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Pascal Koiran Professor, École Normale Supérieure de Lyon
Felipe Cucker Professor, City University of Hong Kong



Many years ago I was invited to give a lecture on what is today
called ”computer science” at a large eastern university. I titled my
lecture ”Turing machines”, because the most famous abstract model
of a computer is the model presented by Alan Turing. Today
biographies of Turing are reviewed in the New York Times, but in
those early days of the computer Turing was virtually unheard of.
Thus it wasn’t surprising that someone at the university ”corrected”
what he assumed to be my typographical error, with the result that
posters announcing that I would give a lecture on TOURING
MACHINES went up all over the campus. (A few people left rather
early in the lecture).

Representation and Reality
Hilary Putnam
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Résumé

En informatique, le modèle de calcul généralement utilisé est la machine de Turing.
Cette dernière est une modélisation théorique de l’ordinateur digital, et est pertinente pour
plusieurs raisons.

D’abord, la thèse de Church, formulée dans les années 1940, et qui est communément
admise dans la communauté des informaticiens, affirme que les fonctions qui sont effective-
ment calculables sont exactement les fonctions calculées par les machines de Turing. Cette
thèse repose sur le fait que de nombreuses tentatives pour formaliser la notion de calcul
a conduit à des modèles calculant ou exprimant exactement les mêmes fonctions que les
machines de Turing.

Et ensuite car le fonctionnement des ordinateurs actuels est assez proche de la machine
de Turing. Cette machine est donc un bon modèle pour étudier non seulement si certaines
fonctions sont calculables, mais aussi pour étudier leur complexité, c’est-à-dire les ressources
en temps et en mémoire dont un ordinateur aura besoin pour calculer ces fonctions. Ce
modèle de calcul est ainsi à la base de l’étude de l’efficacité des algorithmes, et donc de
l’étude de la difficulté des problèmes résolus par ces algorithmes. Il a permis l’essor du
domaine de recherche de la complexité de calcul, qui s’intéresse à classer les problèmes en
fonction de leur difficulté, en définissant des classes de problèmes de complexité comparable,
et en étudiant les inclusions entre ces classes.

La machine de Turing fonctionne par définition sur l’alphabet {0, 1}, ou de manière
équivalente sur un alphabet fini. Les problèmes définis sur des structures plus riches, comme
l’ensemble des réels ou des complexes, ne sont donc pas à sa portée – plusieurs théories
ont été proposées pour étudier le calcul continu sur la machine de Turing (discrète), mais
aujourd’hui il n’y a pas de consensus sur l’approche à suivre. En particulier, les polynômes,
qui sont les fonctions calculées avec les opérations (+,−,×), ne peuvent être évalués sur les
nombres réels ou complexes par des machines de Turing. La complexité algébrique a donc
été développée pour permettre l’étude des questions de complexité sur n’importe quel corps.
On a donc introduit différents modèles de calcul permettant de construire des algorithmes
utilisant les opérations arithmétiques usuelles sur un corps donné, et formalisant ainsi la
notion intuitive de calcul en mathématiques classiques continues.

Malheureusement, contrairement au cas booléen, les différents modèles de calcul in-
troduits calculent des classes de fonction différentes, et ne permettent donc pas de faire
ressortir une notion claire de calculabilité. En outre, contrairement à la machine de Tur-
ing, ces modèles ne sont pas liés à des implémentations concrètes. S’il est donc intéressant
d’étudier ces différents modèles de calcul algébriques, la machine de Turing reste le modèle
de calcul de référence, et il est aussi essentiel d’étudier la traduction de ces calculs en algo-
rithmes booléens.

Dans cette thèse, nous nous concentrons sur les polynômes, qui sont au cœur de la
complexité algébrique. Nous considérons deux modèles de calcul algébriques, le modèle de
Valiant et la machine de Blum, Shub et Smale (BSS).

Si les modèles de Valiant et de Blum, Shub et Smale ont respectivement déjà 33 et 22
ans et ont été abondamment étudiés, la complexité algébrique reste un champ de recherche
bien plus petit que la complexité booléenne classique. Pour étudier la structure des classes
de complexité algébriques, il est donc naturel de partir des résultats et des questions ouvertes
dans le cas booléen, et de regarder ce qu’il en est dans le contexte algébrique. La comparaison



des résultats obtenus dans ces deux domaines permet ainsi d’enrichir notre compréhension
des deux théories.

La première partie de cette thèse suit cette approche. En considérant un polynôme
canoniquement associé à toute formule booléenne, nous obtenons un lien entre les questions
de complexité booléenne sur la formule booléenne et les questions de complexité algébrique
sur le polynôme. Nous avons étudié la complexité du calcul de ce polynôme dans le modèle
de Valiant en fonction de la complexité de la formule booléenne. Nous avons obtenu dans
le cas algébrique des résultats comparables à certains résultats booléens, tout en obser-
vant des différences notables. Nous avons aussi pu utiliser des méthodes algébriques pour
améliorer certains résultats booléens, en particulier en obtenant de meilleures réductions
entre problèmes de comptage.

Mais la motivation la plus naturelle aux modèles de calcul algébriques est d’offrir un
niveau d’abstraction élégant pour définir et analyser des algorithmes algébriques. La seconde
partie de ma thèse suit cette approche, et va dans la direction opposée, c’est-à-dire de
la complexité algébrique à la complexité booléenne. Nous nous sommes intéressés à des
algorithmes nouveaux pour un problème algébrique bien connu : la recherche de zéros (ou
racines) approchés d’un système de n polynômes complexes à n inconnues, initiée par Steve
Smale. Ce cas où le nombre de variables est égal au nombre de polynômes est intéressant
puisque d’après le théorème de Bézout, l’on a alors presque sûrement un nombre fixé de
zéros isolés. Ce problème a connu de grandes avancées dans la dernière décennie, et des
algorithmes efficaces ont été proposés.

Jusqu’à présent il s’agissait d’algorithmes pour la machine BSS. Nous avons étudié
l’implémentabilité de ces algorithmes sur un ordinateur booléen. Cela signifie représenter
les nombres complexes par des approximations de précision finie, et prendre en compte
les erreurs faites à chaque calcul sur ces approximations. Nous proposons un algorithme
déterministe fonctionnant en précision finie pour ce problème, et dont la complexité est
polynomiale en la taille de l’entrée lorsque les polynômes sont de degré borné.
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Introduction

In computer science, the classical model of computation is the Turing machine, which is a
convenient model for digital computers. A central belief in computer science is Church’s
thesis, formulated in the 1940s, which states that effectively computable functions are exactly
the functions computable by Turing machines. This thesis relies on the fact that many
attempts to formalize the notion of computation led to models computing or expressing
exactly the same class of functions as Turing machines.

And indeed, today’s digital computers are quite close to the Turing machine. It is
a good model, not only to study the computability of functions, but also to study the
complexity of computable functions, that is, the quantity of time or memory it takes for a
computer to compute them. This model of computation gives strong foundations to study
the efficiency of algorithms, and thus, to study the hardness of the problems solved by
those algorithms. This led to the research field of boolean computational complexity, which
focuses on the question of classifying problems according to their computational hardness, by
defining classes of problems of comparable complexity, and studying the inclusions between
these classes.

A defining feature to the Turing machine is that it works over {0, 1}, or equivalently
over any finite alphabet. Problems expressed over structures richer than {0, 1}, such as
the real or complex numbers, are out of the reach —there have been attempts to build a
theory of continuous computations based on the (discrete) Turing machine but, as of today,
there is no consensus on the right approach for the study of this problems. In particular
polynomials, which are the functions computed with the usual operations (+,−,×), cannot
be evaluated on real or complex numbers by Turing machines. The algebraic complexity
theory was developed in this context, in order to study complexity issues on any field.
Various algebraic models of computation have been defined allowing to construct algorithms
using basic arithmetic operations in a given field, which is the intuitive notion of computation
in classical continuous mathematics.

Unfortunately, contrary to the boolean case, these various algebraic computational
models compute different classes of functions. Furthermore, in opposition to the Turing
machine, these theoretical models do not have concrete implementations. It may thus be
interesting to study different algebraic models of computation, but also to study the trans-
lation of algebraic algorithms into boolean algorithms, since the Turing machine remains
the model of reference.

In the present thesis, we will focus on polynomials, which are central in algebraic
complexity. We will consider two algebraic models of computations, Valiant’s model and
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the Blum, Shub and Smale (BSS) machine.

Even though the structure of the complexity classes on these models has already been
studied for a few decades, it remains a far smaller research field than structural boolean
complexity. To explore the structure of algebraic complexity classes, it is therefore natural
to consider results and open questions in the boolean case, and look at their translation into
the algebraic context. The comparison of the results obtained in the two settings will then
boost our understanding of both complexity theories. The first part of our thesis follows
this framework. Considering polynomials associated to boolean formulas, we have a bridge
between boolean complexity issues on the formulas and algebraic complexity issues on the
polynomials. We studied the complexity of the polynomial in Valiant’s model as a function
of the complexity of the boolean formula. We were able to find algebraic counterparts to
some boolean results, and observed several differences between both. Along the way, we also
used our algebraic works to improve some boolean results, in particular by getting better
reductions.

But the most natural motivation for the algebraic models of computation is to offer
an elegant level of abstraction that helps define and analyze algebraic algorithms. The
second part of our thesis follows this approach, and tackles the comparison between algebraic
and boolean complexity in the opposite direction. We focused on new algorithms for a
well-known algebraic problem: the search of approximate zeros of complex systems of n
polynomials in n variables, initiated by Steve Smale. This special case is interesting since
when the number of variables equals the number of polynomials, the system has almost
surely isolated zeros. The problem has known great advances in the past decade, and
efficient algorithms have been designed.

Up to now, those were BSS machine algorithms. We studied the implementation of
these algorithms on digital computers. This means representing the complex numbers by
finite precision approximations, and taking into account the errors made in finite precision
computations. We developed a deterministic finite precision algorithm for this problem,
that works in average polynomial time when the polynomials have a bounded degree.
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Chapter 1

Preliminaries

1.1 Boolean formulas

In the present thesis, we will consider families of boolean formulas, and their link with the
algebraic complexity. We introduce here some classical definitions on boolean formulas.

Definition 1.1.1 (Boolean circuit). A boolean circuit C is an acyclic directed graph with
labelled vertices called nodes or gates of the following type:

• variables, with indegree 0, labelled with a variable name (eg. xi),

• negation, with indegree 1,

• conjunction, with indegree 2,

• disjunction, with indegree 2.

A single gate has outdegree 0, and is called the output gate; the other gates have unbounded
outdegree.

A boolean function on the variables appearing in the circuit is recursively associated
to each gate : to each variable gate is associated the value of the variable, and to each
operation is associated the result of the corresponding operation on the values of the parent
gates. The value of the circuit is by definition the value of the output gate.

The formulas form a restricted class of circuits where a computation can be used only
once.

Definition 1.1.2 (Boolean formula). In the case when all the gates of a circuit, except the
output, have outdegree 1, the circuit is called formula. The negation of a formula φ will be
denoted φ, the conjunction of φ1 and φ2, φ1 ∧ φ2 and their disjunction, φ1 ∨ φ2.

The possibility of sharing the result of a gate for several computations in a circuit allows
to compute the same functions than formulas in a more compact way. But one can translate
a circuit C with k gates and n variables (x1, . . . , xn) into a formula F with 6k gates and
n+ k variables (x1, . . . , xn, y1, . . . , yk) in the following way:
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• To each gate gi is associated a variable yi, and each input edge coming from a gate gj
is replaced by an edge from a new gate labelled yj .

• such gate gi is placed in a sub-formula computing yj = gj . The formula (yj ∧ gj) ∨
(yj ∧ gj) suits.

• F is made of the conjunction of those sub-formulas.

Thus, for a given vector (x1, . . . , xn) such that C(x1, . . . , xn) = 1, a single assignment to the
boolean variables (y1, . . . , yk) can satisfy F : each yi must take the value of the gate gi in the
computation of C(x1, . . . , xn). Conversely, no assignment of (y1, . . . , yk) can satisfy F for a
vector (x1, . . . , xn) that do not satisfy C. Thus, problems such as deciding the satisfiability
or counting the number of assignments are equivalent for boolean circuits and formulas.

An important subclass of boolean formulas are the formulas in conjunctive boolean form
(CNF formulas for short).

Definition 1.1.3. A literal is a formula made of a single variable, or the negation of a
single variable. A clause is a disjunction of literals; and a CNF formula is a conjunction of
clauses.

Any boolean function f : {0, 1}n → {0, 1} can be represented by a CNF formula of
size at most O(2n) in the following way. For each boolean vector of {0, 1}n a single clause
over n variables (x1, . . . , xn) rejects exactly that vector. For instance the vector (0, . . . , 0)
is rejected by x1 ∨ . . .∨ xn. The conjunction of all clauses rejecting each vector v such that
f(v) = 0 forms a formula φ representing f .

A family of boolean functions will play a special role in this thesis.

Example 1. Let us consider the boolean function PERMUTn in n2 variables e = (eij)
that accepts the n× n permutation matrices, that is, {0, 1}-matrices that have exactly one
1 in each row, and one 1 in each column.

The family (PERMUTn)n∈N can be computed by a polynomial size family (fn) of
boolean formulas. One can for instance define fn as

fn(e) =
∧
i

∨
j

eij ∧
∧

i,j,k:j 6=k

eij ∨ eik ∧
∧

i,j,k:i6=k

eij ∨ ekj .

The first conjunction ensures that each line has at least one 1. The second and third
conjunctions ensure that each line and each column has at most one 1. Finally, fn accepts
the matrices with exactly one 1 in each row and one 1 in each column, that is the permutation
matrices.

1.2 Graphs

The various notions from graph theory that will be used at some point of the present
thesis are introduced here. Since graphs are simply used as tools at different points of our
presentation, those notions and definitions do certainly not form a comprehensive view of
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the topic. One can consult [18], among the numerous books available on the subject, for a
complete view.

To begin with, a graph G = (V,E) is constituted of a finite set of vertices V and a set
of edges E ⊆ V × V .

We also consider oriented graphs, where the edges are oriented pairs, that is to say, the
edges (u, v) and (v, u) are different.

A path is a sequence of vertices (v1, . . . , vk) such that for all i = 1 . . . k − 1, (vi, vi+1)
is an edge of G. A path starting and finishing on the same vertex is a cycle. A graph is
connected if a path links any pair of vertices of V .

The degree of a vertex v is the number of edges in the graph containing v. In an oriented
graph, one distinguish the outdegree, that is the number of edges of the form (v, w), and
the indegree: the number of edges of the form (w, v).

A graph G = (V,E) is bipartite with respect to the partition V = V1 tV2, and denoted
(V1, V2, E), if E ⊆ V1 × V2 – that is, all edges go from a vertex in V1 to a vertex in V2.

Two other important subclasses of graphs are the paths – graphs constituted of a single
path made of distinct vertices - and the trees – connected graphs with no cycles. The
reunions of disconnected trees are called forests.

The trees form a very restricted class of graphs, with strong algorithmic properties.
Indeed, many problems that are hard for general graphs become easy or trivial for trees. It
is thus tempting to define larger classes of graphs, less restrictive, but that inherit a part
of the properties of the trees. This led to the definition of the tree-width of a graph. This
parameter informs us of how much the graph looks, and thus behave, like a tree. Figure 1.1
illustrates the definition.

Definition 1.2.1. Let G = (V,E) be a graph. A k-tree-decomposition of G is a tree
T = (VT , ET ) such that:

(i) For each t ∈ VT there is an associated subset Xt ⊆ V of size at most k + 1.

(ii) For each edge (u, v) ∈ E there is a t ∈ VT such that {u, v} ⊆ Xt.

(iii) For each vertex v ∈ V the set {t ∈ VT |v ∈ Xt} forms a (connected) subtree of T .

The tree-width twd(G) of G is then the smallest k such that there exists a k-tree-decompo-
sition for G.

If we require the decomposition trees to be paths, then we obtain the path-width of the
given graph, denoted pwd(G).

The adding of 1 in the definition (subsets of size k + 1) is ingeniously set, such that
trees have a tree-width 1; thus, the tree-width is a kind of distance between a given graph
and the set of trees.

The tree-width, among other graph parameters, seems to be a good indicator of the
complexity of a graph. Indeed, many algorithms for hard problems have been designed that
present a great complexity in terms of the tree-width, whereas they have a low complexity
with respect to the size of the input: typically, the complexity is polynomial in the size of
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Figure 1.1: A graph of tree-width 2 and a corresponding tree decomposition

the graph, and exponential in the tree-width. For instance, finding a maximum independent
set in a graph of tree-width t with n vertices can be done in time O(n · 2t).

This approach of expressing the complexity of an algorithm in terms of different pa-
rameters that capture the complexity of the problem, instead of expressing it exclusively as
a function of the size of the instance, has led to the field of parameterized complexity which
has known great developments in the recent years.

The path-width of a graph is obviously not greater than the tree-width. We recall now
a useful reciprocal relation [28].

Lemma 1.2.2. [28] For any forest F on n vertices, the pathwidth pwd(F ) satisfies
pwd(F ) = O(log n).

Proof.

One can find a separating set of vertices in F (of cardinal either 0 or 1) such that its
removal separates F into two disconnected parts, each one with no more than 2/3n vertices.

We will add this set to all subsets Xi in the path decomposition. We continue this
process recursively in each one of the two forests separated. The path constituted of the
junction of the path decompositions of each forest, with the separating set added to each
subset Xi, constitutes a path decomposition of the forest F .

The width of the decomposition obtained verifies thus: pwd(n) ≤ 1 + pwd(2n/3), and
thus, pwd(F ) = O(log n).

One can apply the previous lemma to any tree decomposition of a graph G, to prove
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that pwd(G) = O(twd(G) · log n).

Proposition 1.2.3. [28] For any graph G = (V,E) with n vertices, pwd(G) = O(twd(G) ·
log n).

Proof. Let T = (VT , ET ) be a tree decomposition of G of width twd(G), and {Xi : i ∈
VT } the collection of sets associated to each node of T .

From the previous lemma, there exists a path decomposition P = (VP , EP ) of T with
associated sets {Yi : i ∈ VP }, of width O(log n).

One checks easily that P with associated sets Zj =
⋃
i∈Yj Xi for all j ∈ VP forms a

valid path decomposition of G, of width O(twd(G) · log n).

We now introduce two important properties on sets of vertices.

Definition 1.2.4. Let G = (V,E) be a graph and S ⊆ V a set of vertices.

• S is an independent set if for all pair of vertices (v, w) ∈ S2, (v, w) do not belong to
E.

• S is a vertex cover if for all (u, v) ∈ E, u ∈ S or v ∈ S.

One can remark that a set S is an independent set if and only if V \S is a vertex cover.
This defines a bijection between the independent sets and the vertex covers.

It is often interesting to consider graph structures induced by other kind of data, to
apprehend them and estimate their complexity. We will follow this approach for the boolean
formulas, and introduce the graphs canonically associated to a boolean formula.

Definition 1.2.5. Let ϕ be a boolean formula in conjunctive normal form with clauses
C1, . . . , Cm and Boolean variables x1, . . . , xn.

a) The signed clause graph of ϕ is a bipartite graph with the xi and the Cj as nodes.
We call the former v-vertices and the latter c-vertices. Edges connect a variable xi
and a clause Cj if and only if xi occurs in Cj . An edge is signed + or − if xi occurs
positively or negatively in Cj .

b) The incidence graph of ϕ is the same as SI(ϕ) except that we omit the signs +,−.

c) The primal graph of ϕ has only the xi’s as its nodes. An edge connects xi and xj iff
both occur in one of the clauses.

d) The tree-width of a CNF formula ϕ is defined to be the tree-width of the incidence
graph.

From now on, when we want to speak about the tree-width of the primal graph, we
will mention it explicitly.
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1.3 Counting complexity

The counting complexity appears to be very close to the algebraic complexity. Indeed,
many problems that are hard in the counting setting, such as the permanent, are also hard
in the algebraic setting. We introduce some basic definitions from this field. The counting
complexity focuses on the computation of integer functions: functions f : {0, 1}∗ → N.

Definition 1.3.1 (FP). A function f : {0, 1}∗ → N is in FP if the function is computable
in polynomial time by a Turing machine (writing the output in binary over its tape).

A counterpart of NP has been defined for the counting functions by Valiant [53], in
terms of the number of accepting paths of a nondeterministic Turing machine.

Definition 1.3.2 (#P). A function f : {0, 1}∗ → N is in #P if there exists a nondetermin-
istic Turing machine which runs in polynomial time, and which, on any input x ∈ {0, 1}∗,
has exactly f(x) accepting paths.

Thus, for any problem in NP, the problem of counting the number of solutions of a given
instance is in #P. For example, the problem #SAT of counting the number of satisfying
assignments of a boolean formula is in #P.

Another characterization of #P is the following:

Proposition 1.3.3. A function f : {0, 1}∗ → N is in #P if and only if there exists a
language B in P and a polynomial p(n) such that for every word x,

f(x) = |{y ∈ {0, 1}p(|x|), (x, y) ∈ B}|.

1.4 Algebraic models of computation

To the study of algebraic algorithms, we first need to define the objects that will carry
on the computation. We introduce two models of computation over the real or complex
numbers; in fact, those models are defined over any field K. First, the Valiant model deals
with families of arithmetic circuits, and thus computes families of polynomials. The second
model, the BSS machine, is a generalization of the Turing machine over any field K.

1.4.1 Valiant’s model

In Valiant’s model one studies the computation of multivariate polynomials. More precisely,
this model focuses on the computation of families of multivariate polynomials by non uniform
families of arithmetic circuits.

This can be done over any field. In this subsection, we fix any field K. All considered
polynomials are over K. Our definitions in this subsection follow [11].

Definition 1.4.1 (p-family). A p-family is a sequence f = (fn) of multivariate polynomials
such that the number of variables and the degree are polynomially bounded functions of n.

A prominent example of a p-family is the permanent family PER = (PERn).
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Definition 1.4.2 (Permanent). The permanent PERn(A) of a n× n matrix of indetermi-
nates A is defined as

PERn(A) =
∑
π∈Sn

n∏
i=1

Aiπ(i),

where Sn is the group of the permutations from [1, n] to [1, n].

The computations will be carried on by arithmetic circuits.

Definition 1.4.3 (Arithmetic circuit). An arithmetic circuit C over K will be an acyclic
directed graph with labelled vertices called nodes or gates, the latter having either indegree
0 or 2.

• Input gates are labelled with variable names and have indegree 0.

• Constant gates are labelled with elements of k and have indegree 0.

• Operation gates have indegree 2 and are labelled with arithmetic operations from
{+,−,×}.

A single gate has outdegree 0, and is called the output gate; the other gates have unbounded
outdegree.

In an arithmetic circuit C with l input gates, a function Kl → K is recursively associated
to each gate: to each input or constant gate is associated the value of the label; to each
operation gate is associated the result of the labelled arithmetic operation on the values of
the parent gates. Since the circuit performs only arithmetic operations, all these functions
are polynomial. And the polynomial associated to the output gate is said to be computed
by the circuit C.

We also define the arithmetic formulas, which are restrictions of the arithmetic circuits
where the result of a gate can be used only once.

Definition 1.4.4 (Arithmetic formula). An arithmetic formula is an arithmetic circuit for
which all gates different from the output have outdegree 1.

The relative power of circuits and formulas remains an open problem in arithmetic
circuit theory. No easy translation like the one presented Section 1.1 for boolean circuits is
known.

We define the complexity of a polynomial f to be the minimum number L(f) of nodes
of an arithmetic circuit computing f .

Definition 1.4.5 (VP). A p-family (fn) is p-computable if L(fn) is a polynomially bounded
function of n. Those families constitute the complexity class VP.

In Valiant’s model, VNP is the analogue of the class NP, or perhaps more accurately,
of #P.

Definition 1.4.6 (VNP). A p-family (fn) is called p-definable if there exists a polynomial
q : N→ N and a p-computable family g = (gn) such that

fn(X1, . . . , Xp(n)) =
∑

ε∈{0,1}q(n)

gn(X1, . . . , Xp(n), ε1, . . . , εq(n)).

11



The set of p-definable families forms the class VNP.

Clearly, any p-computable family f = (fn) is p-definable by taking g = f and thus, VP
is included in VNP.

The following criterion (a weak form of Valiant’s criterion [52] proven as Proposition
2.20 in [11]) will establish the belonging to VNP of many polynomial families that we will
encounter.

Proposition 1.4.7. Suppose (fn) : {0, 1}p(n) → {0, 1} is a family of boolean formulas of
polynomial size. Then, the family (Pn) of polynomials defined by

Pn =
∑

e∈{0,1}p(n)

fn(e)X1
e1 · · ·Xp(n)

ep(n)

is p-definable.

Proof. Using the usual transformation of a boolean formula into a conjunction of 3-
clauses, one shows that there exists a boolean formula φn(e, θ) formed of a conjunction of
3-clauses, and of polynomial size in n, such that

• fn(e) = 1⇒ ∃!θ φn(e, θ) = 1,

• fn(e) = 0⇒ ∀θ φn(e, θ) = 0.

Besides, for each 3-clause K of φn, there exists an integer polynomial QK in at most
three of the variables Xi, and of degree at most three, such that

∀x ∈ {0, 1}3, QK(x) =
{

1 if K(x) is true
0 otherwise.

For instance, for K = u ∨ v ∨ w, QK := uvw + uv(1 − w) + u(1 − v)w + (1 − u)vw +
(1− u)(1− v)w+ (1− u)v(1−w) + u(1− v)(1−w) suits. Let Gn be the product of the QK
for all clauses K in φn. Gn is clearly p-computable, and φn(e, θ) = Gn(e, θ).

Then, by taking

Hn(E,Θ, X) := Gn(E,Θ)
p(n)∏
i=1

(EiXi + 1− Ei),

the family (Hn) is p-computable, and

Pn(X) =
∑

e∈{0,1}p(n)

∑
θ

Hn(e, θ,X).

Thus, (Pn) is p-definable.

Corollary 1.4.8. The family (PERn) belongs to VNP.

Proof. Using the notations of the previous lemma, the polynomial PERn can be ex-
pressed as the family Pn associated to a family of boolean formulas (fn), where fn computes
the function PERMUTn. One can define such family fn in a polynomial size (Example 1),
and thus the conditions of the previous lemma are satisfied. The lemma ensures that (PERn)
is p-definable.
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1.4.2 The BSS model

The Blum, Shub and Smale (BSS) model is another algebraic model of computation, first
defined over R or C in [7], and further extended to any field K in the book [6].

The BSS machine can be seen as a generalization of the Turing machine, since the
definition of the BSS machine over Z2 coincides (up to a simple adaptation) with the Turing
machine. Similarly to the Turing machine, the BSS machine works on tapes, on which each
cell contains an element of the field instead of a boolean.

Here we follow the definition of [6], but we restrict ourselves to the structure
(R,+,×,÷,≤), sufficient for our needs.

Let us denote by R∞ =
⊔
n≥0 Rn the direct sum space over R, and by R∞ the bi-infinite

direct sum space over R, that is elements of the form

x = (. . . , 0, x−k, . . . , x−2, x−1, x0, x1, x2, . . . , xl, 0, . . .)

where the xi belong to R.

We define rational maps on R∞ as follows. Suppose h : Rm → R is a rational function,
we obtain a rational function ĥ : R∞ → R on R∞ by taking ĥ(x) = h(x1, . . . , xm) for each
x ∈ R∞.

Then, given gi : Rm → R, i = 1, . . . ,m rational functions, one defines a rational map
ĝ : R∞ → R∞ by

• (ĝ(x))i = ĝi(x) for i = 1, . . . ,m.

• (ĝ(x))i = xi otherwise.

A rational map is thus a rational function applied locally on a finite number of cells of
R∞.

Definition 1.4.9 (BSS machine). A BSS machine over R consists of an input space I = R∞,
an output space O = R∞, a bi-infinite tape S = R∞ and a finite connected directed graph,
containing

• one input node, with no incoming edge and one outgoing edge, associated to a map
I → S (that copies the content of I on S).

• one output node, with no outgoing edge, associated to a linear map S → O.

• computation nodes, associated to rational maps S → S, with one outgoing edge.

• branching nodes, with two outgoing edges. To a branching node n with two outgoing
edges e+ and e−, is associated a polynomial hn : S → R, e+ being associated to the
condition hn(x) ≥ 0, and e− to the condition hn(x) < 0.

• shift nodes, with one outgoing edge, and associated to a map S 7→ S which is either a
left or a right shift.

Remark 1.4.10. The use of the finite number of rational maps allows in particular the
machine to have access to a finite number of real constants and copy values from one cell to
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another. Following [38], one alternatively suppress the maps in the definition and instead
restrain the computation nodes to operations in {+,×,−,÷}, or to the writing of a constant
on the first cell, or the copy or exchange of the contents of the first two cells.

It is also possible to define the BSS model with the help of algebraic circuits, endowed
with branching gates allowing comparisons. Thus, one should not see the use of circuits in
Valiant’s model and of machines in the BSS model as a major difference, and rather see the
distinction in the possibility of making comparisons in the BSS model.

As for a Turing machine, a computation is naturally associated to the BSS machine
with a given input, by considering the uniquely determined path starting on the input node
and eventually stopping on the output node, obtained by applying all the maps recursively
to the input.

The complexity of a computation is the length of that path.

The BSS model offers an elegant framework for writing algorithms over the real or
complex numbers and analyzing their complexity. For our purposes, we do not need to
introduce any complexity classes defined in the BSS model, and we refer to [6] for a view
on the structural complexity associated.

1.5 Reductions and completeness

The notion of reduction is a central notion in structural complexity. In order to organize
problems into a complexity hierarchy, it is necessary to establish that some problems are at
least as difficult as others. Reductions formalize this idea. A reduction from a problem A
to a problem B will ensure that an efficient algorithm for B leads to an efficient algorithm
for A.

1.5.1 #P-completeness

Reductions for counting problems is a widely discussed issue. We introduce three different
reductions: the parsimonious reduction, the Turing reduction, and the 1-Turing reduction.
Three definitions of #P-completeness will follow.

Let us begin with the notion of parsimonious reduction for counting problems [59]:

Definition 1.5.1 (Parsimonious reduction). Let f : {0, 1}∗ → N and g : {0, 1}∗ → N be
two counting problems. A parsimonious reduction from f to g consists of a polynomial-time
computable function σ : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗, the equality
f(x) = g(σ(x)) holds.

We will denote f ≤p g when f reduces parsimoniously to g.

Definition 1.5.2 (Turing reduction). Let f : {0, 1}∗ → N and g : {0, 1}∗ → N be two
counting problems. A Turing reduction from f to g is a Turing machine with oracle, which
computes f in polynomial time when given an oracle that computes g.

Let us denote f ≤T g a Turing reduction from f to g. Between those two reductions,
one can define the 1-Turing reduction, also often called many-one reduction.
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Definition 1.5.3 (1-Turing reduction). Let f : {0, 1}∗ → N and g : {0, 1}∗ → N be two
counting problems. A 1-Turing reduction from f to g consists of a Turing reduction from f
to g, where the machine makes a single call to the oracle.

One can equivalently define the 1-Turing reduction in a similar way to the parsimonious
reduction, but with the help of two auxiliary functions, one translating the entry of f into
an entry of g, the second one translating the result of g into the result of f – then, a
parsimonious reduction is a 1-Turing reduction where that second function is the identity.

We denote f ≤1 g a 1-Turing reduction from f to g. By the two characterizations of
the 1-Turing reduction, one sees easily that f ≤p g ⇒ f ≤1 g ⇒ f ≤T g.

Definition 1.5.4 (#P-completeness). A counting problem f is #P-hard under parsimo-
nious (resp. Turing, 1-Turing) reduction if every problem in #P admits a parsimonious
(resp. Turing, 1-Turing) reduction to f . Such problem is #P-complete if in addition it
belongs to #P.

It is believed that the notion of #P-completeness under parsimonious reductions do
not coincide with the other two notions. Indeed, a parsimonious counting reduction has
consequences on the associated decision problems.

Remark 1.5.5. A parsimonious reduction between two counting problems implies a similar
reduction between the associated decision problems.

Thus, hard counting problems for parsimonious reductions correspond to hard deci-
sion problems. To the contrary, some problems whose associated decision problem is easy
are proven to be #P-complete under Turing, and even 1-Turing reduction. For instance,
#-PERFECT MATCHING, which is the problem of counting the perfect matchings in a
bipartite graph, is proven to be “easy to decide, but hard to count”: Valiant [53] proved that
this problem is complete under 1-Turing reductions, whereas the decision problem is poly-
nomial. Thus, #-PERFECT MATCHING is not #P-complete for parsimonious reductions
unless P = NP.

Another distinction between the parsimonious reduction on one hand, and 1-Turing
and Turing reductions on the other hand is the question of the closure of #P. It is obvi-
ous that #P is closed under parsimonious reductions. On the other hand, Watanabe and
Toda [51] proved that a problem – such as #-PERFECT MATCHING – that is #P-hard
under 1-Turing reductions is also “ #PH-hard ”: each problem in the polynomial hierar-
chy #PH admits a 1-Turing reduction to #-PERFECT MATCHING. Since #-PERFECT
MATCHING is in #P, this result suggests that #P is not closed under 1-Turing and Tur-
ing reductions, unless the counting polynomial hierarchy collapses. It is an open problem,
wether one can find an intermediate reduction between the parsimonious reduction and the
1-Turing reduction that could preserve the closure property of #P, and in the same time,
exhibit a “easy to decide, but hard to count” behaviour. This question is investigated in [21],
where a notion of subtractive reduction, which only allows subtractions after the oracle call,
is introduced.

We noticed that as long as P 6= NP, parsimonious and 1-Turing reductions lead to
different sets of #P-complete problems. To the contrary, the distinction between #P-
completeness under Turing and 1-Turing reductions is an open problem, and does not follow
from such widely admitted assumption as P 6= NP. However, many counting problems
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are proven to be #P-complete only under Turing reductions. It appears that the Turing
reduction is mostly used as a tool for performing polynomial interpolation – which requires
several calls to the oracle. Indeed, as pointed out in [8], “interpolation features prominently
in a majority of #P-completeness proofs”, and “it is not clear whether the phenomenon of
#P-completeness would be as ubiquitous if [1-Turing] reducibility were to be used in place
of Turing”.

Thus, the size of the gap between counting Turing and 1-Turing reductions remains an
open question. One can observe that polynomial interpolation does not make use of the full
power of the Turing reduction. Indeed, to interpolate a polynomial, one can decide before
the first call to the oracle computing the polynomial, the list of all oracle calls that should
be performed, whereas the Turing reduction allows us to adapt the next call to the result of
the previous ones. We are not aware of a counting Turing reduction in which the different
calls to the oracle depend on each other.

Toda [50] showed that one can transform any of such weak Turing reduction with oracle
#SAT to a 1-Turing reduction.

Proposition 1.5.6. [50] Any Turing reduction from a counting problem f to #SAT, in
which the list of oracle calls can be decided before the first call, can be transformed into a
1-Turing reduction.

Proof. Let us show, how to transform two calls to the oracle into one single call; the
general proof follows by induction.

Let us suppose that the reduction requires the call to two instances ϕ1(x1, . . . , xk1) and
ϕ2(y1, . . . , yk2) of #SAT.

The numbers n1 and n2 of satisfying assignments of ϕ1 and ϕ2 are respectively smaller
than or equal to 2k1 and 2k2 .

Let us consider the formula ψ(x1, . . . , xk1 , y1, . . . , yk2 , z), where z is a new variable,
defined by

(ϕ1(x1, . . . , xk1) ∧ z) ∨ (φ2(y1, . . . , yk2) ∧ z ∧ (x1 ∧ x2 ∧ . . . ∧ xk1)) .

One sees easily that the formula in the first parenthesis admits 2k2 × n1 satisfying
assignments; that the second formula admits n2 satisfying assignments; and that they do
not share common satisfying assignments, since z is set to 1 in the first formula, and to 0
in the second one.

Thus, the disjunction ψ admits n := 2k2 × n1 + n2 satisfying assignments. One can
recover n1 and n2 by taking the modulo and the remainder of the division of n by 2k2 . And
one can get n by a single call to the oracle #SAT on the entry ψ.

One can thus wonder if similarly, other “weak” Turing reductions may be transformed
into 1-Turing reductions. We offer a contribution to this question in Section 2.7, where we
establish that 1-Turing reductions are sufficient for the #P-completeness of monotone and
implicative #2SAT, and thus that Creignou and Herman’s dichotomy theorem [13] is still
valid for 1-Turing reductions.
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1.5.2 VNP-completeness

To our knowledge, there exists two different notions of reduction in Valiant’s model. We
will use both in this thesis. We follow the definitions of [11]. First, the p-projection is a
rather restrictive notion, similar to the parsimonious counting reduction.

Definition 1.5.7 (p-projection). A polynomial f with v arguments is said to be a projection
of a polynomial g with u arguments, and we denote it f ≤ g, if

f(X1, . . . , Xv) = g(a1, . . . , au)

where each ai is a variable of f or a constant from K.

A p-family f = (fn) is a p-projection of g = (gm), and we denote it f ≤p g, if there
exists a function t : N→ N polynomially bounded from above and below, such that

∃n0∀n ≥ n0, fn ≤ gt(n).

By polynomially bounded from above and below, we mean that there exists some c > 0
such that n1/c − c ≤ t(n) ≤ nc + c. The lower bound ensures that t(n) → ∞ as n → ∞,
which is necessary to guarantee the transitivity of ≤p.

The p-projection is the usual reduction in Valiant’s setting. Thus, we will talk about
VNP-completeness, without specifying the reduction, when p-projections are used.

Definition 1.5.8 (VNP-completeness). A p-family g ∈ VNP is VNP-complete if every
p-family f ∈ VNP is a p-projection of g.

The VNP-completeness of the permanent under p-projections [52, 11] is a central result
in Valiant’s theory.

Proposition 1.5.9. In a field K of characteristic different from 2, the family (PERn) is
VNP-complete.

In a field of characteristic 2, the permanent coincides with the determinant, and is thus
in VP.

It seems that p-projections are too weak for some of our completeness results. Instead,
we use the more general notion of c-reduction [10, 11]. First we recall the notion of oracle
computation.

Definition 1.5.10. The oracle complexity Lg(f) of a polynomial f with respect to the oracle
polynomial g is the minimum number of arithmetic operations (+, ∗) and evaluations of g
over previously computed values that are sufficient to compute f from the indeterminates
Xi and constants from K.

Definition 1.5.11 (c-reduction). Let us consider two p-families f = (fn) and g = (gn).
We have a polynomial oracle reduction, or c-reduction, from f to g (denoted f ≤c g) if
there exists a polynomially bounded function t : N → N such that the map n 7→ Lgt(n)(fn)
is polynomially bounded.

We can define a more general notion of VNP-completeness based on c-reductions: A
p-family f is VNP-hard if g ≤c f for every p-family g ∈ VNP. It is VNP-complete if,
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in addition, f belongs to VNP. The new class of VNP-complete families contains all the
classical VNP-complete families since every p-reduction is a c-reduction.

In our completeness proofs we need c-reductions to compute the homogeneous compo-
nents of a polynomial. This can be achieved thanks to a well-known lemma (see e.g. [11]).

Lemma 1.5.12. Let f be a polynomial in the variables X1, . . . , Xn, in a field K with at
least deg f + 1 elements. For any δ such that δ ≤ deg f , let denote f (δ) the homogeneous
component of degree δ of f . Then, Lf (f (δ)) is polynomially bounded in the degree of f .

Proof. We remark that for all λ ∈ K, we have

f(λX) =
deg f∑
i=0

λif (i)(X)

where λX denotes (λX1, . . . , λXn). We can thus compute the homogenous components of
f by an interpolation algorithm on the polynomial in λ for deg f + 1 different values of λ.
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Part I

From boolean formulas to
polynomials
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Algebraic complexity theory, which deals mainly with the computation of polynomial
functions, is far less studied than the classical boolean complexity. It is thus natural to look
for results on the boolean complexity, to see how they transpose in the algebraic setting.

An interesting bridge between those two domains is to consider, for a given multilinear
polynomial with integer coefficients, what Malod [35] calls the coefficient function of the
polynomial: the integer function, that to a degree pattern, associates the coefficient of the
monomial. One can then compare the complexities of computing the polynomial and the
coefficient function.

In this study, we follow the settings introduced by Koiran and Meer [27]. We associate
to a boolean formula ϕ over n variables e = (e1, . . . , en) the multilinear polynomial

P (ϕ)(X) =
∑

e∈{0,1}n
ϕ(e) ·Xe

. (1.1)

We call this polynomial the polynomial associated to ϕ. It can be seen as a restriction
to boolean coefficient functions. This restriction does not seem to be dramatic, since most of
the natural multilinear polynomial families such as the determinant have small coefficients
(−1, 0 or 1) and even often boolean coefficients like the permanent. Besides, the notion of
p-projection between families of polynomials allows us to compare the complexity of other
polynomial families with the ones that are expressible in the form P (φ).

We have been investigating the link between the complexities of a boolean formula and
its associated polynomial. In particular, at which condition on the boolean formula does
the polynomial becomes easy to compute?

If the problems SAT and #SAT of deciding the satisfiability and counting the number
of satisfying assignments of a boolean formula are hard, those problems become tractable
for various subclasses of boolean formulas.

A first approach to define such subclasses has been initiated by Schaefer [40], leading
to the wide domain of the Constraint Satisfaction Problems (CSP). In this approach, one
consider formulas made of conjunctions of constraints chosen among a finite set S. In
Chapter 2, we will follow this setting and will show, that depending on the set S, either
all the polynomial families of boolean formulas lead to associated families of polynomials in
VP, or there exists a VNP-complete family of associated polynomials.

Another successful approach to define tractable subproblems is, instead of restricting
the individual constraints, to give restrictions on the structure of the formulas built with
these constraints. To do so, one can define such subclasses via bounding some significant
problem parameters.

In [27], Koiran and Meer considered formulas whose incidence graph has a bounded
tree-width. They showed, that families of polynomials associated to such formulas can be
computed by arithmetic formulas of polynomial size. In Chapter 3, we will study how
large this class of boolean formulas whose incidence graph has a bounded tree-width is.
In particular, we will show that the boolean function accepting the n × n permutations
cannot be expressed by such formula; thus, the permanent cannot be obtained as a family
of polynomials associated to such formulas. The point is that this result is unconditional.
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Chapter 2

A dichotomy result

A natural approach to the study of boolean formulas is the research of restricted classes of
formulas, to see if difficult problems become easy over some restricted classes. One way of
defining those subclasses is to consider the S-formulas, for a fixed set S of constraints. Here,
an S-formula over a set of n variables is a conjunction of relations of S where the arguments
of each relation are freely chosen among the n variables.

In a seminal paper, Schaefer [40] proved a dichotomy theorem for boolean constraint
satisfaction problems: he showed that for any finite set S of constraints the satisfiabil-
ity problem SAT(S) for S-formulas is either in P, or NP-complete. Schaefer’s result was
subsequently extended in a number of directions. In particular, dichotomy theorems were
obtained for counting problems, optimization problems and the decision problem of quan-
tified boolean formulas. An account of this line of work can be found in the book by
Creignou, Khanna and Sudan [14]. In a different direction, constraint satisfaction problems
were also studied over non-boolean domains. This turned out to be a surprisingly difficult
question, and it took a long time before a dichotomy theorem over domains of size 3 could
be obtained [9].

Our first approach to link the complexity of the polynomial associated to a formula and
what we know about this formula will be to study the evaluation of those polynomials from
this dichotomic point of view. We work within Valiant’s algebraic framework: the role of
the complexity class NP in Schaefer’s dichotomy theorem will be played by the class VNP
of “easily definable” polynomial families, and the role of P will be played by the class VP
of “easily computable” polynomial families (Section 1.4.1).

It turns out that a part of our study follows closely the similar dichotomy theorem
obtained by Creignou and Hermann [13, 14] in the realm of counting problems: their hard
cases correspond to hard cases in our setting. This is not surprising, since there is a well-
known connection between counting problems and polynomial evaluation. For instance, as
shown by Valiant the permanent is complete in both settings [53, 52]. However, the picture
is different for their easy cases : we split them into easy and hard cases in our algebraic
setting.

Along the way, we will introduce several new VNP-complete families, and we will use
our algebraic work to reinvestigate the counting problems and show new #P-completeness
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results. Valiant’s model differs also from boolean complexity in the fact that families of
polynomials are studied instead of problems. We will precise the differences induced for our
constraint satisfaction problems, since for a set S of constraints, we do not have a single
corresponding problem as in the boolean setting.

2.1 Boolean formulas

2.1.1 Boolean constraint satisfaction problems

Constraint satisfaction problems (or CSP for short) constitute a common formalism to define
generalized classes of satisfiability problems over various domains. For the purpose of this
study, we can restrict ourselves to the boolean case. We follow the notations of [14], and
refer to this book for a much larger introduction to boolean CSPs.

The general idea of the constraint satisfaction problems is to define subclasses of prob-
lems by restricting the set of constraints allowed. We first need to define what a constraint
is.

Definition 2.1.1 (Constraint). A constraint (or relation) is a function f from {0, 1}k to
{0, 1}, for some integer k called the arity of the constraint. We say that f is satisfied by an
assignment s ∈ {0, 1}k if f(s) = 1.

Let us fix a finite set S = {φ1, . . . , φn} of constraints. This allows us to define a
restricted class of boolean constraints, the S-formulas.

Definition 2.1.2 (S-formula). An S-formula over n variables (x1, . . . , xn) is a conjunction
of boolean formulas, each of the form gi(xji(1), . . . , xji(ki)) where each gi belongs to S and
ki is the arity of gi.

In words, each element in the conjunction is obtained by applying a constraint from S
to some variables chosen among the n variables.

Various problems have been studied over these S-formulas, among them their satisfia-
bility, the problem of counting the number of satisfying assignments of an S-formula, the
problem of deciding the correctness of a quantified S-formula, etc. We only introduce the
first two problems.

Definition 2.1.3 (SAT(S)). [40] Given an S-formula φ, decide whether φ is satisfiable.

For instance, consider the 3 boolean relations OR0, OR1 and OR2 defined by
OR0(x, y) = x∨ y, OR1(x, y) = x∨ y and OR2(x, y) = x∨ y. When S = {OR0,OR1,OR2},
the S-formulas are exactly all conjunctions of 2-clauses. Thus, the classical problem 2-SAT
is SAT(S) where S = {OR0,OR1,OR2}.

The counting problem #SAT(S) was studied by Creignou and Hermann [13].

Definition 2.1.4 (#SAT(S)). [13] Given an S-formula φ, count the number of satisfying
assignments of φ.
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2.1.2 Boolean dichotomy results

The first systematic study of a class of constraint satisfaction problems is due to Schae-
fer [40], who fully classified the complexity of the problems SAT(S).

Let’s introduce first some classical special cases of boolean formulas.

Definition 2.1.5. • A clause with a single negated literal is a Horn clause. A conjunc-
tion of Horn clauses is a Horn formula.

• A clause with a single unnegated literal is a co-Horn clause, a conjunction of co-Horn
clauses is a co-Horn formula.

• A boolean function f is called 1-positive if f(1, . . . , 1) = 1, and 0-positive if
f(0, . . . , 0) = 1.

• A boolean formula is called affine if it is expressible as a system of affine equations over
Z/2Z; affine equations are of the form x1 + . . .+xn = b, where b is a boolean constant,
where n is an integer called the width of the equation, and where the operation x+ y
is made of (x ∧ y) ∨ (x ∧ y). The width of an affine formula is the maximum of the
widths of its affine equations.

Theorem 2.1.6. [40] Let S be a finite set of constraints. The satisfaction problem SAT(S)
is polynomial-time decidable if at least one of the following conditions holds.

• Every constraint in S is 0-positive.

• Every constraint in S is 1-positive.

• Every constraint in S is definable as a Horn formula.

• Every constraint in S is definable as a co-Horn formula.

• Every constraint in S is definable as a conjunction of 2-clauses.

• Every constraint in S is definable as an affine formula.

Otherwise, SAT(S) is NP-complete (for many-one reductions).

This result was surprising for several reasons. First, Schaefer was the first to establish
the NP-completeness of an infinite collection of problems with a uniform proof, whereas
previous NP-completeness proofs concerned one problem at a time. The second unexpected
point was the fact that among an infinite class of problems, Schaefer could separate the
complexity of the problems in only two equivalence classes (P and NP). This result balanced
Ladner’s theorem [31] who proved that if P 6= NP, there exists problems in NP that are
neither in P, nor NP-complete.

In the realm of counting problems, a dichotomy theorem was obtained by Creignou and
Hermann [13, 14].
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Theorem 2.1.7. [13] Let S be a finite set of constraints. If every relation in S is affine,
then the counting problem #SAT(S) is in FP. Otherwise, #SAT(S) is #P-complete for
Turing reductions.1

If the result is very similar to Schaefer’s theorem, an interesting point is that the sets S
of constraints leading to hard problems in their setting strictly contains the sets leading to
hard decision problems in Schaefer’s setting. It is not surprising that hard decision problems
lead to hard counting problems: counting the number of assignments of a boolean formula
allows to decide whether that number is nonzero. But the fact that some easy decision
problems correspond to hard counting problems is interesting, and informs us on the increase
of difficulty between finding a solution and counting the total number of solutions.

Since our proof follows closely Hermann and Creignou’s, we briefly sketch their proof.
One can remark that an instance of #SAT(S) where all constraints in S are affine can be
seen as an affine system over Z/2Z. The number of solutions is thus fully determined by the
dimension of the solution space, which can be computed in polynomial time by Gaussian
elimination. All the difficulty lies thus in the completeness proof. This proof first relies on
the following #P-completeness results.

Proposition 2.1.8. [54, 32] #SAT(OR0), #SAT(OR1) and #SAT(OR2) are #P-complete
under Turing reductions.

Then, Creignou and Hermann establish a reduction, for every set S that contains non
affine constraints, from one of those three basic problems to #SAT(S).

2.2 In the algebraic setting

Let’s consider the polynomials associated (in the sense of (1.1)) to a family of boolean
formulas. That is, to a family (φn) we associate the multilinear polynomial family

P (φn)(X) =
∑
ε

φn(ε)X
ε
, (2.1)

where X
ε

is the monomial Xε1
1 · · ·X

εk(n)

k(n) , and k(n) is the number of variables of φn.

For instance, as remarked in Corollary 1.4.8, if the formula φn computes the boolean
function PERMUTn that accepts exactly the n×n permutation matrices (0/1 matrices with
exactly one 1 in each row and each column), the family (P (φn)) is the family of the n× n
permanents.

Imagine that the φn are chosen among the S-formulas of a fixed finite set S of con-
straints. One would like to understand how the complexity of the polynomials P (φn) de-
pends on S.

First, we define the S-families as sequences of S-formulas of polynomial size.
11-Turing reductions (Definition 1.5.3) are called many-one counting reductions in [13, 14]. It was already

claimed in [13, 14] that Theorem 2.1.7 holds true for 1-Turing reductions. This was not fully justified since
the proof of Theorem 2.1.7 is based on 1-Turing reductions from problems which were previously known
to be #P-complete under Turing reductions only. The present chapter shows that this claim was indeed
correct.
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Definition 2.2.1. Given a set S, a family (φn) of boolean formulas is called a S-family
if φn is an S-formula made of a conjunction of at most p(n) relations from S, for some
polynomial p. In particular, when S is finite, φn depends on polynomially many variables.

Our main theorem in this chapter is the following, exhibiting a dichotomy for the fami-
lies of polynomials associated to S-formulas. The field K is supposed to be of characteristic
different from two and infinite; the VNP-completeness is in the sense of c-reductions.

Theorem 2.2.2 (Main Theorem). Let S be a finite set of constraints. If S contains only
contains only affine functions of width at most 2, then the families (P (φn)) of polynomials
associated to S-families (φn) are in VP. Otherwise, there exists an S-family (φn) such that
the corresponding polynomial family P (φn) is VNP-complete.

For every set S of boolean formulas, one can always exhibit associated polynomial
families that are in VP. Thus, for the hard cases, we can only assure the existence of some
associated VNP-complete families.

We can observe that the hard cases for counting problems are strictly included in our
hard evaluation problems, exactly as the hard decision problems in Schaefer’s theorem were
strictly included in the hard counting problems.

In our algebraic framework, the evaluation of the polynomial associated to a given
formula amounts to solving a “weighted counting” problem: each assignment (ε1, . . . , εk)
of the variables of φ comes with a weight Xε1

1 · · ·X
εk
k . In particular when the variables

Xi are all set to 1, we obtain the counting problem #SAT(S). It is therefore natural that
evaluation problems turn out to be harder than counting problems.

The remainder of this chapter is mostly devoted to the proof of Theorem 2.2.2.

Along the way, we obtain several results of independent interest. First, we obtain
several new VNP-completeness results. The main ones are about:

(i) the vertex cover polynomial VCP(G) and the independent set polynomial IP(G), asso-
ciated to a vertex-weighted graph G. Most VNP-completeness results in the literature
(and certainly all the results in Chapter 3 of [11]) are about edge-weighted graphs.

(ii) the antichain polynomial AP(X) and the ideal polynomial IPP(X), associated to a
weighted poset (X,≤).

Unlike in most VNP-completeness results, we need more general reductions to estab-
lish VNP-completeness results than Valiant’s p-projection. In Section 2.6, we use the c-
reductions (Definition 1.5.11) which were introduced by Bürgisser [10, 11] in his work on
VNP families that are neither p-computable nor VNP-complete (this work is mentioned in
Section 2.8). They are akin to the oracle (or Turing) reductions from discrete complexity
theory. The c-reduction has not been used widely in VNP-completeness proofs. The only
examples that we are aware of are:

(i) A remark in [11] on probability generating functions.

(ii) The VNP-completeness of the weighted Tutte polynomial in [33]. Even there, the
power of c-reductions is used in a very restricted way since a single oracle call is
performed in each reduction.
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By contrast, the power of oracle reductions has been put to good use in #P-
completeness theory (see Section 1.5.1). We argue that the importance of Turing reduc-
tions in #P-completeness should be revised downwards since, as a byproduct of our VNP-
completeness results, we can replace Turing reductions by 1-Turing reductions in several
#P-completeness results from the literature. In particular, we obtain a 1-Turing version
of Creignou and Hermann’s dichotomy theorem. We leave it as an open problem whether
the 0/1 partial permanent is #P-complete under 1-Turing reductions (see Section 2.3 for
a definition of the partial permanent, and [25] for a # P-completeness proof under oracle
reductions).

2.2.1 Overview of the proof of Theorem 2.2.2

By Proposition 1.4.7, for any finite set S of constraints and any S-family (φn), the poly-
nomials (P (φn)) form a VNP family. We will first briefly deal with the easy cases of
Theorem 2.2.2.

Proposition 2.2.3. For a set S of affine functions of width at most two, every p-family of
polynomials associated to S-formulas is in VP.

Proof. The only four boolean affine equations with at most two variables are (e = 0),
(e = 1), (e1 + e2 = 1) and (e1 + e2 = 0). The last two are equivalent to (e1 = e2) and
(e1 6= e2).

For a conjunction φ of such relations, two boolean variables e1 and e2 of φ are either
independent or bounded by a relation (e1 = e2) or (e1 6= e2) (if e1 and e2 are bounded by
both relations, φ is null and so is the associated polynomial).

One can thus separate the variables of φ in disjoint sets Si = Ai t Bi, i = 1 · · · k, such
that variables in distinct sets Si and Sj are independent, variables in a same set Ai or Bi
are bounded by the equality relation and two variables in Ai and Bi are bounded by the
relation (e1 6= e2).

Finally, the polynomial associated to a φ can be factorized as

P (φ)(X) =
k∏
i=1

(
∏
ej∈Ai

Xj +
∏
el∈Bi

Xl)

and thus be computed by a circuit of polynomial size.

All the work in the proof of Theorem 2.2.2 therefore goes into the hardness proof.

Let’s begin the proof of the hard cases of Theorem 2.2.2 with the case of non affine
constraints. For that case, the high-level structure of the proof is similar to Creignou and
Hermann’s proof of #P-completeness of the corresponding counting problems in [13]. The
singletons S = {OR2}, S = {OR1} and S = {OR0} play a special role in the proof. Here
OR2 denotes the negative two-clause (x, y) 7→ (x ∨ y); OR0 denotes the positive two-clause
(x, y) 7→ (x ∨ y); and OR1 denotes the implicative two-clause (x, y)→ (x ∨ y).

The corresponding VNP-completeness results for S = {OR2} and S = {OR0} are
established in section 2.3; the case of {OR1} is treated in Section 2.4. These results are put
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together with Creignou and Hermann’s results in Section 2.5 to establish the existence of a
VNP-complete family for any set S containing non affine constraints (Theorem 2.5.1).

Section 2.6 deals with the affine functions of width at least three (Theorem 2.6.2). This
completes the proof of Theorem 2.2.2.

The result on non affine constraints is valid on any field K of characteristic 6= 2. The
result on affine constraints is valid on any infinite field. Finally, Theorem 2.2.2 is valid on
any infinite field of characteristic different from 2.

2.3 Monotone 2-clauses

In this section we consider the sets {OR2} = {(x, y) 7→ (x ∨ y)} and {OR0} = {(x, y) 7→
(x∨y)}. For S = {OR2} and S = {OR0}, we show that there exists a VNP-complete family
of polynomials (P (φn)) associated to a S-family (φn).

The partial permanent PER∗n(A) of a n × n matrix A = (Ai,j) of indeterminates is
defined by

PER∗n(A) =
∑
π

∏
i∈def(π)

Aiπ(i),

where the sum runs over all injective partial maps from [1, n] to [1, n]. It is shown in [11]
that if the characteristic of K is different from 2, the partial permanent is VNP-complete
(the proof is attributed to Jerrum).

The partial permanent may be written as in (1.1), where φn is the boolean formula
that recognizes the matrices of partial maps from [1, n] to [1, n]. But φn can be defined as
a polynomial size {OR2}-formula since

φn(ε) :=
∧

i,j,k:j 6=k

εij ∨ εik ∧
∧

i,j,k:i 6=k

εij ∨ εkj

suits. Here the first conjunction ensures that the matrix ε has no more than one 1 in each
row; the second one ensures that ε has no more than one 1 in each column. Thus, φn accepts
exactly the partial maps from [1, n] to [1, n]. We have obtained the following result.

Theorem 2.3.1 ({OR2}-formulas). The family (φn) is an {OR2}-family, and the polyno-
mial family (P (φn)) is VNP-complete under p-projections.

The remainder of this section is devoted to the set S = {OR0} = {(x, y) 7→ x∨ y}. The
role played by the partial permanent in the previous section will be played by vertex cover
polynomials. There is more work to do because the corresponding VNP-completeness result
is not available from the literature.

Consider a vertex-weighted graph G = (V,E): to each vertex vi ∈ V is associated a
weight Xi. The vertex cover polynomial of G is

VCP(G) =
∑
S

∏
vi∈S

Xi (2.2)

where the sum runs over all vertex covers of G (vertex covers are defined in Definition 1.2.4).
The univariate vertex cover polynomial defined in [19] is a specialization of ours; it is
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obtained from VCP(G) by applying the substitutions Xi := X (for i = 1, . . . , n), where X
is a new indeterminate.

Our main result regarding {OR0}-formulas is as follows.

Theorem 2.3.2 ({OR0}-formulas). There exists a family Gn of polynomial size bipartite
graphs such that:

1. The family (VCP(Gn)) is VNP-complete.

2. VCP(Gn) = P (φn) where (φn) is an {OR0}-family.

Given a vertex-weighted graph G, let us associate to each vi ∈ V a boolean variable εi.
The interpretation is that vi is chosen in a vertex cover when εi is set to 1. We then have

VCP(G) =
∑

ε∈{0,1}|V |

[ ∧
(vi,vj)∈E

εi ∨ εj
]
X
ε
,

and thus the second property in Theorem 2.3.2 will hold true for any family (Gn) of poly-
nomial size graphs for which the first property holds.

To obtain the first property, we first establish a VNP-completeness result for the inde-
pendent set polynomial IP(G). This polynomial is defined like the vertex cover polynomial,
except that the sum in (2.2) now runs over all independent sets S (Definition 1.2.4).

Theorem 2.3.3. There exists a family (G′n) of polynomial size graphs such that IP(G′n) =
PER∗n where PER∗n is the n × n partial permanent. The family IP(G′n) is therefore VNP-
complete.

Proof. The vertices of G′n are the n2 edges ij of the complete bipartite graph Kn,n,
and the associated weight is the indeterminate Xij . Two vertices of G′n are connected by an
edge if they share an endpoint in Kn,n. An independent set in G′n is nothing but a partial
matching in Kn,n, and the corresponding weights are the same.

Hence IP(G′n) = PER∗n and the result follows from the VNP-completeness of the partial
permanent.

Next we obtain a reduction from the independent set polynomial to the vertex cover
polynomial. The connection between these two problems is not astonishing since vertex
covers are exactly the complements of independent sets. But we deal here with weighted
counting problems, so it needs a little more investigation. The connection between inde-
pendent sets and vertex covers does imply a relation between the polynomials IP(G) and
VCP(G). Namely,

IP(G)(X1, . . . , Xn) = X1 · · ·Xn ·VCP(G)(1/X1, . . . , 1/Xn). (2.3)

Indeed,

IP(G) =
∑

S independent

X1 · · ·Xn∏
vi 6∈S Xi

= X1 · · ·Xn

∑
S′ vertex cover

1∏
vi∈S′ Xi

.

Recall that the incidence graph of a graph G′ = (V ′, E′) is a bipartite graph G = (V,E)
where V = V ′ ∪ E′. In the incidence graph there is an edge between e′ ∈ E′ and u′ ∈ V ′
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if u′ is one of the two endpoints of e′ in G. When G′ is vertex weighted, we assign to each
V ′-vertex of G the same weight as in G and we assign to each E′-vertex of G the constant
weight −1.

Lemma 2.3.4. Let G′ be a vertex weighted graph and G its vertex weighted incidence graph
as defined above. Then, we have

VCP(G) = (−1)e(G
′)IP(G′) (2.4)

and

IP(G) = (−1)e(G
′)VCP(G′) (2.5)

where e(G′) is the number of edges of G′.

Proof. We begin with (2.4). To each independent set I ′ of G′ we can injectively
associate the vertex cover C = I ′ ∪ E′. The weight of C is equal to (−1)e(G

′) times the
weight of I ′. Moreover, the weights of all other vertex covers of G add up to 0. Indeed,
any vertex cover C which is not of this form must contain two vertices u′, v′ ∈ V ′ such that
u′v′ ∈ E′. The symmetric difference C∆{u′v′} remains a vertex cover of G, and its weight
is opposite to the weight of C since it differs from C only by a vertex u′v′ of weight −1.

It is possible to obtain (2.5) by a similar argument. Here, we will deduce this relation
from (2.3) and (2.4):

IP(G)(X1, . . . , Xn) = X1 · · ·Xn ·VCP(G)(1/X1, . . . , 1/Xn)
= (−1)e(G

′)X1 · · ·Xn · IP(G′)(1/X1, . . . , X1, . . . , 1/Xn)
= (−1)e(G

′)VCP(G′).

The first and last equalities follow from (2.3), and the second equality follows from (2.4).

To complete the proof of Theorem 2.3.2 we apply Lemma 2.3.4 to the graph G′ = G′n
of Theorem 2.3.3. The resulting graph G = Gn satisfies VCP(Gn) = IP(G′n) = PER∗n since
G′n has an even number of edges: e(G′n) = n2(n− 1).

In a finite field of characteristic 2, Malod [34] proved that the partial permanent is in a
subclass of VP, namely VPws, of polynomials computed by polynomial weakly-skew circuits
(which are intermediates between formulas and circuits). The result can be derived from a
result of Valiant on Pfaffian Sums [55]. Thus, the partial permanent is likely to be no more
VNP-complete, and the results of this section no longer hold.

2.4 Implicative 2-clauses

Here we consider the set S = {OR1} = {(x, y) → (x ∨ y)}. Those constraints are called
implicative because x ∨ y may be reformulated into y ⇒ x.

The #P-completeness of #SAT(S) was established by a chain of reductions in [39]
and [32]. Here we will follow this chain of reductions to find a VNP-complete family asso-
ciated to S-formulas. These two articles show consecutively that the problems of counting
the independent sets, the independent sets in a bipartite graph, the antichains in partial
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vu

Figure 2.1: The transformation of Lemma 2.4.1

ordered sets (posets), the ideals in posets, and finally the number of satisfying assignments
of conjunctions of implicative 2-clauses are #P-complete. We will start from the family
(G′n) such that IP(G′n) = PER∗n, whose existence is stated in Theorem 2.3.3, and follow the
reductions for the counting problems.

We first transform the family (G′n) into a family of bipartite graphs, without changing
the independent set polynomials.

Lemma 2.4.1. There exists a family of bipartite graphs (G′′n) such that IP(G′′n) = PER∗n,
the partial permanent of size n× n.

Proof. By Lemma 2.3.4, we know how to transform a graph G1 into a bipartite graph
G2 such that VCP(G2) = (−1)e(G1)IP(G1) and IP(G2) = (−1)e(G1)VCP(G1) where e(G1)
is the number of edges of G1. Besides, the constructed graph G2 has e(G2) = 2e(G1) edges.
By applying this transformation one more time to G2, we obtain a graph G3 such that

IP(G3) = (−1)e(G2)VCP(G2) = (−1)e(G1)IP(G1).

Thus, the transformation of G1 into G2 consists of the replacement of each edge (u, v)
in G1 by the subgraph represented in Figure 2.1.

In Theorem 2.3.3 we introduced a family (G′n) such that G′n has an even number of
edges, and IP(G′n) = PER∗n. By applying the transformation above to (G′n), we obtain a
bipartite family (G′′n) such that IP(G′′n) = PER∗n.

In what follows we will not only use the statement of this lemma, but we will also use
the structure of G′′n provided by our transformation of the family (G′n) into bipartite graphs.
More precisely, let us denote by V1 and V2 the partite sets of G′′n. We will use for instance
the fact that in one of those two sets, say V1, all vertices have weight −1.

It is pointed out in [39] that, given a bipartite graph, one can construct naturally a
partially ordered set (poset for short). From the bipartite graph G′′n = (V1, V2, E), we define
the partially ordered set (Xn, <) with Xn = V1 ∪ V2, and given x and y in Xn, x < y if and
only if x ∈ V1, y ∈ V2 and (x, y) ∈ E. We see easily that < is transitive and antisymmetric.

Let us recall the definition of an antichain.

Definition 2.4.2 (Antichain). An antichain A in a poset (X,<) is a subset of X such that
for all pairs (x, y) of distinct elements of A, x and y are incomparable.
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We define the antichain polynomial of a (weighted) poset (X,<) as the polynomial

AP(X) =
∑
A

∏
x∈A

w(x)

where the sum runs over all antichains A of (X,<).

Let us consider a bipartite graph G and its corresponding poset (X,<). A set S ⊆ X is
an antichain in (X,<) if and only if it is independent in G. We thus have: AP(X) = IP(G).
Thus, we can identify the families (AP(Xn)) and (IP(G′′n)).

We then define the notion of ideal in a poset.

Definition 2.4.3 (Ideal). An ideal I in a poset (X,<) is a subset of X such that for all
x ∈ I, all y such that y < x belong to I.

We can also define the ideal polynomial IPP(X) in a poset (X,<)

IPP(X) =
∑
I

∏
x∈I

w(x)

where the sum runs over all ideals I of (X,<).

Given an ideal I in a poset (X,<), the maximal elements of I form an antichain A:
since they are maximal in I, they cannot be compared. Conversely, given an antichain A,
the set of elements x that are not greater than an element of A forms an ideal. One can
verify easily that those transformations are bijective and inverse of each other. We thus have
a bijection between the ideals and the antichains of a given poset. This fact is sufficient for
the authors of [39], since the bijection shows that a poset has the same number of antichains
and ideals; the counting problems are thus equivalent.

But for our weighted counting problems, since the ideals and the antichains do not
correspond to the same sets of elements, their weights are not equal; we cannot identify
simply AP(X) and IPP(X) for any poset X.

We do not know how to reduce a family of antichain polynomials into ideal polynomials
in general, but in the case of the family (AP(Xn)), since the structure of the family (G′′n) is
particular, the problem is easier. We claim the following.

Theorem 2.4.4. For all integers n, we have AP(Xn) = IPP(Xn).

The proof will be given at the end of this section.

Corollary 2.4.5. There exists a VNP-complete family of polynomials of the form
(IPP(Xn)).

To conclude, we note that the ideal polynomial in a poset (X,<) may be expressed as
a polynomial associated to a S-formula. Namely, we associate to each xi ∈ X a boolean
variable εi with the intended meaning that xi belongs to an ideal when εi is true. For every
pair (xi, xj) ∈ X such that xi < xj , the condition xj ∈ I ⇒ xi ∈ I may be expressed by
(εj ⇒ εi), or (εi ∨ εj). Thus, we have

IPP(X) =
∑

ε∈{0,1}|X|

[ ∧
(i,j):xi<xj

εi ∨ εj
]
X
ε
.
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Since the ideals Xn have a polynomial size, the family of S-formulas (ψn) coding the relations
in the posets (Xn) is polynomially bounded. We thus obtain the following result.

Theorem 2.4.6. There exists a VNP-complete family of polynomials associated to a poly-
nomially bounded family of {OR1}-formulas.

To complete this section, we now provide the proof of Theorem 2.4.4. Let us fix an
integer n. We recall that in the bipartite graphG′′n = (V1, V2, E) constructed in Lemma 2.4.1,
each vertex of V1 has weight −1. We also know that |V1| is even, since the elements of V1

are added two by two in the transformation from G′n to G′′n.

Fortunately, by modifying the correspondence between antichains and ideals, we can
preserve the weights: we will construct in Lemma 2.4.7 a bijection from the antichains to
the ideals of Xn that preserves the weights so that we have:

AP(Xn) = IPP(Xn).

Lemma 2.4.7. There exists a bijection (different from the natural one considered previ-
ously) from the antichains to the ideals of Xn, this one keeping the weights unchanged.

Proof. To an antichain A of Xn, we associate the set I such that

• A and I coincide on V2.

• I ∩ V1 is the complement of A ∩ V1 in V1.

The map A 7→ I is clearly injective, and one can verify that the image I is an ideal: given
x ∈ Xn and y ∈ I such that x < y, we have that x ∈ V1 and y ∈ V2. Therefore, y ∈ A and x
cannot belong to A as the elements of A are incomparable. Thus, x belong to I. Our map
is finally a bijection from the antichains to the ideals of Xn.

Since all the elements of V1 have weight −1 and |V1| is even, the weights of I and A
differ by a factor (−1)|V1| = 1.

2.5 Non affine constraints

In this section we consider the general case of a set S containing non affine constraints: The
main result is the following.

Theorem 2.5.1. For every set S containing a non affine relation, there exists a VNP-
complete family (under p-projection) of polynomials associated to S-formulas.

The proof of this result is analogous to the proof of the #P-completeness of the cor-
responding counting problems given in [14]. We will adapt this proof to our context. The
authors use the notion of perfect and faithful implementation (definition 5.1 in [14]):

Definition 2.5.2. A conjunction of α boolean constraints {f1, . . . , fα} over a set of variables
x = {x1, . . . , xn} and y = {y1, . . . , yn} is a perfect and faithful implementation of a boolean
formula f(x), if and only if
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1. for any assignment of values to x such that f(x) is true, there exists a unique assign-
ment of values to y such that all the constraints fi(x, y) are satisfied.

2. for any assignment of values to x such that f(x) is false, no assignment of values to y
can satisfy more than (α− 1) constraints.

We refer to the vector x as the function variables and to the vector y as the auxiliary
variables.

We say that a set S of constraints implements perfectly and faithfully a boolean formula
f(x) if there is a S-formula that implements f(x) perfectly and faithfully. We also extend
the definition to constraints: a set S of constraints implements perfectly and faithfully
a constraint f if S implements perfectly and faithfully every application of f to a set of
variables x.

Let us denote F the unary relation F (x) = x = 1− x. From [14], lemma 5.30, we have:

Lemma 2.5.3. If a constraint f is not affine, then {f,F} implements at least one of the
three logical relations OR0, OR1 or OR2 perfectly and faithfully.

The following lemma, analogue to lemma 5.15 from [14], shows that perfect and faithful
implementation provides a mechanism to do projections between the polynomials associated
to sets of constraints.

Lemma 2.5.4. Let S and S′ be two sets of constraints such that every relation of S can be
perfectly and faithfully implemented by S′. Then every p-family of polynomials associated
to an S-family is a projection of a p-family of polynomials associated to an S′-family.

Proof. Let (φn) be a S-family, and let us fix an integer n.

Let x = {x1, . . . , xp} be the set of variables of the formula φn. This formula φn is a
conjunction of constraints fi ∈ S applied on variables from {x1, . . . , xp}. If we replace each
of those relations fi by a perfect and faithful implementation using constraints in S′, using
for each fi a new set of auxiliary variables, we obtain a conjunction ψn of constraints from
S′ applied on variable set x∪y, where y = {y1, . . . , yq} is the union of the auxiliary variables
sets added for each constraint fi.

Since all implementations are perfect and faithful, every assignment to x that satisfies
all constraints of φn can be extended by a unique assignment to x ∪ y that satisfies all
constraints of ψn. Conversely, for an assignment to x that does not satisfy all constraints of
φn, no assignment to x ∪ y can extend the previous one and satisfy every constraint of ψn.

Since ψn is a conjunction of constraints from S′ applied on a set of variables x ∪ y, ψn
is a S′-formula. Furthermore, the number of constraints of ψn is bounded by the product of
the number of constraints of φn and the maximum number of constraints from S′ needed to
implement a constraint from S – which does not depend on n. The size of ψn is therefore
linear in the size of φn. We have:
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P (φn)(X1, . . . , Xp) =
∑

ε∈{0,1}p
φn(ε)X

ε

=
∑

ε∈{0,1}p,y∈{0,1}q
ψn(ε, y)X

ε

=
∑

ε∈{0,1}p,y∈{0,1}q
ψn(ε, y)X

ε
1y1 . . . 1yq

= P (ψn)(X1, . . . , Xp, 1, . . . , 1)

Finally, the family (P (φn)) is a projection of the family (P (ψn)), which is a p-family
of polynomials associated to an S′-family.

From the two previous lemmas, and from the VNP-completeness of families of polyno-
mials associated to {OR0}- , {OR1}- and {OR2}-families, we conclude that for every set of
constraints S such that S contains non affine relations, there exists a VNP-complete family
of polynomials associated to S ∪ {F}-families. To get rid of the constraint {F}, the authors
of [14] need to re-investigate the expressiveness of a non affine relation, and distinguish
various cases. For our polynomial problems, we can easily force a boolean variable to be set
to false by giving to the associated polynomial variable the value 0. We can now give the
proof of Theorem 2.5.1:

Proof. Let (φn) be an S ∪{F}-family of formulas such that (P (φn)) is VNP-complete.
The existence of such a family is ensured by lemmas 2.5.3 and 2.5.4.

Let us consider an integer n. φn(x1, . . . , xn) is a conjunction of constraints from S
applied to variables from x and constraints of the form (xi = 0). We notice that if φn(x)
contains the constraint (xi = 0), then the variable Xi does not appear in the polynomial
P (φn)(X1, . . . , Xn): all the monomials containing the variableXi have null coefficients. If we
suppress from the conjunction the constraint (xi = 0), and instead replace the corresponding
variable Xi by 0, we obtain exactly the same polynomial: the monomials such that Xi

appears in it have null coefficients; the others correspond to assignments such that xi = 0.

Let us denote ψn the formula obtained by suppressing from φn all the constraints of the
form (xi = 0). Since P (φn)(X1, . . . , Xn) = P (ψn)(y1, . . . , yn), where yi is 0 if the constraint
(xi = 0) was inserted in φn, and Xi otherwise, (P (φn)) is a p-projection of (P (ψn)). Thus,
the family (P (ψn)) is VNP-complete.

2.6 Affine functions with width at least 3

Here we consider the case of a set S containing large affine constraints. We first establish the
existence of a VNP-complete family of polynomials associated to a polynomially bounded
family of affine formulas, and then show how to reduce this family to each affine function
of width at least three. In this section, our VNP-completeness results are in the sense of
c-reduction.

Let us consider the n × n permanent PERn(M) of a matrix M = (Mi,j). It may be
expressed as the polynomial associated to a formula φn accepting the n × n permutation
matrices: PERn(M) =

∑
ε φn(ε)X

ε
.
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Let us consider the formula ϕn defined by

ϕn(ε) =
n∧
i=1

εi1 ⊕ . . .⊕ εin = 1 ∧
n∧
j=1

ε1j ⊕ . . .⊕ εnj = 1.

The formula ϕn expresses that each row and each column of ε contains an odd number
of values 1. Thus, ϕn accepts the permutation matrices, and other assignments that contain
more values 1. We therefore remark that the n× n permanent is exactly the homogeneous
component of degree n of P (ϕn). But from Lemma 1.5.12, this implies a c-reduction from
the permanent family to the p-family (P (ϕn)). Thus:

Lemma 2.6.1. The family (P (ϕn)) is VNP-complete with respect to c-reductions.

Through c-reductions and p-projections, this suffices to establish the existence of VNP-
complete families for affine formulas of at least three variables.

Theorem 2.6.2. 1. There exists a VNP-complete family of polynomials associated to a
{x⊕ y ⊕ z = 0}-family.

2. There exists a VNP-complete family of polynomials associated to a {x ⊕ y ⊕ z = 1}-
family.

3. For every set S containing an affine function with width at least three, there exists an
S-family such that the associated family of polynomials is VNP-complete.

Proof.

1. Let us consider the formula ϕn. This formula is a conjunction of affine relations with
constant term 1: x1 + . . .+xk = 1. Let ϕ′n be the formula obtained from ϕn by adding
a variable a and replacing such clauses by x1 + . . . + xk + a = 0. In the polynomial
associated to ϕ′n, the term of degree 1 in the variable associated to a is exactly the
polynomial P (ϕn): when a is assigned to 1, the satisfying assignments of ϕ′n are equal
to the satisfying assignments of ϕn. Since this term of degree 1 can be recovered by
polynomial interpolation of P (ϕ′n), the family (P (ϕn)) c-reduces to (P (ϕ′n)).

ϕ′n is a conjunction of affine relations with constant term 0. The polynomial P (ϕ′n)
is the projection of the polynomial P (ψn), where the formula ψn is obtained from ϕ′n
by replacing each affine relation of the type x1 ⊕ . . . ⊕ xk = 0 by the conjunction of
relations

(x1 ⊕ x2 ⊕ a1 = 0) ∧ (a1 ⊕ x3 ⊕ a2 = 0) ∧ . . . ∧ (ak−2 ⊕ xk−1 ⊕ xk = 0)

where the ai are new variables. In fact, one notices easily that for a given assignment
of the xi satisfying ϕ′n, a single assignment of the ai gives a satisfying assignment of
ψn; and that if the xi do not satisfy ϕ′n, no assignment of the ai fits. The polynomial
P (ϕ′n) is thus the polynomial obtained by replacing the variables associated to ai by
the value 1 in P (ψn); the family (P (ϕ′n)) is a p-projection of (P (ψn)).
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2. The formula ψn constructed above is a conjunction of relations of the type x⊕y⊕z = 0.
Let us construct a new formula ψ′n by introducing two new variables a and b and
replacing each of such relations by the conjunction (x⊕ y ⊕ a = 1) ∧ (a⊕ z ⊕ b = 1).
One can easily figure out that P (ψn) is the projection of P (ψ′n) obtained by setting
the variables associated to a and b to 1 and 0 respectively.

3. We consider an affine function f of arity p and of width at least three, and show the
existence of a VNP-complete family associated to {f}-formulas. To do so, we use an
implementation result from Creignou, Khanna and Sudan [14].

It is shown in the proof of [14, Lemma 5.34] that a function of the form (ε1⊕ . . .⊕εl =
a), where l ≥ 3 and where a ∈ {0, 1}, can be written as

∃ εl+1, . . . , εp f(ε1, . . . , εp).

For l ≤ k ≤ p, let us denote by fk the function

fk(ε1, . . . , εk) = ∃ εk+1, . . . , εp f(ε1, . . . , εp) = ∃ εk+1fk+1(ε1, . . . , εk+1).

Remark that fl is (ε1 ⊕ . . .⊕ εl = a) and that fp = f.

From [14, Lemma 4.5] those functions are all affine, and thus the number of satisfying
assignments are powers of two. If 2i denotes the number of satisfying assignments of fk,
one remarks that fk+1 has either 2i or 2i+1 satisfying assignments. Indeed, if a vector
(ε1, . . . , εk) do not satisfy fk, then by definition fk+1(ε1, . . . , εk+1) = 0 regardless of
the value of εk+1; and conversely, if fk(ε1, . . . , εk) holds, either fk+1(ε1, . . . , εk, 0) or
fk+1(ε1, . . . , εk, 1) hold.

If fk+1 has 2i satisfying assignments, this means that each satisfying assignment of fk
is completed in exactly one satisfying assignment of fk+1. In other words, fk+1 im-
plements perfectly and faithfully fk. From Lemma 2.5.4, any p-family of polynomials
associated to a {fk}−family can be written as a projection of a p-family of polynomials
associated to a {fk+1}−family (the projection being on the constant 1).

If fk+1 has 2i+1 satisfying assignments, each satisfying assignment of fk is always com-
pleted in two satisfying assignments of fk+1. Thus, fk(ε1, . . . , εk) = fk+1(ε1, . . . , εk, 0).
Thus, any polynomial P associated to a {fk}-formula φ is the projection of the
polynomial associated to the {fk+1}-formula obtained by replacing each constraint
fk(x1, . . . , xk) from φ by fk+1(x1, . . . , xk, y), where y is a new variable, and by pro-
jecting the polynomial variable associated to y on the value 0 —forcing y to be 0.

Furthermore, since fl = (ε1 ⊕ . . . ⊕ εl = a), (ε1 ⊕ ε2 ⊕ ε3 = a) can be expressed
as fl(ε1, ε2, ε3, 0, . . . , 0), and this ensures a p-projection of a family associated to a
{fl}-family on any p-family associated to a {(ε1 ⊕ ε2 ⊕ ε3 = a)}-family.

Finally, by an immediate recursion, the VNP-complete family associated to a {(ε1 ⊕
ε2⊕ε3 = a)}-family whose existence is ensured by the first two items is a p-projection
of a p-family associated to {f}-formulas.

It remains an open question, whether those completeness results also hold for p-
projections.
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Problem 1. Given an affine formula φ of width at least three, does there exist a {φ}-family
such that the associated family of polynomials is VNP-complete under p-projections?

If we have no answer to this question, we can show unconditionally that the permanent
and the partial permanent, for n ≥ 3, cannot be expressed as polynomials associated to
affine constraints. Of course, this does not discard the possibility of a p-projection.

The permanent is the polynomial associated to the function PERMUTn. We can
observe that we can use PERMUTn to express via projections the boolean function
1-in-3(x, y, z) accepting (x, y, z) if and only if exactly one of the three variables is true,
whereas it is impossible with a conjunction of affine constraints. We use three new boolean
variables x, y and z, and denote f(x, y, z) the function obtained by applying PERMUTn to
the boolean matrix 

x y z 0 . . . 0

0
...

...
. . . . . . . . . 0

0 z
z 0 y
y z 0 . . . 0 x


.

Since a permutation matrix has exactly one 1 in each row and each column, f accepts
exactly the entries (1, 0, 0), (0, 1, 0) or (0, 0, 1) and thus is equal to the function 1-in-3.

On the other hand, a formula ψ made of a conjunction affine constraints can be seen
as an affine system over the field F2. Any formula ψ′(x, y, z) obtained from ψ by projection
on x, y, z or constants 1 or 0 is still a conjunction on affine constraints. Thus the set
of the solutions of ψ′ is a affine space over F3

2, and its cardinality must be a power of
two. ψ′ cannot accept the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Thus PERMUTn, for n ≥ 3,
cannot be expressed as a conjunction of affine constraints. A similar reasoning can be done
for the function accepting the matrices of injective partial maps from [1, n] to [1, n]: the
function accepting the matrices of injective partial maps applied to the previously considered
matrix, where z is set to 0, defines a function g : F2

2 7→ F2 accepting exactly the set of
entries {(1, 0), (0, 0), (0, 1)}. For the same cardinality reason, this boolean function cannot
be expressed as a conjunction of affine formulas.

Thus, neither (PERn) nor (PER∗n) can be obtained as families associated to affine for-
mulas. In particular, they cannot be expressed as polynomials associated to a conjunction of
affine formulas of width at most two and computed polynomially via the algorithm proposed
in Proposition 2.2.3.

2.7 #P-completeness proofs

Up to now, we have studied vertex weighted graphs mostly from the point of view of al-
gebraic complexity theory. Putting weights on edges, or on vertices, can also be useful as
an intermediate step in #P-completeness proofs [53, 25]. Here we follow this method to
obtain new #P-completeness results. Namely, we prove #P-completeness under 1-Turing
reductions for several problems which were only known to be #P-complete under Turing
reductions.
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Theorem 2.7.1. The following problems are #P-complete for 1-Turing reductions.

1. Vertex Cover: counting the number of vertex covers of a given a graph.

2. Independent Set: counting the number of independent sets of a given graph.

3. Bipartite Vertex Cover: the restriction of vertex cover to bipartite graphs.

4. Bipartite Independent Set: the restriction of independent set to bipartite graphs.

5. Antichain: counting the number of antichains of a given poset.

6. Ideal: counting the number of ideals of a given poset.

7. Implicative 2-SAT: counting the number of satisfying assignments of a conjunction of
implicative 2-clauses.

8. Positive 2-SAT: counting the number of satisfying assignments of a conjunction of
positive 2-clauses.

9. Negative 2-SAT: counting the number of satisfying assignments of a conjunction of
negative 2-clauses.

Remark 2.7.2. #P-completeness under Turing reductions is established in [39] for the first
six problems, in [32] for the 7th problem and in [54] for the last two. In Section 2.1.2, the
last three problems are denoted #SAT(S) where S is respectively equal to {OR1}, {OR0}
and {OR2}.

Proof. Provan and Ball establish in [39] the equivalence of Problems 1 and 2, of
Problems 3 and 4, and of Problems 5 and 6; they produce 1-Turing reductions from 1 to 8
and from 4 to 5, and Linial gives in [32] a 1-Turing reduction from 6 to 7. Problems 8 and 9
are clearly equivalent. Therefore, to obtain #P-completeness under 1-Turing reductions for
all those problems, we just need to show the #P-completeness of Problem 1 and to produce a
1-Turing reduction from Problem 1 to Problem 3 (replacing the Turing reduction from [39]).

In order to prove the #P-completeness of Problem 1, we first establish a 1-Turing
reduction from the #P-complete problem of computing the permanent of {0, 1}-matrices
(which is known to be #P-complete under 1-Turing reductions [59]) to the problem of
computing the vertex cover polynomial of a weighted graph with weights in {0, 1,−1}.

In [11], Bürgisser attributes to Jerrum a projection of the partial permanent on the
permanent, with the use of the constant −1 (see Section 2.3). Applied to a {0, 1}-matrix,
this gives a 1-Turing reduction from the permanent on {0, 1}-matrices to the partial per-
manent on {0, 1,−1}-matrices. By Theorem 2.3.3, the n × n partial permanent is equal
to the independent set polynomial of the graph G′n; the reduction is obviously polynomial.
Moreover, by Lemma 2.3.4 this polynomial is the projection of the vertex cover polynomial
of Gn, with the use of the constant −1. The partial permanent on entries in {0, 1,−1}
therefore reduces to the vertex cover polynomial on graphs with weights in {0, 1,−1}.

Let G be such a vertex weighted graph, with weights in {0, 1,−1}. A vertex cover of
nonzero weight does not contain any vertex v of weight 0, and in order to cover the edges
that are incident to v, it must contain all its neighbours. One can therefore remove v, and
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w(u) = 2k
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u

Figure 2.2: Subgraph of H simulating a weight 2k in G′.

replace each edge from v to another vertex u by a self-loop (an edge from u to u). Thus, we
obtain a graph G′ with weights in {1,−1} such that VCP(G) = VCP(G′).

To deal with the weights −1, we use a method similar to [53]. Since VCP(G′) is the
value of a permanent on a {0, 1}-matrix, it is positive. We will construct an integer N and a
graph H such that the number of vertex covers of H modulo N is equal to VCP(G′). Since
the computation of the residue modulo N is easy to carry on, this will establish a reduction
from the boolean permanent to counting vertex covers in a graph.

We choose N larger than the maximum value of the number of vertex covers of G′:
N = 2v(G′) + 1, where v(G′) is the number of vertices of G′, will suit our purposes. Now
that we compute the number of vertex covers modulo N , we can replace each −1 weight in
G′ by the weight N − 1 = 2v(G′). But one can simulate such a weight on a vertex by adding
to H v(G′) leaves linked to v.

Finally, we construct a 1-Turing reduction from vertex cover to bipartite vertex cover.
From Lemma 2.4.1, we have a projection of the vertex cover polynomial of a bipartite graph
on a vertex cover polynomial of any graph, with the use of −1 weights (and up to a factor
(−1)e, where e is the number of edges of the original graph; that detail can be fixed by
distinguishing both cases in the reduction).

To eliminate the weights −1, we can follow the method used in our above proof of
the #P-completeness of Problem 1. Indeed, since the leaves added to the graph preserve
bipartiteness, we obtain a reduction from counting vertex covers in a general graph to
counting vertex covers in a bipartite graph.

The proof of Creignou and Hermann’s dichotomy theorem [13, 14] is based on 1-Turing
reductions from the last 3 problems of Theorem 2.7.1. We have just shown that these 3
problems are #P-complete under 1-Turing reductions. As a result, we have the following
corollary to Theorem 2.7.1.

Corollary 2.7.3. Creignou and Hermann’s dichotomy theorem (Theorem 2.1.7) still holds
for #P-completeness under 1-Turing reduction.

Theorem 2.7.1 is based on the transformation of p-projections between polynomials into
1-Turing reductions between counting problems. The situation is analogous to the one of
Remark 1.5.5. However, a parsimonious counting reduction is directly a reduction between
the decision problems, whereas there is some work to do to transform the p-projections into
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many-one counting reductions. In particular, it depends on the final problem, since it is
necessary to simulate the constants used in the projection.

In the case of the parsimonious counting reductions, the implications on the decision
problems allow us to discard the possibility of some reductions. For instance, unless P = NP,
there is no parsimonious reduction from #SAT to #−2−SAT. One could wonder if a similar
impossibility result could be obtained to answer negatively Problem 1. But in the case of
the p-projections, such result seems unlikely to obtain. Indeed, to show the impossibility of
a p-projection between the permanent and a polynomial associated to affine formulas, one
would have to simulate any constant in the field. In the case of affine formulas, we do not
know how to simulate constants different from 0 and 1. In the case of affine constraints,
if counting the number of elements in an affine space is easy, it seems that the weighted
problem with integer weights is hard. Indeed, this question is linked to the notion of linear
codes.

A linear code over a field Fq is a subspace of Fnq for some n, of a given dimension k,
defined by the equation H · c = 0 for some n × (n − k) matrix H. A central question on
linear codes is the minimal Hamming distance between two words, that is, the minimal
number of bit-to-bit differences between two words in C: codes are used to correct errors
in a bit transmission, and thus this minimal distance informs us of how many errors can be
detected correctly. Since the code is linear, this distance is equal to the minimal distance
between a word in C and the word (0, . . . , 0). Let us call the weight of a word c ∈ C
its number of nonzero coefficients. Given a linear code through the equations H · c = 0,
computing the minimal distance is a NP-hard problem, and the problem of deciding wether
there exists a word of a given weight w is NP-complete [56]. It has also been shown, that
even approximating the minimal distance within a constant factor is hard [20].

We can adapt our proof of the VNP-completeness of a family associated to affine for-
mulas to show that the associated counting problem is #P-hard. This is not surprising since
the NP-complete problems have usually #P-complete counting counterparts, whereas the
opposite is not true (see Section 1.5.1). Yet, our proof is very simple, compared with the
NP-complete proof.

Proposition 2.7.4. The problem of counting the number of words of a given weight w in
a binary linear code C is #P-complete under 1-Turing reductions.

Proof. The computation of the permanent on {0, 1}-matrices is #P-hard for 1-Turing
reductions. Let us reduce parsimoniously the computation of such permanent to the problem
of counting the number of words of weight w in a binary affine code. We then reduce it to
the same problem on linear codes.

Let us consider an n× n boolean matrix A = (aij). The permanent PER(A) equals

PER(A) =
∑

ε∈{0,1}n2

PERMUTn(ε)Aε.

Let us consider the affine space consisting of the n × n boolean matrices X = (xij)
satisfying the equations

∀ i,
∑
i

aijxij = 1 and ∀ j,
∑
j

aijxij = 1.
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Such matrices have obviously at least one 1 in each row and one 1 in each column.
Thus, the matrices that belong to the code and have a weight n are permutation matrices.
Conversely, a permutation matrix ε = (εij) corresponding to a permutation π belongs to
the code if and only if Aε =

∏
iAiπ(i) = 1.

Thus, the number of words of weight n in the code is exactly the number of permutation
matrices ε such that Aε = 1, and thus is equal to PER(A). This establish the reduction
from computing PER(A) to counting the number of words of weight w in an affine code.

We now reduce the problem of counting the number of words of weight k in a binary
affine code to the same problem on binary linear codes. Let C be an affine code on Fn2
defined by the equations Hx = a, where H is a m × n matrix and a ∈ {0, 1}m a constant
boolean vector. Let us add a new variable y1 and replace each equation

∑
j hijxj = 1 by∑

j hijxj + y1 = 0.

The equations are now linear, and the solutions such that y1 = 1 coincide with the
solutions of the affine problem. To force y1 to be equal to 1, we add n new variables
y2, . . . , yn+1 and n equations yi + yi+1 = 0, i = 1 . . . n. Thus, a word of the new obtained
code C ′ satisfies y1 = y2 = . . . = yn+1. A word of the new code of weight n + 1 + k must
satisfy y = (y1, . . . , yn+1) = (1, . . . , 1), otherwise its weight would be less than n+ 1. Thus,
the number of words of the linear code of weight n+ 1 + k is equal to the number of words
of weight k in the affine code, and this establishes a parsimonious reduction.

The numbers Aw of words of weight w in a code C of length n are the coefficients of
the weight enumerator polynomial of the code, defined as

WC(x, y) =
n∑

w=0

Awx
w.

Since computing the coefficients is #P-complete, evaluating the polynomial on integer
values is #P-hard. But this polynomial is the projection on a single variable of the poly-
nomial associated to the affine formulas defining the linear space. Thus, computing the
polynomial associated to a conjunction of affine formulas on integer values is #P-hard.

2.8 The structure of the polynomials associated to S-
formulas.

In Theorem 2.2.2, we have to cope with a major difference between the Valiant model and
the classical decision and counting complexities. In Valiant’s model, one focuses on the
computation of families of polynomials, which are much “smaller” than the problems of
classical complexity. Indeed, a polynomial family consists of a single polynomial of index
n whereas a problem can have an exponential number of instances of size n. Thus, from
a given set S, instead of getting one single problem – the evaluation of the polynomials
associated to S-formulas – we have a collection of families of associated polynomials.

For any set S, some of those families are in VP: one can construct families of S-formulas
that do not take advantage of the complexity of the set S. For instance, for a constant family
(φn), that is, ∀n, φn = φ for a certain formula φ, (P (φn)) is obviously in VP. Therefore, in
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Theorem 2.2.2, we cannot expect a stronger statement than the existence of VNP-complete
families in the hard cases.

As we remarked in Section 2.1.2, Schaefer defined a large class of problems in NP
for which all problems are either in P, or NP-complete, whereas Ladner [31] ruled out this
possibility for all problems in NP if P 6= NP. But in our settings, from the previous remarks,
we cannot directly conclude that all families (P (φn)), where (φn) is an S-family, are either
in VP or VNP-complete.

We can even prove the opposite. Bürgisser has proved [10, 11] an equivalent of Ladner’s
theorem in Valiant’s setting : if VP 6= VNP, then there exists a family of polynomials in
VNP which is neither in VP, nor VNP-complete. We can use Bürgisser’s very general proof
to conclude that for any set S such that there exists associated VNP-complete families of
polynomials, and provided that VP 6= VNP, some associated p-families are neither in VP
nor VNP-complete.

Let us consider a set Ω and a quasi-order (a reflexive and transitive binary relation)
≤ on Ω. One can define a quasi-order ≤p on the families ΩN obtained similarly as in
Definition 1.5.7 : we have f = (fn) ≤p g = (gn) if we have a term by term comparison
fn ≤ gt(n) from a certain index, and where t(n) is polynomially bounded from above and
below.

Bürgisser constructs almost all of his proof for any of such quasi-ordered set (Ω,≤),
and then applies it to the set of polynomials K[X1, X2, . . .]. Thanks to this general setting,
we will be able to apply those results to the set of polynomials P (φ) for all S-formulas φ.

The proof is based on the use of certain subsets of ΩN, the σ-limit sets. It also allows
to define compatible orders.

Definition 2.8.1. A cylinder in ΩN is a subset of the form F × ΩN, for some set F ⊆ Ωn,
where n ∈ N. A σ-limit set in ΩN is a countable union of a countable intersection of
cylinders.

A quasi-order ≤c is said to be compatible with (ΩN,≤p) if the three following conditions
hold.

• ∀f, g : f ≤p g ⇒ f ≤c g.

• ∀f, g, h : (f ≤c h) ∧ (g ≤c h) ⇒ f ∪ g ≤c h, where f ∪ g stands for the family
(f1, g1, f2, g2, . . .).

• {h|h ≤c g} and {h|f ≤c h} are σ-limit sets for all f, g ∈ ΩN.

Let ≤c be a fixed compatible quasi-order on ΩN. Let us denote f <c g when f ≤c g
and not g ≤c f . The following theorem (Theorem 5.10 in [11]) is a restriction of Bürgisser’s
general result.

Theorem 2.8.2 (Bürgisser). For f, g ∈ ΩN satisfying f <c g there exists h ∈ ΩN such that
f <c h <c g. If also f ≤p g, then we may additionally achieve that f ≤p h ≤p g.

By a simple observation on the proof, we can also add the following.

Remark 2.8.3. Such family h = (hi) can be constructed such that for all i, hi is either a
term of the form fk or a term of the form gk, with k polynomially bounded in i.
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Proof. Bürgisser builds up a family h by constructing a family h′ = (h′n) of the
form h′n = fn or h′n = gn, depending on the index n, and then, by taking h = f ∪ h =
(f0, h

′
0, f1, h

′
1, f2, h

′
2 . . .). The constructed family is thus made of terms from f and g of

polynomially bounded indices.

We now fix a finite set S of constraints among the hard cases of Theorem 2.2.2 (S
contains either non affine constraints or affine constrains of width at least 3). We denote
by Ω the set of polynomials associated to S-formulas. We consider the quasi-ordered set
(Ω,≤), where ≤ is the projection between polynomials, and the quasi-ordered set of families
(ΩN,≤p), where ≤p is the p-projection. The c-reduction ≤c defines also a partial order on
ΩN, which is compatible with ≤p (Lemma 5.15 in [11]). We can thus apply Theorem 2.8.2
to this setting.

Corollary 2.8.4. If VP 6= VNP, then there exists a p-definable family of polynomials
associated to an S-family which is neither p-computable, nor VNP-complete with respect to
c-reduction.

Proof. Let g be a VNP-complete family of polynomials associated to an S-family,
and let f be a family of polynomials in VP, also associated to an S-family. Then, from
the VNP-completeness of g, f ≤c g, and since VP 6= VNP, we have f <c g. Thus, by
Theorem 2.8.2, there exists a h ∈ ΩN such that f <c h <c g.

Since f <c h, no circuit of polynomial size can compute h (even with the help of the
oracle f), and thus h does not belong to VP. h is neither VNP-complete with respect to
c-reductions since g does not c-reduce to h. And furthermore, h is associated to an S-family
since by Remark 2.8.3, h is made of terms from f and g of polynomially bounded indices.
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Chapter 3

A lower bound from
communication complexity

An active field of research in complexity is devoted to the design of efficient algorithms
for subclasses of problems which in full generality likely are hard to solve. It is common
in this area to define such subclasses via bounding some significant problem parameters.
Typical such parameters are the tree- and clique-width if a graph structure is involved in
the problem’s description.

In the case of boolean formulas, one can define different graphs representing the struc-
ture of a given formula, among them the incidence graph and the primal graph. One can
then study formulas whose associated graph has a bounded tree- or clique-width. Unlike
the approach of Chapter 2, the restriction consists thus in constraining the structure of a
boolean formula, instead of limiting the basic constraints.

Still by considering the polynomials associated to S-formulas (Equation (1.1)), it offers
an other way to define restricted classes of tractable families of polynomials. This path
has been successfully followed by Koiran and Meer [27, 8], who investigated the expressive
power of p-families of polynomials associated to formulas of bounded tree-width. They
established that those polynomials could express (via p-projections) exactly the class of
functions representable by arithmetic formulas of polynomial size.

In particular, those families of polynomials are easy to compute, since they are com-
putable by families of arithmetic formulas of polynomial size. It is thus interesting to wonder
how far this approach leads for computing efficiently the permanent family, which is the ba-
sic VNP-complete family. One does not expect this approach to succeed, since it would
imply that VP = VNP. But Koiran and Meer [27] proved the failure of this approach
unconditionally, without relying on such complexity conjecture. This result restricts thus
the approaches for computing the permanent family, and reinforces our impression that this
family of polynomials is hard to compute.

We reinvestigate the above mentioned result from Koiran and Meer, and exhibit a link
between the tree-with of a boolean formula and its communication complexity. This link
gives us a new proof of Koiran and Meer’s result, and allows us to drop some assumptions.
The relation between tree-width and communication complexity is interesting by itself, since

44



it offers a framework to show lower bounds on the tree-width of various boolean formulas
whose communication complexity is known.

We will first briefly present Koiran and Meer’s result in Section 3.1. Then, we will
introduce some definitions from communication complexity (Section 3.2), before exhibiting
the link between tree-width and communication complexity in Section 3.3.

3.1 Previous results

Recall that to a boolean formula are canonically associated the primal graph, where variables
are linked when they belong to a same clause, and the incidence graph, where clauses are
linked to the variables they contain (Definition 1.2.5).

The tree-width of the incidence graph is a relevant parameter to estimate the complexity
of a given boolean formula. Indeed, Fischer, Makowsky and Ravve [22] proposed an algo-
rithm for counting the number of satisfying assignments of a formula, which is polynomial
in the size of the formula, and exponential in its tree-width.

Theorem 3.1.1. [22] Given ϕ and a tree decomposition of its incidence graph of width k,
one can compute the number of satisfying assignments of ϕ using 4kn arithmetic operations.

Since the problems of counting the number of satisfying assignments of a formula and
of evaluating its associated polynomial are closely linked, as remarked in Section 2.2, one
can naturally wonder if a small tree-width also ensures an efficient way to compute the
associated polynomial.

Koiran and Meer not only established that, but also fully characterized the polynomials
obtained by p-projections of families associated to boolean formulas of bounded tree-width
(Theorem 5 of [27]).

Theorem 3.1.2. [27] Let (fn)n∈N be a family of polynomials with coefficients in a field K.
The following properties are equivalent:

(i) (fn)n∈N can be represented by a family of polynomial size arithmetic formulas.

(ii) There exists a family (ϕn)n∈N of CNF formulas of size polynomial in n and of bounded
tree-width such that fn(x) can be expressed as a p-projection of the family (P (ϕn)).

It is thus unlikely that hard families such as the permanent could be expressed as
polynomials associated to p-formulas of bounded tree-width, since it would imply, among
other unexpected results, that VP = VNP.

However, that last hypothesis is an open question, and very little is known on lower
bounds for the permanent.

Fortunately, Koiran and Meer could show unconditionally that fact, that the perma-
nent family is not associated to boolean families of bounded tree-width. We cannot discard
the hypothesis that the permanent could be expressed as a p-projection of such polynomi-
als (showing this impossibility would have strong consequences, since it would imply that
arithmetic formulas of polynomial size cannot express all VNP families). But they prove
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that even a limited kind of projection (limited to the projection on the constant 1) is not
sufficient to express the permanent.

More precisely, consider the boolean function PERMUTn defined in Example 1. Note
that the permanent of an (n× n)−matrix M = (mi,j) is given by

∑
e∈{0,1}n2

PERMUTn(e) ·

me. Koiran and Meer have shown that the function PERMUTn cannot be computed by a
polynomial size formula of bounded tree-width.

Theorem 3.1.3. [27] There does not exist a family {ϕn}n of CNF formulas ϕn(e, θ) such
that the incidence graph is of bounded tree-width, the size of ϕn is polynomially bounded in
n, and for all e ∈ {0, 1}n×n,

• PERMUTn(e) = 1⇒ ∃θϕn(e, θ) = 1,

• PERMUTn(e) = 0⇒ ∀θϕn(e, θ) = 0.

Thus, the permanent family cannot be computed as polynomials associated to formulas
of bounded tree-width – or even, via the θ variables, as projections of such polynomials on
the constant 1.

Koiran and Meer’s proof uses a known lower bound on the size of an OBDD (ordered
binary decision diagram) representing the function PERMUTn [29, 57]. We propose a
different path for establishing this result, taking as an intermediate the nondeterministic
communication complexity. We show that a formula which has a low tree-width must have
a low communication complexity (Lemma 3.3.1). Besides, we show a lower bound on the
communication complexity of the function PERMUTn. Finally, we get a lower bound on the
tree-width of a formula computing the function PERMUTn (Theorem 3.3.3). This result
gives more precision to Koiran and Meer’s statement.

The lower bound on the communication complexity is on the primal graph of a boolean
formula. We first have to justify the replacement of a formula’s incidence graph by its primal
graph.

Proposition 3.1.4. [27] Let ϕ = C1∧. . .∧Cm be a CNF formula with n variables x1, . . . , xn
such that its incidence clause graph I(ϕ) has tree-width k. Then there is a CNF formula
ϕ̃(x, y) such that the following conditions are satisfied:

• each clause of ϕ̃ has at most k + 3 literals;

• the primal graph P (ϕ̃) has tree-width at most 4(k + 1). A tree-decomposition can be
constructed in linear time from one of I(ϕ);

• the number of variables and clauses in ϕ̃ is linear in n;

• for all x∗ ∈ {0, 1}n, we have ϕ(x∗) = 1 if and only if there exists a y∗ such that
ϕ̃(x∗, y∗) = 1. Such a y∗ is, moreover, unique.

Proof. [of Proposition 3.1.4, taken from [27].] Let (T, {Xt}t) be a (binary) tree-
decomposition of I(ϕ). Let C be a clause of ϕ and TC the subtree of T induced by C.
We replace C bottom up in TC by introducing O(n) many new variables and clauses. More
precisely, start with a leaf box Xt of TC . Suppose it contains K variables that occur in
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literals of C, without loss of generality say x1∨ . . .∨xk. Note that since C itself is contained
in Xt, there are at most K many variables included. Introduce a new variable yt together
with k + 1 many clauses expressing the equivalence yt ⇔ x1 ∨ . . . ∨ xk. Each of the new
clauses has at most k + 1 many literals.

Next, consider an inner node t of TC having two sons t1, t2. Suppose x′1, . . . , x
′
k to be

those variables in Xt that occur as literals in C, again without loss of generality in the
form x′1 ∨ . . . ∨ x′k. If yt1 and yt2 denote the new variables related to C that have been
introduced for Xt1 and Xt2 , for Xt define a new variable yt together with clauses expressing
yt ⇔ yt1 ∨ yt2 ∨ x′1 ∨ . . .∨ x′k. Again, there are at most k+ 3 new clauses containing at most
k + 3 literals each. Finally, if t is the root of TC we define yt as before and add the clause
yt. Thus, we add for each node Xt at most k + 4 new clauses as well as one new variable.

Do the same for all clauses of ϕ. This results in a CNF formula ϕ̃ which depends on
O(m · n) additional variables y and contains O(m · n · k) many clauses. The construction
guarantees that ϕ(x) holds if and only if there exists a y such that ϕ̃(x, y), and in that case
y is unique.

A tree-decomposition of the primal graph P (ϕ̃) is obtained as follows. For each occur-
rence of a clause C in Xt of T replace the c-vertex by the newly introduced variables of the
tuple y related to the clause and the box Xt. In addition, for boxes Xt, Xt1 , Xt2 such that
t1, t2 are sons of t include the variables yt1 , yt2 also in the upper box Xt. The xi variables
that previously occurred are maintained. Since for a single box Xt at most three yj are
included for each clause, and since there are at most k + 1 c-vertices in an original box,
the tree-width of P (ϕ̃) is ≤ 4(k + 1). The decomposition satisfies the requirements of a
tree-decomposition since we did not change occurrences of the xi’s and the only yt-variables
that occur in several boxes occur in two consecutive ones.

3.2 Communication complexity

Our proofs below rely on the notion of communication complexity. The model generally
considered in communication complexity was introduced by Yao [58]. In this model, a
boolean input is divided between two parties, that we call processors. Those processors
must compute a given function of this input. To do so, since each processor has only a
partial input, they need to share information: they will send bits to each other until one
processor, say the second one, returns the value of the function on the given input (cf.
Figure 3.1).

We then say that the processors have computed the function in common. We briefly
recall some definitions. For more on this, see [30].

Definition 3.2.1. Let f : {0, 1}n 7→ {0, 1} be a Boolean function.

a) Consider a partition of the n variables of f into two disjoint sets x = {x1, . . . , xn1}, y =
{y1, . . . , yn2}, n1 + n2 = n. The communication complexity of f with respect to (x, y)
is the lowest amount of bits that two processors, the first working on the variables x
and the second on the variables y, need to exchange in order to compute f in common.

b) The one-way communication complexity of f with respect to (x, y) is the lowest amount
of exchanged bits needed to compute f if only one processor is allowed to send bits
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f(x1, . . . , xl, y1, . . . , ym)

BA

k bits

x1, . . . , xl y1, . . . , ym

Figure 3.1: Illustration of the communication complexity between two processors A and B.

to the other.

c) If above we only allow partitions of the variables of same cardinality, i.e., n is even
and |x| = |y|, and minimize over all of them, we obtain the best-case and best-case
one-way communication complexity, respectively.

d) The non-deterministic communication complexity of f with respect to (x, y) is the
lowest amount of bits that two processors, the first working on the variables x, the
second on the variables y, and each having access to a source of non deterministic bits,
need to exchange in order to compute in common the function f in the following sense
:

– If f(x) = 1, at least one of the possible non-deterministic computations must be
accepting

– If f(x) = 0, all the non-deterministic computations must be non-accepting.

Remark that in the non-deterministic model, one-way and general communication com-
plexities are equivalent, since each processor can guess the bits that will be exchanged, and
then, if the first processor sends its guesses, the other one can verify, that its own guesses
were consistent with those of its partner.

A useful approach in communication complexity consists in considering for a given
function f(u, v) the matrix associated to it.

Definition 3.2.2. Let f : U × V → {0, 1} be a boolean function.

a) We call the matrix of f the matrix (f(u, v)), where the different assignments of u
denote the rows and those of v denote the columns. Note that the matrix is a |U |×|V |
matrix; that is, of size exponential in the length of the input vector.

b) A rectangle of the matrix (f(u, v)) is a set of entries composed of the intersection of
a certain set of rows and a certain set of columns. That is, a set of entries R is a
rectangle if and only if the following is true : ∃Ũ ⊆ U, Ṽ ⊆ V such that R = Ũ × Ṽ .
Equivalently, a set of entries R is a rectangle if and only if the following is true :

∀(u1, u2, v1, v2) ∈ U2 × V 2, (u1, v1) ∈ R ∧ (u2, v2) ∈ R⇒ (u1, v2) ∈ R.
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000 001 010 011 100 101 110 111
000 0 1 1 0 1 0 0 0
001 1 0 0 0 0 0 0 1
010 1 0 0 0 1 0 0 0
011 0 0 1 0 0 0 0 1
100 1 0 0 0 1 0 0 1
101 1 1 1 0 0 0 1 1
110 0 0 0 0 1 0 0 0
111 0 1 1 0 1 1 0 1

Figure 3.2: A 0-monochromatic rectangle

c) A rectangle of the matrix (f(u, v)) is called monochromatic if f has the same value
on each entry of the rectangle (cf. Figure 3.2).

The following two results are classical in communication complexity [30, 58]. They link
the various communication complexities of a boolean function f with respect to a partition
(U, V ) of the variables to different parameters of the matrix of f .

Theorem 3.2.3. Let f(x, y) be a function over two boolean vectors x and y.

(i) The one-way communication complexity of f equals the logarithm of the number of
different rows in the matrix (f(u, v)).

(ii) The non-deterministic communication complexity of f equals the logarithm of the min-
imal number of monochromatic rectangles of the matrix (f(u, v)) needed to cover all
values 1 in the matrix.

3.3 The lower bound

For the lower bound proof, the non-deterministic communication complexity with respect to
certain partitions is the crucial notion. The following lemma relates it to the path-width of
primal graphs. Recall that the path-width of a graph with n nodes is bounded from above
by O(t · log n), where t denotes its tree-width (Proposition 1.2.3).

Lemma 3.3.1. Let φ(e, θ) be a CNF formula depending on n+s variables and f : {0, 1}n 7→
{0, 1} a Boolean function such that :

- if φ(e, θ) = 1, then f(e) = 1

- if f(e) = 1, then there exists a θ such that φ(e, θ) = 1.

Consider an arbitrary path-decomposition (X1, . . . , Xp) of the primal graph P (φ) of width k.
Choose a node Xi of the decomposition and a partition x, y of the variables e such that all
variables of type e that have already occurred among those in X1, . . . , Xi−1 are distributed
to x, and all the ones that never occur in X1, . . . , Xi, to y. Then the non-deterministic
communication complexity of f with respect to (x, y) is at most k + 2.
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Proof. We split φ as follows into two CNF formulas φ1 and φ2 such that φ = φ1 ∧ φ2

and φ1 and φ2 have at most k + 1 variables in common. Formula φ1 is made of all clauses
in φ that only contain variables that appear in X1, . . . , Xi−1. The remaining clauses are
collected in φ2. Due to the path-width conditions, only variables in Xi can be common
variables of φ1 and φ2.

Note that all variables in x that appear in φ2 must belong to Xi, and that no variables
in y appear in φ1.

Now, given an assignment of the variables (x, y), let the first processor complete its
assignment x by guessing non-deterministically the values of the remaining variables needed
to compute φ1 – that is, variables of θ since no variables in y appear in φ1. Similarly,
the second processor completes its assignment of y by guessing the values of the remaining
variables appearing in φ2 – variables of θ, and variables of x appearing in Xi as remarked
previously.

Let the first processor send to the second processor the result of its computation of
φ1 along with the values of the variables in its assignment that φ2 also uses. Those are
variables in x appearing in φ2, and variables from θ that are common to φ1 and φ2. Thus
they all appear in Xi. As a result, the first processor sends at most |Xi|+ 1 ≤ k + 2 bits.

With those values, the second processor can check if the values of its guesses are con-
sistent with the values the first processor had, and if both the computations of φ1 and φ2

are accepting.

Thus, if e = (x, y) does not satisfy f , no guesses of the variables θ could complete e in
an assignment that satisfies both φ1 and φ2 and the protocol will never be accepting; and
if f(e) = 1, then if the two processors guess the proper values to compute φ1 and φ2 on the
existing assignment (e, θ) that satisfies φ, both φ1 and φ2 will be satisfied, and the protocol
will be accepting.

Remark 3.3.2. At the end of this section we obtain a similar lemma in order to obtain some
results of independent interest relating best-case deterministic communication complexity
and path-width.

An outline of the lower bound proof is as follows: Given a CNF formula for the function
PERMUTn and a partition of the variables as above we next define certain permutations
called balanced. The number of balanced permutations can be upper bounded in terms of
the non-deterministic communication complexity, by Lemma 3.3.7. Then in Lemma 3.3.8
we show that a CNF formula for the permanent function gives rise to a partition of the
variables with sufficiently many balanced permutations. Combining this with Lemma 3.3.1
above and the well known relation between path- and tree-width gives the following lower
bound result:

Theorem 3.3.3 (lower bound for the permanent). Let (φn)n∈N be a family of CNF formulas
φn(e, θ) in n2 variables e = (eij) and sn auxiliary variables θ such that :

- if φn(e, θ) = 1, then the matrix e ∈ {0, 1}n×n is a permutation matrix

- if e ∈ {0, 1}n×n is a permutation matrix, then there exists θ such that φn(e, θ) = 1.

Then the path-width p(n) of the primal graphs P (φn) verifies p(n) = Ω(n), and the tree-width
t(n) verifies t(n) = Ω(n/ log(n+ sn)).
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As a result, the general permanent function cannot be expressed by a family of CNF
formulas with a polynomial number of auxiliary variables and an incidence graph of bounded
tree-width.

Remark 3.3.4. Unlike in the statement of Theorem 3.1.3, the above lower bounds are
independent of the size of the CNF formulas.

Remark 3.3.5. It seems possible to improve the t(n) = Ω(n/ log(n + sn)) lower bound
by working directly with tree decompositions instead of path decompositions. The proofs
would get more cumbersome but do not seem to require new ideas. We will therefore stick
to path decompositions in the remainder of this section.

We proceed as outlined above with:

Definition 3.3.6. Let e = (eij)1≤i,j≤n be a matrix of boolean variables and (x, y) a par-
tition of the variables e into two disjoint blocks x and y. A permutation π : {1, . . . , n} 7→
{1, . . . , n} is called balanced with respect to the partition (x, y) if among the n variables
ei,π(i), 1 ≤ i ≤ n precisely dn2 e belong to x and bn2 c belong to y.

Thus, if (eij) represents the matrix of a permutation π and if π is balanced with respect
to (x, y), then (almost) half of those eij with value 1 belong to x and the other half to y.

Lemma 3.3.7. Consider a n× n matrix of boolean indeterminates e = (eij) and let x, y be
a partition of e. If there are m balanced permutations with respect to (x, y), then the non-
deterministic communication complexity c of PERMUTn(e) with respect to (x, y) satisfies

m ≤ 2c · (dn/2e!)2
.

Proof. Consider the matrix (PERMUTn(x, y)) as defined in Theorem 3.2.3, where
rows and columns are marked by the possible assignments for x and y, respectively. If π
is a permutation which is balanced with respect to (x, y), we denote by (x(π), y(π)) the
corresponding assignments for the (eij) and we denote by R(π) the row of index x(π) in the
communication matrix (PERMUTn(x, y)).

We wish to compute an upper bound K such that any monochromatic rectangle covers
at most K balanced permutations. The point then is that the communication matrix will
have at least m/K distinct rectangles since there are m balanced permutations. We can
then conclude that m ≤ 2c ·K by Theorem 3.2.3.

Towards this aim let A be a monochromatic rectangle covering the value 1 corresponding
to π in the matrix. This rectangle is the intersection of a certain set of rows and a certain
set of columns. Since π is covered by A, R(π) belongs to that set of rows. Let C be one of
the columns.

The intersection of R(π) and C belongs also to A, and thus contains a 1. Therefore,
the assignment yc indexing C completes x(π) in a satisfying assignment of fn. Since π is
balanced, there are dn/2e variables set to 1 in x(π). If x(π), yc are to form a permutation
matrix, yc must have exactly bn/2c variables set to 1, distributed in the intersection of the
bn/2c rows and columns of e without any 1 in the assignment x(π).

Consequently, there are at most bn/2c! possible values for yc, and thus at most bn/2c!
possible columns in A. Symmetrically, there are at most dn/2e! possible rows in A. Finally
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one can take K = dn/2e!·bn/2c!, and the conclusion of the lemma follows from the inequality
m ≤ 2c ·K.

The final ingredient for the lower bound proof is

Lemma 3.3.8. Let φn(e, θ) be a CNF formula in n2 variables e = (eij) and sn auxiliary
variables θ such that :

- if φn(e, θ) = 1, then the matrix e ∈ {0, 1}n×n satisfies PERMUTn(e) = 1,

- if PERMUTn(e) = 1, e ∈ {0, 1}n×n, then there exists θ such that φn(e, θ) = 1.

Then there exists a partition of e into two sets of variables x, y such that this partition is
as in the statement of Lemma 3.3.1 for f = PERMUTn and such that there are at least
n! · n−2 many balanced permutations with respect to (x, y).

Proof. Let (X1, X2, . . . , Xp) be the nodes of a path-decomposition of P (φn) (in that
order). We define an ordering on the eij ’s as follows: for an eij , let X(eij) be the first node
in the path-decomposition containing eij . We set eij < ekl if X(eij) < X(ekj). If both
values are equal for eij and ekl we order them arbitrarily but in a consistent way to achieve
transitivity.

Consider a permutation π. There are precisely n variables of the form eiπ(i). We pick,
according to the above order, the dn2 e-th among those and denote it by eπ. Thus, among
the eiπ(i) exactly bn2 c are greater than eπ and dn2 e are less than or equal to eπ with respect
to the defined order. By the pigeonhole principle there is at least one variable e` among
the n2 many eij ’s such that for at least n!

n2 many permutations of {1, . . . , n} we get that
same e` by the above procedure, i.e., eπ = e` for all those π. We choose a partition (x, y)
of the eij as follows. The part x consists of all the variables eij that are less than or equal
to e`, and the part y of the variables that are greater than v`. The partition (x, y) is as
stated in Lemma 3.3.1, where the node X(e`) plays the role of the Xi in the Lemma. The
above arguments imply that at least n!

n2 many permutations are balanced with respect to
this partition.

We can now prove our lower bound on the tree-width of PERMUTn.

Proof. [of Theorem 3.3.3] Let φn be as in the theorem’s statement. According to Lemma
3.3.8 there is a partition of the variables with at least n!

n2 many balanced permutations.
According to Lemmas 3.3.7 and 3.3.1 the path-width k of P (φn) satisfies

n!
n2
≤ 2k+2 × (dn/2e!)2 .

Using Stirling’s formula, we deduce that k = Ω(n). Now the tree-width t of φn satisfies
t ∈ Ω(k/ log(n+ sn)), which results in t ∈ Ω(n/ log(n+ sn)). Finally, the statement about
the tree-width of φn’s incidence graph follows from Proposition 3.1.4.

Remark 3.3.9. The lower bound obtained above seems not derivable from the known lower
bounds on computing the permanent with monotone arithmetic circuits, see, e.g., [26]. The
tree-width based algorithms for polynomial evaluation like the one in [22] are not monotone
since they rely on the principle of inclusion and exclusion.
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3.4 Further results

We can observe that the proof above can be simply adapted for boolean formulas accepting
n × n matrices of injective partial maps form [1, n] to [1, n] (cf. Section 2.3). Indeed,
the permutations are also injective partial maps, and one can still consider the number of
permutations balanced by a partition of the variables in the case of the function accepting
matrices of partial maps. Thus, the same lower bound holds for the partial permanent
PER∗n.

We remarked that, thanks to the θ variables in Theorem 3.3.3, it is established that
the permanent family could not be obtained as a projection of polynomials associated to
formulas of bounded tree-width, where some variables are projected on the constant 1. We
can further notice that a projection on the constant 0 does not increase the tree-width.

Lemma 3.4.1. Let Q(Y1, . . . , Yn) be a polynomial associated to a boolean formula
φ(ε1, . . . , εn), and let t denote the tree-width of φ. If a polynomial P with k variables
such that k ≤ n can be expressed as a projection P (X1, . . . , Xk) = Q(X1, . . . , Xk, 0, . . . , O),
then P is associated to a formula of size smaller than φ and of tree-width at most t.

Proof. P is the polynomial associated to the formula ψ obtained from φ by removing
all clauses containing a negated literal εi, i > k, and removing from each clause all non-
negated literals εi, i > k. Indeed, since the variables Xi for i > k are set to 0, the nonzero
monomials in P are exactly those for which all corresponding variables εi are set to 0.

A tree decomposition of φ is obviously also a tree decomposition of ψ, and the size of
ψ is clearly smaller than the size of φ.

One remarks that even if the permanent cannot be obtained from polynomials associ-
ated to formulas of bounded tree-width via projections on 0 or 1, we cannot conclude that
on the field F2, the permanent cannot be obtained via any p-projection. Indeed, we cannot
even prove that the projection of a variable on another (for instance, P (X) = Q(X,X)) do
not increase the tree-width.

We close this subsection by strengthening slightly Lemma 3.3.1 in order to apply it
also to the best-case one way communication complexity (Definition 3.2.1) and obtain some
lower bound results of independent interest.

Lemma 3.4.2. Let φ be a CNF formula depending on 2n variables. Assume that the primal
graph P (φ) has path-width k − 1. Then, φ can be expressed as φ1 ∧ φ2 for CNF formulas
φ1, φ2 such that both have at most k variables in common, and φ2 depends on at least n
variables and φ1 on at least n− k variables that do not occur in the other formula.

Proof. We briefly sketch how the splitting of φ done in Lemma 3.3.1 can be performed
more carefully such that both formulas φ1 and φ2 depend at least on a certain number of
variables. Let (X1, X2, . . . , Xp) be a path-decomposition of P (φ); order the variables once
again as done in the proof of Lemma 3.3.8. Denote the ordered sequence by v1 < . . . < v2n.
Choose X` := X(vn). Define φ1 as conjunction of those clauses in φ containing only variables
among the v1, . . . , vn and φ2 as conjunction of all remaining clauses. Notice that the n
variables vn+1, . . . , v2n do not occur in φ1. Due to the path-width conditions, the common
variables in φ1 and φ2 must be variables in X`. Thus, there are at most k many. Moreover,
X` contains at most k among the n many variables x1, . . . , xn. Therefore at least n − k of
these occur for the last time in some X`′ , where `′ < ` and φ2 cannot depend on them.
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As consequence, Lemma 3.3.1 now also holds with respect to the best-case one-way
communication complexity (Definition 3.2.1) of the function represented by φ.

Corollary 3.4.3. The best-case one-way communication complexity of a function f :
{0, 1}2n → {0, 1} is lower than k + 1, where k − 1 is the path-width of the primal graph
of any CNF formula computing f .

Proof. Let φ be a formula computing f , and k−1 be its path-width. By Lemma 3.4.2,
one can write φ as a conjunction φ1 ∧ φ2, where φ1 has at least n− k variables not shared
with the other formula and φ2 n of such variables. Let us consider the partition (x, y), where
y contains n variables, that belong to φ2 exclusively, and x the n remaining variables. We
do have |x| = |y| = n.

With this partition, the one way communication complexity of f(x, y) is lower than
k + 1. Indeed, the processor that has access to the variables x can compute φ1 since the
variables in y appear only in φ2. It can send the result of the computation of φ1 – which
is a single bit – along with the values of the at most k common variables to the second
processor, which then can compute φ2 and return the value of f .

Thus, the best case one way communication complexity is lower than k + 1.

If for a function f the best-case one way, or the best case communication complexity is
known, then we can use the corollary to deduce lower bounds for the path- and tree-width
of CNF formulas representing f .

Example 2. For x, y ∈ {0, 1}n, 1 ≤ i ≤ n consider the boolean function SEQ(x, y, i) which
gives result 1 if and only if the string x = x0x1 . . . xn equals the string y shifted circularly
by i bits to the right, that is to yiyi+1 . . . yn−1y0 . . . yi−1. It is known [30] that SEQ has a
best case communication complexity which is at least linear in the size of the input. Thus,
the path-width of the primal graph of any CNF formula computing SEQ is at least linear
in the input.

The same argument holds as well for the function PROD(a, b, i), which computes the
i-th bit of the product a·b, for the function MATCH which on a 3m-string x and a m-string
y returns 1 iff y is a substring of x, and for the function USTCON which on a graph with `
vertices and two given vertices s and t outputs 1 if there exists a path from s to t. As noted
in [30], the best-case communication complexity of those function is, respectively, linear,
Ω(m/ log(m)) and Ω(

√
n). Consequently, they do not admit CNF formulas of path-width,

respectively, linear, Ω(m/ log(m)) and Ω(
√
n).

Since the path-width p and the tree-width t are related via p = O(t · log n), all above
mentioned examples do not admit CNF formulas with a primal graph of bounded or even
logarithmic tree-width.
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Part II

From complex numbers to
booleans
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Chapter 4

Fast Computation of Zeros of
Polynomial Systems with
Bounded Degree under
Finite-precision

4.1 Introduction

The 17th of the problems for the 21st century posed by Steve Smale [49] asks for an algorithm
computing an approximate zero of a polynomial system in average polynomial time.

The problem had occupied Smale during the 1990’s and led him, together with Mike
Shub, to a series of papers [43, 44, 45, 47, 46, 42] – known as the Bézout series – where
a number of ideas and results approaching a solution for the 17th problem were proposed.
These ideas are at the core of all further research done on Smale’s problem.

Paramount within this research is the work of Carlos Beltrán and Luis Miguel Pardo [3,
4, 5] who provided a randomized algorithm computing the desired approximate zero in
average expected polynomial time. Here the word “average” refers to expectation over the
input data and the word “expected” to expectation over the random choices made by the
algorithm1. One can say that they gave a probabilistic solution to Smale’s 17th problem.
Further results, including a deterministic algorithm working in average time NO(log logN)

– referred to as “nearly polynomial” – are given in [12]. This deterministic algorithm,
when restricted to systems with bounded (or even moderately growing) degree, becomes an
average polynomial-time algorithm, refered to in [12] as MD.

All the mentioned work (as well as all the work on Smale’s 17th problem not mentioned

1Although technically similar, there is a remarkable difference between the probability distributions
considered. The one for the input data is, explicitly or otherwise, claiming some closeness to the distribution
of data “in practice.” The only requirement for the distribution for the random choices of the algorithm is,
in contrast, that it will be efficiently computable. An undisputed merit of the work of Beltrán and Pardo is
to come up with one distribution which is so and, at the same time, allows one to derive complexity bounds.
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above) assume infinite precision. As Beltrán and Pardo put it in [5, p. 6]

With the assumption of exact arithmetic [. . . ] the homotopy method [. . . ] is
guaranteed to produce an approximate zero of f .

This statement begs the question, what can one do if (as it happens with digital computers)
only finite precision is available2? The goal of the present section is to give an answer for sys-
tems of moderate degree. To do so, we describe and analyze a finite-precision version MDF
of algorithm MD. This version uses variable precision – that is, the algorithm adaptively
adjusts its precision – and we give bounds for the largest required precision. Such bounds
amount to a bound on the number of bits (or digits) required to store floating point ap-
proximations of the complex numbers occurring during the computation and, in this sense,
is related to the bit-cost of performing the computation. In fact, if u∗ denotes the smallest
value of the round-off unit u used during a computation, then the maximum number of
bits we will need to approximate the complex numbers occurring during this computation
is essentially | log u∗|.

In a related work [2], Leykin and Beltrán implement a digital algorithm for systems
with rational coefficients; they manage to perform only rational computations, avoiding thus
the finite precision assumptions; furthermore, they control the size of the rational involved.
In contrast, we will work with any system with complex coefficients, by considering finite
precision approximations of it. Thus, we are able to use the known expectation results on
distributions of systems with complex coefficients.

Our main result deals both with complexity and accuracy. Firstly, we show that the
complexity (understood as number of arithmetic operations performed) of MDF remains
essentially the same as that of MD. Secondly, we exhibit polynomial bounds for the expected
(over random input systems f) number of bits necessary to carry out the computation.

Our main result is the following (precise definitions for the intervening notions will be
given in the next section).

Theorem 4.1.1. Let N(0, Id) denote the standard Gaussian in the space Hd of polymial
systems f = (f1, . . . , fn) with fi homogeneous of degree di in n + 1 variables. When f is
randomly chosen from N(0, Id), algorithm MDF on input f stops almost surely, and when it
does so, returns an approximate zero of f . The number of arithmetic operations costMDF(f)
of MDF on input f is bounded on the average as

E
f∼N(0,Id)

costMDF(f) = O(D3N2(n+ 1)D+1).

Here N = dimCHd denotes the size of the input systems and D := max{d1, . . . , dn}. Fur-
thermore, the finest precision u∗(f) used by MDF on input f is bounded on the average
as

E
f∼N(0,Id)

log |u∗(f)| = O(D3N(n+ 1)D+1)

and as a consequence, when D is bounded, the bit-cost of MDF is, on the average, polynomial
in the size of the input.

2Incidentally, finite precision analysis for algorithms dealing with multivariate polynomial systems was
pioneered by Steve Smale, and Felipe Cucker in [16].
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4.2 Preliminaries

4.2.1 Setting and Notation

For d ∈ N we denote by Hd the subspace of C[X0, . . . , Xn] of homogeneous polynomials of
degree d. For f ∈ Hd we write

f(X) =
∑
α

(
d

α

)1/2

aαX
α

where α = (α0, . . . , αn) is assumed to range over all multi-indices such that |α| =
∑n
k=0 αk =

d,
(
d
α

)
denotes the multinomial coefficient, and Xα := Xα0

0 Xα1
1 · · ·Xαn

n . That is, we take for

basis of the linear space Hd the Bombieri-Weyl basis consisting of the monomials
(
d
α

)1/2
Xα.

A reason to do so is that the Hermitian inner product associated to this basis is unitarily
invariant. That is, if g ∈ Hd is given by g(x) =

∑
α

(
d
α

)1/2
bαX

α, then the canonical
Hermitian inner product

〈f, g〉 =
∑
|α|=d

aα bα

satisfies, for all elements ν in the unitary group U(n+ 1), that

〈f, g〉 = 〈f ◦ ν, g ◦ ν〉.

Fix d1, . . . , dn ∈ N \ {0} and let Hd = Hd1 × . . . × Hdn be the vector space of polynomial
systems f = (f1, . . . , fn) with fi ∈ C[X0, . . . , Xn] homogeneous of degree di. The space Hd

is naturally endowed with a Hermitian inner product 〈f, g〉 =
∑n
i=1〈fi, gi〉. We denote by

‖f‖ the corresponding norm of f ∈ Hd.

We let N := dimCHd, D := maxi di, and D :=
∏
i di. Also, in the rest of this section,

we assume di ≥ 2 for all i ≤ n (linear equations can be easily eliminated). In particular,
D ≥ 2.

Let Pn := P(Cn+1) denote the complex projective space associated to Cn+1 and S(Hd)
the unit sphere of Hd. These are smooth manifolds that naturally carry the structure of a
Riemannian manifold (for Pn the metric is called Fubini-Study metric). We will denote by
dP and dS their Riemannian distances which, in both cases, amount to the angle between
the arguments. Specifically, for x, y ∈ Pn one has

cos dP(x, y) =
|〈x, y〉|
‖x‖ ‖y‖

. (4.1)

Occasionally, for f, g ∈ Hd \ {0}, we will abuse language and write dS(f, g) to denote this
angle, that is, the distance dS

(
f
‖f‖ ,

g
‖g‖
)

= dS
(
f, g
)
. We define the solution variety to be

VP := {(f, ζ) ∈ Hd × Pn | f 6= 0 and f(ζ) = 0}.

This is a smooth submanifold of Hd × Pn and hence also carries a Riemannian structure.
We denote by VP(f) the zero set of f ∈ Hd in Pn.

By Bézout’s Theorem, VP(f) contains D points for all f except in a subvariety. Let
Df(ζ)|Tζ denote the restriction of the derivative of f : Cn+1 → Cn at ζ to the tangent space
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Tζ := {v ∈ Cn+1 | 〈v, ζ〉 = 0} of Pn at ζ. The subvariety of ill-posed pairs is defined as

Σ′P := {(f, ζ) ∈ VP | rankDf(ζ)|Tζ < n}.

Note that (f, ζ) 6∈ Σ′P means that ζ is a simple zero of f . In this case, by the implicit
function theorem, the projection VP → Hd, (g, x) 7→ g can be locally inverted around (f, ζ).
The image Σ of Σ′P under the projection VP → Hd is called the discriminant variety.

We say that a property holds generically when it is true excepted for elements in a
subvariety of the considered set. For instance, a pair (f, ζ) in VP is generically well posed.
In particular, such property is almost sure for the gaussian densities we consider.

4.2.2 Approximate Zeros, Complexity and Data Distribution

In [41], Mike Shub introduced the following projective version of Newton’s method. We
associate to f ∈ Hd (with Df(x) of rank n for some x) a map Nf : Cn+1 \{0} → Cn+1 \{0}
defined (generically) by

Nf (x) = x−Df(x)−1
|Txf(x).

Note that Nf (x) is homogeneous of degree 0 in f and of degree 1 in x so that Nf induces
a rational map from Pn to Pn (which we will still denote by Nf ) and this map is invariant
under multiplication of f by constants.

We note that Nf (x) can be computed from f and x very efficiently: since the Jacobian
Df(x) can be evaluated with O(N) arithmetic operations [1], one can do with a total of
O(N + n3) = O(N) arithmetic operations, the equality since di ≥ 2 implies N = Ω(n3).

It is well-known that when x is sufficiently close to a simple zero ζ of f , the sequence
of Newton iterates beginning at x will converge quadratically fast to ζ. This property led
Steve Smale to define the following intrinsic notion of approximate zero.

Definition 4.2.1. By an approximate zero of f ∈ Hd associated with a zero ζ ∈ Pn of f we
understand a point x ∈ Pn such that the sequence of Newton iterates (adapted to projective
space)

xi+1 := Nf (xi)

with initial point x0 := x converges immediately quadratically to ζ, i.e.,

dP(xi, ζ) ≤
(1

2

)2i−1

dP(x0, ζ)

for all i ∈ N.

It is this notion of approximation that is the one referred to in the statement of Smale’s
17th problem.

The last notion necessary to formally state Smale’s problem is that of ‘average cost’.
For the cost of a computation Smale proposes the number of arithmetic operations (this
includes comparisons and possibly square roots) performed during the computation. In
the case of a finite-precision algorithm one needs to multiply this number by the largest
number of bits (or digits) necessary to approximate the complex numbers occurring during
the computation.
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The word ‘average’ refers to the standard normal distribution for the data (input) sys-
tem f ∈ Hd. Recall, we express an element f ∈ Hd as a linear combination of the monomials
in the Bombieri-Weyl basis. The standard normal distribution corresponds to choosing the
coefficients in this combination independently and identically distributed from the centered
Gaussian distribution on C (which in turn amounts to draw real and imaginary parts inde-
pendently from the centered Gaussian distribution on R). We denote this distribution on
Hd by N(0, Id).

Hence, if cost(f) denotes the cost of computing an approximate zero for f with a given
algorithm then the average cost of this algorithm, for inputs in Hd, is given by the expected
value

E
f∼N(0,Id)

cost(f).

We remark that if the cost is homogeneous of degree zero, that is, if cost(f) = cost(λf) for
all λ 6= 0, then the expectation above is the same as the expectation with f drawn from the
uniform distribution on the unit sphere S(Hd).

Smale’s 17th problem asks for an algorithm computing an approximate zero (in the
sense of Definition 4.2.1) with average cost (for the cost and data distribution described
above) bounded by NO(1).

4.2.3 Condition Numbers

How close need x to be from ζ to be an approximate zero? This depends on how well
conditioned the zero ζ is.

For f ∈ Hd and x ∈ Cn+1\{0} we define the (normalized) condition number µnorm(f, x)
by

µnorm(f, x) := ‖f‖
∥∥∥(Df(x)|Tx

)−1
diag

(√
d1‖x‖d1−1, . . . ,

√
dn‖x‖dn−1

)∥∥∥ ,
where the right-hand side norm denotes the spectral norm and diag(ai) denotes the diagonal
matrix with entries ai. Note that µnorm(f, x) is homogeneous of degree 0 in both arguments,
hence it is well defined for (f, x) ∈ S(Hd) × Pn. Also, it is well known (see [6, Ch. 12,
Corollary 3]) that µnorm(f, x) ≥ 1.

The following result (essentially, a γ-Theorem in Smale’s theory of estimates for New-
ton’s method [48]) quantifies our claim above (see [12] for its proof).

Theorem 4.2.2. Assume f(ζ) = 0 and dP(x, ζ) ≤ ν0
D3/2µnorm(f,ζ)

where ν0 := 3 −
√

7 ≈
0.3542. Then x is an approximate zero of f associated with ζ.

The next result, Proposition 4.1 from [12], gives bounds on the variation of the condition
number µnorm(f, x) when f and x vary.

Proposition 4.2.3. Assume D ≥ 2. Let 0 < ε ≤ 0.13 be arbitrary and C ≤ ε
5.2 . For all

f, g ∈ S(Hd) and all x, y ∈ Cn+1, if dS(f, g) ≤ C
D1/2µnorm(f,x)

and dP(x, y) ≤ C
D3/2µnorm(f,x)

,
then

1
1 + ε

µnorm(g, y) ≤ µnorm(f, x) ≤ (1 + ε)µnorm(g, y).
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Figure 4.1: Computation of alpha

In what follows, we will fix the constants ε := 0.13 and C := ε
5.2 = 0.025.

We also introduce the mean square condition number of q given by

µ2
2(q) :=

1
D

∑
ζ:q(ζ)=0

µ2
norm(q, ζ). (4.2)

4.2.4 An Adaptive Homotopy Continuation

Suppose that we are given an input system f ∈ S(Hd) and a pair (g, ζ) ∈ VP, where g is
also in the unit sphere and such that f and g are R-linearly independent. Let α = dS(f, g).

As illustrated in Figure 4.1, one can compute α as

α = 2 arcsin
(
‖f − g‖

2

)
. (4.3)

Consider the line segment Eg,f in Hd with endpoints g and f . We parameterize this
segment by writing

Eg,f = {qτ ∈ Hd | τ ∈ [0, 1]}

with qτ being the only point in Eg,f such that dS(g, qτ ) = τα. Explicitly, as remarked
in [12], we have qτ = tf + (1− t)g, where t = t(τ) is given by

t(τ) =
1

sinα cot(τα)− cosα+ 1
. (4.4)

If Eg,f ∩ Σ = ∅, and hence generically, this segment can be lifted to a path given by a
continuous function [0, 1]→ VP mapping τ 7→ (qτ , ζτ ).

In order to find an approximation of the zero ζ1 of f = q1 we may start with the zero
ζ = ζ0 of g = q0 and numerically follow the path (qτ , ζτ ) by subdividing [0, 1] into points
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qi+1

xi

xi+1

Figure 4.2: The step from qi to qi+1

0 = τ0 < τ1 < · · · < τk = 1 and by successively computing approximations xi of ζτi by
Newton’s method, as illustrated in Figure 4.2

This course of action is the one proposed in the Bézout series and further adopted
in [3, 4, 5, 12]. The (infinite precision) continuation procedure is the following (here λ =
C(1−ε)
2(1+ε)4 ≈ 6.67 · 10−3, see [12]).

Algorithm ALH

input f , g, ζ
## (g, ζ) ∈ V , f 6= g ##
α := dS(f, g), τ := 0, qτ := g

repeat

∆τ := λ
αD3/2µ2

norm(qτ ,x)

τ := min{1, τ + ∆τ}
qτ := t(τ)f + (1− t(τ))g
x := Nq̃τ (x)
x := x/‖x‖

until τ = 1
RETURN x

Note that the step-length ∆τ depends on µnorm(qτ , x). Hence, the adaptiveness.

The algorithm MD (Moderate Degree) from [12] is a direct application of ALH having as
initial pair (g, ζ) the pair (U, z1), where U = (U1, . . . , Un) ∈ S(Hd) with U i = 1√

2n
(Xdi

0 −
Xdi
i ) and z1 = 1√

n+1
(1, . . . , 1).
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Algorithm MD

input f ∈ Hd

run ALH on input (f, U, z1)

4.2.5 A Finite-precision setting

A distinctive feature in the present study is that computations are performed with finite-
precision. Therefore, a goal in sight is to design a version ALHF of ALH which takes into
account the errors proper to this mode of computation, and a finite precision version MDF
of MD (we will describe in detail ALHF and MDF in Section 4.4).

Roughly speaking (a more detailed account on finite-precision computations is
in §4.3.1), the precision of a computation is governed by a real number u ∈ [0, 1], called
round-off unit, with the property that all occurring numbers x in the computation are re-
placed by a number x̃ such that |x− x̃| ≤ u|x|. Algorithms where u remains fixed through
the computation are said to have fixed precision. Otherwise, they have variable precision.
The one we propose in this study is of the latter kind.

Key Remark The systems f and g play a very different role in ALHF. The system f is
the one we want to solve, and in order to have a general algorithm that works for any system
with complex coefficients, we cannot assume that we work with the exact input f . We thus
have to work with approximations but, in accordance to our use of variable precision, we want
to be able to adjust the precision of these approximations. For the input system f we will
therefore assume a routine read input such that read input( ) returns an approximation
of f with the current round-off unit u. Such an assumption is sine qua non if we want our
algorithm to be correct.

The system g, in contrast, is used as an auxiliary in the resolution of f , and in our
application of ALHF (i.e., in the algorithm MDF) it will be a fixed system (namely, U).

4.2.6 Roadmap

We next summarize the main steps of our finite precision analysis and how they are related
to the exact precision counterparts in [12]. Algorithms ALHF and MDF, described in detail
in Section 4.4, are the finite precision versions of Algorithms ALH and MD in [12]. Theo-
rem 4.4.3 is the finite precision version of [12, Theorem 3.1] and states the main properties
of algorithm ALHF. Proposition 4.4.5 provides the backbone for the proof of Theorem 4.4.3.
It is a finite precision version of the inductive proof of [12, Theorem 3.1]. The proof of
Proposition 4.4.5 requires a number of technical finite precision estimates that we develop
in Section 4.3.

4.3 Error Bounds

In this section we show bounds for the basic computations occurring in ALHF. We will
use these bounds in subsequent sections to show our main result.
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4.3.1 Basic facts

We recall the basics of a floating-point arithmetic which idealizes the usual IEEE standard
arithmetic. In contrast to the standard model (as in [24]) we adapt our exposition to complex
arithmetic. This system is defined by a set F ⊂ C containing 0 (the floating-point complex
numbers), a transformation r : C → F (the rounding map), and a constant u ∈ R (the
round-off unit) satisfying 0 < u < 1. The properties we require for such a system are the
following:

(i) For any x ∈ F, r(x) = x. In particular, r(0) = 0.

(ii) For any x ∈ C, r(x) = x(1 + δ) with |δ| ≤ u.

We also define on F arithmetic operations following the classical scheme

x◦̃y = r(x ◦ y)

for any x, y ∈ F and ◦ ∈ {+,−,×, /}, so that

◦̃ : F× F→ F.

The following is an immediate consequence of property (ii) above.

Proposition 4.3.1. For any x, y ∈ F we have

x◦̃y = (x ◦ y)(1 + δ), |δ| ≤ u.

The concrete implementation of the basic finite precision functions is a major research
field, and we will not enter into this discussion. A comprehensive view of the subject can
be found in the Arenaire team’s Handbook of Floating-Point Arithmetic [37].

When combining many operations in floating-point arithmetic, quantities such as∏n
i=1(1 + δi)ρi naturally appear. Our round-off analysis uses the notations and ideas in

Chapter 3 of [24], from where we quote the following results:

Proposition 4.3.2. If |δi| ≤ u, ρi ∈ {−1, 1}, and nu < 1, then

n∏
i=1

(1 + δi)ρi = 1 + θn,

where
|θn| ≤ γn =

nu

1− nu
.

Proposition 4.3.3. For any positive integer k such that ku < 1, let θk, θj be any quantities
satisfying

|θk| ≤ γk =
ku

1− ku
|θj | ≤ γj =

ju

1− ju
.

The following relations hold.

1. (1 + θk)(1 + θj) = 1 + θk+j for some |θk+j | ≤ γk+j.
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2.
1 + θk
1 + θj

=
{

1 + θk+j if j ≤ k,
1 + θk+2j if j > k.

for some |θk+j | ≤ γk+j or some |θk+2j | ≤ γk+2j.

3. If ku, ju ≤ 1/2, then γkγj ≤ γmin{k,j}.

4. iγk ≤ γik.

5. γk + u ≤ γk+1.

6. γk + γj + γkγj ≤ γk+j.

From now on, whenever we write an expression containing θk we mean that the same
expression is true for some θk, with |θk| ≤ γk.

When computing an arithmetic expression q with a round-off algorithm, errors will
accumulate and we will obtain another quantity which we will denote by fl(q). For a
complex number, we write Error (q) = |q − fl(q)|; for vectors or matrices, Error (q) will
denote the vector or matrix of coordinates |qα−fl(qα)|, allowing us to choose various norms
to estimate this error.

An example of round-off analysis which will be useful in what follows is given in the
next proposition, the proof of which follows the lines of the proof of the real version of this
result that can be found in Section 3.1 of [24].

Proposition 4.3.4. There is a finite-precision algorithm which, with input x, y ∈ Cn,
computes the inner product of x and y. The computed value fl(〈x, y〉) satisfies

fl(〈x, y〉) = 〈x, y〉+ θdlog2 ne+1

n∑
i=1

|xiyi|.

In particular, if x = y, the algorithm computes fl(‖x‖2) satisfying

fl(‖x‖2) = ‖x‖2(1 + θdlog2 ne+1).

We assume that, besides the four basic operations, we are allowed to compute basic
trigonometric functions (such as sin and cos) and the square root with finite precision. That
is, if op denotes any of these two operators, we compute õp such that

õp(x) = op(x)(1 + δ), |δ| < u.

The following sensitivity results will help us to deal with errors in computing trigono-
metric functions.

Lemma 4.3.5. (i) Let t, θ ∈ R. Then

| cos(t+ θ)− cos t| ≤ |θ|;

| sin(t+ θ)− sin t| ≤ |θ|;
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(ii) Given two reals a and e such that both a and a+ e are in the interval [0, 0.8], one has

| arcsin(a+ e)− arcsin(a)| ≤ 2|e|, with |v| ≤ |e|.

Proof.

(i) Observe that

|cos(t+ θ)− cos t| = 2
∣∣∣∣sin(t+

θ

2

)∣∣∣∣ ∣∣∣∣sin θ2
∣∣∣∣ ≤ 2

∣∣∣∣sin θ2
∣∣∣∣ ≤ |θ|,

and analogously

|sin(t+ θ)− sin t| = 2
∣∣∣∣cos

(
t+

θ

2

)∣∣∣∣ ∣∣∣∣sin θ2
∣∣∣∣ ≤ |θ|.

(ii) Without loss of generality, let us suppose that e > 0.

From the intermediate value theorem, there exists a ξ in [a, a+ e] such that arcsin(a+
e) = arcsin(a) + e arcsin′(ξ) = arcsin(a) + e 1√

1−ξ2
.

Since ξ ∈ [a, a+ e], |ξ| ≤ 0.8 and thus | arcsin′(ξ)| ≤ 1√
1−0.82 < 2.

We now introduce a further notation that will considerably simplify our exposition. For
an expression g, [[g]] will denote any expression h such that the following is true :

[gu ≤ 1/2]⇒ h = O(ug).

Here the ‘big Oh’ notation is with respect to u.

We thus avoid burdening ourselves with the consideration of multiplicative constants
and terms of degree higher than 1 in u.

Remark 4.3.6. This definition of [[g]] differs from the one used in [15], where it simply
designatesO(ug). This last definition, easier to manipulate, is however tricky when arbitrary
and possibly big values of u are considered, which happens in our context when our algorithm
first computes the precision u needed.

The next result shows some properties of this notation.

Proposition 4.3.7. Let f and g be two expressions. The following relations hold:

1. γf = [[f ]] whenever γf is well defined.

2. [[f ]] + [[g]] = [[ max(f, g)]].

3. [[f ]][[g]] = [[ max(f, g)]].

4. If f ≥ 1, f [[g]] = [[fg]].

Proof.

1. Let us suppose, that fu ≤ 1/2. In that case, γf = fu
1−fu ≤ 2fu = O(fu). Thus,

γf = [[f ]].
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2, 3. Let us suppose, that max(f, g)u ≤ 1/2. Then, both fu and gu are not greater than
1/2. Thus, [[f ]] = O(fu) = O(max(f, g)u), and similarly [[g]] = O(max(f, g)u).

Thus, [[f ]] + [[g]] = O(max(f, g)u), which proves 2.

Furthermore, since [[f ]] = O(fu) and since fu ≤ 1/2, [[f ]] is bounded by a constant,
and [[f ]][[g]] = O(max(f, g)u), which proves 3.

4. Let us suppose, that fgu ≤ 1/2. Since f ≥ 1, this ensures that gu ≤ 1/2.

Thus, f [[g]] = fO(gu) = O(fgu).

This proves, that f [[g]] = [[fg]].

4.3.2 Bounding errors for elementary computations

We now begin showing bounds for the errors in the crucial steps of our algorithm. To avoid
burdening the exposition we will do so only for the steps dominating the accumulation of
errors and simply warn the reader of the minor steps we consider as exact.

We begin with the evaluation of the errors in computing α. Remark that we suppose
α ≤ π/2 in the following lemma. This will be ensured by the computation of α at the
beginning of ALHF. If this quantity is more than π/2, we set f = −f , ensuring that α ≤ π/2.
We neglect the errors in this operation, and thus suppose in the remainder that α ≤ π/2.

Lemma 4.3.8. Given f and g in S(Hd) such that dS(f, g) ≤ π/2, one can compute
α = dS(f, g) with finite precision such that

fl(α) = α(1 + θO(logN)).

Proof. As remarked in (4.3), one can compute α = dS(f, g) as α = 2 arcsin(‖f−g‖2 ).

We can compute the norm ‖f −g‖ similarly as the vector norm in Proposition 4.3.4. In
the case of polynomials in Hd, the sum is over N coefficients, and thus one proves similarly
that fl(‖f − g‖2) = ‖f − g‖2(1 + θdlogNe+1). Supposing, that we can compute square root
with finite precision, one gets

fl(‖f − g‖) = ‖f − g‖(1 + θdlogNe+2).

Remark that since we supposed dS(f, g) ≤ π/2, ‖f−g‖/2 ≤ arcsin(π/4) = 1/
√

2 < 0.71.
We can suppose that u is small enough such that the term θdlogNe+2 is smaller than 0.8−0.71,
and thus such that fl(‖f − g‖/2) is also in [0, 0.8]. We can thus apply Lemma 4.3.5, and by
supposing, that we are able to compute the function arcsin with finite precision, we conclude
that we can compute α = 2 arcsin(‖f−g‖2 ) such that

fl(α) =
(

2 arcsin
(
‖f − g‖

2

)
+ 2
‖f − g‖

2
θO(logN)

)
(1 + θO(1))

= 2 arcsin
(
‖f − g‖

2

)
(1 + θO(logN))(1 + θO(1)),

the last line since |‖f−g‖2 | ≤ | arcsin(‖f−g‖2 )|.
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Proposition 4.3.9. Given τ ∈ R+, f and g in S(Hd) such that dS(f, g) ≤ π/2, we can
calculate t(τ) with finite precision such that

fl(t) = t(1 + θO(logN)).

Proof. First of all, observe that

t(τ) =
1

sinα cot(ατ)− cos(α) + 1
=

sin(τα)
sinα cos(τα)− cosα sin(τα) + sin(τα)

=
sin(τα)

sin(α− τα) + sin(τα)

=
sin(τα)

2 sin
(

(1−τ)α+τα
2

)
cos
(

(1−τ)α−τα
2

)
=

sin(τα)
2 sin α

2 cos
((

1
2 − τ

)
α
) .

We compute t(τ) via the last equality. First, we compute α following Lemma 4.3.8.
Then, one shows easily using Lemma 4.3.5 that each term in the fraction can be com-
puted with finite precision up to a multiplicative factor (1 + θO(logN)). We conclude using
Proposition 4.3.3.

The following lemma bounds by ‖q‖ the value of a polynomial q at any point on the
unit sphere.

Lemma 4.3.10. Given d ∈ N, q ∈ C[X0, . . . , Xn] homogeneous of degree d and x ∈
S(Cn+1), we have |q(x)| ≤ ‖q‖.

Proof. Since our norm ‖ ‖ on C[X0, . . . , Xn] is unitarily invariant, for each element
φ ∈ U(n+ 1), one has ‖f ◦ φ‖ = ‖f‖.

Taking φ such that φ(e1) = x, one has :

|q(x)| = |(q ◦ φ ◦ φ−1)(x)| = |(q ◦ φ)(e1)|.

But |q ◦φ(e1)| is exactly the coefficient
(
d
d

)1/2
(q ◦φ)(d·e1) in the Bombieri-Weyl basis of

C[X0, . . . , Xn], and thus |q ◦ φ(e1)| ≤ ‖q ◦ φ‖ = ‖q‖.

Proposition 4.3.11. Given q ∈ S(Hd) and x ∈ S(Cn+1), we can compute q(x) with finite
precision u such that

‖Error (q(x))‖ = [[ logN +D]].

Proof. For i ≤ n, write qi =
∑
cJx

J . To compute qi(x) we compute each monomial
cJx

J first, and then evaluate the sum. We have

fl(cJxJ) = cJx
J(1 + θdi+1),

and thus Error (cJxJ) ≤ |cJ ||x|Jγdi+1.
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As
fl(qi(x)) = fl

(∑
cJx

J
)
,

using pairwise summation (see section 4.2 in [24]) we have

Error (qi(x)) =
∣∣∣∑ fl(cJxJ)−

∑
(cJxJ)

+
∑

fl(cJxJ)θdlog2Ne

∣∣∣
≤

∑
Error (cJxJ) +

∑
|cJxJ |γdlog2Ne

+
∑

Error (cJxJ)γdlog2Ne

≤
∑
|cJ ||x|J(γD+1 + γdlog2Ne + γD+1γdlog2Ne)

≤
∑
|cJ ||x|Jγdlog2Ne+D+1. (by Proposition 4.3.3 6.)

Note that
∑
|cJ ||x|J ≤ ‖qi‖, by applying Lemma 4.3.10 to the polynomial of coefficients

|cJ |, which has the same norm as qi, at the point |x| ∈ S(Cn+1). Hence,

Error (qi(x)) ≤ ‖qi‖γdlog2Ne+D+1,

and therefore,

‖Error (q(x))‖2 ≤ γ2
dlog2Ne+D+1

∑
i

‖qi‖2 = γ2
dlog2Ne+D+1‖q‖

2 = γ2
dlog2Ne+D+1.

Finally, by Proposition 4.3.7, we have

‖Error (q(x))‖ = [[ logN +D]].

4.3.3 Bounding the error in the computation of µ−1
norm(q, x)

The bounds in Error (µ−1
norm(q, x)) scale well with q. Hence, to simplify notation, in all what

follows we assume ‖q‖ = 1.

The main result in this subsection is the following.

Proposition 4.3.12. Given q ∈ S(Hd) and x ∈ S(Cn+1) we can compute µ−1
norm(q, x)

satisfying
Error (µ−1

norm(q, x)) = [[n(logN +D + n)]].

Note that under the assumption ‖q‖ = 1 our condition number becomes

µnorm(q, x) :=
∥∥∥(Dq(x)|Tx

)−1
diag(

√
d1, . . . ,

√
dn)
∥∥∥ .

Given q ∈ S(Hd) and x ∈ S(Cn+1), let Mq ∈ Cn×n be a matrix representing the linear
operator 

1√
d1

1√
d2

. . .
1√
dn

Dq(x)|Tx (4.5)
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in some orthonormal basis of Tx (note that Mq depends also on x; that point x will always
be clear from the context). We then have µ−1

norm(q, x) = ‖M−1
q ‖−1 = σmin(Mq) where σmin

denotes smallest singular value. We will compute µ−1
norm(q, x) by computing Mq and then

σmin(Mq).

The following proposition contains several technical ideas that will help us to deal with
the matrices Dq(x)|Tx and Mq. We use ideas from the proof of [15] modifying them to the
complex case.

Proposition 4.3.13. Let q ∈ Hd and x ∈ S(Cn+1). Then the following statements are
true:

(i) The restriction of the derivative of q to the tangent space Tx can be calculated as
follows:

Dq(x)|Tx = Dq(x)H,

where H ∈ C(n+1)×n is the matrix made with the first n columns of the Householder
symmetry matrix Hx defined by

Hx = In+1 − 2yy∗, y =
x− en+1

‖x− en+1‖
.

(ii) ∥∥∥∥diag
(

1√
d1

, . . . ,
1√
dn

)
Dq(x)|Tx

∥∥∥∥ ≤ ‖q‖.
(iii) ∥∥Dq(x)|Tx

∥∥ ≤ √D‖q‖.
Proof. (i) Observe that the first n columns of Hx are an orthonormal basis of Tx, as
Hx swaps vectors x and en+1, and fixes the subspace y⊥.

(ii) Let g = q◦Hx. Then, differentiating the equality gi(H∗xx) = qi(x) and multiplying
both sides by H on the right, we have

Dgi(en+1)H∗xH = Dqi(x)H = Dqi(x)|Tx , (4.6)

where the last equality is by (i). Observe that H∗xH = [e1, . . . , en], hence,

Dgi(en+1)H∗xH = Dgi(en+1)|Ten+1
=
[
∂gi
∂X1

(en+1), . . . ,
∂gi
∂Xn

(en+1)
]
. (4.7)

If we denote gi(X) =
∑
α

(
d
α

)1/2
giαX

α, it is straightforward that

∂gi
∂Xj

(en+1) =
(

di
di − 1

)1/2

gi(ej+(di−1)en+1) =
√
di · gi(ej+(di−1)en+1).

Therefore, from (4.7),∥∥∥∥ 1√
di
Dgi(en+1)Ten+1

∥∥∥∥
F

2

=
∑
j

g2
i(ej+(di−1)en+1) ≤ ‖gi‖

2, (4.8)
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and hence by (4.8) we have∥∥∥∥diag
(

1√
d1

, . . . ,
1√
dn

)
Dg(en+1)Ten+1

∥∥∥∥
F

2

≤
n∑
i=1

∥∥∥∥ 1√
di
Dgi(en+1)Ten+1

∥∥∥∥2

≤
∑
‖gi‖2 = ‖g‖2. (4.9)

Since the Hermitian inner product associated with the Bombieri-Weyl basis is unitarily
invariant, we have

‖g‖2 = 〈g, g〉 = 〈q ◦Hx, q ◦Hx〉 = 〈q, q〉 = ‖q‖2,

which by (4.6),(4.7) and (4.9), and since the spectral norm of a matrix is not greater than
its Frobenius norm, yields∥∥∥∥diag

(
1√
d1

, . . . ,
1√
dn

)
Dq(x)Tx

∥∥∥∥ =
∥∥∥∥diag

(
1√
d1

, . . . ,
1√
dn

)
Dg(en+1)Ten+1

∥∥∥∥ ≤ ‖g‖ = ‖q‖.

The relation (iii) can be shown similarly.

The following two statements are similar to those proved in [15] in the real case and
similar ideas are used in the proofs.

Proposition 4.3.14. Given q ∈ S(Hd) and x ∈ S(Cn+1), we have ‖Dq(x)|Tx‖ ≤
√
D, and

we can compute Dq(x)|Tx with finite precision such that

‖Error (Dq(x)|Tx)‖F ≤ [[n
√
D(logN +D + log n)]].

Proof. The inequality ‖Dq(x)|Tx‖ ≤
√
D follows from ‖q‖ = 1 and Proposi-

tion 4.3.13(iii).

We compute Dq(x)|Tx as in Proposition 4.3.13(i). Hence each entry (i, j) of the matrix
Dq(x)|Tx is calculated as the product of Dqi(x) and the jth column Hj = (hkj)1≤k≤n+1 of
H. Proceeding as in the proof of Proposition 4.3.11 we can compute ∂qi

∂Xk
(x) with

Error

(
∂qi
∂Xk

(x)
)

= [[(logN + di)
√
D]],

the factor
√
D being due to the fact that ‖Dq(x)|Tx‖ ≤

√
D. Observe that to compute

x− en+1, we need to perform only one arithmetic operation. Also,

(yy∗)ij =
1

‖x− en+1‖2
((x− en+1)(x− en+1)∗)ij

and we therefore have

fl ((x− en+1)(x− en+1)∗)ij = fl
(

(x− en+1)i(x− en+1)j
)

= ((x− en+1)(x− en+1)∗)ij (1 + θ3)
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and therefore

fl
(
‖x− en+1‖2

)
= fl

(
n∑
i=1

xixi + (x1 − 1)(xi − 1)

)
= ‖x− en+1‖2(1 + θdlog2 (n+1)e+3).

Here we used pairwise summation bounds again. Finally, by Proposition 4.3.3(2),

fl (yy∗)ij = (yy∗)ij (1 + θ2dlog2 (n+1)e+6).

Taking into account one more addition and one more multiplication, we get

Error (hij) = [[2dlog2 (n+ 1)e+ 8]] = [[ log n]].

Applying Proposition 4.3.4, we conclude

Error ([Dq(x)|Tx ]ij) = | fl(〈Dqi(x), Hj〉)− 〈Dqi(x), Hj〉|
= |〈fl(Dqi(x)), fl(Hj)〉

+θdlog2 ne+1

∑
k

|Dqi(x)kHkj | − 〈Dqi(x), Hj〉|

≤ |〈Error (Dqi(x)), Hj〉|+ |〈Dqi(x), Error (Hj)〉|
+|〈Error (Dqi(x)), Error (Hj)〉|+ γdlog2 ne+1|Dqi(x)||Hj |

= [[
√
D
√
n log n]] + [[

√
n
√
D(logN +D)]]

+[[
√
D(logN +D)]][[

√
n log n]] + [[

√
D log n]]

= [[
√
D
√
n(log n+ logN +D)]].

This implies
‖Error (Dq(x)|Tx)‖F ≤ [[n

√
D(log n+D + logN)]].

Proposition 4.3.15. Given q ∈ S(Hd), x ∈ S(Cn+1) and Mq defined by (4.5), we have
‖Mq‖ ≤ 1. In addition, we can compute such a matrix Mq with finite precision u such that

‖Error (Mq)‖F = [[n(logN +D + log n)]].

Proof. The inequality ‖Mq‖ ≤ 1 follows directly from Proposition 4.3.13(ii), as ‖q‖ = 1.
Floating-point errors can be evaluated exactly as in Proposition 4.3.14; however, one gets
rid of the factors

√
D since the bound on ‖Mq‖ is better than the bound on Dq(x)|Tx . As

a counterpart, one has to take into account one more division by
√
di of each entry of the

matrix, which slightly changes the constants, but leaves the order in N,D and n unchanged.

Proof of Proposition 4.3.12. We use ideas from the proof of an analogous propo-
sition in [15]. Let x ∈ S(Cn+1), q ∈ S(Hd) and Mq be as in Proposition 4.3.15. Then
µ−1

norm(q, x) = σmin(Mq) = ‖M−1
q ‖−1 and we can compute the first expression by computing

the last.

Let E′ = Mq − fl(Mq). By Proposition 4.3.15,

‖E′‖ ≤ ‖E′‖F ≤ [[n(logN +D + log n)]].
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Let Mq = fl(Mq). We compute σmin(Mq) = ‖M−1
q ‖−1 using a backward stable algorithm

(e.g., QR factorization). Then the computed fl(σmin(Mq)) is the exact σmin(Mq +E′′) for
a matrix E′′ with

‖E′′‖ ≤ cn2u‖Mq‖

for some universal constant c (see, e.g., [23, 24]). Thus,

fl(σmin(Mq)) = fl(σmin(Mq)) = σmin(Mq + E′′) = σmin(Mq + E′ + E′′).

Write E = E′ + E′′. Then, using ‖Mq‖ ≤ 1 (by Proposition 4.3.15),

‖E‖ ≤ ‖E′‖+ ‖E′′‖ ≤ ‖E′‖+ cn2u‖Mq‖ ≤ ‖E′‖+ cn2u(‖Mq‖+ ‖E′‖)
= [[n(logN +D + log n)]] + [[n2]](1 + [[n(logN +D + log n)]])
= [[n(logN +D + log n)]] + [[n(logN +D + n))]]
= [[n(logN +D + n)]],

using Proposition 4.3.7 in the penultimate row.

Therefore, fl(σmin(Mq)) = σmin(Mq + E) which implies by [23, Corollary 8.3.2]:

Error (σmin(Mq)) ≤ ‖E‖ < [[n(logN +D + n)]].

4.3.4 Bounding the error on the Newton step

We next evaluate the error in the computation of a Newton step. Our result is the following.

Proposition 4.3.16. There exists a universal constant e > 0 such that given a system
q ∈ S(Hd) and a point x ∈ S(Cn+1), if the precision u satisfies

u ≤ e
D2µ2

norm(q, x)n(D + logN + log n)
,

then the error Error (Nq(x)) satisfies

‖Error (Nq(x))‖
‖Nq(x)‖

≤ C(1− ε)
2π(1 + ε)2D3/2µnorm(q, x)

,

where C and ε are the constants introduced in Proposition 4.2.3.

Recall the following result from [24, Chapter 7] (in fact, Theorem 7.2 therein applied
to f = b/‖b‖ and E = A/‖A‖).

Lemma 4.3.17. Given a linear system Ax = b, approximations A′ of A and b′ of b such
that ‖A − A′‖ ≤ ε, ‖b − b′‖ ≤ ε and ε‖A−1‖ < 1, the solution x′ of the perturbed system
A′x′ = b′ verifies :

‖x′ − x‖ ≤ ε‖A−1‖
1− ε‖A−1‖

(1 + ‖x‖).

From Propositions 4.3.11 and 4.3.14 we know that given q ∈ S(Hd) and x ∈ S(Cn+1),
we can compute q(x) with finite precision u such that ‖Error (q(x))‖ = [[D+ logN ]], as well
as Dq(x)|TxS(Cn+1) such that ‖Error (Dq(x)|TxS(Cn+1))‖F = [[n

√
D(logN +D + log n)]].
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It follows that there exists a constant K such that for all q ∈ S(Hd) and x ∈ S(Cn+1),
if u is less than or equal to 1/2n

√
D(logN +D + log n), then both the errors on the compu-

tation of q(x) and Dq(x)|TxS(Cn+1) are less than or equal to K · u ·n
√
D(logN +D+ log n).

Without loss of generality, one can suppose, that K ≥ 2.

Lemma 4.3.18. Let q ∈ S(Hd) and x ∈ S(Cn+1). If the precision u satisfies

u ≤ 1
2Kµnorm(q, x)n

√
D(logN +D + log n)

then we can compute Nq(x) such that

‖Error (Nq(x))‖
‖Nq(x)‖

= [[µnorm(q, x) · n
√
D(D + logN + log n)]].

Proof. We compute Nq(x)− x as the solution of the linear system Dq(x)|Txy = q(x).

Let u satisfy the bound in the hypothesis. Then, one can compute both q(x) and
Dq(x)|TxS(Cn+1) with error at most K · u · n

√
D(logN +D+ log n), and thus one can apply

Lemma 4.3.17 with ε = K · u · n
√
D(logN +D + log n) to compute Nq(x)− x.

Indeed, since ‖Dq(x)−1
|Tx‖ ≤ µnorm(q, x), we have ε‖Dq(x)−1

|Tx‖ ≤
1
2 .

The error on Nq(x)− x is bounded by

ε‖Dq(x)|Tx
−1‖

1− ε‖Dq(x)|Tx
−1‖

(1 + ‖Nq(x)− x‖).

Observe that Nq(x) belongs to the tangent space to the unit sphere Tx; thus, ‖Nq(x)‖ ≥
1, and

1 + ‖Nq(x)− x‖ ≤ 1 + ‖Nq(x)‖+ ‖x‖ ≤ 3‖Nq(x)‖.

Hence,

‖Error (Nq(x)−x)‖ ≤ 6ε‖Dq(x)−1
|Tx‖‖Nq(x)‖ = ‖Nq(x)‖[[µnorm(q, x)n

√
D(D+logN+log n)]],

using again ‖Dq(x)−1
|Tx‖ ≤ µnorm(q, x). Then, the computation of Nq(x) from Nq(x)− x is a

simple addition and does not change the order of the errors.

The proof of Proposition 4.3.16 is now immediate.

4.3.5 Bounding the error for ∆τ

We evaluate here the errors in the computation of the quantity ∆τ , that is, the size of the
current step in the homotopy.

Proposition 4.3.19. For x ∈ S(Cn+1), and f, g, q ∈ S(Hd) such that dS(f, g) ≤ π/2 define
the quantity

∆τ :=
λ

dS(f, g)D3/2µ2
norm(q, x)

.
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There exists a universal constant f > 0 such that

u ≤ f
n(logN +D + n)µ2

norm(q, x)
(4.10)

implies

Error (∆τ) ≤ 1
4

∆τ.

To prove this proposition we rely on the following lemma.

Lemma 4.3.20. Given x ∈ S(Cn+1) and q ∈ S(Hd), one can compute σ2
min(Mq) with finite

precision u such that

Error (σ2
min(Mq)) = [[n(logN +D + n)]].

Proof. By Proposition 4.3.12, Error (σmin(Mq)) = [[n(logN +D+n)]]. Hence, we have

| fl(σ2
min(Mq))− σ2

min(Mq)| ≤ 2|σmin(Mq)|[[n(logN +D + n)]] + [[n(logN +D + n)]]2

≤ [[n(logN +D + n)]] + [[n(logN +D + n)]],

since, by Proposition 4.3.15, |σmin(Mq)| ≤ ‖Mq‖ ≤ 1. Thus,

Error (σ2
min(Mq)) = [[n(logN +D + n)]].

Proof of Proposition 4.3.19. One has

fl(∆τ) = fl

(
λ

αD3/2µ2
norm(q, x)

)
=

λ

D3/2
fl(

σ2
min(Mq)
α

)(1 + θO(1))

=
λ fl(σ2

min(Mq))
αD3/2

(1 + θO(logN)),

the last equality being from Lemma 4.3.8, and thus by Lemma 4.3.20

Error (∆τ) =
λ

αD3/2
([[n(logN +D + n)]] + [[ logN ]])

=
λ

αD3/2
[[n(logN +D + n)]].

If u satisfies (4.10) with a value of f small enough, the term [[n(logN + D + n)]] may
be bounded by

[[n(logN +D + n)]] ≤ 1
4µ2

norm(q, x)
,

and consequently

Error (∆τ) ≤ λ

4αD3/2µ2
norm(q, x)

=
1
4

∆τ.
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4.3.6 Bounding the distance between q̃τ and qτ

We evaluate here the error in the computation of qτ , given f, g, and τ .

Proposition 4.3.21. There exists a universal constant g such that the following holds.
Let f, g ∈ S(Hd) with dS(f, g) ≤ π

2 (1 + 1/6) be given with roundoff error u. Let τ ∈ [0, 1].
Then for all pair (q, x),

u ≤ g · C(1− ε)
12(1 + ε)5D3/2µ2

norm(q, x) logN

implies

‖ fl(qτ )− qτ‖ ≤
C(1− ε)

12(1 + ε)5D3/2µ2
norm(q, x)

.

We first bound the distance between the points tf + (1− t)g and t fl(f) + (1− t) fl(g),
without taking into account the error in the computation of t.

Proposition 4.3.22. Assume that f, g, f̃ , g̃ ∈ S(Hd) are such that dS(f, g) ≤ π
2 (1 + 1/6)

and ‖f− f̃‖ ≤ 1/6, ‖g− g̃‖ ≤ 1/6. For t ∈ [0, 1] define q = tf+(1−t)g and q̃ = tf̃+(1−t)g̃.
Then

dS(q, q̃) ≤ 2 max
{
‖f − f̃‖, ‖g − g̃‖

}
.

To prove Proposition 4.3.22 we rely on the following lemmas.

We prove here Lemma 4.3.24.

Lemma 4.3.23. Let p, q ∈ Hd with ‖p‖, ‖q‖ ≥ α > 0, ‖p− q‖ ≤ β with α ≥ β/2. Then

〈p, q〉
‖p‖‖q‖

≥ 1− β2

2α2
. (4.11)

Proof. Pick any p, q ∈ Hd with ‖p‖, ‖q‖ ≥ α, ‖p − q‖ ≤ β, denote r = (p + q)/2, and
let s ∈ Hd be such that ‖s‖ = ‖p− q‖/2, s ⊥ r. Then from the orthogonality of r and s we
have

‖r + s‖2 = ‖r − s‖2 = ‖r‖2 + ‖s‖2 =
‖p‖2 + ‖q‖2

2
≥ ‖p‖‖q‖ ≥ α2;

also,
‖(r + s)− (r − s)‖ = 2‖s‖ = ‖p− q‖ ≤ β.

Therefore,

〈r + s, r − s〉
‖r + s‖‖r − s‖

=
‖r‖2 − ‖s‖2

4‖p‖‖q‖
≤ ‖p+ q‖2 − ‖p− q‖2

4‖p‖‖q‖
=
〈p, q〉
‖p‖‖q‖

.

Since ‖r + s‖ = ‖r − s‖, we have

min
‖p‖,‖q‖≥α
‖p−q‖≤β

〈p, q〉
‖p‖‖q‖

= min
‖p‖=‖q‖≥α
‖p−q‖≤β

〈p, q〉
‖p‖‖q‖

. (4.12)
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Now assume that p, q ∈ Hd with ‖p‖ = ‖q‖ ≥ α, ‖p− q‖ ≤ β. Let

p′ =
β

2
· p− q
‖p− q‖

+

√
4α2 − β2

2
· p+ q

‖p+ q‖
;

p′ =
β

2
· p− q
‖p− q‖

+

√
4α2 − β2

2
· p+ q

‖p+ q‖
.

It is not difficult to check that ‖p′‖ = ‖q′‖ = α and ‖p′ − q′‖ = β. Moreover,

〈p′, q′〉
‖p′‖‖q′‖

= 1− β2

2α2
≤ ‖q‖

2 + ‖p‖2

2‖p‖‖q‖
− ‖p− q‖

2

2‖p‖‖q‖
=
〈p, q〉
‖p‖‖q‖

.

Therefore,

min
‖p‖=‖q‖≥α
‖p−q‖≤β

〈p, q〉
‖p‖‖q‖

= min
‖p‖=‖q‖=α
‖p−q‖=β

〈p, q〉
‖p‖‖q‖

. (4.13)

From (4.12) and (4.13) we have

min
‖p‖,‖q‖≥α
‖p−q‖

〈p, q〉
‖p‖‖q‖

= min
‖p‖=‖q‖=α
‖p−q‖=β

〈p, q〉
‖p‖‖q‖

= 1− β2

2α2
,

which shows (4.11).

Lemma 4.3.24. Let p, q ∈ Hd with ‖p− q‖ ≤ min{‖p‖, ‖q‖}. Then

dS(p, q) <
2√
3
· ‖p− q‖

min{‖p‖, ‖q‖}
. (4.14)

Proof. From Lemma 4.3.23 we have

cos dS(p, q) =
〈p, q〉
‖p‖‖q‖

≥ 1− β2

2α2
,

where β = ‖p− q‖, α = min{‖p‖, ‖q‖}. From the Taylor expansion for cos we obtain

cos dS(p, q) ≤ 1− dS
2(p, q)

2
+
dS

4(p, q)
24

,

therefore
dS

4(p, q)
12

− dS
2(p, q) +

β2

α2
≥ 0.

Solving the relevant quadratic equation for dS
2(q, p), we have

dS
2(q, p) ∈

(
−∞, 6

(
1−

√
1− β2

3α2

)]
∪

[
6

(
1 +

√
1− β2

3α2

)
,∞

)
. (4.15)

By our assumption β/α ≤ 1, therefore,

6

(
1 +

√
1− β2

3α2

)
> π2,
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and the interval on the right-hand side of (4.15) is irrelevant (as dS(q, p) ≤ π anyway). We
have (using β/α ≤ 1 again)

dS
2(q, p) ≤ 6

(
1−

√
1− β2

3α2

)
=

2

1 +
√

1− β2

3α2

· β
2

α2
<

4β2

3α2
,

which yields (4.14).

Lemma 4.3.25. Let f, g ∈ Hd, ‖g‖ = ‖f‖ = 1, and dS(f, g) ≤ π
2 (1 + δ). Then, given

t ∈ [0, 1], q(t) = tf + (1− t)g satisfies

‖q(t)‖ ≥
√

1− (1 + δ)2

4
. (4.16)

Proof. Consider the function ϕ : R→ R defined as follows:

ϕ(t) = ‖q(t)‖2 = ‖g‖2 + 2t<〈g, f − g〉+ t2‖f − g‖2.

Observe that mint∈R ϕ(t) is attained at

t∗ = −2<〈g, f − g〉
2‖f − g‖2

=
‖g − f‖2 − ‖g‖2 − ‖f‖2

2‖f − g‖2
=

1
2
,

and ϕ(t∗) = 1
4‖f + g‖2. We then have

‖q(t)‖2 ≥ 1
4
‖f + g‖2 = 1− ‖f − g‖

2

4
≥ 1− dS

2(f, g)
π2

≥ 1− (1 + δ)2

4
,

which gives us (4.16).

Proof of Proposition 4.3.22. Observe that

‖q − q̃‖ = ‖tf + (1− t)g − tf̃ − (1− t)g̃‖

≤ t‖f − f̃‖+ (1− t)‖g − g̃‖

≤ max
{
‖f − f̃‖, ‖g − g̃‖

}
≤ 1

6
.

From Lemma 4.3.25 applied with d = 1
6 we have

‖q‖ ≥
√

1− (1 + 1/6)2

4
=
√

95
12

,

and hence

‖q̃‖ ≥ ‖q‖ − ‖q − q̃‖ ≥
√

95
12
− 1/6 >

7
12
.

Now applying Lemma 4.3.24, we have

dS(q, q̃) ≤ 2√
3
· ‖q − q̃‖
min{‖q‖, ‖q̃‖}

≤ 2√
3
·
max

{
‖f − f̃‖, ‖g − g̃‖

}
7
12

≤ 2 max
{
‖f − f̃‖, ‖g − g̃‖

}
.
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Proof of Proposition 4.3.21. Let us denote f̃ = fl(f), g̃ = fl(g) and t̃ = fl(t).
Let q̃τ denote fl(qτ ) and q̂τ the system tf̃ + (1 − t)g̃. By hypothesis, both ‖f − f̃‖ and
‖g − g̃‖ are not greater than u.

Thus, by Proposition 4.3.22, if u ≤ 1/6,

‖q̂τ − qτ‖ ≤ 2u.

From Proposition 4.3.9, t̃ = t(1 + tO(logN)). thus, there exists a constant g such that
for all A, u ≤ gA

logN implies
‖q̂τ − q̃τ‖ ≤ A/2.

By taking g ≤ 1/6, u ≤ gA
logN ensures

‖q̃τ − qτ‖ ≤ ‖q̃τ − q̂τ‖+ ‖q̂τ − qτ‖ ≤
5
6
A < A.

Proposition 4.3.21 follows by taking A = C(1+ε)
12(1+ε)5D3/2µ2

norm(q,x)
.

4.3.7 Computing u

Along our homotopy, the precision utilized varies with the system q considered. We want
to keep this precision at all times within the interval [ 1

2B(q, x),B(q, x)] with

B(q, x) :=
k2

nD2(logN +D + n)µ2
norm(q, x)

, (4.17)

where k2 is a universal positive constant (that will be specified in Definition 4.3.29).

Now, since q and x vary at each iteration, one has to update the precision as well.
To do so one faces an obstacle. When computing u we actually obtain a quantity fl(u)
which depends on the current precision and this current precision has been computed in the
previous iteration. Proposition 4.3.26 below shows that this obstacle can be overcome.

Proposition 4.3.26. If u ≤ (1 + ε)6B(q, x) then

Error

(
3
4
B(q, x)

)
≤ 1

4
B(q, x).

In particular, when computing u := 3
4B(q, x) the computed quantity satisfies fl(u) ∈

[ 1
2B(q, x),B(q, x)].

Towards the proof of the proposition above we define

B(q, x) :=
1

nD2(logN +D + n)µ2
norm(q, x)

so that B(q, x) = k2B(q, x). Our first lemma bounds the error in the computation of B(q, x).
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Lemma 4.3.27. Assume u ≤ 1
2n(logN+D+n) . Then for any x ∈ S(Cn+1) and q ∈ S(Hd),

one can compute B(q, x) such that

Error (B(q, x)) = O
( u

D2

)
.

Proof. From Lemma 4.3.20, we can compute σ2
min(Mq) with error [[n(logN +D + n)]];

we can compute B(q, x) such that

fl(B(q, x)) =
fl(σ2

min(Mq))
nD2(logN +D + n)

(1 + θ6),

and thus

Error (B(q, x)) =
[[n(logN +D + n)]]
nD2(logN +D + n)

.

Thus, when u ≤ 1
2n(logN+D+n) , one has

Error (B(q, x)) =
O(un(logN +D + n))
nD2(logN +D + n)

= O(
u

D2
).

Let k3 be such that with the conditions of the previous lemma,

Error (B(q, x)) ≤ k3u

D2
.

Corollary 4.3.28. Let k2 be a positive constant such that k2 ≤ 1
4k3(1+ε)6 . The condition

u ≤ (1 + ε)6k2B(q, x) ensures that

Error

(
3
4
k2B(q, x)

)
≤ 1

4
k2B(q, x).

Proof. If u is less than or equal to (1 + ε)6B(q, x), since µnorm(q, x) is always greater
than 1, if we choose k2 not greater than 1

2(1+ε)6 , u will be less than or equal to 1
2n(logN+D+n) .

Thus, one has

Error (B(q, x)) ≤ k3u

D2
≤ k2k3(1 + ε)6

D2
B(q, x).

Taking k2 ≤ 1
4k3(1+ε)6 one has Error ( 3

4k2B(q, x)) ≤ Error (k2B(q, x)) ≤ 1
4k2B(q, x).

We now have all the conditions that the constant k2 must fulfill. Recall that the
constants f , e and g where introduced in Propositions 4.3.19, 4.3.16 and 4.3.21 respectively.

Definition 4.3.29. Let k2 be the minimum of the following values.

(i) f . This way, the condition u ≤ B(q, x) is sufficient to apply Proposition 4.3.19.

(ii) e
(1+ε)4 . This way, the condition u ≤ B(q, x) · (1 + ε)4 is sufficient to apply Proposi-
tion 4.3.16.

(iii) g. This way, u ≤ B(q, x) allows to apply Proposition 4.3.21.
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(iv) 1
4k3(1+ε)6 . On can thus apply Corollary 4.3.28.

The first three conditions ensure that the precision will be good enough for the com-
putation of the values of ∆τ , of the Newton operator and of qτ . The fourth condition is
needed for the computation of B(q, x) itself.

Proof of Proposition 4.3.26. From (4.17), the bound B(q, x) equals k2B(q, x) and
the result now follows from Corollary 4.3.28.

4.4 Analysis of the Homotopy

We next describe with more detail our procedure ALHF – Adaptive Linear Homotopy with
Finite precision – to follow the path {(qτ , ζτ ) | τ ∈ [0, 1]}.

All the certifications on an execution of ALHF will be for inputs satisfying certain
conditions. We thus define the notion of admissible input for ALHF.

Definition 4.4.1. An admissible input for algorithm ALHF consists of

• A procedure read input( ), that returns an approximation of a system f ∈ S(Hd)
with the current round-off unit. That is, the instruction read input( ) returns a
system f ′ such that the coefficients a′α of the polynomials f ′i satisfy

|a′α − aα| ≤ u|aα|,

where aα is the coefficient of the monomial of the same degree α of fi. In particular,
this implies that

‖f − f ′‖ ≤ u‖f‖.

• An auxiliary system g ∈ S(Hd), supposed to be given exactly,

• an approximate zero x ∈ S(Cn+1) of g satisfying

dP(ζ, x) ≤ C

D3/2µnorm(g, ζ)

for its associated zero ζ, and

• an initial round-off unit u ∈ R+ such that

u ≤ B(g, x).

For clarity, we denote such a tuple (f, g, x, u) and we refer to it as an input to ALHF
even though f is not given directly and the precision u is not passed as a parameter (it is a
global variable in MDF).

Define λ := 2C(1−ε)
5(1+ε)4 ≈ 5.37 · 10−3.
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Algorithm ALHF

input (f, g, x, u)

f̃ := read input( )

if dS(f̃ , g) ≥ π
2 then g := −g

τ := 0, q̃τ := g

repeat

∆τ := λ

dS(f̃ ,g)D3/2µ2
norm(q̃τ ,x)

τ := min{1, τ + ∆τ}
f̃ := read input( )

q̃τ := t(τ)f̃ + (1− t(τ))g
q̃τ := q̃τ

‖q̃τ‖

x := Nq̃τ (x)
x := x

‖x‖

u := 3
4B(q̃τ , x)

until τ = 1
RETURN x

Remark 4.4.2. The algorithm ALHF is a finite-precision adaptation of the algorithm ALH
in [12]. It has a slightly smaller stepsize parameter λ. By the parameter f given to ALHF,
we mean, that the algorithm is given as input the procedure read input that returns finite
precision approximations of f .

We may use ALHF to define a finite precision version MDF of MD.

Algorithm MDF

input f ∈ Hd

u := k2
nD2(logN+D+n)2(n+1)D

run ALHF on input (f, U, z1)

To a pair f ∈ S(Hd) and (g, ζ) ∈ VP we associate the number

µ∗(f, g, ζ) := max
τ∈[0,1]

µnorm(qτ , ζτ ).

Theorem 4.4.3. Let (f, g, x, u) be an admissible input of ALHF. Then:

(i) If the algorithm ALHF stops on input (f, g, x), it returns an approximate zero of f .

(ii) Assume ALHF stops on input (f, g, x). Then, the number of iterations K(f, g, x) per-
formed by ALHF satisfies

K(f, g, x) ≤ B(f, g, ζ) +B(−f, g, ζ)

where

B(f, g, ζ) := 408 dS(f, g)D3/2

∫ 1

0

µ2
norm(qτ , ζτ )dτ.
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Consequently the number of performed arithmetic operations costALHF(f, g, x) is
bounded by

costALHF(f, g, x) ≤ O(N)
(
B(f, g, ζ) +B(−f, g, ζ)

)
.

If ALHF does not stop then either B(f, g, ζ) or B(−f, g, ζ) is unbounded, and either
the segment Eg,f or Eg,−f intersects Σ.

(iii) Furthermore, the finest precision u∗(f, g, x) required during the execution is bounded
from below by

u∗(f, g, x) = Ω
(

1
nD2(logN +D + n)(µ∗(f, g, ζ))2

)
.

Remark that Dedieu, Malajovich and Shub [17] proposed an improved version of ALH,
implementing an idea from [42], where the step size ∆τ is computed exactly as large as
possible to ensure that x is a sufficiently good approximate zero of qτ+∆τ . Thanks to this
they can replace the µ2

norm(qτ , ζτ ) factor in bound on the complexity of the homotopy by
the better bound µnorm(qτ , ζτ )(‖q̇τ‖2 + ‖żτ‖2)

1
2 . For our finite precision purposes, we stick

to the simpler method.

4.4.1 Bounding errors in the homotopy

We begin with a simple consequence of Proposition 4.2.3.

Proposition 4.4.4. Assume D ≥ 2. Let p0, p1 ∈ S(Hd), let ζ be a zero of p0, and A a
positive constant not greater than C such that

dS(p0, p1) ≤ A

(1 + ε)D3/2µ2
norm(p0, ζ)

.

Then the path Ep0,p1 can be lifted to a path in VP starting in (p0, ζ). In addition, the zero χ
of p1 in this lifting satisfies

dP(ζ, χ) ≤ A

D3/2µnorm(p1, χ)
.

Finally, for all pτ ∈ Ep0,p1 , if ζτ denotes the zero of pτ in this lifting, we have

1
1 + ε

µnorm(p0, ζ) ≤ µnorm(pτ , ζτ ) ≤ (1 + ε)µnorm(p0, ζ).

Proof. For each τ ∈ [0, 1], let pτ be the point of the segment [p0, p1] such that
dS(p0, pτ ) = τdS(p0, p1).

Let τ∗ be such that
∫ τ∗

0
µnorm(pτ , ζτ )‖ṗτ‖dτ = A

D3/2µnorm(p0,ζ)
, or τ∗ = 1, or the path

Ep0,p1 cannot be lifted to V beyond τ∗, whichever is the smallest. Then, for all τ ∈ [0, τ∗],
using that ‖ζ̇τ‖ ≤ µnorm(pτ , ζτ ) ‖ṗτ‖ (cf. [6, §12.3-12.4]) we have

dP(ζ, ζτ ) ≤
∫ τ

0

‖ζ̇s‖ ds ≤
∫ τ∗

0

µnorm(ps, ζs) ‖ṗs‖ds

≤ A

D3/2µnorm(p0, ζ)
.
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It is therefore enough to show that τ∗ = 1. Suppose to the contrary, that τ∗ < 1.

Since µnorm(pτ , ζτ ) ≥ 1, for every τ ,

dS(p0, pτ ) ≤ dS(p0, p1) ≤ A

D3/2µnorm(p0, ζ)
.

Since A ≤ C the bounds on dS(p0, pτ ) and dP(ζ, ζτ ) allow us to apply Proposition 4.2.3
and to deduce, for all τ ∈ [0, τ∗],

µnorm(p0, ζ)
1 + ε

≤ µnorm(pτ , ζτ ) ≤ (1 + ε)µnorm(p0, ζ). (4.18)

We have

A

D3/2µnorm(p0, ζ)
=

∫ τ∗

0

µnorm(pτ , ζτ )‖ṗτ‖dτ (by definition of τ∗)

≤ (1 + ε)µnorm(p0, ζ)
∫ τ∗

0

‖ṗτ‖dτ (by (4.18))

= dS(p0, pτ∗)(1 + ε)µnorm(p0, ζ),

and thus
dS(p0, pτ∗) ≥

A

(1 + ε)D3/2µ2
norm(p0, ζ)

≥ dS(p0, p1),

which leads to a contradiction with τ∗ < 1, and finishes the proof.

The next proposition puts together many of the results obtained thus far. The general
idea for its proof closely follows [12, Theorem 3.1] (which in turn is a constructive version
of the main result in [42]) making some room for errors.

Let (f, g, x, u) be an admissible input for algorithm ALHF.

As remarked in Section 4.2.4, the segment Eg,f can be lifted to a path given by a
continuous function mapping τ 7→ (qτ , ζτ ).

Let 0 = τ0 < τ1 < τ2 < . . ., x = x0, x1, x2, . . ., and u0, u1, u2, . . . , be the sequences of τ -
values, points in S(Cn+1) and precisions generated by the algorithm ALHF on the admissible
input (f, g, x, u). Let f̃i be the approximation of the input f on the ith iteration.

Let Eg,f be the path with endpoints g and f . To simplify notation we write qi instead
of qτi and ζi instead of ζτi . Similarly, we denote by q̃i the computed approximation of qi
– that is, q̃i = fl

(
t(τi)f̃i + (1− t(τi))g

)
–, by xi+1 the exact value of Nqi(xi), and by τi+1

the exact value of τi + ∆τ .

Proposition 4.4.5. Let (f, g, x, u) be an admissible input for ALHF. Let k be the number
of iterations of ALHFon input (f, g, x, u) – that is, either k = ∞ or τk = 1, qk = f . With
the notations above, for all i ∈ {0, . . . , k − 1}, the following inequalities are true:

(a) dP(xi, ζi) ≤
C

D3/2µnorm(qi, ζi)

(u)
B(q̃i, xi)

2
≤ ui ≤ B(q̃i, xi)
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(x) dS(qi, q̃i) ≤
C(1− ε)

12(1 + ε)D3/2µnorm(qi, ζi)

(c) dS(qi, qi+1) ≤ (1− ε)C
2(1 + ε)D3/2µnorm(qi, ζi)

(d) dP(ζi, ζi+1) ≤ (1− ε)C
2(1 + ε)D3/2µnorm(qi, ζi)

(e) q̃i+1 has a zero ζ̃i+1 such that dP(xi, ζ̃i+1) ≤ C ((1 + ε) + 7/12(1− ε))
D3/2µnorm(qi+1, ζi+1)

Inequalities (a), (u), and (x) hold for k as well.

Proposition 4.4.5 puts together all the needed bounds to ensure the proper work of
ALHF. Statement (a,i) ensures that xi is “close enough” to ζi. That is, xi is not just an
approximate zero of qi, but also an approximate zero for polynomials in a certain neighbor-
hood of qi on Eg,f . Statements (c,i) and (d,i) show that (taking into account computational
errors) our step along the homotopy is so small that the next polynomial qi+1 belongs to this
neighborhood. We hence arrive at (e,i), which essentially means that xi is an approximate
zero of qi+1 associated with ζi+1. Therefore, the Newton step (with computational errors
accounted for) brings the next iterate xi+1 close enough to ζi+1 to ensure that (a,i+1) holds
again. Making sure that (u) holds on every iteration, we guarantee that computational er-
rors are small enough to allow all the other steps of the proof ((a), (c), (d) and (e)) to be
carried through.

Proof of Proposition 4.4.5. We proceed by induction by showing, that (a,i), (u,i)
and (x,i) imply successively (c,i), (d,i), (x,i+ 1), (e,i), and finally (a,i+ 1) and (u,i+ 1).

Inequalities (a) and (u), for i = 0 hold by hypothesis, and ((x), 0) is obvious since
q̃0 = q0 = g.

This gives us the induction base. Assume now that (a), (u) and (x) hold for some
i ≤ k − 1.

We now show (c,i) and (d,i).

Observe that together with (a,i) and (x,i), Proposition 4.2.3 implies

µnorm(q̃i, xi)
(1 + ε)

≤ µnorm(qi, ζi) ≤ (1 + ε)µnorm(q̃i, xi). (4.19)

By (u,i) and Definition 4.3.29 our precision ui satisfies (4.10) for the pair (q̃i, xi).
Therefore, by Proposition 4.3.19 and the definition of ∆τ in ALHF we have

α(τi+1 − τi) ≤ α(Error (∆τ) + τi+1 − τi)

≤ α
5
4

∆τ ≤
λ(1 + 1

4 )
D3/2µ2

norm(q̃i, xi)
.

So, using (4.19) and since λ := 2C(1−ε)
5(1+ε)4 , we obtain

dS(qi, qi+1) = α(τi+1 − τi) ≤
C(1− ε)

2(1 + ε)4D3/2µ2
norm(q̃i, xi)

≤ C(1− ε)
2(1 + ε)2D3/2µ2

norm(qi, ζi)
.
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Since µnorm(qi, ζi) is always greater than or equal to 1, (c,i) holds, and (d,i) is the direct
consequence of Proposition 4.4.4 applied to (qi, qi+1) and ζi, with A = C(1−ε)

2(1+ε) .

This application of Proposition 4.4.4 furthermore ensures that, for all τ ∈ [τi, τi+1],

µnorm(qi, ζi)
1 + ε

≤ µnorm(qτ , ζτ ) ≤ (1 + ε)µnorm(qi, ζi), (4.20)

and, in particular,

µnorm(qi, ζi)
1 + ε

≤ µnorm(qi+1, ζi+1) ≤ (1 + ε)µnorm(qi, ζi). (4.21)

Since u ≤ B(q̃i, xi) and from Definition 4.3.29, we can apply Proposition 4.3.21 and we
get

dS(qi+1, q̃i+1) ≤ C(1− ε)
12(1 + ε)5D3/2µ2

norm(q̃i, xi)

≤
C(1−ε)

12(1+ε)3

D3/2µ2
norm(qi, ζi)

(from (4.19)) (4.22)

and, hence, using (4.21),

dS(qi+1, q̃i+1) ≤
C(1−ε)
12(1+ε)

D3/2µ2
norm(qi+1, ζi+1)

. (4.23)

Since µnorm(qi+1, ζi+1) ≥ 1 this shows (x, i+ 1).

We can now use (x, i), (c, i), and (4.22) to bound dS(q̃i, q̃i+1) as follows,

dS(q̃i, q̃i+1) ≤ dS(q̃i, qi) + dS(qi, qi+1) + dS(qi+1, q̃i+1)

≤
C(1−ε)
12(1+ε)

D3/2µnorm(qi, ζi)
+

C(1−ε)
2(1+ε)

D3/2µnorm(qi, ζi)
+

C(1−ε)
12(1+ε)3

D3/2µ2
norm(qi, ζi)

<

C(1−ε)
(1+ε)

D3/2µnorm(qi, ζi)

≤ C(1− ε)
D3/2µnorm(q̃i, xi)

(4.24)

the third inequality using µnorm(qi, ζi) ≥ 1 and the last from (4.19). We can similarly bound
distances between zeros and their approximations. Indeed, using (4.23), Proposition 4.4.4
applied to (qi+1, q̃i+1) and ζi+1, with A = C(1−ε)

12 , ensures the existence of a zero ζ̃i+1 of
q̃i+1 such that

dP(ζi+1, ζ̃i+1) ≤ C(1− ε)
12D3/2µnorm(qi+1, ζi+1)

. (4.25)

Next we use the triangle inequality to obtain

dP(xi, ζ̃i+1) ≤ dP(xi, ζi) + dP(ζi, ζi+1) + dP(ζi+1, ζ̃i+1)

≤
C
(

1 + 1−ε
2(1+ε)

)
D3/2µnorm(qi, ζi)

+
C 1−ε

12

D3/2µnorm(qi+1, ζi+1)
(by (a,i), (d,i) and (4.25))

≤
C(1 + ε+ 7

12 (1− ε))
D3/2µnorm(qi+1, ζi+1)

, (by (4.21))
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which proves (e,i).

Note that (x,i+1) and (4.25), together with Proposition 4.2.3, imply that
µnorm(q̃i+1, ζ̃i+1) ≤ (1+ε)µnorm(qi+1, ζi+1). Also, that we have C(1+ε)(1+ε+ 7

12 (1−ε)) ≤
ν0 ≈ 0.3542 and hence dP(xi, ζ̃i+1) ≤ ν0

D3/2µnorm(q̃i+1,ζ̃i+1)
. We can therefore use Theo-

rem 4.2.2 to deduce that xi is an approximate zero of q̃i+1 associated with its zero ζ̃i+1.
Therefore, xi+1 = Nq̃i+1(xi) satisfies

dP(xi+1, ζ̃i+1) ≤ 1
2
dP(xi, ζ̃i+1) ≤

C(1 + ε+ 7
12 (1− ε))

2D3/2µnorm(qi+1, ζi+1)
, (4.26)

where the last inequality is due to (e,i), and thus

dP(xi+1, ζi+1) ≤ dP(xi+1, ζ̃i+1) + dP(ζ̃i+1, ζi+1)

≤
1
2C(1 + ε+ 7

12 (1− ε)) + 1
12C(1− ε)

D3/2µnorm(qi+1, ζi+1)

=
C( 1

2 (1 + ε) + 3
8 (1− ε))

D3/2µnorm(qi+1, ζi+1)
. (4.27)

Now we are ready to prove the last two implications. We first show (a, i+ 1).

Inequality (4.24) allows us to use once more Proposition 4.2.3 to deduce

1
1 + ε

µnorm(q̃i, xi) ≤ µnorm(q̃i+1, xi) ≤ (1 + ε)µnorm(q̃i, xi). (4.28)

Since ui is less than or equal to B(q̃i, xi) (by (u,i)), from the choice of the constant k2

in Definition 4.3.29(ii) one has

ui ≤
e

(1 + ε)2nD2(logN +D + n)µ2
norm(q̃i, xi)

≤ e
nD2(logN +D + n)µ2

norm(q̃i+1, xi)
(by (4.28)).

The condition on u (for the pair (q̃i+1, xi)) of Proposition 4.3.16 is thus verified, and applying
this proposition we obtain

‖xi+1 − xi+1‖ = Error (Nq̃i+1(xi)) ≤
C(1− ε)

4π(1 + ε)2D3/2µnorm(q̃i+1, xi)
. (4.29)

The proof of (4.24) implicitly shows that dS(qi, q̃i+1) ≤ C(1−ε)
D3/2µnorm(qi,ζi)

. Together with
(a,i) we are in the hypothesis of Proposition 4.2.3 and we can deduce

1
1 + ε

µnorm(qi, ζi) ≤ µnorm(q̃i+1, xi) ≤ (1 + ε)µnorm(qi, ζi).

This inequality, together with (4.21), yields

1
(1 + ε)2

µnorm(qi+1, ζi+1) ≤ µnorm(q̃i+1, xi) ≤ (1 + ε)2µnorm(qi+1, ζi+1) (4.30)
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and using these bounds (4.29) becomes

‖xi+1 − xi+1‖ ≤
C(1− ε)

4πD3/2µnorm(qi+1, ζi+1)
. (4.31)

We now use this bound and the triangle inequality to bound dP(xi+1, ζi+1) as follows

dP(xi+1, ζi+1) ≤ dP(xi+1, xi+1) + dP(xi+1, ζi+1)

≤ π

2
‖xi+1 − xi+1‖+ dP(xi+1, ζi+1)

≤ C(1− ε)
8D3/2µnorm(qi+1, ζi+1)

+
C(1 + ε+ 3/4(1− ε))
2D3/2µnorm(qi+1, ζi+1)

(by (4.31) and (4.27))

=
C
(

1
2 (1 + ε) + 3

8 (1− ε) + 1
8 (1− ε)

)
D3/2µnorm(qi+1, ζi+1)

=
C

D3/2µnorm(qi+1, ζi+1)
,

which proves (a) for i+ 1.

It remains to show (u, i + 1). To do so note that we may use (a,i + 1) and (x, i + 1)
together with Proposition 4.2.3 to obtain (4.19) for i + 1 (just as we obtained it for i).
Consequently,

µnorm(q̃i+1, xi+1) ≤ (1 + ε)µnorm(qi+1, ζi+1)
≤ (1 + ε)2µnorm(qi, ζi) (by (4.21))
≤ (1 + ε)3µnorm(q̃i, xi) (by (4.19)).

Using this bound along with (u,i) we obtain

ui ≤ B(q̃i, xi) =
k2

nD2(logN +D + n)µ2
norm(q̃i, xi)

≤ k2(1 + ε)6

nD2(logN +D + n)µ2
norm(q̃i+1, xi+1)

= (1 + ε)6B(q̃i+1, xi+1).

We can therefore apply Proposition 4.3.26 with the pair (q̃i+1, xi+1) to deduce that
Error ( 3

4B(q̃i+1, xi+1)) ≤ 1
4B(q̃i+1, xi+1), and consequently∣∣∣∣ui+1 −

3
4
B(q̃i+1, xi+1)

∣∣∣∣ ≤ 1
4
B(q̃i+1, xi+1),

which proves (u,i+ 1).

4.4.2 Proof of Theorem 4.4.3

(i) Since (f, g, x, u) is an admissible input for ALHF we can use Proposition 4.4.5 (and
the notation therein). The estimate dP(xk, ζk) ≤ C

D3/2µnorm(qk,ζk)
shown as (a,k) in that

proposition implies by Theorem 4.2.2 that the returned point xk is an approximate zero of
qk = f with associated zero ζ1.

(ii) The first instruction in ALHF swaps f by −f if dS(f̃ , g) ≥ π
2 . The reason to do so

is that for nearly antipodal instances of f and g the difference dS(f, f̃) may be arbitrarily
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magnified in dS(qτ , q̃τ ). This does not occur under the assumption of infinite precision and
this is why such swap is not in the algorithms described in [5, 12].

Let h be either −f or f (according to whether ALHF did the swap or not), K(h, g, x)
be the number of iterations performed by ALHF, and {(qτ , ζτ )} be the lifting of the path
Eg,h.

Let k ≤ K(h, g, x) be a positive integer and consider any i ∈ {0, . . . , k − 1}. Using
Proposition 4.4.4 for qi, qi+1 together with (4.19) implies that, for all τ ∈ [τi, τi+1],

µnorm(q̃i, xi)
(1 + ε)2

≤ µnorm(qτ , ζτ ) ≤ (1 + ε)2µnorm(q̃i, xi). (4.32)

Therefore,∫ τi+1

τi

µ2
norm(qτ , ζτ )dτ ≥

∫ τi+1

τi

µ2
norm(q̃i, xi)
(1 + ε)4

dτ

=
µ2

norm(q̃i, xi)
(1 + ε)4

(τi+1 − τi)

≥ µ2
norm(q̃i, xi)
(1 + ε)4

3λ
4αD3/2µ2

norm(q̃i, xi)
(by Proposition 4.3.19)

=
3λ

4(1 + ε)4αD3/2
.

If k = K(h, g, x) <∞ this implies∫ 1

0

µ2
norm(qτ , ζτ )dτ ≥

(
3λ

4(1 + ε)4

)
k

1
αD3/2

≥ k 1
408αD3/2

,

which proves that

K(h, g, x) ≤ 408dS(h, g)D3/2

∫ 1

0

µ2
norm(qτ , ζτ )dτ = B(h, g, ζ). (4.33)

It follows that the number of iterations K(f, g, x) satisfies either K(f, g, x) ≤ B(f, g, ζ) or
K(f, g, x) ≤ B(−f, g, ζ). Certainly – and this introduces a factor of 2 but simplifies the
exposition –

K(f, g, x) ≤ B(f, g, ζ) +B(−f, g, ζ).

In case K(h, g, x) =∞ (a non-halting computation) it implies that
∫ 1

0
µ2

norm(qτ , ζτ )dτ =∞.

The bound for costALHF follows from the O(N) cost of each iteration of ALHF mentioned
in §4.2.2.

(iii) For i = 1, . . . , k − 1, due to (u,i),

ui ≥
B(q̃i, xi)

2
= Ω

(
1

nD2(logN +D + n) maxτ∈[τi,τi+1] µ2
norm(qτ , ζτ )

)
the last by (4.32). The statement now follows from the equalities

u∗(f, g, ζ) = min
i<k

ui and µ∗(f, g, ζ) = max
i<k

max
τ∈[τi,τi+1]

µnorm(qτ , ζτ ).
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4.5 Proof of Theorem 4.1.1

We follow here the proof of the corresponding result for MD in [12] and begin by recalling
two facts from this article. The first estimates the mean square condition number on the
path when an extremity is fixed.

Theorem 4.5.1 (Theorem 10.1 in [12]). For g ∈ S(Hd) \ Σ we have

E
f∈S(Hd)

(
dS(f, g)

∫ 1

0

µ2
2(qτ )dτ

)
≤ 818D3/2N(n+ 1)µ2

max(g) + 0.01.

The second bounds the condition of U .

Lemma 4.5.2 (Lemma 10.5 in [12]). The maximum of the condition numbers µmax(U) :=
maxz:U(z)=0{µnorm(U, z)} satisfies

µ2
max(U) ≤ 2n max

i≤n

1
di

(n+ 1)di−1 ≤ 2 (n+ 1)D.

The following proposition bounds the maximum µ∗(f, g, ζ) of the condition number
along a path from (g, ζ) to f in terms of the number of iterations of ALHF to follow this
path and of the condition number µnorm(g, ζ) of the initial pair.

Proposition 4.5.3. Let f, g ∈ S(Hd) and ζ a zero of g. The largest condition number
µ∗(f, g, ζ) along the path from (g, ζ) to f satisfies

µ∗(f, g, ζ) ≤ (1 + ε)K(f,g,ζ)µnorm(g, ζ).

Proof. Write k := K(f, g, ζ) and let µ∗i := max
τ∈[τi,τi+1]

µnorm(qτ , ζτ ). With this notation,

we have µ∗(f, g, ζ) = max
i=0,...,k−1

µ∗i . Furthermore, (4.20) states that, for all i ≤ k − 1,

µ∗i ≤ (1 + ε)µnorm(qi, ζi)

and an immediate recursion yields

µ∗(f, g, ζ) = max
i∈{1...,k−1}

µ∗i ≤ (1 + ε)kµnorm(g, ζ).

We remark that from the unitary invariance of our setting, for any unitary transforma-
tion ν ∈ U(n+ 1) and any g ∈ Hd and x ∈ Pn,

µnorm(g, x) = µnorm(g ◦ ν−1, νx).

Furthermore, for any execution of ALHF on an admissible input (f, g, x), the number of
iterations K(f, g, x) during the execution satisfies K(f, g, x) = K(f ◦ ν−1, g ◦ ν−1, νx) for
any unitary transformation ν ∈ U(n+ 1).

But one can remark also that any zero zi of U is the image of z1 = 1√
2n

(1, . . . , 1) by

a unitary transformation νi that leaves U invariant. Thus, K(f, U, z1) = K(f ◦ ν−1
j , U, zi)

for all zeros zi of U , and µmax(U) = µnorm(U, z1).
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We also obtain immediately

K(f, U, z1) =
1
D

D∑
j=1

K(f ◦ ν−1
j , U, zj). (4.34)

But for all measurable functions ϕ : S(Hd)→ R and all ν ∈ U(n+ 1) we have

E
f∈S(Hd)

ϕ(f) = E
f∈S(Hd)

ϕ(f ◦ ν),

due to the isotropy of the uniform measure on S(Hd).

Therefore, (4.34) implies

E
f∈S(Hd)

K(f, U, z1) = E
f∈S(Hd)

1
D

D∑
j=1

K(f, U, zj). (4.35)

Proof of Theorem 4.1.1. From Lemma 4.5.2, µnorm(U, z1) ≤
√

2 (n + 1)D/2, and
thus the initial value for u in algorithm MDF is less than or equal to B(U, z1). Therefore,
the tuple (f, U, z1, u) given to ALHF during the execution of MD is a admissible input, and
we can apply Theorem 4.4.3 to that execution of ALHF. In particular, it follows that MDF
stops generically and when it does so, it returns an approximate zero of f .

We next bound the average cost of MDF. Recall, we denoted by K(f, U, z1) the number
of iterations of ALHF during the execution of MDF with input f . Again by Theorem 4.4.3,
for any root zj of U we have

K(f, U, zj) ≤ B(f, U, zj) +B(−f, U, zj).

But we obviously have that Ef∈S(Hd)B(f, U, zj) = Ef∈S(Hd)B(−f, U, zj), and thus
from (4.35),

E
f∈S(Hd)

K(f, U, z1) ≤ 2 E
f∈S(Hd)

1
D

D∑
j=1

B(f, U, zj)

= 816D3/2 E
f∈S(Hd)

dS(f, U)
∫ 1

0

1
D

D∑
j=1

µ2
norm(qτ , ζ(j)

τ )dτ

= 816D3/2 E
f∈S(Hd)

dS(f, U)
∫ 1

0

µ2
2(qτ )dτ,

the last line by the definition of the mean square condition number (4.2).

Applying successively Theorem 4.5.1 and Lemma 4.5.2, we get

E
f∈S(Hd)

K(f, U, z1) ≤ 816D3/2(818D3/2N(n+ 1)µ2
max(U) + 0.01)

≤ 816D3/2(818D3/2N(n+ 1) · 2 (n+ 1)D + 0.01)
= 667488D3N(n+ 1)D+1 + 8.16D3/2

≤ 667489D3N(n+ 1)D+1. (4.36)
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The bound for the average of costMDF follows from the O(N) cost of each iteration of ALHF.

We finally bound the average of the precision needed. From Theorem 4.4.3 (iii), the
finest precision u∗(f, U, z1) along the execution of ALHF (and therefore, along that of MDF
) satisfies, for some universal constant c,

u∗(f, U, z1) ≥ 1
cnD2(logN +D + n)(µ∗(f, U, z1))2

and, hence,∣∣ log u∗(f, U, z1)
∣∣ ≤ log

(
cnD2(logN +D + n)

(
µ∗(f, U, z1)

)2)
= 2 logµ∗(f, U, z1) + log(cnD2(logN +D + n))
≤ 2K(f, U, z1) log(1 + ε) + 2 logµnorm(U, z1) + log(cnD2(logN +D + n)).

Using Lemma 4.5.2 and (4.36), we finally obtain

E
f∈S(Hd)

∣∣ log u∗(f, U, z1)
∣∣
≤ 2 E

f∈S(Hd)

(
K(f, U, z1) log(1 + ε) + log µnorm(U, z1)

+ log(cnD2(logN +D + n))
)

≤ log(1 + ε) · 1334978D3N(n+ 1)D+1

+ D log(
√

2(n+ 1)) + 2 log(cnD2(logN +D + n))

= O(D3N(n+ 1)D+1).

We observe that the initial precision u = k2
nD2(logN+D+n)2(n+1)D

also satisfies this inequality.

4.6 How to compute the initial precision in ALHF

In algorithm MDF, the computation of the initial precision needed to ensure the correctness
of ALHF is easy, since from Lemma 4.5.2 we know a bound on B(U, z1) which is easy to
compute. But for an initial pair (g, x) for which nothing is known, we cannot just set
u := B(g, x) since the relative error on the computation of B(g, x) can be arbitrarily large
– indeed, Proposition 4.3.26 is only valid when the precision u is already well fitted for the
considered system.

We here propose an algorithm SET PRECISION that computes a precision u satisfying
the requirements of ALHF, with no requirements on the initial precision. Its consistency
is showed in Proposition 4.6.1 below. Recall, that k2 and k3 are the universal constants
appearing in the definition of B (Section 4.3.7).
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Algorithm SET PRECISION

input g ∈ S(Hd), ζ ∈ S(Cn+1)
u := 1

2n(logS+D+n)

while u ≥ D2B(g,ζ)
4k2k3

do

u := u/2
u := 3/4B(g, ζ)

Proposition 4.6.1. The while loop in algorithm SET PRECISION takes at most
log(8k3µ

2
norm(g, ζ)) iterations. The value of fl(u) at the end of the loop ensures that

B(g, ζ)
2

≤ 3 fl(B(g, ζ))
4

≤ B(g, ζ).

Proof of Proposition 4.6.1. Since u is initialized with the value 1
2n(logN+D+n) , the

conditions of Lemma 4.3.27 are fulfilled, and thus the error in the computation of B(g, ζ) is
less or equal to k2k3u/D

2.

Thus, the computed value fl(B(g, ζ)) is in the interval

[B(g, ζ)− k2k3u/D
2,B(g, ζ) + k2k3u/D

2].

At the end of the while loop, we have: k2k3u
D2 ≤ fl(B(g, ζ))/4, and thus, fl(B(g, ζ)) is in the

interval [B(g, ζ)− 1/4 fl(B(g, ζ)),B(g, ζ) + 1/4 fl(B(g, ζ))]. By subtracting fl(B(g, ζ))/4,
we deduce that 3/4 fl(B(g, ζ)) ≤ B(g, ζ), and by dividing by 3/4, that

3/4 fl(B(g, ζ)) ≥ 3/4B(g, ζ)− 3/16 fl(B(g, ζ))
≥ 3/4B(g, ζ)− 1/4B(g, ζ) = 1/2B(g, ζ).

Finally, at the end of the loop, we have 3/4 fl(B(g, ζ)) ∈ [1/2B(g, ζ),B(g, ζ)].

Furthermore, at the end of the while loop, u satisfies

k2k3u

D2
≥ B(g, ζ)/16. (4.37)

Indeed, otherwise, one would have k2k3(2u)/D2 ≤ B(g, ζ)/8, and hence at the previous
iteration of the loop, the value fl(B(g, ζ)) computed there with precision 2u would have
verified that Error (B(g, ζ)) ≤ B(g, ζ)/8. Consequently, we would have

k2k3(2u)
D2

≤ fl(B(g, ζ))/8 + Error (B(g, ζ))/8 ≤ fl(B(g, ζ))/4,

and finally the while loop would have ended one iteration before.

Since (4.37) holds at the end of the loop, and since u is initialized with 1
2n(logN+D+n) ,

the value u decreases from a multiplicative factor at most B(g,ζ)n(logN+D+n)D2

8k2k3
during the

while loop. Since at each iteration the value of u is divided by two, the number of iterations
is at most

log2

(
8k2k3

n(logN +D + n)D2B(g, ζ)

)
= log(8k3µ

2
norm(g, ζ)).
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Chapter 5

Conclusion and perspectives

The first part of this thesis dealt with the polynomial associated to a boolean formula as a
link between counting problems and polynomial evaluation problems.

In the second chapter, we studied the problem of computing the polynomials associated
to boolean formulas, depending on the basic constraints used to express the formulas. This
study followed a framework initiated by Schaefer [40] for the satisfiability problem and by
Creignou and Hermann [13] for the problem of counting the satisfying assignments of a
boolean formula. We showed that similarly as in the two previous settings, the evaluation
of the associated polynomials presented a dichotomy (Theorem 2.2.2). An interesting fact
in this result is that large affine constraints belong to the hard cases, whereas they be-
longed to the easy cases in the decision and counting dichotomies. Many boolean constraint
satisfaction problems presenting similar dichotomies have been studied, and the frontier
between hard and easy cases presents large variations in these various results. A vague but
interesting question would be to understand the link between the problems and the frontier
between hard and easy cases: is it possible to characterize the problems that lead to a
certain frontier?

This result is based on several new proofs of VNP-completeness. It also enlightens
the link between counting reductions and p-projections, as remarked in Section 2.7: p-
projections between polynomials can be seen as 1-Turing reductions between the “weighted
counting” problems, and can lead to similar reductions between the counting problems.
This result is an example of how the parallel study of questions in a boolean and algebraic
context can benefit to both theories. In particular, it seems promising to study reduction
issues simultaneously on the decision, counting and weighted counting problems, since results
in one setting have repercussions in the other settings.

The third chapter was devoted to a lower bound result on the permanent. We pre-
sented a new proof that the permanent family (PERn) cannot be expressed as polynomials
associated to formulas of bounded tree-width (Theorem 3.3.3). This result was first proved
by Koiran and Meer [27], and was motivated by Theorem 3.1.2, which they also proved.
This theorem states that families of polynomials associated to polynomial size formulas
of bounded tree-width are not only computable by polynomial size arithmetic formulas,
but characterize all such p-families via p-projections. Recently, Stefan Mengel [36] showed
similar characterizations of the classes VPws, VP and VNP, by considering polynomials
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associated to non boolean CSPs of bounded path-width, of bounded tree-width and without
restrictions respectively, and still by using p-projections. It would be interesting to see how
far it is possible to express the permanent as a polynomial associated to a CSP according
to Mengel’s settings, and in particular if one can find a lower bound on the tree-width of
such CSP.

The second part of this thesis focused on the precision analysis of algebraic algorithms. We
presented finite precision versions of the algorithms ALH and MD from [12], for the search
of approximate zeros of square systems (Theorems 4.1.1 and 4.4.3). The arithmetic cost of
the finite precision algorithms is the same as the cost of their algorithmic counterparts up
to a constant factor, and the number of bits required during the computation is of the same
order as the arithmetic cost. A distinctive feature of these finite precision algorithms is that
they set the required precision for each computational step by themselves; the correctness
of the computations is thus ensured.

A natural extension to this work would be to study, also in finite precision, Beltrán
and Pardo’s randomized algorithm, which randomly guesses a starting pair and runs ALH
with this entry. The study of the procedure used to pick the starting system and its zero
still remains; then, our finite precision analysis of ALHF could be used, with the slight
difference with our setting that the initial pair (g, ζ) would not be computed exactly any
more. This does not change drastically the analysis since algorithm ALHF is still correct
with an approximation of ζ satisfying equation (a,0) from Proposition 4.4.5, and since
introducing an error in g would increase the error in the computation of qτ , which is already
taken into account.

95



Bibliography

[1] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22(3):317–330, 1983.

[2] C. Beltrán and A. Leykin. Robust certified numerical homotopy tracking. To appear,
arXiv:1105.5992, 2011.

[3] C. Beltrán and L. M. Pardo. On Smale’s 17th problem: a probabilistic positive solution.
Foundations of Computational Mathematics, 8(1):1–43, 2008.

[4] C. Beltrán and L. M. Pardo. Smale’s 17th problem: average polynomial time to compute
affine and projective solutions. Journal of American Mathematics Society, 22(2):363–
385, 2009.

[5] C. Beltrán and L. M. Pardo. Fast linear homotopy to find approximate zeros of poly-
nomial systems. Foundations of Computational Mathematics, 11(1):95–129, 2011.

[6] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, 1998.

[7] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the
real numbers. Bulletin of the American Math Society, 21:1–46, 1989.

[8] I. Briquel, P. Koiran, and K. Meer. On the expressive power of CNF formulas of
bounded tree- and clique- width. Discrete Applied Mathematics, 159:1–14, 2011.

[9] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
set. Journal of the ACM, 53(1):66–120, 2006.

[10] P. Bürgisser. On the structure of Valiant’s complexity classes. Discrete Mathematics
and Theoretical Computer Science, 3:73–94, 1999.

[11] P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Number 7
in Algorithms and Computation in Mathematics. Springer, 2000.

[12] P. Bürgisser and F. Cucker. On a problem posed by steve smale. Annals of Mathematics.
To appear.

[13] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting prob-
lems. Information and Computation, 125:1–12, 1996.

96



[14] N. Creignou, S. Khanna, and M. Sudan. Complexity classification of boolean constraint
satisfaction problems. SIAM monographs on discrete mathematics. 2001.

[15] F. Cucker, T. Krick, G. Malajovich, and M. Wschebor. A numerical algorithm for zero
counting, I: Complexity and accuracy. Journal of Complexity, 24:582–605, 2008.

[16] F. Cucker and S. Smale. Complexity estimates depending on condition and round-off
error. Journal of the American Mathematics Society, 46:113–184, 1999.

[17] J.-P. Dedieu, G. Malajovich, and Mike Schub. Adaptive step size selection for homotopy
methods to solve polynomial equations. To appear, arxiv: 1104-2084, 2011.

[18] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Heidelberg, 2005.

[19] F. M. Dong, M. D. Hendy, K. L. Teo, and C. H. C. Little. The vertex-cover polynomial
of a graph. Discrete Mathematics, 250(1-3):71–78, 2002.

[20] I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum
distance of a linear code. IEEE Trans. Inform. Theory, 49:22–37, 2003.

[21] A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and complete
problems for counting complexity classes. Theorical Computer Science, 340(3):496–
513, 2005.

[22] E. Fisher, J. Makowsky, and E. V. Ravve. Counting truth assignments of formulas of
bounded tree-width or clique-widht. Discrete Applied Mathematics, 154(3):511–529.

[23] G. Golub and C. Van Loan. Matrix Computations. John Hopkins University Press, 3rd
edition, 1996.

[24] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 96.

[25] M. Jerrum. Two-dimensional monomer-dimer systems are computationally intractable.
Journal of Statistical Physics, 48:121–134, 1987.

[26] M. Jerrum and M. Snir. Some exact complexity results for straight-line computations
over semirings. Journal of the ACM, 29(3):874–897, 1982.

[27] P. Koiran and K. Meer. On the expressive power of CNF formulas of bounded tree-
and clique- width. In Proceedings of WG’08 (34th International Workshop on Graph-
Theoretic Concepts in Computer Science), LNCS 5344. Springer, 2008.

[28] E. Korach and N. Solel. Tree-width, path-width, and cutwidth. Discrete Applied
Mathematics, 43(1):97–101, 1993.

[29] M. Krause, C. Meinel, and S. Waack. Separating the eraser Turing machine classes Le,
NLe, co-NLe and Pe. Theoretical Computer Science, 86:267–275, 1991.

[30] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

[31] R. E. Ladner. On the structure of polynomial time reductibility. Journal of the ACM,
22(1):155–171, 1975.

97



[32] N. Linial. Hard enumeration problems in geometry and combinatorics. SIAM Journal
of Algebraic and Discrete Methods, 7(2):331–335, 1986.

[33] M. Lotz and J. A. Makowsky. On the algebraic complexity of some families of coloured
Tutte polynomials. Advances in Applied Mathematics, 32(1):327–349, January 2004.

[34] G. Malod. Computing the partial permanent in characteristic 2. Unpublished, 2011.
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[46] M. Shub and S. Smale. Complexity of Bézout’s theorem V: polynomial time. Theoretical
Computer Science, 133:141–164, 1994.

[47] M. Shub and S. Smale. Complexity of Bézout’s theorem IV: probability of success;
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