only deletes the message. Finally, each delivered mes-
sage is acknowledged to the application layer on the sender side by DeliverAck(m).

Functions SDL-Send and SDL-Receive must interact with the physical chan-
nel in order to exchange messages. For this, we design some functions that use
communication primitives of the communication channel (send and receive).

First, we provide two operations to send a message or an acknowledgment, re-
spectively SendMessage({m, ab}) and SendAck({m, ab}) where m is a message
and ab its alternating bit value. These operations put {m, ab} (respectively its ac-
knowledgment) in the channel (recall that if this operation leads to more than c

messages in the channel, one of them is arbitrarily deleted, see Section 2.3.3). These
two send functions are described in Protocol 6.1.

Second, we provide two operations to receive a message or an acknowledgment,
respectively ReceiveMessage() and ReceiveAck({m, ab}) where m is the mes-
sage and ab its alternating bit value. On the receiver side, ReceiveMessage() is
executed when the vertex wants to obtain a message from the communication chan-
nels. It returns the first message delivered by the communication channel. On the
sender side, ReceiveAck({m, ab}) is executed by the data-link protocol and does
polling. That is, it checks whether the first waiting acknowledgment in the channel
(if any) matches with an acknowledgment of the parameter {m, ab}. It returns true
if this is the case, false otherwise. In any case, the first waiting acknowledgment
(if any) is deleted from the channel. These two receive functions are described in
Protocol 6.2.

Detailed presentation of the protocol Our self-stabilizing distributed protocol
for specDLC over c-bounded channels (with a (0, 1, 1, 1)-message performance) SDL
is presented in Protocol 6.3. In the following, we provide details about the two
functions SDL-Send and SDL-Receive.

The function SDL-Send takes a message m as parameter and stores the cur-
rent alternating bit value in the variable ab. First, it alternates the value of ab (line

6.1. Data-Link Protocol 87

Protocol 6.1 Send functions used by our data-link protocol.

SendMessage

input:
{m, ab}: message
output:
No output

01: send({m, ab},−−→vivj)

SendAck

input:
{m, ab}: message
output:
No output

01: send({m, ab},←−−vivj)

Protocol 6.2 Receive functions used by our data-link protocol.

ReceiveMessage

input:
No input
output:
The first message delivered by the communicat-
ion link to the invoking vertex
persistent variable:
last_message: variable that can store any mes-
sage or the null message ⊥

01: last_message := ⊥
02: while last_message = ⊥ do
03: receive(last_message,−−→vivj)
04: return last_message

ReceiveAck

input:
{m, ab}: message
output:
A boolean that indicates if the first acknowledg-
ment delivered to the invoking vertex maps to
the input {m, ab}
persistent variable:
last_ack: variable that can store any
acknowledgment or the null acknowledgment ⊥

01: last_ack := ⊥
02: while last_ack = ⊥ do
03: receive(last_ack,←−−vivj)
04: if last_ack = {m, ab} then
05: return true
06: else
07: return false

01) before sending a synchronization message (line 02) using an auxiliary function
AuxiliarySend. Then, lines 03 and 04 repeat these instructions with the message
m. Once the last invocation of AuxiliarySend returns, it delivers to the applica-
tion layer the acknowledgment of m using DeliverAck. Now, let us describe the
auxiliary function AuxiliarySend. This function repeatedly (while loop of line 02)
sends its parameter message m (line 03) until receiving 3c+ 2 acknowledgment for
this message (line 04-05).

The function SDL-Receive takes no parameter and uses two variables. The
first one is the alternating bit value of the last delivered or dropped message stored
in last_delivered and the second one is a queue Q that stores the number of recep-
tions of at most c + 1 different messages. Each element of this queue is a 3-tuple
(m, ab, count), where m is a message, ab is an alternating bit value, and count is an
integer denoting the number of packets (m, ab) received for the correspondingm and
ab since the last DeliverMessage or DropMessage occurred. The queue [] oper-
ator takes a message m and a boolean b as operands, and either enqueues (m, ab, 0)

(if (m, ab, ∗) is not present in Q, then if the queue contained c+ 1 elements, the last
element of the queue is dequeued) or returns a pointer to the count value associated
to m and ab in Q. Any time a tuple value is changed in the queue, this tuple is

88 Chapter 6. Preliminaries

Physical Channel

Data-Link Protocol

Application Layer

?

?

6

SDL-Send(m)

SendMessage({m,ab})

Physical Channel

Data-Link Protocol

Application Layer

6

?

DeliverMessage(m)

vi vj

-

(SDL-Send part) (SDL-Receive part)

ReceiveAck({m,ab})

SendAck({m,ab})

ReceiveMessage({m,ab})

�

Messages

Acknowledgements

6
DeliverAck(m)

?

SDL-Receive()

6

Figure 6.1: General organization of our data-link distributed protocol.

promoted at the top of the queue (in order to keep in memory the c + 1 latest re-
ceived messages), and the size of the queue does not change. The ⊥ assignment to a
queue Q denotes the fact that Q is emptied. At each reception of a message (m, ab)
(line 02), the corresponding entry in the queue is updated (or created if needed) by
line 03. If vj already received c + 1 copies of m since the last DeliverMessage
or DropMessage occurred (test on line 04) then the queue is emptied (line 11).
Moreover, if the alternating bit value of the message is different from last_delivered
(test on line 05), then the message is either delivered with DeliverMessage (line
07) or dropped with DropMessage (line 09) depending if it is a synchronization
message or not (test on line 06). Then, the last_delivered value is updated by line
10. Finally, in any case, the message is acknowledged to the sender with line 12.

6.1.5 Correctness Proof

In this section, we prove the correctness of SDL. More precisely, we prove
that SDL satisfies the 0-Loss property (see Lemma 6.3), the 1-Duplication property
(see Lemma 6.4), the 1-Creation property (see Lemma 6.5), and the 1-Reordering
property (see Lemma 6.6) starting from any configuration. By definition, this im-
plies that SDL is a self-stabilizing distributed protocol for specDLC over c-bounded
channels with a (0, 1, 1, 1)-message performance.

The key ideas of this proof follow. First we prove that, in any execution, at
most the first message parameter of AuxilliarySend is lost by SDL (see Lemmas
6.1 and 6.2). This loss happens only when alternating bits of the receiver and of
the sender are not synchronized. Nevertheless, the management of the queue on
the receiver side and the counting of messages and acknowledgements ensure us
that these alternating bits are synchronized after the end of the first invocation

6.1. Data-Link Protocol 89

Protocol 6.3 SDL, a self-stabilizing distributed protocol for specDLC over c-
bounded channels with a (0, 1, 1, 1)-message performance

SDL-Send

input:
m: message to be sent
persistent variable:
ab: boolean that states the current alternating bit value

01: ab := ¬ab
02: AuxiliarySend (< SYNCHRO >, ab)
03: ab := ¬ab
04: AuxiliarySend (m, ab)
05: DeliverAck (m)

AuxiliarySend

input:
m′: message to be sent
ab: boolean that states the alternating bit value associated to m′
variable:
ack: integer denoting the number of acknowledgments received for the current ab value

01: ack := 0
02: while ack < 3c+ 2 do
03: SendMessage({m′, ab})
04: if ReceiveAck({m′, ab}) then
05: ack := ack + 1;

SDL-Receive

persistent variables:
last_delivered: boolean that states the alternating bit value of the last delivered message
Q: queue of size c + 1 of 3-tuples (m, ab, count), where m is a message, ab is an alternating
bit value, and count is an integer denoting the number of packets (m, ab) received for the
corresponding m and ab since the last DeliverMessage or DropMessage occurred.

01: while true do
02: {m, ab} := ReceiveMessage()
03: Q[m, ab] := min(Q[m, ab] + 1, c+ 1)
04: if Q[m, ab] ≥ c+ 1 then
05: if last_delivered 6= ab then
06: if m 6=< SYNCHRO > then
07: DeliverMessage(m)
08: else
09: DropMessage(m)
10: last_delivered := ab
11: Q := ⊥
12: SendAck({m, ab})

of AuxilliarySend. Then, the 0-Loss property (Lemma 6.3) follows since any
actual message is always preceded by a < SYNCHRO > message. We prove the 1-
Duplication property (Lemma 6.4) by the use of the alternating bit. The 1-Creation
property (Lemma 6.5) is deduced from the counting of messages on the receiver side
while the 1-Reordering property (Lemma 6.6) comes from the fact that the delivering
of a message by the receiver always happens during the execution of SDL-Send by

90 Chapter 6. Preliminaries

the sender.
For the sake of the proof, let vi and vj be two neighboring vertices that execute

SDL, vi being the sender and vj the receiver. Let σ = (γ0, γ1)(γ1, γ2) . . . be an
execution starting from any arbitrary configuration γ0.

We say that a message m′ is processed by vj when vj executes DeliverMes-
sage(m′) (line 07 of SDL-Receive function) if m′ is a normal message or when
vj executes DropMessage(m′) (line 09 of SDL-Receive function) if m′ is a <
SYNCHRO > message.

First, we need two preliminaries results related to the result of the execution
of the procedure AuxiliarySend by vi depending on the configuration in which vi
starts to execute this procedure.

Lemma 6.1

When vi starts to execute AuxiliarySend(m′, ab) in a configuration where
ab 6= last_delivered, the message m′ (either a < SYNCHRO > message or a
normal message) and every message parameter to a subsequent invocation of
AuxiliarySend is processed by vj in a finite time.

Proof : Consider a configuration γk where ab 6= last_delivered. Assume that vi starts
to execute AuxiliarySend(m′, ab) in γk. By contradiction, assume m′ is never
processed by vj in the remainder of σ. That is, vj never executes lines 07 or 09 in
the SDL-Receive procedure. In turn, tests on lines 04 or 05 never evaluate to true
simultaneously.

As last_delivered 6= ab in γk and last_delivered may change only when m′ is
processed (line 10), we know that the test on line 05 is always true (since m is never
processed by assumption).

This implies that Q[m′, ab] ≥ c+1 never evaluates to true (test on line 04). This
implies that the sender stops sending (m′, ab) before the (m′, ab) counter reached
c + 1, which is impossible. The reason is as follows. In order to stop sending the
same message, vi must get 3c+2 acknowledgments for the message {m′, ab}. If such
3c+ 2 acknowledgments are indeed received, this implies that the receiver issued at
least 2c+ 2 of those acknowledgments, and thus received 2c+ 2 messages {m′, ab}.
Consider the first such message {m′, ab} received by vj . If there is no reset of vj ’s
queue following this packet, the head of the queue now contains an entry (m′, ab, ∗)
that can not be deleted until the receiver resets the entire queue. Indeed, at most c
packets are initially present in the receiver’s input channel, that can create at most
c entries in the queue. Since the queue is of size c+ 1, the (m′, ab, ∗) tuple remains.
Now, if the receiver sends c+1 acknowledgment for the message {m′, ab}, it implies
that the receiver’s queue for entry (m′, ab, ∗) was incremented c + 1 times, which
invalidates the assumption. It follows that m′ is processed in a finite time.

Note that after the processing of m′, ab and last_delivered have the same value
with the execution of the line 10 of SDL-Receive procedure. Hence the next
invocation of the AuxiliarySend primitive by vi will make the values ab and
last_delivered different. Applying the above reasoning, the lemma follows.

6.1. Data-Link Protocol 91

Lemma 6.2

When vi starts to execute AuxiliarySend(m′, ab) in a configuration where
ab = last_delivered, only m′ (either a < SYNCHRO > message or a normal
message) is not processed by vj .

Proof : Consider a configuration γk where ab = last_delivered. Assume that vi starts
to execute AuxiliarySend(m′, ab) in γk.

Since the test in the line 05 of the SDL-Receive procedure evaluates to false,
the processing of m′ is not executed. However, since vi keeps sending m′ and vj
acknowledges these packets the AuxiliarySend procedure returns. Note that vi
executes line 01 or 03 of the SDL-Send procedure before the next invocation of
AuxiliarySend procedure.

It follows that the system reaches in a finite time a configuration where ab 6=
last_delivered. Then, Lemma 6.1 implies that every message that is parameter of
subsequent invocations of AuxiliarySend is eventually processed by vj .

Now, we can prove that SDL satisfies the four properties of the (0, 1, 1, 1)-
message performance (see Definition 6.1) starting from any configuration.

Lemma 6.3
SDL satisfies the 0-Loss property starting from any configuration.

Proof : Assume that vi has to send a message m to vj starting from an arbitrary
configuration. Note that proofs of Lemmas 6.1 and 6.2 imply that any invocation
of the SDL-Send procedure eventually ends. This implies in turn that vi starts to
execute SDL-Send(m) in a finite time.

Then, vi invokes first AuxiliarySend with a < SYNCHRO > message as pa-
rameter (see line 02 of the SDL-Send procedure). Note that this < SYNCHRO >

message may be lost if ab = last_delivered when vi starts to execute Auxiliary-
Send by Lemma 6.2.

Then, following Lemma 6.2, we have ab 6= last_delivered when vi starts to
execute AuxiliarySend with m as parameter (see line 04 of the SDL-Send pro-
cedure) since it has executed line 03 of the SDL-Send procedure. By Lemma 6.1,
it follows that m is eventually processed by vj . As m is a normal message, this
implies by definition that m is delivered to vj in a finite time.

As this result holds whatever the state of the system when vi requests to send
m, we obtain that ∀m ∈ S(σ),m ∈ R(σ). To conclude, observe that S(σ) = S(σ)0.

Lemma 6.4
SDL satisfies the 1-Duplication property starting from any configuration.

Proof : By contradiction, assume that there exists an execution σ of SDL such that
∀b ≤ 1,∃m ∈ S(σ),

∣∣{m′i = m|m′i ∈ R(σ)}
∣∣ > 1 ∧ m /∈ R(σ)b. In particular, this

property is true for b = 1. Hence, ∃m ∈ S(σ),
∣∣{m′i = m|m′i ∈ R(σ)}

∣∣ > 1 ∧m /∈
R(σ)1. In other words, there exists in σ a message m sent by vi delivered several
times to vj . Moreover m is not the first message received by vj .

92 Chapter 6. Preliminaries

This implies that the line 07 in the SDL-Receive procedure is executed several
times for the message m. It is impossible and the reason is the following. After the
first delivery of m the receiver empties the queue and makes last_delivered = ab
(see proof of Lemma 6.2). Note that vi modifies ab only when it stops to send
m. Even if vi keeps invoking SendMessage(m, ab) until it receives the 3c + 2

acknowledgments, none of these messages will be delivered since for each of them
the test in line 05 in the SDL-Receive procedure returns false.

This contradiction implies that only the first message received by vj may be
duplicate. The lemma follows.

Lemma 6.5
SDL satisfies the 1-Creation property starting from any configuration.

Proof : By contradiction, assume that there exists an execution σ of SDL such that
∀c ≤ 1,∃m ∈ R(σ),m /∈ S(σ) ∧m /∈ R(σ)c. In particular, this property is true for
c = 1. Hence, ∃m ∈ S(σ),m /∈ S(σ) ∧m /∈ R(σ)1. In other words, there exists in σ
a message m not sent by vi but delivered to vj . Moreover m is not the first message
received by vj .

Initially the channel (i, j) may contain at most c ghosts messages. In the worst
case, the receiver’s queue also contains an entry for each of the ghost with the
counters initialized to c or c+ 1.

Let {g, ab} be the first ghost message received by vj with alternated bit set to
ab. Let us study the two possible cases. First, assume that ab 6= last_delivered.
Then vj delivers g (line 07 of SDL-Receive procedure) and empties the queue (line
11 of SDL-Receive procedure). Second, assume that ab = last_delivered. Then
vj does not deliver g (due to the test of line 05 of SDL-Receive procedure) but it
empties the queue (line 11 of SDL-Receive procedure).

In both cases, there is at most one ghost message delivered to vj and the queue
has been emptied. In turn, it remains now at most c − 1 ghosts messages in the
channel (i, j). If one of them is received by vj (after an invocation of ReceiveMes-
sage), its associated counter cannot reach the value c+ 1 (unless vi starts to send
the same message but in this case, it is no longer a ghost message) since there are
at most c−1 copies of the same message. Consequently, none of the c−1 remaining
ghost messages can be delivered, that contradicts the construction of m and proves
the result.

Lemma 6.6
SDL satisfies the 1-Reordering property starting from any configuration.

Proof : Following Lemma 6.5, SDL delivers at most one ghost message to vj in σ. Let
us consider the two following possible cases.

Case 1: SDL delivers no ghost message to vj in σ.
According to Lemmas 6.3 and 6.4, any message sent from vi is delivered to
vj exactly once in this case. Now, observe that any message is delivered to
vj between the beginning and the end of the corresponding execution of the
procedure SDL-Send by vi. Indeed, the message is delivered to vj when it
receives the (c + 1)-th copy of the message whereas vi waits to receive the

6.2. Bounded Labelling Systems 93

(3c + 2)-th acknowledgment of the message to stop sending it (see proof of
Lemmas 6.1 and 6.2). Since the SDL-Send procedure is blocking for vi,
R(σ)0 = R(σ) = S(σ) for any execution σ where SDL delivers no ghost
message to vj . Hence, ∃d = 0 ≤ 1, R(σ)d = Sσ.

Case 2: SDL delivers one ghost message to vj in σ.
Assume that the ghost message delivered by SDL is m. Lemma 6.5 allows us
to state thatm is the first message delivered to vj . Then, a similar reasoning to
the one of case 1 allows us to conclude that R(σ) = m.S(σ) for any execution
σ where SDL delivers one ghost message m to vj and then, R(σ)1 = S(σ).
Hence, ∃d = 1 ≤ 1, R(σ)d = S(σ).

In both cases, we show that SDL satisfies the 1-Reordering property.

Now, we can conclude on the following corollary of Lemmas 6.3, 6.4, 6.5 and 6.6.

Theorem 6.4
SDL is a self-stabilizing distributed protocol for specDLC over c-bounded chan-
nels (with vi and vj being respectively the sender and the receiver) with a
(0, 1, 1, 1)-message performance.

6.2 Bounded Labelling Systems

This section aims to present a second necessary tool for our atomic register sim-
ulation provided in Chapter 7. This tool is a bounded labeling system, that is a set
of labels (a.k.a. time-stamps) enhanced with a total antisymmetric binary relation
(in order to compare labels with each other) that always allows the computation of
a new label greater than (according to the binary relation) any bounded-sized set
of labels.

Section 6.2.1 presents the problem and motivates the need of a new bounded
labeling system to tolerate constraints of self-stabilizing settings and Section 6.2.2
presents our solution to this problem.

6.2.1 Problem and Related Works

In any system, it is often useful to enhance data or events with some information
to compare them. For example, date and time of creation and of last modification
are always associate to files in order to compare versions. In a centralized system, the
value of the clock is a good information to keep trace of time. Due to asynchronism
(each vertex has its own clock and its own speed), we cannot use clock values to date
data or events in a distributed system since we are not able to compare clock values
from two different vertices. The key idea is to store an information that allows to
deduce what event precedes the other. Israeli and Li defined in [IL93] time-stamps
as “numerical labels which enable a system to keep track of temporal precedence
relation among its data elements”.

94 Chapter 6. Preliminaries

In the following, we survey main results about time-stamping in distributed
systems. We assume that we have some objects (data, messages, ...) to time-stamp
in order to track temporal dependence between them. A natural way to construct
such a time-stamps is to use the set of natural numbers with its total order. We
associate to each object a natural number and when a vertex wants to time-stamp
a new object, it scans all existing time-stamps and compute the maximum. Then,
it remains to add 1 to obtain a new time-stamp that is greater than the one of
all existing objects. In this way, objects may be ordered according to their time-
stamps since the latest time-stamped object have the greatest time-stamp. The
main drawback of this scheme is its unboundedness. Indeed, to remain correct, we
must assume that time-stamps are unbounded that implies that each vertex needs
an unbounded memory. This solution is simple but unsatisfactory.

Now, we describe a bounded solution to time-stamping provided by [IL93]. They
provide a full specification of the problem in two elements: a set of labels and a
labeling protocol. As the set of labels must be ordered by a total antisymmetric
binary relation, we can represent it by a tournament (that is, a complete directed
graph with no circuit of length 2). Israeli and Li models then a bounded time-stamp
system (a.k.a. bounded labeling system) by a two-player game on this tournament.
We say that a vertex of the tournament dominates another one when the arc between
them is oriented from the second to the first. Objects of the system to time-stamp
are represented by pebbles. A pebble is put on a vertex of the tournament when
the corresponding time-stamp is associated to the object. We assume that there
exists a bound k on the number of objects to label. Initially, pebbles are placed
on pre-defined vertices of the tournament. The first player, the adversary, chooses
an arbitrary pebble and the second player, the labeler, must move this pebble such
that its new position dominates all others pebbles. Once this move is performed,
the adversary chooses a new pebble and the game continues. A labeling protocol
is a protocol that can supply the labeler whatever are the choices of the adversary.
Choices of the adversary are assumed arbitrary to model any possible execution of
the distributed system. The existence of such a tournament and protocol is not
trivial.

As the adversary chooses only a pebble at a time, the bounded labeling scheme
defined previously is sequential (that is, only one object can modify its time-stamp
at a time). If we allow the adversary to choose several pebbles at a time, we must
assume the existence of severals labelers and the bounded labeling system become
concurrent [DS97].

As numerous distributed protocols need the existence of a bounded time-stamp
system (see e.g. [Lam74, VA86]), the definition and the efficiency of such time-stamp
systems is a challenging task. We now survey main results in this domain. As we
previously mentioned, [IL93] was the first to introduce a definition of bounded time-
stamp systems. It also provides the first sequential bounded time-stamp system that
is constructible and efficiently computable (note that we describe it in details in the
following). Israeli and Li also provide a concurrent bounded time-stamp system in
this paper but this latter is not really usable in practice since its size is very far from

6.2. Bounded Labelling Systems 95

l
l l7

w
�

l
l l7

w
�

l
l l7

w
�

�

R

�

l
l l7

w
�

l
l l7

w
�

l
l l7

w
�

�

R

�
X

X

X

X

X

X

z

9

Figure 6.2: An example of the bounded labeling system of [IL93] of rank 3. An
arrow from a set of vertices to another one indicates that any vertex of the first set
is dominated by any vertex of the second. The red arrow indicates a possible pebble
move.

the optimal value. Dolev and Shavit provide in [DS97] the first concurrent bounded
time-stamp system that can be used in practice. This concurrent bounded time-
stamp system was improved in [GLS92]. Note that all these bounded time-stamp
systems need a correct initialization of the time-stamps (in other words, they are not
suitable for a self-stabilizing context). To remedy to this fact, [Abr03] and [DKS10]
propose self-stabilizing bounded time-stamp systems but they assume the atomic
register model. By the way, these solutions are not convenient in our case since
we want to simulate such a model in the message passing model using a bounded
time-stamp system.

As our goal in this part is to provide a single-writer multi-reader atomic register
simulation in presence of any transient and permanent crash fault pattern, we focus
now on bounded sequential time-stamp systems that can cope with initial corruption
of time-stamps. First, we describe the bounded sequential time-stamp system of
[IL93] and we illustrate its inconvenience for our purposes. Then, we introduce the
formal definition of a stabilizing bounded labeling system.

Israeli and Li define the associated tournament to their bounded sequential time-
stamp system recursively. When there are only two objects to time-stamp, the
tournament (of rank 2) is reduced to a circuit of size 3. When there are k objects
to time-stamp, the tournament (of rank k) is the circuit of size 3 in which each
vertex is substituted by the tournament of rank k − 1. Figures 6.2 and 6.4 present
examples of this tournament of rank 3 and 4 respectively. Once this tournament
defined, it is quite easy to construct the labeling protocol. Figures 6.2 and 6.3
provide some examples of characteristic pebble moves on a time-stamp system of
rank 3 (that is, with at most 3 pebbles). Given a distribution of the pebbles in the
labeling system (depicted by crosses on the figures), the goal is to move the selected
pebble to a new vertex such that this new position dominates all other pebbles (this
move is depicted by the red arrow on the figures). Note that examples of these two
figures are reachable from an initial configuration in which all pebbles are located
at the same arbitrary vertex of the tournament. Indeed, if we consider an arbitrary

96 Chapter 6. Preliminaries

l
l l7

w
�

l
l l7

w
�

l
l l7

w
�

�

R

�

l
l l7

w
�

l
l l7

w
�

l
l l7

w
�

�

R

�

X

X

X

X

X

Xq

�

Figure 6.3: An example of the bounded labeling system of [IL93] of rank 3. An
arrow from a set of vertices to another one indicates that any vertex of the first set
is dominated by any vertex of the second. The red arrow indicates a possible pebble
move.

initial location of pebbles, the labeling protocol may be unable to compute a new
label. For instance, consider the example of Figure 6.4 (a tournament of rank 4

with 4 pebbles), we have 3 pebbles that form a circuit and the adversary wants the
labeler to move the fourth, that is impossible since any vertex of the tournament is
dominated by one of the three remaining pebbles.

To avoid such problems, we define a stabilizing bounded labeling system as a
bounded labeling system with stronger properties. Indeed, we add the following
constraint on the tournament: for any subset of at most k labels, there exists a
label that dominates each label of the subset. In this way, we are ensured that a
stabilizing bounded labeling system can deal with any arbitrary initialization since
it is always possible to compute a label greater than the existing ones. We can define
formally a stabilizing bounded labeling system in the following way:

Definition 6.2 (Stabilizing bounded labeling system)
A k-stabilizing bounded labeling system (k ≥ 2) is a triplet (L,≺,next) where
L is a finite set, ≺ is a total antisymmetric binary relation over L and next is a
function next : Lk → L such that:

∀L′ ⊆ L, |L′| ≤ k ⇒ ∀` ∈ L′, ` ≺ next(L′)

Note that the definition of [IL93] is a particular case of ours since any stabilizing
bounded labeling system is a bounded labeling system (by definition) while the
converse is not true (see the counter-example described above).

6.2.2 Solution

The existence of a stabilizing bounded labeling system is a non trivial question.
This question was raised (under another vocable) by Schütte in 1962 in graph theory.
The first answer comes from Erdös that proves in [Erd63] by a probabilistic argument
that such a tournament exists for any value of k. However, note that this solution is

6.2. Bounded Labelling Systems 97

l
l l7

w
�

l
l l7

w
�

l
l l7

w
�

�

R

�

l
l l7

w
�

l
l l7

w
�

l
l l7

w
�

�

R

�

l
l l7

w
�

l
l l7

w
�

l
l l7

w
�

�

R

�

�

7 U
X

X

X

X

6
?

Figure 6.4: An example of the bounded labeling system of [IL93] of rank 4 in
an arbitrary initial configuration (an arrow from a set of vertices to another one
indicates that any vertex of the first set is dominated by any vertex of the second).

98 Chapter 6. Preliminaries

Protocol 6.4 Next: the labeling protocol of our stabilizing bounded labeling sys-
tem.

Next

input:
k: a natural number
S = {(s1, A1), (s2, A2), . . . , (sk, Ak)}: set of k labels
output:
A label greater than any label of S
persistent variable:
` = (s,A): a label
X: a set of natural numbers
function:
For any ∅ 6= S ⊆ X, pick(S) returns an arbitrary element of S

01: A := {s1} ∪ {s2} ∪ . . . ∪ {sk}
02: X := {1, 2, . . . , k2 + 1}
03: while |A| 6= k do
04: A := A ∪ {pick(X \A)}
05: s := pick (X \ (A1 ∪A2 ∪ . . . ∪Ak))
06: return (s,A)

not constructive. In [SS65], a lower bound of (k+2)2k−1−1 on the number of vertices
of this class of tournament was proved. Finally, [GS71] provides a constructive
solution that is near to the optimal number of vertices. Nevertheless, this solution
is too complex to be computed efficiently. Hence, we propose in the following a new
stabilizing bounded labeling scheme that can be computed efficiently (at the price
of a huge number of vertices). Note that the loss of the optimality with respect to
number of vertices is not a real drawback since we do not store the tournament in
memory.

We can now present our stabilizing bounded labeling system. Let k > 1 be a
natural number (the rank of the tournament, that is the maximal number of objects
to label), and let K = k2 + 1. We consider the set X = {1, 2, ..,K} and let L (the
set of labels) be the set of all ordered pairs (s,A) where s ∈ X, and A ⊆ X has size
k.

We define the following binary relation C among L:

(sj , Aj) C (si, Ai) ≡ (sj ∈ Ai) ∧ (si 6∈ Aj)

Note that the binary relation C is antisymmetric by definition but is not total (for
instance, two labels (sj , Aj) and (si, Ai) are not comparable if sj ∈ Ai and si ∈ Aj).
We define now the binary relation ≺ among L in the following way: if two elements
of L are not comparable using C, then we choose an arbitrary relation between
them, otherwise we choose the relation defined by C.

We define now a function next : Lk → L in the following way. Given a subset
S of k labels S = {(s1, A1), (s2, A2), . . . , (sk, Ak)}, next returns a label (s,A) that
satisfies:

– s is an element of X that is not in the union A1 ∪A2 ∪ . . .∪Ak (as the size of
each Ai is k, the size of the union is at most k2, and since X is of size k2 + 1

6.2. Bounded Labelling Systems 99

such an s always exists).
– A is a subset of size k of X containing all values (s1, s2, . . . , sk) (if they are

not pairwise distinct, add arbitrary elements of X to get a set of size exactly
k).

The pseudo-code of function next is provided in Protocol 6.4.
We can now prove our main result.

Theorem 6.5
Sk = (L,≺,next) is a k-stabilizing bounded labeling system.

Proof : The set L is of size
(
K
k

)
K by definition. Hence, L is a finite set. By definition, ≺

is a total antisymmetric binary relation over L. Given any subset S of k labels from
L, (s,A) = next(S) satisfies: for any element (sj , Aj) of S, sj ∈ A and s /∈ Aj . By
definition, we have (sj , Aj) ≺ (s,A) for any (sj , Aj) of S. According to Definition
6.2, we obtain the result.

Note that it is simple to compute next(S) given a set S with k labels, and can
be done in time linear in the total length of the labels given, i.e. in O(k2) time.
This observation allows us to claim that our stabilizing bounded labeling scheme is
efficient and can be used in practice. Finally, observe that, given a natural number
k, any label of Sk needs O(k × log2(k)) bits to be stored.

Chapter 7

Atomic Register Simulation

Premature optimization is the root of all evil (or
at least most of it) in programming.

Donald E. Knuth

Contents
7.1 The ABD Simulation . 101
7.2 The FTPS Simulation . 103

7.2.1 Distributed Protocol . 104
7.2.2 Proof of Correctness . 106
7.2.3 Conclusion . 111

This chapter is the core of the second part of this thesis since we present our
atomic register simulation. The contribution of this chapter is to prove that the clas-
sical ABD simulation can be turned into a fault-tolerant pseudo-stabilizing single-
writer multi-reader atomic register simulation.

To perform this goal, recall that we need to use two tools defined in Chapter 6.
The first one is a communication primitive (called data-link protocol) that ensures
that the number of lost, ghost, duplicated, and re-ordered messages are bound
by finite constants in any execution. In Section 6.1, we provide such a data-link
protocol that ensures optimal bounds over our message passing model (defined in
Section 2.3.1). Note that we can use any data-link protocol while it ensures the
existence of finite bounds in any execution. The second tool is a stabilizing bounded
labeling system that is composed from a finite set of labels and a total antisymmetric
binary relation that allows comparison of labels. This labeling system has moreover
the property that, given any bounded-sized set of labels, we can compute a new
label greater than any label of this set. Note that this property does not imply the
existence of a maximum label in any bounded-sized set of labels (it may exist circuits
in this set). The labeling system defined in Section 6.2 fulfills these properties.

This chapter is organized as follows. In Section 7.1, we present the ABD simula-
tion in details and we provide its fault-tolerant pseudo-stabilizing version in Section
7.2.

7.1 The ABD Simulation

This section aims to present in details the fault-tolerant single-writer multi-
reader atomic register ABD simulation provided by Attiya, Bar-Noy, and Dolev in

102 Chapter 7. Atomic Register Simulation

[ABND95]. Their assumptions on the distributed system follow. They assume a
complete identified (i.e. each vertex of the communication graph has a distinct
identity, see Section 2.2) communication graph and an asynchronous distributed
system subject to any (f, `)-permanent crash fault pattern (with 2n > f). Vertex
w (also denoted v0 for the sake of consistency in protocols) is the writer (that is,
it can invoke both the write and the read operation) while vertices from v1 to vn−1

are readers (that is, they can invoke the read operation only).
In the following, we present only the bounded ABD simulation (the unbounded

version makes use of natural numbers to label values of the register and can be easily
derived from the bounded version). In this simulation, we assume the existence of a
sequential bounded labeling system (as the one of [IL93], see Section 6.2). Note that
a concurrent bounded labeling system is not necessary since we design a single-writer
register.

First, they define a communication primitive, called Communicate, that en-
sures the communication by quorum. This primitive broadcasts a given message
to all vertices and waits until getting an acknowledgment for a majority of them
(it is always possible since at most n

2 − 1 vertices may crash in any execution).
Note that this communication primitive is designed to deal with the properties of
the considered message passing model (non reliable and non FIFO communication
links). This communication by quorum is the basis of the distributed protocol and
was extensively re-used.

In the following, we associate a label (from the sequential bounded labeling
system) to each value of the register. Note that we ignore the actual value of the
register from now and we consider only the management of the label for the sake of
simplicity. As the labeling system is bounded, the writer must take into account all
existing labels in the distributed system before computing a new one (indeed, the
new label does not depend only of the writer label as in the unbounded version).
The main difficulty is then to maintain the set of existing labels in the distributed
system in spite of crashes and asynchrony. In other words, to ensure correctness,
the writer must be aware of at least all existing labels in the distributed system
when it computes a new one (note that the set of gathered labels may be greater
and contains obsolete labels).

To reach this goal, the Write operation operates as follow. The writer collects
(via the primitive Communicate) the existing labels in the distributed system
(readers send labels that they have for the writer and the most recent labels that
they have sent to other vertices). The writer computes then a new label greater than
each label it collected. The problem is that the primitive Communicate ensures
only the collect from a majority of vertices. In consequence, any correct vertex must
ensure that its labels are stored at a majority (at least) of vertices at any time. In
this way, the writer is able to gather all existing labels when it collects labels from
any majority.

To this end, whenever a vertex adopts a new label (that it believes to be the
maximum label of the writer), it invokes a procedure Record that stores this label
and all the recent labels it has sent to other vertices using the primitive Commu-

7.2. The FTPS Simulation 103

nicate. A vertex receiving a recording message simply stores all the labels in its
memory. In response to a query from the writer about labels, a reader sends all
labels it has stored. This implies that no label may be lost (since a majority of
vertices stores these labels). Note that, for avoiding chain reaction where a record-
ing message causes other recording messages, vertices ignore the labels carried by
recording messages even if their label is greater than their current writer label.

To implement this management of labels, the main data structure of the dis-
tributed protocol is Li, an n × n matrix of labels, for each vertex vi. The ith row
Li[i] is updated dynamically by vi according to messages it sends while other rows
Li[j] (j 6= i) are updated by messages that vi received from vj during Record invo-
cations by vj (that is, Li[j] is the latest view of vi on Lj [j]). Each element Li[i, j]
(for j 6= i), contains two fields: Li[i, j].sent and Li[i, j].ack that store respectively
the last label that vi sent to vj and the last label acknowledged by vj to vi. Finally,
the element Li[i, i] contains the current maximum label of the writer known to vi.

The key idea of the correctness proof relies on the notion of viable label. A label
` is said to be viable and in the responsibility of a vertex vi if either Li[i, i] = ` (that
is, vi believes that the current register label is `), Li[i, j].sent = `, or Li[i, j].ack = `

(that is, a non recording message containing ` has been sent from vi to vj). Now, a
label is recorded if this label appears either in the writer matrix or in the matrices of
at least a majority of vertices. The proof is based on the fact that any viable label
is recorded in a finite time. Then, it is possible to show that, at each execution of
the Write function, the new label is greater than any viable label in the distributed
system. Then, the proof is analog to the one of the unbounded version.

In this way, the ABD simulation can tolerate any (f, `)-permanent crash fault
pattern (if 2n > f). If we consider a distributed system subject to a transient and
permanent crash fault pattern, then the ABD simulation may reach some unde-
sirable configurations in which the bounded labeling system is unable to compute
a new label greater than the existing ones. Even if we assume the existence of a
stabilizing bounded labeling system to avoid such cases, the ABD simulation cannot
deal with arbitrary initialization of labels since some initially corrupted labels may
remain unknown to the writer but be included infinitely often in Read function
decision sets. The goal of the following section is to adapt the ABD simulation in
order to tolerate such initial memory corruptions.

7.2 The FTPS Simulation

This section aims to present a slight variant of the ABD simulation that can
tolerate, in addition of permanent crash faults, any transient fault. We present a
fault-tolerant pseudo-stabilizing single-writer multi-reader atomic register simula-
tion over message passing model. As far we know, it is the first time that such a
simulation is designed. First, we describe our distributed protocol in Section 7.2.1.
We prove its correctness in Section 7.2.2 and provide its space complexity in Section
7.2.3.

104 Chapter 7. Atomic Register Simulation

Protocol 7.1 PSARS: FTPS single-writer multi-reader atomic register simulation
(read operation for any vertex vi, write operation for the writer w = v0 only).

Variables:
Li: a matrix n× n with the following constraints:
– For any j 6= k, the element Li[j, k] contains two fields: Li[j, k].sent and Li[j, k].ack. The first field

is the last label that vj sent to vk in the last Read operation of vj known at vi. The second field
contains the last label known at vi sent by vj to vk when vj replied to the vk label request.

– For any j, the element Li[j, j] has two fields. The field Li[j, j].value provides information on the last
label of the writer known by vj . The second field Li[j, j].conflict gives information on a label that
conflicts with the current label of a vertex and that may be not known at the writer.

label_seti: a set of labels
Functions:
MaxLabel: returns the maximum label (according to ≺) of the label set supplied as parameter if it
exists, ⊥ otherwise
Next: returns a label greater than (according to ≺) any label of the set given as parameter
PickValue: returns an arbitrary element of any circuit (according to ≺) of the label set supplied as
parameter if possible, ⊥ otherwise

Readi()

01: label_seti :=ReadQuorumi(read)
02: if MaxLabel(label_seti) 6= ⊥ then
03: if Li[i, i].value ≺MaxLabel(label_seti)
04: Li[i, i].value :=MaxLabel(label_seti)
05: Li[i, i].conflict := ⊥
06: WriteQuorumPromotei()
07: WriteQuorumRecordi()
08: return Li[i, i].value
09: else
10: Li[i, i].conflict :=PickValue(label_seti)
11: WriteQuorumRecordi()
12: return abort

Write0()

01: label_set0 := ReadQuorum0(write)
02: L0(0, 0).value := Next(label_set0)
03: WriteQuorumPromote0()

7.2.1 Distributed Protocol

As we previously claimed, our distributed protocol is the pseudo-stabilizing ver-
sion of the ABD simulation presented in details in Section 7.1. In this section, we
explain first differences between our simulation and the ABD simulation. Then, we
present formally our distributed protocol. Note that, for the sake of simplicity, we
ignore the actual value of the register and we concentrate only on label associated
to it (as in [ABND95]).

Recall that we assume an asynchronous distributed system subject to any (k, f, `)-
transient and permanent crash fault pattern (with 2n > f). The communication
graph is complete and identified. One vertex is distinguished to be the writer. We
denote this vertex by w = v0. Vertices from v1 to vn−1 are readers. We assume
the message passing model described in Section 2.3.3. We also assume that any
pair of vertices are able to communicate using the data-link protocol defined in Sec-
tion 6.1. More precisely, if a vertex vi has a message m to send to vj , it invokes
SDL-Sendj(m). The data-link protocol delivers this message to vj by invoking
DeliverMessagei(m). Finally, we assume the existence of a stabilizing bounded
labeling system as the one described in Section 6.2.2. This labeling system provides
a set of labels L and two functions. The first one, Next, computes a label greater

7.2. The FTPS Simulation 105

than (according to ≺) any label of the set given as parameter. The second one,
MaxLabel, returns the maximum label (according to ≺) of the label set supplied
as parameter if this maximum exists, ⊥ otherwise. Note that MaxLabel returns ⊥
when there exists a circuit in the set of labels supplied as parameter (that is, there
exists a subset of labels `0, . . . , `t such that `0 ≺ `1 ≺ . . . ≺ `t ≺ `0).

Protocol 7.2 PSARS: Auxiliary functions (for any vertex vi).
Notations:
For any j, the notation Li[j] represents the jth row of the matrix Li.
Variables:
return_seti: a set of labels
read_answeri: array of n booleans
record_answeri: array of n booleans
promote_answeri: array of n booleans

ReadQuorumi(type)

01: read_answeri := [0, 0, . . . , 0]
02: read_answeri[i] := 1
03: return_seti := ∅
04: foreach j ∈ {0, . . . , n− 1} \ {i} do
05: SDL-Sendj(Inquiry(type))
06: while |{j, read_answeri[j] = 1}| ≤ n/2 do
07: wait
08: return (return_seti)
—————————————————————–
upon DeliverMessagej(Inquiry(type))
09: if type =′ read′ then
10: SDL-Sendj(Answer_Read(Li[i, i]))
11: Li[i, j].ack := Li[i, i].value
12: else
13: SDL-Sendj(Answer_Write(Li))
—————————————————————–
upon DeliverMessagej(Answer_Read(Lj [j, j])
14: Li[j, j] := Lj [j, j]
15: read_answeri[i] := 1
16: return_seti := return_seti ∪ Li

—————————————————————–
upon DeliverMessagej(Answer_Write(Lj))
17: Li[j] := Lj [j]
18: read_answeri[i] := 1
19: return_seti := return_seti ∪ Li ∪ Lj

WriteQuorumPromotei()

01: promote_answeri := [0, 0, . . . , 0]
02: promote_answeri[i] := 1
03: foreach j ∈ {0, . . . , n− 1} \ {i} do
04: SDL-Sendj(Promote(Li[i, i]))
05: while |{j, promote_answeri[j] = 1}| ≤ n/2 do
06: wait
07: foreach promote_answeri[j] 6= 0 do
08: Li[i, j].sent := Li[i, i].value
—————————————————————–
upon DeliverMessagej(Promote(Lj [j, j]))
10: if Li[i, i].value ≺ Lj [j, j].value then
11: Li[i, i] := Lj [j, j]
12: WriteQuorumRecordi()
13: SDL-Sendj(Ack_Promote())
—————————————————————–
upon DeliverMessagej(Ack_Promote())
14: promote_answeri[j] := 1

WriteQuorumRecordi()

01: record_answeri := [0, 0, . . . , 0]
02: record_answeri[i] := 1
03: foreach j ∈ {0, . . . , n− 1} \ {i} do
04: SDL-Sendj(Record(Li[i])
05: while |{j, record_answeri[j] = 1}| ≤ n/2 do
06: wait
—————————————————————–
upon DeliverMessagej(Record(Lj [j])
07: Li[j] := Lj [j]
08: SDL-Sendj(Ack_Record())
—————————————————————–
upon DeliverMessagej(Ack_Record())
09: record_answeri[j] := 1

Our distributed protocol makes use of (almost) the same data structure as the
ABD simulation. Each vertex vi stores an n×n label matrix Li. For any j 6= k, the
element Li[j, k] contains the same fields as in the ABD simulation: Li[j, k].sent and
Li[j, k].ack. The only difference with the ABD simulation matrix is that, for any j,
the element Li[j, j] contains now two fields: Li[j, j].value and Li[j, j].conflict. The

106 Chapter 7. Atomic Register Simulation

field Li[j, j].value provides the last label of the writer known by vj . In particular
Li[i, i].value contains the last label of the writer that the vi is aware. Note that
this field is equivalent to the field Li[j, j] of the ABD simulation. The second field
Li[j, j].conflict gives information on a label that conflicts with the current label of
a vertex and that may be not known at the writer. This field is used to avoid
that some initially corrupted labels remain unknown to the writer but is included
infinitely often in Read function decision set.

Classically, our distributed protocol is composed of two primitives: Read (for
any vertex) and Write (only for the writer v0). When a reader vi invokes its Read
primitive, it collects first the labels of at least a majority of vertices and computes
the maximum with MaxLabel. Two cases can appear:

1. MaxLabel returns a label. This value (if it exceeds the current label of the
reader) is recorded in the distributed system in order to refresh the views of
the other vertices on the last label of vi. Note that, after the reception of this
new value, a vertex updates the corresponding entry in its matrix. Vertex vi
finishes its Read operation by promoting its value in the distributed system.
Upon the reception of the value to be promoted, the vertex vj compares its
current label with the label of the received value. If its local value is obsolete
(the local label is less than the received label), then vj adopts the new value
and pushes it in the distributed system.

2. Whenever this maximum cannot be computed (in presence of a circuit in the
set of collected labels), the Read operation aborts. That may happen if the
distributed system is still in the stabilization phase and not all the hidden
labels have been revealed. In this case, the reader changes its Li[i, i].conflict
field to one of the labels that forms a circuit. The idea is to help in revealing
all the hidden labels in the distributed system. Indeed, the conflicting value
is then recorded in the matrices of a majority of vertices that prevents such
conflicting values to infinitely often disturb Read operations without being
considered by a Write operation. This case is the main difference between
our simulation and the ABD one.

The Write operation is similar to the one of the ABD simulation. When the
writer invokes this primitive, it first collects the latest labels in the distributed
system (by asking any majority of vertices), then computes its next label using the
Next function. Finally it starts a promotion of the new value in the distributed
system.

Protocols 7.1 and 7.2 provide the formal implementation of our fault-tolerant
pseudo-stabilizing single-writer multi-reader atomic register simulation called PSARS
(for Pseudo-Stabilizing Atomic Register Simulation).

7.2.2 Proof of Correctness

This section is devoted to the proof of the fault-tolerant pseudo-stabilization of
PSARS for specARS. According to properties of our data-link protocol proved in

7.2. The FTPS Simulation 107

Section 6.1 (in particular the fact that R(σ) = S(σ) or R(σ) = m.S(σ) wherem is an
arbitrary message for any execution σ), we know that any execution has an infinite
suffix in which no ghost, duplicated or re-ordered messages are delivered (since there
is only a finite number of communication links in the distributed system). We can
conclude that any execution has an infinite suffix in which any delivered message
was actually sent. For the sake of simplicity, we consider only such suffixes of
executions in the sequel of this proof. Note that this assumption does not restrict
the generality of the proof since we want to prove the pseudo-stabilization of our
distributed protocol (that is, only the existence of an infinite suffix satisfying the
specification, not the finiteness of a prefix that does not satisfy the specification).

Recall that the main difficulty in the proof of the ABD simulation is to show
that, in each Write invocation, the label set supplied to Next contains at least all
viable labels present in the distributed system. In our case, the difficulty on proving
our atomic register simulation also comes from the presence of fake labels (due to
the arbitrary initialization of matrices) in the distributed system that may disturb
the good functioning of the distributed protocol.

In the following, we prove that the writer includes in its decision set (records)
all the viable labels in the distributed system defined below. A label ` is said to
be viable and in the responsibility of vertex vi if it satisfies one of the following
properties:

– Li[i, i].value = ` or Li[i, i].conflict = `

– Li[i, k].sent = ` or Li[i, k].ack = `

– there is a vertex vj such that Lj [i] contains ` in one of the fields sent, ack,
value or conflict.

Note that our notion of viable label extends the one presented above and that
any label in the distributed system is in the responsibility of a vertex. A viable label
is recorded if this label is stored in the writer matrix or the matrix of any majority
of vertices. In the following, we show that any label in the responsibility of a vertex
eventually becomes recorded. Note that once a label is stored in the matrix of the
writer or in the matrix of a majority of vertices, this label will be included in the
computation of the new label of the writer and it will not generate new conflicts.

This observation motivates the following necessary assumption for the fault-
tolerant pseudo-stabilization of PSARS: if the writer crashes in an execution, then
this crash happens after the first stabilized Write invocation (that is, a Write
invocation during which the label set supplied to Next includes all the viable labels
in the distributed system). In other words, an execution has an infinite suffix that
satisfies specARS if the writer does not crash during this execution or if the writer
crashes after the first stabilizedWrite invocation (we cannot provide any properties
in the contrary case). In the sequel of this section, we consider only such executions.

Lemma 7.1
Any execution of PSARS has an infinite suffix where every Read invocation
does not abort.

Proof : By contradiction, assume that there exists an execution of PSARS that has an

108 Chapter 7. Atomic Register Simulation

infinite suffix where Read invocations abort infinitely often. Since there is a finite
number of vertices, there is a vertex vi such that its Read invocations returns
abort infinitely often. It follows that MaxLabel returns ⊥ for the set of labels
that vi gathered via ReadQuorum invocation for each of these invocations. This
situation can occur only when there is a label ` such that ` has not been written by
the writer (a hidden label) or ` was introduced by the writer during the stabilization
phase (that is, when the writer computed the next label, some of the labels in the
distributed system had not yet been revealed) for each of these invocations.

Let r1 be the first Read of vi that aborts. Note that before returning vi stores
in its field Li[i, i].conflict a conflicting label `1 (that is, `1 appears in a circuit of
the set of labels collected by r1) and records this label in a majority of vertices.
Consider the first Write operation w1 that happens after r1. By construction, w1

starts with a ReadQuorum invocation. Since r1 happens before, `1 has already
been recorded in a majority of vertices. It follows that w1 also retrieves `1 and
includes it in the input set of its Next invocation. The new chosen label `′1 will be
greater than `1. Then w1 promotes its new label in a majority of vertices.

Consider a read operation r2 of vi that happens after w1. By construction, r2
collects labels from a majority of vertices. Two cases can appear.

1. The label `′1 is equals to the return value of MaxLabel on the collected set
and vi adopts then this label, promotes, and records it into a majority of
vertices.

2. The vertex vi cannot compute the maximum over the collected set. In this
case, vi picks a label in the collected set, `2, such that `2 is part of a circuit
with respect to the ≺ relation. Then, vi stores `2 in its Li[i, i].conflict field
and records it into a majority of vertices.

Since the number of fake labels is finite, eventually all these labels will be learned
by the writer and included in the input set for the computation of its next label. Let
`′t be this label and let wt be the Write operation that computes this label (hence
the necessity of the assumption that at least one such Write operation happens).
wt promotes l′t in the distributed system. Let rt be the first Read invocation by vi
that happens after wt. Then, vi retrieves `′t in its read quorum set. By construction,
`′t is greater than any label in the distributed system and hence adopted by vi. We
can repeat this reasoning to conclude that any Read invocation by vi after rt does
not abort which contradicts the original assumption of the proof. It follows that in
any execution there is an infinite suffix where each Read does not abort.

Lemma 7.2
Any execution of PSARS has an infinite suffix where, for any vertex, the labels
in its responsibility become recorded either at the writer or in a majority, or stay
forever out of the computation.

Proof : Let σ be an execution of PSARS starting from a configuration γ and let S be
the set of labels in the responsibility of a correct vertex vi in γ. Let ` be a label in
S. We distinguish the following cases.

1. Vertex vi is correct and executes at least one Read operation in σ. By defi-
nition, label ` can be in the responsibility of vi for three reasons.

7.2. The FTPS Simulation 109

(a) Label ` is contained in one of the fields of Li(i, i). Let r be the first
Read operation of vertex vi. Then vi either modifies its current label to
`′, promotes the new label, and records it or keeps ` and records it. It
follows that the label contained in Li[i, i].value is recorded in at least a
majority of vertices in one of the fields Lj [i] and replaces any previously
recorded label. Hence, S becomes eventually either S with ` recorded
by the writer or S \ {`} ∪ {`′} with `′ recorded by a majority of correct
vertices.

(b) When ` is in a field Li(i, k), it will be replaced by another label at the
first Inquiry message reception from vj or the first execution of Write-
QuorumPromote by vi. If this never happens, ` remains out of the
computation since ` will never be communicated.

(c) The matrix of some vertex vj is corrupted in γ and contains the label ` in
Lj [i]. If vj is a correct vertex then vj is eventually contacted by a Write
operation and sends its whole matrix to the writer. Two cases may occur.
Either label ` is recorded in the matrix of the writer and further used by
the writer to compute the next value or ` is eventually replaced by a new
value `′, new label of vi (see previous case). Hence, S becomes eventually
either S with ` recorded by the writer or S \ {`} ∪ {`′} with `′ recorded
by a majority of correct vertices.

2. Vertex vi is correct but never executes a Read operation in σ.
Since vi is correct then vi eventually receives a promote message from the
writer. Either vi replaces ` by the new label of the writer, `′, or keeps `. In
both cases vi records its current label in a majority of vertices. Hence either
S stays unchanged and ` is recorded either in the writer or in a majority or S
becomes S \ {`} ∪ {`′} and `′ is recorder either in the writer or in a majority.

3. Vertex vi is crashed.
If ` is locally recorded in vi, then ` will never appear in σ since vi does not
reply to any Write or Read operations. Assume ` is stored at some correct
vertex vj in Lj [i]. Then, vj eventually sends to the writer its matrix. Either `
is recorded at the writer or ` is forever ignored. Note that even if vj responds
to read requests issued from readers, ` will never be communicated.

In each case, the result holds.

In the following, a viable label will refer only to labels that do not stay forever
out of the computation.

Lemma 7.3
Any execution of PSARS has an infinite suffix that satisfies the regularity
property of specARS.

Proof : Let σ be an infinite execution of PSARS. Following Lemma 7.1 and Lemma
7.2, σ contains an infinite suffix, σ′, where no Read invocation aborts and any
Write operation includes in its decision set all the viable labels in the distributed
system. By contradiction, assume there is a vertex vi such that itsRead invocations
return an obsolete label infinitely often in σ.

110 Chapter 7. Atomic Register Simulation

That is, there exists a Read invocation r by vi such that the label returned
by r is either a fake label or a label corresponding to a previous write but not the
most recent. In σ′, r returns the output value of MaxLabel invoked over the set
of labels returned by ReadQuorum.

Let w1 and w2 be two Write operations such that w1 happens before w2 and r.
Since w1 happens before r then the label computed by w1 is promoted and recorded
in at least a majority of vertices and is greater than any label in the distributed
system. When r starts invoking ReadQuorum two cases may appear: (i) w2 did
not modify the writer label and did not start the promotion of the new label via
WriteQuorumPromote or (ii) w2 executed WriteQuorumPromote. In the
first case, w1’s label is the largest label in the distributed system. When r invokes
the ReadQuorum, it gets w1’s label (otherwise w1 is not terminated) and returns
this label. Hence, r cannot return a value older than the one written by w1. In
the second case, some vertices contacted during the ReadQuorum execution may
send the w1’s label, other vertices the w2’s label. Since the label computed in w2

is greater than the label computed in w1, MaxLabel invoked in r will return w2’s
label. Hence, r will return the last written value, that contradicts its construction.

Lemma 7.4
Any execution of PSARS has an infinite suffix that satisfies the no new/old
inversion property of specARS.

Proof : Let σ be an execution of PSARS. Following Lemmas 7.1 and 7.3, σ has an
infinite suffix, σ′, that satisfies the regularity property of specARS and in which any
Read invocation does not abort. In the following, we prove that σ′ does not violate
the new/old inversion property of specARS.

Consider two Write operations w1 and w2 in σ′ such that w1 happens before
w2. Consider also two Read operations r1 and r2 such that r1 happens before
r2 and w1 happens before r1 (following the transitivity of the relation “happens
before”, w1 also happens before r2). Assume that r1 and r2 are concurrent with w2

and that a new/old inversion happens. That is, r1 returns the label `2 written by
w2 and r2 returns the label `1 written by w1.

Since r1 happens before r2, then r1 executes the following actions (before the
start of r2): it modifies its local label to `2, it also executes WriteQuorumPro-
mote in order to help w2 to push its label in the ditributed system and finally
it executes WriteQuorumRecord in order to inform the distributed system on
its new value. Since WriteQuorumPromote returns before r1 finishes, then the
label `2 is already adopted by at least a majority of vertices. That is, since `2 � `1
(w1 happens before w2), then `2 replaces `1 in the matrices of at least a majority
of vertices and also a majority of vertices proceeds to the record of their new label.

We assumed r2 returns `1. Since r1 happens before r2 then r2 starts its Read-
Quorum after r1 returned, in particular after r1 completed itsWriteQuorumPro-
mote operation. This implies that `2 is the label adopted by at least a majority
of vertices and at least one vertex in this majority will respond while r2 invokes
its ReadQuorum. That is, r2 collects at least one label `2 and since `2 � `1, r2
should return this value. This contradicts the assumption r2 returns `1. It follows
that σ′ satisfies the no new/old inversion property of specARS.

7.2. The FTPS Simulation 111

7.2.3 Conclusion

This section concludes the Chapter 7 by providing a study of the memory com-
plexity of our atomic register simulation. For the sake of the comparison, remind
that the ABD simulation needs a total amount of memory on the distributed system
in O(n5) bits (using the bounded labeling system of [IL93]).

Lemma 7.5

PSARS requiresO(n5×log2(n)) bits per vertex. Consequently, the total amount
of memory on the distributed system is in O(n6 × log2(n)) bits.

Proof : Note that the set label_set which is the input of Next contains 2n3 labels.
Hence, following Section 6.2.2, one label needs O(n3 × log2(n)) bits to be stored.
Since any vertex must store 2n2 labels, we have the result.

The previous results allow us to state the following theorem:

Theorem 7.1
PSARS is a f -ftps distributed protocol for specARS provided that 2n > f and
that the writer can crash only after its first stabilized Write invocation. It
requires O(n6log2(n)) bits of memory on the whole distributed system.

Chapter 8

Conclusion of Part II

People think that computer science is the art of
geniuses but the actual reality is the opposite,
just many people doing things that build on each
other, like a wall of mini stones.

Donald E. Knuth

Contents
8.1 Summary of Contributions . 113
8.2 Concluding Remarks . 114

8.1 Summary of Contributions

The second part of this thesis focuses on computational model transformation.
Indeed, it is simpler to design distributed protocols in high atomicity models than
in low atomicity ones. For instance, the register model allows atomic read and write
operations on some shared variables (called registers). Depending on the properties
provided by these atomic operations, we can distinguish different classes of registers.
We concentrate on the class of registers that provides the best possible property:
atomicity (that is, any read operation returns the value of the register as if operations
are sequential and not concurrent).

Simulation of atomic register over lower atomicity computational models was
extensively studied using two (complementary) approaches:

– simulation from a weaker register model; and
– simulation from the message passing model.

At our knowledge, there existed no atomic register simulation tolerating both tran-
sient and permanent crash faults using the second approach. The main contribution
of this part is to fill this gap. More precisely, our contribution is threefold.

Data-link protocol As we want to design a distributed protocol resilient to tran-
sient faults in our message passing model that allows communication links to be not
reliable and non-FIFO, it is desirable to provide a communication black box (called
data-link protocol) that ensures the best possible communication properties. Until
now, existing self-stabilizing solutions to this problem did not consider non-FIFO
communication channels and did not provide quantitative effects of the transient

114 Chapter 8. Conclusion of Part II

faults on messages. In Section 6.1, we first introduced a set of definitions to remedy
at this last point. We characterized the fault resiliency of a data-link protocol by
the maximal number of lost, ghost, duplicated, and re-ordered messages that this
protocol cannot avoid. Then, we provide a stabilizing data-link protocol that is
optimal with respect to these four criteria. As this data-link protocol is designed as
an independent communication black box, we claim that it may be useful by any
other distributed protocol operating in our message passing model.

Stabilizing bounded labeling scheme A classical approach to keep track of
temporal precedence between events in an asynchronous distributed system is to
use labeling schemes (indeed, clock values are not suitable since we cannot compare
clocks between vertices due to the asynchrony). A natural labeling system is the
set of natural numbers but it leads to unbounded memory usage at each vertex.
Hence, bounded labeling systems were extensively studied. All existing stabilizing
bounded labeling systems are designed for the atomic register model. In Section 6.2,
we proposed the first stabilizing bounded labeling system that makes no assumption
about the computational model. As with the data-link protocol, this labeling scheme
is defined independently of protocols that use it, making it re-usable in another
context.

Atomic register simulation Chapter 7 is the core of this part. It focuses on
our single-writer multi-reader atomic register simulation in distributed systems sub-
ject to any transient and permanent crash fault pattern. Our contribution is the
following: we show that the classical ABD simulation (a single-writer multi-reader
atomic register simulation in distributed systems subject to permanent crash fault
pattern designed by Attiya, Bar-Noy and Dolev) can be turned into a fault-tolerant
pseudo-stabilizing distributed protocol using our data-link protocol and our stabi-
lizing bounded labeling scheme. It turns out that only a few changes are necessary
once these two building bricks are incorporated in the initial distributed protocol.

8.2 Concluding Remarks

Results presented in this part show the possibility to use the atomic register
model in the context of self-stabilization. Our main contribution is to simulate such
a model directly from the message passing model (and not from a weaker register
model as in previous works) in a distributed system subject to any transient and
permanent crash fault pattern. Note that our message passing model is weak since
it allows arbitrary message looses and re-ordering.

As our approach is modular, we can replace the data-link protocol or the sta-
bilizing bounded labeling system. In this way, we can improve our atomic register
simulation by providing a better data-link protocol (e.g. by improving its com-
plexity in number of messages or in space) or a better stabilizing bounded labeling
scheme (e.g. by improving its number of vertices or the time complexity of the

8.2. Concluding Remarks 115

next function). Our results about atomic register simulation open new avenues of
research. For instance, is it possible to automatically adapt the numerous exist-
ing fault-tolerant distributed protocols based on atomic register model to tolerate
transient faults as well?

Our atomic register simulation is a pseudo-stabilizing version of the ABD simu-
lation that is also fault-tolerant. An important open question is the following: is it
possible to provide a fault-tolerant self-stabilizing atomic register simulation? We
conjecture that the answer is negative (at least for solutions based on time-stamps)
but we could not succeed to prove this impossibility result. Our intuition relies on
the following observations. Due to the asynchrony and the communication using
quorums (that is made necessary by the possibility of crashes), a reader may remain
out of the computation for any arbitrary long time. Then, if this reader happens
to have the greatest time-stamp when it joins the computation, other readers may
adopt its incorrect value of the register, which violates the specification.

Part III

Unison

Chapter 9

Introduction of Part III

Time is a great teacher, but unfortunately it kills
all its pupils.

Louis Hector Berlioz

Contents
9.1 Problem and Related Works . 120

9.1.1 Problem . 120
9.1.2 Related Works . 120
9.1.3 Specification and Definitions 121

9.2 Contributions of Part III . 124
9.3 Fault-Tolerant Self-Stabilization . 125

The third part of this thesis focus on a classical problem of distributed sys-
tems: synchronization. Interest in synchronization comes from the following fact:
in a fault-prone environment, stronger are the properties of synchronism of the dis-
tributed system easier is the design of a distributed protocol. This property is proved
by fundamentals results of [FLP85]. Indeed, Fisher, Lynch and Patterson proved
the impossibility of the consensus in an asynchronous permanent fault-prone dis-
tributed system whereas this problem is easily solvable in an asynchronous fault-free
distributed system.

Therefore, a desirable way to design a distributed protocol is to design first a
synchronizer (a distributed protocol that ensures some synchronization guarantees
over an asynchronous system), to design a simpler distributed protocol for the initial
problem using these synchronization guarantees, and then to compose these two
distributed protocols to obtain a distributed protocol for the initial problem in an
asynchronous environment.

More precisely, we consider in this part asynchronous unison [GH90, CFG92]
that requires vertices to maintain synchrony between their counters called clocks.
Specifically, each vertex has to increment its clock indefinitely while the clock drift
from its neighbors should not exceed 1. Asynchronous unison is a fundamental build-
ing block for a number of principal tasks in distributed systems such as distributed
snapshots [CL85] and synchronization [Awe85, AKM+07].

This chapter aims to present in details the asynchronous unison problem and
some related works (see Section 9.1) and to summarize results presented in this part
(see Section 9.2).

120 Chapter 9. Introduction of Part III

9.1 Problem and Related Works

This section focuses on a presentation of the asynchronous unison problem (see
Section 9.1.1), on a survey of previous results (see Section 9.1.2) and finally to a
formal specification of the problem studied in this part (see Section 9.1.3).

9.1.1 Problem

As we previously mentioned, the design of distributed protocols over synchronous
distributed systems is easier than over asynchronous ones. Hence, it is desirable
to develop a general scheme that allows the synchronization of asynchronous dis-
tributed systems. The key idea is to design a transformer that simulate a syn-
chronous distributed system. Then, if we compose this transformer with a dis-
tributed protocol for synchronous distributed systems we obtain a distributed pro-
tocol running over an asynchronous distributed system. Such a transformer is called
synchronizer [Awe85].

According to [RH90], the goal of a synchronizer is to generate pulsations on each
vertex of the communication graph as these pulsations were generate by a global
clock that each vertex can have the value immediately. This implies that all vertices
have the same pulsation of the global clock at any given time. We speak then about
strong synchronization. We can weaken the constraints on the global clock in the
following way: we allow a vertex to start a new pulsation only if all its neighbors
and itself are in the same pulsation. We speak then about weak synchronization.

There exists simple synchronizers (like the α-synchronizer of [Awe85]) in which
pulsations are implicit (only determined by message exchanges). If the distributed
system is incorrectly initialized (as in self-stabilization), it is possible that, in spite
of the synchronization, the execution may never be in “phase”. In order to solve this
problem, a well-know scheme (see e.g. [Mis91, CFG92]) is to add to each vertex
a counter, called clock, that stores the identifier of the current pulsation. A phase
clock distributed protocol is a distributed protocol that ensures that clocks of the
distributed system remain weakly synchronized and are infinitely often incremented.

We say that a distributed system is in unison when clocks of any pair of neighbors
of the communication graph differ from at most one unit. In the following, we
define an asynchronous unison as any phase clock distributed protocol (over an
asynchronous system) that stabilizes to unison [GH90].

9.1.2 Related Works

In this section, we provide a short survey of previous works related to clock syn-
chronization and unison. One key issue about unison protocols is the boundedness
of the clock. Indeed, we mainly distinguish unbounded clocks (that is, the domain
value of the clock is isomorphic to N, the set of natural numbers with a total order)
and bounded clocks (that is, the domain value of the clock is a finite set with a
partial order). In the following, we also distinguish distributed protocols by their
fault tolerance capacities.

9.1. Problem and Related Works 121

Fault-free systems As the subject of this thesis is related to fault-tolerance, we
only cite the seminal work of Misra [Mis91] that clearly defined the problem of
strong phase synchronization. Note that the communication graph is complete and
that self-stabilization is not discussed. However, bounded clocks are considered.

Self-stabilizing systems The first work about unison (considering our defini-
tion) is from Gouda and Herman [GH90] that deals with synchronous systems and
considers only unbounded clocks. The next step is achieved by Couvreur, Francez
and Gouda that propose in [CFG92] an asynchronous unison based on bounded
clocks. Considering specific communication graphs, some other works deal with
asynchronous unison with bounded clocks and improve some characteristics of the
general solution (see e.g. [HG95, LS95, HL98, LH01, BPV06]).

Finally, Boulinier, Petit, and Villain propose in [BPV04] a new unison that is
optimal in term of number of states of the clock. Indeed, they prove a tight lower
bound of cycle(g) + hole(g)− 1 states per clock vertex (where cycle(g) is the length
of the maximal cycle of the shortest maximum cycle basis of g and hole(g) is the
length of the longest chordless cycle of g). On the other side, they study optimality
of states number in synchronous unison in [BPV05].

Multi-tolerant systems At our knowledge, clock synchronization in systems sub-
ject simultaneously to transient and permanent failures was only studied in syn-
chronous settings.

First, we can cite probabilistic solutions designed for complete communication
graphs. In this way of research, Dolev and Welch design in [DW04] an unison
that support up to a third of Byzantine vertices but that has an exponential ex-
pected stabilization time. Ben-Or, Dolev and Hoch improve the stabilization time
in [BODH08] since they provide a solution with a constant expected stabilization
time under the same assumptions.

Then, if we consider deterministic solutions, we can distinguish those running
only on complete communication graphs. Results of [PT97] and [DW97] focus on
wait-free clock synchronization, that is they consider systems subject to transient
and intermittent crash fault patterns while [HDD06] and [DH07] consider systems
subject to transient and permanent Byzantine fault patterns. These two last works
have a linear convergence time. The first tolerates up to a fourth of Byzantine
vertices whereas the second tolerates up to a third of Byzantine vertices.

Finally, Dolev studied the strong clock synchronization in systems subject to
transient and permanent crash fault pattern in [Dol97]. This work focuses on general
communication graph and uses a bounded clock.

9.1.3 Specification and Definitions

Specification In the following, cv is the variable of vertex v that represents its
clock value. Values are taken in the set of natural integers (that is, the number of
states is unbounded, and a total order can be defined on clock values). Note that

122 Chapter 9. Introduction of Part III

we do not consider the case of bounded clocks in this thesis. We now define a notion
related to local clock synchronization. We call clock drift between two neighbors v
and u the absolute value of the difference between their clock values. In this part, we
deal with unison that is a weak clock synchronization: we must ensure that clocks
are eventually “close” from each other. More precisely, two neighbors v and u are in
unison if the drift between them is no more than 1. We say that a configuration of
the communication graph is weakly synchronized if any correct vertex is in unison
with its correct neighbors.

Definition 9.1 (Weakly synchronized configuration)
A configuration γ ∈ Γ is weakly synchronized (denoted γ ∈ Γ1) if and only if :

∀v ∈ V ∀u ∈ Nv, u and v corrects in γ ⇒ |cv − cu| ≤ 1

Intuitively, classical asynchronous unison ensures that the distributed system
is eventually (and remains forever) in a weakly synchronized configuration (safety
property) and that clocks of correct vertices are infinitely often modified (live-
ness condition). The only allowed modification of clocks after stabilization is in-
crementation. More formally, the classical specification of asynchronous unison
[GH90, CFG92] follows.

Specification 9.1 (Classical asynchronous unison specCAU)
An execution σ satisfies specCAU if and only if it complies with the following two
properties:

(Safety) every configuration of σ is weakly synchronized; and

(Liveness) the clock of every correct vertex is incremented infinitely often and
never decremented in σ.

Unfortunately, in the context of executions subject to transient and intermittent
Byzantine fault pattern, we have the following result.

Proposition 9.1
There does not exist a strictly stabilizing distributed protocol for specCAU (even
when there is only one Byzantine vertex) for any containment radius.

Informal argument follows. Consider the following initial configuration: the
Byzantine vertex b has a clock value of 0 and any correct vertex has a clock value
equal to the distance between it and b. Then, this configuration satisfies the safety
requirement of specCAU. Assume now that the Byzantine vertex takes no actions and
keeps its clock value to 0. Remember that asynchronism of the system implies that
this execution is indistinguishable from the one where b is a correct vertex and is
very slow. Consequently, no correct vertex can increment its clock without violating
the safety requirement of specCAU from this configuration. Hence, no correct vertex
can increment its clock infinitely often in any run starting from this configuration.

9.1. Problem and Related Works 123

To make the problem solvable in the context of this thesis (executions subject
to any transient and intermittent Byzantine fault pattern), we weaken specCAU to
obtain the specification of asynchronous unison as follows.

Specification 9.2 (Asynchronous unison specAU)
An execution σ satisfies specAU if and only if it complies with the following two
properties:

(Safety) every configuration of σ is weakly synchronized; and

(Liveness) the clock of every correct vertex is incremented infinitely often in
σ.

This specification is weaker than specCAU since it allows both increments and
decrements (after clock synchronization) as long as the vertices remain in synchrony.

At this step, one may think about a very simple distributed protocol that may
seem to be strictly stabilizing for specAU. The idea of this distributed protocol is to
allow clocks of correct vertices to cycle between the values 0 and 1 whatever is the
clock of the Byzantine vertices. This distributed protocol is composed of two rules.
The first one sets the clock value of the vertex to 1 when its value is 0. The second
one sets the clock value of the vertex to 0 when its value is not 0. This simple solution
ensures our liveness property but is not strictly stabilizing since the closure of the
safety property is not guaranteed. Consider the following counter-example: in the
initial configuration of the distributed system, any clock has the same value (strictly
greater than 2), say 15 for example and there is no Byzantine vertex (remember that
clock values are unbounded integers by specification). Note that this configuration
satisfies the safety condition of specCAU (the clock drift between any two correct
neighbors is at most one). Then, any correct vertex is enabled by the proposed
distributed protocol. Assume now that the daemon chooses only one correct vertex,
the next configuration does not satisfy the safety condition of specCAU (since the
chosen vertex takes the clock value 0 whereas its correct neighbors keep the clock
value 15).

Minimality and priority We now present two key properties satisfied by all
known self-stabilizing unison distributed protocols. Those properties are used in the
impossibility results presented in Chapter 10. We called these properties respectively
minimality and priority.

Minimality means that vertices maintain no extra variables but the digital clock
value. This implies that a minimal distributed protocol for specAU can only refer
to clocks or to predefined constants. We now state the formal definition of this
property.

Definition 9.2 (Minimality)
A distributed protocol for specAU is minimal if and only if every vertex only
maintains a clock variable.

124 Chapter 9. Introduction of Part III

Priority means that if, for a given vertex, incrementing the clock value does not
break the local safety predicate with its neighbors, then its clock value is actually
incremented in a finite number of activations of this vertex, even if no neighbor
modifies its clock value. This property implies that, if a vertex can increment its
clock without breaking unison with its neighbors, then it does so in finite time
whether its neighbors are Byzantine, crashed or correct. This property is similar
to obstruction-freedom [HLM03] in the sense that the distributed protocol only
has very weak constraints about progress. We formally state this property in the
following definition.

Definition 9.3 (Priority)
A distributed protocol for specAU is priority if and only if it satisfies the following
property: if there exists a vertex v such that for any u ∈ Nv, (cu = cv or
cu = cv + 1) holds in a configuration γi, then there exists a portion of execution
σ = (γi, γi+1)...(γi+k−1, γi+k) such that:

– only v is chosen by the daemon during σ;
– cv is not modified during actions (γi+j , γi+j+1), for j ∈ {0, ..., k − 2}; and
– cv is incremented during action (γi+k−1, γi+k).

For example, distributed protocols proposed by [BPV04, BPV05, CFG92, GH90]
fall in the category of minimal and priority unison using these definitions. Another
example is the protocol of [PT97] that is priority but not minimal. To our knowledge,
any existing unison distributed protocol satisfies either minimality or priority.

9.2 Contributions of Part III

Position of Part III As highlighted by related works described in Section 9.1.2,
there does not exist, at our knowledge, any solution to clock synchronization prob-
lems for asynchronous distributed systems subject to composite fault patterns. The
main goal of the Part III of this thesis is to fill this gap by studying asynchronous
unison in distributed systems subject to transient and intermittent Byzantine fault
patterns.

Moreover, we focus only on deterministic solutions on general anonymous com-
munication graphs. Note that we consider only state model computational model
in this part (see Section 2.3.2).

Overview of Part III The first contribution of this part is the generalization of
fault-tolerant self-stabilization by the introduction of the idea of containment radius
as in strict-stabilization (see Section 4.2.3). We say that a distributed protocol is
(f, r)-fault-tolerant and self-stabilizing if, starting from any arbitrary configuration,
every execution reaches a configuration from which the effect of a maximum of f
crash faults is contained to the r-neighborhood of crashed vertices (see Section 9.3
for a formal definition). Then, contributions of this part are the following.

9.3. Fault-Tolerant Self-Stabilization 125

Impossibility results: Strong assumptions made on the distributed system and
on the problem obviously lead to a couple of impossibility results. Chapter 10
details them. We prove impossibility results for FTSS asynchronous unison
(that naturally imply similar impossibility results for strictly stabilizing asyn-
chronous unison, see Section 9.3) related to the number of crashed vertices,
the fairness of the daemon, the considered communication graph, and/or the
minimality or the priority of the distributed protocol.

Possibility results: Chapter 11 brings a strictly stabilizing solution to asynchron-
ous unison in the remaining possible cases. Moreover, we prove that this
solution has an optimal stabilization time.

Finally, Chapter 12 concludes Part III by proposing a generalization of asyn-
chronous unison and exposing some open questions.

Results presented in Chapter 10 have been published in Theoretical Computer
Science [DPBT11] and in the proceedings of the 23rd International Symposium on
Distributed Computing (DISC 2009) [DPBT09]. Chapter 11 leads to a publication
in the proceedings of the 14th International Conference On Principles Of DIstributed
Systems (OPODIS 2010) [DPBNT10].

9.3 Fault-Tolerant Self-Stabilization

Definition of fault-tolerant self-stabilization introduced in Section 4.2.1 states
that a f -ftss distributed protocol is self-stabilizing in spite of f crashed vertices.
This definition can be easily generalized using the key idea of containment radius
of strict-stabilization (see Section 4.2.3).

Given a containment radius r, a distributed protocol is (f, r)-ftss if it ensures
that, starting from any arbitrary configuration, any execution subject to at most f
crashed faults reaches in a finite time a configuration from which any correct vertex
that has no crashed vertice in its r-neighborhood satisfies the specification.

The formal definition follows. For any natural number r, we define gr as the
communication subgraph of g induced by the following set Vr (where C denotes the
set of crashed vertices):

Vr = {v ∈ V |min
c∈C
{dist(g, v, c)} > r}

Definition 9.4 (Fault-tolerant self-stabilization)
A distributed protocol π is (f, r)-fault-tolerant and self-stabilizing ((f, r)-ftss
for short) for specification spec if and only if starting from any arbitrary con-
figuration every execution of π involving at most f crashed vertices contains a
configuration from which every execution σ of π satisfies: the projection of σ on
gr satisfies spec.

From this definition, it could be easily deduced that impossibility results of
Chapter 10 related to (f, r)-ftss distributed protocols imply similar impossibility

126 Chapter 9. Introduction of Part III

results about (c, f)-strict stabilization.

Chapter 10

Impossibility Results

The limits of the possible can only be defined by
going beyond them into the impossible.

Arthur C. Clarke

Contents
10.1 General Results . 129

10.1.1 Two and more Byzantine Faults 129
10.1.2 Unfair Daemon . 129

10.2 Minimal Unison Related Results . 130
10.2.1 Weakly Fair Daemon . 130
10.2.2 Strongly Fair Daemon and Maximal Degree greater than 3 . 133

10.3 Priority Unison Related Results . 136
10.3.1 Weakly Fair Daemon . 137
10.3.2 Strongly Fair Daemon and Maximal Degree greater than 3 . 138

10.4 Summary of Impossibility Results 140

In this chapter we present a broad class of impossibility results related to the
strictly stabilizing asynchronous unison. These impossibility results focus on the
number of faulty vertices, on the topology of the communication graph, on the
fairness of the daemon, or on the distributed protocol itself (minimality or priority
of the distributed protocol). The extent of these impossibility results shows that
it is practically vain to solve the unison problem in presence of any transient and
intermittent Byzantine fault pattern. Note that Chapter 11 provides a strictly
stabilizing distributed protocol to asynchronous unison when possible.

Note that all impossibility results of this chapter are actually related to FTSS
distributed protocols, that obviously prove the impossibility of strictly stabilizing
distributed protocols (see Chapter 4). Moreover, all impossibility results of this
chapter are proved under central daemons for the sake of generality (since such an
impossibility result implies impossibility for any other distribution of the daemon,
see Corollary 3.2) whereas no assumptions are made on the boundedness or the
enabledness of the daemon.

Details on the contribution of this chapter follow. First, we show a preliminary
result that states that a vertex v cannot modify its clock value if it has two neighbors
u and u′ with cu = cv − 1 and cu′ = cv + 1 (Lemma 10.1). This property is further
used in the sequel of this chapter. Theorem 10.1 proves that there exists no (f, r)-ftss

128 Chapter 10. Impossibility Results

distributed protocol for any r value if f ≥ 2. Furthermore, in Theorem 10.2, we prove
that there exists no (1, r)-ftss distributed protocol for specAU under the central unfair
daemon for any r value. Then we study the minimal and priority asynchronous
unison and prove there exists no minimal or priority (1, r)-ftss distributed protocol
for specAU under the central weakly fair daemon for any r value (Lemma 10.2,
Theorems 10.3 and 10.5). Finally, we prove there exists no minimal or priority
(1, r)-ftss distributed protocol for specAU under the central strongly fair daemon for
any r value if the communication graph has a maximal degree of at least 3 (Lemma
10.3, Theorems 10.4 and 10.6).

Preliminary Result We introduce a preliminary result that shows that in any
execution of a (f, r)-ftss distributed protocol for specAU (under any central daemon)
a vertex v cannot modify its clock value if it has two neighbors u and u′ such that:
cu = cv − 1 and cu′ = cv + 1. This result follows simply from the fact that in the
contrary case, the closure of specAU is not satisfied. This result is extensively used
in the sequel of this chapter.

Lemma 10.1
Let π be a (f, r)-ftss distributed protocol for specAU (under any central daemon)
and γ be a configuration where a vertex v (such that cv ≥ 1) has two neighbors
u and u′ such that: cu = cv − 1 and cu′ = cv + 1. If v executes an action of π
during an action (γ, γ′), then this action does not modify the value of cv. If π is
also minimal, then the vertex v is not enabled by π in γ.

Proof : Let π be a (f, r)-ftss distributed protocol for specAU (under any central dae-
mon). Let g be a communication graph and γ be a configuration of g such that no
vertex is crashed, γ ∈ Γ1, and there exists a vertex v (such that cv ≥ 1) with two
neighbors u and u′ such that: cu = cv − 1 and cu′ = cv + 1.

Assume that v is activated by the daemon during an action (γ, γ′) (only v

is activated during this action since the daemon is central) and that this action
modifies the value of cv. Note that cu and cu′ are identical in γ and γ′. Let c be
the value of cv in γ and c′ be the value of cv in γ′. Values of c and c′ satisfy one of
the two following relations:

Case 1: c < c′.
This implies that |c′−cq| = |c′−c|+|c−cq| > 1 (since |c′−c| ≥ 1 by hypothesis
and |c− cq| = 1).

Case 2: c′ < c.
This implies that |c′ − cq′ | = |c′ − c| + |c − cq′ | > 1 (since |c′ − c| ≥ 1 by
hypothesis and |c− cq′ | = 1).

In the two above cases, γ′ /∈ Γ1, hence the closure property of π is not satisfied,
that is contradictory. If π is also minimal, then the previous result implies that v
is not enabled by π in γ.

10.1. General Results 129

10.1 General Results

This section proposes two impossibility results related to the number of perma-
nently crashed vertices (see Section 10.1.1) and to the unfairness of the daemon (see
Section 10.1.2).

10.1.1 Two and more Byzantine Faults

We prove here that it is impossible to provide a FTSS distributed protocol for
asynchronous unison if there is at least two permanently crashed vertices. This
result relies on the following observation: for any (2, r)-ftss distributed protocol for
specAU, two crashed vertices at the extremities of a chain of length 2r+3 may starve
all correct vertices.

Theorem 10.1
For any natural number r, there exists no (f, r)-ftss distributed protocol for
specAU under any central daemon if f ≥ 2.

Proof : Let r be a natural number. Let π be a (2, r)-ftss distributed protocol for
specAU (under any central daemon). Consider the following communication graph
g = (V,E) with V = {v0, . . . , v2(r+1)} and E = {{vi, vi+1}|i ∈ {0, . . . , 2r+1}} (that
is, g is reduced to a chain of 2r + 3 vertices). Let γ be the following configuration
of g: v0 and v2(r+1) are crashed and ∀i ∈ {0, . . . , 2(r + 1)}, cvi = i (all the other
variables may have any value).

By Lemma 10.1, no vertex between v2 and v2r+1 can change its clock value in
every execution starting from γ. This contradicts the definition of π. Indeed, vr+1

must eventually satisfy the specification specAU since the closest crashed vertex is
at r hops away. In particular, any execution starting from γ must contain a suffix
where the clock of vr+1 is infinitely often incremented. This contradiction shows us
the result.

10.1.2 Unfair Daemon

This section is devoted to the following impossibility result: even with a single
crashed vertex, it is impossible to provide a FTSS distributed protocol for asyn-
chronous unison under the central unfair daemon. This result is deduced from the
fact that, in any fault-free configuration, there exists at least two enabled vertices
(otherwise, there is starvation in the case where a vertex is crashed). In this way,
the unfair daemon may always starve a given vertex that leads to the result.

Theorem 10.2
For any natural number r, there exists no (1, r)-ftss distributed protocol for
specAU under the central unfair daemon.

Proof : Let r be a natural number. Assume that there exists a (1, r)-ftss distributed
protocol π for specAU under the central unfair daemon. Consider a communication

130 Chapter 10. Impossibility Results

graph g, of diameter greater than 2r+ 2 (note that in this case, at least one vertex
must eventually satisfy the specification specAU). Let v be a vertex of V . Since the
daemon is unfair, it can choose to never activate v in an execution σ unless this
vertex becomes the only enabled vertex of g in a configuration of σ by definition.

For the sake of contradiction, assume that there exists a configuration γ such
that no vertex is crashed and where v is the only enabled vertex of the communica-
tion graph. Denote by γ′ the same configuration where v is crashed. Note that the
set of enabled vertices is identical in γ and γ′ by construction. As we assumed that
only v is enabled in γ, this implies that no correct vertex is enabled in γ′. Hence,
the system is deadlocked in γ′ and the specification of specAU is not satisfied since
no clock of correct vertex can be updated. This contradiction implies that, for any
configuration where no vertex is crashed, at least two vertices are enabled.

Since there exists no configuration where v is the unique enabled vertex (in
every execution starting from any arbitrary configuration), the unfair daemon can
starve v infinitely (if no crash occurs). This contradicts the liveness property of
specAU guaranteed by π since v cannot update its clock in this execution.

10.2 Minimal Unison Related Results

In this section, we prove two impossibility results related to minimal asyn-
chronous unison, namely that it is impossible to provide a minimal FTSS distributed
protocol for specAU when the daemon is weakly fair (see Section 10.2.1) or when the
daemon is strongly fair and the maximal degree of the communication graph is
greater than 3 (see Section 10.2.2).

10.2.1 Weakly Fair Daemon

In this section we prove there exists no minimal (1, r)-ftss distributed protocol
for specAU under the central weakly fair daemon for any r value.

The impossibility result uses the following property: if there exists a minimal
distributed protocol π that is (1, r)-ftss for specAU under the central weakly fair
daemon for a natural number r, then an arbitrary vertex v is not enabled by π if
it has only one neighbor v′ and if cv = cv′ (proved in Lemma 10.2 formally stated
below). Then, we show that π starves the communication graph reduced to a two-
correct-vertex chain where all clock values are identical (see Theorem 10.3).

Lemma 10.2
If there exists a minimal distributed protocol π that is (1, r)-ftss for specAU
under the central weakly fair daemon for a natural number r, then an arbitrary
vertex v is not enabled by π if it has only one neighbor v′ and if cv = cv′ .

Proof : Let r be a natural number. Let π be a minimal (1, r)-ftss distributed protocol
for specAU under the central weakly fair daemon.

Let g be the communication graph reduced to a chain of length r + 2. Assume
vertices of g are labeled from left to right as follows: v0, v1, . . . , vr+2. Consider the
following configurations of v (see Figure 10.1):

10.2. Minimal Unison Related Results 131

������������ ����������������γ1

v0 v1 v2 vr−1 vr vr+1 vr+2

������������ ����������������
v0 v1 v2 vr−1 vr vr+1 vr+2

�������� ��������������������
v0 v1 v2 vr−1 vr vr+1 vr+2

γ2

γ3

r+1r+1

10 2 r+1rr-1

r+2r+32r+2 2r+1 2r

r+2

0 1 2 r+1r+1rr-1

Figure 10.1: The three configurations used in the proof of Lemma 10.2 (the numbers
represent clock values and the double circles represent crashed vertices).

– γ1 defined by ∀i ∈ {0, . . . , r + 1}, cvi = i and cvr+2
= r + 1 and v0 crashed.

– γ2 defined by ∀i ∈ {0, . . . , r + 1}, cvi = 2r + 2 − i and cvr+2
= r + 1 and v0

crashed.
– γ3 defined by ∀i ∈ {0, . . . , r + 2}, cvi = i and v0 crashed.
By Lemma 10.1, vertices from v1 to vr are not enabled in such configurations

(and remain not enabled until one of the vertices within v0, . . . , vr+1 executes a
rule).

Note that for the vertex vr+2, the configurations γ1 and γ2 are indistinguishable
(otherwise the unison would not be minimal). We are going to prove the result by
contradiction. Assume that vr+2 is enabled in γ1 and γ2. The closure property of
π implies that the enabled rule for vr+2 modifies its clock either to r+ 2 or to r. In
the following we discuss these cases separately:

Case 1: The enabled rule for vr+2 modifies its clock into r + 2.
As the daemon is central, vr+2 is the only activated vertex. Hence its clock
takes the value r+ 2. The following cases are possible in the obtained config-
uration:

Case 1.1: vr+2 is not enabled.
If an execution started from γ1, then no vertex is enabled in any config-
uration of this execution, that contradicts the liveness property of π.

Case 1.2 : vr+2 is enabled and the enabled rule modifies its clock into r+ 1.
Let σ be an execution starting from γ1 where only vr+2 is activated.
Consequently, the clock of the vertex vr+2 takes infinitely the following
sequence of values: r + 1, r + 2. In this execution, vr+2 executes a rule
infinitely often while vertices from p0 to pr are never enabled. Note
that vr+1 is not enabled when cvr+2 = r + 2, hence this vertex is never
infinitely enabled. In conclusion, this execution is allowed by the weakly
fair daemon. Note that this execution starves vr+1, which contradicts the
liveness property of π.

Case 1.3 : vr+2 is enabled and the enabled rule modifies its clock into r.
The execution of this rule leads to case 2.

132 Chapter 10. Impossibility Results

Case 2 : The enabled rule for vr+2 modifies its clock into r.
As the daemon is central, vr+2 is the only activated vertex and after its exe-
cution the new configuration satisfies one of the the following cases:

Case 2.1 : vr+2 is not enabled.
If an execution started from γ2, then no vertex is enabled in any con-
figuration of this execution, which contradicts the liveness property of
π.

Case 2.2 : vr+2 is enabled and the enabled rule modifies its clock into r+ 1.
Let σ be an execution starting from γ2 that contains only actions of vr+2

(its clock takes infinitely the following value sequence : r + 1, r). In
this execution, vr+2 executes a rule infinitely often (by construction) and
vertices from v0 to vr are never enabled. Note that vr+1 is not enabled
when cvr+2

= r, so this vertex is never infinitely enabled. In conclusion,
this execution satisfies the weakly fair daemon properties.
Note that this execution starves vr+1, that contradicts the liveness prop-
erty of π.

Case 2.3 : vr+2 is enabled and the enabled rule modifies its clock into r+ 2.
The execution of these rule leads to case 1.

Overall, the only two possible cases (cases 1.3 and 2.3) are the following:

1. vr+2 is enabled for modifying its clock value into r when cvr+2
= r + 2 and

cvr+1
= r + 1.

2. vr+2 is enabled for modifying its clock value into r + 2 when cvr+2
= r and

cvr+1
= r + 1.

Let σ be an execution starting from γ3 that contains only actions of vr+2 (its
clock takes infinitely the following sequence of values: r + 2, r). In this execution,
vr+2 executes a rule infinitely often (by construction) and vertices in v0, . . . , vr are
never enabled. Note that vr+1 is not enabled when cvr+2 = r + 2, so this vertex
is never infinitely enabled. In conclusion, this execution satisfies the weakly fair
daemon properties.

This execution starves vr+1, that contradicts the liveness property of π and
proves the result.

Theorem 10.3
For any natural number r, there exists no minimal (1, r)-ftss distributed protocol
for specAU under the central weakly fair daemon.

Proof : Let r be a natural integer. Assume that there exists a minimal (1, r)-ftss
distributed protocol π for specAU under the central weakly fair daemon. By Lemma
10.2, an arbitrary vertex v is not enabled by π if it has only one neighbor v′ and if
cv = cv′ .

Let g be a communication graph reduced to a chain of 2 vertices v and v′. Let
γ be a configuration of g where cv = cv′ with no crashed vertex. Notice that no
vertex is enabled in γ that contradicts the liveness property of π and proves the
result.

10.2. Minimal Unison Related Results 133

������������ ����������������γ1

v0 v1 v2 vr−1 vr

������������ ����������������
v0 v1 v2 vr−1 vr

��������γ2

u v

u v

γ3

u v

0 1 2 r+1rr-1 r+2

r+1 r+1

rr+2r+32r+2 2r+1 2r r+1

Figure 10.2: The three configurations used in the proof of Lemma 10.3 (the numbers
represent clock values and the double circles represent crashed vertices).

10.2.2 Strongly Fair Daemon and Maximal Degree greater than 3

In this section we prove that there exists no minimal (1, r)-ftss distributed pro-
tocol for specAU under the central strongly fair daemon if the maximal degree of the
communication graph is at least 3.

In order to prove this impossibility result, we use the following property: if a
vertex v has only one neighbor u such that cu = r + 1 and if |cv − c| ≤ 1, then v is
enabled by any minimal (1, r)-ftss distributed protocol for specAU (see Lemma 10.3).
Then we construct a strongly fair infinite execution that starves a vertex such that
the closest crashed vertex is at more than r hops away. This execution contradicts
the liveness property of the distributed protocol (see Theorem 10.4).

Lemma 10.3
Let π be a minimal (1, r)-ftss distributed protocol for specAU. If a vertex v has
only one neighbor u such that cu = r + 1 and if |cv − cu| ≤ 1, then v is enabled
by π.

Proof : Assume that there exists a minimal distributed protocol π that is (1, r)-ftss for
specAU. Let g be a communication graph that contains at least one vertex v that
has only one neighbor u. Assume that cu = r+ 1 and |cv − cu| ≤ 1. Then, we have:

1. If cv = r, then v is enabled by at least one rule of π. Otherwise, all vertices
are starved in the communication graph reduced to the chain v0, . . . , vr, u, v
in the configuration γ1 defined by ∀i ∈ {0, . . . , r}, cvi = 2r+ 2− i, cu = r+ 1,
cv = r where v0 is crashed (see Figure 10.2) since no correct vertex is enabled
(by Lemma 10.1).

2. If cv = r + 1, then v is enabled by at least one rule of π. Otherwise, all
vertices are starved in the communication graph reduced to the chain u, v in
the configuration γ2 defined by cu = cv = r+1 and where no vertex is crashed
(see Figure 10.2). Indeed, the symmetry of the configuration implies that u is
enabled if and only if v is enabled.

134 Chapter 10. Impossibility Results

3. If cv = r+2, then v is enabled by at least one rule of π. Otherwise, all vertices
are starved in the communication graph reduced to the chain v0, . . . , vr, u, v
in the configuration γ3 defined by ∀i ∈ {0, . . . , r}, cvii, cu = r + 1, cv = r + 2

and v0 crashed (see Figure 10.2) since no correct vertex is enabled (by Lemma
10.1).

Theorem 10.4
For any natural number r, there exists no minimal (1, r)-ftss distributed protocol
for specAU under the central strongly fair daemon if the communication graph
has a maximal degree of at least 3.

Proof : Let r be a natural number. Assume that there exists a minimal (1, r)-ftss
distributed protocol π for specAU under the central strongly fair daemon for a
communication graphs with a degree of at least 3. Let g be the communication
graph defined by: V = {v0, . . . , vr+1, u, u

′} and E = {{vi, vi+1}, i ∈ {0, . . . , r}} ∪
{{vr+1, u}, {vr+1, u

′}}.
As π is deterministic and the communication graph is anonymous, u and u′

must behave identically if they have the same clock value (in this case, their local
configurations are identical). If cvr+1

= r+ 1 and |cvr+1
− cu| ≤ 1, there exists three

local configurations for u: (i) cu = r, (ii) cu = r + 1, or (iii) cu = r + 2 (the same
property holds for u′).

By Lemma 10.3, vertex u (respectively u′) is enabled in any configuration where
cvr+1

= r + 1 and |cvr+1
− cu| ≤ 1 (respectively |cvr+1

− cu′ | ≤ 1). Moreover, in
this case, the enabled rule for u (respectively u′) modifies its clock into a value in
{r, r+ 1, r+ 2} \ {cu} (respectively {r, r+ 1, r+ 2} \ {cu′}) by the closure property
of π.

For each of the three possible local configurations for u or u′, π can only allow
2 moves. Hence, there exists 8 possible moves for π. Let us denote each of these
possibilities by a triplet (a, b, c) where a, b and c are the clock value of u after the
allowed move when cu = r, cu = r + 1, and cu = r + 2 respectively. Note that, due
to the determinism of π, moves allowed for u′ and u are identical. There exists the
following cases:

Case 1: (r + 1, r, r)

Let γ1 be the configuration of g defined by: ∀i ∈ {0, . . . , r+1}, cvi = 2r+2−i,
cu = r+ 1 and cu′ = r and v0 crashed (see Figure 10.3). Note that only u and
u′ are enabled (by Lemma 10.1). Assume u executes its rule. Hence, its clock
takes the value r. By Lemma 10.1, only u and u′ are enabled. Assume now
that u′ executes its rule. Its clock takes the value r + 1. This configuration
is identical to γ1 (since vertices are anonymous), we can repeat the above
reasoning in order to obtain an infinite execution where vertices v1, . . . , vr+1

are never enabled (see Figure 10.4 for an illustration when r = 1).

Case 2: (r + 1, r + 2, r)

Let γ2 be the configuration of g defined by: ∀i ∈ {0, . . . , r + 1}, cvii, cu = r

and cu′ = r + 2 and v0 crashed (see Figure 10.3). Note that only u and u′

are enabled (by Lemma 10.1). Assume u executes its rule. Its clock takes the
value r + 1. By Lemma 10.1, only u and u′ are enabled. Assume u executes
its rule again. Its clock takes the value r + 2. By Lemma 10.1, only u and u′

10.2. Minimal Unison Related Results 135

������������
����

������������γ1 r+1

v0 v1 v2 vr−1 vr vr+1

����
u

u′

������������
����

������������
v0 v1 v2 vr−1 vr vr+1

����
u

u′

γ2

������������
����

������������
v0 v1 v2 vr−1 vr vr+1

����
u

u′

γ3 0 1 2 r-1 r r+1

r+2

r+1

0 1 2 r-1 r r+1

r

r+2

r+2r+32r+2 2r+1 2r

r+1

r

Figure 10.3: The three configurations used in the proof of Theorem 10.4 (the num-
bers represent clock values and the double circles represent crashed vertices).

are enabled. Assume now that u′ executes its rule. Its clock takes the value r.
This configuration is identical to γ2 (since vertices are anonymous). We can
repeat the reasoning in order to obtain an infinite execution where vertices in
v1, . . . , vr+1 are never enabled.

Case 3: (r + 1, r, r + 1)

Similar to the reasoning of case 1.

Case 4: (r + 1, r + 2, r + 1)

Let γ3 be the configuration of g defined by: ∀i ∈ {0, . . . , r + 1}, cvi = i,
cu = r + 2 and cu′ = r + 1 and where v0 is crashed (see Figure 10.3). Note
that only u and u′ are enabled (by Lemma 10.1). Assume u′ executes its
rule. Its clock takes the value r + 2. By Lemma 10.1, only u and u′ are
enabled. Assume now that u executes its rule. Its clock takes the value r+ 1.
This configuration is identical to γ3 (since vertices are anonymous). We can
repeat the reasoning in order to obtain an infinite execution where vertices in
v1, . . . , vr+1 are never enabled.

Case 5: (r + 2, r, r)

Let γ2 be the configuration of g as defined in the case 2 above. Note that only
u and u′ are enabled (by Lemma 10.1). Assume u executes its rule. Its clock
takes the value r + 2. By Lemma 10.1, only u and u′ are enabled. Assume
now that u′ executes its rule. Its clock takes the value r. This configuration
is identical to γ2 (since vertices are anonymous). We can repeat the reasoning
in order to obtain an infinite execution where vertices v1, . . . , vr+1 are never
enabled.

Case 6: (r + 2, r + 2, r)

The reasoning is similar to the case 5.

136 Chapter 10. Impossibility Results

������������γ1

v0 v1 v2 ����

����
u

u′

������������
v0 v1 v2 ����

����
u

u′

������������
v0 v1 v2 ����

����
u

u′

@
@
@
@
@@R

�
�
�

�
��	γ1 234

2

1

1

234

1

234

2

1

Figure 10.4: Example of the execution constructed in case 1 of Theorem 10.4 when
r = 1 (the numbers represent clock values and the double circles represent crashed
vertices).

Case 7: (r + 2, r, r + 1)

Let γ2 be the configuration of g as defined in the case 2 above. Note that only
u and u′ are enabled (by Lemma 10.1). Assume u executes its rule. Its clock
takes the value r + 2. By Lemma 10.1, only u and u′ are enabled. Assume u′

executes its rule. Its clock takes the value r + 1. By Lemma 10.1, only u and
u′ are enabled. Assume u′ executes again its rule. Its clock takes the value
r. This configuration is identical to γ2 (since vertices are anonymous). We
can repeat the above scenario in order to obtain an infinite execution where
vertices v1, . . . , vr+1 are never enabled.

Case 8: (r + 2, r + 2, r + 1)

The proof is similar to the case 4.

Overall, we can construct an infinite execution where vertex v0 is crashed, ver-
tices from v1 to vr+1 are never enabled and vertices u and u′ execute a rule infinitely
often. This execution satisfies the strongly fair daemon properties. Notice that in
this execution vr+1 is never enabled, hence it is starved. This contradicts the live-
ness property of π and proves the result.

10.3 Priority Unison Related Results

In this section, we prove impossibility results similar to those of Section 10.2
whenever the considered unison is priority instead of minimal. In other words, we
prove that it is impossible to provide a priority FTSS distributed protocol for specAU
when the daemon is weakly fair (see Section 10.3.1) or when the daemon is strongly

10.3. Priority Unison Related Results 137

�������� ��������������������γ0
0

v0 v1 v2 vr−1 vr vr+1 vr+2

r+20 1 2 r+1rr-1

Figure 10.5: Initial configuration used in the proof of Theorem 10.5 (the numbers
represent clock values and the double circles represent crashed vertex).

fair and the maximal degree of the communication graph is greater than 3 (see
Section 10.3.2).

10.3.1 Weakly Fair Daemon

The main result of this section is that there exists no priority (1, r)-ftss dis-
tributed protocol for specAU under the central weakly fair daemon for any natural
number r (see Theorem 10.5). We prove this result by contradiction. We construct
an execution starting from the configuration γ0

0 shown in Figure 10.5 allowed by
the central weakly fair daemon. We prove that this execution starves pr+1 that
contradicts the liveness property of the distributed protocol.

Theorem 10.5
For any natural number r, there exists no priority (1, r)-ftss distributed protocol
for specAU under the central weakly fair daemon.

Proof : Let r be a natural number. Assume that there exists a priority (1, r)-ftss
distributed protocol π for specAU under the central weakly fair daemon. Let g be
the communication graph reduced to a chain of length r+2. Assume that vertices in
g are labeled from left to right as follows: v0, v1, . . . , vr+2. Let γ00 be a configuration
such that v0 is crashed and ∀i ∈ {0, . . . , r+ 2}, cvi = i (See Figure 10.5). Note that
all the other variables may have any value.

We construct a fragment of execution σ′0 = (γ00 , γ
0
1)(γ01 , γ

0
2) . . . (γ0r , γ

0
r+1) starting

from γ00 such that ∀i ∈ {0, 1, . . . , r}, the action (γ0i , γ
0
i+1) contains only an action of

vi+1 if vi+1 is enabled by π in γ0i . By Lemma 10.1, this fragment does not modify
the clock value of any vertex in {v0 . . . vr+1}.

We now construct a fragment of execution, σ′′0 , starting from γ0r+1. Let σ′′0 be ε
(empty word) if vr+2 is not enabled by π in γ0r+1. Otherwise (vr+2 is enabled by π
in γ0r+1), let us define σ′′0 in the following way:

Case 1: There exists a rule of vr+2 enabled in γ0r+1 that does not modify the clock
value of vr+2.
Let σ′′0 be (γ0r+1, γ

0
r+2) where action (γ0r+1, γ

0
r+2) contains only the execution

of this rule by vr+2.

Case 2: Any enabled rule of vr+2 in γ0r+1 modifies its clock value.
Note that the closure property of π implies that the clock of vr+2 takes the
value r or r + 1. Let us study the following cases.

Case 2.1: There exists a rule of vr+2 enabled in γ0r+1 that modifies its clock
value into r + 1.
Since π is a priority unison, there exists by definition a fragment of exe-
cution σ′′0 = (γ0r+1, γ

0
r+2) . . . (γ0r+k−1, γ

0
r+k) that contains only actions of

138 Chapter 10. Impossibility Results

vr+2 such that (i) vr+2 executes one of the rules that modifies its clock
value into r + 1 in the action (γ0r+1, γ

0
r+2), (ii) in the actions from γ0r+2

to γ0r+k−1 the clock value of vr+2 is not modified, and (iii) in the action
(γ0r+k−1, γ

0
r+k) the clock value of vr+2 is incremented.

Case 2.2: Any enabled rule of vr+2 in γ0r+1 modifies its clock value into r.
Since π is a priority unison, there exists by definition a fragment of exe-
cution σa = (γ0r+1, γ

0
r+2) . . . (γ0r+k−1, γ

0
r+k) that contains only actions of

vr+2 such that (i) vr+2 executes one of the rules that modifies its clock
value into r in the action (γ0r+1, γ

0
r+2), (ii) in the actions from γ0r+2 to

γ0r+k−1 the clock value of vr+2 is not modified, and (iii) in the action
(γ0r+k−1, γ

0
r+k) the clock of vr+2 takes the value r + 1.

Since π is a priority unison, there exists by definition a fragment of ex-
ecution σb = (γ0r+k, γ

0
r+k+1) . . . (γ0r+j−1, γ

0
r+j) that contains only actions

of vr+2 such that (i) in the actions from γ0r+k to γ0r+j−1 the clock value of
vr+2 is not modified and (ii) in the action (γ0r+j−1, γ

0
r+j) the clock value

of vr+2 is incremented.
Let σ′′0 be σaσb.

In all cases, we construct a fragment of execution σ0 = σ′0σ
′′
0 such that its last

configuration (let us denote it by γ10) satisfies: the value of any clock is identical to
the one in γ00 (the others variables may have changed). Then, we can reiterate the
reasoning and obtain a fragment of execution σ1, σ2 . . . (starting respectively from
γ10 , γ

2
0 , . . .) that satisfies the same property.
We finally obtain an execution σ = σ0σ1 . . . that satisfies:
– No vertex is infinitely enabled without executing a rule (since any enabled

vertex in γi0 execute a rule or is neutralized during σi). Consequently σ is an
execution that satisfies the weakly fair daemon properties.

– The clock of vertex vr+1 never changes (whereas dist(g, v0, vr+1) = r + 1).
This execution contradicts the liveness property of π that is a priority (1, r)-ftss

distributed protocol for specAU under the central weakly fair daemon by hypothesis,
that proves the result.

10.3.2 Strongly Fair Daemon and Maximal Degree greater than 3

The second main result of this section is that there exists no priority (1, r)-
ftss distributed protocol for specAU under the central strongly fair daemon for any
natural number r if the maximal degree of the communication graph is at least
3. (see Theorem 10.6). We prove this result by contradiction. We construct an
execution starting from the configuration γ0

0 of Figure 10.6 satisfying strongly fair
daemon properties that starves vr+1, that contradicts the liveness of the distributed
protocol.

Theorem 10.6
For any natural number r, there exists no priority (1, r)-ftss distributed protocol
for specAU under the central strongly fair daemon if the communication graph
has a maximal degree of at least 3.

10.3. Priority Unison Related Results 139

������������
����

������������
v0 v1 v2 vr−1 vr vr+1

����
u

u′

γ0
0 0 1 2 r-1 r r+1

r+2

r+2

Figure 10.6: The initial configuration for the proof of Theorem 10.6 (the numbers
represent clock values and the double circles represent crashed vertices).

Proof : Let r be a natural number. Assume that there exists a priority (1, r)-ftss
distributed protocol π for specAU under the central strongly fair daemon even if
the communication graph has a maximal degree of at least 3. Let g be the com-
munication graph defined by: V = {v0, . . . , vr+1, u, u

′} and E = {{vi, vi+1}, i ∈
{0, . . . , r}} ∪ {{vr+1, u}, {vr+1, u

′}}. Note that g has a maximal degree equal to 3.
Let γ00 be the following configuration of g: ∀i ∈ {0, . . . , r + 1}, cvi = i, cu =

cu′ = r+2 and v0 crashed (see Figure 10.6). Note that, for any execution σ starting
from γ00 , one of the vertices u and u′ must be enabled to modify its clock in a finite
time (otherwise the system would be starved following Lemma 10.1). This implies
the existence of a fragment of execution σ0

a = (γ00 , γ
0
1) . . . (γ0k−1, γ

0
k) satisfying the

following properties:

1. k ≥ 1 if there exists i ∈ {0, . . . , r + 1} such that vi is enabled in γ00 , k = 0

otherwise;

2. σ0
a contains no modification of clock values; and

3. γ0k is the first configuration where u or u′ is enabled to modify its clock value.

Assume now that the scheduling of σ0
a satisfies the following property: at each

action, the daemon chooses the vertex that has the least recent activation among
enabled vertices. Note that this scenario is compatible with the central strongly
fair daemon.

Let us study the following cases:

Case 1: u is enabled by π in γ0k for a modification of its clock value. The closure
property of π implies that the value of cu should be modified either to r or to
r + 1.

Case 1.1: The value of cu is modified to r.
Since π is a priority unison, there exists by definition a fragment of ex-
ecution σ0

b1 = (γ0k, γ
0
k+1) . . . (γ0k+r−1, γ

0
k+r) that contains only actions of

u such that (i) in the actions from γ0k to γ0k+r−1 the clock value of u is
not modified and (ii) in the action (γ0k+r−1, γ

0
k+r) the clock value of u is

incremented.
Since π is a priority unison, there exists by definition a fragment of execu-
tion σ0

b2 = (γ0k+r, γ
0
k+r+1) . . . (γ0k+j−1, γ

0
k+j) that contains only executions

of a rule by u such that (i) in the actions from γ0k+r to γ0k+j−1 the clock
value of u is not modified and (ii) in the action (γ0k+j−1, γ

0
k+j) the clock

value of u is incremented.
Let σ0

b be σ0
b1σ

0
b2.

140 Chapter 10. Impossibility Results

Number of faults Daemon Maximal degree Unison Impossibility result
f ≥ 2 Any Any Any Theorem 10.1

f = 1

Unfair Any Any Theorem 10.2

Weakly fair Any Minimal Theorem 10.3
Priority Theorem 10.5

Strongly fair deg(g) ≥ 3
Minimal Theorem 10.4
Priority Theorem 10.6

Table 10.1: Summary of impossibility results

Case 1.2: The value of cu is modified to r + 1.
Since π is a priority unison, there exists by definition a fragment of ex-
ecution σ0

b = (γ0k, γ
0
k+1) . . . (γ0k+r−1, γ

0
k+r) that contains only actions of

u such that (i) in the actions from γ0k to γ0k+r−1 the clock value of u is
not modified and (ii) in the action (γ0k+r−1, γ

0
k+r) the clock value of u is

incremented.

If u′ is enabled in the last configuration of σ0
b

1, we can construct σ0
c similarly

to σ0
b using vertex u′. Otherwise, let σ0

c be ε (the empty word).

Case 2: u′ is enabled by π in γ0k for a modification of its clock value.
We can construct σ0

b and σ0
c similarly as in Case 1 by reversing the roles of u

and u′.

Let us define σ0 = σ0
aσ

0
bσ

0
c . Notice that the clock values are identical in the

first and in the last configuration of σ0. This implies that we can infinitely repeat
the previous reasoning in order to obtain an infinite execution σ = σ0σ1 . . . that
satisfies:

– No correct vertex is infinitely often enabled without executing a rule (since u
and u′ execute a rule infinitely often and others vertices are chosen in function
of their least recent execution of a rule, that implies that an infinitely often
enabled vertex executes a rule in a finite time). This execution satisfies
strongly fair daemon properties.

– The clock value of vr+1 is never modified (whereas dist(g, v0, vr+1) = r + 1).
This execution contradicts the liveness property of π, that implies the result.

10.4 Summary of Impossibility Results

Table 10.1 summarizes all assumptions of each impossibility result of this chap-
ter. These results show us that it is practically vain to want to solve the asyn-
chronous unison problem in a fault tolerant and self-stabilizing way and a fortiori
in a strictly stabilizing way.

Nevertheless, we present in the following chapter a minimal and priority strictly
stabilizing distributed protocol for asynchronous unison that is optimal with respect
to these impossibility results and with respect to stabilization time.

1. In this case, u′ was already enabled in the last configuration of σ0
a

Chapter 11

Strictly Stabilizing Solution

Don’t watch the clock; do what it does. Keep
going.

Sam Levenson

Contents
11.1 Strictly Stabilizing Solution . 141

11.1.1 Distributed Protocol Description 142
11.1.2 Correctness Proof . 143

11.2 Optimality of Convergence Time . 149
11.2.1 Upper bound . 149
11.2.2 Lower Bound . 150
11.2.3 Conclusion . 155

In the previous chapter, we present a broad class of impossibility results regard-
ing FTSS asynchronous unison. These impossibility results imply obviously similar
impossibility results about strict stabilization (see Chapter 4).

This chapter focuses on possibility results about strictly stabilizing asynchronous
unison. More precisely, we concentrate on classical and simplest solutions to asyn-
chronous unison, namely minimal and/or priority ones (see Section 9.1.3). Then,
impossibility results of Chapter 4 imply that we must restrict ourselves at distributed
protocol running under strongly fair daemon and on communication graphs reduced
to chains or rings.

The contribution of this chapter is twofold. First, we provide a minimal and
priority (1, 0)-strictly stabilizing distributed protocol for specAU under a strongly
fair daemon on communication graphs reduced to chains or rings in Section 11.1. In
other words, this distributed protocol is optimal with respect to containment radius
and with respect to impossibility results of Chapter 4. Then, we prove in Section
11.2 that the stabilization time to this distributed protocol is optimal for its class.

11.1 Strictly Stabilizing Solution

In this section, we present the minimal and priority (1, 0)-strictly stabilizing
distributed protocol for specAU in Section 11.1.1. This distributed protocol is called
SSU for Strictly Stabilizing Unison. Recall that SSU is designed for a strongly fair
daemon and a communication graph reduced to a chain or to a ring with at most one

142 Chapter 11. Strictly Stabilizing Solution

Byzantine vertex. In order to complete the proof of the strict stabilization of this
distributed protocol, we must assume that the daemon is locally central. Note that
this assumption is not proved necessary. Then, Section 11.1.2 proves the correctness
of our distributed protocol.

11.1.1 Distributed Protocol Description

The distributed protocol can operate on communication graphs reduced to either
chain or ring. For the description of the distributed protocol, let us introduce some
topological terminology. A middle vertex has two neighbors. An end vertex has
only one. In a ring, every vertex is a middle vertex. A chain has two end vertices.
We consider the communication graph to be laid out horizontally left to right. We,
therefore, speak of left and right neighbors for a vertex and left and right ends
of a chain. This global orientation of the chain is only assumed for the purposes
of exposition, we do not require that the local orientation of vertices is globally
consistent (that is, the labeling of right and left neighbor is arbitrary for each vertex
of the communication graph).

Recall that clock drift between two correct neighbors is the absolute value of
the difference between their clock values. Two neighboring vertices u and v are
in unison if the drift between them is no more than 1. An island is a segment of
correct vertices such that for each vertex u, if its neighbor u is also in this island,
then v and u are in unison. A vertex with no in-unison neighbors is assumed to be a
single-vertex island. Note that a Byzantine vertex never belongs to an island. The
width of an island is the number of vertices in this island.

The main idea of the distributed protocol is as follows. Vertices form islands
(of vertices with synchronized clocks by definition). The distributed protocol is
designed such that the clocks of the vertices with adjacent islands drift closer to
each other and the islands eventually merge. If a Byzantine vertex restricts the
drift of one such island, for example by never changing its clock, the other islands
still drift and synchronize with the affected island.

Operation description A description of SSU is shown in Protocol 11.1. Specif-
ically, SSU operates as follows. Each vertex v maintains a single variable cv where
it stores its current clock value. That is, our distributed protocol is minimal.

We grouped the vertex rules into end vertex rules and middle vertex rules. Mid-
dle vertex rules are further grouped into: operation (executed when the vertex is in
unison with at least one of its neighbors) and synchronization (executed otherwise).

At least one rule is always enabled at an end vertex. Depending on the clock
value of its neighbor, the left end vertex either increments or decrements its own
clock using rules endLeftUp and endLeftDown. The operation of the right end vertex
is similar.

Let us describe the rules of a middle vertex. If vertex v is in unison with its left
neighbor, v can adjust cv to match its right neighbor using rules middleLeftUp or
middleLeftDown. The execution of neither rule breaks the unison of v and its left

11.1. Strictly Stabilizing Solution 143

Protocol 11.1 SSU : Minimal and priority (1, 0)-strictly stabilizing distributed
protocol for specAU on chains and rings for vertex v.

Constants
l, r: left and right neighbors of v (this labeling is arbitrary and we do not require that it is
consistent with the one of neighborhood vertices)
deg(g, v): degree of v

Variable
cv: natural number, clock value of v

Rules

/* End vertex rules */
endLeftUp :: (deg(g, v) = 1) ∧ ((cv = cr) ∨ (cv = cr − 1)) −→ cv := cv + 1
endLeftDown :: (deg(g, v) = 1) ∧ ((cv ≥ cr + 1) ∨ (cv < cr − 1)) −→ cv := cr − 1
endRightUp and endRightDown are similar
/* Middle vertex operation rules */
middleLeftUp :: (deg(g, v) = 2) ∧ (cv = cl ∨ cv = cl − 1) ∧ (cv ≤ cr) −→ cv := cv + 1
middleLeftDown :: (deg(g, v) = 2) ∧ (cv = cl ∨ cv = cl + 1) ∧ (cv > cr) −→ cv := cv − 1
middleRightUp and middleRightDown are similar
/* Middle vertex synchronization rules */
syncUp :: (deg(g, v) = 2) ∧ (cv < cl − 1) ∧ (cv < cr − 1) −→ cv := min{cl, cr}
syncDown :: (deg(g, v) = 2) ∧ (cv > cl + 1) ∧ (cv > cr + 1) −→ cv := max{cl, cr}

neighbor. Similar adjustment is done for the left neighbor using middleRightUp and
middleRightDown. Note that if v is in unison with both of its neighbors and cl and
cr differ by 2, none of these rules of v are enabled as any changes of cv break the
unison with a neighbor of v (this property is shared by any minimal (1, 0)-strictly
stabilizing distributed protocol for specAU, see Lemma 10.1). If v is in unison with
neither of its neighbors, and the clocks of the two neighbors are either both greater
or both less than the clock of v, the vertex synchronizes its clock with one of the
neighbors using rule syncDown or syncUp.

Note that the construction of rules endLeftUp, endRightUp, middleRightUp, and
middleLeftUp ensures the priority of SSU . Indeed, if there exists a vertex v such
that for any u ∈ Nv, (cu = cv or cu = cv + 1), then one of these rules is enabled for
v. If the daemon chooses to activate v, we obtain a portion of execution satisfying
Definition 9.3 since each of these rules increment cv by one.

Example operation The operation of our distributed protocol is best understood
with an example. Figures 11.1 and 11.2 illustrates the operation of SSU on a chain
respectively without and with a Byzantine vertex. Figures 11.3 and 11.4 show the
operation of SSU on rings respectively without and with a Byzantine vertex.

11.1.2 Correctness Proof

We provide the proof of the strict stabilization of SSU in this section. Recall
that we consider only executions allowed by the locally central strongly fair daemon.
We split this proof in two parts. The first one focuses on chains while the second one
is interested in rings but main ideas are similar in both cases. The proof relies on the

144 Chapter 11. Strictly Stabilizing Solution

������������ ���������

������������

������������
������������

���������

-

�

?

?

-

γ1 γ2

γ3γ4

γ5 γ6���

���
leftEndDown rightEndDown

leftEndUp

?
. . .

middleLeftUp

middleLeftDown

rightEndUp

8 6 67 56

8

8

7

57

7

5 66

8 8

88

4 6 7 6 7

Figure 11.1: An example operation sequence of SSU on a chain with no faults.
Numbers represent clock values. Squared vertex has an enabled rule to be executed.

������������ ������������

���������

������������
������������

������������

-

�

?

?

-

���
leftEndDown

middleLeftDownleftEndDown

middleLeftDown

γ0 γ1

γ2γ3

γ4 γ5

?
. . .

middleLeftUp

leftEndUp

6

7

6 7 5 0 7 5 9

8 5 688 7 5 0

5 1084 8 5 10

Figure 11.2: An example operation sequence of SSU on a chain with a Byzantine
vertex. Numbers are vertex clock values. The Byzantine vertex is in double circle.
Squared vertex has an enabled rule to be executed.

11.1. Strictly Stabilizing Solution 145

������������ ������

������������

������������
������������

���������

-

�

?

?

-

γ1 γ2

γ3γ4

γ5 γ6���

������
syncDown middleLeftDown

middleLeftDownmiddleRightDown

middleLeftUp

?
. . .

middleLeftDown

7 8 12 5

6 7 7 66 7 7 5

5777 7 8 7 5

7 8 8 5

Figure 11.3: An example operation sequence of SSU on a ring with no faults.
Numbers represent clock values. Squared vertex has an enabled rule to be executed.

������������ ������������

���������

������������
������������

������������

-

�

?

?

-

���

γ0 γ1

γ2γ3

γ4 γ5

syncUp middleLeftDown

middleRightDownmiddleLeftDown

syncUp

?
. . .

middleLeftUp

6 7 3 0 77 3 0

7 8 3 37 8 31

6 6 6 96 6 93

Figure 11.4: An example operation sequence of SSU on a chain with a Byzantine
vertex. Numbers are vertex clock values. The Byzantine vertex is in double circle.
Squared vertex has an enabled rule to be executed.

146 Chapter 11. Strictly Stabilizing Solution

cl = cv + 1 cl = cv cl = cv − 1
j j

YY

Figure 11.5: The transitions of in-unison neighbor vertices l and v. An illustration
for the proof of Lemma 11.2.

following facts. First, once two vertices are in the same island, they remain so during
the whole execution due to the construction of the distributed protocol. Then, we
can prove that there always exists an island in which each vertex is infinitely often
activated (in other words, the progress is guaranteed for at least one island). We can
use this property to prove that two adjacent islands eventually merged. Finally, an
induction proof on the initial number of islands shows us the convergence of SSU .

Chains For chains it is sufficient to consider executions of the distributed proto-
col for the case where the Byzantine vertex is at the end of the chain. Indeed, if
the Byzantine vertex is in the middle of the chain, the synchronization of the two
segments of correct vertices is independent of each other due to the problem specifi-
cation. Thus, without loss of generality, we assume that if there exists a Byzantine
vertex in the system, it is the right end vertex.

Lemma 11.1
If an execution of SSU on a chain starts from a configuration where two vertices
v and u belong to the same island, then the two vertices belong to the same island
in every configuration of this execution.

Lemma 11.1 states that an island is never broken. The validity of the lemma
can be easily ascertained by the examination of the distributed protocol’s rules as
a correct vertex never de-synchronizes from its in-unison neighbors.

Lemma 11.2
In every execution of SSU on a chain, each vertex in the leftmost island executes
a rule infinitely often.

Proof : The proof is by induction on the width of the leftmost island. In every configu-
ration, the left end vertex has either endLeftUp or endLeftDown enabled. Due to the
strongly fair daemon, this vertex executes a rule infinitely often in any execution.

Assume that the left neighbor l of a vertex v that belongs to the leftmost island
executes a rule infinitely often in an execution σ. According to Lemma 11.1, l and
v are in unison in every configuration of σ. That is, l and v transition between
the three sets of states: cl = cv + 1, cl = cv and cl = cv − 1. See Figure 11.5
for illustration. Observe that, regardless of the clock value of the right neighbor of
v, if cl = cv then v has either middleLeftUp or middleLeftDown rule enabled. If v
executes this rule, the system goes either in the state where cl = cv+1 or cl = cv−1.
Since l executes infinitely often a rule in σ a configuration where cl = cv repeats
infinitely often. That is, one of v’s rules is enabled infinitely often in σ. Since the
daemon is strongly fair, v executes a rule infinitely often.

11.1. Strictly Stabilizing Solution 147

Lemma 11.3
If an execution of SSU on a chain starts from a configuration where a vertex v
belongs to the leftmost island while its right correct neighbor r does not, then
this execution contains a configuration where both v and r belong to the same
island.

So, Lemma 11.3 claims that every two adjacent islands eventually merge.
Proof : We prove the lemma by demonstrating that the drift between v and r decreases

to one in every execution of SSU . Let us consider the rules of r. The execution of
any rule by r can only decrease the drift between the two vertices. The execution
of the rules by v always decreases the drift as well. According to Lemma 11.2, v
executes infinitely often a rule in any execution. This means that any execution
contains a configuration where the drift between v and r is zero.

Define the following predicate for any configuration γ:

INV(γ) ≡ each correct vertex is in unison with its correct neighbors in γ

Lemma 11.4
The predicate INV is closed by rules of SSU and any execution of SSU on
chains reaches a configuration satisfying INV in a finite time.

Proof : If a configuration satisfy INV, then every correct vertex is in unison with its
correct neighbors by definition, all correct vertices belong to a single island. The
closure of INV follows from Lemma 11.1.

Note that Lemma 11.3 guarantees that the two leftmost islands eventually
merge. The convergence of any execution of SSU to a configuration satisfying INV
can be proven by induction on the number of islands in the initial configuration.

Proposition 11.1
SSU is a minimal and priority (1, 0)-strictly stabilizing distributed protocol for
specAU under the locally central strongly fair daemon on any communication
graph reduced to a chain.

Proof : Lemma 11.4 allows us to state that any execution of SSU on a chain reaches
in a finite time a configuration satisfying INV. Then, the safety property of specAU
follows immediately from the closure of INV proved in Lemma 11.4. Let us consider
the liveness property. Once in unison the only rule that a vertex can execute on its
clock is increment or decrement. According to Lemma 11.2, every correct vertex is
infinitely often activated. Since the clock values are natural numbers, each vertex
is bound to execute an infinite number clock increments. Hence the liveness.

Rings Since there are no end vertices on a ring, we only have to consider the
middle vertex rules. The proof on rings shares similarities with the one on chains
that allows us to present it more quickly.

148 Chapter 11. Strictly Stabilizing Solution

Lemma 11.5
If an execution of SSU on a ring starts from a configuration where two vertices
v and u belong to the same island, then the two vertices belong to the same
island in every configuration of this execution.

The above lemma is proven similarly to Lemma 11.1.

Lemma 11.6
In every execution of SSU on a ring, there is an island where every vertex is
infinitely often activated.

Proof : Observe that in every configuration of SSU on a ring, there are always a largest
and a smallest clock value. Hence, there is at least one correct vertex whose clock
holds the largest or the smallest value in the system. Indeed, in the worst case, the
Byzantine vertex holds only one of them. This correct vertex has a rule enabled.
Consequently, in every configuration of SSU on a ring, there exists at least one
enabled correct vertex and then, there are infinitely many rules executed by correct
vertices in every execution of SSU since we consider a strongly fair daemon. Since
there are finitely many correct vertices, at least one correct vertex is infinitely often
activated. Let us consider the island to which this vertex belongs. The rest of the
lemma is proven by induction on the width of this island similar to Lemma 11.2.

Lemma 11.7
If an execution of SSU starts from a configuration where there is more than
one island, then there exists two neighboring vertices v and u that belong to
two distinct islands in this configuration such that this execution contains a
configuration where both v and u belong to the same island.

Proof : Let us consider the initial configuration of SSU on a ring with more than one
island. According to Lemma 11.6, there is at least one island in this configuration
where every vertex executes a rule infinitely often. Assume, without loss of gen-
erality, that this island has an adjacent island to the right. An argument similar
to the one employed in the proof of Lemma 11.3 demonstrates that these islands
eventually merge.

The two results below are similar to their equivalents for chains.

Lemma 11.8
The predicate INV is closed by rules of SSU and any execution of SSU on rings
reaches a configuration satisfying INV in a finite time.

Proposition 11.2
SSU is a minimal and priority (1, 0)-strictly stabilizing distributed protocol for
specAU under the locally central strongly fair daemon on any communication
graph reduced to a ring.

11.2. Optimality of Convergence Time 149

Conclusion Proposition 11.1 and 11.2 allows us to state the following result:

Theorem 11.1
SSU is a minimal and priority (1, 0)-strictly stabilizing distributed protocol for
specAU under the locally central strongly fair daemon on any communication
graph reduced to a chain or a ring.

Note that features of the distributed protocol SSU claimed by this theorem are
optimal with respect to containment radius and with respect to impossibility results
of Chapter 10 at the notable exception of the distribution of the daemon. Indeed, our
distributed protocol needs a locally central daemon whereas no impossibility result
in Chapter 10 proves the necessity of this assumption. The question to perform a
similar distributed protocol under a distributed daemon is still open.

In the following section, we study stabilization time of SSU and prove that it is
optimal.

11.2 Optimality of Convergence Time

In this section, we compute the stabilization time of SSU . We estimate the
stabilization time in the number of asynchronous rounds [DIM97b, BDPV07]. In
general, this notion is somewhat tricky to define for strongly fair daemon, at the
actions of vertices may become disabled and then enabled an arbitrary many times
before execution. However, this definition simplifies for the case of SSU as every
correct vertex executes a rule infinitely often (by Lemmas 11.2 and 11.6). We define
an asynchronous round to be the smallest portion of an execution of the distributed
protocol where every correct vertex executes (at least) a rule.

11.2.1 Upper bound

First, we show that SSU needs at most L rounds to stabilize where L is the
largest clock drift between two correct neighbors in the initial configuration of the
system. This result follows from the fact that the two neighboring vertices that has
the largest initial clock drift can be initially in unison with their other neighbors.
In this way, they can reduce the clock drift from at most one at each activation.
Hence, we can deduce the upper bound on the stabilization time of SSU .

Proposition 11.3
The stabilization time of SSU is in O(L) asynchronous rounds both on chains
and rings where L is the maximum clock drift between two correct neighbors in
the initial configuration.

Proof : Assume that there exists an execution σ such that there exists at least two
distinct islands I1 and I2 at the end of the round Lσ (where Lσ is the maximum
clock drift between two correct neighbors in the initial configuration of σ). Note
that Lσ ≥ 2. Otherwise, any vertex is in unison with its neighbor in the initial
configuration and Lemma 11.1 or 11.5 implies I1 and I2 are never distinct.

150 Chapter 11. Strictly Stabilizing Solution

������������a b c

l v r

Figure 11.6: Configuration used in proof of Lemma 11.9 (clock values appear inside
vertices and the double circles represent Byzantine vertex).

Let u and v be two neighbor vertices such that u ∈ I1 and v ∈ I2. Without
loss of generality, we can assume that cv < cu in the initial configuration of σ. By
construction, we have cu − cv ≤ Lσ.

While I1 and I2 are distinct, according to the proof of Lemma 11.3 or 11.7, the
following property holds: cv < cu.

In the case where the communication graph is a chain, note that u and v are
not end vertices. Otherwise, u and v are in unison at the end of the first round
since the end vertex synchronizes its clock with the one of its neighbor at its first
activation and this contradicts the construction of σ and the fact that Lσ ≥ 2.

Now, we can observe that any activation of u by a middle vertex operation or
synchronization rule can only decrease the clock value of u by at least one.

Following the definition of asynchronous round, there is at least one activation
of u during each round of σ. Then, we can conclude that, at the end of the round
i (1 ≤ i ≤ Lσ), we have: cu − cv ≤ Lσ − i.

We can deduce that u and v are necessarily in unison at the end of the round
Lσ − 1 that contradicts the construction of σ. Then, the stabilization time of SSU
is in O(L) asynchronous rounds both on chains and rings. Hence the result.

11.2.2 Lower Bound

In this section, we show that any deterministic minimal (1, 0)-strictly stabilizing
distributed protocol for specAU on a chain or on a ring under the central strongly
fair daemon needs at least L rounds to stabilize where L is the largest clock drift
between two correct neighbors in the initial configuration of the system.

Indeed, we prove that any such distributed protocol shares some properties with
SSU . In particular, two neighboring vertices in unison must maintain this unison
and a vertex in unison with only one of its neighbors moves its clock closer to the one
of its second neighbor in a finite time. These two properties allow us to prove that
these distributed protocols have (at least) the same convergence time than SSU .

Lower bound on chains In the following lemmas, π denotes any deterministic
minimal (1, 0)-strictly stabilizing distributed protocol for specAU on the chain under
a central strongly fair daemon. As previously, results are provided for a central
daemon for the sake of generality.

Lemma 11.9
When a middle vertex is in unison with only one of its neighbors, any enabled
rule of π for this vertex maintains this unison.

11.2. Optimality of Convergence Time 151

����������������a b c c− 1

l v u r

Figure 11.7: Configuration used in proof of Lemma 11.10 (clock values appear inside
vertices and the double circles represent Byzantine vertex).

Proof : Assume that there exists a set of clock values {a, b, c} (with |a − b| ≤ 1 and
|b − c| ≥ 2) such that a middle vertex v is enabled by a rule R of π when cv = b

and neighbors clock are respectively a and c and that R modifies cv into a value b′

(with |a− b′| ≥ 2).
Then, consider the following initial configuration: V = {l, v, r}, E = {{l, v}, {v,

r}}, r is a Byzantine vertex and cl = a, cv = b, cr = c (see Figure 11.6). We can
observe that this configuration satisfies INV. By construction, v is enabled by R
in this configuration (recall that π is minimal and deterministic). If the daemon
chooses v, then we obtain a configuration which does not satisfy INV. Hence, π
does not respect the closure of specAU. This is contradictory with its construction.

Lemma 11.10
When a middle vertex v is in unison with only one of its neighbors (denote by u
the other neighbor of v), the following property holds: in any execution starting
from this configuration in which u remains not synchronized with v, v moves its
clock closer to the clock of u in a finite time.

Proof : Assume that there exists a set of clock values {a, b, c} (with |a − b| ≤ 1 and
|b− c| ≥ 2) such that there exists an execution σ of π starting from a configuration
(in which cv = b and neighbors clock values are respectively a and c – denote by
u the vertex such that cu = c) in which u remains not synchronized with v and in
which v never moves its clock closer to the clock of u.

We deal with the case where b > c (the case where b < c is similar). Then,
consider the following initial configuration γ: V = {l, v, u, r}, E = {{l, v}, {v, u}, {u,
r}}, r is a Byzantine vertex and cl = a, cv = b, cu = c, cr = c− 1 (see Figure 11.7).
If r acts as a crashed vertex, its clock value remains constant. Then, by Lemma
11.9, we have cu ∈ {c, c − 1, c − 2} in any configuration of any execution starting
from γ. Hence, u cannot distinguish this execution from σ (recall that π is minimal
and deterministic). Consequently, there exists an execution starting from γ such
that cv ≥ b and cu ≤ c in any state. This contradicts the convergence property of
π.

Lemma 11.11
When an end vertex is in unison with its neighbor, there exists an enabled rule
of π for this vertex.

Proof : Assume that there exists a set of clock values {a, b} (with |a − b| ≤ 1) such
that an end vertex v is not enabled by any rule of π when cp = a and its neighbor
clock is b.

152 Chapter 11. Strictly Stabilizing Solution

��������a b

v r

Figure 11.8: Configuration used in proof of Lemma 11.11 (clock values appear inside
vertices and the double circles represent Byzantine vertex).

Then, consider the following initial configuration: V = {v, r}, E = {{v, r}}, r
is a Byzantine vertex and cv = a, cr = b (see Figure 11.8). By construction, v is
not enabled by π in this configuration (recall that π is minimal and deterministic).
Assume now that r acts as a crashed vertex. Then, we can observe that v is never
enabled by π in this execution, that contradicts the liveness property of π.

If we consider the execution described in the proof of Lemma 11.11, we can
observe that v is infinitely often activated (by fairness assumption) and that its
clock is always in the set {b− 1, b, b+ 1} (by closure of π). Since π is minimal and
deterministic, we can deduce that values of cv over this execution follow a given
cycle. We characterize now π by this cycle. More formally, we say that:

1. π is of type 1 if the cycle is b, b+ 1, b, b+ 1,

2. π is of type 2 if the cycle is b, b− 1, b, b− 1,

3. π is of type 3 if the cycle is b, b+ 1, b− 1, b, b+ 1, b− 1,

Notice that the distributed protocol SSU is of type 1 using this characterization.

Proposition 11.4
The stabilization time of any deterministic minimal (1, 0)-strictly stabilizing
distributed protocol for specAU on chains under the central strongly fair daemon
is in Ω(L) asynchronous rounds where L is the maximum clock drift between
two correct neighbors in the initial configuration.

Proof : Assume that π is a deterministic minimal (1, 0)-strictly stabilizing distributed
protocol for specAU on chains under the central strongly fair daemon . We provide
the proof of this proposition in the case where π is of type 1 (other cases are similar).

Let a and t be two natural numbers. Consider the following initial configuration
γ0: V = {v, u, r, b}, E = {{v, u}, {u, r}, {r, b}}, b is a Byzantine vertex and cv =

a + 2t, cu = a + 2t, cr = a, cb = a (see Figure 11.9). Hence, we have a maximal
clock drift between two correct neighbors of L = 2t.

Note that v is enabled by π to take the value a+ 2t+ 1 in γ0 (by Lemma 11.11
and the fact that π is minimal and of type 1). By Lemmas 11.10, 11.9, and the fact
that π is minimal, we can deduce that u is enabled by π to take the value a+ 2t−1

only when cp = a + 2t. Similar reasoning holds for r which is enabled to take the
value a+ 1 when cb = a.

Then, the following portion execution of π starting from γ0 is possible: v is
activated and its clock takes value a+2t+1, v is activated and its clock takes value
a+ 2t (v is enabled by Lemma 11.11 and the new value is determined by the type
of π), u is activated and its clock takes value a+ 2t− 1, r is activated and its clock

11.2. Optimality of Convergence Time 153

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

γ0

γ1

γi for
2 ≤ i ≤ t

v u r b

v u r b

v u r b

a+ 2t a+ 2t a a

a+ 2t a+ 2t− 1 a+ 1 a+ 1

a+ 2t− i+ 1 a+ 2t− i a+ i a+ i

Figure 11.9: Configurations used in proof of Proposition 11.4 (clock values appear
over vertices and the double circles represent Byzantine vertex).

takes value a + 1 and finally, d takes the value a + 1 (recall that b is a Byzantine
vertex). We obtain the configuration γ1 depicted in Figure 11.9.

We can observe that the first round R1 of our execution ends in γ1 and that we
have now a maximal clock drift between two correct neighbors of a+ 2(t− 1).

By the same reasoning, we can construct a sequence of t− 1 rounds R2, . . . , Rt
where Ri begin in γi−1 and ends in γi (2 ≤ i ≤ t) as follows: v is activated and its
clock takes value a+ 2t+ 1− i, u is activated and its clock takes value a+ 2t− i,
r is activated and its clock takes value a + i and finally, b takes the value i. We
obtain the configuration γi at the end of round Ri (2 ≤ i ≤ t) depicted in Figure
11.9. At the end of round Ri (2 ≤ i ≤ t), we have a maximal clock drift between
two correct neighbors of 2(t− i).

We can conclude that, at the end of the round Rt−1, the maximal clock drift
between two correct neighbors is 2 whereas, at the end of the round Rt, the maximal
clock drift between two correct neighbors is 1 (since we have cv − cu = 1 and
cu−cr = 0). By construction of t, we can conclude that π needs Ω(L) asynchronous
rounds to stabilize.

Lower bound on rings. In the following lemmas, π denotes any deterministic
minimal (1, 0)-strictly stabilizing distributed protocol for specAU on a ring under the
central strongly fair daemon.

Lemma 11.12
When a vertex is in unison with only one of its neighbors, any enabled rule of
π for this vertex maintains this unison.

Proof : The proof of Lemma 11.9 directly applies here if we consider the following
communication graph: V = {v, u, r} and E = {{v, u}, {u, r}, {r, v}}.

154 Chapter 11. Strictly Stabilizing Solution

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

����

����

����

γ0

γ1

γi for
2 ≤ i ≤ t

a+ 2t
a a a

a+ 2t

a+ 2t− 1
a+ 1 a+ 1 a+ 1

a+ 2t− 1

a+ 2t− i
a+ i a+ i a+ i

a+ 2t− i

v u b u′ v′

v u b u′ v′

v u b u′ v′

Figure 11.10: Configurations used in proof of Proposition 11.5 (clock values appear
over vertices and the double circles represent Byzantine vertex).

Lemma 11.13
When a vertex v is in unison with only one of its neighbors (denote by u the
other neighbor of v), the following property holds: in any execution starting
from this configuration in which u remains not synchronized with v, v moves its
clock closer to the clock of u in a finite time.

Proof : The proof of Lemma 11.10 directly applies here if we consider the following
system: V = {v, u, r, b} and E = {{v, u}, {u, r}, {r, b}, {b, u}}.

Proposition 11.5
The stabilization time of any deterministic minimal (1, 0)-strictly stabilizing
distributed protocol for specAU on rings under the central strongly fair daemon
is in Ω(L) asynchronous rounds where L is the maximum clock drift between
two correct neighbors in the initial configuration.

Proof : Assume that π is a deterministic minimal (1, 0)-strictly stabilizing distributed
protocol for specAU on rings under the central strongly fair daemon .

Let a and t be two natural numbers. Consider the following initial configuration
γ0: V = {v, u, b, u′, v′}, E = {{v, u}, {u, b}, {b, u′}, {u′, v′}, {v′, v}}, b is a Byzantine
vertex and cv = cv′ = a+ 2t, cu = cu′ = cb = a (see Figure 11.10). Hence, we have
a maximal clock drift between two correct neighbors of L = 2t.

Note that v and v′ are enabled by π to take the value a + 2t − 1 in γ0 (by
Lemmas 11.13 and 11.12 and the fact that π is minimal). By similar reasoning, we
can deduce that u and u′ are enabled to take the value a+ 1.

11.2. Optimality of Convergence Time 155

Then, the following portion of execution of π starting from γ0 is possible: v is
activated and its clock takes value a + 2t − 1, v′ is activated and its clock takes
value a+ 2t−1, u is activated and its clock takes value a+ 1, u′ is activated and its
clock takes value a+ 1 and finally, the clock of b takes the value a+ 1 (recall that
b is a Byzantine vertex). We obtain the configuration γ1 depicted in Figure 11.10.

We can observe that the first round R1 of our execution ends in γ1 and that we
have now a maximal clock drift between two correct neighbors of a+ 2(t− 1).

By the same reasoning, we can construct a sequence of t− 1 rounds R2, . . . , Rt
where Ri starts in γi−1 and ends in γi (2 ≤ i ≤ t) as follows: v is activated and its
clock takes value a + 2t − i, v′ is activated and its clock takes value a + 2t − i, u
is activated and its clock takes value a+ i, u′ is activated and its clock takes value
a + i and finally, the clock of b takes the value a + i (recall that b is a Byzantine
vertex). We obtain the configuration γi at the end of round Ri (2 ≤ i ≤ t) depicted
in Figure 11.10. At the end of round Ri (2 ≤ i ≤ t), we have a maximal clock drift
between two correct neighbors of 2(t− i).

We can conclude that, at the end of the round Rt−1, the maximal clock drift
between two correct neighbors is 2 whereas, at the end of the round Rt, the maximal
clock drift between two correct neighbors is 0. By construction of t, we can conclude
that π needs Ω(L) asynchronous rounds to stabilize.

11.2.3 Conclusion

Let us review our conclusions so far. Proposition 11.3 proves that the stabi-
lization complexity of SSU is in O(L) asynchronous rounds while Propositions 11.4
and 11.5 show that any (1, 0)-strictly stabilizing distributed protocol requires at
least that many asynchronous rounds to stabilize. The following theorem summa-
rizes these results.

Theorem 11.2
The stabilization complexity of SSU is optimal. It stabilizes in Θ(L) asyn-
chronous rounds where L is the largest clock drift between two correct neighbors
in the initial configuration.

Chapter 12

Conclusion of Part III

I must govern the clock, not be governed by it.

Golda Meir

Contents
12.1 Summary of Contributions . 157
12.2 Concluding Remarks . 158

12.1 Summary of Contributions

In the third part of this thesis, we studied asynchronous unison protocols sub-
ject to arbitrary transient and intermittent Byzantine fault patterns. Intuitively,
asynchronous unison consists in a weak synchronization of digital clocks. We must
ensure that any vertex has a clock difference of at most one with any of its neighbors
in a finite time and that, from this point, any correct vertex clock is infinitely often
incremented while it maintaining its synchronization invariant with its neighbors.

First, we proved in Chapter 10 some impossibility results related to FTSS asyn-
chronous unison. By observations made in Chapter 4, these impossibility results
imply similar impossibility results for the case of strictly stabilizing asynchronous
unison. More precisely, we proved impossibility results related to the number of
crashed vertices, to fairness of daemon, to some properties of the distributed pro-
tocol (namely, minimality and priority), and/or to some classes of communication
graphs. Table 12.1 summarizes all impossibility results of Chapter 10. These re-
sults show that most of the interesting cases (from a practical point of view) are
impossible to solve.

Number of faults Daemon Maximal degree Unison Impossibility result
f ≥ 2 Any Any Any Theorem 10.1

f = 1

Unfair Any Any Theorem 10.2

Weakly fair Any Minimal Theorem 10.3
Priority Theorem 10.5

Strongly fair deg(g) ≥ 3
Minimal Theorem 10.4
Priority Theorem 10.6

Table 12.1: Summary of impossibility results of Chapter 10

158 Chapter 12. Conclusion of Part III

Nevertheless, we explored joint tolerance to transient and to intermittent Byzan-
tine faults for the asynchronous unison problem in Chapter 11. We presented a min-
imal and priority (1, 0)-strictly stabilizing distributed protocol for this problem on
chain and ring communication graphs under the locally central strongly fair daemon.
From impossibility results of Chapter 10, we can observe that all our assumptions
for this distributed protocol are necessary except for possible weakening of the dis-
tribution of the daemon. Moreover, we prove that our distributed protocol has an
optimal stabilization time in Θ(L) asynchronous rounds where L is the maximal
clock drift between two correct neighbors in the initial configuration.

12.2 Concluding Remarks

To conclude this part, we propose first a generalization of our problem and show
that our results still apply to this new class of problems. Then, we present some
questions that are still open.

Generalization: κ-asynchronous unison In this paragraph, we briefly explain
how to generalize the above results to a weaker problem. Assume that κ ∈ N∗. In
the κ-asynchronous unison problem (denote its specification by specκ−AU), a drift
of at most κ units is allowed between clocks of any two correct neighbors. Hence,
specAU corresponds to spec1−AU.

Let us observe that a similar result to Lemma 10.1 holds for specκ−AU:

Lemma 12.1
Let π be a (f, r)-ftss distributed protocol for specκ−AU (under any central dae-
mon). Let γ be a configuration where a vertex v with cv ≥ κ has two neighbors
u and u′ such that: cu = cv − κ and cu′ = cv + κ. If v executes an action of π
during an action (γ, γ′), then this action does not modify the value of cv. If π is
also minimal, then the vertex v is not enabled by π in γ.

As Lemma 10.1 is the basis of impossibility proofs of Chapter 10, we can deduce
that all impossibility results presented in Chapter 10 still hold for specκ−AU.

In a similar way, it is possible to borrow fundamentals ideas of the distributed
protocol SSU to cope with specκ−AU instead of specAU. Indeed, it is sufficient to
define that two correct neighbors are in-unison if their clock drift is smaller than κ
and to write a distributed protocol that ensures similar properties as SSU .

Open questions. An immediate future work is to generalize the possibility re-
sult (that assumes a locally central daemon) to cope with a distributed daemon, or
extend the impossibility proof in that case. There also remains the open case of dis-
tributed protocols that neither satisfy the minimality or the priority properties. We
conjecture that at least one of those properties is necessary for the purpose of deter-
ministic self-stabilization, yet none of those may be required for deterministic weak
stabilization [Gou01] (weak stabilization is a weaker property than self-stabilization

12.2. Concluding Remarks 159

since only existence of execution reaching a legitimate configuration is guaranteed).
As recent results [DTY08] hint that weak-stabilizing solutions can be easily turned
into probabilistic self-stabilizing ones, this raises the open question of the possibility
of probabilistic strict stabilization for dynamic tasks in asynchronous systems.

The existence of a solution for the state model opens another path of research. It
is interesting to consider the existence of a solution in lower atomicity models such
as shared register or message-passing models (see Section 2.3). We conjecture that
a solution in such models is more difficult to obtain as the lower atomicity tends
to empower Byzantine vertices. Indeed, in the shared-register model a Byzantine
vertex may report differing clock values to its right and left neighbor. Such behavior
makes a single fault ring communication graph essentially equivalent to two faults
in the chain communication graph. The latter is proven unsolvable. Hence, we
conjecture that in the lower atomicity models, the only communication graph that
allows a solution to asynchronous unison is the chain.

Part IV

Spanning Tree

Chapter 13

Introduction of Part IV

Trees sprout up just about everywhere in com-
puter science...

Donald E. Knuth

Contents
13.1 Problem and Related Works . 164

13.1.1 Related Works . 164
13.1.2 Specification . 166

13.2 Contributions of Part IV . 170
13.3 Containing Byzantine Faults in Self-Stabilization 172

13.3.1 Strict Stabilization . 172
13.3.2 Strong Stabilization . 173
13.3.3 Topology-Aware Stabilization 175
13.3.4 Discussion . 177

In the fourth part of this thesis, we interest in a fundamental building block
of distributed systems: spanning tree construction. As stated in Section 2.1, dis-
tributed systems are in part characterized by the fact that vertices must commu-
nicate together to solve almost any task (at least interesting ones). Therefore, the
optimization of communications is at the core of many distributed protocols. There
exists several way to optimize communications in a distributed system. A simple
way is to minimize the number of communication links used by vertices to commu-
nicate with each other. In this way, the spanning tree is the best communication
structure since it ensures by definition the possibility of communication between
any pair of vertices while it minimizes the number of communication links. This
optimality of the spanning tree explains that there exists numerous distributed pro-
tocols for constructing spanning trees as building blocks for more complex tasks
that need some communication optimization.

For a given communication graph, there exists a lot of different spanning trees
(for example a complete communication graph admits nn−2 different spanning trees).
Even if any of these spanning tree minimizes by definition the number of communi-
cation links, all are not equivalent. Indeed, we can consider some other criteria to
distinguish spanning trees. For example, a breadth-first search (BFS) spanning tree
[HC92, DIM93, AKY90] allows us to minimize the delay of communication between
any vertex and a distinguished one (called the root of the tree) and a minimum

164 Chapter 13. Introduction of Part IV

weight spanning tree [GHS83] minimizes the global cost of the tree (in the case of
weighted communication graph).

In this part, we focus on a large class of spanning tree constructions: the max-
imum metric spanning tree construction with respect to any maximizable metric
[GS03]. Intuitively, a metric is a scheme to compute a distance along any path of
the communication graph. A metric is maximizable if there always exists a span-
ning tree that maximizes the metric of each vertex of any communication graph
with respect to a distinguished vertex called the root. For example, the shortest
path [TH94] or the flow metric [GS94] are maximizable. In contrast, there exists no
maximizable metric to model the minimum weight [GHS83] or the minimum degree
[BB04, BPBR11] spanning tree construction. The large span of this class of metrics
motivates some previous works [GS99, GS03].

This chapter aims to introduce this part by first presenting related works and
the formal specification of the problem (see Section 13.1). Then, Section 13.2 sum-
marizes the contributions of the Part IV. We finally present some definitions used
in the sequel of this part in Section 13.3.

13.1 Problem and Related Works

This section motivates our work about maximum metric spanning tree construc-
tion in distributed systems subject to any transient and intermittent Byzantine
fault pattern by providing a short survey about spanning tree construction in self-
stabilizing area (see Section 13.1.1). Then, we present the formal definition of a
maximal metric spanning tree and we specify our problem in Section 13.1.2.

13.1.1 Related Works

As spanning tree construction has been extensively studied, it is quite impossible
to do an exhaustive survey on this subject. In the following, we present fundamental
results only.

Note that spanning tree construction was first studied in centralized systems.
This problem is an important part of graph theory. There exists centralized protocols
as well for simple properties of spanning trees (e.g. depth-first search spanning tree,
breadth-first search spanning tree [Cor01], or shortest path spanning tree [Dij71])
than for more complicated ones (e.g. minimum weight spanning tree [Kru56, Pri57]
or minimum degree spanning tree [FR92]).

In the same way, spanning tree construction was extensively studied in the con-
text of distributed systems either in a fault-free setting or in presence of faults.
In fault-free distributed systems, there exists number of adaptations of centralized
protocols to construct spanning trees with respect to numerous properties (e.g.
minimum weight spanning tree [GHS83], minimum degree spanning tree [BB04], or
Steiner trees [CHK93]).

13.1. Problem and Related Works 165

Self-stabilizing protocols Gärtner proposes in [Gär03] a good survey on self-
stabilizing distributed protocols for spanning tree construction for the three most
simple properties: depth-first search spanning tree, breadth-first spanning tree and
shortest path spanning tree.

The first self-stabilizing distributed protocol to construct a depth-first search
spanning tree was by Collin and Dolev [CD94]. Note that any self-stabilizing token
circulation (see e.g. [HW97, DJPV00]) may be used to construct such a span-
ning tree. Regarding breadth-first search spanning tree construction, the first self-
stabilizing solution was by Dolev, Israeli and Moran [DIM90, DIM93] but a simpler
one was provided by [HC92] (we provide a full description of this latter in Section
14.2). Finally, self-stabilizing solutions to shortest path spanning tree construc-
tion may be found in [HL02, BK07] for example. We refer the interested reader to
[Rov09] for a detailed comparison of these self-stabilizing distributed protocols for
spanning tree construction.

Note that there also exists self-stabilizing distributed for more complex proper-
ties of spanning trees as the minimum diameter spanning tree [BLB95], minimum
degree spanning tree [BPBR11], or Steiner spanning tree [BPBR09].

Finally, Ghosh, Gupta, Herman and Pemmaraju study fault-containing spanning
tree construction in [GGHP96]. This fault containment means that the stabilization
time of the distributed protocol depends on the number of corrupted vertices in the
initial configuration, not that this distributed protocol tolerates to permanent faults
(see Section 4.1.2).

Maximizable metrics In [GS03], Gouda and Schneider define a large class of
spanning tree constructions using the concept of maximizable metric. In this work,
the metric of a path of the communication graph is the result of the application of the
metric operator to the value to each edge of the path. For example, the shortest path
metric associates a weight (a natural number) to each edge of the communication
graph and the metric of a path is computed by the sum of the weight of each edge
of the path. A metric is maximizable if there always exists a spanning tree that
maximizes the metric of each vertex of any communication graph with respect to a
distinguished vertex called the root.

This concept of maximizable metric enclosed a lot of classical metrics as breadth-
first search, shortest path or flow metrics (defined in [Sch97]), that justifies the
interest in maximum metric spanning tree construction. The main results of [GS03]
is a full characterization of maximizable metrics that we formally provided in Section
13.1.2.

A self-stabilizing distributed protocol for maximum metric spanning tree con-
struction with respect to any maximizable metric is provided by [GS99]. In this
distributed protocol, any vertex try to maximize its metric in the tree by choosing
as its parent the neighbor that provide the best metric value. Using this strategy,
the arbitrary initial configuration may lead to the formation of cycles of vertices
that has the same incorrect metric value. The key idea of this distributed protocol

166 Chapter 13. Introduction of Part IV

is to use a hop counter (upper bounded by a given constant D) to detect and break
cycles of vertices that have the same (incorrect) maximum metric. The choice of the
constant D is obviously capital for the self-stabilization of the distributed protocol.
Gouda and Schneider proved that their distributed protocol is self-stabilizing if D
is an upper bound on the length of the longest path of the desired spanning tree.

The idea to provide a generic distributed protocol able to compute a spanning
tree according to a large class of metric motivates other works. For instance, another
formalism that encompasses a different set of metrics is presented in [DT01, DT03,
DDT06].

Byzantine tolerance At our knowledge, there exists no distributed protocol for
spanning tree construction in presence of both transient and intermittent Byzantine
faults even for simple properties as depth-first search spanning tree or shortest path
spanning tree.

We propose to fill this gap in this part by studying the maximum metric span-
ning tree construction that gathers a large class of spanning tree construction as
highlighted by [GS03].

13.1.2 Specification

In this section, we formally define maximum (routing) metric trees using for-
malism introduced by [GS03]. Informally, the goal of a routing distributed protocol
is to construct a tree that simultaneously maximizes the metric value of all of the
vertices with respect to some total ordering ≺. Then, we can specify the problem
considered in this part of the thesis.

Maximum metric tree First, we recall definitions and notations of [GS03] and
state the main result about characterization of maximizable metric (that is, metrics
such that there always exists a tree maximizing the metric of each vertex).

Definition 13.1 (Routing metric)
A routing metric (or just metric) M is a five-tuple M = (M,W,met,mr, ≺)

where:

1. M is a set of metric values,

2. W is a set of edge weights,

3. met is a metric function whose domain is M ×W and whose range is M ,

4. mr is the maximum metric value in M with respect to ≺ and is assigned
to the root of the system,

5. ≺ is a less-than total order relation over M that satisfies the following
three conditions for arbitrary metric values m, m′, and m′′ in M :
(a) irreflexivity: m 6≺ m,

(b) transitivity : if m ≺ m′ and m′ ≺ m′′ then m ≺ m′′,
(c) totality: m ≺ m′ or m′ ≺ m or m = m′.

13.1. Problem and Related Works 167

Any metric value m ∈ M \ {mr} satisfies the utility condition (that is, there
exist w0, . . . , wk−1 in W and m0 = mr,m1, . . . ,mk−1,mk = m in M such that
∀i ∈ {1, . . . , k},mi = met(mi−1, wi−1)).

For instance, we provide below the definition of three classical metrics with this
model:

– the shortest path metric (SP) in which the distance from any vertex to the
root is minimized. Edge weights are natural numbers and the metric operator
is the sum.

– the flow metric (F) in which each vertex chooses the path of maximal flow
(i.e. the weight of the edge of minimum weight of the path) to the root. Edge
weights are natural numbers and the metric operator is the minimum function.

– the reliability metric (R) in which each vertex chooses the path of maximal
reliability (i.e. the product of edge weights of the path) to the root. Edge
weights are real numbers (between 0 and 1) and the metric operator is the
product.

Note also that we can model the construction of a spanning tree with no particu-
lar constraints in this model using the metric NC described below and the construc-
tion of a BFS spanning tree using the shortest path metric (SP) with W1 = {1}
(we denote this metric by BFS in the following).

SP = (M1,W1,met1,mr1,≺1)

where M1 = N
W1 = N
met1(m,w) = m+ w

mr1 = 0

≺1 is the classical > relation

F = (M2,W2,met2,mr2,≺2)

where mr2 ∈ N
M2 = {0, . . . ,mr2}
W2 = {0, . . . ,mr2}
met2(m,w) = min{m,w}
≺2 is the classical < relation

R = (M3,W3,met3,mr3,≺3)

where M3 = [0, 1]

W3 = [0, 1]

met3(m,w) = m ∗ w
mr3 = 1

≺3 is the classical < relation

168 Chapter 13. Introduction of Part IV

NC = (M4,W4,met4,mr4,≺4)

where M4 = {0}
W4 = {0}
met4(m,w) = 0

mr4 = 0

≺4 is the classical < relation

Definition 13.2 (Assigned metric)
An assigned metric over a communication graph g is a six-tuple (M,W,met,
mr,≺,wf) where (M,W,met,mr,≺) is a metric and wf is a function that assigns
to each edge of g a weight in W .

Let a rooted path (from v) be an elementary path from a vertex v to the root r.
The next set of definitions are with respect to an assigned metric (M,W,met,mr,
≺,wf) over a given communication graph g.

Definition 13.3 (Metric of a rooted path)
The metric of a rooted path in g is the prefix sum of met over the edge weights
in the path and mr.

For example, if a rooted path p in g is vk, . . . , v0 with v0 = r, then the metric of p
is mk = met(mk−1,wf({vk, vk−1})) with ∀i ∈ {1, . . . , k − 1},mi = met(mi−1,wf({vi,
vi−1}) and m0 = mr.

Definition 13.4 (Maximum metric path)
A rooted path p from v in g is called a maximum metric path with respect to
an assigned metric if and only if for every other rooted path q from v in g, the
metric of p is greater than or equal to the metric of q with respect to the total
order ≺.

Definition 13.5 (Maximum metric of a vertex)
The maximum metric of a vertex v 6= r (or simply metric value of v) in g is
defined by the metric of a maximum metric path from v. The maximum metric
of r is mr.

Definition 13.6 (Maximum metric spanning tree)
A spanning tree t of g is a maximum metric spanning tree with respect to an
assigned metric over g if and only if every rooted path in t is a maximum metric
path in g with respect to the assigned metric.

The goal of the work of [GS03] is the study of metrics that always allow the
construction of a maximum metric spanning tree. The definition follows.

Definition 13.7 (Maximizable metric)
A metric is maximizable if and only if for any assignment of this metric over
any communication graph g, there is a maximum metric spanning tree for g with

13.1. Problem and Related Works 169

respect to the assigned metric.

An interesting result about maximizable metrics due to [GS03] provides a fully
characterization of maximizable metrics as follow. First, they define two classes of
metrics. A metric is bounded if and only if the application of the metric function
to any metric value does not increase it (for any edge weight) whereas a metric is
monotonic if and only if the metric function preserves the order ≺ on metric values.
Formal definitions follow.

Definition 13.8 (Boundedness)
A metric (M,W,met,mr,≺) is bounded if and only if:

∀m ∈M, ∀w ∈W,met(m,w) ≺ m or met(m,w) = m

Definition 13.9 (Monotonicity)
A metric (M,W,met,mr,≺) is monotonic if and only if:

∀(m,m′) ∈M2,∀w ∈W,m ≺ m′
⇒ (met(m,w) ≺ met(m′, w) or met(m,w) = met(m′, w))

Then, [GS03] proves that a metric is maximizable if and only if it belongs to the
intersection of these two classes of metrics.

Theorem 13.1 (Characterization of maximizable metrics [GS03])
A metric is maximizable if and only if this metric is bounded and monotonic.

Specification Given a maximizable metric M = (M,W,mr,met,≺), the aim of
this part is to study the construction of a maximum metric spanning tree with
respect to M rooted to a pre-defined vertex r (called the root) in presence of any
transient and intermittent Byzantine fault pattern. Note that we must assume
that the root vertex is never a Byzantine one. It is obvious that these Byzantine
vertices may disturb some correct vertices. Therefore, we relax the problem in the
following way: we want to construct a maximum metric spanning forest with respect
toM. The root of any tree of this spanning forest must be either the real root or
a Byzantine vertex.

Each vertex v has three O-variables: a pointer to its parent in its tree (prntv ∈
Nv ∪ {⊥}), a variable that stores its current metric value (levelv ∈ M) and an
integer which stores a distance (distv ∈ N). We use the following specification of the
problem.

We introduce new notations as follows. Given an assigned metric (M,W,met,mr,
≺,wf) over the communication graph g and two vertices u and v, we denote by
max_met(g, u, v) the maximum metric of vertex u when v plays the role of the root

170 Chapter 13. Introduction of Part IV

of the communication graph (that is, when levelv = mr). If u and v are neighbors,
we denote by wu,v the weight of the edge {u, v} (that is, the value of wf({u, v})).

Definition 13.10 (M-path)
Given an assigned metric M = (M,W,mr,met,≺,wf) over a communication
graph g, a path (v0, . . . , vk) (k ≥ 1) of g is aM-path if and only if:

1. prntv0 = ⊥, levelv0 = mr, distv0 = 0, and v0 ∈ B ∪ {r};
2. ∀i ∈ {1, . . . , k}, prntvi = vi−1, levelvi = met(levelvi−1 , wvi,vi−1), and

distvi = i;

3. ∀i ∈ {1, . . . , k},met(levelvi−1 , wvi,vi−1) = max≺
u∈Nv

{met(levelu, wvi,u), }; and

4. levelvk = max_met(g, vk, v0).

As explained below in Section 13.3, we choose in this part to specify problems
in a specific way. We state the specification by a specification predicate for each
vertex that is true if this vertex complies to a solution of the problem (note that this
specification predicate is not necessarily local). We can now specify the problem of
the maximum metric spanning tree construction.

Specification 13.1 (Maximum metric spanning tree construction specMMT)
The specification predicate specMMT(v) of the maximum metric tree construc-
tion with respect to a maximizable metricM for vertex v follows:

specMMT(v) :

{
prntv = ⊥ and levelv = mr, and distv = 0 if v is the root r
there exists aM-path (v0, . . . , vk) such that vk = v otherwise

13.2 Contributions of Part IV

Position of Part IV As explained in Section 13.1.1, the spanning tree construc-
tion problem received a great attention from the self-stabilizing area. But, at our
knowledge, there exists no study of spanning tree construction in distributed systems
simultaneously subject to transient and intermittent Byzantine faults (whatever is
the considered metric). The goal of this part is to remedy at this fact by providing
the first work in this context. We choose to restrict this study to maximum metric
spanning tree constructions.

From now, we assume to work in a deterministic distributed system subject to
any transient and intermittent Byzantine fault pattern. The communication graph
is arbitrary and anonymous but we assume the existence of a distinguished vertex r
called the root. Finally, note that all results presented in Part IV assume the state
computational model (see Section 2.3.2).

13.2. Contributions of Part IV 171

Overview of Part IV Contributions of this part are twofold. First, motivating
by impossibility results of strict stabilization for global tasks (as the spanning tree
construction) presented in Section 4.2.3, we propose three new concepts for Byzan-
tine containment in self-stabilization. These new concepts, respectively called strong
stabilization, topology-aware strict stabilization, and topology-aware strong stabi-
lization, weaken the constraints on the containment radius of strict stabilization in
order to by-pass such impossibility results. In strong stabilization, the containment
radius is weaken in time since we allow correct vertices outside the containment
radius to be disturbed a finite number of times by Byzantine ones after the conver-
gence to a legitimate configuration. In topology-aware stabilization, the weakening
is in space since we generalize the containment radius to a containment area. This
containment area is simply the set of correct vertices (that is function of the commu-
nication graph) that may be infinitely often disturbed by Byzantine vertices. Note
that this weakening of containment radius in containment area may be applied both
to strict and strong stabilization. Formal definitions of these concepts are presented
in Section 13.3.

Then, the sequel of the Part IV is devoted to the proof of the effectiveness of our
new concepts of Byzantine containment in self-stabilization using maximum metric
spanning tree construction as a benchmark.

1. In Chapter 14, we prove by two case studies that all maximizable metrics are
not equivalent with respect to Byzantine containment in self-stabilization. In-
deed, we prove that there exists a strongly-stabilizing solution for spanning
tree construction (without constraints) while it is impossible to provide a sim-
ilar distributed protocol for BFS spanning tree construction. We complete
these results with a topology-aware stabilizing solution to the BFS spanning
tree construction.

2. Chapter 15 generalizes results from the previous one since we provide a full
characterization of the set of maximizable metrics that allows strong stabiliza-
tion. The second contribution of this chapter is the design of a distributed pro-
tocol that performs the optimal containment areas for topology-aware strict
and strong stabilization for maximum metric spanning construction for any
maximizable metric.

Results of Chapter 14 appear in a publication in IEEE Transactions on Parallel
and Distributed Systems [DMT11b], in proceedings of the 12th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS 2010)
[DMT10c], of the 12èmes Rencontres Francophones sur les Aspects Algorithmiques
de Télécommunications (Algotel 2010) [DMT10a], and of the 13èmes Rencontres
Francophones sur les Aspects Algorithmiques de Télécommunications (Algotel 2011)
[DMT11a]. On the other hand, results of Chapter 15 are published in the proceed-
ings of the 24th International Symposium on Distributed Computing (DISC 2010)
[DMT10b] and of the 25th International Symposium on Distributed Computing
(DISC 2011) [DMT11c].

172 Chapter 13. Introduction of Part IV

13.3 Containing Byzantine Faults in Self-Stabilization

According to definitions presented in Section 4.2.3, it is obvious that the max-
imum metric spanning tree construction admits a diam(g)-restrictive specification.
Hence, we can deduce, using [NA02] that this problem does not admit any strictly
stabilizing solution. This section aims to present some weaker Byzantine contain-
ment properties in self-stabilization. The remainder of this part is devoted to the
proof of the usefulness of these new containment schemes.

Specification Problems considered in this part are so-called static problems, i.e.
they require the system to find static solutions. For example, the spanning-tree
construction problem is a static problem, while the asynchronous unison problem
is not. Some static problems can be defined by a specification predicate (shortly,
specification), spec(v), for each vertex v: a configuration is a desired one (with
a solution) if every vertex satisfies spec(v). A specification spec(v) is a boolean
expression on variables of Vv (⊆ V) where Vv is the set of vertices whose variables
appear in spec(v) (note that Vv is not related to Nv, in other words the specification
predicate is not necessarily local). The variables appearing in the specification are
called output variables (shortly, O-variables).

13.3.1 Strict Stabilization

First, we state the definition of strict stabilization (already introduced in Section
4.2.3) using specification predicate instead of global specification on executions.
Note that these two definitions are equivalent but we introduce the new one in
order to be consistent with definitions of the remainder of this section.

Following definitions are with respect to a specification predicate spec. Given an
integer c, a c-correct vertex is a vertex defined as follows.

Definition 13.11 (c-correct vertex)
A vertex is c-correct if it is correct (i.e. not Byzantine) and located at distance
more than c from any Byzantine vertex.

Definition 13.12 ((c, f)-containment)
A configuration γ is (c, f)-contained for specification spec if, given at most f
Byzantine vertices, in any execution starting from γ, every c-correct vertex v

always satisfies spec(v) and never changes its O-variables.

The parameter c of Definition 13.12 refers to the containment radius defined
in [NA02]. The parameter f refers explicitly to the number of Byzantine pro-
cesses, while [NA02] dealt with unbounded number of Byzantine faults (that is
f ∈ {0 . . . n}).

Definition 13.13 (Strict stabilization)
A distributed protocol π is (c, f)-strictly stabilizing for specification spec if,

13.3. Containing Byzantine Faults in Self-Stabilization 173

starting from any arbitrary configuration, every execution involving at most f
Byzantine vertices contains a configuration that is (c, f)-contained for spec.

13.3.2 Strong Stabilization

To circumvent impossibility results of strict stabilization, we define a weaker
notion. Here, the requirement to the containment radius is relaxed, i.e. there may
exist vertices outside the containment radius that invalidate the specification predi-
cate, due to Byzantine actions. However, the impact of Byzantine triggered action is
limited in times: the set of Byzantine vertices may only impact vertices outside the
containment radius a bounded number of times, even if Byzantine vertices execute
an infinite number of actions.

In the following of this section, we present the formal definition of strong stabi-
lization for a specification predicate spec. From the states of c-correct vertices (see
Definition 13.11), c-legitimate configurations and c-stable configurations are defined
as follows.

Definition 13.14 (c-legitimate configuration)
A configuration γ is c-legitimate for spec if every c-correct vertex v satisfies
spec(v).

Definition 13.15 (c-stable configuration)
A configuration γ is c-stable if every c-correct vertex never changes the values
of its O-variables as long as Byzantine vertices make no action.

Roughly speaking, the aim of self-stabilization is to guarantee that a distributed
protocol eventually reaches a c-legitimate and c-stable configuration. However, a
self-stabilizing system can be disturbed by Byzantine vertices after reaching a c-
legitimate and c-stable configuration. The c-disruption represents the period where
c-correct vertices are disturbed by Byzantine vertices and is defined as follows

Definition 13.16 (c-disruption)
A portion of execution δ = (γ0, γ1) . . . (γt−1, γt) (t > 1) is a c-disruption if and
only if the following holds:

1. δ is finite;

2. δ contains at least one action of a c-correct vertex for changing the value
of an O-variable;

3. γ0 is c-legitimate for spec and c-stable; and

4. γt is the first configuration after γ0 such that γt is c-legitimate for spec and
c-stable.

Now we can define a self-stabilizing distributed protocol such that Byzantine
vertices may only impact vertices outside the containment radius a bounded number
of times, even if Byzantine vertices execute an infinite number of actions.

174 Chapter 13. Introduction of Part IV

Definition 13.17 ((t, k, c, f)-time contained configuration)
A configuration γ0 is (t, k, c, f)-time contained for spec if given at most f Byzan-
tine vertices, the following properties are satisfied:

1. γ0 is c-legitimate for spec and c-stable;

2. every execution starting from γ0 contains a c-legitimate configuration for
spec after which the values of all the O-variables of c-correct vertices remain
unchanged (even when Byzantine vertices make actions repeatedly and
forever),

3. every execution starting from γ0 contains at most t c-disruptions, and

4. every execution starting from γ0 contains at most k actions of changing
the values of O-variables for each c-correct vertex.

Definition 13.18 (Strong stabilization)
A distributed protocol π is (t, c, f)-strongly stabilizing for spec if and only if
starting from any arbitrary configuration, every execution involving at most f
Byzantine vertices contains a (t, k, c, f)-time contained configuration for spec
that is reached after at most ` rounds. Parameters ` and k are respectively the
(t, c, f)-stabilization time and the (t, c, f)-vertex disruption times of π.

Note that a (t, k, c, f)-time contained configuration is a (c, f)-contained con-
figuration when t = k = 0, and thus, (t, k, c, f)-time contained configuration is
a generalization (relaxation) of a (c, f)-contained configuration. Thus, a strongly
stabilizing distributed protocol is weaker than a strictly stabilizing one (as ver-
tices outside the containment radius may take incorrect actions due to Byzantine
influence). However, a strongly stabilizing distributed protocol is stronger than a
classical self-stabilizing one (that may never meet their specification in the presence
of Byzantine vertices).

The parameters t, k and c are introduced to quantify the strength of fault con-
tainment, we do not require each vertex to know the values of the parameters.
There exists some relationship between these parameters as the following proposi-
tion states:

Proposition 13.1
If a configuration is (t, k, c, f)-time contained for spec, then t ≤ nk.

Proof : Let γ0 be a (t, k, c, f)-time contained configuration for spec. Assume that
t > nk.

If there exists no execution σ = (γ0, γ1) . . . such that σ contains at least nk+ 1

c-disruptions, then γ0 is in fact a (nk, k, c, f)-time contained configuration for spec
(and hence, we have t ≤ nk). This is contradictory. So, there exists an execution
σ = (γ0, γ1) . . . such that σ contains at least nk + 1 c-disruptions.

As any c-disruption contains at least one action of a c-correct vertex for changing
the value of an O-variable by definition, we obtain that σ contains at least nk + 1

actions of c-correct vertices for changing the values of O-variables. There is at most

13.3. Containing Byzantine Faults in Self-Stabilization 175

n c-correct vertices. So, there exists at least one c-correct vertex which takes at
least k+ 1 actions for changing the value of O-variables in σ. This is contradictory
with the fact that γ0 is a (t, k, c, f)-time contained configuration for spec.

Discussion between strong stabilization and pseudo stabilization There
exists an analogy between the respective powers of (c, f)-strict stabilization and
(t, c, f)-strong stabilization for the one hand, and self-stabilization and pseudo-
stabilization for the other hand.

A pseudo-stabilizing distributed protocol (defined in [BGM93], see Section 4.1)
guarantees that every execution has a suffix that matches the specification, but
it could never reach a legitimate configuration from which any possible execution
matches the specification. In other words, a pseudo-stabilizing distributed proto-
col can continue to behave satisfying the specification, but with having possibil-
ity of invalidating the specification in future. A particular daemon can prevent
a pseudo-stabilizing distributed protocol from reaching a legitimate configuration
for arbitrarily long time, but cannot prevent it from executing its desired behavior
(that is, a behavior satisfying the specification) for arbitrarily long time. Thus, a
pseudo-stabilizing distributed protocol is useful since desired behavior is eventually
reached.

Similarly, every execution of a (t, c, f)-strongly stabilizing distributed protocol
has a suffix such that every c-correct vertex executes its desired behavior. But, for
a (t, c, f)-strongly stabilizing distributed protocol, there may exist executions such
that the system never reach a configuration after which Byzantine vertices never have
the ability to disturb the c-correct vertices: all the c-correct vertices can continue
to execute their desired behavior, but with having possibility that the distributed
system (respectively each vertex) could be disturbed at most t (respectively k)
times by Byzantine vertices in future. A notable but subtle difference is that the
invalidation of the specification is caused only by the effect of Byzantine vertices
in a (t, c, f)-strongly stabilizing distributed protocol, while the invalidation can be
caused by the daemon in a pseudo-stabilizing distributed protocol.

13.3.3 Topology-Aware Stabilization

We describe here another weaker notion than the strict stabilization: the topology-
aware strict stabilization (denoted by TA strict stabilization for short). Here, the
requirement to the containment radius is relaxed, i.e. the set of vertices which may
be disturbed by Byzantine ones is not reduced to the union of c-neighborhood of
Byzantine vertices (i.e. the set of vertices at distance at most c from a Byzantine
vertex) but can be defined depending on the communication graph and Byzantine
vertices location.

In the following, we give formal definition of this new kind of Byzantine contain-
ment. From now, B denotes the set of Byzantine vertices and CB (which is function
of B) denotes a subset of V (intuitively, this set gathers all vertices which may be

176 Chapter 13. Introduction of Part IV

disturbed by Byzantine vertices).

Definition 13.19 (CB-correct vertex)
A vertex is CB-correct if it is a correct vertex (i.e. not Byzantine) which not
belongs to CB.

Definition 13.20 (CB-legitimate configuration)
A configuration γ is CB-legitimate for spec if every CB-correct vertex v is legit-
imate for spec (i.e. if spec(v) holds).

Definition 13.21 ((CB, f)-topology-aware containment)
A configuration γ0 is (CB, f)-topology-aware contained for specification spec
if, given at most f Byzantine vertices, in any execution σ = (γ0, γ1) . . ., every
configuration is CB-legitimate and every CB-correct vertex never changes its
O-variables.

The parameter CB of Definition 13.21 refers to the containment area. Any vertex
which belongs to this set may be infinitely often disturbed by Byzantine vertices.
The parameter f refers explicitly to the number of Byzantine vertices.

Definition 13.22 (Topology-aware strict stabilization)
A distributed protocol is (CB, f)-topology-aware strictly stabilizing for spec-
ification spec if, given at most f Byzantine vertices, any execution contains a
configuration that is (CB, f)-topology-aware contained for spec.

Note that, if B denotes the set of Byzantine vertices and

CB =
{
v ∈ V |min

b∈B
{d(v, b)} ≤ c

}
then a (CB, f)-topology-aware strictly stabilizing distributed protocol is a (c, f)-
strictly stabilizing distributed protocol since CB is then equals to the union of the
c-neighborhood of Byzantine vertices. Then, the concept of topology-aware strict
stabilization is a generalization of the strict stabilization. However, note that a
TA strictly stabilizing protocol is stronger than a classical self-stabilizing protocol
(that may never meet their specification in the presence of Byzantine vertices). The
parameter CB is introduced to quantify the strength of fault containment, we do
not require each vertex to know the actual definition of the function.

Similarly to topology-aware strict stabilization, we can weaken the notion of
strong stabilization using the notion of containment area. We present in the follow-
ing the formal definition of this concept.

Definition 13.23 (CB-stable configuration)
A configuration γ is CB-stable if every CB-correct vertex never changes the
values of its O-variables as long as Byzantine vertices make no action.

13.3. Containing Byzantine Faults in Self-Stabilization 177

Definition 13.24 (CB-TA disruption)
A portion of execution δ = (γ0, γ1) . . . (γt−1, γt) (t > 1) is a CB-TA-disruption if
and only if the followings hold:

1. δ is finite;

2. δ contains at least one action of a CB-correct vertex for changing the value
of an O-variable;

3. γ0 is CB-legitimate for spec and CB-stable; and

4. γt is the first configuration after γ0 such that γt is CB-legitimate for spec
and CB-stable.

Definition 13.25 ((t, k, CB, f)-TA time contained configuration)
A configuration γ0 is (t, k, CB, f)-TA time contained for spec if given at most f
Byzantine vertices, the following properties are satisfied:

1. γ0 is CB-legitimate for spec and CB-stable;

2. every execution starting from γ0 contains a CB-legitimate configuration
for spec after which the values of all the O-variables of CB-correct vertices
remain unchanged (even when Byzantine vertices make actions repeatedly
and forever);

3. every execution starting from γ0 contains at most t CB-TA-disruptions;
and

4. every execution starting from γ0 contains at most k actions of changing
the values of O-variables for each CB-correct vertex.

Definition 13.26 (Topology-aware strong stabilization)
A distributed protocol π is (t, CB, f)-TA strongly stabilizing for specification
spec if and only if starting from any arbitrary configuration, every execution
involving at most f Byzantine vertices contains a (t, k, CB, f)-TA time contained
configuration for spec that is reached after at most ` rounds. Parameters `
and k are respectively the (t, CB, f)-stabilization time and the (t, CB, f)-vertex
disruption time of π.

13.3.4 Discussion

Figure 13.1 sums up the respective constraints between strict, strong, topology-
aware and self-stabilization. Recall that a scheme is more constrained that another if
any distributed protocol that satisfies the first satisfies the second (see Section 4.3).
For example, strict stabilization is more constrained than strong stabilization since
any (c, f)-strictly stabilizing distributed protocol is a (0, c, f)-strongly stabilizing
distributed protocol. In particular, note that TA strict stabilization and strong
stabilization are not comparable. Indeed, both of them weaken constraints of strict

178 Chapter 13. Introduction of Part IV

Topology-Aware

Strict Stabilization

Strong Stabilization

Self-Stabilization

Strict Stabilization

Topology-Aware
Strong Stabilization

+ s

~ =

?

Figure 13.1: Summary of respective constraints on Byzantine containment schemes
in self-stabilization. An arrow from a scheme to another means that the first is more
constrained than the second.

stabilization but the first one removes constraints on space whereas the second
removes constraints in time.

It is natural to conjecture that the more constrained is a scheme the more difficult
is to provide a distributed protocol according to this scheme. Hence, we try to
by-pass strict stabilization impossibility results by providing strongly and topology-
aware stabilizing solutions.

Chapter 14

Two Case Studies

The art of doing mathematics consists in finding
that special case which contains all the germs of
generality.

David Hilbert

Contents
14.1 Spanning Tree without Constraints 180

14.1.1 Strongly Stabilizing Distributed Protocol 181
14.1.2 Proof of Strong Stabilization 182

14.2 BFS Spanning Tree . 185
14.2.1 Impossibility of Strong Stabilization 186
14.2.2 Topology-Aware Stabilizing Solution 187
14.2.3 Proof of Topology-Aware Strict Stabilization 188
14.2.4 Proof of Topology-Aware Strong Stabilization 192

14.3 Summary . 195

Before studying the general case of maximum metric spanning tree construction
for any maximizable metric in Chapter 15, we propose in this chapter two particular
case studies: the spanning tree (without constraints) construction and the breadth-
first search spanning tree construction. According to definitions of Section 13.1.2,
these two spanning trees are indeed particular cases of the maximummetric spanning
tree construction since it is sufficient to consider (maximizable) metrics NC and
BFS respectively.

Contributions of this chapter are twofold and their detailed description follow.

Spanning tree construction: Section 14.1 is devoted to the spanning tree (with-
out constraints) construction in systems subject to any transient and inter-
mittent Byzantine fault pattern. The specification of this problem will be
denoted by specNCT. We prove the existence of a (t, 0, n−1)-strongly stabiliz-
ing distributed protocol for specNCT with a finite t. The containment radius
of 0 is naturally optimal, that allows us to not consider topology-aware strong
stabilization on this problem. Note that results of Chapter 15 imply that it is
not interesting to consider topology-aware strict stabilization on this problem
since the optimal containment area is V \ {r}.

180 Chapter 14. Two Case Studies

BFS spanning tree construction: Section 14.2 focuses on the breadth first search
(BFS) spanning tree construction in systems subject to any transient and in-
termittent Byzantine fault pattern. The specification of this problem will be
denoted by specBFST. We prove the following set of results:

1. there exists no strongly stabilizing distributed protocol for specBFST what-
ever is the considered containment radius and the maximum number of
disruptions;

2. there exists a topology-aware strictly stabilizing distributed protocol for
specBFST with a containment area containing all correct vertices that are
closer (or at equal distance) from a Byzantine vertex than the root; and

3. there exists a topology-aware strongly stabilizing distributed protocol for
specBFST with a containment area containing all correct vertices that are
strictly closer from a Byzantine vertex than the root.

Note that these two containment areas are proved optimal by results of Chap-
ter 15.

These two studies show us that all maximizable metrics do not have the same
properties with respect to strong stabilization and topology aware stabilization, that
motivate the general characterization provided in Chapter 15.

14.1 Spanning Tree without Constraints

In this section, we study our first particular case of maximum metric spanning
tree construction using only the metric NC (defined in Section 13.1.2) that cor-
responds to a spanning tree without any supplementary constraints. In order to
simplify the presentation of this section, we do not use directly Specification 13.1
with metric NC but we provide a simpler specification predicate that is equivalent.

In what follows, each vertex v has only two O-variables: a pointer to its parent
in its tree (prntv ∈ Nv ∪ {⊥}) and an integer which stores a distance (distv ∈ N). It
is indeed useless to store the metric value of each vertex since this latter is always
equals to 0 by definition of the metric NC. We can now specify the spanning tree
(without supplementary constraints) in the following way.

Specification 14.1 (Spanning tree construction specNCT)
The specification predicate specNCT(v) of the spanning tree construction for
vertex v follows:

specNCT(v) :

{
prntv = ⊥ and distv = 0 if v is the root r
prntv ∈ Nv and distv = distprntv + 1 otherwise

Notice that specNCT requires that a spanning tree is constructed at any 0-
legitimate configuration when no Byzantine vertex exists and that a spanning forest

14.1. Spanning Tree without Constraints 181

����
����

����

��������
����

����
��������

>

��

I
?

-

}

r

b

3

3

4

1

0

1

2

2

3

Figure 14.1: A 0-legitimate configuration for specNCT (numbers denote the dist
variable of vertices while the arrow attached to each vertex points the neighbor
designated as its parent by the variable prnt). Note that r is the (real) root and b
is a Byzantine vertex which acts as a (fake) root.

is constructed at any 0-legitimate configuration when Byzantine vertices exist. Fig-
ure 14.1 shows an example of 0-legitimate configuration with Byzantine vertices.
Indeed, we can observe that any correct vertex satisfies specNCT and that point-
ers from a spanning forest of the communication graph such that each root of this
spanning forest is either the (real) root of the distributed system or a Byzantrine
vertex.

The contribution of this section is to provide a (t, 0, n − 1)-strongly stabilizing
distributed protocol for specNCT under the distributed strongly fair daemon for a
finite natural number t. The containment radius of 0 is naturally optimal.

14.1.1 Strongly Stabilizing Distributed Protocol

In many self-stabilizing spanning tree construction distributed protocols (see the
survey of [Gär03]), each vertex checks locally the consistence of its dist variable with
respect to the one of its parent. When it detects an inconsistency, it changes its
prnt variable in order to choose a “better” neighbor. The notion of “better” neighbor
is based on the global desired property on the spanning tree (e.g. shortest path
spanning tree, minimum degree spanning tree...).

When the system may contain Byzantine vertices, they may disturb their neigh-
bors by providing alternatively “better” and “worse” states. The key idea of our
distributed protocol SSST (for Strongly Stabilizing Spanning T ree) to circumvent
this kind of perturbation is the following: when a correct vertex detects a local in-
consistency, it does not choose a “better” neighbor but it chooses another neighbor
according to a round robin order (along the set of its neighbor).

Protocol 14.1 presents our strongly-stabilizing spanning tree construction dis-
tributed protocol SSST that can tolerate any number of Byzantine vertices other

182 Chapter 14. Two Case Studies

than the root vertex (providing that the subset of correct vertices remains con-
nected). These assumptions are necessary since a Byzantine root or a set of Byzan-
tine vertices that disconnects the set of correct vertices may disturb all the tree
infinitely often. Then, it is impossible to provide a (t, c, f)-strongly stabilizing pro-
tocol for any finite natural number t.

Note that SSST is designed for the distributed strongly fair daemon. The
distributed protocol is composed of two rules. Only the root can execute the first
one: (Rr). This rule sets the root in a legitimate state if it is not the case. Non-
root vertices may execute the other rule: (Rv). The rule (Rv) is executed when
the state of a vertex is not consistent with the one of its parent. Its execution
leads the vertex to choose a new parent (it choose the first greater neighbor of its
current parent according to a round robin order defined on its set of neighbors) and
to compute its local state in function of this new parent.

Protocol 14.1 SSST : (t, 0, n − 1)-strongly stabilizing distributed protocol for
specNCT for vertex v.

Constant
Nv: set of neighbors of v (ordered in a round robin fashion)

Variables
prntv ∈ Nv ∪ {⊥}: parent of v in the current tree
distv ∈ N: distance of v in the current tree

Functions
nextv: for any subset A ⊆ Nv, nextv(A) returns the first element of A that is bigger than
prntv in a round-robin fashion and an arbitrary element of A if prntv = ⊥

Rules

(Rr) :: (v = r) ∧ [(prntv 6= ⊥) ∨ (distv 6= 0)]
−→ prntv := ⊥; distv := 0

(Rv) :: (v 6= r) ∧ [(prntv = ⊥) ∨ (distv 6= distprntv + 1)]
−→ prntv := nextv(Nv); distv := distprntv + 1

14.1.2 Proof of Strong Stabilization

This section provides the proof of the strong stabilization of SSST . This proof
is based on the fact that, once there exists a path (according to pointers) between
a correct vertex and the real root, this one is preserved during the whole execution.
In this way, we can prove that any correct vertex takes a finite number of steps
during any execution (even if Byzantine vertices modify infinitely often their state).
Then, the strong stabilization of SSST easily follows since the construction of the
distributed protocol ensures us that a configuration in which no correct vertex is
enabled is a 0-legitimate configuration for specNCT.

We denote by LCNCT the following set of configurations:

LCNCT =
{
γ ∈ Γ

∣∣∣(prntr = 0) ∧ (distr = 0)∧(
∀v ∈ V \ (B ∪ {r}), (prntv ∈ Nv) ∧ (distv = distprntv + 1)

)}

14.1. Spanning Tree without Constraints 183

In other words, LCNCT is the set of 0-legitimate configurations for specNCT. We
interest now on properties of configurations of LCNCT.
Lemma 14.1

Any configuration of LCNCT is 0-legitimate and 0-stable.

Proof : Let γ be a configuration of LCNCT. By definition of LCNCT, γ is 0-legitimate.
Note that no correct vertex is enabled by SSST in γ. Consequently, no actions of
SSST can be executed and we can deduce that γ is 0-stable.

Lemma 14.2
Given at most n− 1 Byzantine vertices, for any initial configuration γ0 and any
execution σ = (γ0, γ1)(γ1, γ2) . . . starting from γ0 under the distributed strongly
fair daemon, there exists a configuration γi such that γi ∈ LCNCT.

Proof : First, note that if all the correct vertices are disabled in a configuration γ, then
γ belongs to LCNCT. Thus, it is sufficient to show that SSST eventually reaches
a configuration γi in any execution (starting from any configuration) such that all
the correct vertices are disabled in γi.

By contradiction, assume that there exists a correct vertex that is enabled
infinitely often. Notice that once the root vertex r is activated, r becomes and
remains disabled forever. From the assumption that all the correct vertices induce
a connected communication subgraph, there exists two neighboring correct vertices
u and v such that u becomes and remains disabled and v is enabled infinitely often.
Consider execution after u becomes and remains disabled. Since the daemon is
strongly fair, v executes its action infinitely often. Then, eventually v designates u
as its parent. It follows that v never becomes enabled again unless u changes distu.
Since u never becomes enabled, this leads to the contradiction.

From now, g′ designates the communication subgraph induced by the set of all
the correct vertices. Remember that g′ is a connected communication graph by
assumption.

Lemma 14.3

Any configuration in LCNCT is a (f × deg(g)diam(g′), deg(g)diam(g′), 0, f)-time
contained configuration for specNCT.

Proof : Let γ0 be a configuration of LCNCT and σ = (γ0, γ1)(γ1, γ2) . . . be an execu-
tion starting from γ0. First, we show that any 0-correct vertex v takes at most
deg(g)diam(g′) actions in σ. We prove this result by induction on the distance
dist(g′, v, r) of v from the root in g′.

Induction basis (dist(g′, v, r) = 1):
Let v be any vertex neighboring to the root r. Since γ0 is a 0-legitimate
configuration, prntr = 0 and distr = 0 hold at γ0 and remain unchanged in
σ. Thus, if prntv = r and distv = 1 hold in a configuration γ, then v never
changes prntv or distv in any execution starting from γ. Since prntv = r and
distv = 1 hold within the first deg(g, v)−1 ≤ deg(g) actions of v, v can execute
its action at most deg(g) times in any execution starting from γ0.

184 Chapter 14. Two Case Studies

Induction step (with induction assumption):
Let v be any correct vertex dist(g′, v, r) hops away from the root r in g′, and
u be a correct neighbor of v that is dist(g′, v, r) − 1 hops away from r in g′

(this vertex exists by the assumption that g′, the communication subgraph
of correct vertices of g, is connected). From the induction assumption, u can
execute its action at most deg(g)dist(g

′,v,r)−1 times.

Assume that prntv = u and distv = distu + 1 hold in a given configuration
γ. We can observe that v is not enabled until u does not modify its state.
Then, the round-robin order used for pointers modification allows us to deduce
that v executes at most deg(g, v) ≤ deg(g) actions between two actions of u
(or before the first action of u). By the induction assumption, u executes its
action at most deg(g)dist(g

′,v,r)−1 times. Thus, v can execute its action at most
deg(g) + deg(g)× (deg(g)dist(g

′,v,r)−1) = deg(g)dist(g
′,v,r) times.

Consequently, any 0-correct vertex takes at most deg(g)diam(g′) actions in σ.

We say that a Byzantine vertex b deceive a correct neighbor v in the action
(γ, γ′) if the state of b makes the guard of an action of v true in γ and if v executes
this action in this action.

As a 0-disruption can be caused only by an action of a Byzantine vertex from a
legitimate configuration, we can bound the number of 0-disruptions by counting the
total number of times that correct vertices are deceived by neighboring Byzantine
vertices.

If a 0-correct vertex v is deceived by a Byzantine neighbor b, it takes necessarily
deg(g, v) actions before being deceiving again by b (recall that we use a round-robin
policy for prntv). As any 0-correct vertex v takes at most deg(g)diam(g′) actions in
σ, v can be deceived by a given Byzantine neighbor at most deg(g)diam(g′)−1 times.
A Byzantine vertex can have at most deg(g) neighboring correct vertices and thus
can deceive correct vertices at most deg(g)×deg(g)diam(g′)−1 = deg(g)diam(g′) times.
We have at most f Byzantine vertices, so the total number of times that correct
vertices are deceived by neighboring Byzantine vertices is f × deg(g)diam(g′).

Hence, the number of 0-disruption in σ is bounded by f × deg(g)diam(g′). It
remains to show that any 0-disruption have a finite length to prove the result.

By contradiction, assume that there exists an infinite 0-disruption δ = (γi, γi+1) . . .

in σ. This implies that for all j ≥ i, γj is not in LCNCT, that contradicts Lemma
14.2. Then, the result is proved.

Theorem 14.1

SSST is a (f × deg(g)diam(g′), 0, f)-strongly stabilizing distributed protocol for
specNCT under the distributed strongly fair daemon, where f is the number of
Byzantine vertices and g′ is the communication subgraph induced by the set of
all the correct vertices.

Proof : From Lemmas 14.1 and 14.3, it is sufficient to show that SSST eventually
reaches a configuration in LCNCT. Lemma 14.2 allows us to conclude.

14.2. BFS Spanning Tree 185

14.2 BFS Spanning Tree

In this section, we study our second particular case of maximum metric span-
ning tree construction using metric BFS (defined in Section 13.1.2) that induces
a breadth first search spanning tree (that is, the distance of each vertex to the
root in the spanning tree is equal to the one in the original graph). As previously,
we simplify the presentation of this section using an adapted specification of the
problem.

In this section, each vertex v has only two O-variables: the first is prntv ∈
Nv ∪{⊥} which is a pointer to the neighbor that is designated to be the parent of v
in the BFS tree and the second is levelv ∈ {0, . . . , diam(g)} which stores the metric
value of v in this tree. Indeed, it is useless to store the distance of the vertex to
the root in the tree since it is equals to its metric value by definition of the metric
BFS. Then, we can specify the BFS spanning tree construction as follow.

Definition 14.1 (BFS-path)
A path (v0, . . . , vk) (k ≥ 1) of g is a BFS-path if and only if:

1. prntv0 = ⊥, levelv0 = 0, and v0 ∈ B ∪ {r};
2. ∀i ∈ {1, . . . , k}, prntvi = vi−1 and levelvi = levelvi−1 + 1; and

3. ∀i ∈ {1, . . . , k}, levelvi−1 = min
u∈Nv

{levelu}.

Specification 14.2 (BFS spanning tree construction specBFST)
The specification predicate specBFST(v) of the BFS spanning tree construction
for vertex v follows.

specBFST(v) :

{
prntv = ⊥ and levelv = 0 if v is the root r
there exists a BFS-path (v0, . . . , vk) such that vk = v otherwise

In the case where any vertex is correct, note that any 0-legitimate configuration
for specBFST contains a BFS spanning tree rooted to the real root. Otherwise, any
CB-legitimate configuration contains a BFS forest that spans at least the commu-
nication subgraph induced by V \ CB for any containment area CB ⊆ V .

We present now contributions of this section. We prove first that there exists no
strongly stabilizing solution for specBFST for any containment radius (see Theorem
14.2). Then, we demonstrate that a classical self-stabilizing distributed protocol
for BFS spanning tree construction known as the min + 1 protocol (see [HC92])
provides without significant changes some Byzantine containment properties. In
more details, we prove in Theorems 14.3 and 14.4 that this distributed protocol is
both (SB, f)-TA strictly and (t, S∗B, f)-TA strongly stabilizing where f ≤ n− 1, t is

186 Chapter 14. Two Case Studies

���� ����

����
����

����
����

����

����

����
����

��������

����
b1 r

b2

����

����

����

����

S∗B SB

Figure 14.2: Example of containment areas for BFS spanning tree construction
(vertices b1 and b2 are Byzantine and vertex r is the root).

finite, and
SB =

{
v ∈ V

∣∣min
b∈B
{dist(g, v, b)} ≤ dist(g, r, v)

}
S∗B =

{
v ∈ V

∣∣min
b∈B
{dist(g, v, b)} < dist(g, r, v)

}
Intuitively, SB gathers the set of correct vertices that are closer (or at equals

distance) from a Byzantine vertex than the root whereas S∗B gathers the set of correct
vertices that are strictly closer from a Byzantine vertex than the root. Figure 14.2
provides an example of these containment areas.

14.2.1 Impossibility of Strong Stabilization

We state first an impossibility result about strong stabilization for BFS spanning
tree construction for any containment radius and any number of disruptions even
with a single Byzantine failure. This result comes from the following observation. If
a Byzantine vertex exhibits alternatively a behavior of a root vertex and of a correct
vertex, it may lead any distributed protocol (that constructs a BFS spanning tree)
to reconstruct a new spanning tree on the half of any path from the Byzantine
vertex to the real root. The length of this path can be arbitrary and we deduce the
impossibility to contain the effect of the Byzantine fault within any constant radius.

Theorem 14.2
Even under the central daemon, there exists no (t, c, 1)-strongly stabilizing
distributed protocol for specBFST where t and c are any (finite) natural numbers.

14.2. BFS Spanning Tree 187

Proof : Let t and c be (finite) natural numbers. Assume that there exists a (t, c, 1)-
strongly stabilizing distributed protocol π for specBFST under the central daemon.
Let g = (V,E) be the following communication graph V = {v0 = r, v1, . . . , v2c+2,

v2c+3 = b} and E = {{vi, vi+1}, i ∈ {0, . . . , 2c+ 2}}. Vertex v0 is the real root and
vertex b is a Byzantine one.

Assume that the initial configuration γ0 of g satisfies: levelr = levelb = 0,
prntr = prntb = ⊥ and other variables of b (if any) are identical to those of r
(see Figure 14.3). Assume now that b takes exactly the same actions as r (if any)
immediately after r (note that dist(g, r, b) > c and hence levelr = 0 and prntr = ⊥
still hold by closure and then levelb = 0 and prntb = ⊥ still hold too). Then, by
symmetry of the execution and by convergence of π to specBFST, we can deduce
that the system reaches in a finite time a configuration γ1 (see Figure 14.3) in
which: ∀i ∈ {1, . . . , c + 1}, levelvi = i and prntvi = vi−1 and ∀i ∈ {c + 2, . . . , 2c +

2}, levelvi = 2c + 3 − i and prntvi = pi+1 (because this configuration is the only
one in which all correct vertex vi such that d(g, vi, b) > c satisfies specBFST(vi)

when levelr = levelb = 0 and prntr = prntb = ⊥). Note that γ1 is 0-legitimate and
0-stable and a fortiori c-legitimate and c-stable.

Assume now that the Byzantine vertex acts as a correct vertex and executes
correctly π. Then, by convergence of π in fault-free systems (remember that a
(t, c, 1)-strongly stabilizing distributed protocol is a special case of self-stabilizing
distributed protocol), we can deduce that the system reaches in a finite time a
configuration γ2 (see Figure 14.3) in which: ∀i ∈ {1, . . . , 2c + 3}, levelvi = i and
prntvi = vi−1 (because this configuration is the only one in which all vertex vi sat-
isfies specBFST(vi)). Note that the portion of execution between γ1 and γ2 contains
at least one c-disruption (vc+2 is a c-correct vertex and modifies at least once its
O-variables) and that γ2 is 0-legitimate and 0-stable and a fortiori c-legitimate and
c-stable.

Assume now that the Byzantine vertex b takes the following state: levelb = 0

and prntb = ⊥. This action brings the system into configuration γ3 (see Figure
14.3). From this configuration, we can repeat the execution we constructed from
γ0. By the same token, we obtain an execution of π which contains c-legitimate
and c-stable configurations (see γ1) and an infinite number of c-disruptions which
contradicts the (t, c, 1)-strong stabilization of π.

14.2.2 Topology-Aware Stabilizing Solution

In this section, we present our distributed protocol for BFS spanning tree con-
struction in systems subject to any transient and intermittent Byzantine fault pat-
tern. This distributed protocol is borrowed from the one of [HC92] that is self-
stabilizing for the BFS spanning tree construction. This distributed protocol is
known as the min + 1 protocol. This name is due to the construction of the dis-
tributed protocol itself. Each vertex has two variables: one pointer to its parent
in the tree and one level in this tree. The distributed protocol is reduced to the
following rule: each vertex chooses as its parent the neighbor which has the smallest
level (min part) and update its level in consequence (+1 part).

In the min + 1 protocol, as in many self-stabilizing spanning tree construction
protocols, each vertex v checks locally the consistence of its levelv variable with

188 Chapter 14. Two Case Studies

�������� ���������������� ��������

�������� ���������������� ��������

�������� ���������������� ��������

�������� ���������������� ��������
� � � � �

� � � � �

--���

�

��

�

�

�

-

�

�

�

γ0

γ1

γ2

γ3

v0 = r v1 vc vc+1 vc+2 vc+3 v2c+2

0 0

c+1 1 0c+1

c+1 c+2 c+3 2c+2 2c+3

c+1 c+2 c+3 2c+2 0

? ? ? ? ? ?

.

.

. . .

. . .

. . .

. . .

.

-

v2c+3 = b

c0 1 c

0 1 c

0 1 c

Figure 14.3: Configurations used in proof of Theorem 14.2.

respect to the one of its neighbors. When it detects an inconsistency, it changes its
prntv variable in order to choose a “better” neighbor. The notion of “better” neigh-
bor is based on the global desired property on the tree (here, the BFS requirement
implies to choose one neighbor with the minimum level). When the system may con-
tain Byzantine vertices, they may disturb their neighbors by providing alternatively
“better” and “worse” level values.

The min + 1 protocol chooses an arbitrary one of the “better” neighbors (that
is, a neighbor with the minimal level). Actually this strategy allows us to achieve
the (SB, f)-TA strict stabilization but is not sufficient to achieve the (t, S∗B, f)-TA
strong stabilization. To achieve the (t, S∗B, f)-TA strong stabilization, we must bring
a slight modification to the distributed protocol: we choose a “better” neighbor with
a round robin order (along the set of its neighbor) as in Section 14.1.

Protocol 14.2 presents our BFS spanning tree construction distributed protocol
SSBFS (for Strictly/strongly Stabilizing BFS) which is both (SB, f)-TA strictly
and (t, S∗B, f)-TA strongly stabilizing for specBFST (where f ≤ n − 1 and t = n ×
deg(g)) providing that the root is never Byzantine.

In the following, we prove the (SB, n − 1)-TA strict stabilization and the (n ×
deg(g), S∗B, n − 1)-TA strong stabilization of SSBFS respectively under the dis-
tributed weakly fair daemon and under the distributed strongly fair daemon.

14.2.3 Proof of Topology-Aware Strict Stabilization

The proof of the topology-aware strict stabilization of our distributed protocol
is very similar to the one of the self-stabilization of the min+1 protocol. Indeed, we
prove the convergence by induction on the distance of vertices to the root with the

14.2. BFS Spanning Tree 189

Protocol 14.2 SSBFS: (SB, n − 1)-TA strictly and (t, S∗B, n − 1)-TA strongly
stabilizing distributed protocol for specBFST for vertex v.

Constant
Nv: set of neighbors of v (ordered in a round robin fashion)

Variables
prntv ∈ Nv ∪ {⊥}: parent of v in the current tree
distv ∈ {0, . . . , diam(g)}: distance of v in the current tree

Functions
nextv: for any subset A ⊆ Nv, nextv(A) returns the first element of A that is bigger than
prntv in a round-robin fashion and an arbitrary element of A if prntv = ⊥

Rules

(Rr) :: (v = r) ∧ [(prntv 6= ⊥) ∨ (levelv 6= 0)]
−→ prntv := ⊥; levelv := 0

(Rv) :: (v 6= r) ∧
[
(prntv = ⊥) ∨ (levelv 6= levelprntv + 1) ∨

(
levelprntv 6= min

u∈Nv

{levelu}
)]

−→ prntv := nextv
({
u ∈ Nv

∣∣levelu = min
w∈Nv

{levelw}
})

;

levelv := levelprntv + 1

significant difference that this induction must take in account Byzantine vertices and
consider only correct vertices that are closer from the root than from a Byzantine
vertex. The closure of the set of SB-legitimate configurations directly follows from
the construction of the distributed protocol.

Given a configuration γ ∈ Γ and a natural number d ∈ {0, . . . , diam(g)}, let us
define the following predicate:

Id(γ) ≡ ∀v ∈ V, levelv ≥ min
{
d, min
u∈B∪{r}

{dist(g, v, u)}
}

Lemma 14.4
For any natural number d ∈ {0, . . . , diam(g)}, the predicate Id is closed by
actions of SSBFS.

Proof : Let d be a natural number such that d ∈ {0, . . . , diam(g)}. Let γ ∈ Γ be a
configuration such that Id(γ) = true and γ′ ∈ Γ be a configuration such that (γ, γ′)

is an action of SSBFS.

If the root vertex r ∈ Act(γ, γ′) (respectively a Byzantine vertex b ∈ Act(γ, γ′)),
then we have levelr = 0 (respectively levelb ≥ 0) in γ′ by construction of (Rr) (re-
spectively by definition of levelb). Hence, levelr ≥ min

{
d, min
u∈B∪{r}

{dist(g, r, u)}
}

=

0 (respectively levelb ≥ min
{
d, min
u∈B∪{r}

{dist(g, b, u)}
}

= 0).

If a correct vertex v ∈ Act(γ, γ′) with v 6= r, then there exists a neighbor u of
v which satisfies the following property in γ (since v is activated and Id(γ) = true):

levelu = min
w∈Nv

{levelw} ≥ min
{
d, min
w∈B∪{r}

{dist(g, u, w)}
}

190 Chapter 14. Two Case Studies

Once, v is activated, we have: levelv = levelu + 1 in γ′. Let us define:

d′ = min
w∈B∪{r}

{dist(g, v, w)}

Then, we have: min
w∈B∪{r}

{dist(g, u, w)} ≥ d− 1 (otherwise, we have a contradiction

with the fact that d = min
w∈B∪{r}

{dist(g, u, w)} and that v and u are neighbors).

Consequently, γ′ satisfies:

levelv = levelu + 1 ≥ min
{
d, min
w∈B∪{r}

{dist(g, u, w)}
}

+ 1

≥ min{d, d′ − 1}+ 1

≥ min{d, d′}
≥ min

{
d, min
w∈B∪{r}

{dist(g, v, w)}
}

We can deduce that Id(γ′) = true, that conclude the proof.

Let LCBFST be the following set of configurations:

LCBFST =
{
γ ∈ Γ

∣∣(γ is SB-legitimate for specBFST) ∧ (Idiam(g)(γ) = true)
}

In other words, LCBFST is the set of SB-legitimate configurations for specBFST such
that any vertex has a level variable at least equals to its distance to the nearest
vertex in B∪{r}. We prove in the following interesting properties on configurations
of LCBFST.

Lemma 14.5
Any configuration of LCBFST is (SB, n− 1)-TA contained for specBFST.

Proof : Let γ be a configuration of LCBFST. By construction, γ is SB-legitimate for
specBFST.

In particular, the root vertex satisfies: prntr = ⊥ and levelr = 0. By construc-
tion of SSBFS, r is not enabled and then never modifies its O-variables (since the
guard of the rule of r does not involve the state of its neighbors).

In the same way, any vertex v ∈ V \ (SB ∪ {r}) satisfies: prntv ∈ Nv, levelv =

levelprntv + 1, and levelprntv = min
u∈Nv

{levelu}. Note that, as v ∈ V \ (SB ∪ {r})
and specBFST(v) holds in γ, we have: levelv = dist(g, v, r). Hence, vertex v is not
enabled in γ. It remains so until none of its neighbors u modifies its levelu variable
to a value ` such that ` ≤ levelv − 2.

Assume that there exists an execution σ starting from γ in which a neighbor u
of a vertex v ∈ V \ (SB ∪ {r}) modifies levelu such that levelu ≤ levelv − 2 (without
loss of generality, assume that u is the first vertex to modify levelu in such a way
in σ). Note that min

w∈B∪{r}
{dist(g, u, w)} ≥ dist(g, v, r) − 1 (otherwise, we have a

contradiction with the fact that dist(g, v, r) = min
w∈B∪{r}

{dist(g, v, w)} and that v

14.2. BFS Spanning Tree 191

and u are neighbors). Hence, we have:

min
w∈B∪{r}

{dist(g, u, w)} ≥ dist(g, v, r)− 1

> dist(g, v, r)− 2

> levelu

This contradicts the closure of predicate Idiam(g) established in Lemma 14.4.
Consequently, there exists no such execution and we can deduce that vertex v

remains infinitely disabled and then never modifies its O-variables. This concludes
the proof.

Lemma 14.6
Starting from any configuration, any execution of SSBFS reaches a configura-
tion of LC in a finite time under the distributed weakly fair daemon.

Proof : We first prove the following property by induction on d ∈ {0, . . . , diam(g)}:
(Pd): Starting from any configuration, any execution of SSBFS reaches a con-
figuration γ such that Id(γ) = true and in which any vertex v /∈ SB such that
dist(g, v, r) ≤ d satisfies specBFST(v) in a finite time under the distributed weakly
fair daemon.

Initialization: d = 0.
Let γ be an arbitrary configuration. Then, it is obvious that I0(γ) is satisfied.

If a vertex v /∈ SB satisfies dist(g, v, r) ≤ 0, then v = r. If v does not satisfy
specBFST(v) in γ, then v is continuously enabled in any execution starting from γ.
Since the daemon is weakly fair, v is activated in a finite time and then v satisfies
specBFST(v) in a finite time. Then, we proved that (P0) holds.

Induction: d ≥ 1 and Pd−1 is true.
We know, by Pd−1, that any execution of SSBFS under the distributed weakly

fair daemon reaches a configuration γ such that Id−1(γ) = true and in which any
vertex v /∈ SB such that dist(g, v, r) ≤ d− 1 satisfies specBFST(v).

Let us define

Ed =
{
v ∈ V

∣∣ min
u∈B∪{r}

{dist(g, v, u)} ≥ d
}

Note that Id−1(γ) implies that ∀v ∈ Ed, levelv ≥ d− 1 (since ∀v ∈ Ed, min
{
d−

1, min
u∈B∪{r}

{dist(g, v, u)}
}

= d− 1 by construction).

Note that any vertex v ∈ Ed such that levelv = d− 1 is enabled by (Rv) since
we have: levelprntv ≥ d− 1 (by Id−1(γ) and the fact that prntv is a neighbor of v)
and thus levelv = d− 1 < levelprntv + 1. Moreover, this rule remains enabled until v
is activated by closure of Id−1(γ) (see Lemma 14.4). As the daemon is weakly fair,
we deduce that any vertex v ∈ Ed such that levelv = d − 1 is activated in a finite
time in any execution starting from γ. Then, we can conclude that any execution
starting from γ reaches in a finite time a configuration γ′ such that Id(γ′) = true.

Let v /∈ SB be a vertex such that dist(g, r, v) = d. We distinguish the following
two cases:

192 Chapter 14. Two Case Studies

Case 1: specBFST(v) holds in γ′ (and then levelv = d).
By closure of Id, any configuration of any execution starting from γ′ satisfies
Id. Moreover, v satisfies dist(g, v, r) < min

u∈B
{dist(g, v, u)}. Hence, there exists a

BFS-path from v to r. By construction, vertex v is then not enabled (remind
that any neighbor u of v satisfies: levelu ≥ min

{
d, min
w∈B∪{r}

{dist(g, u, w)}
}
≥

d). In conclusion, v always satisfies specBFST(v) in any execution starting
from γ′.

Case 2: specBFST(v) does not hold in γ′.
By construction of γ′, we can split Nv into two sets S and S̄ such that any ver-
tex u of S satisfies levelu = dist(g, r, u) = d−1 and specBFST(u) (and thus there
exists a BFS-path from u to r) and any vertex u of S̄ satisfies levelu ≥ d (re-
mind that Id(γ′) = true and then levelu ≥ min

{
d, min
w∈B∪{r}

{dist(g, u, w)}
}
≥

d).
As specBFST(v) does not hold in γ′, we can deduce that v is enabled in γ′. As
Id is closed (by Lemma 14.4), we can deduce that v remains enabled. Since
the daemon is weakly fair, we conclude that v is activated in a finite time in
any execution starting from γ′ and then prntv is a vertex of S that implies
that v satisfies specBFST(v) in a finite time in any execution starting from γ′.

In conclusion, Pd is true, that ends the induction.
Then, it is easy to see that Pdiam(g) implies the result.

Theorem 14.3
SSBFS is a (SB, n−1)-TA strictly stabilizing distributed protocol for specBFST
under the distributed weakly fair daemon.

Proof : This result is a direct consequence of Lemmas 14.5 and 14.6.

14.2.4 Proof of Topology-Aware Strong Stabilization

This section is devoted to the proof of the topology-aware strong stabilization
of SSBFS. We describe here the main steps of this proof. Starting from a SB-
legitimate configuration (reached in a finite time by Theorem 14.3), we prove that
any correct vertex of SB \ S∗B takes only a finite number of steps in any execution
(due to the fact that it joins in a finite number of step a path to the real root which
is stable). Then, the result follows from the fact that a correct vertex of SB \ S∗B
cannot be never activated and invalidate specBFST infinitely.

Let be EB = SB \S∗B. In other words, EB is the set of vertices that are at equals
distance to the root than to their nearest Byzantine vertex (i.e. EB is the set of
vertices v such that dist(g, r, v) = min

b∈B
{dist(g, v, b)}).

Lemma 14.7
If γ is a configuration of LCBFST, then any vertex v ∈ EB is activated at most
deg(g, v) times in any execution starting from γ.

14.2. BFS Spanning Tree 193

Proof : Let γ be a configuration of LCBFST and v a vertex of EB . By construc-
tion, there exists a neighbor u of v such that u ∈ V \ SB . Then, we know that
specBFST(u) holds in γ. By Lemma 14.5, we are ensured that specBFST(u) re-
mains satisfied in any configuration of any execution starting from γ. In par-
ticular, levelu = dist(g, r, u). By closure of Idiam(g)(γ) (established in Lemma
14.4), we know that levelw ≥ dist(g, r, u) for any neighbor w of v. Consequently,
levelu = min

w∈Nv

{levelw}. This implies that, if prntv = u and levelv = levelu + 1

in a configuration γ′, then specBFST(v) is satisfied and v takes no actions in any
execution starting from γ′.

Then, the construction of the macro next implies that u is chosen as v’s parent
in at most deg(g, v) actions of v. This implies the result.

Lemma 14.8
If γ is a configuration of LCBFST and v is a vertex such that v ∈ EB, then,
for any execution σ starting from γ under the distributed strongly fair daemon,
either

1. v is activated in σ; or

2. there exists a configuration γ′ of σ such that specBFST(v) is always satisfied
after γ′.

Proof : Let γ be a configuration of LCBFST and v be a vertex such that v ∈ EB . By
contradiction, assume that there exists an execution σ starting from γ such that (i)

specBFST(v) is infinitely often false in σ and (ii) v is never activated in σ.
For any configuration γ, let us denote by Pv(γ) = (v, v1 = prntv, v2 = prntv1 ,

. . . , vk = prntvk−1
, pv = prntvk) the maximal sequence of vertices following pointers

prnt (maximal means here that either prntpv = ⊥ or pv is the first vertex such that
pv = vi for some i ∈ {1, . . . , k}).

Let us study the following cases:

Case 1: prntv ∈ V \ SB in γ.
Since γ ∈ LCBFST, prntv satisfies specBFST(prntv) in γ and in any execution
starting from γ (by Lemma 14.5). If v does not satisfy specBFST(v) in γ, then
we have levelv 6= levelprntv + 1 in γ. Then, v is continuously enabled in σ and
we have a contradiction between assumption (ii) and the strong fairness of
the scheduling. This implies that v satisfies specBFST(v) in γ. The closure of
Idiam(g) (established in Lemma 14.4) ensures us that v is never enabled in any
execution starting from γ. Hence, specBFST(v) remains true in any execution
starting from γ. This contradicts the assumption (i) on σ.

Case 2: prntv /∈ V \ SB in γ.
By the assumption (i) on σ, we can deduce that there exists infinitely many
configurations γ′ such that a vertex of Pv(γ′) is enabled in γ′. By construction,
the length of Pv(γ′) is finite for any configuration γ′ and there exists only a
finite number of vertices in the system. Consequently, there exists at least
one vertex which is infinitely often enabled in σ. Since the daemon is strongly
fair, we can conclude that there exists at least one vertex which is infinitely
often activated in σ.

194 Chapter 14. Two Case Studies

Let Aσ be the set of vertices which are infinitely often activated in σ. Note
that v /∈ Aσ by assumption (ii) on σ. Let σ′ be the suffix of σ which contains
only activations of vertices of Aσ. Assume that σ′ starts in configuration γ′.
Let u be the first vertex of Pv(γ′) which belongs to Aσ (u exists since at least
one vertex of Pv is enabled when specBFST(v) is false). By construction, the
prefix of Pv(γ′′) from v to u in any configuration γ′′ of σ remains the same as
the one of Pv(γ′). Let u′ be the vertex such that prntu′ = u in σ′ (u′ exists
since v 6= u implies that the prefix of Pv(γ′) from v to u counts at least two
vertices). As u is infinitely often activated and as any activation of u modifies
the value of levelu (it takes at least two different values in σ′), we can deduce
that u′ is infinitely often enabled in σ′ (since the value of levelu′ is constant
by construction of σ′ and u). Since the daemon is strongly fair, u′ is activated
in a finite time in σ′, that contradicts the construction of u.

In the two cases, we obtain a contradiction with the construction of σ, that prove
the result.

Let LC∗BFST be the following set of configurations:

LC∗BFST =
{
γ ∈ Γ

∣∣(ρ is S∗B-legitimate for specBFST) ∧ (Idiam(g)(ρ) = true)
}

In other words, LC∗BFST is the set of S∗B-legitimate configurations for specBFST
such that any vertex has a level variable at least equals to its distance to the nearest
vertex in B ∪ {r}. Note that, as S∗B ⊆ SB, we can deduce that LC∗BFST ⊆ LCBFST.
Hence, properties of Lemmas 14.7 and 14.8 also applies to configurations of LC∗.

Lemma 14.9
Any configuration of LC∗BFST is (n×deg(g), deg(g), S∗B, n−1)-TA time contained
for specBFST.

Proof : Let γ be a configuration of LC∗BFST. As S∗B ⊆ SB , we know by Lemma 14.5 that
any vertex v of V \ SB satisfies specBFST(v) and takes no action in any execution
starting from γ. Let v be a vertex of EB . By Lemmas 14.7 and 14.8, we know
that v takes at most deg(g, v) actions in any execution starting from γ. Moreover,
we know that v satisfies specBFST(v) after its last action (otherwise, we obtain a
contradiction between the two lemmas). Hence, any vertex of EB takes at most
deg(g) actions and then, there are at most n × deg(g) S∗B-TA disruptions in any
execution starting from γ. By definition of a TA time contained configuration, we
obtain the result.

Lemma 14.10
Starting from any configuration, any execution of SSBFS reaches a configura-
tion of LC∗BFST in a finite time under the distributed strongly fair daemon.

Proof : Let γ be an arbitrary configuration. We know by Lemma 14.6 that any execu-
tion starting from γ reaches in a finite time a configuration γ′ of LCBFST under the
distributed weakly fair daemon and a fortiori under the distributed strongly fair
daemon.

14.3. Summary 195

Let v be a vertex of EB . By Lemmas 14.7 and 14.8, we know that v takes at
most deg(g, v) actions in any execution starting from γ′. Moreover, we know that
v satisfies specBFST(v) after its last action (otherwise, we obtain a contradiction
between the two lemmas). This implies that any execution starting from γ′ reaches
(under the distributed strongly fair daemon) a configuration γ′′ such that any vertex
v of EB satisfies specBFST(v). It is easy to see that γ′′ ∈ LC∗BFST, that ends the
proof.

Theorem 14.4
SSBFS is a (n× deg(g), S∗B, n− 1)-TA strongly stabilizing distributed protocol
for specBFST under the distributed strongly fair daemon.

Proof : This result is a direct consequence of Lemmas 14.9 and 14.10.

14.3 Summary

This chapter proves that all maximizable metrics does not implies similar results
for Byzantine containment in self-stabilization since:

1. Theorem 14.1 proves that there exits a (f × deg(g)diam(g′), 0, f)-strongly sta-
bilizing distributed protocol for maximum metric spanning tree construction
with respect to NC;

2. Theorem 14.2 shows that there exists no (t, c, 1)-strongly stabilizing distributed
protocol for maximum metric spanning tree construction with respect to BFS;
and

3. Theorems 14.3 and 14.4 demonstrate respectively that there exists a (SB, n−
1)-TA strictly stabilizing and a (n × deg(g), S∗B, n − 1)-TA strongly stabiliz-
ing distributed protocol for maximum metric spanning tree construction with
respect to BFS.

The aim of the following chapter is first to generalize results about topology-
aware stabilization to any maximizable metric and then to characterize the subset of
maximizable that admits a strongly stabilizing solution. Note that we also prove the
optimality of containment areas of SSBFS for the BFS spanning tree construction.

Chapter 15

General Case

I realize that I’m generalizing here, but as is often
the case when I generalize, I don’t care.

Dave Barry

Contents
15.1 Topology-Aware Stabilizing Solution 200

15.1.1 Distributed Protocol . 201
15.1.2 Proof of Topology-Aware Strict Stabilization 204
15.1.3 Proof of Topology-Aware Strong Stabilization 211

15.2 Optimality of Containment Areas 215
15.2.1 Topology-Aware Strict Stabilization 215
15.2.2 Topology-Aware Strong Stabilization 217

15.3 Strong Stabilization . 219
15.4 Summary . 225

In this chapter, we deal with the maximum metric spanning tree construction for
any maximizable metric. In Chapter 14, we proved that all maximizable metric are
not equivalent with respect to Byzantine containment. Indeed, some of them (like
NC) allow strong stabilization with a bounded containment radius (see Section 14.1)
whereas some others (like BFS) forbid strong stabilization for any finite containment
radius but admit topology-aware stabilizing solutions (see Section 14.2).

We generalize now these results. Detailed contributions of this chapter follow.
1. Section 15.1 presents a distributed protocol and proves that this distributed

protocol is topology-aware strictly and strongly stabilizing for some contain-
ment areas that generalizes those presented in Chapter 14 for BFS spanning
tree construction.

2. We prove in Section 15.2 that the containment areas provided by the afore-
mentioned distributed protocol are optimal (this result proves also the claim
that the distributed protocol SSBFS of Chapter 14 performed the optimal
Byzantine containment).

3. Finally, we provide in Section 15.3 a general result about strong stabilization.
This result is a fully characterization of the set of maximizable metrics that
allow the existence of a strongly stabilizing solution to the maximum metric
spanning tree construction with a finite containment radius (this result also
characterizes the optimal containment radius).

198 Chapter 15. General Case

We need to discuss the specification of the problem and to bring some definitions
before the presentation of these contributions.

Specification The specification of the maximum metric spanning tree presented
in Section 13.1.2 is the more natural but, unfortunately, we did not succeed to
provide all our results with it. Indeed, we can prove the topology-aware strict
stabilization of our distributed protocol for specMMT but we must consider a slight
different specification to prove its topology-aware strong stabilization.

In order to keep the consistency of results presented in this chapter, we choose
to use only this new specification of the problem. This specification differs from
specMMT only on the constraints on the variable dist (that stores the distance to the
root in specMMT). We require now that this variable on vertex v stores the distance
from v to the first vertex of theM-path that have the same level value than v. We
formally state this new specification in the following.

We define the legal distance of a vertex v with respect to one of its neighbors u
(denoted legal_dist(v, u)) in the following way:

∀v ∈ V,∀u ∈ Nv, legal_dist(v, u) =

{
distu + 1 if levelv = levelu
0 otherwise

We introduce now a slight variant of theM-path (see Definition 13.10).

Definition 15.1 (M-improved path)
Given an assigned metric M = (M,W,mr,met,≺,wf) over a communication
graph g, a path (v0, . . . , vk) (k ≥ 1) of g is aM-improved path if and only if:

1. prntv0 = ⊥, levelv0 = mr, distv0 = 0, and v0 ∈ B ∪ {r};
2. ∀i ∈ {1, . . . , k}, prntvi = vi−1, levelvi = met(levelvi−1 , wvi,vi−1), and distvi =

legal_dist(vi, vi−1);

3. ∀i ∈ {1, . . . , k}, met(levelvi−1 , wvi,vi−1) = max≺
u∈Nv

{met(levelu, wvi,u)}; and

4. levelvk = max_met(g, vk, v0).

We can now provide our new specification of the maximum metric spanning tree
construction using onlyM-improved paths instead ofM-paths.

Specification 15.1 (Maximum metric spanning tree construction specIMMT)
The specification predicate specIMMT(v) of the maximum metric tree construc-
tion with respect to a maximizable metricM for vertex v follows:

specIMMT(v) :{
prntv = ⊥, levelv = mr, and distv = 0 if v is the root r
there exists aM-improved path (v0, . . . , vk) such that vk = v otherwise

199

Note that, for any containment area SB, any SB-legitimate configuration for
specIMMT implies the existence of a maximum metric spanning forest that spans
V \ SB exactly in the same way as in a SB-legitimate configuration for specMMT.
The only difference between these two configurations is the value of dist variables.
Hence, we allow ourselves to present only results with respect to specIMMT.

Definitions We introduce here some new definitions to characterize some impor-
tant properties of maximizable metrics that are used in the following.

A strictly decreasing metric is a particular case of a bounded metric since, for
any metric value, the application of the metric operator either strictly decrease it
or does not modify it (for any edge weight). A fixed point is a particular metric
value such that the application of the metric never modifies it (for any edge weight).
Formal definitions follow.

Definition 15.2 (Strictly decreasing metric)
A metricM = (M,W,mr,met,≺) is strictly decreasing if, for any metric value
m ∈ M , the following property holds: either ∀w ∈ W,met(m,w) ≺ m or ∀w ∈
W,met(m,w) = m.

Definition 15.3 (Fixed point)
A metric value m is a fixed point of a metricM = (M,W,mr,met,≺) if m ∈M
and if for any value w ∈W , we have: met(m,w) = m.

Given an assigned metric over a communication graph, a used metric value is a
metric value that is the metric of a rooted path of the communication graph (either
on the root or on a Byzantine vertex). More formally,

Definition 15.4 (Set of used metric values)
Given an assigned metric AM = (M,W,met,mr,≺,wf) over a communication
graph g, the set of used metric values of AM is defined as:

M(g) = {m ∈M |∃v ∈ V,
(max_met(g, v, r) = m) ∨ (∃b ∈ B,max_met(g, v, b) = m)}

Note that for any communication graph g and any assigned metric AM =

(M,W,met,mr,≺,wf) over g, we have: M(g) ⊆M .

Containment areas We define now the containment areas used in this chapter.
Note that they generalize those presented in Section 14.2 for the BFS spanning
tree construction to any maximizable metric M = (M,W,mr,met, ≺). First, the
containment area for topology-aware strict stabilization is the following:

SB =
{
v ∈ V \B

∣∣max_met(g, v, r) � max≺
b∈B
{max_met(g, v, b)}

}
\ {r}

200 Chapter 15. General Case

����

���� ����

���� ����

����

����

���� ����

���� ����

����

r r

bb S∗B

SB

SB = S∗B

mr=0 mr=0

levelb = 0 levelb = 0

7 6

5

410

8

6

3216

0 0

0

00

00

0

0

Figure 15.1: Examples of containment areas for SP.

Intuitively, SB gathers the set of correct vertices that are closer or at equals
distance (according to M) to a Byzantine vertex than the root. Then, we can
define the containment area for topology-aware strong stabilization:

S∗B =
{
v ∈ V \B

∣∣max_met(g, v, r) ≺ max≺
b∈B
{max_met(g, v, b)}

}
Intuitively, S∗B gathers the set of corrects vertices that are strictly closer (ac-

cording to M) to a Byzantine vertex than the root. Note that we assume for the
sake of clarity that V \ S∗B induces a connected communication subgraph. If it is
not the case, then S∗B is extended to include all vertices belonging to connected
communication subgraphs of V \ S∗B that not include r. Figures from 15.1 to 15.3
provide some examples of containment areas SB and SB with respect to maximizable
metrics presented in Section 13.1.2.

15.1 Topology-Aware Stabilizing Solution

This section aims to present a distributed protocol for maximum metric spanning
tree construction with respect to any maximizable metric in systems subject to
any transient and intermittent Byzantine fault pattern. Section 15.1.1 presents the
distributed protocol while Sections 15.1.2 and 15.1.3 prove respectively its (SB, n−
1)-TA strict stabilization and its (t, S∗B, n− 1)-TA strong stabilization.

Note that we prove the optimality of these containment areas in Section 15.2.

15.1. Topology-Aware Stabilizing Solution 201

����

���� ����

���� ����

����

����

���� ����

���� ����

����

r r

bb

mr=10 mr=10

7 6

5

4106

8

3216

levelb = 10levelb = 10

11 12

107

13

6

53

1
S∗B

SBSB = S∗B

Figure 15.2: Examples of containment areas for F .

15.1.1 Distributed Protocol

A self-stabilizing distributed protocol for maximum metric spanning tree con-
struction with respect to any maximizable metric has been proposed by [GS99]. In
this distributed protocol, any vertex try to maximize its level variable in the tree
by choosing as its parent (prnt variable) the neighbor that provide the best metric
value. Using this strategy, the arbitrary initial configuration may lead to the for-
mation of cycles. The key idea of this distributed protocol is to use the dist variable
(upper bounded by a given constant D) to detect and break cycles of vertices which
has the same (incorrect) maximum metric. The choice of the constantD is obviously
capital for the self-stabilization of the distributed protocol. Gouda and Schneider
proved that their distributed protocol is self-stabilizing if D is an upper bound on
the length of the longest path of the desired tree.

A natural way to provide a topology-aware stabilizing solution to the maximum
metric spanning tree construction is then to adapt the idea of round robin choice
over neighbors presented in Chapter 14 to the distributed protocol of [GS99]. It is
possible to prove that this strategy is sufficient to perform the (SB, n− 1)-TA strict
stabilization. Unfortunately, this strategy is not suitable for topology-aware strong
stabilization.

Indeed, an execution of the distributed protocol of [GS99] may be subject to
an infinite number of S∗B-disruptions due to the following fact: a Byzantine vertex
can independently lie about its level and its dist variable. For example, a Byzantine
vertex can provide a level equals to mr and a dist arbitrarily large. In this way, it
may lead a correct vertex of SB \ S∗B to have a dist variable equals to D − 1 such
that no other correct vertex can choose it as its parent (this rule is necessary to
break cycle) but it cannot modify its state (this rule is only enabled when dist is
equals to D). Then, this vertex may always prevent some of its neighbors to join a

202 Chapter 15. General Case

����

���� ����

���� ����

����

����

���� ����

���� ����

����

r r

bb

S∗B

SB

SB = S∗B

mr=1

levelb = 1

mr=1

levelb = 1

0,750,75

0,750,75

1

1

0,8
0,4 0,3

0,25

0,25

0,75

10,5

1

0,25

0,750,5

Figure 15.3: Examples of containment areas for R.

M-path connected to the root and hence allow another Byzantine vertex to perform
an infinite number of disruptions.

In contrast, we want to provide a distributed protocol that is simultaneously
(SB, n−1)-TA strictly stabilizing and (t, S∗B, n−1)-TA strongly stabilizing for max-
imum metric spanning tree construction. To perform this goal, our distributed
protocol needs a supplementary assumption on the assignation of the considered
maximizable metric over the communication graph.

We assume that we always have |M(g)| ≥ 2 (the necessity of this assumption is
explained below). Nevertheless, note that the contrary case (|M(g)| = 1) is possible
if and only if the assigned maximizable metric is equivalent to NC. As the dis-
tributed protocol presented in Section 14.1 performs (t, 0, n−1)-strong stabilization
with a finite t for this metric, we can achieve the (t, S∗B, n− 1)-TA strong stabiliza-
tion when |M(g)| = 1 (since this implies that S∗B = ∅). In this way, this assumption
does not weaken the possibility result.

We already said that the distributed protocol of [GS99] is not suitable for our
purposes but our distributed protocol borrows fundamental strategy from it. Indeed,
we use almost the same ideas with the two following exceptions: (i) we ensure a fair
selection along the set of neighbor with a round-robin order for the prnt variable (as
in the two distributed protocols presented in Chapter 14) and (ii) we modify the
management of the dist variable to avoid executions exhibiting an infinite number
of S∗B-disruptions.

In order to contain the effect of Byzantine vertices on dist variables, each vertex
that has a level different from the one of its parent in the tree sets its dist variable to
0. In this way, a Byzantine vertex modifying its dist variable can only affect correct
vertices that have the same level. Consequently, in the case where |M(g)| ≥ 2, we
are ensured that correct vertices of SB \ S∗B cannot keep a dist variable equals or

15.1. Topology-Aware Stabilizing Solution 203

Protocol 15.1 SSMMT : (SB, n − 1)-TA strictly and (t, S∗B, n − 1)-TA strongly
stabilizing distributed protocol for specIMMT for vertex v.

Constants:
Nv: set of neighbors of v (ordered in a round robin fashion)
D: upper bound of the number of vertices in an elementary path

Variables:

prntv ∈

{
{⊥} if v = r

Nv if v 6= r
: parent of v in the current tree

levelv ∈M : metric of v in the current tree
distv ∈ {0, . . . , D}: distance of v in the current tree

Functions:
nextv: for any subset A ⊆ Nv, nextv(A) returns the first element of A that is bigger than
prntv in a round-robin fashion and an arbitrary element of A if prntv = ⊥

current_distv() =
{

0 if levelprntv 6= levelv
min{distprntv + 1, D} if levelprntv = levelv

Rules:

(Rr) :: (v = r) ∧ ((levelv 6= mr) ∨ (distv 6= 0))
−→ levelv := mr; distv := 0

(R1) :: (v 6= r) ∧
[
(distv < current_distv()) ∨ (levelv 6= met(levelprntv , wv,prntv))

]
−→ levelv := met(levelprntv , wv,prntv); distv := current_distv()

(R2) :: (v 6= r) ∧
[
(distv = D) ∨ (distv > current_distv())

]
∧ (∃u ∈ Nv, distu < D − 1)

−→ prntv := nextv
(
{u ∈ Nv|distv < D − 1}

)
;

levelv := met(levelprntv , wv,prntv); distv := current_distv()
(R3) :: (v 6= r) ∧ (∃u ∈ Nv, (distu < D − 1) ∧ (levelv ≺ met(levelu, wu,v)))

−→ prntv := nextv
({
u ∈ Nv|(levelu < D − 1)∧

(met(levelu, wu,v) = max≺
q∈Nv/levelq<D−1

{met(levelq, wq,v)})
})

;

levelv := met(levelprntv , wprntv,v); distv := current_distv()

greater than D−1 infinitely. Hence, a correct vertex of SB \S∗B cannot be disturbed
infinitely often without joining aM-path connected to the root.

We can see that the assumption |M(g)| ≥ 2 is essential to perform the topology-
aware strong stabilization. Indeed, in the case where |M(g)| = 1, Byzantine vertices
can play exactly the scenario described above (in this case, our distributed protocol
is equivalent to the one of [GS99]).

The second modification we bring to the management of the dist variable follows.
When a vertex has an inconsistent dist variable with its parent, we allow it only to
increase its dist variable. If the vertex needs to decrease its dist variable (when it has
a strictly greater distance than its parent), then the vertex must change its parent.
This rule allows us to bound the maximal number of actions of any vertex between
two modifications of its parent (a Byzantine vertex cannot lead a correct one to
infinitely often increase and decrease its distance without modifying its pointer).

Our protocol, SSMMT (for Strictly/strongly Stabilizing Maximum Metric
T ree), is formally described in Protocol 15.1.

204 Chapter 15. General Case

15.1.2 Proof of Topology-Aware Strict Stabilization

This section is devoted to the proof of the (SB, n− 1)-TA strict stabilization of
SSMMT under the distributed weakly fair daemon (see Theorem 15.1). The main
lines of this proof are similar to the one of Theorem 14.3 (proof of the topology-
aware strict stabilization of our BFS spanning tree construction) but we must adapt
it to take in account the fact that several vertices along a path could have the same
maximal metric with respect to the root (or to a Byzantine vertex) that is not the
case previously since the BFS metric is strictly decreasing. This new difficulty
renders the proof quite technical but this proof remains an induction proof with
respect to the maximal metric of each correct vertex.

We must first prove some lemmas. From now, we consider thatM = (M,W,mr,
met,≺) is a maximizable metric assigned over our communication graph g = (V,E)

by the weight function wf. First, we provide a useful property aboutM.

Lemma 15.1
For any vertex v ∈ V , we have:

∀u ∈ Nv,met
(
max≺
p∈B∪{r}

{max_met(g, u, p)}, wu,v
)
� max≺

p∈B∪{r}
{max_met(g, v, p)}

Proof : By contradiction, assume that there exists a neighbor u of a vertex v such that:

max≺
p∈B∪{r}

{max_met(g, v, p)} ≺ met
(

max≺
p∈B∪{r}

{max_met(g, u, p)}, wu,v
)

Let q ∈ B ∪ {r} be one of the vertices such that max≺
p∈B∪{r}

{max_met(g, u, p)} =

max_met(g, u, q). Then, the construction of q allows us to deduce that:

max≺
p∈B∪{r}

{max_met(g, v, p)} ≺ met(max_met(g, u, q), wu,v)

Since we have met(max_met(g, u, q), wu,v) � max_met(g, v, q), we conclude that:

max≺
p∈B∪{r}

{max_met(g, v, p)} ≺ max_met(g, v, q)

This contradicts the fact that q ∈ B ∪ {r} and shows us the result.

Given a configuration γ ∈ Γ and a metric value m ∈ M , let us define the
following predicate:

IMm(γ) ≡ ∀v ∈ V, levelv � max≺
{
m, max≺

u∈B∪{r}
{max_met(g, v, u)}

}
Lemma 15.2

For any metric value m ∈ M , the predicate IMm is closed by actions of
SSMMT .

15.1. Topology-Aware Stabilizing Solution 205

Proof : Let m be a metric value (m ∈ M). Let γ ∈ Γ be a configuration such that
IMm(γ) = true and γ′ ∈ Γ be a configuration such that (γ, γ′) is an action of
SSMMT .

If the root vertex r ∈ Act(γ, γ′) (respectively a Byzantine vertex b ∈ Act(γ, γ′)),
then we have levelr = mr (respectively levelb � mr) in γ′ by construction of (Rr)

(respectively by definition of levelb). Hence, we have:

levelr � max≺
{
m, max≺

u∈B∪{r}
{max_met(g, r, u)}

}
= mr

levelb � max≺
{
m, max≺

u∈B∪{r}
{max_met(g, b, u)}

}
= mr

If a correct vertex v ∈ Act(γ, γ′) with v 6= r, then there exists a neighbor p of
v such that levelp � max≺

{
m, max≺

u∈B∪{r}
{max_met(g, p, u)}

}
in γ (since IMm(γ) =

true) and prntv = p and levelv = met(levelp, wv,p) in γ′ (since v is activated during
this action).

If we apply Lemma 15.1 to met and to neighbor p, we obtain the following
property:

met
(

max≺
u∈B∪{r}

{max_met(g, p, u)}, wv,p
)
� max≺
u∈B∪{r}

{max_met(g, v, u)}

Consequently, we obtain that levelv = met(levelp, wv,p) in γ′. The monotonicity
ofM allows us to deduce

levelv � met
(
max≺

{
m, max≺

u∈B∪{r}
{max_met(g, p, u)}

}
, wv,p

)
� max≺

{
met(m,wv,p),met

(
max≺
u∈B∪{r}

{max_met(g, p, u)}, wv,p
)}

As met(m,wv,p) � m, we can conclude that:

levelv � max≺
{
m, max≺

u∈B∪{r}
{max_met(g, v, u)}

}
We can deduce that IMm(γ′) = true, that concludes the proof.

Given an assigned metric over a communication graph g, we can observe that
the set of used metrics value M(g) is finite and that we can label elements of M(g)

by m0 = mr,m1, . . . ,mk in a way such that ∀i ∈ {0, . . . , k − 1},mi+1 ≺ mi.
We introduce the following notations:

∀mi ∈M, Pmi =
{
v ∈ V \ SB

∣∣max_met(g, v, r) = mi

}
∀mi ∈M, Vmi =

i⋃
j=0

Pmj

∀mi ∈M, Imi =
{
v ∈ V

∣∣ max≺
u∈B∪{r}

{max_met(g, v, u)} ≺ mi

}
∀mi ∈M, LCmi =

{
γ ∈ Γ

∣∣(∀v ∈ Vmi , specIMMT(v)) ∧ (IMmi(γ))
}

LCIMMT = LCmk

206 Chapter 15. General Case

Lemma 15.3
For any mi ∈M(g), the set LCmi is closed by actions of SSMMT .

Proof : Let mi be a metric value from M(g) and γ be a configuration of LCmi . By
construction, any vertex v ∈ Vmi satisfies specIMMT(v) in γ.

In particular, the root vertex satisfies: prntr = ⊥, levelr = mr, and distr = 0.
By construction of SSMMT , r is not enabled and then never modifies its O-
variables (since the guard of the rule of r does not involve the state of its neighbors).

In the same way, any vertex v ∈ Vmi satisfies: prntv ∈ Nv, levelv = met(
levelprntv , wprntv,v), distv = legal_distprntv

, and levelv = max≺
u∈Nv

{met(levelu, wu,v)}.

Note that, as v ∈ Vmi and specIMMT(v) holds in γ, we have: levelv = max_met(g,
v, r) = max≺

p∈B∪{r}
{max_met(g, v, p)} and distv ≤ D − 1 by construction of D. Hence,

vertex v is not enabled by SSMMT in γ.
Assume that there exists a vertex v ∈ Vmi

that is activated during an action
(γ′, γ′′) in an execution starting from γ (without loss of generality, assume that v is
the first vertex of v ∈ Vmi

that is activated in this execution). Then, we know that
v 6= r. This activation implies that a neighbor u /∈ Vmi

(since v is the first vertex of
Vmi

to be activated) of v modified its level variable to a metric value m ∈ M such
that levelv ≺ met(m,wu,v) in γ′ (note that O-variables of v and of prntv remain
consistent since v is the first vertex to be activated in this execution).

Hence, we have levelv = max≺
p∈B∪{r}

{max_met(g, v, p)} = max_met(g, v, r) (since

specIMMT(v) holds), levelv ≺ met(m,wu,v) (since u causes an action of v), and
mi � levelv (since v ∈ Vmi

and levelv = max_met(g, v, r)). Moreover, the closure
of IMmi

(established in Lemma 15.2) ensures us that:

m = levelu � max≺
{
mi, max≺

p∈B∪{r}
{max_met(g, u, p)}

}
Let us study the two following cases:
Case 1: max≺

{
mi, max≺

p∈B∪{r}
{max_met(g, u, p)}

}
= mi.

We have thenm � mi. As the boundedness ofM ensures that met(m,wu,v) �
m, we can conclude that levelv ≺ met(m,wu,v) � m � mi � levelv, that is
absurd.

Case 2: max≺
{
mi, max≺

p∈B∪{r}
{max_met(g, u, p)}

}
= max≺
p∈B∪{r}

{max_met(g, u, p)}.

We have then m � max≺
p∈B∪{r}

{max_met(g, u, p)}. By monotonicity of M, we

can deduce that met(m,wu,v) � met(max≺
p∈B∪{r}

{max_met(g, u, p)}, wu,v). Con-

sequently, we obtain that:

max≺
p∈B∪{r}

{max_met(g, v, p)} ≺ met(max≺
p∈B∪{r}

{max_met(g, u, p)}, wu,v)

This is contradictory with the result of Lemma 15.1.
In conclusion, no vertex v ∈ Vmi

is activated in any execution starting from γ

and then always satisfies specIMMT(v). Then, the closure of IMmi
(established in

Lemma 15.2) concludes the proof.

15.1. Topology-Aware Stabilizing Solution 207

Lemma 15.4
Any configuration of LCIMMT is (SB, n− 1)-TA contained for specIMMT.

Proof : This is a direct application of the Lemma 15.3 to LCIMMT = LCmk
.

Lemma 15.5
Starting from any configuration of Γ, any execution of SSMMT under the
distributed weakly fair daemon reaches in a finite time a configuration of LCmr.

Proof : Let γ be an arbitrary configuration. Then, it is obvious that IMmr(γ) is sat-
isfied. By closure of IMmr (proved in Lemma 15.2), we know that IMmr remains
satisfied in any execution starting from γ.

If r does not satisfy specIMMT(r) in γ, then r is continuously enabled. Since the
daemon is weakly fair, r is activated in a finite time and then r satisfies specIMMT(r)

in a finite time. Denote by γ′ the first configuration in which specIMMT(r) holds.
Note that r is never activated in any execution starting from γ′.

The boundedness of M implies that Pmr induces a connected subsystem. If
Pmr = {r}, then we proved that γ′ ∈ LCmr and we have the result.

Otherwise (Pmr 6= {r}), observe that, for any configuration of an execution
starting from γ′, if all vertices of Pmr are not enabled, then any vertex v of Pmr

satisfies specIMMT(v). Assume now that there exists an execution σ starting from
γ′ in which some vertices of Pmr are infinitely often activated. By construction,
at least one of these vertices (note it v) has a neighbor u which is activated only
a finite number of times in σ (recall that Pmr induces a connected subsystem and
that r is not activated in σ). After u takes its last action of σ, we can observe
that levelu = mr and distu < D − 1 (otherwise, u is activated in a finite time that
contradicts its construction).

As v can execute consequently (R1) only a finite number of times (since the
incrementation of distv is bounded by D), we can deduce that v executes (R2) or
(R3) infinitely often in σ. In both cases, u belongs to the set which is the parameter
of function nextv. By the fairness of this function, we can deduce that prntv = u

in a finite time in σ. Then, the construction of u implies that v is never enabled in
the sequel of σ. This is contradictory with the construction of σ.

Consequently, any execution starting from γ′ reaches in a finite time a config-
uration such that all vertices of Pmr are not enabled. We can deduce that this
configuration belongs to LCmr, that ends the proof.

Lemma 15.6
For any mi ∈ M(g) and for any configuration γ ∈ LCmi , any execution of
SSMMT starting from γ under the distributed weakly fair daemon reaches in
a finite time a configuration such that:

∀v ∈ Imi , levelv = mi ⇒ distv = D

Proof : Let mi be an arbitrary metric value of M(g) and γ0 be an arbitrary configu-
ration of LCmi

. Let σ = (γ0, γ1) . . . be an execution starting from γ0.

208 Chapter 15. General Case

Note that γ0 satisfies IMmi
by construction. Hence, we have ∀v ∈ Imi

, levelv �
mi. The closure of IMmi

(proved in Lemma 15.2) ensures us that this property is
satisfied in any configuration of σ.

If any vertex v ∈ Imi
satisfies levelv ≺ mi in γ0, then the result is obvious.

Otherwise, we define the following variant function. For any configuration γj of σ,
we denote by Aj the set of vertices v of Imi

such that levelv = mi in γj . Then, we
define f(γj) = min

v∈Aj

{distv}. We will prove the result by showing that there exists

an integer k such that f(γk) = D.
First, if a vertex v joins Aj (that is, v /∈ Aj−1 but v ∈ Aj), then it takes a dist

value greater or equals to f(γj−1)+1 by construction of SSMMT . We can deduce
that any vertex that joins Aj does not decrease f . Moreover, the construction of
SSMMT implies that a vertex v such that v ∈ Aj and v ∈ Aj+1 cannot decrease
its dist value in the action (γj , γj+1).

Then, consider for a given configuration γj a vertex v ∈ Aj such that distv =

f(γj) < D. We claim that v is enabled by SSMMT in γj and that the execution
of the enabled rule either increases strictly distv or removes v from Aj+1. To prove
this claim, we distinguish the following cases:

Case 1: levelv = met(levelprntv , wv,prntv)

The fact that v ∈ Imi , the boundedness ofM and the closure of IMmi (estab-
lished in Lemma 15.2) imply that prntv ∈ Aj (and, hence that levelprntv = mi).
Then, by construction of f(γj), we know that distprntv ≥ f(γj) = distv. Hence,
we have distv < distprntv + 1 in γj . Then, v is enabled by (R1) in γj and distv
increases of at least 1 during the action (γj , γj+1) if this rule is executed.

Case 2: levelv 6= met(levelprntv , wv,prntv)

Assume that v is activated by (R2) or (R3) during the action (γj , γj+1). If
v does not belong to Aj+1 (if levelv 6= mi in γj+1), the claim is satisfied. In
the contrary case (v belongs to Aj+1), we know that levelv = mi in γj+1.
The boundedness ofM and the closure of IMmi

(established in Lemma 15.2)
imply that levelprntv = mi in γj+1. We can conclude that distv increases of at
least 1 during the action (γj , γj+1) since the new parent of v has a distance
greater than f(γj) by construction of Aj+1.
Otherwise, we know that the rule (R1) is enabled for v in γj . If this rule
is executed during the action (γj , γj+1), one of the two following sub cases
appears.
Case 2.1: met(levelprntv , wv,prntv) ≺ mi in γj .

Then, v does not belong to Aj+1 by definition.
Case 2.2: met(levelprntv , wv,prntv) = mi in γj .

Remind that the closure of IMmi (established in Lemma 15.2) implies then
that levelprntv = mi. By construction of f(γj), we have distprntv ≥ f(γj)

in γj . Then, we can see that distv increases of at least 1 during the action
(γj , γj+1).

In all cases, v is enabled (at least by (R1)) in γj and the execution of the
enabled rule either increases strictly distv or removes v from Aj+1.

As Imi is finite and the daemon is weakly fair, we can deduce that f increases in
a finite time in any execution starting from γj . By repeating the argument at most
D times, we can deduce that σ contains a configuration γk such that f(γk) = D,
that shows the result.

15.1. Topology-Aware Stabilizing Solution 209

Lemma 15.7
For any mi ∈ M(g) and for any configuration γ ∈ LCmi such that ∀v ∈
Imi , levelv = mi ⇒ distv = D, any execution of SSMMT starting from γ

under the distributed weakly fair daemon reaches in a finite time a configuration
such that:

∀v ∈ Imi , levelv ≺ mi

Proof : Let mi ∈M(g) be an arbitrary metric value and γ0 be a configuration of LCmi

such that ∀v ∈ Imi
, levelv = mi ⇒ distv = D. Let σ = (γ0, γ1) . . . be an arbitrary

execution starting from γ0.
For any configuration γj of σ, let us denote Eγj = {v ∈ Imi

|levelv = mi}. By
the closure of IMmi

(that holds by definition in γ0) established in Lemma 15.2, we
obtain the result if there exists a configuration γj of σ such that Eγj = ∅.

If there exist some vertices v ∈ Imi \ Eγ0 (and hence levelv ≺ mi) such that
prntv ∈ Eγ0 and met(levelprntv , wv,prntv) = mi in γ0, then we can observe that these
vertices are continuously enabled by (R1). As the daemon is weakly fair, v executes
this rule in a finite time and then, levelv = mi and distv = D. In other words, v
joins Eγ` for a given integer `. We can conclude that there exists an integer k such
that the following property (P) holds: for any v ∈ Imi \Eγ0 , either prntv /∈ Eγk or
met(levelprntv , wv,prntv) ≺ mi.

Then, we prove that, for any integer j ≥ k, we have Eγj+1 ⊆ Eγj . For the sake
of contradiction, assume that there exists an integer j ≥ k and a vertex v ∈ Imi

such that v ∈ Eγj+1 and v /∈ Eγj . Without loss of generality, assume that j is the
smallest integer that satisfies these properties. Let us study the following cases:

Case 1: v executes (R1) during the action (γj , γj+1).
Note that the property (P) still holds in γj by the construction of j. Hence,
we know that prntv /∈ Eγj in γj . But in this case, we have: levelprntv ≺ mi.
The boundedness ofM implies that levelv = met(levelprntv , wv,prntv) ≺ mi in
γj+1 that contradicts the fact that v ∈ Eγj+1 .

Case 2: v executes either (R2) or (R3) during the action (γj , γj+1).
That implies that v chooses a new parent which has a distance smaller than
D − 1 in γj . This implies that this new parent does not belongs to Eγj .
Then, we have levelprntv ≺ mi. The boundedness ofM implies that levelv =

met(levelprntv , wv,prntv) ≺ mi in γj+1 that contradicts the fact that v ∈ Eγj+1 .

In the two cases, our claim is satisfied. In other words, there exists a point of the
execution (namely γk) afterwards the set E cannot grow (this implies that, if a
vertex leaves the set E, it is a definitive leaving).

Assume now that there exists an action (γj , γj+1) (with j ≥ k) such that a
vertex v ∈ Eγj is activated. Observe that the closure of IMmi (established in
Lemma 15.2) implies that v can not be activated by the rule (R3). If v activates
(R1) during this action, then v modifies its level during this action (otherwise, we
have a contradiction with the fact that levelprntv = mi ⇒ distv = D). The closure
of IMmi implies that v leaves the set E during this action. If v activates (R2)

during this action, then v chooses a new parent which has a distance smaller than
D − 1 in γj . This implies that this new parent does not belongs to Eγj . Then,
we have levelprntv ≺ mi. The boundedness ofM implies that levelv ≺ mi in γj+1.

210 Chapter 15. General Case

In other words, if a vertex of Eγj is activated during the action (γj , γj+1), then it
satisfies v /∈ Eγj+1

.
Finally, observe that the construction of SSMMT and the construction of the

bound D ensures us that any vertex v ∈ Imi such that distv = D is activated in
a finite time. In conclusion, we obtain that there exists an integer j such that
Eγj = ∅, that implies the result.

Lemma 15.8
For any mi ∈ M(g) and for any configuration of LCmi , any execution of
SSMMT starting from γ under the distributed weakly fair daemon reaches
in a finite time a configuration such that IMmi+1 holds.

Proof : This result is a direct consequence of Lemmas 15.6 and 15.7.

Lemma 15.9
For any mi ∈ M(g) and for any configuration γ ∈ LCmi , any execution of
SSMMT starting from γ under the distributed weakly fair daemon reaches in
a finite time a configuration of LCmi+1 .

Proof : Let mi be a metric value ofM(g) and γ be an arbitrary configuration of LCmi
.

We know by Lemma 15.8 that any execution starting from γ reaches in a finite
time a configuration γ′ such that IMmi+1

holds. By closure of IMmi+1
and of LCmi

(established respectively in Lemma 15.2 and 15.3), we know that any configuration
of any execution starting from γ′ belongs to LCmi

and satisfies IMmi+1
.

We know that Vmi
6= ∅ since r ∈ Vmi

for any i ≥ 0. Remind that Vmi+1
is

connected by the boundedness of M. Then, we know that there exists at least
one vertex p of Pmi+1

which has a neighbor q in Vmi
such that max_met(g, p, r) =

met(max_met(g, q, r), wp,q). Moreover, Lemma 15.3 ensures us that any vertex of
Vmi

is not activated in any execution starting from γ′.
Observe that, for any configuration of any execution starting from γ′, if any

vertex of Pmi+1 is not enabled, then all vertices v of Pmi+1 satisfy specIMMT(v).
Assume now that there exists an execution σ starting from γ′ in which some vertices
of Pmi+1 are infinitely often activated. By construction, at least one of these vertices
(note it v) has a neighbor u such that max_met(g, v, r) = met(max_met(g, u, r),
wv,u) which takes only a finite number of actions in σ (recall the construction of
p). After u takes its last action of σ, we can observe that levelu = max_met(g, u, r)
and distu < D − 1 (otherwise, u is activated in a finite time that contradicts its
construction).

As v can execute consequently (R1) only a finite number of times (since the
incrementation of distv is bounded by D), we can deduce that v executes (R2) or
(R3) infinitely often. In both cases, u belongs to the set which is the parameter of
function nextv (remind that IMmi+1

is satisfied and that u has the better possible
metric among v’s neighbors). By the construction of this function, we can deduce
that prntv = u in a finite time in σ. Then, the construction of u implies that v is
never enabled in the sequel of σ. This is contradictory with the construction of σ.

Consequently, any execution starting from γ′ reaches in a finite time a config-
uration such that all vertices of Pmi+1

are not enabled. We can deduce that this

15.1. Topology-Aware Stabilizing Solution 211

configuration belongs to LCmi+1
, that ends the proof.

Lemma 15.10
Starting from any configuration, any execution of SSMMT under the dis-
tributed weakly fair daemon reaches a configuration of LCIMMT in a finite time.

Proof : Let γ be an arbitrary configuration. We know by Lemma 15.5 that any execu-
tion starting from γ reaches in a finite time a configuration of LCmr = LCm0

. Then,
we can apply at most k times the result of Lemma 15.9 to obtain that any execution
starting from γ reaches in a finite time a configuration of LCmk

= LCIMMT, that
proves the result.

Theorem 15.1
SSMMT is a (SB, n−1)-TA strictly stabilizing distributed protocol for specIMMT
under the distributed weakly fair daemon.

Proof : This result is a direct consequence of Lemmas 15.4 and 15.10.

15.1.3 Proof of Topology-Aware Strong Stabilization

In this section, we prove the (t, S∗B, n− 1)-TA strong stabilization of SSMMT
under the distributed k-bounded strongly fair daemon. Note that k may be any
arbitrary natural number. Nevertheless, the actual value of k influences the maximal
number of disruptions of SSMMT .

In the same way as in the previous section, this proof shares similarities with
the corresponding one in Chapter 14. Indeed, the key idea is once again to focus
on vertices of SB \ S∗B after the convergence of SSMMT on SB and to prove
the two following properties: any such vertex executes a bounded number of steps
in any execution and cannot remains unactivated if it does not satisfy specIMMT.
The proof of these properties is complexified by the fact that the communication
subgraph induced by SB \ S∗B is not reduced to a set of chains.

Let us denote EB = SB \ S∗B (i.e. EB is the set of vertices v such that
max_met(g, v, r) = max

b∈B
{max_met(g, v, b)}). Intuitively, EB gathers the set of

vertices that are at equals distance (with respect to M) from the root than the
nearest Byzantine vertex. Note that the communication subgraph g(EB) induced
by EB may have several connected components. In the following, we use the fol-
lowing notations: EB = {E1

B, . . . , E
`
B} where each EiB (i ∈ {0, . . . , `}) is a sub-

set of EB inducing a maximal (in number of vertices) connected component of g,
g(EiB) (i ∈ {0, . . . , `}) is the communication subgraph induced by EiB, and then
diam(g(EB)) = max

i∈{0,...,`}
{diam(g(EiB))}. When a and b are two integers, we define

the following function: Π(a, b) = ab+1−1
a−1 .

212 Chapter 15. General Case

Lemma 15.11
If γ is a configuration of LC, then any vertex v ∈ EB is activated at most

Π(k, diam(g(EB)))× deg(g)×D times in any execution starting from γ.

Proof : Let γ be a configuration of LC and σ be an execution starting from γ. Let
p be a vertex of EiB (i ∈ {0, . . . , `}) such that there exists a neighbor q which
satisfies q ∈ V \ SB and max_met(g, p, r) = met(max_met(g, q, r), wp,q) (such a
vertex exists by construction of EiB). We are going to prove by induction on d the
following property:
(Pd): if v is a vertex of EiB such that dist(g(EiB), p, v) = d, then v executes at most
Π(k, d)× deg(g)×D actions in σ.

Initialization: d = 0.
This implies that v = p. Then, by construction, there exists a neighbor q which
satisfies q ∈ V \ SB and max_met(g, p, r) = met(max_met(g, q, r), wp,q). As
γ ∈ LC, Lemma 15.4 ensures us that levelq = max_met(g, q, r) and distq <
D − 1 in any configuration of σ. Then, the boundedness ofM implies that q
belongs to the set which is parameter to the function nextv at any execution
of rules (R2) or (R3) by p. Consequently, p executes at most deg(g) times
rules (R2) and (R3) in σ before choosing q as its parent. Moreover, note that
p can execute rule (R1) at most D times between two consecutive executions
of rules (R2) and (R3) (because (R1) only increases distp which is bounded
by D). Consequently, p executes at most deg(g) ×D actions before choosing
q as its parent.
By Lemma 15.4, we know that q takes no action in σ. Once p chooses q as
its parent, its state is consistent with the one of q (by construction of rules
(R2) and (R3)). Hence, p is never enabled after choosing q as its parent.
Consequently, we obtain that p takes at most deg(g) × D actions in σ, that
proves (P0).

Induction: d > 0 and (Pd−1) is true.
Let v be a vertex of EiB such that dist(g(EiB), p, v) = d. By construction, there
exists a neighbor u of v which belongs to EiB such that dist(g(EiB), p, u) = d−1.
By (Pd−1), we know that u takes at most Π(k, d − 1) × deg(g) × D actions
in σ. The k-boundedness of the daemon allows us to conclude that v takes at
most k×Π(k, d− 1)× deg(g)×D actions before the last action of u. Then, a
similar reasoning to the one of the initialization part allows us to say that v
takes at most deg(g)×D actions after the last action of u (note that the fact
that |M(S)| ≥ 2, the construction of D and the management of dist variables
imply that distu < D − 1 after the last action of u). In conclusion, v takes at
most k×Π(k, d− 1)× deg(g)×D+ deg(g)×D = Π(k, d)× deg(g)×D actions
in σ, that proves (Pd).

As diam(g(EB)) is the maximal diameter of connected components of the com-
munication subgraph induced by EB , then we know that dist(g(EiB), p, v) ≤ diam(

g(EB)) for any vertex v in EiB . For any vertex v of EB , there exists i ∈ {0, . . . , `}
such that v ∈ EiB . We can deduce that any vertex of EB takes at most Π(k, diam(

g(EB)))× deg(g)×D actions in σ, that implies the result.

15.1. Topology-Aware Stabilizing Solution 213

Lemma 15.12
If γ is a configuration of LC and v is a vertex such that v ∈ EB, then for any
execution σ starting from γ either

1. there exists a configuration γ′ of σ such that specIMMT(v) is always satisfied
after γ′; or

2. v is activated in σ.

Proof : Let γ be a configuration of LC and v be a vertex such that v ∈ EB . By
contradiction, assume that there exists an execution σ starting from γ such that (i)

specIMMT(v) is infinitely often false in σ and (ii) v is never activated in σ.
For any configuration γ, let us denote by Pv(γ) = (v0 = v, v1 = prntv, v2 =

prntv1 , . . . , vk = prntvk−1
, pv = prntvk) the maximal sequence of vertices following

pointers prnt (maximal means here that either prntpv = ⊥ or pv is the first vertex
such that there pv = vi for some i ∈ {0, . . . , k}).

Let us study the following cases:

Case 1: prntv ∈ V \ SB in γ.
Since γ ∈ LC, prntv satisfies specIMMT(prntv) in γ and in any execution start-
ing from γ (by Lemma 15.4). Hence, prntv is never activated in σ. If v does
not satisfy specIMMT(v) in γ, then we have levelv 6= met(levelprntv , wv,prntv)

or distv 6= 0 in γ. Then, v is continuously enabled in σ and we have a contra-
diction between assumption (ii) and the strong fairness of the daemon. This
implies that v satisfies specIMMT(v) in γ. The fact that prntv is never activated
in γ and that the state of v is consistent with the one of prntv ensures us that
v is never enabled in any execution starting from γ. Hence, specIMMT(v) re-
mains true in any execution starting from γ. This contradicts the assumption
(i) on σ.

Case 2: prntv /∈ V \ SB in γ.
By the assumption (i) on σ, we can deduce that there exists infinitely many
configurations γ′ such that a vertex of Pv(γ′) is enabled (since specIMMT(v) is
false only when the state of a vertex of Pv(γ′) is not consistent with the one
of its parent that made it enabled). By construction, the length of Pv(γ′) is
finite for any configuration γ′ and there exists only a finite number of vertices
in the communication graph. Consequently, there exists at least one vertex
which is infinitely often enabled in σ. Since the daemon is strongly fair, we can
conclude that there exists at least one vertex which is infinitely often activated
in σ.
Let Aσ be the set of vertices which are infinitely often activated in σ. Note
that v /∈ Aσ by assumption (ii) on σ. Let σ′ be the suffix of σ starting from γ′

which contains only activations of vertices of Aσ. Let p be the first vertex of
Pv(γ

′) which belongs to Aσ (p exists since at least one vertex of Pv is enabled
when specIMMT(v) is false). By construction, the prefix of Pv(γ′′) from v to
p in any configuration γ′′ of σ remains the same as the one of Pv(γ′). Let p′

be the vertex such that prntp′ = p in σ′ (p′ exists since v 6= p implies that the
prefix of Pv(γ′) from v to p counts at least two vertices). As p is infinitely
often activated and as any activation of p modifies the value of levelp or of
distp (at least one of these two variables takes at least two different values in
σ′), we can deduce that p′ is infinitely often enabled in σ′ (since the value of

214 Chapter 15. General Case

levelp′ is constant by construction of σ′ and p). Since the daemon is strongly
fair, p′ is activated in a finite time in σ′, that contradicts the construction of
p.

In the two cases, we obtain a contradiction with the construction of σ, that proves
the result.

Let LC∗IMMT be the following set of configurations:

LC∗IMMT =
{
γ ∈ Γ

∣∣(γ is S∗B-legitimate for specIMMT) ∧ (IMmk
(γ) = true)

}
Note that, as S∗B ⊆ SB, we can deduce that LC∗IMMT ⊆ LCIMMT. Hence, prop-

erties of Lemmas 15.11 and 15.12 also apply to configurations of LC∗IMMT.

Lemma 15.13
Any configuration of LC∗IMMT is (n × Π(k, diam(g(EB)) × deg(g) × D,Π(k,

diam(g(EB))× deg(g)×D,S∗B, n− 1)-TA time contained for specIMMT.

Proof : Let γ be a configuration of LC∗IMMT. As S∗B ⊆ SB , we know by Lemma
15.4 that any vertex v of V \ SB satisfies specIMMT(v) and takes no action in any
execution starting from γ.

Let v be a vertex of EB . By Lemmas 15.11 and 15.12, we know that v takes
at most Π(k, diam(g(EB)) × deg(g) × D actions in any execution starting from γ.
Moreover, we know that v satisfies specIMMT(v) after its last action (otherwise,
we obtain a contradiction between the two lemmas). Hence, any vertex of EB
takes at most Π(k, diam(g(EB)) × deg(g) ×D actions and then, there are at most
n × Π(k, diam(g(EB)) × deg(g) × D S∗B-TA disruptions in any execution starting
from γ (since |EB | ≤ n).

By definition of a TA time contained configuration, we obtain the result.

Lemma 15.14
Starting from any configuration, any execution of SSMMT under the dis-
tributed k-bounded strongly fair daemon reaches a configuration of LC∗IMMT in
a finite time.

Proof : Let γ be an arbitrary configuration. We know by Lemma 15.10 that any
execution starting from γ reaches in a finite time a configuration γ′ of LCIMMT.

Let v be a vertex of EB . By Lemmas 15.11 and 15.12, we know that v takes
at most Π(k, diam(g(EB)) × deg(g) ×D actions in any execution starting from γ′.
Moreover, we know that v satisfies specIMMT(v) after its last action (otherwise, we
obtain a contradiction between the two lemmas). This implies that any execution
starting from γ′ reaches a configuration γ′′ such that any vertex v of EB satisfies
specIMMT(v). It is easy to see that γ′′ ∈ LC∗IMMT, that ends the proof.

Theorem 15.2
SSMMT is a (n × Π(k, diam(g(EB)) × deg(g) × D,S∗B, n − 1)-TA strongly

15.2. Optimality of Containment Areas 215

stabilizing distributed protocol for specIMMT under the distributed k-bounded
strongly fair daemon.

Proof : This result is a direct consequence of Lemmas 15.13 and 15.14.

15.2 Optimality of Containment Areas

This section presents two impossibility results that prove the optimality of con-
tainment areas provided by the distributed protocol of the previous section. In-
deed, Theorem 15.3 states that there exists no topology-aware strictly stabilizing
distributed protocol for maximum metric spanning tree construction for any con-
tainment area strictly included in SB while Theorem 15.4 proves that there exists no
topology-aware strongly stabilizing distributed protocol for maximum metric span-
ning tree construction for any containment area strictly included in S∗B.

These proofs are based on the construction of a communication graph (depend-
ing of the characteristic of the considered maximizable metric) and of a Byzantine
behavior that allows us to invalidate the topology-aware strict (respectively strong)
stabilization of any distributed protocol exhibiting better containment areas than
SSMMT . Note that the Byzantine behavior is simply an alternate root and correct
behavior.

15.2.1 Topology-Aware Strict Stabilization

Theorem 15.3
Given a maximizable metric M = (M,W,mr,met,≺), even under the central
daemon, there exists no (AB, 1)-TA strictly stabilizing distributed protocol for
specIMMT with respect toM where AB SB.

Proof : Let M = (M,W,mr,met,≺) be a maximizable metric and π be a (AB , 1)-
TA strictly stabilizing distributed protocol for speciMMT with respect toM where
AB SB . We must distinguish the following cases:

Case 1: |M | = 1.
Denote by m the metric value such that M = {m}. For any communication
graph and for any vertex v 6= r, we have:

max_met(g, v, r) = min≺
b∈B
{max_met(g, v, b)} = m

Consequently, SB = V \ (B ∪ {r}) for any communication graph.
Consider the following communication graph: V = {r, u, v, b} and E = {{r, u},
{u, v}, {v, b}} (b is a Byzantine vertex). As SB = {u, v} and AB SB , we
have: u /∈ AB or v /∈ AB . Consider now the following configuration γ00 :
prntr = prntb = ⊥, prntv = b, prntu = v, levelr = levelu = levelv = levelb = m,
distr = distb = 0, distv = 1 and distu = 2 (see Figure 15.4, other variables may
have arbitrary values). Note that γ00 is AB-legitimate for specIMMT (whatever
AB is).

216 Chapter 15. General Case

���������������� ����������������γ0
0

γ1
0 ���������������� ���� ������������

γ0
1

γ1
1

r u v b

r u v b

r u v b

r u v b

- -

- - ���

���

w w’ w w w’ w

m / 0 m / 2 m / 1 m / 0

mr / 0 m / 1 m / 0 mr / 0

m / 0 m / 1 m / 2 m / 3

mr / 0 m / 0 m / 1 m / 2

����������
��

������
�� ����������

��

������
��

γ2
0 γ2

1
r ru ub b

v v

v’ v’

R
�

� � 	
I

I

mr / 0

w w’ w

w
m / 0

m / 0

m / 0

mr / 0 mr / 0 m / 0

m’ / 0

m’ / 0

m” / 0

w w’

w’

w

ww’

Figure 15.4: Configurations used in proof of Theorem 15.3.

Assume now that b behaves as a correct vertex with respect to π. Then,
by convergence of π in a fault-free system starting from γ00 which is not ∅-
legitimate (remember that a topology-aware strictly stabilizing distributed
protocol is a special case of self-stabilizing distributed protocol), we can deduce
that π reaches in a finite time a configuration γ01 (see Figure 15.4) in which:
prntr = ⊥, prntu = r, prntv = u, prntb = v, levelr = levelu = levelv = levelb =

m, distr = 0, distu = 1, distv = 2 and distb = 3. Note that vertices u and v
modify their O-variables in this execution. This contradicts the (AB , 1)-TA
strict stabilization of π (whatever AB is).

Case 2: |M | ≥ 2.
By definition of a bounded metric, we can deduce that there exist m ∈ M

and w ∈ W such that m = met(mr, w) ≺ mr. Then, we must distinguish the
following cases:
Case 2.1: m is a fixed point ofM.

Consider the following communication graph: V = {r, u, v, b}, E =

{{r, u}, {u, v}, {v, b}}, wr,u = wv,b = w, and wu,v = w′ (b is a Byzan-
tine vertex). As for any w′ ∈ W , met(m,w′) = m (by definition of a
fixed point), we have: SB = {u, v}. Since AB SB , we have: u /∈ AB or
v /∈ AB . Consider now the following configuration γ10 : prntr = prntb = ⊥,
prntv = b, prntu = v, levelr = levelb = mr, levelu = levelv = m,
distr = distb = 0, distv = 0 and distu = 1 (see Figure 15.4, other variables
may have arbitrary values). Note that γ10 is AB-legitimate for specIMMT
(whatever AB is).
Assume now that b behaves as a correct vertex with respect to π. Then,
by convergence of π in a fault-free system starting from γ10 which is
not ∅-legitimate (remember that a topology-aware strictly stabilizing dis-
tributed protocol is a special case of self-stabilizing distributed protocol),
we can deduce that π reaches in a finite time a configuration γ11 (see
Figure 15.4) in which: prntr = ⊥, prntu = r, prntv = u, prntb = v,
levelr = mr, levelu = levelv = levelb = m (since m is a fixed point),

15.2. Optimality of Containment Areas 217

distr = 0, distu = 0, distv = 1 and distb = 2. Note that vertices u
and v modify their O-variables in this execution. This contradicts the
(AB , 1)-TA strict stabilization of π (whatever AB is).

Case 2.2: m is not a fixed point ofM.
This implies that there exists w′ ∈ W such that: met(m,w′) ≺ m (re-
member that M is bounded). Consider the following communication
graph: V = {r, u, v, v′, b}, E = {{r, u}, {u, v}, {u, v′}, {v, b}, {v′, b}},
wr,u = wv,b = wv′,b = w, and wu,v = wu,v′ = w′ (b is a Byzantine
vertex). We can see that SB = {v, v′}. Since AB SB , we have:
v /∈ AB or v′ /∈ AB . Consider now the following configuration γ20 :
prntr = prntb = ⊥, prntv = prntv′ = b, prntu = r, levelr = levelb = mr,
levelu = levelv = levelv′ = m, distr = distb = 0, distv = distv′ = 0 and
distu = 0 (see Figure 15.4, other variables may have arbitrary values).
Note that γ20 is AB-legitimate for specIMMT (whatever AB is).
Assume now that b behaves as a correct vertex with respect to π. Then,
by convergence of π in a fault-free system starting from γ20 which is
not ∅-legitimate (remember that a topology-aware strictly stabilizing dis-
tributed protocol is a special case of self-stabilizing distributed protocol),
we can deduce that π reaches in a finite time a configuration γ21 (see Figure
15.4) in which: prntr = ⊥, prntu = r, prntv = prntv′ = u, prntb = v (or
prntb = v′), levelr = mr, levelu = m levelv = levelv′ = met(m,w′) = m′,
levelb = met(m′, w) = m′′, distr = 0, distu = 0, distv = distv′ = 0

and distb = 0. Note that vertices v and v′ modify their O-variables in
this execution. This contradicts the (AB , 1)-TA strict stabilization of π
(whatever AB is).

15.2.2 Topology-Aware Strong Stabilization

Theorem 15.4
Given a maximizable metric M = (M,W,mr,met,≺), even under the central
daemon, there exists no (t, A∗B, 1)-TA strongly stabilizing distributed protocol
for specIMMT with respect toM where A∗B S∗B and t is a given finite integer.

Proof : LetM = (M,W,mr,met,≺) be a maximizable metric and π be a (t, A∗B , 1)-TA
strongly stabilizing protocol for specIMMT with respect toM where A∗B S∗B and
t is a finite integer. We must distinguish the following cases:

Case 1: |M | = 1.
Denote by m the metric value such that M = {m}. For any communication
graph and for any vertex v, we have:

max_met(g, v, r) = min≺
b∈B
{max_met(g, v, b)} = m

Consequently, S∗B = ∅ for any communication graph. Then, it is absurd to
have A∗B S∗B .

Case 2: |M | ≥ 2.
By definition of a bounded metric, we can deduce that there exists m ∈ M

218 Chapter 15. General Case

and w ∈ W such that m = met(mr, w) ≺ mr. Then, we must distinguish the
following cases:

Case 2.1: m is a fixed point ofM.
Let g be a communication graph such that any edge incident to the root
or a Byzantine vertex has a weight equals to w. Then, we can deduce
that we have:
m = max≺

b∈B
{max_met(g, r, b)} ≺ max_met(g, r, r) = mr

∀v ∈ V \ (B ∪ {r}),max_met(g, v, r) = max≺
b∈B
{max_met(g, v, b)} = m

Hence, S∗B = ∅ for any such communication graph. Then, it is absurd to
have A∗B S∗B .

Case 2.2: m is not a fixed point ofM.
This implies that there exists w′ ∈ W such that: met(m,w′) ≺ m (re-
member that M is bounded). Consider the following communication
graph: V = {r, u, u′, v, v′, b}, E = {{r, u}, {r, u′}, {u, v}, {u′, v′}, {v, b},
{v′, b}}, wr,u = wr,u′ = wv,b = wv′,b = w, and wu,v = wu′,v′ = w′ (b is
a Byzantine vertex). We can see that S∗B = {v, v′}. Since A∗B SB , we
have: v /∈ A∗B or v′ /∈ A∗B . Consider now the following configuration γ0:
prntr = prntb = ⊥, levelr = levelb = mr, distr = distb = 0 and prnt, level,
and dist variables of other vertices are arbitrary (see Figure 15.5, other
variables may have arbitrary values but other variables of b are identical
to those of r).
Assume now that b executes exactly the same actions as r (if any) im-
mediately after r (note that r /∈ A∗B and hence prntr = ⊥, levelr = mr,
and distr = 0 still hold by closure and then prntb = ⊥, levelb = mr, and
distr = 0 still hold too). Then, by symmetry of the execution and by
convergence of π to specIMMT, we can deduce that π reaches in a finite
time a configuration γ1 (see Figure 15.5) in which: prntr = prntb = ⊥,
prntu = prntu′ = r, prntv = prntv′ = b, levelr = levelb = mr, levelu =

levelu′ = levelv = levelv′ = m, and ∀v ∈ V, distv = legal_distprntv
(be-

cause this configuration is the only one in which all correct vertex v

satisfies specIMMT(v) when prntr = prntb = ⊥ and levelr = levelb = mr
since met(m,w′) ≺ m). Note that γ1 is A∗B-legitimate for specIMMT and
A∗B-stable (whatever A∗B is).
Assume now that b behaves as a correct vertex with respect to π. Then,
by convergence of π in a fault-free system starting from γ1 which is not
∅-legitimate (remember that a TA strongly stabilizing distributed pro-
tocol is a special case of self-stabilizing distributed protocol), we can
deduce that π reaches in a finite time a configuration γ2 (see Figure
15.5) in which: prntr = ⊥, prntu = prntu′ = r, prntv = u, prntv′ =

u′, prntb = v (or prntb = v′), levelr = mr, levelu = levelu′ = m

levelv = levelv′ = met(m,w′) = m′, levelb = met(m′, w) = m′′, and
∀v ∈ V, distv = legal_distprntv

. Note that vertices v and v′ modify their
O-variables in the portion of execution between γ1 and γ2 and that γ2
is A∗B-legitimate for specIMMT and A∗B-stable (whatever A∗B is). Conse-
quently, this portion of execution contains at least one A∗B-TA disruption
(whatever A∗B is).

15.3. Strong Stabilization 219

������
������������������ ������������

������������

������
������������������������

������������������

r r

rr

u u

uu

v

vv

v

b b

bb

u’ u’

u’u’

v’ v’

v’v’

γ0 γ1

γ2 γ3

	
I

R
�

	
I

�

�

I
	
I

�

�

w

w

w

w

w w

w w

w w

w w

w

w

w

w

w’

w’

w’

w’

w’

w’

w’

w’

mr / 0

mr / 0

? / ?

? / ?? / ?

? / ?

mr / 0

mr / 0

m / 0

m / 0m / 0

m / 0

mr / 0

m / 0

m / 0

m’ / 0

m’ / 0

m” / 0

mr / 0

m / 0

m / 0

m’ / 0

m’ / 0

mr / 0

Figure 15.5: Configurations used in proof of Theorem 15.4.

Assume now that the Byzantine vertex b takes the following state: prntb =

⊥, levelb = mr, and distb = 0. This action brings the system into config-
uration γ3 (see Figure 15.5). From this configuration, we can repeat the
execution we constructed from γ0. By the same token, we obtain an ex-
ecution of π which contains A∗B-legitimate and A∗B-stable configurations
(see γ1) and an infinite number of A∗B-TA disruptions (whatever A∗B is)
which contradicts the (t, A∗B , 1)-TA strong stabilization of π.

15.3 Strong Stabilization

In this section, we discuss about the relationship between topology-aware strong
stabilization and strong stabilization on maximum metric spanning tree construc-
tion. We characterize by a necessary and sufficient condition the set of assigned
metric that allow strong stabilization. Indeed, properties on the metric itself are
not sufficient to conclude on the possibility of strong stabilization: we must know
information about the considered communication graph (assignation of the metric).
Informally, it is possible to construct a maximum metric spanning tree in a strongly
stabilizing way if and only if the considered metric is strongly maximizable (that is,
if the metric is strictly decreasing and has one and only one fixed point, see Defini-
tion 15.5) and if the desired containment radius is sufficiently large with respect to
the size of the set of used metric values of the communication graph.

First, we define a specific class of maximizable metrics (strongly maximizable
metrics, see Definition 15.5). Then, we prove an impossibility result that state that it
is impossible to construct a maximum metric spanning tree in a strongly stabilizing
way if we do not consider such a metric (see Lemma 15.15). Finally, we provide
our full characterization of maximizable metrics that allow strong stabilization (see

220 Chapter 15. General Case

��������

����

����
��������

��������
������������

����

����

������������
����
����
����

����

����

����

������������������������
����
����

����

����

����

����

���� r

b1

b2

S∗B

SB

Figure 15.6: Example of containment areas for MET.

Theorem 15.5).

Definition 15.5 (Strongly maximizable metric)
A maximizable metricM = (M,W,mr,met,≺) is strongly maximizable if and
only if |M | = 1 or if the following properties holds:

– |M | ≥ 2;
– M is strictly decreasing; and
– M has one and only one fixed point.

Note that NC is a strongly maximizable metric (since |M4| = 1) whereas BFS
or SP are not (since the first one has no fixed point, the second is not strictly
decreasing). If we consider the metric MET defined below, we can show that MET
is a strongly maximizable metric such that |M | ≥ 2.

MET = (M5,W5,met5,mr5,≺5)

where M5 = {0, 1, 2, 3}
W5 = {1}
met5(m,w) = max{0,m− w}
mr5 = 3

≺5 is the classical < relation

Figure 15.6 provides an illustration of containment areas SB and S∗B for this
metric. Note that S∗B is equals to the union of the 2-neighborhood of Byzantine
vertices.

Using this definition, we can now provide an impossibility result that general-
izes Theorem 14.2 (impossibility of strong stabilization for specBFST). Note that
the proof relies also on similar ideas while we must generalize it to consider any
maximizable metric.

15.3. Strong Stabilization 221

������������������������� � � �

������������������������� � � � �

������������������������� � -

������������������������γ0

γ1

γ2

γ3

v0 = r v1 v2 v3 v4 v5 = b

3 3? ? ? ?

3 2 1 1 2 3

3 2 1 0 0 0

3 2 1 0 0 3

Figure 15.7: Illustration of configurations used in proof of Lemma 15.15, case 1 for
the metric MET with c = 1.

Lemma 15.15
Given a maximizable metric M = (M,W,mr,met,≺), even under the cen-
tral daemon, there exists no (t, c, 1)-strongly stabilizing distributed protocol for
specIMMT with respect toM for any finite integer t if:{

M is not a strongly maximizable metric, or
c < |M | − 2

Proof : We prove this result by contradiction. We assume thatM = (M,W,mr,met,
≺) is a maximizable metric such that there exist a finite integer t and a distributed
protocol π that is a (t, c, 1)-strongly stabilizing distributed protocol for specIMMT
with respect toM. We distinguish the following cases (note that they are exhaus-
tive):

Case 1: M is a strongly maximizing metric and c < |M | − 2.
As c ≥ 0, we know that |M | ≥ 2 and then, by definition of a strongly stabilizing
metric,M is strictly decreasing and has one and only one fixed point.
By assumption on M, we know that there exist c + 3 distinct metric values
m0 = mr,m1, . . . ,mc+2 in M and w0, w1, . . . , wc+1 in W such that: ∀i ∈
{1, . . . , c+ 2},mi = met(mi−1, wi−1) ≺ mi−1.
Let g be the following communication graph V = {v0 = r, v1, . . . , v2c+2, v2c+3 =

b}, E = {{vi, vi+1}, i ∈ {0, . . . , 2c + 2}} and ∀i ∈ {0, c + 1}, wvi,vi+1 =

wv2c+3−i,v2c+2−i = wi. Note that the choice wvc+1,vc+2 = wc+1 ensures us
the following property when levelr = levelb = mr:{

max_met(g, vc+1, b) ≺ max_met(g, vc+1, r)

max_met(g, vc+2, r) ≺ max_met(g, vc+2, b)

222 Chapter 15. General Case

Vertex v0 is the real root and vertex b is a Byzantine one. Note that the
construction of g ensures the following properties when levelr = levelb = mr:

∀i ∈ {1, . . . , c+ 1},max_met(g, vi, r) = max_met(g, v2c+3−i, b)

max_met(g, vi, b) ≺ max_met(g, vi, r)
max_met(g, v2c+3−i, r) ≺ max_met(g, v2c+3−i, b)

Assume that the initial configuration γ0 of g satisfies: prntr = prntb = ⊥,
levelr = levelb = mr, and other variables of b (in particular dist) are identical
to those of r (see Figure 15.7, variables of other vertices may be arbitrary). As-
sume now that b takes exactly the same actions as r (if any) immediately after
r. Then, by symmetry of the execution and by convergence of π to specIMMT,
we can deduce that π reaches in a finite time a configuration γ1 (see Figure
15.7) in which: ∀i ∈ {1, . . . , c+1}, prntvi = vi−1, levelvi = max_met(g, vi, r) =

mi, distvi = legal_dist(vi, prntvi) and ∀i ∈ {c + 2, . . . , 2c + 2}, prntvi = vi+1,
levelvi = max_met(g, vi, b) = m2c+3−i, and distvi = legal_dist(vi, prntvi) (be-
cause this configuration is the only one in which all correct vertices v satisfy
specIMMT(v) when prntr = prntb = ⊥ and levelr = levelb = mr by construction
of g). Note that γ1 is c-legitimate and c-stable.
Assume now that the Byzantine vertex acts as a correct vertex and executes
correctly π. Then, by convergence of π in fault-free systems (remember that
a strongly-stabilizing distributed protocol is a special case of self-stabilizing
distributed protocol), we can deduce that π reaches in a finite time a con-
figuration γ2 (see Figure 15.7) in which: ∀i ∈ {1, . . . , 2c + 3}, prntvi = vi−1,
levelvi = max_met(g, vi, r), and distvi = legal_dist(vi, prntvi) (because this
configuration is the only one in which all vertices v satisfy specIMMT(v)).
Note that the portion of execution between γ1 and γ2 contains at least one c-
disruption (vc+2 is a c-correct vertex and modifies at least once its O-variables)
and that γ2 is c-legitimate and c-stable.
Assume now that the Byzantine vertex b takes the following state: prntb = ⊥
and levelb = mr. This action brings the system into configuration γ3 (see
Figure 15.7). From this configuration, we can repeat the execution we con-
structed from γ0. By the same token, we obtain an infinite execution of π
that contains c-legitimate and c-stable configurations (see γ1) and an infinite
number of c-disruptions that contradicts the (t, c, 1)-strong stabilization of π.

Case 2: M is not strictly decreasing.
By definition, we know thatM is not a strongly maximizable metric. Hence,
we have |M | ≥ 2. Then, the definition of a strictly decreasing metric implies
that there exists a metric value m ∈ M such that: ∃w ∈ W, met(m,w) = m

and ∃w′ ∈ W,m′ = met(m,w′) ≺ m (and thus m is not a fixed point of
M). By the utility condition on M , we know that there exists a sequence
of metric values m0 = mr,m1, . . . ,ml = m in M and w0, w1, . . . , wl−1 in W
such that ∀i ∈ {1, . . . , l},mi = met(mi−1, wi−1). Denote by k the length of the
shortest such sequence. Note that this implies that ∀i ∈ {1, . . . , k},mi ≺ mi−1
(otherwise we can remove mi from the sequence and this is contradictory with
the construction of k). We distinguish the following cases:

Case 2.1: k ≥ c+ 2.
We can use the same token as case 1 above by using w′ instead of wc+1

in the case where k = c+ 2 (since we know that met(m,w′) ≺ m).

15.3. Strong Stabilization 223

g1

�������� ����������������

��������
v0 = r v1 vc vc+1

vc+2vc+3v2c+2

. . .

. . .

.

v2c+3 = b

w0

w0 ����������������
����

��������
����. . .

. . .

vkvk−1 vk+1 vk+2

w′
w

w

w

w

wwk−1

wk−1

v2c+3−k v2c+2−kv2c+4−k v2c+1−k

�������� ����������������

��������
v0 = r v1 vc vc+1

vc+2vc+3v2c+2

. . .

. . .

.

v2c+3 = b

w0

����������������
����

��������
����. . .

. . .

vkvk−1 vk+1 vk+2

w

w

w

w

wwk−1
g2 w

w′0 w′k′−1

v2c+3−k′ v2c+2−k′v2c+4−k′ v2c+1−k′

.

.

w

w

Figure 15.8: Configurations used in proof of Lemma 15.15, cases 2 and 3.

Case 2.2: k < c+ 2.
Let g1 be the following communication graph V = {v0 = r, v1, . . . , v2c+2,

v2c+3 = b}, E = {{vi, vi+1}, i ∈ {0, . . . , 2c+2}}, and the following weight
function (see Figure 15.8):

∀i ∈ {0, . . . , k − 1},wvi,vi+1
= wv2c+3−i,v2c+2−i

= wi
∀i ∈ {k, . . . , c},wvi,vi+1

= wv2c+3−i,v2c+2−i
= w

wvc+1,vc+2
= w′

Note that this choice ensures us the following property when levelr =

levelb = mr: {
max_met(g, vc+1, b) ≺ max_met(g, vc+1, r)

max_met(g, vc+2, r) ≺ max_met(g, vc+2, b)

Vertex v0 is the real root and vertex b is a Byzantine one. Note that the
construction of g ensures the following properties when levelr = levelb =

mr:
∀i ∈ {1, . . . , c+ 1},max_met(g, vi, r) = max_met(g, v2c+3−i, b)

max_met(g, vi, b) ≺ max_met(g, vi, r)
max_met(g, v2c+3−i, r) ≺ max_met(g, v2c+3−i, b)

This construction allows us to follow the same proof as in case 1 above.

Case 3: M has no or more than two fixed point, and is strictly decreasing.
IfM has no fixed point and is strictly decreasing, then |M | is not finite and
then, we can apply the result of case 1 above since c is a finite integer.
IfM has two or more fixed points and is strictly decreasing, denote by Υ and
Υ′ two fixed points of M. Without loss of generality, assume that Υ ≺ Υ′.
By the utility condition on M , we know that there exists sequences of metric
values m0 = mr,m1, . . . ,ml = Υ and m′0 = mr,m′1, . . . ,m′l′ = Υ′ in M and

224 Chapter 15. General Case

w0, w1, . . . , wl−1 and w′0, w
′
1, . . . , w

′
l′−1 in W such that ∀i ∈ {1, . . . , l},mi =

met(mi−1, wi−1) and ∀i ∈ {1, . . . , l′},m′i = met(m′i−1, w′i−1). Denote by k

and k′ the length of shortest such sequences. Note that this implies that
∀i ∈ {1, . . . , k},mi ≺ mi−1 and ∀i ∈ {1, . . . , k′},m′i ≺ m′i−1 (otherwise we
can remove mi or m′i from the corresponding sequence). We distinguish the
following cases:
Case 3.1: k > c+ 2 or k′ > c+ 2.

Without loss of generality, assume that k > c + 2 (the second case is
similar). We can use the same token as case 1 above.

Case 3.2: k ≤ c+ 2 and k′ ≤ c+ 2.
Let w be an arbitrary value of W . Let g2 be the following communica-
tion graph V = {v0 = r, v1, . . . , v2c+2, v2c+3 = b}, E = {{vi, vi+1}, i ∈
{0, . . . , 2c+ 2}}, and the following weight function (see Figure 15.8):

∀i ∈ {0, k − 1}, wvi,vi+1 = wi

∀i ∈ {0, k′ − 1}, wv2c+3−i,v2c+2−i
= w′i

∀i ∈ {k, 2c+ 2− k′}, wvi,vi+1 = w

Note that this choice ensures us the following property when levelr =

levelb = mr:{
max_met(g, vc+1, r) = Υ ≺ Υ′ = max_met(g, vc+1, b)

max_met(g, vc+2, r) = Υ ≺ Υ′ = max_met(g, vc+2, b)

Vertex v0 is the real root and vertex b is a Byzantine one. This con-
struction allows us to follow a similar proof as in case 1 above (note that
any vertex vi which satisfies max_met(g, vi, r) ≺ Υ′ will be disturbed
infinitely often, in particular at least vc+1 and vc+2 which contradicts the
(t, c, 1)-strong stabilization of π).

In any case, we show that there exists a communication graph that contradicts the
(t, c, 1)-strong stabilization of π that ends the proof.

Using this impossibility result, we can now provide our necessary and sufficient
condition for strong stabilization for maximum metric spanning tree construction.

Theorem 15.5
Given an assigned metric AM = (M,W,mr,met,≺,wf) over a communication
graph g, there exists a (t, c, n−1)-strongly stabilizing protocol for specIMMT with
a finite t if and only if:{

(M,W,met,mr,≺) is a strongly maximizable metric, and
c ≥ max{0, |M(g)| − 2}

Proof : We split this proof into two parts:
1) Proof of the “if” part: Denote (M,W,met,mr,≺) byM and assume thatM
is a strongly maximizable metric and that c ≥ max{0, |M(g)| − 2}. We distinguish
the following cases:

15.4. Summary 225

Containment Result Proved by...
(c, f)-strict stabilization c ∈ N, f = 1 Impossible [NA02]

(t, c, f)-strong stabilization c ∈ N, t ∈ N, Possible ⇔ C(M, c) Theorem 15.5
f = n− 1

(CB , f)-TA strict stabilization CB (SB , f = 1 Impossible Theorem 15.3
CB = SB , f = n− 1 Possible Theorem 15.1

(t, CB , f)-TA strong stabilization CB (S∗B , f = 1 Impossible Theorem 15.4
CB = S∗B , f = n− 1 Possible Theorem 15.2

Table 15.1: Summary of results of Chapter 15 related to specIMMT with C(M, c) a
predicate that is true if and only ifM = (M,W,mr,met,≺) is a strongly maximiz-
able metric and c ≥ max{0, |M(g)| − 2}.

Case 1: |M(g)| = 1 (and hence c ≥ 0).
Denote by m the metric value such that M(g) = {m}. For any correct vertex
v, we have max_met(g, v, r) = min≺

b∈B
{max_met(g, v, b)} = m. We can deduce

that it is equivalent to construct a maximum metric spanning tree forM and
for NC over any communication graph. By Theorem 14.1, we know that there
exists a (t, 0, n− 1)-strongly stabilizing protocol for this problem with a finite
t, that proves the result.

Case 2: |M(g)| ≥ 2 (and hence c ≥ |M(g)| − 2).
By Theorem 15.2, we know that there exists a (t, S∗B , n − 1)-TA strongly
stabilizing protocol π for specIMMT with a finite t in this case.
Denote by Υ the only fixed point ofM. Let v be a correct vertex such that
v ∈ S∗B . By definition of S∗B , we have: max_met(g, v, r) ≺ max_met(g, v, b)
for at least one Byzantine vertex b. As M is strictly decreasing and has
only one fixed point, we can deduce that Υ � max_met(g, v, r) and then
max_met(g, v, b) 6= Υ.
Assume by contradiction that dist(g, v, b) > c ≥ |M(g)| − 2. AsM is strictly
decreasing, has only one fixed point Υ, and M has |M(g)| distinct metric
values over g, we can conclude that max_met(g, v, b) = Υ. This contradiction
allows us to conclude that there exists a vertex b such that dist(g, v, b) ≤ c for
any correct vertex which belongs to S∗B .

In other words, S∗B =
{
v ∈ V

∣∣min
b∈B
{dist(g, v, b)} ≤ c

}
and π is in fact a

(t, c, n− 1)-strongly stabilizing protocol with a finite t, that proves the result.

2) Proof of the “only if” part: This result is a direct consequence of Lemma
15.15 when we observe that |M(g)| ≤ |M | by definition.

15.4 Summary

Table 15.1 summarizes all results presented in this chapter about maximum met-
ric spanning tree construction in systems subject to any transient and intermittent
Byzantine fault pattern. Note that these results generalize all results proved in

226 Chapter 15. General Case

Chapter 14 about spanning tree construction and BFS spanning tree construction
in the same context.

Chapter 16

Conclusion of Part IV

If I knew I should die tomorrow, I would plant a
tree today.

Stephen Girard

Contents
16.1 Summary of Contributions . 227
16.2 Concluding Remarks . 229

16.1 Summary of Contributions

The fourth part of this thesis focused on maximum metric spanning tree con-
struction in distributed systems subject to any transient and intermittent Byzantine
fault pattern. Spanning tree construction is a fundamental task in distributed sys-
tems since it permits to construct a virtual communication structure that allows
every vertices to communicate using a minimal number of edges of the original com-
munication graph. According to desired characteristics of the spanning tree (mini-
mum weight, shortest path to the root, minimal degree,...), there exists numerous
self-stabilizing distributed protocols.

To our knowledge, the work presented here is the first to consider spanning tree
construction in presence of both transient and Byzantine faults. As this problem
is global (whatever the considered spanning tree properties are), there exists no
strictly-stabilizing solutions for any (finite) containment radius by the generic im-
possibility result of Nesterenko and Arora [NA02]. Therefore, our first contribution
was to propose three new schemes of Byzantine containment in self-stabilization in
order to by-pass this impossibility result.

First, we proposed strong stabilization, where the constraint about the contain-
ment radius is relaxed, i.e. there may exist vertices outside the containment radius
that invalidate the specification predicate, due to Byzantine actions. However, the
impact of Byzantine triggered action is limited in times: the set of Byzantine ver-
tices may only impact vertices outside the containment radius a bounded number
of times, even if Byzantine vertices execute an infinite number of actions. This
new scheme of Byzantine containment in self-stabilization generalizes strict stabi-
lization as a strictly stabilizing distributed protocol is a strongly stabilizing one with
a maximal number of disruptions equal to 0.

228 Chapter 16. Conclusion of Part IV

Topology-Aware

Strict Stabilization

Strong Stabilization

Self-Stabilization

Strict Stabilization

Topology-Aware
Strong Stabilization

+ s

~ =

?

Figure 16.1: Summary of respective constraints on Byzantine containment schemes
in self-stabilization. An arrow from a scheme to another means that the first is more
constrained than the second.

Although this new scheme is sufficient to by-pass some impossibility results (see
e.g. Theorem 14.1), it is still too strong for some problems as there remains impos-
sibility results in the context of strong stabilization (see e.g. Theorem 14.2). We
proposed a new notion for Byzantine containment in self-stabilization: the topology-
aware stabilization. Here, the requirement about the containment radius is relaxed
to a containment area, i.e. the set of vertices which may be disturbed by Byzan-
tine ones is not reduced to the union of c-neighborhood of Byzantine vertices but is
defined as a function of the communication graph and Byzantine vertices locations.
Note that this relaxation may be applied either to strict or to strong stabilization.
Figure 16.1 summarizes comparisons between the three schemes of Byzantine con-
tainment in self-stabilization we introduced and strict-stabilization.

To demonstrate the effectiveness of our notions of strong stabilization and topo-
logy-aware stabilization, we focused on a large class of spanning tree constructions:
the maximum metric spanning tree construction with respect to any maximizable
metric. Intuitively, a metric is a scheme to compute a distance along any path of the
communication graph. A metric is maximizable if there always exists a spanning
tree that maximizes the metric of each vertex of any communication graph with
respect to a distinguished vertex called the root. For example, the shortest path or
the flow metric are maximizable. In contrast, there exists no maximizable metric to
model the minimum weight or the minimum degree spanning tree construction.

In this context, a summary of our contributions follows. First, Chapter 14
proves that all maximizable metrics are not equivalent with respect to Byzantine

16.2. Concluding Remarks 229

Containment Result Proved by...
(c, f)-strict stabilization c ∈ N, f = 1 Impossible [NA02]

(t, c, f)-strong stabilization c ∈ N, t ∈ N, Possible ⇔ C(M, c) Theorem 15.5
f = n− 1

(CB , f)-TA strict stabilization CB (SB , f = 1 Impossible Theorem 15.3
CB = SB , f = n− 1 Possible Theorem 15.1

(t, CB , f)-TA strong stabilization CB (S∗B , f = 1 Impossible Theorem 15.4
CB = S∗B , f = n− 1 Possible Theorem 15.2

Table 16.1: Summary of results of Chapter 15 related to specIMMT with C(M, c) a
predicate that is true if and only ifM = (M,W,mr,met,≺) is a strongly maximiz-
able metric and c ≥ max{0, |M(g)| − 2}.

containment in self-stabilization. Indeed, we prove that there exists a strongly
stabilizing solution to the spanning tree construction (without constraints, modeled
by the maximizable metric NC) whereas it is impossible to solve the BFS spanning
tree construction in a strongly stabilizing way (BFS is indeed a maximizable metric).
We also provide a distributed protocol that solves this last problem in a topology-
aware stabilizing way (by providing optimal containment areas with respect to both
topology-aware strict and strong stabilization).

Finally, Chapter 15 deals with the problem of maximum metric spanning tree
construction for any maximizable metric. Our results are summarized in Table 16.1.
We provide a distributed protocol that achieves optimal containment areas with
respect to both topology-aware strict and strong stabilization (these areas obviously
depend on the considered metric) and a full characterization of maximizable metrics
that allow strong stabilization.

16.2 Concluding Remarks

The results presented in this part show that our new notions of strong stabiliza-
tion and topology-aware stabilization are convenient to by-pass some impossibility
results related to strict stabilization but raise some open questions.

A part of these open questions is directly related to our results about maximum
metric spanning tree construction. We list them here:

1. In Chapter 15, we choose to work with a slightly modified specification of the
problem in order to keep the consistency of results. An interesting question is
to provide similar results for the original specification, namely specMMT . We
may also try to modify this specification in order to remove dist from the set
of O-variables. Indeed, this variable is not really necessary to the specification
since it is in fact introduced to break cycles.

2. Daemon requirements for the correctness of our distributed protocols is not
discussed here. It would be interesting to prove their necessity or to provide
distributed protocols with weaker daemon if possible. In this case, is it possible
to keep the optimality of containment areas?

230 Chapter 16. Conclusion of Part IV

3. Another way to complete results of this part is to study the relationship be-
tween the containment areas and the maximal number of disruptions. Intu-
itively, if constraints on containment area are weakened, the maximal number
of disruptions may decrease.

4. While maximizable metrics are a large class of metrics, there exists numerous
other metrics to construct spanning tree. We think that the study of Byzantine
containment properties of these metrics could be interesting to study.

The other part of these open questions is more general and is related to our
new scheme of Byzantine containment in self-stabilization. Note that all distributed
protocols provided in this part that achieves strong-stabilization (or topology-aware
strong stabilization) needs (at least) a strongly fair daemon. We conjecture that the
strong fairness property is necessary to perform (topology-aware) strong stabiliza-
tion. The proof of this conjecture is an interesting open question.

Finally, we presented definitions for strong stabilization and topology-aware sta-
bilization for static problems, i.e. problems that require the system to find static
solutions, as the maximum metric spanning tree construction. An interesting path
for future research may be to provide strong or topology-aware stabilizing distributed
protocols for other static problems or to extend our definitions to dynamic problems
such as token circulation or leader election.

Chapter 17

Conclusion

The whole of science is nothing more than a re-
finement of everyday thinking.

Albert Einstein

Contents
17.1 Overview of Thesis Contributions 231

17.1.1 Part One: Context . 231
17.1.2 Part Two: Atomic Register 232
17.1.3 Part Three: Unison . 233
17.1.4 Part Four: Spanning Tree 233
17.1.5 Summary . 234

17.2 Perspectives . 234

This concluding chapter surveys thesis contributions (see Section 17.1) and dis-
cusses questions raised by our works (see Section 17.2).

17.1 Overview of Thesis Contributions

The main problem we study in this thesis is the joint tolerance to transient faults
and to permanent or intermittent faults in distributed systems. The main difficulty
of such an environment is the unabililty for correct vertices to distinguish malicious
(or crashed) vertices from honest but badly initialized ones. This situation allows
permanent or intermittent faulty vertices to disturb (that is, to prevent satisfying
a particular specification) some correct vertices. The challenge is then to design
distributed protocols that achieve the best possible fault tolerance or containment
in such a context.

In the sequel, we describe more precisely the contributions of each part of this
thesis.

17.1.1 Part One: Context

After describing our model for distributed systems, the first part of this thesis
proposed a taxonomy of daemons. A daemon is a classical abstraction in self-
stabilization that gathers assumptions related to the scheduling of the distributed
system. We show that daemons can be compared using a partial order. A daemon is

232 Chapter 17. Conclusion

more powerful than another one if it allows strictly more executions. When designing
a distributed protocol, it is desirable to deal with the most powerful daemon that
still enable problem solvability, as it allow the protocol to run properly in a larger
set of real environments. Our taxonomy allows distributed protocol designers to
easily compare their assumptions about scheduling.

The last chapter of this part is devoted to a survey of variants of self-stabilization.
First, a self-stabilizing distributed protocol ensures that, starting from any arbitrary
initial configuration (that is the consequence of transients faults), a correct behav-
ior is recovered in a finite time. It is well known that self-stabilization is a non
masking approach of fault tolerance since an external observer may see the effects of
transient faults during a finite time. Our survey mainly focuses on variants of self-
stabilization that are moreover able to tolerate a limited number of permanent or
intermittent faults after the end of transient faults. In particular, we present the two
fault tolerance schemes used in this thesis: fault-tolerant pseudo-stabilization and
strict stabilization. The first one ensures that, starting from any arbitrary configu-
ration, any (infinite) execution has an infinite suffix that satisfies the specification in
spite of a given number of permanent crashes. The second one ensures that, starting
from any arbitrary configuration, any execution reaches in a finite time a configu-
ration from which the effects of a given number of intermittent Byzantine faults
are contained within a given radius around them. Note that fault-tolerant pseudo-
stabilization has a masking approach with respect to permanent faults while strict
stabilization has a non masking approach with respect to intermittent Byzantine
faults.

17.1.2 Part Two: Atomic Register

Self-stabilizing or fault-tolerant distributed protocols are often designed in a high
atomicity computational model due as they are simpler to write proof with compared
to a lower atomicity one (such as the message passing model). This motivates a field
of research that consists in designing computational model transformers. These
distributed protocols simulate a high atomicity computational model over a low
atomicity one in order to allow a simpler design of distributed protocols and their
correctness proof.

The second part of this thesis focuses on the simulation of a high atomicity
computational model that is extensively used in fault tolerant distributed comput-
ing: the atomic register model. More precisely, we provide a fault-tolerant pseudo-
stabilizing single-writer multi-reader atomic register simulation. This simulation is
the pseudo-stabilizing version of the classical bounded ABD simulation.

In order to adapt the ABD simulation to tolerate transient faults, we designed
two tools (that are sufficiently general and independent to be re-used in another
context). The first one is a self-stabilizing communication primitive between two
neighboring vertices over non reliable and non FIFO communication links of bounded
capacity. We define for the first time a set of metrics that allows to quantify the
impact of transient faults on the communication primitive and we prove that our

17.1. Overview of Thesis Contributions 233

solution is optimal with respect to each of these metrics. The second tool is a
sequential bounded labeling scheme that is able to cope with any arbitrary initial
configuration (conversely to existing ones).

17.1.3 Part Three: Unison

The third part of this thesis focuses on the synchronization problem. We assume
that each vertex has a digital clock and that we need some synchronization between
these clocks in presence of both transient and intermittent Byzantine faults. As
it is impossible to strongly synchronize the clocks in an asynchronous distributed
systems in such a context, we consider the unison problem (that is, self-stabilizing
weak clock synchronization). Intuitively, clock drift between neighboring vertices
must be eventually bounded by one and each vertex updates infinitely often its
clock by incrementing it. Due to the possibility of deadlocks induced by Byzantine
vertices, we must weaken this last part of the specification by ensuring only that
every clock of a correct vertex is incremented infinitely often. We then define two
particular classes of unison. A minimal unison admits only one variable: the clock.
A priority unison ensures a property similar to obstruction-freedom. Note that any
self-stabilizing unison we are aware of falls in at least one of these two classes.

First, we prove a broad class of impossibility results related to this problem in
our environment. We prove the impossibility of the problem when there are two or
more faulty vertices or when the daemon is unfair. We also prove the impossibility
of minimal or priority unison when the daemon is weakly fair and when the daemon
is strongly fair and the communication graph is not reduced to a chain or a ring.

On the positive side, we provide a strictly stabilizing minimal and priority uni-
son protocol for the remaining cases (that is, this protocol tolerates at most one
Byzantine fault, is designed for communication graphs reduced to chains or rings,
and requires a strongly fair daemon). This protocol is thus proved optimal with
respect to impossibility results. Moreover, we prove that it is also optimal with
respect to convergence time.

17.1.4 Part Four: Spanning Tree

Spanning tree construction is a fundamental building block in many distributed
protocols since a spanning tree ensures connectivity using a minimal number of com-
munication links. In the fourth part of this thesis, we focus on a generic distributed
protocol that constructs a maximum metric spanning tree with respect to any max-
imizable metric. Intuitively, a metric is a scheme to compute a distance along any
path of the communication graph. A metric is maximizable if there always exists a
spanning tree that maximizes the metric of each vertex of any communication graph
with respect to a distinguished vertex.

As this problem is global, it is impossible to provide a strictly stabilizing so-
lution for any containment radius. Therefore, we introduce three new Byzantine
containment schemes in self-stabilization to bypass this impossibility result. First,

234 Chapter 17. Conclusion

we propose strong stabilization in which the constraint to the containment radius is
relaxed, i.e. there may exist vertices outside the containment radius that invalidate
the specification, due to Byzantine actions. However, the impact of Byzantine trig-
gered action is limited in times: the set of Byzantine vertices may only impact ver-
tices outside the containment radius a bounded number of times, even if Byzantine
vertices execute an infinite number of actions. Then, we propose another notion for
Byzantine containment in self-stabilization: the topology-aware stabilization. Here,
the requirement to the containment radius is relaxed to a containment area, i.e.
the set of vertices which may be disturbed by Byzantine ones is not reduced to the
union of c-neighborhood of Byzantine vertices but is defined as a function of the
communication graph and Byzantine vertices location. Note that this relaxation
may be applied either to strict or to strong stabilization.

After a detailed study of two particular maximizable metrics, we provide a max-
imum metric spanning tree construction distributed protocol for any maximizable
metric. We prove that this distributed protocol exhibits optimal Byzantine contain-
ment with respect to both topology-aware strict and strong stabilization. Finally,
we focus on strong stabilization. We characterize the set of maximizable metrics
that allow the existence of a strongly-stabilizing distributed protocol.

17.1.5 Summary

As a summary of contributions of this thesis, we propose to complete Figure 4.1
(that sums up the respective constraints on permanent or intermittent fault tolerant
schemes in self-stabilization) by adding fault-tolerance schemes introduced in this
thesis.

In this way, Figure 17.1 compares all fault-tolerance schemes that appear in this
thesis. Recall that we say that a fault tolerance scheme is more constrained that
another if any distributed protocol that satisfies the first satisfies the second.

17.2 Perspectives

Immediate research perspectives were already discussed in the concluding chap-
ter of each contributing part. We now present general mid or long term research
goals raised by our work.

New fault-tolerance schemes This thesis focused on stabilizing distributed pro-
tocols that are moreover able to contain the effects of a given class of permanent or
intermittent faults (that are supposed to occur after the end of transient faults). An
interesting path for future research is to study the effectiveness of the combination
of variants of stabilization with such containments. For instance, is it possible to
provide a snap-stabilizing distributed protocol that is also able to contain the effects
of intermittent Byzantine faults?

In general, the introduction of new fault-tolerance schemes would permit to
enrich the available panel of fault-tolerant solutions since the distributed system

17.2. Perspectives 235

designers have to manage an intricate trade-off between:

1. the strength (with respect to fault tolerance or fault containment) of the chosen
fault-tolerance scheme,

2. the scope of problems that remain solvable using such a scheme,

3. the cost of this scheme for a particular problem,

4. the criticality of the application, and

5. the frequency of fault occurrences in the system.

For instance, it is useless to guarantee very strong fault-tolerance properties at
a high cost (with respect to used resources such as memory or bandwidth) for a
routing distributed protocol in a network that experiences faults once a year. On
the other hand, if human life depends on the correctness of the application (e.g. air
traffic control), strong fault-tolerance is desirable whatever the cost is.

Bounding the power of Byzantine vertices Another way to extend results
presented in this thesis is to restrict the model we used for Byzantine faults. For
example, we considered only Byzantine vertex with an unbounded power (that is,
they may execute an infinite number of malicious actions). Another possible model
of Byzantine faults may consider bounded power (that is, each Byzantine vertex
can perform only a finite number of malicious actions in any execution, as these
actions have a high cost for the Byzantine node). Some interesting questions can
be considered in this model: Is there a trade-off between the number of Byzantine
actions and the containment radius/area? Is there a trade-off between the total
number of perturbations Byzantine vertices can cause and the number of Byzantine
vertices, that is, is a single Byzantine vertex more effective to harm the distributed
system than a team of Byzantine vertices, considering the same total number of
Byzantine actions?

Once again, the goal is to provide a large panel of distributed protocols with
various fault-tolerance properties in order that the user can choose the most con-
venient for his application and his particular constraints. Indeed, it is useless to
provide “perfect” fault tolerance to unbounded Byzantine faults at high cost if the
considered distributed system is only hit by message omission (for which it may be
possible to design an ad hoc solution at a lower cost). Defining a rigorous taxonomy
of faults that allows comparison of the relative power of fault tolerance schemes is
an interesting challenge.

Probabilistic approach In this thesis, we chose to only study deterministic issues
related to permanent or intermittent fault containment in self-stabilization. Another
way to bypass numerous impossibility results presented in this thesis is to guarantee
the stabilization of the distributed system only with a high probability.

As in self-stabilization, we think that it is possible to define several notions
of probabilistic permanent or intermittent fault tolerance in self-stabilization. For
instance, we can define a fault-tolerance scheme that ensures properties that are

236 Chapter 17. Conclusion

similar to the ones of strict stabilization but with a bounded expected convergence
time only (instead of a bounded convergence time) or a probabilistic closure. Strong
stabilization may be extended by guaranteeing a bounded expected number of dis-
ruptions. The main question is then to evaluate the benefits of randomization on
containment radius or areas with respect to deterministic solutions. In other words,
the issue is still to allow the final user of the distributed system to find the best
trade-off between fault-tolerance properties, implementation difficulty, cost of dis-
tributed protocols, and impossibility results for its application.

Alternate distributed system models An appealing way to extend results
presented in this thesis is to consider another models of distributed systems. We
can foresee at least two paths of research:

1. We may consider models that includes various new assumptions. Numerous
models of such new distributed systems have been described in the past few
years. For instance, one can consider dynamic distributed systems in which
communications links may appear or disappear over time, sensor systems in
which vertices communicate by radio medium and are limited by their battery
capacities, or robots systems in which vertices are enhanced with mobility
capacities. The study of simultaneous tolerance to several kind of faults in
such systems is a challenging task.

2. We may also consider more realistic models for distributed systems retain-
ing similar constraints with respect to fault or attack tolerance to the ones
presented in this thesis. An interesting open question is then the design of
automatic transformers for such models that ensure fault-tolerance properties
preservation of the original distributed protocol.

17.2. Perspectives 237

Self-Stabilization

Pseudo-Stabilization

Fault-Tolerant
Pseudo-Stabilization

Self-Stabilization

Byzantine-Tolerant
Self-Stabilization

?

?

U

?s

Strict Stabilization

Strong Stabilization

?

q

z

R

j

?

Fault-Tolerant
Self-Stabilization

q

?

(c, f)-Strict Stabilization

(f, r)-Fault-Tolerant
(t, c, f)-Strong Stabilization

(CB, f)-Topology-Aware

(t, CB, f)-Topology-Aware

Figure 17.1: Summary of respective constraints on fault-tolerance schemes used
in this thesis. An arrow from a scheme to another means that the first is more
constrained than the second. Note that we remove all arrows deductible from tran-
sitivity.

Annexe A

Version française

Le vrai danger, ce n’est pas quand les ordina-
teurs penseront comme les hommes, c’est quand
les hommes penseront comme les ordinateurs.

Sydney J. Harris

Sommaire
A.1 Contexte de la thèse . 240

A.1.1 Généralités . 240
A.1.2 Modèles et tolérance aux fautes 243

A.2 Registre atomique . 245
A.2.1 Contexte . 245
A.2.2 Contributions . 246
A.2.3 Perspectives . 246

A.3 Unisson . 247
A.3.1 Contexte . 247
A.3.2 Contributions . 248
A.3.3 Perspectives . 248

A.4 Arbre couvrant . 249
A.4.1 Contexte . 249
A.4.2 Contributions . 250
A.4.3 Perspectives . 251

A.5 Conclusion . 251

Cette annexe constitue un résumé des principales contributions de cette thèse. Ce
résumé reste volontairement à un niveau purement intuitif car le lecteur intéressé par
la présentation complète et rigoureuse d’une contribution sera renvoyé au chapitre
correspondant de la thèse.

Dans un premier temps, nous présentons la problématique de cette thèse à l’aide
d’une illustration ne relevant pas de l’Informatique.

Longtemps après sa victoire contre le Seigneur des Anneaux Sauron [Tol37,
Tol54a, Tol54b, Tol55], Frodon Sacquet se perdit dans un immense labyrinthe perdu
au fin fond de la Comté. Lorsque Sam Gamegie réalisa sa disparition, il demanda
à tous les Hobbits de l’aider à sauver Frodon. Ils rentrèrent alors tous dans le la-
byrinthe et se dispersèrent autant que possible. Les Hobbits étaient suffisament

240 Annexe A. Version française

nombreux pour couvrir le labyrinthe en entier (il y avait au moins un Hobbit par in-
tersection). Chaque Hobbit n’était capable de communiquer qu’avec ceux situés aux
intersections avoisinantes en raison du bruit qu’ils provoquaient dans le labyrinthe.
Leur but était d’indiquer à Frodon le chemin de la sortie en lui indiquant la route
à chaque intersection. Cependant, comme il est bien connu que les Hobbits aiment
la bière et le cidre, ils étaient tous ivres quand ils entrèrent dans le labyrinthe et
ils s’endormirent tous en arrivant à leur position. Lorsqu’ils se réveillèrent quelques
heures plus tard, chacun d’eux était désorienté et indiquait une direction arbitraire
à Frodon. En revanche, même s’ils étaient désorientés, les Hobbits voulaient tou-
jours aider Frodon à sortir. Dans ce but, ils collaborèrent pour recouvrer de leur
désorientation. Le Hobbit qui était situé à la sortie du labyrinthe en informa ses voi-
sins. Ceux-ci choisirent d’indiquer ce chemin à Frodon et propagèrent l’information.
Comme tous les Hobbits firent de même, ils furent capable d’indiquer un chemin
complet vers la sortie à Frodon quelle que soit sa position initiale dans le labyrinthe.

Imaginons à présent un autre scénario dans lequel certains des Hobbits qui en-
trèrent dans le labyrinthe sont en réalité des traîtres qui tentaient de venger Sauron
en perdant Frodon à tout jamais dans ce labyrinthe. Lorsque les Hobbits honnêtes
se réveillèrent en étant désorientés, ces traîtres purent leur mentir afin de les em-
pêcher d’atteindre leur objectif. Ces Hobbits menteurs n’avaient alors plus le même
objectif que les autres Hobbits : ils voulaient empêcher Frodon d’atteindre la sor-
tie alors ques les Hobbits honnêtes souhaitaient qu’il sorte. Les Hobbits menteurs
prétendirent être situés à la sortie du labyrinthe même si çà n’était pas le cas. Les
Hobbits honnêtes n’eurent alors pas d’autre choix que de propager cette information
comme précédement (ils n’avaient aucun moyen de déterminer si cette information
est vraie ou pas). Les Hobbits menteurs peuvent ainsi attirer Frodon vers eux si il
était initiallement plus proche de l’un d’eux que de la vraie sortie du labyrinthe.

Sur cet exemple intuitif, le cœur de cette thèse consiste à étudier l’impact de la
combinaison de la désorientation initiale des Hobbits honnêtes et des mensonges des
traîtres sur les capacités des Hobbits honnêtes à atteindre leur objectif (dans notre
exemple, indiquer le chemin de la sortie à Frodon).

Dans la suite de cette annexe, nous présentons le contexte de cette thèse en
explicant l’analogie avec notre illustration (voir section A.1) puis nous détaillons les
contributions de cette thèse dans les sections A.2, A.3 et A.4. Nous concluons dans
la section A.5.

A.1 Contexte de la thèse

A.1.1 Généralités

Systèmes répartis et tolérance aux fautes L’algorithmique répartie est une
branche de l’Informatique qui étudie les systèmes répartis. Intuitivement, un système
réparti est un système constitué d’unités de calcul autonomes (appelées processeurs
ou processus) dotées de capacités de communication. Chaque processeur peut com-
muniquer avec un sous ensemble des autres processeurs. De ce fait, il est naturel

A.1. Contexte de la thèse 241

de représenter les possibilités de communication d’un tel système par un graphe.
Les principales caractéristiques de ce type de système sont la localité de l’informa-
tion (chaque processeur possède seulement une vue locale sur le système et doit
communiquer avec les autres processeurs pour obtenir n’importe quelle information
globale) et la localité du temps (chaque processeur exécute ses instructions à son
propre rythme). Ce modèle est suffisament général pour englober les caractéristiques
de n’importe quel type de réseau (réseau local, réseau de capteurs, système pair-à-
pair, ...). Dans notre illustration, les Hobbits disséminés dans le labyrinthe peuvent
être vus comme un système réparti. En effet, nous pouvons représenter le labyrinthe
par un graphe (chaque sommet représente une intersection) et les Hobbits peuvent
être vus comme des unités de calcul capable de communiquer avec celles situées aux
intersections limitrophes.

Le but de l’algorithmique répartie est la conception de protocoles résolvant cer-
tains problèmes dans les systèmes répartis. De tels protocoles sont appelés protocoles
répartis. Générallement, la difficulté provient du fait que les problèmes considérés
portent sur des propriétés globales du système. En conséquence, les processeurs ne
peuvent pas les résoudre de manière locale et doivent communiquer et coopérer
pour atteindre un objectif commun. Dans notre illustration, les Hobbits du laby-
rinthe ont un problème global à résoudre : trouver un chemin menant Frodon à la
sortie. Comme aucun Hobbit n’a de solution locallement, ils doivent coopérer pour
trouver un tel chemin. En systèmes répartis, ce problème est connu comme le pro-
blème de construction d’arbre couvrant. Un processeur donné est distingué comme
la racine du système (la sortie du labyrinthe) et chaque processeur doit choisir un
de ses voisins comme parent (le premier processeur du chemin entre lui et la racine).
Dans notre illustration, il s’agit pour chaque Hobbit d’indiquer le chemin de la sortie
à Frodon.

Lorsque la taille d’un système réparti augmente ou lorsqu’il est déployé dans un
environnement dangereux, nous ne pouvons pas négliger la probabilité que certains
éléments du système se comportent incorrectement (par exemple, les communica-
tions peuvent interférer, certains processeurs peuvent arrêter d’exécuter leurs ins-
tructions, être sujets à des attaques ou des virus, ...). Tout comportement anormal
de tout élément d’un système réparti est modélisé par le concept de faute. Comme
ce concept est très général, il est classiquement admis de classifier les fautes se-
lon plusieurs critères. Par exemple, la durée de la faute peut être prise en compte.
Nous distinguons une faute transitoire (une faute de durée finie) d’une faute perma-
nente (faute de durée infinie) ou d’une faute intermittente (les processeurs affectés
exhibent successivement des comportement corrects et incorrects). Nous pouvons
également distinguer les fautes par leur nature. Par exemple, nous pouvons considé-
rer des fautes crashs (les processeurs affectés cessent d’exécuter leurs instructions),
des fautes Byzantines (les processeurs affectés exhibent un comportement arbitraire)
ou des corruptions de mémoire... Dans notre illustration, l’ivresse des Hobbits peut
être interprétée comme une faute transitoire (les Hobbits se réveillent en un temps
fini) induisant une corruption de mémoire (les Hobbits sont désorientés à leur réveil)
tandis que la trahison de certains Hobbits peut être vue comme une faute Byzan-

242 Annexe A. Version française

tine permanente (ces Hobbits ne coopérent plus avec les autres à la réalisation de
l’objectif commun).

La tolérance aux fautes répartie est une sous-branche de l’algorithmique répartie
qui se concentre sur les protocoles répartis tolérant des fautes. En d’autres mots, un
protocole réparti tolérant aux fautes assure que certaines propriétés sont garanties
même si certaines fautes touchent le système. Il existe plusieurs notions de tolérance
aux fautes en fonction de la classe de fautes tolérées. Dans la suite, nous présentons
les notions de tolérance aux fautes étudiées dans cette thèse.

Auto-stabilisation Dans notre première illustration dans laquelle tous les Hob-
bits sont honnêtes, ils parviennent ultimement à indiquer à Frodon un (plus court)
chemin vers la sortie même s’ils étaient initialement désorientés. Cette capacité à re-
trouver un comportement correct en un temps fini à partir d’un état initial arbitraire
est appellé auto-stabilisation en algorithmique répartie. L’auto-stabilisation [Dij74]
permet de tolérer des fautes transitoires (quelle que soit la nature de la faute). En ef-
fet, l’état du système peut être quelconque à la fin d’une faute transitoire (en raison
des actions anormales durant la faute, de corruption de mémoire, ...). Un protocole
réparti auto-stabilisant assure alors que le système retrouvera un comportment cor-
rect en un temps fini sans aide extérieure ou manuelle. Il est important de noter
qu’un protocole réparti auto-stabilisant ne peut tolérer que des fautes transitoires.
En effet, un tel protocole est basé sur l’hypothèse que les instructions de chaque
processeur ne sont pas corrompues par la faute transitoire (seule la mémoire volatile
l’est) et que chaque processeur exécute correctement son protocole après la fin de
la faute transitoire. Dans le cas contraire, le protocole risque de ne jamais retrouver
un comportement correct.

Confinement de fautes crashs/Byzantines en auto-stabilisation Pour as-
surer une meilleure tolérance aux fautes, il est possible de considérer des protocoles
répartis auto-stabilisants qui sont de plus capables de gérer un nombre limité de
fautes permanentes ou intermittentes après la fin des fautes transitoires. En raison
de ce modèle de fautes très ambitieux à contrôler, nous ne pouvons pas garantir
que le système entier retrouve un comportement correct en un temps fini comme en
auto-stabilisation (au moins les processeurs fautifs peuvent exhiber un comporte-
ment anormal infiniment longtemps). Dans notre seconde illustration dans laquelle il
existe des traîtres qui veulent perdre Frodon dans le labyrinthe, le protocole réparti
utilisé par les Hobbits honnêtes garantit seulement que Frodon trouvera la sortie
s’il est initiallement (strictement) plus proche de la sortie que d’un Hobbit menteur.
Cette propriété de tolérance aux fautes peut sembler faible au premier abord mais
nous prouvons dans cette thèse que nous ne pouvons pas en garantrir une plus forte
si les Hobbits honnêtes sont initialement désorientés.

Le principal problème abordé dans cette thèse est la tolérance conjointe aux
fautes transitoires et aux fautes permanentes ou intermittentes dans les systèmes
répartis. La principale difficulté provient du fait suivant : dans de tels systèmes, il

A.1. Contexte de la thèse 243

est impossible de distinguer un processeur fautif (de manière permanentes ou inter-
mittente) qui ne collabore plus à la réalisation de l’objectif commun du système d’un
processeur mal initialisé mais honnête (qui coppére pour atteindre l’objectif global
du système en dépit des fautes transitoires). Dans notre illustration, les traîtres
peuvent attirer Frodon dans la mauvaise direction car les Hobbits honnêtes n’ont
aucun moyen de distinguer le Hobbit honnête situé à la sortie du labyrinthe d’un
Hobbit menteur et propagent donc les deux informations de la même manière.

A.1.2 Modèles et tolérance aux fautes

La première partie de cette thèse est consacrée à la présentation détaillée des
modèles utilisés ainsi que la définition de certains concept classiques de tolérance
aux fautes. Ces présentations sont accompagnées d’états de l’art détaillés.

Modèles Le chapitre 2 présente les modèles de calcul utilisés dans cette thèse ainsi
que le modèle de faute adopté. Le système réparti est classiquement représenté par
un graphe de communication dans lequel les sommets représentent les processeurs
tandis que les arêtes représentent les liens de communications entre processeurs.
Nous présentons ensuite les deux modèles de calcul utilisés dans cette thèse. Le
premier est le modèle à états dans lequel chaque processeur peut, en une étape
atomique (i.e. indivisible) , lire l’état de tous ses voisins et modifier son propre
état en fonction de cette lecture. Le second est le modèle par passage de message
dans lequel chaque processeur peut, en une étape atomique, envoyer ou recevoir un
message à un des ses voisins ou exécuter une instruction interne. Le premier modèle
est largement utilisé en auto-stabilisation bien qu’il soit moins réaliste que le second.

Le chapitre 3 est consacré à la définition formelle d’un concept central de l’auto-
stabilisation : le démon [Dij74]. Il s’agit d’une abstraction permettant de modéliser
l’asynchronisme du système réparti. Il peut être vu intuitivement comme un or-
donnanceur qui sélectionne un sous-ensemble de processeurs à chaque étape. Ces
processeurs séléctionnés sont alors autorisés à exécuter leur protocole. Nous identi-
fions quatre caractéristiques permettant de classifier les démons :

1. La distribution du démon caractérise la distance minimale entre deux proces-
seurs simultanément choisis par le démon.

2. L’équité du démon caractérise les choix du démon dans le temps.

3. La borne d’un démon est le nombre maximal d’activations d’un processeur
autorisées par le démon entre deux activations consécutives d’un autre pro-
cesseur.

4. L’activabilité d’un démon est le nombre maximal d’étapes dans lesquelles un
processeur n’est pas sélectionné par le démon entre deux de ses actions consé-
cutives.

Nous établissons un ordre partiel permettant de comparer les démons entre eux. Cet
outil est utile pour comparer entre eux des protocoles résolvant le même problème

244 Annexe A. Version française

mais sous des démons différents. Enfin, nous proposons un état de l’art des trans-
formateurs de démons existants. Ces protocoles permettent à un protocole réparti
de s’exécuter sous un démon plus fort tout en préservant l’auto-stabilisation.

Tolérance aux fautes Le chapitre 4 dresse un état de l’art des concepts de tolé-
rance aux fautes dans les systèmes répartis. Il existe deux critères principaux pour
les distinguer les uns des autres. Le premier est la classe de fautes tolérées tandis
que le second est la propriété de masquage [Tix09]. Un concept de tolérance aux
fautes est dit masquant lorsqu’il assure que les fautes que subit le système réparti
ne sont pas visibles pour un observateur extérieur.

Par exemple, un protocole robuste aux crashs (qui guarantit que le système se
comporte normalement même en présence d’un nombre limité de fautes crashs) peut
être qualifié de masquant étant donné qu’un observateur extérieur ne peut pas savoir
si une exécution donnée a subi des crashs ou non. En revanche, l’auto-stabilisation
n’est pas masquante car un observateur extérieur peut constater un comportement
anormal du système durant la phase de stabilisation.

Nous présentons maintenant les variantes de l’auto-stabilisation qui sont utilisées
dans cette thèse :

Pseudo-stabilisation : La pseudo-stabilisation [BGM93] est une variante affaiblie
de l’auto-stabilisation étant donné que nous imposons seulement l’existence
d’un suffixe de l’exécution satisfaisant la spécification (et non plus l’existence
d’un préfixe borné ne respectant pas la spécification).
Ce concept plus faible peut être utile par exemple lorsque l’auto-stabilisation
est impossible.

Auto-stabilisation tolérante aux fautes : Il s’agit d’une variante de l’auto sta-
bilisation capable de tolérer de plus un nombre limité de fautes crashs [AH93,
GP93]. Un protocole réparti est dit auto-stabilisant et tolérant aux fautes s’il
guarantit, partant d’un état initial arbitraire, que le système réparti retrouve
un comportement correct en un temps fini malgré un nombre borné de fautes
crashs.
Il est bien sûr possible de définir une variante de la pseudo-stabilisation pro-
curant des propriétés similaires [DGDF10].

Auto-stabilisation tolérante aux Byzantins : Il s’agit d’un concept de tolé-
rance aux fautes analogue au précédent en considérant des fautes Byzantines
au lieu des fautes crashs [DW95].
On peut noter que ces approches sont masquantes pour les fautes permanentes
ou intermittentes mais non masquantes pour les fautes transitoires.

Stabilisation stricte : Dans un système réparti sujet à des fautes transitoires ar-
bitraires et à un nombre borné de fautes Byzantines intermittentes, la stabi-
lisation stricte [NA02] garantit que le système atteint en un temps fini une
configuration à partir de laquelle seuls les processeurs situés en dessous d’une
distance donnée d’un processeur Byzantin ne respectent pas leur spécification.

A.2. Registre atomique 245

En d’autres termes, l’effet des fautes Byzantines est confiné en un temps fini
autour des processeurs Byzantins.

A.2 Registre atomique

A.2.1 Contexte

Dans la seconde partie de cette thèse, nous nous concentrons sur un problème
fondamental des systèmes répartis : la simulation d’un modèle de calcul sur un autre.
Le principal intérêt de ce problème vient de l’observation suivante : plus l’atomicité
d’un modèle de calcul est forte, plus le dévellopement d’une application répartie
dans ce modèle est simple mais, en revanche, moins le protocole obtenu est réaliste.
Afin de pouvoir conserver la simplicité d’un modèle de calcul à forte atomicité
dans un modèle à atomicité fine, une solution intéressante consiste à dévelloper un
transformateur du premier vers le second. De cette manière, nous pouvons dévelloper
des protocoles répartis dans le modèle à forte atomicité (en profitant de sa simplicté)
et l’exécuter dans le modèle de calcul à atomicité fine (en profitant de son réalisme)
en le composant avec le transformateur.

Par exemple, [DIM97a] étudie la simulation du modèle à états sur le modèle à
passage de messages dans un contexte auto-stabilisant. Il existe aussi des transfor-
mateurs pour des modèles de calcul très spécifiques vers des modèles plus classiques
afin de pouvoir ré-utiliser des protocoles répartis existants (écrits pour le modèle
classique) dans ces modèles spécifiques. Par exemple, [KA06] propose un transfor-
mateur d’un modèle de calcul spécifique aux systèmes répartis sans fils (le modèle
de diffusion locale avec collisions) vers le modèle à états.

La principal inconvénient de ces transformateurs de modèles de calcul est qu’ils
introduisent généralement un surcoût important (en temps et/ou en mémoire) par
rapport à un protocole réparti dévellopé directement dans le modèle de calcul à
atomicité fine. En revanche, ils permettent de prouver des équivalences entre les
modèles de calcul étant donné que tout problème ayant une solution dans le modèle
à atomicité forte en a une dans celui à atomicté fine grâce au transormateur idoine.

Dans cette partie, nous nous concentrons sur la simulation d’un modèle de calcul
classiques des systèmes répartis tolérant aux fautes, le modèle à registres partagés
(cf. [Lyn96]), sur le modèle à passage de messages. Le modèle à registres partagés est
caractérisé par le fait que les communications entre les processeurs ont exclusivement
lieu à travers des lectures et écritures sur des variables globales partagées (appelées
registres). Nous nous intéressons à la classe de registres assurant les plus fortes
propriétés, les registres atomiques [Lam86a, Lam86b]. Cette simulation a été très
étudiée dans des systèmes répartis sujets à des fautes crashs ou Byzantines.

L’objectif de cette partie est d’étudier la simulation d’une registre atomique sur
le modèle à passage de messages dans un système réparti simultanéménent sujet
à des fautes transitoires et à des fautes crashs. Le chapitre 5 présente le détail du
contexte de cette partie.

246 Annexe A. Version française

A.2.2 Contributions

Les contributions de cette partie se répartissent en deux catégories : l’étude de
deux outils indépendants nécessaires à notre simulation et la simulation elle-même.

Nous présentons tout d’abord les deux outils nécessaires à notre simulation. Ces
résultats sont détaillés dans le chapitre 6.

1. Nous proposons un protocole de communication permettant de s’affranchir des
caractéristiques des canaux de communication. En effet, nous étudions l’effet
des fautes transitoires sur des canaux de communication bornés, non fiables
et non-FIFO. Le but est de donner un protocole permettant à un processeur
d’envoyer des messages à un de ses voisins tout en limitant le nombre de mes-
sages perdus, fantômes (i.e. non envoyés), dupliqués ou ré-ordonnancés. Nous
montrons qu’il est impossible dans de telles circonstances d’empêcher la livrai-
son d’un message fantôme, la duplication d’un message et le ré-ordonnancemnt
d’un message. Nous fournissons ensuite un protocole fournissant des perfor-
mances optimales par rapport à ces quatres critères.

2. De nombreuses simulations de registres reposent sur l’idée d’estampiller les
valeurs du registre afin de pouvoir les dater et ainsi retrouver la dernière valeur
écrite dans le registre. Il existe principalement deux approches. La première
consiste à utiliser des entiers naturels qui garantissent un ordre total mais
introduisent une mémoire non bornée. C’est pourquoi la seconde approche
priviligie des systèmes d’estampillage bornés. Nous proposons un tel système
d’estampillage borné capable de supporter des fautes transitoires.

Le chapitre 7 s’attache à la construction d’une simulation de registre atomique en
présence de fautes transitoires et de crashs. Attiya, Bar-Noy et Dolev [ABND95] ont
proposé une simulation de registres en mémoire bornée dans des systèmes répartis
sujets à une minorité de crashs. Nous montrons dans ce chapitre que ce protocole
ne nécessite que peu de modifications (utilisation du protocole de communication
et du système d’estampillage du chapitre 6 et détection des estampilles en conflit)
pour devenir pseudo-stabilisant et tolérant aux fautes.

Les résultats du chapitre 6 forment un article dans Information Processing Let-
ters [DDPBT11b], une communication dans les actes du 24th International Sym-
posium on Distributed Computing (DISC 2010) [AAD+10] et des 13èmes Ren-
contres Francophones sur les Aspects Algorithmiques des Télécommunications (Al-
gotel 2011) [DDPBT11a]. Concernant le chapitre 7, des versions préliminaires ont été
présentées dans les actes du 24th International Symposium on Distributed Compu-
ting (DISC 2010) [AAD+10] et du 13th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS 2011) [AAD+11].

A.2.3 Perspectives

Les travaux présentés dans cette partie ouvrent plusieurs persepectives que nous
détaillons dans le chapitre 8 :

A.3. Unisson 247

1. Notre approche étant modulaire, il est possible d’utiliser le protocole de com-
munication ou le système d’estampillage du chapitre 6 dans d’autres contextes.

2. Il existe de nombreux protocoles répartis tolérant aux crashs écrits dans le
modèle à registres partagés. Il serait intéressant de fournir un transformateur
permettant de produire leur équivalent auto-stabilisant et tolérant aux fautes
(que nous pourrions alors utiliser dans le modèle à passage de messages grâce
à notre transformateur).

3. Enfin, nous conjecturons l’impossibilité de produire un simulateur de registre
atomique auto-stabilisant et tolérant aux fautes dans notre contexte. La preuve
de cette conjecture montrerait la nécessité de notre approche pseudo-stabilisan-
te.

A.3 Unisson

A.3.1 Contexte

La troisième partie de cette thèse s’intéresse à un problème classique des systèmes
répartis : la synchronisation. L’intérêt de la synchronisation réside dans l’observation
suivante : dans un système réparti sujet à des fautes, plus les propriétés de synchro-
nisation du système sont fortes, plus le dévellopement d’une application répartie est
simple [FLP85]. En effet, Fisher, Lynch et Patterson ont démontré l’impossibilité
du consensus dans un système réparti asynchrone sujet à des fautes permanentes
alors que ce problème est facilement résolvable dans un système réparti synchrone.

C’est pourquoi une solution intéressante pour dévelloper un protocole réparti
dans un système asynchrone consiste à d’abord dévelloper un synchronisateur [Mis91]
(un protocole réparti qui assure certaines propriétés de synchronisation dans un sys-
tème asynchrone), de dévelloper un protocole réparti synchrone pour le problème
initial et finalement de composer ces deux protocoles afin d’obtenir un protocole
réparti pour le problème dans un système asynchrone.

Plus précisèment, nous considérons dans cette partie le problème de l’unisson
asynchrone [GH90, CFG92] qui requiert que tous les processeurs maintiennent une
synchronisation entre leurs compteurs appelés horloges logiques. Chaque processeur
est tenu d’incrémenter infiniment souvent d’une unité son horloge logique tout en
maintenant une différence d’horloge maximale d’une unité avec chacun de ses voisins.
L’unisson asynchrone est une brique de base fondamentale de plusieurs protocoles
répartis.

L’objectif de cette partie est l’étude de l’unisson asynchrone dans un contexte
nouveau. Plus précisèment, nous tenons d’apporter une solution à ce problème dans
un système réparti simultanément sujet à des fautes transitoires et à des fautes
Byzantines intermittentes. Le chapitre 9 détaille le contexte de cette partie. En par-
ticulier, nous y identifions deux propriétés des unissons asynchrones auto-stabilisants
connus : la minimalité et la priorité.

248 Annexe A. Version française

A.3.2 Contributions

La première contribution de cette partie est la généralisation de la définition de
l’auto-stabilisation tolérante aux fautes en utilisant le concept du rayon de confine-
ment de la stabilisation stricte. Cette généralisation est motivée par l’observation
suivante : un résultat d’impossibilité pour l’auto-stabilisation tolérante aux fautes
avec un rayon de confinement donné implique un résultat similaire pour la stabili-
sation stricte avec le même rayon de confinement.

En effet, le chapitre 10 est consacré à une série de résultats d’impossibilité pour
l’unisson asynchrone dans un contexte auto-stabilisant tolérant aux fautes. Nous
montrons en particulier qu’il est impossible de dévelloper un protocole d’unisson
asynchrone auto-stabilisant tolérant aux fautes pour tout rayon de confinement si
l’une des conditions suivantes est vérifiée :

1. Deux processeurs ou plus peuvent subir un crash.

2. Le démon est inéquitable.

3. Le démon est faiblement équitable et l’unisson est minimal ou prioritaire.

4. Le démon est fortement équitable, le degré du système réparti est supérieur à
3 et l’unisson est minimal ou prioritaire.

Au vu de ces résultats d’impossibilité, le chapitre 11 s’attache à étudier la pos-
sibilité des cas restants. Nous fournissons un protocole strictement stabilisant pour
l’unisson asynchrone pour les systèmes répartis réduits à une chaîne ou à un anneau
sous un démon fortement équitable. Ce protocole possède un rayon de confinement
nul, ce qui est évidement optimal, est minimal et prioritaire, ce qui rend l’ensemble
des hypothèses nécessaire d’après le chapitre 10. Enfin, nous prouvons que le temps
de stabilisation de ce protocole strictement stabilisant est optimal.

Les résultats présentés dans le chapitre 10 ont fait l’objet d’une publication dans
Theoretical Computer Science [DPBT11] et dans les actes du 23rd International
Symposium on Distributed Computing (DISC 2009) [DPBT09]. Le chapitre 11 a
conduit à une communication dans les actes de la 14th International Conference On
Principles Of DIstributed Systems (OPODIS 2010) [DPBNT10].

A.3.3 Perspectives

Le chapitre 12 propose une généralisation du problème de l’unisson asynchrone
dans lequel l’écart maximal autorisé entre les horloges de deux processeurs voisins
est une constante arbitraire. Nous montrons alors que les résultats présentés dans
cette partie sont aisément généralisables à ce problème.

Les principales questions encore ouvertes sur l’unisson asynchrone en présence
de fautes transitoires et de fautes Byzantines intermittentes sont les suivantes :

1. Nous conjecturons que la minimalité et la priorité du protocole sont néces-
saires à la stabilisation stricte déterministe. En revanche, la définition d’une
stabilisation stricte probabiliste permettrait certainement de contourner les
résultats d’impossibilité du chapitre 10.

A.4. Arbre couvrant 249

2. Les résultats présentés dans cette partie sont valables dans le modèle à états
(modèle à atomicité forte). L’extension de ces résultats à d’autres modèles
pourrait être intéressante même si nous conjecturons qu’une atomicité plus
fine tendrait à étendre les résultats d’impossibilité au cas de l’anneau.

A.4 Arbre couvrant

A.4.1 Contexte

Dans la quatrième partie de cette thèse, nous nous intéressons à un problème
fondamental des systèmes répartis : la construction d’arbre couvrant [Gär03]. En
effet, les systèmes répartis sont en partie caractérisés par le fait que les processeurs
doivent communiquer pour résoudre des tâches non triviales. C’est pourquoi l’opti-
misation des communications est au cœur de nombreux protocoles répartis. Il existe
plusieurs manières d’optimiser les communications dans un système réparti. Une des
plus simple consiste à minimiser le nombre de liens de communications utilisés par
les processeurs pour communiquer entre eux. Un arbre couvrant est en ce sens la
meilleure structure de communication possible étant donné qu’il permet par défini-
tion à tous les processeurs de communiquer tout en minimisant le nombre de liens
de communications réservés. Cette optimalité des arbres couvrants explique qu’il
existe de nombreux protocoles répartis pour construire des arbres couvrants utilisés
comme brique de base pour des applications réparties plus complexes nécessitant
une optimisation des communications.

Pour un graphe de communication donné, il existe de nombreux arbres couvrants
différents (par exemple, un graphe complet admet nn−2 arbres couvrants distincts).
Même si tous ces arbres couvrants minimisent par définition le nombre de liens de
communications réservés, ils ne sont pas tous équivalents. En effet, nous pouvons
distinguer d’autres critères pour distinguer les arbres couvrants. Par exemple, un
arbre couvrant en largeur [HC92] permet de minimiser le délai de communication
entre un processeur distingué (la racine) et tout autre processeur tandis qu’un arbre
de poids minimal [GHS83] minimise le coût global de l’arbre (dans le cas de graphes
de communication valués).

Cette partie se concentre sur la construction d’arbre couvrant selon une métrique
maximisable. Intuitivement, une métrique est une fonction permettant de calculer
une distance le long de tout chemin du graphe de communication. Une métrique est
maximisable [GS03] lorsqu’il existe toujours un arbre couvrant qui maximise la mé-
trique de chaque processeur par rapport à la racine du système réparti. Par example,
le plus court chemin ou le flot d’un chemin sont des métriques maximisables.

L’objectif de cette partie est l’étude de la construction d’arbre couvrant selon
toute métrique maximisable dans un système réparti sujet à des fautes transitoires
et à des fautes Byzantines intermittentes. La chapitre 13 donne plus de détails sur
le contexte de cette partie.

250 Annexe A. Version française

A.4.2 Contributions

La contribution principale de cette partie est la définition de trois nouveaux
concepts de confinement de fautes Byzantines en auto-stabilisation. Nous les pré-
sentons succintement dans la suite.

1. La stabilisation forte est une variante affaiblie de la stabilisation stricte. Plus
précisèment, le rayon de confinement de la stabilisation stricte est relâché dans
le temps étant donné que nous autorisons les processeurs en dehors du rayon
de confinement à être perturbés un nombre fini de fois par les processeurs
Byzantins après la convergence.

2. La stabilisation stricte topologiquement dépendante affaiblit également les
contraintes imposées par la stabilisation stricte. Nous généralisons le rayon
de confinement de la stabilisation stricte à une aire de confinement. Cette
aire de confinement est simplement l’ensemble des processeurs (en fonction
du graphe de communication) qui sont infiniment souvent perturbés par les
processeurs Byzantins.

3. La stabilisation forte topologiquement dépendante combine les deux idées pré-
sentées ci-dessus.

Les définitions formelles de ces nouveaux concepts de tolérance aux fautes sont
présentées dans le chapitre 13.

Dans ce contexte, les contributions de la quatrième partie de cette thèse sont les
suivantes.

1. Le chapitre 14 propose une étude de deux cas particuliers de métriques maxi-
misables. Dans un premier temps, il démontre l’existence d’un protocole forte-
ment stabilisant pour la construction de l’arbre en profondeur avec un rayon de
confinement nul (la stabilisation stricte étant impossible pour toute construc-
tion d’arbre). Ensuite, il se concentre sur la construction de l’arbre en lar-
geur et démontre l’impossibilité de la stabilisation forte pour tout rayon de
confinement. Nous nous intéressons alors à la stabilisation topologiquement
dépendante et fournissons un protocole réparti exhibant l’aire de confinement
optimale par rapport à la stabilisation stricte et forte topologiquement dépen-
dante.

2. Le chapitre 15 s’intéresse à la construction d’arbre couvrant par rapport à
toute métrique maximisable. La première contribution de ce chapitre est de
proposer un protocole réparti pour cette tâche qui exhibe une aire de confi-
nement optimale aussi bien pour la stabilisation stricte topologiquement dé-
pendante que pour la stabilisation forte topologiquement dépendante. Enfin,
nous caractérisons l’ensemble des métriques maximisables autorisant l’exis-
tence d’une solution fortement stabilisante, ce qui permet de généraliser les
résultats du chapitre précédent.

Les résultats du chapitre 14 apparaissent dans un article de IEEE Transactions
on Parallel and Distributed Systems [DMT11b], dans une communication dans les
actes du 12th International Symposium on Stabilization, Safety, and Security of

A.5. Conclusion 251

Distributed Systems (SSS 2010) [DMT10c], des 12èmes Rencontres Francophones
sur les Aspects Algorithmiques de Télécommunications (Algotel 2010) [DMT10a],
et des the 13èmes Rencontres Francophones sur les Aspects Algorithmiques de Télé-
communications (Algotel 2011) [DMT11a]. Les résultats du chapitre 15 apparaissent
dans une communication dans les actes du 24th International Symposium on Dis-
tributed Computing (DISC 2010) [DMT10b] et du 25th International Symposium
on Distributed Computing (DISC 2011) [DMT11c].

A.4.3 Perspectives

Le chapitre 16 propose plusieurs perspectives ouvertes par les notions introduites
dans cette partie. En plus des perspectives immédiates liées aux propriétés des pro-
tocoles proposés comme l’amélioration de l’adversaire toléré ou l’extension à d’autres
classes de métriques, il peut être intéressant de se pencher sur certaines questions
plus générales comme les suivantes :

1. Tous les protocoles fortement stabilisants présentés dans cette partie néces-
sitent un démon fortement contraint (équité forte). Nous conjecturons que
c’est le cas pour tout protocole fortement stabilisant mais nous ne pouvons
pas produire de preuve de cette conjecture pour le moment.

2. Les concepts de stabilisation forte et de stabilisation topologiquement dépen-
dantes présentés dans cette partie n’ont été appliqués qu’aux problèmes dits
statiques (i.e. calcul de point fixe). L’extension de ces notions à des problèmes
dynamiques (par exemple exclusion mutuelle ou circulation de jeton) est une
question ouverte.

A.5 Conclusion

Dans cette section, nous discutons des questions ouvertes par les travaux menés
dans cette thèse.

Nouveaux concepts de tolérance aux fautes Cette thèse se concentre sur les
protocoles répartis auto-stabilisants qui sont de plus capable de confiner les effets
d’une classe donnée de fautes permamentes ou intermittentes (qui sont supposées
se produire après la fin des fautes transitoires). Une voie intéressante pour de fu-
tures recherches est l’étude de l’intérêt de la combinaison de variantes de l’auto-
stabilisation avec de tels confinements. Par exemple, est-il possible de fournir des
protocoles répartis instantanément stabilisant (i.e. satisfaisant toujours la spécifi-
cation du problème quelle que soit la configuration initiale) capable de contenir les
effets de fautes Byzantines intermittentes ?

En général, l’introduction de nouveaux concepts de tolérance aux fautes devrait
permettre d’enrichir la palette de solutions disponibles étant donné que le concepteur
de protocole réparti doit réussir à réaliser un compromis délicat entre :

252 Annexe A. Version française

1. la puissance du concept de tolérance aux fautes choisi par rapport à la tolérance
ou au confinement de fautes,

2. la classe de problèmes admettant une solution selon ce concept de tolérance
aux fautes,

3. le coût de ce concept de tolérance aux fautes sur son problème particulier,
4. la criticité de l’application, et
5. la fréquence d’occurence des fautes dans le système considéré.
Par exemple, il est inutile de garantir des propriétés de tolérance aux fautes très

fortes pour un coût très élévé (en termes de ressources utilisées comme la mémoire ou
la bande passante) pour un protocole réparti de routage dans un réseau ne subissant
des fautes qu’une fois par an. En revanche, si des vies humaines dépendent du
bon comportement de l’application (par exemple, application de contrôle de traffic
aérien), de fortes propriétés de tolérance aux fautes sont souhaitables au détriment
du coût en ressources.

Restriction du pouvoir des processeurs Byzantins Une autre manière de
compléter les résultats présentés dans cette thèse est de restreindre le modèle de faute
Byzantine utilisé. Par exemple, nous avons considéré uniquement des processeurs
Byzantins avec une puissance infinie (pouvant exécuter un nombre infini d’actions
incorrectes). Un autre modèle possible pour les fautes Byzantines pourrait considérer
une puissance finie (chaque processeur Byzantin ne peut exécuter qu’un nombre
fini d’actions incorrectes dans chaque exécution). Plusieurs question intéressantes
sont soulevées par ce modèle. Existe-t-il un compromis entre le nombre d’actions
incorrectes et le rayon ou l’aire de confinement ? Existe-t-il un compromis entre le
nombre total de perturbations causées par les processeurs Byzantins et le nombre de
processeurs Byzantins ? En d’autres mots, est-ce qu’un processeur Byzantin unique
est-il plus efficace pour perturber le système réparti qu’une équipe de processeurs
Byzantins considérant le même nombre d’actions incorrectes ?

Une fois encore, le but est de fournir une large palette de protocoles répartis avec
des propriétés de tolérance aux fautes variées de manière à permettre à l’utilisateur
du système réparti de choisir la solution la plus adaptée à son application et à ses
contraintes propres. En effet, il est inutile de fournir une tolérance “parfaite”aux
fautes Byzantines pour un coût élévé si le système réparti considéré subit seulement
des omissions de messages (pour lesquelles il est peut être possible de fournir une
solution adaptée pour un coût plus faible). La définition d’une taxonomie rigoureuse
des fautes qui permettrait une comparaison objective du pouvoir de tous les concepts
de tolérance aux fautes nous semble une perspective intéressante.

Approche probabiliste Dans cette thèse, nous avons choisi d’étudier le point de
vue déterministe du confinement de fautes permanentes ou intermitentes en auto-
stabilisation. Une autre solution pour contourner les nombreux résultats d’impossi-
bilité présentés dans cette thèse est de garantir la stabilisation du système réparti
seulement avec forte probabilité.

A.5. Conclusion 253

Comme en auto-stabilisation, nous pensons qu’il est possible de définir plusieurs
concepts probabilistes de tolérance aux fautes permamentes ou intermittentes en
auto-stabilisation. Par exemple, nous pourrions définir un concept de tolérance aux
fautes qui assure des propriétés similaires à la stabilisation stricte avec une espérance
bornée sur le temps de convergence (au lieu d’un temps de convergence borné) ou
une clôture probabiliste. Une variante de la stabilisation forte pourrait être définie
pour assurer une espérance bornée sur le nombre de perturbations. La question
principale serait alors d’évaluer les bénéfices de l’approche probabiliste sur les rayons
ou aires de confinement par rapport aux solutions déterministes. En d’autres mots,
le but est toujous de permettre à l’utilisateur final du système réparti de trouver
le meilleur compromis entre les propriétés de tolérance aux fautes, les difficultés
d’implémentation, le coût des protocoles répartis et les résultats d’impossibilité.

Autres modèles de systèmes répartis Une intéressante possibilité d’extension
des résultats présentés dans cette thèse est de considérer d’autres modèles de sys-
tèmes répartis. Nous pouvons présenter au moins deux voies de recherche :

1. Nous pouvons considérer des modèles incluant des nouvelles hypothèses très
variées. De nombreux modèles de nouveaux systèmes répartis ont été décrit ces
dernières années. Par exemple, nous pouvons considérer des systèmes répartis
dynamiques dans lesquels les liens de communication peuvent apparaître et
disparaître au fil du temps, des réseaux de capteurs dans lequels les proces-
seurs communiquent par radio et disposent seulement d’une batterie limitée
ou encore les réseaux de robots dans lesquels les processeurs sont équipés de
capacités motrices. L’étude de la tolérance conjointe à plusieurs type de fautes
dans de tels systèmes nous paraît être un réel défi.

2. Nous pouvons également nous intéresser à des modèles de systèmes répartis
plus réalistes que ceux proposés dans cette thèse. Une question ouverte est la
conception de transformateurs automatiques pour de tels modèles qui assurent
la préservation des propriétés de tolérance aux fautes du protocole réparti
original.

Index

A
Action . 13

Allowed . 13
Merged . 21
Projection of an 19

Activation . 15
Atomic register simulation

Specification . 76

B
Bounded labeling system.94

Stabilizing . 96

C
Chain . 12
Closure . 59
Communication graph 11

Anonymous. .11
Connected . 12
Identified . 11

Communication subgraph 12
Complete communication graph. 12
Configuration . 13
Containment radius 65
Convergence . 59
Correct vertex . 23
Cycle . 11

Elementary . 11

D
Daemon . 14

Boundedness . 35
Canonical . 42
Class . 41
Classical .50
Distributed protocol running under

a . 14
Distribution . 30
Enabledness . 37

Execution allowed by a 14
Gouda fairness 33
Minimal class .42
More powerful relation.42
Strong fairness.32
Synchronous . 48
Transformer . 51
Weak fairness.32

Data-link communication 80
Specification . 82

Degree .12
Diameter . 12
Distance . 12
Distributed protocol 14
Distributed system. 9

Advantages . 10
Characteristics 10

E
Enabled vertex . 15
Execution . 14
Execution property 44

Impossibility . 44
Satisfaction . 44

F
Fault . 18

Byzantine . 20
Crash . 20
Execution subject to a 20
Global . 20
Local . 20
Permanent . 20
Transient . 20

Fault pattern . 21
Composite . 25
Execution subject to a 21
Intermittent . 25
Permanent Byzantine 25

256 Index

Permanent crash.24
Transient . 24

Fault-containing self-stabilization 62
Fault-tolerance . 57

Masking . 57

M
Maximal Degree . 12
Maximummetric spanning tree construc-

tion
Specification.170

Member . 13
Message performance 83
Metric . 166

Assigned . 168
Bounded . 169
Fixed point. .199
Maximizable 168
Monotonic. .169
Strictly decreasing 199
Used value . 199

Model of computation
Generic .13
Message passing 16
State . 15

N
New/old inversion 74

O
Output variables.172

P
Path. .11

Elementary . 11
Rooted . 168

Probabilistic stabilization 60
Pseudo-stabilization 60

Fault-tolerant.63

R
Register . 72

Atomic . 74
Regular. .73
Safe . 73

Ring . 12
Robustness . 58

S
Self-stabilization 58, 59

Byzantine-tolerant 64
Fault-tolerant 62, 125

Snap-stabilization.61
Spanning forest . 12
Spanning tree .12

Maximum metric 168
Specification . 58
Specification predicate 172
Strict-stabilization 65, 172

Topology-aware.176
Strong-stabilization 174

Topology-aware.177
Super-stabilization 61

T
Tree . 12

U
Unison

Classical. .122
Minimality . 123
Priority . 124
Specification.123

W
Weak-stabilization 61

List of Notations

α Action of g .13

Γ Set of configurations of the system . 13

γ Configuration of the system . 13

γ(e) State of edge e . 17

γ(v) State of vertex v . 15

D Set of daemons. .14

µ Member of the system. .13
←−uv Communication channel for acknowledgements sent by v to u . . .17
−→uv Communication channel for messages sent by u to v 17

Π Set of distributed protocols on g . 14

π Distributed protocol on g . 14

σ Execution of π on g . 14

ΣΠ Set of executions of distributed protocols on g starting from config-
urations of Γ . 14

Σπ Set of executions of π on g starting from configurations of Γ 14

deg(g) Maximal degree of communication graph g . 12

deg(g, v) Degree of vertex v .12

diam(g) Diameter of communication graph g . 12

dist(g, u, v) Distance between vertices u and v . 12

Ã Set of actions of g . 13

A Set of allowed actions of g .14

Act(α) Set of vertices activated during the action α . 15

d Daemon. .14

E Set of edges . 11

Ena(γ, π) Set of enabled vertices by π in γ . 15

g = (V,E) Communication graph. .11

M Set of member of the sysem . 13

m Number of edges . 12

n Number of vertices . 12

Nv Set of neighbors of vertex v . 12

V Set of vertices . 11

Bibliography

[AAD+10] Noga Alon, Hagit Attiya, Shlomi Dolev, Swan Dubois, Maria Potop-
Butucaru, and Sébastien Tixeuil. Brief announcement: Sharing mem-
ory in a self-stabilizing manner. In 24th International Symposium on
Distributed Computing (DISC 2010), 2010. 4, 77, 80, 246

[AAD+11] Noga Alon, Hagit Attiya, Shlomi Dolev, Swan Dubois, Maria Potop-
Butucaru, and Sébastien Tixeuil. Pragmatic self-stabilization of
atomic memory in message-passing systems. In 13th International
Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS’11), 2011. 4, 77, 246

[AB93] Yehuda Afek and Geoffrey M. Brown. Self-stabilization over unreliable
communication media. Distributed Computing, 7(1):27–34, 1993. 80

[ABND90] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory
robustly in message-passing systems. In 9th Annual ACM Symposium
on Principles of Distributed Computing (PODC 1990), pages 363–375,
1990. 76

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory
robustly in message-passing systems. Journal of the ACM, 42(1):124–
142, 1995. 76, 102, 104, 246

[Abr03] Uri Abraham. Self-stabilizing timestamps. Theoretical Computer Sci-
ence, 308(1-3):449–515, 2003. 95

[ADGF+07] Emmanuelle Anceaume, Carole Delporte-Gallet, Hugues Fauconnier,
Michel Hurfin, and Josef Widder. Clock synchronization in the
byzantine-recovery failure model. In 11th International Conference
on Principles of Distributed Systems (OPODIS 2007), pages 90–104,
2007. 18

[AH93] Efthymios Anagnostou and Vassos Hadzilacos. Tolerating transient
and permanent failures (extended abstract). In 7th International
Workshop on Distributed Algorithms (WDAG 1993), pages 174–188,
1993. 62, 63, 244

[AKM+07] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir,
and George Varghese. A time-optimal self-stabilizing synchronizer
using a phase clock. IEEE Transactions on Dependable and Secure
Computing, 4(3):180–190, 2007. 119

[AKY90] Yehuda Afek, Shay Kutten, and Moti Yung. Memory-efficient self sta-
bilizing protocols for general networks. In 4th International Workshop
on Distributed Algorithms (WDAG 1990), pages 15–28, 1990. 163

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E.
Landwehr. Basic concepts and taxonomy of dependable and secure

260 Bibliography

computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004. 18

[Att10] Hagit Attiya. Robust simulation of shared memory: 20 years after.
The Distributed Computing Column of the Bulletin of the European
Association for Theoretical Computer Science, (100):99–113, 2010. 76

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing, Fundamen-
tals, Simulations, and Advanced Topics. John Wiley and Sons, 2004.
18

[Awe85] Baruch Awerbuch. Complexity of network synchronization. Jourhnal
of ACM, 32(4):804–823, 1985. 119, 120

[BB04] Lélia Blin and Franck Butelle. The first approximated distributed
algorithm for the minimum degree spanning tree problem on general
graphs. International Journal of Foundations of Computer Science,
15(3):507–516, 2004. 164

[BCD95] Joffroy Beauquier, Stéphane Cordier, and Sylvie Delaët. Optimum
probabilistic self-stabilization on uniform rings. In 2nd Workshop on
Self-stabilizing Systems (WSS 1995), pages 15.1–15.15, 1995. 35

[BDH06] Joffroy Beauquier, Sylvie Delaët, and Sammy Haddad. Necessary
and sufficient conditions for 1-adaptivity. In 20th IEEE International
Conference on Paralle and Distributed Systems (IPDPS 2006), 2006.
62

[BDKM96] Joffroy Beauquier, Oliver Debas, and Synnöve Kekkonen-Moneta.
Fault-tolerant and self-stabilizing ring orientation. In 3rd Interna-
tional Colloquium on Structural Information & Communication Com-
plexity (SIROCCO 1996), pages 59–72, 1996. 63

[BDPBM02] Joffroy Beauquier, Ajoy Kumar Datta, Maria Potop-Butucaru, and
Frédéric Magniette. Self-stabilizing local mutual exclusion and dae-
mon refinement. Chicago Journal of Theoretical Computer Science,
2002. 35, 53, 54

[BDPV07] Alain Bui, Ajoy Kumar Datta, Franck Petit, and Vincent Villain.
Snap-stabilization and pif in tree networks. Distributed Computing,
20(1):3–19, 2007. 61, 149

[Ber67] Claude Berge. Théorie des graphes et ses applications. Collection
universitaire de mathématiques. Dunod, 1967. 11

[BGM93] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. Stabi-
lization and pseudo-stabilization. Distributed Computing, 7(1):35–42,
1993. 60, 80, 175, 244

[BK07] Janna Burman and Shay Kutten. Time optimal asynchronous self-
stabilizing spanning tree. In 21st International Symposium on Dis-
tributed Computing (DISC 2007), pages 92–107, 2007. 165

Bibliography 261

[BKM97a] Joffroy Beauquier and Synnöve Kekkonen-Moneta. Fault-tolerance
and self stabilization: impossibility results and solutions using self-
stabilizing failure detectors. International Journal of Systems Science,
28(11):1177–1187, 1997. 63, 81

[BKM97b] Joffroy Beauquier and Synnöve Kekkonen-Moneta. On ftss-solvable
distributed problems. In 3rd Workshop on Self-stabilizing Systems
(WSS 1997), pages 64–79, 1997. 63

[BLB95] Franck Butelle, Christian Lavault, and Marc Bui. A uniform self-
stabilizing minimum diameter tree algorithm (extended abstract). In
9th International Workshop on Distributed Algorithms (WDAG 1995),
pages 257–272, 1995. 165

[Blo88] Bard Bloom. Constructing two-writer atomic registers. IEEE Trans-
actions on Computers, 37(12), 1988. 75

[BODH08] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Fast self-stabilizing
byzantine tolerant digital clock synchronization. In 27th ACM Sym-
posium on Principles of Distributed Computing (PODC 2008), pages
385–394, 2008. 64, 121

[BP08] Christian Boulinier and Franck Petit. Self-stabilizing wavelets and
ρ-hops coordination. In 22nd IEEE International Symposium on Par-
allel and Distributed Processing (IPDPS08), pages 1–8, 2008. 53, 54

[BPBJ01] Joffroy Beauquier, Maria Potop-Butucaru, and Colette Johnen.
Cross-over composition - enforcement of fairness under unfair adver-
sary. In 5th International Workshop on Self-Stabilizing Systems (WSS
2001), pages 19–34, 2001. 35, 53, 55

[BPBJDL02] Joffroy Beauquier, Maria Potop-Butucaru, Colette Johnen, and
Jérôme Olivier Durand-Lose. Token-based self-stabilizing uniform al-
gorithms. Journal of Parallel and Distributed Computing, 62(5):899–
921, 2002. 52, 53

[BPBR09] Lélia Blin, Maria Potop-Butucaru, and Stephane Rovedakis. A super-
stabilizing log()-approximation algorithm for dynamic steiner trees. In
11th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS 2009), pages 133–148, 2009. 165

[BPBR11] Lélia Blin, Maria Potop-Butucaru, and Stephane Rovedakis. Self-
stabilizing minimum degree spanning tree within one from the optimal
degree. Journal of Parallel and Distributed Computing, 71(3):438–449,
2011. 164, 165

[BPV04] Christian Boulinier, Franck Petit, and Vincent Villain. When graph
theory helps self-stabilization. In 23rd ACM Symposium on Principles
of Distributed Computing (PODC 2004), pages 150–159, 2004. 121,
124

262 Bibliography

[BPV05] Christian Boulinier, Franck Petit, and Vincent Villain. Synchronous
vs. asynchronous unison. In 7th International Symposium on Self-
Stabilizing Systems (SSS 2005), pages 18–32, 2005. 121, 124

[BPV06] Christian Boulinier, Franck Petit, and Vincent Villain. Toward a
time-optimal odd phase clock unison in trees. In 8th International
Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS 2006), pages 137–151, 2006. 121

[CD94] Zeev Collin and Shlomi Dolev. Self-stabilizing depth-first search. In-
formation Processing Letters, 49(6):297–301, 1994. 165

[CDV09] Alain Cournier, Swan Dubois, and Vincent Villain. A snap-stabilizing
point-to-point communication protocol in message-switched networks.
In 23rd IEEE International Symposium on Parallel and Distributed
Processing (IPDPS 2009), pages 1–11, 2009. 61

[CFG92] Jean-Michel Couvreur, Nissim Francez, and Mohamed G. Gouda.
Asynchronous unison (extended abstract). In 12th International Con-
ference on Distributed Computing Systems (ICDCS 1992), pages 486–
493, 1992. 119, 120, 121, 122, 124, 247

[CHK93] Gen-Huey Chen, Michael E. Houle, and Ming-Ter Kuo. The steiner
problem in distributed computing systems. Information Sciences,
74(1-2):73 – 96, 1993. 164

[CKW00] Soma Chaudhuri, Martha J. Kosa, and Jennifer L. Welch. One-write
algorithms for multivalued regular and atomic registers. Acta Infor-
matica, 37(3):161–192, 2000. 75

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: De-
termining global states of distributed systems. ACM Transaction on
Computer Systems, 3(1):63–75, 1985. 119

[Cor01] T.H. Cormen. Introduction to algorithms. MIT electrical engineering
and computer science series. MIT Press, 2001. 164

[CS96] Manhoi Choy and Ambuj K. Singh. Localizing failures in distributed
synchronization. IEEE Transactions on Parallel and Distributed Sys-
tems, 7(7):705–716, 1996. 66

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM, 43(2):225–267,
1996. 63

[DD05] Ariel Daliot and Danny Dolev. Self-stabilization of byzantine pro-
tocols. In 7th International Symposium on Self-Stabilizing Systems
(SSS 2005), pages 48–67, 2005. 64

[DD06] Ariel Daliot and Danny Dolev. Self-stabilizing byzantine agreement.
In 25th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC 2006), pages 143–152, 2006. 64

Bibliography 263

[DDNT10] Sylvie Delaët, Stéphane Devismes, Mikhail Nesterenko, and Sébastien
Tixeuil. Snap-stabilization in message-passing systems. Journal of
Parallel and Distributed Computing, 70(12):1220–1230, 2010. 81

[DDPBT11a] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien
Tixeuil. Communication optimalement stabilisante sur canaux non
fiables et non fifo. In 13èmes Rencontres Francophones sur les Aspects
Algorithmiques de Télécommunications (Algotel 2011), 2011. 4, 77,
246

[DDPBT11b] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien
Tixeuil. Stabilizing data-link over non-fifo channels with optimal
fault-resilience. Information Processing Letters, 111(18):912–920,
2011. 4, 77, 246

[DDT06] Sylvie Delaët, Bertrand Ducourthial, and Sébastien Tixeuil. Self-
stabilization with r-operators revisited. Journal of Aerospace Com-
puting, Information, and Communication, 3(10):498–514, 2006. 166

[DGDF10] Carole Delporte-Gallet, Stéphane Devismes, and Hugues Fauconnier.
Stabilizing leader election in partial synchronous systems with crash
failures. Journal of Parallel and Distributed Computing, 70(1):45–58,
2010. 63, 244

[DGX11] Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao. Fault contain-
ment in weakly stabilizing systems. Theoretical Computer Science,
412(33):4297–4311, 2011. 62

[DH97] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dy-
namic distributed systems. Chicago Journal of Theoretical Computer
Science, 1997, 1997. 61

[DH01] Shlomi Dolev and Ted Herman. Dijkstra’s self-stabilizing algorithm
in unsupportive environments. In 5th International Workshop on Self-
Stabilizing Systems (WSS 2001), pages 67–81, 2001. 75

[DH07] Danny Dolev and Ezra N. Hoch. On self-stabilizing synchronous ac-
tions despite byzantine attacks. In 21st International Symposium on
Distributed Computing (DISC 2007), pages 193–207, 2007. 64, 121

[DHT04] Philippe Duchon, Nicolas Hanusse, and Sébastien Tixeuil. Optimal
randomized self-stabilizing mutual exclusion in synchronous rings. In
18th Symposium on Distributed Computing (DISC 2004), pages 216–
229, 2004. 28, 48, 61

[Dij71] Edsger W. Dijkstra. A short introduction to the art of programming.
circulated privately, 1971. 164

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communication of ACM, 17(11):643–644, 1974. 13, 14, 16,
30, 31, 52, 53, 58, 59, 242, 243

264 Bibliography

[DIM90] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of
dynamic systems assuming only read/write atomicity. In 9th Annual
ACM Symposium on Principles of Distributed Computing (PODC
1990), pages 103–117, 1990. 165

[DIM93] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization
of dynamic systems assuming only read/write atomicity. Distributed
Computing, 7(1):3–16, 1993. 13, 80, 163, 165

[DIM97a] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Resource bounds for
self-stabilizing message-driven protocols. SIAM Journal on Comput-
ing, 26(1):273–290, 1997. 71, 76, 245

[DIM97b] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Uniform dynamic
self-stabilizing leader election. IEEE Transactions on Parallel and
Distributed Systems, 8(4):424–440, 1997. 80, 149

[DJPV00] Ajoy K. Datta, Colette Johnen, Franck Petit, and Vincent Villain.
Self-stabilizing depth-first token circulation in arbitrary rooted net-
works. Distributed Computing, 13:207–218, 2000. 53, 54, 165

[DKS10] Shlomi Dolev, Ronen I. Kat, and Elad Michael Schiller. When con-
sensus meets self-stabilization. Journal of Computer and System Sci-
ences, 76(8):884–900, 2010. 95

[DMT10a] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. Con-
struction auto-stabilisante d’arbre couvrant en dépit d’actions mali-
cieuses. In 12èmes Rencontres Francophones sur les Aspects Algorith-
miques de Télécommunications (Algotel 2010), 2010. 5, 171, 251

[DMT10b] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. The im-
pact of topology on byzantine containment in stabilization. In 24th In-
ternational Symposium on Distributed Computing (DISC 2010), 2010.
5, 171, 251

[DMT10c] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. On
byzantine containment properties of the min+1 protocol. In 12th In-
ternational Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS 2010), 2010. 5, 171, 251

[DMT11a] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. Auto-
stabilisation et confinement de fautes malicieuses : Optimalité du
protocole min+1. In 13èmes Rencontres Francophones sur les Aspects
Algorithmiques de Télécommunications (Algotel 2011), 2011. 5, 171,
251

[DMT11b] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. Bound-
ing the impact of unbounded attacks in stabilization. IEEE Transac-
tions on Parallel and Distributed Systems, 2011. 5, 171, 250

[DMT11c] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. Maxi-
mum metric spanning tree made byzantine tolerant. In 25th Interna-

Bibliography 265

tional Symposium on Distributed Computing (DISC 2011), 2011. 5,
171, 251

[DNT09] Praveen Danturi, Mikhail Nesterenko, and Sébastien Tixeuil. Self-
stabilizing philosophers with generic conflicts. ACM Transactions of
Adaptive and Autonomous Systems, 4(1), 2009. 30, 53, 54

[Dol97] Shlomi Dolev. Possible and impossible self-stabilizing digital clock
synchronization in general graphs. Real-Time Systems, 12(1):95–107,
1997. 121

[Dol00] Shlomi Dolev. Self-stabilization. MIT Press, 2000. 18, 60, 80

[DPBNT10] Swan Dubois, Maria Potop-Butucaru, Mikhail Nesterenko, and
Sébastien Tixeuil. Self-stabilizing byzantine asynchronous unison. In
14th International Conference On Principles Of DIstributed Systems
(OPODIS 2010), 2010. 5, 32, 125, 248

[DPBT00] Ajoy K Datta, Maria Potop-Butucaru, and Sébastien Tixeuil. Self-
stabilizing mutual exclusion using unfair distributed scheduler. In
14th IEEE International Parallel and Distributed Processing SYmpo-
sium (IPDPS 2000), pages 465–470, 2000. 30, 32, 35

[DPBT04] Ajoy K. Datta, Maria Potop-Butucaru, and Sébastien Tixeuil. Self-
stabilizing mutual exclusion with arbitrary scheduler. The Computer
Journal, 47(3):289–298, 2004. 32, 53, 54, 60

[DPBT09] Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil. Brief
announcement: Dynamic FTSS in Asynchronous Systems: the Case
of Unison. In 23rd International Symposium on Distributed Comput-
ing (DISC 2009), 2009. 5, 125, 248

[DPBT11] Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil. Dy-
namic ftss in asynchronous systems: the case of unison. Theoretical
Computer Science, 412(29):3418–3439, 2011. 5, 32, 125, 248

[DPV11a] Stephane Devismes, Franck Petit, and Vincent Villain. Autour de
l’auto-stabilisation. partie i : Techniques généralisant l’approche.
Technique et Science Informatiques, 30(2489):1–22, 2011. 60

[DPV11b] Stephane Devismes, Franck Petit, and Vincent Villain. Autour de
l’auto-stabilisation. partie ii : Techniques spécialisant l’approche.
Technique et Science Informatiques, 30(2489):23–50, 2011. 60

[DS97] Danny Dolev and Nir Shavit. Bounded concurrent time-stamping.
SIAM Journal on Computing, 26(2):418–455, 1997. 94, 95

[DT01] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with
r-operators. Distributed Computing, 14(3):147–162, 2001. 166

[DT03] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with
path algebra. Theoretical Computer Science, 293(1):219–236, 2003.
166

266 Bibliography

[DT06] Shlomi Dolev and Nir Tzachar. Empire of colonies: Self-stabilizing
and self-organizing distributed algorithms. In 10th International Con-
ference on Principles of Distributed Systems (OPODIS 2006), pages
230–243, 2006. 80, 81

[DTY08] Stéphane Devismes, Sébastien Tixeuil, and Masafumi Yamashita.
Weak vs. self vs. probabilistic stabilization. In 28th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS 2008),
June 2008. 35, 61, 62, 159

[DW95] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchro-
nization in the presence of byzantine faults (abstract). In 14th Annual
ACM Symposium on Principles of Distributed Computing (PODC
1995), page 256, 1995. 63, 64, 244

[DW97] Shlomi Dolev and Jennifer L. Welch. Wait-free clock synchronization.
Algorithmica, 18(4):486–511, 1997. 64, 121

[DW04] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchro-
nization in the presence of byzantine faults. Journal of the ACM,
51(5):780–799, 2004. 64, 121

[Erd63] Paul Erdös. On a problem in graph theory. The Mathematical Gazette,
47(361):220–223, 1963. 96

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of distributed consensus with one faulty process. Journal of ACM,
32(2):374–382, 1985. 27, 119, 247

[FMP06] Laurent Fribourg, Stéphane Messika, and Claudine Picaronny. Cou-
pling and self-stabilization. Distributed Computing, 18(3):221–232,
2006. 28

[FR92] Martin Fürer and Balaji Raghavachari. Approximating the mini-
mum degree spanning tree to within one from the optimal degree.
In 3rd Annual ACM/SIGACT-SIAM Symposium on Discrete Algo-
rithms (SODA 1992), pages 317–324, 1992. 164

[Gär03] Felix C. Gärtner. A survey of self-stabilizing spanning-tree construc-
tion algorithms. Technical report ic/2003/38, EPFL, 2003. 60, 165,
181, 249

[GGH+04] Martin Gairing, Wayne Goddard, Stephen T. Hedetniemi, Petter
Kristiansen, and Alice A. McRae. Distance-two information in self-
stabilizing algorithms. Parallel Processing Letters, 14(3-4):387–398,
2004. 53, 54

[GGHP96] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pem-
maraju. Fault-containing self-stabilizing algorithms. In 15th ACM
Symposium on Principles of Distributed Computing (PODC 1996),
pages 45–54, 1996. 165

Bibliography 267

[GGHP07] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pem-
maraju. Fault-containing self-stabilizing distributed protocols. Dis-
tributed Computing, 20(1):53–73, 2007. 62

[GH90] Mohamed G. Gouda and Ted Herman. Stabilizing unison. Informa-
tion Processing Letters, 35(4):171–175, 1990. 119, 120, 121, 122, 124,
247

[GH97] Mohamed G. Gouda and F. Furman Haddix. The linear alternator. In
3rd Workshop on Self-stabilizing Systems (WSS 1997), pages 31–47,
1997. 52, 53

[GH07] Mohamed G. Gouda and F. Furman Haddix. The alternator. Dis-
tributed Computing, 20(1):21–28, 2007. 52, 53

[GHJT08] Wayne Goddard, Stephen T. Hedetniemi, David Pokrass Jacobs, and
Vilmar Trevisan. Distance- k knowledge in self-stabilizing algorithms.
Theoretical Computer Science, 399(1-2):118–127, 2008. 53, 54

[GHS83] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A dis-
tributed algorithm for minimum-weight spanning trees. ACM Trans-
actions on Programming Languages and Systems, 5(1):66–77, 1983.
164, 249

[GK10] Nabil Guellati and Hamamache Kheddouci. A survey on self-
stabilizing algorithms for independence, domination, coloring, and
matching in graphs. Journal of Parallel and Distributed Computing,
70(4):406–415, 2010. 60

[GLS92] Rainer Gawlick, Nancy A. Lynch, and Nir Shavit. Concurrent times-
tamping made simple. In International Symposium on Theory of
Computing and Systems (ISTCS 1992), pages 171–183, 1992. 95

[GLS10] Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman.
Rambo: a robust, reconfigurable atomic memory service for dynamic
networks. Distributed Computing, 23(4):225–272, 2010. 76

[GM91] Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communi-
cation protocols. IEEE Transactions on Computers, 40(4):448–458,
1991. 80

[Gou01] Mohamed G. Gouda. The theory of weak stabilization. In 5th In-
ternational Workshop on Self-Stabilizing Systems (WSS 2001), pages
114–123, 2001. 32, 61, 158

[GP93] Ajei S. Gopal and Kenneth J. Perry. Unifying self-stabilization and
fault-tolerance (preliminary version). In 12th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC 1993), pages
195–206, 1993. 62, 63, 244

[GR06] Rachid Guerraoui and Luís Rodrigues. Introduction to Reliable Dis-
tributed Programming. Springer-Verlag, 2006. 18

268 Bibliography

[GS71] R. L. Graham and J. H. Spencer. A constructive solution to a tourna-
ment problem. Canadian Mathematical Bulletin, 14(1):45–48, 1971.
98

[GS94] Mohamed G. Gouda and Marco Schneider. Maximum flow routing.
In Joint Conference on Information Sciences (JCIS 1994), 1994. 164

[GS99] Mohamed G. Gouda and Marco Schneider. Stabilization of maximal
metric trees. In ICDCS Workshop on Self-stabilizing Systems (WSS
1999), pages 10–17, 1999. 164, 165, 201, 202, 203

[GS03] Mohamed G. Gouda and Marco Schneider. Maximizable routing met-
rics. IEEE/ACM Transactions on Networks, 11(4):663–675, 2003.
164, 165, 166, 168, 169, 249

[HC92] Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing algorithm
for constructing breadth-first trees. Information Processing Letters,
41(2):109–117, 1992. 163, 165, 185, 187, 249

[HDD06] Ezra N. Hoch, Danny Dolev, and Ariel Daliot. Self-stabilizing byzan-
tine digital clock synchronization. In 8th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2006),
pages 350–362, 2006. 64, 121

[Her90] Ted Herman. Probabilistic self-stabilization. Information Processing
Letters, 35(2):63–67, 1990. 27, 48, 60

[Her02] Ted Herman. A comprehensive bibliography on self-stabilization.
http://www.cs.uiowa.edu/ftp/selfstab/bibliography/, 2002. 59

[HG95] Ted Herman and Sukumar Ghosh. Stabilizing phase-clocks. Informa-
tion Processing Letters, 54(5):259–265, 1995. 121

[HL98] Shing-Tsaan Huang and Tzong-Jye Liu. Four-state stabilizing phase
clock for unidirectional rings of odd size. Information Processing Let-
ters, 65(6):325–329, 1998. 121

[HL02] Tetz C. Huang and Ji-Cherng Lin. A self-stabilizing algorithm for
the shortest path problem in a distributed system. Computers and
Mathematics with Applications, 43(1-2):103 – 109, 2002. 165

[HLCW10] Tetz C. Huang, Ji-Cherng Lin, Chih-Yuan Chen, and Cheng-Pin
Wang. The worst-case stabilization time of a self-stabilizing algo-
rithm under the weakly fair daemon model. International Journal of
Artificial Life Research, 1(3):45–52, 2010. 32

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-
free synchronization: Double-ended queues as an example. In 23rd
International Conference on Distributed Computing Systems (ICDCS
2003), pages 522–529, 2003. 124

[HNM99] Rodney R. Howell, Mikhail Nesterenko, and Masaaki Mizuno. Finite-
state self-stabilizing protocols in message-passing systems. In ICDCS

Bibliography 269

Workshop on Self-stabilizing Systems (WSS 1999), pages 62–69, 1999.
80

[HPT02] Jaap-Henk Hoepman, Marina Papatriantafilou, and Philippas Tsigas.
Self-stabilization of wait-free shared memory objects. Journal of Par-
allel and Distributed Computing, 62(5):818–842, 2002. 75

[HV95] Sibsankar Haldar and K. Vidyasankar. Constructing 1-writer multi-
reader multivalued atomic variable from regular variables. Journal of
the ACM, 42(1):186–203, 1995. 75

[HW97] Shing-Tsaan Huang and Lih-Chyau Wuu. Self-stabilizing token cir-
culation in uniform networks. Distributed Computing, 10(4):181–187,
1997. 165

[IL93] Amos Israeli and Ming Li. Bounded time-stamps. Distributed Com-
puting, 6(4):205–209, 1993. xvi, 76, 77, 93, 94, 95, 96, 97, 102, 111

[IS92] Amos Israeli and Amnon Shaham. Optimal multi-writer multi-reader
atomic register. In 11th Annual ACM Symposium on Principles of
Distributed Computing (PODC 1992), pages 71–82, 1992. 75

[JADT02] Colette Johnen, Luc Alima, Ajoy K. Datta, and Sébastien Tixeuil.
Optimal snap-stabilizing neighborhood synchronizer in tree networks.
Parallel Processing Letters, 12(3-4):327–340, 2002. 52, 53

[JH09] Colette Johnen and Lisa Higham. Fault-tolerant implementations
of regular registers by safe registers with applications to networks.
In 10th International Conference on Distributed Computing and Net-
working (ICDCN 2009), pages 337–348, 2009. 75

[JT03] Colette Johnen and Sébastien Tixeuil. Route preserving stabiliza-
tion. In 6th International Symposium on Self-Stabilizing Systems (SSS
2003), pages 184–198, 2003. 61

[KA98] Sandeep S. Kulkarni and Anish Arora. Multitolerance in distributed
reset. Chicago Journal of Theoritical Computer Science, 1998, 1998.
19

[KA06] Sandeep S. Kulkarni and Mahesh Arumugam. Transformations
for write-all-with-collision model. Computer Communications,
29(2):183–199, 2006. 71, 245

[Kar01] Mehmet Hakan Karaata. Self-stabilizing strong fairness under weak
fairness. IEEE Transactions on Parallel and Distributed Systems,
12(4):337–345, 2001. 32, 53, 55

[Kar05] Mehmet Hakan Karaata. An optimal self-stabilizing strarvation-free
alternator. Journal of Computer and System Sciences, 71(4):480–494,
2005. 53, 55

[KC98] Mehmet Hakan Karaata and Pranay Chaudhuri. A self-stabilizing
algorithm for strong fairness. Computing, 60(3):217–228, 1998. 32

270 Bibliography

[Kru56] Jr. Kruskal, Joseph B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the American
Mathematical Society, 7(1):48–50, 1956. 164

[KY97] Hirotsugu Kakugawa and Masafumi Yamashita. Uniform and self-
stabilizing token rings allowing unfair daemon. IEEE Transactions
on Parallel and Distributed Systems, 8(2):154–162, 1997. 32

[KY02] Hirotsugu Kakugawa and Masafumi Yamashita. Uniform and self-
stabilizing fair mutual exclusion on unidirectional rings under unfair
distributed daemon. Journal of Parallel and Distributed Computing,
62(5):885–898, 2002. 30, 32

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming
problem. Communication of the ACM, 17(8):453–455, 1974. 94

[Lam86a] Leslie Lamport. On interprocess communication. part i: Basic for-
malism. Distributed Computing, 1(2):77–85, 1986. 72, 73, 74, 245

[Lam86b] Leslie Lamport. On interprocess communication. part ii: Algorithms.
Distributed Computing, 1(2):86–101, 1986. 72, 73, 74, 75, 245

[LH01] Tzong-Jye Liu and Shing-Tsaan Huang. Phase synchronization on
asynchronous uniform rings with odd size. IEEE Transactions on
Parallel and Distributed Syst.ems, 12(6):638–652, 2001. 121

[LMSM09] Sergey Legtchenko, Sébastien Monnet, Pierre Sens, and Gilles Muller.
Churn-resilient replication strategy for peer-to-peer distributed hash-
tables. In 11th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS 2009), pages 485–499, 2009. 11

[LS95] Chengdian Lin and Janos Simon. Possibility and impossibility results
for self-stabilizing binary clocks on synchronous rings. In 2nd In-
ternational Workshop on Self-Stabilizing Systems (WSS 1995), 1995.
121

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., 1996. 9, 16, 18, 71, 72, 74, 81, 82, 245

[Mis91] Jayadev Misra. Phase synchronization. Information Processing Let-
ters, 38(2):101–105, 1991. 120, 121, 247

[MR98] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203–213, 1998. 76

[MT07] Toshimitsu Masuzawa and Sébastien Tixeuil. Stabilizing link-
coloration of arbitrary networks with unbounded byzantine faults.
International Journal of Principles and Applications of Information
Science and Technology, 1(1):1–13, 2007. 66

[NA02] Mikhail Nesterenko and Anish Arora. Tolerance to unbounded byzan-
tine faults. In 21st Symposium on Reliable Distributed Systems (SRDS
2002), pages 22–29. IEEE Computer Society, 2002. 64, 65, 66, 172,
225, 227, 229, 244

Bibliography 271

[Ora01] Andy Oram. Peer-to-Peer: Harnessing the Power of Disruptive Tech-
nologies. O’Reilly Media, 2001. 11

[PBT00] Maria Potop-Butucaru and Sébastien Tixeuil. Self-stabilizing vertex
coloring of arbitrary graphs. In 4th International Conference on Prin-
ciples of Distributed Systems (OPODIS 2000), pages 55–70, 2000. 28,
48

[PBT07] Maria Potop-Butucaru and Sébastien Tixeuil. Conflict managers for
self-stabilization without fairness assumption. In 27th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS 2007),
page 46, 2007. 53, 54, 55

[Pri57] Robert C. Prim. Shortest connection networks and some generaliza-
tions. Bell System Technology Journal, 36:1389–1401, 1957. 164

[PT97] Marina Papatriantafilou and Philippas Tsigas. On self-stabilizing
wait-free clock synchronization. Parallel Processing Letters, 7(3):321–
328, 1997. 64, 121, 124

[PV07] Franck Petit and Vincent Villain. Optimal snap-stabilizing depth-first
token circulation in tree networks. Journal of Parallel and Distributed
Computing, 67(1):1–12, 2007. 61

[Ray00] Michel Raynal. Communication and Agreement Abstractions for
Fault-Tolerant Distributed Systems. Morgan & Claypool Publishers,
2000. 18

[Ray10] Michel Raynal. Fault-Tolerant Agreement in Synchronous Distributed
Systems. Morgan & Claypool Publishers, 2010. 18

[RH90] Michel Raynal and Jean-Michel Hélary. Synchronization and control
of distributed systems and programs. Wiley series in parallel comput-
ing. Wiley, 1990. 120

[Rov09] Stephane Rovedakis. Algorithmes auto-stabilisants de constructions
d’arbres couvrants. PhD thesis, Université d’Evry-Val-d-Essone, 2009.
165

[Sch97] Marco Schneider. Flow Routing in Computer Networks. PhD thesis,
University of Texas at Austin, 1997. 165

[SOM05] Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu Masuzawa. A self-
stabilizing link-coloring protocol resilient to byzantine faults in tree
networks. In 8th International Conference on Principles of Distributed
Systems (OPODIS 2005), pages 283–298, 2005. 66

[SS65] Esther Szekeres and George Szekeres. On a problem of schütte and
erdös. The Mathematical Gazette, 49(369):290–293, 1965. 98

[Tel10] Gerard Tel. Introduction to distributed algorithms. Cambridge Uni-
versity Press, 2010. 9, 13, 18, 59

[TH94] Ming-Shin Tsai and Shing-Tsaan Huang. A self-stabilizing algorith for
the shortest paths problem with a fully distributed demon. Parallel
Processing Letters, 4:65–72, 1994. 164

272 Bibliography

[Tix09] Sébastien Tixeuil. Algorithms and Theory of Computation Handbook,
Second Edition, chapter Self-stabilizing Algorithms, pages 26.1–26.45.
Chapman & Hall/CRC Applied Algorithms and Data Structures.
CRC Press, Taylor & Francis Group, November 2009. 18, 57, 60,
244

[Tol37] John Ronald Reuel Tolkien. The Hobbit, or There and Back Again.
1937. 1, 239

[Tol54a] John Ronald Reuel Tolkien. The Fellowship of the Ring. 1954. 1, 239

[Tol54b] John Ronald Reuel Tolkien. The Two Towers. 1954. 1, 239

[Tol55] John Ronald Reuel Tolkien. The Return of the King. 1955. 1, 239

[VA86] Paul M. B. Vitányi and Baruch Awerbuch. Atomic shared register
access by asynchronous hardware (detailed abstract). In 27th Annual
Symposium on Foundations of Computer Science (FOCS 1986), pages
233–243, 1986. 94

[Var00] George Varghese. Self-stabilization by counter flushing. SIAM Journal
on Computing, 30(2):486–510, 2000. 80

Tolérer les fautes transitoires, permanentes et intermittentes

Résumé : Un système réparti est un système constitué d’un ensemble d’unités de calcul auto-
nomes dotées de capacités de communication afin de résoudre une tâche globale. Ce modèle est
suffisament général pour décrire tout type de réseau physique (réseau local, réseau de capteurs,
...). Lorsque la taille d’un système réparti devient importante ou lorsque ce système est déployé
dans un environnement non contrôlé, la probabilité que certains éléments du système subissent des
fautes (panne, corruption de mémoire, piratage, ...) devient non négligeable. Ces fautes peuvent
être classifiées en fonction de leur durée, de leur étendue et de leur nature. Dans cette thèse, nous
nous intéressons aux systèmes répartis capables de tolérer simultanément plusieurs types de fautes
à travers l’étude de trois problèmes fondamentaux. Nous présentons ainsi un protocole réparti si-
mulant un registre atomique mono-écrivan multi-lecteurs en présence de fautes transitoires et de
fautes permanentes de type crash. Ce protocole repose sur deux outils ré-utilisables : un protocole
de communication et un système d’estampillage borné. Ensuite, nous proposons une étude de la
synchronisation faible d’horloges logiques en présence de fautes transitoires et de fautes intermit-
tentes Byzantines. Nous prouvons de nombreux résultats d’impossibilité et nous fournissons un
protocole optimal dans les cas non couverts par ces résultats. Finalement, nous définissons trois
nouveaux concepts de tolérance pour les systèmes répartis sujets à des fautes transitoires et des
fautes intermittentes Byzantines. Nous donnons un protocole de construction d’une vaste classe
d’arbres couvrants optimal selon ces trois concepts.

Mots clés : système réparti, tolérance aux fautes, auto-stabilisation et confinement de fautes
permanentes/intermittentes, registre atomique, unisson, arbre couvrant

Tolerating Transient, Permanent, and Intermittent Failures

Abstract: A distributed system is a system composed of a set of autonomous computation
units endowed with communication abilities in order to solve a global task. This model is general
enough to describe any kind of network (LAN, sensor network, ...). When the size of a distributed
system gets larger or when it is deployed in hazardous environments, the possibility that some
elements of the system are subject to faults (failure, memory corruption, hacking, ...) become
impossible to elude. Faults can be classified according to duration, span, or nature. In this
thesis, we focus on distributed systems that simultaneously tolerate several kinds of faults using
three classical problems as case studies. We present first a distributed protocol simulating a single-
writer multi-reader atomic register in the presence of transient faults and of permanent crash faults.
This protocol relies on two re-usable tools: a communication primitive and a bounded timestamp
scheme. Then, we study logical clock weak synchronization in the presence of transient faults and
of intermittent Byzantine faults. We prove several impossibility results and provide a protocol that
is optimal both with respect to impossibility result and with respect to recovery time. Finally, we
define three new fault tolerance schemes in distributed systems that are subject to transient faults
and to intermittent Byzantine faults. We design a protocol constructing a wide class of spanning
trees that is optimal with respect to fault tolerance metrics defined for these three schemes.

Keywords: distributed system, fault tolerance, self-stabilization and containment of perma-
nent/intermittent faults, atomic register, unison, spanning tree

	Introduction
	Context of the Thesis
	Thesis Contributions

	I Context
	Model
	Distributed System
	Characteristics
	Advantages

	Communication Graph
	Models Used in this Thesis
	Generic Model
	State Model
	Message Passing Model

	Fault Taxonomy
	Faults
	Fault Patterns

	Taxonomy of Daemons
	Characterization of Daemons
	Distribution
	Fairness
	Boundedness
	Enabledness

	Comparing Daemons
	Comparing daemon classes
	Preserving execution properties
	The Case of the Synchronous Daemon
	A map of classical daemons

	Daemon Transformers

	Fault Tolerance
	Tolerating Transient Fault Patterns
	Weakening Self-Stabilization
	Enhancing Self-Stabilization

	Tolerating Composite Fault Patterns
	Fault-Tolerant Self-Stabilization
	Byzantine Tolerant Self-Stabilization
	Strict Stabilization

	Summary

	II Atomic Register
	Introduction of Part II
	Problem and Related Works
	Problem
	Related Works
	Specification

	Contributions of Part II

	Preliminaries
	Data-Link Protocol
	Problem and Related Works
	Specification
	Lower Bounds
	Optimal Solution
	Correctness Proof

	Bounded Labelling Systems
	Problem and Related Works
	Solution

	Atomic Register Simulation
	The ABD Simulation
	The FTPS Simulation
	Distributed Protocol
	Proof of Correctness
	Conclusion

	Conclusion of Part II
	Summary of Contributions
	Concluding Remarks

	III Unison
	Introduction of Part III
	Problem and Related Works
	Problem
	Related Works
	Specification and Definitions

	Contributions of Part III
	Fault-Tolerant Self-Stabilization

	Impossibility Results
	General Results
	Two and more Byzantine Faults
	Unfair Daemon

	Minimal Unison Related Results
	Weakly Fair Daemon
	Strongly Fair Daemon and Maximal Degree greater than 3

	Priority Unison Related Results
	Weakly Fair Daemon
	Strongly Fair Daemon and Maximal Degree greater than 3

	Summary of Impossibility Results

	Strictly Stabilizing Solution
	Strictly Stabilizing Solution
	Distributed Protocol Description
	Correctness Proof

	Optimality of Convergence Time
	Upper bound
	Lower Bound
	Conclusion

	Conclusion of Part III
	Summary of Contributions
	Concluding Remarks

	IV Spanning Tree
	Introduction of Part IV
	Problem and Related Works
	Related Works
	Specification

	Contributions of Part IV
	Containing Byzantine Faults in Self-Stabilization
	Strict Stabilization
	Strong Stabilization
	Topology-Aware Stabilization
	Discussion

	Two Case Studies
	Spanning Tree without Constraints
	Strongly Stabilizing Distributed Protocol
	Proof of Strong Stabilization

	BFS Spanning Tree
	Impossibility of Strong Stabilization
	Topology-Aware Stabilizing Solution
	Proof of Topology-Aware Strict Stabilization
	Proof of Topology-Aware Strong Stabilization

	Summary

	General Case
	Topology-Aware Stabilizing Solution
	Distributed Protocol
	Proof of Topology-Aware Strict Stabilization
	Proof of Topology-Aware Strong Stabilization

	Optimality of Containment Areas
	Topology-Aware Strict Stabilization
	Topology-Aware Strong Stabilization

	Strong Stabilization
	Summary

	Conclusion of Part IV
	Summary of Contributions
	Concluding Remarks

	Conclusion
	Overview of Thesis Contributions
	Part One: Context
	Part Two: Atomic Register
	Part Three: Unison
	Part Four: Spanning Tree
	Summary

	Perspectives

	Version française
	Contexte de la thèse
	Généralités
	Modèles et tolérance aux fautes

	Registre atomique
	Contexte
	Contributions
	Perspectives

	Unisson
	Contexte
	Contributions
	Perspectives

	Arbre couvrant
	Contexte
	Contributions
	Perspectives

	Conclusion

	Index
	List of Notations
	Bibliography

