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Abstract

This thesis is embedded in the general theory of quantungriatée models with
boundaries, and the development of associated algebraatigtes.

We first consider the question of the diagonalization of tik&Xamiltonian with non-
diagonal boundaries. We succeed to find the two sets of defessand eigenvalues of the
model if the boundaries parameters satisfy two conditions.

We introduce then a statistical physics model which we refée the face model with
a reflecting end. Moreover, we compute exactly its partitiorction and show that it takes
the form of a simple single matrix determinant.

We show that these two problems are related through thexvite transformation
and are solved using a common algebraic structure, the dgabhreflection algebra and
its dual. We focus from a mathematical perspective on tlgslkah in the general elliptic
case. Both the co-module evaluation representation addatisare introduced. We believe
that these structures are the key ingredients for the asall/f&ce models with boundaries.
In particular, using the concept of Drinfel'd twists, we shtihat the partition function of
these models has a simple representation in the general case

Finally, we attempt on a 'dynamization’ of the Half-Turn+8gnetric vertex model. We
describe its partition function in terms of the evaluatiepresentation of the dynamical
Yang-Baxter algebra, and find a set of conditions that uyodietermine it.

Resumeé

Cette these s’inscrit dans le cadre général de la théorisydtames intégrables avec
bords et le développement des structures algébriquesi@ssoc

D’une part, nous nous attaquons au probléme de la diagatialisde I'hamiltonien
du modele XXZ avec bords non diagonaux. Nous exhibons les desembles d’états
propres et valeurs propres du modele si les parametres de gatisfont deux conditions.

D’autre part, nous introduisons un modele de physiquessitfie que nous appelons le
modele face avec un bord réfléchissant. Nous calculonsaracat sa fonction de partition
et nous montrons que cette derniére se représente simglemenla forme d’'un unique
déterminant matriciel.

Nous montrons que ces deux problemes sont reliés par |ddraregion vertex-face
et exhibent une structure algébrique commune, I'algébreéfiexion dynamique. Nous
nous intéressons aux aspects mathématiques de cettecadigéistie cas elliptique général,
et nous introduisons deux classes de ces représentatomeprésentation de co-module
d’évaluation et sa duale. Nous pensons que cette algéldeestxatcture clef pour I'analyse
des modeles faces avec bords. En particulier, nous mordaraige de twists de Drinfel’d
gue leur fonction de partition se représente simplemers iacas général.



Enfin, nous tentons une 'dynamisation’ du modéle a vertexf-farn-Symmetric’,
et nous decrivons sa fonction de partitionen termes de septation d’évaluation de
'algebre de Yang-Baxter dynamique, et trouvons un ensermélconditions la détermi-
nant univoquement.



Notations

* General:

space means that this operator actxas the spac@}“zl\/i ; and trivially in any
other space.

Ai € C: spectral parameter associated with the space

¢; € C: inhomogeneity parameter associated with the space

n € C: crossing parameter

V: linear space.

* Pauli matrices:
X 01

=11 o0
0 -
Yy —
Sy
1 0
Z __
*= (o 3)

* Vertex models:
R: Vertex R-matrix
K_: right boundary matrix
K.: left boundary matrix
L: Quantum Lax operator
T: monodromy matrix
U_: boundary (double rows) monodromy matrix
U,: dual boundary (double rows) monodromy matrix
0,9,(,{,T,T € C: spin chain boundary parameters

» Face (or dynamical) models:
R : faceR-matrix
K dynamical right boundary matrix
K. dynamical left boundary matrix
£': crossed Lax matrix
7 . dynamical monodromy matrix
2. dual dynamical monodromy matrix
u _: dynamical boundary monodromy matrix
U 4. dynamical dual boundary monodromy matrix
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S vertex-face transformation

0 € C: dynamical or face parameter

(_,(, € C: dynamical boundary parameters
Xij(A; 80— r]oﬁ): mean thatr act onV; ® Vj ® V as:

xij (A8 —naop)li) @ 1)) @ k) = {xij (A8 —nu)li) @ []) } @ k)

with: of|k) = pk)

[[1,N]]: set of consecutive integers between 1 Ahd

Normal ordering: the? ; j Inthe argument of any operam‘rJ (\;6—no? i) EEndVi®
Vj) (which does not necessary commute with it) is always on tj;‘retmf all other
operators involved in the definition of.

Elliptic functions: _
Let ¢ be a fixed complex parameter such tHat(e) > 0 and denotep = &'™. We
will use the following notation for elliptic functions [5&19]:

hy(Ar€) = —2ipE sinh(A) 174 (1~ 20" cosh(2A) + p) (1 p)
ho(A;€) = 2p8 coshA) 14 (14 2p" cosh2\) 4 p?")(1— p")
ha(A;€) = [y (1+2p™ 2 cosh(2\) + p?* 1) (1 p")

ha(A;€) = [12_1(1—2p™ 2 cosH2\) + p2* 1) (1 - p")

h(A) = € [12o(1— ple 2)(1— p*ie?)

Up to a multiplicative factorh(A) equals the Jacobi theta functi®a(iA) . This
function is odd and satisfies the addition rule

h(x+ u)h(x—u)h(y+Vv)h(y —v) — h(x+ v)h(x—Vv)h(y+u)h(y — u)
= h(x+y)h(x—y)h(u+v)h(u—v).

In the degenerate case, we have:dirgh(A) = 2sinh(A).
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Introduction

According to Galileo, "Nature’s great book is written in mematical language”. It is
a natural task in the physical sciences to explain obseried@mena and their various
causes and consequences, trough the use of a mathemainsaiMork. Nature possesses
a huge amount of complex, highly non-trivial, and intricateenomena. To understand
them, physicist’s approach consists of extracting the medsvant facts about these phe-
nomena and building a theory around them. The aim is not tcigely describe the ob-
served fact, but rather to focus on the few fundamental uyidgrphenomena. Following
this tradition, Copernicus noticed that observed star omatakes the form of a circle. Al-
though this is known to be non-exact, it allows one to hidftlitpe fundamental features of
star motion and the important role of this singular objectolhis the sun. Thus, a physics
theory consists in full generality of a set of few, prefeyadimple, concepts which explain
stylized facts and magnitude order. Then we use a numberpbfisccated methods to
describe the observed phenomena as perturbations of thess#ets. In this spirit, Kepler
uses the Tyco Brahe data to refine Copernicus’ theory forrstaion, and he proposes
that stars follow elliptical orbit.

The theory of integrable systems has its roots in theolgtizgsics, with the first at-
tempt at mathematical formulation of physics laws by Newtdine integrable systems
theory in classical mechanics consists of finding exactt&wsls to mechanic equations.
Using his framework, Newton succeeded in finding an exacit®wn to Kepler's two-
body problem. Liouville then proposes a generic framewohiesg classical mechanics
equations can be exactly solved by quadrature [79, 80]. drwlork, the notion of inte-
grals of motion (or conserved quantities) forming an intekifamily is crucial. Apart
from the Kepler problem, only a few examples were known leetbe second half of the
twentieth century and the work of Gardner, Greene, KruskdlMiura [50] on the con-
served quantities of the Korteweg de Vries equation in fluethanics. Thereafter, the
field developed quickly with the work of Lax [V6] regardingstiormulation of mechanic
equations, which allows a strong framework for generatmgserved integrals of motion
for a classical system. All this research was put on a soliiedhscheme in the work
of Faddeev, Zakharov [127] and Gardrer![51] where they bthi@dink between Liouville
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integrability and Lax formulation. This method, known as thverse scattering method,
provides a generic mathematical theory which has enormgpigcations in classical me-
chanics, chaos theory, general relativity, gauge andgsthieory. This theoretical scheme
uses a large range of interacting mathematical fields suttteabeory of symplectic man-
ifolds, and the theory of Poisson-Lie groups.

Alongside these recent developments is the emergence ofuqudheory. The theory
of quantum integrable systems has its roots in the very baggrof quantum theory itself.
Using the Heiseinberg matrix formulation of quantum meatsrthe search for an exact
solution to quantum problems was started by Heisenberg Whesucceeded in develop-
ing a purely algebraic treatment of the harmonic oscillatorthe same spirit Pauli [95]
succeeded in solving the hydrogen atom problem. In thisdwonk, the concept of in-
tegrals of motion is also crucial, and the notion of spectgenerating algebra becomes
particularly relevant.

Along with the development of quantum mechanics, the firahgum models for con-
densed matter appears, and among them the Heiseinberg foofigromagnetism plays
a central role. The key work of Bethe [10] for solving the atigensional periodic XXX
Heisenberg model is often considered as the starting pbihieanodern theory of quan-
tum integrable systems. In his work, the XXX Heisenberg hi@mian eigenstates were
constructed in terms of quasi-patrticles. We should mernhanthe Bethe method relies on
an ansatz about the eigenstates: they should be eigensitatah the translation operator
and the total spin operator, both of which are integrals ofioms. Translation invariance
relies to the fact that the hamiltonian has a periodic bogndandition. Therefore, finding
an exact solution implies that the rapidity of the scat@gguasi-particles should satisfy
a set of algebraic relations known as the Bethe equations.pfimordial importance of
the spin conservation is related to the conservation of timeler of quasi-particles. This
latter observation in connection with the integrabilitytioé XXX Heisenberg hamiltonian
was not apparent in Bethe’s work.

Another key development in the theory of quantum integrajptems is the mathemat-
ical tour de forcesolution of the two-dimensional Ising model by Onsager [@@3luding
the calculation of the magnetic order parameter. The Omsagetion makes use of the
transfer matrix technology which now plays a central rolstatistical physics and the use
of a very important relation; the star triangle equationfidst sight, it may seem that the
Onsager method is far from quantum theory since the Isingafis@ classical model, but
this is not the case. Indeed, equilibrium two-dimensiotedsical statistical mechanic is
dual to one-dimensional quantum mechanics (and more dgnang equilibrium (D+1)-
dimensional classical statistical mechanic model is dwal D-dimensional quantum me-
chanics model). In the framework of quantum integrableesyisttheory, this duality was
highlighted and extensively used by Baxter in his analysieaex models. Moreover, he



CONTENTS 3

shows that Heisenberg spin chain hamiltonian are relatedrtex model transfer matri-
ces, establishing a first connection between Bethe solédioone-dimensional quantum
models and the Onsager solution for two-dimensional atakstatistical models. In addi-
tion, he uses the star triangle equation for finding solaioinvertex models.

A third achievement is the work of Yang [120] on the one-disienal N-body prob-
lem with &-repulsive interaction. He succeed in using Bethe angathg diagonalization
of the quantum hamiltonian. The Yang method underlinesharatubic relation involv-
ing the two-particle scattering matrix, which once agaithes star triangle relation. This
relation appeared as a consistency equation for the Be{hatlngsis.

A final step towards a theory of quantum integrable systerttseisvork of Zamolod-
chikov and Zamolodchikov [125] on integrable quantum fidlddry. They show that
certain quantum relativistic theories are integrable éréhis neither particle creation nor
annihilation in the scattering process, or in others woftise number of particles is con-
served. Another crucial condition for integrability is thaultiple scattering processes
should be factorizable into two particle scattering preessthat obey the star triangle
equation. In this bootstrap procedure we recover many astifized facts for a quantum
integrable theory: the conservation of particles and thetstangle equation.

All these seemingly different methods were unified by the kvof the Leningrad
school around Faddeev [33]. It was shown that all these agpes have a common and
unique algebraic version, which non-trivially take thenfoof a quantum version of the
classical inverse scattering theory. In the quantum imve&ttering method, the star
triangle equation, called now the Yang-Baxter equatioke tine form of a consistency
equation for a non-abelian spectrum generating algebria.aldeebra, known as the Yang-
Baxter algebra, leads very naturally to an involutive fanaf integrals of motion. This
very powerful theory permits one to describe, in a unifiedesed, the various quantum
integrable models. It also provides a theoretical framé&vior both one-dimensional pe-
riodic quantum hamiltonians and for dual two-dimensiomatistical physics models. Itis
at the heart of an important field of mathematics known astteery of guantum groups.

The quantum inverse scattering method has two generalmzatiThe first one is con-
tributed to Baxter [[/=9] for handling models were the nundfejuasi-particles is not con-
served. For this task he uses a crucial transformation, ¢énex-face transformation, in
order to diagonalize the eight-vertex model transfer matni equivalently the XYZ spin
chain hamiltonian. Felder [42] shows that this transfoiorateads to a new integrable
structure known as dynamical Yang-Baxter algebra. Thislalgis the key structure for
the algebraic analysis of the eight-vertex model and alsarfother class of related, face
models. The second generalization was developed by Skijah0] for handling more
general boundary conditions. He shows that another algestracture, the reflection al-
gebra, is the key structure for the analysis of models witkndpoundaries, among them
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the XXZ model with diagonal boundary. This thesis is an afieto describe in an unified
scheme dynamical models with boundaries.

We make extensive use of the vertex-face transformatiothéodiagonalization of the
XXZ hamiltonian model with the most general boundaries sEmables us to highlight the
key ingredients for dynamical models with boundaries, Wwiaie the dynamical reflection
equation and the associated algebra. We then generalszgtrectures and focus on their
mathematical basis in a model-independent framework. ¥ée@esent the application of
this newly discovered structure in the field of statisticalamanics.

The thesis is organized into five chapters. The first of whech theoretical back-
ground of the quantum inverse scattering method and thé@geBethe ansatz method
for the resolution of the diagonalization problem of quamtspin chains hamiltonians
with a conserved number of quasi-particle. In this chapteralso describe the mathemat-
ics behind the Yang-Baxter equation and Yang-Baxter algelorthe second chapter, we
highlight the duality between quantum spin chains with aseoved number of particles
and classical vertex models of statistical mechanics. thquaar, we show how the quan-
tum inverse scattering method for the quantum models cahttethe exact evaluation of
partition functions of the associated vertex models. Tirethe third chapter, we focus on
the Baxter’s vertex-face transformation for the analy$ismodels with non-conservation
of the third component of the total spin, or equivalently thember of quasi-particles.
This will enable us to understand the vertex face technologyder to use it in another
context, which is precisely the object of the fourth chapiée uses the vertex face trans-
formation in order to solve the XXZ model with the most gené@undaries. This leads
us to the discovery of a new dynamical algebra, the dynamefdction algebra. We
also introduce in this chapter a new face model with a bouynddrich is canonically re-
lated to the XXZ model with general boundaries, and showsstiigadynamical reflection
structure enables us to exactly compute its partition fonctFinally, in the fifth chapter,
we generalize the newly discovered dynamical reflectioelaig in a model-independent
framework. We also show that it is the key structure for theegal analysis of the face
model with reflecting ends, and the exact computation of teaitition functions.
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Chapter 1

Algebraic framework for guantum
iIntegrable models

A quantum system is completely characterized by the data tedrailtonian which is

a hermitian operator describing the time evolution. It amisa specified Hilbert space
describing the states of the system. By an integrable goantodel, we mean a hamil-
tonian for which it is possible to determine completely pestrum, namely both eigen-
values and eigenstates. The main idea forgqii@ntum inverse scattering meth@@SM)
[7,34)35,53, 61,65, 72,107] is to find a setooimmuting quantum chargésrming with
the hamiltonian an abelian subalgebra embedded into atbiggeabelian algebra. The
algebraic Bethe ansatechnique allows one to represent the generators of thebedgas
creation and annihilation operators. Their action on saference statean thus gener-
ate hamiltonian eigenstates. The non abelian algebraanaat using an auxiliary linear
problem. Although this construction is available fueriodic boundaryhamiltonians and
also for more generapen boundary conditionghe existence of a reference state is a non
trivial feature that only few hamiltonians share. Such amefce state may exist, but it can
be troublesome to find it as it is mainly related to global syetrmof the hamiltonian. We
will first present the general algebraic framework for th&Rland then show for third
component of the total spin invariant hamiltonians how tostouct eigenstates. Such
hamiltonians conserve the number of (quasi-)particlesave two canonical eigenstates,
the completely ferromagnetic states, which can be usederenee states.

7



8 CHAPTER 1. ALGEBRAIC FRAMEWORK

1.1 Periodic systems and Yang-Baxter algebra

The key element of the QISM isquantum R-matrix RC x C — EndV @V ), whereV
is a linear space, satisfying the Yang-Baxter equation:

Ri2(A1,A2)Ri3(A1,A3)Ra3(A2,A3) = Ro3(A2,A3)R13(A1,A3)Ri2(A1,A2). (1.1.1)

This equation vy ® Vo ® V3, is a consistency condition for associativity of the algebr
generated by the operator entries eleméglg € End(#/) of the monodromy matrix T
C—V®4,wherex isthe system Hilbert space. This algebra, known a¥#émey-Baxter
algebra is written as an equation End(V1 ® Vo ® # ):

Rlz()\l, )\2)T1<)\1>T2()\2) = Tz()\z)Tl()\l) Rlz()\l, )\2). (1.1.2)

A is referred to be the spectral parameter associated to ¥il@aauspaceV;. The remark-
able point is that provided the elementsio$atisfy the Yang-Baxter algebra relations it is
possible to generate a family of commuting quantum chatgeasdjng to arinvolutiveset

of operators, the transfer matix

Y(A\,m) €C2 [T(A), T(w] =0, (1.1.3)

where:
T(A) =tro(To(A)), (1.1.4)

is the trace over the auxiliary spab. This transfer matrix is to be understood as a
generating function for integrals of motions of a quanturstegn described by some rep-
resentations of the Yang-Baxter algelira (1.1.2). The mateimentsT, g can generate by
action on gpseudo-vacuuntD) or reference state the eigenstates of the commuting fam-
ily and thus hamiltonian eigenstates if it belongs to thimifg. This construction is an
algebraic achievement that arises from thapparentlydifferent fields of mathematical
physics, namely the theory of factorized scattering mdtiq1+1)-integrable field the-
ory [15,120} 124-126], the mathematical analysis of eyaslvable statistical physics
models in 2-dimensions developed mainly by Baxter|[[8, 94l iurs in some sense largely
inspired from the quantized theory of non linear classicplation resolution that arises
in classical integrable mechanics [31,/33,/108]. The ratato statistical physics will be
extensively studied in this thesis within this modern fraragk. It is very instructive to
note the physical picture underlying the QISM constructespecially in connection with
non algebraic methods such as the coordinate Bethe andath(w not the object of this
thesis) [10,5[7,90,91,105, 116].

The R-matrix can be understood as a scattering matrix describ@gnderlying scat-
tering in the system. Multi-particle process can factatiago two particle one and the
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Figure 1.1: The Yang-Baxter equation (1]1.1)

Yang-Baxter equatiori (1.1.1) is the invariance of thredybscattering that should obey
any (1+1) process to be integrable as illustrated in Figute The monodromy matriXp
should be understood as the scattering matrix for any syskertation within the system:
1,...,N are indexes for the various points that we will associaténgle quantum systems

Figure 1.2: The monodromy operaffy

with quantum spac¥ j—; .. n and O refer to an auxiliary spadg. The Yang-Baxter alge-
bra (1.1.1) reflects the invariance of the system scattgmingess for multiple scattering
points:

Figure 1.3: The Yang-Baxter algebfa{1]1.2)
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Finally, the periodic features of models that are descrilyetie aforementioned frame-
work are obvious from the trace formula(1l1.4) as any péssikcitation starting in the
system achieves a complete scattering and return to the@ainte

2

Figure 1.4: Trace formula(1.1.4) and periodicity

1.2 The first example: the periodic XXZ spin chains

For quantum spin chains, it is quite remarkable that sigftiom the local operators de-
scribing the quantum system we can find such quadratic ageiith an abelian sub-
algebra containing the hamiltonian. In this thesis, we $oon one-dimensional spin
chains of sizeN where in each siten=1,..,N is a quantum system with Hilbert space
Hm ~ C2. Thus, the hamiltonian of the system acts in the Hilbertepac= ®N_, #m. In
this section we are interested in the XXZ hamiltonian withigaic boundary condition:

N

H = Zloi’(crix+1+0iyo%'+l+A(oizoiz+l— 1) (1.2.1)

i=
A = cos andn € C is an anisotropy parametea ™ ¢ End(C?) are the usual Pauli
matrix. Since we assume periodic boundary condition, wethiséollowing convention:
oNi1 =017 The QISM framework for the XXZ spin chain requires the usethsf
trigonometric solutiorof the Yang-Baxter equation [33], a representation of theersal
R-matrix of 14(slz) in C2® C2, known as thesix-vertel R-matrix, which depends on the
difference of spectral parameters:

a%M\) 0 0 0
6V 6V
RO=| o @i o) o | (1.2.2)
0 0 0 a¥Q)

1The name six-vertex refers to the underlying statisticaispts systems which is the object of the next
chapter.
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with:
a® (\) =sinhA+n), c(\)=sinhn), bY(\)=sinh}). (1.2.3)

A canonical representatidn: C — End(Vo ® #), Vo ~ C? of the algebra{1.112) in the
guantum space/y,, the Lax matrix, is given by thB-matrix itself. In this case, it can be
rewritten in the more explicit form:

1+03,

B B B _ [ sinhA —=&m+n=—>") sinhnop, ]
HA —&m) = RO Em)_< sinhno, sinf()\—Eerr]lsz))’ (.24

Eme C,m=1,...,Nare arbitrary parameters attached to each quantum spaa@ lasdhe
inhomogeneity parameters, that we introduce here for coanee, andjii are the usual
creation and annihilation spin operata$ = 1(o¥ +io}). Note that each single quantum
system is a representation of tblg algebra:

0,071 =&jof, [0f,07] =+dj0;, (1.2.5)

and that it is embedded into a Yang-Baxter algebra reprasent The bulk monodromy
matrix To(A) € EndVo® #( ), of the inhomogeneous system, a representation of the Yang-
Baxter algebra on , is obtained as the following ordered product:

N
) = [t &)= (&) o) . (126

In these last expressions, denotes thé-matrix in EndVo® #p,). Itis easy to show that
it satisfies the Yang-Baxter algebra relatidns (1.1.2). Weld like to stress here that the
hamiltonian [[1.2.1) indeed belongs to the commuting farffilif.4). In the homogenous
limit,

vme [[L,N]], &n=0:

J{:ZSinI*(r])C%\InT()\)‘)\O—ZN coshn) (1.2.7)

Once these algebraic tools are introduced, we can implethenalgebraic Bethe
ansatz scheme for the periodic XXZ hamiltonian diagon&bra by finding the trans-
fer matrix spectrum. The system Hilbert spageis then a representation space of the
algebra forA(A),B(A),C(A),D(A) with a specific reference state which is an eigenstate of
A(A) andD(A) and annihilated b (A):

A(M)|0) = a(A)[0) (1.2.8)
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If such a state exists, the algebraic relations (1.1.2)rerthat we can construct eigenstates
of the transfer matriX{L.1.4) in the formy_; B(Ak),M = 1, ..., N provided the{A; } satisfy
some relations. For the XXZ hamiltonian, the completelyderagnetic state with all spins
up: [0) =N | (é)z = ®N 1 |1)g, is such a state. Indeed, due to the triangular structure of
guantum matrix entries dfpi, we easily check the following relations :

N

a(\) = _r!a@’ A=§) (1.2.9)
= _ﬁbf’v()\ —&) (1.2.10)
Due to the algebraic relatioris (1.11.2) and the correspgndilations forA(A),D(A),B(A):
[B(A),B(W] =0 (1.2.11)
S A-p bY (A — )
BOVAM) = 73— BWAN) + J7 3 = AWBY) (1.2.12)
B)D() = bﬁv& 70— BOVD( + ;mjﬁi D(VB(W (1.2.13)
the following theorem holds:
Theorem 1.2.1 (Faddeev-Sklyanin-Takhtajan)
M
YWMe [[LN]]: [W({{Mdk=1,..m) |_| (A)[0) (1.2.14)

is an eigenstate of the transfer mat(x1.4)T (1) = A(K) + D(p) for any p with eigenvalue
N
M a¥ (A M a¥ (u—n)
AMGk=1, M5 {&j =1, =a +d 1.2.15

if the parameter§Ay}k—1..m Satisfies the Bethe equations:
da) & @ (A—N)
()\k) i— 1I7éka ()\i —)\k)

With the use if the QISM, we are able to find eigenvalues andretates of the periodic
XXZ hamiltonian.

Remark 1.2.1 To be complete, we should address the question of the canpgs of the
Bethe states set. This is actually an open problem althoagisdv and Varchenko have
shown completeness on some special points [111] .

vk € [[1,M]]: =1 (1.2.16)
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1.3 Open boundary and reflection algebra

The previous framework is very powerful for studying spiraicis and more generally
guantum systems with periodic (or twisted) boundary coonlit. If we are interested in
studying systems with open boundary conditions, then weillghatroduce another al-
gebraic structure; known as theflection matrixand associated algebra. The reflection
matrix describes the reflection process at one system bopadd the associated algebra
are the compatibility condition for this reflection with @grability. This algebra is nat-
urally associated with bulk scattering. Since the bulk H@mian is the same, the very
remarkable point is that we do not need to modify the prevamrsstruction. Indeed, this
new structure is added to the latter@smoduleover the previous structure, leading to
a very intuitive algebraic scheme. We should stress thatdmstruction that we shall
present is an algebraic version of the scattering field theorthe half line developed by
Cherednik[[16] . Once again, we look for an algebra whichsaad family of commuting
charges containing the hamiltonian. Following SklyanihdJl, we first restrict ourselves
to the case where we assume a strong assumption f&miatrix, it should depend on the
difference of the spectral parameter. Taking into accdumbbundaries requires one to in-
troduce theeflection algebra B(R(A)) for elementgU_ ), g of (U-) : C — EndV @ # ):

Riz(A1—A2)(U-)1(A)Rex(A1+A2)(U-)2(A2) (1.3.1)
= (U-)2(A2)Ri2(A1 +A2)(U-)1(A1)Rea(A1 — A2),

and itsdual B, (R(A)), thedual reflection algebrdor elementgU., )q g of

Up):C—EndVeH):

RlZ()\Z — )\1) (U_t&)l()\l) RZJ_(—)\]_ — )\2 — 2r]) (U_tf)g()\z) (1.3.2)
= (U2)2(A2)Ruz(—A1 — A2 —2n)(UP)1(A)Res(A2 — Aa).

Remark 1.3.1 These two algebras are actually isomorphic. An obvious gsphnism
p:B_(R(A)) — BL(R(A))is:

p(U-(A)) =UL(-A—n) (1.3.3)

The reflection process at one or other boundary (denotet) by described by boundary
matrix K which are scalar representations of the reflection algebita dual,K.. : C —
EndV @ C):

Ri2(A1—A2)K_ (A1)Re1(A2+A1)K_(A2) (1.3.4)
= K_(A2)Ri2(A1+A2)K_(A1)Ro1(A2 — A1),
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S

Figure 1.5: The reflection equatidn (13.4)

Ri2(A2 — A)KE(A)Rea(—A1 — A2 — 20)K? (A7) (1.3.5)
= KE()\z) R12(_)\1 — )\2 — ZH)KE& ()\1) R21()\2 — )\1).
The scattering-reflection at one boundary is described @lyenidimensional representa-

tion of the reflection algebra as co-module over the Yangt®axlgebra representation.
This representation is tH@undary monodromy matrix

(U-)o(A) = To(A) (K- )o(\) Ty H(—A) (1.3.6)

Figure 1.6: The boundary monodromy mattix_)o

Equivalently, the scattering-reflection process can berdesd starting with the second
boundary and we shall use in this case the dual boundary momgydnatrix:

(UP)o(A) = TR (KDoA (TS (). (1.3.7)
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Remark 1.3.2 In the quantum group Ianguag(a‘l,’*l)tg()\) is the antipode of TA).

Figure 1.7: The boundary monodromy mattix, )o

Since the bulk monodromy matrik satisfies the Yang-Baxter algebra relation (1.1.2),
and the reflection matriX_ the reflection equatiori (1.3.4), the boundary monodromy
matrix satisfies the reflection algebra relatibn (1.3.1}) e corresponding relation for
the dual double monodromy matrix is the dual reflection algdh.3.1). Although these
algebraic relations are more involved than the usual Yaagtd algebra relation, they
also provide a family of commuting charges describing tlilecgon-scattering-reflection
process :

Y(wA) € C? [T(w),T(\)] =0, (1.3.8)
where the integrals of motion generating function are:
T(A) =tro{(Ky)o(A) (U-)o(A)} = tro{(K-)o(A)(U)o(A)} (1.3.9)

Thus this transfer matrix is an involutive family of quanteimarges for any quantum
systems described by some representations of the refleatg@bras[(1.3]1) of (1.3.2).
The matrix elementsU. ), g can again generate by action on a pseudo-vaci@jrthe
commuting family eigenstates and thus hamiltonian eiggestf it belong to this family.

1.4 The first example: the diagonal boundary XXZ spin
chains

As in the periodic case, the boundary version of the QISM issudficient to construct
a successful generic scheme for finding hamiltonian withndpeundary eigenstates, as
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Figure 1.8: Trace formul&a(1.3.9) and open boundary

we need a triangular structure similar to the relations.8) .fr Bethe states construction.
We present here a canonical example where such triangul@atwste is obvious, the XXZ
model with diagonal boundary terms, which is the previous2tamiltonian with mag-
netic fields at the boundary parallel to the (quantizatiea)is. The hamiltonian takes the
following form:

N-1
H= Zl ofof,1+00, , +A(ofof , — 1) (1.4.1)
i=

+h_o7+h,of,

Here, the boundary magnetic fields take the fohm = sinhn coth{ _ andh.. = sinhn coth(.,
which are parameterized ldy. € C.

Even if this hamiltonian is no longer a translational ineati (such as the periodic
hamiltonian[(1.2.]1)), it can be embedded in the boundarsieriof the QISM, thus leading
to an integrable structure. We naturally consider the saxaesstexR-matrix and the same
representation of the Yang-Baxter algebra as in the pericalse. However, we need to
introduce two boundary matrices, which #e : C x C — End(V),V ~ C?

_(sinl({_ +A) 0
Ko(A o) = ( 0 sinr(Z—)\)) (1.4.2)
andK (A, ;) = K_(=A—n,4). So the boundary monodromy matrix reads:
(U-)o(A) = YA ToA) (K-)o(N) Ty *(=A) (1.4.3)
_ (A_ (A) B- ()\))
C_-(A) D_(A) 0 ’
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with To(A) = M, Loi (A — &) and the dual boundary monodromy matrix is :

(U)o(A) =TT (K2)o(h) (T H8(-A) (14.4)
:(Am c+<x>)
B.(\) D.(V)/

Remark 1.4.1Y(\) = (=N IN; sinh(A +&; +n) sinh(A +& —n) is a normalization fac-
tor that we introduce here for convenience.

The hamiltonian[{1.4]1) naturally belongs to the commuftamgily (1.3.9). In the homo-
geneous limit,
vm[[1,N]], &m=0:

H= C%T(?\)‘)\O-f- constant (1.4.5)

with
. 2sinit=N(n)
tr(K-(0)tr((K+(0))
The important point is that this hamiltonian is total spivariant:[3(, TN ; 67] = 0, and

thus has a canonical completely ferromagnetic eigensti#teal/spin up:|0) = ®iN:1 é
which is a strong candidate for a reference state. Indeedg tise operator8_,C_ or

(B+,C,) we obtain all reference state requirements:

C.(A)|0) =0, (1.4.6)
A:(N)[0) =a(A)[0),a(r) e C
D (A)|0) = d(A)[0),d(A) € C.

Once again, the algebraic framework of sectia® dnd the existence of a reference state
enable us to diagonalize the hamiltonian. Although thelalge relations[(1.311)[ (1.3.2)
are more involved than for the periodic case, leading togh8ii more involved Bethe
ansatz computation machinery, two important relationsaianalid:

B-(\),B_ (1] = [C-(A).C_ ()] =0, (147)

and
(B4 (A), B4 ()] = [C4-(A),Cy. ()] = 0. (1.4.8)
These allow us to usB.. as creation operators af@d as annihilation operators.
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Remark 1.4.2 The operators A and Di. do no commute anymore:

[AL(A),Ax(W] #0,  [D+(A),Dx(W] #0, (1.4.9)

which means that they cannot be diagonalize simultanegcaigiyugh they still conserve
the spin.

Due to the commutations relations fér ,B_,D_ (1.3.1) (orA,,B.,D. (1.3.2)), the
following theorem holds:

Theorem 1.4.1 (Sklyanin[110])

M
YMe[[LN]: W™ ({Mctk=t....m)) = [] B-(A)|0) (1.4.10)
k=1
M
or W ({Aker..m)) = [ B+ (A)[0) (1.4.11)
k=1
is an eigenstate of the transfer mat(fk 3.9)
T() = (K () FA- (1) + (Ks (1) ZD— (W) = (K- (W) FAH () + (K- (W) “D4- (W)
for any p with eigenvalud:
A k=1,. M, {&j }j=1,..N) (1.4.12)
N ~ sinh(2u+2n) sinh(. + W sinh(Z_ + )
= {0k n>sinf(2u+n>|‘|i“ilb(hi—u)b(hi+u+n>
o sinhQusinh(p— {4 +n)sinh(u—4_ +n)
AW G oy ) M, b -+ b — )
where: o
(A) = 26\,&; (1.4.13)
if the parametergAy}x—1,... v Satisfy the Bethe equations:
YAk, {Ni Fitki=1,. mo1&j }i=1,..N, =, (5) (1.4.14)

=Y(—Ak— N, {Aitizki=1...M> {&j Fi=1...N, =, )



1.5. QUANTUM INTEGRABILITY AND QUANTUM GROUPS 19

with:

YAk, {Nitizki=1,. M€ i=1,..N, {0 4) (1.4.15)
=a(A)d(—Ax—n)
x sinh({— + W) sinh({+ + 1)
M
X |_| sinh(Ax+Aj) sinh(Ax—Aj —n)
i—1 ik

Remark 1.4.3 The Bethe construction i, invariant due to the following involution:

_ sinh(2A +2n) sinh(2\)

B (-A-n)=-————>-5"-B (), Bi(-A-n)= TS+ )

S B.(A) (1.4.16)

1.5 Quantum integrability and quantum groups

The Yang-Baxter equatiof (1.1.1) and the associated YangeB algebra (1.1].2) are the
heart of a well developed field of mathematics, the theoryuainqum groups [13, 14, 24,
25/32,60,109]. Quantum groups first arise in physics liteeavia Yang-Baxter type alge-
braic structure for solving integrable quantum system®yTind unexpected connections
within a variety of mathematic domains, such as non-comtivetgeometry, the theory of
knot invariants and low dimensional topology. They alsoeharious physics applications
in quantum random walk theory, low dimensional gravity, foomal field theory and of
course, the theory of quantum integrable systems and c#ssiactly solvable systems
of statistical mechanics [54, 64,/83,94/97,1113,114| 1TTH{e name quantum group is
somehow misleading because, as we will see, quantum greep®agroups, but rather
algebra and co-algebra embedded together into a compatrhture known as Hopf al-
gebra. The name quantum is also quite ambiguous, as it reféhe analogy between
classical mechanics and quantum mechanics, where clagbservable forming a com-
mutative Hopf algebra, on a classical Poisson manifold grthup structure, is replaced
by a non-commutative Hopf algebra of operators on a Hiloesite. There are twdual
approaches to Hopf algebra. Namely, Hopf algebra can bedated via consistency
conditions for co-algebraic properties of a given algebrais is the original construc-
tion of Hopf algebra which was introduced by Dinfeld’s anchBb. Such structure was
in many cases related to deformations of universal envegpplgebra of classical Lie
algebras and Kac-Moody algebras. Another dual presentstibe Faddeev-Reshetikhin-
Takhtajan-Sklyanin (FRST formalism) or the RLL formalismhich is more natural in
the framework of the QISM. This presentation is to be undedtas a quantization, or
rather deformation, of classical Lie group structure. Viégtdty introducing the concept
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of a Hopf algebra following Drinfel'd and Jimbo’s approaciihen we will turn to the
very special case of quasi-triangular Hopf algebra, whecthne algebraic framework for
the Yang-Baxter equation. We continue with the dual apgr@dé¢-RST and highlight the
link with the QISM technology. Finally, we will shortly fosuon the algebraic framework
for the reflection equation.

1.5.1 Hopf algebra

Let us start by defining Hopf algebra via compatibility cdratis between the algebra and
the co-algebra structure.

Definition 1.5.1 A C-Hopf Algebra A is:
i) an (associative unital) algebra over the fieltlwith a product: m A® A — A, and

unit: 1 : C — A which is a homomorphism of algebras

i) aco-algebra over the fiel@ with a co-productA: A— A® A and aco-unie: A— C
which is a homomorphism of co-algebras

iii) the data of an anti-homomorphism of the algebra, thapode S A — A such that:

Ao (S®id)om=1oe=Ao(id®S)om (1.5.2)

Definition 1.5.2 A Hopf algebra is said to be co-associative if the co-produatisfies the
co-associativity condition:
(A®Rid)oA= (Id®A)oA (1.5.2)

Definition 1.5.3 A Hopf algebra is said to be co-commutative if the co-prodiatisfies
the co-commutativity condition:

AX) = A/ (X) =PoA(X), (12.5.3)
where P is the usual permutation operatoridy® az) = ax ® a.

Example 1.5.1To any Lie groupg we can associate a natural Hopf algebra. Indeed,
the universal enveloping algebra(yg) of its Lie algebrag posses a trivial Hopf structure.
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The antipode and co-unit of the Hopf algebra follow from theerse operation in the Lie
group, they are given by:

AX)=X®@ld+ldoX, forXeg (1.5.4)
SX)=-X, forXeg (1.5.5)
S(1d) =1d (1.5.6)
e(X)=0, forXeg (1.5.7)
g(ld) =1 (1.5.8)

Takeg = sk, and consider the universal enveloping algebréslj) of the Lie algebra sl
with generatoro?, o+,0~ and commutations relations:

ot,07]=0% [0% 0% =+o0r. (1.5.9)

In this way we recover the standard composition of intrirssigular momentum in quan-
tum mechanics.

This Hopf algebra is clearly co-commutative. Thus, clesldiee algebra can be embedded
naturally into a co-commutative Hopf algebra. Construttbnon co-commutative Hopf
algebras, or quantum groups, was motivated by the QISMolein this context in the
work of Jimbo on the deformation of universal enveloping aligebra and in the work of
Drinfel’d on quantization of Poisson-Lie structures.

Example 1.5.2 A first simple example is theq(slh),q € C algebra with commutations
relations:

—q
of,07]= T [0%,0%] = +0*. (1.5.10)
The Hopf structure is given by:
AX)=X®ld+1ld®X, forX=0o%0" (1.5.11)
SX)=—q*X, forX=o0?%0" (1.5.12)
S(ld) = Id (1.5.13)
g(X)=0, forX=o0?%0" (1.5.14)
g(ld)=1 (1.5.15)

Remark 1.5.1 In the limit g— 1, these commutations relations reduce to the one(sfl)

(1.5.9)
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Definition 1.5.4 A quasi-triangular Hopf algebra is a Hopf algebra A with arvartible
elements R A® A such that:

N(X)=RAX).RL forXxeA (1.5.16)
(A®id)(R) = Ri3Re3 (1.5.17)
(id ®4)(R) = RizRu2 (1.5.18)

We say that R is the universal matrix of A.

Remark 1.5.2 It is easy to show that for a quasi-triangular Hopf algebrhe tR-matrix
satisfies the Yang-Baxter equation:

R12R13R23 = Ro3Ri3R12 (1.5.19)

Thus, the Yang-Baxter equation arises naturally as the gexton for quasi-triangular
Hopf algebra.

Example 1.5.3R = Id is a universal R-matrix for Usl,) and the given Hopf structure

(1.5.4)

Example 1.5.4If we take the two-dimensional representation gf$l) which is given by
the usual Pauli matrices, then

Nl

q

0

-q
o . (1.5.20)
0

Nl
N
o o

R q

O ok O

0
0
0

NliF =

q

is a two-dimensional representation of the universal Rrixdor Uq(sl) and the Hopf

structure(.5.11)

Remark 1.5.3 In all these examples, the R-matrix is constant, i.e. doéslapend on

any spectral parameter. It is possible to obtain a similaanfrework which leads to R-
matrices with spectral parameters by replacing Lie algegray Kac-Moody algebra .
Such structure naturally lead to the trigonometric sixtegrmatrix(1.2.2)



1.5. QUANTUM INTEGRABILITY AND QUANTUM GROUPS 23

1.5.2 Yang-Baxter algebra as Hopf algebra
Finite dimensional case

Starting from anR-matrix : R € Mcngen(C), we define the associative algel#éR) of
functions over the formal quantum group associate® t@r matrix quantum group, which
generators are the entrieslo Mcn(C < Ty g >), whereC < T g > is the non commuta-
tive algebra of polynomials over the fielt] where the fundamental commutation relations
are the Yang-Baxter algebra relation:

Ri2T1T2 = T2TaRg2. (1.5.21)

Requiring associativity of the algebfdR) with respect to the matrix produ@i T, Tz sim-
ply lead to a consistency condition, the Yang-Baxter equdior R:

R12R13R23 = RosRi3Ri2. (1.5.22)

The algebraA(R) can be embedded into a Hopf algebra structure if we definedhe c
productd, the co-unite and the antipod&as:

AT)=T®T (1.5.23)
g(T)=1Id
T =T"

Such algebra is finite dimensional as it mégeneratoré'aﬁ.

Example 1.5.5Let us consider the simplest non-trivial example given ky2th 2 matri-

ces: b
a
T= <C d) (1.5.24)

For a,b,c,d € C these matrices form the Lie group &IC). A trivial deformation of the
Lie group into a commutative Hopf algebra i with R= ld2«2. In this situation,
the ab,c,d elements are given a trivial Hopf algebraic structure@sgenerators. The
Yang-Baxter algebra relation reads trivially:

l12Tai T2 = ToTiliz = TaTo = 2Ty (1.5.25)
or more explicitly:

ab=ba ac=ca ad=da (1.5.26)
bc=cb bd=db
cd=dc
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These relations are nothing but tilecommutativity. A consistent non commutative defor-
mation of Glz(C) is (GL2)q(C),q € C, or equivalently AR) with:

¢ 0 0 0
1 1
0O 1 g2—qgz O
R= 1.5.27
0 O 0 1 (1.5.27)
00 0 g
The relationg[1.5.21)explicitly read:
ab:q%ba ac:q%ca ad—da:(q%—q‘%)bc (1.5.28)
bc=cbh bd=qzdb
cd:q%dc

Note that the co-algebraic properties 0EL>(C))q for g =1 and g# 1 are identical
although the algebraic properties are different.

Remark 1.5.4 The algebra(GL»(C))q is easily transformed int¢SLy(C))q by imposing
ad— q% bc= 1.
Infinite dimensional case

We turn now to the case of the Yang-Baxter algebra with speptairameter (1.1.2). Fol-
lowing the same lines as in the previous section, the YangeBalgebral(1.1]2) is simply
the algebra\(R(A, ) of elements off (A) € My gy (C < Ty g >), whereV is theZ-graded
vector spac¥ = QmezAMC" with fundamental commutations:

Ri2(A1,A2)T1 (A1) T2(A2) = To(A2) Te(A1)Ri2(A1,A2). (1.5.29)
T(A) can be viewed as the formal Laurent series:

T(A) = ;Ame (1.5.30)

A consistency condition for the associativity of the algeproduct is the Yang-Baxter
equation foR:

Ri2(A1,A2)R13(A1,A3)Ra3(A2,A3) = Raz(A2,A3)R13(A1,A3)Ri2(A1,A2). (1.5.31)
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The algebraA\(R(A, 1)) can be embedded into a Hopf algebra structure if we define the
co-product), the co-unite and the antipod8& as:
ATA))=TAN) T (W (1.5.32)
g( Id
S(TA) =T H'™)

Such algebra is infinite-dimensional as it has an infinite ineinof generators™T, g, me
Z.

_|
—

>
~—
N—

I

Remark 1.5.5 If we choose R\, ) to be the six-vertex R-matr{f.2.2) this is the alge-
braic structure underlying the XXZ model. As R is the R-matirly(sl), the Yang-Baxter

~

algebra underlying the integrability of the XXZ model is thaelJqy(sl2).

1.5.3 Reflection algebra as co-module algebra

In this section, we present the algebraic formalism_[5| &, the reflection algebra
(@.3.1). Our aim is to introduce some vocabulary that we ug# in the next chapters.

Definition 1.5.5 A co-module algebra B is an algebra together with an algebith wo-
algebraic structure (co-product and co-unit) A, and a mapeion)¢ : B— A® B which
is:

» An algebra homomorphism:
¢(B) c A®BCB (1.5.33)
» Consistent with the co-multiplicatiah of A:
(Axld)od = (Id2d)od (1.5.34)
 Consistent with the co-ungtof A:
(e®ld)od =Id (1.5.35)
B is then an A-co-module algebra.

Given anR-matrix (we focus on the general case whereRhmatrix is spectral param-
eterized), define the algebBiR(A)) generated by non commutative elementslofA) €
Mcn(C < (U-)q g >) satisfying the relations:
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Ri2(A1—A2)(U-)1(A1)Rea(A1+A2) (U-)2(A2) (1.5.36)
= (U-)2(A2)Ri2(A1+A2)(U-)1(A1)Re1(A1 — A2).
The co-algebraic properties of such algebra are not cledrHmpf algebraic structure is

not the right framework foB(R(A)). Rather, we have a coactign B(R(A)) — A(R(A)) ®
B(R(A)) which embed(R(A)) into anA(R(A))-co-module algebra:

Theorem 1.5.1 (Kulish-Sklyanin [66]) B(R(A)) is an AR()A))-co-module algebra. Given
K_(A) € B(R(A)) and T(A) € A(R(A)), the coactionp reads:
d(B(R(A))) € A(R(A)) @B(R(A)) € B(R(A)) (1.5.37)
O(K-(A\) =TMK-MTH(=A)
This theorem is the mathematical formulation of the co-meddructure that is en-

countered in the boundary version of the QISM. It also presid way to handle integrable
reflection at a boundary, together with a bulk integrabléteoag process.



Chapter 2

Quasi-particles invariant quantum
hamiltonians and duality with classical
vertex models

We turn to another aspect of the QISM which is at the corneestif the modern theory
of quantum integrable systems. Namely, this algebraic éxaonk enables us to high-
light duality between one-dimensional quantum mechamcstao-dimensional statisti-
cal physics. This highly non trivial duality between the-sertex model and the XXZ
spin chain that is indeed generalizable to other models wsisrfoticed by Lieb[[78],
Sutherland[[105] and Baxter for the very general eighteserhodel [ 7], 8] and then more
formally put within the QISM by Faddeev-Takhtadzhan|[36]déed the algebraic Bethe
ansatz technique of Chapter 1 establishes a clear relagiarebn the quantum spin chains
and two-dimensional models in statistical mechanics. Tdreodic XXZ spin chain was
solved using diagonalization of the transfer matrix (1).1Phis object is nothing but the
statistical physics transfer matrix of tlsex-vertex model Indeed, the partition function
of the six-vertex model with periodic boundary conditioas bde represented as the trace
over the quantum spaces of the product of transfer matrix:

Z6V = tr[Vo]tr[(XJngi}TON = tr[®ini]TN (201)

This equivalence with two-dimensional models of statatimechanics also turned
out to be essential for the computation of scalar products amrelation functions of
guantum integrable models. It was shown by Izergin and Karf5g8] that the partition
function of the six-vertex model withomain wall boundary conditio®WBC) is the key
element for the study of the correlation functions of thagmic XXZ model. The elegant
determinant representation for this partition functiomrfd by Izergin[[59] is crucial for the

27



28 CHAPTER 2. DUALITY WITH CLASSICAL VERTEX MODELS

computation of the correlation functions starting from #thgebraic Bethe ansaiz |67, 68].

For the open case the corresponding partition function waspated by Tsuchiya in
1998 [112]. His work shows that the transfer matrix of theropgain with diagonal
boundary termd_(1.3.9) is thex-vertex model with reflecting enttansfer matrix. Once
again, the partition function has a determinant repretientaand this was used first to
compute the scalar products and norms of the Bethe vectd83 find then to study the
correlation functions of the open spin chains with extebmindary magnetic fields par-
allel to thez axis [69/70].

Such duality between integrable quantum spin chains aridwerodels, or more gen-
erally for any system that is described byranatrix representation of the Yang-Baxter
algebra or the reflection algebra, turns out to be very pawésf the third component of
the total spin invariant hamiltonian. The importance o$ttiuality is due to the underly-
ing vertex model, which igxactly solvablenamely we can compute exactly its partition
function. In most cases, the latter partition function hasnaple and manageable repre-
sentation.

In this chapter we would like to highlight such fundamentadl dighly non trivial
duality, and show how the algebraic tools of Chapter 1 peomé to find an exact and
manageable formula for the partition function of vertex mlsgdopening the way to the
exact evaluation of correlation functions of quantum indéde models. We focus our
attention on hamiltonians with conserved number of quasiigdes or equivalently on
models where the third component of the total spin is corgkrvihe case where this
U (1) symmetry is lost is the object of the next chapter.

2.1 A fundamental quantity

We learned from Chapter 1 that within the QISM framework thiegrable hamiltonian
eigenstateg¥) are constructed as the action of product of off-diagonal edoomy oper-
atorsB,C on some reference sta®:

M
) =[]80)/0) (2.1.1)

where the spectral parameteiis.1  w satisfy the Bethe equations. Whah= N, the
system’s length, the Bethe vector is then proportional éodiinonical orthogongD| of
the pseudo-vacuumd):

N
[1BA)I0) = Zn[0), Zv € C. (2.1.2)
=1
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We are interested in the exact evaluation of the s@lam order to push forward analysis
of integrable models towards scalar products, form faatoxrrelations functions. This
guantity has in many cases a clear statistical physicspregtion. We present these
relations to statistical physics for the XXZ model with melic boundary and diagonal
open boundary conditions.

2.2 Periodic XXZ and square vertex model

Moving on from our previous construction, we turn now to acsglecase of two-dimensional
statistical physics models defined on a square lattice efidiz N. On each edge is at-
tached alassicaltwo-state variables, for instance, a canonical basis ve€t@? ,{|1),|])},

where:
= (é) ) = (2) (2.2.1)

To each vertex, we associate a statistical weight accotditige adjacent edge configura-
tion, and we allow only six non vanishing configurations. fiede six configurations we
give three statistical weighe®”,b% , c®:

T S T

— — — — — i
T \ \
S T S

o o o o — —
\J T T

a® poY c®

Such vertex models are very universal and they have beemsixtdy studied by
statistical physicists first as a model for ferroelectyidif7,/104], and as an Ice model
[81]. Vertex models then become very fundamental modelsfathematical physics
[6,28,78, 92, 106]. They are related to a large range of mogbysics models such as
the Toda model [73] and two dimensional gravity and randatick&|[74,128]. They are
also linked to various mathematical methods such as KP add fu functiond [46—48],
enumeration of alternating sign matrix [27]75/,/98, 98] andrqum groups [13]. A fun-
damental question in statistical physics is the computatiothe partition functiorZﬁfN
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of this model. Since they arise as a necessary step towangsutation of scalar products
and correlation functions of quantum integrable modelfiwithe algebraic Bethe ansatz
framework, the exact computation of their partition funatis not only fundamental from
a statistical physics perspective, but also from a quantioysips view point.

Following Korepin, we focus oomain Wall Boundary Conditio(DWBC), the ar-
rows point inward along the left and right and outward aldmgtbp and bottom:

Figure 2.1: The vertex model with DWBC

The partition function of this vertex model is defined as:

N

RNtz N & }=1N) = ZQ_ |_'|1fw (Cij)(Ni—&)). (2.2.2)
ceQi,j=

Here and in what follows, for any lattice modal,j—; N refers to the horizontal lines
starting from the bottom, whil€; j—1 .~ refers to the vertical lines starting from the
right. In this expressioQ is the set of all possible configurations of the model, and any
configurations can be decomposed iNta N local vertex configurations; j—1.... N:

N

c=1] i (2:2.3)
i,j=1

We consider amnhomogeneousiodel where the Boltzmann weight of each local config-
uration depends on the parametgrs; . N andéj—1 . n indexing the lattice:

w (i) Ni—&) =0\ —&j), o=a bV . (2.2.4)
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If we collect the statistical weight®' ,b® ,c® into the entries of the six-vertéR-matrix
(I.2.2), the partition function of the six-vertex model osguare lattice of siz&l x N
with DWBC can be rewritten as:

N
NN i= N & =nn) = (Ol (Ol [1 Ri i = ))[0)¢[0) (2.2.5)
)=

N
= (0\A<6|E_HT(N)|0>E\6>A

o
= <5|z_|15(?\i)|0>£

In this expression(0| = &N ; 2 is the orthogonal of0) and the subscrip, (:) means

that the vector lies in the auxiliary (quantum) space. Nb#&t this formula shows that the
quantityZ®'y is nothing but the fundamental scalar objécf(2.1.2).

The partition function is then represented in terms of the2§gin chain's QISM in-
gredients. Its integrable structure leads to very deepglmsiregarding the analytical prop-
erty of this partition function, enabling Korepin to find a & conditions that uniquely
determine the partition function.

Proposition 2.2.1 (Korepin [71]) The partition functiorf2.2.5)satisfies the following prop-
erties:

i) Initial condition
Z29(M1,&1) = sinhn

i) Symmetry
Zg\’/N({)\i}i:]_’m’N,{Ej}j:]_’m’N> is a symmetric function of thé\}i—1 N and the

{Ej }j=1,...,N-

iii) Polynomiality

ZNN i1 N (& =) = expN VA py_g (exp?)
and similarly:

ZANA iz s (& =1 n) = exp (VDR By (exp %)
where R _1 is a polynomial of degree N 1.
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iv) Recursive relations

A=¢;
N

= sinh(n) r! sinh(A\j —&«+n) |_| sinh(Ax—¢&;+n)
k=1,ki 1<k<N ki
ZR% -1 (Pmbmpis {&n o)

Lemma 2.2.1 The set of conditions i)-iv) uniquely define the partitiondtion zﬂfN.

These conditions enabled Izergin to propose a very simphadta for the partition
function as a single determinant.

Theorem 2.2.1 (Izergin [59]) The partition function of the trigonometric six-vertex nabd
on a square lattice with DWBC is:

ZQ{N({)\i}izl,.“,N;{Ej}i:lw,N> = (—1)Ndetn ™ ({NiYi=1 N, (&} =1 .N) (2.2.6)
MILa M1} sinh(Aj — &j) sinh(Aj —&;+n)

. . (2.2.7)
Mi<k<j<n SINNEj — &k) M1<k<j<n SIND(AK —Aj)
where the Nx N matrixa & can be expressed as:
sin
A (A Yicsn & =1 N)ap hn) (2.2.8)

~ sinh(Aq — &g+ 1) sinh(Aq — &p)

The determinant form of the partition function is a compaud aather simple represen-
tation, and it is therefore a necessary representationgb farward quantum integrable
models analysis towards computation of correlations fonstin the QISM framework.

2.3 XXZ chain with diagonal boundaries and reflecting
ends
Let us consider in this section a boundary variant of theiptesnvertex model. Namely, in-

stead of considering the six-vertex model with the DWBC ltarg condition on a square
lattice, we allow two boundary Boltzmann configurationdexted into the entries of the
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Figure 2.2: The boundary statistical configuratidns (3.4.2

boundary matriX<_ (1.4.2), and we consider the inhomogeneous six-vertex hvaite
reflecting encaind DWBC as illustrated in Figure 2.3.

The partition function of this model can be representedrmsdf the boundary QISM
ingredients of the XXZ spin chain with diagonal boundary:

ZROoN (i diet,.N, (& Yimn) = (01a (Ol |_| Rij (i — &)K-(M)iRji (Ni +€;)[0)2[0);

i,j=1
(2.3.1)

= (0x (0| r!U i)|0)¢[O)x

- @[]B- Moo

Within the framework of the QISM, even for the diagonal boarydcase, it is again
necessary to find a manageable, and preferably exact, farfiouthis partition function.
Using the boundary QISM, Tsuchiya found a set of conditidrag tiniquely determine
this partition function.

Proposition 2.3.1 (Tsuchiyal[112])The partition function(2.3.1) satisfies the following
properties:

i) Initial condition
738Y (A1, &1) = sinhn(sinh(A; — &1) sinh({_ + A1) + sinh(A; +&1) sinh({_ — 1))

i) Symmetry:
ZSBQ/N({?\i}i ..... Ns{&j}j=1..N) is @ symmetric function of thé\i}i—1 N and the
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C

C

Figure 2.3: The vertex model with reflecting end and DWBC

iif) Polynomiality
ZRON (A Yi=n, (& =1 ) = exp N+HDA Py (exp?)
where By.1 are polynomials of degre2N + 1.
iv) Recursive relations

N
ZRn (AAiti=1. 8 (& Hi=1..N) = sinh(n) sinh(Z_ + \;) |_|smh()\k+z

)\iZE]
N
x [ sinh(\i+&+n)sinh(Ai —&+n)sinh(A—&; +n)
K=1K£]

x Z88Y a1y ({Ambmsis {Enbng)
and:

’6\3183{\1 ({Aiti=1,..No{&j}=1...N)

N
= sinh(n) sinh(¢ — i) [] sinh(Ak— &)
Ai=—¢&;j k=1
N
x “ sinh(Aj + &+ 1) sinh(\i — &+ n) sinh(A_1 + & +1)
k=1 kzk

X ZElelz N-1) ({)‘m}m;éla{an}n;éj)
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v) Crossing

sinh(2Ak+2n
ZRooN (=M= AN iz, N0 (€5 =1 N) = — sr:(nh(Z)\k) :

x Z8oon (ks A Hikion, . N A& Hi=1,.N)

Lemma 2.3.1 The set of conditions i)-iv) uniquely determines the piartifunction 2.

The remarkable point is that the only functions that satisése conditions have a nice
representation, which takes the form of a slightly more cacaped determinant than the
square six-vertex partition function with DWBC.

Theorem 2.3.1 (Tsuchiyal[112])The partition function of the trigonometric six-vertex
model with reflecting end and DWBC is:

ZRoN (A Y=t N (€ bz ) = (—D)Ndet PV ({NiYize N, (€} =1 N) (2.3.2)
|_|i'\,|j:15inh()\i —&j+n)sinh(Aj —&;j) sinh(Aj +&; +n) sinh(Aj +&j)
Mi<k<j<n SINNEj — &k) SINN(&j + &) SINA(A | — Ak) SINN(Aj + Ak +1)

where the Nx N matrixa¢ %8 can be expressed as:

AV (Nieons &5 =1 N)ap (2.3.3)
_ sinh(n) sinh(2Aq) sinh(Z — &g) sinh(_ +&p)
sinh(Aq — &g +n)sinh(Aq —&p) SiNh(Ag + & + 1) SINN(Aq +&p)
This expression permits one to compute scalar products amdsof Bethe states for the

open XXZ spin chains with diagonal boundary conditions, alsd to obtain an exact and
manageable expression for form factors and correlatiomstions.
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Chapter 3

Spin chain without & conservation: the
vertex-face transformation

In this chapter, we are mainly concerned with quantum matlhesare completely em-
bedded in the QISM framework, thus completely integrabléwhere the algebraic Bethe
ansatz scheme is elusive because these models do not ppssesmical reference state.
It is actually possible to implement the algebraic Betheainmachinery but only after a
crucial transformation; the vertex-face transformatidti][ This transformation was first
introduced by Baxter |8] in his analysis of the eight-vemeadel. The "unusual difficulty
of his work, based on deep technical intuitifatioes not lead to a clear understanding of
his method. However, the work of Felder and Varchenko [48)jted a comprehensive
framework for the underlying algebraic structure.

In the first section, we present Faddeev-Takhtadzan’s set86154] to construct
the eigenstates for a periodic XYZ hamiltonian, or equintlig the eight-vertex trans-
fer matrix eigenstates, using the modern language of Felden/archenko for the Bax-
ter's vertex-face transformation [42]. Then we turn to disti@gal physics description of
this transformation. Indeed, vertex-face transformatsoa mapping between the eight-
vertex model configurations and the face model configurat|68]. We also present the
result of Rosengren for the partition function of the facedeloon a square lattice with
DWBC [100].

Laccording to Faddeev and TakhtadZar [36]

37
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3.1 The first example: the periodic XYZ spin chain
We first recall the notations that we use for elliptic funoSpwheree denote the elliptic
modulus and = ex?TE:

hy(A;€) = —2ip® sinh(\) ﬁ (1—2p"cosH2\) 4 p?) (1 - p")
n=1

ho(A;€) = 2pi cost(A) [] (1+2p" cost(2\) + p?)(1— p")
n=1
1

8

ha(A;€) = [ (1+2p™ 2 cosh(2A) + p?" ) (1 - p")

S
8 Il
[

ha(A;€) = [1(1—2p™ 2 cosh2\) + p21)(1— p")

>
[
[

h(A) = & FLu— e (1 - prie?)

n=

In this section we are interested in the very general XYZ Htamian with periodic bound-
ary condition:

N
H= 3 (yofolia+ (1-y)olol,, +Alofef., ~ 1) (31.)
i=

A,y € C are anisotropy parameters that we choose as :

_ h(n;2)
~ h3(n;2e)

Al h2(0; 2¢)hy(n; 2€)hg(n); 2¢)

~ h2(n; 26)hy(0; 26)hs(0; 2¢) (3.1.2)

Y

This hamiltonian is the most general Heisenberg type modbklvearest neighbor spin
interaction. Therefore, its resolution is of primary imgaorce. The QISM framework for
the XYZ spin chain requires one to take the most genelfgdtic solution of the Yang-
Baxter equation[(1.1l1) the eight vert&matrix, which depends on the difference of
spectral parameter®: C — EndV ®V),V ~ C? :

a0 0o  d&)
8V 3V
R(\) = 8 28\, &; g&,g‘\; 8 (3.1.3)
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The R-matrix entries are elliptic functions:

ha(A; 2€)ha(n; 2€)hy (A 4 n; 2¢) ha(A; 2€)hy(n; 2¢€)

() = ha(A +n;2€)hy(0; 2¢) W= h4(0; 2¢) - GLY
~ h1(A;2e)hy(n; 2€)he (A +n; 2¢) _ hy(A;28)ha(n; 2¢)
¥ () = ha(A +n;2e)hy(0; 2¢) ;Y= h4(0; 2¢) (3.1.5)

Once again, the monodromy matrix can be chosen as the orgerédct of the eight-
vertex Lax matrice&:

N
To(A) = ﬂLOi A=¢&) = (é&; g((;;)[of (3.1.6)

with: Lom(A —&m) = Rom(A — &m), and so it satisfies the Yang-Baxter algebra relations
(@.1.2). Inthe homogeneous limit, the hamiltonian (3. 4l%p belongs to the commutative

family (I.1.4):
vme [[L,N]], &n=0:

2hm)EInT()\)‘)\ + constant (3.1.7)

= T0) dn

Although the periodic XYZ model is completely embedded witthe QISM framework,

the completely ferromagnetic std® = ®iN:1 (é) is evidently no longer an eigenstate of

the hamiltonian(3.1]1). Note that the latter is no longen spvariant: [}, yN ; 07 # 0.
This is explicit in the Lax matrix representation where tfediagonal elements™, L7
are no longer triangular, and thus:

C(M)[0) #0. (3.1.8)

Within the QISM duality with vertex models, this translate® a vertex model without
charge conservation due to the non-vanishing statistieagit d® in the eight-vertex
R-matrix. The corresponding statistical configuration carpletured as:
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The non-conservation of arrows flux (charge) at the vertexequivalently, the spin
symmetry breaking is a serious difficulty that was beautifsblved by Baxter for the
eight-vertex model, and then turned into a QISM frameworkagideev and Takhtadzhan.
This enabled us to find periodic XYZ Bethe states. Baxter vmasfirst to notice that
the eight-vertex model can be transformed into anotheisstatl model similar to the
six-vertex model, namely with six statistical configuraso This unexpected highly non-
trivial transformation, known as the Baxtengrtex-facetransformation, enables us to
map the eight-vertex model intdfacemodel. This model is defined on theal lattice ie
where Boltzmann weights are associated to an adjacentd#uwerthan a vertex, and the
statistical variables lie onto the vertex. The remarkalgimts that it is indeed possible
to obtain a six-vertex like model, the price to pay is thathstace model and associated
Boltzmann weight will depend on an arbitrary continuousapagter, thedynamical pa-
rameter Here we will use a modern presentation of Baxter's works bans oflynamical
Yang-Baxter algebravhich was mainly developed by Felder [42].

First we introduce the vertex-face matri&: C x C — EndV),V ~ C?:

ho(—A —©;2¢) ha(A—6; 28)) .

Sh6) = (hg(—)\—G;Za) ha(A — 6;.2¢) (3.1.9)

The new complex parametérs the dynamical parameter, or face parameter. This trans-
formation map the vertex Boltzmann weighis (3.1.3) intoféme Boltzmann weights as
follows:

Ri2(A1 —A2)S1(A1;8)S2(A2;8 —no?)

= S(A2;0)S1(A1;0 —N03) Ra2(A1 — A2; 0), (3.1.10)
where® :Cx C — EndV ®V),V ~ C?:
aface();9) 0 0 0
xnO=| o th’zi(e;?;_% b‘%;i‘;f;é % o | @i
0 0 0 aface(); 9)
is thedynamicalg -matrix, with:
a'®\:0) = h(A+n) (3.1.12)
bface(r; ) = hm:((g i) (3.1.13)

cfacey:g) — N —Oh(n) (3.1.14)
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Hence, we obtain a six-verté&¥matrix and thus a nilpotent structure for the one site
off diagonal operators for the corresponding Lax operattuich is a good first step for
the diagonalization of the hamiltonidn (3.11.1). This ntkrat structure reflects a very im-
portant symmetry of the dynamical-matrix (3.1.11), theveight zerasymmetry:

(0% + 0%, R12(A; 6)] = 0. (3.1.15)

We first show how to implement the Bethe ansatz constructsamguthis transformation
following Faddeev-Takhtadzhan and Felder-Varchenko wankl next we turn to the un-
derlying statistical physics model.

3.2 \Vertex-face correspondence: towards an underlying
reference state

The strategy that we should follow is straightforward. Assumeceed in finding a reference
state using the transformatidn (3.1.10), the idea is teesyatically translate all ingredients
of the QISM R T,T) and associated relations into the face QISM ingredients.

« Eight vertexR-matrix and Yang-Baxter equation (1.11.1):
The eight-vertexkR-matrix (3.1.3) translates into a dynamical fagematrix as in
(3.1.10). The Yang-Baxter equatidn (1]1.1) Rtranslates into @ynamical Yang-
Baxter equatiorior % :

R12(A1 —A2; 8 —N0%)R13(A1 — A3; 8)R23(A2 — A3;6 —noO7)

=R23(A2 —A3;8)R13(A1 — A3;0 —N0%)R12(A1 — A2; 0).
(3.2.1)

* Monodromy matrixT and Yang-Baxter algebra(1.1.2):
To obtain a dynamical analog of the monodromy matriwe should consider the
following ordered product of th8 matrices:

N

1
S-({819) =[] S&0-n 5 . (3.2.2)
i= k=1+1
Using this higher dimensional vertex-face transformatier obtain adynamical
monodromy matrix : C x C — EndV @ # ),V ~ C? as:

S ({€}:6)S(A\;8—nS)To(A; 6) (3.2.3)
— To(M)S(A;0)S_({€};6—na?). (3.2.4)



42

CHAPTER 3. SPIN CHAIN WITHOUTS* CONSERVATION

The dynamical monodromy matrix naturally takes the formrobedered product of
the dynamicalk -matrices:

N N
To(A; 0) :ﬂm()\—zi;e—nkzlof) (3.2.5)
i= =i+
~ (a(\;8) B(A;0)
— (c()\;e) i’)()\i9>)[o{ (3.2.6)

The Yang-Baxter algebra relation (1.1.2) turns intdyaamical Yang-Baxter alge-
brarelations forz :

R12(A1 —A2;0 — N S°)71(A1;0)72(A2;0 — no?)
:Tz()\z;e)Tl()\l;e—I’]O’g)ﬂ{lz()\l—)\z;e), (3.2.7)

whereS? = 5N | 6% Note that the dynamical Yang-Baxter equation is an astecia
ity compatibility condition for a dynamical algebra; busala one site representation
of a dynamical Lax matrix that we will choose as{(A;0).

We should stress at this point that the monodromy matradso satisfies the funda-
mental weight zero symmetry:

0§+ 7, 70(A;8)] = 0. (3.2.8)
More explicitly, this last equation read:

(S5, a(A\;0)]=[S,2(A;8)]=0 (3.2.9)
[B(\;0),S] =28(\;0), [c(N;0),S]=-2c(A;0)

This is exactly the symmetry that is lost in the integrabtecture of the periodic
XYZ hamiltonian [3.1.11) and that is recovered here in dyraincontext. Namely,
if we consider &*-diagonalize representation spagéj; 0), D (A; 0) are operators
that conserve the spin, whereagA;0),c(A;0) are creation and annihilation op-
erators, and this is exactly what is needed for a successfuleimentation of the
Bethe ansatz scheme. The only important modification coimgpdo the Yang-
Baxter algebrd (1.1].2) relation is that these relationslire’commutations between
monodromy operators, g valuated at different values of the dynamical parameter
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0, such as:

B(N;0)8(K0+N)=3(16)B(A;0+n) (3.2.10)
face/y _
%@(w 0)a(A;0+4n)

face .
bafac<e?)\ —ulil; e? A (“; 9)3 ()‘; 0+ ﬂ)
Cface()\ — K 0+ nSZ)

af ace()\ — K e)
bface()\ — =6+ nSZ)
af ace()\ — e)

B(A;0)a(16+n)=

D (1 6)B(A;8+n) = D(A;0)B(1,0+n)

+

B(A;0)D(K8+n)

Remark 3.2.1 This dynamical monodromy matrix has a clear interpretatioata-
tistical mechanics, it is an essential tool to study thepéltiface model on a square
lattice. We will return to this correspondence later on.

Remark 3.2.2 The dynamical structure constant&f bface cface gre rather op-
erators, as it contain the operat&-.

The relation[(3.2]7) is actually the defining commutatioglations of a fascinating

object, the Felder’s elliptic quantum grol (sl). We will put to the side the

details about this fundamental object for the moment, agsedves a systematic
analysis of later on.

» Commuting charges and trace formula:

It turns out that the vertex-face transformatign (3.11.H0hot enough to obtain a
mapping between the integrals of motion of the periodic XYi&io and their face
counterpart. This is somehow misleading and we would liksttess thaho iso-
morphism between commuting charges for the periodic XYZ moel and com-
muting charges for the face model existsRather, a weaker relation is present. The
crucial step is to restrict the analysis to a subspace witkeal i component of the
total spinin the face picture@, and thigtotal spin should be zero This means that
in the framework of the algebraic Bethe ansatz the numberezition operators,

2spins here have nothing to do with the XYZ spin, but rathezréd the canonical basis G
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and hence the total spin, should be fixed%toThus we consider the action of the
trace [(1.1.4) on the spa®ky = {|y)} with a fixedzcomponent of the total spin:

S|y =0, (3.2.11)

Theorem 3.2.1 (Felder-Varchenkol[42]) The action on this subspace leads to:

TA)S-({€}:0)|W) = [S-({€};8+n)a(A;8+n) (3.2.12)
+S-({&}:6—n)2 (A8 —n)l[Y).

Therefore, finding eigenstatesDf]) is equivalent to finding eigenstates fofA; )
ando (A; 0), and summing up all values of the dynamical parametédihis summa-
tion procedure is, in some sense, natural as the face paamabsent in the XYZ
model. This is actually possible as we know how to built a@spntation space for
such a triangular structure.

Existence of a reference state:
Once we obtained these dynamical objects and their comelspp algebraic rela-
tions, we can easily check the Bethe ansatz requiremenglgdhe existence of a

reference stat@) = @N ; (1) such that:

0
4(X;0)[0) = a(A;0)|0) (3.2.13)
D (A;0)[0) = d(A; 8)[0)
3(1;0)]0) £ 0
c(A;0)0) =0

In our case, the functiorssandd are:

a(\;0) = ﬁaface(A —&i;0), d(A;0)= _ﬁbface()\ —&; -0+ (i—1)n). (3.2.14)

We say that|0) is a completely ferromagnetic state with all spin up in theefa
picture.

Remark 3.2.3 A state satisfying the conditiog®.2.11)can be obtained only with
the action 01% operatorss (or ¢) on|0) (or |0)), so the spin chain length N should
beeven. The case of a chain with an odd number of sites is still an qggreblem.
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We have succeeded in translating all necessary ingredi¢iite algebraic Bethe ansatz
scheme, and this should be implemented for the underlyrg@odel using the dynami-
cal structure g ,7) rather than the vertex structure. The following theorena$ro

Theorem 3.2.2 (Faddeev-Takhtadjan/[36], Felder-Varchend& [42])

_N _h(n)
For M =3 and (6 |'| NCESTOR ,weC (3.2.15)
M
W(Aier.m)) = [{S-((2):0) [ 9@15 (8 (- D) [0))do

is an eigenstate of the transfer mat(x1.4)T (1) = A(K) + D(p) for any p with eigenvalue
N

v Nk —p+n) g h(H=Ac+n)
A {Mctk=1,..M,{&j }j=1,...N) = wa(; 0) Dlw +w d(l G)W
(3.2.16)
where:
N
=[]hn-&) (3.2.17)
1=
if the parameter§Ay}k—1..m Satisfy the Bethe equations:
(3.2.18)
)\k, )| D#h )\k—)\|

Remark 3.2.4 ¢(0) andw are gauge parameters, other choices are possible.

Remark 3.2.5 The vectorly) is the Bethe vector of the face modell[42], with eigenvalue
A and Bethe equation8.2.18) By linearity of S, and the functional f- [ f itis turned

to a XYZ Bethe states with the same eigenvalue and Bethei@tgiaNeither the Bethe
equations nor the eigenvalue depend on the dynamical parameger Although that is
what we expect for the XYZ model, it is not obvious at all thigtis the case for such face
models. This is a very special feature of such face modelsakyadraic Bethe ansatz for
dynamical Yang-Baxter algebra.
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3.3 Partition function of the elliptic face model on a square
lattice with DWBC
As already mentioned in Chapter 2, we should compute in ti&M3 partition function

guantity in order to push forward analysis of the periodicZ3pin, towards correlation
functions of the model. This partition function takes thikdwing form:

N j
ZE N e v (& e, i 8) = (00 (0 [, % (0 - nzoA Ny o)[0)¢[0)
(3.3.1)
N i
= <0|A(6\zi|]’T(?\i;e—ﬂkzlcik)|o>z\6>x
N i
= (0 Aii©— 2910
O [](Ni8-n 3 0310
(3.3.2)

Quite unexpectedly, this quantity has a clear interpretaitn statistical physics, it is
the partition function of the elliptic face model with DWBTo see this, we should give
the statistical physics model underlying the dynamicalgf8axter algebra (3.2.7), and
especially the representatian (3]2.5) for the dynamicalmdoomy matrixz . As we men-
tioned at the beginning of this chapter, the transformafoh.10) can be interpreted as a
mapping between the eight-vertex model statistical corditions to face configurations
which can be defined in terms ofreeight functionon a two-dimensional square lattice.
Every square of the lattice is characterized by a heigand its values for two adjacent
squares differ bytn. There are six possible face configurations:

0—n ‘ 6 —2n 0-+n ‘ 6+ 2n 0—n ‘ 0
0 ‘ 6-n 0 ‘ 6+n 0 ‘ 8+n
8+n ‘ 0 8+n ‘ 0 0-n ‘ G
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and the corresponding statistical weiglﬁg,b are collected into the dynamic& -

matrix (31.11).

Remark 3.3.1 The presence of only six non-vanishing entries, and theicifip distribu-
tion, within the dynamicak -matrix (3.1.11)is here fundamental, due to the zero weight
symmetry(3.1.1%) In this statistical mechanics context, this symmetry dfates into a
conservation rule, namely the height can differ onlyrjpyand thus leading to only six
possible configurations. This is known as the Ice Rule.

0 | 6+n | e+Nn
o+n 8+(N-1) n
\ \
\ \
\ \
8+N n|6+(N-1) n 0

Figure 3.1: The face model with DWBC

We are interested in this face model with DWBC as illustrateérigure 3.1. The
partition function of this model is nothing but the quant{§,3.1). The evaluation of
this partition was a real challenge for almost thirty yedriis is because the underlying
algebraic structures were not clear when Baxter introdtizisdnodel. It is only after the
breakthrough of Felder on the elliptic quantum grdip (sky) that the algebraic structure
became clear. Furthermore, the elliptic parametrizatiakesn the analytical property of
the partition function difficult to handle. However, sevenrks have led to a set of
conditions that uniquely determine the partition function

Proposition 3.3.1 (Baxter [8], Rosengren [100], PakulialRubtsov-Silantyev [93]) The
partition function(3.3.1)satisfies the following properties:
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i) Initial condition

h(n)h(A1—&1—6)
h(e)

face()\l El, )_

i) Symmetry
face({)\ }| 1..N>1&j}j=1..N;B) is a symmetric function of thi\i}i—

iii) Elliptic polynomiality
Z,flaﬁe({)\i}i:LMN, {&€;}j=1...N;8) is an elliptic polynomial of eackA;}i—1,_n of or-
der N and norng '\, &; —6 and of eacH&; }—1 ...y of order N and normy ! ; A +6.

iv) Recursive relations

TR ak (&G — &+ )M —&j +n)
- hN-2)(n)

ZIIIZiCENfl({)\m}rT#iv {&n}nzji 0),

face({)\ YietoNs{&j =N 0)

Ni=¢;

and

h(8 — NN) TRl gz N(Ej — & —N)h(Ak— i)
h(8 — (N—1)n)hN-2)(n)

lilacleN 1({Am}meis {&ntnzj: 0).

Z33% (et {& =10 )

Lemma 3.3.1 The partition function Za,\c,e is uniquely determined by the set of conditions

i)-iv).

Once these conditions have been established, Rosengrepralsoses an explicit, but
complicated, formula for the partition function.

Theorem 3.3.1 (Rosengreri [100])The partition function of the elliptic face model on the
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square lattice and DWBC is:

Zlil?ﬁe({)\i}i:l,m,Na{Ej}jzl,m,N;e)
 MN—thi —€)Hh(i — & +1)
 Masicjen i =A)h(E; - &)
h(6—Nn)
X
hN(Y)h(ZN1 (& —Ai) +y+68—Nn)
_\gh(6+y+[S§—Nn)
: Sg{g.,N}< b h(6+[S —Nn)

where the Nx N matrixa( fa% can be expressed as:

h(A§ — &g +V)
h(AZ — &p)

)\isz)\i—i—r],i €S

with the following conventlon{ )‘iS: AL €S

49

(3.3.3)

(3.3.4)

(3.3.5)

Remark 3.3.2 Due to the theta functions’ identities, the partition funatdoes not de-
pend on the complex parametgrwhich is a regularization parameter that is introduced

here for convenience.

This formula is definitively an Izergin-Korepin type fornaufor the partition function of
the elliptic face model on a square lattice, but it is expedsss a sum of"2 determinant
instead of a single determinant. This makes consideralffigwt to find a manageable
formula for the scalar product and correlation functionsth@ periodic XYZ spin chain.

A simpler formula for this partition function is still an opgroblem.



50

CHAPTER 3. SPIN CHAIN WITHOUTS* CONSERVATION



Chapter 4

Open boundary XXZ model

In the previous chapter, we apply the vertex-face transétion to the boundary case,
namely we study the XXZ model with the most general bounddiye boundary part
of the open XXZ hamiltonian leads to the same obstacle foirfm@ethe states in the
algebraic Bethe ansatz framework than the periodic XYZ rhotledeed, although the
diagonal boundary XXZ spin chain analysis was pushed favdadt by the exact compu-
tation of its correlations functions [69,[70], very few résware known about the general
boundary case. Recently, the scientific community has staostrong interest in the XXZ
model with general boundaries because it is an exactly Bl@wvaodel for non-equilibrium
statistical physics. Namely, trissymmetric simple exclusion proc€8SEP) which is the
default stochastic model for transport phenonﬂa[l&l] Is related by gauge transforma-
tion to the XXZ model with general boundary terms|[30,/103heTcrucial point is that
the general boundary XXZ model is integrable, or more colygoossesses an integrable
structure described by the boundary version of the QISM aip@dr 1. Therefore, exact
results for the ASEP model could, in principle, be obtaingdHhe analysis of the open
XXZ model [18,19]. From the algebraic Bethe ansatz pointiefw the general bound-
ary XXZ model eigenstates were found using various gaugesfioamation (resembling
a component-wise vertex-face transformation) if the b@aupgarameters satisfy some
conditions [12, 123]. In these previous works, the gaugesfamation lead to various
intricate exchange relations for Bethe states generatgebea. In our opinion, this ap-
proach has three main weaknesses. First, the underlyirdpralig structure that arises
from this gauge transformation is missing. Second, the &sthtes description is unclear.
Third, the underlying two-dimensional statistical phygsinodel has escaped description.
We would like to tackle this problem using the algebraic warof the vertex-face trans-
formation. We generalize the Baxter, Faddeev-Takhtadjaltder, and Rosengren’s work

Laccording to H.T. Yau

51
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to the boundary case for constructing open XXZ Bethe statdsamputing the partition
function of the underlying face model. This will enable us to

* highlight the integrable algebraic structure, which isyaamical reflection algebra

« explicit description of the Bethe states, by establistaraear relationship between
the XXZ Bethe states and the underlying face Bethe states

» clearly describe the dual two-dimensional statisticaigats model, by computing
exactly its partition function

Although this program sounds natural, as the general boyt¢Z model is com-
pletely embedded into the boundary QISM, we will see thatllgebraic Bethe ansatz in
this context leads to some important limitations.

4.1 The hamiltonian: which reference state ?

In this section we are interested in the XXZ hamiltonian wgéneral open boundary
condition:

N-1
H= Z (ofo},,+0)0), | +A070?, ;) +h +hy (4.1.1)
i=
Where the interaction with boundary magnetic fields is:
sinhn ;. :
— 5 - < | h X_ Y 412
1 sthsthS[ cosh( coshda? + sinhtoy |cosht01] ( )
sinhn = = . : _
hy = ———— | — cosh coshda?, + sinhta?; — i coshto?
§ sinthinhé[ N N J

Any three components of the boundary magnetic fields can peesged by six complex
parameter®, 9, {, {, T andT. The bulk part of this hamiltonian is the usual XXZ hamilto-
nian. As shown in Chapter 1, we only need to add to the QISM tlumbary counterpart
description. This means that starting with the six-veRexatrix (1.2.2), we should in-
troduce the boundary monodromy matrides that solve the reflection equations. We
consider here the most general solution [17,65]of the reflection equation (1.3.4):

K_o(A) =K_(A;8,4,1)

cosh3+) e —cosHd—) € 1 sinh(2))
_ 2SN+ A)SInh(A12) € ZsRE A sinAA 10 (4.1.3)
- T sinh(2\) cosh(34+) & —cosHd—) e S
€ 25nRB A SN 7) 2SiNH5+ A) Sinh(A 1)
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and its dual[Z315K, () = K_(=A —n;3,Z,7).
The boundary monodromy matrix that solves the reflectioplaig is:

(U-)o(A) =T ToW) (K-)o(M) Ty H(—A) = (’é N o %) R

with ToA) = 1N, Loi (A — &) = MIY.{ Roi (A — &) and the dual boundary monodromy ma-
trix is :

O15() = FAITON) (K)o (T-1y(n) — (AP C+()
(UR)o(A) =)o (A) (K2)oA) (T 1>5<—A>—<B+m Dim)[o]' (4.15)

Remark 4.1.1Y(A\) = (=N 1N, sinh(A +&; +n) sinh(A +& —n) is a normalization fac-
tor that we introduce here for convenience.

The hamiltonian of the open XXZ spin chain with most geneaalrdary fields[(4.1]1)
can be obtained in the homogeneous limit as the followingydgve of the transfer matrix
(1.3.9):
vme [[L,N]], &n=0:

d
H= cd—)\T(A)‘A:OJr constant (4.1.6)
where: B B
c = —8cothd) coth(d— n) coth({) coth({ —n). 4.1.7)

Once again, we are in the same situation as for the periodiZ ¥ase. The general
boundary XXZ model is completely embedded within the QIS&hiework, or more pre-

cisely its boundary version. However, the totally ferrometic state0) = ®iN:1 (é) is

evidently no longer an eigenstate of the hamiltonjan (4 .4irice it no longer conserves
the third component of the total spif:(, N ; 07] # 0, due to the presence of its boundary
terms. This is explicitly seen in the boundary matrix whére off-diagonal eIemenisqu
are non-vanishing, and thus:

C_(A)[0) #£0, C,(A)[0) 0. (4.1.8)

Within the QISM duality with vertex model of statistical nemics, this translates into a
vertex model without charge conservation at the reflectimdy due to the non-vanishing
statistical weightK.)T in the boundary matrix. The corresponding statistical gumi-
tion are drawn as in Figure 4.1.
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e
NN

Figure 4.1: The off diagonal boundary statistical configjorss (4.1.3)

Following Baxter’s idea, we can use the vertex-face tramsé&bion in order to diago-
nalize the boundary matrik.. leading to a boundary model where the boundary satisfies
a conservation rule Once again, the trigopnometric version of the transforama{B.1.9)
will be very useful here.

Let us focus on the following gauge transformation:

o~ (A+6+w) e(AG+oo))

quzqma@:@ﬂ( 1 1

which depends on two parameters, the previously definedndigiah parameted and an
arbitrary complex parameteu.

(4.1.9)

Remark 4.1.2 This transformatioms not the trigonometric limit of the elliptic vertex-face
transformation(3.1.9) but rather a gauge transformed limit [21].

This trigonometric vertex-face matrix satisfies two impottproperties:

* |t diagonalizes the boundary matix :

K-(\) =S N 3— LK (MS(—A; 8-, 1), (4.1.10)
where the diagonalynamical boundarynatrix _(A) is:
s@nh(é—)\) 0
x4mzx@ﬂ@:<mwﬁ>mmﬁﬂ. (4.1.11)
0 sinh({+A)

This diagonal structure is the signature of a very imporsgnimetry of the dynam-
ical K -matrix , the weight zero symmetry:

(05, (%_)o(\)] = 0. (4.1.12)

This symmetry will once again lead to a fundamental consenvaule for statistical
mechanics (see remaik(3.3.1)).
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* Itis a trigonometric vertex-face transformatién (3.2:10

Ri2(A1 —A2)S1(A1;0)S(A2;0 —no7)
= $(M\2;0)S1(A1;6 —N0%)R12(A1 —A2;8), (4.1.13)

where theg -matrix is the trigonometric limit (up to a irrelevant nurieal factor)
of the elliptic dynamicak -matrix (3.1.11).afac€ pface cfaceare now trigopnometric

functions:
a'%€\:0) = sinhA +n) (4.1.14)
bface()\; e) _ Sml’()\;rslllzre()e - n)
Cface()\;e) _ Sink()‘saf()es;nr(n).

Hence, we obtain a diagonal structure for the boundary riedeping the triangular
structure for the off-diagonal one site Lax matrix. This m&#that this new structure
is suitable to the Bethe ansatz requirement. The situatemorines now strictly
similar to the diagonal boundary XXZ model of Chapter 1, vattlynamical object
instead of the vertex model.

We will first show how to implement the Bethe ansatz constonatising this transforma-
tion, and then we will turn to the underlying statistical glos models.

4.2 \ertex-face correspondence: towards an underlying
reference state

The strategy that we should follow is very parallel to the osed in the next section for the
periodic XYZ model. As we succeed in finding a reference siaieg the transformation
(4.1.9), the idea is to systematically translate all inggets of the QISM RU_,T) and
associated relations onto the face QISM counterpart.

» Bulk part (six-vertexR-matrix and the bulk monodromy matrix):
Besides taking the trigopnometr&matrix (4.1.9), there are no modifications to the
algebraic relations of the previous section. The only maodiifon is to take the
trigonometric dynamicak -matrix (4.1.14) and the corresponding monodromy ma-
trix that satisfy the dynamical Yang-Baxter algebra relasgi. Although this modifi-
cation is not necessary (the six-verf@matrix (1.2.2) having the desired nilpotent
structure), this enables us to work on the bound&arymatrix.
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« Boundary matrixX_ and the reflection equation (1.8.4):

Using the transformatiof (4.1110), and the zero-weightdmn (3.1.15), [(4.1.72),
one can show that the reflection equation (1.3.4) turns irdgreamical reflection
equationfor £_, once we choosé = o — (:

R12(A1—A2;0)(K-)1(A1)R2a(A1+A2;8) (K- )2(A2)
=(K-)2(A2)R12(A1+A2;6)(K-)1(A1)R21(A1 —A2;8).  (4.2.1)

Thus we succeed in obtaining a reflection equation for the fxindary.

Remark 4.2.1 This reflection equation is just the usual vertex reflectiqnagion
(@.3.4)with the use of the dynamica&l-matrix instead of the usual vertex R-matrix.

Boundary monodromy matrid_ and reflection algebra (1.3.1):
UsingS_ (3.2.2) one can prove in a similar way that the dynamical llemy mon-
odromy matrix defined as:

(u-)o(X;8) =Y(N\)To(X;8)(%-)o(A) Ty *(—A;8) = (ﬂcl:(())\\;; 8; ;;:8"23) o

satisfies thelynamical reflection algebreelation:
R12(A1 —A2,0 =N S*) (U _)1(A1;0)R21(A1 —A2;8 — N S) (U )2(A2;6)
= (U_)2(A2:0)R12(A1 + 22,0 —NS*)(U_)1(A1;0)R21(A1 —A2;8 —n S’). (4.2.2)

Due to the zero-weight symmetry for the dynamical monodronarix 7 (3.2.8)
and for the dynamical boundary matrix_ (4.1.12), the dynamical boundary mon-
odromy matrix also obeys to a zero weight condition:

(05 +S, (u-)o(A;8)] =0. (4.2.3)

This means that a suitable representation spaceifoelements algebra is &®f-
diagonalizable module. In such a module, the elemantsand»_ are operators
that conserve the spin, whereas andc_ are creation and annihilation operators:

[S%,4_(N;0)] = [, D_(\;0)] = (4.2.4)
(S +21d)B_(A;0) = B_(\;0)F, (S —21d)c_(A;0) = C_(A;0)S
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Remark 4.2.2 This dynamical boundary monodromy matrix has a clear inetegp
tion in statistical mechanics. It is an essential tool todstihe trigonometric face
model with a reflecting end. We will return to this correspence later on.

» Commuting charge$ and trace formula:

Once again, the vertex-face transformatlon (4.1.9) is notigh to obtain a mapping
between the integrals of motion generating function fordpen XXZ chain and an
equivalent trace like formula for this boundary face modghe crucial step is to
restrict the analysis to a subspace with a fixeddmponent of the total spiim the
face picture, but here we do not need any restriction on its value. The murob
creation operators and hence the total spin is then stililfiX¢nus, we consider the
action of the trace (1.3.9) on the spatg = {|Ys) } with a fixedz component of the

total spin:
S |Ws) = s|ws), (4.2.5)
The action on this subspace leads to:
T(A)S-({&}:0—-Q)W) =S-({§};0— ) (4.2.6)
=7 SinB-{-ngp) . .
X TrO(KJr()\’é?Z) SlndS—Z) ‘T*()\!é Z)>|l.IJ>,
where: L L
K+ (N;8,0) = K- (A —n;8,0), (4.2.7)

provided two constraints on the boundary paramet@, ¢, 1,3,,7):
cosid—{) = cos{d—Z —ns+T—1—n), (4.2.8)
coshd—) = cosid—Z—ns—T+1+n). (4.2.9)
Remark 4.2.3 The constraints can be solved by imposing:

T=T+n+im,
53— =86—{—ns+2im+im. (4.2.10)

Remark 4.2.4 The conditiong4.2.8)and (4.2.9)explicitly depend on the subspace
spin s (or equivalently its dimension). This means that fgel&aic Bethe ansatz
cannot lead to the complete description of the eigenstates.
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Remark 4.2.5 If we choose to diagonalize the transfer matfix3.9) in the dual
space generated by subspace of tyg?ar/ {{Ws|} , then we needwo different

conditions:

coshd—7) = cosHd—{—ns+T—1+n), (4.2.11)
cosh{d—7) = cosid—{—ns—T+1—n), (4.2.12)

This means that right and left modules as constructed teret correspond to the
same open XXZ model.

» Existence of a reference state:
Once we obtain these dynamical objects and correspondyedpiaic relations, we
can easily check the Bethe ansatz requirement, namely tbieese of a reference

state|0) = ®@N (é) such as:

4_();0)|0) = a(\; 0)|0) (4.2.13)
D_();0)|0) = d(X;6)|0) (4.2.14)
B_(\;0)|0) £0 (4.2.15)
c_(A;0)[0) =0 (4.2.16)

Some details concerning the computatiora@ndd are provided in the Appendix
A.

Once we have collected all the boundary QISM ingredients tiné face picture, ap-
plication of the boundary Bethe ansatz leads to the follgwieorem.

Theorem 4.2.1 (Filali-Kitanine) Let3, ¢, d and satisfy the boundary constrain@.2.8)
and (4.2.9)with total spin s being even if N is even, and odd if N is ddd< N. Then
VM € [[1,N]]:

B (M;8—0)[0), M= NTS (4.2.17)

—]=

=~
Il
=

W (At m)) = S-({8,8-0)

<

and [0 (s ) =S (81,60 [] ¢ (d-0)[0), M="2° @2.18)

=~
Il
=
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are eigenstates of the transfer mat(ix3.9)for any p with eigenvalueA, », where:

(—)N
sinh({ — p—n) sinh(3+ )
sinh(2u+ 2n) sinh({ — ) sinh(&+ W) sinh(d — )
SinA(® — p—n) sinh(2y1-+ 1) [, b — Wb(A +p+1)
sinh(2p) sinh( + pu+n) sinh(d+ p+n)sinh({ —p—n)

(4.2.19)

x {a(pd(—p—n)

+a(—p—n)d . :
AW ok sinn2a ) b0+ bk — )
and:
No( Aty mo &1 =1 Ni 8,4,8,0) (4.2.20)
=M (s A Yice s 1€} =1 N: 0, 8,2, 9),
if the parametergAy}k—1,... v Satisfy the Bethe equationsy
yr2(Meo M tizci=s... mo A& }i=1...ni8,2,8,0) (4.2.21)

1Ak, N ket Mo & =1, N 8,2,8,0) = a(M)d (=M — 1) (4.2.22)
x sinh(8 — W) sinh(Z + ) sinh(Z — W) sinh(3 + )
M
X |_| sinh(Ax+Aj) sinh(Ax —Ai —n)
i—1ik
and:
Y2(Ak I Yikiz. Mo & 21N 8,,8,0) (4.2.23)

And we use the short hand notation:

sinh(A)
b(A) = == 4.2.24
M= Sorn e (4.2.24)
This theorem follows from usual Bethe ansatz computatibitse details on the proof of
this theorem are given in the appendix A.
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Remark 4.2.6 The open XXZ model has two sets of Bethe states. A more foroadlgb
this observation can be achieved using the © approach for integrable models [122].

Remark 4.2.7 The eigenvalues and eigenstates explicitly depend on thesspspace

once we solve the constrain&2.8) (4.2.9)
Proposition 4.2.1 The Bethe construction is symmetric, namely the two setatefks
W2 (b er. )
are isomorphic due to the following parity relatiod  ():
C-(A;8-0) = yB_ (AL~ d)ry, (4.2.25)
where:Ty = N, o

This symmetry follows from the parity symmetry of the dynaaiig -matrix. More
details are given in the appendix B.

Proposition 4.2.2 The Bethe construction &, invariant due to the following involutions:

N SINH(A + Q) sinh(2(A +n)) sinh(A + d)

B2 =100 =~ (=1 G an sinhA — 2+ ) sinhh — 601 2~ A0~
(4.2.26)
and:
. _ sinh(A +3) sinh(2(A +-1)) sinh(A + Q) .
C<_)\_n’6_1)__(_1)Nsinh(2)\)sink()\—6+n)sink()\—Z+n)CO\’é(_o )
4.2.27

This proposition follows very naturally from a decompamitiof the boundary operators
8_ or c— in terms of bulk operators elementof More details are given in the appendix
B.

Remark 4.2.8 Note that the boundary parametarg are absent from the Theore@h.2.1)
Indeed, they disappear from computations since the didgmaien of the vertex K ma-
trix (4.1.10) This is the trace of the hermiticity of the open XXZ hami#ard.1.1)which
implies the U1) invariance for the boundary spin operatan%",(l. So the eigenvalues of
the hamiltonian should not depend on the boundary pararizétkknn parameters,T.
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Remark 4.2.9 At the free fermions point limif = %T the Bethe eigenvalues take the sim-
pler form:
A ANk, mo{&j =180 8,0,8,) (4.2.28)

tani{ —p) M tanh(p+A)
tanh(d+ 1) L] tanh(p— Aj)

— (—1)M*Mtanh2y)

N

X ﬂcosf(wfii) cosh{pu— &)

. (SINh@— ) sinh(8— —ns+{+w
cosh(8+ W) sinh(8—Z —ns+7— )
cosh{{+p) coshZ —p) =

) N
sin @ —pysinh(¢ 1y |15 E) 8]

and the associated Bethe equation factorize into:

(—pM H tanh(Aj +&;) tanh(Aj — &) (4.2.29)
=1

_sinh(Z+ i) sinh(8— Ai) sinN(Z — Aj) sinh(8— { —ns+{+ i)
~ sinh(Z = Aj) sinh(8+ Aj) sinh(Z + A) sinh(8— 2 — ns—+ — \j)

4.3 Dual vertex-face correspondence: towards an equiva-
lent model description

The boundary version of the QISM should be completely symimasing the boundary
monodromy matrixJ_ around theé<_ boundary or the dual boundary monodromy matrix
U, around theK, boundary. As shown by Kitanine and his collaborators [69F also
necessary to implement the Bethe ansatz construction tleendual boundary matrid .

for the model scalar product computation. To apply the Betigatz technique with the
use ofU, we need to introduce a second vertex-face transformatiahéoconstruction of
the boundary dynamical monodromy matrix (it will be necegs$a construct a dynamical
analog of théJ, boundary monodromy matrix). As for the vertex case, duahelgs
and corresponding algebras in dynamical context are glosklted to the antipode of the
corresponding dynamical quantum group. Due to the contplicBorm of the crossing
symmetries of the dynamical matrix (see Appendix B), is not represented by the simple
matrix transposition or inversion. To introduce dual dymzahobject, we will need the
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dual vertex-facéransformation:

S(\;8) = a¥S(A;8)0Y. (4.3.1)

This transformation was found using various crossing sytrigsof theRand® matrices.
It has two important properties:

* |t diagonalizes the boundary mati, :

This diagonal structure is also the trace of a weight zeronsgtry:
(0%, (%4 )o(M)] =O. (4.3.3)

* |tis a dual vertex-face transformation:

S(A2:8)SI(A1+1;0+N0%)LL(AL —A2;0) (4.3.4)
= Rb(M—A2) S +1;8)S(A2,8-no?),

where the “crossed’ -operator will be used to construct the dynamical analog of
the boundary monodromy matrix, :

g e x B ez SO —N0Y)
L5(A;0) = A;0+noj)————=. 4.3.5
12(A;8) = Ry5( noy) SinhB ( )
The crossed -operator also obeysteansposed zero-weigkymmetry:
(0% — 03, £15(A;8)] = 0. (4.3.6)

At this point we succeed in finding a dynamical analog to tla@gdposed vertex
R-matrix, which has nilpotent off-diagonal elements.

Once again, we will systematically translate all ingretBesf the dual picture of the

boundary QISM R U, T) and associated relations into the dynamical counterpap+
ply the Bethe ansatz machinery. Recall that the boundari@®undK_. need to work
on the transposed monodromy maffix(1.3.7).
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« Bulk part (six-vertexR-matrix and transposed monodromy maffi}:
The dual vertex-face transformatidn (413.4) leads to tieviang dynamical Yang-
Baxter equation for !
R12(A2 —Ag; §+n0§)413()\1 —A3; G)L%O\z —A3;,6—no?)
= £2(A2—A3;8)L5(A1 —A3;0—n0%)R12(A2—A1;8). (4.3.7)

Using the higher dimensional vertex-face transformation:
_ N B N
S+ ({€}:6) = |‘!S(Eu6+n > %) (4.3.8)
i= k=1+1

one can obtain dual dynamical monodromy matrix

1 i—1
vO(B) = |‘LL5?<A ~&i0+n 3 of). (4.3.9)

The element’t is then the dynamical analog of the transposed monodromgixmat
T!. The Yang-Baxter relation for this matrix can be writtentie following form:

Ra2(A2 — A; 04N ) V11 (A1;8) V52 (A2; 8 — no?)
= V32(A2;8) 1} (A1;0 — NG%) R12(A2 — A1; ). (4.3.10)

It also obeys a transposed weight zero symmetry:

[52(A;8),05— S = 0. (4.3.11)

« Boundary matriXK, and the reflection equatiopn (1.8.5):
Using transformation(4.3.2), and the weight zero condif®.1.15), [(4.313), one
can show that the dual reflection equation (1.3.2)orturns into adual dynamical
reflection equatiorfor %, where® = 5 — Z as specified by (4.3.2):

R12(A2 — A1;8) (%) 1(A 1) R21(—A1 — A2 — 2;8) (% 2)2(A2)
= (X ?)2(A2)Ra2(—A1 — A2 —2n;0)(x1)1(A1) K21 (A2 — A1;6).  (4.3.12)

Thus we succeed in obtaining a dual reflection equation fal féee type boundary
matrix.



64 CHAPTER 4. OPEN BOUNDARY XXZ MODEL

* Boundary monodromy matrid, and dual reflection algebra{1.B.2):
In a similar way, one can prove that the dual dynamical boyna@nodromy matrix
defined as:

(21)3 (A;8) = VN V5 (A B) (K2)o(N) (V) ~H(—A — 2n;8) (4.3.13)
_ <ﬂl+(k;§) C+(A @)
5.(:8) (M)
satisfies thelual dynamical reflection algebnelation:

R12(A2 — A1;0+ N S) (UF)1(A1:8) Ra1(—A1 — A2 — 206+ S%) (u?)2(A2: 0)

= (u2)2(A2;8)Ra2(—A1 — A2 —2n;0+Nn ) (uL)1(A1;0)R21(A2 — A1;8+n SD).
(4.3.14)

Remark 4.3.1y(A\) = (—1)N N, sinh(A + &) sinh(A +-&; + 2n) is a normalization
factor that we introduce here for convenience.

» Commuting charge$ and trace formula:
Again, itis possible to write the trace in terms of the operantries of the boundary
monodromy matrix thei .. It is easy to check that if we consider the action of this
trace on the states withcomponent of total spis, and if the constraint$ (4.2.110)
are satisfied, the non-diagonal terms in this expressionisivaThe trace formula

(1.3.9) reads:

T(N)S: ({&}:8)|w) = S ({€};9) (4.3.15)
xTro (utﬁ()\ e)smz(lih(é 800) to()\;f),Z)) 1},

Theorem 4.3.1 (Filali-Kitanine) Letd, Z, d andZ satisfy the boundary constrain.2.8)
and (4.2.9) with total spin s being even if N is even, and odd if N is ddd< N. Then
VM € [[1,N]]:

N-s

W (Adier.m)) = S (8- [] 5 (W8-0), M= (4:3.15)

N
M_—+S(4317)

n:|z ¢:|z
>

x~

(o4

|

NI

=

and W2 ({Mbk=1,..m)) = S+ ({&},8— Z) C(
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are eigenstates of the transfer mat(ix3.9)for any u with eigenvalues

A21( Mtkesm, (& j=1..N:8,2,8,0),

if the parameterg Ay }r—1,.. v satisfy the Bethe equations:

y2.1(Ak N izt o1& et N: 8,4, 8,0) (4.3.18)
=y21(—Ak =N, {Nitizki=t,.M» {&j }j=1...N: 8,(, 8,0).

4.4 Partition function of the trigonometric face model with
reflecting end and DWBC

In the previous section, we have seen that the vertex boymalairix K. describes a ver-
tex boundary configuration without charge conservatione Fértex-face transformation
enables us to work on the boundary by mapping it into a face tlipgonal boundary.
This reflects the weight zero symmetry which has a clearssitzdl mechanics interpre-
tation: it is a symmetry rule for face statistical configiwat The whole face model is
described by the representation (4.2.2) of the dynamical reflection algebia (412.2). It
is a trigonometric face model with one reflecting end (in thee way as usual reflection
algebra with diagonal matriK describes a six-vertex model with reflecting end (2.3.1)),
as illustrated in Figure 4.2. This model is the dynamicalaefcounterpart of Tsuchiya’s
boundary vertex model of Chapter 2. The model is describédllimn the more general
(elliptic) case in the next chapter.

The algebrd(4.212) makes this model exactly solvable, hawecan compute exactly
its partition function. This partition function is (recalatd = 6 — ():

Zyon (A ot (i 080 (442
= (0[x(Ol¢ r!{rl{i’iu —&j;0— nk;fk )} K- (Ai;8) rL{RJI Ai+&j;0— nk%lok )}}0)A10)¢

= <O|)\<6|E_uﬂ—()\i;e)m)zm))\

N
= (ﬁlzui’?—(?\i:e)\@z

In this model A j—1 . n refers to the horizontal lines starting from the bottom, levhi
&j,j=1,...N refersto the horizontal lines starting from the right.
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0-n 6-(N-1)n |6-Nn
0 6-(N-Dn
0-(N-2)n
0 0-(N-3)n
0 6+(N-3)n
0+(N-2)n
0 6+(N-1)n
B+ B+(N-1)n |6+Nn,

Figure 4.2: The face model with reflecting end and DWBC

Proposition 4.4.1 (Filali-Kitanine) The partition function of the trigonometric face model
with reflecting end and DWB@L4.1)satisfies the following property:

i) Initial condition
For N = 1 the partition function is :

ZlB;ace()\l,El;é,Z) _ smhzi:rr:zrz(;_—;)—n)

inh(d—A1) . _
X (%smh@\l—h) sinh(3—{+A1+&1)

sinh({ — A1)
sinh({+ A1)

sinh(A1+&)sinh(d—{ — A1+ El)) .

i) Symmetry
Zn o (N et (&) }j=1,..n: 8,) is @ symmetric function in théhi}i—1..n and

the{&;}j=1..N-

iii) Polynomiality of the normalized partition functioh
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x SiNh(&+ Aj) sinh(T+ Aj)
% Zg o U et £&5 =1, 8 8,0)
= Pon2(€2)

where By 2 is a polynomial of degre2N + 2.
iv) Recursive relations

_ sinhnsinh({ — A;)

Zﬁ’fz?\?e({)‘i bt N €5 Fi=1,.N5 0,0) sinh({ +Ai)

Ai=¢;

N sinh(E—Z+ (N —2i)n)
><kl:llslnr()\k‘i‘zl)sin},(é_z_i_(l\l_Zi_|_1)n>

N
x [] sinhAi —&m-+n)sinh(Ai +Em+n) sinhAm— & +1)
m=1m#i

X Zﬁiafg(wl) ({Am}tmzi, {&n}nzj:8,0)

and:

__sinhnsinh(d— Aj)
~ sinh(3+ )
Ai=—¢j

sinh(d—{+ (N—2i)n)
sinh(d—{+(N—2i+1)n)

Zﬁ,fzar\(fe({Ai}izl ..... Ny {&}j=1...N:8,0)

N
X I_l sinh(Ax—§&j)
k=1
N
X I_l SiNh(Aj +&m—+1N) SiNh(Aj —&m+1N) SiNh(Am_1+ & +n)
m=1

x Z5 o 1) (b, {En}ns:8,0)

v) Crossing symmetry
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_sinh(2(Ai +n))sinh(A + Q)
sinh(2\;) sinh(Aj — Z+n)
Sinh(Ai +0) _Bface

X SNt — 1) Zyon A {Ambmzim=1,..N- & }i=1,..N; 8, 0).

Bface
ZN,ZN (

—Ai =N Am}mtim=t1,.. N 1&j }j=1,.N: 8, () =

.. - . . S . face
Lemma 4.4.1 The set of conditions i)-iv) uniquely determines the parifunction N -

From the trigonometric form of th& -matrix ones can easily show the condition (iii),
that the functior? is a polynomial of degree at mosii2- 2 in each parameter eXp,i =
1,...,N. defined at Ml points. Due to the symmetries (ii), the recursion relatipmscan
be established for any poinks = ¢, fori, j = 1,...,N . Due to the crossing symmetry
(v), similar recursion relations can be established at tatpAj = +§; —n. Thus the
normalized partition functio is defined at ¥l different points. Hence we can prove by
induction starting from the cas¢ = 2 that the partition function is uniquely determined.
This means that if we find a function satisfying the above a0tk it is the partition
function;

Theorem 4.4.1 (Filali-Kitanine) The partition function of the trigonometric face model
with a reflecting end and DWBC is:

Zﬁ,fzar\(fe({)\i Yi=1,.N {€ }j=1....N; 0, 0) (4.4.2)

LOemes)
=(—1>N_|‘!(S'”m3 ) et o A s {8} ya.

sinh(d—{+n(N—i))

_ Hlsinh()\i +&;j) sinh(Aj —&;) sinh(Aj +-&; +n)sinh(Aj —&; +n)
i,j=
M sinh(&;+&)sinh(&; — &) sinh(Aj — Aj)sinh(Aj +Ai +n)

1I<i<j<N

(4.4.3)

where the Nx N matrixa Bfa®€can be expressed as:
Bface () 1. N _ sinh(8+§;) sinh(l—¢§))
AT A =1 N =1 N )a g = SN+ A SInAZ 4 &)
sinh(2A;) sinhn

“Sinh(N — €+ 1) SN\ +&; +N) sinfA — &) sinh(\ + &)
(4.4.9)
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To prove the theorem, it is sufficient to check the prope(il® (v).

This result is very important for the computation of the sghiains Bethe states scalar
product and to further analysis regarding correlation fioms of the XXZ model with
general boundaries. The result is surprising for many readeirst of all, it is very similar
to the result for the partition function of Tsuchiya’s verteodel [2.3.2). The dynamical
nature of the model arise only as generic, rather simplentooy factor. Furthermore,
this partition function takes the form of a single matrixetetinant, which is not the case
of the partition function for the face model on a squaredattiThis means that adding
boundaries to face models permits, in some sense, one td enwrent difficulties of
handling dynamical objects. This result is not restrictetrigonometric face model, and
we will generalize this result to the most general ellipase in the next chapter. Another
interesting feature of this partition function is its lingt the pointn = %, which is the
XXZ chain’s free fermions point.

Lemma 4.4.2 The partition function at the poimt = 'I' takes the form of a Cauchy deter-
minant:

Zﬁ,fz?\lce({)\i}izl,m,N,{Ej}jzl,.A.,Nar] = %T) (4.4.5)
N TS MLy sinh(Ni 4 &) sinh(A; — &) cosHA; + &) coshAi — &)
Mi<i<j<nSINNE; +&i) SiNN(&j — &) SiNh(Aj — Aj) cost{Aj +Ai)
N . .
N s sinh(2\;) sinh(8 — L+ &) sinh( — &)
xtant =" (8-) [ sinnn + 5= sintw +)
(cosh{4Aj) —cos(4A;))(cosh4¢j) — cosh{4&))
1<iv <N cosh{4Ai) —cosh{4)

~(-8)

X
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Chapter 5

Elliptic dynamical reflection algebras

The dynamical Yang-Baxter equation was first introduced byv&@is and Neveu [52] in
their analysis of the Toda field theory. Later on, Babelorsube same equation in his
analysis of the Liouville theory [3] while Felder introduti in the context of the quanti-
zation of the Knizhnik-Zamolodchikov-Bernard equatiorcohformal field theory on el-
liptic curves [38]. Afterward this equation appeared thea variety of models such as the
guantum Calogero-Moser model [1] or the relativistic Rugjard-Schneider model [40].
The previous chapter also highlighted the relevance of tigoe models in statistical me-
chanics and associated dynamical Yang-Baxter algebraiiochain analysis if the hamil-
tonian does not conserve the third component of the total apd as we have seenitis the
underlying equation of the integrability of face type maddUnexpectedly, it also found
applications in the field of combinatorics. Indeed, facestypodels, and hence descrip-
tion by the dynamical Yang-Baxter equation, are also rdladelynamical enumeration of
alternating sign matrices [100, 101].

Therefore, the construction of equivalent quantum growpctire around solutions
of the dynamical Yang-Baxter equation in the RLL framewodcéme a real task for
understanding the integrable structure of dynamical aljgtielmodels, and thus interest
in dynamical Yang-Baxter algebra.

Although a quasi-Hopf interpretation of the dynamical YaBmxter equation has been
discovered[4], the co-algebraic properties of dynamicalg¢éBaxter algebra are not fully
understood. From an algebraic point of view, they are intehs studied due to their
relations to others quasi-hopf structures [29] and curaégebras|[63, 93], and the theory
of representation of group, especially in the form of hypergetric series [102].

The Sklyanin scheme for boundary integrable Yang-Baxtee tywodels requires two
reflection dual algebras. These are built-in as co-moduéz the Yang-Baxter algebra,
and they lead to a commutative generating function familjzisTfamily is constructed

71
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as a suitable product between both algebra elements. A boumitegrable model is
composed of a bulk scattering process whose integralslitysured by the Yang-Baxter
algebra; with a reflection at the boundary whose integratoleesire is given by the re-
flection algebra. The co-module construction insures tmepadibility of both integrable
process. A dynamical analog of this appears in the analysieeaon-diagonal boundary
XXZ spin chain through the vertex-face transformation oa@fer 4. In this chapter, we
would like to adopt a more generic framework for this taskardtg with the dynamical
Yang-Baxter equation and its elliptic solution, we intreduhe corresponding dynami-
cal Yang-Baxter algebra, the Felder’s elliptic quantumugrg: ,,(sh) [38,39/41]. Upon
this algebra we built in by co-module construction a dynaaiieflection algebra together
with its associated dual and corresponding trace like geimgy function. The co-module
evaluation representations of such algebras are intragweeich contain the boundary
monodromy matrix which appears in the boundary spin chaalyars. This enables us
to apply the Bethe ansatz technique in order to find the Bgibetsum of the underlying
physics model.

Our work is not the first attempt at developing a dynamicaéribn algebra descrip-
tion. We should mention the work of Nagy-Avan-Rollet [87}88 dynamical quadratic
reflection algebra (and the particular case of their worl }3Where related, but different
results can be found.

We believe the present work is more suitable for face modsdmjation. Unexpectedly,
this algebraic construction enables us to show that unidgrfpce models with reflecting
ends are exactly solvable and we will compute exactly thaitifoon functions. Quite
surprisingly, they take the form of a single determinantics not the case of dynamical
Yang-Baxter algebra face models on a square lattice.

Note that all the results presented in this section are valide trigonometric limit.

5.1 The elliptic quantum group E; ,(sk)

The Felder’s elliptic quantum grouf  (sl2) can be understood as the dynamical counter-
part of the Yang-Baxter algebras. The main object for degjnie elliptic quantum group
Etn(sk) is the dynamicak -matrix (3.1.11), which satisfies the dynamical Yang-Baxte

equation[(3.2]1):

R12(A1—A2;0 —N0%)R13(A1 — A3;0) R23(A2 — A3;0 —noT)
=R23(A2—A3;8)R13(A1 — A3;0 —N0%) R12(A1 —A2;0).
Unlike the Yang-Baxter equation, this equation is not atgelbut rather it is a difference
equation, due to the shift in the auxiliary space. Thanatrix possesses a fundamental
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weight zero symmetry:
[R12(A;8),07+05] =0 (5.1.1)

The elliptic E; (sl2) quantum group is the algebra generated by meromorphic func-
tions of the generator df, the Cartan subalgebra ek, that we denote as?, and the
a4(N;0) B(A;0)
c(A;0) D(A;0)
tries, satisfying the dynamical Yang-Baxter algebra refet [3.2.7):

matrix elements of (A;0) = ) € End(C?), with non-commutative en-

R12(A1—A2;0 —N0?)T1(A1;0)T2(A2;0 —no?)
=T5(A2;8)71(A1;0 —N0%)R12(A1 — A2; 0).

In this equationg? is an non-evaluated abstract element.

Remark 5.1.1 These commutation relations are also of difference typetaltiee shift in
the auxiliary space.

Remark 5.1.2 The dynamical Yang-Baxter equatif2.1)is a consistency condition for
the product associativity ofdg (sh).

We are only interested here in diagonalizaipleoduleV where thenveight zerqrop-
erty holds:

[70(A;8),05+0y] = 0. (5.1.2)

In this thesis, we are mostly interested in a particulares@ntation oE; ,,(sk), the
well-knownevaluation representatioim the spac& = @ | C2. Itis constructed from the

dynamical® -matrix (3.1.11):

N N . .
700;8) =[] xoh ~&:6-n ¥ 0?)2(?8;’33 ;;ggg) (5.1.3)

k=1+1

This is precisely the representation that give rises to thgtie face model on the
square lattice which is related to periodic XYZ spin chairotigh the vertex-face trans-
formation [3.1.1D) and (3.2.3).

Note that another dual evaluation representatioBgf(sly) in the spac®/ = @N ,C?
is constructed from therossed Lax matrix

h(6—no%)

W, (5.1.4)

L15(A;0) = %,3(A;0+n0})
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This new. -operator also satisfies the dynamical Yang-Baxter equatio
R12(A —A2; 0+N0%) LAz — A1;8) LB (A3 — A2; 0 —no?)
= £2(A3—A1;0)£5(A3—A1;0 —n0%)Ri2(A1 —A2;8).  (5.1.5)

Remark 5.1.3 The introduction of this operator was initially motivateg the crossing
symmetry of the dynamical-matrix:

h(8 —nao35
—Oixfé(—k—n;emoi)ﬁ% = %21(\;0), (5.1.6)

Remark 5.1.4 This operation is the right way to transpose dynamical otsjelt is a way
to reconcile matrix transposition operations to anti-hamarphisms of E,.

Remark 5.1.5 Lilz()\; 0) possesses a transposed weight zero symmetry:
[£5();8),0% — 0] = 0. (5.1.7)

Up to a central factor element, this representation is threespondingantipodeof
E:n(sk) and is represented as:
‘ 1 ‘ i—1
V(N 0) = FLLO?@_E“GM > o). (5.1.8)
= K=1

This representation obeys to the transposed zero weighitoaom
[V15(2;8),07 — 03] = 0. (5.1.9)
The Yang-Baxter relation for this matrix can be written ie fbllowing form:

R12(M — A2; 04N S V1L (—A1;8) V2 (—A2; 0 — nG2)
= V2(—A2:0) V1 (—A1;0 —N05) R12(A1 — A2; 6). (5.1.10)

5.2 Elliptic dynamical reflection algebra

5.2.1 The algebra, its dual and the transfer matrix

In this section, we introduce an elliptic dynamical reflentalgebra built in as co-module
on Ern(sk). The aim is to find a dynamical analog of Sklyanin algebrasmework
for boundary models that are described by a dynamical iab#grstructure, rather than
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usual Yang-Baxter structure. We defiBe (% (A;0)) as the following dynamical reflec-
tion algebra generated by meromorphic functionss6f h and the matrix element of

o [(A-(N;8) B_(A;8)
u-(A6) = (c_(A;e> D_(\:6)
the relations:

) € End(C?) with non commutative entries subject to

R12(A1 —A2;0 —n0?) (U_)1(A1;0)R21(A1 +A2;0 —no?) (U _)2(A2;0) (5.2.1)
= (Uu_)2(A2;8)R12(A14+A2; 0 —N0O?) (U _)1(A1;0) R21(A1 — A2; 6 — NO?).
This algebra is aninimaldynamical generalization of the vertex type reflection aige
(@.3.1), as commutation relations hold for algebra elesienaluated at the sarBgthere
are no shifts in the auxiliary spaces). The only modificategparding the Sklyanin reflec-

tion algebral(1.3]1) is the structure constants which ave foactions of@ and become
non-evaluated operators.

Remark 5.2.1 In this case, the commutation relations are algebraic egunestrather than
difference equations.

We associate this algebra with its dual; the dual dynamégdction algebr8.. (% (A;8)),
which is defined in the same way. The relations for non-conativé element$ , )q g
takes the form:

R12(A2 = A1;0+N0%) (u)1(A1;0)Ra1(—A1— A2 — 2n; 8+ n0?) (u2)2(A2; )
= (u2)2(A2:8)Ra2(—A1 — A2 —21;04+n0?) (u'2)1(A1;8)R21(A2 — A1;0+n0?). (5.2.2)

Theorem 5.2.1The algebras B(® (A;0)) and B.(® (A;0)) are isomorphic. An explicit
isomorphism is given by:

p:u_(\8) —Tu' (—=A—n;0)r. (5.2.3)
I" is an involution operator that satisfy:

r=r, (5.2.4)
ro’r = —o%

This operator is non unique forsl For two-dimensional representation opsit can be
represented ae* or 0.
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Motivated by the transfer matrik (1.3.9) formalism that w&dduce through the var-
ious vertex-face transformation (4.2.6), (4.3.15), weklémr a trace formula for quantum
charges for any boundary models that are described by asesgiegion of the dynamical
reflection algebras (5.2.1),(5.2.2). We propose the faligwformal dynamical transfer
matrix

h(®—noy_ —noy, —nog)
h(6—noy_ —noy,)

T(A;6) =tro{(u?)o(A;8—n0F, ) (u-)o(A;8—-07,)}

(5.2.5)
HereV. are the representation spacewi. In the next section we propose a co-
module evaluation representation of these algebras ingpdéizable)-moduleV where
theweight zerqroperty holds foru_(A; 0):

[(u-)o(A;8),05+0y] =0. (5.2.6)
We requiret (A; 0) to satisfy the transposed weight zero condition:

[(u)o(\;8),05—af] =0. (5.2.7)

5.2.2 Co-module evaluation representation

Let x_ : C x C — End(C?) be a (scalar) representation of the reflection algBar@_(A;6))
in C (i.e C-number matrix), viewed as a one-dimensidpahodule ofsl, with the standard
actiononve C, o?v=_0:

R12(A1—A2;0)(X-)1(A1;8)R21(A1+A2;8) (K- )2(A2;0)
=(K-)2(A2;0)Ra2(A1+2A2;0)(X-)1(A1;0)R21(A1 —A2;8).  (5.2.8)

This is essentially the reflection equation (11.3.4) as thiced by Sklyanin [110], with
the dynamicalk -matrix instead of the vertelR-matrix. A representation as above is said
to be of weight zero if:

[(%-)o(A;8),05] = 0. (5.2.9)

This implies thatx_ is a diagonal solution of the above equation. Iz&fA;0) be a
weight zero representation Bf ,(sl2) in V and consider the specific diagonal solution of

G.2.8):

(5.2.10)

h(6+Z_—\) 0 )

K- (A;8) = <h(e+é+>\) h(Z_—A)
h(C—+M)
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which depends on an arbitrary complex paraméterThen:
u_(\;0) =7 (N,0)%x_(A;8)7 1(—A\;0), (5.2.11)

is a weight zero representation of the dynamical reflectigataa inC @ V.
Our main object of study is the dynamical boundary monodramarix, a representa-
tion of (5.21) inC x V, V = @N ,C?, with T as the evaluation representationgaf, (sk)

G.1.3):

(u_)o(A;0) = y()\)ffo()\ 6)( )0 ,9 (—)\;6) (5.2.12)

_ (A A
C—(N\; A;
with convenient normalization coefﬁuents

rlh A +& —mh(A+& +1n). (5.2.13)

5.2.3 Dual co-module representation

Using the dual representation Bf ,, (sl2) (5.1.8), it is possible to construct in a canonical
way a dual co-module representation of the dual alg8ara (A;0)) . For this we need

a C-representation of the dual algebra, which is given by thal Boundary matrixx
which satisfies the dual dynamical reflection equation:

R12(A2 — A1;0) (K1) 1(A1;8)Ro1(—A1 — Ay — 21); 8) (% 2)2(A2; 6)

= (%2)2(A2;8)R12(—A1 — A2 — 2n;0) (%) 1(A1;8)R21(A2 — A1; ©). (5.2.14)
%, : Cx C — End(C?) is a dynamicaleft boundary matrix which we take as:
K+ (A 8) = x4+ (A6,84) = K- (-A—n;8,&4). (5.2.15)

Hereé. is an arbitrary complex parameter.
A co-module evaluation representation takes the form:

(1) =YN) VLA 0)(%2)0(A; ) (V) (—A — 2n;6) (5.2.16)

:<ﬂ+(>\;9) C+(A;9))
B+ (A;0) D1(A8)) g’

with convenient normalization coefficients:

YA) = (—1)N_|ﬁh()\+ﬁi)h(>\+zi+2n). (5.2.17)
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5.2.4 The Bethe Ansatz

In the previous section, we introduced a dynamical reflecsioucture, together with its
dual structure leading to quantum charges defined_by (5.2J5)ng the representation
of 0= S inV =N ,C?, it is possible to construct two transfer matrices. The fast
based on the co-module evaluation representatid® 0% (1;0)) (5.2.12) and the scalar
representation of its dud[{5.2]15):

h(6 —nS*—naop)
h(6—nS)

T1(18) = tro{ (%) 8 —nS") (u-)o(16)}. (5.2.18)

The second matrix is based on the dual co-module evaluarsentation dB. (% (1;0))
(5.2.16) and the scalar representatioBof % (A;0)) (5.2.10):

h(6 —nS*—nap)
h(6—n$)

T2(16) = trof{ (u)o(16) (%°)o(;8 —nSH)}. (5.2.19)

Remark 5.2.2 Besides their similarity, these two transfer matrices afeecent. They are
related to the same algebra but to different representation

Thus, the next question is to find their spectrum. Bethe arsdieme leads to the
following theorem:

Theorem 5.2.2

M —
vM e [[LN]]: Wt ({Ahet,..m)) = [ 3- (A 8)[0),M = NTS (5.2.20)
k=1
M
and |42 ({Mcher..m)) = [ - (Mg 8)[0),M = NT“’ (5.2.21)

m

1

belonging to the subspace with a fixed z-component of thesjoita

FH({Mcteet,..m)) = SO ({Nichet,..m)), (5.2.22)

are eigenstates of the transfer mat{x2.18)for any p with eigenvalue » if the
parametergAy }—1.. M satisfy the Bethe equationsy

Y1.2(Aks {Ai k=1, M {&j Fi=1,...N; 6,) (5.2.23)
=Y12(=A— N, {Aitizki=1,.. M- {&j}j=1,...N;6,9)
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Here, the eigenvalues are:

A1(K {Aktk=1,.M,{&j }j=1...N;©,S) (5.2.24)
(N
h({+ —p—n)h(®+T_ +})
h(2p+2n)h(¢+ —Wh(®+24 —s+wh(6+- — 1)
R g L R m) 1M BN — WB(A £ )
NN, + it MN(B+L_+ut )@ —u-n),
h(Z- +Wwh(2u+n) ML, b(Ai +Wb(Ai —u+n)

+a(—p—n)d(p)

and:

N2(W {Aiti=1,...M,1&j }j=1...N: ©,9) (5.2.25)
=NA1( A= M 1€ Fj=1,..N: =6, =9)[¢_—z 407,746

Y1( Ak, {Aitizki=1,... M, 1€ }j=1...N;8,9) (5.2.26)
= xh(8+{- —wh(- +Wh(8+L; —s+wh({s — )
M
xa(h)d(=A—n) [] hAx+Ai)hAx—Ai—n),
i=1,ik

whereas thg, function is:

Y2(Ak; {Ai bigki=1,..., Mv{Ej}j —1..N; 98) (5.2.27)

where we use the shorthand notations:

a(\) = - a'@ e\ —&;;0 b(\) = h») (5.2.28)
ﬂ v rlh)\ E.+n h(A+n)’

This theorem follows from standard Bethe ansatz computstiblore details are given
on the appendix A.

Remark 5.2.3 Note the very strong similitude between the Bethe constru¢tigenval-
ues and Bethe equations) for this boundary dynamical mautbtize corresponding theo-
rem for the boundargiagonal spin chaing1.4.1)
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Proposition 5.2.1 The setqwfz({Ak}kzle)> are isomorphic to each other. The iso-
morphism is a consequence of the following parity symmétitysoboundary monodromy
matrix u _:

o5U—(N;0,0-)o5=Txu_(\;—6,_ +6)ly (5.2.29)

and the equivalent symmetry for the transfer matrix:
T1<)\a e7 va Z+) = rXT].()\! _97 -+ 97 Z+ + e) Ix (5230)

Thus the symmetric form of the Bethe equations and eigeswadmains clear.

More details on the proof of this proposition and the pantsnmetry are given in the
appendix B.

Proposition 5.2.2 The Bethe construction 1, invariant due to the following involution:

N DA TN +n))h(A 42 +6)
h(2A)hA —{-+n)h(A-8—-C_+n)

B_(—A—1;0) = —(—1) 3_(\0), (5.2.31)

and:

h(A+8+2_)h(2(A+n))h(A+2_)
h(2\)h(A -8~ +n)h(A —C-+n)

c_(-A—n;8) = —(-1)N) c_(\;9). (5.2.32)

This symmetry is given by a decomposition of the boundaryatpess_ andc_ into
the bulk operatorsz, 3, and®». More details on this decomposition are given in the
appendix B.

Theorem 5.2.3

M
YMe [LN]]: Wl ({Mdker..m)) = [+ 8)[0) (5.2.33)
k=1
M
and W2 ({Mdker..m)) = [ ¢+ (A 8)[0) (5.2.34)
k=1
with subspace total spin: (5.2.35)
SU (Mhket...m)) = S ({Adcr,...m) (5.2.36)

are eigenstates of the transfer matfiyx (5.2.19)for any p with eigenvalueA; » if the
parameterg\x k—1...m satisfy the Bethe equatiofs.2.23)



5.3. ELLIPTIC FACE MODEL WITH REFLECTING END 81

Remark 5.2.4 Bethe equations and eigenvalues explicitly depend on genspace spin
s (or equivalently its dimension d as=€2s+ 1).

Remark 5.2.5 The transfer matrixd 1 and T» are different, and their Bethe states are not
the same. They do, however , share the same Bethe eigenaaldd3ethe equations.
This suggests that such transfer matrix and the underlyyrgadhical model should be
isomorphic. This isomorphism is nothing but the isomonphietween B(R(A;0)) and

B+(R(A;0)) (5.2.1)

5.3 Elliptic face model with reflecting end

5.3.1 The model

Let us now introduce the face model underlying the represient (5.2.1P) of the dynam-
ical reflection algebrd (5.2.1). For this, recall that theefanodel introduced in Chapter
3 is a two-dimensional statistical mechanics lattice modékere Boltzmann weights are
attached to each face, with six possible face configuratidrese each heigltt can differ
only by +n for adjacent sides. The corresponding statistical Wejgrbﬁ’, are collected
into the dynamicak -matrix (3.1.11); defined as the bulk part representatiofo . 12).
We consider this model with a reflecting end, which meansdael horizontal line makes
a U-turn on the left side of the lattice. Since we choose adatiabsolution[(5.2.70) of the
dynamical reflection equatioh (5.2.8), it produtes configurations characterized by the
weights(x_)E(\;0):

0 0—n 0 0+n

(x-)1(\;8) (x-)—(A\;0)

It is important to note that such a reflecting end imposes ateon external heigh
for the left side of the lattice. We impose DWBC, such thathk&hts decrease from left
to right on the upper boundary, the heights grow from leftightr on the lower bound-
ary. Since the left external height is fixed, these two cooé determine completely the
configuration on the right boundary (heights decreasingérupward direction).
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0-n 0-(N-Iyn (6-Nn
0 0-(N-1)n
0-(N-2)n
6 6-(N-3)n
0 0+(N-3)n
6+(N-2)n
0 0+(N-I)n
0+n 6+(N-1)n{0+Nn

Figure 5.1: The face model with reflecting end and DWBC

5.3.2 Partition function

The patrtition function of the face model introduced in theyaous section can be written
in terms of the boundary monodromy matifix (5.2.12):

Zg o (N }. et {&}i-1..n:6) (531)
= (0[x(Olg rl{rL{i’GJ —&j;0— nk_%lck )} K- (Ai;8) rL{RJI Ai+&j;0— nk_élok )}}10)A10)¢

= (O[5 ( O\Erl‘u (Ai:8)]0)¢[0)x

O|E I_! )\I’ ‘O

The dynamical reflection algebra introduced previouslyoéggone to establish a set of
properties, univocally defining the partition function.

Proposition 5.3.1 (Filali) The partition functiorfc.3.1)satisfies the following properties:

i) Initial condition
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281790, £1;6) = h(”ig((g)_ N o ( Egié_+)\1§h()\1—al)h(e+)\1+al>
+ﬁh<mzl>h<e—m+zl>>

i) Symmetry
Zﬁfz"’,‘\fe({)\ Yie1.N, {&j Y1 n; 8) is @ symmetric function of thii }i—s
{&i}i=1...N-

.....

iii) Elliptic polynomiality of the normalized partition fictionZ
For each parametefA;}i—1... N the normalized partition function

.....

N _ _
782 At & it ,>__|—!h<9+<:(g>ir;<zm.>

ﬁfz?\(l:e({)\ b=t N {&}=1..N: 0),

is a theta function of orde2N — 2 and norm(N — 1)n with respect to the variabl®;.

iv) Recursive relations

Bface hm)h(Z—_)\i>
({Aiti=..Ns &=t ,0) = _
N vlbhea® =T

h(8-+ (N—2i)n)
h(®+(N—2i+1)n)

2

h(Ak+&j) -
k

|
R

N

% |-| h(Ai — &+ n)h(Ai + &+ n)h(Ak—&; +1n)
1k
Bf

k=
Z(N ()a 2(N— 1({)‘m}m7é|7{zn}n7éj, )
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and:

Bface . . _ h(mh(e‘f’Z—_)\i)
N2N ({)\ }l ,,,,, Nv{EJ}J:]- 77777 N’e) - - h(e+z_+)\i>
N . h(6+(N—2i)n)
Xllh“k_a>me+(N_2r+nn)
N
|_| h(Ai + &k +n)h(Aj — & +N)h(Ak-1+&j+n)
k=1k#]

xZFfaC)e 2(N-1) ({Am}mei; {&n}nezj: ©)

Lemma 5.3.1 The partition function fz?\,cethat satisfy the set of conditions i)-iv) is unique.

Indeed, it is sufficient to observe that the normalized partifunctionZ is a theta function
of order N — 2 and norm(N — 1)n in each parametek;j—; n. So we need ¥ —1
independent conditions to uniquely determine it. Usingdpmmetry (ii) the recursion
relations (iv) can be established for any pot= &j, or Aj = —¢;j fori,j = 1,...,N.
Hence we can prove by induction starting from the ddse 2 that the partition function
is uniquely determined as we need.

Theorem 5.3.1 (Filali) The partition function of the elliptic face model with retiag
ends and DWBC is:

Zuon (N ietons 1} j=1,.8: 0) (5.3.2)

_(_ h(G—H‘](N 2')) face .
= ( 1)N|r!<h(9+r]( )))d eta B\ iz N, (&} j=1. N;0)

h(Ai +&;)h(Ai —&;)h(Ai +&; +n)h(Aj —&j +n)

1
M h&+&)hEj—&)hAj —Ni)h(Aj+Ai+n)

1I<i<j<N

Tz

where the Nx N matrix M; can be expressed as:
ace h(6+¢- +&p)h(L- —&p)
NGB[; ({Aiti=1,..Ns{&jti=1,..N: 0) = (9+Z+7\S)h(1+7\5)

h(2\q)h(n)
h(Aa — &g +N)h(Aa + &g +N)N(Aq — Eg)N(Aa +&p)

(5.3.3)
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To prove the theorem, it is sufficient to check the prope(ij® (iv).

Remark 5.3.1 Notice the strong similitude between this partition fuaotfor this diag-
onal boundary face model and the equivalent formula for tiag@hal boundary vertex

model(Z2.3.2)

Remark 5.3.2 The partition function for diagonal boundary face modelipessed as a
single determinant. This crucial result shows that addimgfeecting end of the Tsuchiya’s
type to face models leads to a simpler model.

The main result of this chapter is that dynamical reflectityelaras, although more
involved thanE; ,(sl), lead to a simpler Bethe ansatz and describe very convestignt
tistical physics models. Indeed, one can construct eigérstvith spin values belonging
to the total range{% <s< %). Most importantly, this structure leads to an explicit and
simple formula for the partition function of the corresporgiface model.

5.4 A dynamical generalization of the Kuperberg HTS
model

As we already mentioned, vertex and face models are relateshbinatorics. This quite
unexpected and intriguing relation was noticed by Kupeylfé§]. He found bijections
between the six-vertex (or the face) model configuratiortls emumeration of Alternating
Sign Matrix (ASM) [84[85],ie square matrices with entries 3,1 and 0 such that each
row and column sumsto 1, and 1 and alternate along rows and columns. This bijection
is illustrated in Figure 5.2. To turn a state of the vertex elazh anN x N grid with
domain-wall boundary conditions into an alternating-siggirix of orderN, replace each
vertex by—1,+1 or 0 according to the following marking:
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OA1T A2A3IAALAAS _

>1—> > €< 1< 0 0 1 0 0

r 3 N N N

172 3 y2 3 4

e > 1 0 -1 1 0
.3 .3 N

2 41 2 3¢ 2 3

>1—> €€ << 0 1 0 0 0

3y2y1p2y14h2

>—>1—>1-€ >1-€ 0o 0 1 1 1

a3 y2y1h2yn

>1—> > 1> 1< 0 0 0 1 0

S5y4y3y2y¢y1y0 -

Figure 5.2: Vertex, face and ASM

T S T
— — — — — <
T \ 1

0 0 1
) T )
— — i — i —
) T T
0 0 -1

This deep relation permits one to apply all the quantum natieijty technology (such
as the g-deformed Knizhnik-Zamolodchikov equation [2022249]) to new problems in
the field of combinatorics.

Kuperberg also noticed that enumeration of various othmnsgtry classes of alternating-
sign matrices are related to partition functions of vert@dels with various special bound-
aries. We are interested here in the case of Half-Turn-Symeri®oundaries which enu-
merate vertically and horizontally ASM as illustrated igéiie 5.3. The HTS conjugacy
classe of ASM[[90] is the set of all ASM such that for any elet&n of the (square)
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N x N matrix, the following relation hold:
QA j = aN-1—-i N—1—] (5.4.1)

Here is an example of such matrix fr= 6:

0O 1 00 O

1 -101 0 O

0O 0 00 1 O

0 1 00 O O (5.4.2)
0O 0 10-11

O 0 00 1

Our aim is to generalize this model to the dynamical casd) wa@spect to the more
general elliptic parametrization, and to compute its gartifunction. The choice of this
class of boundary (or as shown by Kuperberg the choice oimsmetry class of ASM)
is mainly due to itapriori simplicity. Our long term goal is to achieve a complete aagal
of face models with Kuperberg-type boundaries to study dyoal enumeration (in the
sense of Rosengrein [100]) of all symmetry classes of ASM.

Figure 5.3: The vertex model with HTS boundary and DWBC

5.4.1 The model

The model that we propose is the dynamical analog of the KigogrHTS model with
DWBC, which can be pictured as in the Figure 5.4.
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0 | n|-- 6<(N-1)n| o-Nn

8-(N-1)n

q :

6+(N-1) n

0 | 6+n[-- 6+(N-1)n| ©6+Nn

Figure 5.4: The face model with a HTS boundary and DWBC

Statistical configurations and Boltzmann weights are thmeesthat for the previous
face models on a square lattice and with reflecting ends pexicat the we do not allow
extra Boltzmann weights for the boundary. This means thatake the boundary matrix

%_ to be the identity:
K_(A;0) = x_(A;0,0) =1d. (5.4.3)

5.4.2 Partition function

The partition function of the HTS face model introduced ie firevious section can be
written in terms of the monodromy matrix (5.1..3):

ZRoN (N1, N, &5 i=1,.N: 6) (5.4.4)
N i—1
=/\<0|A<5\z_|'l{fri(m,e n Z o)} |‘L{T ~Ai;6-n 2 o)}

k=1

N—1 1 i—1
= A_1(0, (0| r!{fr, (\i;0—n Zo )}B_(AN;0—N Z o?) J;l 1{Ti_l(_)\i;e_nkzloiz)}

= (Ol O\EH{H{%J —&j;6- anrAk N Z Ozk
N
ji(Ai+&;6— \ 0)A0)¢
le:L{KJ( 3 WK;GAK ; £)1101[0)
(5.4.5)
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where: A = I, ¥(A\), A-1 = [1*Y(\i). The dynamical Yang-Baxter algebra to-
gether with the reflection structure enables one to estahbliset of properties defining it
in an unique way.

Proposition 5.4.1 The partition function(c.3.1)satisfies the following properties.

i) Initial condition

205" (M, 81:8) = % % (h(AL—&1)h(8+ A1 +&1)
+h(A1+&1)h(0—A1+81))

Note that the face model with a reflecting end patrtition fiorcand the face HTS
model partition function are equal for N 1. This should be obvious from the picture
5.3.

i) Symmetry
ZRN ({NiYi=1, .. N, {&j }i=1,...N; 8) is @ symmetric function of thig\i }i—1, .y and the

{&€;}i=1...N

iii) Elliptic polynomiality
For each parametefA; }i—1... n the partition function HTS({)\ i1
is an elliptic polynomial of ordeEN and normg.

..... Nv{Ej}j =1,...,N» 9)

iv) Recursive relations

h(8—(N—1)n)h(6—Nn)

B%S({)\ Yie1,Ns{€j}j=1,...N: 0)

Nt h?(8)
N
|_| — &k +N)h(Ai + &)
K=1
N
X h()\k—Ej—l—r])h()\k—i—Ej)
K1 koAi

XZPHTS 2(N-1) ({Am}mi; {&ntnzj;0+N)



90 CHAPTER 5. ELLIPTIC DYNAMICAL REFLECTION ALGEBRAS

and:

_ h*8—n)
~ h(8+ (N=1)n)h(®+(N—2)n)

B%S({)\ Yie1,.Ns{€j}j=1,...N: 0)

)\i:*EJ
N
|'| (Ak+&j+n)h(Ac—¢j)
k=1
N
X h(Ai —&k)h(Ai +&+n)
k=1KAi

XZPHTS 2(N— 1 ({)\m}m#la{an}n7éj,e n)

v) Crossing symmetry

ZRA (=N =N AAmbmi et N {E =1 N 0) = %

X ZB.%S(N,{)\m}rrn;éi,mzl,...,N, {&€;}ti=1..N:0).

Lemma 5.4.1 The partition function g% ° is uniquely defined by the set of conditions

i)—V).

Indeed, it is sufficient to observe that, according to theddaon iii), the partition function
is a theta function of ordemMand normB in each parameteyj j—; . n. So we need®+ 1
independent conditions to uniquely determine it. Usingdpmmmetry (ii) the recursion
relations (iv) can be established for any paint=¢;j, orAj = —¢j fori, j=1,...,N. Due to
the crossing symmetry (v), similar recursion can be esthbll at the pointsj = ¢ —
Thus the partition function is defined aN4different points. Hence we can prove by
induction starting from the cas¢ = 2 that the partition function is uniquely determined.
At this point, we should propose a simple and manageabledarfor Z23S. This is
still an open problem. ’



Chapter 6

Conclusions and perspectives

In this thesis, we tackle the problem of boundary integraideels without quasi-particles
conservation through the analysis of the XXZ spin chain witlindaries. Our main tools
are the vertex-face transformation and the algebraic Batisatz technique, which are
implemented in a very algebraic and simple form. Our methotke/provided two strong

conditions on the boundary parameters. These enable ugdtedine eigenstates of the
model and the associated eigenvalues. It turns out thatdhexvface transformation in

this context highlights a new integrable structure, theadhyital reflection algebra, which
can describe a new face model with reflecting end. We gemerdiis structure to the

elliptic case, and we show that the underlying face modek&#ty solvable. The very

important point is that its partition function takes therfoof a single determinant in the
general case.

This work should be continued, and leaves several openiquest

* Boundary XXZ spin chains:
As we have seen, the diagonalization of the XXZ hamiltonfaough our method
requires two conditions on the boundary paramefers (4(2.8)9). This very spe-
cial case has the advantage to lead to a simple Bethe ansdtheaunderlying face
model with reflecting end is very convenient as its partifiomction is rather simple.
Unfortunately, this case is too degenerated, and it is isiptesto describe the full
set of eigenstates. Most importantly, the dual states aaeagssible through our
method, so it seems very difficult to push forward the analy®ivards correlation
functions. It turns out that at least one condition is absiyunecessary to diago-
nalize the XXZ hamiltoniar [12,122], so it is very importaatdrop out at least one
condition, and to look for a simple Bethe ansatz for the XX ghain with general
boundary. The search for the underlying dynamical modelishioe also a very in-
teresting point. The very curious fact is that it is indeedgble to recover the only
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required conditions, but this leads to a dynamical like nhadlén a triangular (rather
than diagonal) boundary matrix. This model is not clearlyaled at the moment,
and the underlying algebra is unclear. This work should Isdyegeneralized to the
elliptic case, which corresponds to the XYZ hamiltonianhwgeneral boundary. We
believe that the same obstacle must be encountered in gesaad we believe that
we should tackle the question of the conditions on the boynplarameters for the
trigonometric case before this. If this is achieved withsiraple form, then we can
go through the computation of the scalar product and theetagiron functions of
boundary spins chains. This is very important also for owdafilibrium model.

Dynamical reflection algebra

In connection with the first point, we found triangular sadatto our dynamical re-
flection equation. The very important point is that this sioluis related to general
boundary spin chain matrix trough the vertex-face trams&dion. The next point
is to look for a dressing procedure for the construction obanodule represen-
tation of the dynamical reflection algebra upon this sohution other words, we
look for a weight zero representation of the dynamical réfhecalgebra without the
(too restrictive) weight zero condition on the dynamicalbdary matrix. We be-
lieve that such representations should exist, and a deepérsés of the dynamical
symmetries of the dynamical -matrix can lead to a solution to this problem.

ASM and the three-coloring modgl= i3

We already mentioned the link of face models and combinagpin particular for
enumeration of alternating sign matrix. Namely, the partiftunction for the square
face model and the Rosengren’s formula (Theorfem (3.3.4)) fe very interesting
combinatorics at the poimt=iZ [96]. We also already mentioned the main inconve-
nience of the Rosengren’s formula, which is not represeasgeaisingle determinant.
We believe that our result (Theorem (513.1)) can also leddt&yesting combina-
torics, and this should be easier in our case as our formuégpresented as a single
determinant.

Boundary face model

We believe that our dynamical reflection algebra is the rigdthework for the anal-
ysis of face models with boundary, at least for the variotisgrable aspects. We
started the analysis of other models, among them the DHTSmddshould be
interesting to compute the partition function of variousestboundary face models,
especially in connection with the previous point for the meuvation of alternating
sign matrix.



Appendix A
Proof of the theorem 5.2.2 (4.2.1)

In this appendix we give the derivation of the algebraic Bethsatz for co-module eval-
uation representation of the dynamical reflection algelrechivassociated to the transfer

matrix (5.2.18):

Ti(xi0) = tof (x lori0—n) " A= 0) aryonie)y

This enables us to prove the theorém (3.2.2). The thedréhBjxan be proved along
the same lines. Note that in the trigonometric limit, theligedinsatz theorems for the open
XXZ spin chains[(4.2]1),(4.3.1) follow directly with the meenient restriction.

We start by introducing a modified operatfzt (A;0):

h(6—nS*+n) .
ho—ns (P~ AE)
h(6—nS*+2A+n)h(n)

_h(2)\+n)h(e_nsz+n)ﬂ*()‘?e>}~ (A.0.1)

D_(A;0) =

The transfer matrix can be expressed in terms of the opsratgiA; 0), 5_()\; 0) as:

T1(A;6) = %5@;9)
h(Z4 —A)h(Z4 +6—nS*+A)h(2A +2n)

((+=A=n)h(l+ +6-—NSF—-A—n)h(2A+n)

+ a_(\;0). (A.0.2)

The action of the operators_(A;8), ©_(A;8) on the reference staté) = N (é)
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. N
ﬂ_(x;e)|o>:Hﬂh@—a+n)h(A+Ei+n)|0>,
= . _ h@A)h(@- —A—n)h(B+Z-+A+n)
=010 =" hoA IR+ MhE+ )
N
X uh(A —&)h(A+&)|0). (A.0.3)

The dynamical reflection relation (5.2.1), gives the foliogvcommutation rules for
the operatorsi_, »_ and3_:
4_(A1;0)B_(A2;0) =
~ h(n)h(6—nS—2n—A1— A7)
h(8—nS—n)h(Ar+Az2+n)
h(A1+A2)h(A1—A2—n)

B_(A2;0)a_(A1;0
h(A1—A2)h(A1+A2+n) (42:)2-(1:6)
h(n)h(2A2)h(A1 —A2— 6+ S +n)

— B_(A1;0)a_(A2;0), A.0.4
h(0—nF—nh(hy —Agh(Dr ) 0020, (A04
h(A1+A2+6—nS)
h(6—nS—n)

" h(n)h(2A2)h(2A1 +2n)
h(A1+A2+n)h(2A1+n)h(2A2+n)
h(A1 —A2+n)h(A1+A2+2n) ~

B_(A2;0)D_(A1;0
h(A1—A2)h(A1+A2+n) (202 (Aa:6)
h(n)h(2A\1+2n)h(A1 —A2+06—nS"—n) ~

- B_(A1;0)D_(A2;0). A.0.5

A~ Aoh(2h+mhe-—ns—n) ~ (u8P-A20). - (A05)
Now one can easily show, using the usual algebraic Bethetarnbat a state con-
structed by the action of operatass. :

B_(A1;0)D_(A2;0)

D_(A1;0)B_(\2;0) =

B_(N1;0)42_(A2;0)

M
WM € [[0,N]] : [W2 ({Aidket,..m)) = ] 3-(Ak: ©)]0), (A.0.6)
k=1

is an eigenstate of the transfer malffix(p; 0) provided the spectral parameters satisfy the
Bethe equation$ (5.2.P3). Using a similar computation @mestiow that :

M
WM € [[0,N]] : |4 ({Ahk=n,m)) = [ €~ (A: 8)[0) (A.0.7)
k=1
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is an eigenstate of the transfer matfix(p; ) provided the spectral parameters satisfy the
Bethe equation$ (5.2.P27). Note however that this followsdally from the isomorphism

G.23).
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Appendix B

Proof of the proposition 5.2.1 (4.2.1) and
5.2.2(4.2.2)

In this appendix we prove various symmetries of the boundaerators. We first pro-
ceed to a boundary-bulk decomposition of the boundary ¢@eravhich enables us to
understand th&, symmetry of the Bethe construction and the crossing synynadtihe
partition function. We then prove the parity symmetry of bwaindary operators, which
enable us to prove the proposition (512.1).

B.1 Boundary-bulk decomposition

First of all, we will need the following fundamental symme$ of the dynamicak -
matrix:

» Weight zero:

(07 + 035, R12(X; 0)] = 0. (B.1.1)
It is easy to see that this relation induces a similar retata the transposed -
matrix:
(0% — 03, %,5(A;8)] = 0. (B.1.2)
 Unitarity:
R12(A;8)R21(—A;0) = —h(A —n)h(A +n)ld. (B.1.3)

97
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» Crossing Symmetry:

h(6—na3)

o O)Z{K{L%(_)\ —n; 0 + nO-:ZL)O-):{ h(e)

= %21(A; 0). (B.1.4)

Using these symmetries, we can rewrite the inverse bulk mh@moy matrix [5.1.8) as:

1 N
7, 1=\ 0) = A -&;0- of B.1.5
o (=A8) i&%( nkZIZH ) (B.1.5)
1 N
=V ') [ Rio(A +&i;6— K
ke 3 o
- = 3 he-nyilioy)
= ()N (N} ©(—A—n—&;0+05— ot =K Yol
(=7 ( )OO{iD\lﬂo( n 0 nk;rl i) h(e) }o0

— (_1>Nvl(A)o)6Tto(—A -n; 0+ O-S)g%h(eh%er;SZ)

The last lines follows because 6f (B.1.2). Using the repreg®n [5.2.1R) of the double
monodromy matrix, we can then rewrite it as:

(u-)o(A;8) = (=1)"7o(A;8)(%-)o(A;6) (B.1.6)

h(6—n$&
X YT (—A —n; 9+06)0’6%

(B.1.7)

This enables us to decompose the boundary operatoandc_ (5.2.12) in terms of
the bulk operators and3 (5.1.3):

5-(0;8) =(— D (%) =B (A:8)2 (-A— ;04 1) — (%) LA (A 0)3 (- ;0 —1))
h(8—nS)

O (B.1.8)

and:

c-(58) =(—1) (= (5 )} (8D (—A—n:8-n) + (%) (\;8)c (-2 —n;8-+))
h(6 —nS)

OBl (B.1.9)
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Using the dynamical Yang-Baxter algebra for the bulk mopnadr matrix [3.2.7), this
leads to the following symmetry of the_,c_ operators:

n h(A+2)h(2(A+n))h(A+2_ +6)
h(2A)h(A —Z-+n)h(A—6—C_+n)

B_(-A—n;0) =—(-1) 3_(A\;8), (B.1.10)

and:
n hAA+84+2)h(2A +n)h(A+2-)
h(2\)h(A —8—-2_+n)h(A —C_+n)

Using such symmetries, tt#%& construction propositior (5.2.2) of the Bethe theorem
remains clear.

C(—A—n;8)=—(-1)

c_(\;08). (B.1.11)

B.2 Parity symmetry

The proposition[(5.2]1) highlights a simple relation begwé¢he two sets of Bethe states.
This is because the boundary operators enjoy a generalem@ly pymmetry. First, we
note that the dynamica -matrix satisfies the following parity symmetry:

®21(\; 8) = 077057 R12(A; 0)07Y05” = Ra2(; ). (B.2.1)

Using this symmetry, we easily find the corresponding symynfeir the dynamical
monodromy matrix((5.113):

057o(A;0)0 = MxT (A; —8)ly, (B.2.2)
A similar relation exist for the choseri_ solution [5.2.1D):

a§(%)o(A;8,L-)a5 = (K )o(\;—8,{_ +9), (B.2.3)
leading to the parity symmetry fau _(A; 0):
o(U-)o(A;8,2-)0% = Mx(u_)o(A; —6,_ +8)ly, (B.2.4)
which implies the following relation betwees_ andc_:
C-(\;0,0) =TxB_(—6,{_+06)l. (B.2.5)
Finally, using the solutiorx; (5.2.1%) and the relatiof (B.2.4), it is obvious that:

T1(A;6,0.34) = TxT1(A; —68,0_ +6,3. +8)ly (B.2.6)
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This last relation gives a clear understanding of the mta{b.2.1) between the two
sets of Bethe states, the symmetric form of their eigengadmnel Bethe equations.

Note that similar relations can be establisheddar ¢, (5.2.16) andT>(A;6,{_,{)
(5.2.19) using the parity symmetry for the crossed Lax md&il.4):

0y oy (N 8)0y oy = £iL(A; —8), (B.2.7)
or more directly using the isomorphism theorém (3.2.1):

nDA+n—C)h(@M)h(A+n—-C4 —6)

A = D T+ OO+ 2Rk + )

ci(\;0), (B.2.8)

and:

nhA+n—-8—-C1)h(2AM)hA +n —C4)

B(A=N8) = (1) S S i + 6+ L2+ 1))

3.(\;0). (B.2.9)



Appendix C

Proof of the property iii) of the
proposition 5.3.1

In this section, we discuss the proof of the propéityof the proposition.(5.3]1) regarding
to the elliptic polynomiality of the partition function ofie face model with reflecting ends.
Two main methods exist for finding determinant formulas fartpion functions of vertex
models which are described by the QISM duality (see ChapteFt# original method of
Izergin-Korepin of Chapter 2 consists of a three step psices

i) Find a set of conditions that uniquely determine the gartifunction
i) Propose a formula for the partition function
iii) Prove that this formula satisfies the set of previoudt{adlished conditions

This method was successfully used for finding a conveniamita for the partition
function of the trigonometric vertex model with DWBC (thear (2.2.1) ) and the trigono-
metric vertex model with reflecting end theorem (2.3.1). &ber, this method is still
successful for the face model with reflecting end (theofed1¥). Particularly, the step
contains a strong condition regarding the polynomialityhaf partition function in some
variables (the spectral parameter). This condition isleairived from the verteXk-
matrix or the faceg -matrix in the trigonometric case. Stép is particularly difficult.
The great achievement of Izergin regards the partitiontfanf the trigonometric ver-
tex model with DWBC, which enables us to look for similar igiartype formula if one
applies this method to others models.
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For elliptic models, this last polynomiality argument nadeer holds as the -matrix
is parameterized in terms of elliptic functions. As shownRysengren [100], Pakuliak,
Sylantyev and RubtsoV [93] in their analysis of the elligice model with DWBC, such
polynomiality argument should be replaced by a generalekgtic polynomiality con-
dition. However, the elliptic polynomiality form of the géion function is not directly
derived from theg -matrix description of the partition function, and we needmhow the
structure of the general statistical configuration of treefanodel. This is possible for the
elliptic face model with DWBC. As one can see from the figurg, 3or each possible
configurations there exists &, with 1 < k < N, such that the second row is:

0-+n0+2n]...[0+kn|8+ (k—1)n|0+kn|O+ (K+1)n|...|8+ (N— 1)n

This configuration is an elliptic polynomial with orders amokmswhich do not depend
on k, thus we can access to the elliptic polynomiality of the igiart function, therefore
achieving the step). Unfortunately, for face models with reflecting ends, itrasevery
difficult to accomplish this task. As shown in figurel4we did not find such a generic
configuration.

A second method for finding partition functions of such medeas found by Kita-
nine, Maillet and Terras [67, 69] with the use of the concd@nfel'd twist. Drinfel'd
twists were introduced [26] in order to relate Hopf algelwaytiasi-Hopf algebra struc-
ture in a consistent way. Representation of Drinfel'd tamsfas first applied by Maillet
and Sanchez de Santos [82] in order to obtain a completelym&tric representation of
the bulk monodromy operators for Yang-Baxter type algelach are highly non local
in terms of the quantum local operators. These permittech tieereduce drastically the
combinatorial difficulty of handling highly non-local reggentation. The idea is to per-
form a change of basis in the space of states where the bul&dnamy operators remains
completely symmetric. Using the representation of theifpamtfunction in this new ba-
sis, Kitanine-Maillet-Terras succeed, by an iterationceure, to compute a determinant
formula for the partition function of the trigonometric ¥&x model with DWBC, with an
without reflecting end. The very nice point is that they seactci proving (using determi-
nant properties and the Liouville theorem) that such a deteant formula reduces to the
Izergin and Tsuchiya determinant. This method permits orevbid the difficulty of the
stepiii ) of the first method, but requires one to handle singular apohpsotic features of
trigonometric functions. We believe that this last poinbsld be very difficult for elliptic
functions.

We have chosen to apply the Izergin original method, andhes®tinfel'd twist rep-
resentation for finding elliptic polynomiality of the paitin function of the elliptic face
model with reflecting ends. For the evaluation represesriadf dynamical Yang-Baxter
algebras, factorizing Drinfel’d twists’ representatiomare discovered by Albert and col-
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laborators([2]. This construction is based on a dynamycahatrix which factorizes the
dynamicalg -matrix in the following way:

F21(—A;0)R12(A; 6) = F12(A; 6). (C.0.1)

After a suitable co-product over all quantum spaces it lé@dshange of basis s, where
the bulk operators (A;0), 3 (A;0) (5.1.3) have symmetric expressions:

4(A;0) = Fg;(8)a(A;6) f{g}l(e—m (C.0.2)
e o ),
and:
B(1;8) = 71, (8)B(A;8) 7 5 (6+n) (C.0.3)
g gro v et (VT g

Using the decomposition (B.1.8) of the boundary operatofA; ), it is easy to com-
pute its expression in this new basis:

B_(N;0) = 715 (8)3_(;8)7 5, (8) (C.0.4)

_ oy s D@+ +E)hT &)
YN 3 {Rare o) g )

h()\+5j)h(7\—5j+f]) h(A—=&;)h(A EO )h(Ei—&j+n)
=~ N —&j)h(A+&j+n)h(& —&;+n
Oj ®ji 0 ] h(E:ij) J }
]
h(6—nS?)
h(8-+nN=%)

A very important property is that the reference stéfs- |‘|{\':1 Tg, and|0) = |‘|i’\‘:l lg,
are left and right invariant under the actionf;,:

7161 (0)10) = 7, 1(8)10) = [0). (0] 715 (8) = (0]7 £ 1(8) = (0, (C.05)
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and _ _ o _ _
71(8)[0) = 7 ¢(8)[0) = (0], (07 (£ (8) = (0|7} (8) = (0. (C.0.6)

And thus the partition functior (5.3.1) takes the followiogm:

raina (PN PRV £33 SRR o|z|-! (Ai:6) (C.0.7)

The action of thes _(An;8) operator is then easily computed due to the symmetric

representation of_(An;8) in the 7 -basis. The operato?(eﬂ—Eg‘z“;\)m(Z AN (An; 0)

acts due td(C.0l4) a§, 1 |‘|k_1 K h(An+&k)h(AN — &k + 1), which is a theta function of
order N — 2 and norm(N — 1) with respect to the variabley. The proof the stejii ) of
the proposition[(5.3]1) is then achieved.
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