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Directeurs de Thèse : Arnaud MURA et Aristeu da SILVEIRA NETO

**************************************************************

Soutenue le 18 Novembre 2011 devant la commission d’examen

**************************************************************

- Jury -

M. P. HALDENWANG, Professeur Université de Provence Marseille, Rapporteur
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ABSTRACT

The present work is devoted to the development and implementation of a computational

framework to perform numerical simulations of low Mach number turbulent reactive flows.

The numerical algorithm designed for solving the transport equations relies on a fully im-

plicit predictor-corrector integration scheme. A physically consistent constraint is retained

to ensure that the velocity field is solved correctly, and the numerical solver is extensively

verified using the Method of Manufactured Solutions (MMS) in both incompressible and

variable-density situations. The final computational model relies on a hybrid Large Eddy

Simulation / transported Probability Density Function (LES-PDF) framework. Two differ-

ent turbulence closures are implemented to represent the residual stresses: the classical and

the dynamic Smagorinsky models. The specification of realistic turbulent inflow boundary

conditions is also addressed in details, and three distinct methodologies are implemented.

The crucial importance of this issue with respect to both inert and reactive high fidelity

numerical simulations is unambiguously assessed. The influence of residual sub-grid scale

scalar fluctuations on the filtered chemical reaction rate is taken into account within the La-

grangian PDF framework. The corresponding PDF model makes use of a Monte Carlo tech-

nique: Stochastic Differential Equations (SDE) equivalent to the Fokker-Planck equations

are solved for the progress variable of chemical reactions. With the objective of performing

LES of turbulent reactive flows in complex geometries, the use of distributed computing is

mandatory, and the retained domain decomposition algorithm displays very satisfactory lev-

els of speed-up and efficiency. Finally, the capabilities of the resulting computational model

are illustrated on two distinct experimental test cases: the first is a two-dimensional highly

turbulent premixed flame established between two streams of fresh reactants and hot burnt

gases which is stabilized in a square cross section channel flow. The second is an unconfined

high velocity turbulent jet of premixed reactants stabilized by a large co-flowing stream of

burned products.

Keywords: Turbulent Premixed Combustion, Large Eddy Simulation, Low-Mach Number

Variable Density Flows.
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RÉSUMÉ

Ce travail de Thèse est consacré au développement d’une approche numérique permet-

tant de conduire des simulations “low Mach number” d’écoulements réactifs. L’algorithme

d’intégration retenu pour procéder à la résolution des équations de transport repose sur une

méthode implicite de prédiction-correction (méthode de projection). Une contrainte physique

est retenue pour garantir que le champ de vitesse est résolu correctement. Le code de calcul

est soumis à plusieurs séries de vérifications préliminaires basées sur l’emploi de la méthode

solution manufacturées pour des conditions incompressibles d’abord puis à masse volumique

variable qui permettent de statuer quant à la bonne implémentation des schémas numériques

retenus. Les performances de l’outil numérique en terme de stabilité et de robustesse sont

elles-aussi analysées dans des situations simples: couche de mélange à densité variable en

développement spatial et temporel. Le modèle numérique final repose sur l’emploi d’une

méthode hybride LES / PDF. Pour ce qui concerne la représentation de la turbulence, deux

fermetures sont implémentées pour représenter l’effet des fluctuations de vitesse non résolues.

Il s’agit du modèle de Smagorinsky dans sa version dynamique ou non. La spécification de

conditions aux limites turbulentes réalistes est elle-aussi analysée en détail et trois approches

différentes sont considérées. Pour ce qui concerne la combustion, l’influence des fluctuations

de composition aux échelles non résolues est pris en compte par le biais d’une résolution

de la PDF scalaire de sous maille. Le modèle de PDF correspondant repose sur l’emploi

d’une méthode de Monte Carlo. Des équations différentielles stochastiques, équivalentes

aux équations de Fokker-Planck, sont résolues pour la variable de progrès de la réaction

chimique. L’objectif final est aussi de pouvoir procéder, à moyen terme, à des simulations

LES en géométries complexes et l’emploi du calcul distribué est essentiel. De ce point de

vue, la méthode de décomposition de domaine retenue dans ce travail montre des niveau

de performances relativement satisfaisants. Les capacités du modèle numérique résultant

de ces développements sont illustrées sur deux configurations expérimentales. La première

géométrie correspond à un écoulement très fortement turbulent de réactifs pré-mélangés dans

un canal bidimensionnel. La seconde correspond à un jet rapide et non confiné de réactifs

pré-mélangés.

Mots-Clés: Combustion turbulente Prémélangée, Simulation des Grandes Échelles, Ecoule-

ments à baisse nombre de Mach avec densité variable.
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RESUMO

O presente trabalho foi dedicado ao desenvolvimento e implementação de uma plataforma

computacional destinada a simulações numéricas de escoamentos turbulentos reativos a baixo

número de Mach. O algoritmo desenvolvido para a solução de transporte é baseado em

um método de projeção totalmente impĺıcito. Uma restrição fisicamente consistente é im-

posta sobre o campo de correção de pressão para garantir que o campo de velocidade seja

corretamente resolvido. A plataforma numérica foi extensivamente verificada utilizando o

Método das Soluções Manufaturadas tanto para escoamentos incompresśıveis quanto para

escoamentos com variação de massa especifica. Dois modelos de turbulência diferentes foram

implementados para representar as tensões submalha: o modelo Smagorinsky clássico e os

modelo dinâmico. A imposição de condições de contorno turbulentas e realistas na entrada

do domı́nio computacional é estudada em detalhes no presente trabalho. Três metodologias

distintas foram implementadas e seus efeitos são analisados tanto para escoamentos inertes

quanto reativos. Uma formulação hibrida de Simulação de Grandes Escalas/ Função Den-

sidade de Probabilidade Transportada (LES-PDF) foi adotada. A influência das flutuações

da escala submalha do escalar reativo na taxa de reação qúımica filtrada é levada em conta

no contexto da PDF Lagrangiana. O modelo de PDF correspondente faz uso da técnica de

Monte Carlo: Equações diferenciais estocásticas (SDE), equivalentes às equações de Fokker-

Planck são resolvidas para determinar o progresso das reações qúımicas. Com o objetivo de

realizar simulações de grandes escalas de escoamentos turbulentos reativos, o uso de com-

putação distribúıda é inevitável. Neste trabalho, um algoritmo de decomposição de domı́nio

foi utilizado e exibiu ńıveis satisfatórios de speed-up e eficiência. Finalmente, as capacidades

do modelo computacional foram ilustrados na simulação de dois casos-teste experimentais

distintos: O primeiro é uma chama altamente turbulenta reativa pré-misturada estabilizada

entre duas correntes de fluido de alta velocidade de gases frescos e gases quentes queimados.

O segundo é um jato turbulento não confinado de alta velocidade de reagentes pré-misturados

estabilizados por um escoamento auxiliar em torno do jato principal de gases queimados.

Keywords: Combustão Turbulenta Pré-misturada, Simulação das Grandes Escalas, Escoa-

mentos a Baixo Número de Mach com Massa Espećıfica Variável.
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CHAPTER I

INTRODUCTION

The presence of turbulent flows in practical engineering applications is very frequent,

as well as the presence of reactive flows. However, the detailed analysis of these phenomena

(turbulence and combustion), and especially the interaction between them is an area that still

requires research and understanding. Combustion is a phenomenon that came to mankind

since time began, and now, much of the energy used comes from combustion processes. Ac-

cording to Turns (2000), in 1996, 85% of energy use in the U.S., came from combustion

sources. In Brazil, as reported by the Ministry of Mines and Energy in 2006 over 80% of

energy generated by human beings is related to some process of combustion. This reason

alone is enough to motivate scientific research looking for maximum efficiency of any process

involving combustion, however, such a dependency also leads to a major source of problems:

environmental pollution. Most of the pollutants produced by total or partial combustion

of fuels are hydrocarbons, nitrogen (NOx) and sulfur (SOx) oxides, carbon monoxide and

particulate, are highly toxic and therefore its production has been increasingly regulated and

restricted.

The interaction between turbulence and combustion is a complex scenario because

both processes may influence, non linearly, each other. Turbulent combustion is character-

ized by a large range of time and length scales, making the interaction between the two

almost impossible to handle numerically without proper modeling approaches. Regarding
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the prediction and understanding of such a category of flows, the extensive use of mathe-

matical and numerical techniques is unavoidable. Hence, as the mathematical and numerical

methods become more complex. This project aims to develop the understanding of the in-

teraction between turbulence and combustion, through computational simulations of both

processes by the joint use of adequate mathematical models and numerical tools to deal with

the turbulent combustion in low Mach number flows.

The starting point to begin the modeling of turbulent combustion is to identify the

degree of mixture between the reagents, i.e., the fuel and the oxidizer. Traditionally, reactive

flows have been separated in two broad classes: premixed and non-premixed combustion. A

third regime, sometime considered as a hybrid of the two former ones to a certain extend,

has risen. It has been named partially-premixed regime. The physical processes involved

and the dynamics of the combustion in each of these configurations are different, hence, each

one requiring specific approaches. In the non-premixed combustion fuel and oxidizer are

initially separated, to the chemical reactions be able to occur, the mixture between them

must happen in a molecular level. Such kind of flames are common to be found in furnaces

and industrial burners. Differently of non-premixed flames, in premixed flames the reactants

are mixed prior to chemical reactions. The flame is propagated with velocity and thickness

that depends on the mixture. This kind of flames are usually found in confined spaces

once, depending on the fuel and the equivalence ratio of the mixture, a local increase in

the temperature can be enough to trigger the combustion process. It is worth mentioning

that this is the regime usually found in internal combustion engines and after burners of gas

turbines. Figure (1.1) shows one of this kind of gas turbine.
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Figure 1.1: A 400MW gas turbine, http://www.global-greenhouse-warming.com/gas-as-a-

wedge-against-carbon-emissions.html, accessed on 16/08/2011.

The development of a numerical platform, aiming the numerical simulation of low

Mach number turbulent premixed combustion, is the main subject of the present thesis.

Adequate and robust methods for dealing with this kind of flows, where strong variations

of density may came from temperature variations, reliable turbulence modeling, verified and

accurate numerical methods, correct imposition of boundary conditions for large eddy sim-

ulations and stochastic methods for modeling chemical reactions and mixture in turbulent

combustion are examples of themes studied in the present work. These knowledge areas

have received special attention recently for, at least, one reason in common: as we advance

in terms of mathematical modeling, i.e. as the physical problems will be better understood,

the computational cost of such methods typically increases, either by more complex models

or due its need for increasingly refined meshes, hence the use of distributed computing is

unavoidable.

The present report is organized as follows: first a brief review on the literature is made
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about the methods retained for the modeling of turbulent combustion. Moreover, in the

same chapter it is presented the main characteristics of the flows studied here, spatially de-

veloping free shear flows. Chapter 3 reports a detailed description of the whole mathematical

modeling retained, i.e., the governing transport equations, as well as the filtering procedure

used for the obtention of a set of equation suitable for LES. The turbulence closures re-

tained are also shown in chapter 3. Finally in this chapter, the simplificative assumptions of

the chemical kinetics, a detailed demonstration of the transported PDF method used in the

present work, and the coupling between the Eulerian and Lagrangian approaches is presented.

In chapter 4 the fully implicit discretization and the variable time-step temporal inte-

gration of the finite volume approach retained is presented. The pressure velocity coupling

and the physically consistent constraint developed for variable density flows are reported in

detail also. Finally, the numerical approach used in the solution of the system of stochastic

differential equations (SDE) generated is explained and its consistence with the Eulerian

approach is proved for both constant density and variable density flows. Since it is intended

to perform large eddy simulations of complex flows, the number of control volumes used to

discretize the transport equations can be larger than one million and the number of notional

particles retained in the solution of SDEs can amount to over hundreds of millions, the use

of distributed computing is mandatory. Chapter 5 is devoted to describe the procedures

retained in the parallelization of the aforementioned methods. The speed-up factor and ef-

ficiency tests show that the approach implemented is very promising.

During this thesis, a computer code with approximately 30,000 lines was written in

Fortran 90. Such a code, named Fluids3D was built to include all the methods explained

in the present document. A very important aspect of the development of such a code is

that it was extensively verified. Indeed, the procedures followed for the verification of the

developed numerical code has been the subject of a recent publication by Vedovoto et al.

(2011). Chapter 6 shows how the numerical code was verified in two different situations: in

the limit of a zero Mach number flow, and a second set of tests aiming at mimicking the

propagation of a analytical corrugated flame front that separates heavy from light gases. The
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results showed that the numerical methods implemented has achieved a convergence rate of

error decaying equals to two, allowing us to retain it to perform large eddy simulations of

turbulent reactive flows.

The specification of the realistic turbulent inflow boundary conditions can be problem-

atic in a LES context. The reason of that is due to the fact that for LES or DNS simulations,

where the flow at the inlet is turbulent, the inflow data should consist of an unsteady turbu-

lent velocity signal representative of the turbulence at the inlet. In Chapter 7 three different

methods of prescribing turbulent inflow data are assessed and their effects are analyzed for

a spatially developing mixing layer.

In the last Chapter, the simulations of a turbulent round reactive jet are presented, first for

an inert case, and then for a stoichiometric premixed bunsen flame. Finally, the manuscript

is ended by concluding remarks and proposals for future work.
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CHAPTER II

TURBULENT COMBUSTION MODELING

The objective of the present chapter is to present a very short survey of the literature

concerning the methods retained in the computational modeling of turbulent reactive flows.

Furthermore, are presented the main characteristics of spatially developing free shear flows,

such as mixing layers and jets, the two main types of flows studied in the present thesis.

The existing strategies that are usually employed to develop compressible and incompressible

solvers for low Mach number calculations are briefly reviewed, as are the methods retained in

the modeling of turbulent reactive flows. The text focuses, then, on the physical phenomena

that involve the modeling of turbulent premixed flames, and the possible approaches that

can be retained for the simulations of such flames.

2.1 Turbulence and spatially developing free shear flows

The description of turbulence in fluids remains a challenge in both understanding and

modeling aspects. The high number of degrees of freedom, combined with a random behavior,

makes the task of fully predicting a turbulent flow very difficult. Throughout time, signifi-

cant attention has been given to turbulent free shear flows. Rayleigh (1880) and Reynolds

(1883) were among the first to systematically study turbulence. Pope (2000) proposed a

profound analysis on several aspects of turbulent flows.
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Although a definition that comprises all characteristics of turbulence is hardly ac-

ceptable (SILVEIRA-NETO, 2002), it can be said that turbulence is a three-dimensional,

rotational, highly diffusive, highly dissipative, unpredictable phenomenon that occurs at high

Reynolds numbers. Such a set of characteristics associates the turbulence in fluids to a highly

non-linear character. Moreover, turbulent flows present a wide energy spectra, i.e., in tur-

bulent flows there are structures with different wave numbers, and the interactions between

these different structures with characteristic sizes and frequencies constitutes a refined and

complex mechanism of energy transfer.

Figure 2.1: Flow visualization of a plane mixing layer between helium (upper) and nitrogen

(lower) (BROWN; ROSHKO, 1974).

In the present work the free shear flows are the object of study. Such a class of turbu-

lent flows is characterized by a development that occurs far from obstacles or walls. Thus,

turbulence arises due to mean-velocity differences (POPE, 2000). The free shear flows can

yet be classified in wakes, mixing layers and jets. The last two types of flows are studied

here. Figure (2.1) shows an example of a spatial developing mixing layer. The main features

visible in such figure is the presence of large and coherent structures. These are found to

be regions of concentrated spanwise vorticity that are coherent over substantial spanwise

distances. As the these coherent structures, or eddies, are advected downstream they grow

in size and spacing, and decrease in number. Another important characteristic is that an

eddy may merge with an adjacent eddy in a pairing process, or it can be torn apart and its
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vorticity absorbed by adjacent eddies (POPE, 2000).

Brown and Roshko (1974) and Browand and Latigo (1979) developed pioneering works

in the sense of a full experimental characterization of mixing layers. Soteriou and Ghoniem

(1995) assessed the effects of free-stream density ratio on low-Mach number developing mix-

ing layers. Direct Numerical Simulations of a temporally evolving shear layer has been

performed by Brucker and Sarkar (2007). An important contribution of such a work is that

they present a relation in which the non-dimensional thickness of the shear layer is corre-

lated to parcels of the Reynolds stress tensor. Moreover, in Brucker and Sarkar (2007) the

influence of turbulent initial conditions on the development of self-similar mixing layers is

assessed.

Figure 2.2: CO2 round jet entering air at Re = 30,000. The instabilities developed down-

stream the nozzle and rapidly become completely turbulent (LANDIS; SHAPIRO, 1951).

Compared to the planar mixing layer, the development of large turbulent structures

(eddies) is significantly different in a jet configuration. In a very general way, it is possible

to define a jet as a flow from a confined space entering an open space. Jets can be classi-
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fied according to the geometry of the nozzle. In a planar jet, for instance, the nozzle has a

rectangular format, whereas a round jet is formed downstream of a circular nozzle. In both

cases the transition to turbulence is characterized by the formation of Kelvin-Helmholtz-type

primary instabilities, which induce the generation of secondary longitudinal filaments. The

interaction of such secondary counter-rotating longitudinal filaments with the primary eddies

leads to the formation of transversal oscillations. The latter are amplified and eventually

lead the flow to a state of developed turbulence. The primary instabilities are easily notable

in Fig. (2.2).

The first investigations on jets include the work of Corrsin (1943), Corrsin and Uberoi

(1950a, 1950b). Considering its applicability in several areas of engineering, it is natural

that numerous publications analyze turbulent jets from different points of view. Heron et al.

(2001), Birch et al. (2003) and Uzun (2003) studied compressible jets in order to understand

the interactions between aerodynamic and acoustic noise generation. Hussein, Capps and

George (1994) have studied round incompressible jets at high Reynolds numbers, showing

that averaged velocity, second, and third order statistical moments depend strongly on the

experimental set-up. In the work of Todde, Spazzini and Sandberg (2009) a series of com-

mon characteristics of jets at low and moderate Reynolds numbers are evidenced, e.g., the

presence of eddies near the nozzle and the existence of the shear layers. Todde, Spazzini

and Sandberg (2009) also evidenced and characterized the presence of a potential core in

turbulent non-reactive jets.

Boersma, Brethouwer and Nieuwstadt (1998), by performing Direct Numerical Simu-

lations, studied the effects of the inflow conditions on the self-similar region of a round jet.

An important result obtained is that an universal self-similarity, in fact, may depend on the

boundary conditions at the inlet. Nevertheless they verified that, with an adequate scaling,

an universal self-similarity in round jets is still possible. Stanley and Sarkar (1999) studied

the effects of the turbulence intensity and shear layer momentum thickness at the nozzle on

the evolution and development of a planar jet in both laminar and turbulent regimes. It

was found that variations of fluctuation intensity and shear layers affect the rate with which
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the jet develops downstream. In fact, higher intensity fluctuations lead to a faster growth of

the jet with an asymptotic approach of the centerline turbulent kinetic energy to self-similar

values. Xu and Antonia (2002) experimentally examined the effects of the velocity profile

at the nozzle on the development of a turbulent round jet. They found that the use of a

smooth contraction, leading to a top-hat type profile, leads to a faster jet development to a

self-similar behavior than when the flow issues from a long tube, characterized by a velocity

profile of a fully developed pipe flow.

The application of Large Eddy Simulations in the study of turbulent non-reactive jets

is also a subject of numerous works. Silva and Métais (2002), by using an compact sixth-

order scheme in the direction of the development of the jet, and pseudo-spectral methods in

the transversal directions, studied the dynamics and control of bifurcating jets, focusing on

the analysis of the influence of forcing 1 and the Reynolds number.

Silva and Pereira (2004), simulating a jet in temporal decay, studied the effects of

subgrid models in order to analyze the effect of the subgrid-scale (SGS) models on the vor-

tices obtained from LES. The dynamics of the filtered vorticity norm (or filtered enstrophy)

was analyzed through the application of a box filter to temporal DNS of turbulent plane

jets. The models analyzed were the Smagorinsky, structure function, filtered structure func-

tion, dynamic Smagorinsky, gradient, scale similarity, and mixed. Those model results were

also compared with DNS results. Silva and Pereira (2004) showed that, in terms of spatial

location, all the models used lead to a good correlation between the “real” and “modeled”

enstrophy SGS dissipation. Moreover, all the SGS models, even of eddy-viscosity type, are

able to provide enstrophy SGS backscatter. However, in terms of statistical behavior the

eddy-viscosity models do not provide enough enstrophy backscatter when compared to the

non-eddy-viscosity models. LES are carried out and show that the Smagorinsky, structure

function, and mixed models cause excessive vorticity dissipation, compared to the other

models, and, although the enstrophy SGS dissipation affects mainly the smallest resolved

scales, it is argued that it may also affect some low-wave numbers.

1The action of imposing an given frequency of fluctuation over the velocity profile at the nozzle
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Temporal evolution of Q = 0, 1 [s−1] isosurfaces: (a) t=0.1 [s],(b) t=5 [s], (c)

t=10 [s],(d) t=20 [s], (e) t=30 [s] e (f) t=40 [s]. (MOREIRA, 2011).

Moreira (2011) developed a methodology which allows the simulation of a turbulent

spatially developing jet with a full Fourier Pseudo Spectral Method. Such a methodology

is based on the coupling of the Fourier pseudo-spectral (FPSM) (MARIANO, 2011), and

immersed boundary methodologies (IBM) (LIMA-E-SILVA; SILVEIRA-NETO; DAMAS-

CENO, 2003). A main characteristic of the FPSM is the high numerical accuracy associated

to a relatively low computational cost, since solving the linear system of the pressure-velocity

coupling is no longer necessary, at least in constant density flows. However, the FPSM

methodology has its applicability restricted to problems with periodic boundary conditions

only. The coupling of such a methodology with the IBM allowed to expand the range of prob-
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lems to which the FPSM could be applied towards more complex problems. Figure (2.3)

shows the temporal evolution of the criteria Q isosurfaces (JEONG; HUSSAIN, 1995) of a

spatial developing jet at Re = 1,050. The first vortical structures of the Kelvin-Helmholtz

instabilities are clearly identifiable.

So far, a brief overview of the literature concerning non-reactive free shear flows was

presented. Before presenting how combustion chemical reactions may affect turbulent free

shear flows, and how turbulent reactive flows have been treated in the scientific literature,

an overview about the possible numerical methods that can be retained for simulating those

kind of flows is given. The reason for this is due to the interest of the present thesis in flows

that present non-negligible density variations, but are in a low-Mach number regime.

2.2 Compressible vs low Mach number approximations

An important non-dimensional parameter that characterizes a flow field is the Mach

number Ma=U/c, where U is a characteristic velocity of the flow field, and c is the speed of

sound. The incompressible limit is usually defined as the situation associated to Mach num-

ber values smaller than 0.3. Above this value the compressibility effects cannot be neglected

any longer, and variations of density and pressure are coupled through an equation of state.

For incompressible flows a partial decoupling between the equations of momentum and the

energy equation is possible, and in such flows the pressure variations are typically very small.

The possible density variations are not related to pressure variations, but to temperature

and mixture composition variations. The pressure is often said to be thermodynamically

constant, and its influence is only felt through the spatial derivatives that appear in the

momentum transport equation.

In fact, there exists a fundamental difference between the behavior of the set of trans-

port equations in an incompressible flow, with respect to compressible flows. In compressible

flows featuring high Mach number values, the fluid velocity is of the same order of magnitude

as the velocity of sound waves, i.e., O(U) ≈ O(c), and the mathematical system of governing
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equations follows an hyperbolic behavior (ANDERSON, 1995), whereas in the low Mach

number incompressible case, the velocity of sound waves are much higher than the fluid

velocity, i.e., O(U)� O(c). Such a disparity of magnitudes between the velocity of the flow

and the speed of sound waves leads to a great stiffness in the system of balance equations.

This severely hampers the accuracy and convergence of the numerical methods that rely on

the consideration of density variations, i.e., density-based solvers (CHOI; MERKLE, 1993),

which remain the most commonly used to perform the numerical simulations of compressible

flows. In the case of incompressible flows such a disparity between the wave and flow veloc-

ities is also one of the major sources of numerical instability (NAJM; NAJIM; WYCKOFF,

1998; COOK; RILEY, 1996; RAUWOENS; VIERENDEELS; MERCI, 2007).

In the present work, the interest is focused on low velocity flows, i.e., in the incompress-

ible regime, but featuring non negligible density variations, the so-called low Mach number

flows. There are basically two broad classes of numerical methodologies to deal with this

kind of flows: those relying on density-based solvers, i.e., based on methods usually retained

for compressible flows, and those relying on pressure-based solvers, such as those retained

to perform the numerical simulation of incompressible flows. The application of each one

of these two methodologies to low Mach number flows requires the introduction of several

modifications and improvements, that are briefly summarized below.

2.2.1 Density-based methods

The density-based methods represent a wide class of numerical schemes originally de-

veloped to study compressible flows (SILVA; AZEVEDO; KORZENOWSKI, 2000). Turkel,

Radespiel and Kroll (1997) determined that the set of discretized equations retained for the

numerical simulation of a compressible flows fails to provide an accurate solution for an in-

compressible flow. The simulations of incompressible flows based on the fully compressible

method, with no modifications to reduce the disparity existing between the flow velocity and

the speed of sound, are found impracticable due to the associated computational costs. In

this case, temporal integration schemes, whatever they are explicit or implicit, are penalized.

In the former case, the Courant-Friedrichs-Lewy (CFL) condition, that must be satisfied at
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each time step to enforce the numerical stability of the numerical integration scheme, leads

to prohibitively small time step values due to the prevailing influence of acoustic waves

propagation. In the case of implicit methods such a disparity induces large differences in the

characteristic eigenvalues of the algebraic system to be solved, which becomes ill-conditioned,

leading therefore to extremely high-cost iterative solutions (ROLLER; MUNZ, 2000).

Two distinct sets of techniques have been proposed to achieve better convergence prop-

erties of density-based solvers, in the limit of low Mach number flows: preconditioning and

perturbation methods. Both techniques strive to minimize the stiffness of the algebraic sys-

tem that results from the discretization of the balance equations.

The first technique pre-multiplies the temporal derivatives by a preconditioning ma-

trix, whose choice is determined according to the problem to be analyzed (CHOI; MERKLE,

1993), thus leading to a new set of equations. As a consequence, the initial (stiff) system

is altered. The technique essentially aims at re-scaling the characteristic eigenvalues with

respect to the original system, so that eigenvalues of similar orders of magnitude can be

obtained, leading to a better conditioned system (TURKEL; RADESPIEL; KROLL, 1997;

TURKEL, 1992). The major drawback associated with preconditioning methods is that the

governing equations are modified in terms of their mathematical nature due to the incorpo-

rated transient term. The modified system of equations has only the steady-state solution in

common with the original system and becomes, therefore, devoid of any physical transients.

A second limitation is the failure of this methodology, in terms both of efficiency and ro-

bustness, in the vicinity of stagnation points, where the characteristic eigenvectors become

almost parallel (DARMOFAL; SCHMID, 1996). Furthermore, the design of general purpose

pre-conditioners adequate for a large variety of physical problems remains far from being

straightforward.

The second set of techniques is associated to perturbation methods, or asymptotic

analysis. In this case, a perturbed form of the equations is used to reduce the stiffness of

the algebraic system of equations. A Taylor expansion is performed, in terms of the Mach
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number, thus decoupling the acoustic waves from the equations, and replacing them with a

set of pseudo-acoustic forms, where the wave velocities become the same order of magnitude

as the fluid velocity. Such a procedure alters the velocity of the acoustic waves in order to

allow the numerical integration to be performed with larger time steps (CHOI; MERKLE,

1993; ROLLER; MUNZ, 2000).

Other methodologies have been also developed for the purpose of considering density

variations, such as the artificial compressibility methods, and the PGS (Pressure Gradient

Scaling). The first, described, for instance in Ferziger and Peric (1996), has been successfully

applied to the numerical simulation of reactive flows and, in particular, to describe the propa-

gation of a planar turbulent premixed flame (DOURADO; BRUEL; AZEVEDO, 2004). The

PGS method (RAMSHAW; O’ROURKE; STEIN, 1985; AMSDEN, 1989; WANG; TROUVé,

2004; PAPAGEORGAKIS; ASSANIS, 1999) displays certain similarities to the perturbation

methods, and it also acts on the pressure term that appears in the momentum equation. In

this method the pressure gradient is multiplied by a factor 1/α2
PGS, where αPGS is a constant

that amplifies the pressure variations. As a consequence, since the velocity of acoustic waves

is decreased by a factor αPGS, the pressure variations are amplified by a factor α2
PGS, thus,

improving the robustness of the numerical method as the Mach number tends towards zero

(AMSDEN, 1989). Finally, it is worth adding that one reason for the use of the last two

methods rely in the fact that they can be easily implemented within existing compressible

solvers.

2.2.2 Pressure-based methods

In contrast to the methodologies discussed above, that are based on density variations,

pressure-based methods have been initially proposed to solve fully incompressible flows, re-

taining the pressure as one of the primary variables. Such numerical schemes that are often

referred to as pressure-corrections methods, or projection methods, evaluate the pressure

and velocity fields in a segregated manner (CHORIN, 1968). In pressure-based methods, the

pressure does not play a thermodynamic role, but ensures the incompressibility condition,

which leads to a discretization scheme based on a separation of operators (splitting method).
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In a first step, momentum equations are solved to obtain an estimated velocity field, based on

a previous evaluation of pressure. The velocity field should be solenoidal, and this property

is enforced by a subsequent projection step within the subspace of divergence-free vectorial

fields. Such projection, which defines the corrector step, relies on the Hodge decomposi-

tion theorem (CHORIN; MARSDEN, 1993). The pioneering works in this field (CHORIN,

1968; PATANKAR, 1980) have provided the basis for the development of several projection

schemes that are still currently used. More specifically, the work of Patankar (1980), has

led to a family of methodologies referred to as the SIMPLE (Semi-Implicit Pressure Linked

Equations) approach, which undoubtedly remains the most widely used to obtain the solu-

tion of incompressible flows.

As previously mentioned, in the low Mach number regime, the compressibility effects

have a negligible influence on the momentum transport and the pressure is only a weak

function of density. To prevent significant inaccuracies when performing the evaluation of

pressure, it is usually divided into two distinct components:

P (x, t) = Po(t) + P ′(x, t), (2.1)

where Po is a reference pressure level2, with Po(t)/Po = O(1), and P (x, t)/Po = O(Ma2).

It is worth noting that Po(t) is often referred to as the thermodynamic pressure, whereas

P ′(x, t) is called the dynamic pressure since it is directly related to modifications of the

velocity field.

Using such a decomposition, the thermodynamic pressure appears in the equations of state

and energy conservation only, vanishing in the momentum equation. Since its gradient is

zero everywhere, only the gradient of the dynamic pressure component remains. It is worth

noting that this procedure significantly accelerates the convergence only if the pressure fluc-

tuations remain sufficiently small.

Since one of the objectives of the present work is to provide guidelines for verification

2Since the interest of the present thesis lies in gaseous flow fields, the effects of gravity are not considered,
hence Po(t) is a function of the time only.
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and cross-checks of a recently developed incompressible code, the most natural choice for

an extension to variable density flows is a formulation based on pressure variations, i.e.,

to extend a mathematical and numerical model proposed for fully incompressible flows to

handle density variations.

A wide class of numerical methods that remains used to perform such simulations of low Mach

number flows, is based on predictor-corrector methods. Several works, (NAJM; NAJIM;

WYCKOFF, 1998; COOK; RILEY, 1996; RAUWOENS; VIERENDEELS; MERCI, 2007;

COLELLA; PAO, 1999; KARKI; PATANKAR, 1989; LIMA-E-SILVA; SILVEIRA-NETO;

DAMASCENO, 2003; BELL, 2005a; LESSANI; PAPALEXANDRIS, 2006a; KNIO; NAJM;

WYCKOFF, 1999) share such pressure-velocity coupling. Rider et al. (1998) report an

extensive discussion about robust projection methods applied to variable density low Mach

number flows. The details of the algorithm retained for the present study will be presented

in Chapter 4. In the next sections a brief review on the modeling of turbulent combustion

is presented.

2.3 Turbulent premixed combustion modeling

Under many circumstances of applied interest, combustion proceeds in mixtures in

which reactants have been fully mixed prior to chemical reaction. In many practical applica-

tions premixed combustion is turbulent (MERCI; MASTORAKOS; MURA, 2010), and well

known examples can be outlined: in the field of propulsion, they include spark ignitions en-

gines and jet engines, for instance. In the safety field, another important example are vapor

clouds explosions, associated with the leakage of fuel in the atmosphere, where it mixes with

air and may subsequently ignite. A more common example of turbulent premixed combus-

tion is the flame above a Bunsen burner, where the flow of premixed reactants is turbulent

due the high velocity of the mixture in the feeding tube or due to a turbulence-generating

grid. In the following sections, a brief review is presented of LES and combustion models

usually retained to perform the numerical simulation of premixed turbulent reactive flows.
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2.3.1 Large Eddy Simulation

As mentioned in the introduction of this thesis, the solution of the balance equations

(mass, momentum, energy, species mass fractions, etc.) is deemed sufficient to represent

the evolution of a multi-component gas-phase mixture in either laminar or turbulent flow,

provided that the continuum hypothesis holds, and once suitable constitutive equations for

the fluids of interest are specified (HAWORTH, 2010a). The full solutions of this set of

equations is, however, far from being straightforward, specially under turbulent conditions.

To solve each and every scale of a turbulent reactive flow, i.e., to perform a Direct Numer-

ical Simulation of a turbulent reactive flow with the computational power available today

still remains out of reach for problems of engineering interest, see for instance Pope (2000).

Since all length and timescales must be resolved, the computational cost of a DNS increases

proportionally to Re3, where Re is the Reynolds number (POPE, 2000).

The highly non-linear set of PDE’s is extremely sensitive to small variations of initial

and boundary conditions. If the simulation of an actual combustion device is of interest, in-

formation on the boundary conditions is seldom available with the required level of accuracy.

Moreover, the mesh required for the DNS simulation of reactive flows must be fine enough to

resolve the inner structure of the flame, which, in many cases, is much smaller than the so-

called Kolmogorov scales of the flow (POINSOT; VEYNANTE, 2005; HAWORTH, 2010a).

To give an idea of the computational cost of a DNS, Poinsot and Veynante (2005)

present the results of a DNS of a premixed flame front at atmospheric pressure interacting

with isotropic turbulence. The mesh adopted in a such simulation contains approximately

two million grid points and the corresponding computational domain is a cubic box of size

5 × 5 × 5 mm3. Finally, even if a computation of full set of PDE’s of a turbulent reactive

flow is computationally possible, the large amount of data generated is too cumbersome to

be dealt with for most practical purposes.

Directly opposed to the completeness of Direct Numerical Simulations description, the
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Reynolds Averaged Navier Stokes (RANS) or Unsteady Reynolds Averaged Navier Stokes

(URANS) computations provide the temporal average of the flows properties of interest.

Still largely adopted in turbulent combustion (POINSOT; VEYNANTE, 2005; FOX, 2003;

HAWORTH, 2010a; YILMAZ, 2008), these methods consist on the application of a temporal

average operator on the transport equations. Such a process results in averaged equations,

with unclosed terms where some sort of closure is needed. These unclosed terms are the

Reynolds stresses and the turbulent scalar fluxes, and the averaged chemical reaction term.

Although indisputably much less expensive than DNS, providing mean values only precludes

a RANS model from predicting turbulent structures that can influence the flame front, spe-

cially in shear flows, such as mixing layers, boundary layers and jets (LIBBY; WILLIAMS,

1994).

The URANS methods also involve models for the unclosed terms in the turbulent

transport equation for the scalar fields, such as the mass fractions and chemical reaction.

The modeling of such terms in a URANS methodology is more complicated, due to the pos-

sible occurrence of counter-gradient diffusion (LIBBY; BRAY, 1981).

Counter gradient diffusion can occur when the flow near the flame front is dominated by

the acceleration induced by the thermal expansion due to the chemical reactions, whereas

gradient diffusion occurs when turbulence dominates the flow field near the flame front.

URANS models are usually based on gradient transport assumptions. This is an acceptable

hypothesis in constant density flows, but in variable density flows, such an important phe-

nomena, i.e. the counter gradient diffusion, cannot be accounted for within the framework

of turbulent diffusion transport (YOSHIZAWA et al., 2009).

The modeling (closure) of the chemical reaction term based on the direct application of the

same averaging procedure applied to the other terms of the transport equations is incorrect,

due to the high non-linearity of the expressions that describe the chemical kinetics based

on the Arrhenius law (POINSOT; VEYNANTE, 2005). As a consequence of such difficulty,

phenomenological models are largely used. Two examples of such modeling are the Eddy

Break-Up model of Spalding (1971) and the BML of Bray, Libby and Moss (1985).
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Large Eddy Simulations (LES) can be thought as an intermediate methodology be-

tween the DNS and URANS. The large scales of the turbulent flows are explicitly calculated,

whereas the non-linear interactions between large scales and subfilter scales are modeled us-

ing subfilter (or subgrid) closure models. The balance equations for large eddy simulations

are obtained by filtering the instantaneous transport equations. LES can determine the in-

stantaneous position of a “large scale” resolved flame front but a subgrid model is required

to account for the effects of small turbulent scales on the combustion processes (POINSOT;

VEYNANTE, 2005). Since large structures are explicitly computed in LES, instantaneous

fresh and burnt gases zones, where turbulence characteristics are quite different, can be,

most often, clearly identified, at least at the resolved scale. In comparison with a URANS

methodology, LES could provide a better prediction of the turbulence/combustion interac-

tions. Schumann (1989) was one of the first to conduct a LES of a reacting flow. Colucci

et al. (1998a) argue however, that the assumption made in that work, simply to neglect

the contribution of the SGS scalar fluctuations on the filtered reaction rate, needs to be

justified for general applications. The importance of such fluctuations is well recognized

in Reynolds averaged procedures in both combustion and chemical engineering problems

(LIBBY; WILLIAMS, 1994), therefore, it is natural to believe that these fluctuations are

also important in LES.

LES can be expected to have the greatest advantage over RANS in situations where

large-scale flow dynamics are important (LESIEUR; MÉTAIS, 1996; LESIEUR; MÉTAIS;

COMTE, 2005). This is the case, for example, when combustion instabilities in gas-turbine

combustors or cycle-to-cycle variations in reciprocating-piston IC engines is of interest (HA-

WORTH, 2010a). However, there are significant differences between LES for non-reacting

flows (where most of studies have been made) and LES for reacting flows (COOK; RILEY,

1996; POPE, 2000). In constant-density, high-Reynolds-number hydrodynamic turbulence,

remote from walls and without chemical reactions, the rate-controlling processes are deter-

mined by the resolved large scales. In contrast, in turbulent combustion at high Reynolds

and Damkhöler numbers, the essential rate-controlling processes of molecular mixing and

chemical reaction occur at the smallest, usually unresolved, scales (POPE, 2004). For such
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cases, the arguments in favor of LES may be less compelling over RANS approaches, since

the modeling of rate-controlling combustion on LES processes requires the same modeling

as in RANS. In fact, most LES combustion models, with proper modifications, are derived

from RANS models (FOX, 2003; POPE, 2004).

Figure 2.4: Axial swirler vanes and temperature iso-surface (T=1,000 K) colored by velocity

modulus (SELLE et al., 2004).

It is important to underline, though, that LES may provide potentially more reli-

able turbulence models than RANS and its applicability on turbulent reactive flows has

shown very promising results, hence its wide and rapid growth (POPE, 2000; PIERCE, 2001;

PITSCH; LAGENESTE, 2002; WESTBROOK et al., 2005; POINSOT; VEYNANTE, 2005;

COURTOIS, 2005; HAWORTH, 2010a; ANDRADE; SILVA; MURA, 2011; YILMAZ et al.,

2011). The reason why LES provides substantial advantages for modeling turbulent combus-

tion lies on the fact that the scalar mixing process is of paramount importance in chemical

conversion. As an illustration of LES capability, Fig. (2.4) shows a three-dimensional visu-

alization of the reacting flow inside of an industrial gas turbine burner. The isosurface of

temperature at T = 1, 000 K is shown. The wrinkling of the flame surface illustrates the

turbulent nature of the flame/flow interaction. Pockets of fresh gases are periodically shed

from the main flame zone and burnt downstream. A central core of hot gases is stabilized
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along the burner axis by the recirculation zone induced by swirl (SELLE et al., 2004).

2.3.1.1 Characteristic turbulent time, velocity and length scales

Figure (2.5) shows the energy spectrum [E(k)] of homogeneous isotropic turbulence at

a sufficient high Reynolds number, as a function of the reciprocal of the eddy size, i.e., the

wave number k. According to the Kolmogorov hypothesis (POPE, 2000), the energy transfer

rate in the inertial subrange leads to a slope of −5/3.

Figure 2.5: Energy spectrum of a homogeneous, isotropic turbulence. Kinetic energy, [E(k)]

as a function of wave number. Representation in a logarithmic scale.

Two important characteristic turbulent length scales bounding the inertial subrange

can be identified in Fig. (2.5), the Kolmogorov length scale, η, and the integral length scale

l. The Kolmogorov length scales denotes the scale of the smallest eddies. At these length

scales, dissipation of the energy due to viscous forces occurs. Thus, the Kolmogorov length

scale has to be a function of the kinematic viscosity, ν, and the kinetic energy dissipation,

ε. In addition, the Kolmogorov time scale τη, can be defined as being proportional to the

turnover time of a Kolmogorov eddy. By dimensional analysis, the Kolmogorov length, time

and velocity scales can be defined as,

η =

�
ν3

ε

�1/4

, τη =

r
ν

ε
, vη =

�
ν3ε

�
. (2.2)

The relevant turbulent and chemical time and length scales for laminar premixed combustion
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are presented in the following sections. Such laminar parameters are important since, when

compared to those of a turbulent flow in a flow regime diagram, the different regimes of

premixed turbulent combustion can be identified. In the following section the regimes of

premixed turbulent flames are presented.

2.3.2 The laminar premixed flame

In a qualitative way, the characteristics of a premixed laminar flame are now described

using Fig. (2.6). The fresh gases enters at the left hand side at a temperature Tu and

are consequently burnt through the flame front. The burnt gases, at a temperature Tb, are

convected to the outlet (right hand side) of the domain of interest. If the injection velocity of

the fresh gases is the same as the laminar flame speed, S0
l , such a flame front would appear

fixed to an external observer.

Figure 2.6: Evolution of the chemical reaction rate, temperature and mass fraction of fuel

through a laminar flame front.

The flame front, with a thickness lF can be separated in two zones: a pre-heating

zone, and a reaction zone. In the pre-heating zone there is a temperature increase, without a

strong presence of chemical reactions. The decrease of the reactants concentration is due the

diffusion of species that mixes with part of the burnt gases before entering the reaction zone,

where chemical reactions occurs. There is a strong decrease of the reactants concentration,

which are progressively consumed. When no reactants are left, the chemical reaction stops,

and the chemical reaction rate goes to zero.
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2.3.2.1 Thickness and velocity of a laminar premixed flame

Based on a one-dimensional analysis of the Navier-Stokes equations, supposing a cer-

tain number of simplificative hypothesis (mainly supposing the flame as adiabatic and com-

posed by gases with constant specific heat), Mallard and Chatelier (1883) proposed in 1883

to describe the laminar speed of a premixed flame as,

SL ∝
�
ΓkẆ F

�1/2
, (2.3)

where Ẇ F is the mean reaction rate of fuel inside the flame front 3. Supposing the chemical

time, τc is of order 1/Ẇ F , and considering that lF ≈ SLτc, it is possible to show that,

lF =
Γk
SL
, (2.4)

where, Γk is the molecular diffusivity of the chemical species k

2.3.3 Regimes and diagram of premixed turbulent flames

The understanding of the mechanisms by which turbulence and chemistry interact is

essential prior to modeling of turbulent premixed combustion. Turbulent premixed reacting

flows can be described by a wide range of characteristic time and length scales. The rel-

evant turbulent and chemical time and length scales for laminar premixed combustion are

important since, when compared to those of a turbulent flow in a flow regime diagram, the

different regimes of premixed turbulent combustion can be identified. Borghi (1985) and

Peters (1999), by analyzing experimental results of turbulent premixed flames, defined the

possible modes of interaction between turbulent structures and flame structures. Such pos-

sible interactions are based on the relations between the turbulent and combustion time and

length scales. Thus, the combustion regimes, could be represented graphically by a diagram

known as Borghi diagram, illustrated, in a logarithmic scale, in Fig. (2.7).

3More precisely ẆF = 1
Tb−Tu

R Tb

Tu
ω̇F dT , where ω̇F , is the rate of fuel consumption.
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Figure 2.7: Regime diagram for premixed turbulent combustion, adapted from Peters (1999).

In the diagram presented in Fig. (2.7), the abscissa express the ratio l/lF , which can

be interpreted as a measure of the turbulent integral length scale, l, interacting with flames

of thickness lF , lF being the total thickness of a laminar flame, proportional to the thick-

ness of the pre-heating zone. The thickness of the internal layer, where the majority of the

chemical reaction occurs, is called lδ. The lδ is approximately of order 0.1lF . The ordinate

shows the ratio of u′/SL, which is a measure of the turbulent intensity u′, over the laminar

flame speed SL. The line ReT = 1, with ReT = u′l/SLlF , (BORGHI, 1985) delineates the

turbulent combustion regime (ReT > 1).

Considering the diagram shown in Fig. (2.7), at least four different turbulent premixed

combustion regimes can be identified. They are outlined in the following.

1. Wrinkled flames regime: it is delimited by the condition of u′/SL < 1. The laminar

flame velocity is higher than the intensity of fluctuations and, therefore, governs the

process flame-turbulence interaction. The turbulence practically does not wrinkle the

flame front. Since turbulence is desired in a number of industrial applications, this

kind of flame has few practical applications (ANDRADE, 2009);

2. Corrugated flames regime: it is delimited by the conditions u′/SL > 1 and Ka < 1,

where the Karlovitz number (Ka = l2F/η
2 = τc/τη), is the ratio between the chemical

time scale and the Kolmogorov time scale (MERCI; MASTORAKOS; MURA, 2010;
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PETERS, 1997). The characteristic turbulence intensity is higher than the laminar

flame velocity, which induces the corrugation of the flame front. The smallest structures

in the Kolmogorov scale however, are larger than the laminar flame thickness, thus not

interfering with the internal structure of the flame;

3. Thin reaction zones: it is delimited by the conditions Ka > 1 and Kaδ = l2δ/η
2 < 1.

The first condition indicates that the Kolmogorov length scale, η, is smaller than the

laminar flame thickness, lF . The second condition indicates that η is larger than

the inner layer of the laminar flame, lδ. In this case the turbulence could alter the

structure of the pre-heating layer of the flame and significatively modify the transport

of the chemical species and energy. However, there still no interaction between the

turbulence and the inner part of the flame;

4. Broken reaction zones or thickened flames: Above Kaδ > 1, with the Damkhöler

number, i.e., the ratio of the integral turbulence time scale to a characteristic chemical

time scale, Da = τt/τc, smaller than 1, the turbulent length scale is sufficiently small

to penetrate the inner part of the laminar flame, lδ. It can promote local extinctions of

the chemical reaction due to heat and radicals losses in the pre-heating layer. In such

a regime even a local extinction of the combustion is possible.

2.3.4 Effects of flame fronts on turbulence

The flame-turbulence interaction is a two-way mechanism. Turbulence not only af-

fects the flame front, but the flame modifies the turbulent flow field also. An example of

that occurs due the fact that when temperature changes along the flame front, kinematic

viscosity and, therefore, the local Reynolds number changes as well. The kinematic viscosity

of air, for instance, increases roughly as T 1.7, which means that for a flame in which the ratio

Tb/Tu = 8, where Tb and Tu are the temperature of the burnt and fresh gases respectively,

the local Reynolds number is about 40 times smaller in burnt than in the fresh gases. This

results in the possibility of a relaminarization of the turbulent flow after it passes through a

flame front (POINSOT; VEYNANTE, 2005).
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Another effect that the combustion may induce on the turbulence is an increase of

the turbulent kinetic energy associated with the flow acceleration through the flame front.

For subsonic combustion, (POINSOT; VEYNANTE, 2005) show that the flow accelerates

through a flame front from a velocity u1 to u1 + SL(ρu/ρb − 1) = u1 + SL(Tb/Tu − 1), where

ρb and ρu are the density of the burnt and fresh gases respectively. This acceleration can be

significant since it occurs in very thin regions, hence the turbulent flow field is altered. The

vorticity can also be affected by the velocity and density changes leading to the so-called

“flame-generated turbulence” (BORGHI; CHAMPION, 2000).

An important subject connected to turbulent premixed flames is the possible presence

of the counter-gradient diffusion. In Veynante et al. (1997), Direct Numerical Simulations

(DNS) are used to provide basic information on the modeling of the turbulent flux of the mean

chemical reaction progress variable c̃, ρu′ic
′ and study the occurrence of counter-gradient

transport. The configuration studied corresponds to two or three-dimensional premixed

flames stabilized in an isotropic turbulent flow. The simulations, which correspond to various

flame and flow conditions that are representative of flamelet combustion, reveal that different

flames feature different turbulent transport properties. These differences can be related to

basic dynamical differences in the flame flow interactions: counter-gradient diffusion occurs

when the flow field near the flame is dominated by thermal dilatation due to chemical

reaction, whereas gradient diffusion occurs when the flow field near the flame is dominated

by the turbulent motions. By assuming infinitely fast chemical reactions, in the limit of high

Damkhöler number values, Libby and Bray (1981), show that the turbulent transport of a

reactive scalar, represented by the chemical reaction progress variable, can be determined

by,

ρu′ic
′ = ρ̄c̃(1− c̃)

�
ubk − uuk

�
, (2.5)

where ubk and uuk denote the conditional velocities in burned and unburned mixtures. Vey-

nante et al. (1997) introduced the Bray number, NB, a dimensionless parameter to qual-

itatively characterize the transition between gradient diffusion (GD) and counter-gradient
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diffusion (CGD) scalar transport in turbulent premixed flames:

NB =
τSL
2αu′

, (2.6)

where τ is the heat release parameter. The parameter α is an order-of-unity function that de-

scribes the ability of various sized eddies to affect the flame front (MERCI; MASTORAKOS;

MURA, 2010). When NB > 1, CGD takes place, whereas NB < 1 correspond to GD.

The interaction between combustion-induced density changes and the pressure gra-

dient plays a very important role in both flame-generated turbulence and counter-gradient

diffusion. However, only in recent works on turbulent premixed combustion modeling is the

considered conditional pressure gradients, (DOMINGO; BRAY, 2000; ROBIN; CHAMPION;

MURA, 2008; MURA; CHAMPION, 2009). The next section provides a synthetic overview

of the available models for turbulent premixed combustion.

2.3.5 Combustion models

As it will be seen in chapter 3, the filtering process of the transport equations yields

a filtered chemical reaction rate term, S(c). The main difficulties in modeling this term are

connected to the fact that the time and length scales of the flames are usually far smaller

than the characteristics lengths of the mesh and time step size retained, at least concerning

LES applications. Indeed, if considered the general dimensions of a combustion chamber, the

size of the filters (which are related to the grid and time step size) retained in the simulations

of turbulent flames are significantly larger than the thickness of a flame front. However, the

chemical reaction rate, S(c), is connected to strong properties variations, such as tempera-

ture and mass fractions for instance. This renders that the determination, and consequently

the modeling, of the contributions of the chemical reactions on the turbulent flow field quite

challenging.

In this sense, many strategies have been developed during the last twenty years to

tackle the modeling of turbulent premixed flames, more specifically the modeling for the
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flamelet regime (MERCI; MASTORAKOS; MURA, 2010). Among them, the following

approaches are highlighted: (a) Artificially thickened flames models (POINSOT; VEY-

NANTE, 2005), (b) G-equation based models, or level set models(WILLIAMS, 1985; PE-

TERS, 1997, 1999; HERRMANN, 2006), (c) Flame surface density models (HAWKES;

CANT, 2001), and (d) models based on probability density functions - PDFs. The first

three approaches are based on the hypothesis of infinitely fast chemistry, i.e., flames in

which the characteristic time scale of the chemical reactions are much smaller that the char-

acteristic time scale of the turbulence, which correspond to very high Damkhöler numbers.

In this situation, the flame front is seen as a extremely thin surface, constantly wrinkled and

corrugated by the effects of turbulence. The literature is rich in information about those ap-

proaches, see for instance Bray, Libby and Moss (1985), Peters (1997), Pitsch and Lageneste

(2002), Fox (2003), Poinsot and Veynante (2005), Pitsch (2006).

For finite rate chemistry, in the regime of thickened flames for instance, it is expected

that the previous closures, developed for the fast chemistry limit, becomes less suitable,

(MERCI; MASTORAKOS; MURA, 2010). In cases of finite rate chemistry the time scales

of the chemical reactions have the same order of magnitude of the time scales of the turbu-

lence, i.e., a close to unity Damkhöler number.

According to Mura, Galzin and Borghi (2003), the fourth approach “(d)”, based on the

probability density functions, allows modeling both fast chemistry and finite rate chemistry

cases. Such a category of models are conceptually different from the models developed in the

fast chemistry limit. While these are based on the dynamics and physical properties of the

flames, thus being restricted to applications where laminar flames may be found, the PDF

models are based on one-point statistical analysis of the flow (ANDRADE; SILVA; MURA,

2011).

There are two different ways to obtain the desired probability density function. A first

one is to assume the PDF to have a particular shape that is parameterized by its first and

second moments. These first and second moments are then solved using modeled transport
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equations. Nevertheless, this approach may not account for the complex PDF distribu-

tions actually observed when complex chemistry effects are considered(FOX, 2003). A more

powerful technique is to obtain the joint PDF of the scalars directly from their transport

equations. This eliminates the need to specify PDF shapes, which almost always involves

guessing and is therefore inaccurate. This method is referred to as the composition joint

PDF method or “transported” PDF method.

Merci, Mastorakos and Mura (2010) argue that despite the great advantages of the

transported PDF modeling, the resort to these models in premixed conditions remain rela-

tively scarce. This is a result of the difficulty associated with the closure of the micro-mixing

terms for reactive scalars (ANAND; POPE, 1987; MURA; GALZIN; BORGHI, 2003). The

essential issue of premixed combustion in the PDF framework is that, it is mandatory to take

into account the strong coupling between molecular diffusion and chemical reactions.Finally,

Robin et al. (2007) provide robust methodologies based on the presumed PDF approach

that are well-suited to deal with both wrinkled and thickened flames regimes, provided that

a satisfactory closure is set forth to represent the mean scalar dissipation functions (MURA;

ROBIN; CHAMPION, 2007; CHAKRABORTY; SWAMINATHAN, 2007).

In the transported PDF models (FOX, 2003), the main physical processes involved in

a combustion, i.e., molecular diffusion, turbulent micro-mixing and thermal expansion due

chemical reactions, which generally occur below the subfilter length scales, are analyzed by

a statistical approach. The focus of the present work is on this approach, the models based

on the transported probability density functions, or in a LES context the Filtered Density

Function - FDF . Such an approach will be detailed in the following chapter.
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CHAPTER III

MATHEMATICAL MODELING

In this chapter the mathematical framework retained for simulating turbulent reactive

flows is presented. The method involves the numerical solution of partial differential equa-

tions and stochastic differential equations. A hybrid approach in which the LES methodology

is coupled with the transport of the probability density function (PDF) is retained. From the

LES approach the Eulerian filtered variables are evaluated, whereas stochastic differential

equations are solved using Lagrangian particles that evolve in both physical and composi-

tional space. The latter yields the full one point, one time statistics of filtered scalar fields

and provides the LES solver with the filtered chemical reaction rate.

In the first part of the present chapter the balance equations that model the flows under

consideration are presented, as well as the hypothesis adopted to proceed with their closures.

Since the LES methodology is adopted, the filtering process of the balance equations is also

described.

The second part of the chapter describes the main characteristics of the transported PDF

method. The scalar PDF transport equation is presented and its equivalent system of

stochastic differential equations is described. Finally, the chapter is concluded with a brief

description of the coupling between the Eulerian and Lagrangian approaches (LES-PDF).
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3.1 Governing equations

The main objective of the present work is to simulate turbulent reactive low Mach num-

ber flows. Considering a mathematical model suitable for variable density flows, in which the

primary transported variables are the density ρ(xi, t), the three velocity components ui(x, t)

(i = 1, 2, 3), the specific enthalpy h and the mass fractions Yk of the K chemical species

(k = 1, . . . , K), the balance equations for the cited variables in space, (xi, i = 1, 2, 3), and

time, t, are summarized below along with an equation of state that relates the thermody-

namic component of the pressure to density and temperature.

∂ρ

∂t
+
∂ρui
∂xi

= 0, (3.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= −∂P
∂xi

+
∂

∂xj
τij + Sui, (3.2)

∂ρh

∂t
+

∂

∂xj
ρujh =

∂Jhj
∂xj

+ Sh, (3.3)

∂ρYk
∂t

+
∂

∂xj
ρujYk =

∂Jkj
∂xj

+ Sk, (3.4)

P = Po(t) + P ′(x, t); Po(t) = ρRT ; (3.5)

in the above equations, τij stands for the viscous strain rate tensor, Sui represents the body

forces, Jhj is the molecular flux of enthalpy in the j direction, Sh is the source term of

enthalpy, Jkj is the molecular flux of the k chemical specie in the j direction, Sk is the

chemical reaction rate of the k-th species, Po(t) is the thermodynamic pressure, a function

of time only, P ′(x, t) is the dynamic pressure, henceforth denoted only by p. Since the

flows treated in this work operates in open domains, the thermodynamical pressure does

not vary in time. Hence, Po(t) becomes a reference pressure, e.g. atmospheric pressure.

Ro = RΣK
k=1Yk/Mk is the mixture gas constant, with R being the universal gas constant.

The molar mass of species is denoted by Mk, and T is the temperature.

Considering a Newtonian fluid the viscous strain rate tensor is given by,

τij = µ

�
∂ui
∂xj

+
∂uj
∂xi

�
− 2

3
µ
∂uk
∂xk

δij, (3.6)
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where the bulk viscosity has been neglected and, µ is the fluid viscosity and δij is the

Kronecker delta tensor. In this work the molecular diffusion flux of species is based on the

gradient transport hypothesis, and can be described by the Fick law. Neglecting the Soret

effect, Jkj is given by,

Jkj = − µ

Sck

∂Yk
∂xj

, (3.7)

In Eq. (3.7) Sck = −ν/Γk is the Schmidt number of the k species; Γk is the molecular

diffusivity of the chemical species k.

The molecular flux of enthalpy can be described by,

Jhj = − µ

Pr

"
∂h

∂xj
+

KX
k=1

�
Pr

Sck
− 1

�
hk
∂Yk
∂xj

#
, (3.8)

where the first term of the right hand side of Eq. (3.8) is the flux of enthalpy by molecular

diffusion, and the second term stands for the flux of enthalpy induced by different diffusion

coefficients of each chemical specie. The term representing the specific enthalpy associated

to each chemical specie k, hk, is the sum of the chemical and sensible enthalpies, i.e.,

hk = h0
k +

Z T

T0
Cp,kdT , (3.9)

where Cp is the mean specific heat at constant pressure of the mixture. Heat transport by

radiation and Dufour effects 1, have been neglected in the present analysis.

The Prandtl number, ratio of momentum and thermal diffusivity is given by,

Pr =
µCp
λ
, (3.10)

where λ stand for the thermal conductivity of the fluid.

The ratio of Schmidt and Prandtl numbers i.e., the Lewis number, that describes the ratio

between the thermal and mass diffusivity of each chemical species k is given by Lek =

Sck/Pr = λ/(ρCpΓk). Assuming Lewis number values equal to unity, i.e., equivalent thermal

1diffusion of enthalpy due the gradient of mass fractions of chemical species
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and mass diffusivity coefficients, and also assuming Γk = Γ, the molecular flux of enthalpy

is given by,

Jhj = −ρΓ
∂h

∂xj
. (3.11)

The source term of sensible enthalpy Sh of Eq. (3.3) can be written,

Sh =
Dp

Dt
+
∂τijui
∂xj

, (3.12)

where the term Dp/Dt represents the effects of compressibility, and the term ∂(τijui)/∂xj

stands for the energy dissipation due the action of viscous forces. The decomposition of the

pressure shown in Eq. (3.5) is reinforced here. In the work of Lessani and Papalexandris

(2006b) it is recalled that there are basically three considerations to be addressed when

dealing with the time derivative of pressure: (i) the system is open, (ii) the system is closed

and (iii) the system is semi-open so that there is a restricted opening (for example, a crack)

between the flow domain and its exterior. In the present work the flows of interest are flows

with open boundaries, in which po is constant, and therefore Dp/Dt can be neglected. For

closed and semi-open systems, Lessani and Papalexandris (2006b) present alternatives for

modeling Dp/Dt. Concerning the energy dissipation due the action of viscous forces, with

the assumption of low Mach number flow, this term is neglected.

With the simplifying assumptions retained above, Eqs. (3.3) and (3.4) present equiv-

alent forms, thus a general transport equation for a scalar field Φ composed by σ = K + 1

species, where φk = Yk; k = 1, ..., K, and φσ = h, can be derived.

Based on the assumptions and hypothesis retained, the system of equations to be solved can

finally be written,

∂ρ

∂t
+
∂ρui
∂xi

= 0, (3.13)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (3.14)

∂ρφα
∂t

+
∂ρujφα
∂xj

=
∂

∂xj

�
ρΓα

∂φα
∂xj

�
+ Sα, (3.15)
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ρ = ρ(φα) (3.16)

As it will be seen in section 3.1.6, through some additional assumptions concerning

the chemical kinetics and the Mach number of the flow, it is possible to further simplify Eq.

(3.15) to a transport equation of a single scalar, called progress variable, denoted by c. The

evaluation of this progress variable determines the influence of the combustion process on

the flow by governing density variations. In this case the density and the scalar source term,

Sα, are exclusive functions of c, i.e. ρ = ρ(c) and Sα = S(c). It is noteworthy that the

effects of the eventual variations of temperature on the molecular viscosity are also taken

into account using the Sutherland’s law (SCHLICHTING, 1951).

3.1.1 Filtered transport equations

The main idea behind the LES methodology is to compute the largest structures of the

flow field, typically larger then the computational grid, whereas the non-linear interaction

between large and sub-grid scales must be modeled. This methodology has been widely used

with success for non-reacting flows, see in Pope (2000), Lesieur and Métais (1996), Germano

et al. (1991), Lilly (1992), Silveira-Neto et al. (1993). In combustion modeling however, the

application of LES still remains its early stages (POINSOT; VEYNANTE, 2005).

In LES, the dependent variables can be filtered in spectral space, where components

greater than a given cut-off frequency are suppressed, (DA-SILVA, 2001) or in physical space

(weighted average over a given volume). In the present work a box filter in physical space is

adopted. These types of LES filters have been discussed, among others, in Pope (2000). A

filtered quantity f is defined as,

f(x) =
Z
f(x′)F (x− x′)dx′, (3.17)

where F is the LES filter, defined as:

F (x) = F (x1, x2, x3) =

8><>: 1/∆3 if |xi| ≤ ∆, i = 1, 2, 3

0 otherwise
, (3.18)
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where (x1, x2, x3) are the spatial coordinates of the vector x, and ∆ = 3
√
Vc is a cubic box

of size equivalent to that of the finite-volume grid retained for discretizing the transport

equations in the eulerian field, and Vc is the volume of a mesh element. It is worth noting

that the filter used in the present work is implicit, i.e., the process of filtering is implicitly

performed based on the fact that the actual process of discretization of the transport equa-

tions is, intrinsically, a filtering process in space and time. Thus, the characteristic length

of the box in Eq. (3.18) is equivalent to the characteristic length of the finite volume grid

adopted in the solution of the discretized system of equations and the temporal band width

is associated with the size of the time step used in the simulations.

In variable density flows it is useful to define the mass-weighted Favre filtering:

ρf̃(x) =
Z
ρf(x′)F (x− x′)dx′. (3.19)

The filtered quantities f and/or f̃ are computed by the numerical simulations. The fluc-

tuations f ′ = f − f are the unresolved, subgrid scale part of the quantity f . With such a

definition it is possible to perform the filtering of the transport equations. This procedure,

however, must be done with care, once, contrary to RANS averaging for instance, in LES we

have f ′ 6= 0. Filtered and double filtered values are not equal neither (f 6= f).

The filtered transport equations can be written,

∂ρ

∂t
+
∂ρũi
∂xi

= 0, (3.20)

∂ρũi
∂t

+
∂ρũiũj
∂xj

= − ∂p

∂xi
+
∂τ̄ij
∂xj
−
∂τSGSij

∂xj
, (3.21)

∂ρφ̃α
∂t

+
∂ρũiφ̃α
∂xj

=
∂

∂xj

 
ρ(Γ)

∂φ̃α
∂xj

!
− ∂Qαj

∂xj
+ Sα, (3.22)

where, τSGSij = (ρ̄ßuiuj − ρ̄ũiũj) and Qαj =
�
ρ̄ßuiφα − ρ̄ũiφ̃α� are the subgrid scale (SGS)

stress tensor and the SGS scalar fluxes, respectively. For non-reacting flows the SGS closure

is associated with τSGSij and Qαj only. In reacting flows, an additional model is required for
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the filtered reaction rate S(α).

In the next section the modeling approaches adopted in the present work for the terms τSGSij

and Qαj are described.

3.1.2 Subgrid closure: the Smagorinsky Model

Most of the subgrid models assume that the smallest turbulent scales are approximately

isotropic and homogenous, exhibiting a “universal” character, whereas the largest, more

energetic structures, are dependent on the flow characteristics. The universal character of

the smallest scales should render them more amenable to modeling, i.e., such an universal

behavior should make these structures more predictable. The most popular subgrid scale

model is the Smagorinsky model (SMAGORINSKY, 1963). The unresolved momentum

flows are expressed according to the Boussinesq assumption (FERZIGER; PERIC, 1996;

POINSOT; VEYNANTE, 2005),

τSGSij − δij
3
τSGSkk = µSGS

�
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

�
= 2µSGS

�
S̃ij −

δij
3
S̃kk

�
, (3.23)

where µSGS is the subgrid (or turbulent) viscosity and S̃ij is the strain rate tensor of the

resolved field (FERZIGER; PERIC, 1996). Note, however, that the isotropic part of the

residual stress does not need to be modeled separately when pressure is decoupled from

thermodynamic variables, because it may then be lumped together with the pressure. In the

present study, acoustic interactions and compressibility effects are not considered, so in the

interest of computational efficiency, this term is not actually computed.

In the Smagorinsky model the eddy viscosity µSGS is obtained by assuming that the

small scales are in equilibrium, so that energy production and dissipation are in balance.

This yields,

µSGS = 2ρ̄(Cs∆)2|S̃| = 2ρ̄(Cs∆)2
�
2S̃ijS̃ij

�1/2
, (3.24)

where Cs is known as Smagorinsky constant. Its value is chosen, in such a way that lo-
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cal equilibrium is maintained, between 0.1 to 0.25 (GERMANO et al., 1991; POPE, 2000).

Although its successful application in numerous cases, the Smagorinsky model is restricted,

with several limitations. Among then, it can be cited: (i) the model does not prevent vanish-

ing small values of the turbulent viscosity in cases when re-laminarization of the flow occurs,

an important effect that may occur in reactive flows, once the thermal expansion can locally

lead to flow laminarization, (ii) by assuming the equilibrium hypothesis, the model fails in

regions where such equilibrium is not maintained, for instance, the model does not allow the

energy transfer from the smallest to the largest structures, which is known as backscattering

(LILLY, 1992), (iii) for simulations where grid elements are highly anisotropic, the models

tends to be excessively diffusive, and the accuracy of the numerical methods retained is

compromised (SCOTTI; MENEVEAU; LILLY, 1993), (iv) it is known that the Smagorinsky

model can be excessively dissipative, especially near walls. One possible solution to circum-

vent this last drawback is to diminish the value of Cs near walls, thus limiting the near-wall

eddy viscosity.

In this respect Ferziger and Peric (1996) present the van Driest damping function,

Cs = Cso
�
1− e−n+/A+

�2
, (3.25)

where n+ is the distance from the wall in viscous wall units, n+ = nuτ/µ, the shear velocity

uτ =
È
τω/ρ and τω is the shear stress at the wall. A+ is a constant, usually taken as 25.

Cso is the initial value of the Smagorinsky constant. Ferziger and Peric (1996) argue that

although this modification of Cs produces the desired result, it is difficult to justify its use

within the LES context. The SGS model should only depend on the local properties of the

flow, and a distance to a wall is not a flow property.

3.1.3 Subgrid closure: the dynamic Smagorinsky Model

Large eddy simulation has been developed and studied as a prediction tool for turbu-

lent flows during the past forty years, with significant advances with the development of the

dynamic Smagorinsky model (GERMANO et al., 1991), with the modifications proposed by

(LILLY, 1992). Based also on the Boussinesq hypothesis, with the dynamic procedure, model
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coefficients are automatically computed using information contained in the resolved turbu-

lent scales, thereby eliminating possible uncertainties associated with tunable parameters.

On great advantaged of the dynamic model is that in the modeling of flows with presence of

walls, the turbulent viscosity tends to zero automatically once the tensor Lij, which depends

only on the velocity field, tends to zero at the walls. This fact makes the use of damping

functions, like the van Driest damping function showed above, no longer necessary.

Several authors have been using the dynamical Smagorinsky model in a wide range

of applications, see for instance Lesieur, Métais and Comte (2005), Meneveau, Lund and

Cabot (2006), Moin (2008). Moin et al. (1991) applied the dynamic procedure to scalar

transport and subgrid kinetic energy models for compressible turbulent flows using Favre

filtering. Pierce (2001) using a progress-variable approach and a presumed beta PDF for a

conserver scalar, applied the dynamic model in the prediction of the lift-off in non-premixed

combustion. In the context of simulation of turbulent premixed combustion, Knudsen and

Pitsch (2008), using a level-set approach, presented a dynamic model for describing the tur-

bulent burning velocity in the context of LES. They applied such a model in a simulation of

a turbulent premixed Bunsen flame studied experimentally by Chen et al. (1996).

Similarly to the Smagorinsky model, the subgrid viscosity is given by,

µSGS = ρ̄Cs∆
2|S̃| = ρ̄Cs∆

2
�
2S̃ijS̃ij

�1/2
. (3.26)

In the dynamic Smagorinsky model the constant Cs is evaluated using the dynamical proce-

dure. Adopting the nomenclature used in the work of Pierce (2001), the following notation

for density-weighted test filtering is retained:

ˇ̃u =
Ó̄ρũubρ . (3.27)

In dynamic modeling, the test filter width is denoted by Ò∆ and is usually taken to be

twice the width of the grid filter, ∆. For the subgrid turbulent stress model, Eq. (3.23), the
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dynamic procedure gives,

Cs =
LijMij

2MijMij

, (3.28)

where,

Lij = −Ȫρũiũj+ ρˇ̃ui ˇ̃uj, (3.29)

and,

Mij = Ò̄ρÒ∆2 ˇ̃Sij| ˇ̃S| −
Û
ρ̄∆2S̃ij|S̃|S. (3.30)

It is noteworthy that subgrid models are generally valid for predicting statistical prop-

erties of the subgrid scales but usually cannot account for instantaneous subgrid scale fluc-

tuations (PIERCE, 2001). For the dynamic procedure to be applicable, the quantity to be

modeled must vary substantially between the grid and test filter scales; otherwise, the dif-

ference between the values of a property in the test filter and in the grid filter will not be

significant and therefore may not be used for modeling subgrid-scale quantities. Examples of

quantities that cannot be modeled dynamically are dissipation and chemical reaction rates,

because these phenomena occur almost exclusively at the smallest scales, which are always

unresolved in LES. The resort to transported PDF methods, like the one explained in the

further sections, is due to the fact that such a method may provide closed solutions for at

least one of the aforementioned quantities.

3.1.4 Subgrid closure: the scalar flux

Following the closure retained for the subgrid stress tensor, the SGS scalar flux can be

represented using a gradient-diffusion model (FOX, 2003),

Qαj = −ρ̄ΓSGS
∂φ̃α
∂xj

, (3.31)
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where φ̃α is the resolved scalar field and ΓSGS is the subgrid diffusion coefficient. ΓSGS is

evaluated as (ANDRADE, 2009),

ΓSGS =
2ρ̄(Cs∆)2

ScSGS
|S̃| = µSGS

ScSGS
, (3.32)

where ScSGS is the subgrid turbulent Schmidt number that controls the magnitude of the

SGS turbulent diffusion.

3.1.5 Chemical reaction rate

The accurate determination of the filtered chemical reaction rate Sα remains one of the

most important challenges in Large Eddy Simulations. The main difficulties are due to the

characteristic size of the spatial and temporal scales of the chemical phenomena, whose order

is usually smaller than grid size. Therefore, the modeling of the filtered chemical reaction

rate is a crucial step.

Among the basic requisites of the models that intend to represent Sα is the one to en-

compass regimes of premixed combustion, as well as the basic chemical kinetics mechanisms.

In the present thesis, a formulation based on statistical representations of the subgrid effects

is retained. Such methodology is based on the transport of a probability density function,

and, in principle, allows the modeling of the filtered chemical source term independent of

the Damköhler number.

According to Mura, Galzin and Borghi (2003), the basic equations for PDFs are of general

validity, but the so-called micro-mixing model, needed for the closure of the turbulent trans-

port in the compositional space, and the turbulent diffusion model that are adopted in the

modeled equations do restrict the applicability domain of such equations.

The closure assumptions and the mathematical modeling of the PDF equation are the sub-

ject of section 3.2. In the next subsection, the focus is to define an expression for the chemical

reaction rates.
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3.1.6 Simplifying assumptions of the chemical kinetics

In order to proceed with the mathematical modeling of the chemical source term, it

is presented here a description of the chemical kinetics mechanisms and the simplifying as-

sumptions adopted in order to obtain a non-dimensional reaction the rate for a single, global

and irreversible chemical reaction. The equations here presented are inspired in the work of

Orbegoso (2007) and Orbegoso and Silva (2009).

First, the fundamental equations of the chemical kinetics are presented. Considering a

chemical system composed by K chemical species, reacting through M elementary chemical

reactions,

KX
k=1

v′kmNk =
KX
k=1

v′′kmNk, m = 1, ...,M, (3.33)

where N is the chemical symbol of the specie k, v′km and v′′km are, respectively, the stoichio-

metric coefficient of the k-th species in the reactants and products of the m-th reaction. The

mass conservation equation can be written as,

KX
k=1

v′kmWk =
KX
k=1

v′′kmWk, m = 1, ...,M, (3.34)

where Wk is the molar mass of the k-th species. Eq. (3.34) can also be written,

KX
k=1

vkmWk = 0, m = 1, ...,M, (3.35)

with vkm = v′km − v′′km.

The production rate of the k-th chemical species, Sk, is the result of the sum of the

productions rates of this species in each of the M reactions,

Sk =
MX
m=1

Skm = Wk

MX
m=1

vkmqm, k = 1, ..., K, (3.36)

where qm is the velocity of the m-th reaction. The sum of the production rates of the K
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species is,

KX
k=1

Sk =
KX
k=1

"
Wk

MX
m=1

vkmqm

#
=

MX
m=1

"
qm

KX
k=1

vkmWk

#
= 0. (3.37)

The velocity of the m-th reaction, qm, is given by,

qm = kfm

KY
k=1

[Xk]
v′km − krm

KY
k=1

[Xk]
v′′km , (3.38)

where [Xk] is the molar concentration of the k-th species, kfm and krm are, respectively, the

direct and inverse reactions rates of the m-th reaction. The molar concentrations are,

[Xk] =
ρYk
Wk

=
ρk
Wk

=
ρ

W
Xk, (3.39)

where Yk, Xk and ρk are, respectively, the mass fraction, the molar fraction and the partial

density of the k-th species. The quantities kfm and krm are important factors in the modeling

of the chemical processes and can be described by the use of the empirical law of Arrhenius,

kfm = AmT
βmexp(−Em/RT ). (3.40)

Am, βm and Em are the pre-exponential constant (frequency factor), the temperature ex-

ponent and the activation energy of the m-th chemical reaction, respectively. The velocity

krm can be evaluated from kfm together with the equilibrium constant of the k-th elementary

reaction, Kcm (WILLIAMS, 1985).

Once defined the fundamental equations of chemical kinetics, simplifying assumptions

are made in order to obtain non-dimensional reaction rate of a single, global and irreversible

chemical reaction. These assumptions are:

1. Combustion of a single, global (m = 1) irreversible (krm = 0) reaction, i.e.,

C + rO → (1 + r)P, (3.41)



46

where C represents the fuel, O the oxidizer, P the combustion products and r the mass

of oxidizer necessary to react a unity of mass of fuel,

2. The fuel C is the minor species reactant, i.e., [XC ]� [XO]. As a consequence,

YO =
ṁO

ṁO + ṁC

≈ 1 = cte, (3.42)

3. The molecular diffusivity of the fuel and the thermal diffusivity of the mixture are

equivalents, i.e.,

Le =
λ

ρcpΓ
= 1, (3.43)

4. Low Mach number flow, Ma� 1,

5. The exponent of temperature of the Arrhenius law is null (β1 = 0)

Under those hypothesis, the velocity of the unique global equations lies,

q = [XC ][XO]Aτexp(−E/RT ). (3.44)

where Aτ becomes the frequency factor of the unique global irreversible chemical reaction.

Applying the equalities Eq. (3.39) in Eq. (3.44) it is possible to write,

q =
� ρ
W

�2

XCXOAτ exp (−E/RT ). (3.45)

The characteristic time of the chemical reactions is defined as,

τc =
� ρ
W
XC |oXO|oAτ exp (−E/RTb)

�−1

. (3.46)

where XC |o, XO|o are values of the molar fractions of fuel and oxidizer in the fresh mixture,
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respectively. Tu is the temperature of the fresh gases. Combining Eq. (3.45) and Eq. (3.46),

q =
1

τc

XC

XC |o
XO

XO|o
exp

�
− E

RT
+

E

RTb

�
. (3.47)

The chemical reaction progress variable is defined as,

c = 1− XC

XC |o
=
T − Tu
Tb − Tu

, (3.48)

where T is the temperature, Tu is the temperature of unburnt (fresh) gases and Tb is the

temperature of the burnt gases. A value of c = 0 is associated to fresh gases, and c = 1

corresponds to burnt gases.

Under the assumptions used in this section, once given the parameters τ = (Tb−Tu)/Tb

and β = τ(Ta/Tb), where Ta = Ea/R is the activation temperature, Ea is the activation

energy and R is the universal constant of gases, the structure of a stationary premixed flame

depends on the “flame parameter” Λ (POINSOT; VEYNANTE, 2005).

Λ =
αAτT

β1
u

S2
L

exp−
β
τ , (3.49)

Such a parameter contains information like heat diffusivity, α = λ/(ρCp), rate parameters,

Aτ , laminar flame speed SL. According to Poinsot and Veynante (2005) various asymptotic

analysis techniques have been developed to solve Eq. (3.49). The first one is due to Zeldovich,

Frank Kamenetski and von Karman (ZKF) and gives:

Λ = 0.5β2, (3.50)

A more precise result, developed by Williams (1985), and retained in the present work is:

Λ = 0.5β2

�
1 +

2

β
(3τ − 1.344)

�
, (3.51)

The chemical reaction rate, S(c), is related to the rate of progress of the single, global
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reaction, q, and the non-dimensional chemical rate of production, Ṡ, by the expression,

S(c) = AτρṠ, (3.52)

where the pre-exponential constant can be calculated as Aτ = ΛS2
L/
�
αe(−β/τ)

�
and Ṡ =

(1− c) exp
h
− β(1−c)

1−τ(1−c)

i
,.

It is noteworthy that the term S(c) presents a strongly non-linear dependency on β, τ

and of the progress variable c.

Based on the definitions given in this subsection, the mathematical background required to

describe the method of the transported PDF can readily be obtained. This is the objective

of the next section.

3.2 Turbulent combustion modeling using a Hybrid LES/PDF computational

model

Probability density function (PDF) methods offer compelling advantages for modeling

chemically reacting turbulent flows (HAWORTH, 2010a). In particular, they provide an

effective resolution to the closure problems that arise from averaging or filtering the highly

nonlinear chemical source terms, and other terms that correspond to one-point physical pro-

cesses in the instantaneous governing equations (FOX, 2003). The closure of the chemical

source term represents a challenge, since the derived representations of the mean chemical

source term must be consistent with known theoretical constraints and experimental obser-

vations, without the direct knowledge of sub-grid scalar fields2. This characteristic implies

that, in principle, even complex chemical kinetics schemes can be treated without closure

difficulties by a transported PDF-based method. Another reason is that statistical moments

of first and second order, associated to RANS or LES models, can be easily evaluated.

On the other hand, since PDF models determine one-point statistics only, terms that thus

involve gradient of properties cannot be resolved explicitly, hence important effects, such as

molecular diffusion and dissipation of scalar fields must be modeled. Indeed, most of the

2Actually, such an information would be available in a DNS simulation, however, DNS simulations for
turbulent reacting flows are not easily tractable with the present computational power.
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developments in the past years have been devoted to the improvement of the physical realism

of such models, known as micro-mixing models (MURA; GALZIN; BORGHI, 2003).

The joint scalar-velocity PDF equation is a multidimensional transport equation that

involves both independent variables and geometrical dimensions of the velocity vector and

the mixture composition. Such an equation contains classical evolution terms in physical

space, such as transient and advective transport of the PDF; pressure fluctuations, viscous

dissipation and other terms that describe the PDF evolution in composition space, such as

the molecular diffusion conditioned to the scalar field; mean pressure gradient and a term

connected to the rate of chemical reaction.

In the present work a formulation based on a PDF transport equation of the filtered scalar

field is retained. However such a formulation does not contain information on the evolution

of the velocity field and turbulence time and length scales. As a consequence, it is necessary

to model the transport of these flow properties separately. In the present work that coupling

is achieved by means of a hybrid LES-PDF approach.

In contrast with classical algorithms that are commonly retained to perform the nu-

merical simulation of a set of partial differential equations, i.e, finite-difference or finite-

volume methods, the modeled PDF transport equation has a rather different structure. It

is a high-dimensional scalar transport equation, and it is less amenable for finite-volume or

finite-difference methods. From early on times in the development of PDF methods, Monte

Carlo techniques, in which the PDF is represented by an ensemble of stochastic particles,

have been employed (POPE, 1985). Stochastic differential equations (SDEs) are constructed

to model the particle properties, e.g., velocity, composition, and frequency, such that the

particles exhibit the same PDF as in the turbulent flows.

3.2.1 Transport of the Probability Density Function

In this subsection the mathematical formulation of the transported Probability Density

Function method is detailed. First, the joint velocity-composition PDF equation is derived,

from the general form of such an equation, the joint composition PDF is demonstrated and
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the closures hypothesis retained are presented.

3.2.1.1 Joint velocity-scalar PDF

Considering a vector field Φ(x, t) = [u(x, t),Y(x, t),h(x, t)] as an ensemble of the

velocity field, of the mass fractions of the chemical species and the enthalpy, its one point,

one time joint probability density function PΦ(Ψ; x, t) = Pu,Y,h(V, ψ,H; x, t) is defined as the

probability of an event where the random fields of velocity u(x, t), mass fraction Y(x, t) and

enthalpy h(x, t) in a point x and in a instant of time t are within a differential neighborhood

of the values V, ψ,H, i.e.,

PΦ(Ψ; x, t)dΨ ≡ Prob {Ψ ≤ Φ(x, t) < Ψ + dΨ}

≡ Prob {V ≤ u(x, t) < V + dV} ∩ (3.53)

Prob {ψ ≤ Y(x, t) < ψ + dψ} ∩

Prob {H ≤ h(x, t) < H + dH} .

The transport equation of the joint velocity - mass fraction - enthalpy PDF can be written

as (DOPAZO; O’BRIEN, 1974; POPE, 1985):

∂ρ(Ψ)PΦ(Ψ; x, t)

∂t
+
∂ρ(Ψ)ujPΦ(Ψ; x, t)

∂xj
= − ∂

∂Vj

[ρ(Ψ)〈Aj|Φ〉PΦ(Ψ; x, t)]

− ∂

∂ψk
[ρ(Ψ)〈Ck|Φ〉PΦ(Ψ; x, t)] (3.54)

− ∂

∂H
[ρ(Ψ)〈Ch|Φ〉PΦ(Ψ; x, t)] ,

where the conditional fluxes 〈Aj|Φ〉, 〈Ck|Φ〉, and 〈Ch|Φ〉 are related to the instantaneous

transport equations as follows:

ρ
Dui
Dt

= ρAi, where, ρAi(x, t) = − ∂p

∂xi
− 2

3
µ
∂uk
∂xk

δij + µ

�
∂ui
∂xj

+
∂uj
∂xi

�
+ Fi, (3.55)

ρ
DYk
Dt

= ρCk, where, ρCk(x, t) = − ∂

∂xj

�
−ρΓk

∂Yk
∂xj

�
+ Sk, (3.56)

The assumptions here are those put forth in section (3.1), i.e., thermal and mass diffu-

sivity coefficients are equal (unity Lewis number), and assuming equality of the molecular
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diffusivity among species, i.e. Γk = Γ,

ρ
Dh

Dt
= ρCh, where, ρCh(x, t) = − ∂

∂xj

�
−ρΓ

∂h

∂xj

�
+ Sh. (3.57)

Eqs. (3.55-3.57) show that the instantaneous state of a fluid particle in any position

is completely described by the three velocity components (ui, i = 1, 2, 3), by an ensemble of

k mass fractions of chemical species Y = (Y1, ..., Yk), by the enthalpy and by the pressure.

Thus, a complete description of a reactive turbulent flow can be done by the use of a joint

PDF of the fields of velocity, mass fraction and enthalpy.

From Eq. (3.54), the PDF evolves in physical space, x, due to the velocity field, uj,

in the velocity sample space due to the conditional acceleration term 〈Aj|Φ〉, in the mass

fractions sample space due to the conditional diffusion/reaction term 〈Ck|Φ〉, and in the

enthalpy sample space due to the conditional diffusion/source term 〈Ch|Φ〉.

Under the previous set of simplifying hypothesis, that has been retained to describe 3 the

joint PDF transport equations of species mass fractions and enthalpy becomes:

∂ρ(Ψ)PΦ(Ψ; x, t)

∂t
+
∂ρ(Ψ)ujPΦ(Ψ; x, t)

∂xj
= (3.58)

− ∂

∂Vj

[ρ(Ψ)〈Aj|Φ〉PΦ(Ψ; x, t)] − ∂

∂ψα
[ρ(Ψ)〈Θα|Φ〉PΦ(Ψ; x, t)] ,

where ψα represents the sample space variable and 〈Θα|Φ〉 stands for the mean conditional

diffusion/source term,

ρ(Ψ)〈Θα|Φ〉 =

°�
∂

∂xj

�
ρΓ

∂h

∂xj

�� ������Ψ
º

+ Sα(ψ). (3.59)

The main advantage of the formulation presented above is that, once the distribution

of the PDF of the velocity and scalar fields ρ(Ψ)PΦ(Ψ; x, t) are known, the m-th central

3The following simplifying assumptions are recalled: (a) fluid is considered as Newtonian, (b) body forces,
heat transport by radiation, Soret and Dufour effects are neglect, (c) the model is developed for low Mach
number flows (d) unity Lewis number and equal molecular diffusion coefficient for all species .
In the case of reactive flows the following assumptions regarding the chemical kinetics mechanisms are also
retained: (i) global, single step and irreversible chemical reactions, (ii) fuel is the deficient reactant, and
(iii) null temperature exponent β of Arrhenius expression.
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statistical moment, µm, of any function Q(Φ) of the random variables Φ can be evaluated

by integration:

µm = 〈Q′m(Φ)〉 =
Z −∞
−∞

[Q(Ψ)− 〈Q(Φ)〉]mPΦ(Ψ; x, t))dΨ. (3.60)

Using Eq. (3.60) the statistical moments, usually associated to the conventional

URANS modeling of turbulent reactive flows, such as the mean velocity 〈u〉, mean value

of the scalar φα, 〈φα〉, the Reynolds stress tensor components 〈uiuj〉, scalar fluxes 〈uiφ′α〉,

the second order covariance 〈φ′αφ′β〉 and the mean chemical reaction term 〈Sα(φα)〉 and high

order statistical correlations, for instance the triple velocity correlations 〈uiujuk〉, can be

readily evaluated.

A drawback of the formulation described above is that mean values of non-linear

functions of velocity and/or scalar gradients appear in a unclosed form and, therefore, require

closure. This is the case of the terms corresponding to effects of viscous dissipation and

pressure fluctuations.

It is possible, under certain hypothesis that will be discussed further on, to obtain a simpler

set of equations can be obtained from the joint velocity-scalar PDF, in which the conditional

acceleration term is integrated over the velocity sample space. In this case a joint scalar

PDF transport equation is obtained, retaining the advantage of maintaining the closed form

of the chemical reaction term. Such a formulation is based on a joint scalar PDF and will

be presented in the next section.

3.2.1.2 Joint scalar PDF

If the velocity field, and characteristic time and length scales of turbulence are known,

it is possible to adopt a joint PDF description of the scalar field Pφ(ψ,x, t), instead of the

joint velocity-scalar PDF Puφ(V, ψ,x, t). Since, in the present work, the variables related to

the velocity field are obtained by an LES model, the joint scalar PDF transport equation can

be used to evaluate the statistical moments of the scalar field and the chemical reaction term.
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The transport equation for the joint scalar PDF can be obtained from the integration

of the joint velocity-scalar PDF transport equation over the sample space of velocities:

Pφ(ψ,x, t) =
Z −∞
−∞

Puφ(V, ψ,x, t)dV. (3.61)

Integrating Eq. (3.61), and separating the contributions of the conditional diffusion and

chemical reaction terms the PDF of the scalar field can be written as:

∂ρ(ψ)Pφ(ψ; x, t)

∂t
+

∂

∂xj
[ρ(ψ)〈uj|ψ〉Pφ(ψ; x, t)] =

− ∂

∂ψα

24ρ(ψ)

°�
∂

∂xj

�
Γ
∂φ

∂xj

�� ������ψ
º
Pφ(ψ; x, t)

35 − ∂

∂ψα
[Sα(ψ)Pφ(ψ; x, t)] . (3.62)

In Eq. (3.62) the PDF of the scalar field evolve under the influence of the convective

transport due to the conditional velocity 〈uj|ψ〉, the transport in the sample space due to

the conditional molecular mixing (first term in the right hand side of Eq. (3.62)), and due

to the chemical reaction term Sα(ψ). According to Colucci et al. (1998b), the conditional

velocity can be decomposed into a filtered contribution and a subgrid contribution:

〈uj|ψ〉Pφ(ψ; x, t) = ũjPφ(ψ; x, t) + [〈uj|ψ〉 − ũj]Pφ(ψ; x, t), (3.63)

where the first term in the right hand side stands for the effect of advection of the PDF due

the resolved velocity field provide by the LES, and the second term stands for the effects

of the turbulent diffusion of the PDF in the subgrid scales. It is noteworthy that the latter

must be modeled.

A widely used closure for the turbulent transport of the PDF, in the context of Large Eddy

Simulation, is based on the diffusion gradient transport (COLUCCI et al., 1998b):

[〈uj|ψ〉 − ũj]Pφ(ψ; x, t) = ΓSGS
∂Pφ(ψ; x, t)

∂xj
, (3.64)

where ΓSGS is the subgrid diffusion coefficient, evaluated by an LES model.

The conditional molecular mixing term can also be decomposed into two contributions
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(COLUCCI et al., 1998b):

∂

∂ψα

24ρ(ψ)

°�
∂

∂xj

�
Γ
∂φ

∂xj

�� ������ψ
º
Pφ(ψ; x, t)

35 =
∂

∂xj

�
ρ(ψ)Γ

∂Pφ(ψ; x, t)

∂xj

�

− ∂2

∂ψ2
α

24°ρ(ψ)Γ
∂φα
∂xj

∂φα
∂xj

������ψ
º
Pφ(ψ; x, t)

35 , (3.65)

The first term on the right hand side of Eq. (3.65) represents the effects of molecular diffu-

sion on the PDF transport in physical space, whereas the second term is the micro-mixing

term, which represents the effects of the scalar dissipation rate on the PDF transport in the

scalar field sample space.

The micro-mixing term must be modeled, and the search for physically realistic mod-

els has been an important subject of researches in the field of turbulent combustion mod-

eling for the past few years (MURA; GALZIN; BORGHI, 2003; MURA; BORGHI, 2003;

SABEL’NIKOV; GOROKHOVSKI; N, 2006). This is due to the fact that the interaction

between these terms and the chemical source term exerts a controlling role in the evolution of

the turbulent combustion, therefore, the choice of micro-mixing is paramount to the success

of the flow field predictions.

One of the earliest mixing models for particle PDF methods is the coalescence and

dispersion (CD) model by Curl (1963), which was developed to describe mixing of collid-

ing droplets with different concentrations in a two-liquid suspension. Therefore, this model

can easily be integrated into a stochastic particle framework, as used for PDF simulations.

Other early approaches are summarized by Dopazo and O’Brien (1974) and Janicka, Kolbe

and Kollmann (1979). The basic idea behind this model is mixing pairs of particles in the

sense that the mixing intensity is random for each particle pair. The mixing rate is adjusted

through the number of pairs that mix per unit of time. The main disadvantage of these

models is that the PDF of an inert scalar does not become Gaussian in the homogeneous

turbulence limit. Furthermore, the particle trajectories in scalar space are not continuous

over time and hence, these models are not local even in a weak sense (MEYER; JENNY,

2009).
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The most widely used mixing model was proposed by Villermaux and Devillon (1972)

and it is known as interaction by exchange with the mean (IEM) mixing model (also known

as the linear mean-square estimation (LMSE) model (DOPAZO; O’BRIEN, 1974)). This

model is based on the simple fact that molecular mixing should reduce scalar fluctuations

and thus draw instantaneous scalar values towards their local mean. If the IEM model

correctly predicts inert scalar variance decay in homogeneous turbulence, the model is not

able to describe the evolution of the scalar PDF appropriately, i.e., the shape of the initial

PDF is preserved and it does not tend to a Gaussian distribution. Using the IEM-LMSE

closure yields,

°
Γα
∂φα
∂xj

∂φα
∂xj

������ψ
º
Pφ(ψ; x, t) = Ωm(ψα − 〈ψα〉)Pφ(ψ; x, t), (3.66)

where Ωm = Cω(Γ + Γsgs) /∆
2 is the turbulent frequency determined by LES, Cω is a

mechanical-to-scalar time-scale ratio, which is assumed to be constant. The standard value,

2.0, is based on the local equilibrium assumption between production and dissipation of

variance in isotropic turbulence (RAMAN, 2004).

Using the presented the strategies for the closure of the open terms of the transported

PDF, the joint PDF of the scalar field can be written as:

∂ρ(Ψ)PΦ(Ψ; x, t)

∂t
+
∂ρ(Ψ)ujPΦ(Ψ; x, t)

∂xj
=

∂

∂xj

�
(Γ + ΓSGS)

∂Pφ(ψ; x, t)

∂xj

�
+

∂

∂ψα
[Ωm(ψα − 〈φα〉)Pφ(ψ; x, t)] (3.67)

− ∂

∂ψα
[Sα(ψ)Pφ(ψ; x, t)] .

The Eq. (3.67) evolves in physical space due to the effects of convection and diffusion, and

in sample space of scalars due to the contributions of micro-mixing and chemical reaction.

It is noteworthy that Eq. (3.67) may be integrated in the scalar sample space thus yielding

the statistical moments of the scalar field. The resulting integrated equations are statisti-

cally equivalent to those obtained by a LES filtering procedure. However, it is important to
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remember that within the PDF transport equation the chemical reaction term appears in a

closed form, thus eliminating the difficulties associated to its modeling.

The equations presented in the previous sections are based on a eulerian frame of

reference and describe the statistics of the filtered field at a given point x and time t. These

equations exhibit a high-dimensionality, since the PDF transport equation contains a large

number of independent variables, V, ψ,x and t. As a consequence, the numerical solution by

the using standard methods like Finite-Volumes or Finite-Differences, is feasible only in the

simplest cases. As previously indicated, one way of circumventing such limitation is to use

Lagrangian approaches, which is the subject of the next section.

3.2.2 Lagrangian Monte Carlo approach

In the Lagrangian approach the joint scalar PDF the flow properties is represented

by an ensemble of notional particles (FOX, 2003). It is possible to consider each stochastic

notional particle as a realization of the turbulent reactive flow, which is a discrete representa-

tion of the eulerian PDF. Each of these particles transports its own ensemble of independent

variables, i.e., position in the physical space and composition of the scalar field. Each particle

is also subjected to stochastic differential equations (SDE). Given a sample of particles, the

results obtained from the statistical moments are by construction of the SDEs equivalent to

those that would be obtained with the solution of the eulerian PDF. A general framework

for the construction of SDEs that are equivalent to the PDF transport equation is given in

Gardiner (2009).

Using such a framework, the differential stochastic equations that govern the trajectory

of the particles in the physical space x, and in the sample space of the scalar field, Φ, can

be written as:

dx = [ũ(x, t) + 〈u′|Φ,x〉]dt, (3.68)

dΦ = 〈Θ|Φ,x〉dt, (3.69)
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where ũ(x, t) is the filtered velocity field, evaluated by a LES model, 〈u′|Φ,x〉 is the condi-

tional velocity fluctuation, that appears in a open form and, therefore, needs to be modeled.

〈Θ|Φ,x〉 is the conditional mean diffusion flux and chemical reaction, given by Eq. (3.59).

The equivalent lagrangian PDF transport equation of the scalar field, P ∗φ(ψ,x), is given by:

∂ρ(ψ)P ∗φ(ψ,x)

∂t
+
∂ρ(ψ)(ũj + 〈u′j|ψ〉)P ∗φ(ψ,x)

∂xj
= − ∂

∂ψα

�
ρ(ψ)〈Θα|ψ〉P ∗φ(ψ,x)

�
. (3.70)

The conditional term of velocity fluctuation,〈u′|Φ,x〉, is closed analogously as the eulerian

version of the eulerian PDF transport equation, i.e., it is modeled based on the gradient

diffusion assumption of the PDF in the physical space,

〈u′j|ψ〉P ∗φ(ψ,x) = −ΓSGS(x, t)
∂P ∗φ(ψ,x)

∂xj

=

�
∂ΓSGS
∂xj

�
P ∗φ(ψ,x)− 1

2

�
∂

∂xj
(2ΓSGS)P ∗φ(ψ,x)

�
. (3.71)

Substituting Eq. (3.71) in Eq. (3.68) it is possible to obtain the final form of the stochastic

differential equation that describes the trajectory of the particles in physical space x:

dx =

�
ũ(x, t) +

∂(ΓSGS)

∂xi

�
dt+ (2ΓSGS)

1
2dW(t). (3.72)

The evolution of each notional particle occurs according to statistically independents in-

crements dW(t). It is worth noting that the subgrid diffusion coefficient is evaluated by

a LES model. The shortcomings of such an approach are discussed by Haworth (2010b)

The conditional diffusion/chemical reacting flux term, 〈Θα|ψ,x〉, contains contributions of

the molecular diffusion and chemical reaction rate. The molecular diffusion term in the la-

grangian PDF transport equation can also be modeled as the eulerian PDF, e.g., by using

the IEM micro-mixing model.

The final form of the stochastic differential equation that describes the trajectory of particles

in the sample space of scalar field, Φ, is given by:

dφ

dt
= − [Ωm (φ− 〈φ〉)] + S(φ). (3.73)
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3.2.3 Coupling of the hybrid model solvers

It is important to note that due the simplifying hypothesis retained in the present

work concerning the transport equations and chemical kinetics, the effects of the chemical

reaction on the flow are exclusively noted by the density variations generated by the thermal

expansion. In the Eulerian field it is possible to solve a transport equation for the filtered

progress variable c̃,

∂ρc̃

∂t
+
∂ρũj c̃

∂xj
=

∂

∂xj

�
ρ(Γ + ΓSGS)

∂c̃

∂xj

�
+ S(c). (3.74)

where ΓSGS is evaluated from Eulerian quantities through Eq. (3.32) and the filtered chem-

ical reaction rate term S(c) is evaluated in the Lagrangian framework.

As commented in the subsection (3.2.1.1), another advantage of adopting a Lagrangian

approach is that the central statistical moments of the progress variable, c, can be readily

recovered by the Monte Carlo simulation retained for the solution of the system generated

by Eqs. (3.72) and (3.73).

It will be seen in section (4) that the filtered progress variable, c̃, can be evaluated from the

first central moment of c. In the case of the second central moment, i.e., the variance of the

filtered progress variable its modeled transport equation is given by,

∂ρgc”2

∂t
+
∂ρ ũi

gc”2

∂xi
=

∂

∂xi

24ρ(Γ + ΓSGS)
∂gc”2

∂xi

35
| {z }

turbulent transport

+ 2ρ (Γ + ΓSGS)
∂c̃

∂xi

∂c̃

∂xi| {z }
production

(3.75)

− 2CΩΩm
gc”2| {z }

dissipation

+ 2(c− c̃) S(c)| {z }
reaction

.

The turbulent transport, production, dissipation and reaction terms in the equation for the

variance of the progress variable, c Eq. (3.75) are modeled in the same way as in the RANS

framework. It noteworthy also that the molecular diffusion terms becomes negligible, once

the flows of interest are classified as having characteristic high Reynolds number, and as

will be seen in the results chapter, the mesh adopted for the simulations performed have a

sufficiently large local Reynolds number, e.g., the mesh size adopted has at least ten times
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the size of the Kolmogorov length scale.

The importance of Eq. (3.75) is based on the fact that, the Eulerian and Lagrangian ap-

proaches must be equivalent. This is a matter of validation of the Lagrangian approach and

will be further discussed.
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CHAPTER IV

NUMERICAL MODELING

In this section, the numerical procedures retained to obtain the solution of the trans-

port equations presented in chapter 3 are described.

The solution of an equation originally proposed in the continuum, once expressed in a

discrete domain, invariably leads to a loss of information. However, it is possible to minimize

such losses, by choosing appropriately the numerical methods retained to solve the equations.

Important factors that directly impact the performance of a numerical method that seeks

to solve the Navier-Stokes equations are: (i) the choice of the variables arrangement in the

computational grid, (ii) the type and order of accuracy of the numerical scheme retained to

perform the discretization in space of both viscous and advective terms, and (iii) the type

and order of accuracy of the method chosen to perform the temporal integration. These

factors are important in the numerical solution of the stochastic differential equations as

well. Moreover, further care must be accounted for regarding the evaluation of the chemical

reaction term.

In general lines, the numerical method chosen for solving the variable density momen-

tum, scalars and Poisson equations is based on a three-dimensional, conservative, staggered,

finite-volume discretization. The central difference scheme (CDS) is applied to express the

diffusive contributions of the transport equations. For the advective contributions both
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CDS and Deferred Correction (FERZIGER; PERIC, 1996) approaches were implemented

and are available in the numerical code developed. A fully implicit approach is adopted,

and the resulting linear systems are solved using the MSIP - Modified Strongly Implicit

Procedure (SCHNEIDER; ZEDAN, 1981) for velocity components, the Eulerian equation

for the chemical reaction progress variable and its variance, Eqs. (3.74) and (3.75), respec-

tively. Since the numerical code developed adopts a pressure-based approach, an algorithm

for pressure-velocity coupling is needed. Here, a projection method based on the fractional

steps technique is retained, resulting in a variable-coefficient Poisson equation which is solved

with the Bi-Conjugate Gradient Stabilized, BICGSTAB (VORST, 1981) solver.

Concerning the organization of the present chapter, first, the numerical schemes re-

tained to solve the transport equations in the Eulerian domain are described, followed by

the pressure velocity coupling, and the development of a physically consistent constraint,

which is used to substitute the divergence of the velocity field in the right hand side of

the variable-coefficient Poisson equation. Further on, the Monte Carlo method, which is

used to obtain the solution of Eqs. (3.72) and (3.73) is described in details. Finally, in the

case of transport of a passive scalar, the equivalence between the Eulerian and Lagrangian

approaches is discussed and verified.

4.1 The finite volume method

If the discretization relies on a finite-volume (FV) approach, it is necessary to evaluate

vectorial fields coupled to scalar fields, as it is the case when the Navier-Stokes equations

are considered. The issue associated to the positioning of the primary variables in the com-

putational grid must be carefully accounted. There are several options and they may be

classified into two principal groups: staggered, in which the vectorial variables are stored

in the control volume (CV) faces, while the scalars are stored in the center of the CV, or

co-located grids arrangements, in which the vectorial and scalar quantities are stored in the

same location, see Fig. (4.1). In the former case, the vectorial and scalar variables are posi-

tioned at different locations. In the latter, all physical variables, and specially the pressure
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and the velocity components are evaluated at the same location. This is the simplest choice

for implementation, in particular when distributed computing strategies are to be applied.

However, in incompressible (and low Mach number) flows, if the velocity and pressure are

positioned in the same location, decoupling instabilities, often referred to as checkerboard

patterns can arise (ANDERSON, 1995; FERZIGER; PERIC, 1996; KARKI; PATANKAR,

1989). The discretization procedure retained for the momentum equation is basically iden-

Figure 4.1: Schematic representation of variable arrangement in a grid, (a) collocated, (b)

staggered. The arrows stand for the vectorial variables, and the circles represent the scalars.

tical for both the staggered and the co-located arrangements. Nevertheless, with the latter,

the velocity components, positioned at the center of the control volumes must be interpo-

lated to their faces. The most common procedure is to use the Rhie-Chow interpolation

(RHIE; CHOW, 1983). Shen, Michelsen and Sorensen (2001) underline that the Rhie-Chow

interpolation produces excellent results when steady-state solutions are sought for, and large

time steps used, but pressure field oscillations may arise for small time step values and dur-

ing transient simulations. Versteeg and Malalasekera (2007), and Ferziger and Peric (1996),

argue that there is no intrinsic physical requirement that all variables share the same loca-

tion. For cartesian grids, the concept of staggered grid was introduced in Harlow and Welch

(1965). If second order of accuracy schemes are retained for spatial discretization, such an

arrangement does not require additional interpolations, which otherwise would be necessary

for a co-located grid. Finally, the major advantages of the staggered variable arrangement is

that the pressure terms are naturally discretized by second order accuracy central differences

scheme, without any resort to interpolation rules, and the evaluation of mass fluxes at the
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faces of control volumes is straightforward, which leads to a strong coupling between pressure

and velocity, thus avoiding the birth of spurious instabilities in the calculated pressure field.

In transient flows the transport equations must be integrated in time as well, which

requires the choice of a suitable time marching procedure and brings an important issue

associated to the simulation of transient flows: the stability of the numerical scheme. This

is the subject of the next subsection.

4.1.1 Temporal approximations and numerical stability

In Large Eddy Simulations (LES) of turbulent reactive flows, the size of the time step

necessary to capture the smallest resolved scales can be very restrictive. Therefore, the

temporal integration method must be chosen carefully. Explicit schemes exhibit numerical

stability issues when using CFL (Courant Friedrich Lewy) numbers values larger than unity.

In order to restrict the size of the time step necessary to maintain numerical stability, the

following stability criteria can be defined:

∆t = C

�
1

tadv
+

1

tdif
+

1

tther

�−1

, (4.1)

where C is a numerical factor ranging between 0 and 1. tadv, tdif , tther stand for, respectively,

the advective, the diffusive and the thermal maximum allowable size of time step. For a

given flow,

tadv =

�
∆x

|u|max
+

∆y

|v|max
+

∆z

|w|max

�
, (4.2)

tdif =

�
∆x2

ν
+

∆y2

ν
+

∆z2

ν

�
, (4.3)

tther =

�
∆x2

α
+

∆y2

α
+

∆z2

α

�
, (4.4)

where ∆x, ∆y and ∆z denote, respectively, the mesh discretization length in the x, y and

z directions, α = λ/ρCp is the thermal diffusivity and ν = µ/ρ is the kinematic viscosity.

|u|max, |v|max and |w|max are the maximum values of the norm of velocity u, v and w.
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If an explicit treatment for both advective and diffusive terms is retained, the above set of

equations gives a size of time step of order of O(∆x2), essentially due to the diffusive term

(FERZIGER; PERIC, 1996).

Such a numerical limitation does not apply to implicit or semi-implicit discretizations. The

main advantage of implicit and semi-implicit methods, despite the more complicated im-

plementation, is its higher stability. With the implicit treatment of the diffusive terms, the

temporal restriction of order O(∆x2) is removed, becoming of order O(∆x) (VILLAR, 2007).

Ferziger and Peric (1996) provide an introduction to several types of classical temporal

integration methods. Examples of semi-implicit approaches can be found in Ceniceros and

Roma (2007) and Villar (2007). A detailed evaluation of various semi-implicit schemes has

been reported in Ascher, Ruuth and Wetton (1995). The temporal integration schemes

retained in the present work are fully implicit.

Considerations on the evolution of the time step size has yet to be made. Note that the

choice of constant or variable time step sizes may have a strong influence on the stability of

a numerical simulation.

4.1.2 Variable time step size approach

The solution of partial differential equations with different characteristic time scales,

e.g., flows that rapidly vary in some regions of the domain, while slowly change in other

regions, variable time step size schemes are often essential to obtain computationally effi-

cient and accurate results. Standard temporal integration methods, such as the Backward

Difference Formula or Crank-Nicolson methods, are designed for constant time step sizes.

When dealing with problems where it is desirable for time step size to vary, modifications to

recover a more general form of the methods must be accounted for.

Wang (2005) presents a general formulation for variable time step size implicit-explicit

methods (VSIMEX) for time-dependent partial differential equations (PDE)1. In his work a

1In IMEX approaches are semi-implicit approaches in which only the diffusive part of the PDE is treated
implicitly. The advective contribution still remain processed explicitly
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semi-discretized arrangement is proposed in such a way that any differential equation could

be temporally integrated using second order semi-implicit schemes:

1

∆tn+1

2X
j=0

αj,n+1U
n+j =

1X
j=0

βj,n+1ζ(Un+j) +
2X
j=0

θj,n+1ε(U
n+j), (4.5)

where ζ(Un+j) and ε(Un+j) stand for, respectively, diffusive and advective contributions to

the differential equation and n + 1 represents the current time level. The values of αj,n+1,

βj,n+1 and θj,n+1 are:

α0,n+1 =
(2γ − 1)ω2

n+1

1 + ωn+1

,

α1,n+1 = (1− 2γ)ωn+1 − 1,

α2,n+1 =
1 + 2γωn+1

1 + ωn+1

,

β0,n+1 = −γωn+1,

β1,n+1 = 1 + γωn+1, (4.6)

θ0,n+1 =
c

2
,

θ1,n+1 = 1− γ −
�

1 +
1

ωn+1

�
c

2
,

θ2,n+1 = γ +
c

2ωn+1

,

where ωn+1 = ∆tn+1/∆tn is the ratio between two consecutive time steps. A family of

numerical schemes involving the two parameters γ and c can be derived. For instance, if

the size of the time step is kept constant, Eq. (4.6) takes the form (ASCHER; RUUTH;

WETTON, 1995):

1

∆t

��
γ +

1

2

�
un+2 − 2γun+1 +

�
γ − 1

2

�
un
�

= (γ + 1)ζ(un)− γζ(un−1) +��
γ +

c

2

�
ε
�
un+2

�
+ (1− γ − c) ε

�
un+1

�
+
c

2
ε (un)

�
. (4.7)

Depending on the values retained for constants γ and c in Eq. (4.7), different time integration

schemes can be obtained (ASCHER; RUUTH; WETTON, 1995; WANG, 2005):

• Crank-Nicolson Adams-Bashfort (CNAB): (γ, c) = (0.5, 0.0);

• Modified Crank-Nicolson Adams-Bashfort (MCNAB): (γ, c) = (0.5, 0.125);
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• Crank-Nicolson Leap Frog (CNLF): (γ, c) = (0.0, 1.0);

• Semi-Backward Difference Formula (SBDF): (γ, c) = (1.0, 0.0).

In the present work, instead of a semi-implicit, a fully implicit scheme is adopted. However,

the organization allowed by Eq. (4.5) remains very attractive, since it includes the possibility

of (i) describing several methods of temporal discretization within the same formulation and,

hence, (ii) retaining the more adequate for a given problem.

Using the same values for the constants γ and c, Eq. (4.5) can be adapted within a fully

implicit framework as follows:

1

∆tn+1

2X
j=0

αj,n+1U
n+j =

2X
j=0

θj,n+1(ζ(Un+j) + ε(Un+j)). (4.8)

As previously commented, in the present work a fully implicity approach is retained for

the transport equations, i.e., all the transport equations solved on the Eulerian domain are

discretized according to the temporal integration described here. For instance, applying

Eq. (4.8) to Eq. (3.14) and re-arranging the different terms, the momentum equation, once

discretized in time, takes the following form:

α2,n+1(ρui)
n+1 + α1,n+1(ρui)

n + α0,n+1(ρui)
n−1

∆t
= −∂p

n+1

∂xi

+(θ2,n+1)m2 + (θ1,n+1)m1 + (θ0,n+1)m0, (4.9)

where θ0,n+1, θ1,n+1 and θ2,n+1 are taken from Eq. (4.6), and,

mk+1 =

 
∂τn+k

ij

∂xj
−
∂ρn+kun+k

i un+k
j

∂xj

!
, k = −1, 0, 1 (4.10)

It is worth recalling that Eq. (3.14) and consequently Eq. (4.9), are filtered transport

equations, ready to be used in a Large Eddy Simulation. The variables are shown without

the filtering notation (¯) or (˜) only for the sake of conciseness, and these concise represen-

tation will be dropped out hereafter, unless explicitly mentioned in the text.

As mentioned above, if retained a constant size of time step, the choice of the constant

values γ and c, allows to recover the Crank-Nicolson method (γ, c) = (0.5, 0.0), the Modified
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Crank-Nicolson (γ, c) = (0.5, 0.125), the Leap Frog method (γ, c) = (0.0, 1.0) and the Back-

ward Difference Formula - BDF, (γ, c) = (1.0, 0.0). In the present work, the above temporal

integration methods can be also recovered, but with the advantage of allowing the adoption

of a variable size of time step, calculated by Eq. (4.1). Finally, it is worth to point out

that, through Eq. (4.9), the fully implicity framework retained here requires the numerical

resolution of a large algebraic system for each discretized equation.

4.1.3 Spatial discretization of the transport equations

As commented in the introduction of the present chapter, the central difference scheme

(CDS) is applied to express the diffusive terms of the transport equations whereas, for the

advective contributions, both CDS and Deferred Correction (FERZIGER; PERIC, 1996)

approaches are available. To illustrate the discretization of a derivative using the CDS

approach, consider the control volume of lengths ∆x × ∆y × ∆z, shown in Fig. (4.2). In

such figure, the capital letters stand for the center of the control volumes, whereas the lower

case letters represent the faces of the control volume. The letters e, w, n, s, t and b and its

capital forms, are respectively the faces in the directions east, west, north, south, top and

bottom.

Figure 4.2: Elementary control volume retained for the discretization of transport equations.

The advective term of Eq. (4.9) in time k + 1, x direction and for i = 1 and j = 1,
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can be approximated, using the finite volume method, as:

∂ρuuk+1

∂x
= [(ρuu)e − (ρuu)w]∆x∆y, (4.11)

The structure adopted for the computational grid can be uniform or non-uniform, so it is

necessary to perform interpolations to discretize any spatial derivatives. In the case of non-

uniform grids, it is important that such interpolations are obtained using distance-weighted

rules (FERZIGER; PERIC, 1996). To determine the value of each scalar property, θ, on a

face e, the following expression is used: θe = θEΛe + θP (1− Λe), where:

Λe =
(δx)−e
(δx)e

. (4.12)

As can be seen in Fig. (4.3), the indexes P , E and e, denotes, respectively, the center of the

current control volume, the center of the left control volume, and the position of the face of

the control volume centered in P , that lies between P and E .

Figure 4.3: Non-uniform finite-volume grid and distances associated to the face e.

The discretization of the advective term of the transport equations is a crucial point

for accuracy and stability of numerical schemes. Ferziger and Peric (1996) argue that some

iterative solvers can fail to converge when applied to the algebraic equation systems where

the CDS approach is used in the approximations, mainly because the matrices may not

be diagonally dominant. A technique to circumvent this difficulty is to use the deferred

correction approach. In this technique the advective term evaluated in a face e is expressed
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as:

(ρuu)k+1
e = (ρuu)k+1

e,UDS + [(ρuu)e,CDS − (ρuu)e,UDS]k (4.13)

where the subscript UDS stands for a discretization of the advective term using the upwind

scheme ((FERZIGER; PERIC, 1996; VERSTEEG; MALALASEKERA, 2007)). The term

inside the brackets is evaluated using values calculated in the previous iteration. At conver-

gence, the UDS contributions cancel and a CDS solution is recovered. It is worth recalling

that in Eq. (4.13) only the density must be interpolated to the face e, once a staggered grid

is adopted and therefore, the velocity component u is already stored in the face e.

A deeper discussion about the accuracy and order of convergence of CDS and deferred cor-

rection approaches will be made in the chapter 6, devoted to the verification of the developed

numerical code.

Finally, boundary conditions must be provided in order to solve the set of transport

equations. In the developed numerical code, it is possible to choose between periodicity,

Dirichlet, Neumann, or advective boundary conditions (ORLANSKI, 1976) for each bound-

ary of the computational domain. Particular care is taken when LES are performed on

open domains. In this case, not only the mean velocities, but also experimental turbulence

stress tensors profiles, if available, can be used for more realistic representations of a flow

of interest. In the present work, different methods for generating turbulent inflow data are

implemented and assessed in both non-reactive and reactive flows. Such methods, as well as

the assessment are shown in Chapter 7.

Within the pressure based approach adopted in the present work, once discretized the

transport equations, the pressure velocity coupling must be enforced. This is the subject of

the next section.
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4.2 Pressure velocity coupling

Since a fully implicit fractional step method is used in the present work, a Poisson

type equation must be solved to apply a pressure correction to both velocity and pressure

fields. To provide such an equation, the Eq. (4.9) is re-written, with the pressure derivative

evaluated at time level n as:

α2,n+1(ρu∗i )
n+1 + α1,n+1(ρui)

n + α0,n+1(ρui)
n−1

∆t
= −∂p

n

∂xi

+(θ2,n+1)m2 + (θ1,n+1)m1 + (θ0,n+1)m0, (4.14)

where u∗i
n+1 stands for the estimated velocity field. Subtracting Eq. (4.14) from Eq. (4.9).

Is is noteworthy that the discretization of the temporal derivative of the last equation can

be achieved by any of the methods shown in subsection (4.1.3). Defining Q = pn+1−pn, and

rearranging the different terms, it is possible to obtain:

ρn+1α2,n+1

∆t

�
u∗i

n+1 − un+1
i

�
=
∂Q

∂xi
, (4.15)

proceeding classically by taking the divergence of Eq. (4.15):

α2,n+1

∆t

 
∂u∗i

n+1

∂xi
− ∂un+1

i

∂xi

!
=

∂

∂xi

�
1

ρn+1

∂Q

∂xi

�
. (4.16)

In situations where the density can be considered constant, at least along a streamline,

the second derivative at the LHS of Eq. (4.16) is zero due the incompressibility condition.

However, when density variations arise from temperature (and/or composition) variations

as encountered, for instance, in reactive flows, the corresponding term can no longer be

neglected. Thus, an approximation must be made regarding its closure.

4.2.1 A physically consistent constraint over the velocity field

In the low Mach number reactive flows under consideration, the density is solely de-

termined by the temperature and thermodynamic pressure fields. The energy equation plays

the role of an additional constraint on the velocity field, which is enforced by the dynamic
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pressure. This constraint acts onto the flow field divergence, and it is related to the total

derivative of the density field, which involves - through the equation of state Eq. (3.5) -

the total derivatives of both pressure and temperature. Re-writing the energy equation Eq.

(3.3) in the temperature form it is possible to obtain,

∂ρT

∂t
+
∂ρujT

∂xj
= A, (4.17)

where,

A =
1

Cp

�
∂Jhj
∂xj

+ Sh

�
. (4.18)

Applying the chain rule to the left hand side of Eq. (3.19), it yields,

ρ
∂T

∂t
+ T

∂ρ

∂t
+ ρuj

∂T

∂xj
+ ρT

∂uj
∂xj

+ Tuj
∂ρ

∂xj
= A. (4.19)

Rewriting Eq. (3.5) in the form P ∗o (t) = ρT , and substituting it in the derivatives of T at

the left hand side of Eq. (4.19),

ρ
∂

∂t

�
P ∗o (t)

ρ

�
+ T

∂ρ

∂t
+ ρuj

∂

∂xj

�
P ∗o (t)

ρ

�
+ ρT

∂uj
∂xj

+ Tuj
∂ρ

∂xj
= A. (4.20)

Re-arranging the terms of Eq. (4.20),

ρ

�
∂

∂t

�
P ∗o (t)

ρ

�
+ uj

∂

∂xj

�
P ∗o (t)

ρ

��
+ T

∂ρ

∂t
+ ρT

∂uj
∂xj

+ Tuj
∂ρ

∂xj
= A. (4.21)

Applying the chain rule to in the derivatives inside the brackets of Eq. (4.21), and reorga-

nizing the different terms yields,

ρ

�
−P

∗
o (t)

ρ2

∂ρ

∂t
+

1

ρ

∂P ∗o (t)

∂t
− ujP

∗
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∂ρ

∂xj
+
uj
ρ

∂P ∗o (t)

∂xj

�
(4.22)

+T
∂ρ

∂t
+ ρT

∂uj
∂xj

+ Tuj
∂ρ

∂xj
= A.
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Recalling the assumption made in the present work regarding the thermodynamic pressure,

which does not vary in space nor in time,

−P
∗
o

ρ

∂ρ

∂t
− ujP

∗
o

ρ

∂ρ

∂xj
+ T

∂ρ

∂t
+ ρT

∂uj
∂xj

+ Tuj
∂ρ

∂xj
= A. (4.23)

Dividing Eq. (4.23) by P ∗o leads to,

−1
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∂ρ
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ρ
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∂uj
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+
Tuj
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∂ρ
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. (4.24)

Through the use of the equation of state Eq. (3.5), it is possible to obtain an equation that

connects the divergence of velocity with the energy equation,

∂uj
∂xj

=
A
P ∗o
. (4.25)

Under the assumptions made regarding the chemical kinetics and flows of interest of the

present work, detailed in Chapter 3, The term A can be simplified to,

A =

�
∂

∂xj

�
ρΓ

∂T

∂xj

��
. (4.26)

Adopting a formulation based on the consideration of a single progress variable of chemical

reaction, the Eq. (4.26) can be written,

A =

¨
∂

∂xj

�
ρΓ

∂

∂xj
(c(Tb − Tu) + Tu)

�«
= (Tb − Tu)

�
∂
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�
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��
. (4.27)

Hence, the final form of the constraint is written as,

∂uj
∂xj

=
(Tb − Tu)

P ∗o

�
∂

∂xj

�
ρΓ

∂c

∂xj

��
. (4.28)

The equation for pressure correction, for low Mach number flows simulations may, therefore,

be written as:

∂

∂xi

�
1

ρn+1

∂Q

∂xi

�
=
α2,n+1

∆t

(
∂u∗i
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��)
. (4.29)
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Once the pressure correction is evaluated, the velocity field can be updated:

un+1
i = u∗i

n+1 −
�

∆t

α2ρn+1

�
∂Q

∂xi
. (4.30)

The constraint given by Eq. (4.28) in variable density flows has been previously discussed,

among others, by Bell (2005b) and Nicoud (2000). Moreover, an inner iterative process can

be used to enhance both stability and convergence of the solution process. Further consid-

erations about such a procedure and the associated effects on the numerical convergence are

deferred to the chapter devoted to the code verification using low Mach number manufac-

tured solutions. Finally, it is worth recalling that, for constant density, non-reactive flows

simulations, the constraint presented above is not necessary.

4.3 Numerical modeling of the system of stochastic differential equations

Methods based on Monte Carlo solutions of the transport equation for the joint prob-

ability density function (PDF) are among the most general and promising approaches to de-

scribe turbulent reactive flows. For the treatment of convection and diffusion two approaches

to describe turbulent transport are well established, i.e., the Eulerian and the Lagrangian

points of view. According to Möbus (2001), roughly speaking, the former is computationally

less expensive, but also less accurate, than the latter one.

In the Eulerian approach each notional particle represents a fraction of the PDF of

its host elementary volume. Particles do not have specific locations within this volume.

The number of particles remains constant in time, and particles have identical statistical

significance. Due to the transport processes, fractions of the PDF are replaced by the

PDF’s of neighboring elementary volumes. Interpreted in the sense of Monte Carlo schemes,

this implies that a number of particles of a given volume is replaced by particles from

surrounding volumes that are selected at random. In the Lagrangian point of view, stochastic

particles move through physical space independently of each other. They are assigned spatial

coordinates and transport mass. Due to the stochastic nature of motion, the number of

particles present in a given elementary volume, or cell, changes in time. As can be derived
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for constant density flows, the average number of particles per unit volume is proportional

to the cell volume if particle masses are equal. In order to prevent particle accumulations in

large computational cells and to keep small computational cells from running empty, particles

are ascribed a relative weight, which may vary throughout the domain and, as a consequence

of movement, among the particles within a cell (ZHANG; HAWORTH, 2004). The particles

are transported in such a way that the evolution of their PDF is identical to that of the

transport equation. The stochastic particles therefore need not necessarily behave as fluid

particles. In fact, each notional particle represents a single realization of the turbulent flow

(MöBUS, 2001).

4.3.1 Method of fractional steps applied to the solution of SDE’s

From a general point of view, for a system described by N thermochemical variables

evolving in three spatial dimensions with temporal variations, the joint scalar PDF is a func-

tion of (N + 3) variables and time. As a consequence, the use of either a standard finite

difference (FD) or finite-volume (FV) numerical scheme is found to be impracticable. There-

fore, to solve the Eulerian PDF transport equation, an equivalent particle system is defined

such that the particles evolve using SDE’s in time and space, relying on the used of a Monte

Carlo technique in which the PDF is represented by stochastic particles, dubbed as notional

particles also.

The solutions for the discrete Stochastic Differential Equations are obtained from a time-

step procedure. Pope (1985) shows that, from a numerical point of view it is convenient to

treat the transport of the particles in physical and composition spaces sequentially, instead

of simultaneously. Such procedure of solution is called the fractional step method.

In order to demonstrate the numerical methods implemented in the developed numer-

ical code, the Eq. (3.72) can be rewritten as,

dxi = A(X(t))dt+B(X(t))dWi(t). (4.31)

The stochastic nature of Eq. (4.31) is associated to the Wiener process Wi, that corresponds
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to the Brownian motion of each particle (GARDINER, 2009). The increments of the Wiener

process, dWi(t + ∆t) = Wi(t + ∆t) −Wi(t), with i = 1, ..., Nw, where Nw is the number of

independent processes that influence the evolution of the particle in physical space. Numer-

ically, ∆Wi corresponds to a gaussian random variable with zero mean and variance ∆t.

According to the model used here, the drift, A(X(t)), and diffusion coefficients, B(X(t)),

are functions defined as,

A(X(t)) ≡
�
ũi +

∂(Γ + ΓSGS)

∂xi

�
, (4.32)

and,

B(X(t)) ≡ [2(Γ + ΓSGS)]
1
2 . (4.33)

The most widespread procedure of discretizing Eq. (4.31) is the Euler-Maruyama method

(GARDINER, 2009). Given a size of time step ∆t, the transport of the notional particles in

physical space can be expressed by,

Xn+1 = Xn + A(Xn, tn)∆t+B(Xn, tn)∆Wn, (4.34)

where Xn and Xn+1 are the position of the particle in physical space in the current time step

n, and in the subsequent time step n+ 1 respectively. tn is the current time step.

The Euler-Maruyama method is characterized by presenting a strong order of conver-

gence γs = 0.5 and weak order of convergence γw = 1.0. In the present work, it is adopted

the definitions of strong and weak order of convergence of numerical methods applied to the

solution of stochastic differential equations. This is based on the work of Higham (2001) and

it will be briefly summarized here.

A numerical method has a strong order of convergence equal to γs if there is a constant
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Ks such as,

E|XN −X(tN)| ≤ Ks∆t
γs (4.35)

where E stands for mean value of the error committed in the discretization, XN is the

approximation of X(tN) at the time step tend after N uniformly spaced time steps ∆t.

The strong order of convergence gives the rate with which the“average error”of the numerical

method decays when ∆t→ 0.

Another error measure adopted is the decay of the “mean error” known as the weak order of

convergence. A numerical method has a weak order of convergence equal to γw if there is a

constant Kw for any function f such that,

|Ef(XN)− Ef [X(tN)]| ≤ Kw∆tγw (4.36)

where the function f is smooth and polynomial (HIGHAM, 2001). The function f is usually

chosen as a very simple function, e.g., f(X) = X.

The method of Euler-Maruyama in its explicit formulation,(Eq. 4.34), exhibits a strong

restriction to the size of the time step due to stability issues. In fact the method is stable

only when the drift and diffusion coefficients of Eq. (4.31) are almost linear, i.e. when

the coefficients A(X(t)) and B(X(t)) are almost constant (ORBEGOSO, 2007). In most

practical situations that is not the case and thus, the use of numerical methods presenting

higher order of convergence, both weak and strong, is recommended (KLOEDEN; PLATEN,

2000).

The numerical method retained for the simulations carried-out in the present work, Milstein

scheme (GARDINER, 2009; KLOEDEN; PLATEN, 2000), has a strong and weak order of

convergence equal to one. Applying the Milstein scheme in Eq. (3.72), the final form of the

discretized stochastic differential equation that describes the particles trajectories in physical

space reads:

dxi = A(X(t))∆t+B(X(t))∆Wi + 0.5B′(X(t))B(X(t))((∆Wi)
2 −∆t), (4.37)
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where B′(X(t)) is the first derivative of B(X(t)) with respect to time. Note that numer-

ical stability considerations also restrict the value of the maximum time step that can be

envisaged. Resorting to implicit SDE discretization techniques, which do not exhibit such

restrictions has been attempted seldom (ORBEGOSO; SILVA, 2009).

4.3.2 Operator splitting

Once the stochastic particles have been transported in the physical space, the transport

of the particles in composition space, given by Eq. (3.73), uses an operator splinting tech-

nique (FOX, 2003), in such a manner that the micro-mixing term and the chemical reaction

source term are evaluated separately. This is possible only in the cases where the micro-

mixing model is deterministic. If the mixing process is described by a Langevin equation,

the use of such a splitting technique requires special attention (GARDINER, 2009).

Figure 4.4: Evolution in physical and scalar sample spaces of notional particles are subject

to Eqs. (3.72) and (3.73).

Concerning the micro-mixing modeling, as mentioned in Chapter 3, the IEM model is

adopted to model the scalar dissipation rate in the joint PDF transport equation of a reactive

scalar. Recalling that the IEM model assumes a linear relaxation of the scalars towards the

average value and that the IEM model does not contain information of the scalar gradients

the original PDF shape is always preserved. In order to illustrate the above statement, Fig.
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(4.4) shows the evolution in space and time of notional particles subjected to Eqs. (3.72)

and (3.73). In such a figure, sub-figure “a” shows the initial condition, whereas sub-figure

“f” stands for the final stage of the mixing.

In this illustrative example, 1000 particles are randomly arranged in a closed cubic box

with rigid walls in its boundaries, in such a way that initially, half one assigned with a scalar

value one (dark gray), whereas the other half corresponds to a zero value of c (the scalar).

As time evolves, i.e., from Fig. (4.4) a to f. The movement of the particles in physical space,

due Eq. (3.72), is clearly noted. The figure also illustrates the mixing of the scalar variable

c, promoted by Eq. (3.73).

Figure 4.5: Evolution of the PDF of a illustrative case with particles subjected to Eq. (3.72)

and Eq. (3.73).

The fact that the IEM model leads the scalar variable to relax toward to the average

value, without, however, accounting for scalar gradients, is exemplified in Fig. (4.5). In this

figure the shape of the scalar PDF is shown for different discrete times. At t = 0 it can

be noted that the PDF exhibits two peaks along the c axis, around zero, and one, which

corresponds to the condition a of Fig. (4.4). These two peaks correspond to a probability

of 50% of particles with c = 0 and 50% of particles with c = 1. Again, as time evolves, the

distance between the two peaks begins to decrease and the probability of having particles
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with intermediate values of c between 0 and 1 increases, indicating that the mixing is over

the particles, forcing the values of all particles to tend towards 0.5, and finally the probability

to obtain this values achieves 100%, the case shown in Fig. (4.4)-f .

Although the IEM model presents the aforementioned shortcomings, in this work it is

adopted because of its low computational cost. However it is expected that results obtained

with the use of such a simple model will not be influenced strongly by the choice of micro

mixing models. This is due to the fact that, in the flows of interest in the present work, the

scalar gradients are essentially controlled by the turbulent mixing, in such a way that the

chemical reactions influence can be determined explicitly. These are characteristics of flames

with low Damköhler number, and of distributed wrinkled flames.

The explicit treatment of the the chemical reaction source term, given by the empirical

Arrhenius expression, Eq. (3.52), can lead to extremely small time step sizes due to its

high non-linearity and stiffness. Moreover the solution of the chemical reaction source term

requires a stiff Ordinary Differential Equations - ODE solver. Stiff ODE solvers typically

uses implicit methods, which require an inversion of a Jacobian matrix. In the present work

both explicit and implicit methods are retained and compared for solving the stiff part of

Eq. (3.73). The computational implementation of the former is quite straightforward since

the Euler method has been retained. The stiff ODE solver adopted in the present work was

developed by Brown, Byrne and Hindmarsh (1989).

4.3.3 Treatment of initial and Boundary conditions

Analogous to the situation in the Eulerian domain, where boundary conditions must

be specified for solving the system of partial differential equations. Boundary conditions

must also be applied at the limits of the flow domain during a Monte Carlo simulation. The

four most common types are outflow, inflow, symmetry, and a zero-flux wall (FOX, 2003).

At an outflow boundary, the mean velocity vector will point out of the flow domain.

Thus, there will be a net motion of particles in adjacent grid cells across the outflow bound-

ary. In this case, these particles are simply eliminated. When symmetry boundaries or
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zero-flux-walls are the boundary conditions, particles may attempt to leave the flow domain

across the boundary and the common procedure is to reflect the particle position back into

the flow domain. Reflecting the particles does not change the particle composition (in the

case of non-catalytic walls), but may affect their temperature if the wall is non adiabatic

(STROZZI et al., 2008).

At an inflow boundary, the mean velocity vector will point into the flow domain.

Denoting the component of the mean velocity normal to the inflow surface (Sin) by Uin, then

the total mass entering each computational volume at each time step ∆t is:

∆min = ρSinUin∆t, (4.38)

The initial composition of the new particle must correspond to the inflow compositions.

The initial position of particles in the physical space are randomly defined in directions Y

and Z inside the finite volume cell of the inlet, and the position in X direction, based on the

Courant criteria is evaluated as:

X(i) = Uin∆tξ, (4.39)

where ξ is a random number ranging between 0 and 1.

4.3.4 Numerical aspects associated to the lagrangian Monte Carlo approach

The LES and PDF solvers are coupled by means of a feedback mechanism that ex-

changes information at each integration time step. At the beginning of the simulations the

flow field is initialized and the stochastic particles are uniformly distributed in the whole 3-D

Cartesian mesh. Balance equations for the mass and momentum are first solved within the

finite volume (FV) framework. The filtered velocity components, the turbulence frequency

and the diffusion coefficients are provided to the Lagrangian solver, so that the particles

evolution can be determined according to the stochastic differential equations. The filtered

reaction rate term is evaluated using the Lagrangian representation, then fed to the Eulerian
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progress variable transport equation. As a next step, the transport equation of the progress

variable, is solved, so the temperature field is determined by means of Eq. (3.48), and the

new density field is calculated from an equation of state. This procedure is repeated at each

integration time step until the end of the simulations.

Some other numerical aspects are relevant to the use of the lagrangian Monte Carlo

method. This concerns, among others, the initialization of the particle field, the procedures

of interpolation of the mean field variables to the particles, the particles weighting control and

the mean values estimations are examples of some of those aspects, which will be addressed

in the forthcoming subsections.

4.3.4.1 Initialization of the particle field

The number of particles within each control volume is prescribed to be initially uniform.

However, a given stochastic weight (evaluated through Eq. 4.38) is attributed to the particles

in such a manner that the particle mass and density fields are consistent with the finite-

volume mass and density values. As described above, the particles initial positions are

randomly distributed within each control volume, and the associated properties, such as

scalar values for instance, are also prescribed consistent with the corresponding Eulerian

initial values.

4.3.4.2 Interpolation of average eulerian quantities to the particle field

In order to model the transport of the particles in the physical space, it is necessary

to interpolate the mean velocity field, given by the Large Eddy Simulation, to the particles

positions. This is accomplished by, first, interpolating the velocities from the control volume

faces to the nodes of the finite-volume grid, following the procedure described in Subsection

(4.1.3). Once the velocity components at each node of a given control volume are known, a

method of interpolation based on the distance weighting is used to interpolate the velocities

components from the nodes to the particles positions (VINCOVIK, 2005).

In this interpolation method, the velocity of a particle that lies within a control volume
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is weighted by the inverse of the square of the distance between the particle and the nodes,

i.e,

ũip =

P8
No=1 (ũi,No/DNo)P8
No=1 (1/DNo)

, (4.40)

where ũip is the i-th component, i = 1, 2, 3 of the velocity vector interpolated at the particle

p, No = 1, ..., 8, is an index associated to a node in a finite-volume hexahedral grid, and DNo

is the square of the distance between the particle and a node No, given by,

DNo = (xp − xNo)2 + (yp − yNo)2 + (zp − zNo)2, (4.41)

where, xp, yp and zp are the coordinates of a particle p in the x, y and z directions respectively,

and xNo, yNo and zNo are the positions of the nodes of the considered control volumes. The

nodes No, distances DNo and the particle p are illustrated in the Fig. (4.6).

Figure 4.6: Weighted interpolation scheme. The solid lines represent the control volume

edges, and the dashed lines connects the nodes and a particle p.

4.3.4.3 Particles weighting control

Due to the stochastic nature of the method of Monte-Carlo and to the turbulent mo-

tions, the number of particles present in a given cell may significantly change in time. As can
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be derived for constant density flows, the average number of particles per cell is proportional

to the cell volume if all particle masses are equal. In order to prevent particle accumulations,

particles are ascribed a relative weight, which may vary throughout the computational do-

main and even among the particles within a single computational cell (ZHANG; HAWORTH,

2004). The particles evolve in such a manner that the evolution of the joint PDF is equiva-

lent to PDF in the physical transport equation. The stochastic particles therefore need not

necessarily to behave as fluid particles, i.e., they can have mass for instance, but not inertia.

In fact each of them represents a single realization of the turbulent flow (MöBUS, 2001).

To maintain an acceptable distribution of particles as they move in physical space,

particle cloning and annihilation algorithms are employed (ZHANG; HAWORTH, 2004).

Particles are cloned in control volumes having less particles than a pre-determined value by

splitting a particle of mass m into two particles each having mass m/2 and each having the

same properties as the original particle. Thus the highest-mass particles in each element may

be cloned. Haworth (2010b) argues that cloning does not modify the local PDF of particle

properties.

Particles are annihilated in elements having more particles than a pre-determined

quantity by collapsing three particles of masses m1, m2, m3 and properties c1, c2 and c3,

selected at random (with a bias given to low-mass particles) into two particles of masses

m∗1 = m∗2 = (m1 + m2 + m3)/2 in a manner that preserves the particle mass, the mean

particle properties exactly and, also, the second central statistical moments of the particle

properties. This is achieved by taking the mean value (Þc123) and the variance (Þc”2
123) of these

three particles and, then, by applying Eqs. (4.42) and (4.43) to the two new particles.

c∗1 = Þc123 +

qÞc”2
123, (4.42)

c∗2 = Þc123 −
qÞc”2

123, (4.43)

This particle weighting control algorithms preserve the first and second statistical

moments. However, the behavior higher order moments is unknown beforehand. Since
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the accuracy of the Monte-Carlo methods depends directly on the number of particles in a

given computational cell, in the present work these algorithms act only where the number

of particles is 80% smaller than the number of particles initially distributed and in cells

where the number of particles is 1.5 times higher than the initial number of particles. It is

important to note that the consideration of a group of particles large than 3 may allow more

moments to be preserved, however, this is deemed unpractical in the present work.

4.3.4.4 Estimation of average quantities from particle fields

A fundamental issue in hybrid Monte Carlo-Finite Volume methods is the estimation

of average quantities from noisy data. In the present thesis this is the case of the properties

such as the chemical reaction progress variable, the density and the chemical reaction rate

evaluated at each particle. The mean values of the last two quantities are directly used in

the transport equations.

Since each particle has its own mass it is natural to use an average weighted by the

mass of the particles. Considering a Lagrangian property Q, the weighted average 〈Q〉 in a

given control volume n is given by,

〈Q〉n =

PNn
p

l=1m
(l)QPNn

p

l=1m
(l)

, (4.44)

where Nn
p is the total number of particles in a given control volume n, and m(l) is the mass

of each particle l.

The quality of the implemented Monte Carlo scheme will be estimated by comparing

the density of the fluid evaluated from the chemical reaction progress variable field, and the

density evaluated from the particle masses. This is the subject of the next section.

4.4 Equivalence between Eulerian and lagrangian approaches

In this section, it is presented the verification of a fundamental pre-requisite of a hybrid

LES-PDF method, the equivalence between the Eulerian and Lagrangian approaches.
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The model of transported PDF retained in the present work is based on the hypothesis

that the stochastic differential equations, Eqs. (3.72) and (3.73), give statistically equivalent

results to the solution of the Eulerian equation of transport of the scalar field PDF, Eq.

(3.74), when solved over a sufficient large number of Lagrangian particles using the Monte

Carlo method.

In this sense, a requirement for the use of the transported PDF model, coupled with a finite-

volume model is the verification of the statistical equivalence between the two approaches,

based on Eulerian and Lagrangian referentials, respectively. The verification procedure is

performed by simulating non reactive cases, where statistical central moments of first and

second orders are evaluated and compared quantitatively using both approaches. Another

important verification test performed is to ensure the consistency, i.e., the distribution of

particle mass in physical space is not arbitrary and it must remain consistent with the fluid

mass, or volume, distribution.

A general idea to ensure mass conservation is to devise a system of notional particles

whose evolution yields the same one-point, one-time PDF as the real fluid particle system

(HAWORTH, 2010b). Each notional particle represents a specified mass of fluid m(i) (given

by eq. 4.38) of an assembly of Np particles. The expected value of the mass of particles in

each finite-volume cell should be equal to the mass of fluid in the finite volume cell. The

mass of fluid in a finite-volume cell of volume Vc is mFV = ρVc, and the mass of particles in

that same volume is mpc =
PNpc
n=1 m

(n), where the sum applies over all particles in the cell.

The requirement then is: 〈mpc〉 = mFV . The rules associated with the particle cloning and

annihilation algorithms are used precisely for this purpose: ensure mass conservation.

4.4.1 Scalar field results for constant-density flows

In this section, the equivalence between the Eulerian and Lagrangian is assessed

through the simulations of a high speed mixing layer, based in the work of Magre et al.

(1988). The computational domain retained is a box with dimensions (800×2×100) mm, in

the x, y and z direction respectively. It is discretized in a finite volume mesh of 320×1×100
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control volumes. No-slip conditions are imposed along the z direction and periodicity is used

in y direction. An advective boundary condition, (ORLANSKI, 1976), is used as outflow

condition. The mean velocity profile used at the inlet is represented by a hyperbolic function:

u(z) =
uq + up

2
+
uq − up

2
tanh

�
2h(z)

δm
− 2hp

δm

�
, (4.45)

where, uq and up are respectively the velocities of the auxiliary burner (lower part) and

of the main duct (upper part); hp is the height of auxiliary duct. δm is the width of the

mixing layer. The main duct incoming flow is characterized by a mean longitudinal velocity

of 55 m/s. The auxiliary duct incoming flow presents a mean longitudinal velocity of 110

m/s. The Reynolds number, based on the initial width of the mixing layer, δm = 5mm, the

mean velocity between the two flow streams Ur = 97.5 m/s and the value of the kinematic

viscosity in air at 600K is Re = 3075. Over that mean velocity profile, in the x direc-

tion, random fluctuations, based on white noise, corresponding to 8% of the mean velocity

are superimposed. In the Z direction, the random fluctuations are of 4% of the mean velocity.

The same form of the hyperbolic function used in Eq. (7.21) is kept for the mean value

of the progress variable,

c(z) =
cq + cp

2
+
cq − cp

2
tanh

�
2h(z)

δm
− 2hp

δm

�
, (4.46)

where, cq and cp are respectively the mean values of the progress variable of the auxiliary

burner (c = 1 ; Tb = 2000 K) and of the main duct (c = 0 ; Tu = 560 K); hp is the height of

auxiliary duct. Concerning the Monte Carlo simulation, an average of 50 particles per control

volume are used and the Milstein scheme has been employed for the numerical integration

of Eqs. (3.72) and (3.73).
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Figure 4.7: Distribution of the progress variable c̃ in the plane xz at t = 0.03 s (3000

iterations) (a) Finite Volume method (b) Monte Carlo method.

Figure (4.7) shows the qualitative comparison of an instantaneous field of the progress

variable, evaluated by the finite volume method and by the Monte Carlo method. It is

noteworthy that both fields are very similar, even in regions where the presence of eddies are

more pronounced. Concerning the variance, displayed in Fig. (4.8) the agreement between

both methodologies is very satisfactory also.

Figure 4.8: Distribution of the variance of the progress variable c̃ in the plane xz at t = 0.03

s (3000 iterations) (a) Finite Volume method (b) Monte Carlo method.

Although the developed numerical code is suitable to simulate low Mach number flows,

the results presented in this section concern constant density flows. Nevertheless, the con-

sistency test is still of fundamental importance. Fig. (4.9) is a quantitative comparison

in terms of time-averaged, denoted by brackets, and instantaneous values of a longitudinal
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probe of the density field evaluated by the transport of particles in physical space. The probe

is placed along the x axis and at z = 0.02m, exactly the position of the splitter plate.

In that case the highest value of the error between the eulerian value of density and the

mean values of the density evaluated from particle data is less than 0.1%.

Figure 4.9: Assessment on the consistency of the particle scheme: Solid line stands for the

Eulerian (constant) density. The dashed line represents the instantaneous value of the density

evaluated from the particle density control algorithm, and the dots are the time-averaged

value of the density evaluated by such algorithm.

Figure 4.10: Equivalence between the method of finite volumes and the Monte Carlo method.

Time-averaged value of the mean value of the progress variable for different positions along

the computational domain. z∗ = z/δm is non-dimensionalized based on the initial width of

the mixing layer.

Figures (4.10)-(4.11) present quantitative comparisons of the first and second central

statistical moments of the scalar at different positions along the x axis. It is possible to
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verify that there is an excellent agreement between the methodologies. For the variance

of the passive scalar, for instance, the maximum difference between the finite-volume and

Monte-Carlo methods is about 6%.

Figure 4.11: Equivalence between the method of finite volumes and the Monte Carlo method.

Time-averaged value of the mean value of the variance of the progress variable for different

positions along the computational domain.

4.4.2 Scalar field results for variable-density flows

In order to demonstrate the equivalence between the Eulerian and Lagrangian schemes

in variable density flows, a temporal mixing layer involving transport of a passive scalar quan-

tity c featuring increasing values of the density ratio is studied. The governing equations for

such a variable are the same transport equations that govern the chemical reaction progress

variable, however it is important to note that in the present section there is no chemical

reaction, i.e., S(c) = 0. The flow configuration consists of two co-flowing streams traveling

in opposite directions with the same reference velocity Ur = ∆U/2 where ∆U denotes the

velocity difference across the layer.

The flow variables reported below are normalized with respect to a reference length

scale Lr equal to half the initial vorticity thickness, i.e., Lr = δv(t = 0)/2. The corresponding

flow is dominated by the growth of large scale coherent Kelvin Helmholtz type structures. In

the retained representation, x and y denote the streamwise, and the cross-stream directions,
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respectively. The temporal mixing layers are initiated by a hyperbolic-tangent velocity pro-

file, i.e., u = Ur tanh(y/Lr), with free stream conditions as u1 = Ur = 1 and φ1 = 1 on the

top and u2 = −Ur = −1 and φ2 = 0. A weak white noise random perturbation is super-

imposed on the initial velocity field in the rotational region. Simulations are conducted at

Re = UrLr/ν = 500 for three different values of the density ratio s = 2, 4, 8, where s is the

characteristic density contrast defined as s = ρ1/ρ2; ρ1 = ρ(c1) and ρ2 = ρ(c2) denote the

values of the density in the top and bottom streams, respectively.

The computational mesh features homogeneous grid spacings ∆x = ∆y = ∆z = ∆,

and the number of grid points is set to nx = 2Lx/∆ = 140 in the longitudinal direction,

ny = 2Ly/∆ = 1 in the streamwise direction and nz = 2Lz/∆ = 140 in the cross-stream

direction. For all simulations presented in this subsection the size of the time step is allowed

to be variable, however the security factor presented in Eq. (4.1) is fixed in 0.25. Concerning

the Monte-Carlo approach, the simulations have been carried-out retaining Np = 50 and

Np = 250 particles per control volume.

Figure 4.12: Two-dimensional temporal mixing layer simulation results for a density ratio

s = 2 at t∗ = tUr/Lr = 54. Contours of the scalar c. The figure in the right hand side

presents results for the simulation using the finite volume scheme. In the left hand side,

results of the Monte-Carlo simulation.

In Figs. (4.12) and (4.13) are reported snapshots at t∗ = tUr/Lr = 50 of the scalar

and variance fields in the case where 250 particles per control volume are initially distributed
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to perform such simulation. With values of c = 0 in the bottom and c = 1 in the top

streams, both figures show a moment in the flow where a single vortex is presented in the

computational domain. Figs. (4.12) and (4.13) provide a simple visual evidence of the

equivalence between the Eulerian and Lagrangian approaches for the transport of a passive

scalar.

Figure 4.13: Two-dimensional temporal mixing layer simulation results for a density ratio

s = 2 at t∗ = tUr/Lr = 50, where t is the physical time. Contours of the variance of the

scalar c. The figure in the right hand side presents results for the simulation using the finite

volume scheme. In the left hand side, results of the Monte-Carlo simulation.

The number of particles in the Monte-Carlo simulations affect directly the accuracy

of the results. In order to evaluate its influence in the time average results of the two

dimensional mixing layer, Fig. (4.14) shows the results of a probe placed at the position

x∗ = x/Lr = 0.3, along the z∗ axis. The time-averaged values of the mean values of the

scalar variable and its variance are obtained over an average of 2500 iterations (time steps).

It is worth recalling that since the numerical code developed is capable of adapt the size of

the time step, thus, it is important that the time-average variables are evaluated by taking

into account the “distances” in time where samples are taken.

In the present work, the time-averaged value of any variable θ, 〈θ〉 is given by,

〈θ〉 =

Ptend
i=tini (〈θ〉+ ∆tθ)Ptend

i=tini ∆t
, (4.47)
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where, tini is the first time step the average procedure begins, tend is the time until the

procedure will keep averaging the variable θ, and ∆t is the size of the time step that can be

variable. It is noteworthy that although the mean values of scalar quantity c seems to be

independent of the number of particles retained, the variance of the scalar variable displays

a higher sensitivity to the number of particles initially retained.

Figure 4.14: Time average results for the two-dimensional temporal mixing layer simulation

for a density ratio s = 2 for number of particles per control volume Np equal to 50 and 250.

Left hand side: scalar quantity c, right hand side: its variance.

The verification of the equivalence between the Eulerian and Lagrangian approaches

is completed with a set of simulations conducted for different values of the density ratio s.

Fig. (4.15) (a), (b) and (c) stand, respectively, for quantitative comparisons of simulations

carried out with density ratios s = 2, s = 4, and s = 8. In these figures are reported the

scalar quantity value, the variance of the scalar, and as a measure of mass conservation of

the Lagrangian scheme, the density evaluated from the scalar value (through the equation

of state Eq. 3.5), and evaluated from the particle weights.

The data used to build Fig. (4.15) have been obtained from probes positioned in such

a manner that they measure the core of the main vortex of the flow. Since the featured

results represent different simulations with different flows characteristics, it is natural that
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the probes are positioned in different positions in both time and space. For the Fig. (4.15)-

(a), the probe is placed at the position x∗ = 0.3, at t∗ = 50. For the Fig. (4.15)-(b) the

probe is placed at the position x∗ = 0.9, at t∗ = 50. Finally, for the Fig. (4.15)-(c) the probe

is placed at the position x∗ = 0.7, at t∗ = 56. All probes are taken along the z∗ axis. Since

all comparisons are made based on two-dimensional simulations, the position of the probes

along the y-axis is fixed at Ly/2.
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Figure 4.15: Instantaneous probes characterizing the equivalence between the Eulerian and

Lagrangian approaches for different ratios of density Top to bottom: s = 2, s = 4 and s = 8.

From left to right: the value of the scalar quantity, its variance and the density variations

along the z∗ axis.

Despite the differences that exist between the numerical algorithms retained for the
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transport of a single passive scalar in either constant or variable density flows both the Eule-

rian and the Lagrangian fields agree very well and feature negligible differences. It confirms,

at least, that the transport equations for the scalar have been well implemented, ensure mass

conservation and evaluates satisfactorily the first two central statistical moments.

Once the equivalence of the numerical methods adopted in the present work is verified,

it is important to address another important numerical issue of the numerical code devel-

oped: the capability of performing parallel distributed computations. The corresponding

parallelization strategy relies on a three-dimensional cartesian topology of domain decompo-

sition, its detailed description is the subject of the next chapter.
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CHAPTER V

PARALLEL APPROACH

One of the main limitations faced by computational simulations of complex physi-

cal systems is that associated to the required computational resources. The use of parallel

computers, i.e., a set of Central Processing Units - CPUs, that cooperatively solve a compu-

tational problem, is each day more affordable. However, the applications designed for serial

machines are not readily portable to parallel computers, and require the retained algorithms

to be parallel as well.

Figure 5.1: Domain decomposition in a three-dimensional cartesian topology. Npx, Npy and

Npz stand for, respectively, the number of processes in the x, y and z directions

There are different levels of parallelization that can be adopted in the development of a

numerical code. If parallelization is performed at the loop level, which is the case with auto-
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parallelizing compilers, achieving a high efficiency in a distributed memory parallel computer

is difficult, since the portion of the code that cannot be parallelized has to be very small.

A second type of parallelization involves performing some instructions in parallel, e.g., if a

product vector-matrix is the most time consuming part of an algorithm, such operation may

be treated with aid of other processors, whereas the remaining parts of the algorithm are

executed sequentially.

According to Ferziger and Peric (1996), an approach more suitable to fluid dynamics

problems is to subdivide the solution domain in sub-domains and assign each of them to one

processor (or core). Figure (5.1) exemplifies this approach. In this case, the same code runs

on all processors (cores), each one with its own data. Each sub-domain must exchange data

with the neighbors, to allow for derivatives to be computed. This is the parallel computing

paradigm retained in the present work. The communication between different sub-domains

is performed by the using the Message Passing Interface - MPI library (GROPP; THAKUR;

LUSK, 1999).

Figure 5.2: Domain decomposition in a cartesian topology. a) Original (serial) domain,

b) one-dimensional decomposition, c) two-dimensional and d) domain decomposition in the

three cartesian directions.

An important aspect in the domain decomposition approach is how the domains are

partitioned, more specifically, the topology of parallelization adopted. The topology of par-

allelization can be unstructured, normally used in numerical codes based on non-structured



99

grids. Alternatively, as is the case of the code developed in the present thesis, such topology

can be structured, more specifically, cartesian. The domain partition strategy in a cartesian

topology can vary from one-dimensional to three-dimensional, as shown in Fig. (5.2). In the

one-dimensional topology the message exchange proceeds in one direction only, for the two

and three-dimensional types of topology the algorithm of message exchange occurs in two

and three coordinate axis, respectively.

In Fig. (5.2)-a, the original domain has been decomposed in the three different direc-

tions. For example, in Fig. (5.2)-b the original domain is decomposed into three sub-domains

along the z axis, whereas Fig. (5.2)-c shows a decomposition along the directions x and z,

resulting in 9 sub-domains. Finally, Fig. (5.2)-d displays a domain decomposition along the

three coordinate directions. It is important to underline that, since the three-dimensional

topology was implemented in the computational code developed in the present work, the

types of decomposition shown in Figs. (5.2)-b and c, are also available. Another important

fact about the choice of the three-dimensional topology is that, despite its more complicated

implementation, when the number of sub-domains is increased (to hundreds for instance),

the three-dimensional topology is expected to yields better results, in terms of both speed-up

and efficiency, due to an improved volume of calculated data × amount of data exchanged

relation (CAMPREGHER, 2005).

As stated previously in the present manuscript, a hybrid finite volume-Monte Carlo

method is among the most promising options to simulate turbulent reactive flows from a

general point of view. It should be noted however, that due to the inherent numerical dif-

ferences between the Eulerian and Lagrangian approaches, its parallel algorithms, although

both based on domain decomposition, display significant differences. In the forthcoming

sections the main characteristics of such algorithms will be given.
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5.1 The finite-volume method parallelization

Concerning the spatial discretization of the transport equations, described in Chapter

4, it is essential to ensure that information is available at every grid point of the stencil

used to discretize a derivative. Since, in the present work, a second order approximation is

adopted, at least three points are needed to perform such a discretization. When considered

the limits of the computational domain, the prescription of boundary conditions may require

an extra control volume1. When a sub-domain is considered, boundary conditions must be

applied in all computational boundaries as well, but differently of a classical boundary con-

dition, e.g., Neumann or non-slip conditions, in the overlapping area2, the prescribed data

comes from others sub-domains.

Still concerning the prescription of the boundary conditions on the overlapping cells,

it is important to underline that the storage mode of scalar and vectorial variables in a

computational grid also affects the message exchange algorithms. For instance, the choice of

a collocated grid simplifies the data exchange algorithms, since all the data structures that

are passed from one sub-domain to another have the same size, i.e., the faces exchanged

have the same number of control volumes, regardless of scalar or vectorial variables. On

the other hand, since the type of grid arrangement may affect the pressure-velocity coupling

in incompressible and low-Mach number regimes, the use of a staggered grid is desirable.

In this case, the size of the arrays used for the storage of vectorial and scalar variables are

different, hence, different messages sizes must be transmitted across the sub-domains. In

the case of the numerical code developed in the present work, four different grids are used,

one for each component of velocity, and a fourth for the scalar variables (pressure, density,

viscosity, chemical reaction progress variable and its variance).

The exchange of this set of variables is done before the evaluation of the coefficients of

each linear system to be solved in the projection method retained, and the communication

between subdomains of a single variable is performed inside the linear system solver, i.e.,

1In the present work it is adopted the nomenclature of ghost cells for the extra cells retained to enforce
the correct boundary conditions.

2Region where two ghost cells occupy the same position in space
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since the solvers used in the present work are iterative, the variable to be solved within the

linear system solver must be updated after each iteration.

Figure 5.3: Domain decomposition in a one-dimensional cartesian topology and data ex-

change scheme for vectorial and scalar variables.

To illustrate the procedure of data exchange in the finite-volume method, Fig. (5.3)-a

shows an one-dimensional domain which is decomposed in three sub-domains. To each sub-

domain an ID is attributed, thus, in this example, there are IDs from 0 to 2. The vectorial

and scalar variables are positioned in a staggered way. Consider first the vectorial variable,

Fig. (5.3)-a shows that a ghost cell is not needed at the limits of the domain, i.e., classical

boundary conditions can be prescribed at faces 1f and 10f . In Fig. (5.3)-b, for the IDs 0

and 2, such classical boundary conditions can also be prescribed at faces 1f and 4f , with

respective IDs 0 and 2. However, at face 4f of ID 0, the value of the vectorial variable should

come from the ID 1, face 1f .

In order to evaluate such face at ID 1, the value of the variable at its left neighbor 0f is
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required, which, is determined from the face 3f of ID 0. The same procedure is performed

at the end of ID 1 and at the beginning of ID 2 and so forth.

The data exchange procedure for the scalar variables is similar to that retained for the

vectorial variables, however, ghost cells are needed to ensure that the three points stencil, re-

quired by the second order discretization, is always available. In this sense each sub-domain

must have its own ghost cells. The communication procedure also follows the same algorithm

as the communication of vectorial variables, i.e., in order to calculate the value of a scalar

variable at point 1c of ID 1, it is necessary to transport the value of point 3c of ID 0, to cell

0c of ID 1. Analogously, to evaluate the scalar at cell 3c of ID 0, the ID 1 must send the

value of the scalar at 1c to cell 4c of ID 0.

Finally, if a periodic boundary condition is required, regardless the position of the

ID in relation to the computational domain, the data exchange procedure treats the sub-

domain as an “internal” sub-domain. In this case, all ghost cells become overlapping cells

along the periodicity direction. Considering the above example, if periodicity is applied, the

data contained in faces 3f and 4f of ID 2 must be exchanged with the faces 0f and 1f of ID

0. Similarly, the data of cells 3c and 4c of ID 2 are exchanged with the data of cells 0c and

1c of ID 0.

5.2 Parallelization of the Lagrangian approach

In the case of a Monte Carlo simulation, each particle can move, under Eq. (3.72),

across different sub-domains. Since each particle carries information that must be preserved

across the sub-domains, e.g., the value of the scalar, such information must be transferred

across the processors as well. As stated in the previous paragraphs, the number of particles

in a given simulation can easily be of the order of several millions. Moreover, the number of

particles present within each sub-domain at a given time in unknown, as is the number of

particles that cross the faces of the sub-domains. Such indetermination governs the choice

of the particle data structure, which should be suited for dynamic data. For the Lagrangian
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approach, in the present work is adopted a linked list data structure, which is now outlined.

5.2.1 Data structure and linked lists

Blevins (2009), defines a linked list as a list containing a series of individual node

elements, where each node contains a data member and one pointer that points to the next

node in the list. In the present work a second pointer that points to the previous node in

the linked list is implemented. The first node, known as head of the list, points to the next

node, but its pointer indicating the previous node is null. The contrary characterizes the

last node, i.e., the pointer known as the tail of the linked list. A schematic view of the used

linked list is given in Fig. (5.4),

Figure 5.4: Schematic view of the linked list. The arrows departing for the pointers “prev”

and “next” indicate the previous and next data members.

The data contained in a given data member can be as complex as needed. In the

the present work, each node of the linked list represents a notional particle, thus, each data

member contains the velocity components, scalars arrays, logical arguments and integers

variables grouped in a Fortran-90 type structure (PRESS et al., 1992). The main advantage

of the linked list is that the list can grow and shrink by simple point operations of linking

applied on the pointers, thus avoiding the need of allocating or deallocating great amount of

data, as it would be the case if regular arrays were used.
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Figure 5.5: Reallocation of pointers in the process of deleting an node in a linked list. The

arrows departing for the pointers “prev” and “next” indicate the previous and next data

members.

The shrinking operation, i.e., the act of deleting a particle from the linked list, can be

explained with aid of Fig. (5.5). First, consider that a particle is no longer necessary in the

linked list. In the present example, the third particle from the left to the right in Fig. (5.5).

The first operation is to nullify the “prev” and “next” pointers of such a particle.

Then, the “next” pointer of the previous particle is redirected to the next particle after the

one that is to deleted, whereas, the “prev” pointer of the next particle is redirected to the

previous one. The process of redirecting the pointers isolates the particle to be deleted from

the linked list, which allows for easy deallocation.

The procedure of adding a new particle in the linked list is simpler. In this case, it is sufficient

to add the new particle at the end of the linked list, reconnecting the “next” pointer of the

old tail in the actual tail, and connecting the “prev” pointer of the actual tail to the old tail.

In the next subsection the algorithm developed to exchange particle data between sub-

domains will be explained.

5.2.2 Data exchange between sub-domains

Since a three-dimensional cartesian topology of parallelization is adopted, the parti-

cles within each sub-domain may move across its boundaries in any direction. Moreover,

considering again Fig. (5.1), it is possible to note that, given the structure of the domain de-

composition, particles from a given sub-domain may be transported to different destinations

(sub-domains) at a given time. This requires a mapping, in which for each sub-domain is

computed the number of particles that leave its boundaries, the corresponding destination,
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and consequently, how many particles each sub-domain receives from every possible origin.

Such a map is constructed by identifying each particle with an integer variable, that

gives the actual ID of the particle, i.e., the identity of the sub-domain the particle lies within

at the time step considered. The ID of the particle is set by verifying if the coordinates of

the particle lies between the boundaries of a given sub-domain, or if the coordinates of a

particle shows that such a particle must be transported to another sub-domain, the value of

the integer variable will be the destination ID.

It is worth noting that such operation must be done at each time step. However this is not

a costly operation since it is necessary only an if statement to verify the ID of each particle,

and this statement can be positioned inside a loop for the numerical solution of Eq. (3.72).

Once determined the data that must be sent and received by each sub-domain, the

procedures of sending and receiving data are performed. A careful design of this exchange

procedure is required in order to ensure a good efficiency and speed-up of the overall com-

putational code.

Before discussing the possible data exchange algorithms it is important to introduce a few

communication paradigms, more specifically those related to the send and receive functions

of the MPI library. The point-to-point communication is basically composed of two oper-

ations: send and receive, each of which may be classified as synchronous or asynchronous,

blocking or non-blocking operations.

The communication operation is synchronous or asynchronous if it completes, or not,

before the corresponding receive operation has been initiated. Thus, synchronous sends com-

plete only when the corresponding message is handled by some receiving process, whereas,

asynchronous sends completes as soon as the corresponding message has been delivered to

the communication buffer. It is possible to understand the above statements with a simple

example: a fax message or registered mail is a synchronous operation. The sender can find

out if the message has been delivered, for its turn, a post card is an example of an asyn-

chronous message. The sender only knows that it has been put into the post-box but has no
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idea if it ever arrives unless the recipient sends a reply.

Another classification is related to the blocking or non-blocking nature of the commu-

nication, which relate the completion time of a communication operation to the procedure

that initiate that particular communication operation. Blocking procedures only return when

the corresponding communication has completed, whereas non-blocking procedures return

immediately and allow the process to proceed to perform other work. Note that, at some

later time, the process may verify for the completion of the corresponding communication.

It is important to point out that non-blocking operations demand careful implementations,

since they are usually associated to the overload risks or dead-lock problems, however, non-

blocking communication is generally faster than its blocking counterpart.

Different approaches are possible for transporting particle data between domains. Once

defined the target-sub-domain of a particle, the first approach is to send particle by parti-

cle separately for its destination, i.e, one operation of send and receive for each particle

transported. This can be made using blocking or non-blocking communication. For the

applications of interest, blocking communication has a prohibitive cost, but independently

of the form of communication it was found that use a send-receive for each particle is costly

and the risk of having a overload of communication when increasing the number of particles

is high.

In the algorithm proposed in the present work, the number of particles that crosses

the sub-domain boundaries is determined before entering the send-receive procedures by the

mapping algorithm commented in the above paragraphs, thus it is natural to group the

particles which have a common destination in a package and send the package of particles,

instead of single particles. For a small number of sub-domains, usually 2 or 3 in a one-

dimensional topology of parallelization, the use of blocking communication has presented

the same computational cost as that of non-blocking communication. However, the blocking

communication cost rapidly degrades as the number of sub domains grows. Note that when

Np sub-domains are considered, in principle one has N2
p communication possibilities, hence,
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the resort to fully blocking communication is no longer affordable.

The approach developed in the present work uses non-blocking sends and blocking

receives. The receiving routine is capable of distinguishing different incoming data, and yet

be able of be aware of the completeness of the message arrived, because, for each message

sent, there is a particular control code. That control, based on the mapping of the com-

munication, works like a tag for the message, avoiding that the same sub-domain receives

messages from a same “origin” sub-domain more than once. Moreover, the receive function

uses a blocking form in order to ensure that the particles transfer process is correctly done

and that at the end of the operation, no particle were “lost”, i.e, every particle that needed

to be transported, has been transported, and has arrived correctly in its destination.

Finally, the received particles must be inserted in the linked list of its corresponding

sub-domain. This is made by adding the recently arrived particles at the end of the linked

list. The particles positions in the linked list at the originating domains, are deleted using

the procedure given in the subsection (5.2.1).

5.3 Performance assessment on the parallel approach implemented.

The performance analysis of a parallel code can be measured by the speed-up factor

and the efficiency, defined respectively as (FERZIGER; PERIC, 1996):

Sn =
ts
tn
, (5.1)

and,

Etot
n =

ts
ntn

, (5.2)

where ts is the execution time for the best serial algorithm on a single processor, and tn

is the execution time for the parallelized algorithm using n processors. It is important to

point-out that ts 6= t1, i.e., the time of the best serial algorithm is not necessarily the same
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as the parallel code executed in one processor only. Indeed, in the present work, the value

of ts is not available, therefore, the speed-up factor and efficiency results here presented are

evaluated as,

Sn =
t1
tn
, (5.3)

and,

Etot
n =

t1
ntn

. (5.4)

As will be seen in the Chapter 6, it is possible to propose analytical solutions to the transport

equations, in such a manner that a thorough verification of the numerical code is achieved.

Through the prescription of known source terms, it is possible to compare the results of the

numerical scheme against analytical solutions. The solution that will be used here to verify

the data exchange procedures is:

ue = sin2(2πx+ 2πy + 2πz + t), (5.5)

ve = −cos2(2πx+ 2πy + 2πz + t), (5.6)

we = 2cos2(2πx+ 2πy + 2πz + t), (5.7)

pe = cos2(2πx+ 2πy + 2πz + t), (5.8)

ce = cos2(2πx+ 2πy + 2πz + t). (5.9)

In these equations t is the time, and x, y and z are the coordinate directions. The subscript

e stands for the manufactured solutions of the primary variables, i.e., the three velocity com-

ponents, pressure and chemical reaction progress variable. This solution, when substituted

in the transport equations for velocity and chemical reaction progress variable generates

source terms. Once solved the transport equations with such source term incorporated, the

resulting velocity and chemical reaction progress variable fields are compared to the exact

values given by Eqs. (5.5) to (5.9). More details about the use of analytical functions in the
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verification of numerical codes will be given in Chapter 6.

Figure 5.6: Original domain sub-divided in 216 sub-domains. Each cubic box of the assem-

bling is assigned to a processor (core).

For the assessment of the parallel implementation, it is considered an incompressible

non-reactive flow, in which, variable “c” is considered to be a passive scalar. The computa-

tional domain is a periodic, cubic, box with dimensions 1.2 × 1.2 × 1.2 m3, discretized in a

computational mesh of 1203 control volumes. The density and dynamic viscosity are set to 1

kg m−3 and 0.1 kg m−1 s−1, respectively. The simulations carried-out are already performed

with the coupling of the finite-volume and Monte Carlo methods. For all simulations, 10

particles are initially assigned per control volume, totalizing about 17 million of particles in

the original (serial) domain. Such a domain is then sub-divided in 8, 27, 64, 125 and 216

sub-domains, always maintaining an uniform three-dimensional topology of parallelization.

A view of the domain sub-divided in 216 sub-domains can be seen in Fig. (5.6). In such

figure, the original domain is divided in 6 slices per direction, within each one of the 216
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sub-domains, the resulting grid is of 203 control volumes.

Figure 5.7: Speed-up evaluation for the hybrid finite-volume Monte-Carlo method.

For all simulations, a high-performance SGI/Altix XE1300 Linux cluster consisting of

30 Intel Xeon processors (26 processors E5650 2.67GHz and 4 E5520 2.27GHz, resulting

in 344 cores), which are connected via an Infiniband IB QDR / 10GigE interconnect is

used. One of the characteristics of such a class of processors is the capability of the use

of the hyper-thread technology. Hyper-threading is an Intel-proprietary technology used to

improve parallelization of computations. Roughly speaking, for each processor core that

is physically present, the operating system addresses two virtual processors, or cores, and

shares the workload between them when possible. Considering the cluster presently used for

the speed-up and efficiency evaluation, the 344 real cores would become 688 cores.

The simulations were first performed using the full capacity of the system, i.e., with

all real and virtual cores requested by the numerical code, and, then, a second set of sim-

ulations, using only real cores. The differences between the speed-up curves for the cases

where real cores are used instead of real and virtual cores, are shown in the Fig. (5.7). In all
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simulations where virtual nodes were used, the speed-up factor was worse than when only

real cores were requested. This can be due to several causes, e.g., the computer nodes were

overloaded, since each core, besides the numerical code, has also to maintain the operational

system, putting eventually the numerical code in a wait status, or even by the non-optimized

use of the cache L2 memory. In the last case, if two processes tries to access the L2 memory

at the same time, but there is not enough space, one of the process must be put on hold.

It is noteworthy that, when more than 27 processors are used, there is a decrease in the

speed-up factor when virtual and real cores are used simultaneously. Such a performance

penalty increases when the number of sub-domains is increased, for 216 sub-domains, for

instance, the maximum speed-up achieved is 100, whereas when only real cores are requested,

the speed-up factor is 181. The difference between the theoretical speed-up factor, 216

and obtained one, 181, could be explained by the communication increase among the sub-

domains, specially due the Monte-Carlo method. For example, when eight sub-domains are

used, the average amount of particles exchanged among all sub-domains per iteration is

about 70,000, whereas for 216 sub-domains, this number increases to 252,000.

Tab. 6.5 displays the overall characteristics of the cases simulated, as well as the values of

efficiency and speed-up factor, calculated from Eqs. (5.3) and (5.4).

Table 5.1: Numerical efficiency and speed-up factor evaluation for various topologies of

parallelization.

Topology of Grid Particles Theoretical Speed-up Numerical

parallelization per per speed-up factor efficiency

Npx ×Npy ×Npz Sub-domain Sub-domain factor obtained (in %)

[Total] (real cores only)

1× 1× 1 [1] 1203 17,280,000 1 1.00 100.0

2× 2× 2 [8] 603 2,160,000 8 7.66 95.8

3× 3× 3 [27] 403 640,000 27 24.8 91.7

4× 4× 4 [64] 303 270,000 64 56.7 88.6

5× 5× 5 [125] 243 138,240 125 102.3 81.8

6× 6× 6 [216] 203 80,000 216 181 83.8



112

For large reactive simulations the parallel performance is expected to increase for two

reasons. First, with increasing number of control volumes and of particles, for a given num-

ber of processors, the relative communication effort reduces. The second reason is connected

to the evaluation of the Arrhenius law reaction source terms, which is the single, most ex-

pensive operation responsible for increasing the workload.

Concerning the overall efficiency of the parallel approach retained, Fig. (5.8) shows

that the numerical code developed presents an acceptable efficiency. The less than two

percent of increase in the efficiency between the cases with 125 and 216 sub-domains may

be due the fact that, since the amount of data sent to the cache L2 is lower in the case with

216 sub-domains, such lower amount of memory requested could fit the L2 memory, i.e., the

size of the memory sent to the processor may fit in the size of the L2 memory, avoiding extra

communication between the L2 memory and the RAM memory, consequently reducing the

computational time.

Figure 5.8: Efficiency of the parallel implementation of the hybrid finite-volume Monte-Carlo

method.



CHAPTER VI

CODE VERIFICATION

As aforementioned, the solutions of the balance equations (mass, momentum, energy,

species mass fractions, etc.) are sufficient to represent any flows irrespective of their charac-

teristic velocity, provided that the continuum hypothesis holds, and once suitable constitutive

equations for the fluids of interest are provided. However, when dealing with discrete ap-

proaches for solving such a system of balance equations, the numerical techniques do involve,

invariably, errors. These errors have different sources, spanning from unavoidable roundoff

errors to mere programming mistakes (bugs), hence emphasizing the crucial need for well

defined procedures to evaluate the numerical accuracy. Moreover, it is of fundamental impor-

tance to be able to characterize the capabilities of a numerical approach, i.e., it is imperative

to determine whether (or not) the retained mathematical / numerical scheme is suitable to

cope with the problem of interest.

An important step in the development of a new numerical tool is the process of verifica-

tion and validation of the numerical code. In the present work, the Method of Manufactured

Solutions (MMS) is used to to verify the accuracy and the convergence rate of the numer-

ical methods implemented. A noteworthy characteristic of such a method is the capability

of identifying the eventual presence of implementation bugs. The resort to the Method of

Manufactured Solutions is progressively becoming a classical and well-accepted methodology

retained in the framework of a numerical code verification (STEINBERG; ROACHE, 1985).



114

There is an undeniable interest in the use of such a method to quantify, accurately, numeri-

cal capabilities before using computational programs to perform the simulation of complex

physical systems.

The MMS consists in developing a priori known analytical solutions for the system

of governing equations. These manufactured solutions require the addition of a source term

to the original differential model, such as those presented in Eqs. (3.2), (3.3) and (3.74),

for instance. It is worth recalling that, in this chapter, the analysis of the accuracy and

convergence rate are made by considering the Eulerian set of equations only. Therefore, no

chemical reaction is present in the manufactured solutions. The variable c, called chemical

reaction rate should be understood as an passive scalar herein. As a consequence, in this

chapter, the source term of the chemical reaction progress variable in Eq. (3.74), represents

the analytical source term used in the Method of Manufactured Solutions.

In order to construct the manufactured solution, a set of almost arbitrary functions are se-

lected and substituted into the considered system PDEs, thus allowing to solve its derivatives

analytically. The result of such a substitution is the “source term”. To avoid errors in the

symbolic manipulation of this source term, which can be composed of hundreds of terms,

algebraic manipulation softwares, like the Maplesoft 12.0, for instance, may be used. The

source term is then considered as an input to the numerical code, which allows reproducing

the manufactured solution. The pioneering works that make use of manufactured solutions

with the objective of verifying the accuracy and the convergence rate of a given numerical

code can be assigned to Steinberg and Roache (1985), Roache (1998b) and Roache (1998a).

A recent application of such a method can be found in Vedovoto et al. (2011).

The arbitrary nature of the analytical functions must satisfy, at least, the following condi-

tions:

• They must be continuous smooth functions of independent variables. Problems in-

volving discontinuities are generally dealt using lower order algorithms due to stability

issues;

• The solution must be continuously differentiable up to the order required by the cor-
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responding terms in the governing equations;

• To avoid numerical difficulties, manufactured solutions should respect positiveness for

quantities that are physically defined as positive semi-definite, e.g., density, molecular

viscosity;

• If periodic boundary conditions are chosen, the solution must be periodic as well to

avoid the development of discontinuities.

In the case of verification of a numerical code devoted to simulating fluid flows, it may

be interesting for the analytical solution to satisfy the continuity equation at least. With

a null source term in the continuity equation, most algorithms retained for the solution of

fluid flow problems do not need to be modified excepted for the source terms. For instance,

if the continuity equation is obeyed by the analytical velocity field, i.e., the divergence of the

analytical velocity field is null, the algorithm used for solving the pressure-velocity coupling

does not need to be modified, otherwise, it would be necessary to add new source terms

in the Poisson equation for instance. Salari and Knupp (2000) provide well documented

guidelines for creating manufactured solutions as well as the procedures for obtaining the

corresponding source terms and performing the analysis of the obtained results.

In general lines, to evaluate the convergence rate of the developed numerical imple-

mentation, a quantitative metric of the error is chosen, and successive grid refinements are

performed. As the error metric decays with the grid refinement, it is evaluated as a function

of the characteristic mesh size, h.

For a given level of resolution, Φh
(i,j,k) is defined as the discrete value of any variable

Φ of interest, e.g. the density, velocity components, pressure or chemical reaction progress

variable, at any point (i, j, k) of the discrete computational domain, and Φe
(i,j,k) is the cor-

responding value of the manufactured solution. The first step of the verification procedure

requires to define a metric of the numerical error, denoted Ψh in the following, in order to

subsequently quantify the error decay rate obtained, for decreasing values of the character-

istic grid mesh size h.
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In this work, it is adopted the L2-norm as the relevant metric of the numerical error,

Ψh = L2

�
Φh

(i,j,k)

�
=

Ì
1

N

X
i,j,k

�
Φh

(i,j,k) − Φe
(i,j,k)

�2
, (6.1)

where N denotes the total number of grid points.

The error decay ratio is defined as,

re = log
�

Ψ2h

Ψh

�
, (6.2)

with Ψ2h the value of the error metric obtained on a grid with characteristic mesh size 2h.

Following the nomenclature retained in Salari and Knupp (2000), the convergence rate

q is defined as:

q ≈ re
log(2)

. (6.3)

Using Eq. (6.3), it is possible to verify that the characteristic error decay ratio, using

grids with characteristics mesh sizes 2h and h, for methods of convergence rate q = 1, 2 and

3, must be, 2, 4 and 8, respectively. It is worth noting that, although possible, the value of

re does not always converges monotonically as the mesh is progressively refined, and it may

exhibit oscillations.

The process of verification presented herein is divided into two distinct parts. First, the

numerical code is tested using a manufactured solution that aims at verifying the convergence

rate for an incompressible solution, i.e., the zero Mach number limit. This is performed using

solutions based on sine and cosine functions, built in such a manner that the velocity diver-

gence is zero. The two different approaches for the discretization of the advective terms in

the transport equations are also assessed, as well as the effects of adopting homogeneous and

non-homogeneous boundary conditions. A second set of tests aims at mimicking the propa-

gation of a corrugated flame front that separates heavy from light gases. The application of

the method of manufactured solutions still remains more scarce for such low Mach number

situations. If excepted for the expression of the equation of state, the expression adopted
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to perform this analysis is the same as the one previously considered by Ham (2007), and

Shunn and Knupp (2007). This second set of tests clearly aims at evaluating the numerical

capabilities of the developed code to deal with variable density flows as those encountered

in combustion problems.

6.1 Verification of an incompressible solution

The set of functions reported below is retained as a solution for velocity components,

pressure and chemical reaction progress variable, respectively, in the limit of a zero Mach

number scheme:

ue = sin2(αsπx+ βsπy + γsπz + δst), (6.4)

ve = −cos2(αsπx+ βsπy + γsπz + δst), (6.5)

we =
αs
γs
cos2(αsπx+ βsπy + γsπz + δst) +

βs
γs
cos2(αsπx+ βsπy + γsπz + δst), (6.6)

pe = cos(αsπx+ βsπy + γsπz + δst), (6.7)

ce = cos(αsπx+ βsπy + γsπz + δst). (6.8)

The subscript e stands for the manufactured solutions of the primary variables, i.e. the three

velocity components, pressure and chemical reaction rate; t is the time. It is observed that,

if it is taken the divergence of Eqs. (6.4)-(6.6), the incompressibility condition is verified.

The above set of equations is written as a function of the constant parameters αs, βs, γs and

δs. Such parameters allow to apply the Method of Manufactured Solutions within a wide

range of numerical verifications. For example, if δs is set to zero, only the spatial derivatives

influence the convergence rate of the scheme. On the other hand, if αs, βs and γs are set to

zero, only the temporal scheme is tested.

One advantage of the Method of Manufactured Solutions if the capability of testing a

numerical implementation by parts, i.e., if is desired to test Eq. (3.2) without the pressure

term, it is enough to suppress the pressure contribution from the MMS source term, and, of

course, to remove the pressure contribution of the transport equations. If, for any reason,
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the convergence rate is not achieved in a fully coupled system, such a procedure of testing

the implementation by parts, facilitates the search for the eventual bugs. Throughout the

development of the present thesis, every term of each transport equation is separately verified,

prior to being assessed in a fully coupled algorithm. For the sake of conciseness, only the

results of the fully coupled algorithms are presented. However, it is important to underline

that, if there were residual bugs in the implemented algorithm, the expected convergence

rate would not be achieved.

6.1.1 Convergence rate analysis

The computational domain considered for the present numerical simulations is a cube

of dimensions [0, 1] × [0, 1] × [0, 1], in x, y and z directions respectively. The time step is

controlled by Eq. (4.1), in such a manner that the factor C of Eq. (4.1) is set to 0.25.

The parameters αs, βs and γs are set to 2, and δs = 1. The constant values of density and

viscosity are set to unity and 0.01, respectively. The variable coefficient Poisson solver is

used, however, no constraint is enforced for such incompressible solution. Concerning the

temporal integration scheme, the Backwards Difference Scheme - BDF, is retained.

The simulations carried-out for the verification of the accuracy and the convergence

rate of the developed numerical code are divided in four groups: first, Dirichlet boundary

conditions are set to all boundaries of the computational domain, and CDS approach is

assessed. The second set of simulations retain the Dirichlet boundary conditions, but the

deferred-correction approach is used. To verify the influence of the type of boundary con-

ditions on the convergence rate, the last two set of simulations are carried-out with mixed

boundary conditions: periodicity in the y direction, and Dirichlet boundary conditions in x

and z directions. Again, the CDS and deferred-correction approaches are tested with such a

mixed boundary conditions.

Table (6.1) reports the grid refinement, the decay of L2 norm and the resulting con-

vergence rate q for homogeneous boundary conditions (Dirichlet), and the CDS approach for

the discretization of the advective term of the transport equations. It is worth noting that

at least a convergence rate equals to two is obtained for all transported variables.
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Table 6.1: Obtained convergence rates for Dirichlet boundary conditions and CDS approach

for the spatial discretization of the advective terms.

Domain L2u q L2v q L2w q L2p q L2c q

163 0.03730 0.03730 0.07090 0.06400 0.06260

323 0.00837 2.15 0.00839 2.15 0.01610 2.13 0.01540 2.06 0.01290 2.28

643 0.00199 2.07 0.00200 2.07 0.00390 2.04 0.00380 2.02 0.00300 2.10

1283 0.00048 2.05 0.00049 2.01 0.00094 2.05 0.00095 2.00 0.00073 2.04

Depending on the class of flows simulated, some iterative solvers may fail to converge

when applied to the system of algebraic equations derived from central differencing of the

advective fluxes. This behavior is associated to grid-to-grid oscillations that are not solved

by central finite-difference schemes, and hence, should be removed because they may lead to

numerical instabilities (BOGEY; BAILLY, 2004). Practically, the elimination of these spu-

rious short waves is obtained by introducing artificial dissipation through additional damp-

ing terms in the equations (JAMESON; SCHMIDT; TURKEL, 1981) or, more efficiently,

through filtering procedures (BOGEY; BAILLY, 2004), without affecting the physical long

waves. It is possible, yet, to apply the deferred correction approach on the advective terms

of the balance equations. Such approach, implemented in the present work, is designed

to improve the numerical stability, however, it can adversely affect the convergence rate

(FERZIGER; PERIC, 1996).

Table 6.2: Obtained convergence rates for Dirichlet boundary conditions and deferred-

correction approach for the discretization of the advective terms.

Domain L2u q L2v q L2w q L2p q L2c q

163 0.03410 0.03410 0.06490 0.05950 0.057330

323 0.00763 2.16 0.00760 2.16 0.01468 2.14 0.01420 2.07 0.011800 2.28

643 0.00180 2.08 0.00185 2.04 0.00351 2.06 0.00348 2.03 0.002765 2.09

1283 0.00043 2.06 0.00045 2.04 0.00083 2.08 0.00094 1.89 0.000660 2.07

In the tests performed in the present work, as can be seen in Tab. (6.2), it is verified

that the deferred correction approach maintains a convergence rate equals to two for all
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variables tested, excepted for the pressure in the last grid refinement. In this case, the

convergence rate from the refinement of the 643 mesh to the mesh of 1283 is found to be

1.89. Figure (6.1), graphically represents the results shown in Tabs. (6.1) and (6.2). In this

figure, N stands for the number of grid points in each of the coordinates directions.

Figure 6.1: Decay of the L2 norm for the zero Mach number manufactured solution with

Dirichlet boundary conditions. �: u, N: v, �: w, H: c, •: p. The solid line stands for the

second order decay rate, and the dashed line stands for first order decay rate. Left figure:

CDS approach; right: deferred correction approach.

The results of the convergence rate analysis for the incompressible scheme, when mixed

boundary conditions are retained, is shown in Tabs. (6.3) and (6.4) for, respectively, the

discretization based on the CDS and deferred correction approaches for the discretization of

the advective terms in the transport equations. In both cases, a convergence rate equals to

two is achieved.

Table 6.3: Obtained convergence rates for mixed boundary conditions and Central differenc-

ing scheme for the advective terms.

Domain L2u q L2v q L2w q L2p q L2c q

163 0.03240 0.051900 0.063100 0.05110 0.0582

323 0.00722 2.16 0.011300 2.19 0.014100 2.16 0.01184 2.10 0.0122 2.25

643 0.00174 2.05 0.002700 2.06 0.003490 2.01 0.00292 2.02 0.0029 2.07

1283 0.00043 2.01 0.000655 2.04 0.000863 2.01 0.00074 1.98 0.0007 2.05
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Table 6.4: Obtained convergence rates for mixed boundary conditions and deferred-correction

differencing scheme for the advective terms.

Domain L2u q L2v q L2w q L2p q L2c q

163 0.02969 0.04821 0.05746 0.047100 0.05337

323 0.00659 2.17 0.01050 2.20 0.01294 2.15 0.010770 2.13 0.01112 2.26

643 0.00158 2.06 0.00250 2.07 0.00312 2.05 0.002640 2.03 0.00262 2.08

1283 0.00039 2.02 0.00060 2.06 0.00076 2.04 0.000669 1.98 0.00062 2.08

The results gathered in Tabs. (6.3) and (6.4) are illustrated in Figure (6.2). For

the incompressible solution, the numerical code is shown to yield at least second order in

the convergence rate for velocity. Finally, concerning the pressure, it is possible to note a

continuous decrease of the convergence rate as the computational mesh is refined, however,

its value does not exceed 1.98.

Figure 6.2: Decay of the L2 norm of the zero Mach number manufactured solution with mixed

boundary conditions. �: u, N: v, �: w, H: c, •: p. The solid line stands for the second order

decay, and the dashed line stands for first order decay. Left figure: CDS approach; right:

deferred correction approach.

Such an analysis of the incompressible solution under consideration clearly demon-

strates that, in terms of numerical accuracy, the numerical code developed is a good candi-

date to perform Large Eddy Simulations of constant density turbulent flows that require at
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least a convergence rate equals to two.

The preliminary key step associated with the verification of the numerical code being per-

formed for an incompressible regime, the verification of the numerical code developed is now

assessed for variable density flows.

6.2 Verification of the low-Mach number solution

The set of manufactured solutions retained in the present section are similar to those

introduced by Shunn and Knupp (2007) and Ham (2007). However, it is used here with a dif-

ferent equation of state, which involves a different pressure-velocity coupling. It is also worth

mentioning that, in the present work the interest is in density ratio variations representative

of those encountered in flames, which are significantly smaller than those considered in the

study conducted by Ham (2007).

The manufactured solutions are not necessarily related to an expected physical so-

lution. However, a solution that attempts to represent some relevant features of a given

problem, is both, a tool to assess the convergence rate, and provide a pertinent preview of

the behavior of the numerical code, when applied to situations of interest. In this sense, the

set of analytical functions reported below gathers some interesting features of a propagative

combustion front.

ce =
1 + tanh[bx̂ exp(−ωt)]�

1 + ρ0
ρ1

�
+
�
1− ρ0

ρ1

�
tanh[bx̂ exp(−ωt)]

, (6.9)

ρe =
Po
ce
, (6.10)

ue =
ρ1 − ρ0

ρe

¨
−ωx̂+

ωx̂− uf
exp[2bx̂ exp(−ωt)] + 1

+
ω log[exp(2bx̂ exp(−ωt)) + 1]

2b exp(−ωt)

«
, (6.11)

ve = vf , (6.12)

we = 0, (6.13)

pe = 0, (6.14)
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where, x̂ = uf t−x+a cos[k2(vf t−y)] and a, b, k2, ω, uf , vf and Po are constant parameters,

given in Tab (6.5).

To proceed with the analysis of the order of a accuracy of the numerical scheme for

variable density flows, different sets of numerical simulations are performed, increasing values

of the density ratio s = ρ0/ρ1. It is important to stress that the manufactured solution must

be compatible with the full set of equations that govern the evolution of the system under

consideration, and this also includes the equation of state. Equations (6.9 - 6.14) satisfy the

mass balance equation with a null source term, however, non-zero source terms also appear

in momentum and chemical reaction progress variable transport equations.

Table 6.5: Values of the constant parameters for the variable density numerical simulation.

parameter value parameter value

Po 101.325 a 1/5

Cp 1000 b 20

uf 0.5 k2 4π

vf 0 ω 3/2

wf 0 µ 10−4

Figure (6.3) displays the temporal evolution of the density field. It is noteworthy that,

as the time evolves, the front is simultaneously advected and diffused. The computational

domain is a box of [−1, 2] × [−0.5, 0.5] × [−h/2, h/2]. Five different grids are used, from:

150 × 50 × 1, up to, 2400 × 800 × 1. These grids are henceforth denoted, respectively, by:

4h, 2h, h, h/2 and h/4. For velocity components, chemical reaction progress variable and

density, Dirichlet boundary conditions are set at x = 0, y = −1/2 and y = 1/2. A Neu-

mann boundary condition is used in the outlet x = 2.0. Regarding the pressure, Neumann

boundary conditions are applied at x = 0, y = −1/2 and y = 1/2. At the outlet a Dirich-

let condition is retained. For all variables, periodicity is assumed in spanwise direction, z.

Similarly to the incompressible tests, the BDF scheme is used in the simulations presented

in the present section.

The procedure of cycling some parts of the algorithm may be used to enhance conver-

gence and stability of the numerical scheme. Such a procedure is based on the recent work
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of Ham (2007), but with some modifications. First, as noted above, a different equation of

state is used, second, a constraint on the divergence of the velocity field is added herein, as

a part of the strategy retained to solve the Poisson problem.

Figure 6.3: Evolution of the density field. The isolines stand for equally spaced density

levels.

6.2.1 Convergence rate analysis

In this section, are presented and discussed the results of a convergence rate analysis,

performed for the low Mach number MMS case. All the simulations presented below have

been carried out with a constant value of time-step size set to 0.01. Four different density

ratios are studied, s = 2, 5, 7 and 10. Tables (6.6), (6.7) and (6.8) display the convergence

rate, and the value of the L2 norm obtained for velocity, density and chemical reaction

progress variable for the first three ratios. These values of error and convergence rate are

measured at t = 1.0, following the procedure adopted by Ham (2007).

As commented at the beginning of the present chapter, although the analytical solution

manufactured can be somewhat arbitrary, there are some desirable characteristics that will

improve the tests for verifying the convergence rate.
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Table 6.6: Obtained convergence rates for low Mach number solution, s = ρ0/ρ1 = 2.

Domain L2u q L2v q L2p q L2c q L2ρ q

4h 7.63E-02 1.21E-02 1.14E-01 3.62E-02 1.61E-02

2h 1.73E-02 2.14 1.09E-02 0.15 3.53E-02 1.69 1.21E-02 1.58 6.57E-03 1.29

h 3.00E-03 2.53 1.64E-03 2.73 9.22E-03 1.93 3.09E-03 1.97 1.87E-03 1.81

h/2 6.69E-04 2.16 1.20E-04 3.77 2.28E-03 2.01 7.61E-04 2.02 4.65E-04 2.01

h/4 1.63E-04 2.04 8.21E-06 3.87 5.60E-04 2.02 1.90E-04 2.00 1.17E-04 1.99

Table 6.7: Obtained convergence rates for low Mach number solution, s = ρ0/ρ1 = 5.

Domain L2u q L2v q L2p q L2c q L2ρ q

4h 5.15E-02 1.27E-02 3.70E-02 5.90E-02 4.70E-02

2h 2.17E-02 1.25 7.72E-03 0.72 9.75E-03 1.92 1.65E-02 1.84 1.70E-02 1.47

h 7.20E-03 1.59 1.38E-03 2.48 3.73E-03 1.39 3.94E-03 2.07 4.80E-03 1.82

h/2 1.93E-03 1.90 1.18E-04 3.55 1.00E-03 1.90 9.75E-04 2.01 1.20E-03 2.00

h/4 4.90E-04 1.98 7.61E-06 3.95 2.70E-04 1.89 2.43E-04 2.00 3.00E-04 2.00

Table 6.8: Obtained convergence rates for low Mach number solution, s = ρ0/ρ1 = 7.

Domain L2u q L2v q L2p q L2c q L2ρ q

4h 6.08E-02 2.77E-02 4.35E-02 7.00E-02 6.00E-02

2h 2.73E-02 1.15 1.92E-02 0.53 2.70E-02 0.69 1.73E-02 2.02 1.90E-02 1.66

h 9.44E-03 1.53 2.75E-03 2.80 8.69E-03 1.63 3.80E-03 2.18 5.60E-03 1.76

h/2 2.50E-03 1.92 2.00E-04 3.78 2.34E-03 1.89 9.00E-04 2.08 1.43E-03 1.97

h/4 6.50E-04 1.94 1.31E-05 3.93 5.90E-04 1.99 2.20E-04 2.03 3.50E-04 2.03

The manufactured solution adopted for the low-Mach number tests, has the great ad-

vantage of be capable of reproducing some simplified features of a reactive flow. Moreover,

the fact of the manufactured solution retained respect the mass conservation equation, al-

lows a profound verification of the algorithm implemented. However, such a manufactured

solution displays some limitations. The fact that the analytical solutions for ve, we and
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pe are constants, does not says much about the behavior of the decay of the L2 norm and

convergence rate of such variables. Again, despite that, the information gathered from the

analysis of order of accuracy for the u component of velocity, density and chemical reaction

progress variable is highly valuable.

It is possible to observe that for a density ratio s = 2, the convergence rate for the u-

component of velocity achieves at least two. Unlike the convergence rate analysis conducted

for the incompressible solution, where the values of the L2 norm decrease with a constant

convergence rate, the present results show that, as the grid is refined, not only the magnitude

of the L2 norm decreases, but also the convergence rate increases. Such a trend is even more

pronounced for density and chemical reaction progress variable. The decays of the L2 norm

obtained for the primary variables, corresponding to the results gathered in Tables (6.7) and

(6.8), are illustrated in Fig. (6.4).

Figure 6.4: Evolution in time of the L2 norm. . Left figure: s = 5; right: s = 7. �: u, N: v,

�: p, •: c, I:ρ. The solid line stands for the second order decay, and the dashed line stands

for first order decay.

Increasing the density ratio to 5 and 7, the convergence rate for density and chemical

reaction progress variable follows the same behavior as the one described in the above para-

graph, however a slight decrease in the convergence rate is observed for the u-component of
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velocity. Specially when coarser meshes are considered. As aforementioned, not much can

be said about the accuracy and convergence rate of the v-component of velocity and the

pressure, since the analytical functions used are constants. However, the observed accuracy

and convergence rates for such a variables, corroborates with the conclusions obtained above

in the analysis of the convergence rate for an incompressible solution, i.e, an increasing of

convergence rate with the refinement of the grid suggests, at least, a correct computational

implementation of the transport equations.

In order to examine the effects of the number of cycles on the convergence rate, a

density ratio s = 10 is considered. The results of the convergence rate analysis are shown

in Tab. (6.9). A convergence rate equals to two is difficult to obtain for the chemical

reaction progress variable, for the u-component of velocity and for the density, the achieved

convergence rate is lower than the expected.

Table 6.9: Obtained convergence rates for low Mach number solution, s = ρ0/ρ1 = 10.

Domain L2u q L2v q L2p q L2c q L2ρ q

4h 1.05E-01 8.26E-02 8.38E-02 1.10E-01 1.00E-01

2h 3.60E-02 1.54 3.17E-02 1.38 5.05E-02 0.73 1.69E-02 2.70 2.23E-02 2.16

h 1.22E-02 1.56 4.27E-03 2.89 1.40E-02 1.85 3.40E-03 2.31 6.44E-03 1.79

h/2 3.30E-03 1.89 3.00E-04 3.83 3.69E-03 1.92 8.40E-04 2.02 1.63E-03 1.98

h/4 8.54E-04 1.95 1.89E-05 3.99 9.37E-04 1.98 2.10E-04 2.00 4.09E-04 1.99

As commented above, the procedure of cycling some parts of the algorithm can be used

to enhance convergence and stability of a numerical scheme. To verify that, a convergence

rate analysis is made by cycling two times the pressure-velocity coupling before advancing

the numerical simulation in time. The obtained results are gathered in Tab. (6.10). As it

can be noted, the process of cycling twice the pressure-velocity algorithm has some positive

aspects on both the L2 norm and convergence rate of the whole algorithm. For instance, for

the u-component of velocity, the smallest value of the convergence rate is found to be 2.4.

A graphical comparison between the numerical simulations using either one or two cycles is

presented in Fig. (6.5).
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Table 6.10: Obtained convergence rates for low Mach number solution, s = ρ0/ρ1 = 10, two

cycles per iteration.

Domain L2u q L2v q L2p q L2c q L2ρ q

4h 9.90E-02 6.25E-02 8.32E-02 1.30E-01 1.46E-01

2h 1.88E-02 2.40 3.30E-02 0.92 4.90E-02 0.76 1.13E-02 3.52 9.28E-03 3.97

h 3.46E-03 2.44 4.91E-03 2.74 1.40E-02 1.80 1.44E-03 2.97 1.53E-03 2.60

h/2 4.80E-04 2.89 4.00E-04 3.67 3.95E-03 1.82 1.40E-04 3.36 2.44E-04 2.64

h/4 7.17E-05 2.74 2.69E-05 3.89 1.00E-03 1.98 1.38E-05 3.34 2.48E-05 3.30

Finally, although undeniable gains in terms of convergence rate can be obtained by

resolving twice the pressure-velocity coupling per time step, it is important to keep in mind

that such an artifice must be used carefully, since it significantly impacts the computational

costs, i.e., cycling twice the pressure-velocity coupling means solving again all the linear

systems, hence, twice the CPU time spent.

Figure 6.5: Evolution in time of the L2 norm, s = 10. Single cycle (left), Two cycles (right).

�: u, N: v, �: p, •: c, I:ρ. The solid line stands for the second order decay, and the dashed

line stands for first order decay.

Although not fully physically consistent - since the MMS is more a mathematical

exercise rather than a real attempt of reproducing a real life experiment or physical problem
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- the procedure of verification allows to gain more insights into the capabilities and limitations

of a numerical code devoted to simulate complex flows, such as those of interest of the

present thesis. Moreover, since large eddy simulations of turbulent reactive flows is one of

the ultimate objectives of the present work, one of the required characteristics desirable of a

numerical code suitable to that, which is a convergence rate at least equals to two, is verified.

Thus, it allows us to proceed with other requirements, such as the prescription of correct

and realistic boundary conditions.
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CHAPTER VII

TURBULENT INLET CONDITIONS

It is well known that a subject of great importance in the numerical simulation of

fluid flows is the prescription of correct and realistic boundary conditions, specifically for the

inflow and outflow. For the latter, it appears that the use of a buffer zone (BODONY, 2006)

or an advective boundary condition (ORLANSKI, 1976), or even a combination of both may

adequately describe several flow conditions of practical interest. More elaborated boundary

conditions can be used to avoid reflection of pressure waves, see Poinsot and Lele (1992).

The specification of the inflow boundary conditions can be more problematic. Most flows

encountered in real applications are spatially developing turbulent flows. Hence, they pose

a great challenge for numerical simulation approaches due to the need to prescribe time-

dependent turbulent inflow data at the upstream boundary. For steady RANS simulations,

simple analytical or experimental profiles for the mean velocities and turbulent variables are

usually retained. For LES or DNS simulations however, where the flow at the inlet is turbu-

lent, the inflow data should consist of an unsteady fluctuating velocity signal representative

of the turbulence field (even residual) at the inlet.

A basic technique to generate such a turbulent inflow data is to take a mean velocity

profile with a superimposed random fluctuations. The major drawback of such a method-

ology is that the inflow data generated do not exhibit spatial and/or temporal correlations.

The energy generated is also uniformly spread over all wave numbers and, due to a lack of
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large scale energy-containing structures, the “turbulence” is quickly dissipated (JARRIN et

al., 2009).

In principle, it may be possible to predict turbulence via a LES technique by starting

from a quiescent flow or with the mean flow values of velocities obtained from RANS simu-

lations. Unfortunately, a very long time is required for a turbulent flow to develop spatially

and temporally (SMIRNOV; SHI; CELIK, 2001). Ideally, the simulation of the upstream

flow entering a computational domain would provide realistic inlet conditions to the main

simulation. However, due to the computational cost, the domain cannot be extended up-

stream indefinitely, and so approximate turbulent inlet conditions must be specified.

There are several ways to remedy this situation, however, the existing methods de-

scribed in the literature tend to fall in two basic categories: recycling methods, in which

some sort of turbulent flow is pre-computed, prior to the main calculation, and introduced

in the domain inlet, and synthetic turbulence methods, in which some form of random fluc-

tuation is generated and combined with the mean flow at the inlet.

This chapter is organized as follows: first a brief description of recycling methods

is provided. Further, synthetic turbulence generators are focused, and the two methods

retained in the present work are detailed, the method proposed by Klein, Sadiki and Janicka

(2003) and the Random Flow Generator - RFG, proposed in Smirnov, Shi and Celik (2001).

As part of the process of implementation and verification of both methods, an assessment of

the routines written to generate the inflow data is made. The main desired characteristics

are the capability of generating a turbulent signal whose energy spectra is similar to the one

associated with a fully developed turbulent flow spectra, and the capability of reproducing

a given stress tensor. The latter means that the inflow data generator should be able of

reproducing an anisotropic turbulent flow at the inlet.

Concerning the application of the implemented methods in simulations of turbulent flows, in

the final part of the present chapter, the results of a simulation of a high speed non-reactive

and reactive mixing layers experimented by Moreau and Boutier (1977) and Magre et al.
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(1988) are presented.

7.1 Recycling methods

The most accurate method to specify turbulent fluctuations for either LES or DNS

would be to run a precursor simulation which has the purpose to provide the main simula-

tion with accurate boundary conditions. However, such a procedure can be retained only

when the turbulence at the inlet can be regarded as fully developed or spatially developing

boundary layer, and therefore lacks generality. In this case periodic boundary conditions in

the mean flow direction can be applied to the precursor simulation. Instantaneous velocity

fluctuations in a plane at a fixed streamwise location are extracted from the precursor sim-

ulation and prescribed at the inlet of the main simulation at each time step.

In general, the flow in the precursor simulations is initiated with a mean velocity

profile perturbed with a few unstable Fourier modes. As mentioned above, periodic bound-

ary conditions can only be used to generate inflow conditions for homogeneous flows in the

streamwise direction, which restricts their applications to simple fully developed flows.

A more flexible technique to generate inlet conditions, also based on the procedure of recy-

cling the velocities in a plane located several boundary layer thicknesses downstream of the

inlet, is proposed by Lund (1998). In this case, the velocity field at the re-scaling station,

(Fig. 7.1), is decomposed in mean and fluctuating parts; scaling is applied to the mean

and to the fluctuating parts in the inner and outer layers separately to account for the dif-

ferent similarity laws that govern these two regions. The re-scaled velocity is then finally

re-introduced as a boundary condition at the inlet of the computational domain. The use of

such a methodology results in a spatially evolving boundary layer simulation that is capable

of generating its own inflow data.

Bodony (2006) noted that the method introduced by Lund, i.e., random uncorrelated

fluctuations superposing a mean velocity profile, is very sensitive to the initialization of the

flow field. Bodony (2006) also states that the generation of fully developed turbulence was not



134

obtained and hence, proposed a more robust variant of the original method of Lund, where

the flow field is initialized using synthetic turbulence with a prescribed energy spectrum and

shear stress profile.

Figure 7.1: Sketch of the rescaling/recycling method of Lund et al. (1998) (LUND, 1998) to

generate inlet conditions for a zero pressure gradient boundary layer.

Li, Balaras and Piomelli (2000) propose a procedure to reduce the storage requirement

as well as the computational cost associated to a precursor simulation prior to the main

simulation. A spatially developing turbulent mixing layer, originating from the mixing of

a low and high-speed boundary layer at the end of a splitter plate is simulated in the LES

context. Instead of running the precursor boundary layer simulations with the mixing layer

simulation, only a time series of instantaneous velocity planes with duration approximately

equal to the integral time scale of the flow is extracted from the boundary layer simulation.

This signal is converted into a periodic one using a classic windowing technique, see (LI;

BALARAS; PIOMELLI, 2000), and is re-used as many times as required to obtain converged

statistics in the main simulation. This is beneficial both from computational and storage

points of view, since the precursor simulation is run only over a short duration and the data

used to generate the inflow data correspond only to a few integral time scales of the flow. In

the case of the mixing layer, the periodicity involved by the inflow decays rapidly in about

25% of the domain. However, Li, Balaras and Piomelli (2000) reported that the resort to

this procedure for wall-bounded flows, where destabilizing effects are relatively weak, might
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require a longer transition region to weaken the periodicity involved in the inflow hence

interfering in it with low-frequency flow dynamics.

7.2 Synthetic turbulence generators

Methods which do not rely on a precursor simulation or re-scaling of a database ob-

tained from a precursor simulation synthesize inflow conditions using some sort of stochastic

procedure. These stochastic procedures make use of random number generators to con-

struct a random velocity signal similar to those obtained in turbulent flows. This is possible

based on the assumption that a turbulent flow can be approximated by reproducing a set

of low order statistics, such as mean velocity, turbulent kinetic energy, Reynolds stresses,

two-point and two-time correlations. However, it is important to emphasize that the synthe-

sized turbulence represents a crude approximation to real turbulence only. From a statistical

point of view, the crucial quantities, such as the terms in the Reynolds stresses balance (the

dissipation rate, the turbulent transport or the pressure-strain term) are usually not well

reproduced. Additionally, the synthesized turbulence might have a structure that differs

from the one of the real flow (JARRIN et al., 2009), and, as a result, the dynamics of the

turbulent eddies are not accurately reproduced, and the synthesized flow may undergo the

transition to turbulence.

7.2.1 White noise based synthetic turbulence generators

The most straightforward approach to generate synthetic fluctuations is to generate a

set of independent random numbers R between 0 and 1 which once multiplied by a factor

CR, can “mimic” the turbulence intensity at the inlet, e.g. 10% of the mean inflow velocity,

ui = ũi + ũiCRR. (7.1)

If the turbulent kinetic energy k is available, it is possible to re-scale a random signal

Ru,i which has a zero mean and unity variance, in such a manner that the fluctuations have
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the correct turbulent kinetic energy k; which, when added to the mean velocity ũi, yields:

ui = ũi +Ru,i

Ê
2

3
k, (7.2)

where the Ru,i is taken from independent random variables for each velocity component at

each time and point of the grid at the inlet. This procedure generates a random signal capable

of reproducing mean velocity and the turbulent kinetic energy. However, the signal generated

presents no two-point nor two-time cross-correlations. If the Reynolds stresses tensor (Rij)

is available, Lund (1998) shows that it is possible to apply a transformation (aij), based on

the Cholesky decomposition, that will reconstruct correlated velocity components.

ui = ũi +Ru,iaij, (7.3)

where (aij) is

aij =

0BBBBBB@
√
R11 0 0

R21/a11

È
R22 − a2

21 0

R31/a11 (R32 − a21a31)/a22

È
R33 − a2

31 − a2
32

1CCCCCCA . (7.4)

This procedure allows the basic random procedure to reproduce the target cross-

correlations (Rij) between velocity components i and j.

Although the methods presented above are capable of reproducing characteristics such as

the anisotropy present in turbulent flows, they still exhibit no correlations either in time or

in space. Therefore, these random fluctuations have energy uniformly spread over all wave

numbers and, as stated before, the energy is quickly dissipated.

A more valuable approach for generating synthetic turbulence involves creating entirely

random number data which can then be processed using digital filters, so that the data

presents desired statistical properties, such as spatial and temporal correlations (KLEIN;

SADIKI; JANICKA, 2003; KLEIN, 2003; LUND, 1998). In order to generate anisotropic

turbulence, further transformations can be applied to the data in order to reproduce, for
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instance, a specified Reynolds stress tensor.

7.2.2 Digital filters based synthetic turbulence generator

Klein, Sadiki and Janicka (2003) proposed a digital filtering procedure to remedy the

lack of large-scale dominance in the inflow data generated through a random method. In

one dimension the velocity signal u′(j) at a point j is defined by a convolution (or a digital

linear non-recursive filtering) as.

u′(j) =
NX

k=−N
bkRj+k, (7.5)

where Rj+k is a series of random data generated at point (j + k) with Rm = 0, RmRm = 1

and bk are the filter coefficients. N is connected to the support of the filter. The relation

between the filter coefficients and the two-point velocity correlation function is given by:

u′(j)u′(j +m)

u′(j)u′(j)
=

PN
k=−N+m bkbk−mPN

k=−N+m b
2
k

. (7.6)

This procedure is extended to the time-dependent generation of synthetic velocity field

on a plane (Oyz) by generating a three-dimensional random field Rm(i, j, k) for each velocity

component m. The indices i, j, and k represent the direction x (or time t by the Taylor

hypothesis), the direction y and the direction z, respectively. A three-dimensional filter bijk

is obtained by the convolution of three one-dimensional filters:

bijk = bibjbk. (7.7)

This is used to filter the random data Rm(i, j, k) in the three directions x, y and z,

Um(1, j, k) =
NxX

i′=−Nx

NyX
j′=−Ny

NzX
k′=−Nz

b(i′, j′, k′)Rm(i′, j + j′, k + k′). (7.8)

In order to generate fluctuations that reproduce exactly the targeted two-point corre-

lations u′(j)u′(j +m), the filter coefficients bk should be computed by inverting Eq. (7.6).

Since the two-point autocorrelation tensor is seldom available, Klein, Sadiki and Janicka
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(2003) assumed a Gaussian shape depending on one single parameter, the length scale

L = n∆x. The coefficients can then be computed analytically, without inverting Eq. (7.6),

bk ≈
b̃k�PN

j=−N b̃
2
j

� ; b̃k := exp

�
−πk

2

2n2

�
. (7.9)

Once the processed random signal is evaluated in Eq. (7.8), the final inflow velocity

can be written as,

ui = ũi + Um(1, j, k)aij. (7.10)

An algorithm for generating inflow data on-the-fly may be the one presented below.

According to (KLEIN; SADIKI; JANICKA, 2003), it is also possible to generate a large vol-

ume of data, store it and convect it through the inflow plane by applying Taylor’s hypothesis.

1. Choose for each direction corresponding to the inflow plane a length scale, Lx = nx∆x,

Ly = ny∆y, Lz = nz∆z, and a filter width according to conditionNα ≥ 2nα, α = x, y, z.

2. Initialize and store three random fields Rα, α = x, y, z, of dimensions [−Nx : Nx,−Ny+

1 : My + Ny,−Nz + 1 : Mz + Nz], where My × Mz denotes the dimensions of the

computational grid at the inflow plane, i.e., at x = 0.

3. Calculate the filter coefficients bijk according to Eqs. (7.7) and (7.9).

4. Apply Eq. (7.8) for j = 1, ...,My, k = 1, ...,Mz, which yields two-dimensional arrays

of spatially correlated data Uα, α = x, y, z.

5. Perform the coordinate transformation, tensor aij, resulting in uα(j, k)

6. Copy uα to the inflow plane

7. Discard the first y, z plane of Rα and shift the whole data: Rα(i, j, k) = Rα(i+ 1, j, k).

Fill the plane Rα(Nx, j, k) with new random numbers.

8. Repeat steps 4-7 for each time step.

It should be noted that the main parameter retained to evaluate the method of

(KLEIN; SADIKI; JANICKA, 2003) is the choice of the length scales Lx, Ly and Lz, which
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are directly connected to the size of the support of the filter Nx, Ny and Nz, and the di-

mensions, ∆x, ∆y and ∆z of the control volume. Thus, given an experimental length scale,

it is possible to reproduce such length scale by correctly choosing the size of the support

of the filter and the dimensions of the control volumes. However, as will be shown in the

sub-section (7.2.4.2), the size of the length scales and, consequently, the size of support of the

filter strongly impacts on the computational cost of the method. Since a fixed computational

grid is used here for the simulations carried-out to assess the different methods of generating

turbulent inflow data, the parameters to the evaluation of the method of (KLEIN; SADIKI;

JANICKA, 2003) are the sizes of support, Nx, Ny and Nz, only.

Tabor and Baba-Ahmadi (2010) state that, since turbulence is often analyzed by de-

composition of a basis set of harmonic functions, i.e., Fourier analysis, the fluctuations can

be more efficiently represented by resorting to a linear sum of sine and cosines functions,

with the coefficients representing the energy contained in each mode.

7.2.3 Synthetic turbulence generators based on Fourier techniques

Kraichnan (1970) was the first to use a Fourier decomposition to generate a synthetic

flow field. In Kraichnan’s work, the flow domain is initialized with a three-dimensional

homogeneous and isotropic synthetic velocity field to study the diffusion of a passive scalar.

Since the velocity fluctuations are homogeneous in the three dimensions x, y and z, it can

be decomposed in Fourier space,

u′(x) =
X
k

û′ke
−ik.x, (7.11)

where k is a three-dimensional wave number. Each complex Fourier coefficient û′k defines an

amplitude evaluated from a prescribed isotropic three-dimensional energy spectrum E(|k|)

and a random phase θk, taken uniformly in the [0, 2π] interval (ROGALLO, 1981). The

synthesized velocity field is thus given by,

u′(x) =
X
k

È
E(|k|)e−i(k.x+θk). (7.12)



140

Several adaptations of the Kraichnan’s method were proposed throughout the years,

among them, Lee, Lele and Moin (1992) proposed one that allowed for the application of the

Kraichnan’s method to spatially evolving turbulent flows. They showed that it is possible to

generate a synthesized turbulent signal along time, in which the prescription a phase shift

between different time steps allows to obtain a synthesized velocity field at the inlet with

correct temporal correlations. One advantage of the method of Lee, Lele and Moin (1992) is

that the generation of the turbulent signal can be performed by using a Fast Fourier Trans-

form - FFT algorithm, which is computationally very efficient.

The capability for generating an anisotropic random signal was introduced by Le, Moin

and Kim (1997). Based on the method of (LEE; LELE; MOIN, 1992), an isotropic turbulent

synthesized signal is generated and then it is re-scaled using Eq. (7.4). In this way the

reconstructed fluctuations match a prescribed Reynolds stress tensor. If one is interested in

initializing the whole computational domain with the procedure proposed by Le, Moin and

Kim (1997), the method has some drawbacks, since the method of (LEE; LELE; MOIN,

1992) is based on direct and inverse transforms using a FFT algorithm, therefore, its appli-

cation in non-uniform grids is only possible in the inlet plane, which considerably reduces

its interest for practical applications.

Smirnov, Shi and Celik (2001) proposed some modifications of the original method of

(LE; MOIN; KIM, 1997) in such a manner that it would be possible to obtain a turbulent ve-

locity field by requiring only statistical information. The method proposed by Smirnov, Shi

and Celik (2001) is capable of synthesizing non-homogeneous turbulence in a general frame-

work. It relies on Fourier decomposition, with Fourier coefficients computed from spectral

data obtained at different locations across the flow based on local turbulent time and length

scales (JARRIN et al., 2009). The method presented by (SMIRNOV; SHI; CELIK, 2001),

called henceforth Random Flow Generation - RFG method, is different from the method

originally proposed in (LEE; LELE; MOIN, 1992) since it does not use Fourier transforms,

being based on scaling and coordinate transformation operations only, which, in non-uniform

grids, are much more efficient than the original method of Lee, Lele and Moin (1992).
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The RFG computational routines retained in the present work were developed by

(SMIRNOV, 2004), and incorporated in the numerical code developed during the course of

this thesis. In the following a brief description of the procedure of generating the turbulent

inflow data is given. According to the Smirnov, Shi and Celik (2001) method, a transient

flow field in a three-dimensional domain, [vi(xj, t)]i,j=1,2,3 can be generated from,

vi(xj, t) =

Ê
2

N

NX
n=1

�
pni cos(k̃nj x̃j + ωnt̃) + qni sin(k̃nj x̃j + ωnt̃)

�
, (7.13)

where the following non-dimensional quantities have been introduced,

x̃j =
xj
lt

; t̃ =
t

τt
; c =

lt
τt

; k̃nj x̃j = knj x̃j
c

c(j)

, (7.14)

where,

pni = εijmζ
n
i k

n
m; qni = εijmξ

n
i k

n
m (7.15)

with,

ζni , ξ
n
i , ωn ∈ N(0, 1), kni ∈ N(0, 1/2). (7.16)

In the non-dimensional expressions, lt and τt are the length and time scales of turbulence,

respectively. εijk is the permutation tensor used in the vector product operation, ci(i =

1, 21, 3)1 are the fluctuating velocity components u′i, in a new system of coordinates, which

is obtained after the application of the transformation tensor aij. N(M,σ) is a normal

distribution with mean value M and standard deviation σ. The numbers knj , ωn represent a

sample of n wave-number vectors and frequencies of the modeled turbulence spectrum:

E(k) = 16
2

π

1/2

k4 exp(−2k2). (7.17)

1In the description of the RFG method, according to the nomenclature retained in (SMIRNOV; SHI;
CELIK, 2001), repeated subindexes imply summation, whereas parentheses around indexes preclude sum-
mation
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The final form of the flow field generated is obtained by the operations of scaling and or-

thogonal transformation of the flow field vi,

ui = aijwj, (7.18)

where wj = c(j)v(j). It is important to note that the tensor aij is such that,

amianjRij = δmnc
2
(n), (7.19)

aikakj = δij, (7.20)

where Rij is a prescribed velocity correlation tensor, e.g., the Reynolds stress tensor.

It is worth noting that the above procedure requires specifying the characteristic inte-

gral length and time scales of turbulence, and the correlation tensor Rij of the flow intended

to be simulated. These quantities can be obtained from either RANS simulations or experi-

mental data.

7.2.4 Assessment of the capability for reproducing prescribed Reynolds stress tensors

As stressed in the beginning of the present chapter, it is important to verify that the

procedures retained for generating the turbulent inflow data are capable of reproducing a

random signal in which the energy spectra distribution correspond to more energetic scales

in the smallest wave numbers, and to less energetic scales in the higher wave numbers. More-

over, the capability of reproducing a prescribed Reynolds stress tensor is paramount.

The methods developed by Klein, Sadiki and Janicka (2003) and Smirnov, Shi and

Celik (2001) have adjustment factors that directly impact both the accuracy in reproducing

the characteristics of the flows of interest and the associated computational cost. For the

former, this factor is the size of the support retained for the filter, and for the latter, i.e.,

method of Smirnov, Shi and Celik (2001) the factor is the number of Fourier modes retained

in Eq. (7.13).
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In order to assess the influence of such parameters, a numerical code is developed.

Given a set of initial conditions, e.g., mean velocity distribution, size and number of control

volumes of the computational domain at the inlet, Reynolds stress tensor, characteristic

length and time scales of a flow, the algorithm applies the initial conditions to the turbulent

inflow routines until it is possible to recover the statistics of the variables of interest by regular

ways, i.e., by an averaging procedure of the velocity for instance. For all the cases presented

in this subsection, such number of iterations was set to 5000. Even if the computational

routines available in (SMIRNOV, 2004) offer the possibility of generating both isotropic and

anisotropic inflow data, in the present work, due to a lower computational cost, an isotropic

signal is generated, and then Eq. (7.4) is applied to the signal in order to obtain the desired

level of anisotropy. It is important to point out that the overall flow solution is not involved

at the moment. The results presented here are obtained only from the application of an

averaging process to the signal generated using the different methods described above.

Figure 7.2: R13 component of the Reynolds stress tensor as a function of the non-dimensional

width of the mixing layer ξ, (BRUCKER; SARKAR, 2007).

The experimental stress tensor profile, mean velocity and computational domain char-

acteristics retained for testing the turbulent inflow generators are based on the early work

conducted by Moreau and Boutier (1977). The experimental test section presented in details
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in (MOREAU; BOUTIER, 1977) contains a turbulent high speed mixing layer within a com-

bustion chamber, where a premixed air-methane flow is ignited and stabilized by a parallel

flow of combustion products. Profiles of mean velocity, turbulence intensity and velocity

fluctuations are given for both reactive and non-reactive flows.

In the work of Moreau and Boutier (1977), only the R11 component of the Reynolds

stress tensor is given. Andrade (2009), when simulating the same experimental configuration,

assumed that the R22 and R33 components are approximately half of the R11 component.

The components R12 = R21 and R32 = R23 are taken as zero. Since no information is

given about the cross component R13, and such component plays a crucial role in the shear

layer spreading rate, it is important to satisfactorily approximate such a quantity. Brucker

and Sarkar (2007) provide a relation in which the non-dimensional width of the shear layer,

ξ = h/δm, with h varying between [−δm < h < δm], is correlated to the non-dimensional

quantity R13/∆ū
2 in self-similar mixing layers. Once defined the velocity difference between

two streams, ∆ū2, and the width of the mixing layer, the component R13 = R31 can be

evaluated from Fig. (7.2),

Figure 7.3: Mean velocity profile imposed. z∗ = z/δm, δm is the initial width of the mixing

layer
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The combustion chamber is a channel with dimensions 800 × 100 × 100 mm in the

directions x, y and z respectively. The inlet is divided into two separated ducts by a splitter

plate: the main duct where the fresh gases are injected at 65 m/s and an auxiliary duct for the

hot gases, with mean velocity of 130 m/s. Since, for the present test, the variables of interest

are evaluated only at the inlet plane, the two-dimensional grid is divided in 50 points in the

y direction and 50 in z direction. The mean velocity profile used at the inlet is represented

by a combination of two developed flows at different exit velocities. The analytical function

adopted for generating the mean velocity profile as a function of the coordinate z, u(z), can

be satisfactorily approximated through,

u(z) = Cin

�
1−

�
z − (a/2 + h)

a/2

�γin�
, (7.21)

where Cin is the mean value of the velocity in the duct, a is the position of the bottom part

of the duct in the z direction, h is the height of the duct, and γin is a constant that fix the

thickness of the shear layer. The values of the above constants and the ducts dimensions

of the corresponding experiment are given in Table (7.1). Such a combination of velocity

profiles can be seen in Fig. (7.3), where the z axis is made non-dimensional using the initial

width of the mixing layer, i.e, z∗ = z/δm.

Table 7.1: Constant values used for mean velocity profile.

Duct Cin [m/s] h [m] a [m] γin

Main duct 65 0.02 0.08 6.0

Auxiliary duct 130 0.00 0.02 8.0

7.2.4.1 White noise generator

The first method to be evaluated in the present work, and the simplest one, is the

superimposition of a white noise over the mean velocity profile given by Eq. (7.21). In this

case, a random signal with zero mean and unity variance is adjusted to imposed fluctuations

representing 20% of the mean velocity profile determined by Eq. (7.21) in the x direction

of the flow, i.e., the u-component of velocity. In the y and z directions, the fluctuations are

set to 10% of the same mean profile of velocity. The fact that the energy is spread over
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all the energy spectra, whatever the frequency of the fluctuation, contradicts the classical

−5/3 behavior expected for fully developed turbulence. The energy spectra of a noise noise

is illustrated in Fig. (7.4).

Figure 7.4: Energy spectra associated to a white noise.

As expected, the lack of any spatial or temporal correlations, added to the fact that the

white noise considered is isotropic, leads to poor results when the experimental stress tensor

is compared with the components of stress tensor evaluated from the averaging process of

the inlet signal. Such a result is evidenced in Fig.(7.5). Therefore, it can be foreseen that

the use of the white noise technique will lead to poor results when applied to the simulation

of the mixing layer.
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Figure 7.5: Stress tensor components evaluated from the superposition of white noise over

the mean velocity profile.

7.2.4.2 The method of Klein, Sadiki and Janicka (2003)

Concerning now the method of Klein, Sadiki and Janicka (2003), there is a strong

dependency on the size of the support of the filter, and once the support of the filter is

directly connected to the number of grid points retained at the inlet, the computational

cost associated to number of points in the support becomes an important issue. As can be

seen in Fig. (7.6) as the size of the support of the filter grows, the energy spectra becomes

more representative of a fully developed turbulent flow. For N = 1, for instance, the en-

ergy spectra exhibits little difference from a white noise spectra. The differences are more

pronounced for sizes of support equal 5, 10 and 20. The last support dimension, i.e., 20,

describes significantly well the energy cascade in a turbulent flow. As mentioned previously

the section (7.2.2) it is important to keep in mind that, when the size of the support of
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the filter changes, the turbulent length scale provided to the method of digital filtering also

changes, thus, it is natural to obtain an energy spectra which is richer in structures.

Concerning the computational cost of the method of Klein, Sadiki and Janicka (2003),

in the tests carried out to evaluate the sensitivity of the method with respect to number of

points within the support of the filter, for N = 1, for instance, the code spent approximately

one minute with a Intel (R) Xeon (TM) 3.00GHz CPU with 4 gigabytes of RAM memory to

perform the 5000 iterations required to evaluate the statistics, whereas for N = 20, for the

same number of iterations, in the same computer, approximately 14 hours and 30 minutes

were necessary.

Figure 7.6: Comparison of the effects of size of the support (N) on the energy spectra in the

method of Klein, Sadiki and Janicka (2003).

Such a disparity can be easily understood using a very simple example. For N =

5, a cubic box of dimensions 5 × 5 × 5 is created for each point at the inlet. Since in

the present configuration the inlet is composed by a grid of 50 × 50 points in y and z
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directions respectively, the total number of points where the filtering process is performed is

50 · 50 · (5 · 5 · 5), or, 312, 000 points. For N = 20 this number is increased to 27 points, i.e.,

an increase of more than 60 orders of magnitude.

Figure 7.7: Stress tensor components evaluated from the method of Klein, Sadiki and Janicka

(2003), for different sizes of filter support.

Concerning the capability of the method of Klein, Sadiki and Janicka (2003) in repro-

ducing anisotropic stress tensors, it can be seen in Fig. (7.7) that the influence of the size of

the support of the filter is less noteworthy than its effects evidenced previously in the energy
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spectra. It is observed in such a figure that for a support of filter higher than 10 points,

the gain in reproducing the stress tensor given has not shown great improvements. Based

on the that, and considering the way that energy spectra alters its shape while increasing

of the size of the filter support, in the present work a support size of 10 is suggested for the

numerical simulation of the mixing layer.

7.2.4.3 The method of Smirnov, Shi and Celik (2001)

For the tests retained in the present section, the method proposed by Smirnov, Shi

and Celik (2001) is found less sensitive to the number of Fourier modes retained both, in

terms of capability of reproducing the prescribed stress tensor, and the shape of the turbu-

lent spectra, as can be seen in Figs. (7.8) and (7.9), respectively.

It was mentioned in the introduction of the present chapter, when a decomposition

of a turbulent flow is made in terms of Fourier modes, each mode can be understood as a

particular turbulent scale. In Fig. (7.8), it is possible to note that even for a small number

of Fourier number retained, there is a reasonable reproduction of the prescribed stress ten-

sor. Above 500 Fourier modes the differences with respect to the experimental data become

negligible.

Concerning the shape of energy spectra, it can be noted in Fig. (7.9) that, as the

number of Fourier modes is increased, the energy spectra becomes more representative of

the one associated to a high Reynolds number turbulent flows. Moreover, it is observed in

Fig. (7.9) that little difference exist for a number of Fourier modes higher than 1, 000.

It is found that obtaining turbulent inflow data featuring representative energy spectra

is computationally cheaper using the method of Smirnov, Shi and Celik (2001) than the

method of Klein, Sadiki and Janicka (2003). For instance, the time spent to perform the

5000 iterations required by the RFG method, with 1, 000 Fourier modes for obtaining the

statistics to be compared with the experimental data, was equivalent to the time consumed

by the method of Klein, Sadiki and Janicka (2003), with a size of support N = 5, i.e.,
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approximately five minutes in the same Intel (R) Xeon (TM) 3.00GHz CPU with 4 gigabytes

of RAM memory.

Figure 7.8: Stress tensor components evaluated using the method of Smirnov, Shi and Celik

(2001), for different numbers of Fourier modes.

For the simulations of the experimental configuration studied by Moreau and Boutier

(1977), the number of Fourier modes is set to 1, 000. In the next section, a comparison

between the three methods of generation of turbulent inflow data in a three-dimensional

simulations are provided.
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Figure 7.9: Comparison of the effects of number of Fourier modes in the energy spectra in

the method of Smirnov, Shi and Celik (2001).

7.2.5 Non-reactive flow simulations

In order to assess the influence of the generation methods of inflow data retained,

three-dimensional simulations of a high speed mixing layer are now performed. The obtained

results are compared with the work of Moreau and Boutier (1977). The computational do-

main is a three-dimensional box with dimensions (800× 100× 100) mm3, discretized with a

finite volume mesh of 320× 100× 100 control volumes in the x, y and z directions, respec-

tively. No-slip boundary conditions are imposed over the y and z directions. An advective

boundary condition is used as outflow. The Smagorinsky constant is set to 0.18 (Eq. 3.24),

and the Van-Driest damping function is used at the walls (Eq. 3.24). The Reynolds number,

based on the initial width of the mixing layer, δm = 5 mm, the mean velocity difference

between the two flow streams Ur = 97.5 m/s and the value of the kinematic viscosity for

air at 600 K is Re = 3075. The computational domain, as well as its dimensions in the

directions x, y and z and a sketch of the u-component velocity profile are displayed in Fig.
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(7.10).

For the simulation with white noise, a fluctuation level of 20% is imposed over the

ū mean component of velocity, whereas 10% fluctuations are set for the components in the

y and z directions (v̄ and w̄, respectively). For the simulations with the method of Klein,

Sadiki and Janicka (2003) the size of the support of the filter is set to 10 whereas 1, 000

Fourier modes were used for the simulations based on the method of Smirnov, Shi and Celik

(2001). The mean velocity profile in given by Eq. (7.21). The Backward Difference Scheme

is retained and the size of the time step is evaluated by (Eq. 4.1), with the constant C

set to 0.5. The advective terms of the transport equations were discretized with the CDS

approach. Since the numerical code developed has the capability of performing distributed

computing, the computational domain was divided into 40 sub-domains.

Figure 7.10: Computational domain used for the simulations of the non-reactive flows.

A first step of the analysis carried out is to verify the capability of the implemented

methods of reproducing its respective energy spectra in a Navier-Stokes solver, i.e, the meth-

ods retained for the generation of turbulent inflow data should still provide a signal in which

the energy spectra is representative of a fully developed turbulent flow. To verify that, a

probe is positioned immediately downstream of the inlet in such a manner that it is kept

at the first control volume in the x direction, y∗ = 10 and z∗ = 4.6. The results captured

by the probe of the u∗ = u/Ur-component velocity along time, t∗ = t∗Ur/δm, is shown in

Fig. (7.11). The characteristic energy spectra, based on the velocity signals generated by

the three different methods is shown in Fig. (7.12).
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Figure 7.11: Temporal evolution of the u component of velocity immediately downstream

of the flow inlet; (a) White noise, (b) method of Klein, Sadiki and Janicka (2003) and (c)

method of Smirnov, Shi and Celik (2001).

In Fig. (7.11) the presence of high frequency structures appears to be more pronounced

for the white noise, being less evidenced for the velocity signal evaluated from the method of

Klein, Sadiki and Janicka (2003). That fact that in Fig. (7.11) - (c) there is almost no high

frequencies is explained by the lack of energy observed at the small scales in the decaying

part of the energy spectra.

Figure 7.12: Turbulent spectra of a velocity probe for different methods of generation of

turbulent inflow data; (a) White noise, (b) method of Klein, Sadiki and Janicka (2003) and

(c) method of Smirnov, Shi and Celik (2001).
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Fig. (7.13) shows a slice of the computational domain at y∗ = 10, for the three different

inflow generating methods. The field shown is the RMS of u′, i.e., the square root of the

component R11 of the Reynolds stress tensor. The statistics are obtained by time averaging

of the filtered field over 4 flowthrough (residence) times, resulting in approximately 15, 000

iterations. It is worth recalling that since the numerical code developed adopts a variable

time-step size, special care must be taken in the averaging process, considering always the size

of the time step in the between the samples, see Eq. (4.47), section (4.4.2). It is noteworthy

that the use of an adequate method of generation of turbulent inflow data drastically changes

the flow field structure. In Fig. 7.13-(a) the values of
√
R11 become significant only after half

of the total length of the computational domain in the x direction, whereas for the methods

of Klein, Sadiki and Janicka (2003) and Smirnov, Shi and Celik (2001), respectively the sub-

figures (b) and (c) of Fig. 7.13, the flow resembles more to the one observed and discussed

by Moreau and Boutier (1977). In this flow, due the high turbulent intensity in the incoming

ducts that inject fresh and burnt gases into the combustion chamber, the turbulence at the

inlet is fully developed.

Figure 7.13: Fluctuations of
√
R11 for the simulations carried-out with: (a) White noise,

(b) method of Klein, Sadiki and Janicka (2003) and (c) method of Smirnov, Shi and Celik

(2001).
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The time-averaged filtered turbulent kinetic energy, evaluated from the trace of the

Reynolds stress tensor, (k = 0.5δij(
àρu′iu′i/ρ̄) = 0.5(R11 +R22 +R33), is also compared, in Fig.

(7.14), for the three methods retained to generate the inflow. Corroborating the behavior

presented in Fig. 7.13, it is possible to verify that the turbulent kinetic energy for the methods

of Klein, Sadiki and Janicka (2003) and Smirnov, Shi and Celik (2001) are also higher at

the entrance of the computational domain. Again, although a transition to turbulence is

observed when the white noise generator is used, practically all velocity fluctuations entering

the computational domain are almost instantaneously dissipated close to the inlet boundary

condition. The firsts coherent structures are observed only after the first half length of the

domain, along the x direction.

Figure 7.14: Turbulent kinetic energy, k∗ = k/U2
r , for the simulations carried-out with the

method: (a) White noise, (b) , method of Klein, Sadiki and Janicka (2003) and (c) method

of Smirnov, Shi and Celik (2001).

An instantaneous field of effective turbulent viscosity µef = (µ+µSGS), normalized by

the molecular viscosity, µ∗ef = µef/µ is shown in Fig. (7.15) at t∗ = 586. It is clearly shown

in such a figure that the inflow turbulence is higher in sub-figures (b) and (c). It can thus

be concluded, that, since the Smagorinsky model is employed, and such model relies on the

evaluation of resolved strain rate to quantify the sub-grid viscosity, the values of strain rate
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that enters the computational domain is also higher, when retaining the methods of Klein,

Sadiki and Janicka (2003) and Smirnov, Shi and Celik (2001) than when the white noise is

considered.

Figure (7.15) also provides an interesting illustration of the behavior of the Smagorin-

sky model. It is commonly agreed that the Smagorinsky model is highly dissipative, specially

regarding the smallest turbulence structures. This is one of the reasons why the turbulence

based on a white noise generator imposed at the inlet may be destroyed very rapidly, how-

ever, it can be seen in Fig. (7.15) - (a) that, provided that an adequate method is retained

to generate the inflow turbulence, the largest scales introduced in the domain are not quickly

dissipated, even with the use of the Smagorinsky model.

Figure 7.15: Snapshot of the normalized effective turbulent viscosity µ∗effec at t∗ = 586, for

the simulations carried-out with the method: (a) White noise, (b) method of Klein, Sadiki

and Janicka (2003) and (c) method of Smirnov, Shi and Celik (2001).

Instantaneous snapshots obtained from the three dimensional simulations of the flow

described above are reported in Fig. (7.16). The property Q offers an interesting way to

evidence the flow field coherent structures (JEONG; HUSSAIN, 1995). For a flow of uniform

density, the corresponding quantity, i.e., the second invariant Q of the velocity-gradient

tensor ∂ui/∂xj, is related to the Laplacian of the pressure field, and positive iso-values
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of Q are often used to characterize low pressure tubes that are generally associated with

coherent structures. In Fig. (7.16) the isosurface of the property Q = 26 is displayed.

The high value retained in this case results from the fact that the flow is a high velocity,

high Reynolds number, confined flow. Moreover, it is noteworthy in Fig. (7.16), Kelvin-

Helmholtz structures that are characteristic of the mixing layers dynamics can be recognized

downstream of the computational domain inlet.

Figure 7.16: Perspective, top and lateral views of the isosurface of the second invariant of

the velocity-gradient tensor Q = 26, at t = 0.020 s. The method of Klein, Sadiki and Janicka

(2003) was used.

In order to quantify and validate the methods implemented, Fig. (7.17) shows com-

parisons for the average u-component of the velocity field at four locations along the com-

putational domain, and y∗ = 10. It can be noted in such a figure that all methods provide

an acceptable agreement with experimental data concerning the mean velocity. However

for the RMS of the velocity fluctuation the use of a adequate turbulent inflow generator

becomes clear. It can be seen in Fig. (7.18) that the superposition of white noise over the

mean velocity profile does not represent the experiment in at least in the first half of the

computational domain along the x direction, which agrees with the work of Andrade (2009).

The results obtained with the methods of Klein, Sadiki and Janicka (2003) and Smirnov,

Shi and Celik (2001), however, display a good agrement with respect to experimental data,

specially the latter.
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Figure 7.17: Mean longitudinal velocity profiles. (•): Moreau and Boutier (1977); method of

Smirnov, Shi and Celik (2001) (- - -); method of Klein, Sadiki and Janicka (2003) (− · −);

white noise (− · ·−).

Figure 7.18:
√
R11 stress tensor component. (•): Moreau and Boutier (1977); method of

Smirnov, Shi and Celik (2001) (- - -); method of Klein, Sadiki and Janicka (2003) (− · −);

white noise (− · ·−).

Although no experimental data on the turbulent kinetic energy is provided by Moreau

and Boutier (1977), Fig. (7.19) shows that the different methods of generation of inflow

turbulent data affects differently the turbulent kinetic energy throughout the computational
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domain. The method of Smirnov, Shi and Celik (2001) provides the higher values of such

quantity, while, as expected since the turbulence has to be practically generated from the

inlet, the white noise procedure is associated with the lowest values.

Figure 7.19: Turbulent kinetic energy. Method of Smirnov, Shi and Celik (2001) (- - -);

method of Klein, Sadiki and Janicka (2003) (− · −); white noise (− · ·−).

Concerning the computational cost, it is worth recognizing that the better quality of

the results provided by the methods of Klein, Sadiki and Janicka (2003) and Smirnov, Shi

and Celik (2001) demand a higher CPU time than the method associated with the superim-

position of a white noise on the mean velocity inlet profile. However, for the tests carried-out

both the simulations with the methods of Klein, Sadiki and Janicka (2003) and Smirnov, Shi

and Celik (2001) correspond to approximately the same computational cost, i.e., about 25%

more than the simulation conducted with the white noise superposition.

Nevertheless, there are two crucial differences between the methods of Klein, Sadiki and

Janicka (2003) and Smirnov, Shi and Celik (2001). The first does not present temporal

correlations whatsoever. Only spatial correlations are guaranteed. Moreover, the method of

Klein, Sadiki and Janicka (2003), does not generate a divergence free velocity field at the inlet.

In the next section, the effects of the turbulent inflow data generator will be assessed

for reactive turbulent flows.
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7.2.6 Application to reactive flows simulations

Although there is some literature on the importance of realistic turbulent inflow data

prescription on non-reactive flows, an analysis of the effects of quality of the turbulent inflow

data is much less common in the context of reactive flow simulations. Indeed, during the

development of the present study, it was noted that, even if there is a concern in reproducing

the correct Reynolds stress tensor, see for instance Yilmaz (2008), an assessment on the

effects of retaining different methods of turbulent inflow generation has not yet been per-

formed. In this subsection a set of two-dimensional simulations will be conducted to analyze

these effects.

The procedure followed here is identical to that adopted when the turbulent inflow

generators in non-reactive flows, i.e., a set of simulations was carried-out in order to evaluate

the effects of the different methods for turbulent inflow generation: (i) superimposing white

noise on the mean velocity profile at the inlet, (ii) using the method of Klein, Sadiki and

Janicka (2003) and, finally, (iii) the method proposed by Smirnov, Shi and Celik (2001).

The computational domain is a three-dimensional box with dimensions (800×2×100)

mm3, discretized with a finite volume mesh of 320 × 1 × 100 control volumes in the x, y

and z direction, respectively. Periodicity and no-slip boundary conditions are imposed along

y the z directions respectively. An advective boundary condition is used as outflow. The

Smagorinsky constant is set to 0.22 and the Van-Driest damping function is used. The

Reynolds number, based on the initial width of the mixing layer, δm = 5 mm, on the mean

velocity difference between the two flow streams, Ur = 82.5 m/s, and on the value of the

kinematic viscosity in air at 600 K, is Re = 3, 075.

For the simulation with white noise, a fluctuation level of 20% is imposed over the u

average component of velocity, whereas fluctuations of 10% are set for the average velocity

component in the z direction (w). For the simulations with the method of Klein, Sadiki and

Janicka (2003) filter support size is set to 10, whereas 1, 000 Fourier modes were used for
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the simulations based on the method of Smirnov, Shi and Celik (2001). Magre et al. (1988)

have provided a large amount of experimental data in the experimental set-up previously

used by Moreau and Boutier (1977) in different flow conditions. Andrade (2009) presents a

detailed study on the flow configuration used in the present section. The plausible range of

the Karlovitz and Damköhler numbers, positions the flame studied by Moreau and Boutier

(1977) in thin reaction zone regime within the premixed turbulent combustion diagram, Fig.

(2.7).

The mean velocity profile has the same shape as that employed for the non-reactive

flows, i.e., the velocity profile given by Eq. (7.21). However, to be consistent with the the

values of the parameters used in Magre et al. (1988), the average values of inlet velocity

are those given in Tab. (7.2). For the reactive flow simulations the Backward Difference

Scheme is retained also, and the size of the time step is evaluated by Eq. (4.1), with the

constant C set to 0.25. The advective terms of the transport equations are discretized with

the CDS approach. Since the calculations presented herein are quasi two-dimensional, the

computational domain is divided into 8 sub-domains only.

Table 7.2: Values for mean velocity profile retained for the simulation of reactive flows. See

Eq. (7.21)

Duct Cin [m/s] h [m] a [m] γin

Main duct 55 0.02 0.08 6.0

Auxiliary duct 110 0.00 0.02 8.0

The initial and boundary condition for the mean value of the progress variable at

x∗ = 0, are given by the hyperbolic profile,

c(z) =
cq + cp

2
+
cq − cp

2
tanh

�
2h(z)

δm
− 2hp

δm

�
, (7.22)

where, cq and cp are the mean values of the progress variable of the auxiliary burner (c = 1;

Tb = 2000 K) and of the main duct (c = 0; Tu = 560 K), respectively. The quantity hp is

the height of auxiliary duct, δm = 0.01 is the initial width of the mixing layer. Such profile
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can be seen in Fig. (7.20). Concerning the Monte Carlo simulation, 50 particles per control

volume are used and the Milstein scheme is employed for the numerical integration of Eq.

(4.31).

Figure 7.20: Prescribed average progress variable inlet and initial profile.

The assumption of a single, global and irreversible chemical reaction is retained for the

chemical kinetics, together with that of a lean fuel/air mixture. Thus a single chemical reac-

tion progress variable, c, can be retained. The methods and procedures adopted to describe

the behavior of such variable are described in chapters 3 and 4. The DVODE algorithm of

Byrne and Dean (1993) is employed to integrate the chemical reaction rate.

Another important effect assessed here, is the value of the activation energy, Ea, on

the propagation of the turbulent flame. Three values are tested, to say, Ea = 12, 000J/mole,

Ea = 10, 000J/mole and Ea = 8, 000J/mole, which are representative of the CH4/air com-

bustion. When changing Ea the laminar flame speed, SL, is kept constant, which leads to

a modification of the pre-exponential frequency factor of the Arrhenius law according to

Tab. (7.3), which describes the procedure adopted to evaluate the chemical reaction rate

(POINSOT; VEYNANTE, 2005). Note that the characteristic laminar flame thickness varies

with Ea, also.



164

Table 7.3: Procedure to evaluate the chemical source term.

[1] Prescription of the activation energy Ea and thus the activation temperature Ta = Ea/R;

[2] Evaluation of τ = (Tb − Tu)/Tb and β = τTa/Tb;

[3] Evaluation of Λ: Λ = 0.5β2
�
1 + 2

β (3τ − 1.344)
�
(Considering β1 = 0);

[4] The pre-exponential constant can be calculated as Aτ : Aτ = ΛS2
L/
�
αe(−β/τ)

�
,

where SL = 1.2 m/s (MAGRE et al., 1988);

[5] Evaluation of the chemical reaction rate: S(c) = Aτρ(1− c) exp
h
− β(1−c)

1−τ(1−c)

i
.

Figure (7.21) shows the instantaneous fields of the chemical reaction progress variable

c and the filtered chemical reaction rate S(c) for the set of simulations performed for the

characterization of the effects of activation energy of the method of generation of turbulent

inflow data. When the activation energy is kept constant, the method of turbulent inflow

data generation influences the shear layer spreading rate as well as the position of the instan-

taneous filtered flame front. For instance, when the subfigure (i) of Fig. (7.21) is considered,

the longitudinal span of the flame when white noise is retained, is larger than when the other

two methods are used. Moreover, another characteristic that is associated to the method of

generation of turbulent inflow data is the presence of a range of length scales of the large

eddies when the methods of Klein, Sadiki and Janicka (2003) and Smirnov, Shi and Celik

(2001) are used.

Indeed such large eddies are responsible for increasing of the shear layer spreading rate

and the wrinkling of the flame. The time-averaged field of the chemical reaction progress

variable c̃ and the filtered chemical reaction rate S(c̃), presented in Fig. (7.22) show that

increasing the activation energy always leads to a thicker and shorter flame brush, which is

consistent with the corresponding higher degree of folding/corrugation of the instantaneous

flame shown in Fig. (7.21). Concerning now the influence of the inlet boundary condition,

it may be observed in Fig. (7.22) that accounting for a turbulence spectrum always leads to

a shorter and thicker flame brush. Moreover, the influence of the inlet boundary condition

is less pronounced as the activation energy is increased, which indicates that the flame

dynamics plays a lesser role. Tab (7.4) gives the value of the length of the flame brush,
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based on 〈c〉 = 0.9 that does confirm such tendencies.

Table 7.4: Length of the 2D flame brush, based on 〈c〉 = 0.9 in the x direction.

Ea [kJ/Mole] White noise Klein, Sadiki and Janicka (2003) Smirnov, Shi and Celik (2001)

8 560 mm 543 mm 497 mm

10 434 mm 400 mm 370 mm

12 353 mm 330 mm 315 mm

Figure 7.21: Instantaneous fields of chemical reaction progress variable c - left, and chemical

reaction rate S(c) - right. (i)−Ea = 8, 000 J/mole; (ii)−Ea = 10, 000 J/mole; (iii)−Ea =

12, 000 J/mole. The subfigures (a), (b) and (c) are results of simulations with the respective

inlet boundary condition methods: white noise superimposition; the method of Klein, Sadiki

and Janicka (2003) and the method of Smirnov, Shi and Celik (2001)
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Figure 7.22: Average fields of chemical reaction progress variable c - left, and chemical

reaction rate S(c) - right. (i)−Ea = 8, 000 J/mole; (ii)−Ea = 10, 000 J/mole; (iii)−Ea =

12, 000 J/mole. The subfigures (a), (b) and (c) are results of simulations with the respective

inlet boundary condition methods methods: white noise superimposition; the method of

Klein, Sadiki and Janicka (2003) and the method of Smirnov, Shi and Celik (2001)

An interesting point allowed by the present analysis is determining how the choice of

the method of generation of turbulent inflow data affects the flame-turbulence interaction.

To perform such an analysis, it is necessary to recall the definition of the Damköhler number,

Da = τt/τc, which is the ratio of turbulent time scale, τt and the chemical time scale, τc. This

number characterizes how turbulence interacts with chemical reactions. It should be noted

that different methods of generating turbulent inflow data can lead to different Damköhler

numbers. Indeed, as can be seen in Fig. (7.11) the characteristic time of turbulence varies

strongly for the different methods of generation inflow data. It was observed, for the super-

imposition of white noise over the average velocity profile at the inlet, that the fluctuations
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are in the range 1 − 20 m/s, whereas, for the methods of Klein, Sadiki and Janicka (2003)

and Smirnov, Shi and Celik (2001) the maximum value of fluctuations were about 60 and

40 m/s respectively. Given the grid size and the computational domain used in the present

study, which provide a minimum length of the control volumes of 1 mm, the turbulent char-

acteristic times for the white noise imposition, τtwn, the method of Klein, Sadiki and Janicka

(2003), τtk and the method of Smirnov, Shi and Celik (2001), τts are 50µs, 16µs and 25µs,

respectively. Considering that different activation energies may lead to different values of

the computed chemical time scale, it may be expected for the Damköhler number to vary

with the method of generation of turbulent inflow and activation energy. Table (7.5) shows

that variation.

Table 7.5: Values of Damköhler number for the different values of activation energy and

different methods of generation of inflow turbulent data.

Ea [kJ/Mole] White noise Klein, Sadiki and Janicka (2003) Smirnov, Shi and Celik (2001)

8 0.11 0.03 0.053

10 0.19 0.06 0.097

12 0.33 0.10 0.1613

In the work of Magre et al. (1988) the postulated chemical time scale is τc = 1 ms,

and the characteristic turbulent time scale is τt = 0.01 ms, which leads to a Da = 0.01.

Based on the developments presented at the end of section 7.2.5, and considering that it

is shown in Magre et al. (1988) that the flame stabilizes between the interval 0.322 - 0.422

m, approximately the position found in subfigures (ii) of Figs. (7.21) and (7.22), for the

henceforth simulations presented in the present work the method used to prescribe turbulent

inlet conditions is the method of Smirnov, Shi and Celik (2001).

7.2.6.1 Three-dimensional simulations

In this section it is presented the results obtained with a three-dimensional simulation

of the case experimentally studied by Moreau and Boutier (1977) and Magre et al. (1988).

The computational domain is a three-dimensional box with dimensions (800×50×100) mm3,

discretized in a 320× 50× 100 mesh in the x, y and z direction respectively. Periodicity and
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no-slip boundary conditions are imposed over y the z directions respectively. An advective

boundary condition is used as outflow. As the two-dimensional simulations presented above,

the Smagorinsky constant is set to 0.22, the Van-Driest damping function is used and the

profiles of mean velocity at the inlet is given by Eq. (7.22).

The activation energy retained is set to Ea = 10, 000 J/Mole, and the method for generating

the turbulent inflow data is the method of Smirnov, Shi and Celik (2001).

Figure (7.23) shows the instantaneous fields of chemical reaction rate (a) and chemical

reaction progress variable (b). The isosurface presented in Fig. (7.23) correspond to a

progress variable value c = 0.5. It is noteworthy that the flame front is established near the

half-length of the computational domain, as expected from the experimental results.

Figure 7.23: Instantaneous fields of chemical reaction rate (a) and chemical reaction progress

variable (b). The isosurface presented in Fig. (7.23) is associated with a value of c = 0.5.

A quantitative analysis concerning the average velocity and its RMS if shown in Fig.

(7.24). It demonstrates that the numerical code was able to capture reasonably well the RMS

of the u component of velocity, but the mean velocity profile is not well reproduced, specially

in the lower part of the computational domain. A reason for that may be an insufficient

level of resolution of the mesh to simulate correctly the thermal expansion due the chemical
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reactions. Moreover, it is important to point-out that in the present work the assumption of

a unique, irreversible and global chemical reaction is made, therefore the chemical kinetics is

rather poorly represented, and consequently important phenomena, like the transformation

of CO in CO2, which is very important in premixed CH4/air combustion is neglected. As a

suggestion for future work, the simulation of the present case, with both a finer mesh and a

more accurate representation of the chemical kinetics may be needed.

Figure 7.24: Evolution of the longitudinal average (top) and RMS (bottom) of the u-

component of velocity at the centerline of the channel.

Comparing the temperature profiles obtained numerically with the experiment, it is

possible to observe in Fig. (7.25) that a reasonable agreement is achieved. It is believed that
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the residual differences are likely to be an outcome of the same limitations in the modeling

of the chemical kinetics retained in the present work.

Figure 7.25: mean temperature profile at x = 42 and x = 122 mm.



CHAPTER VIII

APPLICATION TO NON-REACTIVE AND REACTIVE HIGH VELOCITY

TURBULENT JET OF PREMIXED REACTANTS

In this chapter the methodologies described throughout this report are used to perform

the numerical simulation of high velocity jets. The predictive capability of the developed

solver is demonstrated via comparisons with experimental data associated with both non-

reactive and reactive jet flows. Detailed experimental database of turbulent premixed com-

bustion still remains seldom available when compared with non-premixed situations (MURA,

2002; ANDRADE, 2009). Indeed, there are still few experimental works that provide com-

plete data base including measurements of both turbulence and combustion properties in

geometrically simple flow configurations.

The flow considered in the present chapter is the piloted turbulent Bunsen burner

investigated experimentally by Chen et al. (1996). The schematic diagram of the turbulent

Bunsen Burner is reported in Fig. (8.1). The fuel/air mixture nozzle diameter, D, is 12 mm

and the pilot stream issues through a perforated plate with an outer diameter of 6.8 mm.

Chen et al. (1996) considered three stoichiometric premixed methane-air flames (namely F1

to F3) featuring a wide range of Reynolds and Damköhler number values.

This burner has been the subject of several numerical investigations. RANS simula-

tions of flame F3 were conducted by Prasad and Gore (1999) using a flame surface density
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model. Mura (2002) studied the three flames (F1 to F3) using RANS together with a pre-

scribed PDF approach methodology, which relies on the joint PDF of progress and mixture

variables. Herrmann (2006) also conducted RANS numerical simulations of the three flames

using a level-set flamelet model. The prediction of the F3 flame based on a LES/Level-set

approach is reported in Pitsch and Lageneste (2002). Finally, Yilmaz (2008) provides more

recently a comprehensive study of the F3 flame using a LES/FDF methodology.

Figure 8.1: Experimental configuration of the turbulent bunsen burner of Chen et al. (1996).

As recalled in Chapter 2, in the flamelet regime the chemical time is the smallest time

scale in the reactive flow field, and, thus, a decoupling between turbulence and chemical

reactions is possible. For flames in the thin reaction zone regime, however, the interaction

between turbulence and combustion is very important since, as aforementioned, turbulence

can significatively alter the structure of the pre-heating layer of the flame, and thus, modifies

the transport of the chemical species and energy.

The three flames studied in the work of Chen et al. (1996), although presenting different

Reynolds and Damköhler numbers, have the characteristic of being situated in the thin
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reaction zone regime. The location of these flames in the combustion regime diagram is

shown in Fig (8.2). The F3 flame, with a mean nozzle exit velocity of 30 m/s, although

positioned in the thin reaction zone regime is close to the flamelet regime. The flame F1, the

fastest flame, with a mean nozzle exit velocity of 65 m/s, is positioned close to the region of

broken reaction zones. The F2 flame, with a mean nozzle exit velocity of 50 m/s, is situated

between F1 and F2.

Figure 8.2: Location of the flames studied by Chen et al. (1996) in the combustion regime

diagram (Borghi coordinates) for premixed turbulent combustion.

An interesting point that singles out the work of Chen et al. (1996) is that cold-flow

characteristics and measurements are provided which allows for the preliminary validation

of the developed numerical code in the flow configuration of interest, promoting valuable

insights of the behavior of the numerical code in situations of high complexity. In the next

section the cold-flow characteristics of the F3 flame is assessed.

8.1 Cold-flow characteristics

Jet flows are very dependent on inlet boundary conditions such as mean velocity profile

and turbulence intensity and length scale at the nozzle exit. The mean velocity and the RMS

profile retained in the simulations presented in the present work are shown in Fig. (8.3). For

the analysis of the characteristics of the inert flow, only the configuration corresponding to

the F3 flame is retained. To correctly represent the anisotropic RMS velocity profile depicted
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in Fig. (8.3), the method of Smirnov, Shi and Celik (2001) is used, with the number of Fourier

modes is set to 1, 000. The turbulent time scale, τt, necessary in such a method to evaluate

temporal correlations of the velocity fluctuations is set to 1.1 ms (CHEN et al., 1996). The

computational domain spans a region of 15D × 15D × 15D, in the x, y and z directions

respectively. The number of control volumes retained in these respective directions is 225 ×

180 × 180, which is approximately the number of control volumes adopted in the previous

work of Yilmaz et al. (2011). A non-uniform computational grid is used in such a way

that approximately 30 control volumes lie within the fuel/air nozzle, in both the y and z

directions, yielding the smallest length of cell size of 0.4 mm. The computational domain is

divided into 144 sub-domains.

Figure 8.3: Normalized mean and RMS velocity profiles at the burner exit plane, from Chen

et al. (1996).

It is worth noting that although there are no chemical reactions in the flow studied in

the present section, the progress variable is solved as a passive scalar, with a mean profile at

the inlet, x = 0, given by,

c(r) = 1 +
cq − cp

2
− cq + cp

2
tanh

�
1

4

Rj

δj

�
r

Rj

− Rj

r

��
, (8.1)

where, cq and cp are the mean values of the progress variable in the inner and outer parts of

the jet, respectively, r is the radial coordinate, δj is the initial width of the shear layer and

Rj is the radius of the jet. In Fig. (8.4) the inlet plane and the location of the nozzle in the
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Y Z plane are shown.

Figure 8.4: Scalar variable boundary condition at the computational inlet for the round jet.

Global and detailed view of the jet region.

With a Reynolds number Re = 22, 400 the jet F3 can be considered as a highly

turbulent jet. The instantaneous flow field is dominated by the presence of high frequency

structures, as can be seen in Fig. (8.5)-(a). In such a figure it is shown a snapshot of the scalar

field c at t∗ = tU0/D = 485. The instantaneous scalar field averaged over approximately

10,000 time-steps is shown in Fig. (8.5)-(b). The different regions typically found in turbulent

jets, such as the potential core, the shear layer and the zone of fully developed turbulence

are clearly identifiable in this figure.

Figure 8.5: Scalar variable c for the cold jet: instantaneous (a) and averaged (b) fields.
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An evaluation of the length of the potential core is often considered to provide a good

indication of the quality of the results. According to Pope (2000) the length of the potential

core ranges 3 to 5 nozzle diameters. In the present case, it is possible to note, with the help

of Fig. (8.6), that the potential core length is approximately 4D.

In order to quantitatively evaluate this inert flow, numerical simulations are conducted

with different turbulence models are made. The Smagorinsky model, with two different values

of the constant Cs, see Eq. (3.25), Cs = 0.10 and Cs = 0.18, and the dynamic Smagorinsky

model are used. Figure (8.6) reports the longitudinal evolution of the mean axial velocity,

non-dimensionalized by the mean velocity at the nozzle exit, and the turbulent kinetic energy,

non-dimensionalized by the square of the mean velocity at the nozzle exit, along the axial

direction at the centerline of the burner for the three modelings retained. The Smagorinsky

model, with Cs = 0.18, is the model that provides the worst results. In this case, it is possible

to note that a high value of Cs leads to a reduction of the size of the potential core, and to

a decrease of the average velocity at the center line that is faster than the measured one,

which is accompanied by an increase in the turbulent kinetic energy, which over predicts the

maximum experimental value by almost 300%.

With a smaller value of the Smagorinsky constant, Cs = 0.10, there is an improvement

in the results agreements with the experimental data. Nevertheless, the unexpected decrease

of the average velocity, and the increase in turbulent kinetic energy are still notable. More-

over, the use of Cs = 0.10 led the computational code to present numerical stability issues in

this case. In fact, for the results presented in Fig. (8.6), with Cs = 0.10, even with the resort

to a variable time step size, which greatly improves the stability of the numerical code, the

simulation is found to diverge after approximately 170 non-dimensional seconds 1.

The dynamic Smagorinsky model is the turbulence model that captures reasonably well

the variations of the average velocity and turbulent kinetic energy along the centerline. The

potential core length is correctly predicted, extending to approximately x/D = 4.5, where it

1In the present work, a simulation is said to diverge when the size of the time step continuously decreases
from several orders of magnitude.
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is possible to verify that the average velocity decreases as the jet expands along the radial

direction. Nonetheless, the turbulent kinetic energy exhibits discrepancies for x/D > 6. The

reason for that may be due to the fact the computational domain is too short to promote

the full development of the jet and hence affecting adversely the developed turbulence zone

of the jet. Further simulations, with a longer computational domain in the x direction may

be performed in order to check this particular issue.
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Figure 8.6: Streamwise evolution of average velocity and kinetic energy profiles for the cold

jet.

Comparisons of the radial profiles of velocity and turbulent kinetic energy are presented

in Fig. (8.7). Generally speaking, the results obtained for the cold flow confirm that the code

is able to predict the experimental flow through a turbulent Bunsen burner, once the dynamic

Smagorinsky closure is retained. Comparing the present results with the numerical results

previously obtained by Yilmaz (2008), it is possible to observe that, specially concerning

the turbulent kinetic energy, the predictions obtained by the present work are closer to
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experimental data.
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Figure 8.7: Radial variation of average velocity and kinetic energy profiles for the cold-flow

F3 jet. The solid lines are results of the present thesis, the plus, (+), symbols are numerical

results obtained by Yilmaz (2008) and the circles are experimental results of Chen et al.

(1996).

The differences between the obtained radial turbulent kinetic energy profiles (shown

in Fig. 8.7) and the experimental data, could be explained by the uncertainties in the

prescription of the boundary conditions at the inlet. The RFG model (SMIRNOV, 2004),

when retained for the generation of anisotropic turbulent inflow data requires two different

characteristic scales: a length and a time scale. The first, given in the work of Chen et al.

(1996) is evaluated from the experimental data. Nevertheless, in the work of Chen et al.

(1996) the characteristic time scale at the inlet is given only for the reactive flow cases. For

the simulations of the cold-flow presented here, the same turbulent time scale is adopted.

Moreover, it is important to note that the turbulent inflow data is generated for the flow

issuing from the nozzle only. Elsewhere the velocity fluctuations have been set to zero. In

Fig (8.7) it is clear that for r/D > 0.5, i.e., in the outer region of the nozzle, the values of the

turbulent kinetic energy are lower than the experimental data. This may be due to the lack

of velocity fluctuations prescribed in this region, where the perforated plate is positioned.

Considering the satisfactory results obtained for the non reactive flow field simulation, the
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reactive flow F3 is now investigated in the next section .

8.2 The turbulent Bunsen flame F3

In principle, the transported PDF method allows the modeling of turbulent premixed

flames whatever of the characteristic velocity of the chemical reactions. However, in the

present work, due the assumptions retained to close the PDF transport equation, especially

concerning the possible coupling between molecular diffusion and chemical reaction has been

neglected, the closure implemented may not give good results in the flamelet regime. On the

other hand, it is expected that near the broken reaction zone the method implemented may

yield a better prediction of the flame. Despite the fact that the F3 flame is positioned close

to the flamelet regime, as shown in Fig (8.2), the fact that it is actually in the thin reaction

zone may allow a good prediction of such a flame.

For the study of the F3 flame of (CHEN et al., 1996), the computational domain in

the x direction has the same dimensions of the computational domain retained in the simu-

lations of its non-reactive counterpart presented above, i.e., the computational domain spans

a region of 15D × 15D × 15D, into the x, y and z directions respectively. The number of

control volumes retained in these respective directions is 225 × 180 × 180. Such a compu-

tational domain is divided into 144 sub-domains. The method of Smirnov, Shi and Celik

(2001) is retained for the generation of turbulent inflow data. The number of Fourier modes

is kept to 1, 000. Concerning the turbulence modeling, for the simulation of the reactive jet

flame, only the dynamic Smagorinsky model is retained. For the Monte-Carlo simulation,

approximately 50 particles per control volume are set to the start the calculations. Using

the particles weighting control described in Section 4.3.4.3, this number can vary between

40 and 150 particles.

For the F3 flame, the chemical reaction is also considered in the form of a single, global

and irreversible step. The energy of activation, Ea is set in such a manner that respecting

the laminar flame speed, SL = 0.4 m/s, the range of temperature varying between Tu = 300
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K for the fresh gases and Tb = 2248 K in the fully burnt gases, with a Damköhler number

value approximately 0.25, we set Ea = 10, 000 J/mole.

In Fig. (8.8)-(a) and (b) it is shown respectively, the chemical reaction progress variable

c, and the chemical reaction rate for a slice taken along the x direction at y∗ = 0, in such a

manner that it is possible to evidence the instantaneous flame front. The solid line in Fig.

(8.8)-b represents the limit of S(c) = 0. It is noteworthy that there are two regions where

no chemical reactions occurs: inside the potential core of the jet, where only fresh gases are

encountered, and in the region where only burnt gases are found, i.e, in the region outside

the shear layer.

Figure 8.8: Instantaneous fields of the chemical reaction progress variable c, and the chemical

reaction rate S(c) at t∗ = 22.5.

Figure (8.9) shows an evolution of instantaneous field of the chemical reaction progress

c. It is evidenced also the evolution, in time of the isovalues of the Q = 1.0E6 property

(JEONG; HUSSAIN, 1995), colored by values of chemical reaction rate. Although the sim-

ulation of the F3 flame is in its initial stage, coherent structures like the Kelvin-Helmholtz

type structures can be very well identified. As can be noted in the figure at the top of the

left-hand-side, that corresponds to the initial condition, a region composed by fresh gases,

corresponding to the diameter of the jet nozzle is surrounded of burnt gases. As time evolves,

such “tube” of fresh gases is burnt until it gives rise to the characteristic configuration of a

bunsen flame.
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Figure 8.9: Instantaneous chemical reaction progress variable fields for t∗ = 0 until t∗ = 22.5.

The non-dimensional time interval between figures is t∗ = 2.5.
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These preliminary results confirm the numerical capabilities of the computational

model developed during the course of the present thesis work.

Further developments of the physical models are now required to address the specific issues

associated with the simulation of this particular test case. This includes the consideration

of a more representative chemistry model to include chain-branching reactions. Another

important issue is related to the representation of a supplementary tracer (passive scalar),

see Mura, Galzin and Borghi (2003) and Herrmann (2006), in order to represent the effects

of dilution by surrounding air.

Such issues lie outside the scope of the present thesis work, which has been mainly devoted

to the development of viable numerical tools. They offer further perspectives for our future

developments though.



CHAPTER IX

CONCLUDING REMARKS AND FUTURE WORK

In this work, it was intended to develop a new numerical code able to perform Large

Eddy Simulations of turbulent premixed reactive flows. It was presented a review of the

literature on numerical methods suitable for simulating low-Mach Number variable density

flows, turbulence modeling of free shear flows and turbulent combustion. Such a review

was of paramount importance to choose the methods that would be implemented computa-

tionally. Once chosen such methods, the mathematical modeling necessary to simulate the

flows of interest, including the simplifying assumptions, filtering of the transport equations

for turbulence modeling, the mathematical background of the method of the transported

PDF and the coupling between the Eulerian and Lagrangian approaches were presented in

details. Concerning the numerical modeling retained in the present work, the fully implicit

discretization and the variable time-step temporal integration of the finite volume approach

retained was presented. A variable coefficient Poisson solver is used to simulate the corre-

sponding low Mach number flow and a physically consistent constraint is used to ensure that

the velocity field is solved correctly. The numerical approach retained to obtain the solution

of the system of stochastic differential equations (SDE) is explained and its consistence with

the Eulerian approach checked; excellent results are obtained for both constant density and

variable density flows.

Since the problems we intend to simulate require a very detailed analysis of the flows,
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the resort to refined three-dimensional grids is unavoidable, therefore the code developed

is capable of massively parallel computing. Although the efficiency of the parallelization

and the speed-up factor analysis was made in only one set of machines (a SGI Altix cluster

in the MFLab1), such tests have shown that the parallelization of the Eulerian-Lagrangian

approach implemented is very promising.

A very important aspect of the development of such a code is that it was extensively

verified. The Method of Manufactured Solutions was used to demonstrate that the code

developed presents acceptable error convergence rates for LES, i.e, at least two. The numer-

ical code was verified in different situations: in the limit of a zero Mach number flow, and

a second set of tests aiming at mimicking the propagation of an analytical corrugated flame

front that separates heavy from light gases.

Another remarkable contribution of the present work devoted to the LES of reactive

flows is the analysis of influence of the specification of the realistic turbulent inflow boundary

conditions. Three different methods of prescribing turbulent inflow data: superimposing

white noise over an average profile of velocity, the method proposed by Klein, Sadiki and

Janicka (2003), based on digital filtering of a random signal, and the Random Flow Generator

- RFG, proposed in Smirnov, Shi and Celik (2001), which is based on a Fourier analysis.

The three different methods of prescribing turbulent inflow data were fully assessed and their

effects were analyzed for a spatially developing mixing layer. First, in an analysis of the inert

flow, it was found that the specification of a correct velocity fluctuation is of fundamental

importance to predict the average profiles of velocity and even more important to correctly

predict the RMS of the velocity. The effects of the turbulent inflow data generator is also

evidenced for reactive flows. Basically, it is observed that a more physically consistent

boundary condition at the inlet may lead to a shorter and thicker flame brush.

It is worth recalling that although the methods of Klein, Sadiki and Janicka (2003)

and Smirnov, Shi and Celik (2001) provide more accurate results than when white noise is

1more precisely a SGI/Altix XE1300 Linux cluster consisting of 30 Intel Xeon processors (26 processors
E5650 2.67GHz and 4 E5520 2.27GHz),connected via an Infiniband IB QDR / 10GigE interconnect
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retained, there are two crucial differences between the methods of Klein, Sadiki and Janicka

(2003) and Smirnov, Shi and Celik (2001). The first does not present temporal correlations

whatsoever. Only spatial correlations are guaranteed. Moreover, the method of Klein, Sadiki

and Janicka (2003), does not generate a divergence-free velocity field at the inlet. It is sug-

gested to use the method of Smirnov, Shi and Celik (2001) in further works.

In the last Chapter, devoted to the simulation of reactive and non-reactive turbulent

round reactive jets, it was demonstrated that, first for an inert case, the use of the dynamic

Smagorinsky model presented superior results if compared to classical Smagorinsky models.

Indeed, the classical Smagorinsky model even presented stability issues in the simulations of

the inert jet, for this reason only the dynamic model was retained in the simulations of the

reactive turbulent jet. To the date that the present thesis is being finalized, only qualitative,

but encouraging, results of the stoichiometric premixed bunsen flame are presented.

As proposals for future work, different directions can be adopted, for instance, con-

cerning the overall low-Mach number solver, the order of the discretization of the spatial

and temporal derivative may be increased to yield a convergence rate of at least four or

even Fourier spectral methods (MOREIRA, 2011). Moreover, different approaches for the

discretization of the advective part of the transport equations may be implemented. It would

improve the robustness of the computational code when dealing with flows featuring higher

density and velocity ratios.

The resort to multigrid methods in the solutions of the linear system solvers may certainly

improve the robustness and efficiency of the low-Mach number flow solver. An important

improvement that could be mentioned is the implementation of a dynamic load balancing in

the parallelization of the code. It would be important in cases where there are regions with

finer meshes or great amount of notional particles.

Another direction that deserves more attention than currently afforded concerns the

prescription of realistic boundary conditions at the inlet of the computational domain, es-

pecially for LES and DNS. It is suggested the implementation and assessment of new model
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like the Synthetic Eddy Method presented by Jarrin et al. (2009). Moreover, the effects of

prescribing such realistic turbulent boundary conditions still remain very poorly explored.

It is strongly suggested that in further works the resort to a more complex - and

physically realizable - chemical kinetics approach is adopted. It would allow the use of the

computational code developed to give better results for realistic problems, including the

possibility of its use in the simulation of partially premixed combustion. In the same line

it seems of paramount importance to verify the necessity of implementation of more realis-

tic micro-mixing models. As aforementioned the IEM model, although suitable for certain

applications like flames with low Damköhler number and in the distributed wrinkled flames

regime, it does not contain information of the scalar gradients. To study and implement

different micro-mixing models, able to describe thickened flame as well as flamelet regimes,

would allow to perform more precise and elaborate analysis of turbulent premixed reactive

flows.

Finally, considering the simulation of turbulent reactive flows over complex or de-

formable geometries, it is suggested the use of the Immersed Boundary Methodology. Through

the Immersed Boundary methodology, the solid-fluid interface forces are evaluated by en-

forcing momentum to the fluid particles over the interface fluid-solid. Such a methodology is

particularly suitable for problems involving fluid-structure interactions, once the difficulty of

re-meshing the computational grid is circumvented by the use of two independent domains.

The governing equations of fluid flow are solved in an Eulerian domain (fixed, cartesian for

instance), while the immersed geometry (or geometries) is (are) represented by a set of La-

grangian points.

Such a methodology has been studied in the past decade in the MFLab, and has proven

to be very promising. The coupling of the LES/PDF solver with such a methodology would

allow the study of more practical configurations, like different types of burners or combustion

chambers.
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