Analyse et interprétations expérimentales en polarimétrie de Mueller. Applications biomédicales. - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2011

Analysis and experimental interpretations in Mueller polarimetry. Biomedical applications.

Analyse et interprétations expérimentales en polarimétrie de Mueller. Applications biomédicales.

Martin Loïc
  • Fonction : Auteur
  • PersonId : 919462

Résumé

In a thesis financed by the region Bretagne, we attempted to bring to light the possibility of using Mueller polarimetry as a tool of biomedical investigations. This technique, using the properties of the polarization of light, allows a noninvasive exploration of biological tissues by leaning on natural agents of contrast.
Dans le cadre d'une thèse financée par la région Bretagne, nous nous sommes attachés à mettre en évidence la possibilité d'utiliser la polarimétrie de Mueller comme outil d'investigations biomédicales. Cette technique, utilisant les propriétés de la polarisation de la lumière, permet une exploration non invasive des tissus biologiques en s'appuyant sur des agents de contraste naturels. La première partie de notre étude a été le développement du polarimètre, montage expérimental complet permettant la mesure de la matrice de Mueller du milieu d'étude. Après avoir choisi les éléments optiques adéquats (polariseurs en verre dichroïque, lames de phase entrainées en rotation par des moteurs pas à pas) ainsi que la source (diode laser à 808 nm) et le détecteur (caméra CCD 795x596 pixels avec objectif de 28 mm), nous nous sommes concentrés à optimiser le système d'acquisition de la matrice de Mueller. En effet, lors de la mesure, des perturbations qui constituent le " bruit expérimental " viennent limiter la précision du système. Nous distinguons deux sources d'incertitude distinctes : les erreurs aléatoires, inhérentes à l'expérience, et les erreurs systématiques, liées à la qualité intrinsèque des composants optiques et à leurs défauts de positionnement. En interférant avec le signal étudié, ces erreurs de mesure justifient l'importance d'un étalonnage rigoureux du polarimètre. Nous avons alors appliqué différentes méthodologies permettant de réduire grandement les effets néfastes de ces erreurs de mesure. D'un côté, une méthode de surdétermination du système (64 mesures d'intensités en réalisant 64 combinaisons angulaires des orientations des lames quart d'onde) permet de minimiser les erreurs aléatoires. Ces 64 combinaisons angulaires ont été judicieusement choisies grâce à la minimisation du nombre de conditionnement associé à la matrice de passage du système. Pour atténuer l'influence des erreurs systématiques, nous avons réalisé un repérage des axes neutres des lames quart d'onde précis au millième de degré près. Puis, nous avons utilisé une méthode de recherche des paramètres réels des lames de phase (retard et ellipticité). Pour pouvoir estimer les incertitudes de mesure liées à une matrice de Mueller expérimentale, nous pouvons mettre sous la forme d'une matrice de Mueller les écarts type statistiques mesurés pour chacune des 64 intensités. Nous pouvons alors évaluer les matrices de Mueller des erreurs aléatoires et systématiques. En réduisant au maximum ces matrices d'erreurs lors d'une mesure de la matrice de Mueller du système à vide, nous pouvons considérer notre polarimètre comme étant correctement étalonné. La dernière étape de ce travail a consisté à implanter un système imageur sur notre polarimètre. Grâce à des systèmes de mise en forme du faisceau (système de diaphragme et d'un couple de lentilles convergentes) et de réduction du bruit de speckle (film diffuseur homogène sur disque tournant), nous pouvons alors utiliser notre polarimètre en imagerie afin de pouvoir caractériser des milieux biologiques. La deuxième partie de notre étude s'est portée sur l'analyse et l'interprétation de la matrice de Mueller. Une fois celle-ci mesurée, il faut introduire des techniques d'extraction de l'information polarimétrique. Pour cela, nous utilisons la technique de décomposition de la matrice de Mueller en éléments simples de polarisation. L'information de polarisation contenue dans la matrice est alors modélisée en termes de dichroïsme (modifications d'amplitude du champ électrique), de biréfringence (modifications de phase du champ électrique) et de dépolarisation (action non déterministe). Pour l'étude de milieux complexes que sont les tissus biologiques, il est impératif d'utiliser une décomposition qui modélise au mieux les propriétés du milieu (configuration expérimentale, nombre et ordre des effets optiques simples) et qui minimise l'influence des erreurs de mesure. Nous avons pour cela introduit une procédure de génération de bruit pseudo expérimental afin de pouvoir inspecter, sur des matrices théoriques et expérimentales, la propagation des erreurs sur les paramètres polarimétriques calculés grâce aux quatre algorithmes existants (classique, inverse, normal et symétrique). Notre étude a alors montré qu'aucune de ces décompositions n'étaient adapté à l'étude de milieux diffusants en rétrodiffusion (configuration expérimentale choisie pour l'étude des tissus biologiques). Nous avons alors opté pour l'utilisation d'une nouvelle décomposition dite " hybride " qui permet à la fois de modéliser parfaitement la géométrie des milieux biologiques et de propager les erreurs expérimentales de manière satisfaisante. Cet algorithme hybride nous a également permis de mettre au point une procédure de détermination de la décomposition adéquate. En effet, si cet algorithme permet de traiter tous les systèmes physiques, il peut également servir à identifier le nombre et l'ordre des effets optiques élémentaires et ainsi minimiser l'influence des incertitudes expérimentales en utilisant des décompositions plus simples (classique et inverse). La troisième et dernière partie de notre étude s'est donc attachée à l'étude polarimétrique de tissus biologiques. Dans un premier temps, nous nous sommes intéressés à l'étude du syndrome cutané d'irradiation aiguë. Les différentes études ont montré que le phénomène d'irradiation engendrait une baisse de la dépolarisation ainsi qu'une perte de son caractère anisotrope, phénomènes constatés lors d'altérations des fibres de collagène. Nous avons également mis en évidence la dépendance de la réponse polarimétrique à la longueur d'étude. En effet, la discrimination entre échantillon sain et échantillon irradié (même faiblement) se fait plus efficacement en utilisant des hautes longueurs d'onde (λ > 800 nm). En revanche, pour discriminer les échantillons irradiés suivant la dose reçue, une investigation plus en surface (λ < 600 nm) semble donner des résultats plus satisfaisants. Enfin, nous avons utilisé l'imagerie polarimétrique pour l'étude de la fibrose hépatique. L'interprétation statistique des images acquises a permis de montrer que la polarimétrie de Mueller semble permettre la discrimination des différents stades de fibrose. Les paramètres de dépolarisation semblent permettre la discrimination entre le foie sain et les premiers stades de fibrose (F1-F2). L'information de dispersion sur les paramètres de retard (retardance et azimut associé) permet la discrimination entre échantillons cirrhosés (F4) et non cirrhosés (F0 à F3).
Fichier principal
Vignette du fichier
Manuscrit.pdf (4.85 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00664642 , version 1 (31-01-2012)

Identifiants

  • HAL Id : tel-00664642 , version 1

Citer

Martin Loïc. Analyse et interprétations expérimentales en polarimétrie de Mueller. Applications biomédicales.. Optique [physics.optics]. Université de Bretagne occidentale - Brest, 2011. Français. ⟨NNT : ⟩. ⟨tel-00664642⟩
653 Consultations
3086 Téléchargements

Partager

Gmail Facebook X LinkedIn More