. Le-paramètre-?-qui-couple-la-températurè-a-la-puissance-dissipée-vaut, Les valeurs des paramètre issues de l'ajustement sont données dans le tableau 10.7. On constate grâcegrâcè a la figure 10.28 que cet ajustement, qui intègre un effet de température, permet de mieux décrire le comportement de la conductivitéconductivitéà T = 1.5 K par rapport au premier ajustement, montrant notamment que ln ? n'est pas tout fait linéaire avec ?1/I. De plus

]. K. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, représente les données expérimentales et théoriques, p.45494, 1980.
DOI : 10.1103/PhysRevLett.45.494

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Fal-/-'ko, M. I. Katsnelson et al., Unconventional quantum Hall effect and Berry???s phase of 2?? in bilayer graphene, Nature Physics, vol.392, issue.3, pp.177-180, 2006.
DOI : 10.1038/nphys245

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer et al., Room-Temperature Quantum Hall Effect in Graphene, Science, vol.315, issue.5817, p.3151379, 2007.
DOI : 10.1126/science.1137201

B. D. Josephson, Possible new effects in superconductive tunnelling, Physics Letters, vol.1, issue.7, pp.251-253, 1962.
DOI : 10.1016/0031-9163(62)91369-0

S. Shapiro, Josephson Currents in Superconducting Tunneling: The Effect of Microwaves and Other Observations, Physical Review Letters, vol.11, issue.2, p.80, 1963.
DOI : 10.1103/PhysRevLett.11.80

T. J. Quinn, News from the BIPM, Metrologia, vol.26, issue.1, p.69, 1989.
DOI : 10.1088/0026-1394/26/1/006

J. Lambe and R. C. Jaklevic, Charge-Quantization Studies Using a Tunnel Capacitor, Physical Review Letters, vol.22, issue.25, p.1371, 1969.
DOI : 10.1103/PhysRevLett.22.1371

T. A. Fulton and G. J. Dolan, Observation of single-electron charging effects in small tunnel junctions, Physical Review Letters, vol.59, issue.1, p.109, 1987.
DOI : 10.1103/PhysRevLett.59.109

H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M. H. Devoret, Single-Electron Pump Based on Charging Effects, Europhysics Letters (EPL), vol.17, issue.3, p.249, 1992.
DOI : 10.1209/0295-5075/17/3/011

N. Feltin and F. Piquemal, Determination of the elementary charge and the quantum metrological triangle experiment, The European Physical Journal Special Topics, vol.172, issue.1, pp.267-296, 2009.
DOI : 10.1140/epjst/e2009-01054-2

J. H. Sanders, Atomic masses and fundamental constants, 1976.

A. Eichenberger, G. Genevès, and P. Gournay, Determination of the Planck constant by means of a watt balance, The European Physical Journal Special Topics, vol.172, issue.1, pp.363-383, 2009.
DOI : 10.1140/epjst/e2009-01061-3

H. Bachmair, Determination of the unit of resistance and the von Klitzing constant R k based on a calculable capacitor, The European Physical Journal Special Topics, vol.172, issue.1, pp.257-266, 2009.
DOI : 10.1140/epjst/e2009-01053-3

P. J. Mohr, B. N. Taylor, and D. B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Reviews of Modern Physics, vol.80, issue.2, pp.633-730, 2008.
DOI : 10.1103/RevModPhys.80.633

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Value and QED, Physical Review Letters, vol.97, issue.3, p.30802, 2006.
DOI : 10.1103/PhysRevLett.97.030802

F. Schopfer and W. Poirier, Testing universality of the quantum Hall effect by means of the Wheatstone bridge, Journal of Applied Physics, vol.102, issue.5, p.54903, 2007.
DOI : 10.1063/1.2776371

F. Schopfer and W. Poirier, Reproducibility of the quantum hall effect in GaAs/AlGaAs two dimensional electron gas, 2008 Conference on Precision Electromagnetic Measurements Digest, pp.22-23, 2008.
DOI : 10.1109/CPEM.2008.4574633

F. Delahaye, D. Dominguez, F. Alexandre, J. P. Andre, J. P. Hirtz et al., As/InP Heterostructures, Metrologia, vol.22, issue.2, pp.103-110, 1986.
DOI : 10.1088/0026-1394/22/2/005

A. Hartland, K. Jones, J. M. Williams, B. L. Gallagher, and T. Galloway, Direct comparison of the quantized Hall resistance in gallium arsenide and silicon, Physical Review Letters, vol.66, issue.8, p.66969, 1991.
DOI : 10.1103/PhysRevLett.66.969

S. Datta, Electronic transport in mesoscopic systems, 1997.

E. Akkermans and G. Montambaux, Physique mésoscopique desélectronsdesélectrons et des photons, 2004.

C. W. Beenakker, H. Van-houten, H. Ehrenreich, and D. Turnbull, Quantum Transport in Semiconductor Nanostructures, Semiconductor Heterostructures and Nanostructures, pp.1-228, 1991.
DOI : 10.1016/S0081-1947(08)60091-0

M. Büttiker, Four-Terminal Phase-Coherent Conductance, Physical Review Letters, vol.57, issue.14, p.1761, 1986.
DOI : 10.1103/PhysRevLett.57.1761

D. Yoshioka, The quantum Hall effect, 2002.
DOI : 10.1007/978-3-662-05016-3

W. Poirier and F. Schopfer, Resistance metrology based on the quantum Hall effect, The European Physical Journal Special Topics, vol.172, issue.1, p.39, 2009.
DOI : 10.1140/epjst/e2009-01051-5

D. G. Polyakov and B. I. Shklovskii, Variable range hopping as the mechanism of the conductivity peak broadening in the quantum Hall regime, Physical Review Letters, vol.70, issue.24, p.3796, 1993.
DOI : 10.1103/PhysRevLett.70.3796

D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Electrostatics of edge channels, Physical Review B, vol.46, issue.7, p.4026, 1992.
DOI : 10.1103/PhysRevB.46.4026

Y. Y. Wei, J. Weis, K. V. Klitzing, and K. Eberl, Edge Strips in the Quantum Hall Regime Imaged by a Single-Electron Transistor, Physical Review Letters, vol.81, issue.8, p.811674, 1998.
DOI : 10.1103/PhysRevLett.81.1674

E. Ahlswede, P. Weitz, J. Weis, K. Klitzing, and K. Eberl, Hall potential profiles in the quantum Hall regime measured by a scanning force microscope, Physica B: Condensed Matter, vol.298, issue.1-4, pp.1-4562, 2001.
DOI : 10.1016/S0921-4526(01)00383-0

D. G. Polyakov and B. I. Shklovskii, Conductivity-peak broadening in the quantum Hall regime, Physical Review B, vol.48, issue.15, p.11167, 1993.
DOI : 10.1103/PhysRevB.48.11167

D. G. Polyakov and B. I. Shklovskii, Activated Conductivity in the Quantum Hall Effect, Physical Review Letters, vol.73, issue.8, p.1150, 1994.
DOI : 10.1103/PhysRevLett.73.1150

M. Furlan, Electronic transport and the localization length in the quantum Hall effect, Physical Review B, vol.57, issue.23, p.14818, 1998.
DOI : 10.1103/PhysRevB.57.14818

R. B. Laughlin, Quantized Hall conductivity in two dimensions, Physical Review B, vol.23, issue.10, p.5632, 1981.
DOI : 10.1103/PhysRevB.23.5632

Q. Niu, D. J. Thouless, and Y. Wu, Quantized Hall conductance as a topological invariant, Physical Review B, vol.31, issue.6, p.313372, 1985.
DOI : 10.1103/PhysRevB.31.3372

F. W. Hehl, Y. N. Obukhov, and B. Rosenow, Is the quantum hall effect influenced by the gravitational field ? Physical Review Letters, p.96804, 2004.

R. J. Tsui and . Wagner, Dissipation and dynamic nonlinear behavior in the quantum hall regime Optimization of QHE-devices for metrological applications, Physical Review Letters IEEE Transactions on Instrumentation and Measurement, vol.51, issue.502, pp.1374218-222, 1983.

Y. M. Meziani, C. Chaubet, S. Bonifacie, A. Raymond, W. Poirier et al., Behavior of the contacts of quantum Hall effect devices at high currents, Journal of Applied Physics, vol.96, issue.1, p.404, 2004.
DOI : 10.1063/1.1748853

B. Jeckelmann, B. Jeanneret, and D. Inglis, High-precision measurements of the quantized Hall resistance:Experimental conditions for universality, Physical Review B, vol.55, issue.19, p.13124, 1997.
DOI : 10.1103/PhysRevB.55.13124

F. Delahaye and B. Jeckelmann, Revised technical guidelines for reliable dc measurements of the quantized Hall resistance, Metrologia, vol.40, issue.5, pp.217-223, 2003.
DOI : 10.1088/0026-1394/40/5/302

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al., Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences, vol.102, issue.30, pp.10451-10453, 2005.
DOI : 10.1073/pnas.0502848102

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, vol.45, issue.7, pp.451558-1565, 2007.
DOI : 10.1016/j.carbon.2007.02.034

G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotechnology, vol.27, issue.5, pp.270-274, 2008.
DOI : 10.1038/nnano.2008.83

D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology, vol.80, issue.2, pp.101-105, 2008.
DOI : 10.1038/nnano.2007.451

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi et al., Ultrathin Epitaxial Graphite:?? 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B, vol.108, issue.52, pp.19912-19916, 2004.
DOI : 10.1021/jp040650f

C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, vol.312, issue.5777, p.1125925, 2006.
DOI : 10.1126/science.1125925

P. W. Sutter, J. Flege, and E. A. Sutter, Epitaxial graphene on ruthenium, Nature Materials, vol.90, issue.5, pp.406-411, 2008.
DOI : 10.1038/nmat2166

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol.9, issue.1, pp.30-35, 2009.
DOI : 10.1021/nl801827v

A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Substrate-Free Gas-Phase Synthesis of Graphene Sheets, Nano Letters, vol.8, issue.7, pp.2012-2016, 2008.
DOI : 10.1021/nl8011566

R. C. Tatar and S. Rabii, Electronic properties of graphite: A unified theoretical study, Physical Review B, vol.25, issue.6, p.4126, 1982.
DOI : 10.1103/PhysRevB.25.4126

M. S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite Advances in Physics, pp.1-186, 2002.

T. Ando, T. Nakanishi, and R. Saito, Berry's Phase and Absence of Back Scattering in Carbon Nanotubes, Journal of the Physical Society of Japan, vol.67, issue.8, pp.2857-2862, 1998.
DOI : 10.1143/JPSJ.67.2857

J. Tworzydlstroko, B. Trauzettel, M. Titov, A. Rycerz, and C. W. Beenakker, Sub- Poissonian shot noise in graphene, Physical Review Letters, issue.24, p.96246802, 2006.

M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in??graphene, Nature Physics, vol.23, issue.9, pp.620-625, 2006.
DOI : 10.1038/nphys384

E. Mccann and V. I. Fal-'ko, Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer, Physical Review Letters, vol.96, issue.8, p.86805, 2006.
DOI : 10.1103/PhysRevLett.96.086805

J. Nilsson, A. H. Castro-neto, F. Guinea, and N. M. Peres, Electronic properties of bilayer and multilayer graphene, Physical Review B, vol.78, issue.4, p.45405, 2008.
DOI : 10.1103/PhysRevB.78.045405

E. Mccann and D. S. , Electrons in bilayer graphene, Solid State Communications, vol.143, issue.1-2, pp.110-115, 2007.
DOI : 10.1016/j.ssc.2007.03.054

P. Blake, E. W. Hill, A. H. Castro-neto, K. S. Novoselov, D. Jiang et al., Making graphene visible, Applied Physics Letters, vol.91, issue.6, p.91063124, 2007.
DOI : 10.1063/1.2768624

M. Bruna and S. Borini, Optical constants of graphene layers in the visible range, Applied Physics Letters, vol.94, issue.3, p.31901, 2009.
DOI : 10.1063/1.3073717

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.320, issue.5881, p.3201308, 2008.
DOI : 10.1126/science.1156965

C. Thomsen and S. Reich, Double Resonant Raman Scattering in Graphite, Physical Review Letters, vol.85, issue.24, p.5214, 2000.
DOI : 10.1103/PhysRevLett.85.5214

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, p.97187401, 2006.
DOI : 10.1103/PhysRevLett.97.187401

URL : https://hal.archives-ouvertes.fr/hal-00130091

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.72, issue.7065, pp.438197-200, 2005.
DOI : 10.1103/PhysRevLett.79.3728

E. H. Hwang, S. Adam, and S. Sarma, Carrier Transport in Two-Dimensional Graphene Layers, Physical Review Letters, vol.98, issue.18, p.98186806, 2007.
DOI : 10.1103/PhysRevLett.98.186806

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet et al., Observation of electron???hole puddles in graphene using a scanning single-electron transistor, Nature Physics, vol.53, issue.2
DOI : 10.1038/nature02230

S. Adam, E. Hwang, V. Galitski, and S. Sarma, A self-consistent theory for graphene transport, Proc. Natl. Acad. Sci. USA, p.18392, 2007.
DOI : 10.1073/pnas.0704772104

D. S. Novikov, Numbers of donors and acceptors from transport measurements in graphene, Applied Physics Letters, vol.91, issue.10, p.102102, 2007.
DOI : 10.1063/1.2779107

T. Stauber, N. M. Peres, and F. Guinea, Electronic transport in graphene: A semiclassical approach including midgap states, Physical Review B, vol.76, issue.20, p.205423, 2007.
DOI : 10.1103/PhysRevB.76.205423

E. H. Hwang and S. Sarma, Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer, Physical Review B, vol.77, issue.19, p.195412, 2008.
DOI : 10.1103/PhysRevB.77.195412

E. Rossi and S. Sarma, Ground State of Graphene in the Presence of Random Charged Impurities, Physical Review Letters, vol.101, issue.16, p.166803, 2008.
DOI : 10.1103/PhysRevLett.101.166803

M. I. Katsnelson, Scattering of charge carriers by point defects in bilayer graphene, Physical Review B, vol.76, issue.7, p.73411, 2007.
DOI : 10.1103/PhysRevB.76.073411

S. Adam and S. Sarma, Boltzmann transport and residual conductivity in bilayer graphene, Physical Review B, vol.77, issue.11, p.115436, 2008.
DOI : 10.1103/PhysRevB.77.115436

S. D. Sarma, E. H. Hwang, and E. Rossi, Theory of carrier transport in bilayer graphene, Physical Review B, vol.81, issue.16, p.161407, 2010.
DOI : 10.1103/PhysRevB.81.161407

J. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer-chen et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2, Diffusive charge transport in graphene on SiO2. Solid State Communications, pp.206-20927, 2008.
DOI : 10.1038/nnano.2008.58

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters, vol.100, issue.1, p.16602, 2008.
DOI : 10.1103/PhysRevLett.100.016602

D. V. Mccaughan, Low???energy ion bombardment of silicon dioxide films on silicon, Journal of Applied Physics, vol.44, issue.5, p.2008, 1973.
DOI : 10.1063/1.1662507

T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Reviews of Modern Physics, vol.54, issue.2, p.437, 1982.
DOI : 10.1103/RevModPhys.54.437

S. , D. Sarma, and E. H. Hwang, Metallicity and its low-temperature behavior in dilute two-dimensional carrier systems, Physical Review B, vol.69, p.195305, 2004.

J. R. Williams, L. Dicarlo, and C. M. Marcus, Quantum hall effect in a Gate-Controlled p-n junction of graphene Electronic transport in locally gated graphene nanoconstrictions, Science Applied Physics Letters, issue.5838, pp.317638-641, 2007.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim et al., Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nature Nanotechnology, vol.97, issue.11, pp.654-659, 2008.
DOI : 10.1038/nnano.2008.268

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics, Nature Nanotechnology, vol.104, issue.10, pp.722-726, 2010.
DOI : 10.1038/nnano.2010.172

L. A. Ponomarenko, R. Yang, T. M. Mohiuddin, M. I. Katsnelson, K. S. Novoselov et al., Effect of a high-kappa environment on charge carrier mobility in graphene, Physical Review Letters, issue.20, p.102206603, 2009.

C. Jang, S. Adam, J. Chen, E. D. Williams, S. D. Sarma et al., Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects of Dielectric Screening on Short- and Long-Range Potential Scattering, Physical Review Letters, vol.101, issue.14, p.146805, 2008.
DOI : 10.1103/PhysRevLett.101.146805

S. Xiao, J. Chen, S. Adam, E. D. Williams, and M. S. Fuhrer, Charged impurity scattering in bilayer graphene, Physical Review B, vol.82, issue.4, p.41406, 2010.
DOI : 10.1103/PhysRevB.82.041406

D. S. Novikov, Elastic scattering theory and transport in graphene, Physical Review B, vol.76, issue.24, p.245435, 2007.
DOI : 10.1103/PhysRevB.76.245435

M. Monteverde, C. Ojeda-aristizabal, R. Weil, K. Bennaceur, M. Ferrier et al., Transport and Elastic Scattering Times as Probes of the Nature of Impurity Scattering in Single-Layer and Bilayer Graphene, Physical Review Letters, vol.104, issue.12, p.126801, 2010.
DOI : 10.1103/PhysRevLett.104.126801

W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang et al., Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nature Nanotechnology, vol.76, issue.9, pp.562-566, 2009.
DOI : 10.1038/nnano.2009.191

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth et al., The structure of suspended graphene sheets, Nature, vol.24, issue.7131, pp.44660-63, 2007.
DOI : 10.1038/nature05545

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell et al., On the roughness of single- and bi-layer graphene membranes, Solid State Communications, vol.143, issue.1-2, pp.101-109, 2007.
DOI : 10.1016/j.ssc.2007.02.047

M. I. Katsnelson and A. Geim, Electron scattering on microscopic corrugations in graphene, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.438, issue.7065, pp.195-204, 1863.
DOI : 10.1038/nature04235

S. Adam, E. H. Hwang, and S. Sarma, Scattering mechanisms and Boltzmann transport in graphene, Physica E : Low-dimensional Systems and Nanostructures, p.10221025, 2008.
DOI : 10.1016/j.physe.2007.09.064

E. H. Hwang and S. Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene, Physical Review B, vol.77, issue.11, p.115449, 2008.
DOI : 10.1103/PhysRevB.77.115449

S. Q. Wang and G. D. Mahan, Electron Scattering from Surface Excitations, Physical Review B, vol.6, issue.12, p.4517, 1972.
DOI : 10.1103/PhysRevB.6.4517

K. Hess and P. Vogl, Remote polar phonon scattering in silicon inversion layers, Solid State Communications, vol.30, issue.12, pp.797-799, 1979.
DOI : 10.1016/0038-1098(79)90051-6

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotechnology, vol.146, issue.8, pp.491-495, 2008.
DOI : 10.1038/nnano.2008.199

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene, Solid State Communications, vol.146, issue.9-10, pp.9-10351, 2008.
DOI : 10.1016/j.ssc.2008.02.024

S. Cho and M. S. Fuhrer, Charge transport and inhomogeneity near the minimum conductivity point in graphene, Physical Review B, vol.77, issue.8, p.81402, 2008.
DOI : 10.1103/PhysRevB.77.081402

B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-gordon, Evidence of the role of contacts on the observed electron-hole asymmetry in graphene, Physical Review B, vol.78, issue.12, p.78121402, 2008.
DOI : 10.1103/PhysRevB.78.121402

URL : https://hal.archives-ouvertes.fr/hal-00520826

Y. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam et al., Measurement of Scattering Rate and Minimum Conductivity in Graphene, Physical Review Letters, vol.99, issue.24, p.99246803, 2007.
DOI : 10.1103/PhysRevLett.99.246803

R. Magier and D. J. Bergman, Strong-field magnetotransport of two-phase disordered media in two and three dimensions: Exact and approximate results, Physical Review B, vol.74, issue.9, p.94423, 2006.
DOI : 10.1103/PhysRevB.74.094423

V. Guttal and D. Stroud, Model for a macroscopically disordered conductor with an exactly linear high-field magnetoresistance, Physical Review B, vol.71, issue.20, p.201304, 2005.
DOI : 10.1103/PhysRevB.71.201304

B. L. Altshuler, D. Khmel-'nitzkii, A. I. Larkin, and P. A. Lee, Magnetoresistance and Hall effect in a disordered two-dimensional electron gas, Physical Review B, vol.22, issue.11, p.5142, 1980.
DOI : 10.1103/PhysRevB.22.5142

E. Mccann, K. Kechedzhi, V. I. Fal-'ko, H. Suzuura, T. Ando et al., Weak-Localization Magnetoresistance and Valley Symmetry in Graphene, Physical Review Letters, vol.97, issue.14, p.97146805, 2006.
DOI : 10.1103/PhysRevLett.97.146805

S. Morozov, Strong Suppression of Weak Localization in Graphene, Physical Review Letters, vol.97, issue.1, 2006.
DOI : 10.1103/PhysRevLett.97.016801

Y. Chen, M. Bae, C. Chialvo, T. Dirks, A. Bezryadin et al., Magnetoresistance in single-layer graphene: weak localization and universal conductance fluctuation studies, Journal of Physics: Condensed Matter, vol.22, issue.20, p.22205301, 2010.
DOI : 10.1088/0953-8984/22/20/205301

K. Kechedzhi, V. I. Fal-'ko, E. Mccann, and B. L. Altshuler, Influence of Trigonal Warping on Interference Effects in Bilayer Graphene, Physical Review Letters, vol.98, issue.17, p.98176806, 2007.
DOI : 10.1103/PhysRevLett.98.176806

R. V. Gorbachev, F. V. Tikhonenko, A. S. Mayorov, D. W. Horsell, and A. K. Savchenko, Weak Localization in Bilayer Graphene, Physical Review Letters, vol.98, issue.17, p.98176805, 2007.
DOI : 10.1103/PhysRevLett.98.176805

Y. Chen, M. Bae, C. Chialvo, T. Dirks, A. Bezryadin et al., Negative and positive magnetoresistance in bilayer graphene: Effects of weak localization and charge inhomogeneity, Physica B: Condensed Matter, vol.406, issue.4, p.906, 2009.
DOI : 10.1016/j.physb.2010.11.093

B. L. Altshuler, A. G. Aronov, D. E. Khmelnitsky-tan, H. L. Stormer, and P. Kim, Effects of electron-electron collisions with small energy transfers on quantum localisation Journal of Physics C : Solid State Physics Experimental observation of the quantum hall effect and berry's phase in graphene, Nature, vol.15117, issue.367065, pp.7367-438201, 1982.

X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature, vol.78, issue.7270, pp.462192-195, 2009.
DOI : 10.1038/nature08522

K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the fractional quantum hall effect in graphene, Nature, issue.7270, pp.462196-199, 2009.

X. Wu, Y. Hu, M. Ruan, N. Madiomanana, J. Hankinson et al., Half integer quantum Hall effect in high mobility single layer epitaxial graphene, Applied Physics Letters, vol.95, issue.22, p.95223108, 2009.
DOI : 10.1063/1.3266524

URL : https://hal.archives-ouvertes.fr/hal-01002933

G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. Van-den et al., Substrateinduced band gap in graphene on hexagonal boron nitride : Ab initio density functional calculations, Physical Review B, issue.7, p.76073103, 2007.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. Van-den et al., Doping Graphene with Metal Contacts, Physical Review Letters, vol.101, issue.2, p.26803, 2008.
DOI : 10.1103/PhysRevLett.101.026803

R. Golizadeh-mojarad and S. Datta, Effect of contact induced states on minimum conductivity in graphene, Physical Review B, vol.79, issue.8, p.85410, 2009.
DOI : 10.1103/PhysRevB.79.085410

P. A. Khomyakov, A. A. Starikov, G. Brocks, and P. J. Kelly, Nonlinear screening of charges induced in graphene by metal contacts, Physical Review B, vol.82, issue.11, p.115437, 2010.
DOI : 10.1103/PhysRevB.82.115437

T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, Role of contacts in graphene transistors: A scanning photocurrent study, Physical Review B, vol.79, issue.24, p.245430, 2009.
DOI : 10.1103/PhysRevB.79.245430

P. Blake, R. Yang, S. V. Morozov, F. Schedin, L. A. Ponomarenko et al., Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point, Solid State Communications, vol.149, issue.27-28, pp.27-281068, 2009.
DOI : 10.1016/j.ssc.2009.02.039

S. Russo, M. F. Craciun, M. Yamamoto, A. F. Morpurgo, and S. Tarucha, Contact resistance in graphene-based devices, Physica E : Low-dimensional Systems and Nanostructures, pp.677-679, 2010.
DOI : 10.1016/j.physe.2009.11.080

J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene, Applied Physics Letters, vol.91, issue.16, p.91163513, 2007.
DOI : 10.1063/1.2789673

A. J. Giesbers, U. Zeitler, L. A. Ponomarenko, R. Yang, K. S. Novoselov et al., Scaling of the quantum Hall plateau-plateau transition in graphene, Physical Review B, vol.80, issue.24, p.80241411, 2009.
DOI : 10.1103/PhysRevB.80.241411

K. Bennaceur, P. Jacques, F. Portier, P. Roche, and D. Glattli, Unveiling quantum hall transport by Efros-Shklovskii to mott variable range hopping transition with graphene. 1009, p.1795, 2010.
URL : https://hal.archives-ouvertes.fr/cea-01073043

S. Komiyama, T. Takamasu, S. Hiyamizu, and S. Sasa, Breakdown of the quantum Hall effect due to electron heating, Solid State Communications, vol.54, issue.6, pp.479-484, 1985.
DOI : 10.1016/0038-1098(85)90651-9

F. J. Ahlers, G. Hein, H. Scherer, L. Bilek, H. Nickel et al., Bistability in the current-induced breakdown of the quantum Hall effect, Semiconductor Science and Technology, vol.8, issue.12, p.2062, 1993.
DOI : 10.1088/0268-1242/8/12/005

S. Komiyama, Y. Kawaguchi, T. Osada, and Y. Shiraki, Evidence of Nonlocal Breakdown of the Integer Quantum Hall Effect, Physical Review Letters, vol.77, issue.3, p.558, 1996.
DOI : 10.1103/PhysRevLett.77.558

D. J. Thouless, Field distribution in a quantum Hall device, Journal of Physics C: Solid State Physics, vol.18, issue.33, p.6211, 1985.
DOI : 10.1088/0022-3719/18/33/011

O. Heinonen, P. L. Taylor, and S. M. Girvin, Electron-phonon interactions and the breakdown of the dissipationless quantum Hall effect, Physical Review B, vol.30, issue.6, p.3016, 1984.
DOI : 10.1103/PhysRevB.30.3016

C. Chaubet, A. Raymond, and D. Dur, Heating of two-dimensional electrons by a high electric field in a quantizing magnetic field: Consequences in Landau emission and in the quantum Hall effect, Physical Review B, vol.52, issue.15, p.5211178, 1995.
DOI : 10.1103/PhysRevB.52.11178

B. Jeckelmann and B. Jeanneret, The quantum Hall effect as an electrical resistance standard, Reports on Progress in Physics, vol.64, issue.12, p.1603, 2001.
DOI : 10.1088/0034-4885/64/12/201

C. Chaubet and F. Geniet, Nonequilibrium occupation of Landau levels and universal critical field in the quantum-Hall-effect breakdown, Physical Review B, vol.58, issue.19, p.13015, 1998.
DOI : 10.1103/PhysRevB.58.13015

V. Singh and M. M. Deshmukh, Nonequilibrium breakdown of quantum Hall state in graphene, Physical Review B, vol.80, issue.8, p.81404, 2009.
DOI : 10.1103/PhysRevB.80.081404

D. H. Cobden, N. K. Patel, M. Pepper, D. A. Ritchie, J. E. Frost et al., As one-dimensional channel, Physical Review B, vol.44, issue.4, p.1938, 1991.
DOI : 10.1103/PhysRevB.44.1938

D. H. Cobden, C. H. Barnes, and C. J. Ford, Fluctuations and Evidence for Charging in the Quantum Hall Effect, Physical Review Letters, vol.82, issue.23, p.4695, 1999.
DOI : 10.1103/PhysRevLett.82.4695

S. Jung, G. M. Rutter, N. N. Klimov, D. B. Newell, I. Calizo et al., Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots, Nature Physics, vol.345, issue.3, pp.245-251, 2011.
DOI : 10.1103/PhysRevB.72.075413

A. J. Giesbers, G. Rietveld, E. Houtzager, U. Zeitler, R. Yang et al., Quantum resistance metrology in graphene, Applied Physics Letters, vol.93, issue.22, p.93222109, 2008.
DOI : 10.1063/1.3043426

A. Tzalenchuk, S. Lara-avila, A. Kalaboukhov, S. Paolillo, M. Syvajarvi et al., Towards a quantum resistance standard based on epitaxial graphene, Nature Nanotechnology, vol.36, issue.3, pp.186-189, 2010.
DOI : 10.1038/nmat2382