
HAL Id: tel-00665586
https://theses.hal.science/tel-00665586

Submitted on 2 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution à l’étude et à la mise en œuvre de
stratégies adaptatives de commandes intelligentes :

application au contrôle de systèmes dynamiques
complexes

Weiwei Yu

To cite this version:
Weiwei Yu. Contribution à l’étude et à la mise en œuvre de stratégies adaptatives de commandes
intelligentes : application au contrôle de systèmes dynamiques complexes. Autre [cs.OH]. Université
Paris-Est; Northwestern Polytechnical University (Chine), 2011. Français. �NNT : 2011PEST1059�.
�tel-00665586�

https://theses.hal.science/tel-00665586
https://hal.archives-ouvertes.fr


  
 
 
 
 
 

Thèse 
 
 

Présentée pour l’obtention des titres de 
DOCTEUR DE L’UNIVERSITÉ PARIS-EST 

DOCTOR OF PHILOSOPHY  
 

Spécialité: Sciences Informatiques 
 

par Weiwei YU 
 

Contribution à l’étude et à la mise en œuvre de stratégies adaptatives de 
commandes intelligentes : application au contrôle de systèmes dynamiques 

complexes 
 

 
 
Soutenue publiquement le 23 Février 2011 devant la commission d’examen composée de  
 
 
Prof. 
Prof. 
Prof. 
Dr. 
Prof. 
Prof. 
 

Yuanying 
Tianshi 
Xiansheng 
Christophe 
Jie 
Kurosh  
 

QIU 
LI 
QIN 
SABOURIN 
YAN 
MADANI 
 

Rapporteur / Xidian University 
Rapporteur / Xi'an Jiaotong University 
Examinateur / Northwestern Polytechnical University 
Examinateur / University PARIS-EST Créteil 
Codirecteur de thèse / Northwestern Polytechnical University 
Codirecteur de thèse / University PARIS-EST Créteil 

  

 

   



  
 
 
 
 
 

Thesis 
 
 

Presented to obtain the title of  
DOCTOR OF UNIVERSITY PARIS-EST 

DOCTOR OF PHILOSOPHY 
 

Specialization: Computer Sciences 
 

by YU Weiwei 
 
 

Contribution to study and implementation of intelligent adaptive control 
strategies: application to control of complex dynamic systems 

 
 
Defended on 23 February 2011 in presence of commission composed by 
 
 
Prof. 
Prof. 
Prof. 
Dr. 
Prof. 
Prof. 
 

Yuanying 
Tianshi 
Xiansheng 
Christophe 
Jie 
Kurosh  
 

QIU 
LI 
QIN 
SABOURIN 
YAN 
MADANI 
 

Reviewer / Xidian University 
Reviewer / Xi'an Jiaotong University 
Examiner / Northwestern Polytechnical University 
Examiner / University PARIS-EST Créteil 
PhD Co-Supervisor / Northwestern Polytechnical University 
PhD Co-Supervisor / University PARIS-EST Créteil 

 
 
 
 

   



 1

Acknowledgements 

I have benefited from the advice, friendship, and support of quite a number of people 
throughout my years at Paris Est University and Northwestern Polytechnical University, and my 
work on this thesis. First and foremost, my advisor Professor Kurosh Madani’s guidance and 
encouragement as my co-advisor provided me with a solid advance control theory background and 
inspiration, even though we speak different language. I also thank him for his hard working which 
help with very trivial staffs, like registration and so on. My co-advisor Professor YAN Jie has 
provided invaluable intellectual and financial support, without which this thesis may never have 
reached completion. I must thank Christophe Sabourin for his comments and assistance with my 
research work. Without him, I can not find the direction of my research. His patient and big efforts 
help me a lot with the completion of my thesis. I would also like to thank Prof. Wang Runxiao and 
Prof. Qin Xiansheng, for they give me enough space and good environment which support me 
finishing my thesis.  
 

I own a great deal to the friendship, intelligence, and patience of my companions and 
colleagues both within Paris Est University and Northwestern Polytechnical University: Zhong 
Dudu, Lu Cunkan, Chang Xiaofei, Yan Binbin, Zhang Juanjuan, Bai Xuxu, Mei Jinna, Sofian, 
Arash and Dalel. In particular, many thanks to Ivan and Nadia for their company during my stay in 
France. With them, I spent quite interesting and wonderful time in Lieusaint. 
 

I would like to thank my family for their unlimited patience and persistence. I will finally be 
able to speak to them without answering the question “Are you done yet?” 
 

Last but not least, I thank my husband, Chang Jian, for his endless patience, understanding, 
and encouragement. I look forward to spending more time with him.



 2



 3

Contents 

Acknowledgements...........................................................................................................................1 
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . .. . . .. .2 
Abstract .............................................................................................................................................5 
Chapter 1 Introduction ......................................................................................................................7 

1.1 Intelligent control ................................................................................................................7 
1.2 Neural network..................................................................................................................10 
1.3 Reinforcement learning.....................................................................................................12 
1.4 Research summary and dissertation overview ..................................................................14 

Chapter 2 CMAC Neural network ..................................................................................................16 
2.1 Introduction.......................................................................................................................16 
2.2 CMAC structure................................................................................................................17 

2.2.1 One dimension CMAC structure............................................................................18 
2.2.2 High dimension CMAC structure ..........................................................................18 

2.3 Parameters influence of CMAC ANN for function approximation...................................19 
2.3.1 Structure parameters of CMAC ANN ....................................................................19 
2.3.2 Impact of input dimension on required memory size.............................................20 
2.3.3 CMAC training experimental protocol ..................................................................21 
2.3.4 Structural parameters’ influence.............................................................................23 

2.4 Structure optimization.......................................................................................................26 
2.5 Summary                                                              28 

Chapter 3 CMAC based controller design for generic hypersonic vehicle .....................................30 
3.1 Introduction.......................................................................................................................30 
3.2 Mathematic model of GHV...............................................................................................31 

3.2.1 Overview the mathematic models of GHV ............................................................31 
3.2.2 Nonlinear longitudinal equations of GHV .............................................................33 

3.3 CMAC based controller ....................................................................................................42 
3.3.1 CMAC based controller design ..............................................................................43 
3.3.2 Simulation results and analysis ..............................................................................44 

3.4 Summary ...........................................................................................................................46 
Chapter 4 Fuzzy Q-learning............................................................................................................48 

4.1 Introduction.......................................................................................................................48 
4.2 Q-learning Approach for Path Planning ............................................................................49 

4.2.1 Q-Learning Algorithm............................................................................................50 
4.2.2 Path Planning .........................................................................................................52 

4.3 Fuzzy Q-learning algorithm ..............................................................................................54 
4.3.1 Fuzzy inference system ..........................................................................................54 
4.3.2 Fuzzy Q-learning algorithm ...................................................................................56 

4.4 Step length planning for biped robot.................................................................................57 
4.4.1 Virtual dynamical environment ..............................................................................58 
4.4.2 Fuzzy sensors .........................................................................................................59 
4.4.3 FQL-based step length ...........................................................................................60 



 4

4.4.4 Reinforcement signal .............................................................................................60 
4.4.5 Simulation results and analysis ..............................................................................61 

4.5 Step duration time planning for biped robot .....................................................................65 
4.5.1 FQL-based step duration time planning .................................................................65 
4.5.2 Simulation results and analysis ..............................................................................66 

4.6 Maximum step height planning.........................................................................................68 
4.6.1 FQL-based maximum step height planning ...........................................................69 
4.6.2 Simulation results and analysis ..............................................................................71 

4.7 Summary ...........................................................................................................................74 
Chapter 5 Obstacle avoidance strategy for biped robot in dynamic environment...........................76 

5.1 Introduction.......................................................................................................................76 
5.2 Motion equations for five-link biped robot .......................................................................78 

5.2.1 The kinematics model of the five-link biped robot ................................................79 
5.2.2 The dynamic model of the five-link biped robot....................................................82 
5.2.3 Summary ................................................................................................................91 

5.3 Control strategy.................................................................................................................92 
5.3.1 High-level controller design...................................................................................92 
5.3.2 Low-level controller design .................................................................................101 

5.4 Simulation results and analysis .......................................................................................104 
5.5 Summary .........................................................................................................................107 

Chapter 6 Conclusion and Future Work........................................................................................108 
6.1 Conclusion ......................................................................................................................108 
6.2 Future work .....................................................................................................................110 

Appendix  Simulation results of CMAC based controller for generic hypersonic vehicle .........112 
Reference ......................................................................................................................................115 
Publications...................................................................................................................................124



 5

Abstract 

As the fast pace of technology development in modern society, the devices surround us are 
especially independent on humans to give them instruction on how they should function. This is 
especially true of control of complex dynamic systems which operate extremely automatic 
functions and perform quite intricate tasks, from robots to aircrafts. Now days, artificial 
intelligence control is prosperous to simplify the control of these complex dynamic systems by 
allowing the devices to learn their own control functions. Through the use of intelligent systems, 
the devices and machines are capable of making human-like decisions on their own without 
having a human designer provide solution for every problem that could be encountered. This 
dissertation is focus on, firstly, the study of CMAC neural network and its application on 
hypersonic vehicle and biped robot, secondly, the study of Q-learning approach and its application 
on the biped robot’s footstep planning problem, and the main work can be described in the 
following aspects: 
 

1. The main limitation of the CMAC (Cerebellar Model Articulation Controller) network in 
realistic applications for biped robot is related to the required memory size. It is pertinent to 
remind that the memory used by CMAC depends firstly on the input signal quantification step and 
secondly on the input space dimension. For real CMAC based control applications, on the one 
hand, in order to increase the accuracy of the control the chosen quantification step must be as 
small as possible; on the other hand, generally the input space dimension is greater than two. In 
order to overcome the problem relating the memory size, how both the generalization and step 
quantization parameters may influence the CMAC’s approximation quality has been discussed. 
Our goal is to find an optimal CMAC structure for a given problem. The presented simulation 
results show that an optimal or sub-optimal structure carrying out a minimal modeling error could 
be achieved. The choice of an optimal structure allows decreasing the memory size and reducing 
the computing time as well. 

 
2. Flight control design for airbreathing hypersonic vehicles is a very challenging task due to 

its sensitivity to the changes of flight condition and the difficulty in measuring and estimating the 
aerodynamic characteristics of the vehicle. All of these are due to the integrated engine-airframe 
configuration. This configuration results in significant coupling between the structure, propulsion 
system and vehicle aerodynamics. An implementation of CMAC neural network for altitude and 
velocity tracking control of the longitudinal model of an airbreathing hypersonic vehicle which 
has an integrated airframe-propulsion system configuration has been proposed. Simulation results 
demonstrate the effectiveness of CMAC neural network control design in tracking altitude and 
velocity commands. 

 
3. This paper presents a new concept of a footstep planning strategy, which is based on an 

improved fuzzy Q-learning concept, for biped robot in dynamical environment. For each rule, the 
learning agent has to choose action pair of step length and duration time, and the corresponding 
maximum step height as well. After the training phase, the biped robot is able to adapt the step 
length, step duration time and maximum step height at the same time only using a Fuzzy Inference 



 6

System, in order to step over obstacles with random velocity and height within certain range. In 
comparison with other previous works, the investigations show a real interest of this approach 
because: (1) Computing time is very short. After the learning phase, the footstep planning is based 
only on a FIS. (2) The footstep planning is operational for both predictable and unpredictable 
dynamical obstacles allowing the control system increase the robustness. 

 
4. In contrasts with previous studies where the path planning is given by taking into account 

the feasibility of the joint trajectories, the originality of our approach on gait pattern planning and 
control strategy for biped robot stepping over dynamic obstacles, is that we consider it should be 
possible to design separately the high-level control and the low-level control. The goal of the 
high-level control is to anticipate the moving of the robot by using an exteroceptive perception of 
the environment. The computing time of this learning process is a crucial parameter for on-line 
control. Consequently, in order to decrease the computing time, the learning stage of proposed 
footstep planning which takes into account only the dynamic of the environment, is carried out to 
design the high-level control strategy. The structure of the low-level control including the gait 
pattern can be decomposed into three parts: (1) The first part is used to compute the trajectories of 
the swing leg from several outputs of CMAC neural networks and a Fuzzy Inference System. (2) 
The second one allows the regulation of the average velocity from a modification of the pitch 
angle of the trunk. (3) The third part is composed of four PD controllers in order to ensure the 
tracking of the reference trajectories at the level of each joint. The simulation results show the 
effectiveness of the proposed approach in the case of a flat dynamic obstacle. 
 

Keywords Biped robot; Cerebellar model arithmetic computer neural network; Fuzzy 
Q-learning algorithm; Obstacle avoidance; Footstep planning;  
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Chapter 1 Introduction 

1.1 Intelligent control 

As the fast pace of technology development in modern society, the devices surround us are 

especially independent on humans to give them instruction on how they should function. This is 

especially true of control of complex dynamic systems which operate extremely automatic 

functions and perform quite intricate tasks, from consumer electronics, to factory equipment, to 

extraterrestrial probes, to aerospace vehicles and mobile robots. Nevertheless, the design and 

implementation of these control systems is considerably tanglesome, as complex input-output 

relationships resulting from the interaction between a process and its environment are often not 

readily solvable by traditional control methods. Classical control gives appreciable control on 

linear, non time-varying, single-input and single-output systems, but is not desirable for the 

control of non-linear and time-varying systems (Nitin Mathur, 2005). 
 

Now days, artificial intelligence and statistical methods are prosperous to simplify the control 

of these complex dynamic systems by allowing the devices to learn their own control functions. 

Through the use of intelligent systems, the devices and machines are capable of making 

human-like decisions on their own without having a human designer provide solution for every 

problem that could be encountered. Intelligent control is the discipline in which control algorithms 

are developed by emulating certain characteristics of intelligent biological systems such as human 

beings. The intelligent control uses various artificial intelligence computing approaches, such as 

neural networks, machine learning, evolutionary computation, Bayesian probability, fuzzy control 

and genetic algorithms. 
 

Evolutionary computation 

In the field of intelligent control, a main branch is in the area of evolutionary computation. 

This branch is developed based on the approach to “evolve” a solution to a given problem over 

successive generations by using methods observed in nature such as Darwinian natural selection, 

immune systems, swarm intelligence, self organizations, and further combinations of these 

techniques. In effect, these methods could be seen as performing a guided stochastic search when 

viewed from a classical artificial intelligence perspective. The benefits of applying evolutionary 

computation strategies on dynamic system is on one hand, the inherent massive parallelism that 

exists inside the many stages of evolutionary computing algorithms, and on the other hand, 
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allowing one to generate desirable intelligent systems with minimal human intervention (Pawel 

Maksymilian Pytlak, 2007).  
 

Bayesian probability 

Bayesian probability is a statistical data fusion algorithm based on Bayes’s theorem of 

conditional or a posteriori probability to estimate an n-dimensional state vector X , after the 

observation or measurement denoted by Z  has been made. It makes use of a priori knowledge 

about the observation space to make inference about the quantity of interest in that space. The 

probabilistic information contained in Z about X  is described by a probability density function 

( )p Z X , known as likelihood function, which is an objective function based on observation. If the 

information about the state X  is made available independently before any observation is made, 

then likelihood function can be improved to provide more accurate results. Such a priori 

information about X  can be encapsulated as the prior probability ( )P X x= and is regarded as 

subjective because it is not based on observed data (Manish Kumar, 2008). Bayesian probability 

theorem provides the posterior conditional distribution of X x= , given Z z= , as 

        
( ) ( ) ( ) ( )

( )
( )( ) ( )

p Z z X x P X x p Z z X x P X x
p X x Z z

p Z zp Z z X x P X x dx
= = = = = =

= = = =
== = =∫

       (1.1) 

    One of the main disadvantages of Bayesian models, is the computational complexity of the 

posterior distribution. The use of conjugate priors requires little computational effort, and their 

simple parametrization is often a nice alternative to more complex models. In such a situation, the 

prior-likelihood pair forms a conjugate family, where the prior and posterior distribution have the 

same form (Aurelie Labbe, 2005). 

 

Fuzzy control  

Fuzzy control is one of the control techniques that pertain to the realization of intelligent 

control systems. Fuzzy control is derived from the fuzzy logic and fuzzy set theory introduced by 

L.A.Zadeh (1965). Fuzzy logic is a departure from the classical two-valued sets and logic that uses 

“soft” linguistic system variables and a continuous range of truth values in the interval [0,1]. 

Formally, fuzzy logic was a structured, model-free estimator that approximated a function through 

linguistic input/output associations. The typical structure of a fuzzy controller is presented in 

figure 1.1. Firstly, a real-world value is passed through a fuzzification stage where its 

belongingness to different fuzzy membership functions is assessed. Next, the fuzzified value is 

used to perform a composition of the different rules present in the fuzzy rule base by means of an 

inference engine. Finally, the composite function is defuzzified to give a resulting crisp output 
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which is then utilized by given application (Pawel M.P., 2007). The advantages of fuzzy logic 

control system are: it is applicable for the system where it is not possible to form a model of the 

process; it is able to handle continuous ranges without overcomplicated mathematical 

formulations and it is also capable to gracefully handle noisy inputs that normally exist in 

real-world systems without causing erratic behavior.  

 

Fig. 1.1 Structure of a typical fuzzy controller (Pawel M.P., 2007) 
 

Genetic Algorithms 

Genetic Algorithms developed by Holland (1975) as a means to solve optimization problems, are a 

particular class of evolutionary algorithms that use techniques inspired by evolutionary biology 

such as inheritance, mutation, selection and crossover (Liguo Huo, 2009). They accomplish the 

task through successive populations of candidate solution. During each iteration of the algorithm, 

GAs apply genetic operators modeled from nature. The resulting offspring populations are 

successively selected, recombined and altered to from an iteratively better solution to the problem 

(D.E.Goldberg, 1989, M.Mitchell, 1996). The scheme of basic genetic algorithm is represented in 

figure 1.2. Davidor (1991) proposed a technique to apply GAs to the problem of robot trajectory 

generation in environment free of obstacles. Nearchou (1996, 1998) used GAs to solve the inverse 

kinematics problem in environments with obstacles and point out that the advantage of using 

Genetic algorithm is allowing additional constraints to be easily specified, and working the 

variables represented as digital values that is more suitable for computer controlled dynamic 

system.  
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Fig. 1.2 Schematic representation of basic genetic algorithm operations (Manish Kumar, 2004) 
 

1.2 Neural network 

A neural network, sometimes called artificial neural network, is an interconnected group of 

natural or artificial neurons that uses a mathematical or computation model for information 

processing based on a connectionistic approach to computation. A neural network is a massively 

parallel distributed processor that has a natural propensity for storing experiential knowledge and 

making it available for use. It resembles the brain in two respects: (1) Knowledge is acquired by 

the network through a learning process. (2) Inter-neuron connection strengths known as synaptic 

weights are used to store the knowledge (Wen Chen, 2002).  
 

The basic neuron model includes inputs, weights, a summation, an activation function, and 

an output as shown in Fig.1-3. The inputs can come from other neurons or external inputs and are 

multiplied by adjustable weights corresponding to biological synapses. The weights are 

determined by using a training algorithm. The weighted inputs and summed, and an activation 

function determines the output of the neuron. The most common activation functions are linear, 

binary, sigmoid, hyperbolic tangent, or perceptrons (R.E.King, 1996). The output of the neuron 

varies between zero and one. The later more complex models are developed based on this simple 

neuron model. 
 

 
 

Fig. 1.3 Neuron Model (Frederick G.H., 2005) 

The tasks to which artificial neural networks are applied tend to fall within the following 

broad categories: (1) Function approximation, or regression analysis, including time series 

prediction and modeling. (2) Classification including pattern and sequence recognition, novelty 

detection and sequential decision making. (3) Data processing, including filtering, clustering, 

blind signal separation and compression.  
 

Neural network controllers have been successfully used in manipulator control, path planning, 
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contract force control and grasping, multiple robot coordination and mobile robot autonomous 

navigation (Manish Kumar, 2004). Zeman (1997) has used neural network to control a robot 

having flexible joints, which is not applicable for the adaptive control. Lewis (1998) has used 

neural network controller for robot manipulators in position control, force control and parallel-link 

mechanisms without requiring limiting conditions of linearity of parameters. Using H-J-B 

optimization scheme and neural network in presence of completely unknown manipulator 

nonlinearity, Kim et al. (2000) have proposed a neural adaptive learning approach for controlling 

robotic manipulators. Yang (2003) has proposed a neural dynamics based approach for real-time 

motion planning and collision avoidance for mobile robots in a dynamic environment. Kiguchi et 

al (2003) have used neural network as grasping force planner to emulate the grasping behavior 

that humans show while manipulating an object. Manish Kumar (2004) proposed a strategy based 

on artificial neural networks to learn and optimize fuzzy logic rule base and membership function 

parameters to control multiple industrial robots working cooperatively in a fully automated 

manufacturing work cell. 
 

Neural networks are useful in the control of nonlinear multi-variable plants, are capable of 

learning from a training set, and parallel processing is inherent. However, a common criticism, 

particularly in robotics, include the difficulty of extracting the knowledge base contained in the net, 

predicting results for cases outside the training set, and the convergence and training time. 
 

A specific type of neural network, the Cerebeller Model Articulation Controller (CMAC), 

proposed by Albus (1975), has been successfully used to solve many complex and diverse tasks, 

ranging from autonomously flying aircraft to mobile robot. CMAC takes real-valued vectors and 

produces real-valued output vectors, can learn locally and generalize, can learn nonlinear function, 

has a relatively short training time, requires a small number of computations per training iteration, 

and can be implemented in simple software and hardware (F.H.Glanz, 1991). Besides its attractive 

advantages, the disadvantage is that to implement large and effective software neural networks, 

much processing and storage resources need to be committed  
 

Using hashing function is sometimes suggested to reduce memory size, however, the CMAC 

with hashing works well when data for only a small portion of input space needs to be stored. 

Nonbinary function is suggested to reduce CMAC memory size, however in practical applications 

with several inputs, memory size dramatic increase. Chien-Kuo Li (2004) propose a neural 

network composed of single variable CMACs that need much smaller memory space compared to 

the conventional CMAC. Note that curse of dimensionality does not apply to single input CMAC. 
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It is a problem of the multidimensional case. Hahn-Ming Lee (2003) introduce to convert a 

multi-input CMAC to several CAMC with a lower number of inputs reduce the memory space. It 

can be shown that with this method, the memory size increasing with inputs is linear rather then 

exponentially. Nevertheless, CMAC in this structure must have nonbinary differentiable input 

functions, otherwise training weights is not possible except for the out put layer. Aleksander Kolcz 

(1999) use non-uniform structure for CMAC. CMAC will reflect the distribution of training data 

more actually, thus avoiding the extra cost of memory size or poor learning performance. Similarly, 

in Hahn-Ming Lee (2003) method, it adaptively determines quantization of each input dimension 

based on the various distributions of training data sets. In the approach of Ming-Feng Yeh (2006), 

self-organizing CMAC has been implemented by incorporating the structure of CMAC into the 

Kohonen layer of the self-organizing map. 
 

1.3 Reinforcement learning 

Reinforcement learning is a major subset of machine learning. It is a computational approach 

to learning whereby an agent explores a complex and uncertain environment, perceives its current 

state, and takes actions that will eventually lead to a specific goal. The environment, in return, 

provides a reward reflecting the outcome of each action with respect to finding the optimal path to 

the goal. Reinforcement learning algorithms attempt to find a policy for maximizing a  

cumulative reward for the agent over the course of the learning process. The faster the cumulative 

reward reaches its maximum, the faster the agent learns the optimal path to the goal (Hani 

Al-Dayaa, 2006). Figure 1.4 illustrates a reinforcement learning diagram that shows the 

relationship among the agent, state, action and reward in the environment. 

 
Fig. 1.4 Reinforcement learning diagram 

Reinforcement learning mainly consists of three main threads ( R.Sutton and A.Barto,1998): 

·The first thread involves learning by trial and error and started in the psychology of animal 

learning, which is called trial-and-error learning. 

·The second thread does not involve learning for the most part, but involves the problem of 
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optimal control and its solution using value functions and dynamic programming. 

· The third thread concerns temporal difference learning, which are distinctive in being 

driven by the difference between temporally consecutive estimates of the same quantity. 
 

Temporal difference learning plays a significant role in the reinforcement learning. In the 

reinforcement learning, an agent interacts with an environment for which neither the probability of 

transitioning to any state nor expected immediate reward are known. As a result, dynamic 

programming methods are not directly applicable for the reason that on one hand, the value 

iteration update cannot be computed, on the other hand, since computing the optimal policy 

requires knowing the probability of transitioning to any state and expected immediate reward, it is 

no longer sufficient to learn the state value function. However, by using temporal difference 

methods (Sutton, 1988) which synthesize dynamic programming with Monte Carlo methods, the 

agent can learn the optimal action value function. Each time an agent in state takes an action, the 

reward it receives and the state to which it transitions can be sued to estimate the role of 

probability of transitioning and expected immediate reward in the update (Shimon A.W., 2007). 
 

Q-learning (Watkins and Dayan, 1992) is a popular temporal difference method, because of 

its simple computations per time step and also because it has been proven to converge to a global 

optimum. A value function is used to estimate how good it is for an agent to be in a given state. 

The goodness measure comes from the future rewards that can be expected, which depends on 

what actions are taken. Value functions are defined with respect to particular policies. Q-value 

represents the expected return as a result of taking one action in one state, plus the value of the 

optimal policy thereafter (Krista Falkner, 2006).  
 

A large amount of papers focus the application of Q-learning approach ranging from the 

control of robot and aircraft, game theory, traffic signal control, and . El-Tantawy S. (2010) 

applied Q-learning in the optimal control of coordinated traffic signal. He developed a Q-learning 

based acyclic signal control system that uses a variable phasing sequence, which can minimize the 

vehicle delay. Valasek,J. et. al (2008) present an improved adaptive-Q learning control 

methodology for the problem of unmanned air vehicle morphing control. Vlachogiannis, J.G 

(2004). applied the Q-learning algorithm to the IEEE 14 busbar and to the IEEE 136 busbar 

system for constrained reactive power control, and the results demonstrate the advantages and 

flexibility. Many applications are in the field of robots. Ru-Bo Zhang (2004) combined fuzzy logic 

and reinforcement learning to improve the learning speed of the formation behavior of the robot. 

Meng Joo Er (2006) proposes a dynamic fuzzy Q-learning (DFQL) controller to define the hip 
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motion trajectory. A salient feature of the proposed approach is that the DFQL controller can self 

generate fuzzy rules without a priori knowledge and it is capable of dealing with dynamic systems. 

Suzuki, H (2008) considers a landing control of an acrobat robot by taking steps to avoid 

falling-down by applying Q-Learning with function approximation. 
 

However, except its advantage, a major problem with Q learning is its inability to handle 

large state spaces. With larger state spaces, longer training times are required since multiple visits 

of each state action pair are required for the agent to learn. Lookup tables are used to store 

Q-values with one cell for each state and action. Therefore, large state spaces also require 

impractically large amounts of memory. 
 

1.4 Research summary and dissertation overview 

Based on the analysis of previous problems, the research is done around the following two 

categories: 

·The study of CMAC neural network for function approximation and its application on the 

control complex dynamic systems, such as generic hypersonic vehicle and biped robot. 

·The study of Q-learning approach, and its application on footstep planning of biped robot in 

dynamic environment, around this point, the lauched research include biped robot’s mathematic 

model development, footstep planning approach based on fuzzy Q-learning algorithm and control 

strategy design for biped robot stepping over dynamic obstacle. 

More specific, the main work of this thesis including: 

(1) CMAC structure optimization for function approximation 

Overview the CMAC neural network’s structure of one input and two input case respectively. 

Compare the required memory size in these two cases and discuss the influence of the CMAC 

structure parameters to the approximation quality and training time. The examples of CMAC 

based function approximation are inducted and optimal CMAC structure for a given problem is 

investigated. 

(2) Application of CMAC on generic hypersonic vehicle control system 

Due to the strong coupling between the aerodynamics, the airframe, and the propulsion 

system, the mathematical model of GHV is firstly overviewed. CMAC neural network is applied 

on the velocity and height controller for nonlinear longitudinal model. Simulation is done on both 

GHV flight in the nominal case and with pitch moment uncertainty case. 

(3) Footstep planning for biped robot based on fuzzy Q-learning algorithm 

Q-learning algorithm is introduced and is applied on path planning example. Using fuzzy 
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logic where both actions and Q function may be represented by Takagi-Sugeno FIS, Fuzzy 

Q-learning approach is derived. Fuzzy Q-learning approach is developed to learn step length, step 

duration time and step maximum height in the case of robot and obstacle moving opposite in the 

sigattal plane. The simulation is done in the case of obstacle moving with average velocity and 

un-predict velocity. 

(4) Found of biped robot mathematical model 

The 5-link biped structure is selected for developing the mathematical model of biped robot 

in the sigattal plane. The bipedal locomotion during the single-support-leg phase is studied as a 

tree-like topology. The kinematical model of biped robot is derived based on this tree structure. 

The dynamic model is developed by Lagrangian formulation for its single-support-leg phase. 

(5) Control strategy for biped robot stepping over dynamic obstacle 

Design the high-level control and low-level control separately. The high-level controller is 

based on the Fuzzy Q-learning algorithm, which includes the footstep planning, foot trajectory 

generation and joint angle profile generation. The low-level controller The low-level control 

allows both to generate joint trajectories and to control the tracking of these desired trajectories, is 

based on CMAC neural network. 
 
The organization of the dissertation is as follows: 

The remaining chapters in this thesis are organized as follows. Chapter 2 study the CMAC 

structure optimization for function approximation problem. How the structural parameters 

influence the required memory size and approximation quality is discovered, and the parameters 

optimization algorithm is developed. Chapter 3 deals with longitudinal controller design for 

generic hypersonic vehicle. CMAC neural network is used to tracking throttle setting and elevator 

deflection, therefore effect the change of both flight velocity and height. Chapter 4 focuses on 

Q-learning approach, and its application. Develop footstep planning for biped robot in dynamic 

environment, based on Fuzzy Q-learning algorithm. The control strategy for biped robot stepping 

over dynamic obstacle is investigated in Chapter 5. At the beginning of this chapter, outline the 

mathematical model development of the five-link biped robot in the sagittal plane. The 

methodology for developing the equations of motion based on Largrangian formulation, is 

presented in detail. The high-level controller and low-level controller are designed respectively. 

The final conclusion and the future work recommendation are presented in Chapter 6. 
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Chapter 2 CMAC Neural network 

2.1 Introduction  

The CMAC (Cerebellar Model Articulation Controller) is a neural network based model 

proposed by Albus inspire form the studies on the human cerebellum (J.S. Albus, 1975(a)(b)). 

CMAC is a neural network with local generalization abilities. This means that only a small 

number of weights are necessary to compute the output of this neural network. Consequently, the 

main interest is the reduction of training and computing times compared with other neural 

networks (W.T. Miller, 1990). Because of the advantages of simple and effective training 

properties and fast learning convergence, CMAC neural network has been used in many teal-time 

control systems, pattern recognition and signal processing problems successfully (A.L.Kun, 2000; 

C.Sabourin, 2005; O.G.Rudenko, 2003; Ming-Feng Yeh., 2007). In addition, a digital hardware 

implementation is possible for the CMAC neural network (T. Miller, 1990). 

During the last three decades, a number of theoretical aspects have been developed 

overcoming a number of CMAC’s primary limitations. For example, in original CMAC, designed 

by Albus, the responses of excited cells are given by binary basis functions. A number of works 

have proposed using continuous functions. In paper (Eldracher, M, 1994), authors gave a 

comparative study between both binary basis function and Gaussians continuous function when 

CMAC is used for function approximation. Szabó and Horváth (2002) used a modified training 

rule to increase the CMAC’s generalization capability. Chow and Menozzi have studied a 

self-organizing version of the CMAC (1994). Sabourin et al proposed a new approach making 

possible to take advantage from both local and global generalization capacities with Fuzzy-CMAC 

neural networks (2007). The fuzzy-CMAC architecture is based on a merger of outputs of several 

Single-Input/Single-Output CMAC neural nets. It allows as well decreasing the memory’s size as 

increasing the generalization abilities compared with a multi-input CMAC. 

In fact, besides its attractive features, the main drawback of CMAC network in realistic 

applications is related to the required memory size. The needed memory size depends on the input 

signal quantification step and the input space size. For real CMAC control applications, on the one 

hand, in order to increase the accuracy of the control, the chosen quantification step must be as 

small as possible; on the other hand, in real world applications the input space dimension is 

greater than two. Therefore, in high-dimensional input cases, its application becomes impractical. 

In order to overcome the problem relating to the size of the memory, a hashing function is 

generally used. But in this case, because the number of memory’s weights is smaller than the size 
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of the virtual addressing memory, some collisions can occur. In this chapter, we discuss how both 

the generalization and step quantization parameters may influence the CMAC approximation 

quality. Our goal is to find an optimal CMAC structure for a given problem. In this way, it is 

possible to decrease the memory size according to the desired performance of the CMAC neural 

network without increase the complexity of CMAC structure. 

This chapter is organized as follows. In Section 2.2, the structure of CMAC neural network 

which includes one dimension and high dimension are introduced respectively. Section 2.3 

presents the CMAC structure parameters which determine the memory size and how to calculate 

the memory size. The examples of CMAC based function approximation are inducted and optimal 

CMAC structure for a given problem is investigated. In section 2.4, a self-optimizing algorithm 

for the structure of CMAC has been developed and summary is concluded in Section 2.5. 
 

2.2 CMAC structure 

CMAC belongs to the family of feed-forward networks with a single linear trainable layer. 

The principle of CMAC is to map a difficult to solve, usually low-dimensional problem into a 

space of much higher dimension. In this respect, a linear solution is searched, while training a 

simple one-layer, feed-forward perception. 

The CMAC network can be considered as an associative memory, which performs two 

subsequent mappings. The first one, which is a non linear mapping, projects an input space point 

X into a binary association vector A . The association vectors always have N active elements, which 

mean that N bits of an association vector are ones and the others are zeros. As the value of N affects 

the generalization property of the CMAC, it is often called generalization parameter. There is a 

one-to-one mapping between the discrete input data and the association vectors. Every bit in the 

association vector corresponds to A binary basis function with a finite support of N quantization 

intervals. This means that a bit will be active if the input value is within the support of the 

corresponding basis function which support is often called as the receptive field of the basis 

function.  

The second mapping calculates the output of the network as a scalar product of the association 

vector A and the weight vectorW : 

                                 ( )TY A X W=                                 (2.1) 

The weightsW of CMAC are updated by using equation: 

                               
1i it t

eW W
N
β

−
= +                                  (2.2) 

1it
W

−
 and 

it
W are respectively the weights before and after the training at each sample time; β is 



 18

learning rate which is included in [ ]0,1 ; e is the error between the desired output and the computed 

output of the CMAC. 
 

2.2.1 One dimension CMAC structure 
Limited to the scalar case, none of the quantization intervals produced by the N scalar 

quantizers should be the same, that is, at any input point, the quantization intervals to which x 

belongs in the individual quantization layers overlap, but no two cells belonging to different layers 

can be exactly the same. 

In the following discussion we will consider the case of uniform CMAC quantization, where 

1{ } j
ix  define all uniform partition of input domain into 1j −  equal length unit intervals. Whereas 

the individual CMAC quantizers have cells of length N q× Δ . As the input space is given by an 

interval of finite length, each quantizer will have a finite range without loss of generality. In the 

uniform case the staggered arrangement of CMAC quantizers is particularly clear. Given one of the 

quantizers, the remaining 1N −  quantizers can be obtained by translating the original 

quantization-cell by , 2 , , ( 1)q q N qΔ Δ − × Δ" . Furthermore, starting with any point of the input 

x X∈ , increments or decrements of xΔ  by qΔ  at a time will cause exactly one of the quantizers 

to change its output for x x+ Δ  with respect to the values produced for x . Hence, for x N qΔ ≥ × Δ , 

the points x  and x x+ Δ  will share no quantization cells. 

 

2.2.2 High dimension CMAC structure 
The quantization described for the one dimensional case is performed in a similar manner for 

each component of the input vector when input dimension 2D ≥ . Each of the N vector quantizer of 

the network now consists of D  individual scalar-quantizer components, one per each input 

dimension. This design guarantees that the D  dimensional quantization cells are not the same and, 

at the same time, that any two cells belonging to different quantization layers will differ additionally 

in the sense that their D  projections on the coordinate axes will be the same (irrespective of 

whether the cells overlap or not.). Figure 2.1 shows a simplified organization of the receptive fields 

for two input signals 1 2[ , ]X x x= . Its structure includes a set of 41cN = binary sensors (receptive 

fields) regularly distributed on 3lN = layers. The receptive fields of these detectors cover the totality 

of the input signals but each field corresponds to a limited range of inputs. On each layer, the 

receptive fields are shifted to a quantification step 1 2[ , ]q q qΔ = Δ Δ . 
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Fig.2.1 Bloc-diagram showing example of 2D CMAC ANN with three layers. 
 

2.3 Parameters influence of CMAC ANN for function approximation  

2.3.1 Structure parameters of CMAC ANN 
As it has been mentioned previously, to approximate the proposed functions using neural 

networks, some parameters specific to the selected neural model, must be adjusted in order to 

define the appropriated structure of the used neural network. Also as it has been emphasized, there 

are essentially two factors ruling the function approximation quality in a CMAC network. The 

first one, called “quantization step” qΔ , allows to map a continuous signal into a discrete signal. In 

fact, qΔ  corresponds to the relative displacement between cells of the two consecutive layers as 

well. The second parameter, called “generalization parameter” lN  corresponds to the number of 

layers. These two factors allow to define the size of each cell cS , the number of cells on the first 

layer 0
cN and the total number of used memory size (number of cells) cN . The used memory size 

during the ANN training can be calculated by the expressions if the full active sensor vector 

0 1[ , , , ]ma a a" has been calculated. 

In the following discussion we will consider the case of uniform CMAC quantization. For a 

given output component, layer jN and input ix we interpret the first sensor as covering the interval  

( )min, jx O−∞ + or ( )min, cx S−∞ + depending on whether the offset is nonzero. cS  represents the 

receptive field width (size of the cell). jO  represents the offset of each layer. In the case of 

uniform CMAC quantization, the offset equals to j jO qN= Δ  （ { }0,1,j lN N= " ）for the thj layer. 

Hence, if the thi component of x , ix satisfies minix x< , it is covered by the first sensor field. Similarly, 

the last sensor is interpreted as covering out to +∞ , so if maxix x> , it is covered by the last sensor. We 
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then have two cases: 

If offset jO is not zero, the subintervals are then organized as follows: 

min min, jx x O⎡ ⎤+⎣ ⎦ , min min,j j cx O x O S⎡ ⎤+ + +⎣ ⎦ , min min, 2j c j cx O S x O S⎡ ⎤+ + + +⎣ ⎦ , " ,

min min( 1) ,j c j cx O m S x O mS⎡ ⎤+ + − + +⎣ ⎦ , giving 1m + sensors. 

If offset jO is zero, the subintervals are then organized as follows: 

[ ]min min, cx x S+ , [ ]min min, 2c cx S x S+ + , [ ]min min2 , 3c cx S x S+ + ," , [ ]min min( 1) ,c cx m S x mS+ − + , 

giving m sensors. 

So for a given component ix , first we need to find which sensor is active on each level. Fixing the 

level, the determined active sensor will be stored in address ia . The active sensor can be 

determined by using ()ceil  and ()floor  calculations according to the algorithm below: 

if 0jO >  

 min

min

0

( ) /
i j

i
i j C

if x x O
a

ceil x x O S

< +⎧⎪= ⎨ − −⎪⎩
             (2.3) 

else 

min(( ) / )i i Ca floor x x S= −                                   

Once the full active sensor vector [ ]0 1, ma a a"  has been calculated, we then can calculate the size 

of each cell cS , the number of cells on the first layer 0
cN and the total number of used memory size 

(number of cells) cN  according to the following expressions: 

    C lS qN= Δ                            (2.4) 

    0
min max( ) /C CN ceil S S S= −                        (2.5) 

       0 2 0 2( ) ( 1) ( 1)C C C lN N N N= + + −                      (2.6) 

 

2.3.2 Impact of input dimension on required memory size 
In this section, we illustrate the impact of input dimension of CMAC network on required 

memory size. Use sin function and FSIN function which are expressed in equation (2.3) and (2.4) 

respectively as examples to compare the required memory size of one dimension and two 

dimension CMAC neural network during its training.  

sin function: [0,1] [0,1]⎯⎯→  

      siny x=                                    (2.7) 

FSIN function: 2[0,1] [0,1]⎯⎯→  

         2 2
1 2 1 2( , ) sin (2 )sin (2 )FSIN x x x xπ π=                       (2.8) 
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We choose the number of layers lN and quantization step qΔ  randomly for each of the 

functions. Figure 2.2 and Figure 2.3 show that the CMAC network can approximate both of the 

two functions well. For one-input sin function the used memory size is only 434 when the mean 

squared error reached 0.59% (listed in Table 2.1), while two-input FSIN function requires 10 times 

greater memory size than it for sin function, but squareE only approximates 5.81%. If the input 

dimension is greater than two, the needed memory size is tremendous. 
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Fig. 2.2 SIN function, CMAC based approximated FSIN function, and mean absolute error 

 
Fig. 2.3 FSIN function, CMAC based approximated FSIN function, and mean absolute error 

 
Table 2.1 Comparing of required memory size for one dimension input and two dimension input CMAC 

 
Function qΔ  lN  squareE  CN  

sin 0.015 15 0.59% 434 

FSIN 0.0025 41 5.81% 4940 

 

2.3.3 CMAC training experimental protocol 

Three functions are approximated in order to test the CMAC neural network’s approximation 

ability. These 2-D functions are defined by equations (2.8), (2.9) and (2.10) and known as FSIN 

FCOS and GAUSS respectively. 1 2, [0,1]x x ∈  represents the two input signals for FSIN and 

FCOS functions, while 1 2, [ 5,5]x x ∈ −  is the input of the considered 2-D input space for GUASS 

function.  

FSIN function: 2[0,1] [0,1]⎯⎯→  

                  
2 2

1 2
1 2 2 2

1 2

1 cos(2 ((2 1) (2 1) ))
( , )

2exp(0.25((2 1) (2 1) ))
x x

FCOS x x
x x

π+ − + −
=

− + −
                  (2.9)                  
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GAUSS function: 2[ 5,5] [0,0.2]− ⎯⎯→  

                 2 2
1 1 2 22

1 1exp( (( ) ( ) ))
22

x xμ μ
σπσ

− − + −                    (2.10) 

For each of the aforementioned functions, a training set including 100× 100 random values 

selected in the corresponding two-dimensional space, has been constructed. Weights of CMAC are 

updated using equation (2.2). When CMAC is totally trained, three modeling errors are carried 

out: 

•  mean absolute error, defined by expression (2.11), 

•  mean squared error, computed from the equation (2.12) and 

•  maximum absolute error, obtained from equation (2.13). 

                              
100

1
100

1

d
i ii

mean d
ii

y y
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=
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=
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                           (2.11) 
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−
= …

…

                         (2.13) 

where d
iy represents the desired output values and iy is the actually learned output value. 

Figure 2.4 and Figure 2.5 show the shape of the above considered functions, their 

approximated functions as well as the mean absolute error for each function. To illustrate the 

CMAC’s approximation abilities with the chosen values of the concerned parameters, the output 

of CMAC is computed using equation (2.1) and the error by equation (2.11) quantifying the 

dissimilarity between the desired output d
iy and CMAC issued one iy . 

 
Fig. 2.4 FCOS function, CMAC based approximated FCOS function, and mean absolute error 
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Fig. 2.5 FCOS function, CMAC based approximated FCOS function, and mean absolute error 

Table 2.2 gives modeling errors examples for the approximations of FSIN, FCOS and 

GAUSS functions. For the above reported function approximation examples, the quantization step 

has been set to 0.0075. Concerning the numbers of layer, it has been adjusted to 16 for FSIN, 13 

for FCOS and 20 for GAUSS respectively. For these three examples, the chosen structure of 

CMAC remains arbitrarily meaning that we do not know if this considered structure is or is not 

optimal. We notice that for all the three functions, the mean absolute error meanE , the mean 

squared error squareE are not very far from each other. However, the maximum absolute error 

remains quite significant, especially for the approximated FCOS function. 

Table 2.2 Approximation performances for FSIN, FCOS and GAUSS function 

Function qΔ  lN  meanE  squareE  maxE  

FSIN 0.0075 16 7.10% 6.48% 11.3% 

FCOS 0.0075 13 8.83% 10.0% 26.8% 

GAUSS 0.0075 20 7.76% 8.125% 13.1% 

 

2.3.4 Structural parameters’ influence 
   In this section, by experimental enquiry, we try to show the relation between the structural 

parameters of CMAC neural network, the quality of the approximation and the required memory 

size for a given function. For the above described FSIN, FCOS and GAUSS functions, simulations 

for four several step quantization qΔ  are carried out, when the number of layers increases from 5 

to 50 for both FSIN and FCOS functions, and from 5 to 450 for GAUSS function. In each 

simulation, the mean absolute error meanE , mean squared error squareE  and maximum absolute 

error maxE  are calculated by using (2.11), (2.12) and (2.13) respectively.  The overview of the 

obtained results is shown in Figure 2.6, 2.7 and 2.8. 
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(a) 0.0025qΔ =                            (b) 0.005qΔ =  

 

(c) 0.0075qΔ =                             (d) 0.01qΔ =  
Fig. 2.6 Mean absolute error, mean squared error and maximum absolute error according to the number of layers 

for FSIN function when the step quantization are equal to 0.0025, 0.005, 0.0075, 0.01 respectively. 

 

(a) 0.0025qΔ =                            (b) 0.005qΔ =  
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(c) 0.0075qΔ =                             (d) 0.01qΔ =  
Fig. 2.7 Mean absolute error, mean squared error and maximum absolute error according to the number of layers 

for FCOS function when the step quantization are equal to 0.0025, 0.005, 0.0075, 0.01 respectively. 

 

(a) 0.0025qΔ =                            (b) 0.005qΔ =  

 
(c) 0.0075qΔ =                             (d) 0.01qΔ =  

Fig. 2.8 Mean absolute error, mean squared error and maximum absolute error according to the number of layers 
for GUASS function when the step quantization are equal to 0.0025, 0.005, 0.0075, 0.01 respectively. 

   It must be noticed that the modeling error depends on the quantization step qΔ  on the one 

hand, and the number of layers lN  on the other hand. As the curve trends of the mean absolute 

error meanE , mean squared error squareE  and maximum absolute error maxE  are same, we only 

take squareE  as an example. Table 2.3, 2.4 and 2.5 give the optimal structure chosen on the base of  
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squareE  for FSIN, FCOS and GAUSS respectively. 

Table 2.3 CMAC structure with minimum mean squared error for FSIN function 

qΔ     lN  squareE  CS  CN  

0.0025 41 5.81% 0.1225 4940 
0.005 26 6.93% 0.13 2089 

0.0075 18 6.21% 0.135 1441 
0.01 12 6.46% 0.12 1181 

Table 2.4 CMAC structure with minimum mean squared error for FCOS function 

qΔ     lN  squareE  CS  CN  

0.0025 34 5.81% 0.1225 4940 
0.005 20 6.93% 0.13 2089 

0.0075 13 6.21% 0.135 1441 
0.01 9 6.46% 0.12 1181 

Table 2.5 CMAC structure with minimum mean squared error for GAUSS function 

qΔ     lN  squareE  CS  CN  

0.0025 115 7.80% 0.2875 7345 
0.005 58 8.35% 0.29 3697 

0.0075 39 8.84% 0.2925 2481 
0.01 29 8.11% 0.29 1841 

It can be seen from the above table, the mean squared error squareE  for the FSIN function is 

equal to 5.81% and 6.21% in the case where 0.0025qΔ =  and 0.0075qΔ = respectively. These 

chosen results show that the approximation abilities of the CMAC are similar in these two cases. 

However, in the points of view of computing time and memory size, the results are not similar. In 

fact, the computing time for 0.0025qΔ = is estimated 2.5 times longer than for 0.0075qΔ = . And 

the memory size required for 0.0025qΔ =  is 3.5 times greater than when 0.0075qΔ = . 
 

2.4 Structure optimization 

Based on the results of previous section, it is clear to point out that depending on the structure 

of CMAC neural network, the approximately minimum modeling error can be gained with 

relatively small cost of required memory size and computing time. This remark is very important, 

because the required memory size and computing time are the key factors that determine if CMAC 

could be used in the real-time control system. For example, the CPU of robot or aerocraft has to 

do many tasks meanwhile, therefore the useable memory size is quite limited and the control 

system has to response to the input signals immediately.  

Thus, we developed the self-optimizing algorithm to adjust the number of layers and 

quantization step, in order to obtain the optimized CMAC’s structure. Inspired from the 

reinforcement learning algorithm, a three-dimension matrix Q  is constructed for installing the 
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“reinforcement signal”, in which each dimension of the matrix Q  represents number of layers, 

quantization step and reinforcement respectively.  The expression of reinforcement signal r  

refers to (2.14), which stands for evaluating the modeling error and required memory size of 

CMAC.  
    

1000 (1 )
100

C
mean

N
r E

γ
γ

⋅
= + ⋅ − ⋅                     (2.14) 

Where γ  stands for the discount factor of the approximation quality and memory size. To 

balance the order of magnitude of these two factors, the coefficient 100 and 1000 are selected. In 

this manner, the modeling error and memory size are taken into consideration at the same time. 

    The logic of the self-optimizing algorithm is given below: 

 
 
 
 
 
 
 
 
 

We also take the FSIN and FCOS functional approximation and examples to test the developed 

algorithm. The discount factor γ  is chosen to be 0.5 in this example, which means that the 

approximation quality and memory size are considered to be the same importance. It is deserved 

to mention that the traversal of the above two factors can be done off-line, and the on-line 

calculation only includes the lookup table process.  Figure 2.9 and 2.10 show the obtained value 

of three-dimension matrix Q  for FSIN and FCOS case respectively. The optimized structural 

parameters of CMAC neural network with minimum modeling error and memory size for both 

functions are listed in Table 2.6. 

Table 2.6 Optimized structural parameters of CMAC with minimal mean squatted error  
for approximating FSIN and FCOS functions 

 
Function lN  qΔ  CN  squareE  

FSIN 15 0.0069 1794 5.53% 

FCOS 20 0.0053 2399 7.65% 

  

Choosing lN  from minimum to maximum number 

Choosing qΔ from minimum to maximum value 

       Based on CMAC training, calculating CN and squareE  

       For every combination of lN and qΔ , calculating the reinforcement 

signal r according to (3.14) 
      Install r corresponding with lN and qΔ in a three-dimension matrix 

Finding the minimum value of r , lookup the matrix Q  for the matching 

value of lN and qΔ  
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Fig. 2.9 The value of three-dimension matrix Q for approximating FSIN function 

 
 Fig. 2.10 The value of three-dimension matrix Q for approximating FCOS function 

 

2.5 Summary 

Because of the advantages of simple and effective training properties and fast learning 

convergence, CMAC neural network has been used in many real-time control systems pattern 

recognition and signal processing problems successfully. Besides its attractive features, the main 

drawback of the CMAC network in realistic on-line applications is related to the required memory 

size. For example, for the use of robot control system or aerocraft control system, because the 

CPU has to handle an awful lot of information on-line at the same time, the left memory size is 

quite limited. In this paper, we have shown how both generalization and step quantization 

parameters influence the approximation qualities of CMAC neural networks. The presented 

simulation results show that an optimal structure carrying out a minimal modeling error could be 

achieved. Consequently, the choice of an optimal structure allows on one hand decreasing the 

memory size and on the other hand the computing time. Inspired from the reinforcement learning, 

we have developed the self-optimizing algorithm for the structure of CMAC, in which the 

modeling error and memory size of the network are considered at the same time. The results 
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indicate the effectiveness of this approach, and the approximately minimum modeling error can be 

achieved with relatively small number of required memory size without increase the structural 

complexity. 

In the future, we will focus on the application of self-optimizing structural CMAC in the 

real-time control system. 
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Chapter 3 CMAC based controller design for generic 

hypersonic vehicle 

3.1 Introduction 

    Hypersonic flight is flight through the atmosphere at speeds above about Mach 5.5, a speed 

where disassociation of air begins to become significant and high heat loads exist. 

Feasible atmospheric hypersonic flight using air-breathing propulsion will provide routine 

and affordable apace access and high speed civilian transportation. Technologies that enable cost 

effective vehicle systems for use in space launching, orbiting and maneuvering will also translate 

easily to improvements in military interceptors, tactical and strategic reconnaissance, as well as in 

high-speed and orbital transport activities (Andrew Clark et al. 2006). 

Since the first Hypersonic Research Engine (HRE) program proposed by NASA began in 

1964. The technologies around the generic hypersonic vehicle have been studies for nearly half a 

century. However, none of the flight test was conducted successfully before 2004, in spite of the 

tremendous amount of effort and cost. Among them, the most famous and still expanding one is 

Hyper-X program, which is started by NASA in 1996. This program is focused on the 

development and flight testing of one full-scale demonstrator vehicles and small-scale, whose 

serial number is X-43A, X-43B, X-43C, X-43D et al. X-43A is a 12 foot long hydrogen powered 

experimental vehicle with a five-foot wingspan. It has been used in three scramjet powered and 

un-powered flight tests at Mach 7 and Mach 10. Its fights were first successfully conducted in 

2004. X-51 is another hypersonic flight which was tested successfully in recent years. The X-51 

WaveRider program is run as a cooperative effort of the United States Air Force, DARPA, NASA, 

Boeing and Pratt & Whitney Rocketdyne. It is an unmanned scramjet demonstration aircraft for 

hypersonic (Mach 6, approximately 4,000 miles per hour (6,400 km/h) at altitude) flight testing. It 

successfully completed its first free-flight on 26 May 2010 and also achieved the longest duration 

flight at speeds over Mach 5. 

In hypersonic air-breathing flight vehicles with airframe-integrated scramjet engines, the 

airframe, propulsion system and structural dynamics are highly interactive. The primary lift is 

generated by the body itself (Chavez, F.R., 1999; Curran, E.T., 2001). The engine airframe 

integration causes significant coupling between the propulsion system and vehicle aero-dynamics 

(Bertin, J.J., 1992; Walton, J.T., 1989). Considering the longitudinal dynamics, the flow pressure 

acting on the forebody generates a nose-up pitching mount while the external nozzle flow 
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produces additional lift and nose down pitching moment. Similarly, the aerodynamics affects the 

propulsion system in several ways. The capture and compression of the flow through the inlet is 

determined by the properties of the bow shock wave under the vehicle forebody, which are 

determined by the angle of attack, the dynamic pressure, and the free stream characteristics. The 

thrust and the pressure at the engine inlet are affected by pitching control surface defections. At 

the same time, the fuel flow rate as well as the diffuser area ratio changes has an effect on the 

vehicle pitch rate (Andrew Clark et al. 2006). 

Because these coupling are significant, explicit characterization of flight dynamics and 

designing effective controller are highly challenging for this class of vehicles. Most of the 

previous controller design is based on the LTI model. Bolender and Doman (2005) have developed 

a control oriented nonlinear physics based model of the longitudinal dynamics of generic 

hypersonic vehicle. However, the approximated LTI model structure will lose some useful 

information of the system. There are few papers focus on the controller of nonlinear elastic model 

of GHV.  

    This chapter is organized as follows: In section 3.2, we will develop the elastic longitudinal 

dynamic model of generic hypersonic vehicle, which includes overview the linear mathematic 

model, nonlinear longitudinal model and develop the elastic longitudinal dynamics considering the 

elastic characteristics of the body. In section 3.3, we design the longitudinal controller based on 

CMAC neural network. One experiment is done to evaluate the performance of proposed 

controller to step response, and another experiment is done in the case of parameter uncertainty in 

section 3.4. 

3.2 Mathematic model of GHV 

3.2.1 Overview the mathematic models of GHV 
Due to the strong coupling between the aerodynamics, the airframe, and the propulsion 

system, the dynamic characteristic of generic hypersonic flight makes the modeling of GHV very 

challenging. A mounts of literature discuss the rigid-body model of GHV for the winged-cone 

accelerator configuration. Most of them only focus on the longitudinal motion of the GHV 

dynamic models. However, the main differences between several different formulations of the 

dynamic model are weather linearization or not, and the method used for the assumption of the 

aerodynamics, mass, environment and propulsion properties (Bars Fidan, 2003). 

Gregory et al. (1994) first study the hypersonic vehicle as the linear model, which can be 

expressed as: 

                                  x = Ax + Bu�                               (3.1) 
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                                   y = h(x,u)                                (3.2) 

where x , u  and y denote the state, the input and the output of GHV system, respectively. 

Typically, x  is a five dimension vector, which contains information about velocity V , angle of 

attack α , pitch rate q , pitch attitude θ  and altitude h . 

                                [ , , , , ]TV q hα θ=x                              (3.3)  

The input u is a two dimensional vector whose entries are adjustable control coefficients, 

such as elevon angle and fuel equivalence ratio, that determines the aerodynamic and propulsive 

power supplied to the system or fuel and air flow rates in the integrated engine. 

                                   [ , ]T
e fδ η=u                               (3.4)  

The output y can be as same as the state x , measurable entries of x , or some 

measurements giving information about x . It carries information about the altitude and the 

velocity of the GHV. A  and B are system matrices which depend on the flight. Numerical 

values of A  and B  for certain flight conditions are derived from a six degree of freedom 

nonlinear rigid-body simulation of the conical accelerator vehicle. 

Later, Gregory et al. (1994) included the turbulence as atmospheric affects in the linear model, 

and the motion equation is generalized as: 

                                xx = Ax + Bu + E d�                             (3.5) 

where d is a two dimension vector which stands for the atmospheric disturbances. And xE is 

a 5 2× matrix depending on the flight conditions. 

In the above model, the forebody is axisymmetric and conical, the nozzle section is a cone 

frustum, and the engine modules are placed cylindrically all around the body. Furthermore, the 

model is developed on the assumption that the body is rigid the coupling effects among 

aerodynamics, propulsion, and structural dynamics of the vehicle are negligible. Later, Bushcek 

and Calise (1997) take the coupling effects into consideration. They are formulated as 

uncertainties and incorporated into the model as: 

                             ( ) ( )A Bx = A +Δ x + B +Δ u�                          (3.6) 

in which, AΔ and BΔ  are additive uncertainties respectively. The impact of the propulsive 
perturbations on the pitching moment is focused among the coupling effects and this effect is 

addressed as parametric uncertainty in mC
α

, which can be calculated by m
m

C
C

α α
∂

=
∂

，where mC is 

pitch moment coefficient and α is the angle of attack. 

A drawback of the linear approaches above is that the capability of the model to represent the 

dynamics and the coupling effects realistically is limited. One way to eliminate this drawback is 
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introducing nonlinear models that carry more information instead of linear ones. C.Marrison (1998) 

and Q.Wang (2000) utilized the nonlinear longitudinal model for a specific flight condition in their 

design of GHV robust control system. In this model the coupling effects and other possible 

variations from the nominal system are also taken into consideration. The most widely used 

approach is taking a set of random variables to represent these effects and variations in order to 

design the robustness controller (Stengel, R.F., 1994; Zhou, K., 1998). The general nonlinear 

dynamic model of GHV can be described by: 

                               ( ) ( ( ), ( ), )t t t=x f x u v�                             (3.7) 

                                 ( ) ( ( ), )t t=y h x v                              (3.8) 

where f and h  are smooth nonlinear functions, and v  is assumed to be constant throughout 

and individual process. The state x  and the input u  is defined by: 

                                [ , , , , ]TV h qγ α=x                              (3.9) 

                                  [ , ]T
t eδ δ=u                               (3.10) 

where x  includes the information of velocity V , flight-path angle γ , altitude h , angle of 

attack rα and pitch rate q . tδ  is the throttle setting, and eδ  represents the pitch control surface 

deflection. In the following section, we will given the expressions of nonlinear longitudinal 

equations of GHV. 

 

3.2.2 Nonlinear longitudinal equations of GHV 

3.2.2.1 Nonlinear longitudinal model of GHV 

In order to be utilized in the simulation, the motion equations of generic hypersonic vehicle 

accounts for the time varying center of mass, the center of gravity and the moments of inertia. 

However, the total mass of the vehicle, its c.g. location and the products of inertia vary as fuel is 

consumed. Therefore, in the following equations of motion, it is assumed that: 

·the GHV mass model is a rigid vehicle structure 

·c.g. only moves along the body x-axis as the fuel is consumed. 

·fuel slosh is negligible 

·and the products of inertia are negligible. 

The GHV nonlinear longitudinal equations of motion flying at orbital altitudes must include 

both an inverse-square-law gravitational model and the centripetal acceleration for the 

non-rotating earth. GHV in the inertial space is under the join forces of gravity, aerodynamic force 

and thrust. Its motion corresponds to the Newton’s second law and meets the following vector 
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equations: 

                                 m =ia F                                   (3.11) 

In which, m is the mass of GHV, ia is the absolute acceleration, F is the join forces action on 

the vehicle. 

The research object in this paper is establish the mathematic model of generic hypersonic 

vehicle relative to the earth, which means considering the motion in the geocentric coordinate 

system eS . Because of the angular velocity of earth eω , the geocentric coordinate system is not 

an inertial frame. Therefore, the absolute acceleration of GHV ia  equals to the sum of relative 

acceleration ka , transport acceleration ea  and Coriolis acceleration ca : 

                                k e c= + +ia a a a                            (3.12) 

in which  

k
d
dt

=
Va                                 (3.13) 

( )e e e= × ×a ω ω r                             (3.14) 

2c e= ×a ω V                              (3.15) 

In the above equation, V is the velocity of mass center of GHV with respect to the earth, 

known as the relative velocity. 

Join forces F include gravitational attraction mg , aerodynamic force R  and thrust T : 

m= + +F g R T                            (3.16) 

where, the acceleration of earth gravity g is 

3r
μ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
g r                             (3.17) 

and 14 3 23.986005 10 m sμ = × is the earth gravitational constant. 

Substituting equation (3.12)~(3.17) to equation (3.11), one can obtain the kinematical 

equation of GHV relative to the earth. 

( )3 2 e e e
d
dt r m

μ +
= − + − × − × ×

V T Ar ω V ω ω r                (3.18) 

Equation (3.18) is established on the basis of geocentric coordinate system eS , considering 

the rotation of eS  in the inertial frame iS . If we choose another movable coordinate system 

mS as the reference, which has the angular velocity meω  relative to eS , we can deduce the 

component of equation (3.18) in this movable frame mS , 

( ) ( ) ( )m
me mm

m

dd
dt dt

×⎛ ⎞ = +⎜ ⎟
⎝ ⎠

VV ω V                     (3.19) 
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The motion equation of GHV in the matrix form can be obtained based on equation (3.18) 

and (3.19). 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3

2

m m m
me m mm

e e em mm m m

d
dt r m

μ×

× ×

+
= − − +

− × −

V T A
ω V r

ω V ω ω r
             (3.20) 

According to the engineering experience, the flight-path axis system kS is chosen to be the 

frame of reference mS , the prime reference of thrust T  is selected to be the aircraft-carried axis 

system bS  co-currently, and the prime reference of aerodynamic force A  is the airflow 

coordinate system aS .  

In the following part, we will give the transformation expression of different coordinate 

mentioned above but without reduction. 

Suppose the position of vehicle is ( ), , cr λ φ , which is global coordinate. r  is the distance 

between earth center and vehicle, while λ is longitude and cφ  is latitude. The transformation 

matrix from earth frame to the plumb axis system is: 

 ( ) ( )
sin cos sin sin cos

sin cos 02
cos cos cos sin sin

c c c

ve y c z

c c c

φ λ φ λ φ
πφ λ λ λ

φ λ φ λ φ

− −⎡ ⎤
⎢ ⎥= − − = −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

L L L       (3.21) 

The aircraft-carried axis system bS  and the plumb axis system vS  can be adopted to 

determine the attitude of the vehicle relative to the ground. Therefore, the transformation matrix 

from vS  to bS  can be expressed by three Eulerian angles: yaw angle ψ , pitch angle ϑ  and 

roll angle φ . 

( ) ( ) ( )
cos cos cos sin sin

cos sin sin sin cos sin sin sin cos cos cos sin
cos sin cos sin sin sin sin cos cos sin cos cos

bv x y zφ ϑ ψ

ϑ ψ ϑ ψ ϑ
ψ φ ϑ ψ φ φ ϑ ψ φ ψ ϑ φ
φ ϑ ψ φ ψ ϑ ψ φ ψ φ φ ϑ

=

−⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

L L L L

  (3.22) 

Airflow coordinate system aS  is connected with aircraft-carried axis system bS  by angle 

of attack α , and sideslip angle β , the transformation matrix from bS  to aS is: 

( ) ( )
cos cos sin sin cos
cos sin cos sin sin

sin 0 cos
vb z y

β α α β α
α β β α α β α

β β

−⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

L L L            (3.23) 

Through flight-path angle γ  and flight path angle χ , affiliate the flight-path axis system to 

the plumb axis system. The transformation matrix can be written as: 
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( ) ( )
cos cos cos sin sin

sin cos 0
sin cos sin sin cos

kv y y

γ χ γ χ γ
γ χ χ χ

γ χ γ χ γ

−⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

L L L             (3.24) 

Using the transformation matrix of different coordinate, one can deduce the deformed 

formation of equation (3.20) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

3

2

kv vb bab ak
ke k kk

e e ek kk k k

d
dt r m

μ×

× ×

⎡ ⎤+⎣ ⎦= − − +

− × −

L L T L AV
ω V r

ω V ω ω r
           (3.25) 

With respect to the earth, the angular velocity keω of track coordinate kS  is 

ke ve kv= +ω ω ω                           (3.26) 

in which, ve e c vλ φ= −� �ω k j is the angular velocity of plumb axis system vS relative to the earth, 

while kv v kχ γ= +� �ω k j  is the angular velocity of flight-path axis system with respect to vS . 

Again, using the transformation relation (3.21) and (3.24), one can get the vector expression 

of keω in flight-path axis system: 

( )
0 0 0
0

0

cos cos cos cos sin sin sin sin
cos sin cos

cos sin cos sin sin sin cos cos

ke kv ve kv ck

c c c

c c

c c c

φ γ
λ χ

λ φ γ χ φ γ χ λ φ γ χ γ
λ φ χ φ χ γ

λ φ γ χ φ γ χ λ φ γ χ γ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− + −
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥− − +⎣ ⎦

� �
� �

� � � �
� � �

� � � �

ω L L L

  (3.27) 

The relation of longitude and latitude is : 

cos cos

cos sin
cos

c

c

V
r

V
r

γ χφ

γ χλ
φ

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

�

�
                        (3.28) 

λ� and cφ�  in expression (3.27) can be eliminated by equation (3.28). 

The component of velocity vector V of generic hypersonic vehicle in the flight-path axis 

system [ ]0 0 T
eω  is: 

( ) [ ]0 0 T

k V=V                        (3.29) 

And, the component of radius vector r  of GHV in kS  is: 

( ) ( ) [ ]sin 0 cos T
kvk v

r rγ γ= = −r L r            (3.30) 

The component of earth rotational velocity eω  in geocentric coordinate system eS  is 
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[ ]0 0 T
eω , therefore, it is not difficult to obtain its component in kS  using the transformation 

matrix: 

( ) ( )
cos cos cos sin sin

cos sin
cos sin cos sin cos

c c

e kv ve e e ck e

c c

φ γ χ φ γ
ω φ γ

φ γ χ φ γ

+⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥−⎣ ⎦

ω L L ω        (3.31) 

By the same way, the thrust T  has to be deformed in the same coordinates system kS : 

( ) ( )

( ) ( )
( ) ( )

cos cos
cos sin cos sin sin
cos sin sin sin cos

xk

yk kv vb bab a

zk

V V

V V

F
F
F

D T
C T L T
C T L T

α β
α β γ α γ
α β γ α γ

⎡ ⎤
⎢ ⎥ ⎡ ⎤= +⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

− +⎡ ⎤
⎢ ⎥= + + +⎢ ⎥
⎢ ⎥+ − +⎣ ⎦

L L T L A

      (3.32) 

in which, L is the lift, D is the drag, C is the lateral force and Vγ is the velocity roll angle. 

Substitute equation (3.26)~(3.32) into expression (3.25), the kinetic equation of GHV in 

flight-path axis system kS  is available.  

( )
( )

( )

2
2

2

2

0 sin
1cos tan cos sin 0

cos cos

0
2 cos sin cos sin cos

cos sin

cos sin cos cos cos sin
sin co

xk

c yk

zk

e c c

c

c c c

e c

dV dt F
VV d dt F
r r m

V d dt F

V

r

γ
μγ χ φ γ χ

γ γ γ

ω φ γ χ φ γ
φ χ

φ φ γ χ φ γ
ω φ

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥+ − +⎢ ⎥
⎢ ⎥−⎣ ⎦

− +
+

( )
s sin

cos sin sin cos cos cos
c

c c c

φ χ
φ φ γ χ φ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

    (3.33) 

Combined with the relation expression between distance to the geocentre and relative 

velocity: 

sinr V γ=�                            (3.34) 

Equation (3.28) (3.33) and (3.34) make up the kinematic equations of generic hypersonic 

vehicle in the flight-path axis system. In the process of mathematic modeling for GHV, the 

influence of earth rotation and its radius of curvature to the motion of GHV is taken into 

consideration. 

Aim at the considered objective generic hypersonic model, we care about the control system 

design for its horizon flight, hence only the motion of GHV in the longitudinal plane is taken into 

account. If the lateral aerodynamic force and moment is not considered, the thruster force is 

assumed to along the aircraft-carried axis, the influence of longitude and latitude can be negligible, 
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and the flight altitude h , the geocentric distance r  have the same rate of change, we are 

interested in the flight altitude h  during the flight control, combined with the condition 

0c Vχ φ β γ= = = = , the kinematic equations of generic hypersonic vehicle, equations (3.28) and 

(3.33) degenerated as: 

cosV
r

γϕ =�                              (3.35) 

sinh V γ=�                              (3.36) 

Supplement with the kinematic equations and dynamic equations of GHV rotating around its 

center of mass, the equation set of generic hypersonic vehicle flying in the longitudinal plane can 

be obtained  (Matthew Kuipers, 2007). The state space equation for the longitudinal dynamics 

are governed by the set of differential equations for velocity V , flight-path angle γ , altitude h , 

angle of attack α and pitch rate q , and can be expressed as: 

                            2

cos sinrT DV
m r
α μ γ−

= −�                          (3.37) 

                        
2

2

sin ( )cosrL T V r
mV Vr

α μ γγ
+ −

= −�                     (3.38) 

                                sinh V γ=�                              (3.39) 

                               qα γ= −� �                              (3.40) 

                                 yy

yy

M
q

I
=�                               (3.41) 

Equation (3.37) is simply Newton’s law treating the vehicle as a point mass and resolving the 

components of force onto the velocity vector. The second term in the expression includes a 

varying gravitational force because of the inverse square law. Equation (3.38), which is the 

rotational kinematics equation, is calculated by the resolving the force components onto the 

upwardly pointing normal to the velocity vector. The second term of this equation comprises the 

centripetal force along with the varying gravitational field. Equation (3.40), which also expresses 

the rotational kinematics, is obtained from the geometric interpretation of α along with the elastic 

deflections and taking the time derivative. Equation (3.41) represents the translational kinematics 

equation for altitude. Euler’s law governs the rotational dynamics, and hence the pitch dynamics 

(D.Clark, 2006)  

In the following part, we will introduce how to model the lift L , the drag D , the thrust T , 

the pitching moment M , and the radius er from the center of earth in detail. 

The total drag coefficient is obtained as 

                            , , ,D Da D de D da D drC C C C C= + + +                       (3.42) 
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in which, ( , , , , )D e r cC f M α δ δ δ= , DeC is the drag increment coefficient for basic vehicle, 

,D d aC and ,D d eC represent for drag increment coefficient of the right elevon and left elevon 

respectively, ,D d rC is the drag increment coefficient for rudder. 

Thus, the drag force can be calculated as: 

                                  ref DD qS C=                               (3.43) 

where, refS is the reference area, in our case it is theoretical wing area. q is the dynamic pressure, 

which can be expressed as 21
2

q Vρ= , ρ is the air density. 

The total lift coefficient can be obtained as: 

                            , , ,L La L de L da L dcC C C C C= + + +                        (3.44) 

In the above equation, ( , , , , )L a e cC f M α δ δ δ= , similarly with drag coefficient, LaC is the total lift 

coefficient for basic vehicle, ,L daC and ,L deC stands for the lift increment coefficient for right and 

left elevon respectively, ,L drC is the lift increment coefficient for rudder. 

Therefore, the lift force is given by: 

                                   ref LL qS C=                              (3.45) 

The total pitching moment coefficient is obtained by: 

                      , , , , ( )
2m ma m de m da m dr m dc mq
qcC C C C C C C
V

= + + + + +               (3.46) 

in which, ( )
2
qc
V

is used to compute the non-dimensional pitch rate. 

If the pitching moment about c.g. is required, then we have: 

                                yy arc cgM M x Z= −                            (3.47) 

Where cgx is the longitudinal distance from momentum reference to vehicle c.g. Z-axis force 

can be computed as: 

                               sin cosZ D Lα α= − −                          (3.48) 

The pitching moment relative to the moment reference center is given by: 

                                  yy ref mM qcS C=                            (3.49) 

Note that each non-dimensional coefficient is a function of vehicle flight pitch moment M , 

angle of attack α , pitch control surface deflection eδ and throttle setting Tδ . Their dependence 
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on both aerodynamic and propulsion conditions is a consequence of the aero-propulsion coupling 

characteristic of generic hypersonic vehicle. 

3.2.2.2 Minimum required thrust 

To calculate the minimum required thrust is very important for studying the steady state level 

flight of generic hypersonic vehicle. For steady state flight there is no acceleration and no change 

in altitude. During the level of accelerated flight, the wing must provide enough thrust to balance 

the drag force. Based on this point, the minimum required thrust can be computed by the drag 

polar at different flight Mach number. The minimum required thrust varies due to the variation in 

the parasitic drag plus the induced drag (Shahriar Keshmiri, 2007). 

The total drag can be given by: 

                                  2
0D D LC C kC= +                            (3.50) 

where 1

A

k
eRπ

= , 0DC  is the initial value of total drag coefficient. k  and 0DC are two 

important parameters to calculate the minimum thrust for steady state flight at different Mach 
numbers. 

Therefore, the minimum required thrust is approximated as: 

                               min 02 DT W C k≈ ⋅ ⋅                            (3.51) 

in which W is the vehicle weight. 

3.2.2.3 Nonlinear longitudinal elastic model of GHV 

Bolender and Doman (2005) developed the elastic model of a generic hypersonic vehicle, 

which includes the structural modes into the rigid body equations of motion. Andrew Clark et al. 

(2006) focus the interaction of the fuselage deformation with the aerodynamic and propulsion 

performance of vehicle. In their elastic model, the structural deformation manifests itself mainly 

through an effective change in the angle of attack and a perturbation in the control surface 

effectiveness thereby interacting with the aerodynamics and propulsion.  

Different from the traditional treatment of aircraft elastic modes, which consider the elastic 

modes and the rigid body modes separately during aeroelastic instability analyses, their elastic 

model thinks of the maneuvering could excite structural modes which in turn can affect 

aerodynamic and propulsion performance of the vehicle due to the tightly airframe-engine 

integration. To develop the nonlinear longitudinal elastic model of generic hypersonic vehicle, 

they start by considering the fuselage as a long, slender, flexible beam. They derived a second 

order transfer function from the elevon normal force ( )P s  to the body deflection angle ( , )x sθ  

in terms of the elastic characteristics of the body (Andrew Clark, 2006): 
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                        2 2

( )( )
( , ) ( )

( 2 )

i
i p

i
i i i i

d xx
dxx s P s

M s s

φ
φ

θ
ζ ω ω

=
+ +

                      (3.52) 

The normal force produce by the elevon P is obtained from the computational fluid 

dynamics data. The model data, natural frequency iω , and the mode shape ( )i xφ  can be obtained 

from the finite element model of the GHV. 

The two aeroelastic effects considered in their model are changes in angle of attack and 

elevon deflection angle. Due to the body deflection at the elevon captures the effective of 

vibrations on the effectiveness of the control surface, and the significant effects that the 

nose-induced shock wave has on the propulsion performance. The body deflection angle at the 

nose (0, )i tθ , is viewed as a change in the angle of attack ( )sαΔ , and ( , )i px tθ  at the tail, is 

regarded as a change in the elevon deflection ( )e sδΔ . This can be expressed as: 

                               ( ) ( ) ( )rs s sα α α= − Δ                           (3.53) 

                             ,( ) ( ) ( )e e r es s sδ δ δ= + Δ                         (3.54) 

where, subscript r  represents a rigid body quantity. The perturbations can be defined in 

terms of the rigid body elevon deflection angle in order to calculate the bounds on change in the 

elevon deflection ( )e sδΔ  and change in the angle of attack ( )sαΔ . Without derivation process, 

we give the dynamical relationship between ( )e sδΔ  and elevon deflection ( )e sδ  directly. 

                                 ,( )
1

t
e e r

t

T
s

T
δ δΔ =

+
                          (3.55) 

                           2 2

( )
( )

1 ( 2 )

i p
i p

t e
i I

t i i i i

d x Px
T dx

T M s s

φ
φ

δ
ζ ω ω∈

∂
∂

=
+ + +∑                     (3.56) 

Similarly, we represent the dynamical relationship between ( )sαΔ  and , ( )e r sδ  directly: 

                             ,( ) ( )( )n e r es T sα δ δΔ = + Δ                          (3.57) 

                          2 2

(0)( )
( )

( 2 )

i
i p

e
n i I

i i i i

d Px
dx

T s
M s s

φ
φ

δ
ζ ω ω∈

∂
∂

=
+ +∑                      (3.58) 

Bounds on change of the elevon deflection ( )e sδΔ  and change of the angle of attack 

( )sαΔ  can be estimated by equation (3.59) and (3.60) respectively: 
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in which sup ( )T T jω ω
∞

= , and ,e rδ  is the maximum rigid body elevon deflection. 

Based on the above elastic model, take the effects of vehicle elasticity on the aerodynamics, 

thrust as well as control into account. Assume that the elevon deflection is affected by vehicle 

elasticity because of the aerodynamic force. The longitudinal equations of motion for GHV are 

further developed into a set of differential equations: 

                             2

cos sinT DV
m r
α μ γ−

= −�                          (3.61) 
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2

sin ( ) cosL T V r
mV Vr

α μ γγ + −
= −�                        (3.62) 

                                  sinh V γ=�                                (3.63) 

                               (0, )iq tα γ θ= − + ∑ �� �                          (3.64) 

                                   yy

yy

M
q

I
=�                                 (3.65) 

where, the lift L , the drag D , the thrust T , the pitching moment M , and the radius 

er from the center of earth is calculated as the same way as in sub-section 3.2.2.1. Compare the 

above set of differential equations with the equations (3.37)~(3.41), it is deserved to note that in 

equation (3.64), the time-derivation of angle of attack is assumed to depend on the nose deflection 

rate due to vehicle elasticity which is computed using the normal modes extracted from a finite 

element model. 
 

3.3 CMAC based controller 

    Ying Huo (2007) proposed an adaptive fault-tolerant flight control scheme where the 

trajectory optimization is combined with the certainty equivalence principle to achieve the optimal 

path with occurrence of failures. The nonlinear equations of motions are approximated by a set of 

LTI models and system matrices are identified on-line with adaptive algorithms to estimate the 

aerodynamics after failures. The trajectory optimal control problem was then formulated to modify 

the trajectory commands which can be reached with the achievable control authorities after the 

failures. 

However, the approximated LTI model structure will lose some useful information of the 

system, especially the highly nonlinear terms in aerodynamics. Furthermore, the approximated 
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linear programming introduced larger deviations from the nonlinear system, and may significantly 

interiorize the performance of the control system. Moreover, the system stability is not guaranteed 

which may lead to some severe problems. For these reasons, in recent years, a lot of works focus 

on the new nonlinear adaptive controller with proper mission modifications to achieve more 

advantaged fault tolerance capabilities for generic hypersonic vehicle.  

 

3.3.1 CMAC based controller design 
In the most widely used controller design cases, the problem is described as the commands 

are step-velocity and step-height signals, control the throttle setting and elevator deflection of 

hypersonic vehicle to track the commands, the tracking error at steady state can be guaranteed to 

converge to inside of a small residue set whose size can be determined. 

The flight control system for hypersonic cruise vehicle based on CMAC is described in figure 

3.1. In the scheme, dV  is the desired velocity of the hypersonic vehicle, and dh is the desired 

height. V  and h  indicate the actual flight velocity and height of generic hypersonic vehicle 

respectively. The control inputs are throttle setting tδ and elevator deflection eδ . 

Hypersonic
  Vehicle

Learning 
Arithmetic

V

CMAC

+
−

+

−

1e

2e

tδ

eδ

dV

dh
h

CMAC

Learning 
Arithmetic

 
Fig. 3.1 Scheme of flight control system 

On one hand, considering the coupling between flight velocity and height, and the fact that 

each of the throttle setting tδ and elevator deflection eδ  will effect the change of both flight 

velocity V  and height h . On the other hand, it is hard to know the exact explicit expression of 

relationship between the throttle setting, elevator deflection and flight velocity and height take all 

the aerodynamics into account. Therefore, CMAC neural network is chosen to design the 
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controller of generic hypersonic vehicle. Two two-dimension CMAC neural networks are defined 

separately in the universe of each input. Two inputs are flight velocity V  and flight height h , 

and the output of the network is tδ and eδ  respectively for each of the CMAC. 

 

3.3.2 Simulation results and analysis 
 The control system design in above section is implemented using the nonlinear longitudinal 

dynamics of the hypersonic cruise vehicle which is developed by (Andrew D.Clark et al.,2006). 

The first experiment is conducted for the nominal case, where the vehicle’s mathematical model 

and its dynamics are identical. The velocity V  and altitude h  are made to follow desired step 

commands 3700 /dV m s=  and 37dh km=  respectively. Fig. 3.2 shows the actual outputs and the 

control commands to a commanded change of velocity and altitude. Fig. 3.3 shows the tracking 

errors of velocity and height. It can be seen that in the nominal case CMAC controller works well 

in order to achieve the reference commands. The tracking errors are less than 0.1% of the stable 

value. 

The next experiment is done in the case of parameter uncertainty. As it is known, during the wind 

tunnel tests, accuracy of the measurements vary depending on the quality of the test and on which 

aerodynamic coefficient is being generated. Typically, the measurement of the pitching moment 

coefficient mC  is associated with some degree of uncertainty, as much as 50% on the error bound. 

In this simulation, the true value of mC  has been assumed, i.e.,  

                    ,070%m mC C= ×                          (3.66) 

The simulation results are shown in Fig. 3.4 and Fig. 3.5. It is shown that the tracking 

performance requirements have been achieved. For more simulation results refers to Appendix A. 

The simulation results demonstrate that the CMAC controller is robust to parameter uncertainty. 

From these experiments, it can be seen that the CMAC control is robust to modeling errors 

and uncertainties. Moreover, the CMAC control has the potential to cope with unexpected changes 

in the system. These uncertainties include battle damage and control surface actuation failures that 

will affect the systems’ aerodynamic behavior and dynamic. 
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Fig. 3.2 Simulation results for the nominal case 
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Fig. 3.3 Tracking error for nominal case 
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Fig. 3.4 Simulation for pitching moment uncertainty 
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Fig. 3.5 Tracking error for pitching moment uncertainty 

 

3.4 Summary 

    Flight control design for hypersonic vehicles is a very challenging task due to its 

sensitivity to the changes of flight condition and the difficulty in measuring and estimating the 

aerodynamic characteristics of the vehicle. All of these are due to the integrated engine-airframe 

configuration. This configuration results in significant coupling between the structure, propulsion 

system and vehicle aerodynamics. 

Different from the other neural network based controller for generic hypersonic vehicle, in 



 47

which neural networks are used as the approximation models of the unknown dynamics of the 

aircraft. Our approach uses two-dimension CMAC neural networks to mapping the relationship of 

throttle setting and flight height and velocity, and the relation between the elevator deflection and 

flight height and velocity. The only assumptions made about the relation between the input flight 

height and velocity, and output throttle setting and elevator deflection are the unknown continuous 

nonlinearities, and a sufficient condition for controllability is satisfied. Simulation studies were 

conducted for trimmed cruise conditions of 33.6km and March 3390 /m s  where the responses of 

the vehicle to a step change in altitude and airspeed were evaluated. The simulation results 

demonstrated that the performance requirements of the generic hypersonic vehicle were met. 
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Chapter 4 Fuzzy Q-learning 

4.1 Introduction 

Comparing with other ordinary mobile robots, the biped robots have more flexible 

mechanical system and can handle more complex environment. Actually, its abilities to step over 

static or dynamic obstacles allow the biped robots to cross uneven terrain where ordinary wheeled 

robots can fail. Although there are a lot of scientific papers in the field of biped and humanoid 

robots (M.Hackel, 2007; A.Carlos, 2007), only a few of theses researches concern the path 

planning for biped robots (Y.Ayza, 2007; J.Chestnutt, 2004; K.Sabe, 2004). In fact, the design of a 

path planning for biped robots into both indoor and outdoor environment is more difficult than for 

wheeled robots because it must take into account the abilities of biped robots to step over 

obstacles. Consequently, path planning with obstacle avoidance strategy like wheeled robots is not 

sufficient. 

The design of control strategy is a very challenging task when dealing with the stepping over 

dynamic obstacle problem. Kuffner et al. propose a foot step planning approach which focuses on 

how to build a search tree from a discrete set of feasible footstep locations corresponding to 

candidate stable stepping motion trajectories. The planner maintains a priority queue of search 

nodes containing a footprint placement configuration and a heuristic cost value. The search 

terminates when the next node falls within the predefined goal position, and the planning path 

back to the root node is returned. This approach has been validated on the robot H6 (J.J. Kuffner, 

2001) and H7 (J.J. Kuffner, 2003). Later, this strategy has been extended for the robot Honda 

ASIMO (J. Chestnutt, 2005). Although the footstep planning proposed by Kuffner et al. seems an 

interesting way to solve the problem of the path planning for biped robots, the main drawbacks is 

this approach is operational only in the case of predictable dynamical environments (J. Chestnutt, 

2005), moreover, in order to limit the computational time, the path planning should be calculated 

with the limitation of 15 steps (J.J. Kuffner, 2001).  

  In fact, in real environment, neither the velocity of the obstacle is constant nor can be 

predicted. However, most of the previous works that have been adopted to solve this problem is 

focus on footstep location planning concerning the goal position within the static environment or 

dynamic environment changes in predictable ways and it should be described in a time function (Y. 

Ayza, 2007; J. Chestnutt, 2004). This chapter presents a new concept of a footstep planning for 

biped robots in dynamical environments. Our approach is based on Fuzzy Q-learning (FQL) 

algorithm. The FQL, proposed by Glorennec et al.( C. Watkins,1992; R.S. Sutton,1998), is an 
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extension of the traditional Q-learning concept (P.Y.Glorennec,1997,2000;L.Jouffe,1998), 

allowing to handle the continuous nature of the state-action. In this case, both actions and Q 

function may be represented by Takagi-Sugeno Fuzzy Inference System (TS-FIS). In the problem 

of humanoid robot stepping over dynamic obstacle in the sagittal plan, because of the height and 

unpredictable velocity of obstacle, the step length, duration time and maximum step height of 

robot are key factors which influence successful stepping over. Fuzzy Q-Learning algorithm has 

been developed to learn these crucial parameters. After a training phase, our footstep planning 

strategy is able to adapt the step length, step duration time and maximum step height of the biped 

robot only using Fuzzy Inference System.  

This chapter is organized as follows. In Section 4.2, Q-learning algorithm is presented, and is 

applied on a path planning example. Section 4.3 Fuzzy Inference System is introduced to describe 

the states and actions of Q function, then Fuzzy Q-learning concept is presented. Section 4.4 is to 

develop the planning algorithm of step length. Based on this result, Section 4.5 presents the step 

duration time planning approach, and continue with these results, Section 4.6 introduce the 

algorithm of maximum step height planning based on Fuzzy Q-learning. Conclusions and further 

developments are finally set out in Section 4.7. 

4.2 Q-learning Approach for Path Planning  

   There exist situations in Machine Learning field which the provided resources are so poor and 

inadequate to utilize supervised learning algorithms. In some other cases there is even no precise 

information about the data on which learning should be done. Moreover there might be no former 

sample data set available, where some unsupervised learning approaches depend on. 

Reinforcement Learning (RL) is developed to solve the above problem. RL is a way of learning 

behaviors for agents by interacting with their environment without any explicit teacher. It has its 

roots from psychology (Alireza Ferdowsizadeh Naeeni, 2004). 

Reinforcement learning is the problem faced by an agent that must learn behavior through 

trial and error interactions with a dynamic environment. It has been developed in the kind of 

discrete cased and assumes that the entire state space can be enumerated and stored in 

memory—an assumption to which conventional search algorithms are not tied (Richard S, 2004; 

Teknomo, 2005). There are two main strategies for solving reinforcement learning problems. One 

is to search in the space of behaviors in order to find one that performs well in the environment. 

The work in genetic algorithms and genetic programming are based one this strategy. The other is 

to use statistical techniques and dynamic programming methods to estimate the utility of taking 

action in states of the world. The Q learning algorithms which we work on is based on the second 
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strategy. Q learning is one of those for which the theory is most advanced and for which proofs of 

convergence exist. It does not require the knowledge of probability transitions from a state to 

another and is model-free (Leslie Pack Kaelbling; Mark Humphrys, 2006). 

4.2.1 Q-Learning Algorithm 

4.2.1.1 Presentation of Q-Learning 

The Q-Learning, proposed by Watkins (Watkins C, 1989), is perhaps the most popular branch 

of reinforcement learning without models, by reason of its simplicity. The agent exists within a 

world that can be modeled as a Markov Decision Process. It observes discrete states of the world 

tx X∈ and can execute discrete actions ta A∈ . Each discrete time step, the agent observes state 

tx , take action ta , observes new state 1tx + , and receives immediate reward tr . Transitions are 

probabilistic, that is, 1tx +  and tr  are drawn from stationary probability distributions. 

The first version of Q-Learning is based on the temporal differences of order 0, while only 

considering the following step. The agent observes the present state tx  and executes an action 

ta  according to the evaluation of the return that it makes at this stage. It updates its evaluation of 

the value of the action while taking in account, 1) the immediate reinforcement tr  and 2) the 

estimated value of the new state 1( )t tV x + , that is defined by: 

                        
1

1 1( ) max ( , )
t

t t tb A
V x Q x b

+
+ +∈

=                             (4.1) 

The update corresponds to the equation: 

1( , ) ( , ) [ ( ) ( , )]t t t t t t t t tQ x a Q x a r V x Q x aβ γ +← + + −                     (4.2) 

Where, parameterγ can be chosen in[0,1] . If γ  is close to 0, the agent will tend to consider only 

the immediate reward r . If γ  is closer to 1, the agent will consider the future rewards with 

greater weight. β  is the learning rate. The update corresponds to the barycenter of the old and 

the new rewards, weighted by β . If there is enough learning, equation (4.2) could be written in the 

following form: 
                     1( , ) (1 ) ( , ) [ ( )]t t t t t t tQ x a Q x a r V xβ β γ +′ = − + +                    (4.3) 

A reinforcement different from 0 can sometimes mean the end of a period, for example a 

mobile robot can receive the reinforcement 1r = −  when it enters in collision with an obstacle. In 

this case, there is not a following state and the agent restarts a new sequence of training. The 

updating equating is: 

( , ) (1 ) ( , )t t t t tQ x a Q x a rβ β′ = − +                         (4.4) 

4.2.1.2 Design of Reinforcement Signal 

The reward function r  is actually the reward or punishment function, which evaluate the 

contribution of every action for the agent to achieve the goal. The reinforcement signal r  can be 
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designed in several ways according to the given problems, but normally can be classified into two 

big families (C. Watkins, 1992). 

·Shortest path problems 

In this case, the reward function is equal to -1 in all cases if the present state is different from 

the desired state, in order to force the agent to reach this state as quickly as possible. 

For example, the robot moves to the goal position, it chose the optimal path to reach the goal. 

In this case, the reinforcement signal could be -1 in all the states which the robot is not in the goal 

position.  

·Avoiding problems 

The reinforcement signal is set to be 0 in all states, except in case of failure, where it takes 

the value -1.  

For example, in the case of inverted pendulum, where a failure occurs when the pole falls or 

the cart hits the end of the track, the value of the reinforcement signal is -1. Another case is the 

robot soccer game, a behavioral diversity is encouraged with the following reinforcement signal: if 

the team scores 1r = , if the opponent scores 1r = − , in other cases 0r = . 

4.2.1.3 Choice of Policy 

After convergence of Q-Learning, to every state, the optimal policy is performed while 

choosing the action that maximizes the Q function: 

arg max ( , )
xb A

a Q x b
∈

=                             (4.5) 

    This policy is called greedy. But, the too fast choice of the action which has the biggest Q 

value will drive to local minima. Thus, it is necessary to insure that all actions were tested 

sufficiently in order to get an useful evaluation of Q. It is the so called the phase of exploration in 

opposition to the exploitation one. 

At each state, the agent must choose between an action for whose expected reward is 

supposed to be good quality, or an action whose quality can be less good but for which application 

could drive it in promising zones. Obviously, explore all the possible actions with all the states 

costs abounded times. Literatures (Caironi P., 1994; Meuleau N., 1996; Wyatt J., 1997) focus on 

how to find a compromise to solve this dilemma. Here, we listed three methods of exploration that 

are widely used (R.S. Sutton, 1998). 

·Peseudo-stochastic Method 

The action with the best value has a probability P  to be chosen. Otherwise, and action is 

chosen randomly among all possible actions in the given state. 

·Pseudo-exhaustive Method 
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The action with the best value has a probability P  to be chosen. Otherwise, one takes the 

action the least lately chosen in the given state. 

·Boltzmann Distribution 

The action a  is chosen with the probability: 

1exp( ( , ))
( )

1exp( ( , ))
b

Q x a
TP a x

Q x b
T

=
∑

                         (4.6) 

T  is comparable to “temperature” in simulated annealing. This parameter decreases in the 
time. 

4.2.2 Path Planning 

4.2.2.1 Definition of the Path Planning Problem 

In complex environment distributing with obstacles “x”, the robot, starting from initial 

position “I”, finds its optimal way to reach the goal position “G” and avoid crashing with the 

obstacles at the same time. The distribution of obstacles “x” in the environment is shown in Figure 

4.1, where “I” is the starting position, “G” is goal position. The robot can move toward four 

directions, but one step at a time, which can be expressed by four actions: step forward, step 

backward, step right and step left. Although this environment is relatively simple, it is 

representative for illustrating the robot’s path planning problem and is enough to explain the 

Q-Learning algorithm based application. 

10 x x x x x x x x x x 
9 x   x      x 
8 x   x      x 
7 x   x  x x x  x 
6 x   x  x x x  x 
5 x     x    x 
4 x     x  x  x 
3 x       x  x 
2 x I      x G x 
1 x x x x x x x x x x 
 1 2 3 4 5 6 7 8 9 10 

 

Fig.4.1 The distribution of obstacles in the environment 

4.2.2.2 Simulation and results analysis 

    Q-Learning approach is applied to solve this path planning problem 

Design of the reinforcement signal adopts the “avoiding problem” which represented in 

y 

x 
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Section 4.2.1. The reinforcement signal r  equals to -1, when the robot encounters the obstacle, 

and r  set to be 1 when the robot reaches the goal position, as the robot in other positions, the 

rewards equals to ( , )R x y , which can be expressed as: 

                    
1

1
( , )

crash with obstacle
r arrive at gaol position

R x y inother positions

−⎧
⎪= ⎨
⎪
⎩

                       (4.7) 

In which, 

                         2 2( , ) ( ) ( )G GR x y x x y y= − − + −                        (4.8) 

represents the rewards is inverse proportion to the distance from current position to the goal 

position. The closer the robot from goal position, the bigger the reinforcement signal is. It will 

ensure that on one hand the robot can reach the destination as quickly as possible, on the other 

hand, it can avoid crash. 

The update of ( , )t tQ x a matrix is according to equation (4.4), where parameterγ can be 

chosen in[0,1] . If γ  is close to 0, the robot will tend to consider only the immediate reward 

r for the current action. If γ  is closer to 1, the agent will consider the future rewards with 

greater weight. We hope that the robot will forecast impact of current action to the future states, 

thus, γ  is given to be 0.9. Learning rate β  is set to be 0.1. The actions which could be chosen 

by the robot is 1 2 3 4[ , , , ]a a a a=a , standing for step forward, step backward, step right and step left 

respectively. 

For the choice of policy, “Peseudo-stochastic Method” and “Pseudo-exhaustive Method” is 

applied respectively. The simulation result of the above robot’s path planning problem is shown in 

Figure 4.2. 

    

(a) Chose Peseudo-stochastic Method as policy        (b) Chose Pseudo-exhaustive Method as policy 

Fig.4.2 Results of path planning 

In the above figure, the red cross represents the position of obstacle, the green dots stands for 

the path of robot moving from initial state to goal position.  
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After learning sufficiently (choose the episode of Q-Learning as 5000, and the learning steps 

of each episode is 1000), calculate the sum of reinforcement signal for each episode according to 

equation (4.9). The results are shown in figure 4.3 for both “Peseudo-stochastic Method” and 

“Pseudo-exhaustive Method” chosen to be its policy. 

                               _ iSum r r= ∑                            (4.10) 

 
(a) Chose Peseudo-stochastic Method as policy     (b) Chose Pseudo-exhaustive Method as policy 

Fig.4.3 The sum of reinforcement signal for each learning episode 

Based on the reinforcement signal designed in equation (4.7), the reward is minus for every 

step, therefore, the sum of the rewards of each episode is less than zero. Adopted the two policy 

respectively for the robot to choose the following action, both of the two cases can achieve the 

optimal path successfully. However, comparing with the learning time, the sum of reinforcement 

signal is convergence after 408 with Peseudo-stochastic Method, while using Pseudo-exhaustive 

Method the sum of reward signal convergence after 218 learning episodes. This results show 

experimentally that the Pseudo-exhaustive Method is better than the Peseudo-stochastic Method 

considering the learning efficiency. It accord with the conclusion of Caironi (1994). 

4.3 Fuzzy Q-learning algorithm 

4.3.1 Fuzzy inference system 
Fuzzy inference systems (FIS) permit to model most of the continuous functions from a 

n dimension space to ℜ . Unlike mathematical or “black-box” models, the natural language of 

FIS is used for the representation, which produces if then…  rules. The order-0 Takagi-Sugeno 

FIS is the most useful FIS for modeling or control real systems. The TS FIS can be described by a 

set of fuzzy rules as follows: 

if 1 1
jx A=  
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"  "  

and j
i ix A=  

then 1( , , )
ik k Ny f x x= "                       (4.11) 

in which ( 1 )i ix i N= "  are the inputs of the FIS with iN  the dimension of the input space. 

( 1 )j
i jA j N= "  are linguistic terms, representative a fuzzy sets, numerically defined by 

memberships functions distributed in the universe of discourse for each input ix . Each rule ky of 

the output is a linear combination of input variables 1( , , )
ik k Ny f x x= "  ( kf is a linear function of 

ix , 1 kk N= " and 1 ii N= " ). The structure of TS-FIS is shown in figure 4.4 (C.Sabourin, 2007).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.4 The structure of TS-FIS 

The calculation of one output of TS-FIS is decomposed into three stages, including: 

(1) For each condition " "j
i ix is A , it is necessary to compute j

iμ which is the mumerical 

value of the ix input signal in the fuzzy set j
iA . This stage is called “fuzzification”. 

(2) In order to determine each ku ( 1 )kk N= " ), apply the rule base. ku is computed 

according to the following equation: 

                             1 2 i

j j j
k Nu μ μ μ= ""                           (4.12) 

(3) The numerical value ku is carried out by using the weighted average and each rule’s 

output ku . This stage is called defuzzification phase. 

                               k k
k

Y u y= ∑                              (4.13) 

with ku is calculated by the following equation: 

                               
1

/
rN

k k k
k

u u u
=

= ∑                            (4.14) 

In the case of zero order Takagi-Sugeno, the output of each rule is singleton. Consequently, 
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1( , , )
ik k Ny f x x= "  is a constant value independent of the inputs ix for each k ( 1 )kk N= "  

rules. 

4.3.2 Fuzzy Q-learning algorithm 
    In the original Q-Learning method, it deals with discrete cases and assumes that the whole 

state space can be enumerated and stored in memory, because the Q values are stored in a look-up 

table, but this method is either unpractical in case of large state-action spaces, or impossible with 

continuous state space. For continuous state space, Glorenec et al (1997), proposed to use fuzzy 

logic where both actions and Q function may be represented by Takagi-Sugeno FIS. Unlike the 

TS-FIS In which there is only one conclusion for each rule, the Fuzzy Q-Learning (FQL) approach 

admit several actions per rule. Therefore, the learning agent has to find the best conclusion for 

each rule. 

To simplify, for each rule, we suppose that the learning system can choose one action among 

the total J actions. We call [ , ]a i j the thj possible action in rule i and [ , ]q i j  is its corresponding 

q-value. So, the FIS is build with competing actions for each rule: 

If state is Si , then choose [ ,1]a i , with [ ,1]q q i=  

or choose [ , 2]a i , with [ , 2]q q i=  
"  "  

              or choose [ , ]a i J , with [ , ]q q i J=                       (4.15) 

The learning agent has to find the best conclusion for each rule, for example, the action with 

the maximum q-value. For every state Si , the final action ( )A s is chosen through two levels of 

computation: in first level, local action [ , ]a i j in each fired rule is determined, and in the second 

level global action is calculated among all the local actions. In our approach, ε -greedy algorithm 

is used to elect the local action in each activated rule. The action with the best evaluation value has 

a probability ε to be chosen, otherwise, an action is chosen randomly among all possible actions in 

the given state. 

After the execution of the next computed action, the agent may update the Q value on the 

base of reinforcement signal. The algorithm of the FQL may be decomposed into four stages: 

·After the fuzzification of the perceived state iS , the rule values ( )i sα  are computing using 

the following equation: 

                             1 2( )i
i i i

Jsα μ μ μ= ""                         (4.16) 

·The final action ( )A s is computed through two levels of computation: in the first level, 

local action in each activated rule is determined by using EEP, and in the second level global 

action is calculated as a combination of all the local actions. Equation (4.17) and (4.18) give 

respectively the computation of the global action ( )A s  and the corresponding ( )Q S value 
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according to the truth value ( )i sα : 
                                                 (4.17) 

 

                                                              
1

( ) ( ) [ , ]
N

i
i

Q s s q i jα
=

= ⋅∑                                                     (4.18) 

·After the application on the environment of the new action given by ( )A s , the temporal 

difference error may be computed as: 

                     max[ ( ) ( , ( ))]Q r V s Q s A sβ γ ′Δ = + −                        (4.19) 

where, same as Q-Learning algorithm, γ is a discount factor and β is a learning rate, 

max ( )V s′ is the maximum Q value for the activated rule at the next step time: 

                            max
1

( ) ( ) [ ,max[ ]]
N

i
i

V s s q i iα
=

′ ′= ⋅∑                       (4.20) 

·Finally, for each activated rules, the corresponding elementary quality [ , ]q i jΔ  of the Q 

matrix is updated as: 
                                [ , ] ( )iq i j Q sαΔ = Δ ⋅                           (4.21) 

 

4.4 Step length planning for biped robot 

The robot moves in an unknown environment, when the obstacle is static, it is called “static 

environment”. While when the obstacle is also moving, it is considered to be “dynamic 

environment”. Furthermore, in dynamic environment, the obstacle can move with predictable 

velocity or with random velocity. How to design the footstep planning strategy for biped robot is 

always the burning issues for researchers. And considering that there are seldom references 

concerning about the problem of obstacle moving with random velocity. The dynamic 

environment that we will discus here includes both of the above two situations. In this section, our 

aim is to design a control strategy allowing biped robot to adjust automatically the step length in 

order to make the robot avoid dynamical obstacle using step over strategy. 
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Fig 4.5 Foot step planning strategy 

The step-length adjusting system based on FQL approach may be divided into four parts, 

Figure 4.5 show the outline of this strategy. 

·First part allows simulating dynamical environment into which the robot moves. 

·Second part is fuzzy sensors making it possible to compute the continuous inputs of the 

state. 

·The third concerns the FQL algorithm allowing to compute the length of the step. 

·And the fourth part gives the reinforcement signal. 

In the following sub-sections, we will introduce these four parts in detail. 

4.4.1 Virtual dynamical environment 
Figure 4.6 shows a stick diagram of the walking sequence when the biped robot steps over an 

obstacle. Both of the robot and obstacle move in sagittal plan but in opposite directions. We 

consider the walking of the biped robot like a succession of both single and instantaneous double 

support phases. The biped robot may adjust the length of its step but we consider that the duration 

of the step is always equal to one second.  

 
 
 
 
 
 
 
 

Fig.4.6 Virtual dynamical environment 

The time period of a single walking cycle is divided into two major phases in the course of 
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dynamic walking (M.Yagi): (1) single support phase, while one leg is on the ground, the other leg 

is in the swinging motion. (2) double support phase, after the swinging foot reaching the ground, 

both of the two feet are stepping on the ground. Although the robot has the ability to adjust its foot 

step, there are two possibilities in which the robot may crash with the obstacle. One occurs when 

the step length is not correctly adapted according to the position of the dynamic obstacle, refers to 

figure 5.7(a). In this case, the swing leg touches directly the obstacle during a double support 

phase. The other case corresponds to the situation when the obstacle collides with the stance leg 

during the single or double support phase (see figure 4.7(b)) 

 

 

 

 

 

 

 

(a) The swing leg touches directly the obstacle          (b) The obstacle collides with the stance leg 

Fig. 4.7 Biped robot crashes into obstacle 

4.4.2 Fuzzy sensors 

The design of our footstep planning is based on both Takagi-Sugeno FIS and Q-Learning 

strategies. Consequently, it is necessary to use a fuzzification for each input. In the proposed 

approach, we use two inputs in order to perform a correct footstep planning. These inputs are the 

distance between the robot and the obstacle obsd and the velocity of the obstacle obsv . obsd and 

obsv are updated at each double support phase. obsd corresponds to the distance between the front 

foot and the first side of the obstacle. obsv  is computed from the distance covered during 1s . The 

fuzzification of obsd and obsv  is carried out by using respectively 6 and 11 triangular membership 

functions. Figure 4.8(a) and 4.8(b) gives the membership functions of the obstacle velocity and 

distance respectively. 

 

 

 

 

 

(a) Membership function for obstacle velocity obsv ( / )m s  (b) Membership function for distance obsd ( )m  

Fig.4.8 Membership functions used for the input space 
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4.4.3 FQL-based step length 
    The FQL algorithm uses a set of fuzzy rules such as equation (4.16). For the proposed 

problem, the number of the rules is 66 (6 and 11 membership functions for velocity and distance 

of the obstacle respectively). For each rules, we define 5 possible outputs which are 

[0.1,0.2,0.3,0.4,0.5]m . In fact, these outputs correspond to the length of the step. Consequently, at 

each step time, the goal of the Fuzzy Q-Learning algorithm is to choose one output among five 

possible outputs for each activated rules. It must be pointed out that the chosen output is included 

with a discrete set, but the real output is a real number due to the fuzzication. During the 

simulation, the size of the obstacle is constant but the velocity of the obstacle may be modified. At 

each episode, initialization of some parameters is necessary. The initial distance between the biped 

robot and the obstacle is always equal to 2.5m . The velocity of the obstacle is chosen randomly 

from the interval [0,0.4] /m s . During one episode, the step length of the robot is computed using 

the FQL algorithm described in section 4.3. Consequently, the biped robot moves step by step 

towards the obstacle during the episode. The episode is finished if the robot steps over the obstacle 

or if the robot crashes into the obstacle. 

    In order that the agent converges towards an optimal solution, the number of episode must be 

sufficient. The influence of this parameter will be studied in the next section. The discount factor 

γ  and the learning rate parameter β  are equal to 0.8 and 0.1 respectively. This parameters have 

been chosen empirically after several trials in order to assure a good convergence of FQL 

algorithm. The probability Pε  is equal to 0.1, which means that the random exploration is 

privileged during the learning phase. 

4.4.4 Reinforcement signal 

    The reinforcement signal provides the information in terms of reward or punishment. 

Consequently, the reinforcement signal informs the learning agent about the quality of the chosen 

action. In our case, the learning agent must find a succession of action allowing the biped robot to 

step over an obstacle. But here the obstacle is a dynamic object which moves towards the biped 

robot. Thus, the reinforcement information has to take into account the velocity of the moving 

obstacle. In addition, the position of the foot just before the stepping over is very important too. 

On the base of these considerations, we designed reinforcement into two parts. 

    Firstly, if rob obsx x< , where robx  and obsx  give respectively position of the robot and of the 

obstacle: 

    · 0r = , if robot is still far from obstacle, 

    · 1r = , if robot position is appropriate to step over obstacle at the next step, 

    · 1r = − , if robot is too close to the obstacle. 
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    In this first case, r is computed with the following equation: 

                     

0 ( ( 1.2 ))
1 ( ( 1.2 ))

( ( 1.1 ))
1 ( ( 1.1 ))

rob rob obs

rob rob obs

rob rob obs

rob rob obs

if x x v t
if x x v tr and x x v t
if x x v t

≤ − Δ⎧
⎪⎪ > − Δ= ⎨ ≤ − Δ⎪

− > − Δ⎪⎩

                   (4.22) 

robx  and obsx are updated after each action. robv tΔ represents the distance covering by obstacle 
during the time tΔ . As the duration of the step is always equal to1s , tΔ is always equal to1s . 
    Secondly, if rob obsx x≥ : 

    · 2r = − , if robot crashes with the obstacle in next time, 

    · 2r = , if robot steps over the obstacle in next time. 

In this last case, r is given by equation (5,23): 

                         
2 ( ( ))

( ( ))
2

rob rob obs

obs rob obs

if x x L
and x x Lr

else

− > −⎧⎪ ≥ += ⎨
⎪⎩

                (4.23) 

where obsL is the size of the obstacle. 

4.4.5 Simulation results and analysis 

    In this sub-section, we present the main results related to the step length planning based on 

FQL approach by using MATLAB software. It must be noticed that our goal is to design a control 

strategy allowing to give a path planning in dynamical environment for biped robot, but we do not 

take into account the dynamic of the biped robot. We consider only discrete information allowing 

to compute the landing position of the foot. In addition, we consider only flat obstacles in the 

following simulations. 

    Firstly, we present results about the convergence of the algorithm according to the number of 

episodes during the learning phase. Secondly, we study the influence of the size of the obstacle. 

Finally, we show two examples of the foot step planning. 

4.4.5.1 Convergence of the algorithm 

    During the learning phase, the goal of the learning agent is to find the best rules in order to 

make the biped robot step over the obstacle. On the base of the previous description, we trained 

the Q matrix for different number of episodes. After a sufficient training, we test the footstep 

planning approach for 1000 velocity samples covering uniformly the input range [0,0.4] /m s . For 

each simulation, the size of the obstacle is equal to 0.2m . Figure 4.9(a), 4.9(b) and 4.9(c) show 

respectively results for 100, 1000 and 10000 episodes. 
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(a) episodes=100                              (b) episodes=1000 

 
(c) episodes=10000 

Fig.4.9 Success rate according to the number of episodes 

When the robot can step over the obstacle successfully, the results is 1, otherwise it is 0. The 

success rate corresponds to the ratio between the number of successes and the totality of trials. It 

must be pointed out that more the number of episode increases, more learning the agent needs for 

converging towards an optimal compromise. This solution implies that whether the velocity of the 

obstacle is greater than a threshold ( 0.12m approximately), no solution exists. Consequently, this 

approach is interesting because it is possible to determine a limit of obsv  which can not be exceed. 

4.4.5.2 Influence of the obstacle size 

    In the previous simulation, the size of the obstacle always equals to 0.2m . In this 

sub-section, we study the success rate according to the size of the obstacle obsL . Figure 4.10(a), (b) 

and (c) show respectively for obsL which equals to 0.1m , 0.2m and 0.3m , the repartition of both 

success and fail over the input range obsv . Table 4.1 concludes the results about success rate for 

four sizes of obstacle. It must be pointed out that more the size of obstacle is large, more the 

success rate is weak. This is interesting information about the abilities to the FQL algorithm to 

solve the proposed problem. Consequently, after the learning phase it is possible to give 

information about the limitation of the proposed approach. 
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(a) Obstacle size equals to 0.1m                    (b) Obstacle size equals to 0.2m  

 

 
(c) Obstacle size equals to 0.3m  

Fig. 4.10 Success rate according to the size of obstacle (10000 episodes) 

Table 4.1 Seccess rate according to obstacle size 

Size ( m ) 0.1 0.2 0.3 0.4

Constant obsv  65.6 31.3 21.7 4.8

 

4.4.5.3 Foot step planning examples 

Figure 4.11 shows a view of a foot step sequence when the robot steps over an obstacle of 

0.2m length, which is moving with constant velocity. Rectangle indicates the obstacle and spots 

indicate the two positions of the left and right foot for each step. Table 4.2 gives the step length for 

each step. It deserves to point out that when the biped robot is close to the obstacle, then the length 

of the step decrease in order to prepare the stepping over. Finally, the last step allows avoiding 

obstacle without collision. 
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Fig.4.11 Successful footstep planning when 0.1 /obsv m s= and 0.2obsL m=  

Table 4.2 Length of the step stepL when 0.1 /obsv m s=  

Step 1 2 3 4 5 6 

stepL  0.50 0.22 0.50 0.45 0.13 0.50

 

However, one of the most interests of our approach is also operational when the moving is 

unpredictable. Figure 4.12 shows the footstep sequence when the obstacle moves with a random 

velocity. The obstacle velocity is carried out by the sum of a constant value which equals to 

0.1 /m s and a random value included in[0 0.3] /m s" . Table 4.3 gives obsv and stepL for each step. 

The size of the obstacle is equal to 0.1m . It must be pointed out that the control strategy allows the 

robot to adapt the length of the step automatically according to the obstacle velocity, thanks to 

FQL algorithm. For 1000 trials realized in the same conditions, the success rate is equal to 85% 

approximately. This is very interesting because our strategy allows the control to increase the 

robustness. 

 
Fig.4.12 Successful footstep planning when obsv is random 0.1obsL m=  
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Table 4.2 Length of the step stepL when 0.1 /obsv m s=  

Step 1 2 3 4 5 6 

obsv  0.14 0.05 0.16 0.10 0.16 0.04

stepL  0.50 0.23 0.37 0.44 0.10 0.50

 

4.5 Step duration time planning for biped robot 

In the last section, we only adjust the step length for the biped robot to step over the dynamic 

obstacle. However, when the obstacle size is bigger, the success rate which is concluded in 

sub-section 4.4.5.2 is not desirable. In this section, we introduce the “step duration time”, which 

can be defined as the lasting time of one walking period for the biped robot. As it is on assumption 

that the double support phase is very short, the step duration time can be calculated as the time 

period of from leaving to landing on the ground of swing leg. The step duration time and step 

length will be planned at the same time, in order to increase the success rate of stepping over. 

4.5.1 FQL-based step duration time planning 
The step duration time planning approach is developed based on the Fuzzy Q-Learning 

algorithm introduced in section 4.3. During a stride circle, the robot needs to adjust the foot 

landing point, and modify the step time at the same time. Considering the step length j
stepL and 

step duration time j
stepT in one walking period as an “action pair”, for each fired rule, the learning 

system has to choose one action pair in all possible actions pairs ( , )j j
step stepL T , (the number of the 

possible actions pairs equals to lN ). We choose Pseudo-exhaustive Method as the searching policy 

here. The action pair with best evaluation value has a probability ( / )P a x  to be chosen. The 

output of the Fuzzy Inference System is to be the local action pair of the activated rule. After 

implement of the next action pair 1 1( , )j j
step stepL T+ + , the Q matrix value at present time ( , , )step stepQ x L T is 

calculated according to the reinforcement signal and present state. After the application of the new 

action pair ( , )j j
step stepL T , the temporal difference error is computed as equation (4.19). The structure 

of this approach is described in figure 5.13. 

 
Fig.4.13 FQL-based step duration time planning 
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For design of the reinforcement signal, the biped robot not only considers the impact of  

step duration time at present time, but also the influence to the next step (for example, if the robot 

will crash into the obstacle or there is not enough time for avoiding in next step). Furthermore, the 

reinforcement signal has to integrate the information of step length. Take into account the above 

factors, the reinforcement signal can be designed as: 

When rob obsx x<′ ′ , which means that the chosen present action pair ( , )j j
step stepL T will leads the 

robot far away from obstacle in the next step. The robot is not in the state of stepping over. 

·if ( )rob obs step obsx x n T v⋅≤ − ⋅′ ′ , the robot is still far away from the moving obstacle in next 

step, r equals to 0. 

·if ( ( ))&( ( ))rob obs step obs rob obs step obsx x n T v x x m T v⋅ ⋅> − ⋅ ≤ − ⋅′ ′ ′ ′ , the present state of robot is 

appropriate that makes the robot can step over in next step. 

·if ( )rob obs step obsvx x m T> ⋅− ⋅′ ′ , the robot is too close to the obstacle and it will leads to crash 

in the next step, r equals to -1. 

When rob obsx x≥′ ′ , which means that the robot is just in the state of stepping over. The 

chosen action pair ( , )j j
step stepL T  determines if crash happens directly. 

· if ( ( ))&( ( ))rob obs obs obs rob steplx x x x L+ >> −′ ′ , the robot can step over the obstacle 

successfully, r equals to 2. 

·otherwise, the robot crashes into obstacle. 

In the above description, obsl is the length of obstacle, robx and robx′ represent respectively the 

present position and the following position of the biped robot. obsx and obsx′ are respectively the 

corresponding position of obstacle to the above two states for robot. Both of m and n are 

constants, which have physical meaning of evaluating if the present action pair ( , )j j
step stepL T and 

present position is appropriate for executing the next action pair in order to avoid collision. 

According to the above contrive of reinforcement signal, both of the step length and step duration 

time chosen at present time will influence not only the present state, but also the state in the future. 

4.5.2 Simulation results and analysis 
As the previous section, Takagi-Sugeno FIS is used to fuzzificate the input signal 

obsd (distance from robot to obstacle) and obstacle velocity obsv . Their membership function is 

shown in figure 4.8(a) and 4.8(b). But, we chose the 5 triangular membership functions for each of 

them, so the number of rules of fuzzification is 25. For Q-Learning, the number of episode is 

assumed to be 1000. The initial distance between robot and obstacle is around1.25m , which can 

be expressed as (1.25 )mδ+ Δ , δΔ is a small difference. Suppose the obstacle length is 0.1m , and 

its velocity can change randomly within [0 0.4] /m s . As for each activated rule, define five 

possible step length [0.1 0.2 0.3 0.4 0.5]m , and five possible step duration time 
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[0.1 0.2 0.3 0.4 0.5]s . It must be noticed that the combination of step length and step time is 

randomly. So the number of action pair is 25. 

In the example of obstacle moving with constant velocity 0.15 /obs m sv = , figure 4.14 shows 

the footstep of biped robot when it adjust the step length and step duration time at the same time. 

It can be seen from the figure, the robot has to adjust the step length and step time for three steps. 

And before the modulating, the robot can keep on walking with the same step length 

0.48stepL m= and step time 0.213stepT s= . When the obstacle velocity is random, figure 4.15 

represent the footstep and step time planning results. In this case, the biped robot has to adjust the 

step length for four steps, but the step time has to be modified for 6 steps. The divide of step 

length to step time is velocity. In fact, in this approach, the stepping over obstacle is done by 

planning landing point of swing leg and its velocity. 

 
Fig.4.14 Step length and step duration time planning for biped robot stepping over 

obstacle with constant velocity 0.15 /obs m sv = . 
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Fig.4.15 Step length and step duration time planning for biped robot stepping over 

obstacle with random velocity 

Simulation is done when the obstacle length obsl equals to 0.1m , 0.2m and 0.3m respectively, 

and compute the success rate in these three cases. As the same, 1 stands for stepping over 

successfully and 0 represents failure. Simulation results are shown in figure 4.16(a), (b) and (c). 

While the obstacle length is 0.2m , we can easily figure out that the biped robot can step over all 

the obstacles whose velocity is smaller than 0.32 /m s . Comparing this result with 4.10(b), the 

robot can only avoid crashing when the obstacle moves slower than 0.15 /m s . We can get the 

conclusion that the success rate increases obviously, when adjusting the step length and step 

duration time (velocity) at the same time. 

 
(a) Obstacle size equals to 0.1m                    (b) Obstacle size equals to 0.2m  

 
(c) Obstacle size equals to 0.3m  

Fig. 4.16 Success rate according to the size of obstacle (10000 episodes) 

4.6 Maximum step height planning 

The “maximum step height” is defined as the vertical distance from highest point of the 

swing trajectory to the ground. In the previous discussion, the biped robot is supposed to keep one 

step height during the walking. However, in the unknown environment, the height of obstacle is 

unpredictable. Through the following example, we will illustrate why it is necessary to planning 
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the step height at the same time. Continue with the problem we described in the last section, the 

obstacle moves randomly with velocity including in[0 0.4] /m s . If only adjusting the step length 

and step duration time, from the point of footstep planning, the robot can step over the obstacle 

successfully, refers to figure 4.17. But considering the trajectory of swing leg, the swing leg 

crashes with the obstacle in the air, see figure 4.18 (the red stick stands for the stance leg, the 

green stick represents for the swing leg, and the blue arch is the swing leg trajectory). 

      

Fig.4.17 Footstep planning result               Fig.4.18 Swing leg trajectory during stepping over 

During the action of stepping over, when the swing leg of biped robot swings in the air, 

meanwhile the obstacle moves into the interval area of two legs (see figure 4.19). As the trajectory 

of the swing leg is usually an arch, one has to ensure that at the same time, every point in this arch 

is not superposition with the obstacle. Consequently, adjusting the maximum step height according 

to the obstacle height is necessary for biped robot to avoid collision. In the actual problem, the 

obstacle height is not alternatively. Thus, the biped robot only needs modify the step height for the 

last step and maintenance the same maximum step height before stepping over. In order to make 

the stepping over safer, learning of the step height is usually done in advance. 

 

 
Fig. 4.19 The trajectory point of swing leg is higher than the obstacle at the same time. 

4.6.1 FQL-based maximum step height planning 
    As previous description, on one hand most of the trajectories of swing leg are calculated by 

interpolation of the planed characteristic point on the track. And in order to keep the biped robot 

stable walking, the swing trajectory is usually a smooth arch. On the other hand, in dynamic 
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environment, the obstacle keeps on walking during swing leg uplift period. There are mainly two 

cases including: At the present time, the abscissa of the trajectory point equals to any point of the 

obstacle abscissa, the step height has to be modified. While there is difference between these two 

abscissas, the swing leg can continue the previous designed trajectory. Therefore, in order to step 

over the obstacle successfully, the biped robot has to modify the step length, step duration time 

and maximum step height at the same time. 

The trajectory arch is determined by the starting point, landing point and step height of the 

swing leg. The difference between the landing point and starting point is just the step length, 

which has already been planned in section 5.4. The maximum step height is designed separately, 

based on Fuzzy Q-Learning algorithm. The FQL-based maximum step height planning strategy 

can be described as follows: Regarding the step length stepL , distance between obstacle and robot 

obsd , together with the obstacle velocity obsv as the input signals of the fuzzy sensors, but they are 

designed separately. The action pair ( , )j j
step stepL T is learned by FQL algorithm I firstly. The chosen 

action pair and obstacle velocity at present time allow the FQL algorithm II to compute the 

maximum step height. Therefore the learning can be divided into two stages, the FQL-based 

maximum step height planning strategy is shown in figure 4.20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.20 FQL-based maximum step height planning strategy 

The fuzzification of step length stepL is carried out by using 11 triangular membership 

functions, refers to figure 4.21. We continue to use the fuzzy sensors for distance obsd and obstacle 

velocity obsv designed in section 4.4.3. 
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Fig.4.21 Membership function of step length stepL  

Step length stepL  and obstacle velocity obsv  are updated before the action of stepping over. 

Following the same idea, the reinforcement signal for learning step length and step time Lr  and 

reinforcement signal for the FQL-based step height planning have to be designed separately. It is 

pointed out that in order to keep itself reach good stability, there is no need for the biped robot to 

adjust the step height maxH  every step, it can holding the same maxH before stepping over. 

Therefore, the reinforcement signal Hr  does not have to consider the influence of present action 

to the future state, but only take into account the impact of chosen action maxH to present state. The 

reinforcement signal Hr can be described as follows: 

Firstly, if the abscissa of the trajectory point ( )xP t superposition to any point of the obstacle 

abscissa ( )obsx t , 

· 1Hr = , if vertical coordinate of this trajectory point ( )yP t  is bigger than the height of 

obstacle obsh , 

· 1Hr = − , if vertical coordinate of this trajectory point ( )yP t  is smaller than the height of 

obstacle obsh , collision occurs, 

Secondly, if there is difference between the abscissa of the trajectory point ( )xP t and the 

obstacle abscissa ( )obsx t at each time. There is no need for the swing leg to modify the step height 

in this case, because the swing leg will never collide with the obstacle. 

· 0Hr =  

4.6.2 Simulation results and analysis 
In the design of Fuzzy Q-Learning algorithm II designed for planning maximum step length, 

the learning rate β equals to 0.8 and the discount factor γ is taken to be 0.1. The episode of 

learning is 5000 in order to make sufficient learning. The goal of learning agent is to search the 

optimal rule leads the biped robot to step over obstacle whose height is within certain range. 

Suppose that the obstacle velocity can be changed within [0 0.4] /m s , but randomly. Five 

possible step length is [0.1 0.2 0.3 0.4 0.5]m and the presumable step duration time is 

[0.1 0.2 0.3 0.4 0.5]s . On the assumption that the original maximum step height maxH  is 

stepL
0     0.1    0.2     0.3    0.4    0.5 

1 
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0.08m , the robot keeps the same step height before stepping over. maxH  can be chosen within 

[0.08 0.1 0.125 0.15 0.175 0.2]m .  

Step length stepL and step duration time stepT are designed according to section 4.5. The 

FQL-based maximum height planning is based on 4.6.1. As the output is defuzzicated by the 

Fuzzy Inference System, the practical output max[ , , ]step stepL T H is a group of real number. Figure 

4.22 gives the simulation results when the obstacle moving with 0.15 /obsv m s= , while figure 4.23 

shows the foot step sequence in the random velocity case. As the previous, rectangle indicates the 

obstacle and the spots indicate the two positions of the feet for every step.  

 
Fig.4.22 Results of step length, step duration time and maximum step height,  

when obstacle moving with constant velocity, int 2.5d m=  

 
Fig.4.23 Results of step length, step duration time and maximum step height,  

when obstacle moving with random velocity, int 2.5d m=  

It can be seen from the above results, the last step allows the biped robot to avoid constant 
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velocity or random velocity moving obstacle without collision. The output step length, step 

duration time and maximum step height are real numbers. It has been emphasized that the robot 

modifies the step length and step duration time action pair [ ]j j
step stepL T  for six steps, but the 

maximum step height is only adjusted from 0.08m to 0.148m in the last step. The Q matrix 

corresponding to the step height has only to been trained for the last step, therefore, the training 

time of the FQL-based footstep planning decreases dramatically. 

The above results are on the assumption of the initial distance obsd between the robot and 

obstacle equals to1.5m . This initial distance determines the starting time for the biped robot 

training the Q matrix. In fact, when the obstacle is moving with constant velocity, the robot can 

modify the footstep fewer steps in advance. If the initial distance obsd is set to be1.5m , the biped 

robot can avoid collision only by correcting 4 steps (see figure 4.24), while in the case of initial 

distance is 0.1m , three steps of modification is enough for it stepping over successfully (refers to 

figure 4.25) . 

 
Fig.4.24 Results of step length, step duration time and maximum step height,  

when obstacle moving with constant velocity, int 1.5d m=  
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Fig.4.25 Results of step length, step duration time and maximum step height,  

when obstacle moving with constant velocity, int 1.0d m=  

 

4.7 Summary 

Firstly, we have presented a footstep planning approach allowing the biped robot to step over 

dynamic obstacles by adjusting the step length and step duration time. Our footstep planning 

strategy is based on a fuzzy Q-Learning concept. The step length and step duration time are 

considered to be an action pair. The learning system needs to choose one action pair in all the 

possible action pairs for each activated rule. If the number of episodes is big enough during the 

learning phase, the Q matrix can be trained completely and the algorithm converges towards an 

optimal compromise. In addition, the study of the result gives information about the maximum 

obstacle velocity according to the size of the obstacle. The proposed footstep planning is 

operational for both predictable and unpredictable motion of the obstacle. 

    However, on one hand, in unknown environment, the height of obstacle is unknown. On the 

other hand the dynamic obstacle keeps on moving while the swing leg uplift. Therefore, 

considering the swing leg will not crash into obstacle in the air, the maximum step height has to be 

modified at the same time. A FQL-based step height planning approach has been developed 

separately. The learning system makes use of the obstacle velocity and chosen action pair training 

Q matrix. The maximum step height is trained only for the last step, thus, the training time of Q 

matrix decreases dramatically. The simulation results show that the biped robot only needs to 

adjust the step height during the last step, and it can keep on walking with the same step height 

before stepping over. 

    The investigations in this chapter show a real interest of this approach because:(1) The 

computing time is very short. After the learning phase, the footstep planning is based only on two 



 75

FIS (one for action pair of step length and step duration time, another for maximum step height). 

(2) This footstep planning approach is valid for both static and dynamic obstacles. (3) The footstep 

planning is operational for both predictable and unpredictable dynamical environment allowing 

the control to increase the robustness.  
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Chapter 5 Obstacle avoidance strategy for biped robot in 

dynamic environment 

5.1 Introduction 

    The control strategy for the locomotion of biped robot can mainly be divided into two 

categories. One is based on the mechanical model of kinemics and dynamics of biped model, this 

means that one has to know the internal structural parameters of biped robot precisely, which 

needs nicety measurement of the joint angles, velocity and acceleration and the estimation of 

contact force between the feet and ground. Besides, the control strategy based on precise 

mathematical model usually requires mass computation, and it causes the implement difficulty in 

on-line control (K.Loffler et al., 2003). Therefore, predigest mathematical model is often used and 

the on-line joint trajectory computation grounds on the ZMP stability rules (Q. Huang, 2001; S. 

Kajita, 2003; M.Vukobratovic, 2004). The second category of control strategy mainly adopts the 

computing technology (A.L.Kun, 2000), such as fuzzy logic (C.Zhou, 2000), neural network 

genetic algorithm (F. Yamasaki, 2002), and the learning machine (A.Brnbrahim, 1997) (J. 

Nakanishi, 2004). The advantage of this control strategy is that one does not have to know the 

nicety mechanical structure of biped robot. Furthermore, the learning process can be done in both 

on-line and off-line situations. This point is very important, because the learning capacity can 

improve the autonomous of biped robot (C.Sabourin, 2008). 

The design of a control strategy allowing the biped robots to move in autonomous manner 

within dynamical environment is a challenging task. It involves solving a number of problems 

concerning, on the one hand, the desired joint trajectories tracking or dynamic stability control, 

which is called the low-level control; and on the other hand, the gait planning or path planning, 

which is defined as the high-level control. Generally, the low-level control using feedback 

structure is based on proprioceptive and/or exteroceptive information (reactive control). And the 

high-level control needs to use a predictive approach (planning). The goal of this high-level 

control is to anticipate the moving of the robot by using an exteroceptive perception of the 

environment. But the effectiveness of this approach is due to optimization and/or learning process. 

Today, although there are a large number of research works concerning the control of biped robot 

(M.Hackel, 2007), however, only a few studies involve the high-level control dealing with the 

path planning and the obstacle avoidances. Consequently, it seems necessary to design 

complementary approaches in order to increase the biped robots’ autonomy. It is pertinent to 
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emphasize that the specificity of biped robots is their ability to choose the landing point of their 

feet.  

To design the joint angle profiles that describe human-like locomotion of the biped is a 

challenging problem. A well-structured approach of designing the joint angle profiles that ties the 

resulting gait patterns with the physically coherent parameters is desirable. Hurmuzlu (1993a) 

developed a systematic approach that can be followed to formulate objective functions. Such 

objective functions were cast in terms of step length, progression speed, maximum clearance of 

the swing leg, and the support knee bias that could be used to prescribe the gait of a planar 

five-link bipedal robot during the single support phase. The objective functions are modified by a 

constraint function that keeps the mechanical energy as a constant. A major challenge of using this 

systematic approach to obtain the joint angle profiles is solving a set of equations combined with 

differential and algebraic equations. Which are from the constraint function. There is no general 

way to solve this combination of differential and algebraic equations. 

In this chapter, we still use the developed Fuzzy Q-Learning algorithm to solve the problem of 

biped robot stepping over the obstacle which is moving with random velocity. Step length, 

duration time and maximum height of every step have been recorded after learning process. After 

interpolating the starting point, ending point and maximum step height with cubic spline 

interpolation, desired foot trajectory of swing leg can be obtained. Then, with inverse kinematics, 

the joint angle profiles can be calculated according to the geometrical relationship between pitch 

angles. The footstep planning, cubic spline interpolation for generating the foot trajectory, together 

with inverse kinematics for generating the joint angle profiles constitutes the high-level control. 

The low-level control allows both to generate joint trajectories and to control the tracking of 

these desired trajectories. It can be decomposed into three parts: several CMAC neural networks 

for approximating the joint profiles for swing leg, modification of the pitch angle of the trunk for 

adjusting the average velocity, and PD control for tracking the desired joint angle. 

This chapter is organized as follows: Section 6.2 introduces the high-level control design 

strategy. Generation of trajectory for swing leg and generation of joint angle are presented in each 

sub-section. In last sub-section of section 6.2, we test the proposed high-level control strategy by a 

simulation example. The low-level control is introduced in Section 6.3, which includes the 

description of CMAC neural networks for approximating the joint profiles and pitch angle 

modification. The simulations result of our control strategy is given in last section 6.4. 
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5.2 Motion equations for five-link biped robot 

Because of the complexity of linkage systems with many degrees of freedom, constructing 

the mathematical modeling for the locomotion of biped robot is always a challenging problem. In 

general, the biped locomotion consists of tow stage of mathematical modeling: kinematics 

modeling and dynamics modeling. The goal of kinematics modeling is to determine and analyze 

the motion relationship between each part of the body, given the locomotion of each joint. The 

dynamic behavior of a biped locomotion system is described in terms of the time rate of change of 

the linkage configuration in relation to the joint torques. Furthermore, in the study of the dynamics 

of biped robot locomotion, it can be classified into two research category: one approach is the 

forward dynamic problem; the other is inverse dynamic problem. For the forward dynamic 

problem, the moments applied to the system serve as the system inputs and the solution found is 

the system kinematics. In the inverse dynamic problem, the kinematics data is used as the system 

inputs to find the forces and moments applied to the system. The purpose of solving the inverse 

dynamic problem in locomotion is to obtain information on the joint moments and the reaction 

forces at the joints of robot lower extremities (Siegler et al. 1982). 

As for the biped robot walking motion, abundant degrees of freedom may be involved, it is 

difficult to handle mathematically. Therefore, it is critical to select mathematical model having 

sufficiently few degrees of freedom to keep the equations of motion to manageable level, and yet 

having enough degrees of freedom to adequately describe the motion (Chung Ying Amy Chan, 

2000). 

The mathematical model of biped robot is first proposed by Chow and Jacobson (1972) as an 

inverted pendulum. They considered the upper body was modeled as a single link inverted 

pendulum with the prescribed base point moved only in the vertical direction. The use of this 

inverted pendulum is for the control of the postural stability of upper body for the biped 

locomotion. Hemami and his colleagues (1977,1980) developed this model into a massive inverted 

pendulum with the base joint fixed to the supporting ground in order to study the behavior of a 

body in standing position. To model the upper body of biped robot during gait, Wu et al. (1996, 

1998) continued to develop the general single link inverted pendulum Their mathematical model 

was developed with a base excited inverted pendulum could be used to predict major features of 

the upper body dynamics and to synthesize the mechanisms of walking. However, in the following 

study, it is pointed out that the single inverted pendulum models are too simple to accurately 

describe a complete locomotion (Wu et al. 1998). Multi-link planar models were then investigated 

to study biped locomotion, because they can solve the problems that are caused by the single 

inverted pendulum model.  
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In the study of Onyshko and Winter (1980), a model of a seven-link biped was used. They 

claimed that no constraints concerning the trajectories of any segment had been assumed. The 

results showed that a normal walking cycle can be achieved and the typical gait patterns could also 

be achieved with minor modification. Furusho and Masubuchi (1986, 1987) developed the biped 

structure modeled as a five-link, two-dimensional walking robot with a torso and knees but no 

ankles. The walking surface can be defined as a sequence of points connected with straight lines. 

This five-link model became very popular in the later application in the biped control. Hurmuzlu 

(1993a, 1993b) based on the five-link model, developed a systematic approach that can be 

followed to formulate objective functions to prescribe the gait during the single support phase. 

Tzafestas,S. et al. (1996) utilized this five-link biped model to study the forward walking motion 

in the sagittal plane. Regarding the interaction between the biped and the ground is modeled using 

external forces acting on each leg tip when the leg touches the ground. O. Haavisto (2004) 

developed seven degrees of freedom dynamic model to describe the dynamics of the system in all 

situations. Two coordinates fix the position of the center of mass of the torso, and the rest five 

coordinates describe the joint angles. 

In this section, we will study the locomotion of biped robot in the sigttal plan. 

 

5.2.1 The kinematics model of the five-link biped robot 
From the aspect of mechanical-structural complexity and control system complexity, the 

biped robot locomotion system is an extremely complex dynamic system. To study this system and 

its motion requires certain simplifications. The 5-link biped structure developed by Furusho and 

Masubuchi (1986, 1987) is selected for illustrating the developed techniques. These authors have 

provided rather complete model data in their articles. Only the motion on the sagittal plane is 

considered in this study, thus the biped robot is considered as a planar model. The sagittal plane is 

defined by the vertical axis and the direction of locomotion. The planar biped model is considered 

to consist of five rigid links with five degrees of rotational freedom. The upper body of the planar 

biped model, which includes the head, arms and trunk, is considered as a massive rigid inverted 

pendulum. The swing motion of the arms and the motion between the thorax and pelvis are 

ignored. The upper body is connected to the two legs with two rotational joints. Each leg consists 

of two massive rigid links as a thigh and a shank. All links are connected with each other by 

rotational joints. The feet are considered to be massless, therefore, the dynamic structures of the 

feet are neglected (Chung Ying Amy Chan, 2000). The ground condition is assumed to be rigid 

and non-slip. At any time instant only one foot has a point contact with the ground.  

The advantage of this five-link model is that it has sufficiently few degrees of freedom to 
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keep the equations of motion to a manageable level, while still having enough degrees of freedom 

to adequately describe the walking motion that includes the impact between the free end of the 

swing leg and the walking surface (Tzafestas, 1996). Figure 5.1 gives the configuration of the 

five-link model. 

3θ

2θ
4θ

5θ

0m

1m

2m

0r

1r

2r
1θ

0 0( , )x y

 
Fig.5.1 The five-link biped robot model 

Refer to figure 5.1, ( 1 5)i iθ = " corresponds to the angle of link i with respect to the 

vertical direction. 0 0( , )x y is the mass center of the trunk.. The mass of the torso is 0m . 0r  

represents the distance from the mass center 0 0( , )x y to the hip joint. Suppose that the two legs of 

biped are same constructed, and it is accord to the general case. The distance from the mass center 

to the hip joint of two thighs is the same 1r , and the distance from the mass center to the ankle is 

the same 2r . Likely, both of the length of the two thigh is 1l  and the length of the shank is 2l . 

Their masses are represented to be 1m  and 2m respectively. 

The bipedal locomotion during the single-support-leg phase can be studied as a tree-like 

topology. In its corresponding tree structure, each link becomes a node and each joint becomes an 

edge of the tree (Kyong-Sok Chang, 2000). Each branch of the tree topology is given a serial 

number: starting from the swing leg, the shank is called link A and the thigh is numbered as link B. 

The upper body is link C. And the link D and E stands for the thigh and shank of stance leg 

respectively. The rotational joints that connect each link are considered to be frictionless and are 

driven by independent motors.  

According to the kinematics relationship between links shown in Figure 5.1, the position and 

velocity of the end for the swing leg can be defined. The position of the stance foot ( , )e ex y  and 

the free end of the swing leg ( , )a ax y  can be derived as equation (5.1) and equation (5.2) 

respectively: 
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                        0 0 3 1 2 2 1

0 0 3 1 2 2 1
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a

a

x x r l l
y y r l l

θ θ θ

θ θ θ

= − ⋅ − ⋅ − ⋅
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                    (5.1) 

                        0 0 3 1 4 2 5

0 0 3 1 4 2 5
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e

e

x x r l l
y y r l l

θ θ θ

θ θ θ

= − ⋅ + ⋅ + ⋅

= − ⋅ − ⋅ − ⋅
                    (5.2) 

Application of derivate of equation (5,2), we can get the velocity of end of swing foot V : 
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According to the mass center of trunk 0 0( , )x y , the mass center of each link i  can be 

represented as follows:  

Link A： 

 0 0 3 1 2 2 1

0 0 3 1 2 2 1

sin sin sin
cos cos cos

A

A

x x r l r
y y r l r

θ θ θ

θ θ θ
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       (5.4) 

Link B： 
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B

B
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θ θ

θ θ
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Link C： 

 0

0

C

C

x x
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=

=
 (5.6) 

Link D： 
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sin sin
cos cos

D

D

x x r r
y y r r

θ θ

θ θ

= − ⋅ + ⋅

= − ⋅ + ⋅
 (5.7) 

Link E： 
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E

E

x x r l r
y y r l r
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θ θ θ

= − ⋅ + ⋅ + ⋅

= − ⋅ − ⋅ − ⋅
 (5.8) 

Appling equation (5.4)~(5.8) to the following equation, we can get the coordinate of mass 

center of bipedal model: 
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 (5.9) 

Using the same method, derive the equation (2.4)~(2.8) by time, the velocity of mass center 

for each link can be calculated: 
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3 2 1
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5.2.2 The dynamic model of the five-link biped robot 
   Two main formulations represent the dynamics of robotic mechanisms: the joint space 

dynamics formulation (M.W.Walker, 1982) and the operational space dynamics formulation 

(Oussarna Khatib,1987). Although these two different formulations ultimately describe the 

dynamics of the same robotic mechanism, each emphasizes different aspects of robot dynamics. 

The joint space dynamics formulation describes the dynamics of joints and the most common 

schemes for root dynamic formulation is a newer approach describing the dynamics of the tip of a 

manipulator with its task specification defined directly in its workspace. For the study of biped 

locomotion in our problem, we continue to use the joint space dynamics formulation. 

The forward dynamic model of the bipedal locomotion system can be developed by utilizing 

the Lagrangian formulation or the Newton-Euler formulation. Lagrangian formulation has the 

advantage that only the kinetic and potential energies of the system are required to be computed 

and all the workless forces and constraint forces can be automatically eliminated. Thus, 

Lagrangian formulation has been employed to develop the equations of motion describing the 

dynamics of the bipedal locomotion. 

5.2.2.1 Dynamic model of biped robot 

The locomotion of biped model in the sigttal plan is a continuous forward motion, during this 

phase, the biped robot has the support leg in contact with the walking surface carrying all the 

weight of the body and the swing leg swinging in the air in the forward walking directions. It is 

supposed that the friction of the ground is sufficiently large, so that there is no slippage at the 

support end with the walking surface. To derive the dynamic equations of the single support phase, 

we utilize the mathematical model of the support leg attached to the ground. The contacting point 

between the support foot and ground ( , )a ax y is constant, and is valid during this phase: 

                                  0a ax y= =� �                               (5.15) 
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As the system can move freely in the x y− plan and contains five links, it has five degrees of 

freedom. The corresponding five coordinates are selected according to figure 5.1: 

                               1 2 3 4 5[ , , , , ]Tθ θ θ θ θ=θ                           (5.16) 

The model is actuated with five moments, refers to figure 5.2: 

             
1 2 3 4 5

[ , , , , ]TT T T T Tθ θ θ θ θ=T                       (5.17) 

During the phase of single-support-foot, the derivation of the equations of motion for the 

open kinematics chain used to describe the motion of the biped robot follows the standard 

procedure of Lagrangian formulation (Murray et al., 1994; Chung Ying Amy Chan, 2000). 

The Lagrangian formulation of the five-link system is given by the difference between kinetic 

and potential energies: 

                                    L K P= −                              (5.18) 

In the above equation L  is the Lagrange multiplier. K  is the overall kinetic energy of the 

system which is the sum of all the five links, and P is the overall potential energy which includes 

each link: 
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K K
=

= ∑                              (5.19) 
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= ∑                               (5.20) 

The Lagrangian equation of motion is in the form as: 

                               ( )i
ii

L LT
t θθ

∂ ∂ ∂
= −

∂ ∂∂ �
                            (5.21) 

Where, T is the sum of torques during the rotary motion. To substitute the lagrange 

multiplier with equation (5.19), (5.20) and (2.21), the Lagrangian equation of motion can be 

rearranged in the form: 
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i
ii
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t θθ
= = = =

∂ − ∂ −
∂
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∑ ∑ ∑ ∑
�                   (5.22) 

The kinetic energy includes two parts: the rectilinear motion and rotary motion around the 

center mass. The kinetic energy and potential energy for each link can be calculated as the 

following equations: 

                       2 2 21 1( ) 1,2 5
2 2i i ix iy i iK m v v I iθ= + + =� "                    (5.23) 

                               i i iP m g y= ⋅                                  (5.24) 
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In which, g is the gravitational acceleration. Thus, the kinetic energy and potential energy 

for each link are formulated as follows: 

Link A： 
2 2 2 2 2 2

2 2 1 2 1 2 2 0 3 2 2 1 1 2 1 2

0 1 2 3 2 3 0 2 1 3 1 3

1 1 1( ) [ cos( )
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= + ⋅ + ⋅ + ⋅ + − ⋅

+ − ⋅ + − ⋅

� � � � �
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2 0 0 3 1 2 2 1( cos cos cos )AP m g y r l rθ θ θ= ⋅ − ⋅ − ⋅ − ⋅                  (5.26) 
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2 0 0 3 1 4 2 5( cos cos cos )EP m g y r l rθ θ θ= ⋅ − ⋅ − ⋅ − ⋅             (5.34) 

Substituting equation (5.25)~(5.34) to equation (5.22), we derive the dynamics equation of 

biped robot in the sigttal plan in the following standard form: 

                             2θ θ+ + =A(θ) B(θ) C(θ) T�� �                        (5.35) 

As the considered biped model is a five freedom system, there exit also five partial differential 

equations. T is the actuated moments given by equation (5.17). 5 5×∈ℜA(θ) is the inertial matrix 

and each term is formulated as follows: 
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a m r m l I
a m r l

θ θ θ θ

θ θ

=
=
= − − − +

= + +
= −

                (5.39) 

51

52

53 2 0 2 3 5

54 2 2 1 4 5

2
55 2 2

0
0

cos( )
cos( )

E

a
a
a m r r
a m r l

a m r I

θ θ
θ θ

=
=
= − +

= −

= +

                              (5.40) 

It can be seen from the above expressions, A(θ) is a symmetric matrix. 5 5×∈ℜB(θ) , which 

is the quadratic term ofθ� , is a matrix. The expression of each term is: 

11

12 2 2 1 1 2

13 2 0 2 1 3

14

15

0
sin( )
sin( )

0
0

b
b m r l
b m r r
b
b

θ θ
θ θ

=
= −
= −
=
=

                               (5.41) 

 

21 2 2 1 1 2

22

23 2 0 1 1 0 1 2 3

24

25

sin( )
0
( )sin( )
0
0

b m r l
b
b m r l m r r
b
b

θ θ

θ θ

= − −
=
= + −
=
=

                         (5.42) 

 

31 2 0 2 1 3

32 2 0 1 1 0 1 2 3

33

34 2 0 1 3 4 1 0 1 3 4

35 2 0 2 3 5

sin( )
( )sin( )

0
sin( ) sin( )
sin( )

b m r r
b m r l m r r
b
b m r l m r r
b m r r

θ θ
θ θ

θ θ θ θ
θ θ

= − −
= − + −
=
= + − −
= +

                  (5.43) 
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41

42

43 2 0 1 3 4 1 0 1 3 4

44

45 2 2 1 4 5

0
0

sin( ) sin( )
0

sin( )

b
b
b m r l m r r
b
b m r l

θ θ θ θ

θ θ

=
=
= + + −

=
= −

                  (5.44) 

 

51

52

53 2 0 2 3 5

54 2 2 1 4 5

55

0
0

sin( )
sin( )

0

b
b
b m r r
b m r l
b

θ θ
θ θ

=

=

= +

= − −

=

                                (5.45) 

5 1×∈ℜC(θ) is a vector, which is the expression of iθ : 

1 2 2 1

2 2 1 1 1 2

3 2 0 1 0 3

4 1 1 2 1 4

5 2 2 5

sin
( )sin
(2 2 )sin
( )sin

sin

c m gr
c m gl m gr
c m gr m gr
c m gr m gl
c m gr

θ
θ

θ
θ

θ

=
= +
= +

= +
=

                             (5.46) 

 

5.2.2.2 Transformation of the dynamic model 
The above derivative process utilizes the angles iθ with respect to the vertical direction. 

However, for the general control purpose, we usually use the relative angle [ , , , , ]T
L L R Rγ β ϕ β γ  

between the two connected links, whose definition refers to figure 5.2. 

ϕ

Lβ

Rβ

Lγ
Rγ

0m

1m

2m

0r

1r

2r

 
Fig.5.2 Biped model with relative angle 

The relative angles [ , , , , ]T
L L R Rγ β ϕ β γ  between links are used instead of the absolute angle 

iθ of each link. The relationship between the relative angles and the absolute angles is as follows: 
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1 2

2

3

4

4 5

L

L

R

R

γ θ θ
β ϕ θ
ϕ θ

β ϕ θ
γ θ θ

= −⎧
⎪ = −⎪⎪ =⎨
⎪ = +⎪

= −⎪⎩

                             (5.47) 

Thus, the variables iθ ( 1, 2, ,5)i = … can be expressed in terms of iq ( 1, 2, ,5)i = … as: 

                                

1

2

3

4

5

L L

L

R

R R

θ γ ϕ β
θ ϕ β
θ ϕ
θ β ϕ
θ β ϕ γ

= + −⎧
⎪ = −⎪⎪ =⎨
⎪ = −⎪

= − −⎪⎩

                         (5.48) 

To derive the relationship between moments T  and the actual driving torques of the 

joints 1 1 2 2[ , , , , ]T
L R L RM M M M Mϕ=M , referring to figure 5.3, we define the relative angles 

[ , , , , ]T
L L R Rγ β ϕ β γ as: 

                      1 2 3 4 5[ , , , , ] [ , , , , ]T T
L L R Rq q q q q γ β ϕ β γ= =q                    (5.49) 

L
M γ

R
M β

L
M β

R
M γ

Mϕ

 
Fig.5.3 Biped model coordinates with applied torques. 

Therefore, from the relation (Tzafestas, 1996) : 

                          
5

1
j i

i
q

i j

M T
qθ
θ

=

∂
=

∂∑   ( 1, 2, ,5)j = …                     (5.50) 

we can get the relationship between the general torque 
jqM and 

i
Tθ  

                           

1 1

2 1 2

3 1 2 3 4 5

4 4 5

5 5

q

q

q

q

q

M T

M T T

M T T T T T

M T T

M T

θ

θ θ

θ θ θ θ θ

θ θ

θ

=⎧
⎪

= − −⎪
⎪ = + + − −⎨
⎪ = +⎪
⎪ = −⎩

                       (5.51) 

Using the above equations, the biped model is transformed as follows: 

1 1 111 1 12 2 13 3 14 4 15 5 q q qA A A A A h G Mθ θ θ θ θ+ + + + + + =�� �� �� �� ��                  (5.52) 
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in which 

1

1

1 1

1

1

1,2, 5j j

q

q

A a j

h b

G c

= =

=

=

…
                       (5.53) 

2 2 221 1 22 2 23 3 24 4 25 5 q q qA A A A A h G Mθ θ θ θ θ+ + + + + + =�� �� �� �� ��                 (5.54) 

in which 

2

2

2 1 2

1 2

1 2

1, 2, 5j j j

q

q

A a a j

h b b

G c c

= − − =

= − −

= − −

…
                    (5.55) 

3 3 331 1 32 2 33 3 34 4 35 5 q q qA A A A A h G Mθ θ θ θ θ+ + + + + + =�� �� �� �� ��                 (5.56) 

in which 

3

3

3 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1, 2, 5j j j j j j

q

q

A a a a a a j

h b b b b b

G c c c c c

= + + − − =

= + + − −

= + + − −

…
               (5.57) 

4 4 441 1 42 2 43 3 44 4 45 5 q q qA A A A A h G Mθ θ θ θ θ+ + + + + + =�� �� �� �� ��                (5.58) 

in which 

4

4

4 4 5

4 5

4 5

1, 2, 5j j j

q

q

A a a j

h b b

G c c

= + =

= +

= +

…
                     (5.59) 

5 5 551 1 52 2 53 3 54 4 55 5 q q qA A A A A h G Mθ θ θ θ θ+ + + + + + =�� �� �� �� ��               (5.60)  

in which 

5

5

5 5

5

5

1,2, 5j j

q

q

A a j

h b

G c

= − =

= −

= −

…
                        (5.61) 

Again, using the same relations, the dynamic model of biped robot can be transformed for the 

control purpose as: 

                         2( ) ( , ) ( )q q q q q q+ + =q q q qD h G M�� � �                       (5.62) 

Where 
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1 2 3 4 5

1 2 3 4 5

1

1 2

1 2 3 4 5

4 5

5

( ,1) 1,2, ,5
( , 2)
( ,3)
( , 4)
( ,5)

[ , , , , ]

[ , , , , ]

q i

q i i

q i i i i i

q i i

q i

T
q q q q q q

T
q q q q q q

D i A i
D i A A
D i A A A A A
D i A A
D i A

h q h h h h h

G G G G G G

= =⎧
⎪ = − −⎪⎪ = + + − −⎨
⎪ = +
⎪

= −⎪⎩
=

=

…

�                      (5.63) 

( )qqD is the 5 5×  positive definite inertia matrix, ( , )q qqh � is the 5 1× vector of centripetal 

and Coriolis torques, ( )qqG is the 5 1× vector representing gravitational torques, and qM is 

the 5 1× vector of control torque applied at each joint. Inserting equation (5.53), (5.55), (5.57), 

(5.59) and (5.61) into equation (5.63), one can get each formulated term as follows: 

For ( ) ( , )qq D i j=qD   ( 1, 2, ,5 1,2, ,5)i j= =… …  

2
2 2

2
2 2 2 2 1 1 2
2

2 2 2 2 1 1 2 2 0 2 1 3

(1,1)
(1, 2) ( ) cos( )
(1,3) cos( ) cos( )
(1, 4) 0
(1,5) 0

q A

q A

q A

q

q

D m r I
D m r I m r l
D m r I m r l m r r
D
D

θ θ
θ θ θ θ

⎧ = +
⎪ = − + − −⎪⎪ = + + − + −⎨
⎪ =⎪

=⎪⎩

                           (5.64) 

2 2 2
2 2 1 1 2 2 2 2 1 1 1

2 2 2
2 2 2 2 1 1 2 2 1 1 1

2 0 2 1 3 2 0 1 1 0 1 2 3

(2,1) (1, 2)
(2,2) 2 cos( )
(2,3) ( ) 2 cos( ) ( )

cos( ) ( ) cos( )
(2,4) 0
(2,5) 0

q q

q A B

q A B

q

q

D D
D m r l m r I m l m r I
D m r I m r l m l m r I

m r r m r l m r r
D
D

θ θ

θ θ

θ θ θ θ

=⎧
⎪ = − + + + + +⎪
⎪ = − + − − − + +⎪
⎨

− − − + −⎪
⎪ =
⎪

=⎪⎩

                       (5.65) 

2 2 2
2 2 2 2 1 1 2 2 0 2 1 3 2 1 1 1

2 2
2 0 1 1 0 1 2 3 2 0 1 0 2 0 2 3 5

1 0 3 4 2 0 1 3 4

(3,1) (1,3)
(3, 2) (2,3)
(3,3) 2 cos( ) 2 cos( ) ( )

2( ) cos( ) (2 2 ) 2 cos( )

2[ cos( ) cos( )]

q q

q q

q A B

C

D D
D D
D m r I m r l m r r m l m r I

m r l m r r m r m r I m r r

m r r m r l

θ θ θ θ

θ θ θ θ

θ θ θ θ

=
=

= + + − + − + + +

+ + − + + + + +

+ − + + + 2 2
1 1 2 1

2
2 2 1 4 5 2 2

2 2
1 0 3 4 2 0 1 3 4 2 0 2 3 5 1 1 2 1

2
2 2 1 4 5 2 2

2
2 0 2 3 5 2 2 1 4 5 2 2

2 cos( )

(3, 4) cos( ) cos( ) cos( ) ( )

2 cos( ) ( )
(3,5) cos( ) cos( )

D

E

q D

E

q E

m r m l I

m r l m r I

D m r r m r l m r r m r m l I

m r l m r I
D m r r m r l m r I

θ θ

θ θ θ θ θ θ

θ θ
θ θ θ θ

⎧
⎪
⎪
⎪

+ +⎨
+ − + +

= − − − + − + − + +

− − − +
= + + − + +

⎪
⎪
⎪⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

    (5.66) 

2 2 2
1 1 2 1 2 2 1 4 5 2 2

2
2 2 1 4 5 2 2

(4,1) (1, 4)
(4,2) (2, 4)
(4,3) (3,4)
(4,4) 2 cos( )
(4,5) cos( ) ( )

q q

q q

q q

q D E

q E

D D
D D
D D
D m r m l I m r l m r I
D m r l m r I

θ θ
θ θ

=⎧
⎪ =⎪⎪ =⎨
⎪ = + + + − + +
⎪

= − − − +⎪⎩

                           (5.67) 
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2
2 2

(5,1) (1,5)
(5, 2) (2,5)
(5,3) (3,5)
(5, 4) (4,5)
(5,5)

q q

q q

q q

q q

q E

D D
D D
D D
D D
D m r I

=⎧
⎪ =⎪⎪ =⎨
⎪ =
⎪

= − −⎪⎩

                                                        (5.68) 

Then, put the relationship between absolute angle and relative angle (equation (5.48)) into 

expressions (5.64)~(5.68), we can get the inertia matrix ( )qqD  concerning the relative angles 

[ , , , , ]T
L L R Rγ β ϕ β γ as: 

2
2 2

2
2 2 2 2 1
2

2 2 2 2 1 2 0 2

(1,1)
(1,2) ( ) cos( )
(1,3) cos( ) cos( )
(1,4) 0
(1,5) 0

q A

q A L

q A L L L

q

q

D m r I
D m r I m r l
D m r I m r l m r r
D
D

γ
γ γ β

⎧ = +
⎪ = − + −⎪⎪ = + + + −⎨
⎪ =⎪

=⎪⎩

                             (5.69) 

2 2 2
2 2 2 1 1 1

2 2 2
2 2 2 2 1 2 1 1 1

2 0 2 2 0 1 1 0 1

(2,1) (1, 2)
(2,2) ( )
(2,3) ( ) 2 cos( ) ( )

cos( ) ( )cos( )
(2,4) 0
(2,5) 0

q q

q A B

q A L B

L L L

q

q

D D
D m r I m l m r I
D m r I m r l m l m r I

m r r m r l m r r
D
D

γ

γ β β

=⎧
⎪ = − + + + +⎪
⎪ = − + − − + +⎪
⎨

− − − + −⎪
⎪ =
⎪

=⎪⎩

                          (5.70) 

2 2 2
2 2 2 2 1 2 0 2 2 1 1 1

2 2
2 0 1 1 0 1 2 0 1 0 2 0 2

2
1 0 2 0 1 1 1 2

(3,1) (1,3)
(3, 2) (2,3)
(3,3) 2 cos( ) 2 cos( ) ( )

2( )cos( ) (2 2 ) 2 cos( )

2[ cos(2 ) cos( )]

q q

q q

q A L L L B

L C R R

R R

D D
D D
D m r I m r l m r r m l m r I

m r l m r r m r m r I m r r

m r r m r l m r m

γ γ β

β β γ

ϕ β β

=
=

= + + + − + + +

+ + − + + + + −

+ − + + + 2
1

2
2 2 1 4 5 2 2

2 2
1 0 2 0 1 2 0 2 1 1 2 1

2
2 2 1 2 2

2
2 0 2 2 2 1 2 2

2 cos( )

(3, 4) cos(2 ) cos( ) cos( ) ( )

2 cos( ) ( )
(3,5) cos( ) cos( )

D

E

q R R R R D

R E

q R R R E

l I

m r l m r I

D m r r m r l m r r m r m l I

m r l m r I
D m r r m r l m r I

θ θ

ϕ β β β γ

γ
β γ γ

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪ +⎨
⎪ + − + +⎪
⎪ = − − − − − − + +
⎪
⎪ − − +
⎪

= − + + +⎪⎩

     (5.71) 

2 2 2
1 1 2 1 2 2 1 2 2

2
2 2 1 2 2

(4,1) (1, 4)
(4,2) (2,4)
(4,3) (3, 4)
(4,4) 2 cos( )
(4,5) cos( ) ( )

q q

q q

q q

q D R E

q R E

D D
D D
D D
D m r m l I m r l m r I
D m r l m r I

γ
γ

=⎧
⎪ =⎪⎪ =⎨
⎪ = + + + + +
⎪

= − − +⎪⎩

                              (5.72) 

2
2 2

(5,1) (1,5)
(5, 2) (2,5)
(5,3) (3,5)
(5, 4) (4,5)
(5,5)

q q

q q

q q

q q

q E

D D
D D
D D
D D
D m r I

=⎧
⎪ =⎪⎪ =⎨
⎪ =
⎪

= − −⎪⎩

                                                        (5.73) 
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Similarly, we can derive the centripetal and Coriolis torques ( , )q qqh � and the gravitational 

torques ( )qqG  in the following from: ( 1, 2, ,5 1,2, ,5)i j= =… …  

2 2 1

2 2 1 2 0 2

(1,1) 0
(1,2) sin( )
(1,3) sin( ) sin( )
(1,4) 0
(1,5) 0

q

q L

q L L L

q

q

h
h m r l
h m r l m r r
h
h

γ
γ γ β

=⎧
⎪ = −⎪⎪ = + −⎨
⎪ =
⎪

=⎪⎩

                                       (5.74) 

2 2 1

2 0 2 2 0 1 1 0 1

(2,1) sin( )
(2,2) 0
(2,3) sin( ) ( )sin( )
(2,4) 0
(2,5) 0

q L

q

q L L L

q

q

h m r l
h
h m r r m r l m r r
h
h

γ

γ β β

=⎧
⎪ =⎪⎪ = − − − + −⎨
⎪ =
⎪

=⎪⎩

                             (5.75) 

2 2 1

2 2 1

2 0 1 2 0 2

(3,1) sin( )
(3, 2) 2 sin( )
(3,3) 2 sin( ) 2 sin( )
(3, 4) 0
(3,5) 0

q L

q L

q R R R

q

q

h m r l
h m r l
h m r l m r r
h
h

γ
γ

β β γ

=⎧
⎪ =⎪⎪ = − − −⎨
⎪ =
⎪

=⎪⎩

                                   (5.76) 

2 0 1 1 0 1 2 0 2

2 2 1

(4,1) 0
(4,2) 0
(4,3) sin( ) sin(2 ) sin( )
(4,4) 0
(4,5) sin( )

q

q

q R R R R

q

q R

h
h
h m r l m r r m r r
h
h m r l

β ϕ β β γ

γ

=⎧
⎪ =⎪⎪ = + − + −⎨
⎪ =
⎪

= −⎪⎩

                       (5.77) 

2 0 2 2 2 1

2 2 1

(5,1) 0
(5, 2) 0
(5,3) sin( ) sin( )
(5, 4) sin( )
(5,5) 0

q

q

q R R R

q R

q

h
h
h m r r m r l
h m r l
h

β γ γ
γ

=⎧
⎪ =⎪⎪ = − − −⎨
⎪ =
⎪

=⎪⎩

                                      (5.78) 

2 2

2 2 2 1 1 1

2 2 2 1 1 1 2 0 1 0

1 1 2 1 2 2

1 1 2 1

(1) sin( )
(2) sin( ) ( )sin( )
(3) sin( ) ( )sin( ) (2 2 )sin

( )sin( ) sin( )
(4) ( )sin(

q L L

q L L L

q L L L

R R R

q

G m gr
G m gr m gl m gr
G m gr m gl m gr m gr m gr

m gr m gl m gr
G m gr m gl

γ ϕ β
γ ϕ β ϕ β

γ ϕ β ϕ β ϕ

β ϕ β ϕ γ

= + −
= − + − − + −
= + − + + − + +

− + − − − −
= + 2 2

2 2

) sin( )
(5) sin( )

R R R

q R R

m gr
G m gr

β ϕ β ϕ γ
β ϕ γ

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ − + − −
⎪

= − −⎪⎩

        (5.79) 

 

5.2.3 Summary 
In this section, we presented the methodology for the derivation of equations of motion to 

describe the locomotion of a biped robot walking on a flat horizontal surface. A five-link 
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kinematic model of the biped robot has been developed which has sufficiently few degrees of 

freedom to keep the equations of motion to a manageable level, while having enough degrees of 

freedom to approximately describe the locomotion. Based on Lagrangian equation, the dynamic 

model is derived during the phase of single-support-foot. In the developed equations, the input 

joint angles are absolute angles. Therefore, we transformed the dynamics equation considering the 

relative angles between each link for control purpose. Comparing with the derivation process and 

the expressions of dynamic equations for biped robot, which is developed by Chung Ying Amy 

Chan (2000) or by Olli Haavisto (2004), our model is relatively less complexity. It is because on 

the one hand, we suppose that the structures of the both legs of biped robot are same, and on the 

other hand, we choose the mass center of the trunk of biped robot as the starting point to derive the 

position and velocity of the mass center of each link, so the total kinetic energy and potential 

energy have much simple expressions. 

 

5.3 Control strategy 

Our proposed control strategy for biped robot stepping over dynamic obstacle is based on the 

assumption that the high-level controller and low-level controller can be designed separately. The 

objective of high-level controller is to plan the footstep and joint angle for a few steps and the 

low-level controller allows the biped to control the tracking of desired joint angles. 

 

5.3.1 High-level controller design 
Because the goal of the high-level control is to give the path and joint angle planning for 

biped robot in dynamic environment, the strategic control needs to use a predictive approach 

based on an on-line optimization of learning process. Our approach is based on FQL concept, 

which is developed in Chapter 4. The structure of the high-level control can be divided into the 

following six parts: 

·The first part is to compute the position of the foot, the position of the obstacle and obstacle 

velocity by discrete information for simulating the dynamic environment. In this model we 

suppose the walking of biped robot is a succession of single support phases, and double support 

phase is instantaneous. 

·The second part involves a fuzzification of inputs of state.. 

·The third part concerns the Fuzzy Q-learning algorithm which must choose one output for 

each activated rules, We use two Fuzzy Q-learning algorithm, one for learning step length and step 

duration time, and other for maximum step height. 
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·The fourth part gives the reinforcement signal. The reinforcement signal provides the 

information in terms of reward or punishment. Consequently, the reinforcement signal informs the 

learning agent about the quality of chosen actions. 

·The fifth part interpolates the designated point such as starting point, landing point and 

maximum step height to get the swinging trajectory. 

·The sixth part generates the joint profiles according to the foot trajectory by inverse 

kinematics. 

The scheme of high-level control is presented in figure 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.4 Scheme of high-level control for biped robot in dynamic environment 

 

5.3.1.1 Generation of trajectory for swing leg 

In the previous section, Fuzzy Q-Learning is developed to train the key parameters: step length, 

duration time and maximum height of every step which determine the trajectory of swing leg of 

humanoid robot. In fact, the starting point minx and landing point maxx  of foot which are decided 

by length of step (refers to equation (5.80)), and the maximum step height maxh  which decides 

the peak of the trajectory will shape the trajectory of swing leg. The time duration of step only 

determines the frequency of movement. The swing trajectory is shown is figure 5.5.  

max minstepL x x= −                               (5.80) 

 So with starting point, landing point and vertex, the swing trajectory can be obtained by 

interpolation algorithm. In this section, cubic spline interpolation is chosen in our approach 

because of its comparatively less amount of calculation property and better precision.  

Fuzzy Sensors Q-Learning 

Algorithm 

Reinforcement 
Signal Lr  

Fuzzy Sensors Q-Learning 

Algorithm 

Reinforcement 
Signal Hr  

Cubic Spline
Inverse

Dynamics

 

Dynamic Environment

Distance 

Obstacle Velocity 

Step Length 

Obstacle Velocity 

Step time duration 
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minx maxx

maxh

stepL
                                    

Fig. 5.5 Swing trajectory during on step 

In cubic spline algorithm, for 1n + given points, every point on the curve is the corresponding 

value of cubic polynomial, which can be expressed as: 

                             3 2( )i i i i iS x a x b x c x d= + + +                        (5.81) 

To ensure the unique result, restriction is added into the cubic spline. By limiting the derivative 

coefficient of every cubic polynomial at the breaking point, the coefficients of the polynomial can 

be figured out by the following equations. 
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                    (5.82) 

In which, 1i i ih x x+= − , by using the idea of nested multiplication, we can get: 
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                       (5.83) 

Through Gaussian elimination, one can get iv  and iu expressions: 
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Substitution equation (5.83), (5.84) and (5.85) into equation (5.82), the coefficients of every 

cubic polynomial can be calculated. Then, equation (5.82) is used to interpolate the characteristic 

points: starting point, landing point and vertex, a smooth swing trajectory can be achieved. 
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5.3.1.2 Generation of joint angle 

Inverse kinematics 

There are mainly two approaches by which develop the inverse kinematical equation of robot: 

geometry method and algebraic method. The geometry method is generally applied on the robot 

with relatively simpler structure, such as the robot arm moving in two-dimension plan or with 

parallel joints of fewer freedoms. While, for the robots which move in the three-dimension plan or 

with more joints, the algebraic method is more appropriate. However, when there exits coupling, 

multiple solutions and singularity in the kinematics equations, it is hard to develop the inverse 

kinematics. Therefore, the approach by which derivate the inverse kinematical equations depends 

on the structure of robot. In the problem of biped robot stepping over obstacle, we using a 

five-link model to represent the structure of robot as explain in Chapter 1, and its motion is 

restricted in the sigttal plane. Thus, the geometry method is utilized to develop the inverse 

kinematical equations of biped robot. 

One walking period of biped robot includes single-support-leg phase and stance phase. 

However, the stance phase is considered to be instantaneous. During the single-support-leg phase , 

because the calf of support leg function as preventing the swing leg from touching the ground 

before stance, and has little effect on the walking motion of biped robot. Consequently, we did not 

introduce the knee joint of support leg in the inverse kinematical equation of biped robot. 

The thought of derive the inverse kinematics by geometry method is that calculate the 

locomotion of every joint, given the segment position of robot relative to the reference coordinate. 

Thus, the inverse kinematics of biped robot can be described as that the desired position of swing 

leg is known, compute the joint angle satisfied its location posture. In the gait planning of biped 

robot, usually the support leg is assumed immovable. 

    To describe the problem more clearly, we redefine the angle of thigh of support leg with 

respect to the vertical direction as 1θ . 2θ  corresponds to the angle of thigh of swing leg 

concerning the vertical direction, and  3θ  represents the angle of shank of swing leg relatives to 

the vertical direction. The length of thigh and shank for both legs is described as 1l and 2l  

respectively. 
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Fig. 5.6 Geometrical relationship between stance leg and swing leg 

    The geometrical relationship between stance leg and swing leg of humanoid robot is 

described in figure 5.6. Generally, in the stepping phase of robot, the stance leg does not bend. 

After footstep planning approach which is developed in Chapter 4, the angle between stance foot 

and vertical line 1θ  and its position 0 0( , )x yP P are recorded as the initial condition. The coordinate 

of any point 3 3( , )x yP P on the swing trajectory curve can also be calculated by cubic spline 

interpolating as described in section 5.3.1.1. 

The position of hip joint 1 1( , )x yP P and position of knee joint for swing leg 2 2( , )x yP P can be 

expressed as: 
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1 1 2 1

( )sin
( )cos

x

y

P l l
P l l

θ
θ

= +⎧⎪
⎨ = +⎪⎩

                         (5.86) 
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Derive from the geometric relationship, we can get: 

               2 3 1 1 2 3 1 2 1 1 2 3( cos ) ( ) cos cosy y y y ya P P P l P l l l Pθ θ θ= − = − − = + − −         (5.88) 

                3 2 3 1 2 1 3 1 2 1 1 2( sin ) ( )sin sinx x x x xb P P P l P P l l lθ θ θ= − = − + = − + −          (5.89) 

Based on the relation of sides of right-angled triangle: 

              2 2
1 2 1 1 2 3 3 1 2 1 1 2[( ) cos cos ] [ ( )sin sin ] 1y xl l l P P l l lθ θ θ θ+ − − + − + − =          (5.90) 

Solving above triangle equation, the angle between thigh of swing leg and vertical direction 

2θ can be calculated with: 
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in which: 

                            1 1 2 1 32 [( )sin ]xA l l l Pθ= ⋅ + −                         (5.92) 

                            1 3 1 2 12 [ ( ) cos ]yB l P l l θ= ⋅ − +                         (5.93) 

            2 2 2 2
1 2 3 1 3 1 1 2 2 1 3 3( ) [2 sin 2 cos ( )] ( )x y x yC l l P P l l l l P Pθ θ= + ⋅ ⋅ + ⋅ − + + − − −          (5.94) 

In equation (5.94), If 0C = , which means when  

                         
2 2 2

1 1 11
1

1 1

( ) ( )
A B CA

atg atg
B C

θ
+ +

= ∓                      (5.95) 

where 

                                 1 3 1 22 ( )xA P l l= +                             (5.96) 

                                 1 3 1 22 ( )yB P l l= +                             (5.97) 

                            2 2 2
1 1 1 2 3 32 2 x yC l l l P P= + ⋅ + +                          (5.98) 

     2θ is a singularity value. In this case, 2θ should be calculated as  

                                  2 ( )Batg
A

θ −
=                              (5.99) 

    Deriving the angle of shank of swing leg with respect to the vertical direction 3θ  in the 

similar way, based on the geometric relation, we can get: 

                                2 2 3sin( )l bθ θ+ =                            (5.100) 

Expansion the above expression, basing on trigonometric function, 

               2 2 3 2 2 3 3 1 2 1 1 2( cos )sin ( sin ) cos ( )sin sinxl l P l l lθ θ θ θ θ θ+ = − + −          (5.101) 

The above equation is concerning with 2θ , thus, 3θ can be calculated as: 
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3 ( ) ( )F F G Hatg atg
G H
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= ∓                      (5.102) 

in which  

                                  2 2cosF l θ=                              (5.103) 

                                  2 2sinG l θ=                              (5.104) 

                           3 1 2 1 1 2( )sin sinxH P l l lθ θ= − + −                      (5.105) 

When 3 1 2 1
2

1

( )sin
sin[( )]xP l l

a
l

θ
θ

− +
= , 0H = . In this case 3θ is a singularity value, it should 

be calculated as: 

                                  3 ( )Gatg
F

θ −
=                             (5.106) 

    Hip joint angle 2θ  and knee joint angle 3θ  are computed according to equation (5.91) and 



 98

(5.102), hence, when 0C ≠ and 0H ≠ , there are four combination of 2θ  and 3θ : 
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      (5.107) 

However, in order to keep the normal walking, the knee joint of biped robot can not bend 

backward during both the single-support phase and stance phase. With this restriction of knee joint, 

the angle of thigh  2θ  and angle of shank 3θ  with respect to the vertical direction for swing leg 

has single combination: 

           
2 2 2 2 2 2

2 3[ , ] [ ( ) ( ), ( ) ( )]A A B C F F G Hatg atg atg atg
B C G H

θ θ + − + −
= − −       (5.108) 

Thus, during the single-support-leg phase of biped robot, according to the reference position 

of two feet, the moving trajectory of hip joint and knee joint of swing leg can be calculated. 

Simulation 

    In this sub-section, we will test our approach of generation of joint angle for swing leg based 

on the given foot step. First, using cubic spline to originate the swing leg trajectory, then, the joint 

angles of swing leg are calculated by the deduced inverse kinematics of biped robot. 

Suppose that for a specific step, the step length of biped robot stepL is 0.4826m , the 

maximum step height maxh  is 0.1m , found on the proposed approach, the simulation results of 

coordinates of swing foot change with hip joint angle of support leg 1θ  is denoted in figure 5.7. 

and both hip and knee joint angle for swing leg 2 3( , )θ θ  varied by the hip joint angle of support 

leg 1θ  is shown in figure 5.8. 

The simulation results of foot trajectory of swing leg is given in figure 5.9, in which red stick 

represents the support leg, green stick stands for the swinging leg, and black dot is the joint. It has 

to be pointed out that as we derive the inverse kinematics based on the model of coordinate origin 

setting vertical to hip joint, the joint angle profile and foot trajectory include both negative and 

positive number. Because we assume that the maximum step height appears in the middle of step 

length, in figure 5.9 the foot trajectory is symmetric to the coordinate origin 
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Fig.5.7 Coordinates of swing foot varied by           Fig.5.8 Joint angles of swing leg varied by the 
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Fig. 5.9 Foot trajectory of swinging leg 

 

5.3.1.3 Simulation results and analysis 

Based on the previous developed high-level control approach, simulation is done given the 

example which is described in Chapter 5. We suppose that the velocity of the obstacle can be 

changed randomly between 0 and 0.4 /m s , while the robot can only modify duration of every step 

within (0.1 0.5)s , the maximum height of step can be chosen 

among [0.1 0.125 0.15 0.175 0.2]m  , and its step-length within 

[0.1 0.2 0.3 0.4 0.5]m ,according to its mechanical limitation. 

Footstep is designed based on fuzzy Q-learning approach. We choose discount 

factor 0.8γ = and learning rate parameter 0.1β = to learn step length, step duration time and 

maximum step height respective. Choosing the episode of the training phase as 10000 times, 

which ensures the Q matrix is trained completely with all the possible obstacle velocity. The 

learning results are presented in figure 5.10 and the numeric values are listed in table 5.1. 
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Fig. 5.10 Footstep planning results 

Table 5.1 Footstep planning numeric results 

Step 1 2 3 4 5 

Length 0.5000 0.4802 0.4131 0.4807 0.4919 

Time 0.3722 0.4646 0.2317 0.1840 0.3391 

Hmax 0.08 0.08 0.08 0.08 0.1439 

 

Cubic spline interpolation has been applied to interpolate the designated point such as 

starting point, landing point and maximum step height to get the swinging trajectory. With inverse 

kinematics, the curve of hip and knee angle of swing leg has been calculated according to the 

geometrical relationship between pitch angles. As the walking motion of biped robot is its left leg 

and right leg alternating process, the left and right leg will be the swinging leg by turns. Assume 

that the footstep planning starts with the left leg of biped robot as its swinging leg. Figure 

5.11~5.14 represent the hip joint profile and knee joint profile for both legs varied by step duration 

time respectively. The result of foot trajectory varied by step duration time is shown in figure 5.15. 

  
Fig.5.11 Joint angle profile for right knee               Fig.5.12 Joint angle profile for right hip 
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Fig.5.13 Joint angle profile for left knee               Fig.5.14 Joint angle profile for left hip 

 
Fig.5.15 Foot trajectory of swing leg varied by step duration time 

The simulation results show that the proposed high-level control strategy is feasible for that 

on one hand, the robot can step over dynamic obstacle successfully, on the other hand, swinging 

trajectory is smooth and there is no singularity value for hip and knee swinging angle. 
 

5.3.2 Low-level controller design 
The low-level control allows both to learn the predicted swinging trajectory and to control 

the tracking of these desired trajectories, which can be decomposed into three parts (C.Sabourin 

and K.Madani, 2007, 2008): 

·The first is used to compute the trajectories of the swing leg from several outputs of CMAC 

neural networks and a Fuzzy Inference System. 

·The second one allows the regulation of the average velocity from a modification of the 

pitch angle of the trunk. 

·The third is composed by four PD control in order to ensure the tracking the reference 

trajectory at the level of each joint. 

Two dimension CMAC neural network is applied to learn the predicted joint angle profile 
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which are gained from high-level control. Regarding the coordinate of swinging foot 3 3( , )x yP P as 

the two inputs, two CMAC neural networks are utilized for training hip joint angle and knee joint 

angle separately. The hip angle of support leg 1θ  is chosen randomly within 1min 1max( , )θ θ , which 

is the changing range of hip joint angle within one step period. The horizontal coordinate of 

3xP can be computed with this chosen 1θ and the corresponding vertical coordinate 3 yP  is 

calculated by cubic spline. The weights of CMAC are updated based on the difference between the 

output of CMAC and hip joint angle (or knee joint angle) of swinging leg calculated from inverse 

kinematics. Figure 5.16 shows the results of swinging leg joint angle approximation with CMAC, 

in which blue curve stands for the desired joint angle profile, red one is the hip joint angle 

approximation, and green curve represents the output of CMAC approximating knee joint angle. 
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Fig. 5.16 Swinging leg joint angle approximation with CMAC 

-0.6 -0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Fig. 5.17 Swinging leg trajectory approximation with CMAC 

Figure 5.17 gives the visualized simulation results of swinging leg trajectory approximation 
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with CMAC during one step period. Similar with the previous example, green link represents the 

swinging leg, red link stands for the support leg and black dots are the joints.  

As the walking motion of biped robot is the right leg and left leg alternates sequence, we use 

these trained CMAC neural networks to approximate the joint angle profiles for examples 

described in sub-section 5.3.1.2 (refers to figure 5.17). Suppose the stepping motion starts with the 

left leg of biped robot, figure 5.18~5.21 give the simulation results of the output of CMACs 

approximating the joint angle profiles. 

 
Fig. 5.18 CMAC approximation of left hip joint angle changing with step duration time 

 
Fig. 5.19 CMAC approximation of left knee joint angle changing with step duration time 
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Fig. 5.20 CMAC approximation of right hip joint angle changing with step duration time 

 
Fig. 5.21 CMAC approximation of right knee joint angle changing with step duration time 

 

5.4 Simulation results and analysis 

In this section, our high-level control and low-level strategy is tested by a simulation 

example where the biped robot and the dynamic obstacle moving oppositely in the sagittal plan. 

The virtual three-dimension dynamic model of biped robot is set up with Admas software, the 

controller is designed by Matlab. The data is transferred through Adams/Control connector, 

module and the simulation is done by united Admas 3D model with Matlab contoller. 

The velocity of the obstacle is 0.3 /m s , and the length of the obstacle equals to 0.1m . 

Regard distance between the robot and the obstacle obsd  and the velocity of the obstacle obsv  as 

two inputs of footstep planning for high-level control. obsd represents the distance between the 
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front foot and the first side of the obstacle and obsv  is computed from the distance covered during 

one step. These two input signals are updated at each double support phase.  
 

Table 5.2 Reference gaits 

Gait  ( )stepL m ( )stepT s ( / )MV m s

1Gait  0.24 0.6 0.4 
2Gait  0.3 0.6 0.5 
3Gait  0.34 0.567 0.6 
4Gait  0.38 0.543 0.7 
5Gait  0.43 0.537 0.8 

The fuzzification of obsv  and obsd  is carried out by using 3 and 5 triangular membership 

functions respectively. Therefore, the number of the rules is 3 multiplies 5 and equals to 15. For 

each rule, we define 5 reference gaits which are characterized by parameters given in table 5.2. 

The footstep planning is designed based on our previous idea. The Q matrix is trained for 150 

episodes. During the learning phase, at each episode, the velocity is chosen in random manner 

with Gaussian probability 0.02σ =  around the median value 0.3 /m s . The initial distance 

between the robot and the obstacle is around 2.5m . Figure 5.22 shows the sum of the computing 

value ( )Q tΔ for each episode according to the number of episode.  

 
Fig. 5.22 Sum of the computing value ( )Q tΔ for each episode 

It must be noticed that this value, which depends directly on the reinforcement signal, 

converges toward 0 quickly within 60 episodes. It is possible to obtain the best rules after the 

learning phase. Table 5.3 gives the obtained best rules in the case of the presented example. 
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Table 5.3 Obtained best rules after learning stage 

/obs obsD V  Small  modelMedium  Big  

V Small  3Gait  3Gait  3Gait  
Small  5Gait  4Gait  1Gait  

Medium  5Gait  2Gait  1Gait  
Big  3Gait  3Gait  3Gait  

V Big  3Gait  5Gait  5Gait  
 

 
Fig. 5.23 Walking motion sequence when the robot is walking toward a dynamic obstacle 

 

 
Fig. 5.24 Comparative study of footstep planning results 

Consequently, we use these best rules in order to design the gait pattern based on Fuzzy 

CMAC neural networks. The simulation is done on the base of Adams with Matlab software. 

Figure 5.23 shows the walking sequence when the robot is walking towards an obstacle in the case 

of the proposed example. Figure 5.24 shows the comparative study of the footstep planning results. 
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The top figure concerns a control strategy without step length adaptation, and the bottom figure 

shows the biped robot which uses the proposed control strategy. Without adaptation, the length of 

the step is quasi-constant and equals to 0.33m  It is can be seen very easily that the robot crash 

into obstacle when 6.2t s= in the above figure, but when the length of the step is adjusted by 

using the FQL footstep planning, the robot is able to avoid the obstacle. 

 

5.5 Summary 

In this chapter, we have proposed a control strategy for biped robot walking in dynamic 

environment, in which the robot and obstacle move with opposite direction in the sigttal plane. 

The originality of our approach is that we design the high-level and the low-level control 

separately. The high level control is composed of three parts: footstep planning, foot trajectory 

generating and joint angle generating. The footstep planning is derived based on a fuzzy 

Q-learning concept. The step length, step duration time and maximum step height, which in fact, 

determines the landing point and shape of foot trajectory, can be obtained after the learning phase. 

Cubic spline interpolation has been applied to interpolate the designated point such as starting 

point, landing point and maximum step height to get the foot trajectory of swinging leg. With 

inverse kinematics, the curve of hip and knee angle of swing leg has been calculated according to 

the geometrical relationship between pitch angles. The low-level control allows to approximate the 

joint trajectories and to control the tracking of these desired trajectories. CMAC neural networks 

have been applied to approximate the desired joint angles.  

The presented results show that our approach is operational in the case of a robot without feet 

moving in a sagittal plane and where we consider a flat obstacle. Our approach does not require 

the knowledge of probability transitions from a state to another for robot and has fast learning 

property. However, tt is very important to point out that the robot can not step over the dynamic 

obstacle in all cases. The success rate is related to the size of obstacle. The longer the obstacle is 

the smaller success rate is. Because of the landing position of swing leg, there are also some 

conditions that no matter how the maximum height of last step is adjusted, the robot will always 

crash with the obstacle. The smaller the obstacle height is the bigger success rate the robot can 

step over. 
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Chapter 6 Conclusion and Future Work 

6.1 Conclusion 

Designing autonomous intelligent control systems for real-world problems is a daunting task. 

The complex input-output relationships resulting from the interaction between a process and its 

environment are often not readily solvable by traditional mathematical methods. A growing 

amount of research is being performed in designing control systems which develop their own 

solution by utilizing methods borrowed from intelligent control. 
 

CMAC is a neural network with local generalization abilities and can achieve convergence 

rapidly compared with other neural networks. Because of the advantages of simple and effective 

training properties, fast learning convergence and digital hardware implementation, CMAC neural 

network is widely applied in the complex dynamic systems, such as robot and some flight vehicles. 

Usually the required memory size is dramatically increased with its input dimension. However, the 

memory size of CPU and computation time are quit important for the real-time control of these 

systems, as the CPU has to complete mass of tasks at the same time. Therefore, we concentrate on 

the structure optimization of CMAC neural network and its application on generic hypersonic 

vehicle and biped robot. 
 

As a very important branch of reinforcement learning, Q-learning approach has been widely 

used in dynamic systems, because of its simple computations per time step and also because it has 

been proven to converge to a global optimum. Besides its advantage, a major problem with Q 

learning is its inability to handle large state spaces. With larger state spaces, longer training times 

are required since multiple visits of each state action pair are required for the agent to learn. And 

large state spaces also require impractically large amounts of memory. Therefore, we pay attention 

to fuzzy Q-learning approach. It is been developed to solve the problem of biped robot stepping 

over obstacle in dynamic environment. 
 

Just with the above research background, we develop our research and get some conclusion 

around the following points: 
 

(1) The main drawback of high-dimension input CMAC neural network for its application on 

the real-time dynamic system is that the required memory size increases exponentially with the 
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input dimension. Indeed the required memory size depends on its structure parameters. We discuss 

how both the generalization and step quantization parameters may influence the CMAC 

approximation quality. Our goal is to find an optimal CMAC structure for a given problem. The 

presented simulation results show that an optimal structure carrying a minimal modeling error 

could be achieved. Consequently, the choice of an optimal structure allows on one hand 

decreasing the memory size and on the other hand the computing time. Considering these two 

factors, we developed the algorithm for optimizing the CMAC structure.  
 

(2) In hypersonic air-breathing flight vehicles with airframe-integrated scramjet engines, the 

airframe, propulsion system and structural dynamics are highly interactive. The engine airframe 

integration causes significant coupling between the propulsion system and vehicle aerodynamics. 

Due to the strong coupling, explicit flight dynamics and designing effective controller are highly 

challenging for this class of vehicles. In this paper, we have developed the nonlinear longitudinal 

dynamic equations of GHV considering the elastic characteristics of the body. Different with the 

original neural network controller design, we propose two two-dimension CMAC neural networks 

to mapping the relationship of throttle setting and flight height and velocity, and the relation 

between the elevator deflection and flight height and velocity. The only assumptions made about 

the relation between the input (flight height and velocity), and output (throttle setting and elevator 

deflection) are continuous, and a sufficient condition for controllability is satisfied The simulation 

is done to evaluate its performance on step change response, and the results demonstrate that the 

performance requirements of the GHV are met. 
 

(3) In the presented research achievement, the footstep approach for biped robot in dynamic 

environment can only solve the problem of the obstacle moving with average velocity and predict 

velocity. Moreover, in order to avoid the high computational complexity, the planning has to be 

limited within a few steps. In this paper, we develop the footstep planning based on the fuzzy 

Q-learning algorithm. The approach is divided into two separate fuzzy Q-learning algorithm 

design process, one is for the step length and step duration time action pair, and another is for the 

maximum step height. These three parameters determine the foot trajectory profile of swing leg. 

The simulation results show that the learning approach convergence very quickly after only a few 

episodes. And after the learning phase, the biped robot can step over the unpredicted dynamic 

obstacle by adjusting the landing point and maximum step height. The main interests of this 

investigation are as following: (a) the computing time is very short, after the learning phase, the 

footstep planning is only based on two FIS. (b) This approach is valid for both static and dynamic 

obstacles. (c) The footstep planning is operational for both predictable and unpredictable 
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dynamical environment allowing the control to increase the robustness.  

(4) To study the locomotion of biped robot in the sigttal plan, one has to first develop the 

mathematical model of the robot. The kinematics equations are derived based on the five-link 

model. The advantage of this five-link model is that it has sufficiently few degrees of freedom to 

keep the equations of motion to a manageable level, while still having enough degrees of freedom 

to adequately describe the walking motion. The dynamics equations during the single-support-leg 

phase are deduced from the Lagrangian formulation. Our mathematical model is relatively less 

complexity. It is because on the one hand, we suppose that the structures of both legs are same 

which is correspond to the original case, and on the other hand, we choose the mass center of the 

trunk of biped robot as the starting point to derive the position and velocity of the mass center of 

each link. 
 

(5) Base on the idea of the high-level control and low-level control can be designed 

separately, we propose the control strategy for biped robot stepping over dynamic obstacle. The 

high-level control consists of footstep planning which is found on fuzzy Q-learning algorithm, 

foot trajectory generation and joint angle generation. The low-level control based on the CMAC 

neural network, allows both to learn the predicted swinging trajectory and to control the tracking 

of these desired trajectories. The simulation results show that our approach is operational in the 

case of a robot without feet moving in a sagittal plane and where we consider a flat obstacle. Our 

approach does not require the knowledge of probability transitions from a state to another for 

robot and has fast learning property.  
 

6.2 Future work 

As the previous description, we have made some achievement about the footstep planning for 

biped robot in dynamic environment, and structure optimization for CMAC neural network in this 

paper. However, there are sill some insufficient which need further study. 
 

(1) In Chapter 2, we have present that the optimal structure can be achieved by adjusting the 

structure parameters. Through search of all the possible structure parameters, the quantization step 

and layer are chosen according to the reinforcement signal which contains the information about 

the required memory size and approximation error. In the future, we will focus on using the 

learning algorithm which will choose the structure parameters with no need of the ergodic search. 
 

(2) In the footstep planning approach, the step length, step duration time and maximum step 
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height has to be adjusted according to the velocity of obstacle, however the frequently change of 

these parameters will influence the stability of biptal walking robot. In the future, we will try to 

increase the robustness of our control strategy.  
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Appendix  Simulation results of CMAC based controller 

for generic hypersonic vehicle 
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