
HAL Id: tel-00665439
https://theses.hal.science/tel-00665439

Submitted on 1 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CONTRACT BASED APPROACH FOR
PROVIDING RELIABILITY TO SERVICES BASED

APPLICATIONS
Alberto Portilla-Flores

To cite this version:
Alberto Portilla-Flores. A CONTRACT BASED APPROACH FOR PROVIDING RELIABILITY TO
SERVICES BASED APPLICATIONS. Software Engineering [cs.SE]. Université de Grenoble, 2010.
English. �NNT : �. �tel-00665439�

https://theses.hal.science/tel-00665439
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité MSTII/INFORMATIQUE

Arrêté ministériel : 7 août 2006

Présentée et soutenue publiquement par

PORTILLA-FLORES Alberto

Le 15 Octobre 2010

« UNE APPROCHE A BASE DE CONTRATS POUR LA COORDINATION FIABLE
DES SERVICES »

Thèse dirigée par Christine COLLET et codirigée par José Luis ZECHINELLI-MARTINI

JURY

Mr. Olivier PERRIN MCF HDR Université Nancy 2, Rapporteur
Mr. Samir TATA Prof. Institut TELECOM Paris Rapporteur

Mr. Omar BOUCELMA Prof. Univ. Paul Cézanne Aix-Marseille 3 Examinateur
Mr. Luciano GARCIA-BAÑUELOS PhD University of Tartu Examinateur
Mme. Genoveva VARGAS-SOLAR PhD CNRS, LIG Examinateur

Thèse préparée au sein du Laboratoire d’Informatique de Grenoble dans « l' Ecole
Doctorale Mathématiques, Sciences et Technologie de l’Information, Informatique (27) »

A CONTRACT BASED APPROACH FOR PROVIDING

RELIABILITY TO SERVICES BASED APPLICATIONS

An Abstract of a Thesis

Presented to

Université de Grenoble

In Partial Fulfillment

of the Requirements for the Degree

Ph.D. in Computer Science

By

Alberto Portilla Flores

2010

Abstract

This research work addresses reliability of services coordination expressed as non-

functional properties (e.g., performance, security, atomicity, persistency, etc) that

must be ensured and enforced at execution time. Existing systems, models and lan-

guages provide ad-hoc solutions that weave the application logic, expressed as services

coordination, with non functional properties, leading to applications difficult to evolve

and maintain. In contrast, our approach promotes separation of concerns such that re-

liability can be personalized for a given services coordination where some services can

run under persistent connection conditions, others participate in atomic executions,

etc. Therefore, we propose a contract model for associating non-functional properties

to a services coordination and associated contract evaluation strategies for verifying

and enforcing them at run time. A proof of concept is presented, ROSE is a reliable

services coordination execution engine able to add exception handling and atomicity

properties to a given services coordination.

Résumé: Ce travail de recherche aborde la fiabilité de la coordination de services

exprimée comme des propriétés non-fonctionnelles (e.g. la performance, la sécurité,

l’atomicité, la persistance, etc.) qui doivent être assurées et renforcées en cours

dexécution. Les systèmes existants, les modèles et les langages fournissent aujourd’hui

des solutions ad hoc qui tissent la logique applicative avec les aspects non-fonctionnels,

conduisant à des applications difficiles à faire évoluer et à maintenir. Notre approche

favorise la séparation et la personnalisation d’aspects tels que la fiabilité. Nous pro-

posons le modèle de contrats COBA pour décrire l’association des propriétés non-

fonctionnelles à une coordination de services, et l’évaluation des contrats grâce aux

iii

stratégies pour les vérifier et les renforcer en cours d’exécution. Une expérimentation

et une validation du modèle ont été réalisées à travers la mise en œuvre de ROSE, un

moteur d’exécution de coordinations de services fiables.

iv

Acknowledgements

This thesis has been prepared during my PhD studies at the Grenoble Informatics

Laboratory at the Université de Grenoble, France and the French Mexican Laboratory

of Informatics at the Fundación Universidad de las Américas Puebla, Mexico. Thanks

to the PROMEP-SEP Mexican program, the Universidad Autónoma de Tlaxcala, and

the Jenkins Fellowship Excellence program at F-UDLA for funding my studies.

I would like to thank my advisors. Prof. Christine Collet, for sharing with me

her deep insights of the research world and for helping me to face the challenges of

this thesis. PhD Genoveva Vargas Solar, for encouraging my autonomy and giving me

irreplaceable teachings, it is for me a great honor to be her first graduated Mexican

PhD student. Prof. José Luis Zechinelli Martini, for many thoughtful conversations

regarding the right way of doing research. Prof. Luciano Garćıa Bañuelos, for his

support and for the extensive discussions which served to clarify several issues related

to my research work.

I am grateful with, Prof. Omar Boucelma, PhD Olivier Perrin, Prof. Mauricio

Osorio Galindo, and Prof. Samir Tata for their suggestions that enabled me to improve

the quality of this document and for being part of the dissertation committee.

Many thanks to the members of the HADAS team at LIG: Christophe, Fabrice,

Marie Christine and Alexandre, research scientists of the team; Trinidad, Genaro,

Laurent, Remi, Ma. Del Pilar, Giang, Tan and Nagapraveen, ancient PhD Students;

Victor, Javier, Carlos, Benjamin, Mohammed and Lourdes current PhD Students;

thanks to all of them for sharing with me their thoughts, hints, culture and experience,

while I was in Grenoble.

Last but not least, I would thank to my family in Mexico. Gracias a mis padres,

v

Alberta R. Flores Flores y Alfredo Portilla Mendieta, por su amor y su apoyo en todas

las decisiones que he tomado en la vida. A mis dos hijos, Alberto André y Brenda

Mayté, dos ángeles que el Señor me envió para acompañarme en este camino que

aún debo terminar de recorrer; gracias por su paciencia y amor; a pesar de todo, ya

pueden decir que papá es “Doctor”. A mis hermanos, Alma Bertha, Edgar Alfredo y

Vı́ctor Hugo, porque gracias a sus ejemplos aprend́ı a superar los obstáculos de la vida.

Prof. Jaime Flores Flores, gracias t́ıo, porque de ti aprend́ı que la mejor herencia que

podemos recibir es la educación. También gracias a mis familiares cercanos, Alma,

Nico, Karla Carol, Karla, Tito y Ethian, gracias por estar al pendiente de mi trabajo.

All of them were crucial supporters for finishing this thesis. Finally, I reserve a special

thank to Carmen, my fiancee, for your endless love during this short time, I hope this

will be forever.

vi

Contents

1 Introduction 1
1.1 Context and motivation . 1
1.2 Problem statement and objective . 3

1.2.1 Problem statement . 3
1.2.2 Hypothesis . 4
1.2.3 Objective . 4

1.3 Contributions . 5
1.4 Document organization . 6

2 Reliable services coordination 7
2.1 Reliability . 8
2.2 Atomicity . 9

2.2.1 Protocol based . 11
2.2.2 Coordination based . 13
2.2.3 Interaction based . 15
2.2.4 Discussion . 15

2.3 Persistency . 16
2.3.1 Infrastructure based . 17
2.3.2 Coordination based . 18
2.3.3 Discussion . 19

2.4 Conclusion . 20

3 The COBA model 23
3.1 Preliminaries . 24

3.1.1 Domain . 24
3.1.2 Type ▽ . 25
3.1.3 Meta-type . 27
3.1.4 Class . 29

3.2 Execution unit . 33
3.2.1 State . 35

vii

viii CONTENTS

3.2.2 Control flow . 35
3.3 Property . 36
3.4 Rule . 37

3.4.1 Event . 38
3.4.2 Reaction . 39

3.5 Contract . 40
3.5.1 Simple contract . 41
3.5.2 Composite contract . 42

3.6 Conclusion . 44

4 Reliability with contracts 45
4.1 Reliable services coordination . 46

4.1.1 Exception handling . 46
4.1.2 State persistency . 47

4.2 Exception contract . 47
4.2.1 Exception property . 48
4.2.2 Recovery Rules . 50
4.2.3 Critical contract . 52

4.3 Atomicity contract . 53
4.3.1 Atomicity property . 54
4.3.2 Atomicity rules . 54
4.3.3 Strict atomicity contract . 56

4.4 State management contract . 57
4.4.1 State management property . 57
4.4.2 State management rules . 59
4.4.3 Presumable contract . 61

4.5 Persistency guarantees contract . 62
4.5.1 Property . 63
4.5.2 Persistency guarantees rules . 63
4.5.3 Best effort contract . 65

4.6 Conclusion . 66

5 Contracts’ evaluation 67
5.1 Evaluation of one simple contract . 68

5.1.1 Contract triggering . 70
5.1.2 Property evaluation . 71
5.1.3 Reaction triggering . 72
5.1.4 Reaction execution . 74

5.2 Evaluation of one composite contract 75
5.2.1 Contract triggering . 77

CONTENTS ix

5.2.2 Property evaluation . 78
5.2.3 Reaction triggering . 81
5.2.4 Reaction execution . 81

5.3 Evaluation of several contracts . 83
5.3.1 Evaluation example . 84

5.4 Orthogonality of reliability contracts 86
5.4.1 Simple contracts . 86
5.4.2 Composite contracts . 87

5.5 Conclusion . 88

6 Validation and proof of concept 89
6.1 Coordination engine architecture . 90

6.1.1 Bonita . 92
6.1.2 Activity hook . 93

6.2 Architecture of the contract evaluator 94
6.3 Experimental validation . 96

6.3.1 Purchase ticket application . 98
6.3.2 Atomicity contracts . 98
6.3.3 Implementing atomicity contracts in ROSE 101
6.3.4 Example of execution . 102

6.4 Conclusion . 105

7 Conclusions 107
7.1 Contributions and main results . 108
7.2 Perspectives . 109

Bibliography 112

A Reliability contracts 121
A.1 Exception contract . 121

A.1.1 Exception property . 121
A.1.2 Recovery Rules . 122
A.1.3 Exception contracts . 125

A.2 Atomicity contract . 126
A.2.1 State management property . 127
A.2.2 Atomicity rules . 127
A.2.3 Atomicity contracts . 130

A.3 State management contract . 131
A.3.1 State management property . 131
A.3.2 State management rules . 131

x CONTENTS

A.3.3 State management contract subtypes 135
A.4 Persistency guarantees contract . 137

A.4.1 Persistency guarantees property 137
A.4.2 Persistency guarantees rules . 138
A.4.3 Persistency guarantees contract subtypes 140

List of Figures

1.1 Purchase ticket application . 2

3.1 Contract tree example . 44

5.1 Evaluation of a simple contract . 69
5.2 Execution of an execution unit . 70
5.3 Contract triggering of unCsT . 71
5.4 Property evaluation of unCsT . 72
5.5 Execution example of one reaction before the execution of an execution

unit . 73
5.6 Execution example of one reaction after the execution of an execution

unit . 73
5.7 Reaction triggering of unCsT . 74
5.8 Reaction execution of unCsT . 75
5.9 Evaluation of a composite contract . 76
5.10 Composite contract c1 . 76
5.11 Triggering a composite contract . 77
5.12 Sequence diagram for triggering a composite contract 78
5.13 Contract triggering of unCsT . 79
5.14 Property evaluation of c1 . 80
5.15 Property evaluation of c1 . 80
5.16 Evaluation example of a composite contract 82
5.17 Reaction triggering of c1 . 82
5.18 Evaluation of several contracts within a same coordination 84
5.19 Evaluation order for several contracts belonging to a coordination . . . 85

6.1 General architecture . 90
6.2 General architecture of Bonita . 92
6.3 Hook events related to execution states of execution units 95
6.4 Contract evaluator architecture in Bonita engine 95
6.5 Contracts editor of ROSE . 102

xi

xii LIST OF FIGURES

6.6 Interactions among components of ROSE for executing Get concert in-
formation . 103

6.7 Interactions among components of ROSE for executing Validate payment104

List of Tables

4.1 Execution unit types according to exception property 49
4.2 Exception contract subtypes according to exception property values . . 50
4.3 Execution unit types according to state management property 59
4.4 State management contract subtypes according to state management

property values . 59

5.1 Matrix of compatibility for exception and state management contracts . 87

xiii

Chapter 1

Introduction

Résumé: Les applications à base de services sont construites en coordonnant des

composants logiciels existants que l’on appelle les services. La coordination de ser-

vices définit l’interaction entre les services et elle est spécifiée par des propriétés (i)

fonctionnelles qui définissent la logique applicative ; et (ii) des propriétés non fonction-

nelles qui concernent des stratégies pour exécuter une coordination (e.g. des propriétés

de fiabilité, de sécurité ou d’adaptabilité). Notre travail concerne la modélisation des

aspects non fonctionnels des applications à base de services. Ce chapitre énonce le

problème adressé dans cette thèse, il spécifie les objectifs et énumère les contributions

de notre travail de thèse.

1.1 Context and motivation

Services based applications is an emerging paradigm for the construction of informa-

tion systems. This kind of systems are not built from scratch, but using existing

software components called services [ACKM04, SH05, Erl05]. A services based appli-

cation is composed by coordinating several services providers where the application

logic is abstracted by a coordination specification that usually captures functional and

non functional aspects [PCVS+06, Por06b, PVSZM+06]. While functional aspects des-

cribe what the system does, the non functional aspects describe how the execution

must be done with respect to some observable attributes like reliability, adaptability

or security. Our work is related to model non functional aspects of services based

applications.

Along this document we use a “purchase tickets application” example to illustrate

our approach. Figure 1.1 introduces the application logic. It includes activities that

1

1. Introduction

must be completed (rounded boxes) and the execution order in which they must

be executed (arrows) for purchasing concert tickets on Internet. Given the concert

information, for example concert name, seats, date, and time, the purchase is processed

and payment is granted. Once the purchase has been authorized, the payment must

be done, the tickets must be sent, and publicity for other events must be sent too.

Besides, there are several business rules that must be considered, for example the

following rules:

Figure 1.1: Purchase ticket application

• The activity Get concert information can be completed in several ways (e.g.,

by telephone or via Internet). It is a vital activity for the application because

it implies not only information about the concert but also business policies for

retaining customers. Thus it must retried in case of failure.

• The payment (i.e., activity Validate payment) can be granted in different ways

(e.g., pre-paid, credit card payment, or personal check) and it can be done with

different providers (i.e., Visa, Mastercard or American Express).

• Tickets can be sent (i.e., activity Send tickets) or picked up directly at the ticket

office according to customer preferences.

2

1.2. Problem statement and objective

• The activity Send publicity is not vital for the success of the application because

it only exploits customers information for publicity purposes.

• A purchase order can be completed only if it was paid.

The above business rules impact the execution according to certain profiles (e.g., cus-

tomer profiles) that reflect several execution cases. They do not modify the application

logic but the execution, and they represent the non functional aspects of the applica-

tion some of which are related to reliability of applications [Por06b, Por06a].

Nowadays there are academic and industrial efforts that have proposed stan-

dards, languages, tools and middlewares for building service oriented applications

[ACKM04, Erl05, SH05]. Until now, a lot of effort has been devoted to services coor-

dination and associated protocols that are used for adding non functional properties

to coordinations (e.g., reliability aspects, security, adaptability, see [CCF+04, LW03,

Fur04, BCR05, TMW+04, DFDB05, Bhi05, PBM02, NFG+05, VV04, HW06, SABS02,

Lom05, ZHMS06]). Yet, these approaches do not considers the dynamic context that

must face applications:

• When application logic is modeled, developers must reflect all execution cases:

exceptional situations and application requirements [Por06a, Por06b, Por08a]

(e.g., what to do if Send tickets fails). This situation makes that in the presence

of new exceptions the application must be modified.

• A same application logic must be related to non functional aspects according to

business rules (e.g., normal users and VIP users must be processed in a different

way). This situation is very common nowadays because customer relationships

are crucial in several applications.

Therefore, functional and non functional requirements are provided using ad-hoc strate-

gies [PCZMHB08, PVSGB+08]. We noticed that hard coding such aspects make ap-

plications very complex in the sense that they are hard to maintain, not flexible, not

adaptable and contradicts reusability philosophy of services oriented approach.

1.2 Problem statement and objective

1.2.1 Problem statement

The problem we address is that of providing non functional properties to services based

applications. We consider a non functional property as the one that that describes

3

1. Introduction

how the execution must be done with respect to some observable attributes (e.g.,

reliability, security, adaptability). Until now most of existing approaches provide

ad-hoc solutions that weave the application logic, expressed a services coordination,

with non-functional properties, leading to applications difficult to evolve and maintain

[PCZMHB08, PVSGB+08].

1.2.2 Hypothesis

Given a services coordination describing the logic of a service based application, it

is possible to add non functional properties by defining them independently from

application logic, using contracts. This is possible because, there are non functional

properties (e.g., atomic behavior, exception handling, and persistency) that can be

ensured at execution time by the evaluation of its contracts. A contract must associate

a property to an execution unit or to a set of contracts and to define the recovery

operations to be considered for enforcing the property in the occurrence of specific

situations.

1.2.3 Objective

To propose a model for associating non functional properties to a services coordination

and associated contract evaluation strategies for verifying and enforcing them at run

time. The model must provide concepts for representing:

• Application logic and non functional requirements in an orthogonal way.

• The specification of non functional properties must be done in a simple and

expressively way (i.e., close to business rules that usually express such require-

ments).

Besides, a proof of concept must be provided to show the feasibility of the model:

• To show how to enact the services coordination with non functional properties.

Details about the evaluation process of contracts at execution time must be

presented.

• A general architecture must be proposed for implementing a contract evaluator

that interacts with a coordination engine for triggering and executing a service

coordination with non functional properties expressed as contracts.

4

1.3. Contributions

1.3 Contributions

The contributions of this thesis can be summarized as follows:

• We propose COBA (i.e., COntracts BAsed model1), a model for representing the

non functional aspects of a services coordination through the notion of contract

[Por06a, PVSC+07a, PVSC+08a]. We assume that a services coordination is

represented as:

– A set of execution units.

– A control flow represented by a set of execution dependencies among the

execution units

– An execution history represents ordering constraints over the state of the

set of execution units.

The concepts of COBA are:

– Execution unit: it represents the execution of a process (e.g., an activity of

a services coordination).

– Property: It represents a non functional aspect.

– Rule: it specifies the reactions to be executed for enforcing a property under

a given situation.

– Contract: it represents the association of a property to an execution unit

or to a set of contracts and the rules to be considered for the property.

• We present a analysis of how reliability has been tackled for services coordination

[PVSZM+06, PCVS+06, PHEO+08b, PHEO08a]. As a result of such an analysis,

we use the concepts of COBA for providing reliability properties to given services

coordination. We define a reliable services coordination as the one that tolerates

failures at execution time. Therefore, we analyze how exception handling and

state persistency can be specified by means of contracts:

1. How to treat exceptions over the execution of execution units.

2. How to provide atomic behavior to sets of execution units.

3. How to treat the persistency guarantees of execution units.

1COBA is also the name of a Maya archeological site, located in the state of Quintana Roo,
Mexico. In Maya it means “Abundant water”.

5

1. Introduction

4. How to handle the execution state of activities sets.

• A key element of our approach is the evaluation of contracts. Therefore, we pro-

pose strategies for evaluating the contracts associated to a services coordination

[PVSC+08a, PHEO08a, PHEO+08b]. The strategies specify when to evaluate a

contract with respect to the execution of an execution unit and when and how

to execute the reactions of the contract.

• We introduce a general architecture with the basic requirements that a coordina-

tion engine must have to enact a coordination with reliable contracts. Using such

architecture, we present ROSE, a services coordination engine which provides

atomic behavior to web services [PVSC+07b, HBPZM07].

1.4 Document organization

The remaining of this document is organized as follows:

• Chapter 2 presents a state of the art of approaches providing reliability to services

coordination.

• Chapter 3 describes COBA, the contract based model that we propose for adding

non functional properties to services coordination.

• Chapter 4 presents the evaluation process of contracts at execution time.

• Chapter 5 introduces the how reliability can be addressed by means of contracts.

• Chapter 6 presents a proof of concept, ROSE a services coordination engine that

enacts services coordinations with atomic requirements.

• Chapter 7 concludes this document by presenting the lessons learned and the

ongoing work.

6

Chapter 2

Reliable services coordination

This chapter introduces the concepts of a reliable services coordination. A reliable ser-

vices coordination tolerates failures at execution time. Reliability is very relevant due

to current business oriented nature of services based applications. It provides QoS to

applications by means of ensuring access to resources in a continuous way. To this res-

pect, several works has been devoted to provide reliability to applications using several

approaches (e.g., see [CCC+04, CCF+04, LW03, Fur04, BCR05, TMW+04, DFDB05,

BGP05, PBM02, NFG+05, VV04, HW06, SABS02, Lom05, ZHMS06]). The way on

which reliability is addressed, impacts the definition itself of the aspects (i.e., the

level of abstraction used for its definition) and the type of developed application (i.e.,

the level of adaptability, maintenance and evolution that the application has). Such

aspects are critical in distributed and heterogeneous environments (e.g., the Web),

where the time to market and the constant evolution drives the software development.

This chapter is organized as follows. Section 2.1 defines the notion of reliabil-

ity in the context of services coordination. Section 2.2 discusses about of existing

approaches addressing atomic behavior to services coordination. Section 2.3 presents

approaches providing persistency. Finally, Section 2.4 summarizes the present chapter.

Résumé: Ce chapitre définit la coordination fiable de services. La fiabilité assure

des propriétés de qualité de service (QoS) des coordinations de services. Ainsi, une

coordination fiable des services tolère des exceptions pendant son exécution. Plusieurs

approches ont été proposées pour construire des applications fiables à base de services.

Ce chapitre fait état des travaux qui ont adressé des aspects de fiabilité, en particulier,

l’atomicité et la persistance dans les systèmes à base de services. Les approches sont

décrites et analysées et leurs limitations sont mises en évidence.

7

2. Reliable services coordination

2.1 Reliability

A reliable services coordination is able to maintain its functionality in unexpected

situations (i.e., failures). Failures are of two kinds: semantic and system failures.

• A semantic failure is related to the application logic. Tolerating this kind of

failures implies to handle states, not completely defined in the normal execution

flow. The objective is to reach consistent execution states where the execution

can be continued or finished. Semantic failures are tackled by providing atomic

behavior (i.e., atomicity) to services coordination.

• A system failure is related to execution infrastructure failures. Tolerating this

kind of failures ensures that given a coordination, its execution state survives

in spite of system failures. System failures are tackled by providing persistency

guarantees to services coordination.

Aspects related to reliability were first addressed in the database area by means

of ACID properties (i.e., atomicity, consistency, isolation and durability) of tran-

sactions. In such a context, a transaction is an execution unit composed of se-

veral DB operations (i.e., queries and updates) that ensures the database consis-

tency by controlling concurrent access to shared data according to ACID properties

[DA82, Elm92, OV99, WV98, GMUW00]:

• Atomicity is based on the principle of “all-or-nothing” which means that either

all operations of a transaction are completed or none of them. Therefore, an

atomic transaction is treated as an execution unit which either is executed or

not.

• Consistency refers to database integrity. A consistent database state is expected

before, during and after transactions execution.

• Isolation is related to visibility degree of results within a transaction to other

concurrent transactions. The current transaction behaves as the only transaction

been executed.

• Durability concerns to data persistency. Once a transaction has been committed,

its results survive system failures.

The need of revisiting such concepts to address new contexts (e.g., services coordina-

tion) has been pointed out by several authors.

8

2.2. Atomicity

Jim Gray [Gra81] proposes to integrate transaction constructors within program-

ming languages. This strategy implies to use such constructors within the definition

of the application logic which conducts to build ad-hoc applications.

Advanced transaction models [Elm92] introduce useful concepts such as control

flow, compensation notion and complex committing protocols to distributed database

environments. Such protocols usually are coded using programming languages result-

ing in applications hard to maintain.

Gustavo Alonso et al [AAA+98] extend two products of IBM with advanced tran-

sactional models as a proof that such models remain as theoretical efforts not being

used in commercial products. This work represents an ad-hoc implementation of con-

cepts related to database environments.

David Lomet and Gerhard Weikum [LW98] use logging and recovery techniques

for supporting system failures for non database applications. The approach assumes

the same requirements for all the components of the applications which makes the

application hard to adapt to dynamic environments.

Finally, Frank Leymann and Dieter Roller [LR97] introduce the concepts of com-

pensation and atomicity spheres (i.e., logical boundaries) into workflows. This ap-

proach proposes the separation of application logic and atomicity aspects in a homo-

geneous execution context (i.e., workflows).

In the context of services coordination reliability has taken a new dimension which

demands adaptability and extensibility due to autonomy of services and the dynamic

environment over which the applications are executed. Therefore, in the next sec-

tions we revise some approaches that tackle reliability (i.e., atomicity and persistency)

according to the way they integrate reliability to services coordination.

2.2 Atomicity

Atomicity in the classic sense is ensured by means of transactions. In such a con-

text, a transaction is a set of DB operations treated as an atomic execution unit

which either is executed or not. In the case of services coordination, it associates a

relaxed notion of atomicity that has been used to handle semantic failures by means

of recovery strategies (e.g., forward execution, backward recovery, forward recovery)

[HA00, CSDS03, BDO05]. Relaxed atomicity extends the classic concept of atomicity

[PVSZM+06]:

• Strict atomicity respects the requirement of executing “all or nothing” [EGLT76].

9

2. Reliable services coordination

For example, in the “purchase tickets application” this kind of atomic behavior

can be associated to activities Validate payment and Send tickets to ensure that

either a reservation which is paid is delivered, or a reservation which is not is

not paid is not delivered. In this case strict atomicity is hard to provide because

while the execution of both activities does not commit or fail, the resources used

by them remain blocked.

• Semantic atomicity uses the notion of compensation for dealing with the im-

possibility of rolling back some operations [GM83]. A compensation amends

the effects of a committed operation. Compensation is necessary because there

are some operations that cannot be rolled back. For example in the “purchase

tickets application”, it is not possible to undone the activity Validate payment,

therefore if it is necessary to cancel it, a compensation action is necessary (e.g.,

to apply an extra charge per cancelation).

• Semi-atomicity introduces the opportunity for deciding between two or more

execution paths for committing [ZNBB94]. It assumes that there are several

possible ways of committing a set of operations. For example, in the “purchase

tickets application”, tickets can be send to an address or they can be picked up

at an office.

In the next sections we analyze existing approaches according to, i) the type of

atomicity they provide, and ii) the way on which atomicity is integrated with the

services coordination:

• Atomicity provided by means of protocols (i.e., protocol based) is when there

are some transactional protocols that are used for ensuring a kind of atomicity.

• When atomicity is provided as a part of the coordination (i.e., coordination

based), there are some atomicity constructors that complements the coordination

operators.

• Atomicity is also provided by means of defining the required interactions among

several coordinated activities (i.e., interaction based) to address a specific atomic

behavior.

10

2.2. Atomicity

2.2.1 Protocol based

In this kind of approaches, the atomicity is implemented within the coordination by

using pre-defined protocols (e.g., extensions of the two phase commit protocol1 and

advanced transactional models2, see [Por06b]). When using a protocol it is assumed

that operations within a transaction have a homogeneous behavior with respect to

transactional requirements (e.g., all operations accept reservation for committing)

and therefore it defines the way on which the processes for committing or undone

a transaction must be done. It is also assumed that, services and execution infrastruc-

ture offer functions related to support atomicity (e.g., the compensation capability).

Following approaches are representative examples of protocol based approaches:

• The Web services transaction (WS-Tx) [CCC+04] is a protocol to provide strict

and semantic atomicity to services coordination. WS-Tx is layered over the

Web services coordination specification (WS-C) [CCF+04, LW03]. Ws-Tx ex-

tends WS-C to create a transactional coordination context offering two types of

atomicity:

– Atomic transaction (AT). It is used to coordinate activities with strict

atomicity-like behavior.

– Business activity (BA). It is used to coordinate activities with a semantic

atomicity-like behavior. In this protocol business activities can be sub

divided into small ones called scopes. A scope is a collection of operations

that can be nested to arbitrary degrees.

WS-Tx has defined five protocols for committing based on classic 2PC: Completion,

CompletionWithAck, Phasezero, 2PC, and Outcomenotification.

• The business transaction protocol (BTP) [Fur04] is a protocol for coordinating

processes with strict and semi-atomicity behavior. A BTP coordination protocol

is a set of well-defined messages that are exchanged between participants to

address a transactional behavior. BTP defines two coordination protocols to

provide transactional behavior:

1The two phase commit protocol (2PC) consist of two phases : i) during the first phase (prepara-
tion) every participant in transaction extern its response to commit or abort, and ii) in the second
phase (commitment), a coordinator makes a global decision which is communicated and executed by
all participants of the transaction.

2Most representative examples of advanced transactional models are: saga [GMS87, GMGK+91,
GMUW00], flexible transactions [ELLR90, ZNBB94], and contracts [WR92].

11

2. Reliable services coordination

– Atom protocol implements a strict atomicity behavior.

– Cohesion protocol enables the definition of semi atomicity, where some

participants commit and others cancel based on some pre-defined business

rules. A cohesion commits using the rules that users define.

Atom and cohesion protocols use a modified two phase commit protocol (2PC)

which cannot be adapted or extended to new requirements. During the second

phase of 2PC protocol, the set of rules is used by coordinator to make a decision

about commit or abort.

• [BCR05] extends BTP by means of an ontology expressed in OWL-S. The on-

tology categorizes services according to three aspects:

– The functionality of the service.

– How it is accessible the service.

– How the service works.

Regarding to atomicity a service is classified as unprotected, semi-protected,

protected, negotiable, and real. This classification is used for implementing the

atom, cohesion, and atomic transactions of BTP on top of the transactional

properties that a service can provide. In such a way, it is possible to provide

strict and semi-atomicity behavior to a given services coordination.

• [TMW+04] proposes a policy based transactional model implemented on top

of WS-Coordination, WS-Transaction, and WS-ReliableMessaging protocols. A

policy is used to advertise and to match three types of atomicity:

– Direct transaction processing provides atomicity based on the 2PC protocol.

– Queued transaction processing provides atomicity using a non blocking 2PC

protocol.

– Compensation-based transaction processing provides atomicity using the

notion of compensation which relaxes the notion of atomicity.

Using such transaction models it is possible to provide strict and semi-atomicity

behavior.

• [DFDB05] introduces a protocol for dynamic composition of services based on

the tentative hold protocol that enables the definition of an atomic behavior

12

2.2. Atomicity

for activities. The tentative hold protocol adds a phase to 2PC protocol where

participants can request tentative reservations on the resources that they want to

use in following phases. This new phase can be seen as an exchanging of messages

prior to the transaction for minimizing compensation actions. Using such a

protocol, it is possible to associate an atomic behavior to a set of participants

of a coordination as follows:

– It is defined which committing conditions must have each participant at

execution time (e.g., a participant must fail).

– The minimum number of committed participants that must be for accepting

the execution (e.g., strict atomicity behavior requires that all participants

commit).

Using this appproach, strict atomicity and semi-atomicity can be provided to a

services coordination.

2.2.2 Coordination based

A second strategy for addressing atomicity is to define it explicitly within the applica-

tion logic. This is done by adding sequences of activities that implements transactional

constructors such as Jim Gray proposes. In that way, it is possible to implement well

known advanced transactional models within a given coordination language. Following

works are good examples of coordination based approaches:

• [Bhi05] proposes an approach for Web services composition using a transactional

approach based in patterns. This approach consist of a set of algorithms and

rules for assisting to compose coordinations with transactional behavior. A

transactional specification is composed as follows:

– It includes the set of services to be considered within the desired atomic

behavior.

– An atomic behavior specified by means of a set of accepted termination

states. An accepted termination state defines the state where a service can

finishes its execution (e.g., some services can commits and others can fail).

For example, in the “purchase tickets application” can be acceptable to

finish the application with an order cancelation applying an extra charge.

13

2. Reliable services coordination

This notion of accepted termination states relaxes atomicity. Using this approach

it is possible to define strict atomicity, semi-atomicity or semantic atomicity

behavior to a services coordination.

• WebTransact [PBM02] extends the Web Services Description Language (WSDL)

with transactional behavior definitions. In this approach, a coordination is writ-

ten using the so called Web Service Transaction Language (WSTL), which is

built on top of WSDL [CMRW07]. WSTL offers a way to describe how to in-

teract with services and its transactional support. A service can be associated

with following behaviors:

– The execution of a service cannot be aborted after being started or undone

after it commits.

– The execution of a service can be aborted after being started and can be

compensated after it commits.

– The execution of a service can be retried in case of failure.

Exploiting the possible transactional behavior of each service it is possible to

provide strict atomicity, semi-atomicity to a services coordination

• [NFG+05] introduces the so called GAT model (guard-activity-triggers). It offers

a coordination language based on event-condition-action rules. Using such an

approach, the execution is a coordinated execution of a number of actions where

the control flow of the application is not defined explicitly. An action is an

ECA-rule representing the execution of a set of activities that corresponds to

normal execution and to exceptional situations. A rule is invoked when an event

is detected and its actions are executed only if its guard conditions hold. A rule

can be used as follows:

– It can capture the normal control flow by defining ordering dependencies

among activities within the guard conditions (e.g., a service A must be

executed before the service B).

– It can define how to treat the execution of activities to grant a given atomic

behavior (e.g., what to do in case of failure).

Using such an approach it is possible to implement the notion of accepted termi-

nation states to provide strict atomicity, semi-atomicity or semantic atomicity

behavior to services coordination.

14

2.2. Atomicity

2.2.3 Interaction based

A third strategy for defining atomicity is to separate the specification of the transac-

tional behavior and the services coordination. This captures the interactions that are

necessary to provide an atomic behavior.

• [VV04] adapts the model presented in [SABS02] for supporting Web services

coordination with transactional properties. Transactional properties are at-

tached to coordination as follows:

– Each activity is classified according to its atomic capabilities: i) whether an

activity can be compensated or not, ii) whether an activity can be retried

or not in case of failure, and iii) whether an activity is vital or not for an

application.

– Atomicity is specified by accepted termination states. Recall that, a ter-

mination state defines a possible state where is acceptable to finish an

application.

Using such an approach it is possible to provide strict atomicity, semi-atomicity

or semantic atomicity behavior to services coordination.

• [HW06] uses the meta-model ACTA concepts [CR90] for providing a transac-

tional model for Web services coordination. The ACTA model provides a way

of analyzing transactional protocols in terms of the execution effects of a tran-

saction over other transactions (i.e., commit and abort dependencies), and over

shared data (i.e., view set and access set). In the so called transactional Web

service orchestrations model (TWSO) transactional requirements are expressed

as dependencies among operations (e.g., abort, commit, and inter-operations de-

pendencies) but it does not include view set, access set and delegation properties

as is considered in the ACTA framework. In such a way, advanced transactional

models are defined by using the TWSO model and attached to a given orches-

tration orthogonally.

2.2.4 Discussion

In this section we present several approaches to provide atomic behavior to services

coordination (i.e., [CCC+04, Fur04, BCR05, TMW+04, DFDB05, Bhi05, PBM02,

NFG+05, VV04, HW06]). With respect to existing approaches we have following

aspects to discuss:

15

2. Reliable services coordination

• We think that understanding atomicity concepts implies some complexity for

application developers. Therefore, understanding transactional protocols (i.e.,

[CCC+04, Fur04, BCR05, TMW+04, DFDB05]) for defining the interactions

related to an atomic behavior, conducts to a waste of time and application

soundness is compromised.

• Approaches that propose new coordination languages and constructors (i.e.,

[Bhi05, PBM02, NFG+05]) for enacting atomic behavior weaves the definition of

the application logic and the reliability aspects resulting in complex applications

hard to maintain.

• Most of applications implemented using existing approaches are ad-hoc applica-

tions, which contradicts the current spirit of reusing practices existing in software

engineering and services based applications.

Finally, a very important aspect that is poorly addressed is the necessity of adapting

a given coordination to several atomicity requirements. This necessity is addressed,

for example, in workflow technology by the “case” concept [vdAvH04]. It is assumed

that a workflow has several use cases, and therefore each case has its own execution

requirements. This situation is very common in today applications. For example, in

the “purchase tickets application”, a concert can accept only tickets payment with

credit card (i.e., strict atomicity), but another concert can accept several payment

types (i.e., semi atomicity). Because of existing approaches hard code the atomicity

within the coordination, it is hard to provide several atomicity requirements for a

given application.

2.3 Persistency

A first notion of persistency appears with the concept of durability in the ACID

transactions. Durability is the guarantee that, when a transaction is committed its

results persist [OV99, DA82, Elm92]. In the context of the services coordination,

persistency ensures that given a coordination, its execution state survives in spite

of system failures (i.e., execution state durability) [LW98, BLSW04, PCZMHB08]. A

system failure is related to execution infrastructure failures. In case of a system failure,

a recovery process returns the application execution state to a consistent state, because

its execution state persists. For example, in the “purchase tickets application”, if a

16

2.3. Persistency

system failure occurs when Bank authorization activity is being executed there are

two options for recovering the execution:

1. If the execution must be restarted, then the work done is lost. In this case it is

said that coordination execution is not persistent.

2. If the execution state of the coordination (Get payment information state and if

possible Bank authorization state) is recovered, then the coordination execution

state survives. In this case it is said that coordination execution is persistent.

Persistency has been provided by means of logging techniques and using replication of

processes. Due to autonomy characteristic of services, we focus on prior research work

that uses logging techniques. In such a kind of approaches, the problems are related

to i) how to handle in an efficient way the logging processes avoiding to overhead the

normal execution, and ii) how to do an efficient recovery process after a failure.

In the next sections we present how persistency has been addressed by existing

approaches based on the way it is provided to the services coordination:

• Infrastructure based persistency is a common strategy used by existing ap-

proaches (e.g., [AFH+99, LASS00, NFG+05, Con07a]). The management of

the execution state is done by the execution infrastructure in a transparent way

for the application developers which is not conscious of the problems related to

provide persistency. Therefore, it can be said that execution state is a part of

the facilities provided by the coordination engine.

• Coordination based persistency is an strategy where the application developers

can use some mechanisms to define the persistency requirements of a coordina-

tion (e.g., [Fur04, BBC+05, Lom05, ZHMS06]). Therefore, it can be said that

execution state concerns not only to the coordination engine but to the coordi-

nation.

2.3.1 Infrastructure based

Persistency has been addressed by most of existing approaches in a coarse manner.

This means that persistency is provided explicitly by the underlying executing in-

frastructure. Therefore, it considers that all the services have the same persistency

guarantees.

17

2. Reliable services coordination

• [SABS02] uses the WISE (i.e., Workflow based Internet SErvices) platform

[AFH+99, LASS00] to ensure persistency of coordination at execution time.

WISE uses a database to make the state of each active process persistent in

an automatic way so as to recover after system failures. For each active process

there is a persistent copy of its execution state which guarantees that execu-

tion can be resumed after a failure. WISE platform has four modules: process

definition, process enactment, monitoring and analysis, and coordination and

communication. In particular, the module monitoring and analysis stores infor-

mation about the entire execution history which is used to on-line and off-line

analysis.

• [NFG+05] enacts coordinations where a persistent storage to made persistent

data that is considered as critical for the execution (i.e., the execution state of the

coordination) can be used. Because of the execution infrastructure is developed

based on .NET technology, it is possible to use ADO.NET classes to connect,

retrieve, and update any persistent data from repositories (e.g., SQL Databases).

This approach captures the flow of the coordination by means of rules guard-

activity-triggers. Therefore, the execution history contains information about

the rules that had been executed and the date exchanged among them.

• [BGP05] uses Bonita engine [Con07a] for providing persistency to services co-

ordinations. Each coordination is related to a project which includes all the

information related to a given coordination (i.e., name and execution state).

In fact, the executor of Bonita maintains information about all the executing

projects into a local database. This information can be used for recovering a

given execution point after a system failure.

2.3.2 Coordination based

Whereas the infrastructure based approaches focus on providing persistency in a gene-

ral way, mainly supported by the underlying executing infrastructure, there are some

approaches that provide persistency according to the requirements of each coordina-

tion that we called coordination based approaches.

• BTP [Fur04] addresses persistency by referring to recovery and failure handling

in its definition. The objective is to ensure the delivery of a consistent decision

for a transaction to the parties involved in such a transaction, even in the event

of failures. However, the state persistency only concerns to participants of the

18

2.3. Persistency

transaction. In case of a failure, it is ensured that the interaction among the

participants of a transaction can continue to complete the transaction. The

implementation of the persistent transactional protocol must be done by each

particular implementation of the BTP protocol.

• WS family addresses communication failures by the WS-ReliableMessaging pro-

tocol [BBC+05] which defines a protocol for delivering messages in the presence

of system failures. In fact, this protocol allows messages to be delivered between

participants of a coordination in case of failures. Therefore, it can be assumed

that using such information it is possible to built the execution state of parts of

a coordination.

• [Lom05] proposes an approach for masking system failures through recovery gua-

rantees which make persistent the execution state. In order to make persistent

the interaction between components of an application they i) classify the com-

ponents according to its persistency properties as persistent, transactional, and

non persistent, and ii) use interactions contracts for defining the joint behavior

of two interacting components. Based on this information they show how, using

logging techniques, an execution infrastructure can provided data, messages, and

state recovery.

• [ZHMS06] proposes an approach for addressing persistency in services based

applications. They classify the participants of an application according to its

persistency capabilities as database, replication, or memory based. Using such

a classification, they proposes how it is possible to build and customize the

persistent support of an application. This approach considers that state persis-

tency is a service state attribute enabling to define persistency guarantees and

requirements in a fine manner.

2.3.3 Discussion

Although approaches providing state persistency can be classified in terms of the over-

head that causes its implementation (i.e., the use of software and hardware resources),

we focus on the way it is related to resources (i.e., at service or coordination level):

• The first kind of approaches we analyze are those that consider that all services of

a coordination have the same recovery properties and requirements, and therefore

state persistency can be supported by the underlying executing infrastructure

19

2. Reliable services coordination

(e.g., [AFH+99, LASS00, NFG+05, Con07a]). This kind of approach can be

considered as a high level approach for the developer, but it does not capture the

semantics associated to services based applications. This situation can leads to a

waste of resources that compromises the applications performance. For example,

in the “purchase tickets application”, the activities validate payment and send

publicity have different properties and requirements of persistency. While the

monetary activity must be statefull, the other can be stateless. To this respect

we think that persistency can be provided according to the capabilities of each

coordinated service and the requirements of each application.

• A second way of addressing state persistency is to define them at coordination

level (e.g., [Fur04, BBC+05, Lom05, ZHMS06]). Some approaches proposes the

use of a protocol that ensures state persistency to parts of the coordination.

However, using a protocol usually implies an ad-hoc solution linked to a imple-

mentation platform. Other approaches, propose mechanism to define the state

persistency capabilities of services. In this way, semantics of the application is

captured and overload is avoided.

Finally, although we agree with addressing persistency with adequate abstraction level

for application developers (e.g., by the underlying execution infrastructure) we think

that services coordination requires adaptable ways for providing persistency. State

persistency must capture the heterogeneity of services and does not cause overhead at

execution time.

2.4 Conclusion

Along this chapter we present how reliability has been provided to services coordina-

tion by means of atomic behavior and state persistency. First, we present approaches

that provides atomicity according to the type of atomicity they provide, and to the

way on which atomicity is integrated with the services coordination. Next we present

several approaches that tackle persistency based on the way it is provided to the ser-

vices coordination. From our point of view, we think that existing approaches do not

address reliability in an optimal way:

• In the case of atomicity, using an approach implies to learn a coordination lan-

guage and atomicity constructors or protocols that mixes the desired atomic

behavior with the coordination. This situation conducts to built ad-hoc appli-

cation not adaptable to existing dynamic environments.

20

2.4. Conclusion

• In the case of persistency, it is provided in a coarse manner and implicitly to

the execution infrastructure of the services coordination which is ill suited to

heterogeneity of services coordination.

We believe that it is necessary to provide an approach to define reliability and coor-

dination in a separated way and considering the heterogeneous nature of services and

the necessity of being adaptable to changes. To this respect, the following Chapters

present our approach for defining reliability with contracts.

21

2. Reliable services coordination

22

Chapter 3

The COBA model

This Chapter presents the COBA model (i.e., COntracts BAsed model) for repre-

senting the non functional aspects of a services coordination through the notion of

contract. Such aspects specify the properties that the execution of a services coordi-

nation must ensure with respect to observable requirements like, the execution state

(e.g., persistency), the conditions in which services calls are done (e.g., security), the

way that exceptions are handled (e.g., atomic behavior), etc. In particular we are

interested in reliability aspects of services coordination.

The main concepts of COBA are: execution unit, property, rule and contract. An

execution unit represents the execution of a process (e.g., an activity of a services

coordination) as a set of execution states through which it goes from the beginning

of its execution to the end of its execution. A property represents a non functional

aspect as a set of variables and its associated values as a constraint of the variables

of the process. A rule specifies the reactions to be executed for enforcing a property

under a given situation. A contract represents the association of a property to an

execution unit (i.e., simple contract) or to a set of contracts (i.e., composite contract)

and the rules (i.e., recovery operations) to be considered for the property. Besides, we

assume that a services coordination is represented as a set of execution units and a

control flow. A Control flow is represented by a set of execution dependencies among

the execution units and an execution history. An execution history represents ordering

constraints over the state of the set of execution units.

The chapter is organized as follows. The notation we used along this Chapter is

described in Section 3.1. The rest of the Chapter is organized as follows. Sections 3.2

to 3.5 define the main concepts of the COBA model: execution unit, non functional

property, rule and contract (i.e., simple and composite contract). Finally Section 3.6

23

3. The COBA model

concludes this Chapter.

Résumé: Ce chapitre décrit le modèle COBA (COntracts BAsed model) qui

modélise les aspects non-fonctionnels d’une coordination de services à travers de la

notion de contrat. Un contrat spécifie les propriétés que l’exécution d’une coordina-

tion des services doit assurer. Les propriétés sont observables dans l’état d’exécution

de la coordination (e.g. la persistance), elles concernent les conditions dans lesquelles

les appels aux services sont effectués (e.g. la sécurité), la faon dont les exceptions sont

gérées et tolérées (e.g. le comportement atomique). Les concepts principaux de COBA

sont: l’unité d’exécution, la propriété, la règle et le contrat. Une unité d’exécution

représente l’exécution d’un processus (e.g. une activité d’une coordination de ser-

vices) comme un ensemble d’états d’exécution. Une propriété représente un aspect

non fonctionnel comme des “contraintes de type” associées aux variables d’exécution.

Un contrat représente l’association entre une propriété et une unité d’exécution ou à

un ensemble de contrats et les règles définissent les opérations de reprise à exécuter

pour valider une propriété.

3.1 Preliminaries

This Section describes the notation used for defining the basic concepts of the COBA

model.

3.1.1 Domain

A domain D is a set of values which also includes the “null” value.

• ∅ ∈ D, non-information value.

• ? ∈ D, unknown value.

D :- v denotes the value v of D.

Atomic domain

An atomic domain consists of indivisible values: Boolean, Char, String, Integer,

Float, Time, Date, type identifier, and void. A type identifier is an unique

value that identifies an instance.

For example, String :- “myname” is a value of the atomic domain String.

24

3.1. Preliminaries

Union of domains

φ denotes the union of all domains. It includes the “null” value, denoted as δ, which

is an information that does not exist and does not belong to any domain.

3.1.2 Type ▽
The domain ▽ of types is defined by the following rules:

• An atomic domain AD is a type, AD :- AD ∈ ▽.

• A type denoted by T ∈ String is built in a recursive way as follows:

T :- tuple(a1 T1, a2 T2, ..., an Tn) ∈ ▽ ∀ i, j ∈ [1, ..., n], i ̸= j, ai ̸= aj,

T :- list(T1) ∈ ▽,

T :- set(T1) ∈ ▽,

where:

– a1, a2, ..., an ∈ String are identifiers and T1, T2, ..., Tn ∈ ▽ are types.

– If T is a tuple, each element of the type T can be referred using its identifier

as follows T .ai, where ai ∈ String ∀ i ∈ [1, ..., n].

Name and dom functions

The functions name : ▽ → String and dom : ▽ → D enable to respectively access

the name and the domain of a given type T ∈ ▽:

• If T is a type of the form AD :- AD ∈ ▽, then:

– name(AD :- AD) = AD.

– dom(AD :- AD) = AD.

AD denotes the domain (AD ⊂ D) and the type (AD ∈ ▽).

• If T is a tuple type as T :- tuple(a1 T1, a2 T2, ..., an Tn) ∈ ▽, then:

– name(T :- tuple(a1 T1, a2 T2, ..., an Tn))= T .

– dom(T)= {T :-tuple(a1 v1, a2 v2, ..., an vn) | n ≥ 1,∀i ∈ [1, ..., n], vi ∈
dom(Ti)} is a set of tuples where each value

T :-tuple(a1 v1, a2 v2, ..., an vn) is an aggregation of values v1, v2, ..., vn
each of them of type T1, T2, ..., Tn respectively.

25

3. The COBA model

To simplify we denote dom(T)= {tuple(a1 v1, a2 v2, ..., an vn) | n ≥ 1,∀i ∈
[1, ..., n], vi ∈ dom(Ti)}.

• If T is a list type as T :- list(T1) ∈ ▽, then:

– name(T :- list(T1))= T .

– dom(T)= {T :-list(v1, v2, ..., vn) | n ≥ 1,∀i ∈ [1, ..., n], vi ∈ dom(T1)} is

a set of lists where each value T :-list(v1, v2, ..., vn) is a list of values

v1, v2, ..., vn of type T1.

To simplify we denote dom(T)= {list(v1, v2, ..., vn) | n ≥ 1,∀i ∈ [1, ..., n], vi ∈
dom(T1)}

• If T is a set type as T :- set(T1) ∈ ▽, then:

– name(T :- set(T1))= T .

– dom(T)= {T :-set(v1, v2, ..., vn) | n ≥ 1,∀i ∈ [1, ..., n], vi ∈ dom(T1)} is a

domain of sets where each value T :-set(v1, v2, ..., vn) is a set of different

values v1, v2, ..., vn of type T1.

To simplify we denote dom(T)= {set(v1, v2, ..., vn) | n ≥ 1,∀i ∈ [1, ..., n], vi ∈
dom(T1)}.

Type instance creation

Every type T is a constructor of values.

T () creates a value of dom(T) initialized with default value. To overwrite the de-

fault value and initialize the created instance, it is possible to give values as parameters

of the constructor.

For example, String() creates the value : String :- “”. String(“Alberto”) creates

the instance String :- “Alberto”.

In a similar way, considering the following tuple:

city :- tuple(

name String,

country String

)

city(“DF”,“Mexico”) creates the instance:

26

3.1. Preliminaries

city :- tuple(

name “DF”,

country “Mexico”

)

Subtype

The type-subtype relationship is a generalization-specialization relationship. Where

the supertype is the more general type, and the subtype is the more specialized type.

We define the notion of subtype as follows:

• T ′ :- tuple(a1 T1, a2 T2, ..., an + k Tn + k) is a subtype of

T :- tuple(a1 T1, a2 T2, ..., an Tn). The subtype T ′ has more attributes that

the original tuple type but it has all the original attributes of T that can be

redefined too.

• If T1 is a subtype of T2 then T ′: - set(T1) is a subtype of T : -set(T2).

• If T1 is a subtype of T2 then T ′: - list(T1) is a subtype of T : -list(T2).

3.1.3 Meta-type

Variable The type Variable ∈ ▽ is defined by:

Variable:-tuple(

name String,

type T

)

where:

• name is a variable name.

• type represents the type of the variable (T ∈ ▽)

For example, the variable Operator of type string is defined, creating an instance of

Variable as follows: Variable (“Operator”, String).

It produces the instance

27

3. The COBA model

Variable:-tuple(

name Operator,

type String

)

This describes the Operator variable type that can have a string value. Actually

Variable is a meta-type and operator can be used as a type to create instances of Ope-

rator. For example, Variable (“Operator”, “XOR”) or more simply Operator (“XOR”),

assigns the “XOR” value to Operator.

Parameter The (meta-)type Parameter ∈ ▽, which characterizes the input/output

parameters of a method/operation, is defined by:

Parameter :-tuple(

paramName String,

paramType T

)

where:

• paramName is an identifier.

• paramType represents the type T ∈ ▽ of the value of the parameter.

For example, Parameter (“Age”, Integer) defines the parameter Age of type integer:

Parameter :-tuple(

paramName Age,

paramType Integer

)

Such a definition will be used when using the Age parameter in an operation :

Parameter {Age 12}.

Operation The (meta-)type operation is defined as:

Operation :-tuple(

operationName String,

input list(tuple(paramName String, paramType Ti)),

output T)

28

3.1. Preliminaries

where:

• Ti, T ∈ ▽,∀i ∈ [1...n].

• operationName is a unique identifier for the operation.

• input represents the input parameters of the operation.

• output of type T , is the type of the output parameter.

In order to simplify we use the following notation:

(T) operationName(paramName1 T1, ..., paramNamen Tn)

where:

• paramNamei are the input parameters of type Ti ∈ ▽,∀i ∈ [1...n].

• The output parameter is of type T ∈ ▽.

We assume the existence of predefined operations:

• Operations of comparison defined over the domains of base and the domains of

reference: <,>,=, ̸=,≤,≥.

• Set operations defined over the domains tuples, list and set: ∈,∋,⊂,⊃,⊆,∪,∩.

3.1.4 Class

A class is a type that characterizes objects of the same type at meta level. The objects

of a class have the same type and the same operations. The meta class class ∈ ▽ is

defined by:

class :- tuple(

className String,

attrSet set(tuple(attrName String, attrType Ti)),

operSet set(Operation)

)

where:

• Ti ∈ ▽, ∀i ∈ [1...n]

29

3. The COBA model

• className is the identifier of the class.

• attrSet is the set of attributes that characterizes the class. Each attribute of

the class has a name and a type.

• operSet is the set of operations over the class.

In order to simplify we use the following notation:

class className {
attrName1 T1,

...,

attrNamen Tn,

(Tn+1) operationNamen+1(...),

...,

(Tn+m) operationNamen+m(...),

}
where: n ≥ 1,m ≥ 0, Ti ∈ ▽ ∀i ∈ [1, ..., n+m].

For example, the class Person is defined as follows:

class Person {
name String,

birthDate Date,

Integer age(),

}

The class Person have two attributes (i.e., name and birthDate) and one operation

(age).

Type and class

A class is a type. An instance of class defines a (tuple) type className ∈ ▽ with the

attributes set of the class. dom(className)={ an instance of the class} ⊆ φ.

Creation and Initialization of an object

The new operation is used to create instance of a class with a unique identifier. For

example, new Person() creates an instance of the class Person with identifier idP1:

30

3.1. Preliminaries

(idP1 person {
name “ ”,

birthDate ’ ’

})

The attributes of an object can be initialized explicitly. For example:

new Person(“Andre”,′ 01-08-98′)

creates and initializes an instance of the class Person with identifier idP2, the

attribute name with value “Andre”, and the attribute birthDate with value ’01-08-

98’.

(idP2 person {
name “Andre”,

birthDate ’01-08-98’

})

Object manipulation

Instances of classes are manipulated using methods or specific operations.

• delete(Id): deletes the instance Id.

• id.operationName(...) : manipulates the instance id using the operation operationName.

• Id.getValue(attributeName) or more simply Id.attributeName : gets the value

of the attribute attributeName of the instance Id.

• Id.setV alue(attributeName, vT): sets a value of type T to the attribute attributeName

of the object Id

• An operation of an instance idIstance is accessible using following notation:

Id.operName.

Object naming

An instance Id can be named with name using the bind operation: bind(Id, name)

Such a name is a persistency root. It is used to access the associated instance and

the underlaying graph of objects. Without a name, an instance cannot persist. For

example:

31

3. The COBA model

bind(new Person (“Andre”, ’01-08-98’), “Dd”)

associates the name “Dd” to the new instance of Person. Therefore, Dd.birthDate

returns ’01-08-98’.

Inheritance

Inheritance relationship enables the specialization of classes by means of the subtype

notion. Following notation indicates the specialization of the class className by the

class classChild :

class classChild : className {
attrName1 T1,

...,

attrNamen Tn,

(Tn+1) operationNamen+1(...),

...,

(Tn+m) operationNamen+m(...),

}

where:

• n ≥ 1,m ≥ 0, Ti ∈ ▽ ∀i ∈ [1, ..., n+m].

• classChild is a subtype of className.

• The child class has the attributes of the parent class className and the new

defined attributes:

– The attributes attrName1 T1 through attrNamen Tn are added to the orig-

inal attributes of the class className.

– If an attribute attrNamei appears in the parent class className and in the

child class childName, then its type is redefined, but the type of attrNamei
in childName has to be a subtype of attrNamei in className.

• The child class has the operations of the class className and the new defined

operations:

– The operations operationNamen+1(...) through operationNamen+m(...) are

add to the original operations of the parent class className.

32

3.2. Execution unit

– An operation defined within the parent class className can be applied to

instances of classChild .

– If an operation of the parent class className has the same name of one of

the added operations then it is redefined but it only applies to instances of

the classChild .

We assume that a class can inherit of only one parent class.

For example, given the class person, we can define the subclass employee as follows:

class employee : person {
position String,

}

Note that employee has the attributes name and birthDate inherited of person. Be-

sides, the operation age() can be applied to instances of employee. Therefore, it can

be said that employee is an special case of person.

3.2 Execution unit

An execution unit is described by its input data and output data (i.e., parameters), an

execution state, and the software entity that will execute the process. For example, in

the “purchase tickets application” there are six execution units: Get concert informa-

tion, Process purchase, Validate payment, Send tickets, Send publicity, and Validate

purchase (see Figure 1.1).

Definition 1. (Class Execution unit)

class EU {
provider String,

input set(Parameter),

output set(Parameter),

states list(State)

}

where:

• provider represents the software entity that exports the functionality of the

process through an API.

33

3. The COBA model

• input/output: represents a set of parameters. A parameter is an instance of the

type Parameter . It is a tuple giving the name of the parameter and its type (see

its definition in Section 3.1.3).

• state is an ordered list of states. A state within this list represents a given instant

of the execution that it is interesting for ensuring a non functional aspect.

In the “purchase tickets application” all the execution units can be defined as instances

of the class EU. For example, for defining Get concert information as an execution

unit, first is necessary to specialize the class EU to define its execution requirements:

SubClass (EU gCI)

class EUgCI: EU {
input {{name String}, {ccNumber String}},
output {{result Boolean}},

}

where:

• name is an input parameter representing a username.

• ccNumber is an input parameter representing a credit card number.

• result is an output value representing the execution result.

Next an instance of class EUgCI with name gCI is defined as follows:

gCI EUgCI {
provider “myProviderAddress”,

input {{name “Brenda”}, {ccNumber “1707120601080512”}},
output {{result False}},
state {idPS}

}

Where, the provider of the execution unit gCI is the provider of name “myProvider-

Address”. gCI has two input parameters (i.e., an username and a credit card number),

one output parameter (i.e., the result of executing the execution unit), and one state

instance of name idPS.

34

3.2. Execution unit

3.2.1 State

A state is described by a set of values of the variables associated to an execution

unit in a given instant of the execution. For example, it can represent the end of the

execution of an execution unit (i.e., when all resources related to the execution of an

execution unit are available to be used by another process).

Definition 2. (Class State). The class state type of an execution unit is defined as

follows:

class State{
timeStamp Time,

values set(Variable)

}

where:

• timeStamp represents the point in time at which the state was reached.

• values represents the variables of the execution unit with its associated values

at the time timeStamp.

3.2.2 Control flow

A control flow represents the execution history of a set of execution units and its

execution dependencies. It is represented by a set of execution units, an execution

order defined over the state of the execution units, and a set of execution dependencies

among the execution units. In our example, the control flow is represented by means

of arrows (see Figure 1.1).

Definition 3. (Class Control flow)

class CF {
eus set(EU),

execOrder list(tuple(eu1 : EU, eu2 : EU)),

ctrlLogic list(tuple(eu1 : EU, op : Operators, eu2 : EU))

}

where:

• eus represents a set of execution units.

35

3. The COBA model

• Any tuple ⟨eui, euj⟩ of the list execOrder follows the rules:

– eui ∈ eus,

– euj ∈ eus,

– eui ̸= euj,

– lastEuState(eui.states).timestamp < firstEuState(euj.states).timestamp

This means that the last state of eui was reached before that the first state of euj.

firstEuState returns the first reached state of a set of execution states, evalua-

ted over the attribute timeStamp of each state. In a similar way, lastEuState

returns the last reached state of a set of execution states.

• ctrlLogic is a list of tuples, each of them of the form ⟨eui, opk, euj⟩ that rep-
resents the execution dependencies among pairs of execution units by means of

ordering operators such as sequential routing, parallel routing and selective rout-

ing. The meaning of any tuple ⟨eui, opk, euj⟩ of the ctrlLogic, where eui ̸= euj,

is: “eui has the order operator opk with respect to euj”.

For example, the control flow of the “purchase tickets application” is defined by the

object pTA as follows:

pTA CF {
eus {gCI, pP , vPa, sT , sP , vPu},
execOrder {},
ctrlLogic {{gCI, seq, pP}, {pP , andSp, vPa}, {pP , andSp, sT},

{pP , andSp, sP}, {vPa, andJn, vPa}, {sT , andJn, vPa},
{sP , andSp, vPa}}

}

We assume that gCI (related to Get concert information), pP (related to Process

purchase), vPa (related to Validate payment), sT (related to Send tickets), sP (related

to Send publicity), and vPu (related to Validate purchase) are instances of the class

EU, and that seq, andSp, and andJn are operators. Note also that, execOrder is set

to null value.

3.3 Property

A property is represented by a set of variables, where the valid combinations of values

that the variables can have along the execution are used for constraining the execution.

36

3.4. Rule

For example, in the “purchase tickets application” the execution unit Get concert

information can be retried in case of failure, because it can be completed in several

ways.

Definition 4. (Class Property)

class Property {
values set(Variable)

}

where values is a set of Variable (see Section 3.1.3) values that must be verified

over the execution state.

For example, in the “purchase tickets application” a property can specify whether

an execution unit requires to be re-executed if it fails. An execution unit (e.g., Get

concert information) having vital information for the whole application must be retried

in case of failure, while an execution unit (e.g., Send publicity) used for transmitting

publicity might not require to be retried in case of failure. The retry property is

defined as a subclass of PropertyT as follows:

SubClass (Retry property)

class retPType : Property {
values {{type {“yes”, “no”}}}

}

Next, an instance of such a class can be defined as follows, where rtP is the name of

the object:

rtP retPType {
values {{type “yes”}}

}

3.4 Rule

A rule specifies the reactions to be executed for enforcing a property under a given

situation. For example, the re-execution of the Get concert information execution unit

in case of failure in the “purchase tickets application”.

Definition 5. (Class Rule)

37

3. The COBA model

class Rule {
on Event ,

do Reaction

}

where:

• on represents the type of event that triggers the reaction of the rule.

• do represents the Reaction that must be executed.

For example, the following instance named recRule1 of the class Rule defines the re-

execution of an execution unit in case of failure as follows:

recRule1 Rule {
on ifEv,

do iRt

}

The definition of the instances ifEv and iRt are presented in the next subsections.

3.4.1 Event

An event represents a significant situation occurring at a point in time during the

execution of an coordination. For example, the execution failure of an execution unit.

Definition 6. (Class Event)

class Event {
timeStamp Time,

delta set(Variable)

}

where:

• timeStamp is the instant at which the event was produced.

• delta is a set of Variable (see Section 3.1.3) instances that represents the conditions

under which the event was produced.

For example, an event representing the execution failure of an execution unit specia-

lizes the class event as follows:

38

3.4. Rule

SubClass (Failure event)

class failEv : Event {
delta {{euName String}}

}

where euName is a string representing the name of an instance of the class EU.

Next, an instance named ifEv of the class failEv is defined as follows:

ifEv failEv {
timeStamp ’2010-01-01 00:00:01’,

delta {{euName “gCI”}}
}

3.4.2 Reaction

A reaction represents an action to be taken in order to enforce a property. For example,

the re-execution of a execution unit.

Definition 7. (Class Reaction)

class Reaction {
input set(Parameter),

output set(Parameter)

}

where:

• input represents the set of input parameters of the reaction (see Section 3.1.3).

• output represents the set of output parameters of the reaction (see Section 3.1.3).

For example, the class Reaction can be specialized by a subclass to indicate that the

execution of a given execution unit must be retried:

SubClass (Retry reaction)

class retry : Reaction {
input {{eu EU}},
output {{r Boolean}}

}

39

3. The COBA model

where:

• eu represents the identifier of an instance of the class EU.

• r represents the execution result of the reaction.

Next, an instance of the class retry is defined as follows:

iRt Reaction {
input {{euName gCI}},
output {{rResult False}}

}

where gCI represents the identifier (interne) of an EU.

3.5 Contract

A contract represents the relationship between a property and a scope. It specifies

how to enforce the property once it is not verified within a given execution state of

the scope. Enforcing is expressed by means of event action (E-A) rules. The scope of

a contract can be an execution unit or a set of contracts. Indeed, a contract can be

associated to several rules in order to specify the conditions under which the property

must be evaluated and the reactions to be executed if the property is not “respected”.

For example, in the “purchase tickets application” a contract can be defined for

ensuring the business rule that states that the payment can be granted in different

ways assuming that the scope of the contract is the execution unit validate payment.

Definition 8. (Class Contract)

class Contract {
property Property,

priority Integer,

rules set(Rule)

}

where:

• property represents the valid combinations of values that the property variables

can have along the execution.

40

3.5. Contract

• priority is an integer representing the order of evaluation of the contract with

respect to other contract types associated to the same scope.

• rules represents the reactions to be taken once the property is not verified.

3.5.1 Simple contract

A simple contract is related to an execution unit. It specializes the class Contract as

follows:

Definition 9. (Subclass Simple contract)

class SimpleContract : Contract {
scope EU

}

where scope represents the execution unit associated with the contract.

For example, we can specialize the class SimpleContract for associating the class

retPType (i.e., retry property) with a contract as follows:

SubClass (Retry contract)

class retryC : SimpleContract {
property retPType,

}

Next, we can define an instance named idC2 for associating the instance rtP of class

retPType to the identifier gCI (i.e., Get concert information) of an instance of the class

EU as follows:

idC2 retryC {
scope gCI,

property rtP ,

priority 0,

rules {recRule1}
}

In a similar way, we can define an instance of name idC3 for associating the instance

rtP with the identifier pP (i.e., Process purchase) as follows:

41

3. The COBA model

idC3 retryC {
scope pP ,

property rtP ,

priority 0,

rules {recRule1}
}

3.5.2 Composite contract

There are properties that must be evaluated on the states of a set of execution units.

For example, in the “purchase tickets application”, the business rule that states that,

“a purchase order can be completed only if it was paid”, implies to associate an execu-

tion constraint to execution units Validate payment and Send tickets. This situation

implies that such kind of properties must be expressed by combining other proper-

ties. The notion of composite contract models the composition of properties and their

associated reactions. This composition is done by associating a property to a set of

contracts.

In a composite contract, the conditions under which its property must be evaluated

is related to the type of contracts that are associated:

• If the contracts are associated with execution units, the composite contract can

be verified over the execution state of the execution units.

• If the contracts are composite contracts, the composite contract is verified over

the properties of the contracts.

A composite contract specializes the class Contract as follows:

Definition 10. (Class Composite contract)

class CompositeContract : Contract {
scope set(Contract),

}

where scope represents a set of contracts.

For example, given two contracts instances with identifiers idC2 and idC3 respecti-

vely (see Section 3.5), the contract instance CompositeContract({idC2, idC3},...) defines
a new contract if following composition rules are verified:

42

3.5. Contract

• {idC2, idC3} is the scope of the composite contract.

• idC2 and idC3 cannot participate in another composite contract (i.e., with the

same property within the contract).

• dom(idC2.property) = dom(idC3.property), i.e., idC2 and idC3 have the same

type of property.

Such rules can be generalized to n contracts within the scope of a composite contract.

Indeed, a composite contract can be represented by a tree:

• A leaf represents an execution unit.

• An intermediate node represents a contract whose scope is a set of contracts.

• Edges represent composition relationships between contracts. Contracts or exe-

cution units within the scope of a given contract (the parent) are called its

children.

• The order priority is defined by a bottom-up left-right policy:

– Leaf nodes have higher priority than intermediate nodes.

– Root node has the lowest priority.

Such an order is used when contracts must be evaluated at execution time. For

example, it is used for defining which contract is evaluated first.

For example let us consider the following composite contract instance idC1 that

associates a the property instance myProperty and the rule instance recRule2 to

contract instances idC2 and idC3:

idC1 CompositeContract {
scope {idC2, idC3},
property myProperty,

priority 1,

rules {recRule2}
}

The Figure 3.1 shows the contract tree of the contract instance idC1.

43

3. The COBA model

Figure 3.1: Contract tree example

3.6 Conclusion

This chapter presents COBA, a contract based model for adding reliability to services

coordination. Contracts can be of two types: simple and composite contracts. A

simple contract is used for associating reliability aspects to single execution units and

its associated rules for reinforcing such properties. A composite contract is used for

associating complex reliability properties to contracts enabling contract composition.

In such a way, using COBA, reliability properties to be verified at execution time

can be specified and associated to services coordinations without implying to modify

the logic of the coordination. Indeed, a coordination can be associated with several

contracts according to specific requirements (e.g., business rules, user requirements,

execution context). Next Chapter presents how our model can be used for defining

the classes required for reliability aspects of the services coordination.

44

Chapter 4

Reliability with contracts

This chapter shows how to use the COBA model introduced in the Chapter 3 for

adding reliability properties to given services coordinations. A reliable services coor-

dination is the one that tolerates failures at execution time. Therefore, the execution

of the coordination is able to maintain its functionality in unexpected situations (i.e.,

failures). Two aspects must be considered:

• The definition of reliability properties related to individual execution units. Such

properties are associated to the behavior of the execution units with respect to

some attribute at execution time. For example, whether it is possible to know

the execution state of an execution unit, whether it is possible to undone the

actions of an execution unit once it has committed, etc.

• The definition of complex reliability properties related to execution units sets

(i.e., composite contracts). For example, the atomic behavior that a set of

execution units must have within an application.

Consequently, in this chapter we analyze key properties to address reliability: excep-

tion handling and state management. Next we show how they can be defined and

related to a services coordination by means of contracts.

The chapter is organized as follows. Section 4.1 defines a reliable services coordi-

nation and shows how reliability properties can be provided by means of contracts.

Consequently, Section 4.2 introduces the notion of exception contract. Section 4.3

provides the definition of atomicity contracts. Section 4.4 introduces the notion of

state management contract. Section 4.5 provides the definition of persistency con-

tracts. Finally Section 4.6 concludes this Chapter.

45

4. Reliability with contracts

Résumé: Ce chapitre décrit comment utiliser le modèle COBA pour rendre fiable

une coordination de services. Pour cela, le chapitre présente la définition de contrats

pour associer des propriétés de fiabilité aux:

• Unités d’exécution d’une coordination de services et définir des stratégies de

traitement d’exceptions.

• Ensembles des unités d’exécution et programmer des stratégies de tolérance

d’exceptions comme l’atomicité.

Ce chapitre propose en particulier des contrats qui (i) permettent d’adresser le traite-

ment d’exceptions et la gestion de l’état d’exécution d’une unité d’exécution ; et (ii)

qui composent des contrats pour assurer les propriétés d’atomicité et de persistance

d’un ensemble d’unités d’exécution d’une coordination.

4.1 Reliable services coordination

A reliable services coordination tolerates failures at execution time. Failures are of two

kind: semantic and system failures. We address reliability to services coordination by

providing exception handling (i.e., to handle semantic failures), and by providing state

persistency (i.e., to handle system failures). The next sections explain how and why

specifying reliability properties by contracts that are related to individual execution

units (i.e., simple contracts) and to sets of execution units (i.e., composite contracts).

4.1.1 Exception handling

A way of addressing semantic failures is to provide exception handling through atomic

behavior (i.e., atomicity). This strategy was first used in the database area, where the

atomic behavior associates database operations with the principle of all or nothing

at execution. The principle works because it is assumed that all operations commits

or fails, and if committed they can be rolled back (undone). This notion is relaxed

in the context of services coordination, where execution units are the operations that

must be executed with an atomic behavior. Therefore, to address exception handling

to services coordination we use the following approach:

1. We specify how to treat exceptions over the execution of execution units. For

example, we define how to handle the failure of a vital execution unit for the

46

4.2. Exception contract

coordination (e.g., the execution unit validate payment of the “purchase tickets

application” must be retried in case of failure).

2. We specify how to provide atomic behavior to sets of execution units. For

example, we define how to handle the possible execution dependencies of several

execution units (e.g., in the “purchase tickets application” the tickets cannot be

sent without a payment).

4.1.2 State persistency

State persistency refers to make durable the execution state in case of a system failure.

Tolerating this kind of failures ensures that given a coordination, its execution state

survives in spite of system failures. In the context of a services coordination, this

implies to make persistent the state of the coordination itself and the state of its

execution units (i.e., its execution history). A key element to consider is where to

store the execution history and how to do the recovery process using it. Therefore, we

address state persistency as follows:

1. We specify how to treat the persistency guarantees of execution units, assuming

that execution units offers several persistency guarantees according to how they

are implemented by its providers. For example, the state of banks services is

persistent because it usually can be queried.

2. We specify how to handle the execution state of activities sets. We assume that

there are parts of the coordination where special attention must be taken. For

example, in the “purchase tickets application” it is important to ensure that

the state of execution units Validate payment and Send tickets survives system

failures due to its importance for the application.

4.2 Exception contract

There are two situations that must be considered to handle exceptional situations over

the execution of execution units, i) what do if the execution of an execution unit fails

(i.e., the execution can continue or the execution unit must be retried), and ii) what

to do if a committed execution unit must be compensated (i.e., whether is possible to

undo the actions of its execution). Consequently, we consider following aspects:

47

4. Reliability with contracts

• The fact that, some execution units may be compensated but some others not.

A compensation action undoes semantically the actions of a committed execu-

tion unit, but it does not necessarily return the coordination to the previous

state before the execution unit was committed. In our “purchase tickets appli-

cation”, validate payment cannot be compensated without an extra charge per

cancelation. However, there are some activities that cannot be compensated, for

example personalizing an item using laser engraving.

• The side effects that can be caused by compensating an execution unit. There

are some execution units that can be compensated, but side effects must by

taken into account. For example, undoing sent tickets, in the “purchase tickets

application”, implies a waste of material (envelopes, covers, etc.).

• The possibility of executing several times an execution unit (i.e., to retry its

execution). In our example, get concert information can be executed several

times if something is missing in data customer. However, it must be noted that

retrying an execution unit can be constrained by other concerns, such as: time

constraints, quality of service, or application semantics among others.

We address exceptional situations by means of the exception contract. It is a sim-

ple contract that associates exception handling property to an execution unit. The

exception contract subclass specializes the class SimpleContract (see Definition 9) as

follows:

SubClass (Exception contract)

class exceptionContract : SimpleContract {
property exceptionProperty ,

}

4.2.1 Exception property

The exception property describes the possible values that must be considered to treat

the execution of an execution unit in case of an exception. It specializes the class

Property (see Definition 4) as follows:

SubClass (Exception property)

48

4.2. Exception contract

class exceptionProperty : Property {
values { {“compensable”, Boolean},

{“side-effects”, Boolean},
{“retriable”, Boolean},
{“max-retry-no”, Integer}}

}

where the attribute values represents execution properties:

• “compensable” specifies whether an execution unit can be undone by compen-

sating it with the execution of another execution unit or whether it cannot be

compensated.

• “side-effects” specifies whether undoing an execution unit generates side-effects.

• “retriable” specifies whether an execution unit can be executed several times.

• “max-retry-no” specifies the maximum retry number.

According to the above values of the exception property, execution units can be asso-

ciated with several combinations. The combinations are shown in Table 4.1 and we

discuss about its validity in the next lines:

Case Can be Causes Can be
compensated side-effects retried

1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

Table 4.1: Execution unit types according to exception property

• Case 1 characterizes a critical execution unit because in case of failure it cannot

be compensated and it cannot be retried.

49

4. Reliability with contracts

• Case 2 and 5 characterize a non vital execution unit because in case of failure the

execution can continue. It is not necessary to compensate or retry the execution

unit.

• Case 3 and 4 do not make sense because an execution unit which cannot be

compensated cannot causes side effects.

• Case 6 characterizes an undoable execution unit which can be compensated

without side effects and can be retried.

• Case 7 and 8 characterize a compensatable execution unit which can be com-

pensated with side effects and can be retried a restricted number of times.

Therefore, we have identified four exception contract subtypes (See Table 4.2): critical

contract, non vital contract, undoable contract, and compensatable contract.

Exception Can be Causes Can be
contract compensated side-effects retried

Critical No - No
Non vital - No -
Undoable Yes No Yes

Compensatable Yes Yes Maybe

Table 4.2: Exception contract subtypes according to exception property values

4.2.2 Recovery Rules

A recovery rule of an exception contract defines at which moment an action must be

executed. A recovery rule specializes the class Rule (see Definition 5), for example

following rules are related to the critical contract:

• recRule1 specifies that, if the execution of a given execution unit fails, then it

is necessary to notify the failure:

class recRule1: Rule {
on failEv,

do notifyFailure

}

50

4.2. Exception contract

• recRule2 specifies that, if it is requested the compensation of a given execution

unit, then an exception is launched:

class recRule2: Rule {
on compReqEv,

do notifyExc

}

The definitions of the class events failEv and compReqEv, and the class reactions

notifyFailure, and notifyExc are presented in the next sections.

Events

Exception contract type reactions are triggered by two events:

• The execution failure of an execution unit. It specializes the class Event (see

Definition 6):

classfailEv: Event{
delta {{eu EU}}

}

• The necessity for compensating an execution unit. It specializes the class Event

(see Definition 6):

class compReqEv: Event {
delta {{eu EU}}

}

Reactions

Reactions specify possible actions to take within the execution. A reaction specializes

the class Reaction (see Definition 7), for example following reactions are related to

critical contract:

• notifyFailure indicates that the contract cannot be granted (i.e., it has failed):

51

4. Reliability with contracts

class notifyFailure: Reaction {
input {{eu EU}},
output {{rResult Boolean}}

}

• notifyExc indicates that an exception must be launched:

class notifyExc: Reaction {
input {{eu EU}},
output {{rResult Boolean}}

}

4.2.3 Critical contract

According to exception property there are four exception contracts that can be defined.

For example, a critical contract can be associated to an execution unit that cannot

be retried in case of failure and when it has committed the execution unit cannot be

undone. A critical contract specializes the class exceptionCcontract :

class crContract: exceptionContract{
property {values {{name “compensable”, value False},

{name “side-effects”, value False},
{name “retriable”, value False},
{name “max-retry-no”, value 0}}},

rules {r1 recRule1, r2 recRule2}
}

For example, in the “purchase tickets application” the execution unit validate payment

can be considered as an execution unit that cannot be retried in case of failure. This

situation can be captured by means of a critical contract instance with name crCvP

as follows:

crCvP crContract :{
scope vP ,

priority 1

}

where:

52

4.3. Atomicity contract

• vP is the identifier of an instance of the class EU representing the execution unit

validate payment.

• The priority of the contract is 1.

The complete definition of the exception contracts is presented in the Appendix A.

4.3 Atomicity contract

In the context of services coordination, atomicity is a relaxed notion of classic atomi-

city. For providing atomic behavior to services coordination, we assume that exception

handling is provided to execution units (i.e., they commits, fails and possibly they can

be compensated). Therefore, we compose atomicity behavior to execution units sets

on top of exception handling. We cosider three atomic behavior types[Por06b]:

• The strict atomicity behavior conform the all or nothing execution requirement.

For example, in the “purchase tickets application”, the two execution units,

Validate payment and Send tickets, or none of them are executed.

• The alternative atomicity behavior captures the possibility of using alterna-

tive execution paths for committing. For example, in the “purchase tickets

application”, the execution unit Validate payment can be completed by several

providers.

• The exception atomicity behavior indicates that if something goes wrong, then an

exception must be launched. For example, in the “purchase tickets application”,

if the execution unit Get concert information fails an exception must be launched

because it obtains the purchase information.

We address atomic behavior by means of the atomicity contract. It is a composite

contract that associates atomicity property to a set of contracts. The contracts within

an atomicity contract must be of type exception or atomicity. The atomicity contract

subclass specializes the class CompositeContract (see Definition 10) as follows:

SubClass (Atomicity contract)

class atomicityContract : CompositeContract {
scope set(failureContract ∪ atomicityContract),

property atomicityProperty ,

}

53

4. Reliability with contracts

4.3.1 Atomicity property

The atomicity property describes the type of atomicity associated to a set of contracts.

It specializes the class class Property (see Definition 4) as follows:

SubClass (Atomicity property).

class atomicityProperty : Property {
values {{name “atomicityType”, value

{“Strict”, “Alternative”, “Exception”}}}
}

where “atomicityType” specifies the type of atomic behavior: “strict”, “alternative”

or “exception” that must be ensured to the scope of the contract at execution time.

4.3.2 Atomicity rules

An atomicity rule defines at which moment it is necessary to take actions for ensuring

a given atomic behavior. An atomicity rule specializes the class Rule (see Definition

5), for example the following rule is related to a strict atomicity contract:

• acRule1 specifies that, if a contract within the scope of a contract fails, then the

contract fails and backward recovery is applied:

class acRule1: Rule {
on contractFailure,

do backwardRecovery ∧ notifyContractFailure

}

The definitions of the class event contractFailure and the class reactions

backwardRecovery and notifyContractFailure are presented in the next subsections.

Events

The reactions of the atomicity contracts are triggered by the fact that a contract is

considered as failed. A contract has failed according to its type and the state of the

execution units within its scope:

• An exception contract is considered as failed when its associated execution unit

fails. For example, an execution unit associated with a non vital contract cannot

be considered never as failed.

54

4.3. Atomicity contract

• An atomicity contract is considered as failed according to its atomicity property

and the contracts within its scope:

– A strict atomicity contract fails when one of the contracts within its scope

fails. It must be noted that forward execution is implemented at failure

contract level. Therefore, a failure at this level means that was not possible

to continue the execution of one or more execution units.

– An alternative atomicity contract fails when all its possible execution paths

have failed.

– An exception atomicity contract fails when one of the contracts within its

scope fails.

The event signaling the failure of a contract is defined as follows:

class contractFailure: Event {
delta {{contract Contract}}

}

Reactions

Reactions of atomicity contracts specializes the class Reaction . For example, following

subclasses defines the possibly reactions of the strict atomicity contract:

• notifyContractFailure launches an event notifying the failure of a contract:

class notifyContractFailure: Reaction {
input {{contract Contract}},
output {{rResult Boolean}}

}

• backwardRecovery indicates that committed contracts within an scope are un-

done, until the whole contract is compensated:

class backwardRecovery: Reaction {
input {{contract Contract}},
output {{rResult Boolean}}

}

55

4. Reliability with contracts

4.3.3 Strict atomicity contract

According to the possible values of the property atomicityProperty , an atomicityContract

can be of three types: strict atomicity contract, alternative atomicity contract or

exception atomicity contract. For example, the strict atomicity contract specializes

the class atomicityContract . It specifies that all contracts or no contract at all within

the scope of the contract are executed:

class stAtC: atomicityContract {
property {values {name “atomicityType”, value “Strict”}},
rules {r1 acRule1}

}

For example, in the “purchase tickets application” the execution units validate pay-

ment and send tickets must be executed with strict atomicity behavior (i.e., an order

must be paid to be sent). This situation can be captured by means of a strict atomicity

contract instance with name stC1 as follows:

stC1 stAtC :{
scope {crCvP, cpCsT},
priority 2

}

where:

• The scope of the contract contains only exception contracts which means that

failures of the execution units are handled by the rules defined within each

exception contract type.

– crCvP is the identifier of an instance of the contract class crContract. It

represents that the execution unit validate payment has a critical contract.

– cpCsT is the identifier of an instance of the contract class cpContract. It

represents that the execution unit send tickets has an undoable contract.

• The priority of the contract is 2.

The complete definition of the atomicity contracts is presented in the Appendix

A.

56

4.4. State management contract

4.4 State management contract

There are three aspects that must be considered to manage the state of an execution

unit:

• The possibility of querying the execution state of an execution unit. For example,

in the “purchase tickets application”, the execution unit Validate Payment can

be queried because the banks usually stores information about its transactions.

• The idempotent capability of an execution unit. For example, in the “purchase

tickets application” for a given customer, the execution unit Get concert infor-

mation can be executed several times resulting in the same result.

• The outcome assumption that can be done for an execution unit once it has

been started. For example, in the “purchase tickets application” it can be

presumed that execution unit Validate purchase commits if a failure occurs once

its execution has been started.

We address the management of execution state of executions units by means of the

state management contract. It is a simple contract that associates state management

property to an execution unit. The state management contract subclass specializes

the class SimpleContract (see Definition 9) as follows:

SubClass (State management contract)

class stateMContract : SimpleContract {
property stateMProperty

}

4.4.1 State management property

The state management property describes the possible values that an execution unit

can have for managing the persistency of its state. It specializes the class Property (see

Definition 4) as follows:

SubClass (Property)

class stateMProperty : Property {
values { {name “state-Verifiability”, value Boolean},

{name “idempotency”, value Boolean},

57

4. Reliability with contracts

{name “outcome-Assumption”, value {“committed”,

“failed”,

“presumed-nothing”}}}
}

where the attribute values represents following properties:

• “state-Verifiability” specifies whether the execution state of the execution unit

can be queried.

• “idempotency” specifies whether either the execution unit can be executed seve-

ral times resulting in the same result or the multiple execution of the execution

unit results in different results for each execution.

• “outcome-Asumption” specifies what can be presumed if a failure occurs once

the execution of the execution has been started:

– “committed”: when a system failure occurs the execution of the execution

unit is presumed to c1ommit.

– “failed”: when a system failure occurs the execution of the execution unit

is presumed to fail.

– “presumed-nothing”: when a system failure occurs the execution of the

execution unit cannot be presumed to some result.

According to the above values of the state management property, execution units can

be associated with several combinations. The combinations are shown in Table 4.3

and we discuss about its validity in the next paragraph:

• Case 1 characterizes a non persistent execution unit because in case of failure its

execution state neither can be queried nor supposed and it is non idempotent.

• Case 2 characterizes a presumable execution unit because in case of failure its

result has an outcome assumption.

• Case 3 and 4 characterize an idempotent execution unit because it can be re-

executed in case of failure with the same result.

• Case 5 to 8 characterize a verifiable execution unit because its execution state

can be known in case of failure.

58

4.4. State management contract

Case Can be Is Has an
queried idempotent outcome assumption

1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

Table 4.3: Execution unit types according to state management property

Therefore, we have identified four state management contract subtypes (see Table 4.4):

non persistent state management contract, presumable state management contract,

idempotent state management contract, and verifiable state management contract.

Persistency State Idempotency Outcome
properties contract verifiability assumption

Non persistent No No No
Presumable No No Yes
Idempotent No Yes -
Verifiable Yes - -

Table 4.4: State management contract subtypes according to state management pro-
perty values

4.4.2 State management rules

A rule of a state management contract determines how to make persistent the execu-

tion state of a given execution unit. A rule specializes the class Rule (see Definition

5), for example following rules are related to the presumable contract:

• smcRule1 specifies that, it is necessary to store in the log the state of an execu-

tion unit at the beginning of its execution:

class smcRule1: Rule {
on euStarted,

59

4. Reliability with contracts

do writeEuState

}

• smcRule5 specifies that during recovery, if the beginning of the execution of the

execution unit is stored in the log, then its state is the outcome assumption:

class smcRule5: Rule {
on recoverEuState where begining(eu) ∈ log,

do assumeEuState

}

Events

Events determines when to trigger reactions related to manage the state of execution

units, for example following events are related to presumable contract:

• The necessity of recovering the execution state of an execution unit from the log:

class recoverEuState: Event {
delta {{eu EU}}

}

• The beginning of the execution of an execution unit (i.e., the execution unit has

been started):

class euStarted: Event {
delta {{eu EU}}

}

Reactions

Reactions specifies where to store and how to recover the state of execution units. A

reaction specializes the class Reaction (see Definition 7), for example following reactions

are related to presumable contract:

• writeEuState reaction indicates that the execution state of the execution unit

must be stored in the log:

60

4.4. State management contract

class writeEuState: Reaction {
input {{eu EU}},
output {{rResult Boolean}}

}

• assumeEuState indicates that the execution state of the execution unit must

be assumed by using its outcome assumption:

class assumeEuState: Reaction{
input {{eu EU}},
output {{rResult list(State)}}

}

4.4.3 Presumable contract

According to state management property there are four contracts subtypes that can

be defined. For example, a presumable contract can be associated to an execution

unit that has an outcome assumption. Therefore, it is only necessary to store in the

log the beginning of its execution. During recovery an executed execution unit is

signaled in the log by the beginning of its execution. Next, its execution state can be

known by using its outcome assumption. A presumable contract specializes the class

stateMContract as follows:

class presumContract: stateMContract {
property {values {{name “state-Verifiability”, value False},

{name “idempotency”, value False},
{name “outcome-Assumption”,

value {“committed”, “failed”}}}},
rules {r1 smcRule1, r2 smcRule5}

}

For example, in the “purchase tickets application” the execution unit process purchase

can be considered as an execution unit that can be presumed to commit. This situation

can be captured by means of a presumable contract instance with name prCpP as

follows:

prCpP presumContract :{
scope pP ,

61

4. Reliability with contracts

property {values {{name “state-Verifiability”, value False},
{name “idempotency”, value False},
{name “outcome-Assumption”,

value “committed”}}},
priority 2

}

where:

• pP is the identifier of an instance of the class EU representing the execution unit

process purchase.

• The outcome-assumption of the execution unit is to commit.

• The priority of the contract is 2.

The complete definition of the state management contracts is presented in the

Appendix A.

4.5 Persistency guarantees contract

We assume that the most important cost for doing log based recovery is the access

to storage supports. Therefore, we have characterized the storage support as, cached

which is volatile and with fast access rates; and stable which is permanent and with

slow access rates. Based on these criteria, we have defined two persistency guarantees:

• Best effort guarantee specifies that the changes in the execution state are stored

in a cached log. It implies that in case of system failures the log may not be

available for the recovery process. Because part of the execution history is stored

in a cached log until a forced write happens (e.g. by passivation or shutdown

calls) the execution is allowed to continue.

• A guaranteed effort specifies that the changes in the execution state are stored

in a stable log immediately at the contract end. It implies that in case of system

failures the log survives and it will be available for doing the recovery process.

Therefore, the execution is not allowed to continue until the writing operation

is completed.

62

4.5. Persistency guarantees contract

We address persistency guarantees by means of the persistency guarantees contract. It

is a composite contract that associates persistency property to a set of contracts. The

contracts within an persistency guarantees contract must be of type state management

or persistency guarantees. The persistency guarantees contract subclass specializes the

class CompositeContract (see Definition 10) as follows:

SubClass (Persistency guarantees contract)

class persistGContract : CompositeContract {
scope set(stateMContract ∪ persistGContract),

property persistencyProperty ,

}

4.5.1 Property

The persistency property describes the type of persistency guarantees associated to a

scope. It specializes the class Property (see Definition 4) as follows:

SubClass (Persistency property)

class persistencyProperty : Property{
values {{name“persistencyType”,

value {“bestEffort”, “guaranteed”}}}
}

where “persistencyType” specifies the type of persistency guarantee: “best effort”

or “guaranteed”.

4.5.2 Persistency guarantees rules

A persistency guarantees rule specifies where to store the execution state and how to

do the recovery process using it. A persistency guarantees rule specializes the class

Rule (see Definition 5), for example the following rules are related to a best effort

contract:

• pgcRule1 specifies that, if there is a change in the execution state, then set writes

to the cached log:

63

4. Reliability with contracts

class pgcRule1: Rule {
on exStateChg,

do setWrToCachedLog

}

• pgcRule2 specifies that, a system failure begins a crash recovery process:

class pgcRule2: Rule {
on syFailure,

do beginCoRecovery

}

The definitions of the class events exStateChg and coFailure, and the class reactions

setWrToCachedLog and beginCoRecovery are presented in the next subsections.

Events

The reactions of a persistency guarantee contract are triggered by several events, for

example the following events are related to a best effort contract:

• exStateChg represents the fact that there is a change in the execution state of

an execution unit. It specializes the class Event (see Definition 6):

class exStateChg: Event {
delta {{eu EU}}

}

• syFailure represents the fact that the coordination execution has failed by a

system failure and a recovery process must be started. It specializes the class

Event (see Definition 6):

class syFailure: Event {
delta {{coName String}}

}

64

4.5. Persistency guarantees contract

Reactions

Reactions of persistency guarantees contracts specializes the class Reaction . For exam-

ple, following reaction types are related to best effort contract: Following action types

are associated to persistency contracts:

• setWrToCachedLog represents the fact that all results of write operations must

be stored in the cached log until a forced write happens:

class setWrToCachedLog: Reaction {
input {},
output {{rResult Boolean}}

}

• beginCoRecovery represents the fact that the coordination execution has failed

and a recovery process was started. Therefore, an event of type recoverEuState

is generated for all execution units stored in the log:

class beginCoRecovery: Reaction {
input {{coName String}},
output {{rResult Boolean}}

}

4.5.3 Best effort contract

According to the possible values of the property persistencyProperty , a persistGContract

can be of two types: guaranteed or best effort. For example, the best effort contract

specializes the class persistGContract . It specifies that, the changes in the execution

state are stored in a cached log, and in case of a system failure a recovery process of

the execution history must be started:

class bePGC: persistGContract {
property {values {name “type”, value “bestEffort”}},
rules {pgcR1 pgcRule1, pgcR2 pgcRule2 }

}

For example, in the “purchase tickets application” the execution of the execution

unit process purchase can be handled with a best effort contract, assuming that it has

an outcome assumption. This situation can be captured by means of a best effort

contract instance with name beC1 as follows:

65

4. Reliability with contracts

beC1 bePGC :{
scope {prCpP},
priority 2

}
where:

• The scope of the contract contains a state management contract. prCpPC is

the identifier of an instance of the contract class presumContract. It represents

that the execution unit process purchase has a presumable contract.

• The priority of the contract is 2.

The complete definition of the persistency guarantees contracts is presented in the

Appendix A.

4.6 Conclusion

This chapter proposes an approach for adding reliability to coordination using our

contract model. Such a model enables to address both atomic behavior and persistency

guarantees in an orthogonal way:

• The treatment of semantics failures enables to provide recovery. It is provided

to a given coordination by means of two contract types:

– Failure contract defines how an execution unit can be treated in case of

failure.

– Atomicity contract ensures one of following behavior for a set of contracts:

Strict atomicity, Alternative atomicity or Exception atomicity.

• Persistency requirement is related to how system failures can be treated in order

to provide recovery. It can be defined to a given coordination by means of two

contract types:

– State management contract enables to know the execution state of an exe-

cution unit in case of a system failure.

– Persistency contract determines some writing guarantees associated to exe-

cution history used in a recovery.

Next chapter presents the evaluation of contracts and discusses the orthogonality of

reliability contracts.

66

Chapter 5

Contracts’ evaluation

This chapter describes the strategies we propose for evaluating the contracts associated

to a services coordination. Given a services coordination the strategies specify when

to evaluate a contract with respect to the execution of an execution unit and when

and how to execute the reaction of the contract. It must be noted that, contracts

evaluation hides a high degree of complexity. Several questions about the evaluation

process raise at execution time, for example, how to evaluate several contracts triggered

simultaneously? At which moment is it useful to evaluate a contract? What kind of

execution model must be used for evaluating the rules? What type of synchronization

model must be used for executing the reactions within the coordination execution?

What to do with incompatible reactions? Our work addresses the contracts’ evaluation

with the following hypothesis:

• The contracts are evaluated within the execution of execution units at two given

points. Recall that such points are represented in COBA by the notion of exe-

cution unit state (see Section 3.2.1).

• The notion of contract tree (i.e., composite contract, see Section 3.5.2) and the

execution order (i.e., control flow, see 3.2.2) are used to establish an evaluation

order of contracts triggered simultaneously.

• The rules triggered at the same time are evaluated according to the evaluation

order of its contracts.

• The synchronization of reactions and execution is done in a preemptive way.

Besides, according to the COBA model, there are two contract types to be evaluated.

Therefore, we present the strategies associated to evaluating one simple contract and

67

5. Contracts’ evaluation

one composite contract. We use as an example the evaluation of reliability contracts.

This chapter is organized as follows. Sections 5.1 and 5.2 describe respectively how

to evaluate a simple and a composite contract. Section 5.3 presents the evaluation

process of several contracts. In the Section 5.4 we discuss about the evaluation of

contracts used for adding reliability to coordination. Finally, Section 5.5 concludes

the chapter.

Résumé: Ce chapitre décrit les stratégies que nous proposons pour l’évaluation

de contrats associés à une coordination de services. Les stratégies spécifient à quel

moment il faut évaluer un contrat par rapport à l’exécution d’une unité d’exécution ;

quand et comment faut il exécuter la réaction d’un contrat par rapport à la notifica-

tion d’une exception ; comment évaluer plusieurs contrats déclenchés simultanément?

Notre travail porte sur l’évaluation des contrats avec les hypothèses suivantes :

• Les contrats sont évalués dans l’exécution d’unités d’exécution à deux moments

de l’exécution : au début et à la fin.

• La notion d’ordre d’exécution est utilisée pour établir un ordre d’évaluation des

contrats déclenchés simultanément.

• Les règles déclenchées en même temps, sont évaluées en fonction de l’ordre

d’évaluation des contrats.

• La synchronisation des réactions et l’exécution d’une unité d’exécution se fait

de manière préemptive.

Le modèle COBA définit deux types de contrat : simple et composite. Par conséquent,

le chapitre présente les stratégies associées à l’évaluation d’un contrat simple et d’un

contrat composite. Nous utilisons comme exemple l’évaluation des contrats de fiabilité

pour illustrer les stratégies d’exécution proposées.

5.1 Evaluation of one simple contract

The evaluation of one simple contract is done, within the execution of the execution

unit defined within its scope. Recall that according to the COBA model, a contract

represents the relationship between a property and a scope:

• A simple contract is associated to an execution unit which is defined in the scope

of the contract (see Section 3.5.1).

68

5.1. Evaluation of one simple contract

• An execution unit can be associated with several states linked with its execution

(see Section 3.2.1).

• A contract has associated a set of rules where a rule specifies the reactions to

be executed for enforcing a property in the occurrence of an event (see Section

3.4).

Figure 5.1 shows the four states and the four steps of the evaluation process of one

simple contract1:

Figure 5.1: Evaluation of a simple contract

• In the state triggerable, a contract is waiting for triggering events.

• The state triggered is the state where a contract has been triggered by an event.

• In the state triggerable rules, the rules of a contract are activated and they are

waiting for triggering events.

• The state triggered reaction is the state when a reaction has been activated for

being executed.

Next Sections present details about each step involved in the evaluation process. To

illustrate such a process, let us consider the following contract instance associated to

the execution unit instance sT (i.e., Send tickets) of the “purchase tickets application”.

unCsT unContract :{
scope sT ,

1The diagram can be seen as a kind of finite-state machine composed of a finite set of states (i.e.,
the circles that we called states) and transitions between those states (i.e., the arrows that we called
steps).

69

5. Contracts’ evaluation

property {values {{name “compensable”, value True},
{name “side-effects”, value False},
{name “retriable”, value True},
{name “max-retry-no”, value 5}}},

priority 1

}

The contract unCsT defines that the execution unit Send tickets has an undoable

contract which is a simple contract (i.e., unContract , see Section A.1).

5.1.1 Contract triggering

Contract triggering is the process by which a simple contract goes from the state

triggerable to the state triggered, after a triggering event has been notified (see Figure

5.1). A triggering event for a simple contract is detected within the execution of its

associated execution unit. Therefore, we propose to associate an execution unit with

four states related to three instants: i) the instant before its execution, ii) its execution

itself, and iii) the instant after its execution (see Figure 5.2). The transitions among

the states are defined as follows:

• Activate is the process by which an execution unit that is ready for being exe-

cuted (prepared state) goes to being executed (started state).

• Executing corresponds to the execution of the execution unit. Once the execution

of the execution unit has been completed, the execution unit goes to terminated

state.

• Commit is the process in which the execution results of the execution are

committed. At the end of this process the execution unit reaches the validated

state.

Figure 5.2: Execution of an execution unit

70

5.1. Evaluation of one simple contract

Taking into account the above states, we consider that a simple contract is triggered

during the steps Activate and Commit (see Figure 5.2):

• A contract triggered during the step Activate (i.e., before the execution of the

execution unit) can control the context under which the execution happens (e.g.,

to modify the execution requirements or to store the execution state).

• A contract triggered during the step Commit (i.e., after the execution of the exe-

cution unit) can take actions over the results of the execution before committing

(e.g., to re-execute an failed execution unit).

In our example, unCsT is triggered at two instants within the execution of sT ,

as is shown in Figure 5.3, which correspond to the steps activate and commit of the

execution of an execution unit.

Figure 5.3: Contract triggering of unCsT

5.1.2 Property evaluation

Recall that, in the COBA model, a property is a the set of variables that represents a

combination of values that constraint the execution. During this process the property

is evaluated with respect to the execution state of the execution unit. If the property

has been evaluated to true, then the rules of the contract are activated and they

wait for triggering events, otherwise the contract goes back to the triggerable state

(see Figure 5.1). At this point the rules must be evaluated. The evaluation of rules

follows the same reasoning as contracts, if a triggering event is notified, a reaction is

triggered. Therefore, the contract goes from the state triggerable rules to the state

71

5. Contracts’ evaluation

triggered reaction. The evaluation of rules is inspired in the execution model framework

proposed by Coupaye and Collet (see [CC98]). In our approach a rule can be evaluated

immediately after the notification of an event. It is executed every time an event is

notified. Finally, rules cannot be executed in cascade.

In our example, the values of the instance of exceptionProperty are analyzed for

activating the rules of the contract (i.e., rule instances r1 and r2 of class recRule5

and recrule6 respectively, see Section A.1). The rules are activated only after the

execution of the execution unit because it is when an execution unit can be retried in

case of failure (i.e., rule class recRule5) or it can be compensated if it was committed

(i.e., rule class recRule6). The Figure 5.4 shows the moments at which the rules are

activated.

Figure 5.4: Property evaluation of unCsT

5.1.3 Reaction triggering

Is the process in which, a given triggering event was notified and it triggers one or more

reactions. Reactions are triggered according to the order of rules within the definition

of the contract. The execution of a reaction must be synchronized with the execution

of the execution unit by means of an execution plan that orders its execution. In our

approach, the execution plan is built considering, i) the instant at which the contract

evaluation was triggered, ii) the number of triggered reactions, and iii) a preemptive

criteria for executing reactions. For example, there are two cases when one reaction

is triggered:

• Case 1: the contract was triggered before the execution of the execution unit.

Therefore, the execution of the execution unit cannot start until the execution of

72

5.1. Evaluation of one simple contract

its reaction finishes. For example, the Figure 5.5 presents the interactions among,

the execution of an execution unit, the evaluation of its associated contract and

the execution of its reactions.

Figure 5.5: Execution example of one reaction before the execution of an execution
unit

• Case 2: the contract was triggered after the execution of the execution unit.

Therefore, the execution of the execution unit is synchronized with the execution

of the reaction. For example, the Figure 5.6 shows a case where the evaluation

of a contract and the execution of the execution unit does not finish until the

reaction finishes.

Figure 5.6: Execution example of one reaction after the execution of an execution unit

In our example, once the rules r1 and r2 are activated they wait for the triggering

events compReqEv and failEv. Let us consider that the execution of sT fails and

73

5. Contracts’ evaluation

therefore event failEv happens, then an execution plan is built for re-executing sT .

Next, the reaction of r1 is triggered (i.e, reaction retry, see Figure 5.7).

Figure 5.7: Reaction triggering of unCsT

5.1.4 Reaction execution

The execution of reactions must be synchronized with the coordination execution. It

must take into consideration, on the one hand, that execution units are provided by

autonomous services, and on the other, that the execution of some execution units

can take a long time (i.e., hour or days). Therefore, synchronizing the execution of

reactions with the coordination execution can have an impact over the execution of

the application in terms of execution time. In our approach, once the execution plan is

built, the execution is synchronized. Recall that, execution of reactions is preemptive,

therefore the execution of the coordination must be interrupted for executing the

reactions according to a specific order (e.g., when several reactions are triggered).

The reactions execution is done in three phases:

1. The execution of the execution unit is interrupted at the step Activate or Commit

(see Figure 5.2).

2. The reactions are executed according to the order defined in the execution plan

built in the Reaction triggered step (see Figure 5.1).

3. The results of the reactions execution are committed and therefore, the exe-

cution continues (i.e., the contract was triggered before the execution of the

execution unit) or finishes (i.e., the contract was triggered after the execution of

the execution unit).

74

5.2. Evaluation of one composite contract

Figure 5.8: Reaction execution of unCsT

Finally, at the end of the execution of the reactions the contract comes back to the

triggerable state (see Figure 5.1).

In our example, the reaction retry re-executes the execution unit if possible, accor-

ding to the value of “max-retry-no” in exceptionProperty and the number of times that

sT appears in the execution history as committed (see Figure 5.8). Note also that,

the re-execution of sT triggers again the evaluation of unCsT .

5.2 Evaluation of one composite contract

The second case to consider in the evaluation of contracts is the evaluation of one

composite contract. Recall that according to the COBA model, a composite contract

is associated with a set of contracts (see Section 3.5.2). Therefore, its evaluation is

done within the evaluation of the contracts defined in its scope. The contract tree

related to the composite contract is useful within the evaluation process:

• The tree is used for determining when a composite contract must be evaluated.

• The states of the contracts belonging to the tree are used when evaluating the

property of the contract.

75

5. Contracts’ evaluation

• The state of the execution units related to the contract tree is also considered.

The evaluation process of a composite contract has four states and four steps as is

shown in Figure 5.9. However, the event that triggers the evaluation of a composite

contract is the evaluation process of one of the contracts within its scope. Next

Sections present details about the evaluation process.

Figure 5.9: Evaluation of a composite contract

In order to illustrate the evaluation of a composite contract, let us consider the fo-

llowing contract instance related to the “purchase tickets application”. The composite

contract c1 (see Figure 5.10) associates three contract instances with strict atomicity

behavior (i.e., contract type stAtC , see Section A.2), according to the business rules of

the application (i.e., “a purchase order can be completed only if it was paid”):

Figure 5.10: Composite contract c1

c1 stAtC {
scope {crCvP , unCsT , nvCsP},
priority 2

}

76

5.2. Evaluation of one composite contract

where:

• crCvP is an instance of a critical contract related to execution unit vP (i.e.,

Validate payment).

• unCsT is an instance of an undoable contract related to execution unit sT (i.e.,

Send tickets).

• nvCsP is an instance of a non vital contract related to execution unit sP (i.e.,

Send publicity).

Figure 5.11: Triggering a composite contract

5.2.1 Contract triggering

Contract triggering is the process in which a composite contract goes from a triggerable

state to a triggered state, because of a triggering event has been notified. Because of

the evaluation of a composite contract is done within the evaluation of the contracts

defined in its scope, a composite contract is triggered by the evaluation of one or more

of the contracts within its scope. Note that, all ancestors of a simple contract within

its contract tree are triggered when the simple contract is being evaluated.

For example, let us consider the contract tree of Figure 5.11, the evaluation of

the simple contract instance idC2 triggers the evaluation of the composite contract

instance idC1 (see Figure 5.12).

In our contract example (see Figure 5.10), the contract c1 is triggered when the

contracts within its scope are triggered (see Figure 5.13):

• The contract crCvP is triggered within the execution of vP .

77

5. Contracts’ evaluation

Figure 5.12: Sequence diagram for triggering a composite contract

• The contract unCsT is triggered within the execution of sT .

• The contract nvCsP) is triggered within the execution of sP .

5.2.2 Property evaluation

The evaluation of a property of a composite contract is done over the values of the

contracts within its scope. Therefore, the variables that represent the property are

evaluated over the execution state and over the the values of the contracts within

its scope. If the property is evaluated to true, then the rules of the contract are

activated (i.e., they wait for triggering events), otherwise the contract goes back to

the triggerable state (see Figure 5.9). When a rule is activated and a triggering event

is detected, a reaction is triggered. Recall that, a rule can be evaluated immediately

after the notification of an event, it is evaluated every time an event is notified and

rules cannot be executed in cascade.

As an example, let us consider the execution of execution unit vP . The rule is

activated only after the execution of the execution unit because it is when an execution

unit can fail. The Figure 5.15 shows the moments at which the rule is activated.

In our example, let us consider the execution of execution unit vP . The rule r1 of

the contract c1 is activated only after the execution of the execution unit because it

is when an execution unit can fail. The Figure 5.15 shows the moments at which the

rule is activated.

78

5.2. Evaluation of one composite contract

a)

b)

c)

Figure 5.13: Contract triggering of unCsT

79

5. Contracts’ evaluation

Figure 5.14: Property evaluation of c1

Figure 5.15: Property evaluation of c1

80

5.2. Evaluation of one composite contract

5.2.3 Reaction triggering

At this phase, an execution plan is built for executing the triggered reactions. To

synchronize the execution, the building process of the plan takes into account: i) the

instant at which the contract evaluation was triggered, ii) the number of triggered

reactions within the contract tree, and iii) the contract tree itself. Our approach uses

the following rules for determining the execution order of reactions:

1. Simple contracts: a reaction triggered by a simple contract has priority over

the triggered reactions of its ancestors. Consequently, reactions triggered in

composite contracts must wait its finalization to be executed.

2. Composite contracts: a reaction initiated by a composite contract is executed

first that reactions triggered by its ancestors (bottom-up order). We assume

that, a node close to the root has less priority that a node close to the leafs.

3. FIFO order: if a composite contract is triggered by two or more contracts, then

FIFO order is used for executing its reactions. This means that, evaluation is

done according to the execution order of the execution units.

For example, let us consider that the contract instance idC1 of the contract tree of

the Figure 5.11 is being evaluated under the following scenario:

• idC1 was triggered by idC2.

• idC2 was triggered before of the execution of idEu1.

• An event is notified to rule idRc1 of contract idC1 triggering the reaction idR1.

Therefore, the execution of idEu1 waits the finalization of reaction idR1 for begi-

nning its execution (see Figure 5.16), because the execution of reactions is done in a

preemptive way.

In our example, once the rule r1 is activated it waits for the triggering event

contractFailure. Let us consider that the execution of vP fails, therefore contract

crCvP signals a failure and the event contractFailure is notified. At this moment an

execution plan is built for applying backward recovery (see Figure 5.17).

5.2.4 Reaction execution

The execution of reactions in a composite contract follows the same approach that

simple contracts. Once the execution plan is built, the execution is synchronized. The

reactions execution is done in three phases:

81

5. Contracts’ evaluation

Figure 5.16: Evaluation example of a composite contract

Figure 5.17: Reaction triggering of c1

82

5.3. Evaluation of several contracts

1. The execution of the execution unit, the one that is descendant of the composite

contract, is interrupted at the step Activate or Commit (see Figure 5.2).

2. The reactions are executed according to the order defined in the execution plan

built in the Reaction triggered step (see Figure 5.1). Such reactions can be

triggered by several contracts within the contract tree.

3. The results of the reactions execution are committed and therefore, the exe-

cution continues (i.e., the contract was triggered before the execution of the

execution unit) or finishes (i.e., the contract was triggered after the execution of

the execution unit).

Finally, at the end of the execution of the reactions the contract comes back to the

triggerable state (see Figure 5.1).

In our example (see Figure 5.10), the reaction backward recovery undoes the

previous committed execution units within the scope of the contract c1. In this case,

the only execution unit that must be compensated is sT because of:

• sT is associated with an undoable contract (i.e., unCsT), therefore it must

compensated to undone its actions.

• sP is associated with a non vital contract (i.e., nvCsP), therefore it does not

requires to be compensated.

• vP is the execution unit that has failed and initiates the backward recovery

reaction because it cannot be retried (i.e., it has associated a critical contract).

5.3 Evaluation of several contracts

When a coordination is related with several contract types, the evaluation of the

different contracts must be ordered. The evaluation process implies, i) to order the

evaluation of several contracts, and ii) to synchronize the execution of several reactions

and the execution of the coordination. There are three scenarios to be considered:

1. Two or more non related contracts must be evaluated. In this case, the evaluation

order of the contracts is done according to the execution order using a FIFO

policy. We assume that, the contracts that are not related can be evaluated and

its reactions can be executed in an isolated way. For example, in the Figure 5.18,

the evaluation process of contract tree 1 (i.e., contracts idC1 and idC2) does

83

5. Contracts’ evaluation

not cause conflicts with the evaluation process of contract tree 3 (i.e., contracts

idC6 and idC7) because they are not related in any way (i.e., by a contract or

by an execution unit). In a similar way, contract tree 1 and 2 can be evaluated

without conflicts.

Figure 5.18: Evaluation of several contracts within a same coordination

2. Two or more contracts related by a contract must be evaluated. This is the case

of a composite contract and the rules for evaluating such a kind of contracts are

applied (see Section 5.2). For example, in the Figure 5.18 the contracts instances

idC4 and idC5 are related by the contract instance idC3. Because of idC3 is

a composite contract it must be evaluated applying the rules for evaluating one

composite contract.

3. Two or more contracts related by an execution unit must be evaluated. In this

case, the priority of each contract is used (see Definition 3.5). For example, in the

Figure 5.18 the contracts instances idC5 and idC7 are related by the execution

unit idEU3. When the execution of idEU3 triggers idC5 and idC7 the priority

of each contract type is used for determining which contract has higher priority

over the other.

5.3.1 Evaluation example

The Figure 5.19 shows an example of how the evaluation order is determined for several

contracts. In the top of the Figure, the contracts to be evaluated are shown with its

84

5.3. Evaluation of several contracts

corresponding contract trees. In the middle, the execution order and the triggering

of the contracts is shown. In the bottom, the evaluation order is presented (dashed

lines), it is determined as follows:

• First, execution unit EU1 is executed and therefore its associated contract and

its ancestor is triggered for being evaluated (i.e., contracts C1 and C3).

• Next, execution unit EU3 is executed which triggers the evaluation of its asso-

ciated contract and its ancestors (i.e., contracts C4, C5 and C6).

• Finally, execution unit EU2 is executed and its associated contract and is an-

cestors are triggered for being evaluated (i.e. contracts C2 and C3).

Figure 5.19: Evaluation order for several contracts belonging to a coordination

85

5. Contracts’ evaluation

5.4 Orthogonality of reliability contracts

In this section we discuss about the orthogonality of the contracts’ types because al-

though we argued that contracts are orthogonal, there are properties that can cause

conflicts. This issue has high relevance when evaluating several contracts. An analysis

of this kind must be done considering the type of contract (i.e., simple or composite)

and the properties of the contracts (i.e., when the properties are or not related). As

an example, we conduct an analysis of four contracts that are related to reliability:

i) contracts whose scope is a execution unit (i.e., exception contract and state man-

agement contract, see Sections 4.2 and 4.4) and ii) contracts whose scope is a set of

contracts (i.e., atomicity contract and persistency guarantees contract, see Sections

4.3 and 4.5).

5.4.1 Simple contracts

The compatibility of exception contract and state management contract must be ana-

lyzed when an execution unit is within the scope of two simple contracts. Recall

that the evaluation of such contracts is done within the execution of the execution

unit. Therefore, the reactions associated to the contracts can define not compatible

actions (e.g., in case of failure, a contract can specify a retry reaction and the other

an exception reaction).

The Table 5.1 introduces the compatibility matrix for exception and state man-

agement contracts. A “N” indicates conflict and a “Y” indicates compatibility. It

must be noted that in the case of failure contract the typification includes only the

four contract subtypes (i.e., columns, see Section 4.2), and in the case of state man-

agement contract it is necessary to consider all the cases (i.e., rows, see Section 4.4).

Let us analyze each case:

• The worst case of an non persistent contract (see line 1 in Table 5.1) is when

its execution was started and its result is unknown because a failure arises and

therefore an an exception is launched signaling that the execution state cannot be

recovered. Let us analyze how this situation is compatible with failure contracts:

– Critical contract. Although a failure in a critical contract can be treated at

atomicity level, it is acceptable to launch an exception in case of unknown

execution state.

– Non vital contract. No matter which was the execution result, execution can

continue. Therefore, non vital and non persistent contract are incompatible.

86

5.4. Orthogonality of reliability contracts

– Undoable/compensatable contract. No matter which was the execution

result, an undoable/compensatable contract can be retried in case of fai-

lure. Therefore, undoable/compensatable and non persistent contracts are

incompatible.

• Presumable contract (see line 2 in Table 5.1) is compatible with all failure con-

tracts. The worst case is when after recovery the execution unit fails. In such a

case, the execution unit failure can be treated at semantic level by the corres-

ponding failure contract.

• Idempotent contract (see lines 3 and 4 in Table 5.1) is incompatible with critical

and non vital contracts because a critical contract cannot be retried and non

vital contract does not require its re-execution in case of failure.

• Verifiable contract (see lines 5 to 8 in Table 5.1) has a compatibility problem

when the contract is also idempotent (lines 7 and 8). In that case, similar to

idempotent contract, verifiable contract is incompatible with critical and non

vital contracts.

Exception contract Critical Non Undoable Comp.

State manag. Verifiable Idempotent Presumable vital

1 Non persistent No No No Y N N N
2 Presumable No No Yes Y Y Y Y
3 Idempotent No Yes No N N Y Y
4 No Yes Yes N N Y Y
5 Verifiable Yes No No Y Y Y Y
6 Yes No Yes Y Y Y Y
7 Yes Yes No N N Y Y
8 Yes Yes Yes N N Y Y

Table 5.1: Matrix of compatibility for exception and state management contracts

5.4.2 Composite contracts

To provide reliability to services coordination we propose two kind of composite con-

tracts: atomicity contracts and persistency guarantees contracts. While the former

associates recovery strategies during execution in case of failures (semantic failures),

the second associates recovery strategies when coordination execution crashes (system

87

5. Contracts’ evaluation

failures). Although such contracts are associated to different kind of failures, it must

be noted that there are some failures that can be treated by both contracts (e.g., the

failure of an execution unit). Therefore, an atomicity contract can be associated with

the same scope that a persistency contract, but a priority order for its evaluation must

be used.

We assume that persistency guarantees contracts are processed first than atomicity

contracts. The reason for this decision is because, before treating a failure according

to the application semantics, it is necessary to recover if possible the execution state

of the execution.

5.5 Conclusion

This chapter describes the strategies for evaluating contracts. The approach presented

in this chapter follows several hypothesis with respect to such a process. The contracts

are evaluated within the execution of execution units at two given points. The notion

of contract tree and the execution order are used to establish an evaluation order of

contracts triggered simultaneously. The rules triggered at the same time are evaluated

according to the evaluation order of its contracts. The synchronization of reactions

and execution is done in a preemptive way. Using such assumptions, we first present

the evaluation phases of one simple contract: contract triggering, property evaluation,

reaction triggering and reaction execution. Next we present the evaluation of one

composite contract, where the key element is how the contract tree is used for applying

the rules that we propose for its evaluation. Finally, we present how to evaluate a set

of contracts associated to a coordination and we discusses about the orthogonality of

contracts for providing reliability. Next chapter presents an proof on concept of the

COBA model and the evaluation process.

88

Chapter 6

Validation and proof of concept

This chapter describes a proof of concept of the approach that we propose for providing

reliability properties to a given services coordination. We present ROSE, a services

coordination engine which provides atomic behavior to web services.

The chapter is organized as follows. Section 6.1 introduces the general architecture

of a coordination engine for executing reliable coordinations by means of a contracts

evaluator. Section 6.2 presents how to extend a coordination engine with a contract

evaluator to be able to add exception handling and atomicity properties to a given ser-

vices coordination. Section 6.3 shows an experimental validation of enacting a services

coordination with support to semantic failures (e.g., atomic and exception handling

requirements). Finally, Section 6.4 concludes this chapter.

Résumé: Ce chapitre présente les résultats de la validation expérimentale de

l’approche que nous proposons dans cette thèse. Le chapitre décrit ROSE, un moteur

d’exécution des coordinations de services à base de contrats. Il présente l’architecture

générale d’un moteur de coordination et d’un évaluateur de contrats pour l’exécution

atomique des coordinations. L’architecture consiste en trois composants principaux :

• Le moteur de coordination qui interagit avec l’évaluateur de contrats à travers

une interface qui exporte des méthodes spécifiques pour arrêter, annuler et re-

lancer les unités d’exécution d’une coordination de services.

• L’évaluateur des contrats évalue des contrats en se synchronisant avec l’exécution

de la coordination de services.

• Le stockage gère l’histoire d’exécution de la coordination, en particulier, les

89

6. Validation and proof of concept

modifications de l’état d’exécution. Il est utilisé par l’évaluateur de contrats

pour construire le plan d’exécution des contrats.

Le chapitre décrit également les détails techniques de l’évaluation de ROSE avec le

moteur de coordination Bonita.

6.1 Coordination engine architecture

In this section we present the basic architecture that a coordination engine must

have to evaluate contracts based on the COBA model. The Figure 6.1 presents the

components of the architecture we proposed for enacting a services coordination in a

reliable way. There are three main elements in the architecture:

Figure 6.1: General architecture

• The Coordination engine is the core of the coordinator because it enacts the coor-

dination. Recall that we assume that such component already exists. Therefore,

it must comply with the following characteristics:

90

6.1. Coordination engine architecture

– Preemption right for enabling to interrupt the execution of the coordina-

tion. In such a way, it is possible to interrupt the execution of an activity

at given points of its execution (e.g., see Figure 5.2). This is necessary

because in such points the evaluation of the contracts is done. Besides, it is

possible to synchronize the execution of the reactions with the coordination

execution.

– The execution of the units execution must be atomic. This characteristic

is hard to provide in the case of services (e.g., long running activities).

However, we assume that the coordination engine is able to take a decision

to fail the execution of activities in specific situations (e.g., by using a

timeout). In such a way, the execution of an execution unit always commits

or fails which enables the evaluation of the contracts.

– The execution state of the coordination can be modified arbitrarily. This is

necessary because after the execution of some reactions the execution state

may change (e.g., when an execution unit is successfully retried).

• The Contracts evaluator is on charge of evaluating the contracts at execution

time. The functions of the evaluator are the following:

– To detect the events that triggers a contract (e.g., an execution unit is going

to be executed).

– To evaluate the property associated to the contract (e.g., the exception

handling property). The evaluation of the values representing the property

are related to, the current state of an execution unit, a possible contract

tree, and the execution history of the coordination.

– To build if it is necessary an execution plan for synchronizing the reactions

with the execution (e.g., to retry a failed execution unit).

• The storage is a place where the execution history is stored. The execution

history contains the execution state changes and it is used when an execution

plan must be built by the contracts evaluator.

The next section details how this architecture is used for extending an existing coor-

dination engine. In particular we analyze the case of enacting coordinations with

atomicity requirements.

91

6. Validation and proof of concept

6.1.1 Bonita

In this section we present a coordination engine called ROSE that enacts coordinations

with atomicity requirements. ROSE is not build from scratch, it extends Bonita

[Con07a], a coordination engine for enacting web-services based coordinations. Bonita

is an engine based on the J2EE platform specification for developing services based

applications that runs on JoNAS application server [Con07b]. The engine is able

to execute coordinations in a flexible way. It allows activities to share intermediate

results when executing. In Bonita, a coordination is expressed by means of workflows.

A workflow represents by means of activities and control flow operators the control

flow of a coordination where the data flow is encompassed within the control flow.

Execution is based on the principle of anticipation, which allows an activity to escape

to the start-end synchronization model. Besides, it is possible to cancel the execution

of an activity or to change the execution mode of an activity at runtime.

The architecture of Bonita includes following modules (see Figure 6.2):

Figure 6.2: General architecture of Bonita

• The client application is used for defining projects. A project represents coor-

dinations as workflows. Each project contains the information for being execu-

ted: activities names (i.e., method services calls), connectors among activities

92

6.1. Coordination engine architecture

(i.e., control flow operators),users, participants, roles and hook components. In

Bonita the notion of execution unit of the COBA model is represented by acti-

vities.

• The Bonita application server layer is composed by the EngineSession bean,

the execution modes, and the Worklist application. The Engine StatefulSession

bean defines all process execution operations: start activity, terminate activity,

cancel activity and terminate process execution. It is based in a recursive im-

plementation that manages the previous execution operations and propagates

the activity state changes to the activities that are connected to this one. The

coordination engine is responsible of managing different execution modes. This

layer integrates services that control and simplify many cooperative aspects:

– JMS message service implementation notifies the definition and execution

changes within a workflow process. Every user interaction is notified to the

executor and it throws a JMS event.

– Activity deadline service that uses the Java Management Extensions (JMX)

to advice the user if the execution of an activity does not terminate at the

expected date.

Within the coordination engine it is implemented the contract evaluator as an

activity hook. Such an integration is explained in the next Section.

• Finally, the entreprise information system layer provides persistency. The exe-

cution state persists to system failures thanks to a local database which is used

to store information about the projects being executed (i.e., coordinations).

6.1.2 Activity hook

The Bonita application server provides the notion of hook as a way of enhancing its

capabilities. A hook performs user-defined operations. It can be coded in an scripting

language (i.e., XPDL) or in java (i.e., as java libraries). Bonita considers two types of

hooks:

• Process hooks operate at process level, at the very beginning and the very end

of a process lifetime.

• Activity hooks operate at activity level, at different activity moments.

93

6. Validation and proof of concept

We use the notion of activity hooks because an activity hook can be called at different

states during activity lifetime. Lifetime of an activity includes not only its execution

but the time before and after the execution. This mode of execution is straightforward

with the evaluation process defined in the Chapter 5.

An activity hook can be executed in a transactional or a non transactional context,

depending upon the detection of certain events that define following points:

• Before start hook is called just before the activity starts. It is not considered

to be in the same transaction as the activity.

• After start hook is called just after the activity has started. It is considered to

be in the same transaction as the activity.

• Cancel hook is called before canceling an activity and it is considered to be in

the same transaction as the activity.

• Before terminate hook is called just before the activity terminates. It is

considered to be in the same transaction as the activity.

• After terminate hook is called just after the activity has terminated. It is not

considered to be in the same transaction as the activity.

• On ready hook is called when an activity becomes ready. This hook could be

used to notify the user responsible for executing the activity with information.

It is not considered to be in the same transaction as the activity.

• On deadline hook is called when an activity deadline expires. It is not consid-

ered to be in the same transaction as the activity.

The above points can be mapped to the execution units states that we propose for the

evaluation of reliability contracts (see Figure 6.3).

Using the hook mechanism of Bonita we implement the contracts evaluation (see

Chapter 5). Therefore, the contract evaluator is a plug-in component for the engine

implemented using hooks.

6.2 Architecture of the contract evaluator

The contract evaluator is on charge of the evaluation process of the atomicity contracts.

Figure 6.4 presents how the contract evaluator is implemented within Bonita (we use

the notation proposed by [FC08]). The contract evaluator includes five modules:

94

6.2. Architecture of the contract evaluator

Figure 6.3: Hook events related to execution states of execution units

Figure 6.4: Contract evaluator architecture in Bonita engine

95

6. Validation and proof of concept

• Contracts hook is an activity hook. It is on charge of the communication

among the executor and the other modules (see Figure 6.4). According to the

evaluation model of contracts, this hook is executed at two moments, before and

after the execution of an activity (i.e., “before start” and “after terminate, see

Figure 5.2). It is executed in a preemptive way while the contract evaluation is

done. At the beginning of its execution it provides information about the activity

that triggers the hook (i.e., activity name, execution state of the activity, and

project name). As a result of its execution a reaction can be executed to ensure

the property of a given contract.

• Event monitor manages the event occurrences happened at execution time.

When an interesting event happens the monitor notifies it to evaluator and to

the log manager.

• Contract evaluator evaluates the events from event monitor. If necessary it

triggers the rules of contracts and the reactions.

• Recovery engine generates a recovery plan when a reaction was triggered. Re-

call that recovery plans are defined given an atomicity contract and the types

of execution units within the atomicity contract. After this module sends in-

structions to the executor through the contracts hook in order to continue the

execution.

• Log manager manages the execution history of coordination and saves it into a

database (i.e., storage component implemented using a MySQL database). Data

is related with the event occurrence. When an event is detected, this module

updates the execution history. It also retrieves execution the history when it is

required.

6.3 Experimental validation

We conducted an experimental validation of the COBA model and the contract eva-

luator developing the “purchase tickets application”that has atomicity requirements

which can be expressed as atomicity contracts. The objective of this experiment is to

show how business rules defining the semantics of an application can be ensured by

contracts. In our experiment, the following assumptions are used:

96

6.3. Experimental validation

• The application logic (i.e., the coordination) is defined using a language based on

a coordination formalism (i.e., XPDL). The Listing 6.1 shows a fragment of the

XPDL file defining the application logic of the “purchase tickets application”.

It includes, the Datafields section where data of the application is defined (i.e.,

lines 15 to 32), the Activities section where activities of the application are

defined (i.e., lines 33 to 38), and the Transitions section where the execution

dependencies are defined (i.e., lines 39 to 45).

Listing 6.1: XPDL coordination for the “purchase tickets application”
1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>

2 <Package xmlns=”http ://www.wfmc . org /2002/XPDL1.0”

3 xmlns : xpdl=”http ://www.wfmc . org /2002/XPDL1.0”

4 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s tance ”

5 x s i : schemaLocation=”http ://www.wfmc . org /2002/XPDL1.0

6 http ://wfmc . org / standards /docs /TC−1025 schema 10 xpdl . xsd”

7 Id=”Conce r t s Pro j e c t ” Name=”Concerts”>

8 . . .

9 <WorkflowProcesses>

10 <WorkflowProcess AccessLeve l=”PUBLIC” Name=”Concerts” Id=”Concerts”>

11 <ProcessHeader />

12 <Redef inableHeader>

13 <Version >1.0</Version>

14 </Redef inableHeader>

15 <DataFields>

16 <DataField Id=”de c i s i o n ” Name=”de c i s i o n”>

17 <DataType>

18 <EnumerationType>

19 <EnumerationValue Name=”grant ” />

20 <EnumerationValue Name=”r e j e c t ” />

21 </EnumerationType>

22 </DataType>

23 <I n i t i a lVa lu e>grant</In i t i a lVa l u e>

24 <ExtendedAttributes>

25 <ExtendedAttribute Name=”PropertyAct iv i ty ” />

26 </ExtendedAttributes>

27 </DataField>

28 <DataField Id=”Acount number” Name=”Acount number”>

29 <DataType>

30 <BasicType Type=”STRING” />

31 . . .

32 </DataFields>

33 <Activities>

34 <Act iv i ty Id=”Get conce r t in f o rmat i on ” Name=”Get concer t in format ion”>

35 . . .

36 </Act iv i ty>

37 . . .

38 </Activities>

39 <Transitions>

40 <Trans i t i on Id=”Send pub l i c i t y Va l i da t e pu r cha s e ”

41 Name=”Send pub l i c i t y Va l i d a t e purchase ” From=”Send pub l i c i t y ”

42 To=”Val idate purchase ” />

43 <Trans i t i on Id=”Proc e s s pu r cah s e Send pub l i c i t y ”

44 Name=”Process purcahse Send pub l i c i t y ” From=”Proces s purcahse ”

45 To=”Send pub l i c i t y ” />

46 . . .

47 </Transitions>

48 </WorkflowProcess>

49 </WorkflowProcesses>

50 <ExtendedAttributes>

51 <ExtendedAttribute Name=”MadeBy” Value=”ProEd” />

52 <ExtendedAttribute Name=”View” Value=”Act iv i ty ” />

53 </ExtendedAttributes>

54 </Package>

• The definition of the atomicity contracts is sound for the target coordination.

97

6. Validation and proof of concept

It must be noted that, due to orthogonality of contracts and coordination, it is

possible to have inconsistent requirements of atomicity (e.g., two critical con-

tracts within a strict atomicity contract). We assume that the evaluation does

not makes a verification process.

• It is possible to extend the coordination engine with the contrac evaluator. For

example, using a plug-in mechanism or modifying the original code of the engine.

6.3.1 Purchase ticket application

The application logic is as follows (see Figure 1.1): given the concert information, the

purchase is processed and payment is granted. Once the purchase has been authorized,

the payment must be done, the tickets must be sent, and publicity for other events

must be sent too.

Besides, let us consider the following business rules (BR) for the application:

• BR-1: when a purchase is done, it is desirable to send publicity about other

related events to the customer.

• BR-2: once a purchase has been paid, it cannot be canceled.

• BR-3: a processed purchase that must be canceled generates a process for can-

celing the reservation and it generates a bad record for the customer.

• BR-4: there are some activities within the application that are internal and

canceling them if necessary does not generates any problem.

• BR-5: an order can be validated only if it was paid and sent.

The above business rules are fulfilled by defining exception handling and atomicity

contracts as is presented in the next section.

6.3.2 Atomicity contracts

In this section we present how atomicity and exception contracts are used to ensure

the business rules requirements at execution time.

1. Execution units are associated with exception handling contracts as follows.

• Derived from the BR-1 the execution unit Send publicity has a non vital

contract:

98

6.3. Experimental validation

nvCsP nvContract :{
scope sP ,

priority 1

}

where sP is an instance of the class EU representing the Send publicity

activity.

• It is inferred from the BR-2 that the execution unit Validate payment has

a critical contract:

crCvP crContract :{
scope vP ,

priority 1

}

where vP is an instance of the class EU representing the Validate payment

activity.

• According to the BR-3, the execution unit Process purchase has a compen-

satable contract:

cpCpP cpContract :{
scope pP ,

property {values {{name “compensable”, value True},
{name “side-effects”, value False},
{name “retriable”, value True},
{name “max-retry-no”, value 5}}},

priority 1

}

where pP is an instance of the class EU representing the Process purchase

activity.

• Derived from the BR-4 the execution units Get concert information, Send

tickets and Validate purchase have undoable contracts:

unCgCI unContract :{
scope gCI,

99

6. Validation and proof of concept

property {values {{name “compensable”, value True},
{name “side-effects”, value False},
{name “retriable”, value True},
{name “max-retry-no”, value 5}}},

priority 1

}

where gCI is an instance of the class EU representing the Get concert

information activity.

unCsT unContract :{
scope sT ,

property {values {{name “compensable”, value True},
{name “side-effects”, value False},
{name “retriable”, value True},
{name “max-retry-no”, value 5}}},

priority 1

}

where sT is an instance of the class EU representing the Send tickets acti-

vity.

unCvPu unContract :{
scope vPu,

property {values {{name “compensable”, value True},
{name “side-effects”, value False},
{name “retriable”, value True},
{name “max-retry-no”, value 5}}},

priority 1

}

where vPu is an instance of the class EU representing the Validate purchase

activity.

2. Atomicity contracts are defined as follows:

100

6.3. Experimental validation

• As it is specified in the BR-5 and BR-1, the execution units Send publi-

city, Validate payment and Send tickets execution units are associated by a

strict atomicity contract. Recall that an atomicity contract is a composite

contract that must have within its scope exception handling or atomicity

contracts. Therefore, the scope of this contract contains the exception

handling contracts of each execution unit specified in the business rules.

c1 stAtC {
scope {nvCsP , crCvP , unCsT},
priority 2

}

where nvCsP , crCvP , and unCsT are exception handling contracts asso-

ciated to execution units Send publicity, Validate payment and Send tickets

respectively.

6.3.3 Implementing atomicity contracts in ROSE

Atomicity contracts are implemented as follows in Rose:

• The process for evaluating atomicity contracts is coded in the contract evaluator.

• There are an editor that reads XPDL coordinations and enables to developers

to defines atomicity contracts using a graphical user interface (see Figure 6.5).

In the editor, exception handling contracts are associated to execution units

directly by means of a color codification, and atomicity contracts are associated

to other contracts by means of a dialog box. As a result of associating atomicity

contracts to an XPDL file, there is a XML file containing the definitions of the

contracts (see Listing 6.2).

Listing 6.2: XML file for the contracts of the “purchase tickets application”
1 <?xml ve r s i on =”1.0” standalone=”yes”?>

2 <ROSE>

3 <EXCEPTION−CONTRACTS>

4 <CONTRACT type=”UNDOABLE” name=”unCgCI”>Get concer t in fo rmat ion </CONTRACT>

5 <CONTRACT type=”UNDOABLE” name=”unCvP”>Val idate purchase </CONTRACT>

6 <CONTRACT type=”NONVITAL” name=”nvCsP”>Send pub l i c i ty </CONTRACT>

7 <CONTRACT type=”UNDOABLE” name=”unCsT”>Send t i cke t s </CONTRACT>

8 <CONTRACT type=”COMPENSATABLE” name=”cpCpP”>Process purcahse </CONTRACT>

9 <CONTRACT type=”CRITICAL” name=”crCvP”>Validate payment</CONTRACT>

10 </EXCEPTION−CONTRACTS>

11 <ATOMCITY−CONTRACTS>

12 <CONTRACT type=”S t r i c t ” name=”c1”>

13 <CN>crCvP</EU>

14 <CN>nvCsP</EU>

15 <CN>unCsT</EU>

101

6. Validation and proof of concept

Figure 6.5: Contracts editor of ROSE

16 </CONTRACT>

17 . . .

18 </ATOMICITY−CONTRACTS>

19 </ROSE>

6.3.4 Example of execution

In this section we show how the coordination engine enacts a coordination with ato-

micity requirements (i.e., failure and atomicity contracts). We use UML sequences

diagrams to show the interactions between the components of ROSE for enacting this

application and its contracts.

• First according to the control flow of the “purchase tickets application”, the

engine executes Get concert information (see Figure 1.1). Recall that within

the execution of an execution unit the Contracts hook is executed twice: be-

fore and after the execution. The Figure 6.6 shows the messages exchanged

among the modules of the engine. Assuming that the execution unit is executed

successfully the order is a follows:

102

6.3. Experimental validation

Figure 6.6: Interactions among components of ROSE for executing Get concert infor-
mation

1. The Executor executes the Contacts hook (before and after the execu-

tion of the activity) sending all the information about the execution context

(i.e., activity name, execution state of the activity, and project name).

2. The hook notifies the event to the Event monitor.

3. The Event monitor notifies an state change in the execution to the Eva-

luator and to the Log manager.

4. The Log manager stores in the Storage the state change.

5. The Evaluator evaluates the property of the exception contract with res-

pect to the execution state and notifies an action to the Recovery engine.

In this case there is no action to be taken.

6. The Recovery engine notifies an execution plan (e.g., no action) to the

Contracts hook.

7. Finally, the Contracts hook communicates that there is no action to be

executed to the Executor.

• Next, Process purchase is executed. We assume that there is no problem with

its execution, therefore the interactions among the ROSE components is similar

to the interactions when executing Get concert information (see Figure 6.6).

• After it is necessary to execute three activities for completing the purchase:

Validate payment, Send tickets and Send publicity (see Figure 1.1). Note that

these activities are executed in parallel by the executor, a service is contacted for

validating the payment, other is in charge of sending the tickets and another is

103

6. Validation and proof of concept

contacted for sending the publicity. With respect to contracts, each activity has

associated an exception management contract and such contracts are included

within the scope of an atomicity contract. Let us analyze the interactions when

executing the activity Validate payment (see Figure 6.7):

Figure 6.7: Interactions among components of ROSE for executing Validate payment

1. The Executor calls the hook (in this case we assume that it is executed

after the execution of the activity) sending all the information about the

execution context (i.e., activity name, execution state of the activity, and

project name). Let us consider that the execution of the activity fails.

2. The hook notifies the event to the Event monitor.

3. The Event monitor notifies an state change in the execution to the Eva-

luator and to the Log manager.

4. The Log manager stores the state change within the log representing the

execution history.

5. The Evaluator evaluates the properties with respect to the execution state

and notifies possible actions to the Recovery engine. Note that there

are two contracts that are being evaluated: the exception management

contract associated to the activity and the atomicity contract associated to

the exception management contract:

– First, when the property of the exception management contract (i.e.,

the contract associated to Validate payment) is evaluated, an activity

failure is signaled according to the rules associated to the critical con-

tract. This state is propagated into the contract tree.

104

6.4. Conclusion

– Next, the property linked to atomicity contract is evaluated. According

to the rules of the strict atomicity contract backward recovery must be

applied.

6. TheRecovery engine requires the execution history to the Log manager.

7. The Log manager retrieves the execution history from the Storage.

8. The Log manager returns the execution history to theRecovery engine.

9. The Recovery engine notifies an execution plan (e.g., backward recovery)

to the Contracts hook. Note that execution history is necessary to de-

termine which activities must be compensated. For example, if the activity

Send tickets has been committed it is necessary to undone its actions by

executing a compensation.

10. Finally, theContracts hook communicates the execution plan to the Exe-

cutor.

• At this point execution finishes because a contract establish a recovery strat-

egy to grant an atomic behavior. With the failure of Validate payment, the

other activities are compensated if necessary and therefore no activity within

the contract is executed.

6.4 Conclusion

This chapter introduces a proof of concept of how the COBA model can be imple-

mented in an coordination engine for enacting reliable coordinations.

First, we present a general architecture of a coordination engine for enacting ser-

vices coordinations with reliable requirements. In such an architecture, we introduce

the requirements that a existing coordination engine must have to be enhanced with

a contracts evaluator.

Next, we present details about ROSE, a coordination engine that extends Bonita.

ROSE is an engine that enacts coordinations with atomicity requirements. The key

element of ROSE is the contracts evaluator. Therefore we present details about the

modules of the evaluator.

Finally, a running example is used for analyzing the evaluation process and the

interactions among the components of the evaluator.

105

6. Validation and proof of concept

In such a way, we have shown in this chapter the feasibility of our contract model.

It is show how it is possible to make the contracts evaluation at execution time without

overcharging the execution.

106

Chapter 7

Conclusions

In this thesis we present COBA, a model for associating non-functional properties to

a services coordination by means of contracts. In particular we focus on providing

reliability properties to services coordination. Therefore, we show the contract eva-

luation strategies for verifying reliability properties at run time. As an experimental

validation we implement a reliable services coordination execution engine called ROSE

which is able to add exception handling and atomicity properties to a given services

coordination.

Résumé: Ce chapitre conclue cette thèse, il énumère les contributions et les per-

spectives de ce travail. Les contributions de notre travail sont:

• Le modèle COBA pour représenter les aspects non fonctionnels d’une coordina-

tion des services à travers la notion de contrat.

• La validation de ce modèle en l’utilisant pour représenter les propriétés de fia-

bilité de la coordination des services. Dans cette validation nous avons défini des

contrats de traitement d’exceptions de l’exécution d’unités d’exécution; des con-

trats d’atomicité associés à des ensembles d’unités d’exécution; des contrats de

persistance de l’état d’exécution d’une unité d’exécution; et enfin, des contrats

de gestion de l’état d’exécution des ensembles des unités d’exécution.

• Des stratégies d’évaluation des contrats.

• ROSE, un évaluateur de contrats COBA d’atomicité de coordination de services.

Les perspectives de notre travail portent sur :

107

7. Conclusions

• La spécification formelle du modèle qui permettra d’assurer des propriétés de

terminaison et d’absence d’embrassement mortel des coordinations lorsque des

contrats sont associés. Une première approche a été réalisée pour les contrats

d’atomicité [PVSGB+08].

• La modélisation d’autres propriétés non fonctionnelles comme la sécurité [Vu08]

et l’auto-adaptation [Tan09].

• La programmation des coordinations de services à base de contrats et la généralisation

des stratégies d’évaluation de contrats [CIC09].

• La construction de mashups pour aider à l’intégration fiable de données produites

par des services de données1.

7.1 Contributions and main results

The contributions and results of our research work were published in different re-

search forums (see [Por06a, PCVS+06, Por06b, PVSZM+06, PVSC+07a, HBPZM07,

PVSC+07b, PVSC+08b, Por08a, PCZMHB08, PVSGB+08, PHEO08a, PHEO+08b,

PHBVS+08, Por08b]). They can be summarized as follows:

• The COBA model for representing the non functional aspects of a services

coordination through the notion of contract was proposed [Por06a, PVSC+07a,

PVSC+08a]. The concepts of such a model are:

– Execution unit: it represents the execution of a process (e.g., an activity of

a services coordination).

– Property: It represents a non functional aspect.

– Rule: it specifies the reactions to be executed for enforcing a property under

a given situation.

– Contract: it represents the association of a property to an execution unit

or to a set of contracts and the rules to be considered for the property.

• We present a proof of concept of the COBA model which addresses reliability

for services coordination [PVSZM+06, PCVS+06, PHEO+08b, PHEO08a]. In

particular we use the contract notion to define:

1Ce thème est abordé dans le cadre de la thèse de M. Othman-Abdallah, HADAS-LIG.

108

7.2. Perspectives

1. How to treat exceptions over the execution of execution units.

2. How to provide atomic behavior to sets of execution units.

3. How to treat the persistency guarantees of execution units.

4. How to handle the execution state of activities sets.

• We show the contract evaluation strategies for verifying and enforcing reliability

properties [PVSC+08a, PHEO08a, PHEO+08b].

• We conduct an experiment for implementing a contract evaluator within a coor-

dination engine. We show a general architecture with the basic requirements that

a coordination engine must have in order to enact a coordination with reliable

contracts [PVSC+07b, HBPZM07].

7.2 Perspectives

There are several aspects that we addressed in our research work that remain as

opportunities areas:

• In [PCZMHB08] we sketched a proof of concept for providing persistency gua-

rantees to services coordination. We propose to extend the coordination engine

Xflow [pro08] with a contract evaluator. Xflow enacts coordination expressed as

workflows. It is a JBoos based engine running using a Tomcat sever that en-

ables to coordinate Web services. The contract evaluator was coded directly into

the Xflow engine. We are currently testing our approach with several scenarios

related to e-commerce context.

• Along with the separation of application logic and reliability aspects a verifica-

tion problem arises (i.e., to validate that such requirements are sound for the

target application). In order to conduct the verification of reliable coordinations

we present in [PVSGB+08] an approach for verifying atomicity requirements

in services coordination. A services coordination represents an execution order

where execution is supposed to be free of problems (e.g., deadlocks and race

condition). Such an execution order, is extended by atomicity requirements that

deal with exceptional situations. Yet, contracts can introduce new states that

should be verified in order prevent deadlocks and race conditions at execution

time, and to determine possible termination states. The verification process can-

not be done manually due to the number of combination of states. We propose

109

7. Conclusions

an approach for statically verifying contract based atomic services coordinations

using a model checker. The contracts defining the atomicity properties are ex-

pressed using the B method [Abr96]. The application logic is expressed using

CSP processes [LB03]. Therefore, the verification process is made by guiding

the resulting B machine by the CSP process. We are extending our approach to

persistency properties and automatizing the validation process.

• The COBA model can be used for representing the non functional aspects of a

services coordination through the notion of contract. However, it was validated

only with reliability properties. We are planning to analyze other properties that

the execution of a services coordination must ensure with respect to observable

requirements. In particular we are interested in aspects that where analyzed in

our research team from different point of view to the one that we follows (i.e.,

separation of concerns) to adapt them to our contract based approach:

– [Vu08] proposes a model for executing a services coordination with secu-

rity properties. It proposes a model and associated strategies for ensuring

security requirements at running time.

– [Tan09] addresses the problem of providing adaptability to services coordi-

nation. It proposes an ontology based approach in order to change dynam-

ically the execution of a given services coordination.

• Finally, we think that our approach can be used in different execution contexts,

where non functional requirements are associated to restrictions of the environ-

ment:

– In [PHEO08a] and [PHEO+08b] we present an approach for building reli-

able mobile applications based on services oriented paradigm and the use

of the COBA model. Contracts ensure, for example, transactional proper-

ties at execution time in the presence of exceptions and make applications

aware of execution context (QoS).

– In [PHBVS+08] we present an approach for building secure and adaptable

services based mashups using the COBA model. A mashup is an applica-

tion that presents content available from different sources by reusing the

contents provided by third parties (e.g Web pages, Web services). Although

a mashup is usually built on the fly by users, we argue that there is a ne-

cessity for building reliable mashups by providing QoS properties to such

110

7.2. Perspectives

kind of applications in an easy and intuitive way. Furthermore, we propose

an architecture to ensure QoS properties during the mashup execution.

111

7. Conclusions

112

Bibliography

[AAA+98] Gustavo Alonso, D. Agraval, A. El Abbadi, M. Kamath, R. Guntor,
and C. Mohan. Advanced tansactions models in workflow contexts.
Technical report, IBM, Research Division, 1998.

[Abr96] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju.
Web Services - Concepts, Architectures and Applications. Springer Ver-
lag, first edition, 2004.

[AFH+99] Gustavo Alonso, Ulrich Fiedler, Claus Hagen, Amaia Lazcano, Heiko
Schuldt, and N. Weiler. Wise: Business to business e-commerce. In Re-
search Issues on Data Engineering: Information Technology for Virtual
Enterprises, pages 132–139, 1999.

[BBC+05] Ruslan Bilorusets, Don Box, Luis Felipe Cabrera, Doug Davis, Don-
ald Ferguson, Christopher Ferris, Tom Freund, Mary Ann Hondo, John
Ibbotson, Lei Jin, Chris Kaler, David Langworthy, Amelia Lewis, Rod-
ney Limprecht, Steve Lucco, Don Mullen, Anthony Nadalin, Mark
Nottingham, David Orchard, Jamie Roots, Shivajee Samdarshi, John
Shewchuk, and Tony Storey. Web services reliable messaging protocol
(ws-reliablemessaging). Technical specification, BEA Systems, Inter-
national Business Machines Corporation, Microsoft Corporation Inc.,
TIBCO Software Inc., February 2005.

[BCR05] Laura Bocchi, Paolo Ciancarini, and Davide Rossi. Transactional as-
pects in semantic based discovery of services. In Jean-Marie Jacquet
and Gian Pietro Picco, editors, COORDINATION, volume 3454 of Lec-
ture Notes in Computer Science, pages 283–297. Springer, 2005.

[BDO05] Alistair Barros, Marlon Dumas, and Phillipa Oaks. A critical overview
of the web services choreography description language (ws-cdl). BP-
Trends, March 2005.

113

BIBLIOGRAPHY

[BGP05] Sami Bhiri, Claude Godart, and Olivier Perrin. Reliable web services
composition using a transactional approach. In IEEE International,
editor, O. e-Technology, e-Commerce and e-Service, volume 1 of eee,
pages 15–21, March 2005.

[Bhi05] Sami Bhiri. Approche transactionelle pour assurer des compositions
fiables de services web. PhD thesis, Université Henri Poincaré - Nancy
1, LORIA, Octobre 2005.

[BLSW04] Roger Barga, David Lomet, German Shegalov, and Gerhard Weikum.
Recovery guarantees for internet applications. volume 4, pages 289–328,
New York, NY, USA, 2004. ACM.

[CC98] Thierry Coupaye and Christine Collet. Semantics based implemen-
tation of flexible execution models for active database systems. In
Mokrane Bouzeghoub, editor, BDA, pages 0–, 1998.

[CCC+04] William Cox, Felipe Cabrera, George Copeland, Tom Freund, Johannes
Klein, Tony Storey, and Satish Thatte. Web services transaction
(ws-transaction). Technical specification, BEA Systems, International
Business Machines Corporation, Microsoft Corporation, Inc, November
2004.

[CCF+04] Felipe Cabrera, George Copeland, Tom Freund, Johannes Klein, David
Langworthy, David Orchard, John Shewchuk, and Tony Storey. Web
services coordination (ws-coordination). Technical specification, BEA
Systems, International Business Machines Corporation, Microsoft Cor-
poration, Inc, November 2004.

[CIC09] Securely coordinating services using contracts. In Proceedings of the 8th
Mexican International Conference on Computer Science (ENC 2009),
Mexico City, Mexico, 2009. IEEE.

[CMRW07] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva
Weerawarana. Web services description language (wsdl) version 2.0
part 1: Core language. Report, World Wide Web Consortium, W3C,
June 2007.

[Con07a] OW2 Consortium. Bonita, April 2007.
http://forge.objectweb.org/projects/bonita.

[Con07b] OW2 Consortium. Jonas, April 2007.
http://forge.objectweb.org/projects/jonas.

114

BIBLIOGRAPHY

[CR90] Panayiotis K. Chrysanthis and Krithi Ramamritham. Acta: a frame-
work for specifying and reasoning about transaction structure and be-
havior. In SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD inter-
national conference on Management of data, pages 194–203, New York,
NY, USA, 1990. ACM Press.

[CSDS03] Fabio Casati, Eric Shan, Umeshwar Dayal, and Ming-Chien Shan.
Business-oriented management of web services. Commun. ACM,
46(10):55–60, 2003.

[DA82] Claude Delobel and Michel Adiba. Bases de données et systèmes rela-
tionnels. Dunod, Informatique, 1982.

[DFDB05] Helga Duarte, Marie-Christine Fauvet, Marlon Dumas, and Boualem
Benatallah. Vers un modèle de composition de services web avec
propiétés transactionelles. Ingénierie des systèmes d’information,
10(3):9–28, 2005.

[EGLT76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM,
19(11):624–633, 1976.

[ELLR90] Ahmed K. Elmagarmid, Y. Leu, W. Litwin, and Marek Rusinkiewicz.
A multidatabase transaction model for interbase. In Proceedings of the
sixteenth international conference on Very large databases, pages 507–
518, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[Elm92] A. K. Elmagarmid. Database Transaction Models for Advanced Appli-
cations. Morgan Kaufmann Publishers, 1992.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall, October 2005.

[FC08] FMC-Consortium. Fundamental modeling concepts, August 2008.
http://www.fmc-modeling.org/.

[Fur04] Peter Furniss. Business transaction protocol. Technical specification,
OASIS, November 2004.

[GA08] Alexander Gelbukh and Michel Adiba, editors. Ninth Mexican Inter-
national Conference on Computer Science, IEEE Computer Society.
IEEE, 2008.

115

BIBLIOGRAPHY

[GM83] Héctor Garćıa-Molina. Using semantic knowledge for transaction
processing in a distributed database. ACM Trans. Database Syst.,
8(2):186–213, 1983.

[GMGK+91] Héctor Garćıa-Molina, Dieter Gawlick, Johannes Klein, Karl Kleissner,
and Kenneth Salem. Modeling long-running activities as nested sagas.
Data Engineering, 14(1):14–18, 1991.

[GMS87] Héctor Garćıa-Molina and Kenneth Salem. Sagas. In ACM, editor, 9th
Int. Conf. on Management of Data, San Francisco, California, USA,
pages 249–259, 1987.

[GMUW00] Héctor Garćıa-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database system implementation. Prentice Hall, 2000.

[Gra81] Jim Gray. The transaction concept: Virtues and limitations (invited pa-
per). In Very Large Data Bases, 7th International Conference, Septem-
ber 9-11, 1981, Cannes, France, Proceedings, pages 144–154. IEEE
Computer Society, 1981.

[HA00] Claus Hagen and Gustavo Alonso. Exception handling in workflow
management systems. IEEE Transactions on Software Engineering,
26(10):943–958, October 2000.

[HBPZM07] Vı́ctor Hernández-Baruch, Alberto Portilla, , and José-Luis Zechinelli-
Martini. Rose: A transactional services coordination engine. In 8th
Mexican International Conference on Computer Science (ENC 2007),
pages 122–130. ENC-SMCC, IEEE, sep 2007.

[HW06] Peter Hrastnik and Werner Winiwarter. Twso transactional web service
orchestrations. Journal of Digital Information Management, 4(1):–,
2006.

[LASS00] Amaia Lazcano, Gustavo Alonso, Heiko Schuldt, and Christoph
Schuler. The WISE approach to electronic commerce. International
Journal of Computer Systems Science and Engineering, 15(5), 2000.

[LB03] Michael Leuschel and Michael Butler. ProB: A model checker for B. In
Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003:
Formal Methods, LNCS 2805, pages 855–874. Springer-Verlag, 2003.

[Lom05] David Lomet. Robust web services via interaction contracts. In Tech-
nologies for E-Services, pages 1–14. LNCS, 2005.

116

BIBLIOGRAPHY

[LR97] Frank Leymann and Dieter Roller. Workflow-based applications. IBM
Systems Journal, 36(1), 1997.

[LW98] David Lomet and Gerhard Weikum. Efficient transparent application
recovery in client-server information systems. In SIGMOD ’98: Pro-
ceedings of the 1998 ACM SIGMOD international conference on Man-
agement of data, pages 460–471. ACM, 1998.

[LW03] Mark Little and Jim Webber. Introducing ws-coordination. Web Ser-
vices Journal, 3(5), April 2003.

[NFG+05] Surya Nepal, Alan Fekete, Paul Greenfield, Julian Jang, Dean Kuo,
and Tony Shi. A service-oriented workflow language for robust inter-
acting applications. In Robert Meersman, Zahir Tari, Mohand-Said
Hacid, John Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno
Jacobsen, Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra,
editors, OTM Conferences (1), volume 3760 of Lecture Notes in Com-
puter Science, pages 40–58. Springer, 2005.

[OV99] M. Tamer Ozsu and Patrick Valduriez. Principles of distributed
database systems. Prentice Hall, second edition, 1999.

[PBM02] Paulo F. Pires, Mario R. F. Benevides, and Marta Mattoso. Building re-
liable web services compositions. In Akmal B. Chaudhri, Mario Jeckle,
Erhard Rahm, and Rainer Unland, editors, Web, Web-Services, and
Database Systems, volume 2593 of Lecture Notes in Computer Science,
pages 59–72. Springer, 2002.

[PCVS+06] Alberto Portilla, Christine Collet, Genoveva Vargas-Solar, José-Luis
Zechinelli-Martini, and Luciano Garćıa-Bañuelos. Towards a transac-
tional services coordination model. In Bipin C. Desai and S.K. Gupta,
editors, IDEAS, pages 319–320. IEEE Computer Society, 2006.

[PCZMHB08] Alberto Portilla, Christine Collet, José-Luis Zechinelli-Martini, and
Vı́ctor Hernández-Baruch. Providing persistency guarantees to services
coordination. In Gelbukh and Adiba [GA08], pages 169–178.

[PHBVS+08] Alberto Portilla, Vı́ctor Hernández-Baruch, Genoveva Vargas-Solar,
José-Luis Zechinelli-Martini, and Christine Collet. Building reliable ser-
vices based mashups. In José-Manuel López-Cobo, Antonio Vallecillo,
and Antonio Ruiz-Cortés, editors, JSWEB 2008, volume 1 of JSWEB,
pages 151–163. Jornadas Cient́ıfico-Técnicas en Servicios Web y SOA,
2008.

117

BIBLIOGRAPHY

[PHEO08a] Alberto Portilla, Tan Hanh, and Javier-Alfonso Espinosa-Oviedo.
Building reliable mobile services based applications. In ICDE Work-
shops, pages 121–128. IEEE Computer Society, 2008.

[PHEO+08b] Alberto Portilla, Tan Hanh, Javier-Alfonso Espinosa-Oviedo, Christine
Collet, and Genoveva Vargas-Solar. Construire des applications fiables
a base de services mobiles. In Emmanuel Dubois and Jean-Marc Pier-
son, editors, UbiMob, volume 277 of ACM International Conference
Proceeding Series, pages 57–64. ACM, may 2008.

[Por06a] Alberto Portilla. Providing transactional behavior to services coordi-
nation. In Junho Shim and Fabio Casati, editors, VLDB 2006 PhD.
Workshop, volume 170 of CEURWorkshop proceedings, pages –. CEUR,
2006.

[Por06b] Alberto Portilla. Services coordination with transactional properties.
Master’s thesis, UDLA-INPG, México, Grenoble, June 2006.

[Por08a] Alberto Portilla. Providing reliability to services coordination. In
Gabriel Lopéz-Moreno and J. Antonio Garćıa-Maćıas, editors, Avances
en las ciencias de la computación, ENC’08, ENC, pages 136–137.
SMCC, 2008.

[Por08b] Alberto Portilla. Reliable services coordination for mashing-up systems.
In Memorias del Primer Encuentro de Estudiantes de Doctorado en
Ciencias de la Computacion en México, pages 136–137. CINVESTAV-
IPN, september 2008.

[pro08] OpenSource project. Xflow, June 2008. http://xflow.sourceforge.net/.

[PVSC+07a] Alberto Portilla, Genoveva Vargas-Solar, Christine Collet, José-Luis
Zechinelli-Martini, and Luciano Garćıa-Bañuelos. A flexible model for
providing transactional behavior to service cordination in an orthog-
onal way. In Joaquim Filipe and José A. Moinhos Cordeiro, editors,
WEBIST 2007, pages 104–111. INSTICC Press, 2007.

[PVSC+07b] Alberto Portilla, Genoveva Vargas-Solar, Christine Collet, José-Luis
Zechinelli-Martini, Luciano Garćıa-Bañuelos, and Vı́ctor Hernández-
Baruch. Rose: a transactional services coordination engine. In Pro-
ceedings of the 23emes Journees Bases de Données Avancees (BDA
2007), Marseille,France. BDA, October 2007.

118

BIBLIOGRAPHY

[PVSC+08a] Alberto Portilla, Genoveva Vargas-Solar, Christine Collet, José-Luis
Zechinelli-Martini, and Luciano Garćıa-Bañuelos. Contract based be-
havior model for services coordination. In Joaquim Filipe and José
A. Moinhos Cordeiro, editors, WEBIST (Selected Papers), volume 8
of Lecture Notes in Business Information Processing, pages 109–123.
Springer, 2008.

[PVSC+08b] Alberto Portilla, Genoveva Vargas-Solar, Christine Collet, José-Luis
Zechinelli-Martini, and Luciano Garćıa-Bañuelos. Contract based beha-
vior model for services coordination. In Joaquim Filipe and J. Cordeiro,
editors,Web Information Systems and Technologies Third International
Conference, Revised Selected Papers WEBIST 2007, volume 8 of Lec-
ture Notes in Business Information Processing, pages –. Springer, 2008.

[PVSGB+08] Alberto Portilla, Genoveva Vargas-Solar, Luciano Garćıa-Bañuelos,
Christine Collet, and José-Luis Zechinelli-Martini. Verifying atomicty
requirements of services coordination using b. In Gelbukh and Adiba
[GA08], pages 238–248.

[PVSZM+06] Alberto Portilla, Genoveva Vargas-Solar, José-Luis Zechinelli-Martini,
Christine Collet, and Luciano Garćıa-Bañuelos. A survey for analyz-
ing transactional behavior in service based applications. In 7th Mexi-
can International Conference on Computer Science (ENC 2006), pages
116–126. ENC-SMCC, IEEE, sep 2006.

[SABS02] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and Iso-
lation for Transactional Processes. ACM Transactions on Database
Systems (TODS), 27(1):63–116, March 2002.

[SH05] Munindar P. Singh and Michael N. Huhns. Service-Oriented Comput-
ing. John Wiley and Sons, first edition, 2005.

[Tan09] Hanh Tan. Coordination adaptative de services à base de contrats. PhD
thesis, Grenoble Institut of Technology, LIG, Juin 2009.

[TMW+04] Stefan Tai, Thomas Mikalsen, Eric Wohlstadter, Nirmit Desai, and
Isabelle Rouvellou. Transaction policies for service-oriented computing.
Data Knowl. Eng., 51(1):59–79, 2004.

[vdAvH04] Wil M. P. van der Aalst and Kees van Hee. Workflow Management,
Models, Methods, and Systems. The MIT Press, first edition, 2004.

119

BIBLIOGRAPHY

[Vu08] Thi-Huong-Giang Vu. Composition sécurisé de services. PhD thesis,
Grenoble INP, nov 2008.

[VV04] K. Vidyasankar and Gottfried Vossen. A multi-level model for web
service composition. In ICWS, pages 462–. IEEE Computer Society,
2004.

[WR92] Helmut Wachter and Andreas Reuter. The contract model. In
Ahmed K. Elmagarmid, editor, Database Transaction Models for Ad-
vanced Applications, chapter 7, pages 219–263. Morgan Kaufmann Pub-
lishers, 1992.

[WV98] Gerhard Weikum and Gottfried Vossen. Transactional information sys-
tems, theory, algorithms, and the practice of concurrency control and
recovery. Morgan Kaufmann Publishers, 1998.

[ZHMS06] Xianan Zhang, Matti A. Hiltunen, Keith Marzullo, and Richard D.
Schlichting. Customizable service state durability for service oriented
architectures. edcc, 0:119–128, 2006.

[ZNBB94] Aidong Zhang, Marian Nodine, Bharat Bhargava, and Omran Bukhres.
Ensuring relaxed atomicity for flexible transactions in multidatabase
systems. In SIGMOD International Conference on Management of
Data, pages 67–78, 1994.

120

Appendix A

Reliability contracts

This Section presents the reliability contract types definitions using the COBA model.

A.1 Exception contract

The exception contract type specializes the class SimpleContract (see Definition 9) as

follows:

SubClass (Exception contract)

class exceptionContract : SimpleContract {
property exceptionProperty ,

}

A.1.1 Exception property

The exception property specializes the class Property (see Definition 4):

SubClass (Exception property)

class exceptionProperty : Property {
values { {“compensable”, Boolean},

{“side-effects”, Boolean},
{“retriable”, Boolean},
{“max-retry-no”, Integer}}

}

121

A. Reliability contracts

A.1.2 Recovery Rules

A recovery rule of an exception contract type defines at which moment an action must

be executed. A recovery rule specializes the class Rule (see Definition 5):

• recRule1 specifies that, if the execution of a given execution unit fails, then it

is necessary to notify the failure:

class recRule1: Rule {
on failEv,

do notifyFailure

}

• recRule2 specifies that, if it is requested the compensation of a given execution

unit, then an exception is launched:

class recRule2: Rule {
on compReqEv,

do notifyExc

}

• recRule3 specifies that, if the execution of a given execution unit fails, then the

execution can proceed anyway:

class recRule3: Rule {
on failEv,

do continue

}

• recRule4 specifies that, if it is required the compensation of a given execution

unit, then the execution unit does not requires compensation:

class recRule4: Rule {
on compReqEv,

do continue

}

• recRule5 specifies that, if the execution of a given execution unit fails, then the

execution unit is retried:

122

A.1. Exception contract

class recRule5: Rule {
on failEv,

do retry

}

• recRule6 specifies that, if it is requested the compensation of a given execution

unit, then its compensation is executed:

class recRule6: Rule {
on compReqEv,

do compensate

}

• recRule7 specifies that, if the execution of a given execution unit fails, then the

execution unit is retried if possible:

class recRule7: Rule {
on failEv,

do retry

}

The definitions of the class events failEv and compReqEv, and the class reactions

notifyFailure, notifyExc, continue, retry and compensate are presented in the next

sections.

Events

Exception contract type reactions are triggered by two events:

• The execution failure of an execution unit. It specializes the class Event (see

Definition 6):

class failEv: Event {
delta {{euName String}}

}

• The necessity for compensating an execution unit. It specializes the class Event

(see Definition 6):

123

A. Reliability contracts

class compReqEv: Event {
delta {{euName String}}

}

Reactions

Reactions of exception contract type specializes the class Reaction (see Definition 7):

• continue reaction indicates that execution can proceed:

class continue: Reaction {
input {{euName String}},
output {{rResult Boolean}}

}

• retry reaction indicates that the execution of a given execution unit must be

retried:

class retry: Reaction{
input {{euName String}},
output {{rResult Boolean}}

}

• compensate indicates that the compensation action of a given execution unit

must be done:

class compensate: Reaction {
input {{euName String}},
output {{rResult Boolean}}

}

• notifyExc indicates that an exception must be launched:

class notifyExc: Reaction {
input {{euName String}},
output {{rResult Boolean}}

}

124

A.1. Exception contract

• notifyFailure indicates that the contract cannot be granted (i.e., it has failed):

class notifyFailure: Reaction {
input {{euName String}},
output {{rResult Boolean}}

}

A.1.3 Exception contracts

There are four exception contracts that specializes the class exceptionContrat .

• A critical contract can be associated to an execution unit that cannot be retried

in case of failure. When committed the execution unit cannot be undone.

SubClass (Critical contract)

class crContract: exceptionContract{
property {values {{name “compensable”, value False},

{name “side-effects”, value False},
{name “retriable”, value False},
{name “max-retry-no”, value 0}}},

rules {r1 recRule1, r2 recRule2}
}

• A non vital contract can be associated to an execution unit that does not need

to be compensated if it has to be undone after having committed.

SubClass (Non vital contract)

class nvContract : exceptionContract{
property {values {{name “compensable”, value Null},

{name “side-effects”, value False},
{name “retriable”, value Null},
{name “max-retry-no”, value 0}}},

rules {r1 recRule3, r2 recRule4}
}

125

A. Reliability contracts

• An undoable contract can be associated to an execution unit that can be un-

done by a compensating execution unit without causing side-effects once it has

committed. An undoable execution unit eventually commits after retrying it

several times.

SubClass (Undoable contract)

class unContract : exceptionContract{
property {values {{name “compensable”, value True},

{name “side-effects”, value False},
{name “retriable”, value True},
{name “max-retry-no”, value Integer}}},

rules {r1 recRule5, r2 recRule6}
}

• A compensatable contract can be associated to an execution unit that can be

undone by a compensating execution unit with associated side-effects once it

has committed. A compensatable execution unit can be retried a restricted

number of times. For retrying a compensatable execution unit other aspects

must be considered such as application restrictions, monetary costs, or temporal

constraints.

SubClass (Compensatable contract)

class cpContract : exceptionContract{
property {values {{name “compensable”, value True},

{name “side-effects”, value True},
{name “retriable”, value True},
{name “max-retry-no”, value Integer}}},

rules {r1 recRule6, r2 recRule7}
}

A.2 Atomicity contract

The state management contract type specializes the class SimpleContract (see Definition

9) as follows:

126

A.2. Atomicity contract

SubClass (State management contract)

class stateMContract : SimpleContract {
property stateMProperty

}

A.2.1 State management property

The state management property describes the possible values that an execution unit

can have for managing the persistency of its state. Is specializes the class Property (see

Definition 4) as follows:

SubClass (Property)

class stateMProperty : Property {
values { { “state-Verifiability”, Boolean},

{ “idempotency”, Boolean},
{ “outcome-Assumption”, {“committed”,

“failed”,

“presumed-nothing”}}}
}

A.2.2 Atomicity rules

An atomicity rule defines at which moment it is necessary to take actions for ensuring

a given atomic behavior. An atomicity rule specializes the class Rule (see Definition

5):

• acRule1 specifies that, if a contract within the scope of a contract fails, then the

contract fails and backward recovery is applied:

class acRule1: Rule {
on contractFailure,

do backwardRecovery ∧ notifyContractFailure

}

• acRule2 specifies that, if a contract within the scope of a contract fails and there

is another alternative execution path, then forward recovery is applied:

127

A. Reliability contracts

class acRule2: Rule {
on contractFailure where existPath(this.atomicityContract),

do forwardRecovery

}

• acRule3 specifies that, if a contract within the scope of a contract fails and there

is not another alternative execution path, then the contract fails and backward

recovery is applied:

class acRule3: Rule {
on contractFailure where ¬existPath(this.atomicityContract),

do backwardRecovery

}

• acRule4 specifies that, if a contract fails, then the contract fails and an exception

is launched:

class acRule4: Rule {
on contractFailure,

do notifyExc

}

The function existPath returns true if the contract is an atomicity contract and there

are at least an alternative contract not tried:

(Boolean) existPath(input : atomicityContract)

where:

dom(existPath)={output :Boolean | ∃ c ∈ input.scope, ¬failedContract(c)}

Events

The reactions of the atomicity contracts are triggered by the fact that a contract is

considered as failed:

class contractFailure: Event {
delta {{cnName String}}

}

128

A.2. Atomicity contract

Reactions

Reactions of atomicity contracts specializes the class Reaction .

• notifyContractFailure launches an event notifying the failure of a contract:

class notifyContractFailure: Reaction {
input {{cnName String}},
output {{rResult Boolean}}

}

• notifyExc indicates that an exception must be launched because an exceptional

situation happened during the execution of a contract:

class notifyExc: Reaction {
input {{cnName String}},
output {{rResult Boolean}}

}

• backwardRecovery indicates that committed contracts within an scope are un-

done, until the whole contract is compensated:

class backwardRecovery: Reaction {
input {{cnName String}},
output {{rResult Boolean}}

}

• forwardRecovery indicates that a forward recovery strategy must be followed

for recovering the execution. It combines backward recovery and forward execu-

tion. First, backward recovery is applied until compensate the failed contract.

Next, forward execution with a different contract is applied. It is defined as

follows:

class forwardRecovery: Reaction {
input {{cnName String}},
output {{rResult Boolean}}

}

129

A. Reliability contracts

A.2.3 Atomicity contracts

An atomicity contract class is specialized by three contracts subtypes: strict atomicity

contract, alternative atomicity contract and exception atomicity contract.

• A strict atomicity contract specifies that the contracts within the scope of a

contract conform the all or nothing execution requirement. All contracts or no

contract at all within the scope of the contract are executed:

SubClass (Strict contract)

class stAtC: atomicityContract{
property {values {name “atomicityType”, value “Strict”}},
rules {r1 acRule1}

}

• An alternative atomicity contract specifies that the contract commits if one

of the contracts within its scope commits. Therefore, the contracts within its

scope represent alternative execution paths. An alternative atomicity contract

is defined by an instance of atomicityContract as follows:

SubClass (Alternative contract)

class alAtC: atomicityContract {
property {values {name “atomicityType”, value “Alternative”}},
rules {r1 acRule2, r2 acRule3}

}

• An exception atomicity contract specifies that not all the contracts within the

scope of the contract have to execute but when one of them does not execute an

exception is launched. An exception atomicity contract is defined by an instance

of atomicityContract as follows:

SubClass (Exception contract)

class exAtC: atomicityContract {
property {values {name “atomicityType”, value “Exception”}},
rules {r1 acRule4}

}

130

A.3. State management contract

A.3 State management contract

The state management contract type specializes the class SimpleContract (see Definition

9) as follows:

SubClass (State management contract)

class stateMContract : SimpleContract {
property stateMProperty

}

A.3.1 State management property

The state management property specializes the class Property (see Definition 4) as

follows:

SubClass (Property)

class stateMProperty : Property {
values { {name “state-Verifiability”, value Boolean},

{name “idempotency”, value Boolean},
{name “outcome-Assumption”, value {“committed”,

“failed”,

“presumed-nothing”}}}
}

A.3.2 State management rules

A rule of a state management contract determines how to make persistent the execu-

tion state of a given execution unit. A rule specializes the class Rule:

• smcRule1 specifies that, it is necessary to store in the log the state of an execu-

tion unit at the beginning of its execution:

class smcRule1: Rule {
on euStarted,

do writeEuState

}

131

A. Reliability contracts

• smcRule2 specifies that, it is necessary to store in the log the state of the

execution unit at the end of its execution:

class smcRule2: Rule {
on euTerminated,

do writeEuState

}

• smcRule3 specifies that during recovery, if the beginning and the end of the

execution of the execution unit are stored in the log, then the execution unit

was committed:

class smcRule3: Rule {
on recoverEuState where begining(this.eu) ∈ log∧

end(this.eu) ∈ log,

do commitEu

}

• smcRule4 specifies that during recovery, if the beginning of the execution of the

execution unit is stored in the log, then an exception must be launched because

it was executed and its result is unknown:

class smcRule4: Rule {
on recoverEuState where begining(this.eu) ∈ log,

do notifyExc

}

• smcRule5 specifies that during recovery, if the beginning of the execution of the

execution unit is stored in the log, then its state is the outcome assumption:

class smcRule5: Rule {
on recoverEuState where begining(this.eu) ∈ log,

do assumeEuState

}

• smcRule6 specifies that during recovery, if the end of the execution of the exe-

cution unit is stored in the log, then it was committed:

132

A.3. State management contract

class smcRule6: Rule {
on recoverEuState where end(this.eu) ∈ log,

do commitEu

}

• smcRule7 specifies that during recovery, if the end of the execution of the exe-

cution unit is not stored in the log, then it can be re-executed:

class smcRule7: Rule {
on recoverEuState where begining(this.eu) ∈ log∧

end(this.eu) ̸∈ log,

do retry

}

• smcRule8 specifies that during recovery, if the beginning of the execution of the

execution unit is stored in the log, then the state of the execution unit must be

queried:

class smcRule8: Rule {
on recoverEuState where begining(this.eu) ∈ log,

do queryEuState

}

Events

State management contract reactions are triggered by four events:

• The execution failure of an execution unit (see event failEv in Section A.1.2).

• The necessity of recovering the execution state of an execution unit from the log:

class recoverEuState: Event {
delta {{euName String}}

}

• The beginning of the execution of an execution unit (i.e., the execution unit has

been started):

133

A. Reliability contracts

class euStarted: Event {
delta {{euName String}}

}

• The end of the execution of an execution unit (i.e., the execution unit has been

terminated):

class euTerminated: Event {
delta {{euName String}}

}

Reactions

Reactions of state management contracts specializes the class Reaction (see Definition

7):

• retry reaction indicates that the execution of the execution unit must be retried

(see Section A.1.2).

• notifyExc indicates that an exception must be launched (see Section A.1.2).

• writeEuState reaction indicates that the execution state of the execution unit

must be stored in the log:

class writeEuState: Reaction {
input {{euName String}},
output {{rResult Boolean}}

}

• restoreEuState reaction indicates that the execution state of the execution unit

must be restored from the log:

class restoreEuState: Reaction {
input {{euName String}},
output {{rResult Boolean}}

}

• queryEuState reaction indicates that the execution state of the execution unit

must be queried:

134

A.3. State management contract

class queryEuState: Reaction {
input {{euName String}},
output {{rResult State}}

}

• assumeEuState indicates that the execution state of the execution unit must

be assumed by using its outcome assumption:

class assumeEuState: Reaction{
input {{euName String}},
output {{rResult list(State)}}

}

• committEu annotates in the execution state of the execution unit that it was

committed:

class commitEu: Reaction {
input {{euName String}},
output {{rResult Boolean}}

}

A.3.3 State management contract subtypes

There are four state management contract subtypes that specializes the class stateMContrat :

• A non persistent state management contract can be associated to an execution

unit that does not have any persistency property. Therefore, it is necessary to

store in the log the beginning and the end of its execution. During recovery a

committed execution unit in the log is signaled by both the beginning and the

end of its execution.

SubClass (Non persistent contract)

class nonPContract: stateMContract {
property {values {{name “state-Verifiability”, value False},

{name “idempotency”, value False},
{name “outcome-Assumption”,

135

A. Reliability contracts

value “presumed-nothing”}}},
rules {r1 smcRule1, r2 smcRule2,

r3 smcRule3, r4 smcRule4}
}

• A presumable contract can be associated to an execution unit that has an out-

come assumption. Therefore, it is only necessary to store in the log the beginning

of its execution. During recovery an executed execution unit is signaled in the

log by the beginning of its execution. Next, its execution state can be known by

using its outcome assumption.

SubClass (Presumable contract)

class presumContract: stateMContract {
property {values {{name “state-Verifiability”, value False},

{name “idempotency”, value False},
{name “outcome-Assumption”,

value {“committed”, “failed”}}}},
rules {r1 smcRule1, r2 smcRule5}

}

• An idempotent state management contract can be associated to an execution

unit that is idempotent. Therefore it is only necessary to store in the log the

end of its execution. During recovery a committed execution unit in the log is

signaled by the end of its execution other wise it must be re-executed.

SubClass (Idempotent contract)

class idempContract: stateMContract {
property {values {{name “state-Verifiability”, value False},

{name “idempotency”, value True},
{name “outcome-Assumption”,

value {“committed”, “failed”,

“presumed-nothing”}}}
rules {r1 smcRule2, r2 smcRule6,

r3 smcRule7}
}

136

A.4. Persistency guarantees contract

• A verifiable state management contract can be associated to an execution unit

that can be queried about its execution state. Therefore it is only necessary

to store in the log the beginning of its execution. During recovery an executed

execution unit in the log is signaled by the beginning of its execution. Next, its

execution state can be queried.

SubClass (Verifiable contract)

class verifContract: stateMContract {
property {values {{name “state-Verifiability”, value True},

{name “idempotency”, value Boolean},
{name “outcome-Assumption”,

value {“committed”, “failed”,

“presumed-nothing”}}}
rules {r1 smcRule1, r2 smcRule8}

}

A.4 Persistency guarantees contract

The persistency guarantees contract type specializes the class CompositeContract (see

Definition 10) as follows:

SubClass (Persistency guarantees contract)

class persistGContract : CompositeContract {
scope set(stateMContract ∪ persistGContract),

property persistencyProperty ,

}

A.4.1 Persistency guarantees property

The persistency property specializes the class Property (see Definition 4) as follows:

SubClass (Persistency property)

class persistencyProperty : Property{
values {{name“persistencyType”,

value {“bestEffort”, “guaranteed”}}}
}

137

A. Reliability contracts

A.4.2 Persistency guarantees rules

A persistency guarantees rule specifies where to store the execution state and how to

do the recovery process using it. A persistency guarantees rule specializes the class

Rule (see Definition 5):

• pgcRule1 specifies that, if there is a change in the execution state, then set writes

to the cached log:

class pgcRule1: Rule {
on exStateChg,

do setWrToCachedLog

}

• pgcRule2 specifies that, a coordination failure begins a crash recovery process:

class pgcRule2: Rule {
on syFailure,

do beginCoRecovery

}

• pgcRule3 specifies that, if there is a change in the execution state, then set writes

to the stable log:

class pgcRule2: Rule {
on exStateChg,

do setWrToStableLog

}

Events

The reactions of a persistency guarantee contract are triggered by two events:

• exStateChg represents the fact that there is a change in the execution state of

an execution unit. It specializes the class Event (see Definition 6):

class exStateChg: Event {
delta {{euName String}}

}

138

A.4. Persistency guarantees contract

• syFailure represents the fact that the coordination execution has failed by a

system failure and a recovery process must be started. It specializes the class

Event (see Definition 6):

class syFailure: Event {
delta {{coName String}}

}

Reactions

Reactions of persistency guarantees contracts specializes the class Reaction :

• setWrToCachedLog represents the fact that all results of write operations must

be stored in the cached log until a forced write happens:

class setWrToCachedLog: Reaction {
input {},
output {{rResult Boolean}}

}

• setWrToStableLog represents the fact that all results of write operations must

be stored in the stable log:

class setWrToStableLog: Reaction {
input {},
output {{rResult Boolean}}

}

• beginCoRecovery represents the fact that the coordination execution has failed

and a recovery process was started. Therefore, an event of type recoverEuState

is generated for all execution units stored in the log:

class beginCoRecovery: Reaction {
input {{coName String}},
output {{rResult Boolean}}

}

139

A. Reliability contracts

A.4.3 Persistency guarantees contract subtypes

There are two persistency guarantees contract subtypes that specializes the class

persistGContract :

• A best effort contract specifies that, the changes in the execution state are stored

in a cached log, and in case of a system failure a recovery process of the execution

history must be started::

SubClass (Best effort contract)

class bePGC: persistGContract {
property {values {name “type”, value “bestEffort”}},
rules {r1 pgcRule1, r2 pgcRule2 }

}

• A guaranteed persistency contract specifies that, the changes in the execution

state are stored in a stable log, and in case of a system failure a recovery process

of the execution history must be started:

SubClass (Guaranteed contract)

class gPGC: persistGContract {
property {values {name “type”, value “guaranteed”}},
rules {r1 pgcRule2, r2 pgcRule3 }

}

140

