
HAL Id: tel-00665462
https://theses.hal.science/tel-00665462v1

Submitted on 2 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Langages formels : Quelques aspects quantitatifs
Aldric Degorre

To cite this version:
Aldric Degorre. Langages formels : Quelques aspects quantitatifs. Théorie et langage formel [cs.FL].
Université Joseph-Fourier - Grenoble I, 2009. Français. �NNT : �. �tel-00665462�

https://theses.hal.science/tel-00665462v1
https://hal.archives-ouvertes.fr

Thèse

présentée

devant l’Université Joseph Fourier

pour obtenir

le grade de Docteur de l’Université Joseph Fourier

Spécialité Informatique

par

Aldric Degorre

Équipe d’accueil : Hybrid and Timed Systems
École Doctorale : MSTII
Laboratoire : Vérimag

Titre de la thèse :

Langages formels : Quelques aspects
quantitatifs

On Some Quantitative Aspects of Formal Languages

Thèse dirigée par Oded Maler.
Soutenue le 21 octobre 2009 devant la commission d’examen.

Composition du jury :

Président
Yassine Lakhnech

Rapporteurs
Dominique Perrin

Jean-François Raskin

Examinateurs
Eugene Asarin

Paul Gastin

Claude Jard

Oded Maler

Remerciements

Je remercie Oded Maler pour avoir encadré mes travaux au sein du labora-
toire Vérimage et m’avoir proposé des sujets très variés et passionnants tout en
m’accordant une grande liberté dans leur étude.

Merci à Eugene Asarin avec qui j’ai pu collaborer de façon enrichissante et dont
la connaissance des arcanes des opérateurs linéaires nous a permis d’arriver aux
résultats présentés ici.

Merci à Rajeev Alur pour m’avoir accueilli à l’université de Pennsylvanie pendant
un été et orienté de manière avisée mes recherches, et bien sûr merci à Gera Weiss
pour ces vives et fructueuses discussions que nous avons eues dans le cadre de ces
mêmes recherches.

Je remercie mes collègues avec qui j’ai eu la chance de collaborer, en particulier
Viktor Schuppan pour son aide précieuse lors de la rédaction du premier papier
de cette thèse.

Merci aux autres collègues, avec qui je n’ai pas collaboré, pour le coup de main
occasionnel et le bon temps passé ensemble.

Je remercie tous les membres de mon jury de thèse pour le grand honneur qu’ils
m’ont fait en venant assister à ma soutenance.

Plus particulièrement, je remercie les rapporteurs Jean-François Raskin et Do-
minique Perrin pour leur rapidité dans la relecture et l’intérêt qu’ils ont exprimé
pour le manuscrit.

Merci enfin à ma famille et à Olivia pour leur support, leur aide et aussi leur
patience !

3

4

Contents

1 Introduction 9

2 Scheduling 13
2.1 Introduction . 13
2.2 The Recurrent Scheduling Problem . 15

2.2.1 General Definitions . 15
2.2.2 Execution Platform, Jobs and Tasks 16
2.2.3 The Demand . 17
2.2.4 Schedules . 17
2.2.5 The Running Example . 19

2.3 Negative Result . 20
2.4 Scheduling Policies . 21
2.5 Positive Result . 22

2.5.1 Oldest-First Policy does not Work 22
2.5.2 A Bounded Residue Policy . 23
2.5.3 Bounded Latency for Subcritical Streams 28

2.6 Discussion . 29

3 Defining Languages by Mean-Payoff Conditions 31
3.1 Introduction . 31
3.2 Definitions . 33

3.2.1 Multi-Payoff Automata . 33
3.2.2 Acceptance . 34

3.3 Expressiveness . 36
3.3.1 Comparison with ω-regular languages 36
3.3.2 Topology of Mean-Payoff Accumulation Points 37
3.3.3 Comparison of Threshold Mean-Payoff Languages 39
3.3.4 Mean-Payoff Languages in the Borel Hierarchy 41
3.3.5 Dimensionality . 42

3.4 An Analyzable Class of Mean-Payoff Languages 44
3.4.1 Multi-Threshold Mean-Payoff Languages 44
3.4.2 Closure under Boolean operations 45
3.4.3 Decidability . 45

5

6 CONTENTS

3.5 Summary and Future Directions . 46

4 Volume and entropy of regular TL 49
4.1 Introduction . 49
4.2 Problem Statement . 51

4.2.1 Geometry, Volume and Entropy of Timed Languages 51
4.2.2 Three Examples . 52
4.2.3 Subclasses of Timed Automata 54
4.2.4 Preprocessing Timed Automata 56
4.2.5 Computing Volumes . 58

4.3 Operator Approach . 59
4.3.1 The Functional Space of a TA 60
4.3.2 Volumes Revisited . 60
4.3.3 Exploring the Operator Ψ . 60
4.3.4 Main Theorem . 64

4.4 Computing the Entropy . 65
4.4.1 Case of “11

2
Clock” Automata 65

4.4.2 General Case . 70
4.5 Discretization Approach . 71

4.5.1 Discretizing the Volumes . 71
4.5.2 ε-words and ε-balls . 71
4.5.3 Discretizing Timed Languages and Automata 72
4.5.4 Counting Discrete Words . 73
4.5.5 From Discretizations to Volumes 74

4.6 Kolmogorov Complexity of Timed Words 76
4.7 Conclusions and Further Work . 78

5 Conclusion 79

A Résumé en Français 87
A.1 Introduction . 87
A.2 Ordonnancement de flux de jobs structurés 87

A.2.1 Le problème d’ordonnancement récurrent 88
A.2.2 Résultat négatif . 89
A.2.3 Résultat positif . 90
A.2.4 Discussion . 91

A.3 Omega-langages définis par une condition de coût moyen 92
A.3.1 Automates à coûts multiples, langages de coût multiple moyen . 92
A.3.2 Expressivité. 93
A.3.3 Une classe analysable de langages à coût moyen 94
A.3.4 Conclusion . 95

A.4 Volume et entropie des langages temporisés 95
A.4.1 Exposé du problème . 96

CONTENTS 7

A.4.2 Approche par opérateurs . 97
A.4.3 Approche par discrétisation . 98
A.4.4 Complexité de Kolmogorov des mots temporisés 99
A.4.5 Discussion . 99

A.5 Conclusion . 100

8 CONTENTS

Chapter 1

Introduction

Version française

Les langages formels sont des ensembles de séquences sur un ensemble discret de sym-
boles appelé alphabet. Ils peuvent être spécifiés par divers moyens comme des formules
dans une certaine logique qui exprime des relations d’ordre, par des expressions ra-
tionnelles ou par des automates discrets de diverses sortes qui reconnaissent ces langages
en acceptant les séquences qui induisent des exécutions menant à des états accepteurs
de l’automate (ou des cycles accepteurs, dans le cas de séquences infinies). Il est justifié
de dire que la théorie des langages formels est très qualitative pour les raisons suivantes :

• Ses objets sont des séquences, c’est-à-dire des applications d’un domaine temporel
discret/qualitatif vers un alphabet typiquement discret et non métrique;

• Les critères d’acceptation d’une séquence dépendent du fait que l’exécution d’un
automate visite ou non les états ou cycles accepteurs. De tels critères peuvent
seulement faire la différence entre 0, 1 ou ∞ visites;

• La théorie n’accorde que peu d’attention à la comparaison quantitative de deux
langages en termes de taille, mais plutôt en termes de mesures qualitatives comme
l’inclusion.

Cette thèse contribue à l’étude de certains de ces aspects négligés, en utilisant trois
classes de problèmes :

• Comportements temporisés et ordonnancement dynamique : Une des extensions
quantitatives des langages formels les plus étudiées consiste à ajouter un temps
« réel » métrique, et considérer les comportements temporisés comme des signaux
booléens ou des séquences temps-événement[6]. L’étude des langages temporisés
est riche autant en théorie (automates temporisés, logique temps réel, expressions
rationnelles temporisées) qu’en applications, en première place la modélisation de
problèmes d’ordonnancement dynamique. Le chapitre 2 est consacré à certains
résultats fondamentaux concernant un nouveau modèle d’ordonnancement. Dans

9

10 CHAPTER 1. INTRODUCTION

ce modèle, un flux infini de requêtes de jobs structurés (chaque job étant un
ensemble partiellement ordonné de tâches) doit être ordonnancé sur un nombre
fini de machines de types différents. L’ensemble des flux de requêtes admissibles
est modélisé par un ω-langage temporisé sur l’alphabet des types de job. Sur ce
modèle, nous prouvons des résultats fondamentaux tels que la non existence d’un
ordonnancement à latence bornée quand les différents types de jobs ne sont pas
compatibles, ne peuvent pas facilement être « pipelinés », et nous présentons une
stratégie d’ordonnancement qui peut garantir une accumulation bornée de retard,
malgré l’incertitude concernant l’identité des futurs jobs.

• Critères d’acceptation quantitatifs : Dans de nombreux contextes, nous voudrions
évaluer le comportement d’un système non seulement par des critères qualitatifs
comme la violation de certaines propriétés, mais aussi par des critères quantitatifs
qui rendent compte de coûts associés aux transitions ou états. Dans le chapitre 3,
nous étudions certains aspects théoriques des conditions d’acceptation basées sur
des coûts moyens multi-dimensionnels. Nous étudions le pouvoir d’expressivité et
la complexité topologique de tels critères et définissons une classe de langages à
coût moyen qui est close par opérations booléennes et dont le problème du vide
est décidable.

• Volume et entropie des langages temporisés : Dans cette partie majeure de la
thèse, nous combinons deux aspects quantitatifs des langages formels. Nous tra-
vaillons dans le contexte des langages temporisés et définissons des mesures de
volume et d’entropie pour ces langages, mesures qui caractérisent la taille du
langage et fournissent une comparaison quantitative entre langages temporisés,
pour, par exemple, évaluer le degré de sur-approximation d’un système par son
modèle abstrait. L’extension des concepts de taille et d’entropie aux langages
temporisés est particulièrement difficile à cause de la nature non dénombrable des
comportements temporisés et des automates temporisés. Après avoir donné les
définitions de ces mesures, nous développons plusieurs méthodes pour les calculer
et les approcher. Ce travail ouvre de nouvelles directions de recherche concernant
la théorie de l’information des signaux booléens et montre des liens intéressants
avec la complexité algorithmique, l’analyse fonctionnelle et la dynamique symbol-
ique.

11

English version

Formal languages are sets of sequences over a discrete set of symbols called alphabet.
They can be specified by various means such formulae in some logic that express order
relations, by regular expression or by discrete automata of various sorts that recognize
these languages by accepting sequences that induce runs leading to accepting states (or
accepting cycles, in case of infinite sequences) in the automaton. It is fair to say that
the theory of formal languages is very qualitative in the following respects:

• Its objects are sequences, that is, mapping from a discrete/qualitative time domain
to an alphabet which is typically discrete and non-metric;

• Acceptance criteria for sequences depend on whether or not the runs of an automa-
ton visit accepting states or cycles. Such criteria can distinguish only between 0,
1 and ∞ visits;

• The theory does not pay much attention to quantitative comparison between
languages in terms of size but rather on qualitative measures such as inclusion.

This thesis is a contribution to the study of some of these neglected issues using three
classes of problems:

• Timed Behaviors and Dynamic Scheduling : One the most extensively studied
quantitative extensions to formal languages consists in adding metric “real” time,
and considering timed behaviors such as Boolean signals or time-event sequences
[6]. The study of timed languages is rich both in theory (timed automata, real-
time temporal logic, timed regular expressions) and in applications, most notably
the modeling of dynamic scheduling problems. Chapter 2 is devoted to some
fundamental results concerning a new scheduling model. In this model, an infinite
stream of structured jobs (each job being a partially-ordered set of tasks) is to
be scheduled on an execution platform consisting of a finite number of machines
of various types. The set of admissible request streams is modeled as a timed
ω-language over the finite alphabet of job types. On this model we prove some
fundamental results such as the non-existence of a schedule of bounded latency
when the different job types are not compatible and do not “pipeline” easily, and
present a scheduling strategy which can guarantee bounded backlog despite the
uncertainty concerning the identity of future jobs.

• Quantitative Acceptance Criteria: In many contexts we would like to evaluate
system behavior not only by qualitative criteria such as violation of properties, but
also by quantitative criteria that reflect costs associated with transitions or states.
In Chapter 3 we study some theoretical aspects of acceptance conditions based on
multi-dimensional mean-payoff. We study the expressive power and topological
complexity of such criteria and define a class of mean-payoff languages which is
closed under Boolean operations and whose emptiness problem is decidable.

12 CHAPTER 1. INTRODUCTION

• Volume and Entropy of Timed Languages : In this major part of the thesis we
combine two quantitative aspects of formal languages. We work in the context
of timed languages and define the measures of volume and entropy for these
language, measures that characterize the size of the language and provide for
a quantitative comparison between timed language, for a example to assess the
degree of over approximation of a system by its abstract model. The extension
of the concepts of size and entropy to timed languages is particularly challenging
due to the non countable nature of timed behaviors and timed automata. After
giving definitions of these measures we develop several methods for computing
and approximating them. This work opens new research directions concerning the
information theory of Boolean signals and show interesting relations to algorithmic
complexity, functional analysis and symbolic dynamics.

Chapter 2

Scheduling Streams of Structured
Jobs

Résumé : Nous étudions une classe de problèmes d’ordonnancement qui combine les
aspects structurels associés aux dépendances entre tâches avec les aspects dynamiques
liés au fait qu’un flux de requêtes arrive en continu pendant l’exécution. Nous montrons
que, dans cette classe de problèmes, certains flux, pourtant admissibles dans le sens que
les requêtes ne représentent pas plus de travail que ce que les machines peuvent traiter,
ne peuvent pas être ordonnancé avec une latence bornée. Cependant nous développons
une politique d’ordonnancement que peut garantir une accumulation de retard bornée
pour tout flux de requêtes admissible, même sans le connâıtre à l’avance. Nous montrons
que si les flux sont sous-critiques, alors cette même politique peut garantir une latence
bornée.

2.1 Introduction

Scheduling, in its most general sense, is the act of deciding when (and where) to exe-
cute tasks. However this definition is vague enough for a large number of researchers
to claim being working in this field. The problem of efficient allocation of reusable re-
sources over time, is indeed a universal problem, appearing almost everywhere, ranging
from the allocation of machines in a factory [46, 14, 36], allocation of processor time
slots in a real-time system [42, 19], allocating communication channels in a network
[31], or allocation of vehicles for transportation tasks [15]. Unfortunately, the study of
scheduling problems is distributed among many academic communities and application
domains, each focusing on certain aspects of the problem.

The aspects in which scheduling models may differ range among the following:

• First in the way resources are considered. A resource is an entity with its own
timeline, which can be allocated to tasks. Usually resources are machines, network
links, computer parts, or even people. Resources may be reusable (like a processor)

13

14 CHAPTER 2. SCHEDULING

or not (like energy), may exist in several interchangeable homogeneous instances of
a same type (like the cores of a multicore CPU) or be all different, heterogeneous.

• The tasks, the units of work to schedule, can exhibit some varying features. Tasks
may have a predifined duration, and a set of resources they need to use. The
exact set of tasks may be known before the system under observation is executed,
or may not. Some uncertainty might be allowed in the duration of those tasks, or
maybe in the time when tasks are issued, or even, it might not be known if some
tasks will be issued at all. The task set can be finite or infinite. If it is infinite,
instance of tasks may have either periodical or sporadical arrival patterns.

• General rules may also differ. Tasks may have a precedence relation (dependen-
cies), i.e. a task might have to wait for all (or, in some models, at least one) of
its predecessors before starting. Resources can also be preemptible, meaning that
a task can be interrupted before it is finished. In this case, the resource becomes
availabe for another task of higher priority.

However, in the vast scheduling literature, one can, very roughly, identify two generic
types of problems. In the first type, the work to be scheduled admits a structure which
includes precedence constraints between tasks, but the problems are, more often than
not, static: the work to be executed is known in advance and is typically finite. Ex-
amples of this type of problems are the job-shop problem motivated by manufactur-
ing (linear precedence constraints, heterogeneous resources) [36, 35] or the task-graph
scheduling problem, motivated parallel execution of programs (partially-ordered tasks,
homogeneous resources) [29]. Some recurrent aspects of scheduling are exhibited in
program loop parallelization [27] but the nature of uncertainty there is different and
rather limited.

On the other hand, in problems related to real-time systems [20] or in queuing theory
[34], one is concerned with infinite streams of tasks which arrive either periodically or
sporadically (or in a combination of both), satisfying some constraints on task arrival
patterns. In many of these “dynamical” problems, the structural dimension of the
problem is rather weak, and each request consists of a monolithic amount of work. A
notable exception is the domain of adversarial queuing theory [16] where some structure
and uncertainty are combined.

In this chapter we propose a model which combines the dynamic aspect associated
with request streams whose exact content is not known in advance, with the structural
aspects expressed by task dependencies. We define a scheduling problem where the
demand for work is expressed as a stream of requests, each being a structured job taken
from a finite set of types, hence such a stream can be viewed as a timed word over the the
alphabet of job types. Each job type defines a finite partially-ordered set of tasks, each
associated with a resource type and a duration. Such a stream is to be scheduled on an
execution platform consisting of a finite number of resources (machines). A schedule is
valid relative to a request stream if it satisfies both the precedence constraints imposed
by the structure of the jobs and the resource constraints imposed by the number of

2.2. THE RECURRENT SCHEDULING PROBLEM 15

resources available in the platform (and, of course, it does not execute jobs before they
are requested).

The quality of a specific schedule is evaluated according to two types of measures,
one associated with the evolution of the backlog over time, that is, the difference between
the amount of work requested and the amount of work supplied, and the latency, the
temporal distance between the arrival of a job instance and the termination of its
execution. To model the uncertain external environment we use the concept of a request
generator, a set of request streams satisfying some inter-arrival timing constraints. Such
constraints can be expressed, for example, using timed automata [3], real-time logics [4]
or timed regular expressions [6]. We restrict the discussion to admissible request streams
that do not demand more work over time than the platform can offer. A scheduling
policy (strategy) should produce a schedule for each admissible request stream, subject
to causality constraints: the decision of the scheduler at a given moment can only be
based on the prefix of the request stream it has seen so far.

After defining all these notions we prove two major fundamental results:

• Positive: we develop a scheduling policy which produces a bounded backlog sched-
ule for any admissible request stream. Note that due to the precedence constraints
between the tasks in the jobs, request stream admissibility does not, a priori, guar-
antee the existence of such a schedule. In fact, we show that a naive “oldest first”
policy can accumulate an unbounded backlog for certain request streams. Our
policy achieves this goal by making decisions that provide for pipelined execution
whenever possible.

• Negative: there are admissible request streams for which no bounded-latency
schedule (and hence no bounded-latency policy) exists.

The rest of the chapter is organized as follows: in Sect. 2.2 we define our schedul-
ing framework, in Sect. 2.3 we prove a negative result concerning the impossibility of
bounded latency schedules. In Sect. 2.4 we extend the framework to include schedul-
ing policies and in Sect. 2.5 we develop a scheduling strategy that guarantees bounded
backlog. We conclude with a discussion of past and future work.

These results were first published in [28].

2.2 The Recurrent Scheduling Problem

2.2.1 General Definitions

We use timed words and timed languages to specify streams of requests for work.
Intuitively, a timed word such as ũ = 3a12a2a36 consists of a passage of time of duration
3, followed by the event a1, followed by a time duration 2, followed by the two events a2

and a3 and then a time duration of 6. We present some basic definitions and notations
(see more formal details in [6]).

16 CHAPTER 2. SCHEDULING

• A word over an event alphabet Σ is either ǫ, the empty word, or ua where u is a
word and a ∈ Σ. An ω-word is an infinite sequence (ai)i∈N ∈ Σω.

• A timed word over Σ is a word over Σ ∪ R+. The duration of a timed word u,
denoted by |u| is the sum of its elements that are taken from R+, for example
|ũ| = 11. A timed ω-word is an infinite sequence (ai)i∈N ∈ (Σ ∪ R+)ω such that
its duration diverges.

• The concatenation of a word u and a word (or ω-word) v is denoted by uv.

• A word u is a prefix of v iff there exists w such that v = uw, which we denote
u ⊑ v. We say that u is a proper prefix of v, denoted by u ⊏ v, if u 6= v.

• A word (or an ω-word) u is a suffix of v iff there exists w such that v = wu.

For a timed (ω-)word u over Σ

• By u(a, i) we denote the time of the i-th occurrence of event a ∈ Σ in the timed
word u. Formally u(a, i) = t if u = vaw such that |v| = t and v contains i − 1
occurrences of a. We let u(a, i) = ∞ when a occurs less than i times in u.

• The timed word u[0,t] is the longest prefix of u with duration t. Formally u[0,t] =
t0a0t1a1...ti such that

∑

0≤k≤i tk = t and there exists no discrete event a such that
t0a0t1a1...tia is a prefix of w. For example, ũ[0,4] = 3a11 and ũ[0,5] = 3a12a2a30.

Sets of timed (ω-)words over Σ are called timed (ω-)language. We denote the sets
of such languages by T(Σ) and Tω(Σ), respectively.

2.2.2 Execution Platform, Jobs and Tasks

The execution platform determines our capacity to process work.

Definition 1 (Execution Platform). An execution platform over a finite set M =
{m1, . . . ,mn} of resource (machine) types is a function R : M → N.

Example: {m1 7→ 2,m2 7→ 4,m3 7→ 1} is an execution platform with three resource
types m1,m2,m3 having 2 instances of m1, 4 instances of m2, and 1 instance of m3.

1

The task is the atomic unit of work, specified by the resource type it consumes and
by its duration. The job is a unit of a larger granularity, consisting of tasks related by
precedence constraints. Each job is an instantiation of a job type.

Definition 2 (Job Type). A job type over a set M of resources is a tuple J = 〈T,≺
, µ, d〉 such that ≺⊆ T × T and 〈T,≺〉 is a finite directed acyclic graph whose nodes
are labelled by 2 functions: µ : T → M , which associates a task to the resource type it
consumes, and d : T → R+ − {0} specifying task duration.

1We will use the notation Rm for R(m) and R when we want to treat the whole platform capacity
as vector and make component-wise arithmetical operations. The same will hold for sets of functions
indexed by the elements of M .

2.2. THE RECURRENT SCHEDULING PROBLEM 17

As an example consider a job type where T = {a1, a2, a3}, ≺ = {(a1 ≺ a3), (a2 ≺
a3)} µ = {a1 7→ m1, a2 7→ m2, a3 7→ m3}, d = {a1 7→ 3, a2 7→ 2, a3 7→ 1}〉, where
a1 needs resource m1 for 3 time units, a2 uses resource m2 for 2 time units while a3

consumes m3 for 1 time unit. Task a3 cannot start before both a1 and a2 terminate.
For a set J = {〈T1,≺1, µ1, d1〉, ..., 〈Tn,≺n, µn, dn〉} of job types, we let TJ,≺J, µJ and

dJ denote, respectively, the (disjoint) union of Ti, ≺i, µi and di, for i = 1..n. We call
elements of TJ task types. When J is clear from the context we use notations T , ≺, µ
and d.

Definition 3 (Initial Tasks, Rank). An initial task a is an element of T such that there
exists no a′ ∈ T with a′ ≺ a. The rank of task a is the number of edges of the longest
path a0 ≺ a1 ≺ · · · ≺ a such that a0 is initial. Initial tasks have rank 0.

2.2.3 The Demand

The sequence of jobs and tasks that should be executed on the platform is determined
by a request stream.

Definition 4 (Request Streams and Generators). A request stream over a set J of job
types is a timed ω-word over J. A request generator is a timed ω-language over J.

Each request stream presents a demand for work over time which should not exceed
the platform capacity, otherwise the latter will be saturated.

Definition 5 (Work Requested by Jobs and Streams). With each resource type m we
define a function Wm : J → R+ so that Wm(J) indicates the total amount of work on
m demanded by job J , Wm(J) =

∑

{a∈TJ :µ(a)=m} d(a). We lift this function to request

stream prefixes by letting W (ǫ) = 0, W (ut) = W (u) for t ∈ R+ and W (uJ) = W (u) +
W (J) for J ∈ J.

We restrict our attention to request streams that do not ask for more work per time
unit than the platform can provide, and, furthermore, do not present an unbounded
number of requests in a bounded time interval.

Definition 6 (Admissible, Critical and Subcritical Request Streams).
A request stream σ is α-lax (α ∈ R+) with respect to an execution platform R if for
every t < t′, W (σ[0,t′])−W (σ[0,t]) ≤ α(t′ − t)R+ b for some constant b ∈ R

n. A stream
is admissible if it is α-lax for some α ≤ 1, subcritical if it is α-lax for α < 1 and critical
if it is admissible but not subcritical.

Those notions are lifted to generators (set of streams). We add the keyword “uni-
formly” if α and b have the same value for all the streams of the set.

2.2.4 Schedules

Definition 7 (Schedule). A schedule is a function s : T × N → R
∞
+ (where R

∞
+ =

R+ ∪ {∞} with the usual extension of the order and operations).

18 CHAPTER 2. SCHEDULING

The intended meaning of s(a, i) = t is that the i-th instance of task a (which is part
of the i-th instance of the job type to which it belongs) starts executing at time t. If
we restrict ourselves to “non-overtaking” schedules2 such that s(a, i) ≤ s(a, i′) whenever
i < i′, we can view a schedule as a timed ω-word in Tω(T). Likewise we can speak of
finite prefixes s[0,t] which are timed words in T(T).

Since tasks have fixed durations and cannot be preempted, a schedule determines
uniquely which tasks are executed at any point in time and, hence, how many resources
of each type are utilized, a notion formalized below.

Definition 8 (Utilization Function, Work Supplied). The resource utilization function
associated with every resource m is Um : Tω(T)×R+ → N defined as Um(s, t) = |{(a, i) ∈
T × N : µ(a) = m ∧ s(a, i) ≤ t < s(a, i) + d(a)}|. The work supplied by a prefix of s is
the accumulated utilization: W (s[0,t]) =

∫ t

0
U(s, τ)dτ .

Definition 9 (Valid Schedule). A schedule s is valid for a request stream σ on an
execution platform R if for any task instance (a, i)

• if J is the job type a belongs to, then s(a, i) ≥ σ(J, i) (no proactivity: jobs are
executed after they are requested);

• ∀a′, a′ ≺ a, s(a, i) ≥ s(a′, i) + d(a′) (job precedences are met);

• ∀t ∈ R+, U(s, t) ≤ R (no overload: no more resource instances of a type are used
than their total amount in the execution platform).

The quality of a schedule can be evaluated in two principal and related (but not
equivalent) ways, the first of which does not look at individual job instances but is based
on the amount of work. During every prefix of the schedule there is a non-negative
difference between the amount of work that has been requested and the amount of
work that has been supplied. This difference can be defined in a “continuous” fashion
like ∆σ,s(t) = W (σ[0,t]) − W (s[0,t]). An alternative that we will use, is based on the
concept of residue or backlog, which is simply the set of requested tasks that have not
yet started executing. It is not hard to see that a bounded residue is equivalent to a
bounded difference between requested and supplied work.

Definition 10 (Residue, Bounded Residue Schedules). The residue associated with a
request stream σ and a valid schedule s at time t is ρσ,s(t) = {(a, i) ∈ T × N : σ(a, i) ≤
t < s(a, i)}. A valid schedule s is of bounded residue if there is a number c such that
|ρσ,s(t)| ≤ c for every t.

The second performance measure associated with a schedule is related to latency,
the time an individual job has to wait between being requested and the completion time
of its last task.

2Note that non-overtaking applies only to tasks of the same type.

2.2. THE RECURRENT SCHEDULING PROBLEM 19

a1
Resource
Type 1 (m

1
)

a2 b1

b2

Job Type A Job Type B

Resource
Type 2 (m

2
) 1 time unit

Figure 2.1: The example.

Definition 11 (Latency). Given a request stream σ and a valid schedule s, the latency
of a job instance (J, i) is LJ,i(σ, s) = maxa∈TJ

{(s(a, i) + d(a))} − σ(J, i). The latency
of s with respect to σ is L(σ, s) = supJ∈J,i∈N

LJ,i(σ, s).

Note that it is possible that every job instance is served in finite time but the
latency of the schedule is, however, infinite, that is, the sequence {LJ,i}i∈N may diverge.
Bounded residue does not imply bounded latency: we can keep one job waiting forever,
while still serving all the others without accumulating backlog. But the implication
holds in the other direction.

Lemma 1. A valid schedule with bounded latency has a bounded residue.

Proof. Let s be a valid schedule with latency λ ∈ R+. Let V (t) be the total amount of
work of the tasks that are in the residue at time t. Since all these tasks are supposed
to be completed by t+λ we have V (t) ≤ λR which implies a bound on the residue.

2.2.5 The Running Example

We will use the following recurrent scheduling problem to establish the negative result
and to illustrate our scheduling policy. Consider a platform over M = {m1,m2} with
R(m1) = R(m2) = 1. The set of job types is J = {A,B} whose respective sets of tasks
{a1 ≺ a2} and {b1 ≺ b2} have all a unit duration. The difference between these job
types is that A uses m1 before m2 while B uses m2 before m1 (see Fig. 2.1). As a request
generator we consider G = ((A1) + (B1))ω, that is, every unit of time, an instance of
either one of these jobs is requested (to simplify notations we will use henceforth A and
B as a shorthand for A1 and B1, respectively). Since each job type requires exactly
the amount of work offered by the platform, G is admissible and, in fact, critical. A
bounded-residue schedule for such critical request streams should keep the machines
busy all the time except for some intervals (that we call utilization gaps) whose sum of
durations is bounded.

The reversed order of resource utilization in A and B renders these two job types
incompatible in the sense that it is not easy to “pipeline” them on our platform. Intu-
itively at the moment a request stream switches from A to B, we may have tasks a2

and b1 ready for execution but only one instance of their common resource m2 is free.
Our scheduling policy will, nevertheless, manage to pipeline them but, as we show in
the next section, bounded latency schedules are impossible.

20 CHAPTER 2. SCHEDULING

b2?

?

?

?

?

?

a1

?

?

?

?

?

?

b1

b2

?b1

schedule on m
1

schedule on m
2

? ?

same
resource

type!

? A A A A A B B B B B ?requests

time t-λ t

b2

b1

b2

b1a2

a1 a1

a2

?

a2

a1

a2?

?

t-2λ

Figure 2.2: An illustration of the fact that a request segment AλBλ implies a utilization
gap in any schedule of latency λ or less. Before t−λ: job type A has been requested for
a long time, so the residue contains only tasks from A. At t−λ: from now on, requests
are of type B. After t− 1: if the latency is λ, there should be no more tasks from A in
the residue. Now between t− λ and t− 1, only suffixes of A and prefixes of B can be
scheduled, and among those, at least one proper suffix.

2.3 Negative Result

In this section, we show that admissibility of a stream does not imply that it is schedu-
lable under bounded latency. We prove this fact using a counter-example stream con-
structed by iterating Lemma 2 below.

This lemma states that for any latency λ, we can find a certain request pattern of
the running example whose occurrence implies a unit increase in the residue. Hence the
construction of the counter-example stream will involve repeating this pattern infinitely
many times, implying an unbounded residue. The statement of the lemma and its proof
are illustrated in Fig. 2.2.

Lemma 2. Let σ be a request stream with a prefix of the form σ[0,t] = uAλBλ and
let s be a valid schedule for σ with latency λ. Then there is a utilization gap (an idle
resource) of duration 1 or more in the interval [t− λ− 1, t].

Proof. Since the latency of s is λ, no task instance of B belongs to the residue ρσ,s(t−
λ − 1), so the only way to avoid a gap at time t − λ − 1 is to schedule an instance of
a1 and an instance of a2. For the same reason, ρσ,s(t− 1) contains no task instance of
A, so that at time t− 1, s schedules b1 and b2. Moreover any task instance of B in the
residue after t− λ− 1 is an instance that was requested since t− λ.

Now what happens in [t− λ, t− 1]? In that interval, the residue has task instances
from requests for A made before t − λ and from requests for B made since that time.
Due to bounded latency all the instances from A are due for t− 1. We also know that,
because a1 ≺ a2, the residue has always more a2 than a1, and that their amount is the
same only when all started job instances of A are finished, which is not possible at t−1
because an a1 is scheduled for t − λ − 1 (and thus task a2 of the same job instance
cannot start before t− λ). In that interval we also schedule task instances from B the
earliest of which can have started execution at t − λ. Thus, since b1 ≺ b2, we cannot
schedule more b2 than b1.

2.4. SCHEDULING POLICIES 21

Summing up the quantity of work scheduled by s between t− λ and t, we find that
on m1 we schedule na1 instances of a1 and nb2 instances of b2 and on m2 we schedule
na2 instances of a2 and nb1 instances of b1, satisfying na2 > na1 and nb1 ≥ nb2 . Thus
m2 performs at least one unit of work more than m1 in the same interval, which is only
possible if m1 admits a utilization gap of duration 1.

Consider now a request stream that has infinitely many occurrences of the pattern
uAλBλ. A schedule with latency λ for this stream will have infinitely many gaps, and
hence an unbounded residue, a fact which contradicts Lemma 1. Hence such a stream
admits no schedule whose latency is λ or less.

Theorem 1. Let

L∞ = J∗ABBJ∗AAABBBBJ∗AAAAABBBBBB . . .

where J stands for (A+B). Request streams in L∞ admit no bounded-latency schedule,
although they are admissible.

Proof. Let σ be a stream of L∞. For every λ, σ has infinitely many prefixes of the form
uAλBλ and cannot have a schedule of latency λ. Consequently it admits no bounded
latency schedule.

Note that this impossibility result is not related to the dynamic aspect of the schedul-
ing problem. Even a clairvoyant scheduler who knows the whole request stream in
advance cannot find a bounded latency solution.

Note also that the language L∞ is not pathological. If fact, in any reasonable way
to induce probabilities on (A + B)ω, this language will have probability of 1. Hence
we can say that critical systems having two incompatible jobs will almost surely admit
only unbounded-latency schedules.

2.4 Scheduling Policies

Now we want to consider the act of scheduling as a dynamic process where a scheduler
has to adapt its decisions to the evolution of the environment, here the incoming request
stream. We want the scheduler to construct a schedule incrementally as requests arrive.
The mathematical object that models the procedure of mapping request stream prefixes
into scheduling decisions is called a scheduling policy or a strategy.

Formally speaking, a policy can be viewed as a timed transducer, a causal function
p : Tω(J) → Tω(T) which produces for each request stream σ a valid schedule s = p(σ).
Causality here means that the value of s[0,t] depends only on σ[0,t]. We will represent
the policy as a procedure p which, at each time instant t, looks at σ[0,t] and selects a
(possibly empty) set of task instances to be scheduled for execution at time t, that is,
s(a, i) = t if (a, i) ∈ p(σ[0,t]). We will use s[0,t] = p(σ[0,t]) to denote the schedule prefix
constructed by successive applications of p during the interval [0, t]. We assume that

22 CHAPTER 2. SCHEDULING

each policy is designed to work with admissible request streams taken from a generator
G ⊆ Tω(J).

Definition 12 (Scheduling policy). A scheduling policy is a function
p : T(J) → 2T×N such that for every task instance (a, i) and a request stream prefix
σ, (a, i) ∈ p(σ) implies that (a, i) 6∈ p(σ′) for any σ′ ⊏ σ. A scheduling policy is valid
for σ if for every t, the obtained schedule s[0,t] = p(σ[0,t]) satisfies the conditions of Def-
inition 9, namely, no proactivity and adherence to precedence and resource constraints.

We evaluate the overall performance of a policy based on the worst schedule it
produces over the streams in the generator. Since we have just shown a negative result
concerning latencies, we focus on the residue.

Definition 13 (Bounded Residue Policies). A scheduling policy has a bounded residue
relative to a generator G if it produces a bounded-residue schedule for every σ ∈ G. It
is uniformly bounded if the same constant can bound the residues of all its streams.

In the following, we use notation ρσ,p instead of ρσ,p(σ) to denote the residue resulting
from the application of a policy p to a request stream (or prefix) σ.

2.5 Positive Result

In this section we show that any recurrent scheduling problem with an admissible re-
quest generator admits a policy in the sense of Sect. 2.4 which maintains the residue
bounded. We emphasize again that the policy makes decisions at run time without
knowing future requests.

2.5.1 Oldest-First Policy does not Work

To appreciate the difficulty, let us consider first a naive Oldest-First policy: whenever
the number of tasks that are ready to use a resource is larger than the number of free
instances of the resource, the available instances are granted to the older tasks among
them. We show that this policy fails to guarantee bounded residues.

Theorem 2. The Oldest-First policy cannot guarantee a bounded residue.

In fact, this policy will lead to an unbounded residue schedule for request streams
in the language L∞ of the previous section as illustrated in Fig. 2.3 and proved below.
The reason is, again, the incompatibility between the job types, which leads to infinitely
many utilization gaps where a resource is free while none of the corresponding tasks in
the residue is ready to utilize it. The result is a direct corollary of the following lemma:

Lemma 3. A bounded residue schedule which conforms to the Oldest-First policy has
a bounded latency.

Note that we already proved the converse for arbitrary schedules and policies.

2.5. POSITIVE RESULT 23

a1

a2 b1

b2

b1

b2 a1 a1

a2

a1

a2 a2 b1

b2

b1

b2

b1

b2

b1

schedule on m
1

schedule on m
2

A B B A A A B B B B A A Arequests

0

1

1

1

2

1

2

1

2

2

2

3

2

3

2

3

3

3

4

3

4

3

4

3

4

3

residue on m
1

residue on m
2

Figure 2.3: Schedule generated by the “oldest first” policy on a stream in the language
L∞, described in 2.3. Here we see that a gap of length 2 is created on one of the resource
types at every change of job type in the request stream, which makes the residue grow
indefinitely.

Proof. First we show that any task instance (a, i) that becomes eligible for execution
at time t, is scheduled for execution within a bounded amount of time after t. This
holds because, following the policy, the only tasks that can be executed between t and
s(a, i) are those that are already in the (bounded) residue at time t. Next we show,
by induction on the rank of the tasks, that this fact implies that any task is executed
within a bounded amount of time after its job is issued. This holds trivially for the
initial tasks which become eligible for execution immediately when the job arrives and
then holds for tasks of rank n+ 1 by virtue of the bounded latency of tasks of rank n.
Thus the latency of a bounded-residue schedule produced by the Oldest-First has to be
bounded.

Since we have already shown that request streams in L∞ do not admit bounded-
latency schedules, a bounded residue strategy will lead to a contradiction and this proves
Theorem 2. Like the case for Theorem 1, under reasonable probability assignments to
jobs, one can show that the Oldest-First policy will almost surely lead to unbounded-
residue schedules when applied to critical streams of incompatible jobs.

2.5.2 A Bounded Residue Policy

Theorem 3 (Bounded Residue Policy).

• Any admissible generator admits a bounded residue scheduling policy.

• Any uniformly admissible generator admits a uniformly bounded residue schedul-
ing policy.

In order to circumvent the shortcomings of the “Oldest First” policy, we describe in
the sequel a policy that eventually reaches the following situation: whenever a resource
becomes free and the residue contains tasks that need it, at least one of those tasks will
be ready for execution.

The policy is described in detail in Algorithm 1 and We explain the underlying
intuition below. The policy separates the act of choosing which tasks to execute in

24 CHAPTER 2. SCHEDULING

the future from the act of actually starting them. The first decision is made upon
job arrival while the second is made whenever a resource is free and a corresponding
task has been selected. To this end we partition the residue into two parts. The first
part P (the “pool”) consists of requested task instances that have not yet been selected
for execution. Among those, only task instances whose ≺-predecessors have already
terminated are eligible for being selected and moved to the other part, which consists
of n FIFO queues {Qm}m∈M , one for each resource type. The passage between the two
is controlled by two types of events:

• Task termination: when a task (a, i) terminates, eligibility status of its successors
in P is updated;

• Job arrival: when a job instance (J, i) arrives we pick the oldest3 eligible instance
(a, ja) ∈ P (if such exists) for every task type a ∈ TJ such that µ(a) = m, and
move it to Qm. Note that only initial tasks of (J, i) are eligible for being selected
when (J, i) arrives, while for other task types only earlier instances can be chosen.

Whenever a resource of type m is free and Qm is not empty, the first element is removed
from Qm and starts executing. This is sufficient to ensure a bounded residue. However,
to improve the performance of the algorithm when the streams are subcritical, we also
choose to start the oldest eligible task which requires m if an instance of m is released
when Qm is empty.

The intuition why this policy works is easier to understand when we look at critical
request streams. For such streams, any job type which is requested often enough will
eventually have instances of each of its tasks in Q and hence, whenever a resource is
freed, there will always be some task ready to use it. This guarantees smooth pipelining
and bounded residue for all admissible request streams. In Fig. 2.4 we can see how our
policy schedules the request stream σ∞ = A ·B ·B · A · A · A · · · .

Scheduling policies of the FIFO type have also been studied in the context of adver-
sarial queuing and it has been shown under various hypothesis [26] that those were not
stable, sometimes even for arbitrarily small loads. What makes our policy work is the
fact that the act of queuing is triggered by a global event (arrival of a new job request)
on which the actual choice of tasks to be queued depends. So the decision is somehow
“conscious” of the global state of the system, as opposed to what happens in a classical
FIFO network.

Now we prove that Algorithm 1 yields a valid schedule with (uniformly) bounded
residue for any (uniformly) admissible generator, which establishes Thm. 3. To this end
we need to introduce 2 lemmas.

Lemma 4. If σ ∈ G is b-admissible, then ∀m ∈ M, ∀t ∈ R+, |Qm(t)| ≤ bm + D · Rm,
where D is the maximal length of a task type, and where |Qm|(t) is the size of Qm at
time t.

3Or one of the oldest if there are several of the same age.

2.5. POSITIVE RESULT 25

Algorithm 1 The Bounded-Residue Policy
declarations

req: jobType inputEvent // events from σ
free: resourceType inputEvent // triggered when a resource is freed
start: taskInstance outputEvent // scheduling decisions
P : taskInstance set // pool, unselected tasks
Q: resourceType → (taskInstance fifo) // queues, selected tasks

procedure init

P = ∅;
for all m ∈M do Qm = ∅

procedure startWork(m: resourceType)
if Qm is not empty then α = pop(Qm); emit start(α)
else // for bounded latency against subcritical streams

if P has eligible task instances requiring m then
α = the oldest eligible task instance using m in P ;
P = P − {α}; emit start(α)

on free(m) do startWork(m)

on req(J) do
for all a ∈ TJ do

P = P ∪ {newInstance(a)};
if P has eligible task instances of type a then

α = the oldest eligible task instance of a in P ;
P = P − {α}; push(α,Qm) // select for execution

for all m ∈M do
for all free instances of m do startWork(m)

a1

b1

b2

b1

a1

a2

a1

a2

a1

a2

b2

b1

b2

b1

b2

b1

b2

b1

a1

a2

a1

a2

a1

a2

schedule on m
1

schedule on m
2

A B B A A A B B B B A A Arequests

0

1

1

1

1

1

1

1

residue on m
1

residue on m
2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 2.4: The schedule generated by the bounded-residue policy for σ∞. We can see
that after the arrival of the second B, every resource is always occupied, and that the
residue does not grow after that.

26 CHAPTER 2. SCHEDULING

Proof. In fact, the size of a queue at a time t is the difference between the enqueued
work and the dequeued work, hence we know how to relate those quantities to the
dimensions of the platform.

It is easy to see that when the policy is applied, an instance of a resource m can
never stay free for longer than 0 units of time unless Qm is empty at the time it is freed.
Therefore we just have to prove that the Qm cannot grow arbitrarily during intervals
where Um(s, t) = Rm (intervals of length 0 do not matter as the utilization function U
is constant on semi-open intervals).

Let [t0, t1) be an interval during which the utilization is full. The amount of work
dequeued during [t0, t1) is at least the capacity available in the interval [t0, t1) minus
the maximum amount of work that may already have been executing at the beginning
of the interval. I.e., if D denotes the length of the longest task type, then we have:
Wm(s−1([t0, t1))) ≥ (t1 − t0)Rm −DRm = (t1 − t0 −D)Rm.

The quantity of work that is enqueued during that interval is at most the quantity
of work of the request word of the interval, so it is at most W (σ[0,t1])−W (σ[0,t0]). Since
σ is b-admissible, the following holds:

Wm(σ[0,t1]) −Wm(σ[0,t0]) ≤ (t1 − t0) ·Rm + bm

= (t1 − t0 −D) ·Rm + bm +D ·Rm

≤ Wm(s−1([t0, t1))) + bm +D ·Rm.

Therefore, in any interval where the queue is not empty, the quantity of work in the
queue can only increase by at most bm+D·Rm, which is independent of the length of the
interval. Thus the quantity of work in the queue for m is never more than bm +D ·Rm.

Since there exists d ∈ R+ − {0} such that all tasks last more than d, there are at
most (bm +D ·Rm)/d tasks in Qm.

Lemma 5. For any σ ∈ G, there is a time T after which at every request for a job J ,
the union of the set of tasks we put in Q at that time and of the set of task instances
from task types of J that have been directly started as a “fill up” since previous request
for J , contains exactly one instance of each task type of J .

Proof. Let us say a task instance is selected for a request if it falls under the above
criteria, that is if it is an element of the union described in the statement of the lemma.

Base case: for the initial tasks this is trivially true, since they are queued as soon
as the job is requested.

Inductive case: now suppose there exists a time tl−1 after which when a job of type
J is requested, a task instance of each type of rank l − 1 is selected for that request.
Since the policy chooses the oldest instance first, the difference of indices between the
job instance from which the task comes, and the job request at which it is selected is
bounded. And after it is queued (if it is), it will be served in bounded time, during
which the number of requests for J is also bounded. Thus any requested task of rank
l − 1 is served after a bounded number of requests for J . Let Nl−1 be that number.

2.5. POSITIVE RESULT 27

Let a be a task type of rank l from job type J . Then an instance of a has to become
eligible before Nl−1 requests for J after its own. This we can write as nr(t) − Nl−1 ≤
ne(t), where nr(t) is the number of requested J at to time t and ne(t) is the number of
tasks instances form a made eligible since the beginning.

Let ns(t) be the number of selected instances of a until time t ∈ R+. Then there
are two possibilities:

• Either the number of eligible but not selected instances of a stays smaller than
Nl−1 (ne(t) − ns(t) ≤ Nl−1), so that any of them has to be selected before Nl−1

requests for J . Thus ns(t) + Nl−1 ≥ ne(t) ≥ nr(t) − Nl−1, which gives nr(t) −
ns(t) ≤ 2Nl−1. Hence nr(t) − ns(t) never decreases (we select no more than
requested), therefore it is eventually constant, and thus eventually we queue an
instance of a every time a J is requested.

• Or ne(t) − ns(t) can go above Nl−1 + 1. Then, suppose it is true at a time t0.

Then we prove that ne(t) − ns(t) can never go to zero after t0: indeed, ns(t)
increases only when nr(t) does, so that means that ∀t ≥ t0, ns(t) − ns(t0) ≤
nr(t)−nr(t0), so ns(t) ≤ nr(t)−nr(t0)+ns(t0) ≤ nr(t)−nr(t0)+ne(t0)−Nl−1−1 ≤
ne(t) − nr(t0) + ne(t0) − 1, and thus ne(t) − ns(t) ≥ nr(t0) − ne(t0) + 1 > 1.

So after t0 there are always eligible instances of a that are not yet selected, so after
t0, when a job is requested, an instance of each of its tasks of rank l is selected.

In both cases, the fact that eventually at every request we queue an instance of
every task type of rank l−1 implies that we eventually also select one instance for each
type of rank l. That means, as there are only finitely many ranks, that eventually it is
true for any rank.

Proof. of Thm. 3

Validity of the produced schedules Let σ be a request stream and let s be the
schedule for σ produced by p. Then, for any task instance α = (a, i) s.t. s(α) = t:

• α had been in the pool at some previous t′ < t. We therefore know that s is not
proactive, because the pool contains only requested job instances.

• Either α was in a queue at t. Hence, as a task gets moved from the pool to a
queue only if all of its predecessors have finished, s respects dependencies. Or α
has been started when the queue was empty, and in that case the algorithm states
that α was ready (its predecessors were all finished).

• Execution of α is started only in procedure startWork(m). That procedure starts
executing only a single task instance and is called at most once for each free
resource. Hence, s does not exceed resource capacities.

These 3 conditions prove that s is a valid schedule.

28 CHAPTER 2. SCHEDULING

Bounded Residue Using Lemma 4, we establish that the queues are bounded. After
that we show boundedness of the pool by proving the following invariant (Lemma 5):
we eventually enqueue, at every request for a job type, one instance of every task type
that belongs to that job type.

Conclusion (the residue is thus bounded): Lemma 5 states that eventually we
select, at each request for a job type J , one task instance per task type from J , so that
the total amount of task instances of each type in the pool cannot increase anymore.
Hence the residue is the union of the pool and of the queues, which are also bounded
(Lemma 4), thus the residue is bounded. That proves the first part of Thm. 3.

If we look at the proof, we notice that the bound on the queues and the maximal
time at which the property of Lemma 5 comes true depend on the request stream σ
only through the constant b that characterizes its admissibility. Thus if G is uniformly
admissible, then the residue is uniformly bounded, which proves the second part of the
theorem.

2.5.3 Bounded Latency for Subcritical Streams

We just showed that a policy could ensure bounded residues in the case of critical
streams for which one needs full utilization. But criticality is just a limit case and
for that reason it is interesting to know whether such a policy can adapt and behave
better when the request stream is subcritical. Fortunately the answer is positive: the
previously exhibited policy, by starting tasks which are not queued when a resource
would be otherwise idle, ensures bounded latencies for request streams that admit some
laxity.

Theorem 4. The policy described by Algorithm 1 has a bounded latency when applied
to any α-lax stream with α < 1 .

Lemma 6. There exists a time bound Tα,m such that any interval [t, t+Tα,m] admits a
time instant where Qm is empty, an instance of m is free and no new request arrives.

Sketch of proof. Consider an interval of the form [t, t+d] in which no machine of type m
is idle. The quantity of work dequeued from Qm is Rmd and, due to laxity, the amount
of work enqueued into Qm is at most (1 − α)Rmd. Hence the total contribution to the
amount of work in Qm is (α − 1)Rmd and for some sufficiently large d it will empty
Qm.

Proof. of Theorem 4]
We know that, when a task in the pool becomes the oldest task of the residue which is
not queued, it becomes eligible in a bounded amount of time (all its predecessors must
be in the queue). Thus we know that at most Tα,m units of time after that, this task
is started (either queued or started to fill a gap). Since furthermore the residue (and
hence the pool) is bounded (Thm. 3), there is a bound on the time it takes a task to

2.6. DISCUSSION 29

become the oldest in the pool and hence to be executed. Thus we conclude that the
latency of the policy is bounded.

2.6 Discussion

We have proved some fundamental results on a model that captures, we believe, many
real-world phenomena. Let us mention some related attempts to treat similar problems.
The idea that verification-inspired techniques can be used to model and then solve
scheduling problems that are not easy to express in traditional real-time scheduling
models has been studied within the timed controller synthesis framework and applied
to scheduling problems [52, 43, 9, 1]. What is common to all these approaches (including
[30] which analyzes given policies that admit task preemption) is that the scheduler is
computed using a verification/synthesis algorithm for timed automata, which despite
several improvements [21] are intrinsically not scalable. The policy presented in this
chapter does not suffer from this problem, it only needs the request generator to be
admissible. Explicit synthesis may still be needed in more complex settings.

In the future it would be interesting to investigate various extensions of the model
and variations on the rules of the game, in particular, moving from worst-case reasoning
to average case by using probabilistic request generators and evaluating policies accord-
ing to expected backlog or latency. Finally, it would be interesting to look closer at
the question of “pipelinability”, that is, the mutual compatibility of a set of job types.
Results in this direction may lead to new design principles for request servers.

30 CHAPTER 2. SCHEDULING

Chapter 3

On ω-Languages Defined by a
Mean-Payoff Conditions

Résumé : En vérification quantitative, les états et transitions d’un système peuvent
être associés à des coûts, et ceux-ci utilisés pour associer des coûts moyens aux com-
portements infinis. Dans ce chapitre, nous proposons de définir des ω-langages par des
requêtes booléennes sur les coûts moyens. Des spécifications concernant des moyennes,
tels que « le nombre de messages perdus est négligeable » ne sont pas ω-régulières, mais
exprimables dans notre modèle. Ainsi, nous étudions l’expressivité et la complexité de
Borel de telles spécifications. Nous montrons que pour la clôture par intersection, il
est nécessaire de considérer des coûts multi-dimensionnels. Nous mettons en évidence
que dans le cas général, les conditions d’acceptation portent sur l’ensemble des points
d’accumulation de la séquence des coûts moyens des préfixes d’une exécution, et nous
donnons une caractérisation précise de tels ensembles. Nous proposons une classe de
langages de coût moyen à seuils multiples, comparant les coordonnées minimales et
minimales des points de cet ensemble à des constantes. Nous montrons enfin que cette
classe est close par opérations booléennes et analysable.

3.1 Introduction

In the previous chapter of this thesis, we proved some results about what was possible
in terms of latency and memory usage for a scheduling policy. Latency and memory
are just two quantitative measures we can associate with a behavior (run) of a system
and one can think of many other measures (for example, power consumption) that
can be associated with such behaviors, reflecting their respective cost and utility. The
average values that a run obtains for these cost criteria can be used as an alternative
way to classify it as accepted or rejected. The translation of this scheduling problem to
automata is natural, even more now that it is established that it can be encoded into a
finite number of states. It is therefore tempting to use standard automata verification
techniques.

31

32 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

In algorithmic verification of reactive systems, the system is usually modeled as a
finite-state transition system (possibly with fairness constraints), and requirements are
captured as languages of infinite words over system observations [47, 44]. The most com-
monly used framework for requirements is the class of ω-regular languages. This class is
expressive enough to capture many natural requirements, and has well-understood and
appealing theoretical properties: it is closed under Boolean operations, it is definable
by finite automata (such as deterministic parity automata or nondeterministic Büchi
automata), it contains Linear Temporal Logic (LTL), and decision problems such as
emptiness, language inclusion are decidable [51, 50, 45].

However the classical verification framework only captures qualitative aspects of
system behavior, and does not work well with quantitative aspects like consumption
of resources such as CPU and energy and, obviously, average performance criteria in
scheduling. In order to describe these, a variety of extensions of system models, logics,
and automata have been proposed and studied in recent years [39, 25, 23, 5]. The best
known approach, and the most relevant to our work, is the following: a payoff (or a
cost) is associated with each state (or transition) of the model, the mean-payoff of a
finite run is simply the average of the payoffs along the run, and the mean-payoff of an
infinite run is the limit, as n goes to infinity, of the mean-payoff of the prefix of length
n. The notion of mean-payoff objectives was first studied in classical game theory, and
more recently in verification literature [53, 25, 32]. Most of this work is focused on
computing the optimal mean-payoff value, typically in the setting of two-player games,
and the fascinating connections between the mean-payoff and parity games.

In this chapter, we propose and study ways of defining languages of infinite words
based on mean-payoff criteria. As a motivating example, suppose 1 denotes the condi-
tion “message is delivered” and 0 denotes the condition “message is lost.” A behavior
of the network is an infinite sequence over {0, 1}. Requirements such as “no message is
ever lost” (always 1), “only finitely many messages are lost” (eventually-always 1), and
“infinitely many messages are delivered” (infinitely-often 1), are all ω-regular languages.
However, the natural requirement that “the number of lost messages is negligible” is
not ω-regular. Such a requirement can be formally captured if we can refer to averages.
For this purpose, we can associate a payoff with each symbol, payoff 0 with message
lost and payoff 1 with message delivered, and require that the mean-payoff of every in-
finite behavior is 1. As this example indicates, using mean-payoffs to define acceptance
conditions can express meaningful, non-regular, and yet analyzable, requirements.

The central technical question for this chapter is to define a precise query language
for mapping mean-payoffs of infinite runs into Boolean answers so that the resulting
class of ω-languages has desirable properties concerning closure, expressiveness, and
analyzability. The obvious candidate for turning mean-payoffs into acceptance criteria
is threshold queries of the form “is mean-payoff above (or below) a given threshold
θ”. Indeed, this is implicitly the choice in the existing literature on decision problems
related to mean-payoff models [53, 25, 32]. A closer investigation indicates that this is
not a satisfactory choice for queries, in particular for the scheduling problem that was
one of the motivations of this work.

3.2. DEFINITIONS 33

In particular, this approach only models phenomena where a single quantitative
criterium is taken into account, as we show that the intersection of several ω-languages
belonging to that class cannot be expressed with a weighted automaton and a single
mean-payoff condition. Closure under intersection actually requires that we should
be able to model multiple payoff functions. For this purpose, we define d-payoff au-
tomata, where d is the dimension of the payoffs, and each edge is annotated with a
d-dimensional vector of payoffs. We prove that expressiveness strictly increases with
the dimension. From the applications point of view, multi-payoffs allow to model re-
quirements involving multiple quantities. Because we allow unbounded dimension, one
can also add coordinates that model weighted sums of the quantities, and put bounds
on these coordinates too.

Second, the limit of the mean-payoffs of prefixes of an infinite run may not exist.
This leads us to consider the set of accumulation points corresponding to a run. For
one-dimensional payoffs, the set of these points is an interval. For multi-dimensional
payoffs, we are not aware of existing work on understanding the structure of these
points. We establish a precise characterization of the structure of accumulation points:
a set can be a set of accumulation points of a run of a payoff automaton if and only if
it is closed, bounded, and connected.

Third, if we use mp to refer to the mean-payoff of a run, and consider four types of
queries of the form mp < θ, mp ≤ θ, mp > θ, and mp ≥ θ, where θ is a constant, we
prove that the resulting four classes of ω-languages have incomparable expressiveness.
Consequently acceptance conditions need to support combinations of all such queries.

After establishing a number of properties of the accumulation points of multi-
dimensional payoff automata, we propose the class of multi-threshold mean-payoff lan-
guages. For this class, the acceptance condition is a Boolean combination of constraints
of the form “is there an accumulation point whose ith projection is less than a given
threshold θ”. We show that the expressive power of this class is incomparable to that
of the class of ω-regular languages, that this class is closed under Boolean operations
and has decidable emptiness problem. We also study its Borel complexity.

These results were first published in [2].

3.2 Definitions

3.2.1 Multi-Payoff Automata

Multi-payoff automata are defined as automata with labels, called payoffs, attached to
transitions. In this chapter, payoffs are vectors in a finite dimensional Euclidean space.

Definition 14 (d-Payoff automaton). A d-payoff automaton, with d ∈ N, is a tuple
〈A,Q, q0, δ, w〉 where A and Q are finite sets, representing the alphabet and states of the
automaton, respectively; q0 ∈ Q is an initial state; δ ∈ Q×A→ Q is a total transition
function (also considered as a set of transitions (q, a, δ(q, a))) and w : δ → R

d is a
function that maps each transition to a d-dimensional vector, called payoff.

34 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

Note that we consider only deterministic complete automata.

Definition 15. The following notions are defined for payoff automata:

• A finite run of an automaton is a sequence of transitions of the following type:
(q1, a1, q2)(q2, a2, q3) . . . (qi, ai, qi+1). An infinite run is an infinite sequence of tran-
sitions such that any prefix is a finite run.

• We denote by λ(r) the word of the symbols labelling the successive transitions of
the run r, i.e. λ((q1, a1, q2) · · · (qn, an, qn+1)) = a1 · · · an.

• A run is initial if q1 = q0.

• By runA(u) we denote the initial run r in A such that u = λ(r)

• A cycle is a run (q1, a1, q2)(q2, a2, q3) . . . (qi, ai, qi+1) such that q1 = qi+1. A cycle
is simple if no proper subsequence is a cycle.

• For a word or run u, u↾n denotes the prefix of length n of u, and u[n] the nth

element of u.

• The payoff of a finite run r is payoff(r) =
∑|r|

i=1w(r[i]).

• The mean-payoff of a run r is mp(r) = payoff(r)/|r|.

• A subset of the states of an automaton is strongly connected if, for any two
elements of that subset, there is a path from one to the other.

• A strongly connected component (SCC) is a strongly connected subset that is not
contained in any other strongly connected subset.

• A SCC is terminal if it is reachable and there is no path from the SCC to any
other SCC.

3.2.2 Acceptance

In the literature, the mean-payoff value of a run is generally associated with the “limit”
of the averages of the prefixes of the run. As that limit does not always exist, standard
definitions only consider the lim inf of that sequence (or sometimes lim sup) and, more
specifically, threshold conditions comparing those quantities with fixed constants [53,
25, 22, 24]. As this choice is arbitrary, and more can be said about the properties of
that sequence than the properties of just its lim inf or even both its lim inf and lim sup,
in particular when d > 1, we choose to consider the entire set of accumulation points
of that sequence.

A point x is an accumulation point of a sequence x0, x1, . . . if every open set con-
taining x contains infinitely many elements of the sequence.

3.2. DEFINITIONS 35

Definition 16. We denote by Acc(xn)∞n=1 the set of accumulation points of the sequence
(xn)∞n=1. If r is a run of a d-payoff automaton A, AccA(r) = Acc(mp(r↾n))∞n=1, and for
a word w, AccA(w) = AccA(run(w)).

Example 1. Consider the 2-payoff automaton

b/
(

0, 0
)

a/
(

0, 0
)

b/
(

1, 0
)

a/
(

1, 0
)

b/
(

1, 1
)

a/
(

1, 1
)

where edges are annotated with expression of the form σ/v meaning that the symbol σ
triggers a transition whose payoff is v. Let w =

∏∞
i=0 a

2i−1b be an infinite word where
b’s are separated by sequences of a’s with exponentially increasing lengths. The set
AccA(w) is the triangle

(6/7, 4/7)

(3/7, 2/7)

(5/7, 1/7)

as we show next. By direct calculation we get that limn→∞ mp(w↾
∑3n

i=0 2i) = (3/7, 2/7),
limn→∞ mp(w↾

∑3n+1
i=0 2i) = (5/7, 1/7), and also limn→∞ mp(w↾

∑3n+2
i=0 2i) = (6/7, 4/7).

Furthermore, for every n ∈ N, j ∈ {0, 1, 2} and k ∈ {0, . . . , 23n+j+1}, the vector
mp(w↾k +

∑3n+j
i=0 2i) is in the convex hull of mp(w↾

∑3n+j
i=0 2i) and mp(w↾

∑3n+j+1
i=0 2i)

and the maximal distance between points visited on this line goes to zero as n goes
to infinity. Together, we get that the points to which the mean-payoff gets arbitrarily
close are exactly the points on the boundary of the above triangle. Similarly, if we
choose the word w′ =

∏∞
i=0 a

3i−1b, we get that AccA(w′) is the boundary of the triangle
(4/13, 3/13), (10/13, 1/13), (12/13, 9/13).

We say that a word or run is convergent, whenever its set of accumulation points is a
singleton, i.e. when its sequence of mean payoffs converges. For instance, periodic runs
are convergent because the mean-payoffs of the prefixes r↾n of an infinite run r = r1r

ω
2

converge to the mean-payoff of the finite run r2, when n goes to infinity.
We now define acceptance conditions as as subsets of 2R

d

.

Definition 17. An infinite run r is accepted by a d-payoff automaton A with condition
F , where F is a subset of 2R

d

, if and only if AccA(r) ∈ F . Equivalently, we consider F
as a predicate on 2R

d

and for X ⊆ R
d, we use the notation F (X) for X ∈ F .

36 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

An infinite word u is accepted if and only if run(u) is accepted. We denote by
L(A, F) the language of words accepted by A with condition F . In the following, we
call mean-payoff language, any language accepted by a d-payoff automaton with such a
condition.

If d is one and F (S) is of the form extrS ⊲⊳ C where extr ∈ {inf, sup}, ⊲⊳∈ {<,≤
, >,≥}, and C is a real constant; we say that F is a threshold condition.

Example 2. For the 1-payoff automaton

a/1 b/0

let the acceptance condition F (S) be true iff S = {0}. This defines the language of
words having negligibly many a’s.

3.3 Expressiveness

3.3.1 Comparison with ω-regular languages

Before proving specific results on the class of mean-payoff languages, we show that it
is incomparable with the class of ω-regular languages. In this context, we call spec-
ification types incomparable if each type of specification can express properties that
are not expressible in the other type. Incomparability of mean-payoff and ω-regular
specifications is, of course, a motivation for studying mean-payoff languages.

We will need the following ad-hoc pumping lemma for ω-regular languages.

Lemma 7 (Pumping lemma). Let L be an ω-regular language. There exists p ∈ N

such that, for each w = u1w1u2w2 . . . uiwi · · · ∈ L such that |wi| ≥ p for all i, there
are sequences of finite words (xi)i∈N, (yi)i∈N, (zi)i∈N such that, for all i, wi = xiyizi,
|xiyi| ≤ p and |yi| > 0 and for every sequence of pumping factors (ji)i∈N ∈ N

N, the
pumped word u1x1y

j1
1 z1u2x2y

j2
2 z2 . . . uixiy

ji

i zi . . . is in L.

Proof. Similar to the proof of the pumping lemma for finite words.

Proposition 1. There exists a mean-payoff language, defined by a 1-payoff automaton
and a threshold acceptance condition, that is not ω-regular.

Proof. Consider the 1-payoff automaton

a/2 b/− 1

3.3. EXPRESSIVENESS 37

We show that L = {w| inf mpA(w) ≤ 0} is not regular. For any p, the word w = (apb2p)ω

is in that language. Assuming, towards contradiction, that the language is regular and
using the pumping Lemma 7 on w, we can select as factors wi the sequences of a an
choose ji = 2 to obtain a word w′ that should be in L. But since mpA(w′) is a singleton
bigger than zero, w′ does not satisfy the acceptance condition and therefore is not in
L, a contradiction.

Proposition 2. There exists an ω-regular language that is not a mean-payoff language.

Proof. Let L = (a∗b)ω. We will show that, in any payoff automaton, we can find two ω-
words u1 and u2, u1 having infinitely many b and u2 having eventually only a, and such
that Acc(u1) = Acc(u2). Then obviously no general mean-payoff acceptance condition
can distinguish these two words although u1 ∈ L and u2 6∈ L.

Let us construct the counter-example. Suppose A is a payoff automaton recognizing
L with some predicate F . Let ca be a cycle such that λ(ca) contains only a’s and cb a
cycle such that λ(cb) contains at least one b, both starting in some state q in a terminal
strongly connected component of A, and let p be an initial run leading to q.

The mean-payoffs of the run r = p
∏∞

i=1 c
i
acb, which should be accepted, converge to

mpA(ca), which is also the mean-payoff of pcωa , which should be rejected but has to be
accepted by A, since it has the same mean-payoff as r.

3.3.2 Topology of Mean-Payoff Accumulation Points

In this section we discuss the structure of the set of accumulation points. In particu-
lar we characterize the sets that are the accumulation points of some run of a payoff
automaton.

If S is a strongly connected component of an automaton, and C is the set of simple
cycles in S, then we denote by ConvHull(S) the convex hull of {mp(c)|c ∈ C}.

Theorem 5. Let r be an infinite run of a d-payoff automaton, then Acc(r) is a closed,
connected and bounded subset of R

d.

Proof.

Closed: True for any set of accumulation points: let (an) be a sequence in a topological
space, and (xn) ∈ Acc(an)∞n=1 be a sequence of accumulation points converging to a
point x. For any xi, we can choose a sub-sequence (ain) converging to xi. Now we
can construct a sub-sequence of elements that converges to x: for every i, take the
first element aif(i)

of ain which is at a distance smaller than 2−i from xi such that
f(i) > f(i− 1). Then the sequence (aif(i)

)i∈N converges to x.

Bounded: As we are speaking of a sequence of averages of the (finite) set of payoffs, it
is clear that the sequence of mean-payoffs remains in the convex hull of that set, which
is bounded.

38 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

Connected: Proof by contradiction. Suppose there exists two disjoint open sets O1 and
O2 such that Acc(r) ⊆ O1 ∪ O2. Let d be the distance between O1 and O2. As those
sets are open and disjoint, d > 0. But the vector between two successive averages is
payoff(r↾n)/n − payoff(r↾n − 1)/n− 1 = (1/n)(payoff(r↾n − 1)) + w(r[n]) − n/(n −
1) payoff(r↾n−1)) = (1/n)(w(r[n])−mp(r↾n)), whose norm is smaller than ∆/n, where
∆ = max{‖w(t) − w(t′)‖|t, t′ ∈ δ}. If a run has accumulations points in both O1 and
O2, then there exist n > ∆/d such that the nth step is in O1 and the (n + 1)th in O2.
The distance between those two points has to be both greater than d and smaller than
∆/n, which is not possible.

As a remark, we can say more than boundedness: indeed a run eventually comes
into a SCC it never leaves. The contribution of the payoffs of the SCC becomes then
dominant as n goes to the infinity. Even better, actually, the contribution of the simple
cycles of that SCC is dominant. Thus the set of accumulation points is included in the
convex hull of the simple cycles of the SCC.

The following theorem is a converse to Theorem 5.

Theorem 6. For every non-empty, closed, bounded and connected set D ⊂ R
d, there

is a d-payoff automaton and a run r of that automaton such that Acc(r) = D.

Proof. Take any automaton with a reachable SCC such that D is contained in the
convex hull of the cycles of the SCC.

For every integer n > 0, let {Oi,n : i = 1, . . . , ln} be a finite coverage of D by open
sets of diameter smaller than 1/n. Such a coverage exists, for example, by covering D
by spheres of diameter 1/n.

Suppose p is a finite initial run going into the SCC. For every n and every i, we can
prolong p with a suffix c such that mp(pc) ∈ On,i and pc is in the SCC (form the end
of p onwards). For that, we need c to be long enough and have the right proportions
of simple cycles. Furthermore, as mp(pc↾l + 1) − mp(pc↾l) becomes smaller as l goes
to infinity, we can make the distance of mp(pc↾l) from D converge to zero as l goes to
infinity.

As the set (On,i)n,i∈N×N is countable, we can construct recursively the successive
suffixes c1,1, c1,2, . . . , c2,1, c2,2, . . . such that mp(pc1,1c1,2 . . .2,1 c2,2 . . . cn,i) is in On,i, and
such that for every l, mp(p

∏

ji∈N×N
cji↾l) is at a distance smaller than K/l from D.

Let x ∈ D. Then for every n, x ∈ On,i for some i, thus for every n, the sequence
of mean-payoffs comes within a radius 1/n from x, which means x is an accumulation
point. Conversely, if y 6∈ D, as D is closed, it is at a distance δ > 0 from D, moreover
there exist a l such that mp(pc↾l) never exits a radius ǫ < δ around D and therefore
the sequence of mean-payoff will never come in a radius δ − ǫ from y. So y is not an
accumulation point. We conclude that AccA(r) is exactly D.

Actually, as for Theorem 5, a careful examination of the proof reveals that a stronger
statement is true. Specifically, it is easy to verify that any closed, bounded and con-
nected set included in any of the SCC of an automaton is the set of accumulation points
of some run of that automaton.

3.3. EXPRESSIVENESS 39

3.3.3 Comparison of Threshold Mean-Payoff Languages

We study mean-payoff languages where the minimum and maximum of the set of ac-
cumulation points are compared with a given threshold. We assume, without loss of
generality, that the threshold is zero because changing the threshold is equivalent to
an affine transformation of the payoffs. We show that the different threshold languages
are incomparable in expressive power.

Definition 18. We denote by L⊲⊳ the class of mean-payoff languages accepted by a
1-payoff automaton with the condition min Acc(w) ⊲⊳ 0, where ⊲⊳ is <,>,≤ or ≥.

Note that these languages are the winning conditions used to define mean-payoff
games, e.g. in [53], because min Acc(w) = lim infn→∞ mpA(w↾n). We do not need to
discuss the class of languages defined as complements of these conditions because L>

is co L≤ and L≥ is co L<, where co L⊲⊳ is the set of languages defined as sets of words
that do not satisfy min Acc(w) ⊲⊳ 0 for some automaton.

Theorem 7. The classes L<, L≤,L≥ and L> are incomparable.

Proof. We begin by showing that L< and L≤ are incomparable. Consider the automaton
A1

a/− 1 b/0

and the language L1
def
= {w|min Acc(w) < 0}, which is the language of ω-words on

{a, b} having infinitely many prefixes where the proportion of as is above some con-
stant positive value. Suppose, towards contradiction, that there exists an automaton
A′

1 accepting L1 with a L≤ condition. Consider ca and cb two cycles in A′
1, labelled re-

spectively with a word in a(a+b)i and with bj for some integers i and j, and start from a
same reachable state q (two such cycles exist at least in any terminal strongly connected
component). Let p be a finite initial run ending at q. As pcωa is a run of A1 which should
be accepted, it is necessary that payoffA′

1
(ca) ≤ 0, and as pcωb should not be accepted, it

is necessary that payoffA′

1
(cb) > 0. For all k, the run p(cac

k
b)

ω should be accepted. So it

is necessary that for all k, payoffA′

1
(cac

k
b) ≤ 0. Thus payoffA′

1
(ca) + k payoffA′

1
(cb) ≤ 0,

which is possible if and only if payoffA′

1
(cb) ≤ 0 which contradicts payoffA′

1
(cb) > 0.

Thus L1 cannot be accepted by a L≤ condition.
Conversely, consider the automaton

a/1 b/0

with the language L2
def
= {w|min Acc(w) ≤ 0} of ω-words having prefixes with an

arbitrarily low proportion of as. Towards contradiction, assume that A′
2 is an automaton

accepting L2 with the L< acceptance contradiction. If ca, cb and p are defined in A′
2, the

same way as before, we should have payoffA′

2
(ca) ≥ 0 and payoffA′

2
(cb) < 0. For all k,

40 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

the run p(cac
k
b) should be rejected, so it is necessary that payoffA′

2
(cac

k
b) ≥ 0. Thus for

all k, payoffA′

2
(ca) + k payoffA′

2
(cb) ≥ 0, which is possible if and only if payoffA′

2
(cb) ≥ 0

and contradicts payoffA′

2
(cb) < 0. Therefore L2 cannot be expressed by a L< condition.

These counter examples can be adapted for proving that any class with strict in-
equality symbol is incomparable to any class with a weak inequality symbol. It remains
to prove the incompatibility of L< and L> and that of L≤ and L≥.

Consider the language L3 defined by the automaton

a/− 1 b/1

(denoted by A3) with the L≤ acceptance condition: L3
def
= {w|min Acc(w) ≤ 0}, that

is the set of ω-words having infinitely many prefixes with no more bs than as. Suppose,
towards contradiction, that A′

3 is an automaton defining the same language with a
L≥ condition. Choose two cycles ca and cb starting from two states qa and qb in a
same terminal SCC of A′

3, such that ca is labelled by al and cb is labelled by bm for
some l and m, an initial run p going to qb and two runs uab and uba going from qa
to qb and from qb to qa, respectively. Because pubac

ω
a should be accepted and pcωb

should be rejected, we must have payoffA′

3
(cb) < 0 and payoffA′

3
(ca) ≥ 0. Consider

r = p
∏

i∈N
c2

il
b ubac

2im
a uab. Then mpA3

(λ(p
∏n

i=0 c
2il
b ubac

2im
a uab)) converges to 0 as n goes

to infinity, thus λ(r) ∈ L3, and therefore r should be accepted by A′
3 with the L≥

condition. But mpA′

3
(λ(p

∏n
i=0 c

2il
b ubac

2im
a uabc

2n+1l
b)) converges to a negative limit, thus

r cannot be accepted by A′
3 with the L≥ condition, leading to contradiction.

Conversely, consider the language L4, defined with the same automaton, but with

the L≥ condition: L4
def
= {w|min Acc(w) ≥ 0}, the language of ω-words having finitely

many prefixes with more as than bs. Suppose A4 is an automaton defining the same
L4 with the L≤ condition. We can choose two cycles ca and cb starting from two
states qa and qb in a same terminal SCC of A′

4 such that ca is labelled by al and cb
is labelled by bm for some l and m, an initial run p going to qb and two runs uab and
uba going from qa to qb and from qb to qa. Then we should have payoffA′

4
(cb) ≤ 0

and payoffA′

4
(ca) > 0 (because pubac

ω
a should be rejected and pcωb should be accepted).

Consider r = p
∏

i∈N
ubac

2im
a uabc

2il
b . Then mpA3

(λ(p(
∏n

i=0 ubac
2im
a uabc

2il
b)ubac

2n+1m
a)) con-

verges to a negative limit as n goes to infinity, thus λ(r) 6∈ L, and hence r should be
rejected by A′

4 with the L≤ condition. But we show that r is actually accepted by A′
4

with the L≤ condition, as mpA′

4
(λ(p

∏n
i=0 ubac

2im
a uabc

2il
b)) converges to 0. This which

contradicts the fact that A′
4 recognizes L.

We have thus established the incomparability of L≥ and L≤. As L< and L> are the
classes of the complements of languages in respectively L≥ and L≤, it also implies the
incomparability of the latter pair.

The incompatibility of threshold classes shows how arbitrary the choice of only one
of them as a standard definition is. This suggests definition of a larger class including
all of those acceptance conditions.

3.3. EXPRESSIVENESS 41

3.3.4 Mean-Payoff Languages in the Borel Hierarchy

For a topological space X, we denote by Σ0
1 the set of open subsets by and Π0

1 the set
of closed subsets. The Borel hierarchy is defined inductively as the two sequences (Σ0

α)
and (Π0

α), where Σ0
α = (

⋃

β<α Π0
β)σ, and Π0

α = (
⋃

β<α Σ0
β)δ, where α and β are ordinals

and (•)σ, (•)δ denote closures under countable intersections and unions, respectively.

We consider the standard topology over Aω with the base {wAω : w ∈ A∗}, i.e. a
subset of Aω is open if and only if it is a union of sets, each set consists of all possible
continuations of a finite word.

Theorem 8. The following facts hold: L≤ ⊂ Π0
2, L≤ 6⊆ Σ0

2, L< ⊂ Σ0
3 and L< 6⊆ Π0

3.

Proof.

• Let L ∈ L≤, then there exists d ∈ N, a 1-payoff automaton A such that L = {w ∈
Aω|min(AccA(w)) ≤ 0}. Therefore we can write L as

L =
⋂

N∈N

{w ∈ Aω|∀m ∈ N∃n > mmpA(w↾n) < 1/N)}

=
⋂

N∈N,m∈N

⋃

n>m

{w ∈ Aω|mpA(w↾n) < 1/N)}.

For any N and m the condition mpA(w↾n) < 1/N) is independent of the suffix
past the nth symbol of w and therefore the set {w ∈ Aω|mpA(w↾n) < 1/N)} is
clopen. We get that L≤ ∈ Π0

2.

• We prove L> 6⊆ Π0
2, which is the same as L≤ 6⊆ Σ0

2 because L> = co L≤. Let L
be the set of words on alphabet A = {a, b} having more than negligibly many b.
We already demonstrated that L ∈ L>. Suppose L ∈ Π0

2. Then L =
⋂

i∈N
LiA

ω

for some family of languages of finite words Li. We can assume without loss of
generality that the words of Li have all length i. For all m, the word wm =
(
∏m−1

j=1 a2j

b)(a2m

b)ω ∈ L (as it is ultimately periodic with a period where the

proportion of b is not 0). For the word w =
∏∞

j=1 a
2j

b, it means that any prefix
w↾i of length i is in Li. This is a contradiction, because w /∈ L.

• For the two last items of the theorem: Chatterjee exhibited in [22] a Π0
3-hard

language in L≥. He also established that this class is included in Π0
3. As L≥ =

co L<, that proves what we need.

42 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

3.3.5 Dimensionality

In this section we analyze closure properties of mean-payoff languages defined by au-
tomata with a fixed dimension.

The following lemma shows that, for any d, the class of mean-payoff languages
definable by d-payoff automata is not closed under intersection.

Lemma 8. If d1 and d2 are two integers, then there exists L1 and L2, two mean-payoff
languages of dimensions d1 and d2 such that L1 and L2 contain only convergent words
and L1 ∩ L2 is not definable as a dimension d mean-payoff language with d < d1 + d2.

Proof. Let A = {a1, . . . , ad1} and B = {b1, . . . , bd2} be two disjoint alphabets. Let A1

be the one-state d1-payoff automaton on alphabet A ∪ B, such that the payoff of the
transition (q0, ai, q0) is 1 on the ith coordinate and 0 in the other coordinates and the
payoff of the transition (q0, bi, q0) is 0. And let A2 be the d2-payoff one-state automaton
defined similarly by swapping a and b.

Let Li be the language defined on Ai by predicate Fi, testing equality with the
singleton {li}, where li is in the simplex defined by the di + 1 different payoffs of the
transitions of Ai. In the proof of Theorem 6 we establish that the Li are not empty.

Let u ∈ (A+B)ω, then u is in L1 if and only if the proportion of ai in every prefix
tends to the ith coordinate of l1, and it is in L2 if and only if the proportion of bi in
every prefix tends to the ith coordinate of l2.

Then for u to be in L1 ∩ L2, it is necessary that the proportion of every symbols
tends to either a coordinate of l1, if that symbol is a ai, or a coordinate of l2, if it is a
bi.

Now suppose L1∩L2 is recognized by a d-payoff automaton with d < d1+d2. Choose
one terminal SCC of A and consider for every symbol a of the alphabet a cycle labeled
by a word in a∗, starting at some state qa. Let also be p an initial run going to qa and
for every pair of symbols a, b a path uab going from qa to qb.

Only looking at the runs in the language p{ua1ac
∗
auaa1|a ∈ A∪B}ω, it is possible to

converge to any proportion of the symbols of A∪B, and thus have runs whose labeling
word is in L. But as the payoffs are in dimension d, and the number of symbols is
d1 +d2 > d, that language also contains runs converging to different symbol proportions
but still having the same mean-payoff limit. Those runs are accepted by A but are not
labeled by a word in L.

Next, we prove that the intersection of two languages of dimensions d1 and d2 is
a language of dimension d1 + d2. This will be proved constructively, by showing that
the intersection language is the language defined on the product automaton with the
“product” condition. Before going to the statement of the lemma, we need to define
what those products are.

Definition 19. If F1 and F2 are predicates on 2R
d1 and 2R

d2 , we denote by F1 ⋓ F2

the predicate on 2R
d1+d2 which is true for X ⊆ R

d1+d2 if and only if F1(p1(X)) and

3.3. EXPRESSIVENESS 43

F2(p2(X)), where p1 is the projection on the d1 first coordinates and p2 on the d2 last
ones.

Definition 20 (Weighted automata product). If A1 = 〈A,Q1, q
1
0, δ1, w1〉 is a d1-payoff

automaton and A2 = 〈A,Q2, q
2
0, δ2, w2〉, a d2-payoff automaton, then we define A1 ⊗

A2 = 〈A,Q1 × Q2, (q
1
0, q

2
0), δ1⊗2, w1⊗2〉, the product of A1 and A2, a (d1 + d2)-payoff

automaton such that

• δ1⊗2 = {((q1, q2), a, (q
′
1, q

′
2))|(q1, a, q

′
1) ∈ δ1 ∧ (q2, a, q

′
2) ∈ δ2 ∧ a ∈ A},

• w1⊗2 : δ1⊗2 → R
d1+d2 is such that

if w1(q1, a, q
′
1) = (x1, . . . xd1) and w2(q2, a, q

′
2) = (y1, . . . yd2),

then w((q1, q2), a, (q
′
1, q

′
2)) = (x1, . . . xd1 , y1, . . . yd2).

But before we state the theorem, we need the following lemma:

Lemma 9. If r is a run of a d-payoff automaton A and p is a projection from R
d to

R
d′, with d′ < d, then Acc(p(mpA(r↾n))) = p(Acc(mpA(r↾n)))

Proof. Let x′ ∈ Acc(p(mpA(r ↾n))). For any i ∈ N, p(mpA(r ↾n)) eventually comes
into a distance 1/i from x′, for some index ni. For j > i mpA(r ↾ nj) remains in
B(x′, 1/i) ×K (where K is a compact of R

d−d′), as this product is compact, it has at
least one accumulation point. Thus the distance from x′ to p(Acc(mpA(r↾n))) is 0. But
Acc(mpA(r↾n)) is a closed set and p, being a projection, is continuous, so p(Acc(mp(r↾
n))) is closed too, which means x′ ∈ p(Acc(mpA(r↾n))), and so Acc(p(mp(r↾n))) ⊆
p(Acc(mpA(r↾n))).

Conversely, if x′ ∈ p(Acc(mpA(r ↾n))) a sub-sequence mpA(r ↾ni) converges to a
x such that x′ = p(x), and thus p(mpA(r ↾ni)) converges to x′, which means x′ ∈
Acc(p(mp(r↾n))). We conclude that Acc(p(mpA(r↾n))) = p(Acc(mpA(r↾n))).

Now we have all the needed tools, we can characterize the intersection of two mean-
payoff languages as another mean-payoff language defined on an automaton whose di-
mension is known.

Proposition 3. For any two d1-payoff and d2-payoff automata A1 and A2 and any
two predicates F1 and F2 on respectively 2R

d1 and 2R
d2 , the following equality holds:

L(A1, F1) ∩ L(A2, F2) = L(A1 ⊗ A2, F1 ⋓ F2).

Proof. Suppose u ∈ Aω, then the sequence of mean-payoffs of run r of u in A1 ⊗A2 are
the projections by p1 and p2 of the sequence of mean-payoffs of some runs r1 and r2 in
A1 and r2 in A2 whose labeling is u. And conversely, if u has runs r1 and r2 in A1 and
r2 in A2, then it has a run r in A1 ⊗A2 whose sequence of mean-payoffs projects by p1

and p2 onto those of r1 and r2.
If r, r1, and r2 are such runs (the payoffs of r projecting on those of r1 and r2), then

using lemma 9, we find that AccA(r1) = Acc(p1(mp(r↾n))) = p1(Acc(mp(r↾n))) and
that AccA(r2) = Acc(p2(mp(r↾n))) = p2(Acc(mp(r↾n))).

44 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

But by definition (F1 ⋓ F2)(Acc(mp(r ↾ n))) holds iff F1(p1(Acc(mp(r ↾ n)))) and
F2(p2(Acc(mp(r↾n)))) hold, thus it holds iff F1(AccA1(r1)) and F2(AccA2(r2)) hold.

From that we deduce that a word is in L(A ⊗A, F1 ⋓F2) if and only if it is both in
L(A1, F1) and L(A2, F2).

3.4 An Analyzable Class of Mean-Payoff Languages

3.4.1 Multi-Threshold Mean-Payoff Languages

As a candidate for a class of mean-payoff languages that is closed under complementa-
tion and includes all the expected standard mean-payoff language classes, we propose
the following definition.

Definition 21. A language L is a multi-threshold mean-payoff language (denoted by
L ∈ Lmt) if it is the mean-payoff language defined on some d-payoff automaton A, with
a predicate F such that F (S) is a Boolean combination of threshold conditions on pi(S)
where pi is the projection along the ith coordinate.

Example 3. Consider the automaton given in Example 1 and the multi-threshold mean-
payoff language

L = {w| min p1(Acc(w)) > .1 ∧ max p1(Acc(w)) < .9

∧min p2(Acc(w)) > .1 ∧ max p2(Acc(w)) < .9 }.

For the word w, defined in Example 1, the set of accumulation points is shown to be a
triangle that is contained in the box {x|.1 < p1(x) < .9∧ .1 < p2(x) < .9} and therefore
w ∈ L.

Geometrically, multi-threshold acceptance conditions can be visualized as specifying
constraints on the maximal and minimal projection of Acc(w) on the axes. Since we can
extend the payoff vectors by adding a coordinate whose values are a linear combination
of the other coordinates, also threshold constraints involving minimal and maximal
elements of the projection of Acc(w) on other lines are expressible, as shown in the
following example.

Example 4. Assume that, with the automaton given in Example 1, we want to accept
the words w such that Acc(w) is contained in the triangle (.2, .2)− (.8, .2)− (.2, .8). We
can do so by extending the dimension of the payoffs and renaming (0, 0) 7→ (0, 0, 0),
(1, 0) 7→ (1, 0, 1), and (1, 1) 7→ (1, 1, 2). Namely, by adding a coordinate whose value
is the sum of the other two coordinates. Then, L = {w|min p1(Acc(w)) > .2 ∧
min p2(Acc(w)) > .2 ∧ max p3(Acc(w)) < 1} is the wanted language.

3.4. AN ANALYZABLE CLASS OF MEAN-PAYOFF LANGUAGES 45

3.4.2 Closure under Boolean operations

We prove here that Lmt is in fact the Boolean closure of L⋚
def
= L< ∪ L≤ ∪ L> ∪ L≥.

Theorem 9. Lmt is closed under Boolean operations and any language in Lmt is a
Boolean combination of languages in L⋚.

Proof. Closure by complementation: let L be a Lmt language, defined on some automa-
ton A by a predicate P . w ∈ L iff P (AccA(w)). So w ∈ Lc iff w 6∈ L, that is iff
¬P (AccA(w)). But ¬P is also a Boolean combination of threshold conditions, thus Lc

is a Lmt language.
Closure by intersection: let L1 and L2 be two Lmt languages defined respectively on

the automata A and A by the predicates P1 and P2. Then L1∩L2 = L(A⊗A, P1 ⋓P2)
(Theorem 3). It is easy to see that P1 ⋓P2 is still a Boolean combination of thresholds,
and thus L(A ⊗ A, P1 ⋓ P2) is in Lmt.

The other Boolean operations can be written as a combination of complementation
and intersection.

Now we show, by induction on height of the formula of a predicate, that any Lmt

language is a Boolean combination of L⋚ languages.

We can, without loss of generality, suppose that every threshold concerns a different
coordinate (if a coordinate has several thresholds, we can duplicate that coordinate,
keeping the same values, and the language will remain the same). We can also assume
that the predicate is written only with combinations of conjunctions and negations of
thresholds.

• If the height is 0, that means that the condition is only one threshold on a multi-
payoff automaton. The recognized language is the same as that of the automaton
projected on the tested coordinate, so it is in L⋚.

• If the predicate is ¬P , then the recognized language is the complement of L(A, P),
which is a Boolean combination of Lmt languages of lesser height.

• If the predicate is P = P1 ∧ P2, let us call Ai, a copy of A whose payoffs are
projected on the subspace tested in Pi. Then A is isomorphic to A1 ⊗ A2. Fur-
thermore, as the set of coordinates that are tested in P1 and P2 are disjoint, their
exists some P ′

1 and P ′
2 with the same heights as P1 and P2, such that P = P ′

1 ⋓P ′
2.

Thus L = L(A1, P
′
1)∩L(A2, P

′
2) (Theorem 3), which is a Boolean combination of

Lmt languages of lesser height.

3.4.3 Decidability

Theorem 10. The emptiness of a language of Lmt is decidable.

46 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

Proof. We can assume the acceptance predicate is written in disjunctive normal form
(if not, we can find an equivalent DNF formula). Then we can see that a run is accepted
whenever its set of accumulation points satisfies at least one of the disjuncts, and in a
disjunct, every literal has to be satisfied. If we know how to check if a literal is satisfied,
then this provides an obvious decision algorithm for one run.

Then it is easy to see that there are two types of literals. Some require that there
must exist an accumulation point whose tested coordinate is greater or smaller than
the threshold, we call those existential literals. The other literals require that every
accumulation point should have the tested coordinate above or below the threshold,
those we call universal literals.

For checking the emptiness of L(A, F), we propose algorithm 2.

Algorithm 2 Multi-threshold mean-payoff language emptiness

for all disjunct δ of F do
for all reachable SCC C of A do

P (C) := convex hull of the payoffs of transitions in C
I := intersection of P (C) with every universal literal of δ
if I = ∅ then consider next disjunct

for all existential literal e of δ do
if I ∩ e = ∅ then consider next disjunct

return “L(A, F) 6= ∅”

return “L(A, F) = ∅”

If this algorithm returns that L(A, F) is not empty, it means that I is a convex poly-
hedron included in C and intersecting with every existential literal of some disjunct of
F and that we can construct I ′ which is connected, closed, included in I, and intersects
with every existential literal (take for instance the convex hull of a family consisting in
one point in every intersection of I with an existential literal). We can see that F (I ′)
holds. Then Theorem 6 says there exist a run r such that AccA(r) = I ′, and the word
whose run is r is in L(A, F).

If this algorithm returns that L(A, F) is empty, then for every reachable SCC C,
if you choose a closed connected subset D of P (C) then, for every disjunct, either D
is not completely included in some universal literal or D does not intersect with some
existential literal. In both case, D does not make the disjunct true. But Theorem 5
states that sets of accumulation points have to be closed, connected, and in P (C) for
some C. Thus F holds for no set of accumulation points of any run of A, which implies
that L(A, F) is empty.

3.5 Summary and Future Directions

We proposed a definition of ω-languages using Boolean combinations of threshold pred-
icates over mean-payoffs. This type of specifications allows to express requirements

3.5. SUMMARY AND FUTURE DIRECTIONS 47

concerning averages such as“no more than 10% of the messages are lost”or“the number
of messages lost is negligible”. The latter is not expressible by ω-regular requirements.
We showed that if closure under intersection is needed, multi-dimensional payoffs have
to be considered. For runs of d-payoff automata, we studied acceptance conditions
that examine the set of accumulation points and characterized those sets as all closed,
bounded and connected subsets of R

d.
The class of multi-threshold mean-payoff languages was proposed, using acceptance

conditions that are Boolean combinations of inequalities comparing the minimal or
maximal accumulation point along some coordinate with a constant threshold. We
studied expressiveness, closure properties, analyzability, and Borel complexity.

Possible directions for future include extension to non-deterministic automata, and
the study of multi-mean-payoff games.

48 CHAPTER 3. DEFINING LANGUAGES BY MEAN-PAYOFF CONDITIONS

Chapter 4

Volume and entropy of regular
timed languages

Résumé : Nous définissons deux mesures pour un langage temporisé : le volume de
ses sous-langages de mots à nombre d’événements fixe et l’entropie (vitesse de crois-
sance), mesure asymptotique pour un nombre non borné d’événements. Ces mesures
peuvent être utilisées pour la comparaison quantitative de langages, et l’entropie peut
être vue comme la quantité d’information par événement dans un mot typique du lan-
gage temporisé. Pour les langages acceptés par des automates temporisés déterministes,
nous donnons une formule exacte pour le volume. Ensuite, nous caractérisons l’entropie,
en utilisant des méthodes d’analyse fonctionnelle, en tant que logarithme du rayon spec-
tral d’un opérateur intégral positif. Nous établissons plusieurs méthodes pour calculer
l’entropie : une symbolique pour les automates que nos appelons « à une horloge et
demie », et deux numériques : une utilisant les techniques d’analyse fonctionnelle,
l’autre basée sur la discrétisation. Nous donnons une interprétation de l’entropie en
théorie de l’information en termes de complexité de Kolmogorov.

4.1 Introduction

Since early 90s, timed automata and timed languages are extensively used for modelling
and verification of real-time systems, and thoroughly explored from a theoretical stand-
point. However, two important, and closely related, aspects have never been addressed:
quantitative analysis of the size of these languages and of information content of timed
words. In this chapter, we formalize and solve these problems for a large subclass of
timed automata.

Recall that a timed word describes a behaviour of a system, taking into account
delays between events. For example, 2a3.11b means that an event a happened 2 time
units after the system start, and b happened 3.11 time units after a. A timed language,
which is just a set of timed words, may represent all such potential behaviours. Our
aim is to measure the size of such a language. For a fixed number n of events, we can

49

50 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

consider the language as a subset of Σn × R
n (that is of several copies of the space

R
n). A natural measure in this case is just Euclidean volume Vn of this subset. When

the number of events is not fixed, we can still consider for each n all the timed words
with n events belonging to the language and their volume Vn. It turns out that in most
cases Vn asymptotically behaves as 2nH for some constant H that we call entropy of
the language.

The information-theoretic meaning of H can be stated as follows: for a small ε, if
the delays are measured with a finite precision ε, then using the words of the language
L with entropy H one can transmit H + log(1/ε) bits of information per event (see
Thms. 7-8 below for a formalization in terms of Kolmogorov complexity).

There can be several potential applications of these notions:

• The most direct one is capacity estimation for an information transmission channel
or for a time-based information flow.

• When one overapproximates a timed language L1 by a simpler timed language L2

(using, for example, some abstractions as in [12]), it is important to assess the
quality of the approximation. Comparison of entropies of L1 and L2 provides such
an assessment.

• In model-checking of timed systems, it is often interesting to know the size of the
set of all behaviours violating a property or of a subset of those presented as a
counter-example by a verification tool.

In this chapter, we explore, and partly solve the following problems: given a prefix-
closed timed language accepted by a timed automaton, find the volume Vn of the set of
accepted words of a given length n and the entropy H of the whole language.

Related Work.

Our problems and techniques are inspired by works concerning the entropy of finite-
state languages (cf. [41], where entropy is studied in the context of dynamical systems,
yielding precise results for sofic shifts, in other words finite-state automata). There the
cardinality of the set Ln of all elements of length n of a prefix-closed regular language
also behaves as 2nH for some entropy H. This entropy can be found as logarithm of
the spectral radius of adjacency matrix of reachable states of A.1 The main technical
tool used to compute the entropy of finite automata is the Perron-Frobenius theory for
positive matrices, and, in this chapter, in a first approach we will use its extensions to
infinite-dimensional operators [38]. In a second approach, we also propose to reduce
our problem by discretization to entropy computation for some discrete automata.

In [18, 49] probabilities of some timed languages and densities in the clock space are
computed. Our formulae for fixed-length volumes can be seen as specialization of these
results to uniform measures. As for unbounded languages, they use stringent condition

1This holds also for automata with multiplicities, see [41].

4.2. PROBLEM STATEMENT 51

of full simultaneous reset of all the clocks at most every k steps, and under such a
condition, they provide a finite stochastic class graph that allows computing various
interesting probabilities. We use a much weaker hypothesis (every clock to be reset at
most every D steps, but these resets need not be simultaneous), and we obtain only the
entropy.

In [13] probabilities of LTL properties of one-clock timed automata (over infinite
timed words) are computed using Markov chains techniques. It would be interesting to
try to adapt our methods to this kind of problems.

Last, our studies of Kolmogorov complexity of rational elements of timed languages,
relating this complexity to the entropy of the language, remind of earlier works on com-
plexity of rational approximations of continuous functions [11, 48], and those relating
complexity of trajectories to the entropy of dynamical systems [17, 48].

Chapter Organization

This chapter is organized as follows. In Sect. 4.2 we define volumes of fixed-length
timed languages and entropy of unbounded-length timed languages. We identify a
subclass of deterministic timed automata, whose volumes and entropy are considered
in the rest of the chapter, and a normal form for such automata. Finally, we provide
an algorithm for computing the volumes of languages of such automata. In Sect. 4.3
we define a functional space associated to a timed automaton and a positive operator
on this space. We rephrase the formulas for the volume in terms of this operator.
Next, we state the main result of the chapter: a characterization of the entropy as
the logarithm of the spectral radius of this operator. Such a characterization could
seem too abstract but later on, in sections 4.4-4.5 we give three practical procedures for
approximate computing this spectral radius. First, we show how to solve the eigenvector
equation symbolically in case of timed automata with 11

2
clocks defined below. Next,

for general timed automata we apply a “standard” iterative procedure from [38] and
thus obtain an upper and a lower bound for the spectral radius/entropy. These bounds
become tighter as we make more iterations. Last, in Sect. 4.5, also for general timed
automata, we devise a procedure that provides upper and lower bounds of the entropy
by discretization of the timed automaton. In the same section, and using the same
method, we give an interpretation of the entropy of timed regular languages in terms
of Kolmogorov complexity. We conclude the chapter by some final remarks in Sect.
4.7. Throughout the chapter, the concepts and the techniques are illustrated by several
running examples.

4.2 Problem Statement

4.2.1 Geometry, Volume and Entropy of Timed Languages

We recall that a timed word of length n over an alphabet Σ is a sequence w =
t1a1t2 . . . tnan, where ai ∈ Σ, ti ∈ R and 0 ≤ ti (notice that in this chapter we rule

52 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

out timed words ending by a time delay), where ti represents the delay between the
events ai−1 and ai. We introduce, for a timed word w of length n, its untiming
η(w) = a1, . . . , an ∈ Σn (which is just a discrete word), and its timing which is a
point θ(w) = (t1, . . . , tn) in R

n. A timed language L is a set of timed words. For a fixed
n, we define the n-volume of L as follows:

Vn(L) =
∑

v∈Σn

Vol{θ(w) | w ∈ L, η(w) = v},

where Vol stands for the standard Euclidean volume in R
n. In other words, we sum up

over all the possible untimings v of length n the volumes of the corresponding sets of
delays in R

n. In case of regular timed languages, these sets are polyhedral, and hence
their volumes (finite or infinite) are well-defined.

We associate with every timed language a sequence of n-volumes Vn. We will show
in Sect. 4.2.5 that, for languages of deterministic timed automata, Vn is a computable
sequence of rational numbers. However, we would like to find a unique real number
characterizing the asymptotic behaviour of Vn as n → ∞. Typically, Vn depends ap-
proximately exponentially on n. We define the entropy of a language as the rate of this
dependence.

Formally, for a timed language L we define its entropy as follows2 (all logarithms
in the chapter are base 2):

H(L) = lim sup
n→∞

log Vn

n
.

Remark 1. Many authors consider a slightly different kind of timed words: sequences
w = (a1, d1), . . . , (an, dn), where ai ∈ Σ, di ∈ R and 0 ≤ d1 ≤ · · · ≤ dn, with di

representing the date of the event ai. This definition is in fact isomorphic to ours by
a change of variables: t1 = d1 and ti = di − di−1 for i = 2..n. It is important for us
that this change of variables preserves the n-volume, since it is linear and its matrix
has determinant 1. Therefore, choosing date (di) or delay (ti) representation has no
influence on language volumes (and entropy). As both notations are equivalent, we
prefer using the same convention as in the first chapter of the thesis.

4.2.2 Three Examples

To illustrate the problem consider the languages recognized by three timed automata
on Fig. 4.1. Two of them can be analysed directly, using definitions and common sense.
The third one resists naive analysis, it will be used to illustrate more advanced methods
throughout the chapter.

2In fact, due to Assumption A2 below, the languages we consider in the chapter are prefix-closed,
and lim sup is in fact a lim. This will be stated formally in Cor. 1.

4.2. PROBLEM STATEMENT 53

A1

p

a, x ∈ [2; 4]/x := 0

b, x ∈ [3; 10]/x := 0

A2

p q

a, x ∈ [0; 4]

b, x ∈ [2; 4]/x := 0

A3

p q

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

Figure 4.1: Three simple timed automata A1,A2,A3

Rectangles.

Consider the timed language defined by the expression

L1 = ([2; 4]a+ [3; 10]b)∗ ,

recognized by A1 of Fig. 4.1.
For a given untiming w ∈ {a, b}n containing k letters a and n− k letters b, the set

of possible timings is a rectangle in R
n of a volume 2k7n−k (notice that there are Ck

n

such untimings). Summing up all the volumes, we obtain

Vn(L1) =
n

∑

k=0

Ck
n2k7n−k = (2 + 7)n = 9n,

and the entropy H(L1) = log 9 ≈ 3.17.

A Product of Trapezia.

Consider the language defined by the automaton A2 on Fig. 4.1, that is containing
words of the form t1as1bt2as2b . . . tkaskb such that 2 ≤ ti + si ≤ 4. Since we want
prefix-closed languages, the last skb can be omitted.

s2 4

2

4
t

Figure 4.2: Timings (ti, si) for A2.

For an even n = 2k the only possible untiming is (ab)k. The set of timings in R
2k

is a Cartesian product of k trapezia 2 ≤ ti + si ≤ 4. The surface of each trapezium

54 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

equals S = 42/2 − 22/2 = 6, and the volume V2k(L2) = 6k. For an odd n = 2k + 1 the
same product of trapezia is combined with an interval 0 ≤ tk+1 ≤ 4, hence the volume
is V2k+1(L2) = 6k · 4. Thus the entropy H(L2) = log 6/2 ≈ 1.29.

Our Favourite Example.

The language recognized by the automaton A3 on Fig. 4.1 contains the words of the
form t1at2bt3at4b . . . with ti + ti+1 ∈ [0; 1]. Notice that the automaton has two clocks
that are never reset together. The geometric form of possible untimings in R

n is defined
by overlapping constraints ti + ti+1 ∈ [0; 1].

It is not so evident how to compute the volume of this polyhedron. A systematic
method is described below in Sect. 4.2.5. An ad hoc solution would be to integrate
1 over the polyhedron, and to rewrite this multiple integral as an iterated one. The
resulting formula for the volume is

Vn(L3) =

∫ 1

0

dt1

∫ 1−t1

0

dt2

∫ 1−t2

0

dt3 . . .

∫ 1−tn−1

0

dtn.

This gives the sequence of volumes:

1;
1

2
;
1

3
;

5

24
;

2

15
;

61

720
;

17

315
;

277

8064
; . . .

In the sequel, we will also compute the entropy of this language.

4.2.3 Subclasses of Timed Automata

In the rest of the chapter, we compute volumes and entropy for regular timed languages
recognized by some subclasses of timed automata (TA). We recall here briefly what a
TA and its language are, but the reader is advised to read [3] for details.

Definition 1. A timed automaton is a tuple A = (Q,Σ, C,∆, q0) where

• Q is a finite set of control locations or discrete states,

• Σ is a finite set of symbols, the alphabet,

• C is a finite set of clocks,

• ∆ ⊆ Q× Σ ×G×R×Q is the set of discrete transitions, where

– G is the set of guards, a guard being a condition on clock values i.e. a subset
of R

C,

– R is the set of resets r ∈ R
C → R

C, r(x1, . . . , x|C|) = (y1, . . . , y|C|) where yi

is either 0 if i is a clock reset by r, or xi.

• and q0 ∈ Q is the initial location.

4.2. PROBLEM STATEMENT 55

We do not need to specify accepting states due to A2 below, neither we need any
invariants.

A generic state of A is a pair (q,x) of a control location and a vector of clock values
in R

C . A generic element of ∆ is written as δ = (q, a, g, r, q′) meaning a transition from
q to q′ with label a, guard g and reset r.

A state (q,x) can be transformed into another state (q′,x′) by either

• a timed transition: letting τ units of time pass, such that q′ = q and x′ = x + τ
(τ is added to all the clock values),

• a discrete transition δ = (q, a, g, r, q′), only possible if x ∈ g, and implying that
x′ = r(x).

A run of the automaton A is a sequence of transitions starting from q0. The language
of the automaton A is the set of sequence of the labels of the its runs, where the label
of a timed transition is its duration.

Several combinations of the following Assumptions will be used in the sequel:

A1. The automaton A is deterministic3.

A2. All its states are accepting.

A3. Guards are rectangular (i.e. conjunctions of constraints Li ≤ xi ≤ Ui, strict
inequalities are also allowed). Every guard upper bounds at least one clock.

A4. There exists a D ∈ N such that on every run segment of D transitions, every clock
is reset at least once.

A5. There is no punctual guards, that is in any guard Li < Ui.

We call an automaton nice if it satisfies A1 − A4.
Below we motivate and justify these choices:

A1: Most of known techniques to compute entropy of untimed regular languages work
on deterministic automata. Indeed, these techniques count paths in the automaton,
and only in the deterministic case their number coincides with the number of
accepted words. The same is true for volumes in timed automata. It can be shown
that any TA satisfying A4 can be determinized.4

A2: Prefix-closed languages are natural in the entropy context, and somewhat easier to
study. These languages constitute the natural model for the set of behaviours of
causal systems.

A3: If a guard of a feasible transition is infinite, the volume becomes infinite. We
conclude that A3 is unavoidable and almost not restrictive.

3That is any two transitions with the same source and the same label have their guards disjoint.
4We thank R. Lanotte for pointing this to us.

56 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

a, x ∈ [0; 1]

Figure 4.3: An automaton without resets

A4: We use this variant of non-Zenoness condition several times in our proofs and
constructions. As the automaton of Fig. 4.3 shows, if we omit this assumption
some anomalies can occur.

The language of this automaton is

L = {t1a . . . tna | 0 ≤
∑

ti ≤ 1},

and Vn is the volume of an n-dimensional simplex defined by the constraints 0 ≤
∑

ti ≤ 1, and 0 ≤ ti. Hence Vn = 1/n! which decreases faster than any exponent,
which is too fine to be distinguished by our methods. Assumption A4 rules out
such anomalies.

This assumption is also the most difficult to check. A possible way would be to
explore all simple cycles in the region graph and to check that all of those reset
every clock.

A5: While assumptions A1-A4 can be restrictive, we always can remove the transitions
with punctual guards from any automaton, without changing the volumes Vn.
Hence, A5 is not restrictive at all, as far as volumes are considered. In Sect. 4.6
we do not make this assumption.

4.2.4 Preprocessing Timed Automata

In order to compute volumes Vn and entropy H of the language of a nice TA, we first
transform this automaton into a normal form, which can be considered as a (timed)
variant of the region graph.

Although the reader can find more details about the region equivalence in [3], here
we give a quick definition of it for a TA satisfying A3. We denote by M the highest
finite constant against which a clock can be tested in a guard of the TA. Two clock
vectors in R

C , (x1, . . . , x|C|) and (y1, . . . , y|C|), are region-equivalent if

• for all i and j in C, frac(xi) ≤ frac(xj) iff frac(yi) ≤ frac(yj),

• for all i ∈ C, frac(xi) = 0 iff frac(yi) = 0,

• and for all i ∈ C, either ⌊xi⌋ = ⌊yi⌋ or xi and yi are both greater than M ,

4.2. PROBLEM STATEMENT 57

where frac(x) stands for the fractional part of the real number x, ⌊x⌋ for its integer
part, and M for the highest constant. An equivalence class of this relation is called a
clock region, and the quotient of the TA by this equivalence is called region graph.

We say that a TA A = (Q,Σ, C, δ, q0) is in a region-split form if A1, A2, A4 and
the following properties hold:

B1. Each location and each transition of A is visited by some run starting at (q0, 0).

B2. For every location q ∈ Q a unique clock region rq (called its entry region) exists,
such that the set of clock values with which q is entered is exactly rq. For the
initial location q0, its entry region is the singleton {0}.

B3. The guard g of every transition δ = (q, a, g, r, q′) ∈ ∆ is just one clock region.

Notice, that B2 and B3 imply that r(g) = rq′ for every δ.

Proposition 4. Given a nice TA A, a region-split TA A′ accepting the same language
can be constructed 5.

Proof sketch. Let A = (Q,Σ, C,∆, q0) be a nice TA and let Reg be the set of
its regions. The region-split automaton A′ = (Q′,Σ, C,∆′, q′0) can be constructed as
follows:

1. Split every state q into substates corresponding to all possible entry regions. For-
mally, just take Q′ = Q× Reg.

2. Split every transition from q to q′ according to two clock regions: one for the clock
values when q is entered, another for clock values when q is left. Formally, for
every δ = (q, a, g, r, q′) of A, and every two clock regions r and r′ such that r′ is
reachable from r by time progress, and r′ ⊂ g, we define a new transition of A′

δ′
rr

′ = ((q, r), a, r′, r, (q′, r(r′))) .

3. Take as initial state q′0 = (q0, {0}).

4. Remove all the states and transitions not reachable from the initial state.

It can be shown that A and A′ recognize the same language.

We could work with the region-split automaton, but it has too many useless (degen-
erate) states and transitions, which do not contribute to the volume and the entropy
of the language. This justifies the following definition: we say that a region-split TA is
fleshy if the following holds:

5Notice that due to A3 all the guards of original automaton are bounded w.r.t. some clock. Hence,
the same holds for smaller (one-region) guards of A′, that is the infinite region [M ;∞)|C| never occurs
as a guard.

58 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

p
x = 0

q
x ∈ (0; 1)

(0; 1)
q

x ∈ (1; 2)
q

x ∈ (2; 3)
q

x ∈ (3; 4)

(1; 2)
(2; 3)

a, x ∈ (3; 4)

b, x ∈ (2; 3)/x := 0

b, x ∈ (3; 4)/x := 0

p
x ∈ (0; 1)

y = 0

q
x = 0

y ∈ (0; 1)

a, x ∈ (0; 1)/x := 0

b, y ∈ (0; 1)/y := 0

p
x = 0
y = 0

a, x ∈ (0; 1)/x := 0

Figure 4.4: Fleshy region-split forms of automata A2 and A3 from Fig. 4.1. An entry
region is drawn at each location.

B4. For every transition δ its guard g has no constraints of the form x = c in its
definition.

Proposition 5. Given a region-split TA A accepting a language L, a fleshy region-split
nice TA A′ accepting a language L′ ⊂ L with Vn(L′) = Vn(L) and H(L′) = H(L) can
be constructed.

Proof sketch. The construction is straightforward:

1. Remove all non-fleshy transitions.

2. Remove all the states and transitions that became unreachable.

Inclusion L′ ⊂ L is immediate. Every path in A (of length n) involving a non-fleshy
(punctual) transition corresponds to the set of timings in R

n which is degenerate (its
dimension is smaller than n), hence it does not contribute to Vn.

From now on, we suppose w.l.o.g. that the automaton A is in a fleshy region-split
form (see Fig. 4.4).

4.2.5 Computing Volumes

Given a timed automaton A satisfying A1-A3, we want to compute n-volumes Vn of its
language. In order to obtain recurrent equations on these volumes, we need to take into
account all possible initial locations and clock configurations. For every state (q,x), let
L(q,x) be the set of all the timed words corresponding to the runs of the automaton
starting at this state, let Ln(q,x) be its sublanguage consisting of its words of length
n, and vn(q,x) the volume of this sublanguage. Hence, the quantity we are interested
in, is a value of vn in the initial state:

Vn = vn(q0, 0).

4.3. OPERATOR APPROACH 59

By definition of runs of a timed automaton, we obtain the following language equa-
tions:

L0(q,x) = ε;

Lk+1(q,x) =
⋃

(q,a,g,r,q′)∈∆

⋃

τ :x+τ∈g

τaLk(q
′, r(x + τ)).

Since the automaton is deterministic, the union over transitions (the first
⋃

in the
formula) is disjoint. Hence, it is easy to pass to volumes:

v0(q,x) = 1; (4.1)

vk+1(q,x) =
∑

(q,a,g,r,q′)∈∆

∫

τ :x+τ∈g

vk(q
′, r(x + τ)) dτ. (4.2)

Remark that for a fixed location q, and within every clock region, as defined in [3],
the integral over τ : x + τ ∈ g can be decomposed into several

∫ u

l
with bounds l and u

either constants or of the form c− xi with c an integer and xi a clock variable.
Also remark that v0, the volume function for paths of length 0, has value 1 on

every state, which may look like an arbitrary choice or a convention for defining an
Euclidian 0-volume. However, paths of fleshy transitions going to an accepting state
must yield a positive value, and this value has to be obtained by integrating v0 several
times. This implies that v0 should have positive values in all accepting states, i.e. in all
states. Moreover, if this positive value is 1, the integral formula is consistant with the
conventional definition of the Euclidian n-volume for n ≥ 1. But it is clear from the
subsequent results that any other choice of positive values for v0 would yield the same
asymptotical growth rate, i.e. the same entropy.

These formulas lead to the following structural description of vn(q,x), which can be
proved by a straightforward induction.

Lemma 1. The function vn(q,x) restricted to a location q and a clock region can be
expressed by a polynomial of degree n with rational coefficients in variables x.

Thus in order to compute the volume Vn one should find by symbolic integration
polynomial functions vk(q,x) for k = 0..n, and finally compute vn(q0, 0).

Theorem 1. For a timed automaton A satisfying A1-A3, the volume Vn is a rational
number, computable from A and n using the procedure described above.

4.3 Operator Approach

In this central section of the chapter, we develop an approach to volumes and entropy
of languages of nice timed automata based on functional analysis, first introduced in
[7].

We start in 4.3.1 by identifying a functional space F containing the volume functions
vn. Next, we show that these volume functions can be seen as iterates of some positive

60 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

integral operator Ψ on this space applied to the unit function (Sect. 4.3.2). We explore
some elementary properties of this operator and its iterates in 4.3.3. This makes it
possible to apply in 4.3.4 the theory of positive operators to Ψ and to deduce the main
theorem of this chapter stating that the entropy equals the logarithm of the spectral
radius of Ψ.

4.3.1 The Functional Space of a TA

In order to use the operator approach we first identify the appropriate functional space
F containing volume functions vn.

We define S as the disjoint union of all the entry regions of all the states of A.
Formally, S = {(q,x) | x ∈ rq}. The elements of the space F are bounded continuous
functions from S to R. The uniform norm ‖u‖ = supξ∈S |u(ξ)| can be defined on F,
yielding a Banach space structure. We can compare two functions in F pointwise, thus
we write u ≤ v if ∀ξ ∈ S : u(ξ) ≤ v(ξ). For a function f ∈ F we sometimes denote
f(p, x) by fp(x). Thus, any function f ∈ F can be seen as a finite collection of functions
fp defined on entry regions rp of locations of A. The volume functions vn (restricted to
S) can be considered as elements of F.

4.3.2 Volumes Revisited

Let us consider again the recurrent formula (4.2). It has the form vk+1 = Ψvk, where
Ψ is the positive linear operator on F defined by the equation:

Ψf(q,x) =
∑

(q,a,g,r,q′)∈∆

∫

x+τ∈g

f(q′, r(x + τ)) dτ. (4.3)

We have also v0 = 1. Hence vn = Ψn1, and the problem of computing volumes and
entropy is now phrased as studying iterations of a positive bounded linear operator Ψ
on the functional space F. The theory of positive operators guarantees, that under some
hypotheses, vn is close in direction to a positive eigenvector v∗ of Ψ, corresponding to
its leading eigenvalue ρ. Moreover, values of vn will grow/decay exponentially like ρn.
In the sequel, we refer to the book [38] when a result concerning positive operators is
needed.

4.3.3 Exploring the Operator Ψ

Let us first state some elementary properties of this operator, starting by rewriting (4.3)
as an operator on F and separating all its summands.

(Ψf)q(x) =
∑

δ=(q,...,q′)∈∆

(ψδfq′)(x). (4.4)

4.3. OPERATOR APPROACH 61

For δ = (q, a, g, r, q′) the operator ψδ acts from the space C(rq′) of bounded continuous
functions on the target region to the space C(rq) of functions on the source region. It
is defined by the integral:

ψδf(x) =

∫

x+τ∈g

f(r(x + τ)) dτ.

Iterating (4.4), we obtain a formula for powers of operator Ψ

(Ψkf)p(x) =
∑

δ1...δk from p to p′

(ψδ1 . . . ψδk
fp′)(x). (4.5)

Now we need some results on the iterations of ψδ. For this, first we state some useful
properties of ψδ and its partial derivatives:

Proposition 6. For any f ∈ C(rq):

1. If f ≥ 0 and f is not identically 0 then ψδf is not identically 0.

2. ‖ψδf‖ ≤ ‖f‖ (in other words, ‖ψδ‖ ≤ 1).

3. If δ resets xi then ψδf is continuously differentiable by xi and
‖ ∂

∂xi
ψδf‖ ≤ 2‖f‖

4. If δ does not reset xi and f is continuously differentiable by xi, then ψδf is con-
tinuously differentiable by xi and ‖ ∂

∂xi
ψδf‖ ≤ 2‖f‖ + ‖ ∂

∂xi
f‖.

Proof.

(1) Let x1 ∈ rq′ be such that f(x1) > 0.
By B2 and B3, we know that there exists x2 ∈ g such that r(x2) = x1. As x2 ∈ g,

there also exists x3 ∈ rq and τ ∈ R≥0 verifying x2 = x3 + τ0.
Furthermore, because δ is fleshy, there exists τ1 and τ2, τ1 < τ2, such that for every

τ ∈ [τ1, τ2], x3 + τ ∈ g.
Put together, the integration interval of ψδf(x3) =

∫

x3+τ∈g
f(r(x3+τ)) dτ contains a

value τ0, for which the integrated function is positive, and includes [τ1, τ2], thus is neither
empty nor a singleton. The integrated function being non-negative and continuous, its
integral, ψδf(x3), is positive.

(2) In ψδf(x) =
∫

x+τ∈g
f(r(x + τ)) dτ , we estimate |f(·)| from above by the constant

‖f‖ and the length of the integration interval by 1, as it is included in the region g.
This gives us the requested bound.

(3) As r resets xi, f(q′, r(x + τ)) does not depend on xi, and thus ψδ(q, x) =
∫

x+τ∈g
f(q′, r(x + τ)) dτ is differentiable by xi. Its derivative is

∂

∂xi

ψδf(q,x) =
∂

∂xi

∫

x+τ∈g

f(q′, r(x + τ)) dτ (4.6)

= ±(f(q′, r(x + τmax) − f(q′, r(x + τmin))). (4.7)

62 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

The choice of + or − sign in the line (4.7) and the bounds τmax and τmin depend on
the form of the guard.

First, observe that the latter term is a sum of continuous functions and, as such, is
continuous. Furthermore, this term is bounded in absolute value by 2‖f‖. Thus, we
prove | ∂

∂xi
ψδf(q,x)| ≤ 2‖f‖.

(4) As f is differentiable by xi, then so is ψδf(q,x) =
∫

x+τ∈g
f(q′, r(x + τ)) dτ . Let us

differentiate it:

∂

∂xi

ψδf(q,x) =
∂

∂xi

∫

x+τ∈g

f(q′, r(x + τ)) dτ

∂

∂xi

ψδf(q,x) = ± (f(q′, r(x + τmax) − f(q′, r(x + τmin)))

+

∫

x+τ∈g

∂

∂xi

f(q′, r(x + τ)) dτ.

The resulting expression is still continuous in xi. Indeed the newly added term in
the last equality is an integral of a continuous function that does not depend on xi on
an interval that continuously depends on xi.

We already stated that |(f(q′, r(x+ τmax)− f(q′, r(x+ τmin)))| is smaller than 2‖f‖.
Also in

∫

x+τ∈g

∂
∂xi
f(q′, r(x+ τ)) dτ , we can estimate the integrated function from above

by the norm ‖ ∂
∂xi
f‖. As the integration interval is smaller than 1, the integral is

smaller than this norm too. Hence, the required inequality holds: | ∂
∂xi
ψδf(q,x)| ≤

2‖f‖ + ‖ ∂
∂xi
f‖.

Now, we can prove the following result on the powers of Ψ.

Proposition 7. Consider operator Ψ.

1. If f ≥ 0 is not zero on p′ and there is a path of length k from p to p′ then Ψkf is
not identically zero on p.

2. For D defined in assumption A4 there exists a constant E ∈ R such that for any
f ∈ F the following estimate hold:

∀i :

∥

∥

∥

∥

∂

∂xi

ΨDf

∥

∥

∥

∥

≤ E‖f‖.

Proof.

(1) This is a straightforward induction using (4.5) and Prop. 6-1.

(2) For some xi, and a location p, the following equality holds:

∂

∂xi

(ΨDf)p(x) =
∑

δ1...δD from p to p′

∂

∂xi

(ψδ1 . . . ψδD
fp′)(x).

4.3. OPERATOR APPROACH 63

Let us consider one term of this sum corresponding to one path. By hypothesis, in
this path, there is a first transition δk, 1 ≤ k ≤ D, such that δk resets xi.

By Prop. 6-3, ψδk
. . . ψδD

fp′ is continuously differentiable by xi. By induction and
using Prop. 6-4, it follows that ψδ1 . . . ψδk

. . . ψδD
fp′ is also continuously differentiable

by xi.

Now we differentiate this term. For every j, 1 ≤ j ≤ D, iterating Prop. 6-
2 D − j times, we obtain

∥

∥ψδj
. . . ψδD

fp′
∥

∥ ≤ ‖f‖. Thus, by Prop. 6-3, we have
∥

∥

∥

∂
∂xi
ψδk

. . . ψδD
fp′

∥

∥

∥
≤ 2 ‖f‖. It follows by induction on the path, using Prop. 6-4,

that
∥

∥

∥

∂
∂xi
ψδ1 . . . ψδk

. . . ψδD
fp′

∥

∥

∥
≤ 2k ‖f‖.

Now, if we come back to the sum, we have, at least, the following bound:

∥

∥

∥

∥

∂

∂xi

(ΨDf)p

∥

∥

∥

∥

≤ 2dDD‖f‖,

with d: maximal degree of the underlying graph of ∆, which is true for every p, therefore
‖ ∂

∂xi
ΨDf‖ ≤ 2dDD‖f‖.

Now we are ready to prove the following important property of Ψ:

Theorem 2. The operator ΨD is compact on F.

Proof. Consider B – the unit ball of F. Let us prove that ΨDB is a compact set. This
set is clearly bounded. It follows from Prop. 7-2, that the whole set ΨDB is Lipschitz
continuous with constant E#C, where #C is the dimension of the clock space. Hence
it is equicontinuous, and, by Arzela-Ascoli theorem, compact.

Next two lemmata will be used in the proof of the Main Theorem. Denote by ρ the
spectral radius of Ψ.

Lemma 2. If ρ > 0 then it is an eigenvalue of Ψ with an eigenvector v∗ ≥ 0.

of Lemma. According to Thm. 9.4 of [38] the statement holds for every positive linear
operator with a compact power. Thus, the result follows immediately from Thm. 2.

Lemma 3. If ρ > 0 then the eigenvector v∗ satisfies v∗(q0, 0) > 0.

Proof. Let (p,x) be a state for which v∗ is positive. Consider a path from (q0, 0) to
(p,x), and let k be its length. By Prop. 7-1, the function Ψkv∗ is not identically zero on
the region of (q0, 0). Since this region is a singleton, this means that (Ψkv∗)(q0, 0) > 0.
Since v∗ is an eigenvector, we rewrite this as ρkv∗(q0, 0) > 0, and the statement is
immediate.

64 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

4.3.4 Main Theorem

The main result of this chapter can now be stated.

Theorem 3. For any nice TA A the entropy H of its language coincides with logarithm
of the spectral radius of the Ψ operator defined on F.

Proof. Notice that

Vn = vn(q0; 0) ≤ ‖vn‖ = ‖Ψn1‖ ≤ ‖Ψn‖.

Taking logarithm and dividing by n, we obtain log Vn/n ≤ log ‖Ψn‖/n.
The limit of the right-hand side is log ρ due to Gelfand’s formula for spectral radius:

ρ = limn→∞ ‖Ψn‖1/n. Thus, we obtain the required upper bound for the entropy:

H = lim sup
n→∞

log Vn/n ≤ log ρ.

In the case when ρ > 0 we also have to prove the lower bound. In this case Lemma 2
applies and an eigenvector v∗ ≥ 0 with norm 1 exists. This yields the inequality v∗ ≤ 1,
to which, for any natural n, we can apply the positive operator Ψn. Using the fact
that v∗ is an eigenvector and the formula for vn we obtain ρnv∗ ≤ vn. Then, taking the
values of the functions in the initial state we get ρnv∗(q0; 0) ≤ Vn. Hence, by Lemma 3,
denoting the positive number v∗(q0; 0) by δ: ρnδ ≤ Vn. Taking logarithm, dividing by
n, and taking the limit we obtain:

log ρ ≤ lim inf
n→∞

log Vn/n = H.

The following result is immediate from the proof of the Theorem.

Corollary 1. For any nice TA A the lim sup in the definition of the entropy is in fact
a limit, that is H = limn→∞ log Vn/n.

After stating those important results, some remarks come to mind.

Remark 2. The proof of Thm. 3 shows how important it was that every state was
accepting: it was possible to find an eigenvector smaller than V0 for the leading eigen
value, because all accepting entry regions had positive 0-volumes. Working on languages
that are not prefix closed would require a finer analysis of iterates of Ψ.

Remark 3. The proof of the entropy lower bound makes use of Lem. 2 and Lem. 3 for
the case ρ > 0. A too quick analysis would tend to suggest that we are always in this
case when A4 is met. However at least one exemple can be shown (Fig. 4.5), of a nice
automaton yielding a spectral radius of value 0. This example shows that phenomena
comparable to the Zenoness in Fig. 4.3 can still happen when A4 is met. However A4
is enough for proving the theorem.

4.4. COMPUTING THE ENTROPY 65

q0 p q

a, y ∈ (0, 1)/x := 0
a, x ∈ (1, 2)/x := 0

b, y ∈ (2, 3)/y := 0

Figure 4.5: The automaton on this figure is nice and its region-split form is even fleshy.
However, as time progresses to infinity, the time difference between two a’s or two b’s
has to become closer and closer to 2 because every step reduces the possible time span
for the next event to occur. Using the symbolic technics described in the next section
we find that the spectral radius of the operator Ψ actually is 0.

4.4 Computing the Entropy

The characterization of H in Theorem 3 solves the main problem explored in this chap-
ter, but its concrete application requires computing the spectral radius of an integral
operator Ψ, and this is not straightforward. In 4.4.1, we solve this problem for a sub-
class of automata by reduction to differential equations. As for the general situation,
in 4.4.2 we give an iterative procedure, which approximates the spectral radius and the
entropy with a guaranteed precision.

4.4.1 Case of “11
2 Clock” Automata

Consider now the subclass of (fleshy region-split) automata with entry regions of all
the locations having dimension 0 or 1. In other words, in such automata for every
discrete transition there is at most one clock non reset. We call this class the class of
11

2
clock automata. The idea of the symbolic algorithm for computing the entropy of

such automata is presented in Table 3.
Notice first that the set S = {(q,x) | x ∈ rq} is now a disjoint union of unit length

intervals and singleton points. After a change of variables, each of those unit intervals
can be represented as x ∈ (0; 1), and a singleton point as x = 0. In both cases x is
a scalar variable, equal in the first case to the fractional part of xq, where xq ∈ C is
the only clock whose value is positive in rq. Thus, every f ∈ F can be seen as a finite
collection of functions fq of one scalar argument: x.

In this case the expression of the operator ψδ, corresponding to one transition δ =
(q, a, g, r, q′), can be made more explicit. First we recall the definition of ψδ:

ψδf(x) =

∫

x+τ∈g

f(r(x + τ)) dτ.

A careful but straightforward analysis shows that from the entry region of every state
q, non-degenerated regions of two types are alternatively visited: regions where xq is
greater than the other clocks, and regions where it is not.

66 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

Algorithm 3 for computing H symbolically on 11
2

clocks automata (idea)

1. Transform A into the fleshy region-split form and check that it has 11
2

clock.

2. Write the integral eigenvalue equation (I) with one variable.

3. Derivate (I) w.r.t. x and get a differential equation (D).

4. Instantiate (I) at 0, and obtain a boundary condition (B).

5. Solve (D) with boundary condition (B).

6. Take ρ = max{λ| a non-0 solution exists}.

7. Return H(L(A)) = log ρ.

Assuming t is the difference between the fractional parts of x′q and xq, for guards g

that are regions of the first type (a), x + τ ∈ g is equivalent to t ∈ (0, 1 − x), and for
the other type (b), it is equivalent to t ∈ (1 − x, 1).

Furthermore, the reset function r can behave in three different ways: either it resets
every clock but one that is not xq (1), or it resets every clock but xq (2), or it resets
every clock (3).

Those two criteria can be combined in 6 different ways, partitioning the set of
transitions starting from q in as many sets: ∆qa1,∆qb1,∆qa2,∆qb2,∆qa3 and ∆qb3, such
that Ψ can now be written the following way:

Ψf(q, x) =
∑

δ∈∆qa1

∫ 1−x

0

f(q′, x+ t)dt +
∑

δ∈∆qb1

∫ 0

−x

f(q′, x+ t)dt

+
∑

δ∈∆qa2

∫ 1−x

0

f(q′, t)dt +
∑

δ∈∆qb2

∫ 1

1−x

f(q′, t)dt

+
∑

δ∈∆qa3

(1 − x)f(q′, 0) +
∑

δ∈∆qb3

xf(q′, 0).

Now we define the square matrices Dij such that the operator can be written as
follows:

Ψf(x) = Da1

∫ 1−x

0
f(x+ t)dt + Db1

∫ 0

−x
f(x+ t)dt

+Da2

∫ 1−x

0
f(t)dt + Db2

∫ 1

1−x
f(t)dt

+Da3(1 − x)f(0) + Db3xf(0).

This is the explicit formula for Ψ we have been looking for. Now, computing the entropy
of the language of the automaton using Thm. 3 involves finding the leading eigenvalue

4.4. COMPUTING THE ENTROPY 67

of Ψ, that is the greatest λ ∈ R such that for some non-zero function f ∈ F:

Ψf = λf. (4.8)

We will solve this by transforming this equality into a differential equation. A
smooth function h : [0, 1] → R equals 0 iff h(0) = 0 and h′(x) = 0 for all x ∈ (0, 1).
Applying this to (Ψf−λf)6 we obtain that (4.8) is equivalent to the differential equation

λf ′(x) = (Db1 −Da1)f(x) + (Db2 −Da2)f(1 − x) + (Db3 −Da3)f(0). (4.9)

with boundary condition

λf(0) = (Da1 +Da2)

∫ 1

0

f(t)dt+Da3f(0). (4.10)

Now we solve the differential equation (4.9) by introducing the functions u and w
as follows: u(x) = f(x) + f(1 − x) and w(x) = f(x) − f(1 − x). This removes the
cumbersome dependency between f and x 7→ f(1 − x) and enables us to rewrite the
previous equation as a differential system:

λu′(x) = Aw(x)
λw′(x) = Bu(x) + C(u(0) + w(0))
w(1

2
) = 0

, (4.11)

where A
def
= Db1 −Da1 −Db2 +Da2, B

def
= Db1 −Da1 +Db2 −Da2 and C

def
= Db3 −Da3.

Note that due to the properties of the functions u and w, this system has to be
considered on the interval [0, 1

2
] only, and w(1

2
) = 0 is the consequence of the definition

of w. This rewriting is without loss of information, as the original equation (4.9) can
be recovered by adding those two equations term by term.

System (4.11) implies

λ2w′′(x) = BAw(x)
λu′(x) = Aw(x)
w(1

2
) = 0.

(4.12)

The first equation of (4.12) is homogeneous and has a solution space of dimension
2n, but using the fact that w(1

2
) = 0, this allows us to consider only n independent

solutions wi.

Using the second equation, we get u(x) = 1
λ

∫ x

0
Aw(t)dt+u0, for every solution w of

the first equation and every u0 ∈ R
n. Thus (4.12) yields a solution space of dimension

2n.

6It is easy to see that for eigenfunctions f this expression should be smooth and well-defined in 0
and 1.

68 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

Now having a solution (u,w) to (4.12) implies that λ2w′′(x) = BAw(x), which
implies λw′(x) = 1

λ

∫ x

0
BAw(t)dt+ λw′(0) and thus

λw′(x) =

∫ x

0

Bu′(t)dt+ λw′(0) = Bu(x) −Bu(0) + λw′(0).

Therefore (u,w) is also a solution to (4.11) if and only if C(u(0) +w(0)) +Bu(0) =
λw′(0). Coming back to (4.9), f , u+w

2
is a solution to this system if and only if

λ(f(0) − f(1)) = 2Cf(0) +B(f(0) + f(1)),

or again

(λ−B − 2C)f(0) = (λ+B)f(1). (4.13)

To sum up, the dimension of the space of the solutions of (4.12) is 2n, thus so is the
space S of the functions f = u+w

2
such that (u,w) is solution to (4.12). This allows us

to write every such f as FM where F is an n × 2n matrix whose columns are a basis
of S, and M is a vertical vector of R

2n.
Every such f = FM is a solution of (4.8) if and only if both (4.10) and (4.13) hold,

which we rewrite here, replacing f by FM :

{

λF (0)M = ((Da1 +Da2)(
∫ 1

0
F (t)dt) +Da3F (0))M

(λ−B − 2C)F (0)M = (λ+B)F (1)M
{

(F (0) − ((Da1 +Da2)(
∫ 1

0
F (t)dt) +Da3F (0)))M = 0

((λ−B − 2C)F (0) − (λ+B)F (1))M = 0.

Considering this as an equation on M , this homogeneous linear system has non-zero
solutions if and only if

det

(

F (0) − ((Da1 +Da2)(
∫ 1

0
F (t)dt) + ∆a3F (0))

(λ−B − 2C)F (0) − (λ+B)F (1)

)

= 0

This is a transcendental equation on λ (as F (x) has coefficients which are polyno-
mials of complex exponentials of x

λ
) that can be solved numerically, and which we know

to have a maximal real solution, which is also the spectral radius of Ψ (Lem. 2). The
logarithm of this value is the entropy of the language (Thm. 3).

Summing up all those computations yields the complete algorithm for automata
with 11

2
clocks depicted in Table 4.

Application to the Running Example

We apply the method just described to compute the entropy of the language of the
automaton A3 of Fig. 4.1 which is a “11

2
clocks” one. Its fleshy region-split form is

presented on Fig. 4.4.

4.4. COMPUTING THE ENTROPY 69

Algorithm 4 for computing H symbolically on 11
2

clocks automata (concrete version)

1. Transform A into the fleshy region-split form and check that it has 11
2

clock.

2. Compute the matrices Dij and next A,B,C.

3. Deduce the general solution FM to (4.9).

4. Find the greatest root ρ (w.r.t. the unknown λ) of

det

(

F (0) − ((Da1 +Da2)(
∫ 1

0
F (t)dt) + ∆a3F (0))

(λ−B − 2C)F (0) − (λ+B)F (1).

)

5. Then we have H(L(A)) = log ρ.

By symmetry, the volume of a path of length n ∈ N is the same function vn in both
non-initial states. Thus vn is characterized by:

{

v0(x) = 1

vn+1(x) = (Ψvn)(x) ,
∫ 1−x

0
vn(t)dt.

According to Thm. 3, the entropy can be found as log ρ(Ψ), and by Lemma 2 ρ(Ψ) is
the maximal eigenvalue of Ψ. Let us write the eigenvalue equation:

λv(x) =

∫ 1−x

0

v(t)dt. (4.14)

Differentiating it twice w.r.t x we get:

λv′(x) = −v(1 − x) (4.15)

λ2v′′(x) = −v(x) (4.16)

The solutions have the form v(x) = α sin(x
λ
)+β cos(x

λ
). Using (4.14) with x = 1 we find

v(1) = 0. We inject this in (4.15) for x = 0 and deduce α = 0. Thus v(x) = β cos(x
λ
) and

cos(1
λ
) = 0. This implies that the solutions correspond to λ = 2

(2k+1)π
with k ∈ ZZ. The

highest of those is λ = 2/π, and we can verify that v(x) = cos(xπ
2

) satisfies 2
π
v = Ψv.

Therefore ρ(Ψ) = 2/π, and the entropy of this automaton is log(2/π).

Notice this value is negative, this very fact would be unsettling with respect to
usual definitions of entropy. Here, the reader should recall that this entropy is only the
exponent of the asymptotical growth of the n-volume of the language of the automaton.
However, the relation with Kolmogorov complexity in the sequel will give a relevant
information theoretical interpretation of the value of this entropy.

70 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

4.4.2 General Case

If several clocks are not reset in some transitions, then the entry regions are multi-
dimensional, and the volume functions therefore depend on several real variables. Hence,
we cannot reduce the integral equation to an ordinary differential equation and it is not
even known if all integral symbols can be eliminated using partial derivation. This
makes it difficult to find the eigenfunction symbolically. Instead, we can use standard
iterative procedures for eigenvalue approximation for positive operators. Recall that the
volume function satisfies vn = Ψn1. The following theorem is close to Thms. 16.1-16.2
from [38].

Theorem 4. If for some α, β ∈ R,m ∈ N the following inequality holds: αvm ≤ vm+1 ≤
βvm, and the volume Vm = vm(q0, 0) > 0, then logα ≤ H ≤ log β.

Proof. Applying the positive operator Ψn to the inequalities αvm ≤ vm+1 ≤ βvm, and
using the formula vn = Ψn1 we obtain that for all n

αvm+n ≤ vm+n+1 ≤ βvm+n.

From this by induction, we prove that for all n

αnvm ≤ vm+n ≤ βnvm.

We apply this to the initial state (q0, 0) (remember that Vn = vn(q0, 0)):

αnVm ≤ Vm+n ≤ βnVm.

Take a logarithm, divide by m + n and take a lim supn→∞ (remember that H =
lim supn→∞ log Vn/n):

logα ≤ H ≤ log β

(we have used the fact that Vm > 0).

This theorem yields a procedure7 to estimate H summarized in Table 5.

Example: Again A3

We apply the iterative procedure above to our running example A3. As explained in
Sect. 4.4.1, we can just consider the operator on C(0; 1)

Ψf(x) =

∫ 1−x

0

f(s) ds.

The iteration results are given in Table 4.1.
Experiments show that the bounds usually converge quite fast when A5 holds and

the automaton is strongly connected. However, a proof of convergence and of its speed
remains to be found.

7One possible optimization is to compute α and β separately on every strongly connected reachable
component of the automaton, and take the maximal values.

4.5. DISCRETIZATION APPROACH 71

Algorithm 5 bounding H by iterating Ψ

1. Transform A into the fleshy region-split form.

2. Choose an m and compute symbolically the piecewise polynomial functions vm

and vm+1.

3. Check that vm(q0, 0) > 0.

4. Compute α = min(vm+1/vm) and β = max(vm+1/vm).

5. Conclude that H ∈ [logα; log β].

m vm(x) α β log α log β

0 1 0 1
1 1 − x 0.5 1 -1 0

2 1 − x − 1/2 (1 − x)2 0.5 0.667 -1 -0.584

3 1/2 (1 − x) − 1/6 (1 − x)3 0.625 0.667 -0.679 -0.584

4 1/3 (1 − x) + 1/24 (1 − x)4 − 1/6 (1 − x)3 0.625 0.641 -0.679 -0.643

5 5
24

(1 − x) + 1
120

(1 − x)5 − 1/12 (1 − x)3 0.6354 0.641 -0.6543 -0.643

6 2
15

(1 − x) − 1
720

(1 − x)6 + 1
120

(1 − x)5 − 1
18

(1 − x)3 0.6354 0.6371 -0.6543 -0.6506

7 61
720

(1 − x) − 1
5040

(1 − x)7 + 1
240

(1 − x)5 − 5
144

(1 − x)3 0.6364 0.6371 -0.6518 -0.6506

Table 4.1: Iterating the operator for A3 (H = log(2/π) ≈ log 0.6366 ≈ −0.6515)

4.5 Discretization Approach

4.5.1 Discretizing the Volumes

Another approach we published in [8], is to do entropy computation is by discretization.
This approach also sheds a new light on the information-theoretic interpretation of
entropy. The discretizations of timed languages we use are strongly inspired by [10, 33].

4.5.2 ε-words and ε-balls

We start with a couple of preliminary definitions. Take an ε = 1/N > 0. A timed word
w is ε-timed if all the delays in this word are multiples of ε. Any ε-timed word w over
an alphabet Σ can be written as w = hε(v) for an untimed v ∈ Σ ∪ {τ}, where the
morphism hε is defined as follows:

hε(a) = a for a ∈ Σ, hε(τ) = ε.

The discrete word v with ticks τ (standing for ε delays) represents in this way the
ε-timed word w.

Example Let ε = 1/5, then the timed word 0.6a0.4ba0.2a is ε-timed. Its representa-
tion is τττaττbaτa.

72 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

The notions of ε-timed words and their representation can be ported straightfor-
wardly to languages.

For a timed word w = t1a1t2a2 . . . tnan we introduce its North-East ε-neighbourhood
like this:

BNE
ε (w) = {s1a1s2a2 . . . snan | ∀i (si ∈ [ti; ti + ε])} .

For a language L, we define its NE-neighbourhood elementwise:

BNE
ε (L) =

⋃

w∈L

BNE
ε (w). (4.17)

The next simple lemma will play a key role in our algorithm (here #L stands for
the cardinality of L).

Lemma 4. Let L be some finite set of timed words of length n. Then

Vol(BNE
ε (L)) ≤ εn#L.

If, moreover, L is ε-timed, then

Vol(BNE
ε (L)) = εn#L.

Proof. Notice that for a timed word w of a length n the set BNE
ε (w) is a hypercube

of edge ε (in the delay space), and of volume εn. Notice also that neighbourhoods of
different ε-timed words are almost disjoint: the interior of their intersections are empty.
With these two remarks, the two statements are immediate from (4.17).

4.5.3 Discretizing Timed Languages and Automata

Suppose now that we have a timed language L recognized by a timed automaton A

satisfying A2-A5 and we want to compute its entropy (or just the volumes Vn). Take
an ε = 1/N > 0. We will build two ε-timed languages L− and L+ that under- and
over-approximate L in the following sense:

BNE
ε (L−) ⊂ L ⊂ BNE

ε (L+). (4.18)

The recipe is like this. Take the timed automaton A accepting L. Discrete automata
Aε

+ and Aε
− can be constructed in two stages. First, we build counter automata Cε

+

and Cε
−. They have the same states as A, but instead of every clock x they have a

counter cx (roughly representing x/ε). For every state add a self-loop labelled by τ and
incrementing all the counters. Replace any reset of x by a reset of cx. Whenever A has
a guard x ∈ [l;u] (or x ∈ (l;u), or some other interval), the counter automaton Cε

+ has
a guard cx ∈ [l/ε .− D;u/ε − 1] (always the closed interval) instead, where D is as in
assumption A4. At the same time, Cε

− has a guard cx ∈ [l/ε;u/ε−D]. Automata Cε
+

and Cε
− with bounded counters can be easily transformed into finite-state ones Aε

+ and
Aε

− .

4.5. DISCRETIZATION APPROACH 73

Lemma 5. Languages L+ = hε(L(Aε
+)) and L− = hε(L(Aε

−)) have the required property
(4.18).

Proof sketch.

Inclusion BNE
ε (L−) ⊂ L. Let a discrete word u ∈ L(Aε

−), let v = hε(u) be its ε-timed
version, and let w ∈ BNE

ε (v). We have to prove that w ∈ L. Notice first that
L(Aε

−) = L(Cε
−) and hence u is accepted by Cε

−. Mimic the run of Cε
− on u, but

replace every τ by an ε duration, thus, a run of A on v can be obtained. Moreover,
in this run every guard x ∈ [l, u] is respected with a security margin: in fact, a
stronger guard x ∈ [l, u−Dε] is respected. Now one can mimic the same run of A

on w. By definition of the neighbourhood, for any delay ti in u the corresponding
delay t′i in w belongs to [ti, ti + ε]. Clock values are always sums of several (up
to D) consecutive delays. Whenever a narrow guard x ∈ [l, u −Dε] is respected
on v, its “normal” version x′ ∈ [l, u] is respected on w. Hence, the run of A on w
obtained in this way respects all the guards, and thus A accepts w. We deduce
that w ∈ L.

Inclusion L ⊂ BNE
ε (L+). First, we define an approximation function on R+ as follows:

t =

0 if t = 0
t− ε if t/ε ∈ N+

ε⌊t/ε⌋ otherwise.

Clearly, t is always a multiple of ε and belongs to [t−ε, t) with the only exception
that 0 = 0.

Now we can proceed with the proof. Let w = t1a1 . . . tnan ∈ L. We define
its ε-timed approximation v by approximating all the delays: v = t1a1 . . . tnan.
By construction w ∈ BNE

ε (v). The run of A on w respects all the guards x ∈
[l;u]. Notice that the clock value of x on this run is a sum of several (up to D)
consecutive ti. If we try to run A over the approximating word v, the value x′

of the same clock at the same transition would be a multiple of ε and it would
belong to [x−Dε;x). Hence x′ ∈ [l .−Dε, u− ε]. By definition of C+ this means
that the word u = h−1

ε (v) is accepted by this counter automaton. Hence v ∈ L+.

Let us summarize: for any w ∈ L, we have constructed v ∈ L+ such that w ∈
BNE

ε (v). This concludes the proof.

4.5.4 Counting Discrete Words

Once the automata Aε
+ and Aε

− constructed, we can count the number of words with n
events and its asymptotic behaviour using the following simple result.

74 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

Lemma 6. Given an automaton B over an alphabet {τ} ∪ Σ, let

Ln = L(B) ∩ (τ ∗Σ)n .

Then (1) #Ln is computable; and (2) limn→∞(log #Ln/n) = log ρB with ρB a com-
putable algebraic real number.

Proof. We proceed in three stages. First, we determinize B and remove all the useless
states (unreachable from the initial state). These transformations yield an automaton
D accepting the same language, and hence having the same cardinalities #Ln. Since
the automaton is deterministic, to every word in Ln corresponds a unique accepting
path with n events from Σ and terminating with such an event.

Next, we eliminate the tick transitions τ . As we are counting paths, we obtain an
automaton without silent (τ) transitions, but with multiplicities representing the num-
ber of realizations of every transition. More precisely, the procedure is as follows. Let
D = (Q, {τ} ∪ Σ, δ, q0). We build an automaton with multiplicities E = (Q, {e},∆, q0)
over one-letter alphabet. For every p, q ∈ Q the multiplicity of the transition p → q in
E equals the number of paths from p to q in D over words from τ ∗Σ. A straightforward
induction over n shows that the number of paths in D with n non-tick events equals
the number of n-step paths in E (with multiplicities).

Let M be the adjacency matrix with multiplicities of E. It is well known (and
easy to see) that the #L(n) (that is the number of n-paths) can be found as the sum
of the first line of the matrix Mn

−. This allows computing #L(n). Moreover, using
Perron-Frobenius theorem we obtain that #L(n) ∼ ρn where ρ is the spectral radius of
M , the greatest (in absolute value) real root λ of the integer characteristic polynomial
det(M − λI).

4.5.5 From Discretizations to Volumes

As soon as we know how to compute the cardinalities of under- and over- approximating
languages #L−(n) and #L+(n) and their growth rates ρ− and ρ+, we can deduce the
following estimates solving our problems.

Theorem 5. For a timed automaton A satisfying A2-A5, the n-volumes of its language
satisfy the estimates:

#L−(n) · εn ≤ Vn ≤ #L+(n) · εn.

Proof. In inclusions (4.18) take the volumes of the three terms, and use Lemma 4.

Theorem 6. For a timed automaton A satisfying A2-A5, the entropy of its language
satisfies the estimates:

log(ερ−) ≤ H(L(A)) ≤ log(ερ+).

Proof. Just use the previous result, take the logarithm, divide by n and pass to the
limit.

4.5. DISCRETIZATION APPROACH 75

Algorithm 6 bounding H by discretization

1. Choose an ε = 1/N .

2. Build the counter automata Cε
− and Cε

+.

3. Transform them into finite automata Aε
− and Aε

+.

4. Eliminate τ transitions introducing multiplicities.

5. Obtain adjacency matrices M− and M+.

6. Compute their spectral radii ρ− and ρ+.

7. Conclude that H ∈ [log ερ−; log ερ+].

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

a, c ∈ [0; 18]/c := 0

b, d ∈ [0; 18]/d := 0

ττ a, c ∈ [0; 19]/c := 0

b, d ∈ [0; 19]/d := 0 ττ

Figure 4.6: A two-clock timed automaton A3 and its approximations C0.05
− and C0.05

+ .
All τ -transitions increment counters c and d.

We summarize the algorithm in Table 6.

This theorem can be used to estimate the entropy. However, it can also be read in
a converse direction: the cardinality of L restricted to n events and discretized with
quantum ε is close to 2Hn/εn. Hence, we can encode H − log ε bits of information per
event. These information-theoretic considerations are made more explicit in Sect. 4.6
below.

A Case Study.

Consider the example L3 = {t1at2bt3at4b · · · | ti + ti+1 ∈ [0; 1]} from Subsect. 4.2.2.
We need two clocks to recognize this language, and they are never reset together. We
choose ε = 0.05 and build the automata on Fig. 4.6 according to the recipe (the discrete
ones A+ and A− are too big to fit on the figure).

We transform C0.05
− and C0.05

+ , into A+ and A−, eliminate silent transitions and
unreachable states, and compute spectral radii of adjacency matrices (their sizes are
38x38 and 40x40): #L0.05

− (n) ∼ 12.41n, #L0.05
+ (n) ∼ 13.05n. Hence 12.41n · 0.05n ≤

Vn ≤ 13.05n · 0.05n, and the entropy

H ∈ [log 0.62; log 0.653] ⊂ (−0.69;−0.61).

76 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

Taking a smaller ε = 0.01 provides a better estimate for the entropy:

H ∈ [log 0.6334; log 0.63981] ⊂ (−0.659;−0.644).

We proved in 4.4.1 that the true value of the entropy is H = log(2/π) ≈ log 0.6366 ≈
−0.6515.

4.6 Kolmogorov Complexity of Timed Words

To interpret the results above in terms of information content of timed words we state,
using similar techniques, some estimates of Kolmogorov complexity of timed words.
Recall first the basic definition from [37] (see also [40]). Given a partial computable
function (decoding method) f : {0; 1}∗ × B → A, a description of an element x ∈ A
knowing y ∈ B is a word w such that f(w, y) = x. The Kolmogorov complexity of
x knowing y, denoted Kf (x|y) is the length of the shortest description. According
to Kolmogorov-Solomonoff theorem, there exists the best (universal) decoding method
providing shorter descriptions (up to an additive constant) than any other method.
The complexity K(x|y) with respect to this universal method represents the quantity
of information in x knowing y.

Coming back to timed words and languages, remark that a timed word within
a “simple” timed language can involve rational delays of a very high complexity, or
even uncomputable real delays. For this reason, we consider timed words with finite
precision ε. For a timed word w and ε = 1/N we say that a timed word v is a rational
ε-approximation of w if all delays in v are rational and w ∈ BNE

ε (v)8.

Theorem 7. Let A be a timed automaton satisfying A2-A4, L its language, H its
entropy. For any rational α, ε > 0, and any n ∈ N large enough there exists a timed
word w ∈ L of length n such that the Kolmogorov complexity of all the rational ε-
approximations v of the word w is lower bounded as follows

K(v|n, ε) ≥ n(H + log 1/ε− α). (4.19)

Proof. By definition of the entropy, for n large enough

Vn > 2n(H−α).

Consider the set S of all timed words v violating the lower bound (4.19)

S = {v | K(v|n, ε) ≤ n(H + log(1/ε) − α)} .

The cardinality of S can be bounded as follows:

#S ≤ 2n(H+log(1/ε)−α) = 2n(H−α)/εn.

8In this section, we use such North-West approximations v for technical simplicity only.

4.6. KOLMOGOROV COMPLEXITY OF TIMED WORDS 77

Applying Lemma 4 we obtain

Vol(BNE
ε (S)) ≤ εn#S ≤ 2n(H−α) < Vn.

We deduce that the set Ln of timed words from L of length n cannot be included into
BNE

ε (S). Thus, there exists a word w ∈ Ln \ BNE
ε (S). By construction, it cannot be

approximated by any low-complexity word with precision ε.

Theorem 8. Let A be a timed automaton satisfying A2-A4, L its language, α > 0 a
rational number. Consider a “bloated” automaton A′, which is like A, but in all the
guards each constraint x ∈ [l, u] is replaced by x ∈ [l .− α, u+ α]. Let H′ be the entropy
of its language. Then the following holds for any ε = 1/N ∈ (0;α/D), and any n large
enough.

For any timed word w ∈ L of length n, there exists its ε-approximation v
with Kolmogorov complexity upper bounded as follows:

K(v|n, ε) ≤ n(H′ + log 1/ε+ α).

Proof. Denote the language of A′ by L′, the set of words of length n in this language
by L′

n and its n-volume by V ′
n. We remark that for n large enough

V ′
n < 2n(H′+α/2).

Let now w = t1a1 . . . tnan in Ln. We construct its rational ε-approximation as in Lemma
5: v = t1a1 . . . tnan. To find an upper bound for the complexity of v we notice that
v ∈ U , where U is the set of all ε-timed words u of n letters such that BNE

ε (u) ⊂ L′
n.

Applying Lemma 4 to the set U we obtain the bound

#U ≤ V ′
n/ε

n < 2n(H′+α/2)/εn.

Hence, in order to encode v (knowing n and ε) it suffices to give its number in a
lexicographical order of U , and

K(v|n, ε) ≤ log #U + c ≤ n(H′ + log 1/ε+ α/2) + c ≤ n(H′ + log 1/ε+ α)

for n large enough.

Two theorems above provide close upper and lower bounds for complexity of ε-
approximations of elements of a timed language.

However, the following example shows that because we removed Assumption A5, in
some cases these bounds do not match and H′ can possibly not converge towards H

when α becomes small.

Example 5. Consider the automaton of Fig. 4.7. For this example, the state q does not
contribute to the volume, and H = log 3. Nevertheless, when we bloat the guards, both
states become “usable” and, for the bloated automaton H′ ≈ log 5. As for Kolmogorov
complexity, for ε-approximations of words from the sublanguage 1b([0; 5]a)∗ it behaves
as n(log 5 + log(1/ε)). Thus, for this bothering example, the complexity matches H′

rather than H.

78 CHAPTER 4. VOLUME AND ENTROPY OF REGULAR TL

p q

b, x = 1/x := 0

a, x ∈ [0; 5]/x := 0a, x ∈ [0; 3]/x := 0

Figure 4.7: A pathological automaton

4.7 Conclusions and Further Work

In this chapter, we have defined size characteristics of timed languages: volume and
entropy. The entropy has been characterized as logarithm of the leading eigenvalue of
a positive operator on the space of continuous functions on a part of the state space.
Three procedures have been suggested to compute it.

Research in this direction is very recent, and many questions need to be studied.
We are planning to explore practical feasibility of the procedures described here and
compare them to each other. We believe that, as usual for timed automata, they should
be transposed from regions to zones. We will explore potential applications mentioned
in the introduction.

Many theoretical questions still require exploration. Ongoing research is concerning
with estimation of the gap between our upper and lower bounds for the entropy (we
believe that this gap tends to 0 for strongly connected automata), with one goal being
to establish entropy computability. We would be happy to remove some of Assumptions
A1-A5. For instance we used A4 for ruling out some Zeno behaviors. As those truly Zeno
behaviors do not actually contribute to the volume, this calls for a weakened assumption.
Kolmogorov complexity estimates can also be improved, in particular, as shows Example
5, it could be more suitable to use another variant of entropy, perhaps H+ = max Hq,
where the entropy is maximized with respect to initial states q. Extending results to
probabilistic timed automata is another option. Our entropy represents the amount of
information per timed event. It would be interesting to find the amount of information
per time unit. Another research direction is to associate a dynamical system (a subshift)
to a timed language and to explore entropy of this dynamical system.

Chapter 5

Conclusion

Version française

Récapitulons ici les contributions majeures de cette thèse :

• Ordonnancement : le modèle de flux structurés de jobs est un modèle assez réaliste
pour l’ordonnancement réactif. L’observation faite dans cette thèse à propos
du conflit qui peut survenir entre retard accumulé et latence peut aussi être vu
comme un conflit entre une forme de « justice » (latence bornée pour tous) et
la performance globale du système. Nos résultats mettent en évidence ce que les
praticiens qui ont besoin de « pipeliner » (par exemple dans les restaurants) savent
probablement déjà. Quelques études supplémentaires de la « pipelinabilité »

d’ensembles de jobs pourrait être intéressantes.

• Langages de coût moyen : notre contribution principale au domaine consiste
d’abord à avoir enlevé certaines caractéristiques ad hoc des critères d’acceptations
que l’on peut trouver dans la littérature, puis à avoir trouvé une classe de langages
à coût moyen clos par opérations booléennes et d’en avoir étudié les propriétés.
Notre approche pourrait certainement être adaptée à d’autres critères connus
basés sur coûts pour des résultats similaires concernant l’expressivité, la clôture
et l’analysabilité et adaptée aux jeux. Il est facile de voire qu’il y a de nombreuses
combinaisons à considérer.

• Volume et entropie : Dans cette partie majeure de la thèse, nous avons adapté des
mesures quantitatives de langages (taille et entropie) au cas du domaine temporel
dense. Ce travail relie la théorie des automates temporisés aux riches mathé-
matiques des opérateurs linéaires. Les définitions et les techniques de preuve
développées dans cette partie peuvent aussi être utiles à d’autres applications,
par exemple pour analyser des systèmes avec des durées probabilistes. Nous avons
l’intention par la suite de : trouver les conditions sous lesquelles on peut prouver
que le calcul de l’entropie converge, définir une variante du volume et de l’entropie
qui serait indexée par le temps réel plutôt que le nombre d’événements, étudier

79

80 CHAPTER 5. CONCLUSION

ces définitions en tant que base pour une théorie de l’information pour les signaux
booléens et appliquer ces techniques pour évaluer la qualité des approximations
de langages temporisés.

Nous espérons avoir ainsi réalisé des contributions significatives permettant de
rapprocher les approches qualitatives et quantitatives d’évaluation des comporte-
ments des systèmes.

81

English version

Let us recapitulate the major contributions in the thesis:

• Scheduling: The model of streams of structured jobs is a rather realistic model for
reactive scheduling. The observation made in this thesis about the conflict that
may arise between backlog and latency can also be seen as a conflict between a
kind of ”fairness” (bounded latency for all) and the performance of the system as a
whole. Our results made explicit what practitioners who have to pipeline activities
(for example, in restaurants) probably know by doing. Some more studies on the
pipelinability of sets of jobs may be interesting.

• Mean-Payoff Languages: Our main contribution to this domain is first by remov-
ing some ad-hoc features of the acceptance conditions found in literature, and
then by finding a class of mean-payoff languages closed under Boolean operations
and studying its properties. Our approach could certainly be adapted to other
well known payoff criteria for similar expressiveness, closure and analyzability
results and then translated to games. It is easy to see there are many possible
combinations to consider.

• Volume and Entropy: In this major part of the thesis we have adapted the quan-
titative measures of languages (size and entropy) to the dense-time domain. This
work connects the theory of timed automata to the rich mathematics of linear
operators. The definitions or the proof techniques developed in this part of the
work may be useful to other applications, for example to analyze systems with
probabilistic durations. The current work on our agenda are: to find conditions
for which the we can prove that computation of the entropy is guaranteed to
converge, to define a variant of volume and entropy which is indexed by the real
time rather than by the number of events, to study these definitions as a basis for
a theory of information for Boolean signals and to apply the technique to assess
quality of timed language approximations.

We hope to have made some significant contributions to bridging the gap between
qualitative and quantitative approaches to evaluate system behaviors.

82 CHAPTER 5. CONCLUSION

Bibliography

[1] Karine Altisen, Gregor Gößler, Amir Pnueli, Joseph Sifakis, Stavros Tripakis, and
Sergio Yovine. A framework for scheduler synthesis. In IEEE Real-Time Systems
Symposium, pages 154–163, 1999.

[2] Rajeev Alur, Aldric Degorre, Oded Maler, and Gera Weiss. On omega-languages
defined by mean-payoff conditions. In Luca de Alfaro, editor, FOSSACS, volume
5504 of Lecture Notes in Computer Science, pages 333–347. Springer, 2009.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[4] Rajeev Alur and Thomas A. Henzinger. Logics and models of real time: A survey.
In REX Workshop, pages 74–106, 1991.

[5] Rajeev Alur, Aditya Kanade, and Gera Weiss. Ranking automata and games for
prioritized requirements. In Aarti Gupta and Sharad Malik, editors, CAV, volume
5123 of Lecture Notes in Computer Science, pages 240–253. Springer, 2008.

[6] Eugen Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM,
49(2):172–206, 2002.

[7] Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed languages:
Analytic approach. To appear in proceedings of FORMATS’09, 2009.

[8] Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed languages:
Discretization approach. To appear in proceedings of Concur’09, 2009.

[9] Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller synthesis for
discrete and timed systems. In Hybrid Systems II, pages 1–20, 1994.

[10] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of delays in
timed automata and digital circuits. In CONCUR’98, LNCS 1466, pages 470–484.
Springer-Verlag, 1998.

[11] Eugene Asarin and Alexei Pokrovskii. Use of the Kolmogorov complexity in ana-
lyzing control system dynamics. Automation and Remote Control, (1):25–33, 1986.

83

84 BIBLIOGRAPHY

[12] Ramzi Ben Salah, Marius Bozga, and Oded Maler. Compositional timing analysis.
In EMSOFT’09. ACM, 2009.

[13] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Quan-
titative model-checking of one-clock timed automata under probabilistic semantics.
In QEST’08, pages 55–64. IEEE Computer Society, 2008.

[14] Jacek Blazewicz, Klaus Ecker, Erwin Pesch, Günter Schmidth, and Jan Weglarz.
Scheduling Computer and Manufacturing Processes. Springer, 2nd edition, 2001.

[15] Lawrence Bodin, Bruce Golden, Arjang Assad, and Michael Ball. Routing and
scheduling of vehicles and crews : The state of the art. Computers & OR, 10(2):63–
211, 1983.

[16] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P.
Williamson. Adversarial queuing theory. J. ACM, 48(1):13–38, 2001.

[17] A.A. Brudno. Entropy and the complexity of the trajectories of a dynamical sys-
tem. Trans. Moscow Math. Soc., 44:127–151, 1983.

[18] Giacomo Bucci, Riccardo Piovosi, Luigi Sassoli, and Enrico Vicario. Introduc-
ing probability within state class analysis of dense-time-dependent systems. In
QEST’05, pages 13–22. IEEE Computer Society, 2005.

[19] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Schedulding
Algorithms and Applications. Real-Time Systems Series. Springer, 2nd edition,
2005.

[20] Marco Caccamo, Theodore P. Baker, Alan Burns, Giorgio C. Buttazzo, and Lui
Sha. Real-time scheduling for embedded systems. In D. Hristu-Varsakelis and
W. Levine, editors, Handbook of Networked and Embedded Control Systems, pages
173–196. Birkhäuser, 2005.

[21] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR,
pages 66–80, 2005.

[22] Krishnendu Chatterjee. Concurrent games with tail objectives. Theor. Comput.
Sci., 388(1-3):181–198, 2007.

[23] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. The complexity
of quantitative concurrent parity games. In Proceedings of the 17th ACM-SIAM
Symposium on Discrete Algorithms, pages 678–687, 2006.

[24] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative
languages. In Proceedings of CSL 2008: Computer Science Logic, Lecture Notes
in Computer Science. Springer-Verlag, 2008.

BIBLIOGRAPHY 85

[25] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński. Mean-
payoff parity games. In Proceedings of the 20th Annual Symposium on Logic in
Computer Science, pages 178–187. IEEE Computer Society Press, 2005.

[26] Vicent Cholvi and Juan Echagüe. Stability of fifo networks under adversarial
models: State of the art. Computer Networks, 51(15):4460–4474, 2007.

[27] Alain Darte, Yves Robert, and Frederic Vivien. Scheduling and Automatic Paral-
lelization. Birkhauser Boston, 2000.

[28] Aldric Degorre and Oded Maler. On scheduling policies for streams of structured
jobs. In Franck Cassez and Claude Jard, editors, FORMATS, volume 5215 of
Lecture Notes in Computer Science, pages 141–154. Springer, 2008.

[29] Hesham El-Rewini. Partitioning and scheduling. In A. Zomaya, editor, Parallel &
Distributed Computed Handbook, chapter 9, pages 239–273. McGraw-Hill, 1996.

[30] Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Schedulability
analysis of fixed-priority systems using timed automata. Theor. Comput. Sci.,
354(2):301–317, 2006.

[31] Chai-Hien Gan, Phone Lin, Nei-Chiung Perng, Tei-Wei Kuo, and Ching-Chi Hsu.
Scheduling for time-division based shared channel allocation for UMTS. Wirel.
Netw., 13(2):189–202, 2007.

[32] Hugo Gimbert and Wieslaw Zielonka. Deterministic priority mean-payoff games
as limits of discounted games. In ICALP, pages 312–323, 2006.

[33] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital
clocks? In ICALP’92, LNCS 623, pages 545–558. Springer-Verlag, 1992.

[34] Guang-Hui Hsu. A survey of queueing theory. Ann. Oper. Res., 24(1-4):29–43,
1990.

[35] Anant Singh Jain and Sheik Meeran. A state-of-the-art review of job-shop schedul-
ing techniques, 1998.

[36] Edward G. Coffman Jr., editor. Computer and Job-Shop Scheduling Theory. J.
Wiley, New York, 1976.

[37] Andrëı N. Kolmogorov. Three approaches to the quantitative definition of infor-
mation. Problems of Information Transmission, 1(1):1–7, 1965.

[38] M. A. Krasnosel’skij, E.A. Lifshits, and A. V. Sobolev. Positive Linear Systems:
The method of positive operators. Number 5 in Sigma Series in Applied Mathe-
matics. Heldermann Verlag, Berlin, 1989.

86 BIBLIOGRAPHY

[39] Orna Kupferman and Yoad Lustig. Lattice automata. In Proc. 8th Intl. Conf.
Verification, Model Checking, and Abstract Interpretation, LNCS 4349, pages 199–
213. Springer, 2007.

[40] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer, 3 edition, 2008.

[41] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding.
Cambridge University Press, 1995.

[42] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46–61, 1973.

[43] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems (an extended abstract). In STACS, pages 229–242, 1995.

[44] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems: Specification. Springer-Verlag, 1991.

[45] Dominique Perrin and Jean Éric Pin. Infinite Words. Automata, Semigroups, Logic
and Games, volume 141 of Pure and Applied Mathematics. Elsevier, 2004.

[46] Michael Pinedo. Planning and Scheduling in Manufacturing and Services. Springer
Series in Operations Research and Financial Engineering. Springer, 2007.

[47] Amir Pnueli. The temporal logic of programs. In 18th IEEE Symposium on the
Foundations of Computer Science (FOCS’77), pages 46–57, 1977.

[48] Cristobal Rojas. Computability and information in models of randomness and
chaos. Mathematical Structures in Computer Science, 18(2):291–307, 2008.

[49] Luigi Sassoli and Enrico Vicario. Close form derivation of state-density functions
over dbm domains in the analysis of non-Markovian models. In QEST’07, pages
59–68. IEEE Computer Society, 2007.

[50] Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 133–191. Elsevier
Science Publishers, 1990.

[51] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. In-
formation and Computation, 115(1):1–37, 1994.

[52] H. Wong-Toi and D. Dill. Synthesizing processes and schedulers from temporal
specifications. In CAV, pages 272–281, 1990.

[53] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158:343–359, 1996.

Appendix A

Résumé en Français

A.1 Introduction

Les langages formels sont des séquences sur un ensemble discret de symboles appelé
alphabet. On les spécifie souvent par des formules dans une certaine logique, ou bien
par des expressions rationnelles ou des automates discrets de types variés. La théorie
actuelle est principalement qualitative, dans le sens où ses objets sont des séquence sur
un temps discret, non-métrique, dans le sens où l’acceptation d’une séquence sur un
automate dépend du fait que l’on visite ou non un état accepteur, et enfin dans le sens
où la comparaison de langages est plus souvent considérée en termes d’inclusion, plutôt
qu’en termes de mesures quantitatives.

Cette thèse est une contribution à l’étude de ces aspects souvent négligés, et présente
des résultats relatifs à trois classes de problèmes.

Nous proposons d’abord un modèle d’ordonnancement dynamique où une plateforme
doit exécuter des séquences de requêtes définies par un langage temporisé. Nous y
prouvons quelques résultats sur deux aspects quantitatifs des ordonnancements: latence
et retard accumulé.

Ensuite, nous nous intéressons à l’utilisation du coût moyen d’une exécution infinie
sur un automate pondéré comme manière de définir un langage de mots infinis. Nous
établissons des résultats quand à l’expressivité d’un tel formalisme et son analysabilité.

Enfin, nous définissons des notions de volume et d’entropie pour les langages tem-
porisés réguliers. Nous proposons plusieurs méthodes différentes pour calculer ou bien
approximer ces quantités. Nous nous basons en particulier sur l’analyse fonctionnelle et
une méthode de discrétisation. Nous établissons un lien avec la théorie de l’information,
en reliant notre entropie à la complexité de Kolmogorov.

A.2 Ordonnancement de flux de jobs structurés

Nous étudions une classe de problèmes d’ordonnancement combinant des aspects struc-
turels liés à des dépendances entre tâches et des aspects dynamiques liés au fait qu’un

87

88 APPENDIX A. RÉSUMÉ EN FRANÇAIS

flux de tâche non déterministe arrive en permanence pendant l’exécution de l’ordon-
nanceur. Pour cette classe de problèmes, nous développons une politique d’ordonnan-
cement qui peut garantir une accumulation bornée de retard d’exécution pour l’ensemble
des flux admissibles. Nous montrons cependant qu’aucune politique de la sorte ne peut
garantir des latences bornées pour l’ensemble des flux, à moins qu’une certaine marge
de liberté ne soit assurée.

A.2.1 Le problème d’ordonnancement récurrent

Quelques notations à propos des mots temporisés. Dans ce chapitre, les flux de
requêtes sont dénotés par des mots temporisés, éventuellement infinis. Nous rappelons
qu’un mot temporisé (infini) est une séquence (infinie) de de symboles pris soit dans
un alphabet fini Σ, soit dans les réels positifs, symbolisant alors un délai de longueur
égale à la valeur de ce nombre réel. Ainsi ũ = 3a12a2a36 représente le comportement
où après 3 unités de temps se produit l’événement a1, après lequel s’écoulent 2 unités
de temps avant que a2 ne se produise, et ainsi de suite.

Les données du problème. Les données du problème d’ordonnancement considéré
sont d’un côté une description du système qui va exécuter les tâches (la plate-forme
d’exécution), et de l’autre une description de la demande.

La plate-forme d’exécution est définie par un ensemble fini M de types de ressource
(ou machines) et par une fonction R : M → N associant à chacun de ces types un entier
naturel représentant le nombre d’instances du type de ressource.

Ces ressources sont utilisables et réutilisables par des tâches, pour lesquelles on se
donne aussi un ensemble fini T de types. Chaque tâche est associée à un seul type de
ressource (fonction µ : T → M) et à une durée (fonction d : T → R+) qui peut être
vue comme le temps d’exécution au pire. Une tâche du type a ∈ T va ainsi s’exécuter
de façon indivisible, non préemptible, sur une instance de µ(a), et l’occuper de manière
exclusive pendant toute la durée d’exécution d(a).

Nous nous donnons aussi, dans un problème donné, un ensemble fini J de types de
job, chaque type de job étant en fait un graphe acyclique défini sur une partie de T .
Nous supposons que chaque type de job est défini sur un ensemble de types de tâche
disjoint.

La demande est ainsi modélisée par un langage de mots temporisés finis ou non sur
l’alphabet J. Ce langage est appelé le générateur de flux de requêtes, et ses éléments,
naturellement, les flux de requêtes.

Nous ne considérons pas les problème trivialement non ordonnançable, dans le sens
où la quantité de travail demandée sur chaque type de ressource serait supérieure à ce
que la plate-forme peut fournir. Ainsi, pour un flux de requêtes σ et un réel positif α,
nous disons que σ est α-libre s’il existe b ∈ R tel que pour n’importe quel intervalle de
dates (t, t′], la somme des durées des tâches demandées par σ sur cet intervalle pour un
type de ressource donné m est inférieure à α(t′ − t)R(m) + b.

A.2. ORDONNANCEMENT DE FLUX DE JOBS STRUCTURÉS 89

Le flux est dit admissible si cela est vrai pour α = 1, sous-critique si c’est vrai pour
α < 1. Nous ne considérons dans la suite que des générateurs dont tous les flux sont
admissibles.

Ordonnancements. Un ordonnancement associe une date de début d’exécution à
une instance de tâche donnée. Formellement, c’est une fonction s : T ×N → R+ ∪{∞}
où s(a, i) doit être interprété, si c’est un réel fini, comme la date d’exécution de la i-ième
instance de la tâche a (dans le flux de requêtes de l’exécution courante) et, si c’est ∞,
comme le fait que cette instance ne sera jamais exécutée.

Cette définition assez large n’exclut pas les ordonnancements qui ne sont pas réalis-
ables par la plate-forme, ou valides. Dans la suite, nous dirons qu’un ordonnancement
est valide (par rapport à un flux σ) si :

• s n’exécute pas une instance de tâche avant qu’elle ne soit demandée dans σ (non
proactivité),

• s n’exécute une instance de tâche que si toutes les tâches qui la précèdent dans
son instance de job ont fini d’être exécutées,

• s ne fait pas exécuter plus de tâches en simultané sur un type de ressource donné
qu’il n’y a d’instances de la ressource dans la plate-forme.

Nous voulons aussi mesurer la qualité d’un ordonnancement. Pour cela, nous avons
retenu deux critères:

Le premier est le résidu, c’est à dire la somme des durées des tâches (a, i) demandées
avant la date t par le flux de requêtes et qui n’ont pas encore été démarrées à t (s(a, i) >
t). Nous nous intéressons en particulier au fait qu’un ordonnancement ait un résidu
borné ou non.

La seconde mesure est la latence, c’est à dire le temps qui s’écoule entre la date de
requête d’un job et la fin de l’exécution de toutes ses tâches dans cet ordonnancement.
La latence d’un ordonnancement par rapport à un flux de requête est la borne supérieure
des latences des instances de jobs du flux de requête. Elle peut être infinie si un job
n’est jamais terminé, ou bien dans le cas où les latences des instances de jobs divergent
vers l’infini.

Il est assez immédiat qu’un ordonnancement de latence finie a aussi un résidu borné.
La réciproque est cependant fausse, car un ordonnancement qui n’exécuterait jamais
une certaine instance de tâche pourrait cependant exécuter toutes les autres sous un
délai borné.

A.2.2 Résultat négatif

Nous montrons un théorème établissant qu’un flux peut ne pas admettre d’ordonnan-
cement de latence finie, bien que le flux soit admissible.

90 APPENDIX A. RÉSUMÉ EN FRANÇAIS

a1
Resource
Type 1 (m

1
)

a2 b1

b2

Job Type A Job Type B

Resource
Type 2 (m

2
) 1 time unit

Figure A.1: Notre exemple.

b2?

?

?

?

?

?

a1

?

?

?

?

?

?

b1

b2

?b1

schedule on m
1

schedule on m
2

? ?

same
resource

type!

? A A A A A B B B B B ?requests

time t-λ t

b2

b1

b2

b1a2

a1 a1

a2

?

a2

a1

a2?

?

t-2λ

Figure A.2: Création d’un trou.

Pour cela, nous proposons un exemple de plate-forme d’exécution R sur M =
{m1,m2} avec R(m1) = R(m2) = 1 et l’ensemble de types de job J = {A,B}, représenté
sur la figure A.1, avec lesquels nous pouvons exhiber un tel flux, σ∞.

Nous choisissons le flux σ∞ de telle sorte qu’il inclue une infinité de séquences du
type AλiBλi pour des λi croissants. Nous montrons que pour un l ∈ R+ donné, le fait
d’imposer une latence inférieure à l oblige à introduire un « trou » de longueur 1 dans
l’ordonnancement à chaque facteur AλBλ tel que λ > l. Ici par « trou », nous désignons
un intervalle de temps où une instance de ressource est inutilisée (Fig. A.2).

Une infinité de séquences AλBλ avec λ > l dans σ∞ implique ainsi une infinité de
trous dans tout ordonnancement de latence inférieure à l, ce qui dans ce cas va rendre
le résidu non borné, contredisant le fait que la latence est l.

Or ce raisonnement ne fait aucune hypothèse sur le réel positif l, ce qui veut dire
que σ∞ n’admet pas d’ordonnancement de latence finie.

A.2.3 Résultat positif

Politiques d’ordonnancement. Après nous êtres intéressés à l’ordonnancement
d’un flux connu à l’avance, nous nous penchons sur l’ordonnancement sous incerti-
tude : on sait que le flux qui sera observé sera l’un des éléments du générateur de flux
de requêtes, mais on ignore lequel. Il s’agit ainsi de définir, hors-ligne, une politique
d’ordonnancement, qui va, en ligne, générer des ordonnancements.

Formellement, une politique d’ordonnancement est une fonction associant à un pré-
fixe fini de flux de requêtes un ensemble d’instance de tâches de ce préfixe, à interpréter
comme l’ensemble des tâches à démarrer juste après avoir observé ce préfixe. Un autre
point de vue est de considérer qu’une politique d’ordonnancement est un transducteur
temporisé transformant un flux de requêtes en un ordonnancement.

A.2. ORDONNANCEMENT DE FLUX DE JOBS STRUCTURÉS 91

Nous montrons dans cette partie qu’il existe une politique d’ordonnancement qui
pour tout générateur admissible ne produit que des ordonnancements à résidu borné.

Premier arrivé, premier servi. Nous établissons d’abord qu’une politique näıve
du type « premier arrivé, premier servi », ne peut pas assurer des résidus bornés pour
n’importe quel flux admissible. L’argument de la preuve est le suivant : on montre que
pour une telle politique d’ordonnancement, latence finie et résidu borné sont en fait
des critères équivalents. Or nous avons déjà établi auparavant qu’il était impossible de
garantir une latence finie pour certains flux. Pour un tel flux, une politique du type
« premier arrivé, premier servi » n’aura donc pas un résidu borné.

Politique à résidu borné. L’échec de la politique näıve nous conduit donc à proposer
une autre idée.

Le principe général de cette nouvelle proposition de politique est de faire en sorte
qu’à tout moment, sous réserve que le résidu ait déjà une certaine taille, il existe au
moins une instance de tâche prête à être exécutée pour chaque type de ressource, c’est-
à-dire des instances dont les dépendances sont déjà satisfaites. Ainsi il va être possible,
à n’importe quel instant, de démarrer une tâche sur toute ressource qui se libérerait.

Pour cela, nous créons une file FIFO pour chaque type de ressource, contenant des
instances de tâches prêtes à être exécutées. Quand une ressource se libère, le premier
élément de la file correspondante est exécuté s’il existe.

Les files, elles, se remplissent de la manière suivante : à chaque fois qu’une requête
de job arrive, pour chacun des types de tâche constituant ce type de job, on choisit la
plus ancienne instance prête, s’il en existe, et on la met en file.

Nous montrons qu’au pire des cas, quand la demande est égale à ce que la plate-
forme peut traiter, il y a toujours une tâche en file quand une ressource se libère, ce
qui implique que les files sont vidées aussi vite qu’elles se remplissent et qu’elles restent
bornées.

Nous prouvons aussi, dans un résultat complémentaire, qu’une légère adaptation de
cette politique permet d’assurer aussi une latence finie pour n’importe quel générateur
sous-critique.

A.2.4 Discussion

Dans ce chapitre, nous avons donc prouvé quelques résultats fondamentaux sur un
modèle qui, nous le croyons, rend compte de nombreux phénomènes de la vie réelle.

L’idée que des techniques issues de la vérification puissent être utilisées pour mod-
éliser des problèmes difficiles à exprimer avec les modèles traditionnels de l’ordonnan-
cement temps réel n’est pas nouvelle. En particulier, les algorithmes de vérification et
de synthèse pour automates temporisés ont été utilisées à cet effet. Cependant, jusque
là, ces approches avaient le défaut de ne pas pouvoir passer à l’échelle. La politique
présentée dans ce chapitre n’a pas ce problème et s’adapte à tous les cas prévus par
notre modèle, pour peu que les flux de requêtes soient admissibles.

92 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Dans le futur, nous pensons qu’il serait intéressant de considérer différentes exten-
sions de ce modèle, en particulier remplacer l’analyse « au pire » par des probabilités
sur les durées et les flux. Enfin, nous aimerions caractériser la classe la plus générale
d’ensembles de jobs dont tous les flux admissibles ont un ordonnancement à latence
bornée.

A.3 Omega-langages définis par une condition de

coût moyen

En vérification quantitative, on associe un coût aux transitions des automates, qui sont
utilisés pour associer un coût moyen aux comportements infinis. Dans ce chapitre,
nous proposons de définir des ω-langages par des critères sur ces coûts moyens. Des
conditions telles que « le nombre de messages perdus est négligeable » ne sont pas
ω-régulières, mais pourtant spécifiables dans notre modèle. Nous montrons que pour
la clôture par intersection, on a besoin de considérer des coûts multidimensionnels.
Nous soutenons que les conditions d’acceptation d’un mot doivent considérer l’ensemble
des points d’accumulation de la séquence des coûts moyens de ses préfixes, et nous
donnons une caractérisation précise de tels ensembles. Nous proposons la classe des
langages de coût moyen à seuils multiples, utilisant comme condition d’acceptation
le fait qu’une combinaison booléenne d’inégalités comparant la valeur maximale ou
minimale des points d’accumulation sur une certaine coordonnée à une constante: le
seuil. Pour cette classe de langages, nous étudions l’expressivité, les propriétés de
clôture, l’analysabilité et la complexité de Borel.

A.3.1 Automates à coûts multiples, langages de coût multiple
moyen

Nous travaillons sur des automates à coûts multiples. Il s’agit d’automates à états finis
déterministes munis d’une fonction de coût associant à chaque transition un coût dans
R

d, où d est un entier naturel associé à l’automate, que nous appellerons sa dimension.
Chaque exécution finie, c’est-à-dire chaque séquence finie de transitions successives

autorisées dans l’automate, se voit associer un coût moyen qui est la somme des coûts
des transitions empruntées divisée par le nombre de transitions.

Pour une exécution infinie, il est tentant de définir le coût moyen comme la limite des
coûts moyens des préfixes de l’exécution. Or cette limite n’existe pas forcément. Dans
la littérature, pour le cas d = 1, il est courant alors de considérer la limite inférieure
(lim inf) de la suite des coûts moyens.

Nous considérons, cependant, qu’un tel choix est arbitraire : en effet, la limite
supérieure aurait pu être choisie, choix qui n’est pas neutre si par la suite on veut
comparer cette limite avec un seuil constant. De plus, avec d > 1 se pose la question
de savoir sur quelle(s) coordonnée(s) appliquer ces limites inférieures ou supérieures.
Dans une première approche, nous choisissons donc de conserver plus d’information,

A.3. OMEGA-LANGAGES DÉFINIS PAR UNE CONDITION DE COÛT MOYEN93

en considérant qu’il est pertinent, à la place d’une valeur unique, d’étudier l’ensemble
des valeurs d’adhérence de la suite des coûts moyens. Pour une exécution w sur un
automate A, nous notons cet ensemble AccA(w)1.

Nous montrons, ce qui aura un rôle dans les résultats d’analysabilité, que Acc A(w)
est une partie fermée, bornée et connexe de R

d, et que toute partie de R
d qui a ces pro-

priétés est, pour une certaine exécution w, sur un certain automate A égale à Acc A(w).2

Ainsi, nous ramenons l’acceptation d’une exécution w sur un automate A à une
condition sur AccA(w). Dans le cas le plus général, si F est un prédicat sur les parties
de R

d, nous disons que l’exécution w est acceptée sur A par le prédicat F si F (AccA(w)).
De même, un mot infini est accepté si son unique exécution sur A est acceptée, et nous
appelons langage d’un automate A par la condition F , l’ensemble L(A, F) des mots
dont l’exécution est acceptée sur A par le prédicat F .

Enfin, si d = 1, nous appelons condition de seuil tout prédicat F tel que F (S) ≡
extrS ⊲⊳ C où extr ∈ {inf, sup}, ⊲⊳ ∈ {<,>,≤,≥} et C ∈ R.

A.3.2 Expressivité.

Nous établissons ensuite une série de résultats d’expressivité. Il s’agira aussi bien de
situer les langages à coût moyen par rapport à des repères connus (langages rationnels et
hiérarchie de Borel) que de comparer différentes sous-classes de langages à coût moyen
entre elles.

Comparaison avec les langages rationnels. Premièrement, nous montrons sur
deux contre-exemples que la classe des langages à coûts multiples moyens est incompa-
rable avec la classe des langages rationnels.

L’exemple d’un langage de coût moyen qui ne soit pas rationnel est très classique :
nous utilisons l’alphabet {a, b} et exprimons par une condition de coût moyen le fait
qu’un mot ait au moins deux fois plus de b que de a. En utilisant un lemme de pompage
adapté, nous montrons par l’absurde que ce langage ne peut pas être rationnel.

Réciproquement, le langage rationnel L = (a∗b)ω ne peut pas être défini par une
condition de coût moyen, quelle qu’en soit la dimension, car aucune condition de ce
type ne peut distinguer un mot qui a très peu de b à l’infini d’un mot qui n’en a plus du
tout après un certain préfixe. Étant donné un automate à coûts multiples, on montre
en effet qu’il y aura toujours un mot de L et un mot de son complément qui ont les
mêmes valeurs d’adhérence sur cet automate.

Comparaison de langages de coût moyen à seuil. Nous discutons ensuite de
l’expressivité comparée des classes de langages à coût moyen que l’on peut définir à

1Acc pour « accumulation points », traduction trompeuse de « points d’adhérence » et non de
« points d’accumulation »

2En fait, mieux que cela, pour un automate donné, pour peu que S soit une partie de l’enveloppe
convexe des coûts d’une composante fortement connexe accessible de A, on peut trouver une exécution
w telle que S = Acc A(w).

94 APPENDIX A. RÉSUMÉ EN FRANÇAIS

l’aide de simples seuils en dimension 1.

Pour ⊲⊳ ∈ {<,>,≤,≥}, nous définissons la classe L⊲⊳ des langages reconnaissables
sur un automate à coûts unidimensionnels par une condition de seuil simple utilisant
la relation ⊲⊳ et la borne inf. Bien qu’il s’agisse de variations autour de la condition
habituellement utilisée dans la littérature sur les jeux de coûts moyens, les implications
du choix de ⊲⊳ ne sont en général pas discutées, laissant penser que celui-ci est indifférent.
Cependant, nous montrons ici que chacune des quatre possibilités aboutit à une classe
de langages incomparable avec les trois autres.

La preuve est assez similaire à celle utilisée pour montrer que (a∗b)ω n’est pas un
langage à coût moyen : on se donne un langage L bien choisi, appartenant à une classe
L⊲⊳1 , on se donne un automate muni d’une condition de seuil utilisant ⊲⊳2 6=⊲⊳ B et on
montre que le fait d’accepter certains mots de L sur cet automate oblige à accepter des
mots du complément de L (ou parfois le contraire).

Langages à coût moyen dans la hiérarchie de Borel. Nous situons ensuite les
classes L< et L≤ dans la hiérarchie de Borel, établissant les quatre relations suivante :
L≤ ⊂ Π0

2, L≤ 6⊆ Σ0
2, L< ⊂ Σ0

3 et L< 6⊆ Π0
3.

De l’utilité d’augmenter la dimension. Nous avons montré que le choix d’un
opérateur de comparaison est en fait restrictif. Maintenant nous prouvons que, si nous
sommes intéressés par des problèmes quantitatifs multicritères, le fait de se limiter à
des conditions sur des coûts unidimensionnels est aussi restrictif.

Plus précisément, nous établissons que l’intersection d’un langage à coûts moyens
défini en dimension d1 et d’un langage de coût moyen défini en dimension d2 est toujours
un langage de coût moyen de dimension d1 + d2, et n’est en général pas un langage à
coût moyen de dimension d < d1 + d2.

Ce résultat est conforme à l’intuition que donnerait l’algèbre linéaire avec des con-
sidérations sur l’indépendance linéaire des coûts sur les différentes transitions, mais
sa preuve exige cependant un raisonnement fin sur la structure en composantes forte-
ment connexes et les comportements infinis de l’automate proposé pour reconnâıtre
l’intersection.

A.3.3 Une classe analysable de langages à coût moyen

Nous proposons une classe de langages à coût moyen close par opérations booléennes,
contenant les quatre classes L<,L>,L≤ et L≥ et analysable dans le sens où le problème
du vide y est décidable.

À cette fin, nous considérons, comme conditions F , des combinaisons booléennes
de conditions de seuil simples sur les projections le long des axes de l’ensemble des
points d’accumulation d’une exécution. Et, comme classe analysable, nous choisissons
l’ensemble des langages reconnaissables sur un automate à coûts multiples par une telle
condition F .

A.4. VOLUME ET ENTROPIE DES LANGAGES TEMPORISÉS 95

Nous démontrons d’abord que, comme on pouvait s’y attendre, cette classe est
exactement la clôture de L< ∪ L> ∪ L≤ ∪ L≥ par opérations booléennes.

Enfin, nous donnons un algorithme permettant de décider si un langage défini défini
par une telle condition sur un automate à coûts multiples est vide. Cet algorithme
suppose que la condition d’acceptation est donnée sous forme normale disjonctive et
cherche, pour chaque conjonction de la formule et pour chaque composante fortement
connexe de l’automate, si une exécution finissant dans cette composante peut satis-
faire la conjonction. C’est-à-dire que l’exécution doit avoir un ensemble de points
d’accumulation satisfaisant tous les seuils apparaissant dans la conjonction.

A.3.4 Conclusion

Les seuils sur les coûts moyens étaient jusque là surtout utilisés en tant que condition
de victoire dans certains jeux infinis. Dans ce chapitre, nous avons décidé d’utiliser
plutôt ce type de condition pour définir des langages et établir une liste de résultats les
concernant.

Que l’on souhaite soit prendre en compte de multiples critères quantitatifs, soit sim-
plement bénéficier d’un formalisme de spécification clos par opérations booléennes, il
ressort de notre étude qu’il est nécessaire de considérer des coûts multidimensionnels.
Nous avons exhibé en particulier la plus petite classe de langages à coûts moyens mul-
tiples incluant les comparaisons à des seuils et ayant cette propriétés de clôture. Nous
avons montré que le problème du vide y était décidable.

Après avoir obtenu ces résultats sur les langages, il serait logique, dans un travail
futur, de se demander quelles seraient les implications de l’utilisation de coûts multiples
dans les jeux de coût moyen. Une autre voie à explorer serait de tenter de rétablir ces
résultats dans le cas où l’automate serait non déterministe.

A.4 Volume et entropie des langages temporisés

Nous définissons des mesures de taille pour les langages temporisés : le volume pour
un langage à nombre d’événements fixé, et l’entropie (vitesse de croissance) en tant que
mesure asymptotique pour un nombre d’événements non borné. Ces mesures peuvent
être utilisées pour une comparaison quantitative de langages et l’entropie peut être vue
comme la quantité d’information d’un langage temporisé. Pour les langages acceptés
par les automates déterministes, nous donnons des formules exactes pour le volume.
Ensuite nous caractérisons l’entropie en utilisant des méthodes d’analyse fonctionnelle,
en tant que logarithme de la valeur propre principale (ou rayon spectral) d’un opérateur
intégral positif.

Nous établissons plusieurs méthodes pour calculer l’entropie : une symbolique pour
les automates que nous appelons à « une horloge et demie », et deux numériques :
une qui utilise encore des techniques d’analyse fonctionnelle, et l’autre qui est basée
sur la discrétisation. Nous donnons une interprétation de notre entropie en théorie de

96 APPENDIX A. RÉSUMÉ EN FRANÇAIS

l’information, en termes de complexité de Kolmogorov.

A.4.1 Exposé du problème

Volume et entropie des langages temporisés. Pour un mot temporisé à n événe-
ments discrets w = t1a1t2 . . . tnan, nous définissons deux notions : son timing, c’est-à-
dire θ(w) = (t1, . . . , tn) in R

n et son untiming η(w) = a1, . . . , an ∈ Σn (un mot non
temporisé).

Nous nous servons de ces notions pour définir le n-volume Vn d’un langage temporisé
L:

Vn(L) =
∑

v∈Σn

Vol{θ(w) | w ∈ L, η(w) = v},

Il s’agit donc de la somme des volumes euclidiens en dimension n des parties de R
n

décrites par les timings possibles d’un même untiming (notion qui est bien définie pour
les langages réguliers, vu qu’il s’agit de polyhèdres).

Quand n tend vers l’infini, ce volume très souvent diverge exponentiellement ou, au
contraire, tend vers zéro. C’est pour cela que nous nous intéressons plus particulière-
ment à sa (dé)croissance asymptotique et que nous définissons l’entropie d’un langage
comme suit: H(L) = lim supn→∞

log Vn

n
.

Trois exemples. Nous donnons ensuite quelques exemples d’automates. Deux dont
les volumes successifs et l’entropie de leurs langages peuvent être calculés explicitement
sans technique particulière, et un troisième, notre exemple favori, qui résiste à une
analyse näıve, et pour lequel nous arrivons seulement à calculer le volume du langage,
pour un n donné, comme une série de n intégrales imbriquées, ce qui ne nous permet
pas de déduire son entropie. C’est sur cet exemple que nous illustrons les techniques
proposées dans la suite du chapitre.

Une sous-classe d’automates temporisés. Nos méthodes s’appliquent à des auto-
mates temporisés satisfaisant quelques hypothèses relativement peu restrictives. Ainsi,
dans la suite, nous utilisons toutes ou une partie des hypothèses suivantes :

A1. L’automate A est déterministe

A2. Tous ses états sont accepteurs (on s’intéresse seulement aux langages préfixe-clos)

A3. Les gardes sont rectangulaires, c’est à dire sont des conjonctions de contraintes
Li ≤ xi ≤ Ui. Au moins une horloge doit être bornée.

A4. Il existe une constante D ∈ N telle que tout segment d’exécution de D transitions
réinitialise toutes les horloges.

A5. Aucune garde n’est ponctuelle, c’est-à-dire dans toute garde, pour tout i, Li < Ui.

A.4. VOLUME ET ENTROPIE DES LANGAGES TEMPORISÉS 97

La plupart de nos résultats nécessitent de mettre l’automate sous forme dite séparée
par régions, c’est-à-dire sous la forme d’un automate A = (Q,Σ, C, δ, q0), ayant les
propriétés suivantes, en plus de A1, A2 et A4:

B1. Chaque état discret et chaque transition est atteignable depuis (q0, 0)

B2. Pour chaque état discret q ∈ Q, il existe une unique région d’horloges rq telle que
l’ensemble des valeurs d’horloges par lequel q est entré est exactement rq. On pose
rq0 = {0}.

B3. Pour toute transition discrète, la garde est aussi une région d’horloges.

Nous montrons qu’il est possible de construire, à partir d’un automate satisfaisant
A1 − A4, un automate séparé par régions reconnaissant le même langage.

Calcul du volume. Nous exprimons le volume du langage reconnu par un automate
satisfaisant A1 − A3 grâce à une formule récurrente, déduite des équations récurrente
du langage de l’automate.

Nous notons Ln les mots à n événements acceptés par A.
Alors Ln vérifie les équations récurrentes de langage suivantes (avec Ln = Ln(q0, 0)) :

L0(q,x) = ε;

Lk+1(q,x) =
⋃

(q,a,g,r,q′)∈∆

⋃

τ :x+τ∈g

τaLk(q
′, r(x + τ)),

où Ln(q,x) est le langage des exécutions à n événements depuis l’état temporisé (q,x).
Ainsi, en posant vn(q, x) = Vn(Ln(q,x)), nous établissons des équations similaires

pour le volume :

v0(q,x) = 1; (A.1)

vk+1(q,x) =
∑

(q,a,g,r,q′)∈∆

∫

τ :x+τ∈g

vk(q
′, r(x + τ)) dτ. (A.2)

De là nous déduisons que vn(q,x) est un polynôme de degré n à coefficients rationnels
que l’on sait calculer, et que donc le n-volume du langage de A est un nombre rationnel
calculable à partir de A.

A.4.2 Approche par opérateurs

Définition de l’opérateur et lien avec l’entropie. Nous faisons le constat que la
récurrence sur les volumes peut s’écrire sous la forme vk+1 = Ψvk, où Ψ est un opérateur
linéaire intégral positif sur les fonctions réelles continues sur l’espace des états. Ceci
nous permet d’écrire la fonction vn sous la forme fermée vn = Ψn1 et ramène le problème
calcul du volume et de l’entropie à l’étude des itérations de cet opérateur.

98 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Nous montrons en particulier que l’opérateur Ψ est compact, et en nous inspirant
de la théorie générale des opérateurs linéaires positifs, nous déduisons notre théorème
principal, à savoir que l’opérateur Ψ associé à un automate A satisfaisant A1, A2 et A4
a un rayon spectral dont le logarithme cöıncide avec l’entropie du langage de A.

Calcul de l’entropie pour automates à « une horloge et demie ». Nous isolons
une classe d’automates, dits à une horloge et demie, pour laquelle le rayon spectral de
l’opérateur, et donc l’entropie, peut être calculée symboliquement en résolvant une
équation transcendante.

Un automate à une horloge et demie est un automate séparé par régions, dont les
régions d’entrée ont toutes une dimension 0 ou 1. Autrement dit, toute transition
discrète laisse au plus une horloge non réinitialisée.

Pour cette classe d’automates, la fonction vn(q,x), à q fixé, ne dépend que d’une
seule variable réelle, ce qui permet, après quelques étapes que nous expliquons en détail,
de transformer le système intégral λf = Ψf en un système différentiel linéaire ordinaire
que nous savons résoudre. Le rayon spectral de Ψ est ainsi la plus grande valeur de
λ telle que ce système ait des solutions non nulles, condition qui dans nos calculs se
ramène à chercher le plus grand λ qui annule un déterminant dont les coefficients sont
des polynômes d’exponentielles paramétrées par λ.

Nous appliquons la méthode à notre exemple favori, et nous trouvons une entropie
de log 2

π
.

Approximation du rayon spectral dans le cas général. Dans le cas général,
nous montrons que s’il existe deux réels α et β et un entier naturel m tels que αvm ≤
vm+1 ≤ βvm et Vm > 0, alors logα ≤ H ≤ log β.

Cette inégalité donne lieu à un algorithme permettant d’encadrer l’entropie par
itérations successives de l’opérateur. Nous n’avons pas montré la convergence de cet
algorithme, cependant, dans le cas où l’automate est fortement connexe, celle-ci se
vérifie expérimentalement.

A.4.3 Approche par discrétisation

Nous proposons ensuite une autre approche permettant de calculer une approximation
de l’entropie, celle-ci basée sur la discrétisation de l’automate temporisé étudié.

Pour ε > 0, nous disons qu’un mot est ε-temporisé si tous ses délais sont multiples
d’ε.

Nous montrons que le volume de Ln est à peu près égal au nombre de mots ε-
temporisés de Ln fois εn.

Notre technique de calcul de l’entropie par discrétisation consiste ainsi à déduire de
A un automate à compteurs sur l’alphabet Σ∪{τ} dont le langage est, à un morphisme
près qui transforme les τ en des délais de valeur ε, l’ensemble des mots ε-temporisés de
L.

A.4. VOLUME ET ENTROPIE DES LANGAGES TEMPORISÉS 99

Après avoir transformé l’automate à compteurs en automate fini à multiplicités,
nous nous inspirons des techniques de Lind et Marcus pour en compter les mots à n
événements et même obtenir la vitesse de croissance logarithmique de ce nombre. Il
s’agit en fait du logarithme du rayon spectral ρ de la matrice d’adjacence de l’automate.

De l’automate temporisé, nous dérivons en réalité deux automates à compteurs dont
les rayons spectraux obtenus par cette méthode sont ρ− et ρ+, tels que log ερ− ≤ L(A) ≤
log ερ+.

Cette méthode produit un encadrement de l’entropie qui, empiriquement, pour les
automates dont le graphe des transitions non ponctuelles est fortement connexe, con-
verge quand epsilon tend vers zéro.

A.4.4 Complexité de Kolmogorov des mots temporisés

Nous avons défini une notion d’entropie que nous savons dans certains cas calculer et,
dans tous les cas, approximer. Nous montrons maintenant que cette notion est perti-
nente, dans le sens où nous arrivons à la relier à la notion de complexité de Kolmogorov.

La complexité de Kolmogorov est le nombre minimal de symboles nécessaires pour
définir un objet donné. Dans le cas d’un langage temporisé, la complexité d’un mot peut
être aussi bien très faible dans le cas où le mot est obtenu, par exemple, en empruntant
toujours les transitions aussitôt que sa garde est vraie, ou bien infinie si les transition
sont empruntées après avoir attendu un délai réel non calculable.

Ainsi, afin d’établir une relation pertinente, nous avons décidé de considérer, pour
un mot donné, le mot de complexité la plus faible sur un voisinage de rayon ε, et
de trouver le maximum de ce minimum sur le langage des mots à n événements de
l’automate temporisé A. Nous notons cette quantité K(Ln, ε).

Nous montrons pour tout α > 0 et pour n assez grand que n(H + log 1/ε − α) ≤
K(Ln, ε) ≤ n(H′+log 1/ε+α), où H′ est l’entropie du langage de A′, automate identique
à A, mais dont les gardes ont été élargies de α. Autrement dit, pour n grand, K(Ln, ε)
est à peu près égal à n(H′ + log 1/ε), ce qui veut dire que notre notion d’entropie peut
être reliée à la quantité d’information contenue dans le langage observé sous précision
ε.

A.4.5 Discussion

Nous avons dans ce chapitre défini les notions de volume et d’entropie pour les langages
temporisés réguliers. Nous avons caractérisé l’entropie comme le logarithme du rayon
spectral d’un certain opérateur linéaire positif sur un espace de fonctions continues.
Trois procédures pour le calculer ou l’approcher ont été suggérées.

Pourtant, de nombreuses questions restent à étudier. En particulier sur la possibilité
d’obtenir des algorithmes pratiques et de les comparer les uns aux autres. Il serait aussi
intéressant d’explorer les applications que nous avons envisagées.

D’un point de vue théorique, nous souhaiterions supprimer ou alléger certaines des
hypothèses. Nous aimerions aussi pouvoir raisonner sur les composantes fortement

100 APPENDIX A. RÉSUMÉ EN FRANÇAIS

connexes de l’automate pour améliorer les estimations de l’entropie et prouver leur
convergence. Nous avons par ailleurs commencé à étudier le calcul de l’entropie par
unité de temps, au lieu de l’entropie par événement. Enfin nous aimerions faire le lien
avec l’entropie des systèmes dynamiques en associant un subshift au langage temporisé
étudié.

A.5 Conclusion

Pour récapituler, nous avons exploré trois domaines assez différents où des aspects
quantitatifs des langages formles interviennent. Dans chacune de ces directions, nous
espérons avoir réalisé des contributions significatives :

• des résultats fondamentaux concernant les performances dans un modèle d’ordon-
nancement que nous pensons capable de modéliser de nombreux phénomène réels,

• une manière de combiner plusieurs critères quantitatifs pour définir des ω-langages,
avec les résultats d’expressivité, de clôture et d’analysabilité qui correspondent,

• et enfin, pour les langages temporisés nous avons défini des notions de volume et
d’entropie que nous pouvons calculer ou approcher.

	Introduction
	Scheduling
	Introduction
	The Recurrent Scheduling Problem
	General Definitions
	Execution Platform, Jobs and Tasks
	The Demand
	Schedules
	The Running Example

	Negative Result
	Scheduling Policies
	Positive Result
	Oldest-First Policy does not Work
	A Bounded Residue Policy
	Bounded Latency for Subcritical Streams

	Discussion

	Defining Languages by Mean-Payoff Conditions
	Introduction
	Definitions
	Multi-Payoff Automata
	Acceptance

	Expressiveness
	Comparison with -regular languages
	Topology of Mean-Payoff Accumulation Points
	Comparison of Threshold Mean-Payoff Languages
	Mean-Payoff Languages in the Borel Hierarchy
	Dimensionality

	An Analyzable Class of Mean-Payoff Languages
	Multi-Threshold Mean-Payoff Languages
	Closure under Boolean operations
	Decidability

	Summary and Future Directions

	Volume and entropy of regular TL
	Introduction
	Problem Statement
	Geometry, Volume and Entropy of Timed Languages
	Three Examples
	Subclasses of Timed Automata
	Preprocessing Timed Automata
	Computing Volumes

	Operator Approach
	The Functional Space of a TA
	Volumes Revisited
	Exploring the Operator
	Main Theorem

	Computing the Entropy
	Case of ``112 Clock'' Automata
	General Case

	Discretization Approach
	Discretizing the Volumes
	-words and -balls
	Discretizing Timed Languages and Automata
	Counting Discrete Words
	From Discretizations to Volumes

	Kolmogorov Complexity of Timed Words
	Conclusions and Further Work

	Conclusion
	Résumé en Français
	Introduction
	Ordonnancement de flux de jobs structurés
	Le problème d'ordonnancement récurrent
	Résultat négatif
	Résultat positif
	Discussion

	Omega-langages définis par une condition de coût moyen
	Automates à coûts multiples, langages de coût multiple moyen
	Expressivité.
	Une classe analysable de langages à coût moyen
	Conclusion

	Volume et entropie des langages temporisés
	Exposé du problème
	Approche par opérateurs
	Approche par discrétisation
	Complexité de Kolmogorov des mots temporisés
	Discussion

	Conclusion

