
HAL Id: tel-00665047
https://theses.hal.science/tel-00665047

Submitted on 1 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gestural interaction techniques for handheld devices
combining accelerometers and multipoint touch screens

Adriano Scoditti

To cite this version:
Adriano Scoditti. Gestural interaction techniques for handheld devices combining accelerometers
and multipoint touch screens. Other [cs.OH]. Université de Grenoble, 2011. English. �NNT :
2011GRENM041�. �tel-00665047�

https://theses.hal.science/tel-00665047
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Adriano SCODITTI

Thèse dirigée par Joelle COUTAZ

et codirigée par Renaud BLANCH

préparée au sein du Laboratoire d’Informatique de Grenoble équipe

Ingénierie de l’Interaction Homme-Machine

et de l’École Doctorale de Mathématiques, Sciences et Technologies

de l’Information, Informatique

Gestural interaction techniques for
handheld devices combining ac-
celerometers and multipoint touch
screens

Thèse soutenue publiquement le 28 Septembre 2011,

devant le jury composé de :

Michel BEAUDOUIN-LAFON

Professeur, Université Paris XI, Rapporteur

Marie-Paule CANI

Professeur, Grenoble I.N.P., Présidente

Eric LECOLINET

Maître de Conférences, Université Telecom-ParisTech, Examinateur

Franck POIRIER

Professeur, Université de Bretagne-Sud, Rapporteur

Nicolas ROUSSEL

Directeur de Recherche, INRIA Lille Nord-Europe, Examinateur

ii

Abstract

In this thesis, I address the question of gestural interaction on mobile

devices. These, now common, differ from conventional computers pri-

marily by the input devices the user interact with (small screen size but

tactile, various sensors such as accelerometers) as well as the context

in which they are used. The work I present is an exploration of the

vast area of interaction techniques on these mobile devices. I structure

this space by focusing on the techniques based on accelerometers for

which I propose a taxonomy. Its descriptive and discriminant power

is validated by the classification of thirty-seven interaction techniques

in the literature. The rest of my work focuses on the achievement of

gestural interaction techniques for these mobile devices. With Tou-

chOver, I show that it is possible to take advantage of complementary

two-channel input (touch screen and accelerometers) to add a state

to the finger-drag, thus enriching the interaction. Finally, I focus on

mobile device menus and I propose a new form of sign language menus.

I discuss their implementation with the GeLATI software library that

allows their integration into a pre-existing GUI toolkit.

iv

v

Acknowledgements

Thanks to everyone who though this thesis could be a reality. Thanks to everyone

who contributed to this thesis and collaborated during my doctoral researches. Thanks

to everyone who though my name could be compatible with the “doctor” prefix. Thanks

to Joelle et Renaud, my advisors, who patiently listened to my initial hypotheses and

supported them. Thanks to the jury and to their comments that contributed to improve

the final version of this work and made the defense an unforgettable great experience.

Thanks to Valentina, my mother, my brother and Raclet(te) who tolerated my volatile

mood during the writing of this thesis.

vi

Contents

I. Introduction 3

1. Introduction 5

1.1. Context and Motivations . 5

1.2. The Importance of Gestures . 6

1.3. A Palette of Gestural Interfaces . 7

1.3.1. Gestures in mid-air . 7

1.3.2. Touch-based gestures . 8

1.3.3. Manipulative gestures . 10

1.3.4. Multimodal Interaction . 10

1.4. Objectives of the work . 12

1.4.1. Gestural Interaction Techniques 12

1.4.2. Gestures-Driven menus . 13

1.5. Summary of the contributions . 13

1.6. Outline of the dissertation . 14

II. Accelerometers-based gestural interaction techniques: De-

sign Space 17

2. Classifying and Characterizing Gestures 19

2.1. The functions of gesture . 20

2.1.1. The function of gestures from a linguistic perspective 20

2.1.2. The function of gestures in instrumental interaction 22

2.2. Gestures morphology or Gesture styles 25

2.2.1. The foundations from Quek: manipulative and semaphoric gestures 25

2.2.2. Karam’s et al. gesture styles . 26

2.2.3. The case for gestural dynamics 28

vii

viii Contents

2.3. Gestures and enabling technologies . 30

2.3.1. Gestures and enabling technologies according to Baudel 30

2.3.2. Gestural interaction techniques according to Roudaut and Hinckley 31

2.3.3. Gestures and enabling technologies according to Hinckley 32

2.4. The Need for a Unified View . 34

2.5. Synthesis . 38

3. A taxonomy for gestural Interaction Techniques based on accelerometers 39

3.1. The Foundations . 40

3.1.1. Linguistics-inspired taxonomies 41

3.1.2. Morphological Taxonomies . 44

3.2. A New Taxonomy for Accelerometer-based Gestural Interaction 46

3.2.1. Lexical Axis . 48

3.2.2. Syntactic Axis . 49

3.2.3. Semantic Axis . 50

3.2.4. Pragmatic Axis . 50

3.3. Classification of WIMP Techniques . 51

3.4. Synthesis . 52

4. Gestural Accelerometers-Driven techniques: a State of the Art 55

4.1. Application of the proposed taxonomy 55

4.2. Discussion . 64

4.2.1. My Definitions . 66

4.3. Synthesis . 67

III. Composing Touch and Tilt 69

5. TouchOver 71

5.1. Introduction . 71

5.1.1. The Need for Multiplexing Interaction Techniques 72

5.1.2. Precision of Selection . 72

5.1.3. Introducing a Passive Tracking State 73

5.2. Observations . 73

5.2.1. State Models of Input Devices . 73

5.2.2. Improving Precision of Selection on Touch Devices 75

5.2.3. Multimodal Techniques . 76

Contents ix

5.3. The TouchOver Technique . 77

5.4. Experimental evaluation . 79

5.4.1. Apparatus . 80

5.4.2. Participants . 80

5.4.3. Procedure . 80

5.4.4. Design . 81

5.4.5. Results . 82

5.5. Discussion . 87

5.6. Synthesis . 88

IV. Gestures-Driven Menus 89

6. Characterizing Gestural Menus 91

6.1. What is a Menu? . 92

6.1.1. Existing definitions for Menus . 92

6.1.2. Interaction Object, Widget, Interactor, Instrument, Interaction

technique . 94

6.1.3. Synthesized Definitions/Choices 97

6.2. Two taxonomies for Menus . 100

6.2.1. Shneiderman . 100

6.2.2. Bailly’s MenUA design space . 104

6.3. Gestural Menus . 106

6.3.1. Kurtenbach’s Marking Menus . 107

6.3.2. Bau’s Octopocus . 108

6.3.3. Appert’s gestural shortcuts . 110

6.3.4. Bailly’s Flower and Leaf Menus 111

6.3.5. Roudaut’s Analysis . 113

6.4. Synthesis . 116

7. GeLATI: integrating hierarchical gestural menus in existing toolkits 119

7.1. Existing approaches . 120

7.1.1. Rubine’s GRANMA . 120

7.1.2. Wobbrock’s $1 . 122

7.2. Objectives and Approach . 124

7.3. GeLATI templates . 125

7.3.1. Structure, Aspect and Interaction 127

x Contents

7.3.2. Software Architecture . 129

7.4. Examples of Use . 132

7.4.1. Implementing reference menus with GeLATI 132

7.4.2. Integrating GeLATI in legacy toolkits 135

7.4.3. Multimodality with GeLATI . 136

7.4.4. Parallel interaction with GeLATI 137

7.5. Limitations . 137

7.5.1. GeLATI intrinsic limitations . 138

7.5.2. Future work . 138

7.6. Synthesis . 139

V. Conclusions 141

8. Conclusions 143

8.1. Contributions . 143

8.1.1. Gestural Classification . 144

8.1.2. GeLATI . 145

8.1.3. TouchOver . 146

8.2. Limitation and Perspectives . 146

8.2.1. The re-selection mechanism . 147

8.2.2. Non-rectilinear traits . 147

8.3. I should have. 147

A. Technical Annex 195

A.1. API . 195

A.1.1. UMMenu header . 196

A.1.2. QuestionMark View Controller 197

A.2. XML Files . 199

A.2.1. QuestionMark GeLATI Definition: Structure.plist 199

A.2.2. QuestionMark GeLATI Definition: Interaction.plist 200

A.2.3. QuestionMark GeLATI Definition: Aspect.plist 202

List of Figures 209

List of Tables 217

Bibliography 219

1

2

Part I.

Introduction

3

Chapter 1.

Introduction

1.1. Context and Motivations

This thesis is concerned with the design and development of gesture-based interaction

techniques for handheld devices. Handheld and mobile devices are often presented as

desktop computers with limited computational capabilities and restricted input/output

bandwidth and comfort. In this thesis, I start from the alternate perspective that mobile

devices are fundamementally different from desktop computers, and therefore the desktop

metaphor is inappropriate for mobile devices. This point of view is motivated by two

observations. First, desktop computers and handheld devices are solutions for different

contexts of use. Second, they offer very different fundamental features for interaction.

Smartphones such as those presented in Figure 1.1, audio players and tablet PCs

have already reached high performance while preserving relatively small and compact

size. Their compactness allows users to perform their tasks while on the move without

the constraints of desktop PCs. Checking e-mail or browsing favorite websites while on

the bus, listening to music while running, or keeping trace of appointments whenever

and wherever needed, are typical examples of everyday life scenarios.

By means of inexpensive sensor technologies embedded into mobile devices, human

skills and abilities can now be capitalized in novel ways. In particular, a whole new

range of opportunities for physical interaction based on human manipulative skills has

opened. Instead of interacting with computers through physical devices such as mice

and keyboards, interaction can occur with the mobile device itself. Perhaps, the best

illustration of this trend is the concept of “embodied user interfaces” [Fishkin 98] or that

5

6 Introduction

Figure 1.1.: From the left: a Microsoft Windows Mobile 7 interface screenshot showing a
perspective animation; the Apple iPhone home screen; the Palm Pre task selection
interface.

of “manipulative user interfaces” [Harrison 98] which, in turn, are specific approaches to

“Tangible User Interfaces” [Fitzmaurice 93, Ishii 97].

1.2. The Importance of Gestures

Gestures are woven inextricably into our lives. Quoting Axtell: “Without gestures, our

world would be static, colorless... Mario Pei, a communication expert, once estimated

that humans can produce up to 700,000 different physical signs. Birdwhistell estimates

that the face alone is capable of producing 250,000 expressions and reports that researcher

M. H. Krout identified 5,000 distinct hand gestures” [Axtell 91]. These numerical findings

indicate that gestures can play a significant role in Human Computer Interaction (HCI).

They also express the tremendous difficulty for HCI researchers to design and develop

gesture-based interaction techniques that are effective.

According to Baudel, gesture-based interaction techniques are effective in that they

can be concise, natural, and direct [Baudel 95, Norman 10, Morrel-Samuels 90]:

Concise when they permit users to specify both a command and its parameters as an

atomic action.

Natural when they match users expectation with respect to the command they are

invoking.

Introduction 7

Direct when they make direct manipulation really direct, not through the indirection of

physical input devices.

On the other hand, “gestural systems are no different from any other form of inter-

action” [Norman 10] in that they need to follow the basic rules of interaction design:

Typically, an appropriate conceptual model must be devised, provision for feedforward

and feedback, as well as mechanisms for interruptability and undo-ability must be of

major concerns. In addition, because of their naturalness, gestures may be ambiguous

and may be addressed unintentionally at the system level.

Although gestural interaction has been studied since the early sixties, we still do

not have standard conventions of the same nature as the interaction patterns that have

been developed for WIMP user interfaces. As shown by the examples below, gestural

interaction has been tackled from many prospective directions giving rise to a prolific

number of solutions.

1.3. A Palette of Gestural Interfaces

The following examples illustrate the breadth of the current solutions. They are not

intended to provide a complete overview of the state of art. A more detailed analysis of

the state of the art will be presented in Chapter 2. We roughly observe four groups of

gestural interaction techniques: gestures in mid-air, touch-based gestures on surfaces,

manipulative gestures, and gestures combined with other modalities.

1.3.1. Gestures in mid-air

Myron Krueger’s pioneering work on artificial reality in the early 1980s is perhaps the

first introduction to body gestural interaction in mid-air with large, projected images

using a video-camera for full-body tracking.

Baudel’s Charade is the first French illustration of 3D hand gestures using a DataGlove.

Figure 1.3 shows the configuration of the Charade interaction system as well as an example

of the gestural vocabulary to control a slideshow application.

8 Introduction

Figure 1.2.: Krueger is one of the pioneer researchers of full body gesturing.

Figure 1.3.: Charade uses a 3D hand gestures interaction model. On the right, an example of
the notation used to denote the "next chapter" gesture [Baudel 95].

1.3.2. Touch-based gestures

The number of touch-based gestures on graphic tactile surfaces is literally exploding. As

an answer to this diversity, Villamore et al. have created a Touch Gestures Reference

Guide to organize and classify all possible gestures and their availability on current

commercial products [Villamore 10]. In addition, Wobbrock et al. analyzed the usability

of user defined tabletop gestures [Wobbrock 09].

Among these systems, Bau’s OctoPocus [Bau 10] and Roudaut’s MicroRolls [Roudaut 10]

deserve particular attention. OctoPocus combines immediate feedback with feedforward

in a tightly manner as the user produces the gesture. By showing all possible paths

incrementally, (1) users know what they have just done (feedback) and where they are

Introduction 9

Figure 1.4.: Villamore et al. propose a reference guide for all touch-based gestures implemented
in current modern systems such as iOS, Windows Mobile 7 or WebOS-based
mobile devices [Villamore 10].

Figure 1.5.: OctoPocus integrates feedback with feedforward in gesture-driven interfaces to
help users to discover and learn gestural menus [Bau 10].

going (feedforward), and (2) both experts and novices are supported in a flexible manner.

Figure 1.5 shows an example of an OctoPocus menu along with the gestural vocabulary.

The MicroRolls interaction technique exploits thumb micro-gestures as a mechanism

to enrich input vocabulary while requiring small “foot-print” on the screen real estate.

10 Introduction

Figure 1.6.: Roudaut proposes the exploitation of micro-gestures on touch screen based devices
with “Microrolls” [Roudaut 10].

As shown in Figure 1.6, micro-gestures are accomplished by leaning the finger in six

different orientations without the need to translate the finger on the screen. Six different

commands are associated with the six distinct MicroRolls. Additionally, MicroRolls

can be combined with finger translation to propose a seamless touch driven gestural

interaction as proposed in the RollMark menu concept Figure 1.6.

1.3.3. Manipulative gestures

Manipulative gestures such as squeeze, tilt, and shake, are applied to the physical

body of the handheld device. With manipulative gestures, the body of the device is

part of the user interface, thus, the term “embodied user interface” [Fishkin 98]. As an

example of manipulative gesture (see Figure 1.7), the user tilts the device to switch

among previously opened applications activating the modality by a simple “tap” gesture

on the back of the device. Other typical (and pioneering work in this area) include

[Fitzmaurice 93, Hinckley 00, Levin 99, Partridge 02, Rekimoto 96] who has paved the

way for an active research area [Ballagas 06, Williamson 07, Wilson 03].

Gesture is also an input modality, which as such, can be combined with other

modalities such as speech.

1.3.4. Multimodal Interaction

Bolt’s “put-that-there” serves as the paradigmatic reference for multimodal interaction

where speech and gesture can be used in a complementary way to manipulate graphics

shapes in mid-air (see Figure 1.8). Typically, gesture is used as deictics as in: “Move

that to the right of the green square” or “Put that there”.

Introduction 11

Figure 1.7.: TimeTilt proposes an example of multimodal interaction that exploits both
accelerometers coupled with two different interaction languages [Roudaut 10].

Figure 1.8.: Bolt used the combination of voice and hand gestures to command the “Media
Room” to controll shape based application [Bolt 80].

12 Introduction

Multimodal interaction based on speech and deictic gestures has been studied since

the early eighties. A good number of solutions and toolkits are now available where

multimodal interaction is supported for speech, pen-based gesture, and for mid-air ges-

tures [Oviatt 92, Cohen 89, Chatty 04]. On the other hand, the problem of multimodal

interaction involving accelerometers as input devices has not been addressed in a com-

prehensive manner. Sensors alone are not always capable to fully determine whether

an interaction has started, continued or ended. A complementary modality usually

offers a natural way for the user to denote these markers. For example, Hinckley et

al. have explored the synergistic complementarity of touch and motion for hand-held

devices [Hinckley 11].

In addition, native operating systems and toolkits for handheld devices have not been

designed to support the integration of novel interaction techniques. In particular, the

integration of new techniques to control preexisting widgets is not trivial. In most cases,

the underlying architecture is strictly connected to the WIMP interaction properties

resulting in strong technical limitations. For example, since a mouse pointer has always

a position, graphical users interfaces widgets behavior are often driven by the pointer

position. Such a small detail becomes an enormous limitation when trying to control the

same widget using an accelerometers-driven modality.

This work have two main objectives: (1) the organization of gestures-based menus in

particular those exploiting multimodal inputs (touch screens and accelerometers); (2)

the proposition of new gestural interaction techniques based on the integration of touch

and accelerometers input devices.

1.4. Objectives of the work

1.4.1. Gestural Interaction Techniques

Different taxonomies characterizing gestural interactions have already been proposed

in the Human-Computer Interaction (HCI) literature. In this thesis, my first goal is

to propose a state of the art of existing approaches and a categorization of existing

techniques. The synthesis of existing approaches will permit the enhancement of them

through the proposition of a user centered taxonomy thanks to which I will be able to

organize the state of the art in accelerometers-driven user interaction techniques.

Introduction 13

My second goal is to achieve a seamless interaction enabling both touch screens and

accelerometers input devices so that they work together both in collaboration and as alter-

natives (Complementary and Redundancy in terms of the CARE properties [Coutaz 95])

to propose a multimodal interaction.

1.4.2. Gestures-Driven menus

Gestural driven interaction techniques are often used to control graphical menus. In order

to offer a rich user experience, I need to overcome the specific difficulties of gesture-based

interactions. As described by Baudel [Baudel 95], those difficulties still need a clear

solution and a proper architectural integration:

Interpretation Algorithm. I want to find a generic approach to offer an algorithm able

to interpret differently shaped gestures. I do not want to limit the algorithm with a

learning phase.

Gestural Characteristics. I need to understand which class of gestures is best suitable

on mobile devices and touch/accelerometers input characteristics.

Chosen Interaction. Existing works on gesture based interaction techniques present

two main characteristics: (1) an off-line interpretation of interactions and (2) a

single hierarchy level in gestures organization. I want to handle on-line tracking and

gesture recognition and the ability to organize gestures in menus, thus proposing

personalizing menu structures and hierarchical levels.

1.5. Summary of the contributions

I propose an overview of existing approaches to gestural interaction techniques. Different

works from the past 20 years will be organized in order to focus on communication

capabilities of gestural interactions in the field of HCI. I propose an updated state of the

art in existing accelerometers-driven gestural interaction techniques for mobile devices.

Those techniques are organized thanks to a novel user centered taxonomy. I present

TouchOver, a new interaction techniques to perform a selection task on accelerometers-

and touch-enabled mobile devices. My last contribution is the GeLATI gesture recognition

library. GeLATI implements a vectorial driven recognition algorithm for rectilinear

gestures composing gestural menus.

14 Introduction

1.6. Outline of the dissertation

This thesis is structured into five main parts, the first one being this introduction and

the last one the final conclusions. The central parts compose the kernel of this work and

are described above in details:

Part II Describes the scientific and industrial state of the art of accelerometers-based

interaction techniques on mobile devices. In particular:

1. The first chapter studies the characterization of gestures according to existing

taxonomies and definitions. Several works are presented and the scope of this

work is defined by the gesture classes I will address.

2. I present the foundations for taxonomies of interaction techniques and input

devices. I present a new taxonomy for gestural interaction techniques. I classify

some well-known WIMP interaction techniques to best clarify the use of the

proposed taxonomy.

3. I then use this new taxonomy to classify the state of the art of accelerometer-

driven interaction techniques. I describe over twenty interaction techniques

that have been proposed during the last twenty years. I conclude by broader

discussion about the general frame proposed by the classification and how it

helped in finding the path of my research.

Part III My technical contributions consist in the proposition of TouchOver, a selec-

tion interaction techniques and a gestural infrastructure to implement multimodal

interaction techniques. This part of the work introduces TouchOver:

1. I propose TouchOver, a multi-modal interaction technique, that decouples

positioning and selection elementary tasks on touchscreen- and accelerometer-

enabled handheld devices. With TouchOver, positioning is performed with a

finger on the touch surface, while selection is conveyed by a gentle tilt of the

device. By doing so, TouchOver adds a mouseover-like state and improves selec-

tion precision while remaining compatible with existing precision-improvement

interaction techniques.

Part IV Shows that a set of gestures organized in a graphical widget can compose a

menu. Those graphical gestural menus need to be well integrated with existing

widgets while exploiting the multiple input characteristics offered by the device:

Introduction 15

1. I present a concise state of the art of graphical menus. I analyze existing

definitions and examples in order to frame the domain.

2. This section is dedicated to the third contribution of this work: the GeLATI

library/architecture. GeLATI is a vectorial approach to rectilinear gestures

recognition. Complex gestures are decomposed in traits. Traits are disposed in

hierarchy in order to offer the opportunity to create gestural menus.

16

Part II.

Accelerometers-based gestural

interaction techniques: Design

Space

17

Chapter 2.

Classifying and Characterizing

Gestures

In this chapter, I provide a synthesis of the taxonomies that have been developed for

gestures. The objective is to propose a unified concise view for a complex prolific field so

that a researcher, new in the field, can rapidly relate the different approaches, perspectives,

and terminologies. Some taxonomies focus on the functions of gesture, others classify

gestures according to their morphology while others blur the distinction between function

and form.

Among the many functions of gesture, I am concerned with the role of arm-hand-finger

gestures as a means for interacting with a computer system. The consequent question

relates to the forms that support this role in an effective manner from both the human

and system perspectives. For this purpose, I have used Karam’s et al. taxonomy as

a basis [Karam 05]. The first contribution from their work is that it results from a

literature review of over 40 years of gesture based interaction; second, it is an attempt at

proposing a unifying terminology. I have then extended or related Karam’s taxonomy

with more specific taxonomies such as that of Cadoz for instrumental gestures [Cadoz 94],

or that of Roudaut and Baglioni for handheld devices [Baglioni 09]. The result of my

synthesis is shown in Figure 2.6 and Tables 2.7 and 2.8 at the end of the chapter.

This chapter is organized according to the following sections:

The functions of gesture introduces gestures characterized according to their commu-

nication characteristics.

Gestures morphology or Gesture styles organizes gestures from a morphological point

of view.

19

20 Classifying and Characterizing Gestures

Gestures and enabling technologies presents a third point of view that characterizes

gestures according to the technologies involved in the implementation of gestures

acquisition and recognition.

Finally a unified point of view will compare the proposed approaches and clarify the

adopted vocabulary.

2.1. The functions of gesture

Psycholinguists have been debating for years about the functions of gestures. On one

side, gesture is seen as communicative. In this case, gesture is considered as a means to

assist the listener. On the other side of the debate, gesture is seen as a means to assist

the speaker in producing speech. In this case, gesture is derivative from the production

of speech. Others such as Bavelas et al. cited in [Loehr 04], refer to interactive gestures

as a subclass of communicative gestures whose role is “to help maintain the conversation

as a social system”. An interesting synthesis of the pros and cons of these theories can be

found in [Loehr 04]. These studies have focused on the role of gesture in relation to speech

in human-to-human communication. For the purpose of my doctoral research, I have

selected two representative analyses of the functional roles of gestures: (1) Ekman’s work,

a proponent of “gesture as communicative” since I am concerned with the problem of

commanding a system through gestures. (2) Cadoz’s work who, contrary to the linguistic

approach, does not consider speech, but instead the use of instruments as a basis for

communication.

2.1.1. The function of gestures from a linguistic perspective

By the end of the sixties, Ekman and Friesen have proposed to organize gestures into

five major functional categories: emblems, illustrators, affect displays, regulators, and

adaptors (later renamed manipulators by Ekman himself) [Ekman 69].

Emblems such as the “OK” sign in Italian culture, are utilized for communication when

verbal exchange is inhibited, typically by noise or distance. They do not require

the presence of another modality such as speech, to insure their role. They are

self-contained. On the other hand, they are culture-specific, therefore acquired

through learning.

Classifying and Characterizing Gestures 21

Illustrators refer to “movements which are intimately tied to the content and/or flow of

speech” [Ekman 69]. As nonverbal behavior, their role is to emphasize, punctuate, or

complete a verbal utterance. In his 1980 article, Ekman proposes subcategories for

illustrators, most of them inspired from Efron’s seminal work on gestures published

in 1941 [Efron 41]. These include deictics to denote an entity (an object, idea,

location); Batons (or beats) which are rhythmic gestures to punctuate a sentence

and rythmics to depict the rythm or pacing of event; Underliners to emphasize a

particular word or a group of sentences; Ideographs, such as traces or sketches out in

the air, to portray the course of thought; Spatials that depict a spatial relationship;

Pictographs where movements draw the shape of the referent in the air; Kinetographs

where movement imitates a bodily action. For example, while pronouncing the words

“so I finally wrote to him”, the speaker uses the index finger of one hand to write

upon the other hand ([Efron 41], p. 125 cited by [Loehr 04]). This long, although

incomplete, enumeration illustrates the richness and terminological diversity in this

area of research as well as the thin distinction made between forms and roles. Some

of these terms will be reused later is Section 2.2 on gestures morphology.

Affect or emotional displays indicate momentary psychological states, affects and

moods in reaction to stimuli. They result primarily from movements of facial

muscles. Their role is mostly informative (rather than communicative) since people

are generally not intentional in performing these behaviors.

Regulators “maintain and regulate the back-and-forth nature of speaking and listening

between two or more interactants” [Ekman 69]. They support the interaction

between sender and recipient. Common examples of regulators include head nods,

eye contacts, and postural shifts. Regulators are distinguished from illustrators

in that they direct and regulate the flow and pace of a conversation. Like affect

displays, they are usually performed involuntarily. Therefore, there are mostly

informative just like the immediate classic feedback in WIMP user interfaces, but

according to Bavelas terminology referenced above, they are classified as interactive!

Adaptors (renamed later manipulators) refer to movements that involve manipula-

tion of, or simply contact with some physical thing. It is an object-adaptor if the

“thing” is a physical object (such as flipping a pen during exams!). It may be a

self-adaptor when movements apply to a part of one’s own body (e.g., scratching

oneself, rubbing the eyes). It may be an alter-adaptor when it has to do with

22 Classifying and Characterizing Gestures

interpersonal contacts (as in shaking hands to show polite and warm welcome to a

visitor)1.

Ekman’s (and others) linguistic approach to gestural functions focuses on the rela-

tion of gesture with speech for interpersonal communication. Adaptors (manipulators)

movements have been studied in cognitive activities in relation to stress or engagement,

but not for a very different role, that is, as an instrument to produce, transform, and

build artifacts, that is, as manipulators of tools (such as hammers and handheld devices)

to change the state of the world. This dimension is well described by Cadoz for what he

calls “instrumental interaction”.

2.1.2. The function of gestures in instrumental interaction

Cadoz defines three complementary and imbricated functions for hand-based gestures:

the epistemic, the ergotic, and the semiotic functions [Cadoz 94].

The epistemic function (from Greek epstēmē, knowledge) corresponds to the tactile

and tactilo-kinesthesic (or haptic) capabilities of the hand. By moving hands and

fingers on the surface of an object, people can rapidly get information about the

shape, orientation, size of this object and from there, recognize and identify the

object, thus the term “epistemic”. This function is about exploring and acquiring

knowledge about the physical world through dynamic touching with the body, but

the hand, whose internal part has many receptors, plays a central role. In HCI,

the epistemic function of the hand has motivated many forms of tactile feedback

ranging from virtual reality applications to handheld devices (e.g., vibrators and

more advanced ones such as that described in [Taylor 08]).

The ergotic function (from Greek ergon, work, force) is supported by the capacity of

the hand to produce energy and from there to transform the state of the world.

The hand can carry, assemble, reshape, and break things. Being involved in actions,

the hand exchanges energy with the physical world which in turn reacts in many

ways including sending energy back, thus the term “ergotic”. In HCI, the ergotic

function of the hand is at the foundation of direct manipulation user interfaces

followed by graspable and embodied user interfaces, and more generally by tangible

and reality-based interaction [Jacob 08].

1Interpersonal contacts form a continuum of intimacy levels which has set the foundations for proxemic
interaction .

Classifying and Characterizing Gestures 23

The semiotic function (from Greek sēmeion, sign) is about conveying meaning to third

party through gestures. As presented above, this aspect has been widely studied

in psycholinguistics for human-to-human communication. Reusing Ekman’s et al.

classification and definitions, emblems, illustrators and alter-adaptors are semiotic

gestures. On the other hand, regulators and emotional displays are not semiotic

since they are not produced consciously to convey meaning.

By making explicit three different roles for hand gesture, Cadoz is able to clarify

the distinction between “free-hand gesture” (“geste à nu”) whose role is purely semiotic,

from “instrumental gesture” (“geste instrumental ”) which combines the epistemic, ergotic,

and semiotic functions. As a communication means, instrumental gestures can be

characterized in the following way:

1. Gestures are applied to an instrument, that is, to a physical object held in the hand,

and there is interaction between the instrument and the person (epistemic and

ergotic functions). The role of the instrument is to transform the energy produced

by the hand into phenomena that can be perceived by a recipient (say another

person, or a computer).

2. During the interaction between the instrument and the person, physical phenomena

are produced and exchanged between the instrument and the person who, in turn,

can dynamically modify the gesture in a fine grained manner to modulate the

phenomena.

3. These phenomena produce information that is intended to make sense for the

recipient (semiotic function).

Interestingly, Cadoz observes that an instrumental gesture is not monolithic, but

structured into three components: (1) The excitation gesture provides the energy to

produce the physical phenomenon; (2) The modulation gesture defines the permanence

and/or the variations of the excitation gesture for the duration of the instrumental gesture.

Modulation is further redefined in (2a) continuous modulation and (2b) discrete

modulation; (3) The selection gesture or deictic gesture is the gesture component

that chooses a particular component of the instrument (an instrument is rarely monolithic

e.g., choose the cord of a guitar, or the appropriate mouse button of a mouse). Using

the tilt gesture as an example of instrumental gesture, tilting the smartphone from the

rest position corresponds to the excitation gesture, adjusting the tilting angle to control

the speed of scrolling is a continuous modulation gesture while the selection gesture is

24 Classifying and Characterizing Gestures

Figure 2.1.: Instrumental Interaction provide Humans with a means to interact with the
Environment through the Machine [Cadoz 94].

mapped to positioning the device back to the rest angle or to any other means to denote

the end of the instrumental gesture.

In [Cadoz 94], Cadoz extends the notion of instrument to any object with which

humans can interact using their sensori-motor capabilities to accomplish a task. In

particular, he uses the term virtual instruments to denote those objects that are digital.

He states as a principle that for any task (or subtask), it is possible to define an

instrument so that the interaction phenomena between the user and this object conveys

the information that is necessary to accomplish the task. Then, instrumental gesture is

an interaction modality that supports communication between humans and machines.

This is illustrated by Figure 2.1. Figure 2.2 classifies gestures in a two-dimension space:

whether gesture is ergotic or not, and whether gesture is communicative (e.g., between

a human and a machine) or not. Within this space, instrumental gesture is necessarily

ergotic: it implies the production of energy. Instrumental communication requires ergotic

gesture that conveys meaning. In Chapter 6, I will relate Cadoz’s generalized concept

of instrumental communication to that of instrumental interaction introduced later by

Beaudouin-Lafon [Beaudouin-Lafon 00]. Within the classification space of Figure 2.2,

Ekman’s regulators and affect displays lie at the bottom right quarter: they are non-

ergotic and non communicative. Emblems and illustrators are communicative but not

ergotic whereas self-adaptors are examples of non communicative but ergotic gestures.

In synthesis, Cadoz and Ekman provide two complementary perspectives for under-

standing the functional dimensions of gesture. In addition, Cadoz has opened the way

Classifying and Characterizing Gestures 25

Figure 2.2.: Gesture in human computer interaction [Cadoz 94]. Instrumental gesture is
primarily ergotic (it produces energy). It may be used for communication (it is
then semiotic) or for pure action on the world (absence of meaning) [Cadoz 94].

to the analysis of gesture morphology with a three-components structure (excitation,

modulation, and selection) but limited to instrumental gestures. In this regard, Karam’s

classification, presented next, has a wider coverage.

2.2. Gestures morphology or Gesture styles

Karam’s et al. classification is an extension of that of Quek et al., which in turn simplifies

and, at the same time, augments the linguistic perspective of Ekman presented above.

2.2.1. The foundations from Quek: manipulative and

semaphoric gestures

Quek et al. organize the major gesture styles developed in human-computer interaction

into three classes: manipulative gestures, semaphoric gestures and gestures used in

conjunction with speech [Quek 02]:

Manipulative gestures are gestures whose intended purpose is to control some entity by

applying a tight relationship between the actual movements of the gesturing hand/arm

with the entity being manipulated. Clearly, this definition is closely related to Cadoz’s

26 Classifying and Characterizing Gestures

concept of instrumental gesture although it does not refer explicitly to the presence

of an instrument, whether it be physical or digital.

Semaphoric gestures are any gesturing system that employs a stylized dictionary of

static or dynamic hand or arm gestures. In other words, these gestures rely on,

possibly linguistic, conventions.

Gesture-speech corresponds to those gestures used with the speech modality co-expressively.

Semaphoric and gesture-speech gestures abstract away Ekman’s emblems and illus-

trators functional categories presented above. If we refer to the two major metaphors for

HCI described by Hutchin’s et al. in [Hutchins 85, Norman 86b], manipulative gestures

are ascribable to the real world metaphor where the user has the sensation of direct

engagement (le faire), whereas semaphoric gestures are involved in the conversation

metaphor where the user describes the desired state to the system (le faire-faire).

In addition, Quek et al. have observed that manipulative and semaphoric gestures

differ in many ways. Their dynamics is different, their need for feedback is different, and

their requirement for formality is different. Manipulative gestures require (or are aided

by) tightly-coupled feedback from the object being manipulated which is not the case for

semaphoric and gesture-speech gestures. This is another way of referring to the epistemic

function of instrumental gestures that guides the ergotic modulation function in a tightly

coupled manner. Semaphoric gestures, which are codified, impose various degrees of

linguistic formalism on users. On the other hand, Quek’s et al. classification does not

leave any room for free-form gestures, also called gesticulation or natutal gestures. This

is where Karam proposes a useful extension along with an attempt to standardize the

terminology.

2.2.2. Karam’s et al. gesture styles

As shown in Figure 2.3, Karam’s et al. taxonomy is organized as a four dimension

space [Karam 05]: gesture styles (morphology), system response (i.e. the system output

modality used for feedback), enabling technology (whether gesture is acquired through

physical input devices that require physical contact with the human body/hand or not),

and the application domains. In the context of this section, we are concerned with the

gesture styles axis where Quek’s manipulative and semaphoric gestures are extended

with gesticulation, deictics and sign languages.

Classifying and Characterizing Gestures 27

Figure 2.3.: The gestural interaction framework proposed by Karam et al. [Karam 05] enables
a complete discussion about gestures themselves and the contextual variables/pa-
rameters associated with.

Karam et al. reuse the definition provided by Quek for deictic, manipulative and

semaphoric gestures with some additional refinements. With the introduction of gesticu-

lation and sign languages, they show some consideration for the continuum of increasing

formality identified by McNeill in 1992 [McNeill 92]:

Manipulative gestures are refined by Karam according to the number of degrees of

freedom (e.g., 2D and 3D), as well as according to the nature of the object manip-

ulated (virtual or physical) and the presence or absence of a physical instrument

(in Cadoz’s sense). Manipulative gestures are thus sub-classified into four main

classes: (1) Gesturing in two degrees of freedom for two-dimensional interactions;

(2) Gesturing in multiple degrees of freedom for two-dimensional interactions; (3)

Gesturing with tangible objects for three-dimensional interactions; (4) Gestures for

real-world physical object interactions. Note that nothing is said about manipulative

gestures for volumetric surfaces [Roudaut 11, Benko 08, Grossman 04].

Semaphoric gestures are codified (as in Quek’s definitions): they rely on shared con-

ventions between the interactants. In addition, Karam characterizes them with two

other dimensions: whether they involve dynamic movements or static poses, and

whether they are strokes (marks) or not. In turn, Bragdon et al. observe two types of

28 Classifying and Characterizing Gestures

marks whose nature has an impact on human performance in mobile environments:

those that are comprised of rectilinear segments (as exemplified by the marking

menus), and those that are free-form paths (such as the pigtail) [Bragdon 11]. Inter-

estingly, in their experiment, the authors found that rectilinear marks “were faster

and more accurate to perform, and were preferred by users to free-form paths”. This

result will be exploited in my own work for the GeLATI library Chapter 7.

Deictic gestures have their own place, sitting between pure manipulation and pure

natural gesticulation.

With regard to codification, McNeill makes a distinction between natural (free-form)

gesticulation, pantomine, emblems, and sign languages [McNeill 92]:

Gesticulations and pantomimes are not codified. They have no linguistic properties

in that there is no lexicon of agreed-upon symbols, and no phonological, morpho-

logical, and syntactic rules for combining these symbols. Both gesticulations and

pantomines are global gestures: the meaning of the parts, if these parts exist, is

determined from the meaning of the whole, top-down. In addition, gesticulation is

synthetic (the meaning is conveyed within a single symbol) whereas pantomine is

analytic (the meaning is conveyed across multiple symbols).

Emblems are partly codified, sign languages are fully conventionalized. Emblems

are culture-specific, emblems and sign languages of them are segmented (the meaning

of the whole is determined by the meaning of the parts, bottom-up), but emblems

are generally synthetic while sign languages are analytic.

Although Karam’s et al. classification mentions the dynamics for gestures, it only

does so for semaphoric gestures.

2.2.3. The case for gestural dynamics

As stressed by Cadoz for instrumental interaction, dynamics is an important morphological

feature that prevails in the excitation and modulation components. Dymanics is also

mentioned in the definition of the functional roles of batons and rhythmics in human-to-

human communication (cf. Section 2.3 above).

Baglioni, who has adapted Karam’s taxonomy to handheld devices, introduces two

axes for this purpose [Baglioni 09]: control and movement types as visible in Figure 2.4.

Classifying and Characterizing Gestures 29

Figure 2.4.: Baglioni’s characterization space enhance Karam’s taxonomy to adapt to handheld
devices. Adapted from [Baglioni 09].

Control is like Cadoz’s concept of modulation that dynamically modifies the physical

phenomena initiated by the excitation component of gesture: it may be continuous

or discrete.

Movement type characterizes a gesture by its external characteristics in terms of

duration and acceleration variation. It may be impulsive of fluid. Impulsive

movements are characterized by strong variation in a small amount of time whereas

fluid movements are much slower and characterized by small acceleration variation

over a larger amount of time.

In Chapter 3, which proposes a novel taxonomy for accelerometer-based gesture with

hand-held devices, I will address these two aspects of dynamics, control and movement

type, in a more generic, fine-grained, and uniform manner.

So far, we have analyzed gestures along two complementary perspectives: function

(Section 2.1) and morphology or styles (Section 2.2). In the context of computer human-

interaction, the functional and morphological properties of gestures, which are produced

with or through input devices, are necessarily correlated with the nature of input devices.

This dimension is covered, but overlooked in Karam’s et al. taxonomy. Baudel [Baudel 95],

then Roudaut [Roudaut 10], and more recently Hinckley [Hinckley 11], have considered

input technologies in more details.

30 Classifying and Characterizing Gestures

2.3. Gestures and enabling technologies

2.3.1. Gestures and enabling technologies according to Baudel

In his thesis, Baudel highlights the limitations and advantages of different input devices

in relation to gestural interaction techniques [Baudel 95]. Limiting the domain of interest

to haptic inputs devices, he defines three main groups: (1) simple haptic input; (2)

mark and traces recognition; and (3) “pure” gestural interaction.

Simple haptic input devices support interaction driven by discrete states changes

produced by a user on input sensors such as keyboards and mice. This is a well-known

class of interaction where the semantics of the user’s action is described by discrete states

of input devices. Reusing Baudel’s examples in [Baudel 95], let us consider drawing a

rectangle with a mouse. The first anchor point is specified when the user presses the

mouse button down while the second anchor point is acquired when the button is released.

The trajectory performed between the two anchor points is not relevant for identifying

the semantics of the actions: the gesture is represented by those two discrete points

denoted through two distinct mouse button states (pressed, released). Because of the

dynamics of the interaction has no effect on the semantics, Baudel does not consider this

class of haptic interaction as gestural.

Mark and Traces devices come into play when the trajectories of the whole interaction

has an impact on the semantics of the interaction. The starting point and the end point

play a marginal role, while the trajectory prevails. Consider two marks, the first one

shaped as a “C” corresponding to the draw circle command while the second is shaped as

an “L” corresponding to the draw rectangle command. During the interaction, the user

can designate both the same starting point and ending point, but the followed trajectory

will identify the desired command. This class of gestural interactions is characterized

by the importance given to the dynamics. The mouse and the stylus best represent the

class of input devices that support marks and traces interaction techniques.

“Pure” gestural devices such as cameras, DataGloves or eye trackers, take into

account more than just samples of the dynamics. They are capable of sensing additional

information, such as which hand is involved in the interaction, thus freeing the user from

any intermediate language translation and implementing direct gestural interaction.

Classifying and Characterizing Gestures 31

Baudel is then able to show the correlation between each class of input devices and

the expressive power of gestures produced with this class to command a system. The

expressive coverage of a gesture may be either one of the following:

Simple designation either of the command or of the parameters: Common WIMP

components fall in this category (buttons, scrollbars or menus). They represent a

command, and their functional behavior expresses the arguments (when available)

by simple designation.

Simple designation of the command & step-by-step parameters selection: More com-

plex WIMP widgets implement this interaction. In drawing editors, for example,

the selection of the component to draw (the command) is followed by the set up of

the parameters (color, line style, start point, end point...).

Step-by-step command selection & simple parameters designation: The parame-

ters (e.g., icons) are designated before the command to be applied (as a menu

item or double click).

Step-by-step command and parameters selection: The specification of the command

together with the parameters are bundled together (as for Marking menus).

Handwriting recognition: Letters or symbols are used to encode the parameters that

are needed by a global command which, in turn, is in charge of decoding the inputs.

Symbols recognition and match up: This class represents complex gestural interac-

tion systems capable of recognizing articulated gestures, of breaking them down into

primitives and interpret them in order to accomplish the desired semantic action

(command+parameters).

Compared to early work in psycholinguistics and Karam’s et al. taxonomy for gestures,

Baudel’s analysis is clearly driven by technical considerations as illustrated by his concerns

for the mapping problem of “device-gesture” with a “complete system command”. Roudaut

has a similar approach for mobile and hand-held devices [Roudaut 10].

2.3.2. Gestural interaction techniques according to Roudaut and

Hinckley

Roudaut re-uses the notion of interaction modality as defined by Nigay to denote the

couple “device-gesture”. In [Nigay 96], an interaction modality is defined as a couple

32 Classifying and Characterizing Gestures

Device Interaction language

Movements modality

Touch screen Deictic gesture

Mouvements sensors Semaphoric gesture

Keyboard Physical gesture

Visual modality

(Touch) Screen Temporal multiplexing

Complementary rendering device Space multiplexing

Depth multiplexing

Table 2.1.: Roudaut’s Gestural interaction language applied to mobile devices plat-
forms [Roudaut 10].

< device, language> where “language” denotes an interaction language. Sentences that

are compliant with this language can be mapped onto system commands. Inspired from

Wexelblat and Karam’s work, Roudaut defines three types of interaction languages.

Deictic gestures aim to characterize a point in space. Pointing a target on a touch screen

is a deictic gesture. The gesture can take advantage of more complex interactions

to implement either a Drag & Drop interaction technique or a scroll behavior.

Semaphoric gestures use symbols as units of information. They are either cultural

symbols (cf. emblems), analogue to letters or numbers, or more abstract ones, like

lines or circles.

Physical gestures use real world human articulation capacities in order to propose natural

interactions. Embodied user interfaces [Fishkin 98] lie in the category.

Table 2.1 shows examples of mappings between devices and interaction languages.

2.3.3. Gestures and enabling technologies according to Hinckley

In a recent work, Hinckley et al. have related gestures to motion sensing technolo-

gies [Hinckley 11]. Informed by the seminal work of Card et al. on input devices [Card 91],

they propose a two axis taxonomy: the property sensed by the technology and the acti-

vation mechanism employed to trigger system interpretation.

The property sensed includes acceleration, angular velocity, vibration, sheer torque,

and position-based motion sensing (as provided by a DataGlove or a video camera).

Classifying and Characterizing Gestures 33

Figure 2.5.: Hinckley et al. propose a complete design space of motion sensing interaction
techniques [Hinckley 11]. Highlithed the section of the design space this thesis
focuses on.

Clearly, the nature of this dimension is very much influenced by Card’s et al. model

of input devices.

The activation mechanism may be direct (as direct-touch contact with a display), or

indirect through mechanical buttons as well as through “touch, pressure, or grip

sensors integrated in the device”. The absence of activation mechanism corresponds

to continuously active motion sensing. It is classified under direct activation

mechanism and denoted as “pure motion”.

As Figure 2.5 shows, Hinckley’s et al. classification space goes one step further than

Roudaut’s mapping by decomposing input devices in terms of the properties sensed. It

also shows the focus of my own work on accelerometers and touch screens. On the other

hand, the taxonomy does not go into any detail about the type of data sensed by the

accelerometers or by the touch screen (which may be multi-touch). I will address these

issues in the next chapter.

34 Classifying and Characterizing Gestures

Figure 2.6.: A synthetic representation of the gestures terminology used in different tax-
onomies.

2.4. The Need for a Unified View

As demonstrated in this chapter, gesture has been studied from different perspectives

(function, morphology, and relationship with the technology), and by distinct scientific

communities including linguistics, cognitive psychology and computer human interaction.

It results from this diversity a terminological jungle that makes it hard for the neophyte

to grasp the domain. Typically, different terms are used to denote the same gesture style.

For example, symbolic gestures are also called iconic gestures, and manipulative gestures

are also called physical or instrumental.

I propose Tables 2.7 and 2.8 as well as Figure 2.6 as representations of a unified and

synthesized view of the terminology used for gestures. Figure 2.6 shows a complementary

view of the hierarchical relationships between the gesture styles along with the key

contributors in the domain. Table 2.7 shows the correlation of the terminology developed

in Human-to-Human communication with that of Computer-Human Interaction. Table

2.8 correlates the level of formality of gestures with its expressive power.

The correlation between the terminologies is represented in Table 2.7 by the two main

columns entitled “Human-to-Human communication” and “Computer-Human Interaction”.

In addition to vocabulary elements, each cell of the table contains a definition illustrated

with examples of gestures selected from the state of the art. The two primary rows of

Table 2.7, “Conversation metaphor” and “Direct manipulation-model world metaphor”,

Classifying and Characterizing Gestures 35

correspond to the two major metaphors used in HCI [Hutchins 85]. (A conversation

metaphor, as exemplified by the Unix shell, implies the existence of a language which

acts as a barrier between the user and the world of interest. With the model world

metaphor, as exemplified by the desktop metaphor, the world is represented explicitly

and the user can act on it directly, creating the sensation of direct engagement, thus

the expression “direct manipulation”.) A coarse grain analysis of the two main rows

shows that the vocabulary is richer for the conversation metaphor than for the direct

manipulation-model world metaphor. This lack of balance indicates the need for research

in the area of gestures for manipulative/physical/instrumental interaction.

The primary distinction between “manipulative/physical, instrumental gestures” and

gestures used in a conversation metaphor is the necessity for a tightly-coupled feedback

for control (cf. second column from the left side of the table): while manipulating an

object, whether it be physical or virtual, the user needs to perceive an immediate and

continuous system reaction in order to modulate the gesture. Within the conversation

metaphor, gestures are distributed across three classes depending on their degree of

formality: they may be codified, partly codified, or not codified. Whereas Human-to-

Human Communication introduces a rich vocabulary for each one of these categories, the

Human-Computer Interaction side ignores these subtleties. Typically, the HCI semaphoric

gestures abstract away the set of pictographs, kinetographs, ideographs/metaphorics,

and emblems identified in Human-to-Human communication. Whereas McNeill (who

belongs to the Human-to-Human side) makes a distinction between gesticulation and

pantomime (both of them are global gestures but gesticulation is synthetic - top down,

while pantomime is analytic - bottom up), Karam (on the Human-Computer side) bundles

them together as one single element: gesticulation.

By contrast, the Human-to-Human communication side, which has studied gesture

in combination with speech, does not provide any term for the various forms of direct

manipulation. The concept of object-adaptor introduced by Ekman and Friesen (see

Section 2.1) to denote the manipulation of a physical object, is not intended as a

communicative means but is related to stress and cognitive engagement.

Interestingly, there is a clear consensus for the deictic gesture which sits between

the conversation metaphor and the direct manipulation gestures with an exception for

Baglioni who considers deictics as part of physical gestures.

The bottom row of Table 2.7 reflects the combination of gesture styles. The Human-

to-Human side is concerned with gestures that accompany speech, whereas the Human-

36 Classifying and Characterizing Gestures

!"#$%&'(&!"#$%&)(##"%*)$'*(%!"#$%&'(&!"#$%&)(##"%*)$'*(%!"#$%&'(&!"#$%&)(##"%*)$'*(% +(#,"'-./!"#$%&0%'-.$)'*(%+(#,"'-./!"#$%&0%'-.$)'*(%+(#,"'-./!"#$%&0%'-.$)'*(%

!$%1/2-31&1-4*)-5!$%1/2-31&1-4*)-5

67.(% 68#$%&-'&$39 :);-*33&-'&$39 <"-8&-'&$39 =$.$#&-'&$39 >("1$"'&-'&$39 ?$@3*(%*&-'&$39 +$1(A
!"#$%&'()*"%+

)82%+&-&'()*"%+22

!"#$%&'()$"'*+)

%,%-'-%./0)+1210)

34'5%/2)$"'*+).6)'/)

.78+&-).4)$*'-%'()

4+('-%./$"%*$

!%+5&'()*"$

,+&-%+$
1#-)0%+2

$/0)*"&(%+2*34$2

$5(&6/$2)-72

.#09&3%+

982<%-/5&'()*"%+2

9.:%(#)'&-%./)

%,%-'-%./0)+121);<)

54%-+)-.)"%,;

<%-/5&'()*"$

$/0)*"&(%+2*34$2

$5(&6/$2)-72

5()+/$222222222222222222

)82(/+5%3%-/)(2

0)(6$2222222222222222222

982:(//;:&(02

,7/&'()*"%+2=4'&+$).4)

$>+-&"+$).?-)%/)-"+)

'%4)-"+)*'-"$).6)

:%4+&-%./).6)-"+)

-".?2"-)*'--+4/

,7/&'()*"$ =/5)*"&(%+$./0)*"&(%+

0)(6$2222222222222222222

982:(//;:&(02

*)5"$

./0)*"&(%+

=/5)*"&(%+)</:%4+&-)

'/'(.2#)5%-")-"+)

4+'()5.4(:0)+1210)

=%(-=+@-

>093/0)5%+2)+1210)-"+)

AB)$%2/
>093/0$ >093/0$

.5)5%+2

./0)*"&(%+

?9$5()+52C47%-4'4#)

@/$5%+43)5%&-2

@/$5%+43)5%&-

?9$5()+52C47%-4'4#)

,'**%/2)5%-")

,+'/%/20)%1+1)'(()

2+$-?4+$)-"'-)'4+)

/.-)$#,7.(%&0)

,+-'*".4%&0)

*"#$%&'(0)+1210)

D.//+&-)

!)-5&0%-/

@/$5%+43)5%&-

1/%+5%+ 1/%+5%+ 1/%+5%+ 1/%+5%+ 1/%+5%+ 1/%+5%+ 1/%+5%+1/%+5%+ 1/%+5%+ 1/%+5%+ 1/%+5%+ 1/%+5%+ 1/%+5%+ 1/%+5%+

=)-%*43)5%A/

=)-%*43)5%A/)

E5%-")

4+6%/+,+/-$)%/)

F3GH30)5%-")

*"#$%&'().78+&-$0)

+-&1I

!"#$%+)3

!"#$%+)323%4+&-)

'/'(.2#)5%-")-"+)

4+'()5.4(:)2+$-?4+$)

'/:)-"+%4)+66+&-$0)

-"?$)%/&(?:+$):+%&-%&0)

+121)J.-%./K+/$0)

L%%=+//%$

,-$5(40/-5)32

&.,7%/'-%./).6)

+*%$-+,%&0)

+42.-%&0)$+,%.-%&)

6?/&-%./$

*"#$%&'().78+&-$0)

+-&1I >B+%5)5%&-2

'/$54(/

+&-5(&32&./-%/?.?$)

MN):%$&4+-+

=&743)5%&-2

'/$54(/

./3/+5%&-2'/$54(/

C&09%-)5%&-2&:2'/$54(/2D%5"2$*//+"C&09%-)5%&-2&:2'/$54(/2D%5"2$*//+"C&09%-)5%&-2&:2'/$54(/2D%5"2$*//+"
D.,7%/'-%./).6)2+$-?4+)$-#(+$0)'/:),?(-%,.:'()D.,7%/'-%./).6)2+$-?4+)$-#(+$0)'/:),?(-%,.:'()

%/-+4'&-%./

D.,7%/'-%./).6)2+$-?4+)$-#(+$0)'/:),?(-%,.:'()

%/-+4'&-%./

+
(
%
4
-
.5
$
'*
(
%
&#

-
'$
,
2
(
.&
B7
$
*.
-
/7
$
*.
-
C

D
*.
-
)'
&#

$
%
*,
"
3$
'*
(
%
E&
#
(
1
-
3&
F
(
.3
1
&#

-
'$
,
2
(
.&

B7
$
*.
-
C

;
-
-
1
&7
(
.&
&'
*@
2
'3
G
&)
(
"
,
3-
1
&7
-
-
1
H
$
)8

0%
&@
-
%
-
.$
3E
&%
(
&%
-
-
1
&7
(
.&
'*
@
2
'3
G
&)
(
"
,
3-
1
&7
-
-
1
H
$
)8

+
(
1
*7
*-
1

I
$
.'
3G
&)
(
1
*7
*-
1

I
(
.'
.$
G
&)
(
%
).
-
'-
&*
1
-
$

I
(
.'
.$
G
&$
H
5'
.$
)'
&*
1
-
$

J
-
@
#
-
%
'-
1
&5
G
%
'2
-
'*
)&
@
-
5'
"
.-

K
3(
H
$
3&
5G
%
'2
-
'*
)&
@
-
5'
"
.-

K
3(
H
$
3&
$
%
$
3G
'*
)&
@
-
5'
"
.-

I
(
*%
'*
%
@

;
(
'&
)(
1
*7
*-
1

Figure 2.7.: An integrated view of the analyzed taxonomies highlights the relationshinps
among different approaches and metaphors.

Classifying and Characterizing Gestures 37

Figure 2.8.: Correlation between gesture formality and expressive power.

Computer side is opened to any type of combination between gestures styles as well as

with any other modalities. I will address multimodal interaction involving gesture in

Chapter 7.

Unless otherwise specified, I will subsequently refer to Karam’s et al. terminology to

qualify gesture styles. Using Karam as a reference, then my research is primarily concerned

with deictic and semaphoric gestures, but it involves some aspects of manipulative gestures

as well. Therefore, I am not concerned with gesticulation although gesticulation, which

is not codified, is supposed to represent the ultimate natural form of gestural interaction.

I will show in Chapter 6 and Chapter 7 how the combination of visual feedback and

feedforward supports the illusion of freedom.

Figure 2.8 shows the relation between gesture formality (from non-codified free-form

to fully-codified by a grammar) and the semantic expressive power of gestures. With

regard to expressive power, a single gestural act may be able to specify one item only

(e.g., an object of interest or a command name), or it may convey a command along

with its parameters, or it may express a complex thought as a set of several sentences.

For example, a deictic gesture is not codified but can specify only one item at once. The

grey area of Figure 2.8 shows the coverage of this doctoral research: from “non codified

and 1-item-specification” to “partly codified covering 1 command-and-its-parameters-

specification”.

38 Classifying and Characterizing Gestures

2.5. Synthesis

This chapter has shown the breadth of the research related to gestures by providing an

overview of the key terminology-oriented taxonomies, ranging from psycholinguistics to

computer science. I have proposed a synthetic view of the terminologies by correlating

the multiple perspectives developed in the state of the art. Within this big picture, my

doctoral research addresses the particular case of deictic and semaphoric gestures for

computer human interaction whose expressive power may range from the specification

of a single token to the expression of a command along with its parameters. Because I

address the particular problem of gesturing with accelerometers-enabled handheld devices,

I am also concerned with instrumental interaction.

The pioneering work on accelerometer-based interaction techniques [Fitzmaurice 93,

Hinckley 00, Levin 99, Partridge 02, Rekimoto 96] has paved the way for an active re-

search area [Ballagas 06, Williamson 07, Wilson 03]. Although these results satisfy “the

gold standard of science” [Shaw 03], in practice, they are too “narrow truths” [Brooks Jr 88]

to support designers decisions and researchers analysis. Designers and researchers need

an overall systematic structure that helps them to reason, compare, elicit (and create!)

the appropriate techniques for the problem at hand. Taxonomies, which provide such a

structure, are good candidates for generalization in an emerging field. The taxonomies

I have presented in this chapter are appropriate for comprehending the breadth of the

domain, but not for reasoning at a fine grain about the design of a gesture-based interac-

tion technique. In the next chapter, I propose a novel taxonomy for gestural interaction

techniques based on accelerometers.

Chapter 3.

A taxonomy for gestural Interaction

Techniques based on accelerometers

I propose a new taxonomy for gestural interaction techniques based on accelerometers. The

motivation for limiting the coverage of the taxonomy to accelerometers-based interactions

is that gestural interaction for mobile devices is a very vivid and unstructured area of

research. In addition, accelerometers are currently the most pervasive technology for

sensing multiple dimensions of actions in the real-world [Hinckley 00]. The challenge is

to provide a classification framework that is both complete and simple to use. Since

completeness is illusory in a moving and prolific domain such as user interface design,

I have not included it as a goal. I show, however, that the taxonomy is able to go

beyond accelerometers-based techniques, covering a wide domain of issues related to

Human-Computer Interaction.

To develop this taxonomy, I have built a controlled vocabulary (i.e. primitives)

obtained through an extensive analysis of the taxonomies that have laid the foundations

for HCI more than twenty five years ago. For the most part, this early work in HCI

has been ignored or forgotten by researchers driven by the trendy “technology push”

approach.

My taxonomy is based on the following principles:

1. Interaction between a computer system and a human being is conveyed through

input (output) expressions that are produced with input (output) devices, and that

are compliant with an input (output) interaction language.

2. As any language, an input (output) interaction language can be defined formally in

terms of semantics, syntax, and lexical units.

39

40 A taxonomy for gestural Interaction Techniques based on accelerometers

3. The generation of an input (output) expression involves using devices whose charac-

teristics, from the human perspective, have a strong impact on the expressiveness

and the effectiveness of the user interface [Buxton 83].

Building on Foley’s work [Foley 90b] as well as on Buxton’s pragmatics considera-

tions of input structures [Buxton 83], my taxonomy brings together the four aspects of

interaction ranging from semantics to pragmatics with the appropriate human-motivated

extensions for addressing the specificity of gestural interaction based on accelerometers.

In contrast to Mackinlay’s et al. semantic analysis of the design space for input de-

vices [Mackinlay 90], I do not consider the transformation functions that characterize

the system-oriented perspective of interaction techniques.

This chapter is organized as follows: First, I review the taxonomies that have served as

sources of inspiration for my own work: Foley’s taxonomy for having identified the generic

basic tasks supported through graphical user interfaces, and Buxton’s and Card’s et al.

taxonomies for their device oriented concerns. The analysis of these taxonomies offers

the opportunity to clarify the terminology (after all, what is an interaction technique?)

Then, I apply the proposed classification space to well-known mouse-driven interaction

techniques. In the following chapter, I present my taxonomy illustrated with a survey of

accelerometers-driven gestural interaction techniques. I conclude with future directions

for research that my taxonomy has permitted to discover. The expectation is to provide

new insights and to start promising directions for the design of novel and powerful

gestural interaction techniques.

3.1. The Foundations

Classic HCI papers propose a wide spectrum of taxonomies falling into one of two main

categories: linguistics-inspired taxonomies, and morphological taxonomies. Linguis-

tics inspired taxonomies are driven by the lexical, syntactic, and semantic structures

of languages. In the morphological approach, interaction techniques are points in a

multi-dimensional space where each dimension represents a differentiating property. The

next paragraph analyzes both approaches by referring to existing examples.

A taxonomy for gestural Interaction Techniques based on accelerometers 41

Tasks Requirements

Select Size of set, if fixed
Range of set, if variable

Position Dimensionality: 1-D, 2-D, 3-D
Open loop or Closed loop. Resolution

Orient Degrees of freedom: 1, 2, 3
Open loop or Closed loop
Resolution

Path Maximum number or path elements to be
retained
Type of interval between each element on
path
Size of interval between each element on
path
Dimensionality: 2-D or 3-D
Open loop or closed loop
Resolution
Type: position or orientation or both.

Quantify Resolution
Open loop or Closed loop.

Text Size of character set
Maximum length of string.

Table 3.1.: Foley’s classification of fundamental interaction tasks expresses the requirements
that interaction techniques must satisfy [Foley 90b].

3.1.1. Linguistics-inspired taxonomies

Historically, the semantic-syntactic-lexical layers developed for artificial (formal) lan-

guages, have served as a useful tool for structuring the design process of user interfaces.

In this approach, a user interface is assimilated to an artificial interaction language. This

language is composed of an input interaction language that allows users to express their

mental goals, and of an output interaction language that expresses the system state

in terms that match the user’s conceptual model. Moran’s et al. Command Language

Grammar (CLG) [Moran 81] Foley, as well as Wallace and Chan’s taxonomy [Foley 90b]

are examples of this approach.

The main contribution of Foley et al.’s taxonomy is two-fold:

42 A taxonomy for gestural Interaction Techniques based on accelerometers

(1) Six interaction tasks that define the semantics of a canonical set of non-terminal

symbols [words] for graphics (select “to make a selection from a set of alternatives”,

position to “indicate a position on an interactive surface”, orient to “orient an entity

in 2-D or 3-D space”, path to “generate a path, which is a series of positions or

orientations created over time”, quantify to “specify a value, or quantify a measure”,

text to “enter a text string”).

(2) The cross product of these six interaction tasks with input devices that

shows the many ways each interaction task can be performed with existing devices.

To complement the six interaction tasks, which are tasks for specifying something,

Foley introduces four controlling tasks such as Stretch and Sketch to express direct

modifications of entities. Overall, Foley et al.’s taxonomy describes a large number

of interaction techniques but does not define sharp boundaries between input devices,

interaction tasks and controlling tasks resulting in an ambiguous definition of the notion

of interaction technique per se.

For this reason, I define the terminology used in the linguistics approach to user

interface design in the following way:

• a complete [input] sentence such as “<move> <entity> <position>” instructs

the computer system to perform a function (ideally, this function implements the

semantics of the sentence).

• a sentence is composed of words (e.g., <move>, <entity>, <position>) whose

assembly is compliant with a predefined syntax where each word is a symbol, that

is, a primitive non-terminal that conveys a unit of semantics (or lexeme).

Using these definitions, “the entry of each symbol [word] by the user is an interaction

task performed by means of an interaction technique” [Foley 90b]. In other words, an

interaction technique produces non-terminal symbols [words] by assembling terminals

according to predefined lexical rules. These terminals, which belong to the digital world,

result from the transformation of physical real-world properties and actions sensed by

physical input devices.

My taxonomy re-uses Foley et al.’s interaction tasks as a basis for non-terminal

symbols: they are simple semantic units that have proven to be empirically valid. In

particular, Ballagas et al. use Foley’s et al. interaction tasks as a structuring framework

to analyze smartphones viewed as input devices [Ballagas 06]. Although these semantic

units are empirically sound, their lexical level “lumps together issues as diverse as: how

A taxonomy for gestural Interaction Techniques based on accelerometers 43

Figure 3.1.: Ballagas taxonomy plots existing interaction techniques implemented by using
the phone as input device [Ballagas 06].

tokens [words] are spelt, where devices are placed in the work station, the type of physical

gesture used to articulate a token.” [Buxton 83].

Consequently, Buxton proposes to make a clear distinction between lexical issues as

defined in artificial languages theory (e.g., spelling of words and choice of terminals)

from “pragmatic issues of gesture, space and devices” which define “the primary level of

contact of a user with a system” [Buxton 83]. Drawing on the importance of pragmatics

on users’ experience with systems, Buxton proposes a taxonomy of input devices that

makes explicit pragmatic attributes including physical properties sensed by input devices

(such as pressure, motion and position), the number of dimensions sensed (i.e. the number

of degrees of freedom), as well as the sensing type (devices that work by touch vs.

devices that require a mechanical intermediary). Buxton’s taxonomy helps in finding

equivalences between input devices, or in identifying places for the development of new

devices. Drawing on Buxton’s analysis, my taxonomy, which is motivated by gestural

interaction, incorporates some aspects of pragmatics.

In the same vein as Buxton, Mackinlay et al. [Mackinlay 90], then Card et al. [Card 91],

extend Buxton’s work using a morphological approach to the analysis of input de-

vices [Buxton 83].

44 A taxonomy for gestural Interaction Techniques based on accelerometers

3.1.2. Morphological Taxonomies

Figure 3.2 shows Mackinlay’s et al. taxonomy considered by the scientific community

as the archetypal morphological approach to device modeling. Mackinlay’s et al. model

(improved later on by Card et al. [Card 91]) uses a primitive movement vocabulary and

a set of three composition operators (merge, layout, and connect) which, applied to the

primitives, produce a design space for reasoning about input devices. Formally, an input

device is defined as a six-tuple composed by <the manipulation operator M, the input

domain set In, the current state S, the resolution function R, the output domain set Out,

behavior W>. Here detailed:

< M, In, S,R,Out,W > (3.1)

where:

M, the manipulation operator , represents the physical properties (force or position)

sensed by the input device, and whether these properties are linear or rotary, absolute

or relative,

In, the input domain set of the physical properties sensed by the input device,

S, the current state of the device,

R, the resolution function maps the properties from the input domain set into the

output domain set,

Out, the output domain set denotes the co-domain of the resolution function,

W, works covers any additional aspects useful for describing the behavior of the input

device.

Composition operators are used to combine inputs, outputs and devices, for exam-

ple,merge such that the resulting input domain is the cross product of the input domain

of the two devices, connection to combine two devices by cascading the output of one

device to the input of the other, and layout to express spatial relationships between

devices.

The resulting taxonomy (Figure 3.2) is a multidimensional parametric space where

the y-axis denotes the physical property that can be manipulated by the device (In,

M), while the x-axis corresponds to the dimensions of interest during the manipulation

(Out, S). Interestingly, the taxonomy gives an idea of the continuity of the interaction

A taxonomy for gestural Interaction Techniques based on accelerometers 45

technique supported by the device and the grain of the interaction itself by integrating

information about the resolution function (R) that maps the input domain set into the

output domain set.

In [Card 91], Card et al. present their exploitation of the taxonomy to reason about

the effectiveness of input devices in terms of Desk footprint, Pointing Speed, Pointing

Precision, Errors, Time to Learn, etc. These criteria form a sub-framework usable to

compare apparently similar input devices. As important, Card et al. show how to reason

about mappings between input devices and interaction tasks (e.g., pointing task, viewing

task). For doing so, interaction tasks as well as input devices are plotted in the design

space, while task-device mappings are represented as a connect operator from the device

to the task. This representation completed with the parameters of the design space

provides the designer with a sound and systematic apparatus for reasoning about the

various design options. In other words, a morphological design space like this one can be

used to integrate the results from several disciplines. Not only it supports reasoning on

existing solutions, but also its layout structure per se is intended to foster the discovery

of novel solutions.

More recently, Nancel et al. [Nancel 09] proposed a morphological taxonomy for

reasoning about menu-based techniques applicable to pen-driven interaction. This

approach has been extended by considering additional input sensors. This work focuses

on the property sensed by the considered devices and uses the vocabulary introduced by

Mackinlay [Mackinlay 90]. The originality of this taxonomy comes from the idea that by

choosing the input device, the design space becomes a classification of input techniques.

On the other hand, the proposed organization limits the discussion to the lexical aspect

of interaction, leaving aside the syntactic and semantic dimensions. This limitation is too

restrictive when considering gestural interaction techniques. In particular, context, which

is key in mobile computing [Coutaz 05], as well as the distinction between foreground

and background interaction [Buxton 95] are ignored.

As discussed in the previous chapter, Hinckley et al. have proposed a design space

inspired from Card’s et al. morphological approach, that portrays the various forms of

synergistic use of motion and touch [Hinckley 11]. Although the space covers different

input technologies to sense motion, it does not cover the pragmatic details of interaction

nor the notion of context.

As shown in Figure 3.3, the same gesture may convey very different meanings

depending on the context in which it is produced: “go to previous photo” as for the

46 A taxonomy for gestural Interaction Techniques based on accelerometers

Figure 3.2.: Physical, virtual and composite input devices classified within Mackinlay’s et al.

taxonomy. A circle in a cell indicates that a device senses a physical property
characterized by the coordinates of the grid. A black line represents a merge
composition. An arrow represents a connect composition. A dashed line - no
example shown here - a layout composition [Mackinlay 90].

Apple’s photo album (or “go to next slide” as in Charade in [Baudel 93]), “open a submenu”

in Francone’s Wavelet Menu [Francone 09], or “unlock” the iPhone screen. In addition,

a gesture that makes sense for the system, may not be acceptable in a public social

context [Rico 10] as it could be meaningful and interpreted by the public itself.

Figure 3.3.: The “sliding” gesture is semantically multiplexed to achieve different meanings,
depending on context.

These observations motivate the definition of a new taxonomy presented next.

3.2. A New Taxonomy for Accelerometer-based

Gestural Interaction

My taxonomy captures the following requirements:

A taxonomy for gestural Interaction Techniques based on accelerometers 47

Figure 3.4.: A new classification space for gestural interaction techniques based on accelerom-
eters. The abscissa defines the lexicon in terms of the physical manipulations
users perform with the device, with a clear separation between background and
foreground interaction. The ordinate corresponds to Foley’s interaction tasks. An
interaction technique is uniquely identified by an integer i and plotted as a point
in this space. Each point is decorated with the pragmatic and syntactic properties
of the corresponding interaction technique. There are two syntactic modifiers: an
oval indicates whether the interaction technique is clutched or continued, and an
exponent expresses the control type (position, speed, or acceleration). F, which is
the only pragmatic modifier, indicates the degree of indirection of the interaction
technique.

1. Coverage of semantic, syntactic, lexical, and pragmatic issues of interaction where

semantic granularity is that of Foley’s et al. interaction tasks;

2. Adoption of a user-centered perspective where physical human actions are premium,

leaving aside the internal computational transformations;

3. Consideration for context; Coverage of both foreground and background interaction

(as defined by Buxton [Buxton 95]).

Figure 3.4 shows the elements of the framework which are described next. (Figure 3.5

illustrates the use of the taxonomy for conventional WIMP techniques, whereas novel

accelerometers hand-based interaction techniques are presented in Figure 4.3 in the next

chapter.)

48 A taxonomy for gestural Interaction Techniques based on accelerometers

3.2.1. Lexical Axis

Because of the focus on users’ involvement in the interaction, the input lexicon corresponds

to the physical actions users apply to devices. Human physical actions are organized

in two distinct groups: (1) conscious actions that belong to the foreground interaction,

and (2) unconscious actions that correspond to background interaction. The foreground

interaction area contains the interaction techniques that require the user to consciously

manipulate the device to reach some objective (as for the sliding gesture of Figure 3.3).

The background interaction area corresponds to the interaction techniques where the

system interprets user’s unconscious actions together with contextual information to

perform some system state change on behalf of the user. For example, during a phone

call, the iPhone switches off the screen backlight to save battery life as the user brings

the device next to the ear.

Whether human actions are performed consciously to address the system or not,

the classification space characterizes these actions with two additional variables: (τ)

the geometrical transformation matrix that models user’s movements in space, and (f)

the frequency of these movements. The combinations of τ and f identify three sub-

areas within the lexical axis: “Context”, “Affine Transformations” and “Shock”. The

affine transformations group identifies the most common interaction techniques based on

translations, rotations and/or scales (in this case, τ is different from the identity matrix

I), and without any repetition (that is, f is equal to zero, meaning that the interaction is

time driven). The sliding gesture of Figure 3.3 falls in this category. The shock category

identifies those interaction techniques based on a combination of translations, rotations

and/or scales (τ is different from the identity matrix) repeated over time (then, f is

different from zero). The shake gesture exemplified by Shoogle [Williamson 07] falls in

this category. The context category corresponds to unconscious human manipulations

that the system may interpret to feed into its own context model and, depending on this

context, acts on behalf of the user. For this situation, I stipulate that τ is the Identity

matrix and f is equal to zero.

As a simple example, consider the physical actions users need to perform in order

to close a graphical window in a conventional WIMP environment. First, they have to

move the mouse in the physical world, then to press the mouse button when the final

position is reached in order to trigger the close window command. Both of these actions

involve a translation: on the mouse plan for the first action and on the perpendicular

A taxonomy for gestural Interaction Techniques based on accelerometers 49

axis when pressing the mouse button down. Yet both of them are time driven and do

not involve frequency.

3.2.2. Syntactic Axis

Independently from the device used, the syntactic dimension of an interaction technique

is characterized with the following two variables that I call syntactic modifiers: (1) the

existence (or absence) of triggers (or clutch) to specify the begin/end of the interaction,

and (2) the control type associated with the input token, which may be position-control,

speed-control or acceleration-control.

Analyzing the syntactic dimension of the close window example, mouse movements

are translated into pointer movements. This pointer is position-controlled and the

interaction is unclutched i.e. there is no explicit start/end action to bind the human

physical movements with the software cursor movements. The binding is always on. On

the other hand, the selection of the close window button widget, which requires a shock

action on the physical button of the mouse, is a clutched interaction technique.

Note that Cadoz’s notion of “modulation gesture” introduced as one component of an

instrumental gesture (cf. Chapter 2) is now formally described by the “control type” of

my taxonomy. In addition, the taxonomy reflects the “activation mechanism” used by

Hinckley’s et al. taxonomy as the existence (or absence) of a clutch, elements that are

not expressed explicitly in Roudaut’s and Baglioni’s taxonomies.

As a result, given that, in the taxonomy, an interaction technique is uniquely identified

by an index i, the trigger syntactic modifier is represented as an oval that surrounds the

interaction technique identifier using a dashed-line or a continuous line to respectively

denote the presence (i.e. clutch) or absence (i.e unclutch) of a trigger. In addition, a

derivative-like notation is used to convey the control type where i is decorated with an

exponential number that expresses the derivative order with respect to time (i.e. no

derivative for position, first order derivative for speed, and second order derivative for

acceleration).

50 A taxonomy for gestural Interaction Techniques based on accelerometers

3.2.3. Semantic Axis

As justified in the review of the foundational taxonomies developed in HCI, I re-use

Foley’s interaction tasks: Select, Position, Orient, Path, Quantify, and Text [Foley 90b]

(See the vertical axis of Figure 3.4).

Analyzing the semantic dimension of the close window example, the translation of

the mouse corresponds to the user’s goal to assign a new position to the mouse pointer

motivated by the need to select the "close window" button widget. Finally, the click

of the mouse physical button corresponds to the goal of confirming the selection of the

widget soft button.

3.2.4. Pragmatic Axis

One of the originalities of the taxonomy is the attempt to classify gestural interac-

tion techniques in close connection with their meaning in the user’s real world. To

do this, I introduce a pragmatic modifier that expresses the directness [Norman 86a,

Beaudouin-Lafon 00] of the mapping between the user’s expectation (i.e. goal) and the

semantics of the interaction technique in the computer world. For indirect mapping,

the identifier i of the interaction technique becomes the parameter of a function F(i)

to indicate the existence of one or several reinterpretation layers, whereas for direct

mapping, i does not receive any additional decoration.

Analyzing the pragmatic dimension of the close window example, "positioning the

pointer" has a direct pragmatic connection: every physical mouse translation is associated

to a pointer translation. "Associating the mouse button to the software button widget"

is also characterized by a direct pragmatic connection. The whole sequence of actions on

the other hand is characterized by one degree of indirection since the user’s objective is

to close a graphical window, not to click a software button widget. Therefore, the button

widget creates one level of indirection between human actions and the meaning of the

sentence.

A number of familiar mouse-driven interaction techniques are now discussed to

illustrate the coverage and use of my taxonomy. Gestural accelerometer-based interaction

techniques will be considered in the following chapter.

A taxonomy for gestural Interaction Techniques based on accelerometers 51

Figure 3.5.: Classical mouse-driven interaction techniques within my taxonomy: (1) Position-
ing the cursor; (2) Menu item selection; (3) Defining orientation in a graphics
editor; (4) Sketching using a drawing tool; (5) Defining a quantity through a
slider; (6) Typing text with a virtual keyboard.

3.3. Classification of WIMP Techniques

For conventional GUIs, cursor control is the main mouse-based interaction technique.

As discussed above, when specifying a position with a mouse, physical translations are

mapped directly into translations of the pointer: there is no pragmatic indirection function

F. The interaction technique is position-controlled: there is no syntactic derivative

modifier. In addition, it is continuously active. Figure 3.5 shows its corresponding

location as interaction technique (1).

Other familiar GUI interaction techniques include selecting an item in a linear menu,

changing the orientation of a graphical object within a graphics editor, quantifying a

dimension through a slider, or typing text with a virtual keyboard - respectively denoted

in Figure 3.5 as interaction techniques (2), (3), (5), and (6). All of them are characterized

by some level of indirection due to the use of an intermediary graphical widget. All of

them are position-controlled since they are built on the elementary positioning interaction

technique. All of them are clutched since they need a trigger to specify the beginning

and the end of the interaction (with a the mouse click button). As for Foley’s path task

digitizing a sketch (cf. (4) in Figure 3.5), it consists of a temporal series of positions and

orientations. It is thus position-controlled, clutched by the mouse button, and indirect.

52 A taxonomy for gestural Interaction Techniques based on accelerometers

The classification of the common mouse-driven interaction techniques within my

taxonomy calls for the following observations: (1) the mouse supports all of the interaction

tasks identified by Foley, whether it be directly or indirectly. In other words, the mouse can

be used to fully control a WIMP-based graphical system. (2) The taxonomy demonstrates

the simplicity, the uniformity and the completeness of the interaction language supported

by the mouse-driven WIMP interaction techniques since all of them are characterized by

the same syntactic and pragmatic modifiers. (3) The taxonomy highlights the limited

initiative the system has in such interactions as they are always explicitly performed

by users (Foreground Interaction). (4) From the user’s perspective, the interaction

techniques that are characterized by some degree of indirection are more complex, while

those that are pragmatically direct are simpler. This last observation brings forward a

fundamental property of my taxonomy: the less modifiers an interaction technique is

characterized by, the simpler it is from the user’s perspective;

3.4. Synthesis

This chapter has presented a new framework for classifying accelerometer-based interaction

techniques. This framework, which is motivated by the foundational contributions in

HCI, brings together Foley’s generic tasks with the formal lexical, syntactic, semantic

and pragmatic dimensions of languages to characterize the physical actions involved in

gestural interaction.

System-oriented issues have not been addressed, as I did not want at this point, to

differentiate interaction techniques by their implementation characteristics. Granularity,

resolution function as well as state machines, have already been taken into account by

others [Card 91, Mackinlay 90]. My goal is to complement these taxonomies rather than

acting as a substitute.

The taxonomy is radically centered on human physical actions. My research hypothesis

is that the physical action is the appropriate atomic level from which novel interaction

techniques can be designed to provide system-wide consistent languages with specific

attention for gestures involving scale as well as for gestures to specify such as Path,

Quantity, and Text.

The classical interaction techniques for desktop devices have been used as a primary

use case to demonstrate the capacity of my taxonomy to provide designers with a

A taxonomy for gestural Interaction Techniques based on accelerometers 53

synthetic view of the GUI paradigm. In the next chapter, we switch to mobile systems

and post-WIMP interaction techniques that use accelerometers as input technology, and

see what lessons can be drawn about them from the analysis of the taxonomy.

54

Chapter 4.

Gestural Accelerometers-Driven

techniques: a State of the Art

The accelerometers-based input interaction techniques considered in this chapter are

presented in chronological order and plotted in Figure 4.3. For the sake of completeness,

all of the variations of an interaction technique are discussed. For example, an interaction

technique that exists as continuous (i.e. un-clutched) and clutched appears twice in the

taxonomic space, each one denoted with the appropriate syntactic modifiers.

This chapter is structured as follows: first, I apply my taxonomy to a number of

representative interaction techniques based on accelerometers. Then, I analyze the picture

provided by the taxonomy to define the general frame of the existing interactions. The

discussion will drive the reader through the analysis of the state of the art analyzing

different approaches to the domain (user vs. developer vs. researcher). The proposed

taxonomy will permit to define the terminology that I will use through this doctoral

research.

4.1. Application of the proposed taxonomy

In the last chapter, I presented a new classification space for gestural interaction. In

the current section I review and organize the state of the art of the past thirty years of

accelerometers-driven gestural interactions.

55

56 Gestural Accelerometers-Driven techniques: a State of the Art

Figure 4.1.: Fitzmaurice et al. used the Move action to command the history of their spread-
sheet, while the Tilt of the device let the user span the cells around the se-
lected [Fitzmaurice 93].

Chameleon

Chameleon is one of the pioneering examples of immersive interaction techniques based on

accelerometers et al. [Fitzmaurice 93]. It is a palmtop solution where gestural interaction

techniques are aware of the spatial position and orientation of the device. Three basic

interaction techniques are proposed (denoted respectively as (7), (8), (9) in Figure 4.3):

(7) is based on the translation of the device whereas (8) and (9) involve tilting. All of

them are available either as continuous or clutched where the begin/end of the interaction

is specified through the press/release of a physical button. Consequently, they are

represented twice in Figure 4.3 respectively with the continuous line oval syntactic

modifier as well as with the dashed-line oval. In the context of a spread-sheet application,

selecting a cell with interaction technique (7) is performed by translating the device in

the (x,y) plane. A series of translations along the z axis permits to select successive undo

and redo commands. Tilting the device in a direction (say, left) permits to preview the

(left-)adjacent cell (see (8) in Figure 4.3). Selection and Preview do not imply any level

of indirection as the control is directly connected to the item of interest. Interaction

technique (9) supports the manipulation of a circular contextual menu to control a text

browser or a movie player, thus introducing one level of indirection.

Rekimoto’s experiments

Rekimoto analyzes clutched tilting interaction to control linear and circular menus

(denoted as (10) in Figure 4.3) as well as a map application according to interaction

technique (11) [Rekimoto 96]. Interaction technique (10) associates a tilt angle to each

menu item to select a command through the use of the menu widget leading to an

Gestural Accelerometers-Driven techniques: a State of the Art 57

Figure 4.2.: Rekimoto’s tilt based menu control the navigation in a map [Rekimoto 96].

indirection. (11) directly associates a physical position to specify a position in a map.

There is no indirection. Both techniques are position-controlled and clutched using a

press/release of a physical button to mark the begin/end of the interaction.

Harrison’s scenarios

Harrison et al. [Harrison 98] address the problem of navigation tasks within calendars

and text-based applications. The originality of the solution (denoted as (12) in Figure 4.3)

relies on the use of a speed control type that changes the syntax of the technique: the

larger the tilt angle is, the faster pages are scrolled. It is a clutched interaction technique

since the begin/end of the interaction is marked either by repositioning the device to the

initial position or by squeezing it. The squeeze solution, denoted as (13), is particularly

original: it is a meta-interaction technique intended to stop the page-selection interaction

technique by shocking the device.

58 Gestural Accelerometers-Driven techniques: a State of the Art

Figure 4.3.: A state of the art of accelerometers-based interaction techniques. An interaction
technique is identified by an integer i: (7) successive undo/redo as well as active
cell selection through translations; (8) tilt to preview adjacent cells; (9) tilt to
select a command in a pie menu; (10) tilt to select commands in linear and pie
menus; (11) tilt to control position on a map; (12) tilt to browse a calendar; (13)
squeeze to stop an interaction; (14) drawing through physical translations; (15)
passive screen orientation adaptation; (16) active screen orientation control; (17)
tilt to select pictures; (18) tilt to control first person shooter game; (19) tilt to
enter text; (20) passive control of screen orientation and power energy saving;
(21) tilt and translation to select physical world object; (22) control volume
through tilt; (23) translation of virtual workspace through physical translation;
(24) selection of the level of user interface details through translation; (25) gestural
authentication with shock durations over time; (26) shake to quantify device
status; (27) tilt to select graphical views; (28) shock to trigger an interaction;
(29) shock to select the previously active application; (30) gesture recognition;
(31) shake to select the next song; (32) tilt to quantify the zoom factor; (33) tilt
to control screen/contextual objects rotation; (34) shock the device to select a
command: delete current picture or undo deletion; (35) tilt de device to select
the crop command; (36) passive control of touch force to select the user desired
action; (37) passive control of touch force to select dragging command.

Gestural Accelerometers-Driven techniques: a State of the Art 59

Sketching with accelerometers

In his experiments reported in [Rekimoto 96], Rekimoto motivates the use of tilt by the

simplicity of sensing motion as variations in angle rather than by changes of position.

Levin et al. propose an original method to sense positions through accelerometers by

using acceleration first- and second-order derivatives (called respectively, jerk and jounce

gestures) [Levin 99]. Their paper describes a fine tuned interaction (14) where physical

translations are mapped into system translations as a series of positions. The algorithm

is applied to a sketching tool to show the sharpness of the approach. This example

illustrates the expressive power of my notation where jerk and jounce are represented

with 3 and 4 exponents syntactic modifiers. It is a continuous interaction technique

(absence of clutch to start and stop the interaction). On the other hand, the interaction

technique introduces one level of indirection since the gesture acts on a virtual pen (which

in turn draws on the canvas).

Rock’n’Scroll

The interaction techniques I have analyzed so far are concerned with foreground inter-

action only. At the opposite, in [Bartlett 02], Bartlett focuses primarily on background

interaction: the system tries to understand user gestures in order to adapt dynamically to

context changes such as screen orientation (15) [Bartlett 02]. For foreground interaction,

Bartlett mimics familiar gestures to control the orientation of pictures by tilting the

device vertically (16), while a horizontal tilt is used to select the next/previous picture

by the way of a menu (17). Thus, (17) introduces a level of indirection. The tilt gesture

(18) is also proposed for a 3D game to control the movements (position) of an avatar

which in turn controls the game, thus introducing a level of indirection. While (15), (16)

and (17) are position-controlled, (18) uses a speed control type.

TiltType

TiltType (19) supports text input by combining tilt angles to select characters orga-

nized in five position-controlled circular menus multiplexed through the use of five

buttons [Partridge 02]. The buttons also serve to trigger the interaction which therefore

denotes a clutched interaction technique. In addition, selecting characters from circular

menus introduces an indirection with regard to the text entry task.

60 Gestural Accelerometers-Driven techniques: a State of the Art

Figure 4.4.: Partridge et al. propose to map a position-based interaction technique drive by
accelerometers to a menu containing the most used characters [Partridge 02].

Hinckley’s state of the art

As discussed in Chapter 3, Hinckley et al. have developed an early classification of

interaction techniques for mobile devices [Hinckley 00]. From this taxonomy, they

propose a couple of interesting applications that are consistent with my own work by

enhancing the background interaction already introduced in Barlett [Bartlett 02]. First,

the paper models the screen orientation control by defining the bezels each zone should

have in order to prevent from unstable situations; second it applies the same concept

to the power management of the device by defining situation where the screen should

switch off, letting the user to implicitly select power management options (20).

XWand

XWand allows users to select a device within a multimedia environment by pointing

at the device of interest (21) and then to control it with gestures such as tilting the

wand to control the volume level (22) et al. [Wilson 03]. The paper proposes a selection

interaction defined by complex physical gestures that combine translation and rotation.

This is why (22) lies at the frontier between translation and rotation. The same role (and

Gestural Accelerometers-Driven techniques: a State of the Art 61

Context Variable Description

TiltAngleLR, TiltAngleFB The left/right and forward/back
tilt angles, in degrees. (sensor
reading & transform)

DisplayOrientation & Refresh Flat, Portrait, LandscapeLeft,
LandscapeRight, or PortraitUp-
sideDown. A Refresh event is
posted if apps need to update ori-
entation

HzLR, MagnitudeLR, HzFB,
MagnitudeFB

Dominant frequency and magni-
tude from FFT of tilt angles over
the last few seconds

LookingAt & Duration If user is looking at the display

Moving & Duration If device is moving in any way

Shaking If the device is being shaken vig-
orously

Walking & Duration If the user is walking

Table 4.1.: Hinckley classification for Tilt/Accelerometer input devices [Hinckley 00].

indirection level) widgets propose in desktop or mobile devices metaphors, is reproduced

by XWand with real world objects thus introducing a level of indirection.

Peephole displays

A peephole is a spatially aware handheld display used as a window on a large (virtual)

workspace [Yee 03]. Yee introduces two interaction techniques for this purpose based

on accelerometers: (23) uses physical translations to position the peephole over the

workspace; (24) enables the selection among different views of the same content through

physical translations. Both interactions are position-based and continuous. Whereas (23)

directly maps physical translations into the desired position, (24) interprets user gestures

to control view changes, thus introducing a level of indirection.

Gestural Authentication

Path is one of the least explored interaction tasks. Even though this task is defined as

a composition of orientations and positions, it is unique because it also considers time

62 Gestural Accelerometers-Driven techniques: a State of the Art

Figure 4.5.: Tapping the back of the device trigger the continuous/discrete mode. In continuous
mode application switch is activated by tilting the device. In discrete mode
application switch is achieved using jerk movements [Roudaut 09].

as a component. The only work classified under this category comes from the studies

conducted by Patel et al. [Patel 04]. The paper describes a public authentication method

driven by a series of well-defined shock gestures applied to the device (25). The series

of gestures constitutes the authentication path for a particular user. It is a clutched

interaction technique since it is activated by the user on the authentication public

terminal. It introduces a level of indirection since the user has to follow instructions

proposed by the terminal screen.

Shoogle

Williamson et al. develop the idea to use shock gestures to sense a quantity [Williamson 07].

By shaking their mobile phone, users can quantify the number of unread messages, of lost

calls, or evaluate battery life (26). Each application of the Shoogle interaction technique

is based on a metaphor which then introduces some indirection. Messages are assimilated

to balls and the battery charge to a liquid quantity while the container is the device

itself. Shoogle uses audio feedbacks correlated to the quantity of balls, or to the amount

of liquid contained in the device.

TimeTilt and TapTap

Inspired from real world objects, Roudaut et al. propose two TimeTilt interaction

techniques based on accelerometers [Roudaut 09]. (27) is a position-controlled interaction

technique that enables choosing among different views by rotating the device. The

interaction is triggered by tapping the back of the device (28). (29) supports switching

Gestural Accelerometers-Driven techniques: a State of the Art 63

through applications by shocking the device. It does not need to be triggered (29). (27)

introduces a level of indirection since it depends on the graphical widgets that renders

the different views.

Miscellaneous

Kratz et al. focused on feedback implications for gestural interaction techniques [Kratz 09].

They propose a position-controlled gestural menu to select an option through physical

gestures (30). I decided to classify this interaction technique as pragmatically direct as

the paper does not associate any system command to the proposed gestures. The last

interaction technique I analyze is the Apple’s shake gesture available on the iPod to skip

to the next song (31).

Hinckley’s Synaesthesia

A recent work proposed by Hinckley et al. studies different accelerometers-driven, touch

triggered interaction techniques [Hinckley 11]. Tilt-To-Zoom (32) proposes tilt-to-zoom

interaction techniques. The user touches the screen to activate the modality. The tilt

of the device backward or forward activates a zooming animation of the screen context

at constant speed. Pivot-To-Lock (33) lets users lock the screen orientation by tilting

the device. The interaction is triggered by touching of the screen. This interaction

is characterized by a missing pragmatic modifier as the finger on the screen acts as

the pivot center of the screen rotation. Hold+Shake (34) permits users to select the

delete (undo deletion) command on the parameter specified by the finger (the trigger of

the interaction). In Tip-To-Select (35) a two finger zooming interaction can enter/exit

the crop mode by tilting the device during the interaction itself. The finger acts as a

trigger. In Hard-Tap (36) and Hard-Drag (37) the user does not intentionally use the

accelerometers by completing a well defined physical gesture. The accelerometers are used

to enrich touch driven interactions simulating hard taps of the screen. These interactions

are touch triggered. In addition, they are characterized by a pragmatic modifier as they

invoke different commands in different contexts.

64 Gestural Accelerometers-Driven techniques: a State of the Art

4.2. Discussion

Figure 4.3 provides an overall picture of more than 30 representative accelerometer-based

input interaction techniques. The visual structure of this representation reveals three

interesting facts: the absence of scale-based interaction techniques, the dominance of the

Select and Position interaction tasks, with a majority for pragmatic indirection.

The absence of scale-based gestures is likely due to current technological limitations:

typically, mobile devices are currently made of rigid material that limits the development

of deformation-based interaction techniques. Nevertheless, the scale affine transformation

opens the way for future research: in the near future, users will be able to shape

their own devices as demonstrated in the early prototypes developed by [Schwesig 04,

Hemmert 08]. In addition, it is reasonable to envision twist- and scale-based interactions

using accelerometers as input devices to propose a candidate language to perform, among

others, the Path interaction task in a simple manner.

As made obvious by Figure 4.3, the centre of gravity is located in the lower part of the

taxonomy. Clearly, most interaction techniques based on accelerometers are concerned

by the Select and Position interaction tasks. Surprisingly, the use of accelerometers for

specifying Orientation has not been explored extensively. Therefore, my classification

suggests to concentrate research efforts on the development of interaction techniques to

support Orientation, as well as Path, Quantity and Text input interaction tasks.

Most proposed accelerometer-based interaction techniques are characterized by indirect

I/O pragmatic connections. Interestingly, Selection and Position are rarely implemented

through pragmatically direct techniques. This is in contrast with mouse-based Foley’s Se-

lect and Position atomic tasks. It results from such observation that accelerometers-based

interaction techniques are not necessarily well suited to conventional WIMP interactors.

The taxonomy brings forward the difference between mouse-based interaction techniques

and accelerometer-driven ones. By construction, accelerometers sense acceleration (i.e.

the direction of gravity essentially). These observations suggest to consider Orientation

as an atomic task for accelerometers-based gestural interactions.

In addition to the three main observations revealed by Figure 4.3 (i.e. absence of

scale, dominance of Select and Position, as well as primacy of indirection), the fine-

grained structure of the taxonomy provides researchers and designers with the appropriate

apparatus for sound reasoning. An indication of this is that my taxonomic space has

allowed us to understand intrinsic and implicit differences even among apparently similar

Gestural Accelerometers-Driven techniques: a State of the Art 65

interaction techniques such as for example between (14) and (23) which both perform

positioning in very distinct manner.

From the researcher’s point of view, the classification shows a transparent state of

the art where each interaction technique is classified without ambiguity. Typically,

reference taxonomies such as [Foley 90b] or [Buxton 83] do not consider the role of time

(cf. frequency and duration), nor do they cover unconscious interaction (cf. background

interaction) and unstructured interaction such as device shaking. In addition, they do not

explicitly consider whether an interaction technique is clutched or unclutched introducing

ambiguities and mixing up different aspects of human interaction behavior. Hinckley et

al. recently proposed a taxonomy of accelerometers-driven interaction techniques that

consider such parameters, but limiting the case to touch (or none) based triggers. The

proposed approach permits the classification of a wider range of interaction techniques

that could be presented in future (voice or camera based triggers). Moreover, it considers

a fine grain analysis of the implemented user control (cf. the syntactic and pragmatic

axes) permitting the unique integration of original interaction techniques such as the

one proposed by [Levin 99]. As seen at the end of the previous chapter, the taxonomy

proposes a general framework able to consider traditional (WIMP) interactions.

From the designer’s point of view, the dimensions of my taxonomy can be used as

a framework for decision making. For example, an unclutched interaction technique

may be considered for default tasks, while different clutched interaction techniques can

be multiplexed through the use of standard or ad-hoc widgets. By proposing at least

an interaction technique for each of the proposed task while designing an application,

designers will be able to offer a complete and uniform user experience similar to the WIMP

one. Furthermore, designers can predict the difficulties that final users will encounter

by analyzing the pragmatic and syntactic modifiers that characterize the interaction

techniques they envision. Thus, they will be able to choose interaction techniques that

best suit the targeted representative users (novice, intermediate, expert). In addition,

they should be able to choose and implement the interaction techniques that best suit the

targeted representative users (novice, intermediate, expert) as the classification proposes

an overview of the learning difficulties in terms of syntactic and pragmatic modifiers.

Good research and development directions will be both towards the creation of widgets

that are able to transform direct interactions in their more complex counterparts and

toward the definition of the elementary interactions to base the development on.

66 Gestural Accelerometers-Driven techniques: a State of the Art

4.2.1. My Definitions

The previous section presented a state of the art on the acceleration-based interaction

techniques and the taxonomies proposed to organize the human-computer dialogues and

the associated input device. Several point of views have been considered and dissimilar

definitions presented. Here the goal is to retrieve some principal concepts future section

will be based on. The definitions contained in this section doesn’t want to be universal,

but need to be valid for the scope of this work.

Interaction Technique

As introduced by [Card 91], the interaction between human and machine is a dialogue

spoken using an artificial language. Humans specify the words by the means of the input

devices and composes the sentences using previously defined interaction techniques.

An interaction technique needs to live on a well defined language to make the

final user understand the proposed metaphor [Shneiderman 87] and to let him imagine

the state of the system and the next step in the interaction itself. The Model of

Human-Processor [Liu 06] state the importance of the perception during an interaction.

Beaudouin-Lafon [Beaudouin-Lafon 00] notices the importance of the feedback as a key

piece of the interaction while Coutaz highlight the context [Coutaz 05]. In the context

of accelerometers-base interaction techniques, Kratz et al. [Kratz 09] demonstrate how

the feedback proposed to the user influences the execution of real world gestures by

improving the algorithm performances.

Tilt

Several definitions have been proposed and misinterpreted around the meaning of the

Tilt interaction on mobile devices. For the scope of this work I accepted the simplest

vocabulary definition interpreting it as a synonym of lean, that is to incline or bend from

a vertical position. The word itself doesn’t imply any syntactical characterization of the

interaction. As such a tilt-based interaction technique can be characterized by a position,

speed or acceleration control. Can be based on one, two or three axis lean. Is associated

to any kind of semantical operation at system level, i.e. selection, position, or any of the

possibilities available.

Gestural Accelerometers-Driven techniques: a State of the Art 67

Shock

According to the definition given by the proposed taxonomy, I will consider the Shock

as an unstructured repetition of an affine transformation. A shock is an atomic gesture.

From a physical point of view it can be a sequence of translations going on a direction

and than on the opposite one. I retain that from the user perspective, any shock gesture

(such as the Shake) is considered as an atomic gesture (after all, apart from the duration

property, is it conceivable an “half a shake”?).

4.3. Synthesis

I applied my taxonomy to accelerometers-based interaction techniques. I demonstrated

the flexibility of my approach, still I enabled a user-center discussion around gestural

interaction techniques. The syntactic and pragmatic modifiers of my classification space

provide a sound predictive measure for the learning curve users have to go over when

approaching a new interaction technique. In the next section I will extend my approach

to multimodal/crossmodal gestural interaction techniques. I will present my experiments,

my goals and my vector-based, hierarchically enable a gestural framework I used to

implement gestural menus.

68

Part III.

Composing Touch and Tilt

69

Chapter 5.

TouchOver

5.1. Introduction

Touch-enabled devices, especially handheld ones, propose interactions often described

as more “natural” to the user. However, a limitation of this kind of input devices is

hardly ever acknowledged: it lacks a passive state. In other words, the touch always

performs an action (tapping, dragging, etc.) which starts as soon as the finger touches

the screen and ends only when the finger leaves the screen. The “natural” deictic property

of the finger [Karam 05] is thus in fact often not respected as the finger acts on the

interface as soon as it is in contact with the screen. This very same usability problem has

already been observed in the field of gaze-enabled interactions: the Midas touch term

was coined by Jacob to denote unintentional selections for eye-gaze input: “Everywhere

you look, another command is activated; you cannot look anywhere without issuing a

command” [Jacob 03].

In fact, touch input do have a passive state: it is when no finger is in contact with the

screen. But no tracking can be performed while being in this state, so no input is available

to the system. The missing state of touch devices is in fact a passive tracking state, i.e.,

a state in which a position is given to the system but no action is engaged. Having such

a state matters for various reasons: it allows to multiplex interaction techniques, and it

would allow a better precision for target selection.

71

72 TouchOver

Figure 5.1.: With touchOver, users can switch between two interaction states (a) and (b) with
a simple tilt of the device while still interacting with their finger. This permits for
example interactions such as hovering, dragging, feedforward enabled techniques,
visual and eye-free interface exploration, and selection precision improvement.

5.1.1. The Need for Multiplexing Interaction Techniques

As handheld devices evolve technically, more complex interactions are required to take

full advantage of the technology. For example, the number of features offered by the

iPhone home screen has increased since its first release in 2007. It now includes icons

grouping, a multi-task dock, and a search page. In order to offer extra interactions, current

smartphone operating systems use time-based touches and/or modes. For example, where

legacy desktop web browsers use the mouseover state to display a web page link address,

smartphones web browsers like Mobile Safari or Android’s web browser, use a touch and

hold to display a pop-up window with the link address along with buttons for potential

actions. Another example is a touch and hold on an application icon that enables the edit

mode of the iPhone’s home screen. In this mode, the user can drag and delete application

icons. The physical home button of the device must be pressed to return to the nominal

pointing and scrolling mode. Although attractive at first sight, these techniques have

some drawbacks and break the interaction flow.

5.1.2. Precision of Selection

Another more subtle problem is the consequence of having a single tracking state on

touch screens: the lack of precision for selection tasks. In fact, most touch devices

sense the fingers a little bit before an actual touch occurs: as the finger approaches the

sensitive surface, the system immediately starts tracking the finger. At the other end,

the user’s finger continues to be tracked after it is lifted from the screen. This results

in the system acquiring extra motion events, and misplacing press and release events.

TouchOver 73

While this imprecision is negligible for sufficiently wide targets, it limits the efficiency of

precise pointing techniques.

5.1.3. Introducing a Passive Tracking State

Based on these observations, we propose a novel approach for touch-based, accelerometer-

enabled, handheld devices: the TouchOver technique (depicted on Figure 5.1). My

approach:

• provides a three-state transition input model, thus re-opens the opportunity for

richer interaction techniques through the intermediate on-over state;

• reduces the Midas touch effect by using two orthogonal modalities to transition

between states, thus improves position and selection precision; and

• encompasses the traditional two-state model of touch, thus remains compatible with

most existing interaction and precision-improvement techniques.

In the next section, I discuss the theoretical background that motivates a three-state

input model from which TouchOver is derived and I review in details the state of the art

of touch-based precision improvement techniques and handheld devices tilt-based input

interactions. I then describe the TouchOver technique and its design. The controlled

experiment I have conducted to compare selection precision and the results I found are

then presented. Before giving my conclusion, the discussion will drive us through the

analysis of my hypothesis with respect to the experimental results.

5.2. Observations

5.2.1. State Models of Input Devices

Finite state machines have been used by Buxton et al. [Buxton 90] as a simple and effective

model to characterize and compare input devices in the context of direct manipulation.

Figure 5.2 depicts the state machine of the mouse input device according this formalism: it

consists in two states, tracking (labelled “state 1”) and dragging (“state 2”), the transitions

between them occurring on the button up and button down events. In both states, the

motion of the device is tracked.

74 TouchOver

Figure 5.2.: Mouse input state machine (reproduced from [Buxton 90]).

Figure 5.3.: Stylus on graphics tablet input state machine (reproduced from [Buxton 90]).

Figure 5.4.: Touch-screen input state machine (reproduced from [Buxton 90]).

Figure 5.3 gives the state machine for a stylus on a graphics tablet: It extends the

mouse state machine with a supplemental out of range state (“state 0”) which is active

when the stylus is not present on the tablet. The tracking and dragging states are

distinguished by the stylus tip switch. As with the mouse, the stylus is tracked in those

two states

With touch-screens, the finger is either on the sensing surface or out-of-range for the

tracking system. As Figure 5.4 shows, this results in an input state machine with only

two states: the out-of-range state (“state 0”) where the system is unaware of the finger’s

motion; and the tracking state (“state 1”) where the system tracks the finger’s motion.

Transitions between those states are operated when the finger lands on, or lifts from, the

sensing surface. As discussed by Buxton et al., this differs significantly from the mouse

TouchOver 75

although both input behaviors can be modeled as a two-state machine [Buxton 90]. As

shown in Figure 5.2, the mouse is never out of range for the tracking system. The main

difference is that for the touch input, the fingers are tracked only in one of the two states

of the machine.

In many interaction techniques, when the dragging state is present, the tracking state

is exploited to provide users with additional information such as feedback and feedforward

to support user’s subsequent actions. On the other hand, the applicability and usability

of the two-state model has been demonstrated by its rapid spread in commercial products,

by end-users’ acceptance, and by the interest of the HCI community. But, as seen in the

Introduction, modes, quasi-modes, and timeouts have been introduced to extend this

simplistic two-state input machine.

One of the popular technique used to introduce a supplemental mode is the afore-

mentioned touch and hold (or long-press) interaction. It has however the drawback of

limiting the speed of interaction as the user has to wait for the system to switch to the

secondary mode. The timeout duration is a trade-off between the speed of interaction

and the risk of misundersting the user’s movements. Furthermore, the most desirable

trade-off varies depending on the user’s expertise and the context of use.

5.2.2. Improving Precision of Selection on Touch Devices

Difficulties with precise interaction on touch-screen mobile devices have been acknowl-

edged and addressed before. A possible solution to the problem of precise selection

with fingers is to align the target size with the “resolution” of the fingers. For instance,

Parhi et al. recommend that the minimum size for thumb input should be “9.2 mm for

single-target tasks and 9.6 mm for multi-target tasks” [Parhi 06]. When considering

small touch-screens, this constraint is quite strong as this size can represent up to one

tenth of the whole screen real-estate. Other approaches to overcome the lack of precision

include: avoidance of target occlusion by fingers, hands, or arms; or alteration of the

control-to-display ratio.

In the first case, the techniques improve precision by avoiding occlusion through visual

augmentation [Vogel 07, Yatani 08] or technical innovation [Wigdor 07]. The control-to-

display ratio manipulation approach, used to improve touch screen precision, has been

explored by various interaction techniques [Albinsson 03, Olwal 08, Olwal 03, Blanch 04,

Roudaut 08]. For some, the interaction complexity of the proposed solution does not fit

76 TouchOver

with mobile devices requirements. For others, the complexity of the architectural design

makes it difficult to apply in practice. However, these approaches suffer from a common

underlying problem: the aforementioned Midas touch effect.

The fine characterization of the problem (i.e., that the finger is tracked a bit more

than expected) was done by Potter et al. by analyzing positioning and selection on touch-

screen devices [Potter 88]. Their study consider positioning and selection as two different

tasks that users need to accomplish separately. Nevertheless, the proposed solution

strategies (select either while landing on the screen or when lifting from it) in practice

merged selection and positioning. Precision on land-on selection based touch-screen have

been later discussed by Sears et al. [Sears 91]. Benko et al. [Benko 06] recently build

upon this work to propose the SimPress clicking technique aiming to let users explicitly

perform selection as proposed in my TouchOver. However, SimPress does not use a

complementary multimodal interaction as TouchOver does, and thus suffers from the

Midas touch effect.

5.2.3. Multimodal Techniques

The error caused by the erroneous tracking of the finger is unpredictable and variable

among users and situations. As explained below, my solution proposes to decouple

positioning and selection tasks, by using two different modalities, namely the touch for

specifying a position, and the accelerometers to specify a mode switch. As seen the use

of the finger as a pointing device identifying a point in space is naturally justified by its

native deictic properties [Karam 05] and by the direct manipulation paradigm. While the

use of an accelerometers-based spatial gestures [Ekman 72] is motivated by the device

properties of sensing real world actions.

The use of accelerometers sensed actions as a trigger for a specified action has been

addressed before. Accelerometers have been extensively used to accomplish a well-defined

command in different contexts. Roudaut’s TimeTilt proposes two interaction modali-

ties to switch application context on handheld devices [Roudaut 10]. Both modalities

let users choose the context through spatial gestures tilt or translation of the device

respectively. Indeed, the first modality is activated by a tap on the back of the device

itself. Williamson’s Shoogle activates an audio feedback to communicate information on

the state of the device [Williamson 07]. Fitzmaurice et al. used the tilt of the device to

control pie menu selection [Fitzmaurice 93], while Rekimoto used the gesture to control

the selection on a linear menu [Rekimoto 96].

TouchOver 77

Figure 5.5.: The TouchOver input state machine.

5.3. The TouchOver Technique

The absence of a dragging state for touch-screens implies that Foley’s two elementary

tasks [Foley 90b], positioning and selection, are bundled together. The positioning task

involves specifying a 1D, 2D or 3D position in the application specific coordinates system.

The selection task involves the validation of the current position to select the underlying

GUI interactor. These tasks rely on each other, in particular, the selection task relies on

positioning. As made explicit by Figure 5.4, the interaction model of touch-screen based

interactions consists in using the last position tracked by the system as the candidate for

the selection task. Thus, the selection command is triggered when the user lifts his/her

finger from the screen. In other words, when users start specifying a position, they start

the selection process. When they finish specifying a position, they confirm the selection.

As opposed to the mouse interaction model, the two interaction tasks are not controlled

separately, which in turn may cause the Midas touch effect.

For the design and implementation of TouchOver, a three-state transition input

model (shown in Figure 5.5) is exploited to decouple positioning from selection while

maintaining a fluid transition between the two: positioning is achieved through the

absolute pointing of the finger on the touch-screen while selection is performed by

validating the current position by a gentle tilt of the device sensed by accelerometers

(Figure 5.1). As highlighted by Buxton et al., a three-state graphical input model

“can characterize [...] many of the demands of interactive transactions, and many of

the capabilities of input transducers” [Buxton 90]. TouchOver exploits the three-state

machine to decouple positioning from selection, but supports a smooth and continuous

transition between these two interdependent tasks. Here, decoupling allows the user

to control each elementary task explicitly, making it possible to freely compose and

link them together. Continuity is ensured by assigning two complementary interaction

modalities [Coutaz 95], seamlessly integrated, each independently implementing one

78 TouchOver

elementary task. TouchOver uses direct touch input only for positioning, and gesture for

the selection task.

Gesture recognition is supported on recent handheld devices as they come with an

increasing variety of physical sensors such as accelerometers, digital compasses and

gyroscopes. TouchOver uses a gentle and smooth tilt forward to send the press-like event,

and a smooth tilt in the other direction (bringing back the device to its original position)

to send a release-like event as illustrated in Figure 5.1. This gesture is combined with

touch input to create a three-state input state machine (Figure 5.5). Note that this

machine is very similar to that of the graphics tablets with stylus (Figure 5.3). This

brings more interactive possibilities to touch-screen based accelerometer-enabled handheld

devices. An inverse configuration of the gestures directions (smooth tilt backward to send

the press-like event, and a smooth tilt forward for release-like event) has been considered

as an alternative. Preliminary tests showed this configuration being more error prone.

The easiness of the wrist to execute backward tilt gesture made users exaggerate the

movement with a consequent loss of screen visibility.

The chosen selection gesture has the following interesting characteristics. First, it

is easy to learn and to remember as it introduces a kinesthetic mode [Sellen 90]. Then,

it is smooth rather than impulsive [Baglioni 09] and of a relatively small amplitude

compatible with the wrist capacities. As a result, users can keep their field of vision

focused on the screen while performing the gesture. It is easy and relatively fast to

perform, and it does not rely on timeout like Long-Press. This will be further discussed

with the experimental results reported below. As a smooth gesture, it also generates

less strain than an impulsive one. Due to the low amplitude of the gesture, the finger

ease of motion is similar in both states. Furthermore, as a complementary multimodal

interaction [Coutaz 95], the hand gesture confirms the finger choice completing and

emphasizing its movement without disrupting the user’s working flow [Sellen 90].

I have also applied the design principles of TouchOver to a timeout-based selection.

While using the same positioning interaction technique, the selection is triggered by a

timeout fired when the user stops moving on the touch-screen. This is discussed in more

detail with the results of my experiments.

TouchOver 79

5.4. Experimental evaluation

I conducted two controlled experiments with three different validation techniques. For

all three techniques, positioning was performed with the finger in contact with the

touch-screen. The three validation techniques were:

Take-Off where validation is performed on finger lift from the screen. This is the touch

pointing interaction commonly used when position adjustments are required as for

smartphones soft keyboards.

TouchOver where validation is performed by tilting forward the device while the finger

is touching the screen. The validation is performed when the orientation angle

along the axis parallel to the width of the screen is more than 11 degrees different

from the angle when the user pressed its finger. An audio feedback, together with a

graphical deformation emphasizing the perspective, inform the user that the tilt is

sufficient and that the system has recorded the validation.

Long-Press where validation is performed when the user keeps his/her finger still for 1

second. An audio feedback, together with a graphical deformation simulating the

press-state of the whole interface, inform the user that the timeout has elapsed and

that the system has recorded the validation.

While Take-Off provides a kinesthetic feedback of the validation, the other two techniques

requires a feedback to inform the user that the system acknowledged the validation.

Based on my rationale and pilot testing, I hypothesized that:

• (H1) Long-Press outperforms Take-Off in terms of precision at the expense of

increased task time due to the timeout the user must wait for.

• (H2) TouchOver outperforms Take-Off in terms of precision at the expense of

increased task time due to an extra user’s action.

• (H3) Long-Press outperforms TouchOver in terms of precision but with less difference

than for Take-Off.

In addition to testing these three hypotheses, my goal was also to get indicators about

the impact of the extra action that TouchOver requires in terms of strain and validation

time.

80 TouchOver

5.4.1. Apparatus

The experiments were conducted on the iPod Touch 4th generation 8GB running iOS4.2.1.

The screen is 3.5 inches wide with 960 x 640 pixels (resolution 326 dpi). When using one

finger, the minimal touch motion reported by the system during the pilot and formal

experiments was 0.5 point (0.18 mm for a resolution of 144 dpi) or 2.25 pixels. I used

such a device to get high resolution screen and touch sensor to minimise the limitation

of the interaction due to the output display and the input sensor resolution. As opposed

to usual subpixel accuracy of pointing devices, with this device, the touch input is less

precise than the screen.

5.4.2. Participants

Eighteen right-handed unpaid volunteers (2 female), ranging in age from 21 to 33 years

were recruited from students and staff of my university and university unrelated persons.

All but one participants had prior experience with touch-screen based handheld device

among whom 11 used it on a daily basis.

5.4.3. Procedure

Participants were first explained the three techniques and could test and learn them

with a sample application. Then, they had to perform a first experiment that would

focus on validation precision, followed by a second experiment centered on validation

time. Participants were instructed to perform both experiments with their dominant

hand while standing-up still. For each technique, they were asked to fill in a qualitative

questionnaire just after the trials.

For the precision experiment, participants were asked to reach a position on a one-

dimension vertical axis as precisely as possible and to validate it (Figure 5.6) for each

technique. This task is similar to setting the thumb of a vertical slider at a very precise

position. The position to reach was figured by a horizontal dashed line displayed in

the middle of the screen. A second horizontal dashed line was displayed at a distance

from the position to reach proportionally to the distance between the on-screen finger’s

position and the position to reach. This second line both solves the occlusion problem

and adds some control-to-display gain. Overcoming the occlusion problem is necessary

for precise positioning on touch-screens. I found during pilot testing that reaching a

TouchOver 81

Figure 5.6.: The user interface for the precision experiment: the target line (left); the thumb
approaching the target (center); the thumb is on the target (right).

Figure 5.7.: Speed experiment application interface: left the first target; right the second
target.

position with such precision (0.18 mm) without display zoom and control-to-display ratio

was really demanding for user’s vision. As we aimed at testing the limitations due to the

input, not the output, I zoomed the dashed line by 4 compared to the motor space, for a

resulting line width of 2 points (0.7 mm) and add a control-to-display ratio of 5.

For the validation time experiment, participants were asked to select buttons as quickly

as possible with the presented validation technique. They had to select two buttons

consecutively (Figure 5.7). For this experiment, participants benefited from learning

from the previous experiment.

5.4.4. Design

A repeated measures within-participants design was used. Presentation order of Tech-

niques was counter-balanced across participants. The 6 permutations of the 3 Techniques

presentation order were each repeated for 3 participants.

82 TouchOver

In the precision experiment, the initial goal was to measure the influence of Technique

on the error rate and the error distance. Yet, I kept a precise positioning phase prior

validation to evaluate the techniques in this particular context: during pilot testing,

I observed that the finger can be placed differently after a positioning adjustment.

Furthermore, this difference in position can affect the finger lift movement as well as its

stability while tilting the device or holding a position for a certain amount of time.

For the precision experiment, the independent variables were Technique (Take-Off,

TouchOver, Long-Press), Block (first, second, third) and Presentation order (the 6

permutations). The measured variables were Distance and Errors. In summary, the

experimental design was: 3 Techniques (Take-Off, TouchOver, Long-Press) x 3 Blocks x

15 trials per Block = 135 data points per participant.

In the validation time experiment, I measured time from the moment the finger

landed on the target button to the moment the validation was performed. For Long-Press,

this measure is a measure of the timeout duration and the system ability to perform

a precise timeout and eventually its capacity to detect finger stillness. For this reason,

Long-Press was not included in the validation time analysis. Nevertheless, I performed

the speed experiment for Long-Press to keep the same experimental sequence for all

three techniques.

For the validation time experiment, the independent variables were Technique (Take-

Off, TouchOver), Target (left and right) and Presentation order (the 6 permutations).

The measured variable was validation Duration, the time spent between the finger press

event and the target validation. In summary, the experimental design was: 2 Techniques

(Take-Off, TouchOver) x 2 Targets x 5 trials per Target = 10 data points per participant.

5.4.5. Results

Error Rate

For the precision experiment, I considered the error rate while validating the one dimension

position whose size (0.18mm, or 0.5 point) is that of the resolution of the touch sensor

system. For each of the validation techniques, I performed a Pearson’s Chi-squared

independence test between whether the target was acquired successfully or not, and the 3

Blocks. I did not found any significant dependency between target acquisition and Blocks.

Thus, there is no evidence of either learning or tiring effects for any of the techniques.

TouchOver 83

Take−Off TouchOver Long−Press

E
rr

o
r

ra
te

 (
%

)

0
2
0

4
0

6
0

8
0

1
0
0

Figure 5.8.: Percentage of errors by validation techniques

Take−Off TouchOver Long−Press

0
5

1
0

1
5

2
0

L
o
g
 o

f
e
rr

o
r

d
is

ta
n
c
e
 i
n
 m

ill
im

e
te

rs

Figure 5.9.: Boxplot of error distance in millimeters grouped by validation technique

I performed a Pearson’s Chi-squared independence test between whether the target

was successfully acquired or not, and the 3 Techniques. This test shows a significant

dependence (X-squared = 749.16, p < .0001). The Cramer’s V statistics validates the

intensity of the relation (V = 0.5). The overall error rate percentage is 55%. This

percentage is higher for Take-Off (93%) than for TouchOver (42%) and Long-Press

(29%) (Figure 5.8). This supports my three hypotheses, H1, H2, H3.

84 TouchOver

Error Distance

During the precision experiment, I measured the distance by which the position to reach

was missed with a distance equal to zero when the position was successfully validated.

As the distribution of Distance grouped by Technique (Figure 5.9) shows, each Technique

distribution presents outliers. TouchOver presents much more outliers than the two

other techniques. From what was observed during the trials, this can be explained by the

reliability of the basic gesture recognition I implemented for the experiment. I believe

that the number of missunderstood gestures can greatly be decreased with a more robust

gesture recognizer. Yet such system missunderstanding cannot be completely avoided and

would increase in real mobile usage conditions. So, all data were kept for the statistical

analysis.

To correct from absolute error distance right skewness and outliers, I used the median

error distance of aggregated repetition for each participant. I performed a 3 x 3 x

6 (Technique x Block x Presentation order) within subjects analysis of variance on

median absolute error distance. Significant main effect was found for Technique (F2,161

= 97.8102, p < .0001). Neither Block nor Presentation order were found significant.

Furthermore Technique x Block and Technique x Presentation order interactions were

not found significant either. Post hoc Tukey multiple means comparison test confirmed

that TouchOver and Long-Press are more precise than Take-Off. This multiple means

comparison did not find any significant difference between TouchOver and Long-Press.

These results support hypothesis H3.

Validation Time

During the validation time experiment, I measured time from the moment the finger

landed on the target button to the moment the validation was performed. Figure 5.10

shows validation time distribution for Take-Off and TouchOver.

I performed a 2 x 2 x 6 (Technique x Target x Presentation order) within subjects

analysis of variance on median validation time of aggregated repetitions for each par-

ticipant. Significant main effect was found for Technique (F1,71 = 47.8942, p < .0001).

Presentation order effect was found significant, though with a p-value of 0.067 (F5,71 =

2.1953). Target, Technique x Target interaction, and Technique x Presentation order

had no significant effect on validation time indicating that the design of the two-target

experiment was appropriate. Post hoc means comparison test confirmed that Take-Off

TouchOver 85

Take−Off TouchOver

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

D
u
ra

ti
o
n
 i
n
 m

ill
is

e
c
o
n
d
s

Figure 5.10.: Boxplot of validation duration for Take-Off and TouchOver

is faster than TouchOver (T = -11.7233, p < .0001). The mean validation time was

106 ms for Take-Off and 213 ms for TouchOver with a 95% confidence interval means

difference ranging from 76 ms to 138 ms. This difference can be explained by the extra

action required by TouchOver to perform the validation. It provides some measurement

of the cost of this extra action in terms of task completion time.

Subjective preference

Participants were asked in a questionnaire whether or not they felt any physical tensions

in either thumb, hand, wrist or arm during the experiment. From the 18 participants, 4

said they felt physical tensions with Take-Off, 6 with TouchOver, and 7 with Long-Press.

Among these participants, three said they felt physical tensions for all three techniques.

This suggests that TouchOver and Long-Press sound similar in perceived physical strain

and both seem a bit more stressful than Take-Off. Yet I cannot conclude on any strong

difference between the techniques. This is comforted by the fact that no significant tiring

effect was found during the precision experiment.

Participants were also asked to grade the three techniques for both the speed experi-

ment and the precision experiment tasks. For the speed experiment task there is a trend

to find Take-Off more efficient and satisfying than the two other techniques (Figure 5.12).

For this task, TouchOver receives little better notes than Long-Press. For the precision

86 TouchOver

Precision Comfort Grades

P
e
rc

e
n
t

o
f

T
o
ta

l

0

10

20

30

40

1 2 3 4 5

Long−Press

0

10

20

30

40

TouchOver

0

10

20

30

40

Take−Off

Precision Efficiency Grades

P
e
rc

e
n
t

o
f

T
o
ta

l

0

10

20

30

40

1 2 3 4 5

Long−Press

0

10

20

30

40

TouchOver

0

10

20

30

40

Take−Off

Figure 5.11.: Comfort and efficiency grades for each technique for the precision experiment

Speed Comfort Grades

P
e
rc

e
n
t

o
f

T
o
ta

l

0

20

40

60

1 2 3 4 5

Long−Press

0

20

40

60

TouchOver

0

20

40

60

Take−Off

Speed Efficiency Grades

P
e
rc

e
n
t

o
f

T
o
ta

l

0

20

40

60

1 2 3 4 5

Long−Press

0

20

40

60

TouchOver

0

20

40

60

Take−Off

Figure 5.12.: Comfort and efficiency grades for each technique for the speed experiment

TouchOver 87

experiment task there is a trend to find Long-Press more efficient than the two other

techniques (Figure 5.11).

5.5. Discussion

My experimental results support my hypothesis, which I based on my technique rationales

and design. Like Long-Press, TouchOver improves positioning validation precision

compared to Take-Off. Yet, TouchOver is not as precise as Long-Press. During the

experiments, I observed that in some cases, participants used their thumb and fingers

along with their wrist to perform the tilt offset of the device. In such cases, user’s thumb

contact surface changed during the gesture introducing error during validation. As shown

by the experimental results, even with this limitation, TouchOver still remains of interest

for precise positioning validation. I believe that an appropriate feedback along with

users’ habits and expertise can moderate such gestures and encourage users to use a

wrist gesture to tilt the device while keeping their fingers still.

During the experiment, when users were explained TouchOver, they understood it

and learned how to use it quickly. This is comforted by the fact that I did not find

signification indication of learning effect. Nevertheless, some smartphone-experienced

users were tempted to shake the device instead of performing a gentle tilt to perform the

validation. This can be explained by the recent introduction of shake-controlled commands

in commercial products. Indeed, the mainstream experience they provide influences

users’ expectation on physical gesture based interaction techniques with handheld devices.

Again, appropriate feedback and users’ habits should minimize such behaviors.

Although my implementation of TouchOver was based on a simple gesture recognition,

it performed well in a controlled environment. Gesture recognition robustness can still

be enhanced by taking advantage of more appropriate sensors like gyroscopes and

implementing more sophisticated algorithms. Still, any gesture recognition will suffer

from ambiguities. Yet I believe that again an appropriate feedback and users’ habits and

expertise can also reduce the number of recognition ambiguities.

TouchOver offers a promising trade-off, bringing an extra passive tracking state to

handheld devices input and increasing positioning precision at the expense of an extra

action. While with Long-Press, users need to wait for a timeout to perform the validation,

with TouchOver they actively control the state transition. Furthermore, experimental

88 TouchOver

results indicates an affordable cost of TouchOver in terms of task duration and physical

strain

For common handheld devices interactions like concurrent pointing and scrolling,

TouchOver is of no particular interest due to the extra user’s action it involves. Yet,

TouchOver allows for richer one finger-based interactions like for example concurrent

support for pointing, scrolling and dragging with no need for modes.

5.6. Synthesis

I presented TouchOver, a complementary multimodal input for one hand interactions

on touch-screen based accelerometers-enabled handheld devices. TouchOver offers a

three-state model input similar to the stylus tablet input with two states where the

system tracks finger’s motion, thus adding a passive tracking state to the touch input.

This creates new opportunities for handheld device interaction techniques like on-over

interactions, feedforward, or visual and eye-free user interface exploration.

Furthermore, when positioning validation is performed on the tilt gesture transition

rather than on finger press or lift, positioning tasks gain in precision at the expense

of an extra action. My evaluation of TouchOver in a controlled environment shows an

encouraging trade-off between Take-Off and Long-Press. Indeed it improves positioning

precision at an affordable cost in terms of task duration and physical strain. Existing

precision improvement techniques can benefit from this gain in precision.

Part IV.

Gestures-Driven Menus

89

Chapter 6.

Characterizing Gestural Menus

The emergence of multipurpose electronic devices has amplified the necessity for creating

novel input devices and interaction techniques to support an increasing number of

functions and commands. These include the combination of physical switches, special

purpose functions keys, software modes and quasimodes as well as general purpose

widgets such as soft-buttons, scroll-bars, lists, and menus.

Among the widgets currently available for user interface design, menus play a key

role. They support a fundamental and frequent human task: that of making choices.

By contrast with command styles, menus present the possible choices (either graphi-

cally or vocally), and only the choices that are semantically valid in the current system

state. Through the menus, all possible actions can be made visible and, therefore, easily

discoverable [Norman 10]. They are an attractive alternative [to keyboard command

strokes] because they can eliminate training and memorization of complex command

sequences [Shneiderman 87]. When designed carefully, menus shorten learning, provide a

clear structure to decision-making, support exploration, reduce errors, and may be appeal-

ing to expert users when they include high-speed interaction shortcuts [Shneiderman 87].

Figure 6.1.: Menus declinations. From left: the Wavelet menu for touch-enabled mobile
devices [Francone 09]; Polymorphic Menu developed in the NOMAD project
[http://iihm.imag.fr/contract/nomad/], MTM (Menu MultiTouch) for multi-
points tabletop [Bailly 09]; Shadow Reaching : target selection using shad-
ows [Shoemaker 07].

91

92 Characterizing Gestural Menus

Because of their key role in user interface design, menus have been investigated since

the early eighties. As illustrated in Figure 6.1, they have evolved as the technology

has continued to bring in additional constraints such as small screens, but also new

opportunities such as the use of gesture and large interactive surfaces. In this chapter, I

am concerned with graphics gestural menus for handheld devices. Before going into the

detailed study of gestural menus, I propose to address the question “What is a menu?”.

6.1. What is a Menu?

Existing definitions or modeling techniques for the concept of menu make reference to a

parent class called a “widget” [Swick 88], an “instrument” or “meta-instrument” [Bailly 09],

an “interactor” [Coutaz 93], or even a “technique” [Nancel 09] and “interaction style”

[Shneiderman 87]. This diversity demonstrates that the status of a menu as a subclass

of a more general concept is unclear. In this section, I analyze the existing definitions for

menus, then look into the parent classes they refer to, and close with my own definitions.

6.1.1. Existing definitions for Menus

The Handbook of Human-Computer Interaction [Helander 97] concentrates on the se-

mantic function of menus and on the interaction feedback they produce. It defines a

menu as a set of options displayed on the screen where the selection and execution of one

(or more) of the options result in a change of the state of the interface. In turn, menu

selection is a mechanism for user to indicate their choices; The characteristics of menu

selection are that: (1) the interaction is, in part, guided by the computer; (2) the user

does not have to recall commands from memory and (3) user response input is generally

straight forward. According to this definition, a menu is necessarily graphical, and a

palette is also a menu.

More recently, the transitory nature of menus has been considered where menus are

characterized as transient [Jakobsen 07] and quasimodal [Raskin 00] widgets. Quasi-

modes are modes that are preserved only through some action maintained by the user,

such as pressing the shift key. They have the advantage of being a mode without forcing

users to remember the actual application state.

Characterizing Gestural Menus 93

Nancel [Nancel 09] summarizes the existing definitions viewing a menu as a technique

permitting the choice of an item among a predefined totality, that can have a hierarchical

structure, offering a transient visualization of possible choices during the interaction.

Again, according to this definition, a menu is necessarily graphical, which excludes vocal

menus.

Perhaps, the most precise definition for menus has been provided by Bailly [Bailly 09]

where a menu is a meta-instrument (also referred to as an interactor in his thesis) that

satisfies the following five properties:

1. It supports the selection of one item within a finite set of options.

2. It minimizes mental efforts by presenting the set of options to the user (favors

recognition as opposed to recall).

3. It presents the options as a semantically and spatially meaningful structure that is

supposed to match human goals.

4. It is transient in the sense that it is perceivable to the user only during its interaction

with the user.

5. It is quasimodal since it defines a local context for system interpretation that is

maintained explicitly by the user until the interaction ends.

From there, Bailly introduces a unified vocabulary related to menus:

A menu system is a set of menus tied together.

A menu technique denotes the interaction technique [Appert 04] associated to a menu

or to a menu system.

The current menu is the menu of a menu system the user is currently interacting with.

A submenu is a menu that is accessible from an item of the current menu.

A super-menu or parent-menu is one of the menus that has made it possible to access

the current menu.

Interestingly, Bailly introduces a consistent set of concepts (i.e. menu system, menu

technique, current, super- and sub-menus) to analyze menus, their interactive behavior

and their organizations. However his reference to a “spatially meaningful structure”

indicates that vocal menus (whose structure is expressed with temporal relations) are

not covered by his definition. As for “interaction technique”, Bailly reuses Appert’s

94 Characterizing Gestural Menus

definition which, as discussed in the next section, covers half of the phenomena that

characterize interaction between a human and a computer system [Appert 04]. Although

“parent-menu” is a useful concept to reason about interaction trajectories and menus

organization, the notion of root, which is a parent with no parent, is missing from the

definitions set. Typically, a menu-bar serves as the root parent for pull-down menus. A

menu-bar is not a menu since it is generally not transient. It may thus be interesting to

discuss the compatibility between a menu and its root parent when this parent is not a

menu, but an interactor.

Interactors, interaction objects, widgets, interaction instruments and interaction

techniques are now discussed.

6.1.2. Interaction Object, Widget, Interactor, Instrument,

Interaction technique

A variety of terms has been introduced since the early days of research in Computer

Human Interaction to denote the entities that compose an interactive computer system

so that users can accomplish tasks with this system. As for gesture styles (cf. Chapter 2),

this “terminology jungle” can be explained by a rapidly evolving field of research, by

different research goals, or simply by forgetting or not being aware of early work in the

field.

The term “interactive object” or “interaction object” was introduced in the mid-eighties

as a software abstraction for the modular implementation of user interfaces [Coutaz 87,

Coutaz 91]. Athena “widgets” have been the first concrete implementation of this concept

for graphical user interface toolkits based on the object-oriented programming paradigm.

The term “interactor”, which was initially introduced by Faconti [Faconti 93] to

formalize some aspects of graphics standards, has then be generalized within the European

Amodeus project as an abstraction to reason about the behavior of interactive systems

from the system as well as from the user perspectives [Coutaz 93]:

From a system viewpoint, an interactor encapsulates a state which is reflected through

a rendering function onto some perceivable representation; it processes input events

produced by the environment, and produces output events as responses to the envi-

ronment [Duke 93]. Here, the environment denotes the user or other interactors.

For example, a mouse is an interactor that encapsulates a position and a button

Characterizing Gestural Menus 95

status. This position is rendered by a cursor on a graphics display. A menu is

an interactor that presents a list of options and broadcasts an option when it is

chosen. A composed interactor can be built from a mouse and a menu through

event bindings. This model has been subsequently related to architectural models

for interactive systems, in particular the PAC model [Coutaz 87].

From the perspective of a user, an interactor is a component in the user interface

that mediates between the underlying system and the user. An interactor captures the

interaction or dialogue between the two parties, and thus provides a framework for

formulating and reasoning about the properties of this interaction [Duke 95]. This

view of an interactor as a mediating entity between a human and the system and

its interactive properties is (very) similar to the concept of “interaction instrument”

introduced by Beaudouin-Lafon in 2000 [Beaudouin-Lafon 00].

.

Indeed, Beaudouin-Lafon defines an interaction instrument as a mediator or two-

way transducer between the user and domain objects. The user acts on the instrument,

which transforms the user’s actions into commands affecting relevant target domain

objects. Instruments have reactions enabling users to control their actions on the in-

strument. Instruments also provide feedback as the command is carried out on target

objects [Beaudouin-Lafon 00]. This definition of an instrument is close, in spirit, to that

of Cadoz for instrumental gestures (c.f. Chapter 2). An interaction instrument clarifies

the distinction between domain-dependent entities, which are of interest in the current

task(s), and the tools, which are the entities used to manipulate these objects. By

contrast, the interactor model, which is viewed as a unifying concept to reason about

system properties, does not make this distinction explicitly.

In addition, an interaction instrument is composed of a physical part, the input

device, and a logical part, the representation of the instrument in software and on the

screen [Beaudouin-Lafon 00]. Again, an interactor models these two aspects in a unified

way using composition operators to formally define interactors of any degree of complexity.

Mackinlay’s et al. input device model adopts a similar unifying approach where composed

devices, such as a menu, can be modeled as a set of devices related by composition

operators: a linear menu is a position linear device that is connected to a cursor virtual

device. The cursor is in turn cascaded from the mouse which is a merge of two elementary

devices that sense relative movements in x and y plus a layout composition in z for the

buttons.

96 Characterizing Gestural Menus

The term “interaction technique” has multiple acceptations, depending on the con-

text of discourse. Foley defines an interaction technique as a way of using a physical

input/output device to perform a generic task in a human-computer dialogue [Foley 90a].

More recently, Hinckley et al. refine Foley’s definition by making explicit the binding of

input and output hardware devices with software entities: an interaction technique is the

fusion of input and output, consisting of all software and hardware elements, that provides

a way for the user to accomplish a task [Hinckley 04]. According to this definition, a

menu is an interaction technique for choosing an item from a set of options using a mouse

and a graphics display. In her thesis, Appert proposes a more formal definition: an

interaction technique is a set of interaction steps where an interaction step is a sequence

of human actions that progressively reduces the command space to a single command

whose execution leads to a new system state [Appert 04].

Interestingly, Appert’s definition brings forward the incremental reduction of the

command space under human control. This progression is not reflected in Foley’s nor in

Mackinlay’s et al. definitions. On the other hand, Appert ignores the system feedback

which, precisely, helps users to modulate their actions appropriately. As a result, this

definition does not capture the mutual influence between human and system actions

when engaged in a mutually observable and dependent set of actions that progressively

leads to the construction (or abortion) of a command. In addition, Appert’s definition

does not specify the “depth” of the change of the system state when the command is

executed. We can hypothesize that a command matches a task as referenced by Foley

and Mackinlay. Implicitly, if we refer to the Arch architectural model [Arc 92], the

system state of concern is a change at the Dialogue Control level (which is the technical

counterpart of a task model), and possibly at the Functional Core and Functional Core

Adaptor levels.

Surprisingly, none of the above definitions address parallel inputs actions as in biman-

ual interaction. Benko et al. propose a bimanual complementary selection interaction

technique, the Dual Finger X-Menu [Benko 06]. But the interaction space is still uncov-

ered and few example have been proposed for bimanual parallel interaction techniques.

The subsections above have presented the state of the art about menu definitions and

their related concepts. We need now to propose a synthesized view of these definitions

while at the same time specifying the choices made for this doctoral research. The intent

is to be useful to the clarity of the work, not to be universally accepted.

Characterizing Gestural Menus 97

6.1.3. Synthesized Definitions/Choices

About Interaction objects, Interactors, Instruments, etc.

Interaction objects, interactors, and interaction instruments denote the same fundamental

concept but they differ in how they are exploited as a modeling abstraction. Interaction

and interactive objects are architectural units introduced as an alternative to the sequential

monolithic language-based approach to user interfaces implementation. Widgets denote

general purpose reusable building blocks made available in UI toolkits. Interaction

instruments support the analysis of properties of the interaction, whereas interactors are

intended to reason about both the internal system properties and the external interactional

properties of the system. Thus, the interactor is a more general unifying concept than

the interaction instrument.

On the other hand, the instrument clarifies the distinction between interaction objects

that represent domain-dependent entities of interest, and intermediary interaction objects

that play the role of a tool. This distinction makes it possible to reason about an

interactor when used as a tool: How much spatial and temporal indirection does it

introduce? How well does its logical part integrate the degrees of freedom provided

by its physical part? How compatible are the human physical actions performed on

the physical part with the perceivable response of the object of interest? These three

properties, degree of indirection, degree of integration, and degree of compatibility are the

constituents of an analysis and design framework known as the Instrumental Interaction

Model [Beaudouin-Lafon 00].

Because menus are generally used as tools to manipulate domain-dependent objects,

I will use the concept of interaction instrument. In contrast to Beaudouin-Lafon but in

accordance with Lachenal’s model of input devices [Lachenal 04], I will consider the

physical part of an interaction instrument as a full-fledged instrument and keep explicit

the distinction between physical instruments and software instruments.

Physical Instruments. Physical instruments represent the communication channel

between two worlds (the physical human world and the digital metaphorical-based world).

Because physical instruments need to live in these two realities, they are composed of two

parts: the hardware input device that users can manipulate and its software counterpart

that represents the human capabilities in the digital world. A physical instrument is thus

a couple <hardware component, software component>.

98 Characterizing Gestural Menus

For example, the mouse is an input interaction instrument composed of a plastic real

world tangible object that users can manipulate and a software component, the pointer,

that represents the human hand capabilities in the digital world. As an interaction

instrument, the mouse communicates with the machine, changes its status and controls

software instruments. In its more complex versions, the mouse is enriched with several

buttons or scroll-wheels each of them constituting a well-defined physical instrument.

For post-WIMP interfaces, touch screens are the hardware component while the logical

component are the points they generate. The logical part does not necessarily have/need

a graphical representation because of the direct absolute pointing function of touch

screens.

Modeling input devices as a couple <hardware component, software component> has

been used before. The Amodeus elementary interactor presented above conveys a similar

model. The implementation of Dragicevic’s Icon Toolkit [Dragicevic 04] is based on the

same separation of concerns.

Software Instruments. Software instruments live in the logical (software) world only,

and are usually inspired from real world instruments. In a classical WIMP environment,

software instruments are driven by keyboard and mouse physical instruments. Scroll-bars,

software buttons, menus, etc. are examples of software instruments driven by the logical

components of physical instruments. In modern post-WIMP environments, software

instruments are driven, among others, by touch screens and accelerometers based physical

instruments.

For the purpose of this doctoral research, i.e. gestural based interaction combined

with multi-point screen handheld devices, the reference model I will use is a two level

composition of a Physical Instrument with a Software Instrument. People interact

with Physical Instruments through their hardware component. The software component

of physical instruments represents the extension of human capabilities in the digital

world. Through the use of such physical instruments users act on software instruments

to accomplish their tasks.

We need now to define a menu as a software instrument. Given that this doctoral

research focuses on graphics output devices, vocally rendered menus are not considered.

Characterizing Gestural Menus 99

About Graphical Menus

The following revised version of Bailly’s definition is proposed: A graphical menu is a

spatially-activated software instrument, without any temporal side-effects, that provides

users with access to the complete set of possible software instruments they can use on

the domain objects the menu refers to (a subset of the user contexts). Where:

software instrument : a software instrument designed to be connected to a physical

instrument;

spatially-activated : because its activation needs to happen in well-defined areas of the

screen;

without temporal side-effects : by contrast to palettes, menus do not enter operational

modes temporally invariant until an explicit change (even if, at a lower level of

description, the item selection process can be temporally driven);

proposing ... the complete library of software instruments : with respect to other

software instruments, a menu proposes an exhaustive set of software instruments;

domain objects : the set of potential objects of interest for the user;

the menu refers to : while contextual menus contain the exhaustive set of software

instruments that can be activated in the context they refer to, system menus embrace

a wider domain thus refer to multiple contexts.

In addition, a distinction must be made between the menu selection process and the

menu per se. They are two distinct bricks of the same software instrument. The menu

selection process is the interaction technique implemented to support the selection of

a menu item. The menu is the software (widget) implemented to offer the selectable

choices: it is the multiplexer of the selection interaction technique.

In synthesis:

A gesture is a physical instrument whose hardware component is a direct input device

(mouse, pen or touch screen) and the software component, a gesture recognizer.

A menu is a software instrument that satisfies the following requirements:

1. It supports the selection of one item within a finite set of options.

100 Characterizing Gestural Menus

2. It minimizes mental efforts by presenting the set of options to the user (favors

recognition as opposed to recall).

3. It presents the options as a semantically and spatially meaningful structure

that is supposed to match human goals.

4. It is transient in the sense that it is perceivable to the user only during its

interaction with the user.

5. It is quasimodal since it defines a local context for system interpretation that is

maintained explicitly by the user until the interaction ends.

.

A gestural menu is a menu software instrument connected to a gesture instrument such

that the selection process is driven by gestures.

In the remaining of this chapter, I analyze the classification spaces provided for menus

in general followed by gestural menus.

6.2. Two taxonomies for Menus

Two taxonomies are considered for their complementarity: that of Shneiderman who

focuses on menus structure, and Bailly’s MenUA who adopts an instrumental approach

to the analysis of the menu design space.

6.2.1. Shneiderman

In his description of Menu selection systems, Shneiderman stresses the importance of

a meaningful organization for menu items. In Shneiderman’s words, the primary goal

for menu designers is to create a sensible comprehensible, memorable, and convenient

semantic organization for the user’s tasks. Shneiderman has identified five possible

semantic organizations for menus (see Figure 6.2):

Single Menus have two or more items that represent the final command, action or

option available in the current context.

Linear Sequence of menus is basically represented by a form. Different options need to

be chosen in order to specify the arguments needed by the chosen command.

Characterizing Gestural Menus 101

Figure 6.2.: Different menu structures impose different approaches and learning difficulties on
users [Shneiderman 87].

Tree Structure When a collection of items grows and becomes difficult to maintain

under intellectual control, people form categories of similar items creating a tree

structure. Although trees seem to be naturally acceptable for human brain, it is

not simple to choose the right grouping. Some people could be unfamiliar with the

chosen organization thus having different difficulties while approaching the menu.

Acyclic and Cyclic Network structures propose the most difficult approach to menus

organization. Users can easily get lost as they do not completely understand the

structure, thus feeling frustrated.

Shneiderman refines the Single Menu class along two lines of analysis: (1) the number

of items and (2) the appearance of these items. Single menus can be sub-classified

according to these axes:

Binary Menus propose a two option choice; they usually prompt the user, offering either

a feature (DO YOU WANT INSTRUCTIONS?), or a parameter choice (Choose

ordering index: N: NAME, D: DATE). Figure 6.4 is an example of a binary menu

displayed through a WIMP pop-up alert panel.

102 Characterizing Gestural Menus

Extended Menus propose the most frequent options to the users, then the less frequent

ones in a subsequent distinct interaction space.

Pop-up or Pull-down menus appear on the screen in response to a click performed

with a pointing device [Shneiderman 87].

Permanent Menus occupy a fixed space, providing users with the most used commands

or options. By contrast with extended menus, they are not the continuation of a

menu, but they form their own menu depending on the current context. Permanent

menus are best known as palettes.

Multiple Selection Menus let the user choose different options simultaneously.

Considerations are summarized about tree structured menus as well. Four principles

for designing the hierarchical organization of tree menus are proposed:

Depth versus breadth. Based on the analysis of several performance studies, Shneider-

man concludes that fewer [depth] level aid decision making, without ignoring the

semantic structure of the items.

Semantic grouping in trees In order to best fit users expectations, designers need to

consider the following empirically validated rules:

1. Create groups of logically similar items;

2. Form groups that cover all possibilities;

3. Make sure that items are non-overlapping;

4. Use terminology familiar for the target users, but make sure that the items are

distinctive from each other.

Menu maps. As the tree structure grows, users have greater difficulty in maintaining

an overall understanding of the semantic organization ... Offering a spatial map

can help overcome this difficulty [Shneiderman 87].

Semantic versus alphabetic organization. Informed by empirical evaluations of hu-

man performance, Shneiderman suggests the use of semantic organization for a

first level grouping while the alphabetical order is best suited for the second level

organization. As shown in Figure 6.3, modern hierarchical menus groups items

semantically.

Characterizing Gestural Menus 103

Figure 6.3.: Shneiderman’s hierarchical menus in a modern WIMP environment.

1 Use task semantics to organize menu structure (single, linear se-
quence, tree structure, acyclic networks, and cyclic networks)

2 Try to give position in organization by graphic design, numbering
and titles

3 Items become titles in walking down a tree

4 Make meaningful groupings of items in a menu

5 Make meaningful sequences of items in a menu

6 Items should be brief and consistent in grammatical style

7 Permit type-ahead, jump-ahead, or other short-cuts

8 Permit jumps to previous and main menu

9 Use consistent layout and terminology

10 Consider novel selection mechanisms and devices

11 Consider response time and display rate impact

12 Consider screen size

13 Offer help facilities

Table 6.1.: Shneiderman’s menu selection guidelines distilled from practice [Shneiderman 87].

Shneiderman also considers the variation of items presentation, as well as different

ways of increasing direct access to menu items, including consideration for response time,

display rate and shortcuts.

Although Shneiderman’s classification is somewhat influenced by the technology of

the eighties, the recommendations listed in Table 6.1 still serve as a reference for Menu

Selection Guidelines.

104 Characterizing Gestural Menus

Figure 6.4.: Shneiderman’s binary menus in a moder WIMP environment.

Figure 6.5.: Bailly’s MenUA classification space [Bailly 09].

From Shneiderman’s early work in the area of menu design, two contributions must be

kept in mind: 1) The classification of menus along two main axes: structure and visual

appearance. 2) The importance of a coherent presentation so that users understand and

foresee the menu behavior.

6.2.2. Bailly’s MenUA design space

Building on the instrumental interaction model, Bailly [Bailly 09] proposes MenUA (Fig-

ure 6.5), a classification space that characterizes menus from their external features rather

than based on their internal structures or feedback characteristics. Bailly approaches

menus according to their capacities to adapt to two classes of constraints: constraints

from the target users, and constraints from the system side. As a consequence, the first

level organization of MenUA is composed of two Factors : Usability and Applicability

(thus, the name MenUA where U stands for Usability, and A for Applicability). The

Characterizing Gestural Menus 105

Usability factor encapsulates the features that characterize the adaptation capabilities

of menus systems against the cognitive, motor and sensory abilities of the target user1.

By contrast, the Applicability factor (often called utility in the literature) groups menu

features that determine the adaptation capabilities of the menu system to the user’s

functional needs2.

Usability and Applicability both cover three criteria. In particular, Usability is refined

into the following criteria:

Speed & Accuracy measure the effectiveness of the menu in supporting the user to

select commands3.

Learnability & Memorization represent the capacity of the menu to allow the user to

make optimal use of it rapidly and sustainably4.

Satisfaction represents the ability of the menu to provide pleasurable feeling that results

from task closure5.

In turn, Applicability covers the following three criteria:

Adaptation to the application describes the capacity of the menu to contain the com-

mands of the underlying application6.

Adaptation to the platform describes the capacity of the menu to be used with different

input/output devices7.

Adaptation to the task describes the capacity of the menu to adequately fit within the

user’s task space8.

Finally, criteria are further refined into more practical features called Aspects that can

be measured experimentally. For example, Speed and Accuracy are measurable in terms

of menu activation (or invocation), visual search, item selection (which characterizes

the interaction trajectory and the time to reach the appropriate item), item activation

(which triggers the execution of the system command), and the existence or absence of

1Adéquation du cystème par rapport aux capacité cognitives, mortices et sensorielles de
l’utilisateur [Bailly 09].

2Adéquation du cystème par rapport aux besoin applicatifs de l’utilisateur [Bailly 09].
3Efficacité du menu pour permettre à l’utilisateur de sélectionner des commandes [Bailly 09].
4Capacité du menu à fournir un sentiment agréable qui result de l’accomplissement de ce sue l’on

souhaite [Bailly 09].
5 [Bailly 09].
6Capacité du menu à contenir les commanfes de l’application [Bailly 09].
7Capacité du menu à fonctionner aver différents dispositifs d’entrée et de sortie [Bailly 09].
8Capacité du menu à s’intégrer effacement dans la tâche de l’utilisateur [Bailly 09].

106 Characterizing Gestural Menus

an expert mode. As shown in Figure 6.5, MenUA proposes eighteen Aspects capable to

structure the whole state of the art related to graphical menus.

Using MenUA, designers and developers are able to choose the most appropriate

menu(s) by simply analyzing the requirements (target users and system constraints)

imposed by their project, thus identifying the key relevant Aspects. For example, a

technical/interactional solution that improves the “item selection” aspect, improves the

overall usability of the menu according to the speed & accuracy criterion. A menu with

a large “menu depth” and a large “menu width” improves its overall applicability.

The leaves of MenUA classification abstract away Shneiderman’s guidelines. For

example, Shneiderman’s hints for semantic grouping of items in menu trees is just one

solution to the MenUA Visual Search aspect, promoting a better user experience in the

usability of the menu itself.

Shneiderman’s versus Bailly’s design and classification criteria mirror the evolution

of the concept of menu across the years as well as that of user interfaces. Shneiderman

addresses all kinds of interactors that support selection tasks. By contrast, Bailly narrows

down the analysis to a particular subclass of interactors referring to commands/func-

tionalities rather than to arguments. In modern user interfaces, cyclic and acyclic menu

structures are rarely used. Binary menus found their concrete implementation in alert

panels, while linear menus correspond to form panels. Single menus are just a special

case of hierarchical menus which are at the center of Bailly’s research.

In synthesis, the key point to retain from these two classification spaces is the concern

for human-centered issues as elements for charactering menus: Users behavior facing a

new widget (Satisfaction), human cognitive capabilities compared to menu organization

and structure (Learnability & Memorization), as well as detailed characteristics for the

selection process (Speed & Accuracy). The Aspects that derive from the Usability factor

fully characterize the parameters of the interaction technique offered by a menu.

6.3. Gestural Menus

Menus and gestures analysis find their intersection in Gestural Menus. Gestural menus

share the same organization, properties and problems than conventional menus and they

use gesture physical instruments for the selection process. Intrinsics properties of gestural

organization and recognition need to be considered in order to obtain seamless integration

Characterizing Gestural Menus 107

Figure 6.6.: Marking menus propose a Novice and an Expert mode. On the left, a marking
menu used in novice mode resembles a Pie Menu [Callahan 88] but user’s move-
ments are tracked leaving an ink trail. On the right, the marking menu when
used in expert mode: the user makes a mark without relying on the graphical
representation [Kurtenbach 93].

for enhanced user experience. The following subsections refer to five representative

gestural menus studies in order to understand and structure the argument. In my opinion,

Kurtenbach’s Marking Menus, Bau’s Octopocus, Appert’s gestural shortcuts, Bailly’s

Flower and Leaf Menus and Roudaut’s synthesis represent a complete framework that

introduces the problems, their evolution and a synthetic state of the art on gestural

menus.

6.3.1. Kurtenbach’s Marking Menus

Marking menus are considered as the first example of successful gestural menus. With

the main objective of reducing the gap between novice and expert users, Marking menus

share the structure of pie menus but instead of focusing on the current position relatively

to the center, they make expert users focus on the gesture they have to perform to select

an option. In Kurtenbach’s words: Marking menus are invisible pie menus in which the

movement of the cursor during a selection leaves an “ink trail” similar to a pen stroke on

paper [Kurtenbach 93].

Physical and cognitive issues arise when the user needs to face invisible menus. First,

they need to remember the structure of the menu as well as the relative position of each

item. Second, they need to associate marks with the command they represent: Subjects

are faced with the task of either mentally representing the menu or associating marks

with the commands they invoke through practice.

108 Characterizing Gestural Menus

As a result, gestural menus need to be “self-revealing” in order to let users discover

and learn them. Menus and buttons, for example, are self-revealing: the set of commands

is readily visible as a by-product of the way commands are invoked. By using pie menus

as a revealing mechanism for marking menus, Kurtenbach permits novice users to learn

while freeing expert users from being annoyed by a graphical representation that pops

over the working context.

From Kurtenbach’s work, the take away message is threefold: design gestural menus

that support self-revelation, guidance, and rehearsal. In addition, as discussed in Chap-

ter 3, even simple gestures can express complex commands. Kurtenbach observes that the

start and end points as well as the length/speed of the stroke can be used to communicate

additional information including command parameters.

The original marking menu has inspired many extensions such as the “donut menu”

suggested by the same authors [Kurtenbach 93] and more recently, the wavelet menu

using concentric circles rather than menu items to browse through hierarchical lev-

els [Francone 09].

Bau addresses the problem of remembering which mark does what through feedforward

while Appert displays a mark that represents the gesture next to menu items, just like

accelerator keys.

6.3.2. Bau’s Octopocus

OctoPocus is a gestural menu that combines feedforward and feedback in a tightly coupled

continuous manner to help users to learn, execute and remember gesture sets Figure 6.7.

The motivation is to bring users from novice to expert level performance in a graceful

and efficient manner [Bau 08]. In contrast to feedback whose purpose is to represent the

current system state, feedforward represents the possible states the system can be in the

future depending on the next user’s actions.

Bau uses feedforward combined with feedback as a way to support a dynamic form of

self-revelation. In [Bau 08], he proposes a taxonomic space for characterizing feedforward

and feedback in relation to gestural interaction. For example, feedforward approaches

can be plotted in a two dimension space: first, the level of detail provided to the user

(direction only as for the Marking menus, portion of gesture as for OctoPocus, full

gesture description as Appert’s StrokeShortcuts described in the next section); second,

the update rate (only once for marking menus, in multiple steps as in hierarchical marking

Characterizing Gestural Menus 109

Figure 6.7.: A hierarchical marking menus (left) enriched with feedforward (right) that permits
the user to foresee each command’s hierarchical content [Bau 08].

menus, and continuously for OctoPocus). The taxonomic space for feedback addresses

the different phases of gesture recognition with different forms of representation including

mark beautification, recognized paths, and labels.

Bau’s taxonomic space displays the lack of well-designed feedback and feedforward

mechanisms for existing gestural interaction techniques. In particular, the feedback

provided by Hierarchical Marking menus reveals that there is a lack of continuous com-

munication between the system and the user, thus generating a simple binary recognition

value: they update ... low-details hints in discrete steps as the user progresses through the

menu hierarchy. Existing solutions either do not provide continuous feedback/feedforward

in response to user’s actions, or they provide verbose feedback/feedforward information

that occludes the user’s context, thus disturbing the interaction itself.

Bau’s solution consists in proposing dynamic guides ... providing ... feedforward about

the user’s current set of options and feedback about how well the current gesture has been

recognized. An example of a dynamic guide applied to a hierarchical marking menu is

shown in Figure 6.7. The figure shows the first hierarchy level of the menu as the user

has just started the interaction. Semitransparent marks that show the content of the

next level hierarchy, serve as a feedforward guideline.

From Bau’s dynamic guide principle, the take away message is the importance of

well-designed feedforward that is continuously and tightly coupled with feedback to help

users learn, discover and remember gestural menus.

110 Characterizing Gestural Menus

Figure 6.8.: StrokeShortcuts integrated in a media player. On the left, gesture shortcuts
are visible while using a classical linear menu. On the right, the “open playlist”
corresponding gestures. Help fades away on a timeout.

6.3.3. Appert’s gestural shortcuts

Classical WIMP menus apply the “self revealing” principle by showing the keyboard

shortcuts conjointly with their corresponding item labels. What if the expert mode

of interaction is gestural? Kurtenbach has proposed to improve gestures learning by

popping up a menu that lists commands with their corresponding marks [Kurtenbach 93].

Similarly, Appert proposes to augment linear menus with their corresponding stroke

representations [Appert 09] (see Figure 6.8). She demonstrates that stroke shortcuts are

easier to memorize than keyboard shortcuts. As important, she proposes guidelines to

implement gestural shortcuts easily.

Template-Based recognition algorithm. By eliminating training issues while still be-

ing accurate, a template-based algorithm is the best choice to implement stroke

shortcuts;

Simplify the task of designing a set of strokes. By offering designers a gestural im-

plementation design space, their imagination is stimulated while increasing the

robustness of the recognizer (i.e. the design space avoids the definition of gestures

that are too similar);

The underlying mechanisms in the recognition engine must be transparent to

the interface designers. This recommendation complements the existence of a

design space, above;

Make stroke shortcuts visible to end users. If gesture based GUIs follow feedforward

principles, gestural vocabulary is better assimilated by end users;

Characterizing Gestural Menus 111

Figure 6.9.: Ideal Flower menus support up to 56 items per hierarchy level (left). Flower menus
can control the most used commands in a simple hierarchy level (right) [Bailly 09].

Integrate stroke shortcuts in graphical toolkits. If gestural shortcuts are integrated

into existing graphical toolkits at the appropriate level of abstraction, then developers

can provide them in their user interfaces at no additional development cost.

From Appert’s work, the take away message is her guidelines that provide a practical

answer to the problem of making gestural interaction available to end users and to

programmers, complementing Kurtenbach’s “self-revealing” principle. The integration

of gestural interaction into existing toolkits is a fundamental requirement for involving

designers in the experimentation of gestural interactions as well as for integrating gestural

interaction seamlessly into existing environments. In Chapter 7, I will show how GeLATI

has been designed to integrate gestural interaction in native UIKit based widgets.

Appert’s approach finds its concretization in another representative example of gestural

menus: the Leaf menus.

6.3.4. Bailly’s Flower and Leaf Menus

Among the properties of gestures that have already been studied and implemented (e.g.,

length, direction, and speed), Bailly exploits an original characteristics: curvature which

has a discriminating property of the stroke together with the angle and direction.

As shown in Figure 6.9, flower menus improve marking menus in terms of the number

of items that each hierarchy level can support. The proposed interaction is compatible

with the classical interaction technique based on object clicking.

112 Characterizing Gestural Menus

Flower menus share with marking menus the interaction principles: when the user

starts the interaction the menus is displayed at the location specified by the user. In

order to support the expert mode, the graphical representation is shown after a time

delay (100ms9). As an evolution of marking menus, a flower menu can contain up to 56

items and organizes them in different internal groups (four main groups). A hierarchical

version of the flower menu is proposed using a concentric mechanism similar to the that

of the Donut Menus.

Using MenUA as a framework, flower menus support the Usability factor in the

following way: (1) They enhance visual search thanks to the internal grouping; (2) From

marking menus, they inherit the simple item selection; (3) They support learning and

memorization as they engage users into a simple interaction technique and let them

foresee the gesture shape through the menu structure itself. From the applicability

perspective: (1) they can easily support the application functional needs since they can

contain up to 56 items per hierarchy level and more than one level of hierarchy; (2) they

are adequate for multiple platforms since they require a 2D pointing physical instrument;

(3) they are adequate for the task by proposing different command activation systems

and visual representations.

However, the visual footprint of the Flower menu may be an impediment for small

screen mobile devices. As an answer to this limitation, Bailly and Roudaut propose an

evolution of marking menus: the Leaf Menu that brings together the gestural concepts of

the flower menus and Appert’s guidelines.

The Leaf menu is controlled by gesture strokes. Gestures are characterized by

direction and curvature. Items are grouped and gesture shortcuts follow simple rules

thus simplifying learning and memorization. Gestures are compatible with the use of

conventional linear menus, which guarantees easy access to the novice user. Gestural

shortcuts are visible to users in novice mode, which supports smooth novice-to-expert

transitions. Leaf menus can contain up to seven items in one hierarchy level. As shown

in Figure 6.10, they are able to adapt the graphical representation as well as the gestural

shortcuts, according to the nearest screen edges and activation point.

From the Leaf menu, the take away message is the use of curvature as a means to

discriminate between gestures and the adaptation of gestural menus to mobile platforms.

9Bailly [Bailly 09] uses this value in his Flower menu. Although it seems to be a valid and widely used
approximation it still need a scientific experimental validation

Characterizing Gestural Menus 113

Figure 6.10.: Leaf menu for touch-screen enabled mobile devices where curvature is exploited
to discriminate gestures [Bailly 09].

We close this section with Roudaut’s contribution to the analysis of the state of art

about gestural menus.

6.3.5. Roudaut’s Analysis

As shown in Table 6.2, Roudaut classifies gestural menus within a two dimension space:

the gesture style (which may be semaphoric or deictic, cf. Chapter 2, Table 2.7), and

the graphical layout used for rendering the structure of the menu (which may be linear,

circular, or semicircular).

Conventional linear menus, which are position driven, use pointing to express the choice

of the desired menu option. As a result, the gesture associated to a linear menu is deictic.

They are organized according to a linear structure where each command is positioned

at a variable distance from the activation point to reflect their index. ThumbMenu

and ArchMenu are also classified as deictic and position driven. Nevertheless, they are

characterized by a semi-circular rendering structure as their options are laid out along

an arc at the lower left (right) part of the screen. Such an organization permits to have

all menu items at the same distance from the activation point independently of their

114 Characterizing Gestural Menus

Deictic Semaphoric

Linear
Linear Menu Linear Menu with Gestural Shortcuts

LeafMenu

Circular

Marking Menus

Compound Marking Menus

Multistroke Menus

Wavelet

QuickWriting

Flower Menu

PushMenu

TiltMenu

Semi-Circular
ThumbMenu

ArchMenu

Table 6.2.: Roudaut classifies gestural menus according the gestures type they are driven by
and the layout menu items are disposed on [Roudaut 10].

indexes. Furthermore, the activation finger does not occlude any important contextual

information.

Semaphoric gestures occupy most of the table. The Linear Menu augmented with

Gestural Shortcuts and the LeafMenu are characterized as semaphoric. As discussed in

previous subsection, the augmented Linear menu uses a diversified gestural vocabulary in

order to provide linear menus on mobile devices with expert mode activations. The Leaf

menu uses the same concepts but proposes a uniform gestural vocabulary. Indeed, items

can be accessed by stroking curves using different curvatures according to the index of

the desired item inside the menu. Circular semaphoric menus include the Marking menus,

the Compound marking menus and the Multistroke menus. They share the same menu

structure but use different activation and selection interaction techniques and propose

different hierarchy access solutions. Among others, we also note the presence of the

Flower menu that can be viewed as an extension of the LeafMenu around four axes. The

Wavelet menu falls in the same semaphoric circular category as Roudaut classifies it

as a circular menu that optimizes the Multistroke menu10 . As for QuickWriting menu,

PushMenu and TiltMenu, their originality comes from the use of other characteristics

10Despite the global interaction of the Wavelet menu resemblance with the Multistroke menu. We
consider it as a position based menu as ThumbMenu and ArchMenu. As such, we are more tempted
to plot it as a deictic menu with a circular item structure.

Characterizing Gestural Menus 115

Pros Contras

Linear

Well known technique Lack of precision

Space optimized Limited by small screen
size

Contextual or System wide Finger Occlusion

Never out of screen Context Occlusion

Expert and Novice Modes

Circular

Coherent Expert mode
(Gestural)

Can appear out of the
screen

Space management

Limited number of items

Lack of localized counter-
part

Finger Occlusion

Context Occlusion

Articulation Difficulties in
some movements

Semi-Circular

Avoid finger occlusion Lack of expert mode

Can appear out of the
screen

Limited number of items

Lack of contextual counter-
part

Articulation Difficulties in
some movements

Table 6.3.: The different layouts gestural menus are characterized by, imply consequences on
the interaction they propose. Here a synthesis of the pros and cons proposed by
Roudaut [Roudaut 10].

(respectively, the distance, the stylus pressure and the stylus slope), rather than the

simple stroke, to define the desired item.

The design choice between deictic and semaphoric styles is driven by the imple-

mentation algorithm and by the desired interaction model. With regard to graphical

rendering, the choice is not as simple and straightforward. As shown in Table 6.3,

Roudaut synthesizes the pros and cons for each layout option.

116 Characterizing Gestural Menus

Linear menus offer the same interaction technique people have learnt from their

desktop computer experience. Their footprint on the screen is more compact than that

of the circular menus as it occupies half of the space taken by a circular menu. Linear

menus offer a contextual mode, activated near the objects of interest, as well as a system

wide mode, usually available through a menu bar placed near the vertical edges of the

display. Both versions are usually designed not to exceed the display real estate (when a

linear contextual menu is opened in a non optimal position, it is re-centered in order to

be completely visible). Moreover linear menus propose graphical interface independent

expert mode (as we have seen the keyboard shortcuts can be substituted with gestural

ones) allowing users to memorize and access the desired options gradually and directly.

On touch-screen enabled mobile devices different characteristics need to be taken into

account. Small screen, lack of keyboard for menu accelerators, absolute pointing devices,

hand and finger occlusion are just few of them. From Roudaut’s work, we retain the

classification of menu structures contextualized for mobile environment.

6.4. Synthesis

In this chapter, I have introduced the problems related to gestural menus by analyzing

the interaction techniques involved in the menu selection process, by presenting the

different points of view from which menus have been analyzed, and by considering some

of the key taxonomies developed to characterize them.

Given the large number of definitions for the concept of menus and for its parent

class, the first contribution of this chapter is to propose a consistent set of definitions

based on representative works in the domain. I propose to define a menu as a software

instrument connected to a physical instrument where software and physical instruments

are interaction instruments as introduced by Beaudouin-Lafon. Because physical and

software instruments have very distinct properties, I consider it important to make a

clear distinction between those objects that bridge the gap between the real world and

the digital world from those that live in the digital world only.

Therefore, a menu is a digital "beast" and a gesture is a physical instrument whose

hardware component is a direct input device and the software component, a gesture

recognizer. In addition, a menu software instrument satisfies the requirements as specified

by Bailly (i.e. supporting the selection of one item within a finite set of options, presenting

Characterizing Gestural Menus 117

these options in a semantically and spatially meaningful structure, being transient and

quasimodal). As a result, a gestural menu is a menu software instrument connected to a

gesture instrument such that the selection process is driven by gestures.

Having provided definitions for menus, gesture, and gestural menus, the second

contribution of this chapter is to demonstrate the complexity of menus by the way

of two complementary taxonomies: that of Shneiderman who discusses various forms

of menu structures and Bailly’s MenUA that characterizes menus according to their

appropriateness to human capabilities and to human functional needs.

The third section of this chapter presents a brief analysis of the state of the art

for gestural menus ranging from Kurtenbach’s seminal work to Roudaut’s synthesis of

gestural menus for mobile devices. From the interaction point of view, the take-away

message is to design gestural menus that are self-revealing, that support dynamic guidance

and rehearsal, as well as smooth migration between novice and expert levels of expertise.

From the implementation point of view, one should consider the use of a template-based

approach to gesture recognition in order to avoid system training, the use of curvature

for discriminating gestures, as well as the problem of integrating gesture in conventional

GUI toolkits so that developers can provide them in their user interfaces at no additional

cost.

To conclude, I propose to structure the lessons and recommendations from earlier

work into the following three axis framework: physical layout of menu items, graphical

rendering, and interaction style. These axes respectively called Structure, Aspect and

Interaction have been used to organize GeLATI. GeLATI is a template driven gestural

library to design, prototype and implement crossmodal and multimodal gestural menus.

This contribution is presented in detail in the next chapter.

118

Chapter 7.

GeLATI: integrating hierarchical

gestural menus in existing toolkits

In this chapter, I present GeLATI, a Gestural Library for implementing gestural interac-

tion based on accelerometers and touch screen devices1. GeLATI can be characterized in

the following way:

1. Gesture recognition is based on a new real-time vectorial approach that combines

multiple inputs to support cross-modal and/or multi-modal interactions;

2. Gesture recognition, which uses a single-sample template approach, does not need

training;

3. Gestures, which are modeled as series of vectors, are rectilinear. As demonstrated

by Bragdon et al. [Bragdon 11] (c.f. Chapter 2), rectilinear gestures are more usable

than free form gestures;

4. Both deictic and semaphoric gestures are supported;

5. Novice users are guided along well-defined paths to complete a gesture stroke.

Expert users can stroke commands without graphical feedback as exemplified by

the Marking Menus;

6. Exploration is supported through an incremental back-to-hierarchy-node mechanism;

7. Hierarchical gestural menus can be automatically integrated into existing graphical

toolkits.

1GeLATI: Gestural = Ge, Library= L, Accelerometer= A, Touch=T, Interaction=I.

119

120 GeLATI: integrating hierarchical gestural menus in existing toolkits

Most existing gestural interaction toolkits rely on statistical recognizers. This approach

has been validated through many years and applied to several prototypes. However, from

the interaction perspectives, it comes with several limitations. First of all, it requires

users to train the system. Second, it is primarily based on post-analysis of users actions

(“off-line, batch processing” recognizers). As a consequence, it cannot support tightly

coupled interaction as required by the dynamic guidance and reversibility principles. In

particular, feedback-feedforward cannot be provided, and users cannot go back to correct

their strokes and to explore the gestures set.

In this chapter, I will examine these characteristics and their importance for gestural

menus. I will analyze typical fundamental gestural recognizers and show how GeLATI

brings in new improvements.

7.1. Existing approaches

This analysis of gestural recognizers is illustrated by two examples from research: Ru-

bine’s feature-based recognizer [Rubine 91] and the $1 low-cost recognizer [Wobbrock 07].

Rubine’s recognizer serves as a reference that has inspired the development of several

gestural recognizers both in academics and industry. The $1 recognizer marks the recent

evolution of features driven gesture recognizers, optimized for different devices and

available on multiple platforms.

7.1.1. Rubine’s GRANMA

GRANDMA is one of the very first efforts in integrating gestural interaction into graphical

toolkits to enhance direct manipulation WIMP user interfaces. Rubine’s algorithm uses

classification attributes (such as orientation, size, speed) and event types (such as mouse

button up, timeout) to recognize single stroke gestures produced with a direct pointing

devices such as a mouse. The gesture designer that comes with GRANDMA allows

developers to prototype and test gestural interactions through examples. Empirical

evidence suggests that 15 training examples per gesture class is adequate [Rubine 91].

Rubine’s gestures recognizer uses statistical analysis to discriminate among the gesture

set. Gestures are modeled as a set of 13 empirically defined features (see Figure 7.1):

(f1) The cosine of the initial angle of the gesture;

GeLATI: integrating hierarchical gestural menus in existing toolkits 121

Figure 7.1.: A set of 13 features characterizing each gesture in GRANDMA statistical gestures
recognizer [Rubine 91].

(f2) The sine of the initial angle of the gesture;

(f3) The length of the bounding box diagonal;

(f4) The angle of the bounding box diagonal;

(f5) The distance between the first and the last point;

(f6) The cosine of the angle between the first and the last point;

(f7) The sine of the angle between the first and the last point;

(f8) The total gesture length;

(f9) The total angle traversed;

(f10) The sum of the absolute value of the angle at each mouse point;

(f11) The sum of the squared value of those angles;

(f12) The maximum speed (squared) of the gesture;

(f13) The duration of the gesture.

122 GeLATI: integrating hierarchical gestural menus in existing toolkits

Several variations of the original recognition algorithm have been developed. In

particular, an “eager” version of the algorithm proposes a gesture as soon as it is

unambiguous. In this case, classification is performed on every mouse point event.

Another version is a multi-finger implementation where multi-finger input is modeled

as multi-path data. The single-stroke recognition algorithm is thus applied to each path

individually while the results are combined to classify the multi-path gesture [Rubine 91].

More recently, efforts in optimizing single strokes gesture recognizers have led to

Wobbrock’s $1 recognizer.

7.1.2. Wobbrock’s $1

Wobbrock et al. has defined eight key requirements that gesture recognizers should

satisfy:

1. be resilient to variations in sampling due to movement speed or sensing;

2. support optional and configurable rotation, scale, and position invariance;

3. require no advanced mathematical techniques;

4. be easily written in few lines of code;

5. be fast enough for interactive purposes (no lag);

6. allow developers and application end-users to “teach” it new gestures with only one

example;

7. return an N-best list with sensible scores;

8. provide recognition rates that are competitive with more complex algorithms.

To satisfy these guidelines, the $1 recognizer is structured as a four step process :

Resample the Point Path : this step transforms each gesture point path (and template)

sampled by the input device into point paths defined by a fixed amount of points N.

This step eliminates sampling differences due to variations in speed and/or input

device characteristics (e.g., resolution);

Rotate once based on the “Indicative Angle” : the indicative angle is defined as the

angle formed between the centroid of the gesture (x,y) and the gesture’s first point.

GeLATI: integrating hierarchical gestural menus in existing toolkits 123

Figure 7.2.: $1 gesture recognizer first two steps. At the top, a raw gesture as captured by
the input device with three different resamples where N denotes the number of
sampling points. Wobbrock et al. have determined empirically to use N = 64 as
a reference resampling parameter. At the bottom of the figure, the second step of
the gesture recognizer. The resampled path is rotated to an “indicative angle” to
ease the recognition and the match process. [Wobbrock 07].

Using a reference angle for each gesture/template, the algorithm resolves the rotation

invariance problem;

Scale and Translate : the gesture/template is reduced to a reference square thus easing

the comparison of the recognition step;

Find the optimal angle for the best score : a distance is computed for the gesture

and previously stored templates. The candidate is the closer template (that is, the

one with a minimal distance).

The $1 recognizer has been evaluated experimentally in terms of recognition rate and

users experience and compared to more complex solutions. Although it satisfies the

requirements specified above, the $1 recognizer, as any simple technique, has limitations:

because $1 is tolerant to speed, rotation, scale, and position, it cannot distinguish gestures

whose identity depends on specific orientations (left-to-right or right-to-left arrows), aspect

ratios (rectangle vs. square), and location. In addition, $1 cannot recognize simple 1D

gestures, such as lines, nor distinguish gestures based on the speed they have been

124 GeLATI: integrating hierarchical gestural menus in existing toolkits

stroked with. It cannot either propose dynamic guide since it is based on a post analysis

algorithm.

The take away message from the $1 recognizer, is to align with the requirements of $1

for its simplicity. There is still a need for a simple but powerful gesture recognizer capable

of detecting both simple and complex gestures while offering users with complete control

over the interaction. In particular, as discussed previously, self-reveal, dynamic guidance,

and reversibility are key to the usability of gestural menus. Although template-based

recognition is a good way to go, single-template is preferable to multiple-sampling-

template in order to avoid users trials. These observations have served as the driving

principles for the objectives of GeLATI.

7.2. Objectives and Approach

In general, existing implementations of gesture recognizers propose an “eager” version of

their offline statistical comparator. For GeLATI, I propose a gesture recognizer that is

able to offer the same characteristics as statistical approaches but without the statistical

apparatus thus speeding up the recognition process and being a priori “eager” (or on-

line). The objective is to drastically shrink the number of features required for gesture

recognition, thus simplifying the algorithm and speeding up recognition. As for the $1

recognizer, the objective is to be resilient to variations in sampling. By contrast with

$1, the goal is to support rotation variance which is an important feature in human

gestures. Scale and position variance if necessary (as defined by the developer) should be

supported as well. Finally, the recognizer must be able to dynamically propose candidate

gestures during the interaction itself not just when users have completed their stroke.

The solution I propose for GeLATI is motivated by the importance of shape as stressed

by Rubine and highlighted by Bau The description of a shape in Rubine’s algorithm

involves features such as cosine and sine of the gestures’ starting angle or distance between

the first and last point of the gesture. In the user’s perspective, the specification of a

gesture is based on the rough appearance of the shape [Bau 10]. GeLATI proposes a

vectorial approach for modeling gestures shape. Figure 7.3 illustrates the approach

where a question mark gesture taken from the unistroke set is being “vectorialized”. The

first shape on the left of the figure represents the ideal path users should follow. The

starting point is characterized by a small black circle attached to one extremity of the

path. Next to the ideal path, is represented a sampled gesture. Point density may

GeLATI: integrating hierarchical gestural menus in existing toolkits 125

Figure 7.3.: A vectorial approach to gesture recognition. From left to right, the “vectorializa-
tion” of a gestural template.

vary according to the speed the gesture is being stroked and the characteristics of the

input device used. The third shape represents a segmented version of the ideal path.

That is the ideal template represented by a concatenation of straight lines. Then, the

segments that compose the third shape are substituted with vectors to build the vectorial

representation of the ideal shape. It is composed of a serialization of well defined vectors

characterized by a starting point, orientation, direction and magnitude.

The vectorial shape of a gesture is the model used to drive the GeLATI gesture

recognizer. Complex gestures are built using a sequence of concatenated vectors.

7.3. GeLATI templates

In GeLATI, gestures templates are represented as a serialization of vectors. On every

input event, the recognizer verifies if the designated point is compatible with the current

vector or with the next one (if it exists). In case of compatibility, the gesture is confirmed

as a candidate for the interaction. Otherwise, the gesture is excluded.

By following the path defined by the vectors the user is able to complete well-defined

gestures. However, following a given path is not a simple task, even in direct manipulation

using touch screen enabled devices [Accot 97]. Indeed, the actual path deviates from the

ideal one. As a result, it is contained within a tunnel rather that being a strict sequence

of straight lines. Identifying the ideal width of the tunnel is not straightforward. In an

early version of the GeLATI recognizer, preliminary tests did not lead to a clear ideal

value. Empirical evaluations suggested a well accepted tunnel width average value around

1cm (that is, 0.5 cm on the left of the vector and 0.5 cm on its right). Nevertheless,

having a straight rectangular tunnel around the vector did create some problems. The

task of following the tunnel revealed to be too difficult after a certain distance from the

activation point. Using a fixed average value for the tunnel width did not appear to be a

126 GeLATI: integrating hierarchical gestural menus in existing toolkits

Figure 7.4.: On the left, a simple gesture composed of a single trait: for the simplest cases, an
angle (α) is the only parameter needed (direction) to define a gesture of infinite
length (the vector magnitude). On the right, a screenshot of a vector with all the
GeLATI’s parameters represented graphically.

valid choice. To work around the steering law, I designed a compound tunnel composed

of a conic section followed by a fixed-width section as shown in Figure 7.4.

The values of the vector parameters depend on the input device as well as on human

capabilities. Figure 7.4 On the left, the parameters of a GeLATI vector. In this example,

the gesture is an oriented straight line defined by a direction measured by the angle

(α), and optionally by a magnitude. When the magnitude is not defined, the gesture is

supposed to have an infinite length. The direction is fixed, going away from the starting

point. Around the starting point, an input inaccuracy zone is defined to address the

inaccuracy of input devices. Touch screens are accurate enough to permit the selection

of well-defined points, but they imply an inaccurate user interaction due to the finger

moving around the desired point. Angular precision defined asymmetrically with two

different θ (θ+ and θ-), permits the task difficulty to remain constant when moving from

the starting point toward the desired direction. θ+ and θ- define the breath of the conic

section of the tunnel. To avoid the precision to grow up indefinitely, developers can

specify a maximal precision which corresponds to the desired maximal tunnel width.

Once determined, the size of the tunnel remains constant.

The right side of Figure 7.4 shows an implemented version of the vector presented

on the left. The screenshot represents a simple GeLATI gesture. The starting point is

characterized by the inaccuracy zone circle drawn with a dotted line. Input variations

around the starting point in the inaccuracy zone are ignored. The angular precision zone

starts from the starting point toward the gesture direction. After the angular precision, a

maximal precision is defined edging the tunnel with a fixed width. Two very small circles

are visible near the end of the ideal vector. The first, attached to the vector, represents

GeLATI: integrating hierarchical gestural menus in existing toolkits 127

Figure 7.5.: On the left, a GeLATI “Question Mark” as a series/concatenation of five vectors.
In the center, a screenshot of the question mark gesture along with the feedback
provided by GeLATI. On the right, a screenshot with a different feedback that
shows the name of the command (help) as well as the exact trace of the user
input.

the ideal user position given the angle of the gesture trait. The second represents the

actual user-defined position.

Complex gestures are composed from simple gesture traits that are attached as

children of an existing trait. Figure 7.5 shows the “Question Mark” gesture using GeLATI.

On the left, a conceptual question mark is proposed as a hierarchy of five vectors, each

one (but the last) with a child. In the center, a screenshot of the actual implementation.

On the right, a screenshot of the same implementation of the GeLATI “Question Mark”

but with a different graphical feedback/feedforward. Instead of showing the algorithm

parameters, the implementation proposes a marking menu-like GUI. The command

label continuously indicates the direction of the current and next trait. By continuously

updating the label position, the user is driven during the interaction. An ink trace marks

user input thus showing the whole gesture shape. Here, the user did draw a question

mark by simply following the dynamic guidance rendered graphically.

7.3.1. Structure, Aspect and Interaction

From Shneiderman’s menus classification, we have learnt the importance of menus layout

and of their visual appearance 6.2.1. From Bailly’s menus classification, we have noted

the importance of interaction 6.2.2. These key recommendations have been taken into

account in GeLATI in terms of Structure (layout), Aspect (graphical representation) and

Interaction. These three dimensions (Structure, Aspect, Interaction) are not attached to

128 GeLATI: integrating hierarchical gestural menus in existing toolkits

the gesture as a whole, but at a fine grained level, that is to each vector that composes a

gesture. I call these vectors, traits. By doing so, GeLATI is able to support incremental

dynamic layout, representation and interaction.

Trait Structure

The trait structure contains the vectorial information together with GeLATI proper

characteristics of the trait. Here, the direction angle and the length of the trait are

specified together with the diameter of its inaccuracy zone, its angular precision and its

tunnel maximal width.

Every input event is passed to the trait structure in order to update the state of the

trait. When created, the trait structure is in the Ready state. When the user starts an

interaction (or when the interaction reaches the interested trait from its parent trait),

the trait structure becomes Active and starts consuming input events. When the user

goes beyond the minimum required length from the starting point while lying inside the

trait tunnel, the trait structure becomes Validated. When the trait is not interested in

input events (e.g., the input event corresponds to a point that lies outside of the tunnel),

it tests the point with its siblings. If there is at least a sibling interested in the input

event, the structure trait becomes Forwarding, otherwise the structure trait enters the

Sleeping state. If the user reaches the previous level of the hierarchy, the structure trait

becomes Restored, then Active again.

Trait Interaction

The interaction component of the trait contains the information about the user interaction

that characterizes the trait: when to fire the gesture event, i.e. at the end of the interaction

or after passing a certain distance from the starting point; whether it has to continuously

fire as soon as the trait enters the Validated state, or if it needs to fire once at the end of

the interaction (thus reproducing the control menus interaction style). Developers can

specify whether the gesture can be considered completed at every trait or if users need to

reach the last trait of the chain that composes the gesture. The trait interaction contains

the user’s speed at runtime as well as a pointer to the method the library has to call as

specified by the developer. Different actions can be defined by developers according to

the speed the gesture has been stroked with.

GeLATI: integrating hierarchical gestural menus in existing toolkits 129

Figure 7.6.: GeLATI is implemented in Objective-C on top of the iOS Foundation Framework.
Default GeLATI GUIs are developed over the GeLATI Core using the Core
Graphics and Quartz frameworks. A GeLATI menu is built over the GeLATI
core and organizes multiple gestures through an entry point hierarchical root.
Applications built on top of GeLATI receive the method specified by in gesture
definition.

Trait Aspect

The trait aspect contains information regarding how to draw each trait of the gesture

such as the preferred color, the cursor or the background images to be used for rendering.

For each gesture, developers specify a tree of GeLATI traits and for each trait, its

structure, interaction, and aspect. This is done through a GeLATI Bundle. A GeLATI

bundle is a directory that includes three XML files (“structure.plist”, “interaction.plist”

and “aspect.plist”) and a “resources” folder. Files are used by the library when registering

a bundle in order to load a GeLATI gestural menu. The files that correspond to

the Question Mark gesture described in Figure 7.5 are presented in Appendix A.2.1,

Appendix A.2.2, Appendix A.2.3.

7.3.2. Software Architecture

As shown in Figure 7.6, the GeLATI library is written for the iPhone/iPod/iPad on top of

the iOS Foundation framework using Objective-C. The GeLATI core is mainly in charge

of the organization of the traits that compose a GeLATI menu hierarchy. The GeLATI

hierarchy is exposed as a menu component thanks to the “GeLATI Menu” wrapper. The

GeLATI menu permits new listeners to be registered (unregistered) and new gesture

130 GeLATI: integrating hierarchical gestural menus in existing toolkits

sets to be added (removed). Two defaults graphical user interfaces are included in the

GeLATI library. They are built on top of the GeLATI core and make use of the Apple

UIKit, Core Graphics and Quartz frameworks to best integrate with the iOS graphical

environment. The first graphical interface offers a detailed graphical representation

of the functioning of the underlying algorithm as well as of the current status of the

GeLATI core (as illustrated in Figure 7.4). The second graphical interface proposes

an OctoPocus-like interface that simplifies the view for non expert users (as shown in

Figure 7.8). More interfaces can be implemented and used as shown in Figure 7.5 where

a marking menu-like GUI has been developed. To better analyze the working details of

the algorithm we now explain in depth the GeLATI Core and the event management.

The GeLATI Core

The GeLATI algorithm is implemented by three main classes: UMMenu, UMGestureNode

and UMStructureTrait (see Appendix A.1 for an overview of all the GeLATI classes).

The UMMenu class, as already introduced, is a menu wrapper to the GeLATI library.

It registers/unregisters listeners and gesture bundles.

The UMStructureTrait class implements the GeLATI structure for each trait. The

importance of a trait structure has been explained above as it represents the algorithm

engine. Here the geometrical and mathematical analyses interpret input events and

update the state of the trait (Ready, Active, Validated, Sleeping, Restored) as explained

above. Trait status is used by the UMGestureNode to update the gesture tree and to

dynamically retrieve candidate gestures for a given interaction.

The UMGestureNode class builds the tree hierarchy that corresponds to the menu

structure. A GeLATI menu always starts with a “root” gesture node with no parent and

several gesture sibling nodes that correspond to the available gestures. Each gesture

node has a structure, an interaction and an aspect object that respectively implement

the previously described components of a trait. When an input event is received by the

GeLATI menu (UMMenu), this event is hierarchically dispatched to all the traits of the

menu (starting from the roots UMGestureNode). The root node dispatches the event

to its siblings directly since it has no real trait associated to it. When a sibling node

receives an input event, it asks its associated trait to analyze it. The node updates its

status according to the status returned by the associated trait.

A gesture node can be:

GeLATI: integrating hierarchical gestural menus in existing toolkits 131

Figure 7.7.: Raw events are transformed into UMEvents and passed to the GeLATI core.
GeLATI consumes the events by updating the traits that compose the menu tree.
UMEvents are passed to the feedback/feedforward views together with the tree in
order to update the aspect graphical rendering. UMGestureEvents are generated
and sent to the application to update its status and/or to fire the developer’s
defined actions.

Ready when it is first created and its trait status is Ready. Or when its trait is “Empty”,

i.e. it is a root node;

Active when its trait is consuming events;

Idle when its trait is Sleeping.

When the trait has been validated and the interaction object confirms that the gesture is

completed (i.e. candidate to the interaction), the gesture node enters the ChainCom-

pleted state. This state is a particular Active state. When the node is Active and the

structure trait is Forwarding, events are dispatched to the siblings, otherwise sibling

nodes just return to optimize the algorithm computation.

The GeLATI Events

Touch and accelerometer based raw events are transformed by input adapters into GeLATI

compatible events. According to the input adapter used, touch events can be used alone

or complemented with accelerometers data. Once ready, events are passed to the GeLATI

core that updates the gesture status and the associated GUI Aspects. Then, the GeLATI

core fires the application methods if the gesture is Started, Continued, Ended or has

132 GeLATI: integrating hierarchical gestural menus in existing toolkits

been Cancelled. Two different kinds of events are used to better synthesize the needs of

a gestural architecture:

UMEvent A dedicated event object has been created in order to completely control

event management within the GeLATI components. Indeed, UMEvents are input

device independent thus permitting a better CrossModal/Multimodal fusion of

touch and accelerometer based raw inputs. Independently of the input devices that

generated them, UMEvent drives the GeLATI core. Interested nodes of the current

menu tree receives and analyzes the current event thus updating its status and the

status of its sibling if necessary. Once the tree is updated, UMEvents are passed to

the GeLATI GUIs together with the current GeLATI tree. GUIs objects update

the GeLATI representation according to the tree status and the received events.

UMGestureEvent GeLATI compatible application receives UMGestureEvents from the

GeLATI menu. These high level events encapsulate information about the gesture

state, i.e. whether whether a gesture has began, continued, ended or has been

cancelled. Applications can then update their status and fire the developers defined

actions without considering the details and mechanisms of the GeLATI library.

Having presented the principles and detailed functioning of GeLATI, the following

examples show how the power of the library can be exploited.

7.4. Examples of Use

The section illustrates four ways of exploiting GeLATI: (1) Implementing reference menus

with GeLATI; (2) Integrating GeLATI in legacy toolkits; (3) Implementing multimodal

and crossmodal interactions with GeLATI; (4) Exploiting multiple instance of a GeLATI

menu through parallel interaction.

7.4.1. Implementing reference menus with GeLATI

Figure 7.8 shows an overview of the developed GUI aspects.

The two aspects proposed at the top of the figure are the default aspects provided by

the library, while the aspect proposed at the bottom has been developed as an external

module.

GeLATI: integrating hierarchical gestural menus in existing toolkits 133

Figure 7.8.: Different GUI aspects can be associated to the same gestural menu. The first
raw shows the two default GUI aspects integrated in the library. The first one is
an accurate representation of the functioning of the underlying algorithm. The
second one is an OctoPocus-like view of a GeLaTI menu. The second row shows
a third GUI aspect designed to imitate the Marking Menu.

The top left GUI aspect has been presented above in Section 7.3

The top right GUI aspect is an OctoPocus-inspired graphical representation of the

gestural menu. As discussed in the previous chapter, the key contribution of OctoPocus is

a continuous feedback and feedforward information flow. On the other hand, OctoPocus

has hierarchical and interactional limitations: it does not provide the developer nor

the final user with a simple hierarchy management. Nor does it provide a complete

exploration mechanism except to start from the beginning. By contrast, this version of

OctoPocus allows users to go back and correct their choice incrementally. This is made

possible by the GeLATI model of a gesture as a chain of traits where each trait has its

own "structure-aspect-interaction" decomposition.

The third example is a marking menu-inspired graphical representation of the same

gestural menu where the aspect component has been modified while keeping the structure

and interaction identical to the two other examples This has been made possible by the

GeLATI architecture.

GeLATI gestures can be defined by exploiting the length of each trait. Figure 7.9

shows an example which, as discussed in Section 7.1, cannot be implemented with $1

recognizer. It is a single trait gesture where three actions are associated to three different

lengths. When the user starts the interaction, the “Corto”2 gesture is represented with

the defined fixed length. When the user reaches the end of the first gesture, the second

2Corto is the italian for Short.

134 GeLATI: integrating hierarchical gestural menus in existing toolkits

Figure 7.9.: Three gestures are associated to the same vector with three different lengths. An
example cannot be supported by the $1.

Figure 7.10.: The “Branch” gesture has a fixed length and two siblings: “Branch Right” and
“Branch Left”.

“Lungo”3 is represented. The user can choose either to continue for Lungo or to confirm

for Corto. The same interaction is repeated for “Lunghissimo”4. The Lunghissimo gesture

has no well-defined length. In this example, the GUI aspect proposes squared edges

for the trait and the command label when a fixed length is defined. Rounded edges

characterize gesture traits with undefined magnitude (i.e. free length gestures).

The GeLATI architecture proposes a simple hierarchy management of gestural menus.

Figure 7.10 shows a simple example of gestures hierarchy. The first level of the hierarchy

is characterized by the “Branch” trait. As shown in the figure, the trait has a fixed length.

Once the “Branch” trait validated, the GUI aspect proposes two traits siblings: “Branch

Left” and “Branch Right”. As shown by the rounded edges, the second level sibling is

free length.

3Lungo is the italian for Long.
4Lunghissimo is the italian for Longest.

GeLATI: integrating hierarchical gestural menus in existing toolkits 135

Figure 7.11.: GeLATI gestural menus can be integrated into legacy widgets. Enhancing
classical GUI components with gestural interaction permits a complete gestural
experience and optimized screen space management.

7.4.2. Integrating GeLATI in legacy toolkits

Figure 7.11 shows a simple example of GeLATI augmented UIKit sliders. On the left, a

demo example proposes a simple media player. At the top, a slider indicates the current

play position with respect to the whole track. In the center, a sound volume indicator.

Under the volume indicator, a slider to control the sound volume. At the bottom, a

toolbar contains the usual rewind, play/pause and feedforward buttons. On the right side

of the figure, a GeLATI enhanced interface example where the sliders default control has

been disabled. The two sliders are enhanced with two simple GeLATI gestural menus.

The toolbar at the bottom has been eliminated thus freeing screen space. Three gestures

are proposed for the track slider. The first is the root gesture. By simply pressing

and releasing the slider, the play/pause command is invoked. Moving to the left fires

the rewind command, moving to the right fires the forward button. Here, the invoked

methods are speed controlled. The rewind/forward speed is mapped to the gesture speed.

Two gestures are proposed for the volume slider. The GeLATI menu is simply invoked by

touching the slider. Moving to the left decreases the sound volume while moving to the

right will high it up. In this case, the menu is position controlled. The slider is moved

proportionally to the magnitude of the gesture.

136 GeLATI: integrating hierarchical gestural menus in existing toolkits

(a) (b)

Figure 7.12.: Two screenshots showing the test application and the interaction I designed to
test the accelerometers+touch screen synaesthesia. In 7.12(a) the application is
waiting for a new interaction to start. In 7.12(b) the interaction started and
continued selecting the cheese on the left through a finger movement. The task
of the active trial is to select the yellow upper-left cheese, while the currently
selected cheese is shown in green. User could either control the application
through the touch screen or though the accelerometers.

7.4.3. Multimodality with GeLATI

Three input modules are integrated in the GeLATI library by default. A touch based

one, and two accelerometers based, the first position controlled and the second speed

controlled. A third module has been created in order to analyze the touch+accelerometers

“synaesthesia” (c.f. Chapter 2) using the GeLATI library and experimented in an informal

test application visible in Figure 7.12(a) and Figure 7.12(b).

Previously conducted experiments showed us the difficulties users have in interacting

with a menu using traditional accelerometers-based techniques (position and speed

controlled). Acceleration-based tilting control made users concentrate on the control

itself and created problems in stopping the interaction. Position-based tilting techniques

need interpolation filters to stabilize accelerometers values. Filters introduced delays

making the interaction less responsive.

I implemented a novel tilting technique letting even non-expert users simply interact

with the device. The user had to tilt enough the device on the desired direction to

overcome a predefined activation threshold. Once the direction was chosen, users had

GeLATI: integrating hierarchical gestural menus in existing toolkits 137

to orientate the device back on the starting position. The vertical and horizontal axes

were independent and corresponded to the pitch and roll of the device. The following

algorithm describes the roll behavior users were asked to control. The pitch behavior

can be simply retrieved.

Algorithm 1 Tilt algorithm for roll

Require: delta_roll,roll_threshold
if rool then

if delta_roll > rool_threshold then

roll ← FALSE
roll_gain←roll_gain+1

else if delta_roll < −roll_threshold then

roll ← FALSE
roll_gain←roll_gain-1

end if

else if abs(delta_roll) < (roll_threshold/2) then

roll ← TRUE
end if

7.4.4. Parallel interaction with GeLATI

Multiple instances of a GeLATI menu can be created while sharing the same graphical

aspect. In Figure 7.13, left, a simple white canvas (a UIView) has been enhanced with

a GeLATI menu. The user starts two distinct interactions in parallel. Both of them are

driven independently thus permitting collaborative exploitation. An example of such

interaction is visible on the right side of the figure. Using two parallel interactions, the

user is able to position and orient the button widget independently.

7.5. Limitations

GeLATI, as any simple approach, comes with some intrinsic limitations. Other limitations

can be overcome easily by improving the library per se.

138 GeLATI: integrating hierarchical gestural menus in existing toolkits

Figure 7.13.: Multiple instances of a GeLATI menu can be activated with the same GUI aspect
or with different ones. On the left two GeLATI menus have been activated
on the main view. On the right two menus have been activated on the same
graphical button. The “BRigth” options controls the button orientation while
“Left” option control the widget position.

7.5.1. GeLATI intrinsic limitations

By essence, the GeLATI recognizer does not permit a sibling trait to have the exact

opposite direction of its parent trait: (1) Once a trait has been validated, it is ready to

forward events to all candidate siblings. (2) Moving up to the node opposite direction is

interpreted as a back up the node hierarchy as long as the input event still satisfies the

path constraints.

GeLATI proposes an intermediate point of view in between position driven and

gestural GUIs. Nevertheless the approach impose some limitation when considering user

exploration in menus. In particular when the user move among siblings of the same node

(i.e. brothers). GeLATI menus have an acyclic tree structure, thus preventing direct

moves among brothers without stepping by the father.

7.5.2. Future work

The library should let the developer choose out to deal with bimanual/multi-fingers

interaction to work either in parallel or complementarily. In the current version, multiple

instances of a GeLATI menu on the same graphical object cannot compose more complex

syntaxes but are interpreted as independent instances. While the proposed library has

GeLATI: integrating hierarchical gestural menus in existing toolkits 139

been designed with composition in mind, work needs to be done to completely integrate

this feature.

The GeLATI library has been studied to permit fast prototyping and testing gestural

interactions. User testing has been conducted during the development of GeLATI in

order to drive the development and fix (wrong) hypotheses. Nevertheless, the library

needs to be tested with other developers.

Finally, a graphical user interface to create GeLATI menus from examples needs to

be developed.

7.6. Synthesis

An introduction on existing features based statistical gesture recognizer have been pre-

sented. Motivation justifying a non-statistical approach have been highlighted. The need

of an on-line hierarchy management; the necessity to improve touch and accelerometers

harmony in composing gestural interactions justified the research. This chapter has

described GeLATI and its vectorial approach to gesture recognition. In particular I ana-

lyzed the GeLATI algorithm according to the seven points introduced at the beginning of

the chapters: (1) gesture recognition is driven by a new vectorial approach and combines

cross-modal and/or multi-modal interactions; (2) gesture recognition is driven by a

single-sample template; (3) gestures are rectilinear but GeLATI reduces users constraints

in completing them; (4) GeLATI supports both deictic and semaphoric gestures; (5)

GeLATI aspects propose to novice users guidelines and guidance in completing the

interaction; (6) a hierarchical management insures the undo-ability of the interaction

and supports exploration; (7) GeLATI integrates with legacy toolkits enhancing existing

graphical widgets with gestural interaction. In GeLATI features are reduced to the

minimum, thus simplifying the task of gestural menus specification and recognition.

The GeLATI software architecture has been presented and detailed. Examples have

been described together with interaction properties GeLATI menus are characterized by.

Limitations and Future work have been presented characterizing the current state of the

art of the proposed solution.

140

Part V.

Conclusions

141

Chapter 8.

Conclusions

The preceding chapters have shown the importance, diversity, and complexity of gesture-

based interaction techniques for hand-held devices. Although gesture is viewed as a

natural way to interact with a machine, developing effective gestural interaction techniques

is still a challenging task. Designers cannot rely yet on standard conventions such as the

interaction patterns developed for WIMP user interfaces. Instead, they have to cope

with a perpetual technology push that continuously widens the design space. In addition,

the implementation of gesture recognizers along with their integration into current user

interface toolkits is not a straightforward matter.

In this context, this dissertation is concentrated on gestural interaction techniques for

a specific class of devices (i.e. touch screen and accelerometers-enabled handhelds) with

two key concerns: (1) to provide designers with a conceptual framework that structures

reasoning about the nature of gesture-based interaction techniques, and (2) to provide

developers with an efficient and robust gesture recognizer that can be easily integrated

into existing toolkits.

8.1. Contributions

The contributions of this thesis is three-fold: conceptual, with taxonomies for reasoning

about gesture and gestures for hand-held devices; technical, with the GeLATI library;

and interactional, with the design of novel interaction techniques such as TouchOver.

143

144 Conclusions

8.1.1. Gestural Classification

I propose a synthesis of the taxonomies that have been developed for gestures in psy-

cholinguistics as well as in Computer-Human Interaction. Some of them focus on the

functions of gesture, others classify gestures according to their morphology while others

blur the distinction between function and form. By correlating these perspectives into a

single framework, new researchers in the field are provided with a unified concise view so

that they can rapidly relate the different approaches, perspectives, and terminologies.

Additionally, this framework is used to clarify the coverage and focus of my own

interest: that of deictic and semaphoric gestures for computer human interaction. With

regard to expressive power, I address gestures that cover the specification of a single

token up to the expression of commands along with their parameters.

A synthesized taxonomy for gestures is appropriate for comprehending the breadth

of the domain, but not for reasoning at a fine grain about the design of a gesture-

based interaction technique. For this purpose, I propose a new taxonomy for gestural

interaction techniques based on accelerometers.This taxonomy, which is motivated by

the foundational contributions in HCI, brings together Foley’s generic tasks with the

formal lexical, syntactic, semantic and pragmatic dimensions of languages to characterize

the physical actions involved in gestural interaction. It is radically centered on human

physical actions. The hypothesis is that the physical action is the appropriate atomic

level from which novel interaction techniques can be designed to provide system-wide

consistent languages. In this taxonomy, the abscissa defines the lexicon in terms of the

physical manipulations users perform with the device, with a clear separation between

background and foreground interaction. The ordinate corresponds to Foley’s interaction

tasks. An interaction technique is plotted as a point in this space where each point is

decorated with pragmatic and syntactic properties. The taxonomy includes two syntactic

modifiers: whether the interaction technique is clutched or continued, and the control

type (in position, speed, or acceleration). One pragmatic modifier indicates the degree of

indirection of the interaction technique.

In order to demonstrate its flexibility and coverage, this taxonomy has been applied

to the classification of post-WIMP accelerometers-based interaction techniques as well as

to WIMP classical interaction techniques.

Among existing interaction techniques, menus play a prevalent role. For this reason,

I have reviewed the design spaces developed for menus as well as the definitions and the

Conclusions 145

subtle terminology distinctions between widget, interactors, and interaction instruments.

From there, I propose a clear distinction between software instruments and hardware

instruments as well as a revised version of Bailly’s definition of menus.

A gesture is a physical instrument whose hardware component is a direct input device

(mouse, pen or touch screen) and the software component, a gesture recognizer.

A menu is a software instrument that satisfies the following requirements:

1. It supports the selection of one item within a finite set of options.

2. It minimizes mental efforts by presenting the set of options to the user.

3. It presents the options as a semantically and spatially meaningful structure.

4. It is transient in the sense that it is perceivable to the user only during its

interaction with the user.

5. It is quasimodal since it defines a local context for system interpretation that is

maintained explicitly by the user until the interaction ends.

.

A gestural menu is a menu software instrument connected to a gesture instrument such

that the selection process is driven by gestures.

8.1.2. GeLATI

GeLATI is a library to design, prototype and implement gestural menus.

The key features of GeLATI are the following:

1. Gesture recognition is based on a new real time vectorial approach that combines

multiple inputs to support cross-modal and/or multi-modal interactions;

2. Gesture recognition, which uses a single-sample template approach, does not need

training;

3. Gestures, which are modeled as series of vectors, are rectilinear. (Rectilinear gestures

have been demonstrated as been more usable than free form gestures.);

4. Both deictic and semaphoric gestures are supported;

146 Conclusions

5. Novice users are guided along well-defined paths to complete a gesture stroke.

Expert users can stroke commands without graphical feedback as exemplified by

the Marking Menus;

6. Exploration is supported through an incremental back-to-hierarchy-node mechanism;

7. Hierarchical gestural menus can be automatically integrated into existing graphical

toolkits.

In short, the GeLATI recognizer is able to offer the same characteristics as statistical

based approaches but without the statistical apparatus thus speeding up the recognition

process. As for the $1 recognizer, the recognizer is resilient to variations in sampling. By

contrast with $1, the goal is to support rotation variance which is an important feature

in human gestures. Scale and position variance if necessary (as defined by the developer)

are supported as well. Finally, the recognizer is able to dynamically propose candidate

gestures during the interaction itself not just when users have completed their stroke.

A number of examples have been implemented to demonstrate the functional coverage

of GeLATI as well as its integration into existing graphical toolkits.

8.1.3. TouchOver

TouchOver is a complementary multimodal input for one hand interactions on touch-

screen based accelerometers-enabled handheld devices. TouchOver offers a three-state

input model similar to the stylus tablet input with two states where the system tracks

the finger’s motion, thus adding a passive tracking state to touch input. This creates

new opportunities for handheld device interaction techniques like on-over interactions,

feedforward, or visual and eye-free user interface exploration.

The proposed interaction technique has been experimentally validated in precision

and speed.

8.2. Limitation and Perspectives

Two main limitations need to be addressed in the GeLATI framework: (1) the re-selection

mechanism and (2) the integration of non rectilinear gestures.

Conclusions 147

8.2.1. The re-selection mechanism

When a user interacts with a GeLATI menu, he/she crosses several hierarchy nodes by

simply following the defined visible path. When correcting his/her choice, the user goes

back the interaction path. In a position-based menu, the user position is simply tracked

and analyzed with respect to the graphical object bounding box. In a GeLATI-based

menu, the user position is checked with respect to the latest point in each trait that

composes the gesture. An interesting analysis could be to test the user’s satisfaction

and to validate the new approach in order to integrate the algorithm in other existing

gestural recognizers. Another way is to introduce the bounding box concept in GeLATI,

thus merging position-based and gesture-driven approaches.

8.2.2. Non-rectilinear traits

GeLATI algorithm is based on the main hypothesis that a sequence of linear traits

(vectors) composes complex shapes thus driving users through the gestural interaction.

An interesting scenario should be evaluated extending the basic modules composing

complex gestures also to non-linear traits. For example, a gesture could be defined as a

sequence of a y = sin(x) trait plus an y = x trait rather than the simple vectorialization

algorithm proposed.

8.3. I should have. . .

The applicability of the GeLATI approach has been tested in several informal experiments

and through different demonstrators. Nevertheless, the proposed architecture and library

still need to be tested with other programmers and designers. In addition a formal user

study needs to be designed in order to verify users acceptance in integrating gestures

into classical widget components.

148

Synthèse en français

149

151

152

Résumé

Dans cette thèse, j’aborde la question de l’interaction gestuelle sur

dispositif mobile. Ces dispositifs, à présent communs, se distinguent

des ordinateurs conventionnels principalement par leurs périphériques

d’interaction avec l’utilisateur (écrans de taille restreinte mais tactiles,

capteurs divers tels que les accéléromètres) ainsi que par le contexte

dans lequel ils sont utilisés. Le travail que je présente est une exploration

du vaste domaine des techniques d’interaction sur ces dispositifs mobiles.

Je structure cet espace en me concentrant sur les techniques à base

d’accéléromètres pour lesquelles je propose une taxonomie. Son pouvoir

descriptif et discriminant est validé par la classification de trente-sept

techniques d’interaction de la littérature. La suite de mon travail se

penche sur la réalisation de techniques d’interaction gestuelles pour ces

dispositifs mobiles. Avec TouchOver, je montre qu’il est possible de tirer

parti de manière complémentaire de deux canaux d’entrée (écran tactile

et accéléromètres) pour ajouter un état au glissé du doigt, permettant

ainsi d’enrichir cette interaction. Enfin, je m’intéresse aux menus sur

dispositif mobile et je propose une nouvelle forme de menus gestuels.

Je présente leur réalisation avec la bibliothèque logicielle GeLATI qui

permet leur intégration à une boîte à outils de développement d’interface

graphique préexistante.

154

Introduction

155

Introduction

Contexte et motivations

Cette thèse s’intéresse à la conception et au développement des techniques d’interaction

basées sur le geste pour dispositifs mobiles. Les appareils mobiles sont souvent présentés

comme des ordinateurs de bureau dotés de faibles capacités de calcul et une bande

passante restreinte en entrée/sortie. Dans cette thèse, je pars du point de vue que les

appareils mobiles sont fondamentalement différents des ordinateurs de bureau, et donc la

métaphore classique des ordinateurs de bureau leur est inappropriée. Ce point de vue est

motivé par deux observations. Tout d’abord, les ordinateurs de bureau et les appareils

de poche sont des solutions pour des contextes d’utilisation différents. Ensuite, ils offrent

des caractéristiques d’interaction fondamentalement très différentes.

Les smartphones tels que ceux présentés dans la Figure 8.1, les lecteurs audio et les

tablettes PC ont désormais atteint des performances élevées tout en conservant une taille

relativement compacte. Ce qui permet aux utilisateurs d’effectuer leurs tâches lors des

déplacements, sans les contraintes de PC de bureau. Contrôler l’e-mail ou naviguer sur

le web dans le bus, écouter la musique pendant le footing, ou encore garder trace de

rendez-vous où et quand nécessaire, sont des exemples typiques de scénarios de la vie

quotidienne.

Par le biais de technologies de capteurs peu coûteux intégrés dans les appareils mo-

biles, les compétences et habilités humaines peuvent désormais être capitalisées de façon

innovante. En particulier, une toute nouvelle gamme de possibilités d’interaction physique

basée sur les compétences humaines en manipulation a été ouverte. Au lieu d’interagir avec

des ordinateurs à travers des dispositifs physiques tels que les souris et les claviers, l’inter-

action peut se produire avec le dispositif mobile lui-même. Peut-être, la meilleure illustra-

tion de cette tendance est le concept d’«interfaces utilisateur incarnées» [Fishkin 98] ou

d’«interfaces utilisateur manipulatrices» [Harrison 98] qui, à leur tour, sont des approches

spécifiques pour les «interfaces utilisateur tangibles» [Fitzmaurice 93, Ishii 97].

157

158

Figure 8.1.: De gauche à droite : une capture d’écran de Microsoft Windows Mobile 7,
montrant l’interface d’une animation en perspective ; l’écran d’accueil d’un
iPhone d’Apple, l’interface de sélection des tâches dans le Palm Pre.

L’importance des gestes

Les gestes sont inextricablement tissés dans nos vies. Citant Axtell : «Sans les gestes, notre

monde serait statique, incolore ... Mario Pei, un expert en communication, une fois a estimé

que les humains peuvent produire jusqu’à 700 000 signes physiques différents. Birdwhistell

estime que le visage seul est capable de produire 250 000 expressions et rapporte que

le chercheur M. H. Krout a identifié 5000 gestes distincts de la main» [Axtell 91]. Ces

résultats quantifiés indiquent que les gestes peuvent jouer un rôle significatif dans

l’Interaction Homme-Machine (IHM). Ils expriment aussi l’immense difficulté rencontrée

par les chercheurs IHM pour concevoir et développer des techniques d’interaction basées

sur les gestes qui soient efficaces.

Selon Baudel, les techniques d’interaction basées sur les gestes sont efficaces dans le me-

sure où ils peuvent être concis, naturels et directs [Baudel 95, Norman 10, Morrel-Samuels 90] :

Concis quand ils permettent aux utilisateurs de spécifier à la fois une commande et ses

paramètres en une action atomique.

Naturel quand ils correspondent à l’attente des utilisateurs au regard de la commande

qu’ils appellent.

Direct quand ils permettent des manipulations directes vraiment directes, sans passer

par «l’indirection» de dispositifs d’entrée physiques intermédiaires.

159

D’autre part, «les systèmes gestuels ne sont pas différents de toute autre forme

d’interaction» [Norman 10] dans ce sens qu’ils doivent suivre les règles de base en

conception d’interaction : typiquement, un modèle conceptuel approprié doit être mis au

point, de même feedforward et feedback, ainsi que des mécanismes pour l’interruption et

l’annulation de l’action doivent être des préoccupations majeures. En outre, en raison de

leur qualité d’être naturels, les gestes peuvent être ambigus et peuvent être adressées par

inadvertance au système.

Bien que l’interaction gestuelle ait été étudiée depuis le début des années soixante,

nous n’avons pas encore de conventions standard de même nature que les modèles

d’interaction développés pour les interfaces utilisateur WIMP. Comme le montrent les

exemples ci-dessous, l’interaction gestuelle a abordé de nombreuses directions potentielles

donnant lieu à nombre de solutions prolifiques.

Une palette d’interfaces gestuelles

Les exemples suivants illustrent l’ampleur des solutions actuelles. Ils ne sont pas destinés

à fournir un aperçu complet de l’état de l’art. Une analyse plus détaillée de l’état de l’art

sera présentée au Chapitre 2. Nous observons à peu près quatre groupes de techniques

d’interaction gestuelle : gestes en l’air, gestes reposant sur le toucher de surfaces, gestes

de manipulation, et gestes combinés avec d’autres modalités.

Les gestes en l’air

Le travail pionnier de Myron Krueger en réalité artificielle au début des années 1980 est

peut-être la première introduction de l’interaction gestuelle du corps dans les airs avec

de grandes images projetées à l’aide d’une vidéo-caméra pour le suivi complet du corps.

Charade, de Baudel, est la première illustration française de gestes de la main en 3D

en utilisant un DataGlove. La Figure 8.3 montre la configuration du système d’interaction

Charade ainsi qu’un exemple des gestes de contrôle d’un visualisateurs de diapositives.

160

Figure 8.2.: Krueger est l’un des chercheurs pionniers des gestes à corps complet.

Figure 8.3.: Charade utilise un modèle d’interaction 3D à la main. Sur la droite, un exemple
de la notation utilisée pour désigner le geste «chapitre suivant» [Baudel 95].

Gestes tactiles

Le nombre de gestes tactiles sur les surfaces graphiques tactiles a littéralement explosé.

En réponse à cette diversité, Villamore et al. ont créé un référentiel de gestes afin

d’organiser et de classer tous les gestes possibles et leur disponibilité dans des produits

commerciaux [Villamore 10]. De plus, Wobbrock et al. ont analysé l’utilisation des gestes

définis par l’utilisateur [Wobbrock 09].

Parmi ces systèmes, OctoPocus [Bau 10] et MicroRolls [Roudaut 10] méritent une at-

tention particulière. OctoPocus combine une rétroaction immédiate avec l’anticipation de

manière fortement couplé. En montrant tous les chemins possibles de façon incrémentale,

(1) les utilisateurs savent ce qu’ils ont déjà fait (feedback) et les possibilités qu’ils ont

(feedforward), et (2) experts et novices sont soutenus de manière flexible. La Figure 8.5

161

Figure 8.4.: Villamore et al. proposent une référence pour tous les gestes tactiles mis en
œuvre dans les systèmes modernes tels que iOS, Windows Mobile 7 ou We-
bOS [Villamore 10].

Figure 8.5.: OctoPocus intègre la rétroaction avec l’anticipation dans les interfaces gestuelles
pour aider les utilisateurs à découvrir et apprendre les menus gestuels [Bau 10].

162

Figure 8.6.: Roudaut propose l’exploitation des micro-gestes au pouce sur les appareils à
écran tactile avec des «Microrolls» [Roudaut 10].

montre un exemple d’un menu OctoPocus avec les gestes associés.

La technique d’interaction MicroRolls exploite les micro-gestes au pouce comme un

mécanisme pour enrichir le vocabulaire d’entrée tout en exigeant une petite «empreinte»

sur l’écran. Comme le montre la Figure 8.6, les micro-gestes sont accomplis en penchant le

doigt dans six orientations différentes sans la nécessité de déplacer le doigt sur l’écran. Six

commandes différentes sont associées aux six MicroRolls distincts. En outre, les MicroRolls

peuvent être combinés avec le déplacement du doigt pour proposer une interaction gestuelle

plus complète, comme proposé dans le RollMark Menu de la Figure 8.6.

Gestes de manipulation

Les gestes de manipulation tels que le squeeze, l’inclinaison, et le shake, sont appli-

qués au corps physique de l’appareil même. Avec des gestes de manipulation, le corps

de l’appareil fait partie de l’interface utilisateur, d’où, le terme «interface utilisateur

incarnée» [Fishkin 98]. Comme exemple de geste de manipulation (voir Figure 8.7),

l’utilisateur incline l’appareil pour basculer entre les applications précédemment ouvertes

activant la modalité par un simple «tap» sur le dos de l’appareil. D’autres travaux ca-

ractéristiques (et pionniers dans ce domaine) comprennent [Fitzmaurice 93, Hinckley 00,

Levin 99, Partridge 02, Rekimoto 96] qui ont ouvert la voie à un domaine de recherche

actif [Ballagas 06, Williamson 07, Wilson 03].

Le geste est aussi une modalité d’entrée, qui, en tant que tel, peut être combiné avec

d’autres modalités comme la parole.

163

Figure 8.7.: TimeTilt propose un exemple d’interaction multimodale qui exploite les accélé-
romètres couplés avec deux langages d’interactions différentes [Roudaut 10].

Figure 8.8.: Bolt utilise la combinaison de la voix et des gestes à la main pour commander
les applications dans la «Media Room» [Bolt 80].

Interaction multimodale

Bolt et son «met-ça-là» sert de référence paradigmatique pour l’interaction multimodale

où la parole et le geste peuvent être utilisés de manière complémentaire pour manipuler

des formes graphiques dans les airs (voir Figure 8.8). Typiquement, le geste assure la

fonction de déictique comme dans :«Déplacer ça vers la droite du carré vert» ou «Met ça

là».

164

L’interaction multimodale basée sur la parole et les gestes déictiques a été étudiée

depuis les années quatre-vingt. Bon nombre de solutions et de boîtes à outils sont

maintenant disponibles dans lesquelles l’interaction multimodale inclut la parole, les

gestes au stylet, et les gestes en l’air [Oviatt 92, Cohen 89, Chatty 04]. D’autre part, le

problème de l’interaction multimodale impliquant les accéléromètres comme dispositifs

d’entrée n’a pas été abordé de manière exhaustive. Les capteurs seuls ne sont pas toujours

capables de déterminer si une interaction a commencé, continué ou terminé. Une modalité

complémentaire offre généralement un moyen naturel à l’utilisateur pour désigner ces

marqueurs. Par exemple, Hinckley et al. ont exploré la complémentarité synergique du

toucher et du mouvement pour les dispositifs mobiles [Hinckley 11].

En outre, les systèmes d’exploitation et les boîtes à outils originaux pour les appareils

portables n’ont pas été conçus pour faciliter l’intégration de nouvelles techniques d’inter-

action. En particulier, l’intégration de nouvelles techniques pour contrôler les widgets

préexistants n’est pas trivialle. Dans la plupart des cas, l’architecture sous-jacente est

étroitement liée aux propriétés d’interaction WIMP, résultant en de fortes limitations

techniques. Par exemple, un pointeur de souris a toujours une position, les comporte-

ments des éléments graphiques des interfaces utilisateurs sont donc souvent guidés par la

position du pointeur. Un tel, petit, détail devient une limitation considérable lorsqu’on

tente de contrôler ces mêmes widgets en utilisant des accéléromètres.

Objectifs du travail

Ce travail a deux objectifs principaux : (1) Organisation de l’espace des menus fondés

sur le geste, en particulier ceux qui exploitent les entrées multimodales (écrans tactiles et

accéléromètres), (2) Proposition de nouvelles techniques d’interaction gestuelle basées

sur l’intégration du toucher et des accéléromètres.

Techniques d’interaction gestuelle

Différentes taxonomies caractérisant les interactions gestuelles ont déjà été proposées dans

la littérature de l’Interaction Homme-Machine (IHM). Dans cette thèse, mon premier

objectif est de proposer un état de l’art des approches existantes et une catégorisation

des techniques existantes.

165

La synthèse des approches existantes permettra de les améliorer à travers la proposition

d’une taxonomie centrée utilisateur grâce à laquelle je pourrai organiser l’état de l’art

sur les techniques d’interaction basées sur les accéléromètres.

Mon deuxième but est de parvenir à une interaction transparente utilisant à la fois

des écrans tactiles et des accéléromètres afin qu’ils travaillent ensemble à la fois en

collaboration et en alternative (Complémentarité et Redondance en termes de propriétés

CARE [Coutaz 95]) pour proposer une interaction multimodale .

Les menus pilotés par le geste

Les techniques d’interaction gestuelle sont souvent utilisées pour contrôler des menus

graphiques. Afin d’offrir une expérience utilisateur riche, j’ai besoin de surmonter les

difficultés spécifiques des interactions gestuelles. Comme décrit par Baudel [Baudel 95], ces

difficultés ont encore besoin d’une solution claire et d’une bonne intégration architecturale :

Algorithme d’interprétation. Je cherche une approche générique pour offrir un algo-

rithme capable d’interpréter les gestes de formes différentes sans qu’il soit limité

par une phase d’apprentissage.

Caractéristiques des gestes. Je cherche à comprendre quelle classe de gestes est la

mieux adaptée pour les dispositifs mobiles et les caractéristiques des écrans tactiles

et des accéléromètres.

Choix de l’Interaction. Les travaux existants sur les techniques d’interaction basées

sur les gestes présentent deux caractéristiques principales : (1) une interprétation

hors ligne de l’interaction et (2) un niveau de hiérarchie unique dans l’organisation

des gestes. Mon objectif est de gérer le suivi en ligne et la reconnaissance de gestes

et d’offrir la capacité d’organiser ces gestes dans les menus, proposant ainsi la

personnalisation des structures du menu de ses niveaux hiérarchiques.

Synthèse des contributions

Je propose un aperçu des approches existantes de techniques d’interaction gestuelle.

Différents travaux des 20 dernières années sont organisés afin de se concentrer sur les

capacités de communication des interactions gestuelles dans le domaine de l’IHM. Je

propose un état de l’art de techniques d’interaction gestuelle basées sur les accéléromètres

166

pour les dispositifs mobiles. Ces techniques sont organisées grâce à une taxonomie centrée

utilisateur innovante. Je présente TouchOver, une nouvelle technique d’interaction pour

effectuer la tâche de sélection sur des dispositifs mobiles dotés d’accéléromètres et d’écran

tactile. Ma dernière contribution est la bibliothèque GeLATI pour la reconnaissance des

gestes. GeLATI met en œuvre un algorithme de reconnaissance vectoriel pour composer

des menus avec des gestes rectilignes.

Aperçu de la dissertation

Cette thèse est structurée en cinq parties principales, la première étant cette introduction

et la dernière les conclusions finales. Les parties centrales composent le cœur de ce travail

et sont décrites ci-dessous en détails :

Part II Décrit l’état de l’art scientifique et industriel des techniques d’interaction basées

sur les accéléromètres pour dispositifs mobiles. En particulier :

1. Le premier chapitre étudie la caractérisation des gestes en fonction des taxono-

mies et des définitions existantes. Plusieurs travaux sont présentés et la portée

de ce travail est définie par les classes des gestes que je vais aborder.

2. Je présente les fondamentaux sur les taxonomie de techniques d’interaction et de

périphériques d’entrée. Je présente une nouvelle taxonomie pour les techniques

d’interaction gestuelles. Je classe certaines techniques d’interaction WIMP bien

connues pour mieux clarifier l’utilisation de la taxonomie proposée.

3. Ensuite j’utilise cette nouvelle taxonomie pour classer l’état de l’art des tech-

niques d’interaction basées sur les accéléromètres. Je décris plus de vingt

techniques d’interaction qui ont été proposées au cours des vingt dernières

années. Je conclus avec une discussion, plus large, du cadre général proposé par

la classification et comment elle a aidé à faire progresser ma recherche.

Part III Mes contributions techniques consistent en la proposition de TouchOver, une

technique d’interaction pour la sélection et d’une infrastructure pour mettre en

œuvre des techniques d’interaction gestuelles multimodales. Cette partie du travail

introduit TouchOver : Je propose TouchOver, une technique d’interaction multi-

modale, qui découple les tâches de positionnement et de sélections élémentaires sur

les dispositifs mobiles dotés d’écran tactile et d’accéléromètres. Avec TouchOver,

le positionnement est effectué avec un doigt sur la surface tactile, tandis que la

167

sélection est véhiculée par une inclinaison douce de l’appareil. En faisant ainsi,

TouchOver ajoute un état «survol» et améliore la précision de la sélection tout en

restant compatible avec les techniques d’interaction existantes.

Part IV montre qu’un ensemble de gestes organisés dans un widget graphique peut

composer un menu. Ces menus graphiques gestuels doivent être bien intégrés avec

les widgets existants tout en exploitant les caractéristiques d’entrée multiples offertes

par le dispositif :

1. Je présente un état de l’art succinct des menus graphiques. J’analyse les défini-

tions existantes ainsi que des exemples afin de mieux cerner le domaine.

2. Cette section est dédiée à la troisième contribution de ce travail : la bibliothè-

que/architecture GeLATI. GeLATI est une approche vectorielle à la reconnais-

sance de gestes rectilignes. Les gestes plus complexes sont décomposés en traits.

Les traits sont organisés hiérarchiquement afin d’offrir la possibilité de créer

des menus gestuels.

168

Un espace de conception pour les

techniques d’interaction gestuelles

basées sur les accéléromètres

169

Caractérisation et classification des

gestes

Dans ce chapitre, je propose une synthèse des taxonomies qui ont été développés pour les

gestes. L’objectif est de construire une vue unifiée et concis pour un domaine complexe

et prolifiques de sorte qu’un chercheur, nouveau dans le domaine, puisse rapidement se

rapporter aux différentes approches, perspectives et terminologies. Certains taxonomies

se concentrent sur les fonctions du geste, d’autres classent les gestes en fonction de leur

morphologie tandis que d’autres encore brouillent la distinction entre forme et fonction.

Parmi les nombreuses fonctions du geste, je me concentre sur le rôle des gestes

bras-main-doigt comme un moyen d’interagir avec un système informatique. La question

conséquente concerne les formes qui prennent en charge ce rôle de manière efficace dans

les perspectives à la fois des humains et du système. Pour cela faire, j’utilise la taxonomie

de Karam et al. comme base. La première contribution de leur travail c’est qu’il est

le résultat d’une revue de la littérature de plus de 40 ans d’interaction gestuelle ; en

deuxième lieu, il s’agit d’un tentatif de proposer une terminologie unificatrice. J’ai ensuite

étendu ou connecté la taxonomie de Karam avec les taxonomies plus spécifiques tels

que celle de Cadoz pour les gestes instrumentaux, ou celle de Roudaut et de Baglioni

pour les dispositifs mobiles à la main. Le résultat de ma synthèse est représenté dans la

Figure 2.6 et le tableaux 2.7 et 2.8 à la fin du chapitre.

Ce chapitre est organisé selon les sections suivantes :

Les fonctions du geste introduit les gestes caractérisée en fonction de leurs caractéris-

tiques des communication.

La morphologie ou style des gestes organise l’état de l’art à partir d’un point de vue

morphologique.

171

172

Les gestes et leurs technologies habilitantes présente un troisième point de vue qui

caractérise les gestes selon les technologies impliquées dans la mise en œuvre de

l’acquisition des gestes même et de leurs reconnaissance.

Enfin un point de vue unifié permettra de comparer les approches proposées et de clarifier

le vocabulaire adopté.

Une taxonomie pour les techniques

d’interaction basées sur les

accéléromètres

Dans ce chapitre, je propose une taxonomie permettant de classer les techniques d’in-

teraction sur dispositifs mobiles à base d’accéléromètres. La motivation pour limiter la

couverture de la taxonomie aux interactions à base d’accéléromètres est que l’interaction

gestuelle pour les appareils mobiles est un domaine très vives et non structurées de

recherche. En outre, les accéléromètres sont actuellement la technologie la plus répandue

pour la détection de multiples dimensions d’actions dans le monde réel [Hinckley 00]. Le

défi est de fournir un cadre de classification qui est à la fois complet et simple à utiliser.

Attendu que l’exhaustivité est illusoire dans un domaine dynamique et prolifiques tels que

la conception d’interfaces utilisateur, je ne la considère pas comme une de mes objectifs.

Je montre, cependant, que la taxonomie est en mesure d’aller au-delà des techniques

basées sur des accéléromètres, couvrant un large domaine de questions liées à l’Interaction

Homme-Machine.

Pour développer cette taxonomie, j’ai construit un vocabulaire contrôlé (c.à.d. des

primitives) obtenue grâce à une analyse approfondie des taxonomies qui ont jeté les

bases de l’IHM depuis plus de vingt cinq ans. Souvent, ces premiers travaux en IHM ont

été ignorés ou oubliés par les chercheurs entraînés par le mode et par une approche qui

poursuit surtout les innovations technologiques.

Ma taxonomie est basée sur les principes suivants :

1. L’interaction entre un système informatique et un être humain est véhiculée par

l’entrée (la sortie) des expressions qui sont produites avec les dispositifs d’entrée

(de sortie), et qui sont conformes à un langage d’interaction d’entrée (de sortie).

173

174

2. Comme touts les langages, un langage d’interaction d’entrée (de sortie) peut être

définie formellement en termes de sémantique, syntaxe, et d’unités lexicales.

3. La génération d’une expression d’entrée (de sortie) implique l’utilisation des appareils

dont les caractéristiques, du point de vue humain, ont un fort impact sur l’expressivité

et l’efficacité de l’interface utilisateur [Buxton 83].

S’appuyant sur les travaux de Foley [Foley 90b] ainsi que sur les considérations

pragmatiques des structures d’entrées de Buxton [Buxton 83], ma taxonomie rassemble

les quatre aspects de l’interaction allant de la sémantique à la pragmatique avec une

extension motivée par l’approche humain pour aborder la spécificité de l’interaction

gestuelle basée sur les accéléromètres. Contrairement à la Mackinlay et al. et a son analyse

sémantique de l’espace de conception pour les dispositifs d’entrée [Mackinlay 90], je ne

considère pas les fonctions de transformation qui caractérisent les techniques d’interactions

du point de vue système.

Ce chapitre est organisé comme suit : Premièrement, je passe en revue les taxonomies

qui ont servi de sources d’inspiration pour mon propre travail : la taxonomie de Foley, pour

avoir identifié les tâches génériques de base composant les interactions avec les interfaces

graphiques utilisateur ; les taxonomies de Buxton et al. et de Card et al. pour leurs

conclusions sur les dispositifs d’entrée. L’analyse de ces taxonomies offre l’opportunité de

clarifier la terminologie (après tout, qu’est ce que c’est une technique d’interaction ?).

Ensuite, j’applique l’espace de classification proposé à des techniques d’interaction à la

souris bien connues. Dans le chapitre suivant, je présente ma taxonomie illustrée par une

étude des techniques d’interaction gestuels à base d’accéléromètres . Je conclus avec les

orientations futures pour la recherche que ma taxonomie a permis de découvrir. L’attente

est de fournir des nouvelles idées et de proposer des orientations prometteuses pour la

conception de nouvelles et puissantes techniques d’interaction gestuelle.

Un état de l’art des techniques

gestuelles à base d’accéléromètres

Les techniques interaction basées sur les accéléromètres considérées dans ce chapitre sont

présentées en ordre chronologique et tracées dans la Figure 4.3. Pour raison d’exhaustivité,

toutes les variations d’une technique d’interaction sont discutées. Par exemple, une

technique d’interaction qui existe comme continu (c’est à dire non embrayé) et embrayé

apparaît deux fois dans l’espace taxinomique, chacune notée avec les modificateurs

syntaxiques appropriés.

Ce chapitre est structuré comme suit : d’abord, j’applique ma taxonomie pour un

certain nombre de techniques d’interaction représentatives basées sur les accéléromètres.

Ensuite, j’analyse l’image fournie par la taxonomie pour définir le cadre général des

interactions existant. La discussion conduira le lecteur à travers l’analyse de l’état de

l’art et permettra d’analyser les différentes approches dans le domaine (utilisateur vs.

développeur vs. chercheur). La taxonomie proposée permettra de définir la terminologie

que je vais utiliser à travers cette recherche doctorale.

175

176

Composition de l’interaction tactile

et gestuelle

177

La technique d’interaction

TouchOver

Contrairement à la souris, les ècrans tactiles des dispositifs mobiles n’ont pas d’ètat

mouseover pour fournir à l’utilisateur des informations dynamiques pro-actives. De plus,

sur écran tactile, la détection des actions «appuyer» et «relâcher» du doigt rend difficiles

les sélections requérant une grande précision.

En réponse à ces limitations, je proposons TouchOver, une technique multimodale pour

dispositif mobile qui tire partie de l’écran tactile et des accéléromètres : le positionnement

est effectué avec le doigt sur la surface tactile et la sélection par inclinaison du dispositif

vers l’avant. Ainsi, TouchOver introduit un état mouseover et améliore la précision de la

sélection tout en restant compatible avec les techniques d’interaction existantes. Dans une

étude formelle, je compare TouchOver à deux autres techniques de sélection. Les résultats

montrent une amélioration significative de la précision ainsi qu’un bon compromis entre

vitesse d’exécution et précision.

179

180

Des menus à base de gestes

181

Caractérisation des menus gestuels

L’émergence des appareils électroniques a amplifié la nécessité pour la création de

périphériques d’entrée de nouvelle génération et des techniques d’interaction pour soutenir

un nombre croissant de fonctions et commandes. Il s’agit notamment de la combinaison

de commutateurs physiques, des touches avec des fonctions spéciales, des modes et

quasimodes logiciels ainsi que des widgets d’usage général comme les boutons logiciels,

les barres de défilement, les listes et les menus.

Parmi les widgets actuellement disponibles pour la conception d’interfaces utilisateur,

les menus jouent un rôle clé. Ils soutiennent une tâche fondamentale et fréquent de

l’homme : celle de faire des choix. Par contraste avec les commandes par terminaux et

clavier, les menus présentent aux utilisateurs les choix possibles (soit graphiquement

ou vocalement), et seuls les choix qui sont sémantiquement valides dans l’état actuel

du système. À travers les menus, toutes les actions possibles peuvent être rendue visible

et, par conséquent, facilement détectable [Norman 10]. Ils sont une alternative intéres-

sante [à la saisie de commandes par clavier], car ils peuvent éliminer l’apprentissage et

la mémorisation des séquences de commandes complexes [Shneiderman 87]. Lorsqu’ils

sont conçus avec soin, les menus raccourcissent l’apprentissage, fournissent une struc-

ture claire pour la prise de décision, soutiennent l’exploration, réduisent les erreurs, et

peuvent être intéressants aussi pour les utilisateurs experts quand ils comprennent des

raccourcis [Shneiderman 87].

En raison de leur rôle clé dans la conception des interfaces utilisateur, les menus ont

été étudiés depuis les années quatre-vingt. Comme la Figure 6.1 illustre, ils ont évolué

comme la technologie a continué d’apporter des contraintes supplémentaires telles que

les petits écrans, mais aussi de nouvelles possibilités telles que l’utilisation du geste et

de grandes surfaces interactives. Dans ce chapitre, je m’occupe des menus graphiques

gestuelle pour les appareils portables à la main. Avant d’entrer dans l’étude détaillée des

menus gestuelle, je me propose de répondre à la question «Qu’est-ce qu’un menu ?".

183

184

GeLATI : intégration de menus

hiérarchiques gestuels dans une

boîte à outils

Ce chapitre présente GeLATI, une bibliothèque logicielle permettant la réalisation de

menus gestuels. En entrée, elle décompose les gestes en successions de segments rectilignes,

et permet leur reconnaissance en les comparant au fur et à mesure de leur exécution à des

patrons paramétrables par des fichiers de données. En sortie, le retour graphique offert

à l’utilisateur se base sur les patrons d’entrée, mais les détails de son aspect sont eux

aussi paramétrables. Je discutes enfin l’intégration de GeLATI dans une boîte à outils de

construction d’interface préexistante (celle de l’iOS d’Apple : UIKit) et je montre qu’elle

permet d’augmenter des interacteurs classiques.

185

186

Conclusions

187

Conclusions

Les chapitres précédents ont montré l’importance, la diversité et la complexité des

techniques d’interaction basées sur le geste pour les dispositifs mobiles. Bien que le geste

soit considéré comme une façon naturelle d’interagir avec une machine, le développement

de techniques d’interaction gestuelle efficaces reste toujours une tâche difficile. Les

concepteurs ne peuvent pas encore compter sur des conventions standard tels que les

schémas d’interaction développés pour les interfaces utilisateur WIMP. Au lieu de cela,

ils doivent faire face à une poussée technologique perpétuelle qui élargit en permanence

l’espace de conception. En outre, la mise en œuvre de systèmes de reconnaissance gestuelle,

et de leur intégration dans des boîtes à outils d’interface utilisateur actuelle, n’est pas

une affaire simple.

Dans ce contexte, cette thèse se concentre sur les techniques d’interaction gestuelle pour

une classe spécifique de périphériques (c.à.d. ordinateurs de poche dotés d’écran tactile

et accéléromètres) avec deux principales préoccupations : (1) fournir aux concepteurs un

cadre conceptuel qui permet de structurer le raisonnement sur la nature du geste et sur

les techniques d’interaction gestuelles, et (2) fournir aux développeurs un algorithme de

reconnaissance de gestes efficaces et robustes qui peut être facilement intégrée dans des

boîtes à outils existantes.

Contributions

La contribution de cette thèse est triple : conceptuelle, avec des taxonomies pour raisonner

sur les gestes et les gestes pour les appareils mobiles qui tiennent dans la main ; techniques,

avec la bibliothèque GeLATI ; et interactionnelle, avec la conception de nouvelles technique

d’interaction tels que TouchOver.

189

190

Classification Gestuelle

Je propose une synthèse des taxonomies qui ont été proposées pour les gestes en psycholin-

guistique ainsi qu’en l’Interaction Homme-Machine. Certaines d’entre elles se concentrent

sur les fonctions du geste même, d’autres classent les gestes en fonction de leur morpholo-

gie tandis que d’autres masquent la distinction entre forme et fonction. En corrélant ces

perspectives au sein d’un cadre unique, les chercheurs nouveaux venus dans le domaine

de l’interaction gestuelle ont une vue unifiée et concise pour rapidement se rapporter aux

différentes approches, perspectives et terminologies.

En outre, j’utilise ce cadre pour préciser la couverture de mon travail et pour définir

mon propre intérêt : celui de gestes déictiques et sémaphoriques pour l’interaction homme-

machine. En ce qui concerne le pouvoir expressif, je m’adresse à des gestes qui couvrent

la specification, en une seule action, de commandes et leurs paramètres.

Une taxonomie synthétisée des gestes est appropriée pour comprendre l’ampleur du

domaine, mais pas pour le raisonnement à un grain fin sur la conception d’une technique

d’interaction gestuelle. À cette fin, je propose une nouvelle taxonomie pour les techniques

d’interaction gestuelles basées sur les accéléromètres. Cette taxonomie, motivée par les

contributions de base en IHM, rassemble les tâches génériques de Foley avec les dimensions

lexicale, syntactique, sémantique et pragmatique des langages afin de caractériser les

actions physiques impliquées dans l’interaction gestuelle. Elle est radicalement centrée

sur les actions physiques humaines. L’hypothèse est que l’action physique est le niveau

atomique approprié à partir duquel de nouvelles techniques d’interaction peuvent être

conçues pour fournir un ensemble cohérent de langages au sein d’un système. Dans cette

taxonomie, l’abscisse définit le lexique en termes de manipulations physiques que les

utilisateurs doivent effectuer, avec une séparation claire entre l’interaction d’arrière et de

premier plan. L’ordonnée correspond aux tâches de Foley. Une technique d’interaction est

tracée comme un point dans cet espace où chaque point est décoré avec des propriétés

pragmatiques et syntaxiques. La taxonomie comprend deux modificateurs syntaxiques : si

la technique d’interaction est embrayée ou poursuivie, et le type de contrôle (en position,

vitesse ou accélération). Un modificateur pragmatique indique le degré d’indirection de

la technique d’interaction.

Afin de démontrer sa flexibilité et sa couverture, cette taxonomie a été appliquée à la

classification des techniques d’interaction post-WIMP utilisant les accéléromètres ainsi

que pour des techniques d’interaction WIMP.

191

Parmi les techniques d’interaction existantes, les menus jouent un rôle prédominant.

Pour cette raison, j’ai revu la conception des espaces développés pour les menus ainsi

que les définitions et les distinctions terminologiques subtiles entre widget, interacteurs,

et les instruments d’interaction. A partir de là, je propose une distinction claire entre

les instruments logiciels et les instruments matériels ainsi qu’une version révisée de la

définition que Bailly donne des menus.

Un geste est un instrument physique dont le composant matériel est un périphérique

d’entrée directe (souris, stylo ou écran tactile) et le composant logiciel, un système

de reconnaissance gestuelle.

Un menu est un instrument logiciel qui répond aux exigences suivantes :

1. Il prend en charge la sélection d’un élément dans un ensemble fini d’options.

2. Il minimise les efforts mentaux, en présentant l’ensemble des options à l’utilisa-

teur.

3. Il présente les options comme une structure sémantiquement et spatialement

significative.

4. Il est transitoire en ce sens qu’il est perceptible à l’utilisateur que lors de son

interaction avec l’utilisateur.

5. Il est quasimodal car il définit un contexte local pour l’interprétation du système

qui est maintenu explicitement par l’utilisateur jusqu’à ce que l’interaction se

termine.

.

Un menu gestuel est un instrument logiciel couplé à un instrument geste tel que le

processus de sélection est dirigé par le geste.

GeLATI

GeLATI est une bibliothèque pour concevoir, prototyper et mettre en œuvre les menus

gestuels.

Les principales caractéristiques de GeLATI sont les suivantes :

192

1. La reconnaissance de gestes est basée sur une nouvelle approche vectorielle temps

réel, qui combine de multiples entrées pour permettre des interactions inter-modales

et/ou multi-modales ;

2. La reconnaissance de gestes, qui utilise une approche à modèle («template») unique,

n’a pas besoin d’apprentissage ;

3. Les gestes, qui sont modélisés comme une suite de vecteurs, sont rectilignes. (Les

gestes rectilignes ont été démontrés comme plus utilisables que les gestes de forme

libre.) ;

4. Les gestes déictiques et sémaphoriques sont pris en charge ;

5. Les utilisateurs débutants sont guidés le long de chemins bien définis pour compléter

le geste. Les utilisateurs expérimentés peuvent compléter les commandes sans retour

graphique, comme illustré par les Marking Menus ;

6. L’exploration est soutenue par un mécanisme incrémental qui permet le retour au

niveau supérieur de la hiérarchie du trait courant ;

7. Les menus hiérarchiques gestuels peuvent être automatiquement intégrés dans les

outils graphiques existantes.

En synthèse, le reconnaisseur gestuel GeLATI est capable d’offrir les mêmes carac-

téristiques que les approches basées statistiques, mais sans l’infrastructure statistique

accélérant ainsi le processus de reconnaissance. De la même façon que $1, la reconnais-

sance est résistante aux variations de l’échantillonnage. Par contraste avec $1, l’objectif

est de soutenir la variance de rotation qui est une caractéristique importante des gestes

humains. Si nécessaire, la variance en échelle et en position (spécifiable par le déve-

loppeur) est également supportée. Enfin, la reconnaissance est en mesure de proposer

dynamiquement les gestes candidats lors de l’interaction elle-même non pas seulement

lorsque les utilisateurs ont terminé leur geste.

Un certain nombre d’exemples ont été mis en œuvre pour démontrer la couverture

fonctionnelle de GeLATI ainsi que son intégration dans les outils graphiques.

TouchOver

TouchOver est une technique d’interaction multimodale complémentaire pour les interac-

tions à une main avec les appareils de poche dotés d’écran tactile et d’accéléromètres.

193

TouchOver offre un modèle d’entrée à trois états, similaire à celui déjà connu dans les

interfaces au stylet, où le système trace les mouvements du doigt, ajoutant ainsi un état

de suivi passif à l’entrée tactile. Cela crée de nouvelles opportunités pour de nouvelles

techniques d’interaction, pour dispositifs portables, comme le survol, le feedforward, ou

les interactions qui ne nécessitent pas l’attention visuelle.

TouchOver a été validé expérimentalement en précision et vitesse.

Limitation et perspectives

Deux principales limites doivent être abordées dans le cadre de GeLATI : (1) le mécanisme

de re-sélection et (2) l’intégration de gestes non rectilignes.

Le mécanisme de re-sélection

Lorsqu’un utilisateur interagit avec un menu GeLATI, il/elle traverse plusieurs noeuds en

suivant simplement les chemins visibles. Lors de la correction de son choix, l’utilisateur

remonte le chemin d’interaction. Dans un menu traditionnel l’état interne est caractérisé

par la position du curseur dans les objets graphiques le composant. Dans un menu

GeLATI, la position de l’utilisateur est vérifiée par rapport au dernièr point dans chaque

trait qui compose le geste. Une analyse intéressante pourrait être de tester la satisfaction

de l’utilisateur et de valider le nouvelle approche en vue d’intégrer l’algorithme dans

d’autres reconnaisseurs gestuels existants. Une autre façon est d’introduire le concept de

boîte englobante dans GeLATI, fusionnant ainsi les approches dirigées par la position ou

par les gestes.

Traits non rectilignes

L’algorithme GeLATI est basé sur l’hypothèse principale qu’une séquence de traits

linéaires (vecteurs) compose des formes complexes guidant ainsi les utilisateurs au cours

de l’interaction. Un scénario intéressant qui devrait être évalué consiste à étendre les

modules de base qui composent les gestes complexes aux traits non-linéaires. Par exemple,

un geste pourrait être défini comme une séquence de y = sin(x) plus un trait de y = x

plutôt que la simple vectorialisation proposée.

194

J’aurais dû. . .

L’applicabilité de l’approche GeLATI a été testée dans plusieurs expérimentations in-

formelles et dans différents démonstrateurs. Néanmoins, l’architecture proposée et la

bibliothèque logicielle ont encore besoin d’être testées avec d’autres programmeurs et

concepteurs. En outre une étude formelle utilisateur doit être conçue afin de vérifier

l’acceptation des utilisateurs à intégrer les gestes dans les widgets classiques.

Appendix A.

Technical Annex

A.1. API

An overview of the GeLATI class hierarchy

Figure A.1.: Five main blocks compose the GeLATI library. File System contains those
classes (the Bundle) needed to load specification files from device memory. Ges-

tures Components contains those classes representing the three main gesture
components Interaction, Aspect and Structure. GUIs, Menu Encapsulation

and GeLATI Internal Tree Structure contains all classes interested in raw
events used to control and update the menu status. Input Adapters and

GeLATI Events capture input event from input devices (Touch Screen and
Accelerometers) and transform them into GeLATI events. GeLATI core generate
the gesture event sent to the application. Helpers contains the glue classes
needed to integrate in existing UIKit class hierarchy and to build compatible
application.

195

196 Technical Annex

A.1.1. UMMenu header

1 #import <UIKit/UIKit . h>

2 #import "UMProtocols . h"

3 @class UMBundle ;

4

5 /∗∗

6 ∗ This i s the main i n t e r f a c e a UMMenu w i l l implement .

7 ∗ I t con ta ins the ba s i c opera t i ons in order to add/remove a

bundle to /from the menu

8 ∗ and to add/remove l i s t e n e r s

9 ∗/

10 @interface UMMenu : NSObject <UMEventListener> {

11 /∗ The o b j e c t s t h a t w i l l r e c e i v e the g e s t u r e s ac t ions , i . e .

t h a t w i l l l i s t e n f o r commands∗/

12 NSMutableArray ∗_delegates ;

13 /∗ The o b j e c t s t h a t w i l l r e c e i v e raw even t s a f t e r be ing

t r a i t e d by the menu ∗/

14 NSMutableSet ∗_l i s t e n e r s ;

15 /∗ The bundle loaded by the curren t menu ∗/

16 UMBundle ∗_bundle ;

17

18 /∗ Reusable poo l to op t imize t r e e s c r ea t i on / d e l e t i o n ∗/

19 NSMutableSet ∗_treesPool ;

20

21 /∗ The curren t a c t i v e t r e e s ∗/

22 NSMutableDictionary ∗_ac t i v e In t e r a c t i on s ;

23 /∗ The curren t user a c t i v e i n t e r a c t i o n s ∗/

24 NSMutableDictionary ∗_ge s tu r a l I n t e r a c t i on s ;

25 /∗ Current cand ida te g e s t u r e s ∗/

26 NSMutableDictionary ∗_gesturesSet ;

27

28 /∗ For Future Use in mu l t i f i n g e r s i n t e r a c t i o n s ∗/

29 NSMutableDictionary ∗_mergedGestures ;

30 }

31

Technical Annex 197

32 @property (readonly) NSDictionary ∗ a c t i v e I n t e r a c t i o n s ;

33 @property (readonly) NSDictionary ∗ g e s t u r a l I n t e r a c t i o n s ;

34 @property (readwr ite , r e t a i n) UMBundle ∗bundle ;

35

36 /∗∗

37 ∗ Reg i s t e r and load the Gesture Bundle

38 ∗/

39 − (void) setBundleNamed : (NSString ∗) bundleName ;

40 /∗∗

41 ∗ Add a UMGestureEvent De lega te

42 ∗/

43 −(void) addDelegate : (id) output ;

44 /∗∗

45 ∗ Remove a UMGestureEvent De lega te

46 ∗/

47 −(void) removeDelegate : (id) output ;

48 /∗∗

49 ∗ Add a UMEvent L i s t ene r

50 ∗/

51 − (void) addEventListener : (id<UMEventListener>)aL i s t ene r ;

52 /∗∗

53 ∗ Remove a UMEvent L i s t ene r

54 ∗/

55 − (void) removeEventListener : (id<UMEventListener>)aL i s t ene r ;

56 /∗∗

57 ∗ Used by g r aph i c a l i n t e r f a c e s to r e t r i v e the t r e e roo t node

g iven an i n t e r a c t i o n ID

58 ∗/

59 −(UMGestureNode ∗) t r e eFo r I n t e r a c t i on : (UMEvent ∗) event ;

A.1.2. QuestionMark View Controller

1 #import " Ge la t i 2 . h"

2

3 @implementation ViewContro l l e r

4

198 Technical Annex

5 − (void) viewDidLoad {

6 [super viewDidLoad] ;

7

8 /∗ Create a new UMMenu ∗/

9 UMMenu ∗myMenu = [[UMMenu a l l o c] i n i t] ;

10 /∗ Add a ge s t u r e s e t to the UMMenu ∗/

11 [myMenu setBundleNamed :@"questionmark . umenu"] ;

12 /∗ Reg i s t e r the Ges tura l I n t e r a c t i on to the de s i r ed

g r aph i c a l view ∗/

13 [s e l f . view addGelatiMenu :myMenu] ;

14

15 /∗ Reg i s t e r a g r aph i c a l i n t e r f a c e s ∗/

16 [aMenu addEventListener : s e l f . parametersView] ;

17 /∗ Reg i s t e r a g r aph i c a l i n t e r f a c e s ∗/

18 [aMenu addEventListener : s e l f . gesturesView] ;

19 /∗ Reg i s t e r a g r aph i c a l i n t e r f a c e s ∗/

20 [aMenu addEventListener : s e l f . boxView] ;

21

22 /∗ Reg i s t e r a g e s t u r e event d e l e g a t e ∗/

23 [myMenu addDelegate : s e l f] ;

24 }

25

26 #pragma mark −

27 #pragma mark Menu de l e ga t e

28

29 − (void) he lp : (UMGestureEvent ∗) event

30 {

31 /∗ A ges t u r e event method example ∗/

32

33 [event r e t a i n] ;

34 switch (event . s t a t e) {

35 case UMGestureBegan :

36 break ;

37 case UMGestureContinued :

38 break ;

39 case UMGestureCancelled :

Technical Annex 199

40 break ;

41 case UMGestureEnded :

42 [s e l f doTheWork] ;

43 break ;

44 default :

45 break ;

46 }

47 [event r e l e a s e] ;

48 }

49

50 @end

A.2. XML Files

A.2.1. QuestionMark GeLATI Definition: Structure.plist

1 {

2 deadZoneLength = 25 ;

3 " polarZoneUpperPrec i s ion " = " 0 .3 " ;

4 " polarZoneLowerPrec i s ion " = " 0 .4 " ;

5 polarZoneLenght = 90 ;

6 l inearZoneEnabled = YES;

7 slidingWindowLength = 120 ;

8 "minimunDistanceInTrait " = 70 ;

9 proximityThreshold = 20 ;

10 items = (

11 {

12 id = Vector ;

13 d i r e c t i o n = " 0 .78 " ;

14 } ,

15 {

16 id = "Question ␣Mark" ;

17 d i r e c t i o n = " 3 .93 " ;

18 slidingWindowLength = 150 ;

19 items = (

20 {

200 Technical Annex

21 id = "Question ␣Mark" ;

22 d i r e c t i o n = " 5 .50 " ;

23 items = (

24 {

25 id = "Question ␣Mark" ;

26 d i r e c t i o n = " 0 .78 " ;

27 items = (

28 {

29 id = "Question ␣Mark" ;

30 d i r e c t i o n = " 2 .36 " ;

31 items = (

32 {

33 id = "Question ␣Mark" ;

34 d i r e c t i o n = " 1 .57 " ;

35 " polarZoneUpperPrec i s ion " = " 0 .4 " ;

36 " polarZoneLowerPrec i s ion " = " 0 .3 " ;

37 } ,

38) ;

39 } ,

40) ;

41 } ,

42) ;

43 } ,

44) ;

45 opt ions = {

46 roundEdges = YES;

47 } ;

48 } ,

49) ;

50 }

A.2.2. QuestionMark GeLATI Definition: Interaction.plist

1 {

2 EnableTiming = NO;

3 t imer = 10 ;

Technical Annex 201

4 r o o t S e l e c t o r = " touch : " ;

5 d e f a u l t S e l e c t o r = " incomple teGesture : " ;

6 completeGesture = NO;

7 cont inuous = NO;

8 detachWhenCompleted = NO;

9 speedLeve l s = (

10 " 0 .0 " ,

11 " 0 .18 " ,

12 " 0 .55 " ,

13) ;

14 items = (

15 {

16 id = Vector ;

17 completeGesture = YES;

18 s e l e c t o r = " he l p : " ;

19 } ,

20 {

21 id = "Question ␣Mark" ;

22 items = (

23 {

24 items = (

25 {

26 items = (

27 {

28 items = (

29 {

30 completeGesture = YES;

31 s e l e c t o r = " he l p : " ;

32 } ,

33) ;

34 } ,

35) ;

36 } ,

37) ;

38 } ,

39) ;

202 Technical Annex

40 } ,

41) ;

42 }

A.2.3. QuestionMark GeLATI Definition: Aspect.plist

1 {

2 unitType = p i x e l ;

3 un i t = 2 ;

4 "maximumComponentToDraw" = 10 ;

5 " constantSectionLenghtToDraw" = 15 ;

6 backgroundImage = " r e s ou r c e s / spot . png" ;

7 cursorImage = " r e s ou r c e s / spot . png" ;

8 rootID = Root ;

9 colorName = white ;

10 items = (

11 {

12 id = Vector ;

13 c o l o r = (

14 " 0 .4 " ,

15 " 0 .2 " ,

16 " 0 .4 " ,

17 1 ,

18) ;

19 } ,

20 {

21 id = "Question ␣Mark" ;

22 c o l o r = (

23 " 0 .3 " ,

24 " 0 .3 " ,

25 " 0 .4 " ,

26 1 ,

27) ;

28 items = (

29 {

30 id = "Question ␣Mark" ;

Technical Annex 203

31 c o l o r = (

32 " 0 .3 " ,

33 " 0 .3 " ,

34 " 0 .4 " ,

35 1 ,

36) ;

37 items = (

38 {

39 id = "Question ␣Mark" ;

40 c o l o r = (

41 " 0 .3 " ,

42 " 0 .3 " ,

43 " 0 .4 " ,

44 1 ,

45) ;

46 items = (

47 {

48 id = "Question ␣Mark" ;

49 c o l o r = (

50 " 0 .3 " ,

51 " 0 .3 " ,

52 " 0 .4 " ,

53 1 ,

54) ;

55 items = (

56 {

57 id = "Question ␣Mark" ;

58 c o l o r = (

59 " 0 .3 " ,

60 " 0 .3 " ,

61 " 0 .4 " ,

62 1 ,

63) ;

64 } ,

65) ;

66 } ,

204 Technical Annex

67) ;

68 } ,

69) ;

70 } ,

71) ;

72 opt ions = {

73 roundEdges = YES;

74 } ;

75 } ,

76) ;

77 }

Technical Annex 205

206

Colophon

This thesis was made in LATEX using the “hepthesis” class [Buckley 11].

207

208

List of Figures

1.1. From the left: a Microsoft Windows Mobile 7 interface screenshot showing

a perspective animation; the Apple iPhone home screen; the Palm Pre

task selection interface. 6

1.2. Krueger is one of the pioneer researchers of full body gesturing. 8

1.3. Charade uses a 3D hand gestures interaction model. On the right, an ex-

ample of the notation used to denote the "next chapter" gesture [Baudel 95]. 8

1.4. Villamore et al. propose a reference guide for all touch-based gestures

implemented in current modern systems such as iOS, Windows Mobile 7

or WebOS-based mobile devices [Villamore 10]. 9

1.5. OctoPocus integrates feedback with feedforward in gesture-driven interfaces

to help users to discover and learn gestural menus [Bau 10]. 9

1.6. Roudaut proposes the exploitation of micro-gestures on touch screen based

devices with “Microrolls” [Roudaut 10]. 10

1.7. TimeTilt proposes an example of multimodal interaction that exploits both

accelerometers coupled with two different interaction languages [Roudaut 10]. 11

1.8. Bolt used the combination of voice and hand gestures to command the

“Media Room” to controll shape based application [Bolt 80]. 11

2.1. Instrumental Interaction provide Humans with a means to interact with

the Environment through the Machine [Cadoz 94]. 24

2.2. Gesture in human computer interaction [Cadoz 94]. Instrumental gesture

is primarily ergotic (it produces energy). It may be used for communi-

cation (it is then semiotic) or for pure action on the world (absence of

meaning) [Cadoz 94]. 25

209

210 LIST OF FIGURES

2.3. The gestural interaction framework proposed by Karam et al. [Karam 05]

enables a complete discussion about gestures themselves and the contextual

variables/parameters associated with. 27

2.4. Baglioni’s characterization space enhance Karam’s taxonomy to adapt to

handheld devices. Adapted from [Baglioni 09]. 29

2.5. Hinckley et al. propose a complete design space of motion sensing interac-

tion techniques [Hinckley 11]. Highlithed the section of the design space

this thesis focuses on. 33

2.6. A synthetic representation of the gestures terminology used in different

taxonomies. 34

2.7. An integrated view of the analyzed taxonomies highlights the relationshinps

among different approaches and metaphors. 36

2.8. Correlation between gesture formality and expressive power. 37

3.1. Ballagas taxonomy plots existing interaction techniques implemented by

using the phone as input device [Ballagas 06]. 43

3.2. Physical, virtual and composite input devices classified within Mackinlay’s

et al. taxonomy. A circle in a cell indicates that a device senses a physical

property characterized by the coordinates of the grid. A black line repre-

sents a merge composition. An arrow represents a connect composition. A

dashed line - no example shown here - a layout composition [Mackinlay 90]. 46

3.3. The “sliding” gesture is semantically multiplexed to achieve different mean-

ings, depending on context. 46

LIST OF FIGURES 211

3.4. A new classification space for gestural interaction techniques based on

accelerometers. The abscissa defines the lexicon in terms of the physical

manipulations users perform with the device, with a clear separation

between background and foreground interaction. The ordinate corresponds

to Foley’s interaction tasks. An interaction technique is uniquely identified

by an integer i and plotted as a point in this space. Each point is

decorated with the pragmatic and syntactic properties of the corresponding

interaction technique. There are two syntactic modifiers: an oval indicates

whether the interaction technique is clutched or continued, and an exponent

expresses the control type (position, speed, or acceleration). F, which

is the only pragmatic modifier, indicates the degree of indirection of the

interaction technique. 47

3.5. Classical mouse-driven interaction techniques within my taxonomy: (1)

Positioning the cursor; (2) Menu item selection; (3) Defining orientation

in a graphics editor; (4) Sketching using a drawing tool; (5) Defining a

quantity through a slider; (6) Typing text with a virtual keyboard. . . . 51

4.1. Fitzmaurice et al. used the Move action to command the history of their

spreadsheet, while the Tilt of the device let the user span the cells around

the selected [Fitzmaurice 93]. 56

4.2. Rekimoto’s tilt based menu control the navigation in a map [Rekimoto 96]. 57

212 LIST OF FIGURES

4.3. A state of the art of accelerometers-based interaction techniques. An

interaction technique is identified by an integer i: (7) successive undo/redo

as well as active cell selection through translations; (8) tilt to preview

adjacent cells; (9) tilt to select a command in a pie menu; (10) tilt to

select commands in linear and pie menus; (11) tilt to control position on

a map; (12) tilt to browse a calendar; (13) squeeze to stop an interaction;

(14) drawing through physical translations; (15) passive screen orientation

adaptation; (16) active screen orientation control; (17) tilt to select pictures;

(18) tilt to control first person shooter game; (19) tilt to enter text; (20)

passive control of screen orientation and power energy saving; (21) tilt and

translation to select physical world object; (22) control volume through

tilt; (23) translation of virtual workspace through physical translation;

(24) selection of the level of user interface details through translation;

(25) gestural authentication with shock durations over time; (26) shake to

quantify device status; (27) tilt to select graphical views; (28) shock to

trigger an interaction; (29) shock to select the previously active application;

(30) gesture recognition; (31) shake to select the next song; (32) tilt to

quantify the zoom factor; (33) tilt to control screen/contextual objects

rotation; (34) shock the device to select a command: delete current picture

or undo deletion; (35) tilt de device to select the crop command; (36)

passive control of touch force to select the user desired action; (37) passive

control of touch force to select dragging command. 58

4.4. Partridge et al. propose to map a position-based interaction technique

drive by accelerometers to a menu containing the most used charac-

ters [Partridge 02]. 60

4.5. Tapping the back of the device trigger the continuous/discrete mode. In

continuous mode application switch is activated by tilting the device. In dis-

crete mode application switch is achieved using jerk movements [Roudaut 09]. 62

5.1. With touchOver, users can switch between two interaction states (a)

and (b) with a simple tilt of the device while still interacting with their

finger. This permits for example interactions such as hovering, dragging,

feedforward enabled techniques, visual and eye-free interface exploration,

and selection precision improvement. 72

5.2. Mouse input state machine (reproduced from [Buxton 90]). 74

LIST OF FIGURES 213

5.3. Stylus on graphics tablet input state machine (reproduced from [Buxton 90]). 74

5.4. Touch-screen input state machine (reproduced from [Buxton 90]). 74

5.5. The TouchOver input state machine. 77

5.6. The user interface for the precision experiment: the target line (left); the

thumb approaching the target (center); the thumb is on the target (right). 81

5.7. Speed experiment application interface: left the first target; right the

second target. 81

5.8. Percentage of errors by validation techniques 83

5.9. Boxplot of error distance in millimeters grouped by validation technique . 83

5.10. Boxplot of validation duration for Take-Off and TouchOver 85

5.11. Comfort and efficiency grades for each technique for the precision experiment 86

5.12. Comfort and efficiency grades for each technique for the speed experiment 86

6.1. Menus declinations. From left: the Wavelet menu for touch-enabled mo-

bile devices [Francone 09]; Polymorphic Menu developed in the NOMAD

project [http://iihm.imag.fr/contract/nomad/], MTM (Menu MultiTouch)

for multipoints tabletop [Bailly 09]; Shadow Reaching : target selection

using shadows [Shoemaker 07]. 91

6.2. Different menu structures impose different approaches and learning diffi-

culties on users [Shneiderman 87]. 101

6.3. Shneiderman’s hierarchical menus in a modern WIMP environment. . . . 103

6.4. Shneiderman’s binary menus in a moder WIMP environment. 104

6.5. Bailly’s MenUA classification space [Bailly 09]. 104

6.6. Marking menus propose a Novice and an Expert mode. On the left, a

marking menu used in novice mode resembles a Pie Menu [Callahan 88]

but user’s movements are tracked leaving an ink trail. On the right, the

marking menu when used in expert mode: the user makes a mark without

relying on the graphical representation [Kurtenbach 93]. 107

214 LIST OF FIGURES

6.7. A hierarchical marking menus (left) enriched with feedforward (right) that

permits the user to foresee each command’s hierarchical content [Bau 08]. 109

6.8. StrokeShortcuts integrated in a media player. On the left, gesture shortcuts

are visible while using a classical linear menu. On the right, the “open

playlist” corresponding gestures. Help fades away on a timeout. 110

6.9. Ideal Flower menus support up to 56 items per hierarchy level (left).

Flower menus can control the most used commands in a simple hierarchy

level (right) [Bailly 09]. 111

6.10. Leaf menu for touch-screen enabled mobile devices where curvature is

exploited to discriminate gestures [Bailly 09]. 113

7.1. A set of 13 features characterizing each gesture in GRANDMA statistical

gestures recognizer [Rubine 91]. 121

7.2. $1 gesture recognizer first two steps. At the top, a raw gesture as captured

by the input device with three different resamples where N denotes the

number of sampling points. Wobbrock et al. have determined empirically

to use N = 64 as a reference resampling parameter. At the bottom of

the figure, the second step of the gesture recognizer. The resampled path

is rotated to an “indicative angle” to ease the recognition and the match

process. [Wobbrock 07]. 123

7.3. A vectorial approach to gesture recognition. From left to right, the

“vectorialization” of a gestural template. 125

7.4. On the left, a simple gesture composed of a single trait: for the simplest

cases, an angle (α) is the only parameter needed (direction) to define a

gesture of infinite length (the vector magnitude). On the right, a screenshot

of a vector with all the GeLATI’s parameters represented graphically. . . 126

7.5. On the left, a GeLATI “Question Mark” as a series/concatenation of five

vectors. In the center, a screenshot of the question mark gesture along

with the feedback provided by GeLATI. On the right, a screenshot with a

different feedback that shows the name of the command (help) as well as

the exact trace of the user input. 127

LIST OF FIGURES 215

7.6. GeLATI is implemented in Objective-C on top of the iOS Foundation

Framework. Default GeLATI GUIs are developed over the GeLATI Core

using the Core Graphics and Quartz frameworks. A GeLATI menu is built

over the GeLATI core and organizes multiple gestures through an entry

point hierarchical root. Applications built on top of GeLATI receive the

method specified by in gesture definition. 129

7.7. Raw events are transformed into UMEvents and passed to the GeLATI

core. GeLATI consumes the events by updating the traits that compose

the menu tree. UMEvents are passed to the feedback/feedforward views

together with the tree in order to update the aspect graphical rendering.

UMGestureEvents are generated and sent to the application to update its

status and/or to fire the developer’s defined actions. 131

7.8. Different GUI aspects can be associated to the same gestural menu. The

first raw shows the two default GUI aspects integrated in the library. The

first one is an accurate representation of the functioning of the underlying

algorithm. The second one is an OctoPocus-like view of a GeLaTI menu.

The second row shows a third GUI aspect designed to imitate the Marking

Menu. 133

7.9. Three gestures are associated to the same vector with three different

lengths. An example cannot be supported by the $1. 134

7.10. The “Branch” gesture has a fixed length and two siblings: “Branch Right”

and “Branch Left”. 134

7.11. GeLATI gestural menus can be integrated into legacy widgets. Enhancing

classical GUI components with gestural interaction permits a complete

gestural experience and optimized screen space management. 135

7.12. Two screenshots showing the test application and the interaction I designed

to test the accelerometers+touch screen synaesthesia. In 7.12(a) the

application is waiting for a new interaction to start. In 7.12(b) the

interaction started and continued selecting the cheese on the left through

a finger movement. The task of the active trial is to select the yellow

upper-left cheese, while the currently selected cheese is shown in green.

User could either control the application through the touch screen or

though the accelerometers. 136

216 LIST OF FIGURES

7.13. Multiple instances of a GeLATI menu can be activated with the same GUI

aspect or with different ones. On the left two GeLATI menus have been

activated on the main view. On the right two menus have been activated

on the same graphical button. The “BRigth” options controls the button

orientation while “Left” option control the widget position. 138

A.1. Five main blocks compose the GeLATI library. File System contains

those classes (the Bundle) needed to load specification files from device

memory. Gestures Components contains those classes representing

the three main gesture components Interaction, Aspect and Structure.

GUIs, Menu Encapsulation and GeLATI Internal Tree Structure

contains all classes interested in raw events used to control and update

the menu status. Input Adapters and GeLATI Events capture input

event from input devices (Touch Screen and Accelerometers) and transform

them into GeLATI events. GeLATI core generate the gesture event sent

to the application. Helpers contains the glue classes needed to integrate

in existing UIKit class hierarchy and to build compatible application. . . 195

List of Tables

2.1. Roudaut’s Gestural interaction language applied to mobile devices plat-

forms [Roudaut 10]. 32

3.1. Foley’s classification of fundamental interaction tasks expresses the re-

quirements that interaction techniques must satisfy [Foley 90b]. 41

4.1. Hinckley classification for Tilt/Accelerometer input devices [Hinckley 00]. 61

6.1. Shneiderman’s menu selection guidelines distilled from practice [Shneiderman 87].103

6.2. Roudaut classifies gestural menus according the gestures type they are

driven by and the layout menu items are disposed on [Roudaut 10]. . . . 114

6.3. The different layouts gestural menus are characterized by, imply conse-

quences on the interaction they propose. Here a synthesis of the pros and

cons proposed by Roudaut [Roudaut 10]. 115

217

218

Bibliography

[Accot 97] Johnny Accot & Shumin Zhai. Beyond Fitts’ law: models for

trajectory-based HCI tasks. In Proceedings of the SIGCHI con-

ference on Human factors in computing systems, CHI ’97, pages

295–302, New York, NY, USA, 1997. ACM.

[Albinsson 03] Par-Anders Albinsson & Shumin Zhai. High precision touch screen

interaction. Proceedings of the conference on Human factors in

computing systems - CHI ’03, no. 5, page 105, 2003.

[Appert 04] Caroline Appert, Michel Beaudouin-Lafon & Wendy E. Mackay.

Context matters: Evaluating Techniques with the CIS Model. Peo-

ple and Computers XVIII - Design for Life, HCI 2004, 2004.

[Appert 09] Caroline Appert & Shumin Zhai. Using strokes as command

shortcuts: cognitive benefits and toolkit support. In Proceedings of

the 27th international conference on Human factors in computing

systems, pages 2289–2298. ACM, 2009.

[Arc 92] A Metamodel For The Runtim E Architecture Of An Interactive

System. SIGCHI Bulletin, vol. 24, no. 1, pages 32–37, 1992.

[Axtell 91] R.E. Axtell. Gestures: The do’s and taboos of body language

around the world. Wiley, 1991.

[Baglioni 09] Mathias Baglioni, Eric Lecolinet & Yves Guiard. Espace de car-

actérisation des interactions gestuelles physiques sur dispositifs

mobiles. Proceedings of the 21st International Conference on As-

sociation Francophone d’Interaction Homme-Machine - IHM ’09,

page 203, 2009.

[Bailly 09] Gilles Bailly. Techniques de menus: Caractérisation, Conception

et Evaluation. PhD thesis, Université Joseph Fourier, 2009.

219

220 BIBLIOGRAPHY

[Ballagas 06] Rafael Ballagas, Jan Borchers, Michael Rohs & Jennifer G. Sheri-

dan. The Smart Phone: A Ubiquitous Input Device. IEEE Perva-

sive Computing, vol. 5, no. 1, pages 70–77, January 2006.

[Bartlett 02] Joel F. Bartlett. Rock’n’Scroll is here to stay. Computer Graphics

and Applications, IEEE, vol. 20, no. 3, pages 40–45, 2002.

[Bau 08] Olivier Bau & Wendy E. Mackay. OctoPocus: a dynamic guide for

learning gesture-based command sets. In Proceedings of the 21st

annual ACM symposium on User interface software and technology,

pages 37–46. ACM, 2008.

[Bau 10] Olivier Bau. Interaction streams. PhD thesis, INRIA Saclay/LRI,

Orsay, 2010.

[Baudel 93] Thomas Baudel & Michel Beaudouin-Lafon. Charade: remote

control of objects using free-hand gestures. Communications of the

ACM, vol. 36, no. 7, pages 28–35, 1993.

[Baudel 95] Thomas Baudel. Aspects Morphologiques de l’Interaction Humain-

Orinateur: Étude de Modèles d’Interaction Gestuels. PhD thesis,

Université Paris XI Orsay, 1995.

[Beaudouin-Lafon 00] Michel Beaudouin-Lafon. Instrumental interaction: an interaction

model for designing post-WIMP user interfaces. In Proceedings of

the SIGCHI conference on Human factors in computing systems,

pages 446–453. ACM, 2000.

[Benko 06] Hrvoje Benko, Andrew D. Wilson & Patrick Baudisch. Precise

selection techniques for multi-touch screens. Proceedings of the

SIGCHI conference on Human Factors in computing systems -

CHI ’06, page 1263, 2006.

[Benko 08] Hrvoje Benko, Andrew D Wilson & Ravin Balakrishnan. Sphere:

multi-touch interactions on a spherical display. In Proceedings of

the 21st annual ACM symposium on User interface software and

technology, UIST ’08, pages 77–86, New York, NY, USA, 2008.

ACM.

[Blanch 04] Renaud Blanch, Yves Guiard & Michel Beaudouin-Lafon. Semantic

pointing: improving target acquisition with control-display ratio

BIBLIOGRAPHY 221

adaptation. Proceedings of the SIGCHI conference on Human

factors in computing systems - CHI ’04, vol. 6, no. 1, pages 519–

526, 2004.

[Bolt 80] Richard A. Bolt. “Put-that-there”: Voice and gesture at the graphics

interface. In Proceedings of the 7th annual conference on Computer

graphics and interactive techniques, pages 262–270. ACM, 1980.

[Bragdon 11] Andrew Bragdon, Eugene Nelson, Yang Li & Ken Hinckley. Ex-

perimental Analysis of Touch-Screen Gesture Designs in Mobile

Environments. In Proceedings of the 2011 annual conference on

Human factors in computing systems, pages 403–412, 2011.

[Brooks Jr 88] Frederik P. Brooks Jr. Grasping reality through illusion—

interactive graphics serving science. Proceedings of the SIGCHI

conference on Human factors in computing systems - CHI ’88,

pages 1–11, 1988.

[Buckley 11] Andy Buckley. The hepthesis {\LaTeX} class, 2011.

[Buxton 83] Bill Buxton. Lexical and pragmatic considerations of input struc-

tures. ACM SIGGRAPH Computer Graphics, vol. 17, no. 1, pages

31–37, January 1983.

[Buxton 90] Bill Buxton. A three-state model of graphical input. In Human-

computer interaction-INTERACT, volume 90, pages 449–456. Cite-

seer, 1990.

[Buxton 95] Bill Buxton. Integrating the periphery and context: A new taxon-

omy of telematics. In Proceedings of graphics interface, volume 95,

pages 239–246, 1995.

[Cadoz 94] Claude Cadoz. Le geste canal de communication homme/machine.

Technique et science informatiques, page 31, 1994.

[Callahan 88] J Callahan, D Hopkins, M Weiser & B Shneiderman. An empirical

comparison of pie vs. linear menus. In CHI’88: Proceedings of

the SIGCHI conference on Human factors in computing systems,

pages 95–100. ACM Press, 1988.

[Card 91] Stuart K. Card, Jock Mackinlay & George G. Robertson. A

222 BIBLIOGRAPHY

morphological analysis of the design space of input devices. ACM

Transactions on Information Systems, vol. 9, no. 2, pages 99–122,

April 1991.

[Chatty 04] Stephane Chatty, Stephane Sire, Jean-Luc Vinot, Patrick Lecoanet,

Alexandre Lemort & Christophe Mertz. Revisiting Visual Interface

Programming : Creating GUI Tools for Designers and Program-

mers. In Proceedings of the 17th annual ACM symposium on User

interface software and technology, volume 6, pages 267–276, 2004.

[Cohen 89] Philip R. Cohen, M Dalrymple, D B Moran, F C Pereira &

J W Sullivan. Synergistic use of direct manipulation and natural

language. In Proceedings of the SIGCHI conference on Human

factors in computing systems: Wings for the mind, CHI ’89, pages

227–233, New York, NY, USA, 1989. ACM.

[Coutaz 87] Joëlle Coutaz. PAC, an object oriented model for dialog design.

In Proceedings Interact, volume 87, pages 431–436, 1987.

[Coutaz 91] Joëlle Coutaz & Len Bass. Developing Software for the User

Interface. Addison Wesley, 1991.

[Coutaz 93] Joëlle Coutaz, Laurence Nigay & Daniel Salber. The AMODEUS

Project ESPRIT Basic ResearchAction 7040. Architecture, no. Cci,

1993.

[Coutaz 95] Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann Blandford,

Jon May & Richard M. Young. Four easy pieces for assessing

the usability of multimodal interaction: the CARE properties.

Proceedings of INTERACT, vol. 95, no. June, pages 115–120,

1995.

[Coutaz 05] Joëlle Coutaz, James L Crowley, Simon Dobson & David Garlan.

Context key. Communications of the ACM, vol. 48, no. 3, pages

49–53, 2005.

[Dragicevic 04] Pierre Dragicevic. Un modèle d’interaction en entrée pour des sys-

tèmes interactifs multi-dispositifs hautement configurables, 2004.

[Duke 93] D. Duke & M. Harrison. Towards a Theory of Interactors. The

Amodeus Project, Esprit Basic Research, vol. 7040, 1993.

BIBLIOGRAPHY 223

[Duke 95] DJ Duke & M.D. Harrison. Event model of human-system inter-

action. Software Engineering Journal, vol. 10, no. 1, pages 3–12,

1995.

[Efron 41] D. Efron. Gesture and Environment. Morningside Heights. NY:

King’s Crown Press. Republished 1972 as Gesture, Race, and

Culture. The Hague: Mouton., 1941.

[Ekman 69] Paul Ekman & Wallace V. Friesen. The Repertoire of Nonverbal

Bahavior: Categories, Origins, Usage, and Coding. Semiotica,

1969.

[Ekman 72] Paul Ekman & Wallace V. Friesen. Hand Movements. The journal

of communication, pages 353–374, 1972.

[Faconti 93] GP Faconti. Towards the concept of interactor. Amodeus Project

Document: System Modelling/WP8, pages 1–23, 1993.

[Fishkin 98] Kenneth P. Fishkin, Thomas P Moran & Beverly L Harrison.

Embodied User Interfaces: Towards Invisible User Interfaces. In

Proceedings of EHCI, pages 1–18, Deventer, The Netherlands,

The Netherlands, 1998. Kluwer, B.V.

[Fitzmaurice 93] George W. Fitzmaurice, Shumin Zhai & Mark H. Chignell. Virtual

reality for palmtop computers. ACM Transactions on Information

Systems, vol. 11, no. 3, pages 197–218, July 1993.

[Foley 90a] James D. Foley, Andries van Dam, Steven K. Feiner & John F.

Hughes. Computer graphics: principles and practice (2nd ed.).

Addison-Wesley Longman Publishing Co., Inc., 1990.

[Foley 90b] James D. Foley, Victor L. Wallace & Peggy Chan. The human

factors of computer graphics interaction techniques. In Human-

computer interaction, pages 67–121. Prentice Hall Press, 1990.

[Francone 09] Jérémie Francone, Gilles Bailly, Laurence Nigay & Eric Lecolinet.

Wavelet menu: une adaptation des marking menus pour les dis-

positifs mobiles. In IHM ’09: Proceedings of the 21st International

Conference on Association Francophone d’Interaction Homme-

Machine, pages 367–370, New York, NY, USA, 2009. ACM.

224 BIBLIOGRAPHY

[Grossman 04] Tovi Grossman, Daniel Wigdor & Ravin Balakrishnan. Multi-finger

gestural interaction with 3d volumetric displays. In Proceedings of

the 17th annual ACM symposium on User interface software and

technology, UIST ’04, pages 61–70, New York, NY, USA, 2004.

ACM.

[Harrison 98] Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos

Mochon & Roy Want. Squeeze me, hold me, tilt me! An explo-

ration of manipulative user interfaces. Proceedings of the SIGCHI

conference on Human factors in computing systems - CHI ’98,

no. April, pages 17–24, 1998.

[Helander 97] Martin G. Helander, Thomas K. Landauer & Prasad V. Prabhu.

Handbook of Human-Computer Interaction. Elsevier Science Inc.,

New York, NY, USA, 1997.

[Hemmert 08] Fabian Hemmert, Gesche Joost, André Knörig & Reto Wettach.

Dynamic knobs: shape change as a means of interaction on a

mobile phone. In CHI’08 extended abstracts on Human factors in

computing systems, pages 2309–2314. ACM, 2008.

[Hinckley 00] Ken Hinckley, Jeff Pierce, Mike Sinclair & Eric Horvitz. Sensing

techniques for mobile interaction. Proceedings of the 13th annual

ACM symposium on User interface software and technology - UIST

’00, vol. 2, pages 91–100, 2000.

[Hinckley 04] Ken Hinckley, R. Jacob & Colin Ware. Input/output devices and

interaction techniques, 2004.

[Hinckley 11] Ken Hinckley & Hyunyoung Song. Sensor Synaesthesia : Touch

in Motion , and Motion in Touch. In Proceedings of the 2011

annual conference on Human factors in computing systems, pages

801–810. ACM, 2011.

[Hutchins 85] Edwin L Hutchins, James D Hollan & Donald A. Norman. Direct

manipulation interfaces. Hum.-Comput. Interact., vol. 1, no. 4,

pages 311–338, December 1985.

[Ishii 97] Hiroshi Ishii & Brygg Ullmer. Tangible bits: towards seamless

interfaces between people, bits and atoms. In Proceedings of the

BIBLIOGRAPHY 225

SIGCHI conference on Human factors in computing systems, CHI

’97, pages 234–241, New York, NY, USA, 1997. ACM.

[Jacob 03] Robert J.K. Jacob & K.S. Karn. Eye Tracking in Human-Computer

Interaction and Usability Research: Ready to Deliver the Promises.

The Mind’s eye: Cognitive The Mind’s Eye: Cognitive and Applied

Aspects of Eye Movement Research, pages 573–603, 2003.

[Jacob 08] Robert J.K. Jacob, Audrey Girouard, Leanne M. Hirshfield,

Michael S. Horn, Orit Shaer, Erin Treacy Solovey & Jamie Zigel-

baum. Reality-Based Interaction : A Framework for Post-WIMP

Interfaces. In Proceeding of the twenty-sixth annual SIGCHI

conference on Human factors in computing systems, 2008.

[Jakobsen 07] Mikkel Ronne Jakobsen & Kasper Hornaek. Transient visual-

izations. In OZCHI ’07: Proceedings of the 19th Australasian

conference on Computer-Human Interaction, pages 69–76, New

York, NY, USA, 2007. ACM.

[Karam 05] Maria Karam & M. C. Schraefel. A taxonomy of Gestures in

Human Computer Interaction. ACM Transactions on Computer-

Human Interaction, pages 1–45, 2005.

[Kratz 09] Sven Kratz & Rafael Ballagas. Unravelling seams: improving

mobile gesture recognition with visual feedback techniques. In

Proceedings of CHI, volume 9, pages 937–940, 2009.

[Kurtenbach 93] Gordon Kurtenbach, Abigail Sellen & William Buxton. An Em-

pirical Evaluation of Some Articulatory and Cognitive Aspects

of Marking Menus. Human-Computer Interaction, vol. 8, no. 1,

pages 1–23, March 1993.

[Lachenal 04] Christophe Lachenal. Modèle et infrastructure logicielle pour

l’interaction multi-instrument multisurface. PhD thesis, Univer-

sitée Joseph Fourier, 2004.

[Levin 99] Golan Levin & Paul Yarin. Bringing sketching tools to keychain

computers with an acceleration-based interface. CHI ’99 extended

abstracts on Human factors in computer systems - CHI ’99, page

268, 1999.

226 BIBLIOGRAPHY

[Liu 06] Yili Liu, Robert Feyen & Omer Tsimhoni. Queueing Network-

Model Human Processor (QN-MHP): A computational architecture

for multitask performance in human-machine systems. ACM Trans-

actions on Computer-Human Interaction (TOCHI), vol. 13, no. 1,

pages 37–70, 2006.

[Loehr 04] Daniel P. Loehr. Gesture and Intonation. PhD thesis, Georgetown

University, 2004.

[Mackinlay 90] Jock Mackinlay, Stuart K. Card & George G. Robertson. A seman-

tic analysis of the design space of input devices. Human–Computer

Interaction, vol. 5, no. 2, pages 145–190, 1990.

[McNeill 92] David McNeill. Hand and Mind: What Gestures Reveal about

Thought. University Of Chicago Press, 1992.

[Moran 81] Thomas P. Moran. The Command Language Grammar: a repre-

sentation for the user interface of interactive computer systems.

International Journal of Man-Machine Studies, vol. 15, no. 1, pages

3–50, July 1981.

[Morrel-Samuels 90] P Morrel-Samuels. Clarifying the distinction between lexical and

gestural commands. Int. J. Man-Mach. Stud., vol. 32, no. 5, pages

581–590, May 1990.

[Nancel 09] Mathieu Nancel, Stéphane Huot & Michel Beaudouin-Lafon. Un

espace de conception fondé sur une analyse morphologique des

techniques de menus. In Proceedings of the 21st International

Conference on Association Francophone d’Interaction Homme-

Machine, pages 13–22. ACM, 2009.

[Nigay 96] Laurence Nigay & Joëlle Coutaz. Espaces conceptuels pour

l’interaction multimédia et multimodale. TSI, spécial Multimédia

et Collecticiel, AFCET & Hermes Publ., vol. 15, no. 9, pages

1195–1225, 1996.

[Norman 86a] Donald A. Norman. User Centered System Design; New Perspec-

tives on Human-Computer Interaction. L. Erlbaum Associates

Inc., 1986.

[Norman 86b] Donald A. Norman & Stephen W. Draper. User Centered System

BIBLIOGRAPHY 227

Design; New Perspectives on Human-Computer Interaction. L.

Erlbaum Associates Inc., 1986.

[Norman 10] Donald A. Norman. Natural User Interfaces Are Not Natural.

Human Interfaces, pages 6–10, 2010.

[Olwal 03] Alex Olwal & Steven Feiner. Rubbing the Fisheye: Precise Touch-

Screen Interaction with Gestures and Fisheye Views. In ext. abst.

UIST’03, pages 83–84, 2003.

[Olwal 08] Alex Olwal, Steven Feiner & Susanna Heyman. Rubbing and

tapping for precise and rapid selection on touch-screen displays.

Proceeding of the twenty-sixth annual CHI conference on Human

factors in computing systems - CHI ’08, vol. 2008, page 295, 2008.

[Oviatt 92] Sharon Oviatt. Pen/voice: Complementary multimodal communi-

cation. Proceedings of SpeechTech, vol. 92, pages 238–241, 1992.

[Parhi 06] Pekka Parhi, Amy K. Karlson & Benjamin B. Bederson. Target

size study for one-handed thumb use on small touchscreen devices.

Proceedings of the 8th conference on Human-computer interaction

with mobile devices and services - MobileHCI ’06, page 203, 2006.

[Partridge 02] Kurt Partridge, Saurav Chatterjee, Vibha Sazawal, Gaetano Bor-

riello & Roy Want. TiltType: accelerometer-supported text entry

for very small devices. Proceedings of the 15th annual ACM sym-

posium on User interface software and technology, vol. 4, no. 2,

pages 201–204, 2002.

[Patel 04] Shwetak N. Patel, Jeffrey S. Pierce & Gregory D. Abowd. A

gesture-based authentication scheme for untrusted public terminals.

Proceedings of the 17th annual ACM symposium on User interface

software and technology - UIST ’04, vol. 6, no. 2, page 157, 2004.

[Potter 88] Richard L. Potter, Linda J. Weldon & Ben Shneiderman. Improv-

ing the accuracy of touch screens: an experimental evaluation of

three strategies. Proceedings of the SIGCHI conference on Human

factors in computing systems - CHI ’88, pages 27–32, 1988.

[Quek 02] Francis Quek, David McNeill, Robert Bryll, Susan Duncan, Xin-

Feng Ma, Cemil Kirbas, Karl E. McCullough & Rashid Ansari.

228 BIBLIOGRAPHY

Multimodal human discourse: gesture and speech. ACM Trans-

actions on Computer-Human Interaction (TOCHI), vol. 9, no. 3,

pages 171–193, 2002.

[Raskin 00] Jef Raskin. The humane interface: new directions for designing

interactive systems. ACM Press/Addison-Wesley Publishing Co.,

New York, NY, USA, 2000.

[Rekimoto 96] Jun Rekimoto. Tilting operations for small screen interfaces.

Proceedings of the 9th annual ACM symposium on User interface

software and technology - UIST ’96, pages 167–168, 1996.

[Rico 10] Julie Rico & Stephen Brewster. Usable gestures for mobile inter-

faces: evaluating social acceptability. In Proc. CHI, volume 10,

2010.

[Roudaut 08] Anne Roudaut, Stéphane Huot & Eric Lecolinet. TapTap and

MagStick: improving one-handed target acquisition on small touch-

screens. In Proceedings of the working conference on Advanced

visual interfaces, pages 146–153. ACM, 2008.

[Roudaut 09] Anne Roudaut, Mathias Baglioni & Eric Lecolinet. TimeTilt: Us-

ing Sensor-Based Gestures to Travel through Multiple Applications

on a Mobile Device. In INTERACT ’09: Proceedings of the 12th

IFIP TC 13 International Conference on Human-Computer Inter-

action, pages 830–834, Berlin, Heidelberg, 2009. Springer-Verlag.

[Roudaut 10] Anne Roudaut. Conception et Evaluation de Techniques d ’ Inter-

action pour Dispositifs Mobiles. PhD thesis, Telecom ParisTech,

2010.

[Roudaut 11] Anne Roudaut, Henning Pohl & Patrick Baudisch. Touch input on

curved surfaces. In Proceedings of the 2011 annual conference on

Human factors in computing systems, CHI ’11, pages 1011–1020,

New York, NY, USA, 2011. ACM.

[Rubine 91] Dean Rubine. Specifying gestures by example. ACM SIGGRAPH

Computer Graphics, vol. 25, no. 4, pages 329–337, July 1991.

[Schwesig 04] Carsten Schwesig, Ivan Poupyrev & Eijiro Mori. Gummi: a

bendable computer. Proceedings of the SIGCHI conference on

BIBLIOGRAPHY 229

Human factors in computing systems, vol. 6, no. 1, pages 263–270,

2004.

[Sears 91] Andrew Sears & Ben Shneiderman. High precision touchscreens:

design strategies and comparisons with a mouse. Int. J. Man-Mach.

Stud., vol. 34, no. 4, pages 593–613, April 1991.

[Sellen 90] Abigail Sellen, Gordon Kurtenbach & William Buxton. The role

of visual and kinesthetic feedback in the prevention of mode errors.

In Proc. INTERACT’90, pages 667–673. IFIP, 1990.

[Shaw 03] Mary Shaw. Writing good software engineering research papers.

25th International Conference on Software Engineering, 2003.

Proceedings., pages 726–736, 2003.

[Shneiderman 87] Ben Shneiderman. Designing the User Interface, chapitre 3 Menu

Sel, pages 85–133. Addison-Wesley Publishing Company, 1987.

[Shoemaker 07] Garth Shoemaker, Anthony Tang & Kellogg S Booth. Shadow

reaching: a new perspective on interaction for large displays. In

Proceedings of the 20th annual ACM symposium on User interface

software and technology, UIST ’07, pages 53–56, New York, NY,

USA, 2007. ACM.

[Swick 88] Ralph R Swick & Mark S Ackerman. The X Toolkit: More Bricks

for Building User Interfaces, or Widgets For Hire. In USENIX

Technical Conference, 1988.

[Taylor 08] Brandon Taylor & V. Michael Bove Jr. The bar of soap: a grasp

recognition system implemented in a multi-functional handheld de-

vice. In CHI’08 extended abstracts on Human factors in computing

systems, pages 3459–3464. ACM, 2008.

[Villamore 10] Craig Villamore, Dan Willis & Luke Wroblewski. Touch Gesture

reference guide, 2010.

[Vogel 07] Daniel Vogel & Patrick Baudisch. Shift: a technique for operating

pen-based interfaces using touch. In Proceedings of the SIGCHI

conference on Human factors in computing systems, numéro c,

pages 657–666. ACM, 2007.

230 BIBLIOGRAPHY

[Wigdor 07] Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John Barnwell

& Chia Shen. LucidTouch: A See-Through Mobile Device. UIST

2007, pages 269–278, 2007.

[Williamson 07] John Williamson, Rod Murray-Smith & Stephen Hughes. Shoogle:

excitatory multimodal interaction on mobile devices. In Proceed-

ings of the SIGCHI conference on Human factors in computing

systems, pages 121–124. ACM, 2007.

[Wilson 03] Andrew D. Wilson & Steven Shafer. XWand: UI for intelligent

spaces. In Proceedings of the SIGCHI conference on Human factors

in computing systems, numéro 5, page 552. ACM, 2003.

[Wobbrock 07] Jacob O. Wobbrock, Andrew D. Wilson & Yang Li. Gestures

without libraries, toolkits or training: a $1 recognizer for user

interface prototypes. In Proceedings of the 20th annual ACM

symposium on User interface software and technology, pages 159–

168. ACM, 2007.

[Wobbrock 09] Jacob O. Wobbrock, Meredith Ringel Morris & Andrew D. Wilson.

User-defined gestures for surface computing. In Proceedings of

the 27th international conference on Human factors in computing

systems, pages 1083–1092. ACM, 2009.

[Yatani 08] Koji Yatani, Kurt Partridge, Marshall Bern & Mark W. Newman.

Escape: a target selection technique using visually-cued gestures.

In Proceeding of the twenty-sixth annual SIGCHI conference on

Human factors in computing systems, numéro c, pages 285–294.

ACM, 2008.

[Yee 03] K.P. Yee. Peephole displays: pen interaction on spatially aware

handheld computers. In Proceedings of the SIGCHI conference on

Human factors in computing systems, numéro 5, pages 1–8. ACM,

2003.

Abstract

In this thesis, I address the question of gestural interaction on mobile devices. These,
now common, differ from conventional computers primarily by the input devices the
user interact with (small screen size but tactile, various sensors such as accelerometers)
as well as the context in which they are used. The work I present is an exploration of
the vast area of interaction techniques on these mobile devices. I structure this space
by focusing on the techniques based on accelerometers for which I propose a taxonomy.
Its descriptive and discriminant power is validated by the classification of thirty-seven
interaction techniques in the literature. The rest of my work focuses on the achievement
of gestural interaction techniques for these mobile devices. With TouchOver, I show that
it is possible to take advantage of complementary two-channel input (touch screen and
accelerometers) to add a state to the finger-drag, thus enriching the interaction. Finally, I
focus on mobile device menus and I propose a new form of sign language menus. I discuss
their implementation with the GeLATI software library that allows their integration into
a pre-existing GUI toolkit.

Keywords

Human Computer Interaction, Gestural Interaction Techniques, Gestural Menus.

Résumé

Dans cette thèse, j’aborde la question de l’interaction gestuelle sur dispositif mobile. Ces
dispositifs, à présent communs, se distinguent des ordinateurs conventionnels principale-
ment par leurs périphériques d’interaction avec l’utilisateur (écrans de taille restreinte
mais tactiles, capteurs divers tels que les accéléromètres) ainsi que par le contexte dans
lequel ils sont utilisés. Le travail que je présente est une exploration du vaste domaine
des techniques d’interaction sur ces dispositifs mobiles. Je structure cet espace en me
concentrant sur les techniques à base d’accéléromètres pour lesquelles je propose une
taxonomie. Son pouvoir descriptif et discriminant est validé par la classification de
trente-sept techniques d’interaction de la littérature. La suite de mon travail se penche
sur la réalisation de techniques d’interaction gestuelles pour ces dispositifs mobiles. Avec
TouchOver, je montre qu’il est possible de tirer parti de manière complémentaire de
deux canaux d’entrée (écran tactile et accéléromètres) pour ajouter un état au glissé du
doigt, permettant ainsi d’enrichir cette interaction. Enfin, je m’intéresse aux menus sur
dispositif mobile et je propose une nouvelle forme de menus gestuels. Je présente leur
réalisation avec la bibliothèque logicielle GeLATI qui permet leur intégration à une boîte
à outils de développement d’interface graphique préexistante.

Mots-clés

Interaction Homme-Machine, Techniques d’Interaction Gestuelle, Menus Gestuels.

