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Résumé

Cette these vise a faire émerger de nouvelles ihtisers de la variabilité des
plissements du cortex humain en s’appuyant sutetdsiques de fouilles de données.
L’objectif principal est la conception d’algorithreg@ermettant de découvrir des motifs
de plissement spécifiques a une sous-populatiowididus. Le but final est de réaliser
un dictionnaire de ces motifs et de les assoc@esaparticularités cognitives ou
architecturales, voire a des pathologies. Deuatgigies de « clustering » sont
proposées pour mettre en évidence de tels motifprémiére repose sur des
descripteurs de formes globaux correspondant avariants de moment 3D, la seconde
repose sur I'estimation d’'une matrice de distaneese chaque paire d’'individus. Un
algorithme de clustering dédié est concu pour détdes motifs les plus fréquents de
maniere robuste. Une technique de réduction de mbina est utilisée pour mettre en
évidence les transitions entre motifs au sein d®jaulation. Les méthodes
algorithmiques proposées sont utilisées pour étudidorme du cortex sensori-moteur
d’'une population de gauchers contrariés. Des regsloriginaux sur le lien entre la
forme du sillon central et |a latéralité manuellens mis en évidence. Les méthodes
développées sont ensuite utilisées pour constlelipeemier dictionnaire des motifs

observés dans les plissements corticaux issu @ppeoche algorithmique.



Abstract

This thesis aims at proposing new descriptionsi@fvariability of the folding of the
human cortex using data mining. The main objedsithe design of algorithms detecting
folding patterns specific to a sub-population. Tdreg term goal is the constitution of an
exhaustive dictionary of all the folding pattermsiehed with links to cognitive or
architectural specificities, or to pathologies. Telastering strategies are proposed to
detect such patterns. The first one is based doatjlshape descriptors called the 3D
moment invariants, the second one implies the ctatipo of a pairwise distance matrix.
A dedicated clustering algorithm is designed fdoust detection of the most frequent
patterns. A dimension reduction strategy is propgdsestudy the transition from one
pattern to another across the population. The pemgabframework is applied to the study
of the shape of the sensori-motor cortex of a patparn of left-handers forced to write
with the right hand. Original discoveries relatitige shape of the central sulcus to
handedness are achieved. The framework is finakylwo build the first computerized

dictionary of the cortical folding patterns.
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Chapter One: Cortical Folding and Cortical Morphology

1.1 Summary

The primary goal of the thesis work is applying patational methods to analyze the
cortical folding patterns. In this chapter, a geakoverview is given to the fundamental
subjects of concern: the phenomenon of corticaifgl and the computational
morphometry of cortical folding. The computationarphometry provides the general
framework where the thesis work fits in. Withirs thamework, the cortical folding
patterns are studied applying computational methaglsg magnetic resonance imaging
data.

The rest of the thesis is organized as follows:gi#aOne gives an introduction to the
subjects the most relevant to this work; Chapteo Twiroduces the approach of using
clustering algorithms on selected morphometricatdiees of cortical folding; Chapter
Three further explores various approaches of figdiomprehensive information in
cortical folding; Chapter Four applies the methatts/eloped to a real dataset,
illustrating the exciting potentials of such anasysChapter Five presents the summary
of the detailed dictionary of cortical folding paths and Chapter Six concludes the

thesis work.

1.2 Introduction

As of all the work combining different fields, ihis case, neuroscience and computer
science, it is of pivotal importance to gain su#fit understanding of the fields involved.
The questions asked need to be well understoodetfe right solutions can be found.
Consequently, this thesis work begins by understagthie neuroscience issues behind.
The computational methods then need to be selectédsigned to answer these specific

neuroscience questions. In this work, the journastswith the cortical folding process.
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The cortex of the brain folds during developmeitte Tolding process, mysterious and
fascinating, is not yet well understood. Does thetical folding contain some
information on the functional organization of thentan brain? From the folds alone can
we observe a pattern characteristic of a certaimabegical disease? There exists a
wealth of knowledge on the subject. Thanks to readuwances in software dedicated to
automatic recognition of cortical sulci (Fillardadt, 2007; Le Goualher et al., 1999;
Lohmann and von Cramon, 2000; Riviere et al., 2002tker, 1988) issues regarding

cortical folding can now be tackled using largeitdatabases (Mangin et al., 2004b).

Each brain looks different and none of them lookacty like the ones in the text books.
Refer toFig 1.1, examples of individual folding patterns are shoilcan be observed

that huge amount of folding variability exists.

Fig 1.1.Thevariability of cortical folding
Right hemispheres of three individuals, the colticlls of the frontal lobe are highlighted accoglito the

traditional nomenclature.

Current studies of this variability focus mainly simple morphometric features, such as
the length or the depth of the standard sulci or. ¢ynfortunately, the standard naming
system cannot always account for the folding patt@riability. Hence some of the
standard sulci can be difficult to define or to swe@. This weakness of the nomenclature
imposes difficulties on both morphometric studiad &he pattern recognition software

dedicated to automatic recognition of the sulci.

The most detailed description of the sulcus valitgthias been proposed in the atlas of

Ono (Ono et al., 1990). This atlas is not basedransingle individual but on twenty
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different brains. For each sulcus, the authorsgsem list of possible patterns and their
frequencies. These patterns are defined for instémom the variability of the sulcus
interruptions. In a way, the initial goal of theeflis work is to automate the work
performed by Ono. We want to discover folding patsehat can be observed for a subset
of the population. Furthermore, we want to fink$irbetween folding patterns and

function.

An overview of the study of brain cortical foldipgtterns is discussed in the next
section. The field of computational cortical morpiedry is discussed further in section
1.4, the focus is on the analysis of cortical fiotdiNote that it is impossible to cover in
every detail these two vast domains; let alone nmalated subjects not directly
concerned in the thesis work. The goal of this traig to give enough background

knowledge to pave the way for the chapters th&bvol

1.3 The study of cortical folding patterns

Different conceptual approaches are undertakeratime brain: the functional (initiated
by Broca, followed by Jackson), the cytoarchiteait@initiated by Baillarger, followed

by Ramon y Cajal and later Brodman) and the stddylai and gyri. In this work, the
third approach, the study of sulci and gyri, isetak

It is fascinating to look at the brain folding gatis. As stated by Welker: “the most
striking, interesting, yet poorly understood grossphological features of the cerebral
hemispheres in mammals are the diverse and comaplargements of their cortical gyri
and sulci” (Welker, 1988).

Indeed, while the nuclei in the spinal cord andliten stem of the mammals are quite
similar, the cerebrum and cerebellum exhibit guweatation in size, shape and

convolutional complexity. The size and amount afvagution of the mammalian brain
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has been linked to intelligence. It is believed thase with bigger and more convoluted
brains possess more behavioral complexity and higkelligence. Comparative studies
revealed that cortical thickness and columnar gchire differ relatively little in

different mammals. The huge difference lies inicaftsurface area. Compared to
macague monkeys, the surface area of the humamibrapproximately 10 times greater,
whereas the thickness of the human cortex is endyald greater (Barondes et al., 1997).
The larger brains have more gyri and sulci, théawdity of the three-dimensional

convolutional patterns increases as well (Jeri$6i3), sed-ig 1.2for examples.

Elephant

~ Chimp 240cm

Fig 1.2: The brain of different species

It is believed that during evolution, a greater l@mand diversity of brain functions
were achieved by increasing the surface area ebcalrneocortex. The increase in
surface area is achieved by mechanical bucklirfigldmg, and fissuring. The folding of
the cortex might provide more functional modulexigbn, 1973).

Historically, the importance of folding patternstbé cortex was questioned: “similar to
the loops of small intestines that seemed to lieamparticular order” (Edwin Clarke,
1973). In the early 1800s attention was drawn éopibssibility of localizing specific
mental faculties to specific gyri by Gall and hedldwers (Clarke, 1968). Phrenology is
history now, but this initiative leads to many dgstive studies of the cerebral

convolutions (Welker, 1988). These studies inclodmans as well as primates. As
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advances were made in experimental methods anddkdy, this interest in localizing
specific functions to specific convolutions dimimesl. More studies focused on the
microscopic structure and architecture of the aadatortex. However, there starts to be
more structural, connectional, and functional stadhat reveal correlates of gyri and
sulci to brain function (Watson et al., 1993; We|KE988). These evidences suggest that
brain morphology of the folding patterns might lkéd to brain connection and
function. It is thus interesting to explore furttiee folding patterns with more modern
and automated computational methods, and try katiese patterns to functions or

behaviors.

1.3.1 Gyri and Sulci

The folding patterns are already very varied whieseoved from the brain surface. When
the cortex is viewed by dissection or serial sestjdhe gyri and sulci appear to be much
more complex (Welker, 1988). Traditionally, a nomlature system is set up to describe
the convolution of the surface of the human brainatomica, 1983; Clemente, 1985;
Ono et al., 1990), refer teig 1.3for an example. Due to the enormous variabiligt th
exists in folding patterns, achieving a unified ception for the description of these sulci
and gyri is extremely difficult. One interestingaemple of such attempt for a systematic
understanding of the sulci and gyri is the suloakmodel (Regis et al., 2005). Indeed, a
unified scheme cross different species can be coafl only when the neurological data
concerning developmental, architectural, conneetigrhysiological and chemical

features are available.
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Fig 1.3 Gyri and Sulci, an example of the text boogresentation of nomenclature
Gray's Anatomy: The Anatomical Basis of Medicinel &urgery (British Edition. 38th Ed)

1.3.2 Development of the cerebral cortex and gyrogenesis

Human cerebral cortex development may be dividedthree, partly overlapping
periods (Marin-Padilla, 1990): embryonic periodgimediate, fetal or migration period

and the perinatal period. The perinatal periodst@oouthe 24th week of gestation.

Disorders of neuronal migration are likely to ocouthe fetal period so defined. On the

other hand, abnormalities of the structural orgatnon of the cerebral cortex are
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common in the perinatal period. At about 22 wedlgestation, the firsthalamocortical
synapses are formed within the cortical plate,icalrtnterneurons and dendrites of layers
Il and V pyramidal neurons are developing simutiausly. In the period of 22—-26
weeks of gestation, dense granularity is obsemélde position of the future layer VI.
The six-layered adult laminar pattern graduallyesgpp after 28 weeks of gestation. At 1-
2 years after birth, major outgrowth of dendritesws, both for pyramidal and for
nonpyramidal neurons. Mature dendritic extensionlieen reached at 2—4 years of age.
Finally, the mature level of outgrowth is reachedlaout 3—4 years (Uylings, 2001).
Certain cortical areas such as the frontal ancefarcortices keep increasing until the
age of 12-13 years (Hori, 2006).

In humans, gyrogenesis usually starts during fi#gklopment. In ferrets, this process
starts shortly after birth (Neal et al., 2007). Whhe gyral tissue continues to expand,
some areas (the sulcal roots) remain in a relgtstalble position (Regis et al., 2005).
Gyrification in humans reaches adult values arcagelof 10 years (Armstrong et al.,
1995). The primary effect of the folding procesarisincrease of surface area relative to
volume, which correlates with an increased numib@earons (Panizzon et al., 2009).
This increase is presumed to enhance the compudhtiapacities of the cortex with

some metabolic and connectivity limits (Wen and IG#gkii, 2008).

Fig 1.4 Development of the human brain
Lateral and medial views of the developing humamirbin the fourth &), sixth ¢) and eighthq)

gestational months, and in a neonafeThearrowsindicate the position of the central sulcus (HBEO6)
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Gyrogenesis is composed of an intriguingly com@esies of events. Without going into
the details of each, the processes hypothesizeédgdgyrogenesis include: neuronal
differentiation and dendrogenesis, neuronal ort@riaafferent arrival, penetration,
fasciculation, and arborization, synaptogenesial gfoliferation and ensheathment,
laminar aggreration and segregation, rearrangeofardl adhesion molecules and
related membrane structures, and the differenéiaéldpment of gyri and lobules. From
the perspective of external morphology, differdrdivelopment of different gyri and
lobules affects their relative width, height, shapentation, and spatial pattern. The
gyral crowns, sulcal walls, and fundi are consedatifferently and according to

different developmental timetables (Welker, 1988).

The cortical folding is a sequential process. Reféfig 1.4 for the external morphology
of the cortical folds during development. The Sgiviissure and insula can be
recognized athe 14th gestational week as a shallow indentatiothe lateral surface of
the cerebrum. Cerebral sulcus formation beginsratdbe 16th gestational week with the
appearance of the parieto-occipital and cingulakei.sSCentral sulcus formation is seen in
the 20th to the 21st week (Armstrong et al., 1¥¥ess-Higgins and Larroche, 1987).

The classification of sulci into primary, secondangd tertiary sulci has been adopted.
Definitions are proposed but the precise clasgiboaremains controversial. The
definition based on comparative anatomy defineptheary sulci as those that can be
found in all gyrencephalic primates. The ontogenatiproach defines the primary sulci
as those generally appearing before 30th weeksiatien (Feess-Higgins and Larroche,
1987) The secondary and tertiary sulci are those tivatthe cortex the adult appearance
(Tamraz and Comair, 2006). The definition concegrihre orientation of the sulci is as
follows: primary sulci are oriented perpendiculathe neuraxis, whereascondary

sulcus formation is parallel to the neuraxis, térgiary sulci bind the primary and

secondary sulci (Hori, 2006).

Normal gyration and sulcal pattern has been stugliedatally and in preterm and term

neonates with MRI. Brain maturation was found &otsn the central area and to proceed
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towards the parietooccipital cortex (Ruoss et2€lQ1). The frontal cortex develops last.
As more knowledge concerning early brain develogrbenomes available, the
classification of sulci could be converged.

It should be kept in mind that gyrogenesis is moisalated process. The central nervous
system as a whole is developing as well, togetlir the development of other tissues
and organs such as the eye, the heart, the teeffigetl.5 gives a timing of these events.
More specific to the cortex, while the gyri and dudci are forming, the six-layered adult
laminar pattern is forming simultaneously (refeFtg 1.6 as an example). While it is
interesting to observe the cortical folding procdsis important to put cortical folding

into the context of the human development as aevhol

[Embryonic period (in weeks)
1l 2
|
|

Fetal periodiinweeks)
[ ] 32 3

T | i
I Arm
T

L}

A=l =] |

L ‘ ' : I | Ext. genilals
[

. : I
Abortion MAJOR Malformations LMINOR Ancmalies

Fig 1.5Critical periods of human development
Critical periods in human development. In tlerizontal columnsthe period of major complications is

shown inred, that of minor anomalies iight red (Hori, 2006)
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Fig 1.6 Prenatal development of neurons in the prefrontal artex

Golgi-stained sections at 10.5(a), 13.5(b), 17A8)25(d), 26-29(e) and 32-34(f) weeks of gestatind a
neonate(g). CP: cortical plate, FI-VI: fetal coalitayers, 1Z: intermediate zone, MZ: marginal Zo8E:
subplate, VZ: ventricular zone, WM: white mattedo(i, 2006)

1.3.3 Relation of architectonic and function to gyrus

The parcellation of neocortex into structurallyfelient cytoarchitectonic areas has a long
history; the criteria used to differentiate theaardiffer from one author to another. It is
generally accepted that architectonic distinctialasie do not provide an adequate or

accurate view of areal differences in cortical oigation (Welker, 1988).

Different architectonic fields often occupy diffatebut adjacent, gyri. When the border
of the transitional zones lies at the fundus ofititerposed sulcus, such sulci have been
calledlimiting sulci Examples of limiting sulci are the central, citega and sylvian

sulci. However, many sulci lie within a single atebtonic field, within-field sulci are
calledaxial sulci.Examples are the superior and inferior precentriai and the

calcarine sulcus. In some cases a single gyrusic@iwo or more architectonic fields;
an example is the postcentral gyrus of primateterReFig 1.7 for the Brodman’s areas

relative to the gyrus and sulcus.

One of the most striking evidence for a preciseatation of functional areas with gyral

and sulcal features came from mapping studiesrmabswsensory cerebral cortex in
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raccoons (Welker, 1988). The functional areas efftimepaw correlate well to the
cortical areas separated by the folding. The croantex has larger or more densely
activated neuronal populations, compared to gyedlsvand fundi. Additional studies of
the raccoon found that not only the ventrobasdathas, but also the dorsal column
nuclei, were subdivided into as many subnuclehasetwere gyral crowns in

somatosensory cortex (Welker, 1988).

[ Somatosensery

Frental Eye [

] Motor

[ R

["1Broca's

[] Audition %

7] Wernicke's !
Cognition

H Emotion

[ vision
[ Visual-parietal

[ Visual-temporal

Fig 1.7 Map of the cerebral cortex in manBrodmann, 1909).

1.3.4 Cortical Connections

To have a better understanding of cortical foldihg, underlying fiber connections
cannot be overlooked. Large and well-organizedathat nuclei send projections to, and
receive reciprocal connections from, different $ji@cortical gyri or gyral groups.
Limiting sulciwhich lie at the borders or cortical areas recernggections from different
thalamic nuclei or nulear complexes. There are eds@s where adjacent gyri separated
by axial sulciwithin a single cortical field are interconnecteith different but adjacent

thalamicsumuclei. A well-studied example of this is foundtire connections of the
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subnuclei of the raccoon’s ventrobasal complex withseveral cortical subgyri within

somatosensorry cortex (Welker, 1988).

Other than cortical-thalamic connections, numeimrsical-cortical connections exist. In
human, the superior and inferior longitudinal fasé, the uncinate fasciculus, and the
cingulum are some of the largest fiber bundles tvimterconnect major lobes of the
cerebral hemisphere (Clemente, 1985). The intekg\rafiber connections are also
demonstrated (Krieg, 1966). It is shown that adyaggral crowns are richly
interconnected, whereas fundic cortex is sparsggéréonnected. Regarding
interhemispheric connections, experiments revedlitiost topographically homologous
gyri of the two hemispheres have reciprocal coniapstthat are symmetric. Many gyral
crowns project to gyral crowns, and sulcal wallsuécal walls (Welker, 1988).
However, some cortical gyri send projections prilgdo the walls and fundi of certain
sulci in the opposite hemisphere. It is interestmgotice that in several mammals, gyri
that contain specialized sensory or motor represient are devoid of reciprocal
interhemispheric connections. The examples incthdesomatosensory hand cortex, the
visual foveal cortex and the primary auditory criite some mammals. Local circuits
exist between different parts of a single cytodeationic field located on one gyrus, as

well as between different adjacent subfields orsdrae gyrus (Welker, 1988).

Finally, it should be kept in mind that many gymagions send descending projections
not only to specific thalamic nuclei, but also pesific basal ganglia, brain-stem,
cerebellar, medullary and spinal cord nuclei.

1.3.5 Pathological gyral and sulcal patterns

Abnormal gyral and sulcal patterns have been olkseifhere are terms describing the
anomalies of cortical development in humans anthalsi, which include: agyria (lacking
gyri), pachygyria (broad gyri with thin cortex)eglyria (narrow, distorted, and scarred
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gyri), microgyria (abnormally narrow gyri), polymmagyria (supernumerary tiny gyri),
polygyria (an unusually large number of gyral fotimas), schizogyria (gyri with
disrupted continuity), ectopic gyri (gyri that océo unusual places), and cortical warts

(small innervated cellular protrusions of cortewjglker, 1988).

Abnormalities of cortical development produce alggions in form and pattern of gyri
and sulci, many of these are also associated withasy, motor, cognitive, and
motivational disorders. The interactions duringelepment are complex. The difficulty
in deciphering the folding mechanism based on abalities is that these abnormalities
usually affect many levels of development, antelit known of the time and nature of
the cause (Welker, 1988).

One interesting example illustrating the link betweéhe underlying connections and the
sulcal pattern is the case of brains without cogalosum (callosal agenesis). In these
cases, the bundles of Probst become longitudisgdaa of crossing the hemispheres as
corpus callosum. Typically, the cingulate regionwh more radial arrangement. Refer to
Fig 1.8for the abnormal bundles and abnormal sulcal patiéhe other example is the
Williams syndrome, a raréisorder characterized by dissociation betweenuageg, face
processing and spatial cognition. Overly socialdvadr is observed that is opposite to
that seen in autism (Bellugi et al., 199®)s found that the central sulcus of the pasent
are shorter and does not become opercularizecimterhemispheric fissure (Galaburda
et al., 2001)The central sulci are also observed to be sepabgtedusual gyral

convolutions (Hori, 2006).

Fig 1.8Callosal agenesis
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Left: Development of the bundles of Probst. The gossural fibres of the corpus callosum in a normal
brain @) are shown byroken linesthe abnormal longitudinal bundles of Proligtwhich fail to cross are
shown insolid lines (Hori, 2006) Right: Photographs show a fetal cafszallosal agenesis:medial view

of the brain; note radial arrangement of girgoronal section of the brain

The examples above implies that even though foldimgprmalities are most likely
consequences of multiple functional abnormalitiesevertheless links altered form to
altered function in the cortex, and can shed soghe bn the underlying developmental

mechanism.

1.3.6 Comparative and developmental studies

Comparative studies among different species prawidey interesting insights into brain
evolution and development. For example, it is obsgthat the size of the localized areas
of the cortex is different among mammals. Relayivatge cortical somatosensory hand
area is observed in raccoons, larger rhinarialsairegigs, larger lip area in llamas, and

larger tail area in spider monkeys (Welker, 1988).

More specific to gyrogenesis, historical compamstudies reveal that gyrification is not
associated with brain size or body size acrossispeSmaller brains can be more
convoluted than bigger ones. An example is the lwaasel, the smallest living
carnivore, which has a highly convoluted brain demdghan that of a smooth-brained
rodent (Jerison, 1973). Another well documented igathat the cortical thickness of
cerebral cortex varies relatively little (1-4mm)@amg brains of different mammals over a

wide range of brain and body sizes, from mousdegphant (Braitenberg, 2001).

More recent studies confirm that as the brain isigeeases, the cortical thickness
increases only slightly, while the degree of sutmalvolutions increases dramatically (Im
et al., 2008). Furthermore, the relation of ggation to brain size might follow region-

specific patterns within species. Toro et al (Teral., 2008) found that as the brain size
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increases in humans, the cortical folding is insegamore specific to the prefrontal
cortex. The major implications are: the processipgrations of cerebral cortex are
probably the same everywhere; increasing the nuoifigemocessing modules is mainly

by the increase in cortical surface area.

It is interesting to note that shapes and oriemtiatof most gyri differ in predictable ways
in different species, as well as in different amatiregions in any one species.
Convolutions and sulci do not appear randomly ffecént mammalian groups, but tend
to occur in taxon-specific patterns. Within eacbugr, there are greater similarities,
despite wide variations in brain size and gyral smdal complexity. The study of the
somatosensory cortex in raccoons by Welker (Wellk@88) reveals that minor
interanimal differences were associated with vemnstin the deployment of specific

peripheral somatosensory projections to cerebraxo

The development of sulcal and gyral patterns @ngflly influenced by genetic processes
(Piao et al., 2004), yet studies of monozygoticswvieveal considerable differences in
their surface morphology (Thompson et al., 2001jtévét al., 2002). This could be due
to environmental influences during early developtkns found in twin studies that the
deeper and developmentally earlier sulci of thenbfiee., thecentral sulcus or the
sylvian fissure) are more highly correlatban the superficial or tertiary sulci, which
develop mainly after birth, and appear tonbere affected by non-genetic influences
(Lohmann et al., 1999).

1.3.7 Explanation of gyrification and fissuration

Gyrus building is considered to be consisting ahetous constructional processes. The
gyral crowns, sulcal walls, and fundi (bottom) ditéerent in architectural, connectional
and functional features (Welker, 1988). Various gisdhave been proposed to account

for the phenomena of convolutions. The non-isotrdpices might be due to the complex
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interaction of differential growth of the cortidalyers, cell migration, cell myelination,
cortical-cortical and cortical-thalamic connectyisynaptic pruning, brain size and
metabolism (White et al., 2010).

It was first proposed that sulcation is due toeoexpansion constrained by the skull and
the basal ganglia (LeGrossClark, 1945). It is l&bend out that removal of large amount
of cortical and subcortical structure in sheeprbrasults in normal sulcal size and
organization (Barron, 1950). So cortical foldindikely not due to constrained growth
solely. Van Essen (Van Essen, 1997) proposes #ubnal connections that develop
during the second trimester produce localized fibasion which draws densely
interconnected regions closer together. Tensiomgadxon in the white matter is
suggested to be the primary driving force of caitfolding. As regions of greater
connectivity move closer together in an enclosatirapidly growing brain, they form

gyri (outward fold). The more sparsely connectegiaes drift apart and the sulci (inward
fold) form. The tension, although very small foriadividual axon, is summed by the
very large number of neurons. The characteristitepaof the convolutions can thus be
explained by the highly specific organization o# timderlying connectivity. This model
suggests that differential growth of different ocat layers is a consequence rather than a

cause of cortical folding.

Such a theory links brain surface morphology w&gional neuronal connectivity, in a
developmental framework (White and Hilgetag, 2008e link between gyrification and
axonal tension has been supported by experimeantih§s in the primate brain
(Hilgetag and Barbas, 2006).

Alternate folding theories emphasize on mechariazbrs such as abutting cortical
plates (Richman et al., 1975), or the differengiawth with mechanical constrains
(Todd, 1982). Genetic factors likely play a cruci@k in cortical folding. The genetic
control of cortical development is proposed (RakR38); links between cortical folding

and cytoarchitecture is confirmed (Fischl et &00&). Cortical folding has also been
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linked to genetic factors by studying the abnorfoliling of diseases with known genetic
link such as William’s syndrome (Gaser et al., 2i@penhan et al., 2005). Indeed, the
fiber development, the differential growth in codi layers and in different sub-regions,

could be a complex concerted process determinegtbgtics.

The major mechanical factors that contribute toftiheing process, fiber pulling or
differential growth under constrain, remain to begified in the future. Some interesting
computer based models of cortical folding are psego which will be discussed in detall

in the next section.

1.4 Computational morphometry of cortical folding

The general framework of cortical folding is intradd above. Next, we discuss some

computational methods applied to the study of caltiolding. The conventional naming
system seems inadequate for describing the fdidsig partly due to the variability that
exists, partly due to the use of external morphickgriteria alone in the description of
folding patterns. One of the goals of this workoisinderstand better the variability in

cortical folding patterns.

The recent advancement in brain imaging such as#gnetic Resonance (MR)
technigues can provide valuable information. Midtipubjects can be followed
consistently in longitudinal studies. Applying modeomputational methods, massive
data can be analysed automatically. Computatiomaphometry is the field concerned
with the qualification of anatomical features ahdrmges in individual brains or brain
populations (Mietchen and Gaser, 2009). This thesik is an application of
computational morphometry. In the following, otdpics relevant to the thesis work are
introduced. Subjects less relevant are not disdyjsise aim is to introduce subjects that

our work can contribute in advancing the currerdarstanding.
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1.4.1 Cortical morphology and the modeling of cortical folding

The voxel-based-morphometry (VBM) approach is usadany brain morphometry
studies (Ashburner and Friston, 2000). In VBM stgdihree-dimensional spatial
alignment is applied; voxel-wise comparison of ltheal concentration of grey and white
matter across populations is then carried out. Whercortex is of interest in particular,
the cortical thickness analysis is often used afignment of the cortical surfaces
(Ashburner, 2009; Fischl and Dale, 2000). Moretegldo our work of cortical folding, a
group of computational methods utilizing the s@gii are developed, which will be

discussed here.

Regarding the cortical folding process, as disaligssection 1.3, numerous factors are
involved. Different hypothesis regarding corticalding are proposed, emphasis are put
on fiber tension (Van Essen, 1997), differentiavgth of the sub-layers (Richman et al.,
1975), and differential growth of different sub-@gs of the brain (Welker, 1988). The
fold formation could be mainly due to genetic fastor mechanical factors. With the
advancement in MRI and computer algorithms, theseets can be tested.

Computer simulation of the morphogenetic model ¢Tamd Burnod, 2005) has been
proposed to clarify the importance of mechanical genetic factors in cortical folding.
The results suggest that convolutions could betaralaconsequence of cortical growth.

Such a model can produce primary, secondary atidriefolds.

The causation of fiber tension for gyrification kserremains controversial. In another
recent study, cerebral cortical folding has beedefed combining structural and
diffusion tensor MRI in sheep. Finite element modgis combined with explicit growth
mechanisms to be tested. The growth mechanisnesitast white matter tension or
tangential cortical growth that drives corticaldivlg (Geng et al., 2009). It is found that

tangential cortical growth is a plausible biomeabkanof sulcal root formation and hence
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cortical folding. It is also shown in the develogiferret brain that, even though the
axons are verified to be under considerable tensientension likely does not drive
folding. Using computational models, it is showattdeferential cortical growth
accompanied by remodeling of the subplate leadsitward folds and stress fields
consistent with microdissection experiments. Th&uit supports a mechanism involving

differential growth of the layers (Xu et al., 2010)

Another interesting approach to explain the coesisy and variability of the cortical
folding pattern proposes a phenomenological mddsfe¢re and Mangin, 2010). This
model is based on reaction diffusion mechanismgra/ithe Turing morphogens are
responsible for the differential growth of the sand the gyri. This model mimics the
progressive folding of the cortical surface; it ggmerate reproducible yet variable
patterns using sulcal roots (Regis et al., 200b¢ Jtudy suggests that interactions
between growth factors may be sufficient in therfation of consistent yet variable
folding patterns. Such a model would give more emsphto genetic factors, which

subsequently determines the timing and amounteoféneration of growth factors.

The mystery of cortical folding and the importaméerarious factors contributing to this
phenomenon remain to be deciphered. The studiessdied above illustrate the exciting
potential of computational methods in testing hjpests of complex phenomenon such
as cortical folding.

The cortical folding analysis is of growing interesie to the potential connection of
cortical folding to white matter connections unceath (Van Essen, 1997). Recent links
has also been found between cortical folding andarghitectony (Fischl et al., 2008).
The analysis of cortical folding would thus be \adlle for the study of development and
pathology (White et al., 2010). Abnormal developtsgrossibly leave traces that can be

observed in abnormal folding patterns.

Next, the different approaches in the study oficaltfolding are discussed.
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1.4.2 Approachesin the study of cortical folding

One way to allow comparison of cortical folding andrphology across subjects is to
first align the surfaces. Many approaches can bd t@ such two-dimensional spatial
normalization. The alignment based on folding degtti curvature on the stable sulci
can be carried out. These stable sulci can beetfimanually or automatically (Fischl et
al., 1999; MacDonald et al., 2000). In corticac#tniess and gyral surface analysis (Fischl

et al., 2004), the alignment is carried out first.

Beyond cortical thickness and cortical surface yss] the nature of cortical folding can
be studied. An index is used to quantify the exéériblding, the gyrification index (Gl).
The Gl is first defined as the ratio between timgths of coronal outlines for the brain
including and excluding the sulcal regions (Zilktsal., 1988). This approach leads to
interesting findings. For example, it is found ttte Gl increases dramatically in the
third trimester of development, then remains markess constant throughout life
(Armstrong et al., 1995).

The limitation to this method of measuring the &that it is obtained in two-dimensions,
the measurements could be biased. The possibildgfning three-dimensional Gl is
being explored. The 3D GI can be defined localyrfrthe geometry of the cortical
surface (Schaer et al., 2008; Toro et al., 200&an also be defined globally (Rogers et
al., 2010) or both at the global level and the ssilevel (Cachia et al., 2008). In the
study of premature infants, specific Gl is desig(@dbois et al., 2008).

Other than the thickness and gyrification indekgotffeatures have been used to study
cortical folding. The easier to access featureshadength, the depth and the surface

area of the sulci (Mangin et al., 2004b). Anottmeiesting feature useful to monitor
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aging is the opening of the folds, defined as tstadce between the two walls of a

particular sulcus (Kochunov et al., 2005).

Our methods developed in this work are using a momeprehensive measure, the 3D
shape of the folds. The shape needs to be detactetlirther represented reliably for
pattern analysis. The details of the representatidhe sulcal shape can be found in
Chapter Two and Chapter Three. The sulcal ideatific and extraction is done by using
the software BrainVISA (Mangin et al., 2004b). Tiege processing algorithms in
BrainVISA obtain the shapes of the sulci in thresps. First, a hollow object made up of
gray matter and cerebrospinal fluid is extractednfthe T1-weighted image. Second, the
object from step one is skeletonized to obtainhtmisphere hull and the numerous
medial surfaces of the cortical folds. Third, tkelston obtained in step two is split to
separate the folds from each other and from thadprare hull. The naming of the sulci

can be carried out automatically (Mangin et alQ4) Perrot et al., 2009b).

Sulcal extraction and analysis is carried out theoteams as well. In the work of Le
Goualher (Le Goualher et al., 1999), the activeoibmethod is used to extract the
superior and the fundus trace of the sulci; thesahen extended to the surface of the
whole sulcus. The labeling is semi-automated, ensénse that for the labeling of each
sulcus, the user is given a list of choices astbst likely candidates. This list is based
on the priors for the expected sulcal spatial ilistron. The sulcal shape can then be
compared statistically to investigate such issge$ea link of sulcal shape to genetics in
twin studies (Le Goualher et al., 2000).

Various other methods are used to extract the fahttie sulcus (Kao et al., 2007; Li et
al., ; Seong et al., 2010; Shi et al., 2009) orstiimgace sulci lines (Fillard et al., 2007; Tu
et al., 2007). The results of the analysis usimgttip or bottom of the sulci would
provide different but interesting information rediag the sulcal pattern and cortical

morphometry in general.
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The normalization process discussed before wouddiply create difficulties in further
variability analysis. When studying the shape \lity of specific sulci, an interesting
approach is to create a co-ordinate system bas#teasulcal depth profile (Cykowski et
al., 2008). In the next section, some of the figdinsing the methods discussed above
are briefly discussed.

1.4.3 Applications of cortical morphology

The study of cortical morphology can shed somet lgghmany important issues. In
particular, the findings in the four domains wobkel discussed: brain abnormalities, brain
development and aging, brain plasticity and thati@h of genetics to brain development

and cortical folding.

1.4.3.1Brain abnormalities

Since cortical folding pattern is very stable thgbtout life in normal population
(Armstrong et al., 1995), a deviation from the nakigyrification rates or gyrification
patterns has thus a high probability to indicatrbmalfunction. Global and regional
abnormal gyrification is found in a variety of diders. Using the 2D normalization
approach discussed above, abnormal symmetry a€abitlding has been found in
William’s syndrome (Van Essen et al., 2006) andi&gphrenia (Csernansky et al.,
2008). Sulcal depth difference is found in aut{®ordahl et al., 2007).

The GI study reveals many interesting results dbk Wsing the 2D Gil, it is found that
gyrification pattern in monozygotic twin pairs igfdrent for autism. Increased folding is
found in the right parietal lobe, and the increaselding is associated with more
symptoms of autism (Kates et al., 2009). Decreéddihg is found in the prefrontal lobe

in patients with obsessive-compulsive disorder (QMobrock et al.), while increased
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folding in the same region is found to be linkedhe high risk group for schizophrenia
(Harris et al., 2007). Many other regions of abnalrfolding are linked to pathology. For
example, abnormal folding in the anterior cinguletetex is linked to bipolar disorder
(Fornito et al., 2007) and OCD (Shim et al., 2008¢asuring gyrification index at both
the global and local sulcal level of language-esdatortex (Cachia et al., 2008), it is
found that the schizophrenia patients with audiigéucination have a decrease in sulcal
index in the superior temporal sulcus, the middbatal sulcus and the diagonal branch

of the Sylvian valley, the region defining the Batscarea.

Specific sulcal shape has been linked to pathoémgwell. Change in the frequency of
specific folding patterns of the collateral sultcsitinked to temporal lobe epilepsy (Kim
et al., 2008). The shape of the temporo-parietattjon and the superior temporal sulcus

is linked to inner or outer space hallucinationaP et al., 2009).

1.4.3.2Brain development and aging

The study of cortical folding can provide many gigs of brain development and aging.
The computational approaches provide exciting gateof studying cortical folding in
newborns (Dubois et al., 2008). Early structurabsurements such as cortical folding

can be useful in the follow-up study of highly pegore infants.

In the study of brain volume related to Gl, itaaihd that there is a disproportionate
increase in cortical surface, especially in thdrpregal area (Toro et al., 2008). More
general traits such as brain asymmetry can alstuged. The position and surface area
asymmetry can be studied in adults (Lyttelton gt26109) and infants (Hill et al., 2010).
More specific to sulci, the asymmetry of the degitthe central sulcus is studied
(Cykowski et al., 2008). It is found that the cahBulcus is asymmetrical in surface area
and length (Kloppel et al., 2010; Mangin et al.024).
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Cortical analysis can also shed some light on ¢givegaprocess. The age-related change
in sulcal width and depth are studied to show sliétal structures in multimodal cortical
areas have more profound age-related changestbsa in unimodal areas (Kochunov et
al., 2005). The sulcal depth and surface areagehefound in brain atrophy such as in
the case of Cerebral Autosomal Dominant Arteriotbpavith Subcortical Infarcts and
Leukoencephalopathy (CADASIL) (Jouvent et al., 2009

1.4.3.3Brain plasticity

Plasticity and the effect of learning is a sub@oenduring interest. A series of VBM
studies found links between brain morphometry amgttion in terms of proficiency in
various performances. Brain has the potential fi@nges in structure and function
throughout life. For example, a bilateral gray rea#ixpansion in the medial temporal
visual area (also known as V5) is found in jugglimayices (Draganski et al., 2004).
Furthermore, such changes can be detected aftef flas/s of juggling practice
(Driemeyer et al., 2008).

Plasticity in terms of cortical folding is less gds be studied, probably due to the fact
that folding changes take much longer than grayenahanges to be established. Some
studies do report for example the central sulcLengfutees may eventually lose its
characteristic shape (Dettmers et al., 1999). Eumbre, such flattened central sulcus is
not observed in amputees of the arms that usedftiwifor sophisticated activities such
as painting or sculpting (Yu et al., 2006). In ghedy of hand converters, the natural left-
handers who are forced to write with the right hahid found that the asymmetry of the
central sulcus surface area is changed compailett-teanders (Kloppel et al., 2010). In
Chapter Four of this thesis, this work on the asialgf the central sulcus of hand-

converters is continued with interesting results.
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1.4.3.4Brain development and genetics

The genetic influence on brain structure is foumtivin studies (Peper et al., 2007,
Schmitt et al., 2007; Thompson et al., 2001). Thiekhess and surface area of the cortex
is likely influenced by different and distinct geiegfactors (Panizzon et al., 2009).

Evolutionary studies can provide information connpdatary to those of clinical studies,
since many biological mechanisms behind developnagmg, learning and disease are

shared between a wide range of organisms (Ca2@l5).

1.4.4 Organizational framework of cortical folding and future work

Some organizational framework has been proposedde the cortical folding

patterns. In the sulcal root model (Regis et &l05), the variability observed in cortical
folding is explained based on the gyri buried iedide sulci (the plis de passage). In rare
cases the “plis de passage” is too buried to berabd in adult brains. The sulcal roots
are the units corresponding to the first foldingations during fetal development. The
units of sulcal roots are organized in a systemeifidians and parallels of the cortical
surface. The locations of sulcal roots are rel$tigeable across individuals, the
variability occurs in later development during fbkeling process. These relatively stable
entities across subjects could be very usefuldtwas labeling and spatial normalization

before anatomical or functional analysis.

The sulcal roots are obtained in three steps:ah @@ain sulcus is split into portions
according to interruptions observed in literatum&inly from Ono and Kubik atlas (Ono
et al., 1990); ii) split based on the “plis de @ags’; iii) split based on embryological
literature when available. It is assumed that #gtldl of the “plis de passage” is

correlated with the date of apparition.
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Generic description of cerebral cortex anatomy. The Talairach grid system represents precur-
sors of the sulcal roots in the right hemisphere. The 57 sulcal roots of the lateral aspect are
displayed schematically, Calext: calcarinalis externalis, Cinf: centralis inferior, Csup:
centralis superior, Cuninf: cunealis inferior, Cunsup: cunealis superior, FCLant: fissura
cerebri lateralis anterior, FCLasc: fissura cerebri lateralis ascendens, FIntant: frontalis
intermedialis anterior, Fintpost: frontalis intermedialis posterior, Fimoy: frontalis inferior
intermedius, FIPHoriz: fissura intraparietalis horizontalis, Flant: frontalis inferior anterior,
Flpost: frontalis inferior posterior, FIPParaOinf: fissura intraparietalis paraoccipitalis
inferior, FIPParaOsup: fissura intraparietalis paraoccipitalis superior, FIPPostCinf: fissura
intraparietalis postcentralis inferior, FIPPostCsup: fissura intraparictalis postcentralis
superior, FMarg: frontalis marginalis, FOrb: fronto-orbitalis, FPO: fissura parieto-occipita-
lis, FPolTrinf: fronto-polar transversalis inferior, FPolTrsup: fronto-polar transversalis
superior, FSant: frontalis superior anterior, FSmoy: frontalis superior intermedius, FSposl:
frontalis superior posterior, int 1: 1st ramus intermedius FIP, int 2: 2nd ramus intermedius
FIP, 10: interoccipitalis, Lu: lunatus, Oinf: occipitalis inferior, OLant: occipitalis lateralis
anterior, Opost: occipitalis posterior, Otr: occipitalis transversalis, Parsup: parietalis
superior, Partr: parietalis transversalis, PostCsup: postcentralis superior, PreCinf: precen-
tralis inferior, PreCint: precentralis inlernalis, PreCmarg: precentralis marginalis, PreCmed:
precentralis medialis, PreCsup: precentralis superior, RetroClr: retrocentralis transversalis,
SM: sulcus marginalis, SubCant: subcentralis anterior, SubCpost: subcentralis posterior,
TImoy: temporalis inferior intermedius, Tlant: temporalis inferior anterior, Tlasc: tempora-
lis inferior ascendens, TiIpol: temporalis inferior polaris, TIpost: temporalis inferior
posterior, TSant: temporalis superior anterior, TShoriz: temporalis superior horizontalis,
TSmoy: temporalis superior intermedialis, TSpol: temporalis superior polaris, TSposi:
temporalis superior posterior, TSterant: temporalis superior terminalis anterior, TSterpost:
temporalis superior terminalis anterior.

Fig 1.9 The sulcal rootdas fig 5 of the paper on sulcal roots (Regis eRal05))
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Fig 1.10 The sulcal pitgas presented in (Im et al., 2010))

s.: sulcus, 1 middle frontal s. a, 2 middle frorstab, 3 superior frontal s., 4 junction betweepesior
frontal s. and precentral s., 5 precentral s.nétjon between precentral s. and inferior fronta¥ snferior
frontal s.a, 8 inferior frontal s. b, 9 inferioofital s. c, 10 central s. a, 11 central s. b, h#raks. c, 13
postcentral s. a, 14 postcentral s. b, 15 intrefars. a, 16 intraparietal s. b, 17 superior temp a, 18
superior temporal s. b, 19 superior temporal 80csuperior temporal s. d, 21 inferior temporal,22
inferior temporal s. b, 23 inferior temporal s24,inferior temporal s. d, 25 inferior temporaks26
occipito-temporal s. a, 27 occipito-temporal 2® occipito-temporal s. ¢, 29 collateral s. a, 8lateral s.
b, 31 collateral s. c, 32 collateral s. d, 33 @illst, 34 olfactory s., 35 cingulate s. a, 36 clagus. b, 37
cingulate s. ¢, 38 cingulate s. d, 39 cingula& 40 cingulate s. f, 41 subparietal s., 42 latecalpital s.,
43 calcarine s. a, 44 calcarine s. b, 45 calcairme 46 parieto-occipital s. a, 47 parieto-ocaipit

Another approach which obtained very similar maghas of the sulcal roots is the sulcal
pits model (Lohmann et al., 2008). The sulcal deptised; the sulcal pit is the zone of
the sulcus where the depth is maximal. These spitsahre hypothesized to be under
genetic control based on sulcal analysis of monozgdgwins.

The sulcal roots and sulcal pits results are dysgaldelow inFig 1.9andFig 1.1Q taken
from the original papers (Im et al., 2010; Regialet2005).

To understand better the mechanism of corticairigildarge scale developmental studies

(longitudinal) on folding would need to be carrimat. Functional analysis would need to
be combined with folding pattern analysis to untierg better the implications of

specific folding patterns. Mathematical models saslthe reaction-diffusion model
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(Lefevre and Mangin, 2010) can be used to providesnnsights into the process of
folding.

On the other hand, systematic folding pattern asiyuch as that of the work of Ono
(Ono et al., 1990) is still important. Such workdse extended with the knowledge
obtained from the above approaches. The knowledueed can likely provide new
insights to the organizational framework of cortimdding discussed above.

1.5 Discussion

A brief tour has been given to the subjects of eom¢o the thesis work: the biological
process of cortical folding and cortical morpholotiyshould be emphasized that this
thesis work is an interdisciplinary effort to unskand brain development and cortical
folding. The methods designed and chosen needttthewspecific neuroscience
guestions. The evaluation of the validity and gyadf the results should be based on
neuroscience as well. It is our hope that the kedgé gained through this work may add
to the existing knowledge base of neuroanatomyngaloscience.

The methods developed and used, together with saaraple results can be found in
Chapter Two and Three. An application of such asialip the understanding of
handedness can be found in Chapter Four. ChaptepFésent the dictionary and
Chapter Six gives a summary of the knowledge gaimeéeims of cortical folding

patterns through this work.



29

Chapter Two: Clusters of folds

2.1 Summary

In this chapter, the concept of using clusteringpaithms to analyze cortical folding is
introduced. The effort of selecting the suitablephdescriptor and the development of a
clustering algorithm specific to cortical foldingpalysis is described. Some interesting

results obtained are presented and discussed.

2.2 Introduction to the analysis of cortical folding

Human brain cortex folds to increase its surfaeaauring development. To better
understand the nature and the degree of varigtslime real brains are presente&im
2.1(as Fig 1.1, shown here for easier inspectionfhénfirst brain, the superior frontal
sulcus (the green fold) is broken into three piewdsle in the second and the third brain
it is continuous as shown in most textbooks. Refeéhe intermediate frontal sulcus (the
cyan fold): in the first brain it is broken intorée pieces, in the second brain there exists
less discontinuity, while in the last brain it itreemely discontinuous to the extent that it

is hard to be labeled in the conventional namiagiwork.

Fig 2.1The variability in brain folding patterns

Indeed, the traditional naming system cannot adclmurthe huge variability in brain

folding patterns. Furthermore, the naming systebaied on external morphological
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criteria alone, the three-dimensional complexityref folds is hidden and thus cannot be
accounted for.

This leads to the goal of our current effort, myunderstand better the variability of
sulcal folding patterns in a comprehensive manhleis includes the description of the
various folding patterns. The possible link of aertcharacteristic folding patterns to
neurological interpretations such as pathologyedraviour will be explored as well.
From the folds alone can we observe patterns cteairstoc of certain neurological
diseases? The knowledge of folding patterns cdstulze added to the traditional
naming system to better characterize the brain haogy. Eventually, this information
may be used by the artificial vision system sucBi@nVISA for improving automatic

fold recognition.

The most detailed description of the sulcus valitgthias been proposed in the atlas of
Ono (Ono et al., 1990). Here we try to approachatiedysis of folding patterns in a more
systematic way. In one sense, we attempt to authatwork performed by Ono. With
the help of computer algorithms, a large amoursutsiects can be analyzed in a more
consistent manner than visual inspection by hunyas.dt is important to keep in mind,
however, that this type of cortical folding anasysp till now can only be performed by
experienced neuroanatomists. Due to the huge wigahat exists, this type of analysis
is challenging even for an expert. So to autontatetype of analysis, even patrtially, is
not a trivial task.

What are these cortical folding patterns that veel@oking for? In the preliminary study
these patterns are loosely defined as a groupagfidvthat show a characteristic trait
which distinguishes them from the other brainssTdiaracteristic could be based on the
3D shape of the fold, the surface area of the tblel,degree of curvature, the number and
position of interruptions etc. Since this type akupervised learning on the shape of the
folds has never been carried out systematicallgrieefve do not have a clear definition

of how to define the resulting patterns to stathwit is also very likely that no single
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finite set of parameters (angles, length, depthato be defined to characterize the
patterns found. For now, we simply define a patterbe a certain characteristic that can

distinguish one group of folds from another.

We expect to observe characteristic folding pastémronly a subset of the population.
Refer back td-ig 2.1, suppose we found two patterns for the superartéd sulcus (the
green fold): one being broken into three piecesather being continuous. It is important
to keep in mind that, in a given dataset, it igljkthat only a subset of the subjects would
have one of the two patterns. The rest of the stijgould not fit these two pattern
descriptions. The computer algorithm used for esgy should be able to choose the

subset that contains interesting patterns.

2.2.1 Clustering algorithms

Now the general goal is defined, we discuss théatkthat can be used to tackle such a
problem of sulcal pattern discovery. Clusteringlgsia would need to be carried out.
Clustering is the unsupervised classification dfgras (observations, data items, or
feature vectors) into groups, or clusters. It &idguished from the supervised learning
by the fact that there are no training examplds@ch some a priori output. Clustering
analysis is performed often when little prior infation is available about the data; it is
useful for exploration of the interrelationshipsarg the data points, to make an
assessment of their structure (Jain et al., 1998%tering is an essential component of
data mining, a process of exploring and analyzamgd amounts of data in order to
discover useful information (Berry and Linoff, 2Q0@Vhile there are still debate toward
the ultimate definition of clustering, a rough aéion is nonetheless possible: for a
given set of data points and a similarity measweeregroup the data such that objects in
the same cluster are similar and objects in diffecéusters are distinct (Jain and Dube,
1988).
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Large number of clustering algorithms exists ierbture from various domains, ranging
from pattern recognition, artificial intelligendejage processing, statistics, and applied
mathematics to marketing, psychology, and bioldgyach field, a set of algorithms
tend to dominate for historical and practical ressd-or example, the hierarchical-based
approach is more used in the artificial intelligemommunity, while the model-based
approach is more used in the statistical commuldittyile exciting new advancement has
been made in clustering algorithm development,lehgés still remain. Part of the
reason is that domain specific problems often reghie use of specifically designed
algorithms, general clustering algorithms are oftehsufficient. The behavior of real-
life situations is always complex, unpredictablaltdnges rise, demanding more

sophisticated or more specific solutions.

There is no clustering technique that is univeysagiplicable for uncovering the variety
of structures present in multi-dimensional datadéts all clustering techniques can
uncover all the clusters present with equal fagilkeecause clustering algorithms often
contain implicit assumptions about cluster shajeseality, data hardly follow the

“ideal” structures such as being hypersphericdinear. Very often, a dedicated
clustering algorithm performs slightly better tithe existing ones on a specific
distribution of patterns (Jain et al., 1999). Farthore, it is difficult for humans to obtain
an intuitive interpretation of the clustering resukspecially for data in high-dimensional
space.

Clustering analysis is intensively used in Bioimhatics, especially in gene expression
analysis and Microarray analysis. The applicatibalustering algorithms to the analysis
of brain folding patterns is new, the behavior xiféng algorithms would need to be
studied, new algorithms suitable for this speaificnain would need to be designed if
necessary and consequently validated.

In terms of the types of clusters, Lorr (Lorr andwce, 1983) suggested that there

appear to be two types of clusters, compact clsisted chained clusters. For a compact
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cluster, objects of the same cluster have high atgimilarity; usually a compact cluster
can be presented by a representative point orcéatghained cluster is a set of data
points in which every member is more similar toesttnembers in the cluster. Any two
data points in a chained cluster are reachableigfra path. Refer t6ig 2.2to have an

intuitive understanding of these two types of @dust
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Fig 2.2Compact and Chained clusters
The chained clusters are typically elongated ctagtglack) due to the chaining effect. The compact

clusters are typically more dense and round-sh§magle).

In the application of clustering analysis to thecdwvery of cortical folding patterns, it is
important to define the type of clusters that weslapking for. In the context of cortical
folding, the compact clusters would be the groupsubjects whose sulcal patterns are
very similar to each other. The chained clusterald/be the groups of subjects that are
not as highly similar as in the compact clusteus,tbere exist a higher similarity among
subjects within the group than subjects outsidegtbep. These two types of clusters
could both be very interesting and convey importetdifferent information regarding

the nature of the dataset.

Clustering algorithms can be divided into two categs: hard or crisp clustering and
fuzzy or soft clustering. In hard clustering, edelta point belongs to one single cluster;
in fuzzy clustering, each data point belongs to twanore clusters with certain
probabilities. Hard clustering algorithms are categed into two kinds, hierarchical and
partitional algorithms. Hierarchical algorithm daa further divided into agglomerative
and divisive approaches (Gan et al., 2007). A $kefche general structure of clustering

algorithms is given, (sdéig 2.3).



34

|C!u-‘.-teru;g|
" -q_“"h""'--..___
|_H"”".""".hica'1 J | Partitional |
Silzg’.e' Complete Square Graph Misture | | Mode
| Lk | Lk Emor | |Theorenc| | Resolving | | Seeking |
| k-nmusl Expectation

Maxmmuzation

Fig 2.3 Different types of clustering methodsgas in (Jain et al., 1999)

A partitional method constructs N clusters. That is, it clagsithe data into N groups,
which together satisfy the requirements of a partitFor this type of algorithm, each
group must contain at least one object; and eagtbimust belong to exactly one group.
Partitional methods are applied if one wants tgsifg the objects into N clusters; N is
usually given by the user and fixed. In genera,algorithm tries to find a “good”
partition in the sense that objects of the samstefishould be close or related to each
other, whereas objects of different clusters shoeldar apart or very differerfig 2.4
illustrates the principle of a partitional algorithWhen N given to the algorithm is 3, the
data points are divided into three partitions oe¢hclasses by the algorithm.

Fig 2.4Cluster data using partitional algorithm
Hypothetical data divided into three clusters tpastitional algorithm.

Hierarchical algorithms, on the other hand, do not constrigihgle partition with N

clusters; instead they deal with all values of Nh@ same run. There are two kinds of
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hierarchical techniques: the agglomerative (bottgopand the divisive (top-down).
Agglomerative algorithms begin with each elemera aeparate cluster and merge them
in successively larger clusters. Divisive algorithbegin with the whole set and proceed

to divide it into successively smaller clusters.

abcdef

Fig 2.5Sample data distribution and the formation of agglonerative clustering tree

The principle of agglomerative clustering is illaged inFig 2.5 where a diagram of the
agglomerative process is shown. Groups are forrordecutively at each iteration, until
at the last step all elements are in the same gtoupwvisive clustering the arrow of
dataflow is reversed. Notice that the hierarchicze¢ can provide information on the data
structure itself. From this tree we can deduceousrinformation: points “b” and “c”, and
points “d” and “e” are the closest pairs ; “f” ioser to the “de” group than to the “bc”

group ; “a” is an outlier point that was joinedthe rest of the points only at the very end.

2.2.2 Clustering analysis on cortical folding

Which type of clustering algorithm is more suitafde cortical folding analysis,

partitional or hierarchical? To make a decisionnged to go back to the goal of our data
analysis: finding patterns of folds. Brain foldiisga chaotic phenomenon. As we have
seen earlier, there is a huge variability in thieguas of folding. Not every brain in the

data set need to belong to a particular patternak&dooking for reasonably large groups
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of brains that exhibit a similarity in folding. He®, we are not trying to classify each
brain in terms of its folding pattern. Practicallye want to be able to visually inspect the
clusters found and validate them. This means wd walfish out” the tightest elements
of each of the clusters. These elements are expextee the closest in shape, and the

best representatives of a particular pattern afifigl.

To achieve this goal, we need an algorithm thatficehthe cluster “centers”, the tightest
elements of a given cluster. More importantly, wantvan algorithm that can discard the
outliers. Therefore, the goal is not to divide géements into N clusters. Agglomerative
methods can help us achieve such a goal. Thisidgogroups the tightest elements
first; it guarantees that the outliers would ongyjbined at the end of the process. So if
we only consider the clusters formed at the begmoif the clustering process, these

outliers would be discarded automatically.

The main drawback of agglomerative algorithm antiefarchical algorithm in general,
is that it is computationally expensive, and itraincorrect a possibly wrong grouping at
a later step. However, for the purpose of a prelary study, it is sufficient to provide
some insight into the folding patterns. For a nmmplete study in the future, algorithm
that is less expensive and performs reasonablyfaretliscarding outliers could be

further explored. Refer to Chapter Six for a mogeaded discussion.

In the rest of this chapter, the selection of desars for clustering analysis, and the
development of a clustering algorithm dedicateduical pattern analysis are discussed
in detail. Validations of the method are then pnése, followed by some interesting

patterns found.

2.3The shape descriptor

The clustering analysis starts by the selectioshape descriptors. How to represent the

shapes is an important choice which would consdtjudacide the nature and quality of
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the results. In the following, the initial effod described first to illustrate the specific
problems and difficulties encountered during thst firy of finding patterns. Shape
descriptors more suitable for such studies ar&@éuréxplored, using more sophisticated

algorithms.

2.3.1 Theinitial effort

As a first trial of the discovery of patterns, warted by selecting a set of folds; some
morphometric features of each fold were selectath&acterize their shapes and
relations. The central sulcus and the Sylvian fessuere selected due to the fact that they
are among the biggest and the most stable foléd~{ge2.6). The selected features are:
the surface area of the two sulci, the shortesace between the bottom of the central

sulcus and the Sylvian fissure, and the angle betviee two sulci.

Fig 2.6 The Central Sulcus (red) and the Sylvian $sure (blue), highlighted on brain
surfaces

The simple clustering algorithm K-means was useduster the data as a first try. K-
means is a greedy algorithm for partitioning treamples into K clusters, so as to
minimize the sum of the squared distances to th&tel centers (MacQueen, 1967). This
clustering algorithm is simple, intuitive and fasgaknesses exist however. In particular,
it is not robust, the initialization influences thesult, and the result depends on the value

of K chosen. There is no simple solution to thesblems. Furthermore, because the
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folds are complicated 3D objects, it is very difiicto compare their forms to detect
similarities. The result of the k-means clustenivas inspected and no strong evidence
was found to support a good clustering: no obvijgattern could be detected from the

resulting clusters.

To be able to obtain convincing clustering resutitsecame evident that an algorithm
that can select the most similar folds is neededtter words, the clusters found need to
be compact, the corresponding sulci in the clustarld be expected to be very similar in
shape. The identification of such highly similabset of folds provides a better chance
for a describable 3D folding pattern. This algantBhould also be robust and outlier-
proof. In terms of the information we use as thmuirto the clustering algorithm, we need
some descriptors that can capture more preciselyramme comprehensively the
information of the 3D forms. It is difficult to clege interesting features by hand; also as
the number of features increases we encountertieem of the curse of dimensionality
(Bellman, 1961).

This very first try illustrates the importance elfecting a good shape descriptor, where
comprehensive information on the cortical foldsidtdde reliably coded. It also shows
the special challenges of clustering on very ndstasets, due to the huge variability that
exists in folding patterns. This motivates the sb® of the moment invariant as a shape
descriptor, which is discussed next. This firstalyo motivates the design of a dedicated

clustering algorithm which is discussed in the isecafter.

2.1.1 The 3D moment invariants

The 3D moment invariants have been proposed ast@mesting set of descriptors for the
study of the shape of cortical sulci because tlayle computed for any topology
(Mangin et al., 2004a). Hence they allow the mansage of various sulcus interruptions.

The construction of these descriptors filters betihfluence of localization, orientation
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and scale from the 3D coordinate moments in o@ebtain pure shape descriptors.
While their theoretical derivation is complex, thegn be computed in a simple and
robust way from a black and white image defininghject. In the following, we use

only the 12 invariants derived from the coordina@ments up to the power three.

Here we give a brief insight into the computatidnhe 3D moment invariants. The 3D

moments of order n = p+q+reN of a 3D density functiop(x,y,z) are defined by

+oo oo oo
Mpgr f [ f Vi plx, y, z) dxdyd:z.
o o ac X

For our purpose(x,y,z) is equal to 1 inside the object of interast O elsewhere,
because we deal with objects defined by binary @saghe moments of order higher
than 3 are not considered in this report; but #m@vdtion of moment invariants is
theoretically possible for any order. By discardmgments of order higher than 3, a
small set of global descriptors are obtained wieictibed simple shape information, such
as bending, tapering, pinching etc. The derivatibtihe invariants aims at filtering out
the influence of localization, orientation and scah the 3D moments in order to obtain

“pure shape” descriptors.

This derivation is done in three steps. First,gtatmon invariance is obtained using the
centroid of the object as the origin of the cooatinsystem, leading to the definition of

the central moments denoted by Mpqr. Second, ase¢wf moments invariant to scale,

denoted bypqgr, is obtained by normalizing central momentswilie suitable power of

the volume MO0O0O:
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Finally, the invariance to 3D rotations is derivieaim sophisticated group theory
techniques usual in quantum mechanics. These tpodsicombine decomposition into
harmonic polynomials and tensor calculus beyondtope of the thesis work (Lo and
Don, 1989). The resulting invariants turn out tchbenogeneous polynomials of the
central moments made up of several hundreds oftéBecause of various symmetries,

we get only 12 invariants denoted by 11, 12, ..., idZhe following.

For the work reported here, the moment invariatd dee calculated using the software
brainVISA (http://brainvisa.infd. This data is then used as input to the cluggerin

program. The invariance to scale and rotation efdéscriptors provided by this
implementation was checked elsewhere through teenmpling of a couple of objects
with 28 different orientations and several scalar(gin et al., 2004a). The variability of
the invariant estimation resulting from this reséingpwas always less than 5% (it should

be noted that perfect invariance would be achierndd for continuous objects).

2.3.2 3D Moment invariants as sulcal shape descriptors

Some investigations are carried out to verify thatset of moment invariants is a

reasonably good shape representation to studyltied patterns.

To confirm that similar shapes lead to similar esggntations, we verified first that a
small shape variation leads to a small variatiothefinvariants. This is mandatory for
our clustering purpose. Our experiments consisteating series of shapes sampling a
continuous shape transformation. An example ofékalting behavior of the invariants
is shown inFig. 2.7. It is impossible to claim from these simple im@gations that the
invariants vary smoothly whatever the underlyingps and we will see further that we
discovered some exceptions. Nevertheless, the lwetafthese invariants seems to be

continuous in general, except for two of them.
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Studying the variability of the invariants acrosaibs, we noticed that 16 and 110 were
presenting bimodal distributions for some sulcie@mode was made up of positive
values and the other one of negative values. Tieare apparent correlation between the
shape and the sign of 16 and 110. Furthermore, &weaged to create slowly changing
series of simulated shapes giving sign change® amdl 110. Such a series is illustrated in
Fig. 2.8 This series evolves from a strong S cylinder tolwa flat S by shortening both
arms simultaneously. Notice that while most ofitheriants behave smoothly all over
the evolution, 16 and 110 fluctuate unexpectedlyey change sign three times very
rapidly. To investigate this behavior further, wesijned a new series using the finest
grain changes we could afford with our voxel-basgatesentation (sd€g. 2.9. We
discovered that adding only one single voxel caugher the sign change. We do not
know yet what kind of property would emerge if 8f@pe space was sampled further
with smaller voxels. The behavior of the invariaatild be continuous but very chaotic.
Therefore, for further studies, we have choserigoadd 16 and 110 from our invariant-
based representations. It should be noted thatlmservation of the sign change of these
two invariants has never been reported elsewh&en@ment invariants, indeed, have
mainly been considered as curiosities, becauseeofamplexity of their derivation.
Therefore, they were almost never used for actu@li@tions. The invariants are made
up of a sum of several hundreds of homogeneouspolials of the central moments.
This complexity is bound to hide some singularitiesfact we observed some sign
change for a few other invariants, but for lessitbae percent of our total dataset.
Therefore we decided to keep the ten remainingiants as the basis of the

representation used in this work.
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Fig 2.7 The variation of moment invariants correspading to the change in 3D

shape
11, 12,112, 110, 16, 14 and I3 are the seven moiriemariants illustrated. As the shapes vary, fwilyg a

trend shown by the four 3D shapes on top, thesarignts vary following smooth curves.
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Fig 2.8. Variation of moment invariants correspondng to the change in the 3D

shape of the objects
On top, the trend of the change in shape is depithe upper and the lower arm of the object acetshed
gradually. Seven out of the twelve moment invadgaare drawn on the graph, notice that while theaks

them are smoothly changing in value when the skhpage gradually, 16 and 110 change signs abruptly.
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Fig 2.9. The variation of the moment invariants caresponding to the fine change in
the 3D shape of the objects

On top, the trend of the change in shape is depictee voxel is removed at a time, from the lowen af
the object. Seven out of the twelve moment invasiane drawn on the graph, notice that while tise o&

them are smoothly changing in value when the skbhpage gradually, 16 and 110 change signs abruptly.
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Fig 2.10 The distribution of different sulci

The data of the three sulci, the cingulate sulcyar), the central sulcus (green) and the parietipdal
sulcus (magenta) are plotted, using the first twesaf PCA as the X and Y coordinates. Datase6of 3

manually labeled brains is used, respective lonataf the three sulci are shown on top.

A second investigation aims at verifying that theeimation on the shape embedded in
the invariants can distinguish the kind of patteheg characterize the cortical folds. For
this purpose, we merge the datasets of severaj anft we plot the resulting dataset

using the two first axes of a principal componemdlgsis. In a lot of cases, the plot is
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made up of several clouds of points correspondirte different sulci. These clouds
overlap more or less according to the choice dfistihe fact that each sulcus leads to a
consistent cloud means that the invariant-baseseptations can be used to cluster
groups of folds with similar shapes. The fact $@nhe of the clouds overlap would
simply mean that some sulci have similar shapess. i§mot a problem for achieving our

objective.

An example is showrHg 2.10 using three different sulci: the cingulate sulfugn),
the central sulcus (green) and the parieto-octipitleus (magenta). A dataset of 36
manually labeled and normalized brains is usedadJtie two first PCA axes, the three
sulci are almost perfectly distinguished. Noticgoahe large variability of the cingulate
sulcus distribution (cyan) compared to the two ptwdci. The central sulcus (green)
leads to the tightest cloud, which is consisteribhe fact that this sulcus is one of the
most stable oneg&ig 2.11is showing that one of the sources of variabiityhe

cingulate sulcus pattern is its frequent interodi

In Fig2.11sibling toFig 2.1Q some of the dots have been replaced by a snapfti
corresponding sulcus. The points of view choserilfese snapshots correspond to the
3D renderings of the brain shown in the box atttipe This graph further confirms that
the moment invariants provide reliable represenatiof the 3D shapes of the folds that
vary smoothly across the shape space. It is pessiideed, to see gradual changes of the
shape of the folds. For example, consider the t¢atgwsulcus: at the bottom left we see
sulci more fragmented, while towards the top rigtrner, the shapes become more
continuous. To conclude, the moment invariantshEnonsidered as good descriptors of
the 3D shapes of the folds.
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Fig. 2.11 The distribution of different sulci, withthe sample shapes

The data of the three sulci, the cingulate sulcyar), the central sulcus (green) and the parietipdal
sulcus (magenta) are plotted, using the first tnesaf PCA as the X and Y coordinates. A normalized
dataset of 36 manually labeled brains is used.shiapes of some samples randomly chosen are plotted.

The corresponding locations of the three sulcisai@vn on top.

2.4The clustering algorithm for sulcal pattern discovey

2.4.1 Agglomerative hierarchical clustering

Once the sulcal form descriptor is determined niet step is to design an algorithm
dedicated to sulcal pattern analysis. Followingdiseussion on clustering algorithms,
the hierarchical approach to clustering is congidesuitable for finding compact clusters

and discarding numerous outliers. This methodus tthosen for the preliminary study.

There exist many agglomerative algorithms, whicly aliffer in their definition of
between-cluster dissimilarity (Kaufman and Roussgedi990). The most common ones

are the nearest neighbor method (single-linkage)furthest neighbor method
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(complete-linkage) and the unweighted pair-grovgrage method (average linkage). In
the nearest neighbor method, during agglomeratitendissimilarity between the cluster
R and the cluster Q is the smallest dissimilaréggween an object of R and an object of
Q. On the other hand, the furthest neighbor rués tise largest dissimilarity between an
object of R and an object of Q. In average-linkdbe dissimilarity between clusters R
and Q is taken to be the average of all dissintiéarid(i,j), where i is any object of R and
j is any object of Q.

The nearest neighbor rule is not always appropriéfteenever both clusters come too
close to each other, even when this happens abfespoint, the clusters immediately
stick together. Notice that they cannot be sepdratéater steps. This is called the
chaining effect because many objects may be chaagsdher resulting in a drawn-out
cluster, some members of which are very far froohesher. This algorithm tends to
give elongated clusters because of the chainiregeffvhat we are more interested in
here are the more round shaped clusters.

The furthest neighbor rule possesses the oppasipegy. It tends to produce very
compact clusters. Every member of such a clustest treiclose to every other member of
the same cluster, outlying points will not be immmated. The resulting clusters are not
necessarily well shaped, because clusters wilbagbined when they contain at least
one pair of too distant pointBig 2.12Aillustrates the typical clusters formed by using
this method.
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Figure 2.12 Typical clustering result of completethkage and average-linkage
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Whereas single linkage usually leads to too fewstelis which are drawn out, complete
linkage often yields the opposite effect: many @uswith small within-cluster
dissimilarities. As a consequence, relatively saimdbjects will often stay in different
clusters for a long time, hence complete linkageimetimes said to be space dilating.
Single linkage will often bring rather differentjebts into the same cluster due to the
chaining effect, and therefore said to be spac&acting. The necessity to compromise
between these two extremes has lead to group arbnkgge and other methods, which
are space conserving (Kaufman and Rousseeuw, 1BI®®)Qgroup average technique is
aimed at finding roughly ball-shaped clusters. Be#ther robust, this method can even

deal with more potato-shaped clusters, @Ege2.12B.

In our data analysis, we want to use a robust naetitat is space conserving, and we
want to find clusters with the ball-shape. So thmug average method is used for the

clustering.

2.4.2 Merging of clusters: tight-head join

Regarding the detail of the algorithm, we have détErs at the beginning. We proceed
by successive fusions until a single cluster isiolgtd containing all the objects. We start
by constructing a dissimilarity matrix, which redsrthe dissimilarity coefficients of the
samples pair-wisely. Dissimilarity coefficients Wween objects are obtained here by the

computation of distances.

At the first step, the two closest or most simdhjectsare joined. In the second and all
the subsequent steps, we will want to merge thectesestlusters.The dissimilarity
d(R,Q) between clusters R and Q is defined asubeage of all dissimilarities d(i,j),
where i is any object of R and j is any object oMZe update the dissimilarity matrix

each time a new join occurs.
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In order to extract a partitioning from a hierarciwe have to choose an appropriate
level. Various stopping rules were proposed tocseesuitable number of clusters based
on the distribution of clustering criteria (Mojeri&77). Two graphs are provided to
illustrate the idea of different stopping rule d@hdir corresponding clusters, (deig

2.13. In Fig 2.13A two stopping rules are illustrated (the earltepping rule in green,
the later stopping rule in purple). fiig 2.13B the two resulting cluster groups are
presented. The green cluster groups are discattliagd “a”, the purple cluster groups
are discarding only “a” instead. The cluster growesobtain from the agglomerative

clustering are different depending on when we #tegprocess.

In the clustering algorithm, as discussed earnherwant to be able to extract out the
center elements of a given cluster. Each time aelement is added to a cluster, we
want to guarantee that the center elements reméie &ead of the cluster list. To
achieve this goal, we need a different join aldonit so that after each join, we reorder
the elements of the cluster in terms of tightnblsge that this algorithm does not
guarantee that the center elements are the tigkitesents of the cluster as well. We
consider the clusters that are formed earlier énhilerarchical process to be more
important. For evaluation by visual inspection, wam then simply take the n elements at

the head of the clusters.
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Fig 2.13. Two different stopping rules
Depending on the stopping rule, the iteration whegestop the agglomerative or divisive process is
different.A: Shown in green and purple are two different sitogpules.B: The clusters in green are the

ones resulting from the green stopping rule; thgleuclusters are resulting from the purple stogpure
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The goal is then to keep the n objects at the cefi@ given cluster (the objects that we
are interested in) at the head of each clusterHisit, we define a “core” cluster to mean
a cluster with at least C elements. We are onbr@sted in the big enough core clusters.
How C is chosen will be discussed later in thisptba For now, it is enough to describe
these core clusters to be the tight clusters ohbnaith a similar pattern that could not

have occurred purely by chance.

Here is how we join two clusters; we call it “tigtgadJoin”. The head is defined to be
theC elementst the beginning of the cluster list that we ateriested in. If both clusters
have less than C elements, the elements are orfteredhe most tight to the least tight;
if both clusters have more than C elements, thetetwith the tighter head (the first C
elements) is put in front; if one cluster has mitian C elements, the other has less than

C elements, the one with more than C elementstisydtont.

To reorder the head of the clusters, we start bkipg out the tightest pair of the
elements from the merged group of two clusterss&heo elements are set as the new
head. For the rest of the steps, we compare desstaom the mean of the head to each
element left in the merged group; the closest etensepicked to be added to the end of
the head to form a new head. This process is repestil all the elements are added to
the head

Note that in a situation depictedking 2.14 this algorithm will not give the tightest
group of elements as the head. The algorithm wi# ga”, “b” and “c” as the three-
element head, while the tightest group with thieenents is “d”, “c” and “e”.
Nonetheless, the resulting head elements givehibyatgorithm are useful and
interesting in the sense that the elements grotquether earlier during the hierarchical
process are given more importance and put in fiidme. objects grouped earlier during
the agglomerative process are tighter groups cagdptarthe ones grouped later in the
process. The subjects grouped earlier in the aggjiatme process are expected to be

interesting when we try to observe the similanty8D shapes of these objects. Keep in
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mind that only the “head” of each cluster is usadf@irther processing and evaluation, so

only the ordering of the “head” needs to be gua@aht

@
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®

Fig 2.14. An example distribution
A hypothetical data distribution to illustrate ttlearacteristic of the “tightHeadJoin”.

2.4.3 The stopping rule based on competition

So how to pick out the most “interesting” folds?viHto find the corresponding clusters

of brains for these folds? The goal is to pick tiwt sulci that are most likely to exhibit
possible patterns of interest, we are not atterggtrcompose an exhaustive list.
Because the results are difficult to analyze (asudised in section 2.3.1), the idea we use
to carry out this selection process is a competiéimong the different sulci, and a
competition among the different clusters formedath step of the agglomerative

clustering process.

Fig 2.15 Sample distribution A and B

To have a more intuitive understanding, refer otthio distributions depicted irig

2.15 To “fish out” patternsFig 2.15Ais considered to be less interesting tRan
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2.15B The reason is that from the distribution depidtellig 2.158 we can observe two
possible local distribution centers that could beresponding to two patterns. In terms
of choosing the clusters for one particular sultiiste exist many possibilities depending
on the stopping rule. The clusters obtained chalegpending on when we stop the
agglomeration process. We call the clusters fodradparticular iteration of the

agglomerative processchuster group.

The “interesting” cluster groups are defined tahmeeones with tight elements within the
cluster; and with large dissimilarity among clustek ratio is used to characterize the
clusters, and different clusters from differentfotompete based on this ratio. The folds
whose clusters have the highest ratios are selethéslcompetition is really a selection
based on the characteristics of the clusters; la@gktcharacteristics are described by the

ratios.

We first define thelistancebetween two clusters to be the distance betwezndhters

of each cluster. When there are more than twoelsisthe distance among the clusters is
calculated as the average pair-wise distance batalaster centers. Trmompactnesef

a cluster is defined as the average pair-wisernttstéo the median. The ratio is defined
as the average distance divided by the averagteckmsmpactness. The ratio allows us to
find cluster groups whose clusters are relativiglgttwithin a given cluster, yet the
clusters are far from each other. The ratis computed for clusters formed at each
iteration of the agglomerative clustering procdde iteration that wins at the end is the
one that has the highest ratid\otice that there could be more than one itenatio
winning. This competition is carried out among eiffint sulci and combination of sulci.
The sulci are then ranked according to the ratihe Winning cluster groups of the

winning sulci are expected to have some strongpet and would be evaluated further.

Now that the quality of the clusters found can b&l@ated by the ratio introduced, we go
back to the issue of choosing C, the size of tleadi of a cluster. C is the size of a core

cluster as discussed in the previous section.Aathis number, random sets from
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Gaussian distribution using the covariance matfrithe original data sets are generated.
The same competition using the random sets isdaered out. For a given C, a cluster
group obtained with real data is considered sigaift only if its ratio is better than the
best ratio obtained with the random set. This ptaoe is using the parametric sampling
process (Good, 2004), the p-value of the clustaradd at each step can be estimated,

clusters with the best p-values can be studietiéurt

In the clustering literature, Ray and Turi (Ray dnati, 1999) introduced a compactness-
separation-based validity measure to determinadhngber of clusters in k-means
clustering.Mintra, the intracluster distance is defined as the nsgaiare distance to the
cluster centeMinter, the intercluster distance is defined as the sydestance between
the centers. A good clustering result should hasmall Mintra and a large Minter. The
validity measuré/ is definedasMintra/Minter. V is to be minimized. The ratio used in
the designed algorithm is the same as this compssiseparation-based validity
measure. In our algorithm, the validity measunesied for the selection of the best

stopping rule, instead of the selection of the bestber of clusters.

To determine the optimal number of clusters, C=2aug=number of subjects in the
sample can be tried, the validity measure V cacdbeulated for each C, that gives the
smallest V is then chosen to be the optimal clustenber. The number of clusters is

automatically decided when the stopping rule isithu

2.4.4 Bagging and final clusters

The clustering algorithm described is not very [gtaim the sense that a small change in
the sample leads to large variations in the reBidt2.16illustrates this problem.
Relatively small variations of the sample set leadsrge enough differences in the
resulting clusters. To add stability to the clusteund by using the above algorithm,

bagging is used. This method creates a set ofeckifbm a given dataset. Each group of
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clusters is extracted from a bootstrap of the @datéote that the bagging technique
improves the estimate only if the learning algoritis unstable. It degrades the estimate
if the algorithm is stable. As it is demonstratiedttour original algorithm has stability

issues, bagging is thus suitable to resolve tloblpm.

Fig 2.16 Resulting clusters on bootstrap samples

The three images show three different datasetsrgetkfrom the original dataset by bootstrap. The
clusters obtained are marked in different colobtadk, red, blue and green). PCA is used for vizatbn.
It can be observed that a slight variation of thmgle leads to large enough differences in thdtmegu
clusters. This difference in the clustering resigdtsoth in terms of the number of clusters found the

location of the clusters found.

In the method validation section, it is shown ti&t bagging approach greatly improves
the resulting clusters. Thus the bagging techniguaegrated into the clustering

algorithm. The resulting algorithm is summarizedha next section.

Once the salient points are found from each obthastrap samples, they are gathered
together as the new data points for the final eliisg step. Since the salient points found
in the bootstrap samples are very selective, fsntiork a simple K-means or
aggomerative kind of algorithm is considered sigfit to find the final cluster centers. In
the work presented in this chapter, a K-medoidritlgm is used, which is a partitional
clustering algorithm related to the K-means aldponit In contrast to the K-means

algorithm, K-medoid algorithm choses real data {goas centers. In this implementation,
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Partioning Around Medoid (PAM) is used as a K-meddustering algorithm (Kaufman
and Rousseeuw, 1990). The characterization ofersigh PAM is by the representatives
of the clusters, the medoids. Compare with K-meBA$/ is more robust by minimizing
a sum of dissimilarities instead of a sum of sqd&taclidean distances. A medoid is
defined as an object of the cluster, whose avedagmilarity to all the objects in the
cluster is minimal. A measure called Silhouette lbarused to select the number of
clusters. The Silhouette method is as follows:
if a(i) is defined as the average dissimilarity @fith all other data points within the
cluster, and(i) is defined as the average dissimilarity @fith all other data points in
another cluster which has the lowest average dilssityi to i, the Silhouette measusgi)

can then be defined as

o M)l
' max{a(z),b(1)}

0, if a(i) = bi)
b(i)/a(i) — 1, if a(i) > b(i)

—

{1 —al8)/b(i), if a(i) < b(i)
s(i) =

a(i) measures how i is dissimilar to its clustefi) indicates how i is matched to its
neighbouring clusters(i) is a number within the range from -1 to 1, a eatlose to one
indicates that i is properly clustered, a valueselto -1 would indicate that i is better
clustered to its neighbouring cluster. The aves{gef the whole dataset thus measures
the quality of the clustering. Using this meastine,appropriate number of final clusters
can be estimated.

2.4.5 The PCBB algorithm

Adding all the previous steps together, we sumradrare the algorithms designed for
cortical folding analysis, named PCBB, which stafutdPartial Clustering by Bootstrap
sampling and Bagging. The steps of the algorithraglascribed below and summarized
in two flow charts Fig 2.17AandFig 2.17B).
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Fig 2.17A Obtaining the best partial clusters

The simulated samples are obtained by simulati@aassian distribution using the covariance matfix o
the real dataset. The hierarchical clusteringisam the real dataset and all the simulated databet step
of the agglomeration where the best ratio is oletis considered the step where the strongesectusan
be found. The quality of the clusters found at gtép is verified by calculating the p-value. Tvédue is
calculated by counting the number of times thatsihaulated dataset performed better than the egakét.

Step 1: (Fig 2.17A)
Agglomerative hierarchical clustering is performéke agglomeration process is guided by an
objective function:

R =3 compactness of the clusters formigddistance among the clusters formed

In each step of the agglomeration process, R isutatled. The p-value of the clusters formed at
each step is then estimated by a parametric sagpliocess. Simulated distributions are
generated using the covariance matrix of the reahdthe same clustering process is applied to
these simulated datasets and p-value is estimatedinting the number of times the simulated
data have a better R score than the real data. IKirthe clusters with the best p-value are

chosen as the salient points for the next stepeofitgorithm.
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Fig 2.17B Obtaining the best final clusters

Step 2: (Fig 2.17B)

The process described in step 1 is performed margston the bootstrap datasets of the original
data. A repertoire of salient points is identifiedform the new dataset. A simple K-medoid
algorithm (PAM) is then used to find the locatidritee final clusters.

The goal of step one is to estimate the numbelusters and their size automatically.
Notice that the clustering is “partial”, not alltdgoints are assigned to clusters. The goal
here is to extract the most interesting sampletpdirat might contain strong and
significant patterns. We are not trying to assigohepoint to a pattern. Note also that the
p-values estimated here are only used in the rgrdgatem to pick out the most

“interesting” clusters; they are not used to perfatatistical tests.
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Step two is using the idea of bagging, the gotd isvercome the instability of the
clusters found in the first step. The assumptidhas the first step of the clustering on
the bootstrap samples gives the strongest clustergliminates most of the noise. So in

this step a relatively simple clustering algoritlesufficient to identify the final clusters.

The strong point of the PCBB algorithm is thasivery robust, also it makes no
assumption that the clusters span the whole datzesps all the division-based
clustering algorithms do. When we think about owbpem of finding cortical folding
patterns here, we are aware that the corticalriglgrocess is very complicated. The final
folding pattern of the brain is the end produchofmerous chemical and mechanical
forces acting on the brain, very well orchestratedughout the time of brain
development. Here we are not trying to model theirig process and explain all the
variability we observe in folding patterns. Insteeel are trying to identify some typical
patterns that might exist in only a part of theyagon, but are significant and can give
us some insight into the folding process and aeipathologies. So partial clustering is

more relevant for this particular problem.

2.5 Validation of the algorithm

2.5.1 Simulated datasets

To evaluate the performance of the PCBB algorithome experiments are performed on
simulated datasets. The procedure and resultgesenged below. The dataset we use as
a model for generating the simulated dataset éabdataset made up of 36 brains, where
each sulcus has been reliably labelled manually bguroanatomist. This dataset was
used to train the sulcus recognition system offt¥EBA. We chose the moment invariant

data of the ten biggest sulci of each hemisphar&ufther analysis.
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The simulated datasets are generated as follokestih@ mean and covariance matrix of
any pair of sulci, generate a new dataset usingethkame parameters. This gives a
dataset with two known clusters. Then a seriedfyndatasets are generated by adding
10, 20, 30, 40 50, 60, 70, 80, 90, 100% noise¢mtew dataset. The noise added follows
a Poisson distribution, within the min and max eadd the original dataset in their
respective dimensions. The mean and covariancexngétthe real sulci are used to keep
the simulated data close to the distribution ofrered data.

Both the Gaussian mixture modelling algorithm (GMamd the PCBB algorithm are run
on these simulated datasets. The results are ¢edlumterms of the number of clusters
found and the distance from the cluster centresdda the real centres. GMM involves
first fitting a mixture model, usually by the expaton-maximization (EM) algorithm
(Duda et al., 2000). Some success has been shomgithe Bayesian Information
Criterion (BIC) to choose the right number of coments. However, in general, equating
a component of GMM with a cluster is questionaBley and Lindsay, 2005). In our
experiments, we use the Mclust toolbox from R tothe GMM algorithm. Mclust is a
state-of-the-art mixture-model-based clustering (braley and Raftery, 2002, 2006).
We did two GMM runs for each dataset. The first allows the algorithm to optimally
select the structure of the covariance matricasguBiC, but without the initialization of
the proportion of noise as a prior. In the secamdthe real proportion of noise in the

dataset is given as a prior to the algorithm.

Two comparisons are made to evaluate the qualityeotlustering. First, the distance of
the cluster centres found to the real centres a@snored. When there are more cluster
centres found by the algorithm than the real cenwaly the two clusters closest to the
real centres are taken into consideration. Sedbedjumbers of cluster centres found by

the algorithm are compared for each simulated datas

The result is shown iRig 2.18below:
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Fig 2.18 The comparison of performances

The first column shows the boxplot of the distaotéhe two closest cluster centres found by therigm
to the real centres. (In the box plot, within thexIis the data from the first to the third quartilee dark
line inside the box represents the median. Belabttx shows the line of the minimum, above the thex
line of the maximum, the outliers are shown as.jidise x-axis shows the ten simulated datasetsages
across the pairs of sulci, with the percentageotdenfrom 10 to 100 percent. The results of the BCB
method is shown on the first row, the results of /\@Mithout noise correction are shown on the second
row, and the results of GMM with noise correctioa ahown on the third row.

The second column shows the histogram of the bigidns of the number of centres by the three
algorithms, the third column shows the boxplotref humber of centres for the ten different datafsets
10% to 100% noise.

Results show that the PCBB algorithm is compartbtee GMM algorithm in terms of
locating the centres of clusters. However, in teofnsstimating the number of clusters,
PCBB is more accurate and stable than the GMM #bkgor with increasing number of
noise in the data. Feeding the GMM a percentagmisk during initialization does not
seem to help the performance in this case. Thdtg@sows that PCBB is more robust
than GMM for finding clusters in this particulargiem.
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2.5.2 Real datasets

The clustering experiment is run on the 36 brataskt used for generating the simulated

data. The sample is normalized as follows:

Normalized sample= (sample -median) / median of the absolute dieridtom the median

The clusters found and their corresponding fornesofasserved, one example on the
analysis of the cingulate sulcigsgiven here to illustrate the stability of thga@iithm. In

Fig 2.19 we observe the forms of the patterns found. Trisedluster has a pattern with
an anterior interruption, the second cluster hpattern with a posterior interruption, and
the third cluster appears to be continuous. Thattenns found are consistent with those
described in the atlas of Ono, which stated thatiad 60% of the instances of the
cingulated sulcus have no interruption, around 248e two segments with a posterior
interruption or an anterior interruption, and ardu6% are divided into three segments.
It should be noted that the size of the databasé psevents the detection of rare
patterns. Therefore, larger and more comprehemsitabases will be required to achieve

a more exhaustive pattern search.
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Fig 2.19The clusters of the cingulate sulcus

The image to the left shows the salient points dowith 100 bootstrap samples. The image in the haidd
shows the final cluster centres found by the clirsgealgorithm. The X and Y-axis are the first asatond
dimensions of the PCA. The third image shows tlamseh of the cingulate sulcus of the three

corresponding clusters.
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Next the PCBB algorithm is performed on three eeal different datasets. Moment
invariant data of the left cingulate sulcus is usdtk clusters found are shownRigy
2.20below.
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Fig 2.20The clusters found on three different datasets

The dataset is shown using the first two axes ARG the X and Y axis. The first row shows oneadet,
the second row shows another dataset, the thirdshmws the dataset composed by mixing the dataeof t
first and the second datasets. The first columnmvsthbe salient points found by the first part of8B;

using 100 bootstrap samples. The second columnsstienfinal cluster centres found by the second par

of the PCBB.

Here two large real datasets are used, each congdiB0 brains. The sulci are
automatically identified and labelled by brainVISAe observe that the PCBB algorithm
is stable over different datasets. The bagginggmoe used in the second part of the

algorithm helps to achieve greater stability.

2.6 Folding patterns

Some of the strongest patterns found are shownligcdssed next. The method has been
applied to the ten largest sul@igble 2.1) of the left and right hemispheres using the
database of 36 manually labelled brains. From th@ssulci, all the combinations of two

and three sulci are taken, leading to 45 pairsl&tdtriplets. This constructive approach
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allows us to look for patterns at different levefsletails or at different degrees of
resolution. The motivation for building any pairtaplet of sulci stems from the idea that
long range interactions could occur during theifaidorocess, either because of long
fibre bundles or because of correlated developmkdifferent brain areas. This
constructive process could be pushed to the exiretmere we would study the pattern
made up by all the sulci of the brain. It shouldnloged, however, that extending the
approach to bigger groups than triplets would keaidtractable combinatorial explosion.
Therefore, in the future, this multi-resolutionasérgy should be more selective, for

example, larger groups can be built only from salese to each other in the brain.

Among the 20 sulci (of the two hemispheres), tladei provided a set of patterns
endowed with a p-value lower than 0.01 (the lafgaiate sulcus, the left inferior
precentral sulcus, and the left superior frontédiss). The sulcus providing the best p-
value (0.001 for t = 4) is the left cingulate s@WcResults based on the three sulci where
the strongest patterns are found are presentedb@loong the pairs and triplets, some

patterns are found as well, one of the examplekasvn below.

We also use another set of 150 brains, with the automatically labelled. This database
was provided by the International Consortium foaiBrMapping (ICBM) and acquired
in the Montreal Neurological Institute of McGill Wrersity. The automatic recognition of

the folds is less reliable but still gives reasdyp@ood results (Riviere et al., 2002).



Number Name Shorthand BrainVISA

1 calloso-marginal fissure F.C.M.

2 calcarine fissure and calcarine F.Cal.ant.-Sc.Cal.
scissure

3 collateral fissure F.Coll

4 inter-pariatal fissure F.I.P

5 pariatal-cccipital fissure F.P.O

6 central sulcus 3.C.

7 inferior frontal sulcus S.F.inf.

8 superior frontal sulcus S.E.sup.

9 inferior precentral sulcus S.Pe.C.inf

10 superior temporal sulcus S.T.S

Table 2.1The ten sulci for folding analysis

2.6.1 The cingulate sulcus

The cingulate sulcus ranks the best in p-valueed@lpatterns are found (referfim

2.21). The first pattern is made up of sulci presengrigrge anterior interruption, a
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second pattern is made up of sulci presenting #lesn@ad more posterior interruption,

and a third pattern is made up of sulci appearorginuous. It should be noted that these

patterns can not be inferred just from the numlbeoanected components. Indeed, the

sulci of the third pattern are only apparently amndus: some of them are made up of

several connected components overlapping each wtiean the sulcus is viewed from

above. In fact, the moment invariants are blinddonectivity. Therefore, these three

patterns would be interpreted more reliably in ®ohshape than in terms of

interruption. For instance, the first pattern cep@nds to sulci much deeper in the

posterior part than in the middle, while the lastt@rn corresponds to sulci with more

homogeneous depth.
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It is not an accident that the cingulate sulcuwiples the best p-value. This sulcus is one
of the sulci with very varied shapes and many migions. It should be noted that the
small size of the manually labelled database useel (86 brains) prevents the detection
of rare patterns. Therefore, much larger databagkle required to achieve a more

exhaustive pattern enumeration.

To illustrate possible applications of our patterierence process, we use the three
patterns obtained with this database to mine tieilegulate sulci of another database,
here the ICBM database. We selected in this dagaib@sclosest samples to each of the
three patterns. We observed that the shapes & fHagsples are consistent with the
corresponding patternki@. 2.27. Note that when the anterior part of the sulsumade
up of two parallel folds (fourth row @fig. 2.2J), it is equivalent to a deeper sulcus for

the moment invariants.
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Fig 2.21 The three patterns detected for the leftisgulate sulcus Row 1,3,5: the four

tightest instances of each pattern in manuallyllabelatabase. Row 2,4,6: the four closest inswataéhe

above pattern centre in automatically labelled lnzda.

To project the patterns from the first database tme second database, we classify the
sulci according to the closest distance to theepattentres. This classification attributes
14 brains to the first pattern, 97 to the secordiZmto the third. It was found that the
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percentage of females increases gradually from iBa¥te first class, to 41% in the
second and to 49% in the third (global percentdderale is 42%).

2.6.2 Theinferior precentral sulcus

The sulcus that has the second best p-value réoentral sulcus. Refer Eog 2.22
two patterns are found, depicted on the first d&dsiecond row, each pattern contains
three subjects. The precentral sulci (in greenpéoeon the 3D rendering of the cortex

for the six subjects. The central sulci are ploa asference.

The first pattern (first row oRkig 2.22 is more frequent, comparing with the second
pattern; the sulci here are more elongated. Ndkiveever that even though all of the
folds are long, they are not always in the samentation. The folds of the first and the
third subjects have different orientation compaiththe second. When observing the
second row pattern, it can be seen that they aotitai upper portion of the first pattern,
the lower portion is likely either missing or naibg identified as precentral sulcus.

Fig 2.22The patterns of the inferior precentral sulcus

Indeed, in anatomical literature, a small fissuiginating from the Sylvian fissure is
seen that is called “sulcus subcentralis antefigberstaller, 1890). This sulcus
sometimes unite with the lower end of the centuédiss, sometimes unites with the

precentral sulcus or the diagonal ramus of thei&yl#issure. This information can be
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useful to the automatic sulcal recognition systéhe anterior subcentral sulcus is
thought to be rarely present and not used by teeiqus versions of the sulcal
recognition system of BrainVISA. The result of tpettern analysis inspired the addition

of this sulcus to the naming system of the newivar@errot et al., 2009a).

2.6.3 Thecalcarine, collateral and central sulcus

This example illustrates the possibility of findipgtterns in sulci groups. Here the three
sulci concerned are: the calcarine sulcus, thatswll sulcus and the central sulcus. Two
patterns are found-{g 2.23, which are illustrated in colour red and greaclepattern
contains three subjects. The overall differencésden the patterns can be easier to
observe when they are plot together. The greernpgnas a bigger calcarine sulcus, and
the red group has a bigger and longer collatetausuWith respect to the central sulcus,
the green group has the central sulcus closeetottier two sulci. It would be interesting

to further explore the meaning of such differences.
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Fig 2.23The patterns of the calcarine, collateral and cenal sulcus

C
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A: The location of the calcarine sulcus, the colldteuécus and the central sulcus. The calcarineusuk
in brown, the collateral sulcus is in blue, thetcarsulcus is in red: The subjects from the two patterns

plot togethelC: The two patterns in green and red, each pattertaico3 subjects.

2.7 Discussion

The preliminary cortical pattern analysis produicgésresting results. The moment
invariants provide stable and comprehensive desonipf the shapes compare with any

specific set of measurements such as length ohdept

One possible use of the patterns we found is tgpementhe frequency of the occurrence
of these patterns among normal and patient datdeatsrify if we can see any
significant difference. Similar comparisons carchaied out on other datasets for pure
neuroscience questions: musicians versus athletsswith an early development on
language versus an early development on motorssiitl. The hypothesis to verify is that
a certain developmental event or a certain strpegific training would leave an

observable imprint on the cortex folding patterns.
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Chapter Three: Patterns of folds

3.1 Summary

In this chapter, some new approaches are explareda study of folding patterns. In
terms of the similarity measure among the folds; descriptors are used; in terms of the
algorithms to mine the information, the type ofaalthm that can handle high
dimensional data is experimented. New informatibtaimed, combined with that
obtained from using the methods described in tlegipus chapter, allows a more
comprehensive description of the sulcal shape.chaage in the shape of the folds
across the population can be observed, togethdr eascriptions of the more frequent

and characteristic patterns of the population.

3.2 Introduction

The work described in the previous chapter consistimding the most frequent patterns
in terms of cortical folding. Further study of thariability of sulci involves three
important choices: which sulci to study or wheréotak in the brain; which similarity

measure to apply; and which algorithm to use faring the patterns.

Regarding the choice of where to look among th&aarfolds, new directions can be
explored. In the work presented before, the bigfygds are chosen for pattern detection.
The biggest folds are likely the more stable; cqonsatly they can be more reliably
detected. Bigger sulci are more likely to exisaiy given individual, while the smaller
folds may or may not exist in a given individuakdwo the high variability of folding
patterns. The drawback or limitation of such anragph is that the important patterns
might include the smaller folds. A more sensiblprapch may target the regions of the
cortex, not restricted to the prominent sulci #ua easier to be labelled according to
traditional nomenclature. There are regions linteeflinctions, from the bigger regions

such as the prefrontal region, to the smaller regguch as the Broca’s area and
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Wernicke’s area linked to language. Indeed, thei sidilthe brain are the folds that
separate the gyri, and the gyri are where the malartivities are located. So to include
the notion of a functional area, it makes sensedinde at least two sulci, the sulci
anterior and posterior to a given gyrus. As a sengample, the central sulcus and pre-
central sulcus can be grouped together, to givettahdescription of the pre-central
gyrus region. When a bigger region is of interagiroup of sulci within this functional
region can be studied. Based on this reasonirfgrtiner exploration of cortical folding

patterns, we decided to include a group of sulthiwia chosen region of interest.

Regarding the choice of the similarity measure,enpwssibilities can be explored. We
used a 3D shape descriptor, the 3D moment invanahe previous studies. While this
descriptor can capture the form of the folds, tifermation is nonetheless limited since
only ten numbers are used to describe each foldth#n interesting and more intuitive
approach is the use of the similarity of the faldsong the subjects. Each fold of a given
subject can be characterized as the similaritiigosame fold of all the other subjects in
the data set. The characterization of the foldusmmore comprehensive, since it would
include the whole dataset. This direction is furttveplored in the work described in this

chapter.

Regarding the algorithm to use for pattern analysesny new directions can be explored.
It is important to realize, however, when the natoi the input data is changed, the
clustering algorithm might need to be changed dk imeparticular, if the approach of
similarity measure discussed above is adoptedjithension of the input would be very
high. When the data dimension is high, the distdratereen any two data points
becomes almost the same (Beyer et al., 1999).dn sase, it becomes difficult to
differentiate similar data points from dissimilares. In the mean time, clusters are
embedded in the subspaces of high-dimensionalspaize; different clusters may exist in
different subspaces (Agrawal et al., 1998). Becafiskese reasons, almost all
conventional clustering algorithms fail to work Wigr high-dimensional data sets.

Consequently, the algorithm used should eithetdbe ta reliably reduce the dimension,
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or feature selection techniques should be usedi¢atsonly certain features to be used in
the final clustering. The other alternative is s@ @lgorithms specifically designed for
high-dimensional datasets. In this chapter, werdegstiow we choose the algorithm

based on the nature of the shape description.

3.3 Searching for a framework of patterns

In the following, the approach of describing thetical folds is presented, together with
the algorithms that best suit the similarity measdihis approach is compared with the
approach described in the previous chapter, tetrtitie the type of information that can
be discovered when applying different approachemeSinteresting results are presented

and discussed.

3.3.1 The Similarity measure: |CP

Sophisticated shape descriptors based on 3D mametants have been proposed in
the previous chapter. This approach might be lidnieterms of the representation of all
the complexity in folding patterns. Very differesttapes can sometimes lead to similar
descriptors which can disturb the clustering precesorder to overcome this weakness,
a different approach is explored. A given sulcashis described by a vector of distance
of this shape to a large number of similar shapkis approach has been proven to be
very efficient to compare shapes in large dimensjmaces (Besl and McKay, 1992).
Hence the representation of the sulcal set of abgest is consisting of the distances to
the same sulcal set in all the other subjects. [pathwise distance is computed using the
simple Iterated Closest Point (ICP) algorithm aéféine global spatial normalization of
the brains (Jain et al., 1999). Note that perfograrglobal normalisation removes non-
interesting patterns induced by global differenodsrain size. Our ICP implementation

is providing the minimal distance obtained whatebherrotation between the two shapes

(Kaufman and Rousseeuw, 1990).
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The idea of representing each sulcus by its distamall the other sulci in the dataset is
illustrated inFig 3.1 The simplest ICP algorithm is used, in which afddata) is
matched to another form (model) iteratively by tioia and translation (Besl and McKay,
1992). The algorithm stops when the distance cab@aignificantly improved or a given
number of iteration has been reached. It shoulddbed that this algorithm has been
extensively studied and many variations of the i@tiga provide more efficient
performance. In this preliminary study, the simplesgsion of the algorithm is used. It is
however by choice that we use only rigid motionrfa@tching in this study. It is reasoned
that in the application of cortical pattern anadysiven the small shape differences are
important. Consequently, the distance should falyteflect this difference. However,
an affine matching could be very interesting ad vielthe sense that smaller details in
folding difference could be ignored, so that we cancentrate on more prominent
differences. It should be kept in mind that tharngrof ICP is not only related to
nonlinear alignment, it is also related to robustnd he estimation of the distance
between dissimilar shapes could be less accuratpar@ with the distance between
more similar shapes. However, our method doesauptire accurate distance estimation

for dissimilar shapes because only the orderimgpmortant in the algorithm used here.

An example:  sulcus 1 sulcus 2 sulcus 3 sulcus 4

VW 9 «

Distance:
1.8

Distance matrix:
2.5 0 15 2526
1.5 0 3 29
25 3 005

26 29 05 0

o o4 &
A 44

Fig 3.1: An example of the similarity measure
As an example to illustrate the concept of thelsirity measure, four sulci are used (in red) naswddus
1 to 4. The distance (using ICP) can be calculftedach pair of the set. For each sulcus, thewds to

the other three sulci can be calculated. The fifrgthnce matrix can be obtained.
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3.3.2 Algorithm to handle high dimensional data: | somap

The resulting similarity matrix obtained using i algorithm could have a very high
dimensionality, since the number of dimension isad¢o the number of subjects in a
given dataset. The curse of dimensionality is d-t@bwn problem occurring in such
situations (Duda et al., 2000). The dimension ¢&deeeds to be reduced before applying
the clustering algorithms.

The assumption of dimension reduction is that gatats may lie on a lower dimensional
manifold, which is embedded in the original spatckigher dimension. The goal is to
find such a lower dimensional embedding of the datale keeping the original

geometry of the data as much as possible.

The techniques of dimension reduction could be mbudivided into two categories, the
linear and nonlinear techniques (Van der Maatenay2008). Examples of linear
dimension reduction techniques are Principle CoraptsAnalysis (PCA) and Linear
Discriminant Analysis (LDA). Nonlinear techniqueancbe further divided into three
main types: techniques trying to preserve globaperties of the original data;
techniques attempting to preserve local propedi¢ke original data; and techniques
performing global alignment using some linear msdekamples of techniques
preserving global properties are MultiDimensionedlég (MDS), Isomap, Diffusion
maps and Kernal PCA. Local Linear Embedding (LLERm example of the technique
preserving local properties, where multi-linear PiSAised for local representation.
Local Linear Coordination (LLC) is one of the teaques using local linear models for

global alignment.

The Isomap algorithm is chosen for this preliminstydy. This algorithm has the
computational efficiency and global optimality airiRipal Component Analysis (PCA)
and Multi-Dimensional Scaling (MDS), it also hag ftexibility to learn a broad class of
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non-linear manifolds (Tenenbaum et al., 2000). diseance between any two data points
is measured by using the geodesic distance betiliegwo points over the manifold.
Despite some weaknesses that will be further desmlibelow, this algorithm has been
successfully applied in artificial vision and thewalization of biomedical data (Gerber
and al, 2010).

The input of the Isomap is the distance matrix agnitwe subjects. Linking each point to
its K nearest neighbours, a graph is created sheupposed to describe a low
dimensional manifold. In the Isomap algorithm, gfe®desic distance is first estimated
between points (here the sulci of each subjec#.distance between two points is the
length of the shortest path between these two pairthe graph constructed. It is
important to choose an appropriate neighbourharel $Vhen the neighbourhood is too
large, too many “short-circuit” edges would be ¢teelawhen the neighbourhood is too
small, the graph becomes too sparse to approxithatgeodesic paths. To our
knowledge, there is no consensual general waydosshK whatever the problem. This is
the main weakness of the Isomap approach. It mlégprally unstable, erroneous
connections could be created in the neighbourhoaphg as the “short-circuiting” effect
when the K is too large. Some methods were proptasedercome such problems such
as removing nearest neighbours that violate locabtity of the graph (Van der Maaten
and al, 2008). Once a matrix of geodesic distaasebleen computed, a simple dimension

reduction algorithm such as MultiDimensional Scgl{MDS) can then be applied.

There are different choices concerning the MDSrélgm. The classical MDS algorithm
of Torgerson chooses a N-dimensional configuratiimmizing the stress defined by:
¥(gij —dij)?/=dij? , where gij denotes distances in the origoiadension, and dij denotes
pair wise distance in the low dimensional spacedBmd Groenen, 2005). Many
variants of the classical MDS exist. They can lwdeid in general to two categories, the
metric and non-metric MDS. The metric MDS genegrdithe optimization procedure to
a variety of loss functions and input matrices wdiffierent weights. It tries to find an

embedding in a lower dimension such that distaacepreserved. The non-metric MDS
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instead try to find a non-parametric monotonictreteship between dissimilarities from
the high to the low dimensional spaces. It is dimadion problem under ordering
restrictions, the rank order of entries in the dai@ssumed to contain significant
information. When the input data is “distance-likit not actual Euclidean distances, or
when we are interested in finding the patternfi@ibhput, non-metric MDS may prove to

be an interesting approach (Cox and Cox, 2001).

In this work, the non-metric MDS (IsoMDS) as wedlmetric MDS are tested.
Considering that the input similarity is an estiioatof the “likeliness” of two forms, not
an actual Euclidean distance, the ordering of thdsfmay be more important than the
absolute distance. The non-metric approach maytéwgortant properties such as

intrinsic patterns of distribution.

While the Isomap approach has found some suca@s®, kmitations exist. It could be
trapped in local optima. The non-Euclidean desioipbased on Shared Nearest
Neighbour (SNN) could be an interesting approadiere the strength of the link
between two data points is based on the numbéreafthared neighbours (Ert6z et al.,
2002). Other algorithms emphasizing the presemmaifdocal properties such as LLE
(Roweis and Saul, 2000) could be investigated efaiure. The approaches that can find
global optimum can be further explored. One exargpthe Sammon mapping, an
alternative to the classical MDS, where the scatiogt function is adapted by weighting
on the inverse of the pair wise distance. Thuslapgir-wise distances will not be
emphasized over smaller pair wise distances.réédsoned that the pairs with smaller

distances are important to the local geometry efdita (Van der Maaten and al, 2008).

3.4 Validation of the ICP-Isomap approach

The approach of ICP and Isomap for cortical foldamglysis would need to be validated.

The efficiency of the clustering algorithm PCBB sated in Chapter Two needs to be
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verified as well based on the new approach. Belewalidation is done on both

simulated and real datasets.

3.4.1 The suitability of | CP-1somap for cortical pattern analysis: real dataset

The efficiency of the Isomap as a dimension reduactbol is validated first, in the
context of the study of the cortical folding patigr Three sulci are chosen for the
validation Fig 3.2A): the central sulcus, the superior temporal sudtubsthe cingulate
sulcus.

A dataset of 362 shapes is generated combining the dataséte tifree different sulci

from our most recent manually labelled databased¢Pet al., 2009a). Dimension
reductionof the ICP-based distance matrix is performed witke alternative classical
approaches: Isomap, classical MDS and PCA. Thdtseme shown iffrig 3.2B.

Referring to the central sulcus (in black), on¢haf most stable sulcus: Isomap gives a
dense presentation, the representation of claddibd is less dense, and the result from
PCA is the least dense. The same trend existhéosuperior temporal sulcus (in green).
Concerning the cingulate sulcus (in red), thisdrenless obvious; Isomap organized the
distribution into a distinctive shape. The sigrafice in terms of real shape distribution is
studied and presented in the section below. Consglthe three sulci together, the
Isomap algorithm separates the sulcal distributimne successfully than the other two

methods. In conclusion, Isomaptperforms the other methods for sulcal analysis.

Isomap Classical MDS PCA
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Fig 3.2 The comparison of dimension reduction methis
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A: The central sulcus in red, the superior tempsuidus in green and the cingulate sulcus in Bedtrom
left to right: the distribution using Isomap, clizsd MDS and PCA.

3.4.2 The suitability of 1 CP-1somap for cortical pattern analysis: simulated dataset

The performance of the clustering algorithm is @sgaluated with simulations. For each
simulation, three subjects are picked randomly ftbenoriginal database. Six random
variations are generated for each of them. Eadhati@m results from a random
transformation applied to the original sulcus. Tihessformation is anffine
transformation endowed with a diagonal of 1 andhw@irandom numbers sampled from a
Gaussian distribution. An example is providedrig. 3.3 The database of 62 central
sulci (Perrot et al., 2009a) is used for the garmraf simulated datasets. Each of them
is composed of 3 simulated tight clusters of 7iguiles 41 original central sulci, leading
to a total of 62 sulci.

Additional subjects are picked randomly among theninus 3 other subjects to
complete the dataset. Ten different sets of thubgests are picked, and five different
standard deviations ranging from 0.11 to 0.15 aexldor generating the deformation. A
total of 50 simulated datasets are obtained. Fan sanulation, the ICP-based distance
matrix is computed, Isomap is used for dimensialucdon (d=4, K=6).

Three different clustering methods are applied: BOBaussian mixture modelling
(GMM) and Partitioning Around Medoids (PAM). PAMan algorithm similar to K-
means including estimation of the optimal numbeclo$ters. In our experiments, R
cluster toolbox is used (Crawley, 2007). The edtimmaof the number of clusters
performed by PAM in this context has been showbetoeliable (refer to Chapter Two).
GMM involves first fitting a mixture model by expation-maximization and

computation of posterior probabilities (Duda et 2000). The Bayesian Information
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Criterion (BIC) provides the number of componeiitse state-of-the-art Mclust toolbox
from R is used to run GMM (Fraley and Raftery, 2006

Fig 3.3 The simulated central sulcus

Shown in grey are all the real shape of the cestralus from the dataset superimposed. Shown iEngre
red and black are three simulated clusters. lteaseen that the variability within each clustedifeerent,
however, the shapes of all three clusters follasely the real shape of the central sulcus. Dutieg
alignment for the visualization of the sulcal shghe most neutral shape is chosen for better

visualization.

When the clustering using PCBB is carried out usiregdimension-reduced similarity
matrix of the three methods described above fausd that Isomap provides the best
clusters: the clusters that are tight within theugrand distant among the groups. Refer
to Fig 3.4for the clusters found. The members of the clsstee shown in black, red and
green respectively. Isomap algorithm consistemtigls tight clusters compare with the
other two methods.
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Fig 3.4 The comparison of dimension reduction methds on final clusters
Left to right: the distribution using Isomap, clasé MDS and PCA. The clusters shown are thosedduyn
running the PCBB algorithm.
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Fig 3.5shows the performance statistics in terms of tiralyver of clusters found. The
simulation has three arbitrary clusters, most efdlustering algorithms tested here found
one or more clusters. The distribution of the nundéeclusters found can give an
indication of the quality of the results, even thbuhe data might hide other valid
clusters in addition to the three simulated onesan be observed that the PCBB
algorithm has the highest incidence of finding éhctusters, PAM finds slightly less,
GMM still less. Overall, GMM may find none, one,dwr three clusters. PAM and
GMM finds at least one cluster, their incidence$irding one of two clusters are less
than GMM. PAM performs reasonably well compare®@BB, however, it is less likely
than PCBB to find all three simulated clustelfsg 3.6 presents one of the examples of
the clustering results highlighting the real clust®und. The quality of clustering is
evaluated on multiple runs. It is found that PCBBparforms the two other methods.
This is not so surprising when we consider the neatfi these different clustering
algorithms. PAM and GMM aim at providing a complptgtitioning of the dataset. This
goal is not always compatible with the detectionigitit clusters. PCBB, on the other
hand, is designed specifically to detect densersgand pick out subjects from the
dense regions.

PCBB PAM GMM
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Fig 3.5 Comparison of algorithms: effect on the eshation of the number of clusters
The three algorithms compared are: PCBB, PAM andMGWVhe upper image presents the result on the

number of clusters found (the simulated data haetblusters).
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Fig 3.6 Comparison of algorithms: clusters found
The three algorithms compared are: PCBB, PAM andMGin example of the clustering results is shown

applying the three methods. The clusters foundiacked. The simulated data has three clusters.

3.5How to look: the clusters of sulci

Once the dimension reduced similarity matrix isaofed, the clustering can be carried
out using the clustering algorithm PCBB discussetheé previous chapter. The

characteristic patterns of each cluster can therisamlized.

3.6 Where to look: the selection of folds

As discussed in introduction, we try the approatbetecting a group of folds or sulci

that define loosely the functional regions of thetex. The simplest groups would

consist of single folds; the most complex group laddae consisting of all the folds in the
cortex. There are all the possible combinatioriseinveen the two extreme cases. In the
case of a single fold, the advantage is that theltiag patterns are easier to be visualized
and interpreted; the disadvantage is that someestiag patterns could be overlooked. In
the case of the folds of the whole brain, the athgais that the information is the most
comprehensive and complete, the obvious disadvarnsafat the difficulty in visual
interpretation of the results. Here we try to faadompromise between the two extreme
cases. We attempted to define regions of neurabgignificance, instead of arbitrarily

selecting regions of a certain size.
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3.7 Results

The database of 62 central sulci (Perrot et a09aPis used for the clustering analysis.
Once the lower dimension representation similarigtrices are obtained, clustering can
be carried out using PCBB as described in the pusvChapter. Clustering was applied
to 32 regions (sulcal sets) using PCBB. Group a$telrs with scores below 0.05 were
collected for the dictionary. 13 sets of the ledtrisphere and 12 sets of the right

hemisphere passed the threshold.

In the following sections, some of the most repnésteve results are briefly presented
and discussed. Refer to Chapter Five for a moreptetmrepresentation and discussion
of the results.

3.7.1 The Cingulate region

The cingulate region is found to have the strongksters. In this study, the strategy is
changed from using the single sulcus to the Cirtgukegion, which includes the
cingulate sulcus and the smaller sulci aroundatgpingulate sulcus, intralimbic sulcus,
and superior and inferior rostral sulcus). Essént#l the sulci around the corpus
callosum ventral and dorsal to the cingulate subregaken into account. Compared with
the clustering on the cingulate sulcus alone, hstering on the region can reveal
different and more comprehensive information onalality. Some of the potential
labelling ambiguities can be further investigatied example, the labelling of the

intralimbic sulcus, the paracingulate sulcus, dedguperior and inferior rostral sulcus.

The resulting clusters of the cingulate regionsdmewn inFig 3.7. Five patterns are
found. Notice that the purple pattern has a pdrsdlgment on top, which may
correspond to the paracingulate sulcus. Acrosgpadlterns, this paracingulate sulcus
takes a varied appearance. At the posterior erd;uhvature appears to be slightly
different for the five patterns. The cyan pattermalatively curved; while the blue pattern

is more flat. Compared with the results obtainednfiChapter Two on the cingulate
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sulcus, the position of the interruption is notkesar on the regional clustering results.
The interruptions might be filled up by anotherdfolot labelled as the cingulate sulcus. It
is thus interesting to approach the clusteringyamimgusing both of the method from

chapter Two and from this chapter.

| ‘\'\2

Left Cingulate region

(2) Pe

- -

Fig 3.7 The clusters found on the Cingulate region

One example of the sulcal set is shown first. Thoereach pattern, three aligned subjects are supesed
in order to highlight the areas of stability making the patterns. THeft cingulate regionis highly
variable. The key features are (1) the developroktiteintracingulate sulcus (long shallow fold at the
bottom of violet pattern), (2) the developmehthe paracingulate sulcus (series of small feldte top of
red pattern), (3)he interruptions of the cingulate sulcus and If¢) ghape of the anterior part of tiegion.

The posterior part is relatively stable.

Such clustering analysis promotes the further iigason of certain issues. Referka
3.7, the pattern 1 (the purple pattern) shows a plessitracingulate sulcus ventral of a
less “heavy” cingulate. This observation also le@dbe question: is it possible that
when paracingulate is prominent, the cingulate bexintracingulate? This subject will
be further discussed in Chapter Five. In pattefthh@ red pattern), it can be observed
that, compare with pattern 1, the paracingulatease broken and more likely becoming
vertical to the cingulate sulcus. The anterior@agiends to be heavier as well. In pattern
3 (the grey pattern), the interruptions of the pengulate sulcus can be observed. The

pattern 4 (the cyan pattern) may have a more cyvesterior.
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3.7.2 The Central Sulcus

The central sulcus is discussed here as an exahfle sulci or sulcal regions where
clusters cannot be found due to the homogeneitiyeo¥ariability. Using both
approaches, the 3D moment invariant or the ICP-&gpapproach, when clustering with
PCBB, no clusters can be found.

It is realized that from this approach of clustgrailone it is not straightforward to deduce
some simple characteristics. When observing thpesb&the central sulcus, it is clear
that even though the shape variability is less tharcingulate sulcus, variability still
exist. In such cases when clusters cannot be fouwduld be interesting to observe the

variability in a more systematic fashion.

3.7.3 Theinferior frontal region

The result of the inferior frontal region is shohere to illustrate the potential and
limitation of such a regional approach. In the oegi of the cortex where the folding is

highly variable, the results could be difficultitaerpret by visual inspection.

The clusters of the inferior frontal region arewhan Fig 3.8 The Inf-Inter frontal gyrus
is made upf the intermediate precentral and intermediategimal, orbitary and inferior
frontal sulci. Three patterns are found. The mdffeiince among the three patterns
shown here lies in the different configurationshad intermediate frontal sulcus. The
violet and the cyan patterns show small and spi@rmediate frontal sulcus, the red
pattern shows a large and transverse pattern thdiesdice that the red pattern shows a
configuration more parallel to the Sylvian valleyngpare with the other two patterns,
which are more perpendicular to the Sylvian vallByis observation is in agreement
with the hypothesis of sulcal roots in terms of dhientations of the sulci, where the

units of sulcal roots are organized in a systemmefidians and parallels of the cortical
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surface (Regis et al., 2005). While these pattaraesnteresting, the interpretation of the
patterns could become very subjective. When dedittie region for study, it is thus

important to keep the region relatively small ighly variable regions.

Inter. frontal suleus

P PP

Left Inf-Inter Frontal Gyrus

Fig 3.8 The inferior frontal region
The main difference among the three patterns shesa lies in the different configurations of the

intermediate frontal sulcus (small and split: viplarge: red, large and transverse: cyan).

3.8 Discussions

New dimensions have been explored in the followiige directions: the selection of
cortical region for pattern search, data presesrtaind the algorithm for analysis.
Regions of interest are defined where all the swittiin the region can be studied, so the
analysis is not restricted to a single sulcus byrtoap of sulci. Each sulcus is presented
as its distance to all the other sulci in the detteend the algorithm to reduce the
dimension of the data is explored. Validation ise€l¢o ensure that this new approach is
suitable to the study of cortical folding. It isalvalidated that the clustering algorithm

PCBB developed in Chapter Two is suitable for patgearch using this new approach.

The results are adding new patterns in additichase found in Chapter Two. The
definition of region however, should be carefuljested. The highly variable region
should not be large, so that local variations casthdied in detail. When the region is
large and the folding very variable, the foldindtpens found could be very difficult to
be reliably described. Note that the results pregeim this chapter are preliminary, the

main goal is to validate the methods chosen farad@nalysis.
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In the study presented in this chapter and theipuswone, we noticed that a huge
difference exists in terms of the degree of vatigtamong different folds. For example,
the cingulate sulcus is very different across irthials, while the central sulcus is very
stable and quite similar across the populationeduall the strongest clusters are found
when studying the cingulate sulcus, while no strolngters are found when studying the
central sulcus. This leads to the question thganding the more stable folds, is there a
way to describe their shape variability? In thetraapter, an interesting alternative is
found when no strong clusters exist. In the attetmpfive a more comprehensive
description of the folding distribution, we try égtablish a framework where a more
general description can be given. This would comglet the description based on

clusters alone.
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Chapter Four: Handedness in the folds

4.1 Summary

In this chapter, the methods developed in the pres/chapters are applied to a
neuroscience issue with interesting discoverieshigstudy, we investigate the possible
manifestation of handedness in cortical foldingt@ats. Three populations are studied:
the right-handers, the left-handers and the handveoters: lefthanders who were forced
to use their right hand for writing. The investigat focuses on the central sulcus, one of
the most stable and prominent sulcus that sepdh&tenotor and somatosensory areas of
the cortex (Penfield and Boldrey, 1937). AnatomM& images are used; brain folds

are extracted automatically using the BrainVisawafe platform (Mangin et al.,

2004b). The difference in terms of shapes amongehtal sulcus of all subjects are

calculated, this information is further reduceddata dimension using Isomap.

A strikingly simple morphological trait of the cealtsulcus was discovered which can be
described as the more or less centred positioh@hiand “notch” or “knob”, where

hand knob corresponds to the well-established fanat motor hand area (Yousry et al.,
1997). The notch position can shift along the cdrdulcus, the location can be from
around the middle of the fold moving upwards (dily3aAlso observed is a second
“knob” below the hand knob. When the hand knob pmsimoves upwards, the second

lower knob is becoming more prominent and movestgswas well.

The two hemispheres are found to be differentringeof the shape of the central sulcus.
The left central sulcus of the three populatiohe (eft-handers, the right-handers and
the hand-converters) has a characteristic “two-khphttern, i.e. the hand knob and a
second knob below. The right central sulcus, orother hand, has a characteristic
“one-knob” pattern, containing a prominent hand kndhe second lower knob is very

weak or missing.
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The shape of the left central sulcus for both #feHanders and the hand-converters are
found to be statistically different to the rightdiers (right-hander vs. left-hander:
p=0.002; right-hander vs. hand-converter: p=0.02n the right hemisphere, the central
sulcus of the converters has a tendency to beeiiteo the left-handers (p=0.06), the
right-handers has a tendency to be different toefftehanders as well (p=0.15). The
hand knob position of the left-handers is more reghthan that of the right-handers for
both hemispheres.

The study provides insights into handedness andftbet of converting hand use. The
results also reveal the exciting potential of satgorithmic approaches in the analysis
of cortical folding patterns. In the following, tistudy of handedness is introduced,
methods are described, and results are then predeiite chapter concludes with

discussion and future work.

4.2 Introduction

Brain asymmetry is a fascinating topic with a hageunt of research behind. Humans,
dogs and chickens alike are not perfectly symmedtrio terms of anatomy as well as
behaviour. It is shown that dogs wag their tailth left when facing an unfamiliar
dominant dog, while wagging their tails to the tigihen facing their owners. Marmoset
monkeys, which communicate using bird-like callsewed the left side of the mouth
wider when expressing fear, and opened the riglet sf the mouth wider when making
social contacts. Similarly in humans, the left siléhe mouth is more prominent for
emotional expression, while the right side of theuth more for speech (Corballis,
2009).

Handedness and language are two of the most pratremamples of brain asymmetry or
laterality in humans, with much research being dbaaguage laterality can be
measured reliably, while the cause is still uncléaterms of handedness, exactly how
and why the brains of the left-handers are diffefeom that of the majority right-
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handers is an intriguing question that many anagryo decode and understand (Sun et
al., 2006). Various researches are conducted w&stigate the behavioural, physiological,
and anatomical differences between the left-hanaleishe right-handers. The left-
handedness is found to be linked to a spectrunemditions, ranging from schizophrenia
to special talents, passing through birth defesttsrter life span, dyslexia and autism, to
mention just a few (Coren, 1990). The consequehbeiag left-handed is not well
understood, neither is the cause. Many hypothesagraposed, from purely genetic
(Annett, 1972; McManus, 1985) to mainly environnaiProvins, 1997). While it is
more accepted today that there are genetic factoodsed in handedness, it is not clear

how important is the role of the environment.

Not that long ago the left-handers were traines\itdich the hand use in many cultures,
especially for writing, due to the belief that Halindedness is awkward and abnormal. A
Newspaper story on the 20November 1922 under the titleéft-handedness is cured
among pupilsreported: An intensive campaign to cure left-hersdamong pupils in

local schools here [Elizabeth, New Jersey, USA]reaslted in a reduction from 250 to
66 since 1919 (Coren, 1990).

While it is astonishing to read the story today, tonverters, the left-handers that were
forced to change their hand use, make up an irileggsopulation to study the
consequences of a specific learning experiencé@briain, both in terms of anatomy
and in terms of behaviour. It should be kept indrtimat the majority of the individuals
who have a past history of shifting hands do nstitdn a change in handedness
classification. The action of switching hands iarfd to lead to either an increase of the
use of both hands, or to a tolerance for the uskeotontralateral limb (Porac et al.,
1990).

Studying the anatomical difference of different plapions is one of the ways to further
our understanding of handedness and brain asymimeggneral. In this quest, the brain

shape and folding patterns represent a unique appty. Brain folds to accommodate
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the growth while the fibre connections are matufvign Essen, 1997; Welker, 1988).
Brain folding patterns are incredibly variable frame individual to another. For a more
detailed introduction to cortical folding, refer@hapter One. The variability in cortical
folding might be partly due to genetics, and padile to the fact that each individual has
a unique environmental growing experience fromfits¢ day of embryo development.
Many studies are conducted on brain anatomy amihipimorphology. For example, the
difference between the left-handers and the rigimdlers in terms of the hemispheric
size, the size and shape of the corpus calloswarfptting patterns of the regions around
the Sylvian fissure, the size of the motor and dosensory areas, the cerebellum and the

basal ganglia are studied, just to name a few k#aod Steinmetz, 2003).

Among the many sulci of the human cortex, the edmsicus has been a subject of many
interesting investigations (Amunts et al., 1996u¥iy et al., 1997). It marks the well-
known separation of the motor and the somatosenegigns anterior and posterior of
the central sulcus, where the famous homunculosgged (Penfield and Boldrey, 1937)
refer toFig 4.1afor an example. Penfield also observed and hysatbd that the motor
sensory strips were arranged in horizontal stiytsreling from precentral to postcentral
sulci, through the central sulcus (Penfield anghdgsl954). This observation is
confirmed in animal experiments (Murphy et al., 8 Among the huge variability of
sulcal folding patterns that exist, the centratsslis one of the most stable and one of
the easiest to identify. The central sulcus caoliserved appearing around 20-21 weeks
of gestation, and it attains its more definitivevaiure in the eighth month of gestation
(Ono et al., 1990).
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A

Fig 4.1aThe functional organization of the central region

A The homunculus of Penfield: figurines drawn onléfehemisphere (Penfield and Jasper, 1954)

B The functional subdivision of the precentral gytugongue;2, lips; 3, face;4, thumb;5, index finger;6,
middle finger;7, ring finger; 8, little finger; 9, hand;10, wrist; 11, elbow; 12, shoulder;13, trunk; 14,
proximal leg (Tamraz and Comair, 2006)

In anatomical literature, the central sulcus iscdesd as a two-piece structure by Broca,
and a three-piece structure by Testut-LaterjetRatdret. The two-piece structure of
Broca consists of the superior and the inferionugdiine superior knee is directed
anteriorly, and that of the inferior knee postdyiom the three-piece model, the upper
and lower knees (genou supérieur and inférieurpateriorly directed, and the middle
knee (genou moyen) is posteriorly directed. Thesuppee is always well-defined, while
the lower knee is more variable and less well-a&fifOno et al., 1990). Refer fag
4.1babout the two/three-piece structure. TalairachBmanoux described the form of
the central sulcus as “step-like” or a “zigzag” l@each and Tournoux, 1993). At the
level of the Sylvian fissure, anterior to the cahsiulcus, a small sulcus called the sulcus
subcentralis anterior (anterior subcentral sulcas)be seen in some cases. This small
sulcus may unite with the lower end of the cergtdtus in some cases, and frequently it
may unite with the precentral sulcus. In some cagassterior subcentral sulcus can be

observed posterior to the central sulcus (EbeestelB90).
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Shape of the Central Sulcus

Fig 4.1b The structure model of the central sulcus

In the two-piece model of Broca, the superior kizedirected anteriorly, and the inferior knee isedted
posteriorly. In the three-piece model of Testutdrpt and Paturet, the upper and lower knees are
anteriorly directed, the middle knee is posteriatiiected (Ono et al., 1990).

Functional MRI studies reveal that the hand moteaas located at the middle genu
(number 2 irFig 4.1b) of the central sulcus in a portion of the precamgyrus that
displays a characteristic “knob” or “knuckle”. THlgnob” which has either an omega
shape (90%) or an epsilon shape (10%) can be ebdiserved in the axial plane
(Yousry et al., 1997). It has also been showntthetortical representation of the
sensory hand area is located along the anteride diatine postcentral gyrus at a
characteristic curve of the central sulcus immediygbosterior to the motor hand area
(Boling et al., 2008).

The precentral gyrus in between the central sudogisthe precentral sulcus is the motor
region. The functional subdivision of the preceinfiaus can be defined in four parts:
the inferior face region, the middle hand-arm regibe superior trunk region and the
paracentral leg-foot region. It is interesting tdenthat the depth of the central sulcus
corresponding to these four regions are differdra face level (first 3cm) is averaging
15mm, the hand-arm region roughly to its midpogndaveraging 17mm, the trunk region
averages 12mm due to the annectant gyrus (the PPf#RMeduces the depth, the
interhemispheric leg portion reaches at most 13imamf{az and Comair, 2006). The
hand-arm region is thus the deepest section afeh#&al sulcus. The profile of the depth
could be corresponding to the timing of apparitwdthe sulcus, the deeper being earlier.

The depth could be affected during later differ@ngrowth as well.
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It should be kept in mind that despite the fact tha central sulcus is relatively simple
and stable, the actual shape from one individuahtather is still extremely variable,

refer toFig 4.2for some examples. With respect to the convertkesaction of

converting the hand use for a prolonged periodnoé is expected to leave certain
anatomical trace around the hand motor and semseag of the brain. A related recent
study reveals that the converters have anatomizaiges both on the surface area of the

central sulcus and in the deep structure sucheagutamen (Kloppel et al., 2010).

Fig 4.2 A negative cast of the central sulcus of three subgts

The left and right central sulci of the three setgeare highlighted in red, the hand knob positsomarked
in blue stars.

Tools such as magnetic resonance imaging (MRIpalls to study the anatomy of the
brain noninvasively, refer to chapter One for a endetailed introduction. Our
contribution in this work is to use computer algjoms to discover new information in

terms of the 3D shape of the central sulcus.
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4 .3 Material and Methods

In this section, the datasets used are describeetail, followed by the methods used for
the measure of similarity among the subjects. Tgerghm used for dimension
reduction of the similarity matrix is then presehténally the visualization algorithm

used for obtaining the summary of sulcal formsissuissed.

4.3.1 Datasets

Two datasets are used. In the first dataset, 3iveeed’ left-handerémean age 40,
range 24-56 years; 22m, 12fje compared with 19 consistent age and sex nthtaji-
handed ihean age 34, range 22-59 years; 17 males, 6 fejahes16 similar left-handed
subjectsihean age 36, range 25-56 years; 12 males, 6 fendhebviduals were only
labelled as a ‘converted’ left-hander, if the setgeand their parents clearly recollected
that writing commenced with the left hand at schbat was switch to the right. Data
from these participants were reported in a prevgiudy(Kloppel et al., 2010), which
lists all inclusion and exclusion criteria. All gabts gave written informed consent and
the local Ethics Committee approved the experimigmtacedures. The Edinburgh
handedness inventory (Oldfield, 1971) was usedhithva score of —100 reflects
extreme left-handedness and +100 extreme rightddaress. The second dataset contains

the subjects from the training base of the Braewgisftware (Perrot et al., 2009a).

Additional information regarding the family histooy the hand converters is available
for the hand converters (Kloppel et al., 2010). irhpact of family history on sulcal

forms is investigated.

For the first database, high-resolution structM&ll was performed on a 3T system
(TRIO; Siemens, Erlangen, Germany) with a T1-weidifELASH 3D sequence (TR =
15 ms, TE = 4.92 ms, flip angle 25°, 192 slicesedhickness = 1 mm, matrix: 256 x
256 mm).For the second database, the 62 healthy subjetts from 6 different

scanners and research protocols (Perrot et al9a208n expert confirmed that the
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software correctly identified the central sulcus.cbntrol for the influence of variable
brain size the central sulcal representations lareamalized to the linear standard
Talairach reference frame (by a 9 parameter affenesformation). The right central sulci

were flipped relative to the inter-hemispheric @dao allow asymmetry studies.

The information concerning the number of left-hasdeght-handers and hand
converters in each of the two datasets are listd@lble 4.1 Since the first dataset has
much less right-handers than the left-handers and konverters, in some analysis the
subjects from the second dataset are added tarshé&ofbalance the number of left-
handers and right-handers. The detail is furthptaéed in 4.3.3. Note that some
subjects of the base set are of unknown handedsessgeneral 10% left-hander is
estimated. We are interested in understandingfteetef input data size and data
composition (in terms of percentage of each pojran the input data) on the final
analysis results. The second dataset (mostly hghtied individuals) provides an
opportunity to vary the percentage of right-handerthe dataset. It provides also a
bigger dataset for analysis.

The central sulci of all subjects of the first datibare extracted and automatically
labelled by BrainVisa. For the second datasetaitral sulcus are manually labelled by
an expert. The central sulcus is described a$ afl&D points.

Dataset Total # subjects | £ left-handed # nght-handed #
converters
L. Left- 66 16 19 31
handed set
2. Base set | 62 Estimated 5 (8- | Estimated 57,40 | 0
10%), 3 known | known

Table 4.1Handedness Information of the Two Datasets

The distances among the central sulcus of diffesebjects are calculated using the
Iterated Closest Point (ICP) algorithm. This effiti algorithm iteratively aligns one
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sulcus relative to another through successiveiosigiand translations. The iterations are
driven by minimization of the average distance lestwshifted and target sulci. For each
pair of sulci, the ICP algorithm is applied twiceftre and after sulcal role switches. The
smallest residual distance across the two alignsnenised as a similarity measure. A
distance matrix is obtained. The Isomap algorittamIigined with isoMDS (refer to
Chapter Three for detail) is then used to redueeadtmension of the distance matrix.
Statistical tests are performed on the dimensidnaed distance matrix. Weighted
SPAM is used to visualize the shape of the cestrialus. In the following, each step is

discussed in more detail.

4.3.2 Sulcal similarity measure

The ICP algorithm is applied for calculating thetdnce or similarity of two sulci. Many
variants of the classical ICP algorithm existsehée simple rigid alignment is used for
the estimation of similarity. This choice is madece the simple alignment is estimated
to capture the most prominent variation of two ferf@ased on the fact that little prior
knowledge is known in terms of how the forms of tlve sulci involved would vary, a

rigid alignment for this preliminary study is deesm@ost appropriate.

Using the ICP algorithm, a distance matrix is atedi The dimension of this matrix is
twice the number of subjects in the dataset, stk the left hemisphere and the flipped
right hemisphere are used. For each subject, #rersl numbers specifying its distance

to the N sulci in the dataset.

The resulting distance matrix is not symmetricddisTmatrix needs to be processed to be
made symmetrical for further analysis. Some sinaplgroaches to obtain a symmetrical
distance matrix experimented are: take the sutheoflistance from A to B and the

distance from B to A; take the maximum of the dis&s A to B and B to A; or take the
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minimum of the distances A to B and B to A. Thegpraaches provide different

information and will be explored in the following&ions.

4.3.3 Dimension reduction with I somap

Isomap is a powerful algorithm for the analysihigh-dimensional datasets (refer to
Chapter Three for detail). Here, the algorithmgedito reduce the dimension for further
analysis and visualization. In the Isomap algorithmo parameters need to be specified:
the dimension and the neighbourhood size. In tloikwthe final Isomap-reduced
similarity matrices of dimension one are used fatistical analysis. The dimension two

distance matrices are also obtained for visualdaspn in terms of the forms.

4.3.4 Visualization of the forms using weighted SPAM

We would like to have a reliable method to studyfibiding variability as well. In this
study, we chose to explore further the informatiaden in the Isomap reduced lower
dimension representation. When the dimension isaed to one or two, the folds can be
easily ordered and visualized. Visual inspectioimigortant in this type of exploratory
analysis to ensure the quality of the algorithnr. &ample, using Isomap with data
dimension reduction to one, each sulcus is repteddyy one number. Usually, moving
from one extreme to the other of the axis, theesponding shape of the individual
sulcus is changed gradually. Visual inspectionavide important information

regarding this gradual change of form.

To ensure that the hypothesis in terms of sulcabpshbased on visual inspection is
objective, we developed a technique highlightirgygpecific shape variability underlying
this feature of the axis. For this purpose, we tethfhe classical Statistical Probability

Anatomical Map (SPAM) strategy consisting in avanggmages after alignment (Evans
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and D.L.Collins, 1997). Several averaged sulcilmaicomputed at regularly spaced
intervals along the Isomap axis, we call the sgpatbe weighted SPAM. For any specific
location, the closer a sulcus is to this locatitbe, more its shape contributes to the
average image. The weight of this contributionda# an exponential decay relative to
the square of the distance to the location. Hezaeh) average image provides a good

representation of the shape of the sulci arounddnesponding location in the axis.

The technique of weighted SPAM can be used to limiane dimensional as well as
two dimensional similarities. In the first dimensjonore prominent characteristics in
terms of the folds are expected. While in the sdanrhigher dimensions, progressively
more details are expected. In a comprehensiveigésarof the folds, different
dimensions are expected to reveal different infaimna The sulcal forms obtained using
weighted SPAM are summarized in the section below.

4.4 Results

The results are presented in six different sectiSestion one presents the distance
matrix representation; section two presents thkeoelection process and results;
section three presents the algorithmic parametectsen results; section four presents
the analysis of individual sulcal forms; sectiovefpresents the analysis and visualization
of statistically summarized sulcal forms; sectionc®ncludes with the results of

statistical analysis.

4.4.1 Distance matrix composition

Two approaches of composing the distance matroudsed in the method section are
compared: the minimum distance and the maximunawiigt The resulting distributions

of the original distance matrix for the two approes are shown iRig 4.3A
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Fig 4.3 Data distribution before and after outlierremoval and correction

A: First row: the minimum distance before (left) amfter (right) outlier removal. Subjects "Ls2295ida
"flip-Rs1351" are considered as outliers. Secomtt the maximum distance before (left) and aftegh()
outlier removal. PCA is used for plotting the saepbints. Subjects "Ls2295", "flip-Rs1351" and pfli
Rs1573" are considered as outliers.

B: From left to right: Ls2295 before correction; after correction; Rs1351

It is difficult to judge from the PCA distributiowhich method is better. It is likely that
these approaches provide different information réigg the similarities among the sulci.
Minimum distance contains less outlier comparethéomaximum distance approach.
This is likely due to the fact that there are frexgtly branches and even interruptions on
the central sulcus. The minimum difference apprazhin a sense overlook these
details and match the main form. The maximum apgrpan the other hand, would
emphasize these differences. The minimum appraaghdd in further analysis in this

study, to focus on the study of the main shapefice of the central sulcus.

4.4.2 Qutlier selection

It is important to remove outliers once the siniifamatrix is constructed, before Isomap

analysis is carried out. The presence of outlieghtrskew the final result, since this
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method is sensitive to noise. Outlier subjectssetected by choosing sample points that
are outside the three times the standard deviatioge, from the average distance to the
whole set. The distribution of the dataset afterdhtliers are removed is displayedrig
4.3A. The distributions are more homogenous afterengwal of the outliers. The
shapes of the outliers are verified to ensure@dnd PCA combined method of
identifying outliers is effective, which are dispél inFig 4.3B. In the final analysis, the

minimum distance is used, subjects Ls2295 is ctedeand Rs1351 removed as outlier.

4.4.3 The choice of K

Here dimension one is used for preliminary studyasual comparison of results. The
neighbourhood size k is chosen to be 7 and 14 #sdf@he whole datasets One and the
combination of One and Two. The effect of k onfihal statistics is discussed in section
4.4.6.5.

4.4.4 Resultsin terms of the position of the hand knob

The forms of all central sulci from dataset One @na (refer toTable 4.1) are
presented iffrig 4.4, using the axis specified by Isomap. Note théhatwo extremities,
interrupted sulci are found. At the left extrentitye interruption is more ventrally
located, while at the right extremity it is morersilly located. Three parallel lines are
drawn to aid in visualization. Around the middledi it can be observed that the hand
knob has a tendency to move dorsally from thetéethe right of the Isomap axis. This
tendency is further clarified using weighted SPAM.

Results are obtained using only Dataset One andaimbination of Dataset One and
Two are investigated. In both cases, the real suldithe weighted SPAMs are shown

(seeFig 4.5andFig 4.6). The gradual change in shape from one extrentigetother



101
along the axis can be clearly seen in both caseswkighted SPAM helps in the
visualization of the location of the knob. The h&mdb moves up while a lower knob
appears, moving from the left to the right of tikesaNotice that in the case of the
combination of dataset&ig 4.6), the right extreme of the Isomap axis is moreytaied,
which provides a smoother form transition in telwhthe SPAM visualization. The
characteristic of the location of the hand knob mgwpwards from the left to the right
of the axis is consistent. Moreover, as the harabknoves up, a ventral second knob

becomes more evident as well.

Fig 4.4The central sulci aligned along the Isomap axis

The two datasets are mixed to generate the IsoRiaphere is the central sulci of all subjects gldine
axis defined by Isomap in one dimension. The twtresxity sulci are highlighted in red and green
respectively. The red sulcus is depicted at top itefanother orientation. The red sulcus has araknt
interruption, the green sulci has a dorsal interoup

The exact functional role of the lower knob is uakm. Further investigation is needed
also to investigate the correlation between thetipas of the upper and the lower knob.
Dataset Two contains mostly right-handers; it cambserved that the right extreme of
the Isomap axis is more populated in the presehttesodataset. It is likely that the right-
handers exhibit a more double-knob configuratioith whe first knob pushed more
upwards, and the second knob becomes more promifteatresults presented on the

next section when the handedness groups are stseliagately would reveal more detail.
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Fig 4.5 Hand knob position moving dorsally from lef to right along the Isomap axis

(Top) First, all the sulci were aligned to a templatéegs in order to obtain similar orientations asrtse
whole set. Then each sulcus was translated aloagatitero-posterior brain axis proportionally to its
Isomap coordinate. Note the outlier sulcus locaedhe extreme left of the axis corresponding to an
atypical interrupted central sulcus (this sulcuals presented from a different viewpoint belowrtake
this clearer). I{ower) Local averages of the central sulci were computetegularly spaced positions to
clarify shape variability coded on the Isomap axis.

U

Fig 4.6Hand knob position of Dataset One combined with Datset Two

Analogous to Fig 4.5, the combination of datasee@nd Two are used instead. Note that a second
interrupted sulcus has been pushed to the extrigimieof the axis.

4.4.5 Resultsin terms of hemispheric asymmetry and handedness

The sulci of different groups are then plot sepdyarefer toFig 4.7. Dataset One is
analyzed, the sulci of different handedness graupthe two hemispheres are plot along
the Isomap axis. The shift in sulcal shape from leerisphere to another for each
handedness group can be compared easily. The SP&M median of the form of

different handedness groups on the two hemisplagesglot also, which aid in
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summarizing the characteristic shape of each sabpgfig 4.7, last row). InFig 4.8 the

same information is plot on the combination of dataDne and Two.

It can be observed that the SPAM of the right hphmese has a more characteristic single
knob, while the left hemisphere has a more doub@blcharacteristic. The median shape
of the dominant hemisphere for hand (right hemispar left-handers and left
hemisphere for right-handers) are more differentragrthe three groups, and the median
shape located more away from the centre of thedgpoais. This can be more easily
observed on the SPAM images when the median sludE$erent subgroups are plot

on the same axeBi@ 4.7, last row). The right central sulcus of the ledtrlders (cyan) is
located more towards the left extremity of the Iapraxis, the left central sulcus (green)
of the right-handers is more towards the rightemxity of the axis. The left central sulcus
of the left-handers (red) and the right centratgsilof the right-handers (purple) cannot
be distinguished by their median shape, noticedhahe SPAM summaries Bfg 4.7
andFig 4.8 these two forms are at the same location, towtelsniddle of the axis.
When the hand converters are concerned, it cafseneed that their right central sulcus
(dark blue) is shifted to be towards the centréhefaxis, the median form quite similar to
the right-handers (purple) on the right hemisph&he left central sulcus of the
converters (orange), on the other hand, is moffeeghiowards the right extreme of the
axis, where the average from of the left centridumiof the right-handers (green) is

located.

It is interesting to observe that the average fofitthe non-dominant central sulcus
(purple, red) tend to be located towards the cesfttbe Isomap axis; the dominant ones
(green, cyan) tend to be shifted towards the extiesnHowever, depending on
handedness or hemisphere, the direction in shafiesshot the same. For the right-
handers on the left hemisphere (green), the shiiwards the right, where a
characteristic “double knob” configuration is obsst, as discussed in the previous
section. For the left-handers on the right hemispkeyan), the shift is towards the left of

the axis where the “single knob” configuration served. Considering the hand
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converters, their left central sulcus is moved aWwasn the centre towards the right of the
axis (to be more like the right-handers); theihtigentral sulcus is more like that of the
right-handers as well. This shows the evidence“okatral zone” towards the centre of
the Isomap axis, which represents a “neutral foiidre use of the dominant hand
(either due to genetics or environment or bothyass a shift away from this “neutral

shape”. More on this observation will be explonedhe discussion.

Another observation is that the spread of the $tbemns are different for the dominant
and non-dominant hemispheres. Consider the righdidrs, the form of the right central
sulcus (purple) is more evenly spread over the &oaxis, while the left central sulcus
(green) is found more dense towards the right ®ftkis. For the left-handers, the form
distribution of the dominant hemisphere (cyan)aager towards the left of the axis,
compared to the non-dominant hemisphere (red). Suwttift in density cannot be clearly
observed in the case of the hand converters.

Left hemisphere Right hemisphere

ey S
/77 4

Forced dextrals

Median shapes
Fig 4.7 Population localization along the Isomap axis
Fig 4.5 is plotted as a transparent backgrounde W fact that the forced dextral group is doubéesize
of the natural handedness groumsver: Local average sulcus computed for the median logati each
population. Colour code: Cyan: left-handed, rigbimisphere; Blue: converters, right hemisphere; lBurp

right-handed, right hemisphere; Red: left-handedt, hemisphere; Yellow: converters, left hemisphere
Green: right-handed, left hemisphere
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Fig 4.8 Population localization along the Isomap axis for dtaset One and Two
combined

The additional database charts include right-hanaled left-handed subjects, which are colour-coded
correspondingly. Colour code: Cyan: left-handedhtrihemisphere; Blue: converters, right hemisphere;
Purple: right-handed, right hemisphere; Red: leftded, left hemisphere; Yellow: converters, left
hemisphere; Green: right-handed, left hemisphere

The SPAMSs of the Isomap of dimension two are showiig 4.9, It can be observed that
in the dimension from left to right, the same tremxdsts as that of the 1D Isomap.
Concerning the other dimension from top to bottarmgther trend can be implied. The
hand knob is changed from smaller to be more prantjrwhile the position of it remains
the same, and not sliding up or down. Another gging observation is that while the
hand knob becomes more profound, the sulci forbec®ming more flat, especially

regarding the two extremities of the form.
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Fig 4.9The 2D weighted SPAM

A: the 2D weighted SPAMB: The first three rows and columns correspond ®® wleighted SPAM at
different coordinates as i, the fourth row and the fourth column correspomdhie first three rows and
columns merged together for easy comparison.

4.4.6 Statistical analysis

4.4.6.1The difference of the three groups

Statistical analyses are carried out to study tfierdnce of the three groups, the left-
handers, the right-handers and the hand convetigo&ing at the left hemisphere, it is
discovered that the shape of the central sulcusigndficantly different between the left-
handers and the right-handers (p=0.002). The hghders, compared to the left-handers,
have a more prominent “two-knob” structure, witke trand-knob shifting upwards and
the lower knob more profound. The “two-knob” coniigtion might reflect the fact that
the left hemisphere is the dominant hemispherédtin language and hand for the right-
handers. The converters have the shape patteististdly similar to the left-handers
(p=0.22), and statistically different from the rigtanders (p=0.02).

On the right hemisphere, it is discovered thatstiegpe of the central sulcus is not
significantly different for the left-handers anethght-handers, even though the
tendency exist (p=0.15). However, there also isang tendency for the converters to be
different from the left-handers (p=0.06), makingrthvery similar to the right-handers
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(p=0.56). Refer td-ig 4.10for a comparison of the sulcal forms of the thgemups on

the two hemispheres.

The asymmetry index of the form is simply calculbas (r-1). The right-handers are
found to be asymmetrical in form (p=0.0002). Thawaters are found to be

asymmetrical in form (p=0.03). The left-handers@moeasymmetrical.

group vs form

i I colorCode
— | | | F-RHnghtHam

E-LHrightHem
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p=l e | C-RHleftHam
S . | | B B-CHisftHem

— | A-LHlefiHem

colonCode

Fig 4.10The analysis of form of the central sulcus of thehree groups on the two
hemispheres

The box plot of sulcal form of the three handedrgssips on the two hemispheres. The colour-coding i
the same as Fig 4.famely: Cyan: left-handed, right hemisphere; Blue: convsrteight hemisphere;
Purple: right-handed, right hemisphere; Red: leftded, left hemisphere; Yellow: converters, left
hemisphere; Green: right-handed, left hemisphere

4.4.6.2The correlation of various measures to shape

The correlation of sulcal form with various measusach as the length, the surface area,
the depth and the thickness of the central sulcstadied. The thickness here refers to
thickness of the cortical mantle on both sideshefdulcus. The form is found to be not
correlated to surface, depth and thickness on lethispheres. The length is found to be

correlated to form (p=0.05) on the left hemisphéerd,not correlated on the right
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hemisphere. This correlation on the left hemispleenticipated since the right-handers

are known to have a longer and larger left cersusdus.

It is verified that the algorithm indeed capturednéque shape characteristic, not a by-

product of other parameters such as the lengtheosurface area.

4.4.6.3Handedness correlates in length

The stability of left central sulcus shape of catees contrasts with the flipped
asymmetry of surface area observed in the prestudy with the same population
(Kloppel S et al., 2010). To complement Kloppehktstudy, we similarly tested
handedness correlates for central sulcus lengtldepth asymmetries and found no
effect with depth (we used the index (2*(r-1)/(ntIHowever, the length asymmetry
indices replicated the surface area flipped effEloe length asymmetry index
distributions of the natural handedness populatavadifferent (p=0.002), confirming a
previous study (Mangin JF et al., 2004). The lengthces of forced and natural right-
handers cannot be distinguished (p>0.5) howevevarters differ significantly from left-
handers (Wilcoxon, n=31/16, p=0.02). In order ttagbgreater insight, we also tested
whether the absolute length of the central sulsulfierent between populations after
affine spatial normalization into a standardisedl&irach) space. The only differences in
length found were in the left hemisphere in the taturally handed populations
(p=0.01), and also on the left, between convedadslefthanders (p=0.06). Natural left-
handers have a shorter left hemispheric sulcussifjfoficant differences were found in

terms of absolute sulcal surface area or depth.

4.4.6.4The influence of family history

Additional information regarding family history bindedness for the hand converters is

provided. The analysis of the influence of familgtbry on the shape of the central
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sulcus is carried out. Compared to the right-hesda the left hemisphere, converters
without family history (p=0.08) are less differehan converters with family history
(p=0.01) in sulcal form. It is also found that #mymmetry index is stronger (p=0.05) for
converters without family history than those wigmiily history (p=0.9).

On the left hemisphere the converters with famistdry (median:-1.8) tend to be more
similar to left-handers (median:-0.06). The med&nonverters without family history is
1.7, the median of right-handers is at 4.35 re$palgt The corresponding medians on
the right hemisphere are as follows: -2.83 for-kefhders, -1.4 for converters with family
history, -0.8 for converters without family histpgnd -0.47 for right-handers4ble

4.2).

leftHem/rightHem | median Difterence to other Difterence within Asymmetry
groups (pVal) group (pVal) index

lefthanded | righthanded | lustory | noHistory | mean | pVal

lustory -1.8/-1.4 | 0.8/03 0.01/0.7 2 0.2/0.7 -0.3 09

noHistory 1.7/-0.8 | 0.2/0.1 0.08/0.7 0.2/0.7 -- -28 0.05

Table 4.2Statistics of converter with or without history

4.4.6.5Data distribution and parameter selection

The distribution pattern of the dataset is studtedecide the statistical tests to use. This
provides an opportunity to observe the behavioyrasmeter selection related to
statistical results. The distribution of the dat@eviated from Gaussian (Kolmogorov-

Smirnov test, p=0.66), the Wilcoxon test resultsexeonsequently used for analysis.

The effect of varying the neighbourhood parametés &plored (K =4, 5, 6, 7, 8, 9, 10,
15, 20, 25, 30, 35). The goal is to study the behawof the Isomap using various

neighbourhood sizes. It is also important as digation of the impact of neighbourhood
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size on the resulting p-values. Does changing éighibourhood size affect the resulting
p-value on the difference of form among the handsedmroups? To what extent is this
variation?

The resulting p-values using various neighbourhsines are displayed graphically in
Fig 4.11 For these experiments, the dataset with the wleteéOne is used. Both the
classical multidimensional scaling (CMDS) and tbenhetric MDS (isoMDS) methods
are used; the statistical results of running th&ed¥ion test are shown. The groups
studied are the left-handers and right-handersereft and right hemisphere.

The results show that varying the neighbourhooe B&s little impact on the conclusion
for the tests that are already statistically défar For the difference on form between the
right-handers and left-handers on the left hemisptbe p-value remains significant
with various neighbourhood sizes, with the minimaround k=7. For the difference on
form between the right-handers and left-handerthemight hemisphere, the p-value
remains not significant with various neighbourheatkes. The isoMDS and CMDS
approach produce similar trends in variation ofgues. The isoMDS approach,

however, provides lower p-values in general.

Comparing effect of k on pval
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Figure 4.11 Neighbourhood size and p-value

The lines present the evolution of p-value whileyireg the neighbourhood size k. The red and vilihets
present the Isomap using classical and isometricSM@ dimension reduction, both on the difference
between the form of left-handers and right-handerthe left hemisphere. The green and cyan linesent
the Isomap using classical and isometric MDS fometision reduction, both on the difference betwéen t
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form of left-handers and right-handers on the riggrisphere. The minimum for the violet and thelireel
are both at k=8.

4.4.6.6Influence of data composition on the results

The central sulcus of the left-handers, the riginiders and the hand converters are
expected to be not completely identical. The pdaagaof each group in the dataset
could have an impact on the resulting Isomap rediggailarity measures. When the
majority of subjects in the dataset are from orwgr the Isomap may focus on the
difference within the group. Some experiments a&régomed to better understand the
behaviour of Isomap with different percentage ghtihanders in the whole dataset. The
two original datasetsTable 4.1) are mixed (Refer tdable 4.3)for the study of the
impact of data composition on the statistical ressul

Dataset Total # subjects # left-handed + | # right-handed % right-handed
converters

Whole Set 1 66 47 19 29%

Setl + half of Set2 97 Estimated 49 Estimated 48 timased 50%

Set 1 + whole Set 2| 128 53 75 58%

Table 4.3Handedness Information of Mixing the Two Datasets

Row 1 and 3: the dataset One and the combinatisebOne and Two. Row 2: the new experimental
dataset with more right-handers added to incrdaséotal percentage of right-handers

The three datasets form interesting samples witardint percentage of left-handers in
the set. It is likely that when there are equal am®f left-handers and right-handers in
the dataset, the Isomap can capture the mostefiiterbetween these two groups. When
one of the handedness groups outnumbers the atkethe focus could be partly shifted
to the difference within the majority handednessugr To further investigate, statistics is
done on comparing the form of the central sulcubeflefthanders and the right-handers
on the left hemisphere, where known significantedénce is found between these two
groups. The resulting p-value could be an indicatibthe focus of Isomap on

differentiating the forms of different handednessups. It can be observed that the p-
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value is the most significant (0.0009) for setl borad with set 2, where there are
roughly equal amount of left-handers and right-femadWhen the percentage of the
right-handers increased to 58%, the p-value ineskalghtly (0.006). When the
percentage of right-handers is 30%, the p-val@e(82.

This experiment confirms the influence of data cosifon on the results. Choosing a
balanced dataset with equal amount of the subjexts different groups could give more

focus on discovering the differences among thegsou

4 .5 Discussion

The discussion is divided into three sections du#é interdisciplinary nature of the
work. The first section focuses on the insightsigdion handedness and cortical
development, in the second section some computatsod algorithmic issues are

discussed, the third section concludes by discgshim future directions.

4.5.1 Insightsin Neuroscience

The intriguing neuroscience issue we tried to itigage here is: if and how are the hand
converters changed following the hand conversigreggnce? Cortical folding is used as
a vehicle to study these questions; in particiiarstudy focuses on the central sulcus
due to its functional regional specificity. Cam tavent of switching hands leave a trace
on gross brain anatomy? Twin study reveals thatevthe variability in tertiary folds is
mainly due to environmental factors, primary fotdgh as the central sulcus are
determined more genetically (Lohmann et al., 19Bf)eed, gyrification (cortical

folding) is a rather stable property suitable fomparisons across long time spans
(Francis et al., 2006). Such study may providenterinsights on brain development. Are
certain anatomical traits more responsive to le@hiHow normal development can be
affected by early intensive learning? Regardiragrbasymmetry, do the two
hemispheres react differently facing the same Iagrexperience?
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Regarding the effect of handedness on the anatdnfme @entral sulcus, some
differences are revealed in terms of the surfacktla@ depth of the central sulcus, where
the central sulcus is found to be bigger on theidant hemisphere (Amunts et al., 1996;
Csernansky et al., 2008; Mangin et al., 2004a; ¥vbital., 1994), Other studies found no
difference in terms of depth (White et al., 199@)the study of the depth, it should be
kept in mind that an observer-independent deptrsareaneeds to be used such as in the
work of Cykowski et al (Cykowski et al., 2008). Whthe depth is estimated based on
the measures directly from the 2D slices, this mesasould become arbitrary since the

depth depends on the direction of the tissue gicin

In this study, it is revealed that the shape ofciwetral sulcus of the left-handers is
consistently different from the right-handers; ttiference is not affected by later
prolonged training as in the case of convertinghtéued use. A trend of shape change for
the converters can be observed on both hemisphmresych change does not reach
statistical significance. The characteristic shafoe left central sulcus can be described
as a “two-knob” configuration, while the right ceadtsulcus can be described more as a

“one-knob” configuration.

This differential configuration might be due to tlaet that language centre in the human
brain is lateralized. In most of the individualse tanguage is localized to the left
hemisphere. The position of the second knob otémral sulcus may be related to

language lateralization.

Concerning the shape of the central sulcus of tnwerters, the results suggest that
developmental events leave different yet observimtes on the two hemispheres. On
the left-hemisphere, where the central sulcus efigjht-handers and that of the left-
handers are found to be statistically differentqy®62), the shape of the central sulcus of
the converters remains similar to the left-handed different from the right-handers. On

the right-hemisphere, where the central sulcub®fight-handers and that of the left-
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handers are found to be not statistically diffeg@0.15), the shape of the central sulcus
of the converters has a tendency to be differethi@¢deft-handers compared to the right-
handers (p=0.06) This difference is not only imrtgiof the shape change, but also in

terms of the change in the variability of shapéhimithe group.

The results reveal interesting insights with respeplasticity. The change of human
brain can be observed at the scale from hoursdmsy&rey matter change can be
observed several days to several months afterstensitraining such as juggling
(Draganski et al., 2004); and central sulcus fadgattern is observed to be flattened
years after amputation (Dettmers et al., 1999). ddrécal folding pattern is an example
of such a more stable trait. The stability of strelits may prove to be useful in the
diagnosis of problems of early abnormal developmierd more general sense, such
traits can be used to study how genetic interattt emvironmental factors such as

learning in shaping our anatomy and behaviour.

The converters were forced to write in school whitéir non-preferred right hand, the
results here show that inborn mechanisms sculpgtibpe of the human central sulcus,
while environmental mechanisms modify only its l#ngn the left hemisphere. Forcing
the conversion of hand use does not modify "hambkiocation along the left central
sulcus, but results in a more right-handed pattésulcus length asymmetry. Thus, the
shape of the central sulcus, once establishedsistant to mechanisms of use-dependent
plasticity during childhood. However, behaviourahstraints during the critical period of
learning to write modify sulcus length. In this sie case the sulcus shape reflects early
developmental mechanisms and the sulcus sizedat@onmental effects.

Characterising normal variation of cortical morpgsgy provides a means of

systematically correlating behaviour with cortidaivelopment.

It can be observed that for both the right-handedsthe left-handers, the distribution of
the sulcal shape is more clustered on their domimamisphere for hand use. The non-

dominant hemisphere exhibits greater spréagl 4.7, 4.§. When the converters are
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concerned, they have a different distribution patemmpared to the left-handers on both
hemispheres. If we assume that the shape of theateulcus on the non-dominant
hemisphere is less influenced by the impact of has&] the shape on the non-dominant
hemisphere could be then considered more ‘in-bam’ less influenced by
environmental variations such as hand use. Fuemetg analysis could be carried out

correlating with the sulcal forms of the non-donminhaemisphere.

The higher variability in sulcal form might be mdie-born”, the hand usage changes
this distribution from more uniform to be more ¢kred. This might explain the
difference of shape distribution observed on the temispheres of the converters. On
both hemispheres, the distribution of form hasnaéacy (not significant) to be shifted
towards the pattern of the right-handeig(4.7, 4.8§. The experience of converting hand
use then is most likely to be a more complex agtiveyond simply change the writing
hand from the left to the right.

Concerning family history, the converters with finfiistory tend to differ more than
those without family history when compared to tight-handers on the left hemisphere.
On the right hemisphere, the converters with famistory tend to be more similar to the
left-handers than those without family historysimmary, the converters with family
history seem to resist the change in the shapeeofeéntral sulcus on both hemispheres.
The results suggest that left-handedness has degvhieh is shown in the degree of
resistance to change of shape. Concerning theaatirandedness, Woo and Pearson
suggested that handedness might be a continuoiablaf\Woo and Pearson, 1927)
instead of a categorical one consisting of leftedwan, right-handers and ambidextrous

individuals. There are also some functional studiggporting this hypothesis.

Concerning the anatomy of the central sulcus,iitteresting that the algorithm placed
two interrupted central sulcus at the left and trigktremities Fig 4.4). Furthermore, the
positions of the interruption are very different.thAe left extreme, the interruption is at

the inferior part of the sulcus; at the right exieg the interruption is at the superior part
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of the sulcus. This change in the position of intption may be related to the change of

the location of the hand knob.

The interruptions are generally very rare, in aldd®tof the cases only (Ono et al.,
1990). The interruption is believed to be caused bpn-operculated deep convolution.
Broca observed that there are three bridges cangebie precentral and the postcentral
gyri (Broca and Pozzi, 1888), and he termed thespthde passage frontopariétal
supérieur (PPFPS), the pli de passage frontopbniétgen (PPFPM) and the pli de
passage frontopariétal inférieur (PPFPI). The PABR&INd at the interhemispheric
fissure, corresponding to the paracentral lobutee PPFPM is described as a bulge into
the central sulcus at the level of the middle kokthe central sulcus. The PPFPI
separates the central sulcus from the Sylvianrssworresponding to the subcentral
gyrus. Cunningham confirmed the observation of Brog describing a deep annectant
gyrus between the pre- and postcentral gyrus.ringases, the PPFPM arises completely
to the cortical surface, cutting the central suliciis two separate parts (Cunningham,
1892).

The PPFPM is functionally linked to the hand knegion, both in hand motor activation
(Boling et al., 1999), and hand sensory functigkikgdhi and Kollias, 2004; Boling et
al., 2008), the functional implication of the PPEless clear. Even though the “classic”
relatively straight lower knee is described (Rademea et al., 2001), Fesl (Fesl et al.,
2003) reports the existence of from two to fouriaddal curves in this region, most
commonly (69%) two additional curves. Boling e{Bwbling et al., 2002) demonstrated
that the tongue sensory area is within the trisangdgion situated at the base of the

postcentral gyrus, superior to the sylvan fissure.

The two cases of interruption observed in thisstmiyht be the result of the lower
(ventral) or upper (dorsal) extremities of theddiPassages Fronto-Pariétal Moyen
(PPFPM) arising to the cortical surface. HistolligalWagner first described such

interruption of the Rolandic fissure in the riglenhisphere, in the brain of a celebrated
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physician (Wagner, 1862). Broca found it in thataof idiot, who was known to suffer
from a large number of severe anomalies” (BrocaRouki, 1888). More recently, a case
of a normal male with PPFPM rising to the surfandtee left hemisphere is studideid
4.12. The PPFPM is found to completely segregate timgry motor (M1) finger from
the M1 elbow representation, the M1 wrist represton was consistently split by the
PPFPM into a medial and lateral activation clugédkadhi and Kollias, 2004). The
interruptions might reveal developmental eventgy(Ret al., 2005), thus being an
important characteristic of the central sulcusems of hemispheric asymmetry and

function.

Fig 4.12 Examples of central sulcus interruptions from (Alkadhi and Kollias, 2004)

The left image: the image of pli de passage frgpetnétal moyen provided by Wagner (Wagner, 186®; t
right image: the image of the two hemispheres ef ghbject studied (Alkadhi and Kollias, 2004). The
connecting gyrus is marked by an arrow; the oppasde is marked by an asterisk.

FromFig 4.4 it can be observed that the positions of the uppd lower extremes of the
hand knob are corresponding to the positions ofwieeinterruptions. However, the hand
knob and the PPFPM may be closely related, espebiated on the fact that functional
studies reveal consistent mapping of hand motoliriBe@t al., 1999) and sensory
(Alkadhi and Kollias, 2004; Boling et al., 2008nfttions to the PPFPM.

Assuming that the cortical folding patterns arated to functionality (the relevance of
cortical folding to functional regions is discussedChapter One), the anatomical

information found in this study could be useful fonctional analysis. For example,
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based on the knowledge that the hand knob coulceratbng the central sulcus, more
precise functional localization of the hand motgion could be possibly achieved by
taking into account the individual location of thend knob.

To conclude, it is confirmed in this study that duaverters are differentially changed
from the left-handers by prolonged training. Onlgfehemisphere, while the
characteristic shape of the left-handers is preskrhe consistent use of the right hand
might be the cause of the elongation of the lefitre sulcus. On the right hemisphere,
however, the impact of the lack of use or changasefof the left hand on the sulcal
shape is much less profound. There is a not saamfibut possible weak change in the
shape of the sulcus towards the “neutral shapé#iehon-dominant hemisphere found at
the middle of the Isomap axis, while the sulcagtbrremains the same. In one sense, the
“more use” of the right hand and the “less usethefleft hand leave different traces on

the left and right hemispheres of the brain.

This is the first time that a behavioural traiassociated with a shape-based mesoscopic
feature of specific cortical folds. The sulcal shamalysis in hand converters shows that
certain developmental processes are stable anéeatesf by mechanisms of late, use-
dependent plasticity. It should be possible tolesta a dictionary of stable and variable
shape-based features associated with each cddidalising the Isomap or similar
technique, to provide a reference for comparisdah tain developmental diseases. A
normal morphometric description at a mesoscopiellewuld then lead to a series of
endophenotypes that could provide stable markensatdevelopment for gene
association studies. Additionally, the corticaldiolg concomitants of local functional
cortical changes associated with environment-degrrtokehavioural variability lend

themselves to much more precise definition witteptal prognostic implications.

4.5.2 Insights on approaches and methods
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Through this analysis, insights are gained on sompertant issues: the choice of the
similarity measure, the outlier identification, ahe percentage of different populations
in the data input.

The choice of the similarity measure influencesrdsailting similarity matrix. In this
analysis, the minimum measure is chosen considénmdifficulty of the reliable

matching of branches in central sulcus. When adcs is calculated, it is desirable that
the main piece of the sulcus is given the priositiijle the details such as branches affect
less the result. It is also observed that the marirmeasure finds more outliers. In the
future studies, the maximum measure can be uskadtoutliers, while the minimum

measure can be used for the discovery of patterns.

It is confirmed in this analysis that ICP distamefficient in identifying outliers in

terms of sulcal shape. The identified outliers barconfirmed by further visual
inspection. When corrections are needed in terne®mdical labelling, the corrections can
be further verified by the updated ICP distancérithistion.

Regarding the influence of the input data compositin the final results, using the
Isomap approach, it is found that when a particpégoulation out-numbers the others,
more details within this population are revealetjlevithe other minor populations would
be given less focus. The term population here earobresponding to handedness groups
such as left-handers and right-handers; it cantssmorresponding to the majority
patterns and the rarer patterns of a given sultisobserved that for comparison
between two populations, the number of subjects feach population affects the results.
When possible, it would be interesting to “zoom-a"a minor population to be able to
explore it in more detail. One limiting factor Isetsize of the input data; the minor

population must reach a certain size for relialaladnalysis.

The weighted SPAM proves to be a very useful tootlie interpretation of the results.

While the statistical tests give quantitative measwf the difference between groups, it
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does not provide visual information on the formsirlg weighted SPAM, the forms can
be perceived directly; the results of statistiest$ can be further verified; visual

interpretations of folding patterns can be cargatimore easily as well.

In this study, the combination of algorithms prot@$®e a powerful tool for the analysis
of 3D sulcal shapes. This approach provides a enigyportunity to analyze the central
sulcus of multiple subjects simultaneously. Inténgscharacteristics difficult to detect
even by human experts can be proposed using thisagh. This is illustrated in the
finding of the new “one-knob” vs. “two-knob” pattes that separates the left from the
right hemisphere. It should be noted that the cedrgm a “one-knob” to a “two-knob”
pattern is gradual, the discussion of patternt®tio hemispheres are based on
statistical probability distributions. For a givedividual, the possibility to have a “two-

knob” configuration on the right hemisphere is extluded.

45.3 Future work

Further cytoarchitectonic studies and the studynaferlying fibre bundles could be
carried out in the future to clarify if and how tgess anatomical changes are related to
the physiological and connectional differencestiemrfunctional MRI studies based on
previous work (Kim et al., 1993) could be desigteturther verify the relation between
the positioning of the hand notch on the 3D fornthef central sulcus. The relation of the
existence of the second notch to language, aritbraatl sensori-motor activities could

be further explored.

The difference in terms of asymmetry between thehl@nders and the right-handers
could be due to both genetic and environmentabfactyoung children might learn to be
right-handed by imitation and living in a right-lted environment, where toys and tools
are designed for the right-handed (Coren, 199@i)d\ysof the central sulci of infants
would shed some light on the importance of latetrenmental factors related to living
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in a “right-handed world”. It would be interestitmgstudy the shape of the central sulci
of infants to understand better when the asymnsténged. The pericentral cortex region
is already well developed at birth (Ono et al.,@9% would be also valuable to study
other species such as the chimpanzees to knove ifyje of asymmetry is unique to
humans.

In addition to the central sulcus, studies candréed out focusing on different parts of
the brain, for example, the language areas, theusarallosum and the Perisylvian region
where interesting results have been found (Jano#léS&einmetz, 2003). Different patient
populations can be compared based on their anattisyyill be of particular interest for

the better understanding of certain pathologies.

The results obtained in this study invite manyneséing further investigations. The
current study uses mainly 1D Isomaps, more dimessian be explored. Observing the
forms of the central sulcus, it can be deduceddbate individuals have a simpler and
smoothestair shape, while others have a maravy shape, there are still others with
more branches than usual. Application of more dsraTs of Isomap, SPAM and
eventually different clustering algorithms couldsait more traits with further biological

or pathological implications.

Finally, this work is an example of what “comput&ion” can contribute to the analysis
of cortical folding patterns. The term “computesion” is used here in the sense that
instead of using the human eye, the computer “eyased to explore the shape space
attempting to understand the difference amongrtteetpopulations. For the human eye,
it is hard to go beyond some relatively simple €hdgscriptors. Manually, solely based
on visual analysis by human experts, these chaistiate are difficult to be detected.
Even when such characteristics are found, theharm to be characterized and to be
analyzed systematically and quantitatively. Moreotere it is demonstrated that
computer algorithms have the power to analyze redsdof brains simultaneously and

infer interesting characteristics without any pidamain-specific knowledge. The same
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task is overwhelming for human, even for experiednoeuroanatomists. This approach
open doors to further collaboration among the domaf neuroanatomy, and

neuroscience in general, with the domains of datargiand computer vision.
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Chapter Five: Sample Dictionary of Folds

5.1 Summary

In this chapter, the example dictionary is presdntesing various approaches and
methods detailed in Chapters Two and Three. Soleeted regions are studied,;
interesting variability patterns found are discuss&he implications and usage of such

dictionary and the potential applications are dissad in Chapter Six.

5.2 Dictionary of patterns

Several regions are chosen for this preliminanyasmaof folding patterns. Namely: the
region of the central sulcus, the region of thegualate sulcus, the region of the superior
temporal sulcus, the Broca’'s area, and the supkdbotal region. Finally, some
combinations of regions are explored. This is dipreary systematic study of folding
patterns, based on computerized automatic analgsisioped in this thesis work. The list
of regions can be expanded in future work. In tilwing, the method used for this
analysis is summarized; the regions and their pettare then introduced.

5.3 Analysis and clustering methods

The approach introduced in Chapters Two and Chajtexe are used in this analysis.
The dataset consists of 62 brains manually labéPedrot et al., 2009a), which serve as
the training base of BrainVISA. The definition bktsulci is illustrated ifrig 5.1 Both
hemispheres are used; the right hemisphere isfilipp match the orientation of the left
hemisphere for analysis. The similarity measureramtbe folds is calculated using the
ICP algorithm. In terms of the distance measuthismanalysis, both the maximum and
the minimum distance are used. As discussed int€h&pur, these two approaches
could reveal different information regarding théd& Combination of Isomap and

IsoMDS is then applied to reduce the dimensiorefdistance matrix to two for



124
clustering analysis using PCBB; the dimensions$®s aéduced to one for visualization
using SPAM. The dimension two is chosen for thsteling analysis in this preliminary
study so that the quality of the clustering rescéts be assessed by visual inspection. We
target the patterns that can be observed visuallyis work. It is reasoned that higher
dimension images might hide details not observeib®D visualization. Future targeted

analysis can further explore the complexity of leiglimensions.

It should be noted that the SPAM images are pratigoeen a threshold, so that the
resulting images do not have holes regarding th&aesulcus, refer to Chapter Four for
detail. When a certain fold does not appear irSBAM image, it could be due to the fact
that the folds are not aligned. For this analysessdame threshold is used for all the
regions analyzed. When a specific sub-region iermthis the SPAM image, it could be
that the sub-region is absent of folds, it coukbahean that the folds are not aligned at
the sub-region. To prevent false interpretatiothefSPAM images, the images of real
sulci corresponding to the sub-region of the SPARNsuld be consulted before drawing

conclusions.
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Fig 5.1 The nomenclature of the sulgiPerrot et al., 2009a)

125

5.4 The region of the central sulcus

The anatomy of the region of the central sulcudissussed in detail in Chapter Four,
where anatomical traits are linked to behaviowvds found that there exist two typical
configurations, the “single knob” and the “doublek” configurations. Furthermore, on
the left hemisphere, the right-handers tend to hlagelouble-knob configuration, while
the left-handers tend to have the single knob gandition. Such form characteristics is
relatively stable and is not changed by later legrevents such as the switching of hand

use in the hand converters.

The definition of the central sulcus in this stugyes the combination of central sulcus
(S.C.) and sylvian central sulcus (S.C. sylvianthia version of the current automatic
naming system of BrainVISA. The interruptions todsthe bottom of the central sulcus
is documented to be rare (around 4%) (Eberstdl&90; Ono et al., 1990). Referkay
5.1for the definitions of these two sulci. Note tkiais image shows the SPAMs used for
the automatic recognition system of BrainVISA, afea using a different approach

compared to the current work (Perrot et al., 2008a)conform to the classical definition
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of the central sulcus, here the continuous piecsesl, including the portion of S.C.
sylvian. The goal is to study the sulcal anatomthefregion and its characteristic
variations. It should be noted that such studygiae further hint to the system of
nomenclature used for automatic recognition. Fangxe, when the definition of the
central sulcus is including two pieces (S.C. ar@.§/lvian), as in the automatic sulcus
recognition model, the SPAM image of thég 5.1) shows two separate pieces. How
often in a given dataset that such interruptiosts®i What is the most typical
configuration of the region of the central sulcti$® results of the current analysis may

provide additional information.

Refer toFig 5.2 the SPAM images are shown, it can be seen teadulti of different
subjects are relatively evenly distributed along isomap axis. The trend of evolution
from the left to the right of the Isomap axis géresn the “single knob” to “double-knob”
configuration as discussed in Chapter Four. Obsheveeal forms at each Isomap
coordinatesKig 5.2 E, G, it can be seen that even though the centralisuéca

relatively stable sulcus, huge variability in fostil exists. Without the aid of the Isomap
organization and the SPAM images, the evolutiothefposition of the hand knob cannot

necessarily be detected.



127

,

iy

9

Fig 5.2 The Isomap of the central sulcus

The position of the central sulcus on the wholérbisaillustrated in the first rowA/C: The isomap of the
central sulcus using maximum/minimum distance. Jiiei are superimposed on the SPAM, according to
their relative positionB/D: The SPAM of the central sulcus using maximum/minin distance. The
forms at the two extremities are coloured blue rabrespectivelye/G: The SPAM using
maximum/minimum distance is plot as a transparaokground; superimposed on top of each SPAM of
sulcus is the real sulcus with its coordinate tbsest to the SPAM coordinate/H: the SPAM ofB/D at

the left (red) and right (blue) extremities of tsemap are superimposed on each other.

The pericentral region is usually stable in morplgt the variability observed is much
lower than in the other regions of the brain. Infsoase of a more homogeneous sulcus,
finding clustering patterns is relatively difficulh the clustering analysis introduced in
Chapter Two using moment invariants, no clustetdccbe found. No clusters could be
found neither using the approach introduced in @raphree. However, the clustering

analysis of Chapter Three is based on analyzingg¢h&al sulcus of the left hemisphere
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alone. Here, when both the left and the right @stilci are included, some clusters

could finally be revealed.

Clusters are found using the minimum distance arpthe maximum distance
approach gives no clusters. The two clusters faradikely representing the typical
forms of the two hemispheresig 5.3). The SPAMs of the clusters are obtained by
weighting on the distance to the centre of theteludt is similar to the method of
obtaining the 1D SPAMSs, except that 2D data aré.uBke final result is plot at the
cluster center in the 1D SPAM for visualization eTied cluster has a more characteristic
single knob configuration, while the black cludtass a more characteristic double knob
configuration. The relative positions of the hamdlx on the two clusters can be
compared when the two cluster forms are superintposeeach otheiHg 5.3 D). As
discussed in Chapter Four, for the right-handessnf@ated 95% in the dataset used for
this analysis), the left hemisphere has a moregypgdouble-knob” pattern (the black
pattern), and the right hemisphere has a morealfsmngle-knob” pattern (the red
pattern). The plot of the data distribution witle ihformation of the location of the
clusters found conveys further information conaegrthe clustersHig 5.3 B). The black
and the red clusters are located at the two extiesof the distribution. These clusters
are not very strong, the black cluster is foundniyadlue to the low probability of finding
a group of subjects relatively similar and notre tentre of the distribution. Keep in
mind that the PCBB algorithm aims at detectingrdgtons where the distribution is

unlikely dense.

A B
Fig 5.3 The clusters of the central sulcus

A: The locations of the clusters found are indicatiedhg the Isomap axiB.: The locations of the clusters
are plot on the distribution of the whole data€etthe real sulcal shapes of the subject at theeafthe
clusters are plot, superimposed with the SPAM foas#A. D: the SPAM forms are superimposed for

easier comparison.
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The SPAM of the central sulcus of the whole dataaatbe generated as well (where
each sulcus is given the same weight), which coinfeymation of the most common
form of the sulcus. Refer téig 5.4, the SPAM forms at various locations of the Isomap
can be used for comparison with the average faroar be seen that the average form
(Fig 5.4 A) is in the middle of the form variations (plottransparent). Notice that the
variation of single or double knob can be obsemwhdn the central sulcus is viewed in a
standard angld~{g 5.4 B. When the angle is changed to facilitate the ntzd®n of the
depth Fig 5.4 O, it can be observed that the variation of thetldgpofile is much less

prominent compared to the variability of the cunvas.

As discussed in Chapter Four, there exist thredeppassage through the central sulcus,
the pli de passage frontopariétal superior, moyehiaferior (Broca and Pozzi, 1888).
The superior and inferior genoux of the centratgsilis likely corresponding to the
superior and inferior frontal sulci (Dejerine, 139Burther detailed studies need to be
carried out relating the pli de passage and thgipo®f the hand knob. If the shallowest
point in the depth profile is corresponding to BRfeFPM (Broca and Pozzi, 1888), it is
likely that the PPFPM and the position of the hiandb are two separate features of the
central sulcus. While it is observed here thatttwed knob position can move up and
down along the central sulcus, the position ofpthhée passage frontopariétal moyen
(PPFPM) is supposed to be very stable (White g@02). The PPFPM is thus likely
corresponding to the very stable bottom of the Harab, while towards the top of the
central sulcus the variability increases, thisafaitity manifests in terms of the position
of the hand knob observed towards the surface.i$hisagreement with the sulcal roots
theory of the more primitive and more stable bottmfroots” of the sulci. The
variability in terms of the shape or curvature tloa other hand, conveys additional
information on the accumulative genetic and envitental influence during

development till adulthood.
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A B

Fig 5.4 The SPAM of the whole dataset
A: The SPAM of the whole dataset is plBt.the forms along the Isomap axis are plot as prarent,

superimposed on the whole dataset SPAM &s i@: as in B with a different angle

As the analysis carried out in Chapter Four, thengoof the left and the right
hemispheres can be plot. RefefFig 5.5 the left hemisphere is plot in green, and the
right hemisphere plot in red. It is confirmed tttee left hemisphere has a tendency
towards the right extreme of the Isomap axis, wihikeright hemisphere exhibit the

tendency towards the left extreme of the Isomap.axi

Fig 5.5 The comparison of the two hemispheres of éhcentral sulcus

A: the central sulci of the left hemisphd&ethe central sulci of the right hemisphere

Since the precentral gyrus is the functional moggion, the patterns of the combination
of the central sulcus and the precentral sulcustaiied next. This could reveal the

pattern of the precentral gyrus, as well as theatwiariability of the precentral region.
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Fig 5.6 The SPAM and fold distribution of the precatral gyrus

A/C: The isomap of the precentral gyrus using maxinmimmMmum distance. The sulci are superimposed
on the SPAM, according to their relative positioNstice that at the two extremities there are mesh
sulci compared to the centi®/D: The SPAM of the precentral gyrus using maximumimum distance.
The forms at the two extremities are coloured lalné red respectivelfe/F: the highlighted SPAMs at the

extremes oB/D are superimposed

The analysis using both the maximum and the minirdigtances provide consistent
results. The SPAM images along the Isomap axipa@uced. Refer tbig 5.6 B
(maximum distance used), in terms of the form efghecentral sulcus, from left to right
of the axis, the intermediate precentral sulcusigha orientation from more parallel to
more perpendicular with respect to the centralimilSuch change in orientation
observed might be related to the underlying archite and the orientation of the fibre
bundles. It is also important to notice the disttibn of sulcal forms along the Isomap
axis. The majority of the forms are located fromfthurth to the seventh of the

coordinates, while the forms towards the two exitieshare rarer.
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The trend described is less obvious using the mimrdistanceRig 5.6D). While the
trend of the intermediate precentral sulcus is@vigthat of the superior region is not.
Notice the trend of single to double knob obsemedhe central sulcus cannot be
deduced here. The strength and orientation ofrtteemediate precentral sulcus appear to
be a dominating feature when the region is concerne

To investigate the sulcal shape in more detailyiddal folds along the Isomap axis can
be studied. Refer tbig 5.7, when the sulci located at the coordinates ofSRAM are

plot, more details of the shape evolution can bdist. Based on individual variations, it
can be confirmed that the intermediate precentilalis changes orientation from the left
to the right of the axis. The superior region a&f firecentral sulcus is more variable in
terms of shape and interruptions, which is hardéret captured by Isomap of 1D.
Nonetheless, from left to right of the axis, theesior portion of the precentral sulcus is
not only more continuous but also more profountheavier” using maximum distance
(Fig 5.7 A). This evolution of the trait of the superior peatral sulcus is confirmed

related to the change of position and orientatioi® intermediate precentral sulcus.

fr‘*fjfffiﬁj %};q "”/g{(
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Fig 5.7 The SPAM of the precentral region with thecorresponding sulcal forms
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A/C: The SPAM using maximum/minimum distance is pbgaransparent background, superimposed on
top of each SPAM of sulcus is the real sulcus W#ltoordinate the closest to the SPAM coordinatB.

The SPAM using maximum/minimum distance, plot Herecomparison.

Clustering is carried out on the maximum and mimmhased distance. The results are
illustrated inFig 5.8 Two clusters are found using the minimum distaacel two
different clusters are found using the maximumagtise. The black cluster is stronger
than the red cluster statistically, i.e. it is mbkely that the black group forms a cluster
compared with the red group. Overall, the trendr@nge of orientation of the

intermediate precentral sulcus can be observed.

Iy 4 B:‘F C?j? , ?f/
W

Fig 5.8 The clusters of the precentral gyrus

A/E: The locations of the clusters found are indicati@g the Isomap axis, maximum/minimum distance

I

is usedB/F: the real sulcal shapes of the subject at thee@fthe black cluster iA/E are plot,
superimposed with the SPAM of the black clus®6G: the real sulcal shapes of the subject at theeefit
the red cluster i®VE are plot, superimposed with the SPAM of the restdr.D/H: the SPAM forms of
the clusters i\/E are superimposed for easier comparistn.The locations of the clusters AdE are
plot on the distribution of the whole datadé€fl. : the clusters oB andG/ C andF are superimposed for

comparison.

In Fig 5.9the average form of the precentral region as denisglot, it can be observed
that the inferior portion of the precentral suleaisot as thin as the superior portion. This
indicates a greater variability in the inferior pon of the sulcus. This effect is likely due

to the variability in terms of orientation of th&teérmediate precentral sulcus discussed
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above. When comparing the average form with theagoait the two extremes of the

Isomap Fig 5.9 B), this variability in the orientation becomes mexedent.

Fig 5.9 Global form of the precentral gyrus
A: the average from of the precentral regiBnthe two extremes of the Isomap SPAM forms inaed

blue are superimposed on the average form.

Another interesting direction for pattern analysighe study of asymmetry by comparing
the folding patterns of the two hemispheresFi;m5.1Q the samples from the two
different hemispheres are plot in different colousing minimum and maximum
distances. Ifrig 5.10 D and H the average forms of the two hemispheres are plot
together for comparison. It can be observed thaheneft hemisphere (in green),
compared to the right hemisphere (in red), themnégliate precentral sulcus is more
parallel in orientation to the central sulcus, #melsuperior precentral region is more
likely to be lighter and interrupted. Such asymmetay be related to hemisphere
specific functionalities such as language and haneles. Further investigation taking
into account functional and fibre tracking informatwould be needed to further the

understanding of such interesting anatomical vditigb
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Fig 5.10 The two hemispheres of the precentral gysu

A/E: the SPAM of the precentral region using maximumimim distanceB/F: the sulci of the left
hemisphere are plot in green against a grey baakgrof SPAM using maximum/minimum distance;
C/G: the sulci of the right hemisphere are plot inegragainst a grey background of SPAM using
maximum/minimum distanc&/H: the sulci of both hemispheres are plot agairgges background of

SPAM using maximum/minimum distance.

One of the possible applications of the automatedyais introduced in this work is to
deduce cortical folding models based on foldingalality. The Isomap approach
proposes a possible framework for the organizaticsulci, the clustering results provide
information on the frequent folding patterns obserwhich are unlikely due to chance.
Clinicians and researchers without extensive kndgden anatomy of cortical folding
can gain insights into the folding variability igihg such analysis tools. The folding
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pattern analysis presented in this work provideta#ging point for further understanding

of the folding variability and the underlying caas® such variability.

A

Fig 5.11 The variability model of the precentral rgjion
The green arrow indicates the direction of chatfgeblue and orange squares indicate the regions of
interest, for the observation of change in suledgrns. Three brains are given as examples df/theal

patterns, the brain surface is plot together withdulci to facilitate the localization of the dw€interest.

Fig 5.11presents an example of such folding variabilitydelmf the precentral sulcus.
From the observations of the sulcal patterns atbedsomap axis discussed above, it can
be deduced that when the intermediate precenti@sbecomes more perpendicular to
the central sulcus, the superior portion of theenéral sulcus tends to become more
prominent and continuous. This is an example obeersystematic understanding of
folding variability, beyond a simple categorizatioased on interruptions and
characteristic shapes, such as that introducech Burthermore, since such
understanding is gained through the analysis o$@Bal forms, the depth information is

implicitly included, so it is not solely based amface morphology.
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The main difference between such deduced variglilddel and the development-
related model such as the sulcal roots model isthiapproach aims at summarizing
theoutcomeof the gyrification dynamics, not at deducing trigins of sulcal formation.
Combining these two types of models leads to ingmtrand interesting insights
concerning the folding dynamics. Such variabilitydel is deduced here not as a
definitive hypothesis, but as an example to illatthe possibilities being opened using
systematic analysis of the variability of 3D foldipatterns, where a large number of
subjects can be analyzed simultaneously and autmatiat Such model can be (and is
expected to be) modified based on the number ahdenaf the input data, as well as the

algorithms used for analysis.

5.5 The region of the cingulate sulcus

Switching from the lateral to the medial surfa¢e €Cingulate region is analyzed, which
includes the cingulate sulcus (or callosomargirssiure) and the smaller sulci
surrounding it: the paracingulate sulcus, thealitrbic (or intracingulate) sulcus, the
superior and inferior rostral sulcus. The focusnainy anatomical and functional studies
is on the cingulate and paracingulate sulci; hieeenthole region is studied, in the hope
of finding not only the patterns concerning thegailate and paracingulate structure
alone, but also how the surrounding smaller sulenge with respect to the cingulate

sulcus.

The cingulate sulcus is a primary sulcus thatésent in both hemispheres in normal
subjects. It appears around 16-19 weeks of gestétiori, 2006), together with the
parieto-occipital and the calcarine sulcus, betbesappearance of the central sulcus.
Historically, the study of the sulcal pattern o ttingulate sulcus (CinS) is carried out by
the early anatomists such as Eberstaller (Ebezstdf890). The caudal end of the CinS
(the marginal ramus) is located just behind theiadgubrtion of the central sulcuFif

5.12. The CinS follows the corpus callosum; at theéredsend the fusion with the

superior rostral sulcus (SRS) is possible. Thigfusvith the SRS could occur rostral or
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ventral to the cingulate sulcus (Paus, 1996). tapion is one of the important features
of the CinS. According to Ono’s atlas, around 6(%he instances of this sulcus have no
interruption, around 24% have two segments witlbstgyior interruption or an anterior
interruption, and around 16% are divided into thsegments (Ono et al., 1990). One or
two branches could be extended from the CinS, datdaranch right after the marginal
ramus and a rostral branch. Tertiary sulci can lésobserved: the paracingulate sulcus
(PCS) and the intralimbic sulcus. The PCS occuB9u60% of the individuals, while the
occurrence of the intralimbic sulcus is very r&®(on the right side and 4% on the left
side) (Paus, 1996).

Fig 5.12 The cingulate sulcus and the surroundinguhctional organizations
A: the traditional nomenclature of the cingulateé@adGrey’s AnatomyB/C: examples of the regional

sulci used in this analysis (the combination ofjcilate, paracingulate, rostral and intralimbic ss)c

In terms of the left-right asymmetry, the left CirsSound to have interruptions less
frequently than the right CinS. The left CinS hawér branches as well. Concerning the
paracingulate sulcus, it is found to be presenenmfi@quently in the left hemisphere in
the work of Paus (Paus, 1996). This asymmetrysis pfesented in Weinberg (1905), but
it is not observed in Ono. The cases of prominadtabsent PCS are found to be more

frequent in females (Paus, 1996).

The more developed PCS in the left hemispherepstimgsized to be related to language
lateralization, the left paracingulate cortex if\ated in fMRI studies of word

generation in humans (Paus, 1996). More recenysitithe anterior cingulate and the
paracingulate region shows that the PCS morphdkgglated to executive functions
(Fornito, 2004). It is found that a leftward asymmecompared with rightward

asymmetric patterns, is related to both verbalspatial task engaging executive
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cognitive processes. It is thus possible thateftevrd PCS asymmetry represents an
efficient configuration for executive cognitive jgesses. This leftward asymmetry is less
frequent in neuropsychiatric populations (Fornitale 2008) and early-onset male with
schizophrenia (Provost and al, 2003). These intiagestudies revealed that the
anatomical variations of the cingulate region atated to functional variations. The
accurate mapping of function to this region isljkgependent on the accurate
description of the underlying anatomical variapilit

Fig 5.12illustrates the traditional nomenclature of thgioa, two examples of the
definition of the sulci included in this analysssgiven. Refer té-ig 5.13for the

summary of the shape analysis at the cingulatemegising maximum and minimum
distance measures, different SPAM images are adfaiDespite local differences, the
overall shape evolution is similar. At one extretie, paracingulate structure is much
more prominent than at the other extreme. Moreagethe paracingulate structure
becomes more prominent, the anterior and rostgibmeof the cingulate is becoming
heavier as well, this is more evident regardingnfaimum distanceHg 5.13 B, B. As
the paracingulate structure becomes heavier, ttegianand rostral cingulate structure is
pushed more towards the corpus callosum as well.

Fig 5.13 The Isomap of the cingulate region
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A/C: The SPAM of the cingulate region using maximunmimium distance. The sulci are superimposed on
the SPAM, according to their relative positionstide that at the two extremities there are much sesci
compared with the centrB/D: The SPAM of the cingulate region using maximunmimium distance. The
forms at the two extremities are coloured blue @abrespectivelyE/F: The two extremities of B/D are

superimposed for easier comparison.

For a better understanding of the actual sulcghehat various positions on the Isomap
axis, refer td=ig 5.14 From the top to the bottom of the axis, the ettoh from more to
less prominent paracingulate structure can be goafl. The correlation between the
more prominent paracingulate structure and the mpaminent anterior and rostral
structure can be observed as well. The changembauand position of interruptions of
the cingulate sulcus cannot be reliably observed.ighe main trend captured here
appears to be the relative “heaviness” betweegitigulate and paracingulate sulci.
When the paracingulate is very prominent, the detgusulcus becomes weaker. When
the paracingulate sulcus is missing or consistirggall vertical pieces, the cingulate
sulcus becomes heavier. As the paracingulate gteigets more prominent (regardless
of orientation and continuity), the presence ofgbperior and the inferior rostral sulcus
becomes more likely, the cingulate sulcus or tistrabsulcus appear to be more
advanced towards the parolfactory area as well.
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Fig 5.14 The SPAM of the cingulate region with theorresponding sulcal forms

A/B: The SPAM using maximum/minimum distance is plaaransparent background, superimposed on
top of each SPAM of sulcus is the real sulcus w#ltoordinate the closest to the SPAM coordingbe

form of the real sulcus thus provides more detditéatmation of the sulcal form at each coordinates

The clustering analysis using PCBB method describ&hapter Two is used. Three
clusters are found using the maximum distance medBig 5.15. Notice that the
clusters span the Isomap axis. The black clusteahH#avier configuration on the

anterior region; overall its paracingulate struetisr more prominent as well.

Fig 5.15 The clusters of the cingulate region

The three clusters found applying PCBB clusterilggi@thm to maximum distancé: The SPAM image

is plot as a transparent background, the threg¢eshifound are coloured orange, purple and blue
respectivelyB: The three clusters found are superimposed ttitétei comparison among the shape of the

three cluster€: the location of the three clusters related tovthele dataset distribution

Based on the SPAM analysis and the cluster anabysiariability model can be deduced

emphasizing the relative position and heavinesbetingulate and paracingulate sulcus
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(Fig 5.16. While the paracingulate region is prominent @odg the top of the axis), the
cingulate region is very weak; this characterigtiteversed towards the bottom of the
axis. When the paracingulate region becomes pramjitige paracingulate sulcus tends
to become continuous. Some examples of the suttieofingulate region superimposed
on brain surfaces are shown at the righigf5.16 The detail regarding the interruption
and orientation of the paracingulate structure obe reached in the current analysis.
One possible reason is the limitation in Isomapetision. It should be emphasized,
however, that the current analysis takes into atcthe whole 3D shape of the sulci,
including sulcal depth, while the interruption eatt described by Ono is mainly based
on surface anatomy. The interruptions are not rsaciy linked to sulcal depth or
“heaviness” of the folds, thus it is not surpristhgt the current analysis does not find
variability patterns based on interruptions.
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Fig 5.16 The variability model for the cingulate rgion

The green arrow indicates the direction of chafge the top to the bottom of the Isomap axis, ttange
boxes emphasize the “heaviness” change in the ipgtdate region; the blue boxes emphasize the @sang
in the anterior cingulate region in terms of bdtledviness” and curvature. At the right end thresevgles

are given illustrating the relative change in “heags” of the paracingulate sulcus relative todingulate
sulcus.

One possible region of variation in labelling iatlof the intralimbic, the cingulate and
the paracingulate sulci. The intralimbic (or intregulate) sulcus is defined as a sulcus

starting at the anterior part of the corpus caltesund joining the middle part of the
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cingulate sulcus (Paus, 1996). Following the ansigsove, when paracingulate is
prominent, the cingulate becomes weaker. Ref€ig®.16 at the top extreme of the
Isomap axis, the cingulate could become very waakshallow. Does a weak cingulate
structure corresponds to the intracingulate sultug®her words, when paracingulate is
unusually prominent, should the cingulate be lauk#ls intracingulate and the
paracingulate as the cingulate? Indeed, if theutatg sulcus is the main sulcus
separating the Brodmann areas 32 and 24, wheraigb@onfiguration exists where the
paracingulate is much more prominent than the ¢atguthe paracingulate might be
properly labelled as the cingulate (Regis, 1994ix. wariability model of the cingulate
region in this work assumes the dorsal sulcusparallel configuration to be the
paracingulate, regardless the strength of the &eobunterpart. The paracingulate
region, by definition, corresponds to the dorsatipa of the anterior cingulate (AC)
cortex where the Brodmann areas 24b’, 24c’ anchB21ocated, it is a relative expansion
of the limbic and the paralimbic anterior AC cor@todmann areas 24 and 32) (Fornito,
2004). Refer td-ig 5.17 B and Cfor the definition and the Brodmann Areas of the
region. Refer td-ig 5.17 B area 32 occupies the gyrus between the cingatatehe
paracingulate sulcus. Areasotand 68 are above the paracingulate sulcus. The arga 6a
corresponds to pre-SMA (Supplementary Motor Aredi)je the area @acorresponds to

SMA proper (Crosson and al, 1999). A portion of rakdrea 8 may be present as well.

To investigate further this question regardingl#ieelling of the cingulate, paracingulate
and the intracingulate sulcus, two subjects ars@hoone with prominent paracingulate
structure, the other with prominent cingulate dtnee. The sulci of the two subjects are
superimposed for easier comparisbig(5.17A). There is a possibility that the
intracingulate structure corresponds to a weakuatg, when no additional branch
towards the corpus callosum can be observed. Hawieeautomatic alignment used
here is not necessarily optimal, so no reliablections can be drawn. Further study
related to the relative positions of the sulci edairach is needed to clarify this issue,

combining with further architectonic and functioaativation information.
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paracingulate sulcus
ﬁ’ segment (unfolded)

veee  lvae lupe
cingulate sulcus
ﬂg segment (unfolded)

Fig 5.17 The cingulate regions of two subjects supmposed.

A: The cingulate regions of two subjects are chogenpurple case corresponds to a prominent
paracingulate structure with a weak cingulate stmg; the grey case consists of a prominent cirtgula
structure with a weak paracingulate struct@eThe paracingulate region (Crosson and al, 1999jhe

Brodmann areas (Brodmann, 1909)

The configuration of the two hemispheres are coegpéiig 5.18, no clear asymmetry
regarding the whole cingulate region can be obskr@é&usters are found only on the left
hemisphere, the results are illustrate&ig 5.19 The general evolution in terms of the
relative heaviness of the cingulate and the pagatate regions can be observed as well
among the clusters. The fact that clusters aredaunty on the left hemisphere but not on
the right infers a difference in sulcal form distriion among the two hemispheres. The
hemispheric asymmetry is thus likely to be reldtethe variation in sulcal form density
distribution, not as simple as a shift in formpaserved for the region of the central

sulcus.
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Fig 5.18 The cingulate region by hemisphere
The left hemisphere is plot in green, and the righhisphere plot in red. The opposite hemisphere is

superimposed in transparent for easier comparison.

L D

Fig 5.19 Clusters found on the left hemisphere
A/B: clusters found on the left hemisphere using ti@mum/maximum distanceg/D: the SPAM of the

clusters corresponding to A/B.
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5.6 The region of the superior temporal sulcus

The region of the superior temporal sulcus (ST®)ghly variable. It is appearing
around 20-23 weeks of gestation, together withcthreral sulcus (Hori, 2006).
Interruptions are one of the features describd®mo et al., 1990). Compared to the left
STS, the right STS is found to be more likely coatius (36% continuous on right STS
vs. 28% continuous on left STS). The left STS igaridkely to be broken into four
segments (24%) compared to the right STS (0%).aferior end of the STS is found to
be extending lateral, medial, at or far posterathie temporal pole. The left and right
hemispheres are found to be distinctive in thigattaristic as well. Various connections
are found, such as the connection with the Sylfissure, the intraparietal sulcus, and

the inferior temporal sulcus.

Some systematic anatomical analysis of STS wagdawut (Ochiai et al., 2004) based
on the sulcal root model. The sulcal roots of th& &re illustrated ifrig 5.20 A

Different sulcal roots (STs. Ant, STs.mid, STs.tP83's horizontal, STs.ter.asc.ant and
STs.ter.asc.post) corresponding to the “plis degges’ in this region are described. It is
found that the generic model proposed using thiedgpassage” is consistent, and

further asymmetry between the two hemispheresssrkd (Ochiai et al., 2004).

Fig 5.20 The sulcal roots and “plis de passage” tthe STS complex
A: the pli de passage in the STS region, from T.i@h al. (Ochiai et al., 2008: two examples of the

STS used in the current analysis
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The superior temporal sulcus is a region extengistldied for functional activations.
The anterior STS is found to be related to voia# sentence processing, spatial
awareness and biological motion processing; thelimidart related to word
comprehension; and the posterior part related atiad@and motion processing, face
processing, social perception and the Theory ofdMictivities (Hein and Knight, 2008).
The functional activity in the STS region is linkedvarious systems such as the visual,
auditory and the limbic systems, connections tofemm the frontal lobe, the parietal
lobe and the deeper structures such as the amyagaalstriatum have been observed.
Abnormalities in this region have been linked tthpéogies such as autism (Redcay,
2008; Zilbovicius and al, 2006). Anatomical studieking the form of the STS to
symptoms has also been demonstrated as discus€éder One (Plaze et al., 2009),
where the shape of the STS is linked to the nattieeiditory hallucination in

schizophrenia.

Refer toFig 5.20 Bfor examples of STS analyzed, and refdfigp5.21for the Isomap
analysis of the STS region. The prominent feataumd by Isomap is a gradual opening
of the posterior “fork” of the STS. At the top ¢fet Isomap axis, the posterior region of
the STS (anterior and posterior terminal ascending of STS) forms a wide “fork”,
either the anterior or the posterior terminal adasg portion can be broken off the main
STS branch. At the bottom of the axis, these tveags are much closer to each other.
When observing the two extremities of the SPAM simmgosed on each other, another
interesting characteristic can be observed atrtheriar end: as the “fork” closes, the
external (surface) of the anterior STS is rotatexsally compared to the bottom of the
sulci. This trend observed can be seen more cleafyg 5.21 E, F, G and Hwhere the
corresponding sulci of each SPAM coordinate aldwglsomap axis are plot. Notice that
from the top to the bottom of the axis, the postenpening is diminishing, while the
anterior portion is also getting longer and heaweth the external part of the sulci
rotated more dorsally. The change of the anglé®fnterior end is more easily observed
on the SPAM based on minimum distance in this ¢@ige5.21 B.
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Fig 5.21 The isomap of the superior temporal sulcus

A/C: The isomap of the superior temporal sulcus (SIE8)g maximum/minimum distance. The sulci are
superimposed on the SPAM, according to their nedgpositions. Notice that at the two extremitiesréh
are much less sulci compare with the ce®/®: The SPAM of the STS using maximum/minimum
distance. The forms at the two extremities arewad blue and red respectively/F: The SPAM using
maximum/minimum distance is plot as a transparaokground; superimposed on top of each SPAM is
the real sulcus with its coordinate the closesh&SPAM coordinate. The form of the real sulcussth

provides more detailed information of the sulcahiat each coordinate&/H: The two extremities of

B/D are superimposed for comparison.

Next, the clustering analysis is carried out. R&bd¥ig 5.22 three clusters are found
using both maximum and minimum distances. The tbhesters follow the trend
observed above, especially the degree of “operohgfie “fork” at the posterior of the
STS. The anterior change of angle can be cleadgmied inFig 5.22 F and J While the
anterior angle changes, the anterior piece tentds twoken off the main branch as well,
this interruption is likely due to the operculatiofithe anterior pli de passadad 5.20.

Compare with the anterior part of the STS, theqyamt part is much more variable.
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Consider for instanckEig 5.22 G, H and K Even when the “opening” of the “fork” is
similar in degree according to the SPAM images aitteal folds can be very different in

configuration (consider the red clusterFig 5.22 G and K).

S
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y

Fig 5.22 The clusters of the superior temporal sults
A/C: the clusters found using maximum/minimum distaB{®: the location of the three clusters related

e

to the whole dataset distribution using the maxirimimimum distancé/1: the clusters oA/C
superimposed together for easier comparis@yH: the three clusters éf with the real sulcal shape

superimposed,K: the three clusters @& with the real sulcal shape superimposed
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Fig 5.23 The left and right hemisphere of the supér temporal sulcus
A/B: the left (green) and right (red) hemisphere usiraximum/minimum distance measure, the

hemispheres are superimposed along the Isomajfoaxdasier comparison

Finally, the hemispheric asymmetry of the STSusl&d Fig 5.23. A strong asymmetry
is observed, the left hemisphere is located mosartds the bottom of the axis where the
“fork” is closing; the right hemisphere is locatexre towards the top of the axis where
the fork is opening wider. It is interesting to igetthat the region between the upper fork
of STS and the Sylvian fissure is correspondintp&Planum Temporale (PT), part of
the Broadmann area 22 where the Wernicke’s areaased. Hemispheric asymmetry
has been observed in PT, the region is larger @hethhemisphere. Refer to Chapter
One orFig 5.24Bfor the corresponding Brodmann areas. Reféigdb.23 the left
hemisphere STS (green) shows a closing of the “fohnks also indicates an enlargement
of the region directly above the upper “fork”, wad?T is located. This analysis also
shows that when the PT region is enlarged on flh@&éenisphere, the anterior end is also
elongated and rotated, following the Isomap analgsi shapeHig 5.21). This anterior
piece may correspond to the relative configuratibBrodmann area 38 related to 22,

where BA 38 is now known to contain at least 7 palbbes according to cytoarchitectonic
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studies. This area is among the earliest affecyedlltheimer’s disease and one of the

earliest involved at the start of temporal lobesets (Ding and al, 2009).

Based on the above analysis, a variability mod¢hefSTS can be proposed which is
illustrated inFig 5.24A The model emphasizes on two regions of intee¢she anterior
and the posterior end respectively. The variabdityhe anterior end is related to the
angle of rotation and the length (the blue regitmg,variability at the posterior end is
related to the opening of the ascending “fork”, éiméerior and posterior terminal
ascending sulci of the STS (the orange region).vEm&bility of the closing of the angle
of the “fork” can also be interpreted as the pdssémlargement of the region directly
above the upper fork, approximately correspondinipé ventral border of Planum
Temporale. To be more certain of this aspect drgeiment of the region another
analysis including both the STS and the Sylviasuie should be carried out. The “fork”
itself could be related to BA 40, 39 and 37, thagero-parieto-occipital area. BA 40 is
involved in meaning and phonology of reading, aachdge to BA 39 plays a role in
semantic aphasia (Stoeckel and al, 2009). Assuthmgignificance of morphology in
brain function, further studies linking such suleatiability of STS to function should be

very interesting.
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Fig 5.24 The variability model of the superior tempral sulcus
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A: the variability model of ST8: The definition of the Brodmann areas are illustia(detail refer to
Chapter One)

5.7 The Broca’s area

The Broca’s area is explored; the sulci includethia analysis are the diagonal ramus,
the ascendant ramus and the anterior ramus ofyi@® fissure, the anterior inferior
frontal sulcus and the inferior frontal sulcus (E€diag, F.C.L.r.asc, F.C.L.r.ant,
S.F.inf.ant and S.F.inf). It is a region of widedrest because of its connection to
language production. The definition of the regigralgroup of sulci is illustrated g
5.25 with an example of the region.
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Fig 5.25 The definition of the sulci of the Broca'srrea
A: the definition of the sulci (as Fig 5.B; the Broca’s area defined by the sulci. The dgfiniof the
Broca’s area by a group of sulci: F.C.L.r.diag, .E.€Casc, F.C.L.r.ant, S.F.inf and S.F.inf.ant.

The Broca’s area is consisted of Brodmann Areas) @Pand 45Kig 5.24 B. The
F.C.L.r.asc generally separates BA 44 and 45. Bs4dore involved in phonological
and syntactic processing, also music perception4B4As the triangular area (or pars
triangularis) of the inferior frontal gyrus, it saunds the F.C.L.r.ant and bounded
caudally by the F.C.L.r.asc. The Broca’s areaaditronally viewed as receiving
afferents mainly from Wernicke’s area through thmuate fasciculus (part of the superior

longitudinal fasciculus). Recent evidences sugtiegtthe arcuate fasciculus connects the
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posterior brain areas with the Broca’'s area thraugklay-station in the premotor/motor
areas (Bernal and Ardila, 2009).

GG H ST

Fig 5.26 The analysis of the sulci around the regioof Broca’s area

A/D: The isomap of the Broca’s area using maximum/mimn distance. The sulci are superimposed on
the SPAM, according to their relative positionstise that at the two extremities there are much sesci
compare with the centrB/E: The SPAM of the Broca’s area using maximum/minmmistance. The
forms at the two extremities are coloured blue r@abrespectivelyC/F: The SPAM using
maximum/minimum distance is plot as a transparaokground; superimposed on top of each SPAM is
the real sulcus with its coordinate the closesh&SPAM coordinate. The form of the real sulcusth
provides more detailed information of the sulcahfat each coordinate&/H: The two extremities dB/E

are superimposed for comparison.

The same methods are applied to study this regitimresults presented kig 5.26
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The complexity of this region increases comparetthéaregions analyzed before, the
deduction of variability models becomes difficlHtom the Isomaps, certain trends can
nonetheless be observed. RefeFip5.26 from the left to the right of the axis, the
inferior frontal sulcus (S.F.inf) becomes less ‘hgar prominent and its orientation
appears to be changing. Notice that the SPAM imabew this trend, even though the
image is not a precise summary of the shape. Hnerteft to the right of the axis, as the
relative “heaviness” and orientation of S.F.infegas, the folds of the region become
less “loose” and more compact as well. Further fional analysis with respect to the

trend found would be very interesting.

The results of the clustering are showrrig 5.27. Two clusters are found. The red

cluster shows a longer S.F.inf compare to the bthaster.
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Fig 5.27 The clusters of the sulci of the Broca'sr@a

A: The locations of the clusters found are indicatieeg the Isomap axis, minimum distance is uBed.

the real sulcal shapes of the subject at the cefittee black cluster in A is plot, superimposedwthe
SPAM of the black cluste€: the real sulcal shapes of the subject at theeafithe red cluster in A are
plot, superimposed with the SPAM of the red cludietthe SPAM forms of the clusters in A are
superimposed for easier comparisBnThe locations of the clusters in A are plot oa tlistribution of the

whole dataset.

While these first results with Broca’s area woudlttier exploration, we realize the
possibility that because of the wide inter-indivatluariability, the behaviour of the ICP

was more questionable than for the simpler grodipslds mentioned before. One of the
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consequences is that the global alignment of th@evyhopulation toward the most
neutral subject is not reliable. We need to explarther the consequences on the Isomap
organization described here. Our future researarpm to overcome this difficulty is

described in the last chapter.

5.8 The prefrontal region

The folds of the prefrontal region are analyzedaitin analysis, two sets of sulci are
analyzed, called the smaller and larger superatél region. The smaller region
contains the superior precentral sulcus, the mafrgirecentral sulcus, the superior
frontal sulcus, the median frontal sulcus, anditaesverse frontopolar sulcus. The larger
region contains all the sulci of the smaller regiglus the intermediate frontal sulcus.

The definitions of the regions are illustratedrig 5.28
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Fig 5.28 The definition of the smaller and larger gperior frontal region

A/B: examples of the smaller superior frontal regi6fi): examples of the larger superior frontal region.

The smaller region contains the superior precestralus, the marginal precentral sulcus, the saperi

frontal sulcus, the median frontal sulcus, andtthesverse frontopolar sulcus. The larger regiontainos

all the sulci of the smaller region, plus the intediate frontal sulcus.

5.8.1 The smaller superior frontal region

The results of the smaller region are showRim5.29.It can be observed that the
complexity and variability of this region is highesmpared to those analyzed above,;
finding a trend in sulcal shape becomes extremiffigult for human eye. A dominant

trend that can still be observed is concerningilbee or less “heavy” posterior portion,
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around the superior precentral sulcus. This reddtiwaviness of the posterior region is
also related to the total extent of sulcal comgeaind heaviness of the region as a whole
(Fig 5.29 B and G. In summary, from the top towards the bottomhef lsomap axis, the
total heaviness and complexity increases, the supgaecentral sulcus appears to
elongate and is oriented more towards the froefgibn, away from the central sulcus.

The clusters found in this region are illustrateéig 5.3Q From the top to the bottom of
the Isomap axis, the typical form of the clustezsdme heavier in general, the elongation
of the superior precentral sulcus (the verticakgasr piece) can be observed as well. It
should be noted that labelling error could exigareing the superior and intermediate
frontal sulcus, due to the complexity in this regidhe introspection of each brain could

clarify this issue.
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Fig 5.29 The analysis of the sulci around the regioof the superior frontal area

A/D: The isomap of the superior frontal area usingimam/minimum distance. The sulci are
superimposed on the SPAM, according to their netghositions. Notice that at the two extremitiesréh

are much less sulci compare with the cer8/&: The SPAM of the superior frontal area using
maximum/minimum distance. The forms at the twoeaxities are coloured blue and red respectiveliz.

The SPAM using maximum/minimum distance is ploadasansparent background; superimposed on top of
each SPAM of sulcus is the real sulcus with itsrdomte the closest to the SPAM coordinate. Thenfof

the real sulcus thus provides more detailed inféionaof the sulcal form at each coordinaté#: The

two extremities oB/E are superimposed for comparison.
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Fig 5.30 The clusters of the superior frontal area
Three clusters are found which are coloured grggligw and purple respectively on the Isomap SPAM
map. The more precise shape at the cluster ceareeben plot, the subject is chosen as that teest to

the centre of the clusters found.

5.8.2 Thelarger superior frontal region

The results of the larger superior frontal regiomiflustrated irFig 5.31 Using the
maximum distanceFig 5.31 A, B, E and F, an interesting trend can be observed. In
contrast to the results obtained using the smaillperior frontal region, here from the top
to the bottom of the Isomap axis, the overall canpy and “heaviness” appear to be
decreasing, while the superior precentral sulcpears to be somehow elongating. The
reduction in complexity from the top to the bottofithe axis appears to be partly due to

the less complex intermediate frontal sulcus.

Refer toFig 5.32for the variability model of the superior frontalgion. Here it is
demonstrated that the definition of the regionsieape analysis would influence the
results. When the larger superior frontal regiostiglied, the dominant variability factor
found is the “heaviness” of the intermediate frbstdcus. When a smaller region is
investigated, where the intermediate frontal sulstexcluded, the “heaviness” of the
superior precentral sulcus became the main faotordriability. In a sense, when we

zoom into a region, the variability can be analyirechore detail.
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Fig 5.31 The analysis of the bigger superior fontakegion
A/C: the isomap of the region using maximum/minimustaticeB/D: the SPAM as i\/C with the real

folds superimposed in the SPAM imagks: the clusters found using the maximum/minimumatise

F/H: the clusters of E/G plot together for easier carigon
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Fig 5.32 Variability models for the superior fronta region
A/B: The variability model of the smaller/larger supefrontal region
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5.9 The combinations: CS and cingulate

Finally, a combination of the sulci is analyzedlligstrate the potential of more
comprehensive analysis. The advantage of suchsisadythat relative positions of the
sulci relatively far apart can be studied, the claxipy of such analysis is beyond simple
visual inspection. As an example, the combinatibtihe cingulate region and the central

sulcus is analyzed, the definition of the regioflistrated inFig 5.33

Fig 5.33 The combination of central sulcus and theingulate region

The results are presentedrig 5.34andFig 5.35 Similar trend related to the heaviness
of the paracingulate region is found here, fromléfieto the right of the Isomap axis, the
paracingulate structure is more prominent. Reggrthie central sulcus, it is interesting
to notice that from the left to the right of thaspthe angle between the central sulcus
and the cingulate sulcus is diminishing. In otherdsg, at the left extreme of the axis, the
central sulcus is more perpendicular to the cirtgudalcus; towards the right extreme,
the central sulcus is more parallel to the cingutaticus. In one sense, when the
paracingulate structure becomes heavier, the abgig pushed towards the corpus
callosum, which explains why the angle betweerctrgral sulcus and the cingulate
sulcus is changed. This trend can be observedidiea the two extremities are

superimposed togethefi¢ 5.34 B.

The clustering results are presente&io 5.35 B and C The hemispheric asymmetry in

the region is plot irrig 5.35 E no clear asymmetry can be observed.
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The variability model is summarized fiig 5.36 Two regions of interest are the orange
one representing the change in angle of the cesifalis with respect to the cingulate
sulcus; the blue region draws attention to the ghan heaviness of the paracingulate

structure.
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Fig 5.34 The Isomap analysis of the combination élie central sulcus and the
cingulate region

A: the distribution of the sulci superimposed on8RAM images, minimum distance is used here, simila
results are obtained using maximum distaBcéhe SPAM images with the two extremes highlighed

the same aB with a change of point of view to facilitate thieservation of the central sulcD¢E: same as
B/C, with the real sulci superimposed on the SPAM ieskg the two extremities of the Isomap axis as in

B are superimposed to facilitate comparison
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Fig 5.35 The clustering and asymmetry analysis ohe combination of the central
sulcus and the cingulate region

A: the SPAM images using maximum distaf&ehe clusters found using maximum distance, iclbknd
redC: The clusters oB superimposed for comparis@n the real sulci plot on the SPAM imagesthe

sulci of the left (green) and right (red) hemispsesuperimposed

Fig 5.36 The variability model of the central sulca with the cingulate region
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Chapter Six: Discussion on Folding Analysis

6.1 Summary

In this chapter, the potentials of cortical pattexnalysis, new data representation and
interesting directions to further explore in theuke is discussed. The example dictionary
is presented in Chapter Five, using various apphescand methods detailed in Chapters
Two and Three. The implications and usage of sictifodary and the potential

applications are discussed in this chapter.

6.2 Introduction

Brain folding patterns are explored in this worging algorithmic approaches. As
discussed in Chapter One, the nature of this werkulti-disciplinary. Refer to the
simple diagram ifrig 6.1, computer algorithms are used to solve specificlprob in
brain cortical folding. The results of such study @rovide insight into the brain folding

process; the results can also consequently prawgight into algorithm development.

Datamining

Algorithms

Fig 6.1 The diagram of the interaction among domais

Many factors play important roles in the analydisartical folding. In particular, the
choice of the sulci or region of interest, the shdpscriptor, the similarity measure, the

clustering algorithm and the dataset used for amapll impact the final results. These
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five factors will be discussed in more detail bel@le chapter concludes by the
discussion of the use of such a dictionary anduhee of cortical folding analysis in

general.

6.3 The implications of sulcal analysis

The implication of the sulcal analysis is two-foldn one hand, the pattern of cortical
folding is studied systematically. Many of the krledge gained through this process can
be further used in other applications, such asmaatic sulcal recognition or diagnosis of
certain pathologies. On the other hand, the proakdssigning algorithms for cortical

analysis provides useful insights to the desigalgbrithms in general.

6.3.1 Sulcal analysis and brain development

The results of cortical folding analysis can previdsights to the automatic haming
system, for example, in the case of the inferi@cpntral sulcus (refer t6ig 2.260of
Chapter Two). A pattern is consistently observed tdonsists of a shorter precentral
sulcus, with the lower portion sometimes connetbeahother sulci (examples are the
anterior subcentral sulcus, the diagonal ramub@Bylvian Fissure). The automatic
naming system may take into account this type ofladge in terms of frequent
patterns of the folds. This approach may lead faraved performance in automatic fold
recognition. A more detailed analysis is preseiidw on the section of the analysis of

the precentral gyrus.

More generally, the sulcal analysis can be useettiby existing hypothesis. For
example, the sulcal roots theory (Regis et al. 52@0ovides a systematic framework to
study folding variability. Using the approach o&br folding analysis described in this
work, such framework can be further explored. Oossfble direction for further study is
the variability related to the sulcal roots mod¢lcertain regions such as the pericentral

region, the two-piece configuration of the censialcus as the configuration of the sulcal
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roots (the central sulcus with an interruption) barrarely observed in adults (around
1%) (Ono et al., 1990). At other regions such agpttefrontal regions however, the
interruptions are very frequent in adult brainsttet the sulcal roots pieces can be
observed. Such analysis of the difference betwdatt #olding patterns and the sulcal
roots model provides information on region-speacificiability. Why some regions
resemble more the configuration of the sulcal r@oth interruptions, while other folds

become more typically continuous with few interfaps?

The folds formed earlier are more likely to be condus than those formed later in
development. The local resemblance to the sulcasyor the local degree of variability
may correspond to the relative timing of the apaeee of the sulcal roots. It would be
interesting to explore further such region spedfference in variability, which may

give insights into the timing and nature of bragvelopment in general.

One possible use of the results of such systeran#tysis is the deduction of possible
sulcal variability models based on the analysissbynap, combined with the knowledge
of the clusters. With the aid of the pattern dietioy, the very complex cortical folding
can be analyzed by not only experienced neuroarnstriResearchers and clinicians
with less experience in sulcal anatomy can dedypethesis on sulcal patterns, and
further test them. Some examples of the sulcabbdity models are presented in

Chapter Five.

Related to the timing of the appearance of theasutots, the study of adult folding
patterns can be extended to add the patterns wifsfoe children at different age, to
further understand the onset and nature of vaitpbilhe advantage of the method of
cortical pattern analysis described in this worthet it is observer-independent and
automated. It provides the possibility to detedtgras sometimes beyond the
comprehension of human inspection alone, as icdle of the analysis of central sulcus

presented in Chapter Four.
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Such cortical pattern analysis can also provideiptslandmark for normal versus
abnormal brain development. When a certain pattemnd rarely in normal populations
becomes exceedingly frequent in certain pathologiash an incidence could help with
diagnosis. In a similar sense, if a gradual changertain folding pattern can be
observed, such as in the case of handedness afatrithand length of the central sulcus
discussed in Chapter Four, such information cafuttker used to monitor change during

learning or treatment in the case of pathology.

6.3.2 Algorithmic devel opment and knowledge discovery

Switching from neuroscience to computer sciends,demonstrated through this work
that algorithmic development is not a stand-alomegss. Based on the specific
guestions being investigated, the algorithms nedmktchanged to adapt to the question.
In the first part of the work, we try to find dendasters that would become the
representative patterns of a given sulcus or apggodsulci. An algorithm is designed
specifically for this purpose. It is later realizit there exist a varied degree of
variability among the sulci. Certain sulci are vestgble, so that no dense clusters can be
found in these cases. To give a summary of thedarhsuch stable sulci, the algorithm
needs to be changed. Eventually, the informatiganging the sulci produced by
different algorithmic approaches can be combinegite a more comprehensive

description of the cortical folding patterns. Tlisn ongoing and dynamic process.

6.4 The main factors in the analysis of cortical foldiry

6.4.1 Folding groups and region of interest

Two different approaches towards sulcal analygseaperimented in this work. In the
first approach, the biggest sulci are chosen (tef€@hapter Two for detail). These sulci
also correspond to the deepest or mostly primdgy suthe sense that they appear

earlier in brain development. These sulci are chdseause they are among the most
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reliably labelled sulci and they can be found ia ¢neat majority of individuals, unlike
the case of the smaller sulci. The combinatiorwarf or three of these sulci is also
analyzed, following the reasoning that there wdilkdely be fibre bundles connecting

these sulci.

The major drawback of such an approach is thatesdot emphasize the gyrus, which is
the functional entity of the cortical convolutidfurthermore, the exhaustive combination
of two or three of the major sulci is still doabiteyt this approach quickly leads to an
explosion in computation when smaller sulci areceoned. More specific strategies need
to be used. This leads to the second approachduntenl in Chapter Three. Instead of
choosing the most interesting sulci, the most egting regions of the cortex are chosen.
These regions can be as small as one single sti@sslarge as the whole brain. Most of
the regions chosen are referring to the gyrus aasteé the sulcus. The number of sulci is

inferred by the region chosen.

These two approaches can find different patterher& exist many further possibilities.
For example, the sulci can be grouped by timingnfprimary to tertiary), by depth, by
surface area or by length. It would be interestongerify if the depth corresponds to
timing, this is expected to be generally true, dxteptions might exist. In the work on
sulcal roots (Regis et al., 2005), the emphass idevelopmental timing, sulcal
structure, variability and stability, the work afleal pits (Lohmann and von Cramon,
2000), on the other hand, is more based on suéghdThese two approaches yield
similar maps. With the pattern analysis tools depet! in this thesis work, the

interconnections and differences of these two agagres can be further explored.

The regions of known functional correlations (sastthe Broca’s area and the Wernike’s
area) or known anatomical connectivity throughdibundles can be explored together.
In the cases when known link in specific patholeg®ist, these regions can be
combined as well. One such example is the cinguégi®n and orbital frontal region

known to be linked in the obsessive compulsoryrdiss (Shim and al, 2009). Finally,
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of course, when no constrain in computational pcavet time exists, a pure exploratory
approach can be taken, when exhaustive combinadioregions can be explored in
sequence without any prior knowledge.

Another approach worth investigation in the futisrelustering analysis on unlabelled
sulci. This approach would break the limitationghadf traditional naming system.
Interesting patterns concerning pieces of diffese¢i can be found, which may carry
biological or neurological significance. Such apgach applied to large databases
could reveal patterns beyond the reach of the amsate using the classical nomenclature.
This objective will have to deal with combinatoredplosion. In brainVISA, each brain,
indeed, is made up of more than 500 elementargfdibdese folds are different for each
brain. A sulcus of the traditional nomenclaturessially made up by several of these
elementary folds, some representing the stem oduleais and the others representing the
branches. The number of elementary folds for dqaar sulcus varies from one brain to
another, because one given sulcus can be brokeateaupted in various ways.
Therefore, inferring some reproducible patterne@ssa large set of folds will be a
challenge.

Note that such analysis can be carried out onatvedata as well (Toews et al., 2010). In
feature-based morphometry, folding patterns cadissvered using volumetric

imagery.

6.4.2 Shape descriptor and Similarity definition

To describe the cortical folding, the first and entnaditional approach is to use a shape
descriptor. The simplest descriptors that can lee usclude the depth, length, the surface
area and the number of connected components @blde The three-dimensional
moments invariant to translation, rotation andisgalised in this work is originally

developed to analyse simple shapes such as thfa tialamus of the brain (Poupon,
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1999). The application of 3D moment invariant te #nalysis of complex cortical

folding shapes is validated in this study.

In the second part of the study, a new way to desthe shape is introduced. Instead of
using sophisticated shape descriptors for eachestiag@ similarity among all the shapes
in the population is calculated. This different eggrh goes beyond the description of
each single shape, the group closeness in shagedswhich may embed more
comprehensive information concerning the indivicdeddted to the whole population.
The results using the two approaches can both biseful information to cortical folding

analysis.

As discussed in Chapter One, other methods exasttn extract the top or the bottom of
the cortical folding for further analysis. In oyp@oach, we used the three-dimensional
form of the folds. However, the top (external) ottbm of the sulci could embed
important and different information. Our algoritra@pproach can be used to carry out

pattern analysis on the top or bottom of the suhdy.

In addition to the sulci line at the top or bottofithe fold, indeed, lines at different depth
can be taken out for systematic pattern analysisekample, when comparing the results
of sulcal roots and sulcal pits models, an intangsgjuestion to ask is: is there an optimal

depth which corresponds to a maximal fit betweenttyo models?

Other than depth, another important factor in cattfolding is the sulcal direction. In the
sulcal roots model, it is further proposed thatftliding follows a grid system (Regis et
al., 2005). The sulcal direction related to sufzztterns can be further explored. In the
study of folding orientation, the simplest appro&to use the most stable folds (for
example the cingulate and central sulcus) as megerdirections for the calculation of a
direction index. This index could be calculatedbgliy, locally, or in a more region

specific sense (Clouchoux et al., 2010).
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As discussed in Chapter One, the gyrification inf@@R is useful in the study of cortical
folding and its relation to certain pathologiesalsimilar sense, the extent of folding can
be measured as to which extent a certain sulcstsached flat or being distorted or
“wrinkled”. Two folds with the same surface areaynh@ more or less smooth. The
Isomap study introduced in Chapter Four hintedripgortance of such a measure. The
extent of such folding can be observed in the Igparalysis in two dimensions
presented in Chapter Fouig 4.9). A further index dedicating the extent of foldiogn
be added to the pattern description. The higheedsgions of Isomap can be

systematically studied as well, to reveal possdalditional information.

For patterns concerning more than one sulcus,utiace area of the gyri in between can
be calculated. This adds another parameter todtierp definition. Systematic
comparison of asymmetry of folding patterns betwientwo hemispheres can be carried
out. Other possible systematic comparisons inclbdeanalysis on gender and age. Such

comparison can be expanded when other informat®a\ailable.

While moment invariants discussed in Chapter Twodd out to be a good description
of the complex shapes made up by the folds, thegatadescribe certain details like
branches that only weakly contribute to the coatirmoments. Therefore, in the future,
a complementary approach based on non linear ratyst of images could be
developed, where the main difference is removeslfdbus can be on details such as the

variability of the sulcal branches.

6.4.3 Clustering algorithms and approaches

In this section, the more general framework of teltisg algorithm development is
discussed. The algorithms developed and used aiatpuhis general framework. The
close link between cortical folding phenomenon dred“right” algorithm or algorithms

to study such a phenomenon is further discussed.
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6.4.3.1Clustering algorithms

The definition of data clustering is itself vagoeg of the definitions is as follows: “for a
given set of data points and similarity measureregeoup the data such that objects in
the same clusters are similar, and objects inmiffeclusters are distinct” (Jain et al.,
1999). More intuitively, clustering is an explarat process, a way to summarize the

information in the dataset, so that an improvedeusidanding can be achieved.

The major difficulties or challenges of clusterisg mainly in three domains: how to
find clusters with differing size, shape and deesjthow to handle noise and outliers;
and how to determine the number of clusters. Thase issues are not independent,
many times a given clustering algorithm excelsesolving one of the issues while fails
in resolving the others. Indeed, there is a traflemong the three issues. The “best”
algorithm is ultimately based on an understandinth® specific real-life question(s) we

are trying to solve by clustering analysis.

Clustering algorithms can be roughly put into sikedlent categories: centre-based,
density-based, grid-based, graph-based, searcld;msd model-based (Gan et al.,
2007). This is a conceptual categorization; a gislestering algorithm can belong to
more than one category. These approaches are skstusry briefly below, the

advantage and disadvantage based on the thres rssmtioned above are discussed.

In the centre-based approach, the goal is to finsters each represented by its centre.
Examples of such algorithms are K-means and Expectilaximization (EM) as a
generalization of the K-means algorithm (Duda gt28100). This type of algorithms can
find clusters of variable sizes, but cannot dedharbitrary shape clusters easily. The

PCBB algorithm can be put into this category, atduis represented by its centre.
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In the density-based approach, the goal is toderise regions. By definition, it is
difficult for such an approach to find clustersiifferent densities. However, this
approach can find clusters of arbitrary shapas,usually robust and the number of
clusters is automatically decided by defining teask regions. The algorithm DBSCAN
belongs to this category, where the density ofiatps obtained by counting the number
of points in a region of specified radius (Ganletz007). BRIDGE, an algorithm
combining DBSCAN with K-means is another examplar{@t al., 2007). The PCBB
algorithm designed in this work can be put in ttagegory as well since the goal is to

find local dense regions.

The grid-based approach is related to the densisgdh approach. A grid structure is
created to partition the data into finite numbecels for further density-based
clustering. Such an approach allows reduction mpmatational complexity. The
advantages and disadvantages are similar to thaeafensity-based approach, the
number of cluster is determined automatically,dlusters can be of arbitrary shapes, but

the density of the clusters cannot be different.

In the graph-based approach, graph or hyper-gsapbristructed; the data points are the
graph nodes linked in a specific manner. The gb#dieclustering algorithm becomes
that of graph partitioning. The algorithm Chamelean be grouped into this category
where the K-nearest neighbour graph is generategartitioned, and then a hierarchical
clustering schema is used to combine sub-clus&as €t al., 2007). Compared to the
density-based approaches, the definition of clustarbe more comprehensive; examples
include clusters as dense regions, or homogenguse The definition of a cluster and
how it will affect the clustering results will bésdussed further below.

In the search-based approach, clustering is comrsldies an optimization problem. While
algorithms such as k-means or fuzzy k-means cahldical optimums, algorithms such
as simulated annealing, Tabu search or geneticitdges can go beyond local optimum
(Michalewicz and Fogel, 2004).
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Compared to the model-based approach, the othegarats (centre-based, density-
based, grid-based, graph-based and search-basemresidered as heuristics. In the
model-based approach, data is considered to beajeddy a finite mixture of

underlying probability distributions. The modelg arsed for clustering to optimize the fit
between the data and the model. The clusteringgmmobecomes the estimation of
parameters of the assumed mixture model. In theleott the model-based approach and
heuristics face the same challenge: how to fingaotl” clustering algorithm in the
heuristics approach; or how to perform a “good” elaklection in the probability

framework.

In a more general sense, clustering algorithm agweént could take two routes: rule-
based or model-based. Today, these two approaohesry often combined to solve
specific problems. However, a somehow more philbaah separation exists between
these two approaches. Does Nature follow matheaiatiodels or very elementary rule-
based computer programs such as that of the Tiaahine (a theoretical machine that
can manipulate one input symbol on an infinite tapa given time step) (Turing, 1948)?
Simple models such as cellular automata can befosadch exploration of natural
phenomenon (Wolfram, 2002). Schmidhuber asked tlestepn: “is God a
Mathematician or a Programmer?”(Schmidhuber, 1987#he understanding of nature,
both approaches reach interesting findings sucheasorphogenesis of natural patterns.
Some authors (for example (Wolfram, 2002)) argusydver, that a mathematical
approach cannot explain the whole complexity otirtsystems while rule-based
computer heuristics (such as the genetic algorithamasthe cellular automata approach)

may have a better chance.

In our study, we tried to combine both approach#spugh the emphasis is on
heuristics. In the future, both approaches sefgratethe combination of the two, can
be used for more discoveries. Next, the approaepplying clustering algorithms to the

study of cortical folding is discussed.
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6.4.3.2Clustering algorithms on cortical folding

The first and arguably the most important stephefdlustering process is the definition
of a cluster. By doing this, an assumption is maa¢he kind of clusters that can be
found on a dataset. Indeed, the definition of tinel lof cluster that we try to find can be
very different. For example, the clusters can Hendd as: compact groups with high
mutual similarity within the group; or chained diets where the group members can be
just loosely linked. The clusters can be definedeggons of Gaussian distributions in
noisy data, or can be defined as regions of honamgendensity in sparsely populated
background. The definition of a cluster decidesdésired outcome. The algorithm can

consequently be designed or selected based oretimitidn of the cluster.

The definition of the type of cluster should bedsasn the specificity of the real data
upon which the clustering analysis would be caraet The data in this work, the
cortical folding, would surely be different frometldlistribution of bacteria culture or gene
expression data. Blindly applying clustering altfuns regardless the domain specificity
leads to failure. So the first step of selectirgustering algorithm in this work is the
careful observation of the distribution patternsliffierent sulci. Such study is done as
discussed in Chapter Two, it is found that theicakfolding distribution is very varied.
For the less homogenous sulci such as the cingsidtas, the distribution resembles
random homogeneous distribution with dense islaimdghe less variable sulci such as
the central sulcus, the distribution resembles@antiomogeneous distribution without
any dense islands. In the case of very noisy dataseh as these, a particularly robust
algorithm is needed. It is also likely more seresifol define clusters as the dense islands
of arbitrary shape instead of regions of Gaussisimildutions. The PCBB algorithm is

consequently designed to find such dense regionsigy data.

An interesting question to ask is: what does swath distribution pattern tell us about the

biological nature of cortical folding? Indeed,tdisution as mixture of Gaussians is
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observed in many Biological phenomenons, suchesiste of different bacteria species
in a cell culture dish. On the other hand, manyenammplex systems such as geological
systems exhibit non-Gaussian distributions. Whypaure of cortical folds does not
exhibit a mixture of Gaussian distribution patteimthe 1952 paper of Turing (Turing,
1952), it is proposed that pattern might grow framinitially nearly homogeneous state
due to instability. The result of small initial iability could result in the emergence of
patterns as a consequence of the breakdown of sygnarel homogeneity. The observed

final distribution pattern could be close to orydifferent from homogeneous.

Linking data distribution with genetics, a Gausdiigstribution pattern may hint the
existence of simple genetic control for expresssuth as the case when one gene is
involved in determining the size of a given baasgropulation. When complex irregular
distributions are observed, it is possible thatdlae more genetic or environmental
factors involved that interact with each other @mg expression. In the case of cortical
folding, a huge variability in shape and pattern ba observed. This variability is likely
due to interactions of multiple genetic and envinemtal factors. In the Turing
morphogen model (Turing, 1952), the reaction-difinof two factors, the activator and
the inhibitor morphogens, can cause pattern foonatn interesting study exploring the
cortical pattern formation using Turing morphogendiscussed in Chapter One (Lefevre
and Mangin, 2010). In real life, a group of suchrpmogens are likely to be involved in
sulcal pattern formation. In addition, such morpéregcan be genetic or environmental,

further adding complexity to the process.

It is possible that in certain pathologies whereagie abnormalities are known, the
cortical folding pattern distribution would chanfgem that of the normal population.
The folding abnormality can be difficult to detetcsually; the abnormal folding
distribution of the dataset as a whole may be ofesemore easily. Such change in
distribution can be reflected in the shift of laoas of the dense regions. Another
possible change is in the nature of distribution,ifistance a shift from non-Gaussian to

Gaussian pattern of distribution would hint a simfthe dynamics of folding.
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To conclude, the definition of clusters should kb&dmined by careful observation of the
distribution of the cortical folding patterns. Dafent clustering algorithms can be used
based on the kind of clusters we are trying to.flh@ombination of clustering

algorithms can be used to give a more comprehensseription of the data.

6.4.41CP

We recently realized that because of the amounaébility observed with a group of
sulcus like Broca’s area, a better control of theliy of the ICP alignment was
mandatory. For instance, combining the actual sided inFig. 5.26with the complete
brains, we realized a shift in orientation from k&g to the right of the Isomap.
Furthermore, some of the individual alignments wiité template brain were spurious
because either ICP yielded a local minimum or ¥ $ulcus groups are too different to
be aligned correctly. Future work will aim at ovemting these difficulties following

alternative research directions:

. Adding a low variability sulcus like central sukto the group to impose the
global orientation;

. Using local alignments to compute the local SPAstther than the alignment to
the template (we think that ICP alignment is mataust when dealing with
similar shapes);

. Using more robust ICP algorithms;

. Controlling the matrix of pair wise alignment®ally to introduce some

regularization.

6.4.5 Datasets
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The datasets used in part determines the pattemhs/ould be found. Many factors are
important in the selection and preparation of datasand would consequently determine
the outcome. The size and the type of the dat§satient versus normal, animal versus
human etc) are some of the important factors. éfuture, many more datasets should be
used in pattern analysis to get a more comprehemsotionary of patterns. The datasets
can be mixed to increase the statistical power;gvaw caution should be taken before
mixing to ensure that the datasets are compaiisteen different populations are used for
pattern analysis, the patterns obtained would terdnt. Another issue is the method to

reliably compare the patterns or clusters obtained.

6.5 Future directions

In the future, different directions can be takeor. iistance, other datasets could be used
for the same type of analysis. It is importantdafaem the results on other datasets, the
nature of the input may change the results as Wwellig 6.2 another dataset containing
486 brains is analyzed. This database was proceysmainVISA first, and then the
branches of the central sulci were unselected nigndi&e resulting Isomap confirms
our results, the hand knob moves upwards frometieéd the right of the axis. With this
higher number of brains, the Isomap organizati@ks$calmost perfect (a neighbourhood
of 10 brains is used to define the nearest neigh@ph). This database is part of a
pedigree study (collaboration with P. Kochunov) thdl allow addressing the genetics
underlying the hand knob feature. Preliminary resstdnd to show that the hand knob
location is heritable.
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Fig 6.2 The analysis of the central sulcus of a dadet containing 972 adult sulci

(courtesy P. Kochunov)

C

Fig 6.3 The isomap of the central sulcus of a datesof infants (courtesy F. Leroy, J.

Dubois, L. Hertz-Pannier and G. Dehaene-Lambertz)
A: the left (magenta) and right (green) hemisphsogerimpose®: all the sulci plot togethe/D: similar
to A/B, the point of view is changed to the bottorstead of the surface of the brain

It is also interesting to study the sulcal formsig developmentrig 6.3illustrates the
preliminary images of the analysis of the centudtss of infants, aged from 1 to 6
months. The higher position of the hand knob caolis=rvedKig 6.3 B) from the
surface, but not from the bottorfRi§ 6.3 D). This is likely due to the stability at the
bottom of the sulci as discussed in Chapter Fodr@mapter Five concerning the central
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sulcus. The investigation could be extended tadoéil of various ages and especially
backward in time: recent advances provide simimtr@l sulcus representations in
highly premature babies (courtesy J. Dubois andippi). Finally some comparative
studies performed in collaborations with the groop®/. Hopkins and P. Kochunov lead

to similar observations with chimps and other ptasa

We also tested to which extent our method is robostigh to provide the same
gualitative results without any manual correcti®®0 brains from the Localizer database
of Neurospin were processed by A. Moreno and RelPfirom the group of S. Dehaene.
They applied the automatic sulcus recognition affWISA. We processed the resulting
500 central sulci, 10 of them being discarded leydhtlier detection mechanism. The
SPAM of the resulting one dimensional Isomap canibealized belowKig. 6.4 and fit

perfectly the previous ones.

Ideally, such sulcal form analysis should be coratliwith functional data and fibre
bundle dataFig 6.4andFig 6.5illustrate preliminary such results. The functib8®2AM
highlighted inFig.6.4 proves that the hand knob keeps its status ofiiankl for the hand
motor area whatever its location along the cemstnidus. The language activation extent
seems correlated to the size of the second lowar Kmat we supposed associated with
the language system. Further analyses are requoirgghfirm this association at the
individual level. Indeed, a bias could be introdilibg differences in the quality of
alignment from one side to the other side of tloenigp. More in depth work is needed,
these images are only shown here to illustratertaey exciting directions that can be

taken using the automatic sulcal pattern analysithads developed in this work.



180

Fig 6.4 Functional activation SPAM superimposed ogentral sulcus SPAM along
the Isomap axis of the central sulcug250 brains, localizer protocol, courtesy P. Pinel

and S. Dehaene).

The green SPAM is related to the right hand mottivation, the orange SPAM is related to silentieg
involving part of the motor language system, magharea controlling the larynx. The functional SPAM
are obtained using the isomap coordinate of the&eftral sulcus as individual weight when averggin
individual activations and the individual alignmeusted for the left central sulcus relative to tm@plate
sulcus. Therefore the functional SPAM should berjteted as group studies for population with gimil

left central sulcus shape.

Fig 6.5 The fibre bundles surrounding the cingulatesulcus of two subjects
It can be seen that even though in both casesuptérns can be observed. A closer look at the rtiyidg
fibre connection reveals that the interruptionsliedy due to different configurations of the umigeng

fibre architecture (courtesy P. Guevara and C. Boup
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6.6 Conclusion

As illustrated in the sample dictionary (detailieréo Chapter Five), description of the
variability can be more systematic, and resulttaoge datasets can be obtained
automatically. Such analysis adds to the valuald&kwuch as that of Ono (Ono et al.,

1990), using modern imaging and computational tieghes.

Based on the expanded pattern dictionary, hypatwdolding mechanism can be
further verified. It might inspire new hypothesissied on the expanded information. As
our understanding of cortical folding variabilitgtg more complete, more insights can be

gained, models can be refined and expanded.

Genetic factors (when patterns are linked to gertksieases, twins, families) in the
folding process can be further tested. Landmarkiéwelopment and change (in the study
of plasticity, development and aging) can be e&thbd. Such pattern analysis may help
with diagnosis and the monitoring of treatment.afi) such cortical folding analysis can
be combined with the information of fibre bundlenbath, functional data and
information from behavioural experiments. Developtrean be systematically studied in

longitudinal studies to reveal the timing of coatipattern formations.

Indeed, the cortical folding patterns can be lantishéor the past (developmental
abnormality, in-born traits), the present (benchofar treatment and change) and the

future (in early diagnosis).
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APPENDIX A: RESUME

Trouver des nifst dans les plissements corticaux

Résumé

Le contexte de cette thése est I'étude de la viditades plissements du cortex.

L’objectif principal est la conception d’algorithreg@ermettant de découvrir des motifs
spécifiques a une sous-population d’individus. uefimal est de réaliser un dictionnaire
de ces motifs et de les associer a des particégbgnitives ou architecturales, voire a
des pathologies. Deux stratégies de clustering gmposées pour mettre en évidence de
tels motifs. La premiére repose sur des descrigtderformes globaux correspondant
aux invariants de moment 3D, la seconde reposéestimation d’'une matrice de
distances entre chaque paire d’individus. Un algorie de clustering dédié est congu
pour détecter les motifs les plus fréquents de eranobuste. Une technique de
réduction de dimension est utilisée pour mettréwdence les transitions entre motifs au
sein de la population. Les méthodes algorithmiqueposées sont utilisées pour étudier
la forme du cortex sensori-moteur d’une populatiengauchers contrariés. Des résultats
originaux sur le lien entre la forme du sillon ceattet la latéralité manuelle sont mis en
evidence. Les méthodes développées sont ensli#éastipour construire le premier
dictionnaire des motifs observés dans les pliss&sramticaux issu d’'une approche
algorithmique.

Le reste du résumé est organisé comme suit: Lai@rersection propose une
introduction aux domaines les plus pertinents peuravail; la seconde section introduit
une premiére approche de clustering fondée sudessipteurs de forme; la troisieme
section explore les approches fondées sur le cdédistances entre paires de sillons; La
section 4 applique les méthodes mises au poidétade des corrélats de la latéralité
manuelle sur la forme du sillon central, illustré;potentiel des méthodes proposées; la

section 5 comprend la discussion des divers asgedtanalyse de la morphologie du
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cortex et la section 6 présente les premieres phgegtionnaire que nous souhaitons

construire a plus long terme.
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1. Introduction

Dans cette section, un apercu général est donndamaines de préoccupation
fondamentale pour cette thése: le phénoméne dsepiisnt cortical et la morphométrie

informatisée de ces plis a partir de données démagar résonance magnétique.

1.1 Plissement cortical du cerveau

Le voyage commence avec le processus de plisseostitl. Ce processus de
plissement, mystérieux et fascinant, n'est pasrertwen compris. Est-ce que les
plissements corticaux contiennent des informatgund'organisation fonctionnelle du
cerveau humain? Dans la forme des plis, peut-oareesun motif caractéristique de
certaines maladies neurologiques? Il existe unke fd& connaissances éparses sur le
sujet accumulées par les études détaillées deaimér de neuroanatomistes. Grace aux
progres récents des logiciels dédiés a la recosaraie automatique des sillons corticaux,
les questions concernant les plissements cortipauxent maintenant étre revisitées a

partir de bases de données incluant un grand nodebecerveaux (Mangin et al., 2004c).

Il est fascinant de regarder les représentationdediplissements du cerveau. Comme l'a
dit Welker: "le plus frappant, intéressant, enaoa compris des caracteres
morphologiques des hémispheres cérébraux chezaesniieres correspond aux
dispositions diverses et complexes des circonwvaistrorticales et des sillons” (Welker,
1988). Chaque cerveau est différent et aucun d'entx ne ressemble exactement a ceux
des livres d’anatomie (des exemples sont préseatésla figure 1). L’énorme

variabilité entre ces plissements est manifeste.
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Fig. 1. La variabilité des plissements du cortex
Hémisphéres droits de trois personnes, les plisceoix du lobe frontal sont mis en évidence sefon |

nomenclature traditionnelle.

Historiquement, certains ont beaucoup douté dagtafication des formes des
plissements du cortex : «<semblable a la bouclérdedtin gréle qui semblait ne présenter
aucun ordre particulier» (Edwin Clarke, 1973). Dendébut des années 1800 l'attention
a été attirée par Gall et ses disciples sur I'iécaliser certaines facultés mentales
dans des gyri spécifiques (Clarke, 1968). La pHo&ie est maintenant du passe, mais
cette initiative a conduit a de nombreuses étudssriptives des circonvolutions
cérébrales. De nombreuses observations suggérea quorphologie des plissements
peut étre liée a la connectivité et aux fonctioli®brales (Welker, 1988). Il est donc
intéressant d'explorer davantage les modeles sigeplient extraits des images IRM avec
des méthodes de calcul plus modernes et autongteté@essayer de lier ces modeles a
des fonctions, des comportements ou des pathologies

Les études actuelles de la variabilité des plifcarx s’appuient principalement sur des
caractéristiques morphométriques simples, telleslglongueur ou la profondeur des
sillons ou des gyri standards. La description les plétaillée de la variabilité des sillons a
été proposée dans l'atlas de Ono (Ono et al., 1@@D)atlas ne repose pas sur un seul
individu, mais sur vingt cerveaux différents. Pobhaque sillon, les auteurs proposent
une liste de motifs observés et leurs fréquences.nddeles sont définis par exemple en
tenant compte de la variabilité des interruptioes sillons. D'une certaine maniére,
I'objectif initial du travail de thése est d'autdiser le travail effectué par Ono. Nous
voulons découvrir des motifs stables pour un smisgmble de la population. En outre,
nous voulons trouver des liens entre ces motifereanisation fonctionnelle du cortex.

Un systéme de nomenclature standard a été misaea pbur décrire les circonvolutions
de la surface du cerveau humain (Anatomica, 1983nénte, 1985; Ono et al, 1990.),
(fig. 2 pour un exemple). Malheureusement, en ragm|'énorme variabilité qui existe
entre les individus, la réalisation d'une conceptiaifiée de la description des sillons et
des circonvolutions est extrémement difficile. Uemple intéressant d’'une tentative de

compréhension systématique des sillons et desnsiodations est le modéle des racines
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sulcales, des entités élémentaires correspondamqramieres ébauches des plis
supposeées stables a travers les sujets (Regiff.e2005). Ce modéle générique permet
des analogies entre les motifs de I'ensemble abgidus, voire méme des études
comparatives a travers les espéces. Il nécessitenins encore des validations croisant
des données issues de I'étude du développemeibtrakmrde I'architecture corticale

intrinséque au manteau cortical et de sa connagtivi

Gyrus recrus

[ ifactery subous

o
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Fig 2 gyri et sillons, un exemple de la présentatia livre du texte de la nomenclature.

Gray's Anatomy: les bases anatomiques de MédetiDkirirgie (édition britannique 38e éd.)

1.2 Les théories sur le mécanisme de plissement cor tical

Il a d'abord été proposé que la sulcation est di@x@ansion du cortex limitée par le
crane et les ganglions de la base (LeGrossCladg)198 fut découvert par la suite que
I'elimination d'une grande quantité des structemeticale et sous-corticale du cerveau
d’'un mouton n’affecte pas la taille et I'organieatdes sillons (Barron, 1950), invalidant

cette hypothése. Van Essen (Van Essen, 1997) prap@sles connexions neuronales qui
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se développent pendant le deuxieme trimestre desgsse produisent des tensions qui
attirent fortement les régions interconnectées’aitps rapprocher grace aux plis.
D’autres théories du plissement mettent 'accentles facteurs mécaniques tels que la
croissance différentielle des couches corticalesldT 1982). Les facteurs génétiques
jouent probablement un rdle crucial dans la foree glissements du cortex. Un contréle
génétique du développement cortical a ainsi étpqe® (Rakic, 1988) et des liens
importants entre les plissements du cortex ett@arghitecture ont été confirmés (Fischl
et al, 2008.).

1.3 Approches informatiques pour étudier le plissem ent cortical

Les progres récents de I'imagerie du cerveau & gdarta résonance magnétique (IRM)
fournissent de précieuses informations concermaplissement cortical. Par exemple, il
est possible d’étudier la dynamique du plissemkatz ein sujet impliqué dans une étude
longitudinale. Cette dynamique peut égalementstnellée : la simulation informatique
d’'un modéle morphogénétique (Toro et Burnod, 2@0&) proposée pour tenter de
préciser l'importance relative des facteurs méamscet génétiques dans les plissements
du cortex. Une autre approche intéressante poligeep la cohérence et la variabilité du
plissement cortical s’appuie sur un modele phénatoggue (Lefévre et Mangin,

2010). L'étude suggere que des interactions néailies régies par un modele de type
reaction/diffusion suffisent & expliquer a la ftasstabilité de I'organisation générale des
plissements et la variabilité issues de l'interiptde certains sillons.

Grace a des approches algorithmiques, plusieuresadganisationnels génériques ont
maintenant été proposés en ce qui concerne lemsshde plissement cortical. Dans le
modéele des racines sulcales inspiré du développeiRenis et coll., 2005), la variabilité
observée dans le plissement cortical adulte edigerée sur la base de gyri plus ou moins
enfouis dans les sillons (les plis de passagegefait, une autre approche qui repose sur
les maxima de profondeur des plissements prinaipaié induits par ces plis de passage
conduit au modéle des « sulcals pits » qui estsiragaire au précédent (Lohmann et al.,
2008 ; Im et al., 2010).
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Une facon de permettre la comparaison des plisssrdercortex et de la morphologie a
travers les sujets est d'abord d'aligner les sessfaorticales. Cette approche permet de
comparer |'épaisseur corticale et la surface daststes lobaires ou gyrales, mais aussi
la géométrie des plissements du cortex. Un indegas/ent utilisé pour quantifier
l'ampleur du plissement, l'indice de gyrificatio®). L'IG a d'abord été défini comme le
rapport entre les longueurs des contours coronBud2cerveau incluant et excluant les
sillons (Zilles et al., 1988). Des versions 3D gi#s ou locales sont aujourd’hui utilisées
en routine. Une multitude d’autres parametres mnaggique peuvent étre utilisés
lorsque les sillons ont été identifiés au sein likspment : la longueur, la profondeur, la

surface et lI'ouverture des sillons (Mangin et20Q4b, Kochunov et al., 2005).

L'étude de la morphologie corticale apporte deitaiére sur de nombreuses questions
importantes. En particulier, des résultats pertsient été mis en évidence dans quatre
domaines: les anomalie du développement, le \@edlinent, la plasticité, et la relation de
la génétique au développement des plissements. d@#tiesthese, un lien intéressant

concernant le développement du cortex et sa pitéssiera mis en évidence.

2. Clusters de plis

Dans cette section, le concept de l'aide d'algoethde clustering pour analyser les
plissements du cortex est introduit. L'effort deestton du descripteur de forme
approprié et le développement d'un algorithme dsteting spécifique a I'analyse des

plissements du cortex sont décrits.

2.1 Définition

Tout d'abord, nous avons besoin de définir lesfedg plissement cortical que nous

recherchons. Dans une étude préliminaire, ces smatifit vaguement définis comme un
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groupe de cerveaux qui montrent un trait caradigus qui les distingue des autres
cerveaux. Cette caractéristique pourrait étre bsiséka surface du pli, le degré de
courbure, le nombre et la position des interru@j@tc. Puisque ce type d'apprentissage
non supervisé sur la forme des plis n'a jamaisésatiisé systématiquement avant, nous
n‘avons pas une définition claire. Il est égaleni&s probable qu’aucun ensemble
restreint de parametres (angle, longueur, profondepologie..) ne permette de
caractériser la totalité des motifs intéressants.

2.2 Méthodes de clustering

Nous discutons maintenant de la méthode qui peaiuéitisée pour découvrir des motifs
répondant a la définition ci-dessus. Il s’agit mprd’un probleme de clustering, c’est-a-
dire

un probléme de classification non supervisée. Gétiation se distingue de
I'apprentissage supervisé par le fait qu'il n'yaa glexemples a priori & apprendre pour
guider la méthode. Ce type d’'analyse est souvéatte® lorsque peu d'information a
priori est disponible sur les données. Le clusteest une composante essentielle du
monde de I'exploration de données qui peut papiimettre de découvrir des
informations utiles (Berry et Linoff, 2000).

Un grand nombre d'algorithmes de classificatiostexilans la littérature de différents
domaines : la reconnaissance des formes, l'inteldg artificielle, le traitement d'images,
les statistiques et mathématiques appliquéesytzhpkgie et la biologie. Dans chaque
domaine, un ensemble d'algorithmes ont tendanocenénér pour des raisons historiques
et pratiques. Par exemple, I'approche hiérarcheégtiplus utilisée dans la communauté
de l'intelligence artificielle, alors que I'apprechasée sur un modele est plus utilisée
dans la communauté statistique. Bien que de nassallancées soient régulierement
présentées dans le développement d'algorithmesistering, les défis demeurent. Une
partie de la raison est que les problemes spéesiguun domaine nécessitent souvent
l'utilisation d'algorithmes spécialement conc¢us,digorithmes de clustering généraux ne

sont en effet souvent pas suffisants. Le compoméhes situations de la vie réelle est
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toujours complexe et imprévisible, et exige desitamhs plus sophistiquées ou plus

spécifiques.

Il n'y a pas de technique de regroupement unieraeht applicable pour découvrir la
variété des structures présentes dans les ensetdebtesinées multidimensionnelles.

Une technique donnée ne met en évidence qu’'undgpsructures, car les algorithmes

de regroupement contiennent souvent des hypotirapésites ou explicites sur la forme
des clusters. Par exemple, il y a des clusters aotagt des clusters chainés. Les
membres d’'un cluster compact ont deux a deux usiedgr similarité mutuelle;
habituellement un cluster compact peut étre reptégmar un centre. En revanche, un
cluster chainé est constitué d'une série de pdents laquelle chaque membre n’est trés
semblable qu’'a quelques autres points. Ces dews typ clusters sont intéressants méme

s'ils mettent en évidence des informations difféeen

De nombreux algorithmes de classification existeinie taxonomie usuelle consiste a
distinguer les approches hiérarchiques des appsquréitionnelles (Gan et al., 2007).
Les méthodes partitionnelles sont appliquées la$qn veut classer les objets en N
groupes. Les algorithmes hiérarchiques, quant areugonstruisent pas une seule

partition mais des partitions emboitées pour teasN possibles.

Quel type d'algorithme de clustering est le pluspdél a I'analyse des plissements du
cortex ? Pour prendre une décision, nous devomsiresur notre objectif initial: trouver
des motifs de plis. Nous recherchons des groupesrgteaux de taille raisonnable qui
présentent une similitude dans leurs plissemeatscéhséquent, nous ne cherchons pas a
classer chaque cerveau. En outre, notre idéeiirgultun motif correspond a priori a un
cluster compact. Finalement, au regard de 'indotyaariabilité des plissements, il
semble impératif de disposer d’'une technique wbsste au bruit. Il est probable que les
motifs les plus clairs que nous allons chercheeirmen évidence ne s’appliquent qu'a
une minorité de cerveaux. Notre idée initiale &aieffet que des motifs purs

correspondent a des situations biologiques extréotele nombre de phénomenes
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impliqués dans le plissement local est faible,utthg sont valables que pour un nombre

restreint d’individus.

2.3 Les descripteurs de forme

Les moments invariants 3D ont été proposés commmeekrripteurs intéressants pour
I'étude de la forme des sillons corticaux, capésivent étre calculés pour n‘importe
guelle topologie (Mangin et al., 2004). Par congéguils permettent la gestion des
fréquentes interruptions des sillons. La constanctle ces descripteurs les rend
insensibles a la localisation, a I'orientation Eééhelle des objets. On peut donc les
considérer comme des descripteurs de la formeecpuBien que leur dérivation
théorique soit complexe, ils peuvent étre calcdEmaniere simple et robuste a partir
d'une image en noir et blanc définissant un objans la suite, nous utilisons seulement
les 12 invariants calculés a partir des momentsodedonnées d’ordre inférieur ou égal a
trois. Notez néanmoins que le calcul des momentgignts est théoriquement possible
pour n'importe quel ordre. Il est malheureusemelativement difficile de se faire une
idée intuitive des informations de formes codéespa invariants car ils s’agit de
polynomes complexes des moments. Pour le trav@slgmté ici, les invariants d’un sillon

ou d’'un groupe de sillons sont calculés en utili€&@minVISA (http://brainvisa.infd pour

chaque individu avant d’étre utilisés pour le chustg.

Des études préalables ont été menées pour véyifeefensemble des 12 moments
invariants utilisé est une représentation raisandblla forme d’un sillon. Il était en
particulier important de s’assurer qu’une petitgataon de la forme ne conduit pas a une
grande modification des invariants, car cette pép@m’est pas garantie par leur
construction. Notre approche tres pragmatique dblpme a consisté a créer des séries
de formes échantillonées correspondant a une dafanmréguliere d’'une forme simple.
De multiples expériences de ce type ont montrdegigvariants varient lentement pour
les formes explorées, mis a part deux d'entre aupepvent changer de signe lors de

I'ajout d’'un seul voxel et présentent une distrbatbimodale pour certains sillons. lls
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ont donc été supprimés de notre représentatiotyf@ede phénomene existe peut-étre
pour des formes rares pour les autres invariards in’était pas problématique pour
notre objectif qui vise essentiellement a découyuelques motifs afin de tester leur

signification biologique.

Une deuxieme étude visait a vérifier que les infions sur la forme pure intégrées dans
les invariants peuvent distinguer les formes qracigrisent différents sillons corticaux.
Pour ce but, nous avons réuni a de nombreusesesygiusieurs grands sillons pour un
grand groupe d’individus, et nous avons réaliskaguae fois une analyse en composante
principale (Fig. 3). Dans beaucoup de cas, les igrsmaxes de 'ACP montrent que les
invariants séparent les sillons. On observe padessrecouvrements mais ce n’est pas
étonnant car certains sillons ont des formes siregal e fait que chaque sillon conduise
a un nuage relativement compact implique que le€sentations a base d’invariants

peuvent étre utilisées pour rechercher des motifs.

2.4 L'algorithme de clustering pour la découverte d e motifs sulcaux

Au vu des impératifs mentionnés ci-dessus, il serabkez évident que I'approche
hiérarchique du clustering est la plus adaptéet@ nolonté de trouver des clusters
compacts noyés au sein de nuages de points té&apénes. Cette méthode est donc

choisie dans la phase qui suit.

Pour trouver la régle permettant d’arréter le pssas d'agglomération hiérarchique au
niveau le plus intéressant, une méthode spécifigété concue. Elle s’appuie sur la
génération d’'un grand nombre de nuages de poéasailes engendrés par une
distribution gaussienne estimée a partir des danréles. L’idée sous jacente est que la
découverte d’'un ensemble de motifs intéressantinlaatider I'’hypothése que la
distribution des points résulte d’'une simple gausée Un ratio classique entre la
compacité des clusters et leur éloignement permetdactériser un ensemble de motifs.

Les distributions de ce ratio sur les ensembles@il&s sont utilisées pour sélectionner
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le niveau de I'arbre procurant la meilleure confajion, c’est-a-dire celle qui s’éloigne

le plus des distributions observées dans les eresralgatoires.
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Fig. 3 Les invariants de moment ont un pouvoir misinant entre les formes des sillons.
Les données de trois sillons, le sillon cinguldayan), le sillon central (vert) et le sillon padéoccipital
(magenta) sont plottées en utilisant les deux preraxes d’'une ACP appliquée au vecteur d’invasiant
normalisé (36 cerveaux étiquetés manuellementigdises). Les formes de certains sillons choisis a

hasard sont superposées a I’ACP. Un exemple deietslipn est proposé pour un cerveau.
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Fig. 4A Obtenir les meilleurs clusters partiels

Les échantillons simulés sont obtenus en échamiibune distribution gaussienne estimée a patiad

matrice de covariance des données réelles. Lafaasion hiérarchique est exécutée sur I'enserdble
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données réelles et tous les ensembles de donndé@ges. L'étape de I'agglomération dotée du meilleu
rapport compacité/éloignement obtenu est séléatienba qualité des clusters trouvée a cette éfgtpe e
définie par le calcul d’une p-valeur. Cette valest calculée en comptant le nombre de fois quedtable

de données simulées donne de meilleurs résultatieguonnées réelles.

La résistance finale des clusters trouvés est fosdé une p-valeur calculée en comptant
le nombre de fois ou les jeux aléatoires sont parformants que I'ensemble de données
réelles. Ces groupes sont appelés clusters pdftaise 4A). Un algorithmes de
bootstrap est ensuite utilisé pour augmenter lailgéade 'algorithme (cf figure 4B). Le
procédé décrit dans I'étape 1 est réalisé a phssieprises sur des sous-ensembles des
données d'origine. Les centres des clusters obsamisonservés pour procéder a un
second niveau de clustering relativement aisé géméent réalisé avec l'algorithme K-

medoid associé a la méthode PAM pour estimer lebneme clusters.

Bootstrap
samples

= Step One: *:
» Getbest partial clusters :
H
H
H

Obtammng final
chisters
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Fig. 4B Robustification a I'aide d’'un bootstrap

2.5 Validation de I'algorithme de clustering

Pour évaluer la performance de I'algorithme PCB@sipurs expériences ont été
effectuées sur des ensembles de données simuésensembles de données simulées
sont générés comme suit. Choisir une paire densilte facon aléatoire. Générer pour
chaque sillon un cluster tiré d’'une distributionuSsienne estimée a partir de la
distribution de ce sillon. Cela donne un ensemblda@hnées avec deux clusters connus.
Ajouter du bruit pour créer une suite de donnéasigies de plus en plus bruitées. Le
bruit ajouté suit une distribution de Poisson, destvaleurs minimale et maximale
correspondent au jeu de données d'origine.

Deux algorithmes sont exécutés sur ces ensemblésmigtes simulées : une méthode
classigue de Modele de Mélange Gaussiens (GMM, [Budh, 2000) et I'algorithme
PCBB. Les résultats sont évalués en fonction dubmerde clusters trouvés et la distance
entre les centres trouveés et les véritables certeesombre de gaussienne du GMM est
estimé a partir du critere d'information bayégiIC). Pour nos expériences, nous
utilisons la boite a outils Mclust de R pour évalleeGMM (Fraley et Raftery, 2002,
2006). Nous testons en fait deux variantes de GMiMe approche classique est une

variante ou la méthode est informée de la propodi® bruit ajoutée aux données.

Deux comparaisons sont effectuées pour évaluardhté§ d'analyse. Tout d'abord, la
distance entres les centres trouvés et les véegatantres est calculée. Quand il y a plus
de centres trouvés par l'algorithme que de centeds, seuls les deux groupes les plus
proches des centres réels sont pris en considér&ieuxiemement, les nombres de

clusters trouves par chaque algorithme sont corearé&aleurs réelles.

Le résultat est montré dans la figure 5 ci-dessoess résultats montrent que I'algorithme
PCBB est comparable a I'algorithme de GMM en terdeekwcalisation des centres des

clusters. Toutefois, en termes d'estimation du rmerdb clusters, PCBB est plus précis et
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plus stable que I'algorithme de GMM lorsque le bauigmente. Informer le GMM du
pourcentage de bruit lors de l'initialisation nenbée pas améliorer les performances. Le

résultat montre que PCBB est plus robuste que GMi pe probléme particulier.

2.6 Résultats en utilisant I'algorithme PCBB

La recherche de motifs est réalisée sur 'ensenidl@6 cerveaux déja utilisé pour
générer les données simulées pour la validatiordelixieme ensemble de données
composé de 150 cerveaux est aussi utilisé pouierdda reproductibilité des résultats.

Un exemple de clustering obtenu pour le sillon alage est représenté (Fig. 6).

Un premier motif est constitué de sillons présenti@e grande interruption antérieure,

un second motif est constitué de sillons présentaatinterruption plus petite et plus
postérieure, et un troisieme modele est constitugilibns continus. Il convient de noter
gue ces motifs ne peuvent étre déduits simplemenbchbre de composantes connexes.
En effet, les sillons du troisieme motif ne somithaues qu’en apparence: certains d'entre
eux sont constitués de plusieurs composantes ceamgi se chevauchent les uns les
autres lorsque le sillon est vu de dessus. Enlégithoments invariants sont aveugles a la
topologie. Par conséquent, ces trois motifs ser@iéerprétées de maniére plus fiable en
termes de forme que sur le plan de l'interruptitar.exemple, le premier motif
correspond a des sillons beaucoup plus profonds ldguartie postérieure que dans le
milieu, tandis que le dernier motif correspond a profondeur des sillons plus

homogeéne.
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Figure 5 Performance de plusieurs algorithmes algteling sur une simulation

La premiére colonne indique le boxplot de la distaentre les deux centres les plus proches trqparés
I'algorithme et les vrais centres. (La boite a rexlges contient les données du second et du trasié
quartile, la ligne sombre a l'intérieur de la boéprésente la médiane, les moustaches indiquentilima
et les maxima, et les valeurs aberrantes sontseptées par des points.) L'axe des abscissesmamcba
'augmentation du pourcentage de bruit de 10 a0 cent. Les résultats de la méthode PCBB sont
indiqués sur la premiére ligne, les résultats deMadans correction du bruit sont indiqués sur laxdiaae
ligne, et les résultats de GMM avec correction duithsont indiqués sur la troisieme ligne. La déme
colonne montre I'histogramme de la distributiomdmbre de centres pour les trois algorithmes, la

troisieme colonne indique le boxplot du nombre eleties.
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Fig 6. Les trois motifs détectés pour le sillongtilaire gauche.

Ligne 1,3,5: les quatre cas les plus centraux diif mhans la base de données manuellement étiquetées

Ligne 2,4,6: les quatre cas les plus proches daedase de données automatiquement étiquetées.

3. Des modeles de la variabilité des plis

Dans cette section, de nouvelles approches sofdrérp pour I'étude de la variabilité
des plissements. En particulier, de nouveaux dascrnis de formes sont utilisés. lls
correspondent simplement a des mesures de simifariiées sur une distance entre
paires de sillons. Cette approche est couplée @aveenéthode de réduction de
dimension, « I'isomap », qui permet d’appréhendsmhodes de variabilité les plus
importants pour un sillon donné. Cette démarcheptet® celle qui consiste a faire
émerger des motifs fréquents et permet d’aboutiteddescription trés riche de la
variabilité des formes d’un sillon. En effet cattescription permet de comprendre les

transitions progressives qui permettent de passarrdotif a un autre.
3.1 Passer des motifs a des modéles du plissement ¢ ortical
Les travaux décrits dans la section précédentdastensa trouver les motifs les plus

fréquents en termes de plissements du cortex.r@esux ont montré qu’une étude de la

variabilité des sillons implique trois choix impants: quels sillons étudier, quelle mesure
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de similarité utiliser pour comparer deux silloesquel algorithme utiliser pour extraire

une structure intéressante a partir de ces medarsisnilarité.

En ce qui concerne le choix de I'endroit ou charplaemi les sillons corticaux, deux
nouveaux angles peuvent étre explorés. Dans laitganésenté dans la premiére partie,
les plus grands plissements avaient été choisislpalétection de motifs. Ce sont
probablement les plus stables, et par conséqueepeilvent étre définis de maniere plus
fiable. Les plus grands sillons sont en effet sggge@xister chez tous les individus,
tandis que les plis plus petits peuvent ne pasexdsez un individu donné en raison de
la forte variabilité du processus de plissememicbnvénient ou la limitation d'une telle
approche est que les petits plis secondaires regalebablement une mine
d’'information du fait de leur grande variabilitén&approche qui ciblerait non pas un
sillon mais une région compléte du cortex poudaiic s’avérer plus intéressante. En
outre, elle permettrait parfois de lever un certaambre d’ambiguités au cours de la
phase d’'étiquetage des sillons qui viennent pegtuiimterprétation des motifs mis en
évidence.

La vision actuelle de I'organisation du cortex &ss@ chaque fonction un réseau de
localisations. Chacune de ces localisations coores@ une région spécifique du cortex
traversée par un certain nombre de plis. Les &gmts de ce type les plus anciennes
sont les aires de Broca et de Wernicke associéksguage. En général, ces régions ne
sont pas associées a un sillon mais plutét a wsgywnsidéré comme un module
fonctionnel siege de I'activité cérébrale. Il n@udonc semblé tentant d’étudier la forme
de régions du cortex a travers la forme de I'endemés sillons les délimitant. Par
exemple, le sillon central et le sillon précenpalivent étre regroupés pour constituer
une description de la forme du gyrus précentrad@8saux structures motrices. Sur la

base de ce raisonnement, nous avons décidé diétuftiene de groupes de sillons de ce

type.

En ce qui concerne le choix de la mesure de sitdi)at'autres possibilités peuvent étre

explorées. Nous avons juqu’a présent utilisé desrgeeurs de forme 3D, les invariants
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de moment 3D. Bien que ces descripteurs puissefiirea une partie de la forme des
plis, l'information codée était toutefois limitéaraous n'avons utilisé que dix invariants.
Une autre approche intéressante et plus intuisvéilisation de similarités calculées
directement entre sillons. Chaque sillon peut é&ractérisé par ses similarités plus ou
moins importantes avec les sillons de tous leeawnjets. La caractérisation du sillon
est beaucoup plus compléte qu’avec des descripdeuiarme génériques, car elle
s’appuie sur une base de formes similaires. Ellg genc contenir des subtilités difficiles

a coder autrement.

En ce qui concerne l'algorithme a utiliser pourdigse, de nombreuses nouvelles
orientations peuvent étre explorées. Il est immarte réaliser, cependant, que lorsque la
nature des données d'entrée est modifiée, I'dhgoeide clustering peut avoir besoin
d'étre changé. En particulier, si I'approche duexgrode mesures de similarité discutée ci-
dessus était adoptée, la dimension de I'entréé gésaélevee. Quand la dimension des
données est élevée, la distance entre deux pardsrthées quelconques devient presque
constante (Beyer et al., 1999). Dans ce cas, diffgtile de faire émerger des clusters de
maniere robuste (Agrawal et al, 1998.). Pour cs®na, presque tous les algorithmes de
clustering classiques ne fonctionnent pas bien [gsuensembles de données de grande
dimension. Par conséquent, l'algorithme utilisé 8se en mesure soit de réduire la
dimension globalement, soit de procéder a une ts@hedes dimensions les plus
intéressantes pour le clustering. Une alternatst@éanmoins d'utiliser un des rares

algorithmes spécialement congus pour les enserdbldsnnées de grande dimension.

3.2 La mesure de similarité

Nous avons déja évoqué que la description fondélesd 0 invariants 3D est trop
limitée pour bien représenter toute la complexégé plissements. Des formes trés
différentes peuvent générer des descripteurs peesjmilaires, ce qui perturbe la
recherche de motifs stables. Afin de surmonteedaiblesse, une approche différente est

explorée ici. Une forme de sillon est décrite pavacteur de distances de cette forme a
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un grand nombre de formes semblables. Chaque gmilestance est calculée en utilisant
I'algorithme « Iterated Closest Point » (ICP), apn@érmalisation spatiale affine globale
du cerveau. Notez que le but de cette normalisafioivale est de supprimer d’éventuels
motifs induits par des différences globales déetaili cerveau. Notre mise en ceuvre de
I'ICP calcule la distance moyenne quadratique mainobtenue quelle que soit la

rotation appliquée pour tenter d’aligner les dearxies.

L'idée de représenter chaque sillon par sa distatieasemble des autres sillons dans le
jeu de données est illustrée dans la figure 7.lue gimple algorithme ICP est utilisé :
une forme (donnée) est adaptée a une autre form@e(g) de facon itérative par rotation
et translation (Besl et McKay, 1992). L'algorithsiarréte lorsque la distance moyenne
de la forme mobile au modeéle ne peut plus étreidérablement diminuée ou lorsqu’un
nombre maximum d'itérations a été atteint. Il cenvide noter que cet algorithme a été
largement étudié et que de nombreuses améliorativoat été proposées que ce soit
pour gagner en efficacité de calcul ou en robustess pour I'utiliser avec des
transformations non rigides. Dans notre étude, mous sommes contentés de la version
la plus simple pour plusieurs raisons.

Notre but initial étant de défricher I'intérét patiel d’'une analyse des motifs corticaux,
nous ne cherchons pas a atteindre I'exhaustivité thur cartographie. L'approche
fondée sur un recalage rigide nous a paru sufégaotir montrer I'intérét de la démarche
si elle met en évidence quelques motifs intéressiidus avons préféré cette approche a
une approche intégrant des degrés de liberté affindait de la normalisation globale
utilisée comme préalable. Des différences de sapkrdurant apres la normalisation
globale pourraient étre particulierement intéretssad’un point de vue neurosciences.
Nous avons renoncé dans un premier temps a lditentkes approches non linéaires
essentiellement pour des raisons de temps de cataik il est clair que dans le futur
nous définirons la notion de motif sulcal par rap@oun ensemble de transformations
possibles pour recaler les sillons, dans I'esgutel utilisé pour définir un invariant. Le

travail décrit par la suite considére seulememisé@nble des transformations rigides.
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Nous n'avons également pas jugé nécessaire deereettieuvre les raffinements
proposés dans la littérature pour améliorer la stdsse de I'ICP vis-a-vis des minima
locaux. En effet, nous verrons par la suite quedéeses distances véritablement utilisées
par notre méthode sont les distances faibles obseantre formes voisines. L'ICP
s’avere naturellement robuste lorsqu’on I'appligwec deux formes tres similaires, les
difficultés ne surviennent en effet que lorsquexdieames different de fagon importante.
Mais dans ce dernier cas notre seul besoin estatiohune distance élevée, ce qui arrive

guel que soit le minimum local.

An example: sulcus 1 sulcus 2 sulcus 3 sulcus 4

VW 9 « «a

Distance:
15

Distance matrix:

0 1.5 2526
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5 3 005
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Figure 7: Un exemple de la mesure de similarité

A titre d'exemple pour illustrer le concept de lesure de similarité, quatre sillons sont utiliss fouge)
appelé modéle 1 a 4. La distance (par ICP) peatc@iiculée pour chaque paire de I'ensemble. Pagueh
motif, la distance aux trois autres modéles peet@lculée. Elle donne ici une idée sur I'existede

deux groupes.

3.3 Algorithme pour gérer des données de grande dim  ension

La matrice de distance obtenue en utilisant I'éligore ICP peut avoir une dimension
trés élevée, puisque le nombre de dimensions asaagiombre de sujets. La

« malédiction de la dimensionnalité » est un pnoigdien connu survenant dans ce
genre de situations (Duda et al., 2000). La dinmende la matrice doit donc étre réduite

avant d'appliquer les algorithmes de clusteringdsed.

La légitimité de la réduction de dimension est sepoints de données évoluent

probablement dans un espace (ou une variété) dendion bien inférieure a la
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dimension des vecteurs de distances qui décrivenpaints. L'objectif est donc de
construire un tel sous espace préservant au maximuoépartition spatiale initiale des
données. L'algorithme Isomap a été choisi poue@tide préliminaire, mais de
nombreuses alternatives pourraient étre exploréasenir. L'algorithme Isomap a
I'efficacité de calcul et I'optimalité globale danalyse en composantes principales (ACP)
et du Multi-Dimensional Scaling (MDS). Il a égaleméa possibilité d'apprendre une
large classe de variétés non-linéaire (Tenenbawh, &000). Cet algorithme utilise le
MDS appliqué a des distances géodésiques entpoilets. Ces distances sont estimées
comme les plus courts chemins dans un graphe degpches voisins pour la similarité
initiale. En dépit de quelques faiblesses, cetrdlyne a été appliqué avec succés dans la
vision artificielle et la visualisation de donndesmédicales (avis 2008).

Un des intéréts des approches de type isomap résidele peu de parametres a regler.
En ce qui concerne l'isomap, il y en a essentietieinun, le nombre de plus proches
voisins utilisé pour construire le graphe dont deéeot les distances géodeésiques.
Lorsque le voisinage est trop grand, des « couctits » risquent d’étre créés ; lorsque
le voisinage est trop petit, les chemins dansdplge sont trop rares pour procurer une
bonne approximation de I'espace sous-jacent. Aerminnaissance, il n'existe pas de
maniere consensuelle de choisir K quel que sqitdbleme. C'est la principale faiblesse
de l'approche Isomap. Cet algorithme est « topglegnent instable » : des connexions
erronées peuvent étre créés dans le graphe deagisiCertaines méthodes ont
néanmoins été proposées pour surmonter ces prablEomame la suppression des
voisins les plus proches qui violent la linéardédle du graphe (Van der Maaten and al,
2008), mais nous n’avons pas eu le temps de lesdzer.

Une fois la matrice de distance géodésique calcutéalgorithme de réduction de
dimension simple telle que le Multidimensional $tglMDS) peut étre utilisé. Nous
avons en fait surtout utilisé le MDS non-métriglsoDS) qui préserve I'ordre du
voisinage plutét que les distances, dans la mesuretre mesure de similarité n’est pas
une véritable distance.
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3.4 Validation de l'approche ICP-Isomap

Combiner I'ICP et I'lsomap pour I'analyse des glsents du cortex nécessite une
validation. L'efficacité de I'algorithme de clustey PCBB présenté dans la deuxiéme
section a éte vérifiee. La validation est effectsidedes ensembles de données simulés et

réels.

3.4.1 La pertinence de I'lCP-Isomap pour l'analyselu cortex: ensemble

de données simulées

La performance de I'algorithme de clustering eabdid évaluée a partir de simulations
générées en utilisant le sillon central. Pour ckajmulation, trois sujets sont choisis au
hasard dans la base de données originale. Sixigasaléatoires sont générées pour
chacun d'eux par transformation affine. Un exenegl€ourni dans la figure. 8. La base
de données centrale de 62 sillons (Perrot et@9yRest utilisée pour la génération de ces
ensembles de données simulées. Chacun d'eux gsoséme 3 clusters simulés
compacts incluant chacun 7 sillons auxquels sanité$ 41 autres sillons centraux de la

base, conduisant a un total de 62 sillons.

Figure 8 Les sillons centraux simuléshaque cluster est indiqué par une couleur etuggirposé
au reste de I'ensemble. On peut voir que la vdii@kdu sein de chaque cluster est différente, mpaésles
formes des trois groupes suivent de preés la forrslibn central graine. Pour ces visualisatiooastles

sillons ont été alignés avec le sillon le plus neutelui qui minimise la distance moyenne a I'enise.
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Lorsque le clustering en utilisant PCBB est réadigées une ACP, un MDS ou I'lsomap,
il est constaté qu’lsomap offre les meilleurs @ust des clusters compacts éloignés les
uns des autres (Fig. 9 pour les clusters trouves).
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Figure 9 La comparaison des méthodes de réducti@ingension sur les clusters

simulés.De gauche a droite: la distribution en utilisamntgp, MDS classique et ACP. Les groupes

représentés sont ceux trouvés en exécutant I'ligogiPCBB. La couleur des sillons correspond & @il

la figure 8.

Les résultats sont évalués en fonction du nombiudgers trouvés. Un cluster détecté
est considéré comme un succes si la distance deesre au centre du cluster simulé le
plus proche est dans le rayon de ce cluster. Lenragt défini comme la médiane des
distances au centre. Les clusters supplémentaresatés ne sont pas pénalisés, car il est
possible que les données réelles contiennent deters. Les trois algorithmes comparés
sont: PCBB, PAM (K-medoid) et GMM (se reporter &éection 2 pour plus de détails). Il
est constaté que PCBB surpasse les deux autresdestiCe n'est pas si surprenant
guand on considere la nature de ces différentsidigees de clustering. L’objectif de
PAM et de GMM est de fournir une partition compldeel'ensemble de données. Cet
objectif n'est pas toujours compatible avec lacti&®r des clusters compacts. PCBB,

d'autre part, est congu spécifiquement pour déteeteype de clusters.

3.4.2 La pertinence de I'lCP-Isomap pour l'analyselu cortex: données

réelles

Une combinaison de trois sillons est choisie pawr étude de I'efficacité de I'approche

ICP-Isomap. L'algorithme Isomap sépare mieux lsgillutions de ces sillons que les



deux autres méthodes. En outre, le sillon le meam@ble, le sillon central, est

représenté comme un nuage compact.
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Figure 10 La comparaison des méthodes de rédudtiaimension
A: Le sillon central en noir, le sillon temporalpgrieur en vert et le sillon cingulaire en rouge

B: De gauche a droite: la distribution en utilisesdmap, MDS classique et de I'PCA.
3.4.3 Un exemple de clustering sur une région

217

La Fig. 11 illustre les clusters trouveés sur lagagingulaire en utilisant I'approche

enchainant ICP, isomap et PCBB. Le groupe de silltitisé vise a élucider la variabilité

de la partie frontale de la face interne du cogeixcause beaucoup de soucis

d’interprétation.

Koa I

Left Cingulate region

Figure 11 Les clusters trouvés sur la région ciaigell

Un exemple de la région s est affiché en premiesule, pour chaque motif, trois sujets alignés se

superposent afin de mettre en évidence les domdastabilité. La région cingulaire gauche est tres

variable. Les principales caractéristiques permettanterpréter ces motifs sont (1) le développetne

important du sillon appelé « intracingulaire » (peafond en bas dans le motif violet), (2) le

développement important du sillon « paracingulai{eérie de petits plis en haut dans le motif rpuEs
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les interruptions du sillon cingulaire et (4) larfee de la partie antérieure de la région. La padiérieure

est relativement stable.

3.5 Visualisation des formes a l'aide de SPAMs

Quand il n'y a pas de motifs évidents dans un eblgede données, ce qui est en fait
fréquent, nous aimerions disposer d'une alterngtoue étudier la variabilité des
plissements individuels. Quand la dimension deifiap est réduite a un ou deux,
I'organisation des plis peut facilement étre vigéd et souvent interprétée. En outre,
cette inspection visuelle est importante dans madyae exploratoire comme la notre
pour s’assurer de la qualité des résultats. Panpbes en utilisant une isomap de
dimension un, chaque sillon est représenté paourbre unique, une coordonnée. En
général, lorsqu’on passe d'une extrémité a l'aldrkaxe de I'isomap, la forme des
sillons change progressivement. L'inspection visystut souvent suffir a deviner la

nature de ce changement graduel de la forme.

Afin de s'assurer que les hypothése alors formudéetobjectives, nous avons
développé une technique permettant de mettre elerdse les changements de forme qui
prévalent dans I'organisation de I'isomap. A céitienous avons adapté la stratégie
classique de la communauté qui consiste a moyelaseimages a travers les individus
apres les avoirs alignées. On parle de Cartes Angi@s Statistiques Paramétriques
(SPAM, Evans et DL Collins, 1997). L'alignementligé@ pour nos moyennes est celui
calculé par I'lCP relativement au sillon le plusutre de I'ensemble, c'est-a-dire celui qui
minimise la distance moyenne a I'ensemble dessillDe tels sillons « moyens »
peuvent étre calculés localement en les répartiségulierement le long de I'axe Isomap.
Pour une position donnée, on calcule une moyennduée de sorte qu’un sillon
contribue plus ou moins a la moyenne en fonctioealdistance a la position
sélectionnée dans I'isomap. Le poids de cette ifaniton correspond a une décroissance
exponentielle par rapport au carré de la distad@placement. Un paramétre d’échelle
est réglé de sorte que chaque sillon ne contribsergiellement qu’aux deux SPAM

situées directement a sa droite et a sa gauchd’gansap. Ainsi, chaque image
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moyenne fournit une bonne représentation de ladates sillons autour de

I'emplacement correspondant sur l'axe.

4. Un exemple d’application en neurosciences

Dans cette section, les méthodes développées elmassdtions précédentes sont
appliguées a un probléeme de neurosciences : lsggoances éventuelles de la latéralité
manuelle dans la forme du sillon central. Troisydapons sont étudiées: les droitiers, les
gauchers et les gauchers contrariés : des gaughierst été contraints d'utiliser leur
main droite pour écrire. Le sillon central est @s gillons les plus stables. Il sépare le
cortex moteur du cortex somatosensoriel (PenfieRbédrey, 1937), (fig. 12A). Il est
extrait automatiquement dans I'ensemble des IRMidd du logiciel BrainVisa (Mangin
et al, 2004b.). Les algorithmes décrits précédenpemette de résumer la variabilité
de la forme du sillon central de la populationavérs un axe de dimension 1 fourni par

lisomap.

Deux ensembles de données sont utilisés. Dansteigr ensemble de données, 31
gauchers contrariés sont comparés a 19 droitie§ gauchers. Les individus sont
considérés comme des gauchers contrariés si kets gjleurs parents se rappellent
clairement que I'écriture a commencé avec la maircige a I'école, mais que le sujet a
ensuite été forcé d’utiliser la main droite. Lesailé sur les participants ont été décrits
dans une étude précédente (Kloppel et al., 201L0yggertorie tous les critéres
d'inclusion et d'exclusion. Pour corriger un évehhiais lié au faible nombre de droitiers
dans cette premiére base de données, elle esteeosmibinée avec une seconde base de
données contenant essentiellement des droitiette @euxieme série de données est la
base d'apprentissage du systéme actuel de receanaesdes sillons de BrainVISA
(Perrot et al., 2011).

Nous avons d’abord découvert un trait morphologigaepant et trés simple du sillon
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central, qui peut étre décrit comme la positiorsgdu moins centrée de la « bosse » de
main. Cette bosse de la main correspond de mdigmetablie au siége de la motricité
de la main (Yousry et al ., 1997). (La Fig. 12Bslire la définition de la bosse de la
main, la figl3 montre comment la position de I'eriese déplace le long du sillon
central dans 'isomap). Nous avons également obaame deuxieme "bosse" sous la
bosse de main. Lorsque la position de la bossa din se déplace vers le haut, la
deuxieme bosse inférieure devient plus imposangs.rBsultats tres similaires sont
obtenus lorsque le premier jeu de données est oénalviec la deuxiéme série de

données, comme illustré sur la fig14.

Les deux hémispheres sont différents en termesrdeefdu sillon central. Le sillon

central gauche des trois populations (les gauclesrsiroitiers et les gauchers contrariés)
présente généralement le motif & « deux bossésst,acdire la bosse de la main plus une
deuxieme bosse en dessous. Le sillon central émitevanche, correspond plutdt au
motif « une-bosse », contenant une bosse de laaegimemier plan, la deuxieme bosse
inférieure étant quasi inexistante. (cf figl5, pbamalyse sur le premier jeu de données,
et figl6 pour I'analyse sur le jeu de données coé)bi

: .
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Figure 12 L'nomonculus et la bosse de la main
A: L'homonculus de Penfield: figurines dessinéed'’skamisphere gauche (Penfield et Jasper, 1954)
B: Les sillons centraux gauche et droit de trojetsusont surlignés en rouge ; la position de ksbale la

main est marquée avec des étoiles bleues.
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Figure 13 positions de la bosse de main selon I&x@ap.

(HAut) Tout d'abord, tous les sillons ont été afigrsur un sillon modéle afin d'obtenir des oriéomat
similaires dans lI'ensemble. Ensuite, chaque sdlété translaté dans I'axe antéro-postérieure rdeae
proportionnellement a sa coordonnée dans I'lsomNafez le sillon atypique situé a I'extréme gauchke d
I'axe correspondant & un sillon central ainterroifgausillon est également représenté a partir plim de
vue différent ci-dessous pour rendre l'interruptpbos claire). (Bas) Des moyennes locales desisillo
centraux ont été calculées a des positions régutiént espacées de maniére a préciser la variatglité

forme codée par I'axe Isomap.

A

-

|l

Figure 14 positions de la bosse de main d'un ensesietbdonnées combinée
Analogue a la figure précédente avec le jeu de éemrombiné. Notez qu'un second sillon interrompu a

été poussé a l'extréme droite de l'axe.
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Fig 15 localisation de chaque population le londiae Isomap

Median shapes

La Fig 13 est représentée en transparence. En basidyennes locales calculées pour les positions

médianes de chaque population. Code couleur: @garcher, hémisphére droit; Bleu: gaucher contrarié,
hémispheére droit; Violet: droitier, hémisphére rRouge: gaucher, hémisphére gauche; Jaune: gauche

contrarié, hémisphére gauche; Vert: droitier, hghmse gauche

Que I'ont consideére les gauchers ou les gauchertsar@s, la forme de leur sillon
gauche differe significativement de celle des dst(droitiers vs gauchers: p = 0,002;
droitier vs gauchers contrariés: p = 0,02). Enwecgncerne I’hémisphere droit, le sillon
central des gauchers contrariés a tendance aifiénedt de celui des gauchers (p =
0,06), et les droitiers ont tendance a étre diffédes gauchers (p = 0,15) . On peut
également noter que le sillon de 'hémisphére damtinles gauchers et des droitiers

s’écarte de la zone neutre centrale dans deuxtidinsmpposées (p=0,0002).

Des études antérieures avaient que des asymétriadallle du sillon central
permettaient de distinguer les gauchers des dmifl@utefois, personne ne savait si
cette tendance devait étre attribuée a des fadtaugs ou a la plasticité induite par les
expériences et les influences environnementalass Datre étude, nous avons montré
gue les mécanismes innés sculptent la forme dangikentral, alors que I'expérience ne
fait que modifier sa longueur. Chez les gauchensradés, en effet, I'asymétrie de la

longueur du sillon central que nous avons calcesteypique des droitiers. En revanche,
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les résultats évoqués ci-dessus montrent que Baeyplent de la «bosse de main » dans
le sillon gauche, qui s’est avérée corrélée avéatéaalité manuelle, ne change pas chez
les gauchers contrariés. Nous avons méme mis der@®g que cet stabilité de la forme
était encore plus forte chez les huit gauchersranés dont au moins un des parents était
gaucher. Ainsi, la morphologie du cortex chez Iloombine des informations sur

I'inné et sur l'acquis.

Left hemisphere Right hemisphere

vy

Additional popuEatton

// ) WA
// / A

Median shapes
Fig 16 localisation des populations le long ded'ssomappour les deux bases combinées )

Dextrals

Sinistrals

Le code de couleur utilisé pour la base supplénreritadique les gauchers et les droitiers. Codéderou
Cyan: gaucher, hémisphére droit; Bleu: gaucheraagt hémisphére droit; Violet: droitier, hémisphe
droit; Rouge: gaucher, hémisphére gauche; Jaunehgacontrarié, hémisphére gauche; Vert: droitier,

hémisphére gauche

5. Discussion sur I'analyse des plissements

Dans cette section, nous évoquons le potentiéadall/se des motifs des sillons et des

nouvelles représentations des données fourniddgmmap. Nous indiquons également
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guelques perspectives. Quelques pages de notredfationnaire sont présentées pour

finir.

De nombreux facteurs jouent un role important danslyse des plissements du cortex.
En patrticulier, le choix des sillons ou des régidinstérét, les descripteurs de forme, la
mesure de similarité, l'algorithme de clusterinjegtsemble de données utilisé pour
l'analyse. Il faudra encore du temps pour peautihacun de ces choix. La limpidité des
résultats complétement inattendus mis en évideoaelp sillon central met néanmoins
en évidence le potentiel de notre démarche. llfiatgr que I'équipe de Neurospin a
exploré I'impact de la latéralité sur le sillon teh pendant des années en passant
complétement a coté des difféerences de forme que aoons découvertes. L'assymétrie
mise en évidence est elle aussi completement endds quelques pages du dictionnaire
présentées par la suite mette en évidence d’acdrastéristiques de formes de nature
trés similaires a celle découverte sur le sillontigd. Nous espérons donc gu’elles
pourront également étre associées a des partiésl@aognitives voire a des pathologies

développementales.

Outre ce type d’applications aux neurosciencess @wons également fait émerger que
les descriptions de la variabilité tres synthétimfmirnies par nos motifs et les premieres
dimensions de I'isomap permettent d’avancer suasgects propres a la nomenclature
des sillons. Nous avons a plusieurs reprise obgpreeertains motifs étaient induits par
des faiblesses de la nomenclature actuelle, mas das erreurs manifestes lors de
I'utilisation de cette nomenclature pour étiquetes configurations atypiques. Certains
motifs résultent quant a eux d’insuffisances duesye de sur-segmentation des
plissements utilisé par brainVISA avant I'étiquetates sillons. L’'ensemble de ces
observations va donc permettre d’améliorer la naitagare actuelle. Il est également
probable que la description synthétique de la tdiié@ fournie par les premieres
dimensions de I'isomap puisse étre injectée dangriori Bayesien utilisé dans le dernier
modéle congu pour reconnaitre automatiquementllesss(Perrot et al., Med. Image
Analysis, 2011).
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6. Exemple de dictionnaire des motifs des plissemen  ts

Nous illustrons ici le type d’'information que ngusnsons utiliser pour réaliser notre
dictionnaire, en nous focalisant sur quelques ré&gexemples : le gyrus précentral, la
région du sillon cingulaire, la région du sillomgoral supérieur, I'aire de Broca, et des
régions frontales supérieures. Nous évoquons égalelan possibilité de combiner

plusieurs régions.
Il s'agit bien sur d'une étude préliminaire quipalétre systématisée pour 'ensemble du

cortex.

6.1 La région précentrale

La figl7 montre que I'isomap révele que le premiede de variabilité de la forme du

gyrus précentral réside dans I'orientation du sifwécentral intermédiaire.

FYyyyrrry.
) ) ,ﬂ v/

Figure 17 Variabilité des plissements du gyrus @néal
A: L'isomap du gyrus précentral. Les sillons et 8#%AM locales sont associés afin d’indiquer la

localisation de ces derniéres dans la distribufimtez que la distribution est beaucoup moins dense
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lorsqu’on s’éloigne de la partie centrale, la fordes SPAMs les plus extrémes est donc a consideeer
précaution.

B. Les SPAMSs locales Les formes aux deux extrénsioés de couleur bleu et rouge respectivement. C:
Les SPAMs extrémes sont superposées. D: Les SPAMdalix motifs détectés par PCBB localisés sur

I'axe Isomap

6.2 La région cingulaire

Les résultats de l'analyse de cette région soseptés dans la figure 18. Le premier
mode de variabilité est capturé par I'lsomap.digif selon nous de I'ampleur relative des
développements des sillons cingulaires et paratairgs. Les SPAMs des trois motifs

trouvés par PCBB sont également représenteés.
6.3 Le sillon temporal supérieur (STS )
Le premier mode de variation capturé corresponitbhaverture» des deux branches

postérieures du STS (figl9). Les implications déeceariabilité en termes de fonction et

le comportement mériteraient d'étre approfondies.
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Figure 18 Variabilité des plissements de la régiogulaire (cette figure correspond au

mode de présentation introduit dans la figure piénte)
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Figure 19 Variabilité des plissement du sillon temgb supérieur (STS)

7. Conclusion

Comme l'illustre notre étude, la description dedsabilité des formes des plissements
du cortex peut étre systématisée. Notre démaraimeegpel’obtenir des résultats sur de
grands ensembles de données. Elle va permettroibager le travail initié par Ono

(ref) & une échelle susceptible d’engendrer unergd®n exhaustive des modes de
variabilités importants. Nous disposons déja a bigpin de plusieurs milliers de
cerveaux utilisables avec cet objectif. La multiption des bases de données publiques

devrait rapidement encore étendre cette base.

Les facteurs génétiques (lorsque des motifs sésdides maladies génétiques, des
jumeaux, des familles) dans le processus de plesewont pouvoir étre évalués.
Réduire la complexité de la variabilité de la ford¥en sillon a quelques dimensions va
considérablement clarifier les études de la pli#sfidu développement et du
vieillissement. Nous espérons faire émerger dertaé des sillons un nouveau potentiel

en termes de biomarqueurs. Enfin, nous espérodgrartdans I'analyse des plissements
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du cortex des informations issues des faisceatibides et des données. Le
développement cérébral pourra étre étudié systgumtient dans les études

longitudinales et révéler la chronologie associ&edifférentiation des motifs.
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