Les langues de Arnold de la famille standard double

Explosion des cycles dans la famille $z^2 + \lambda$

Alexandre Dezotti

Université de Toulouse

Juin 2011

Plan

- 1. Arnold tongues of the double standard map family
- 2. Growth of the coefficients of the Laurent series of the inverse of the Böttcher map in the escaping case
- 3. Levin inequality on the position of the critical values of the multiplier map
- 4. Non local connectedness criterium for the Julia set of an infinite satellite renormalizable quadratic polynomial
- 5. Geometrical model of the explosion of cycles

The double standard maps family has been defined by Michał Misiurewicz and Ana Rodrigues as the following family of maps of $\mathbb{T}^1=\mathbb{R}/\mathbb{Z}$ $(x\in\mathbb{T}^1)$

$$f_{a,b}(x) = 2x + a - \frac{b}{\pi}\sin(2\pi x) \mod 1.$$

It is parametrized by the two real parameters $a \in \mathbb{T}^1$ and $b \in [0,1]$. This is a real family of perturbations of the family of double covering of the circle $x \mapsto 2x + a$.

Definition (Misiurewicz-Rodrigues)

A **tongue** of the double standard map family is a connected component of the set Ω of $(a,b) \in \mathbb{T}^1 \times [0,1]$ such that $f_{a,b}$ has an attracting cycle.

In order to studies these sets, one need to introduce the notion of **type**.

▶ There exists a unique map $\varphi_{a,b}: \mathbb{T}^1 \to \mathbb{T}^1$ which is continuous, of degree 1 and preserving the orientation such that

$$\varphi_{a,b} \circ f_{a,b}(x) = 2\varphi_{a,b}(x) \pmod{1}.$$

This semiconjugacy depends continuously on (a, b).

▶ Using the exponential map, the mappings $f_{a,b}$ can be extended into the holomorphic maps $g_{a,b}: \mathbb{C}^* \to \mathbb{C}^*$ defined by

$$g_{a,b}(z) = e^{2a\sqrt{-1}\pi}z^2e^{-b(z-1/z)}.$$

Les langues de Arnold de la famille standard double

Exemples de graphes de
$$\varphi_{a,b}$$
 avec $(a,b)=(0.64,0.22), (0.33,0.59)$ et $(0,0.99)$

- ▶ The mappings $g_{a,b}$ are symmetric with respect to the unit circle in the following sense : $g_{a,b}(1/\overline{z}) = 1/\overline{g_{a,b}(z)}$.
- ▶ Thanks to this symmetry and to the structure of the singular set, the mapping $g_{a,b}$ has at most one attracting or parabolic cycle on the circle.

Definition (Misiurewicz-Rodrigues)

If there is such a cycle, the mapping $f_{a,b}$ is said to be of **type** τ where τ is the image of the unique critical component of the basin by the semiconjugacy $\varphi_{a,b}$.

The only possible types belongs to the set of periodic cycles of the doubling map $(\mod 1) x \mapsto 2x$.

Theorem (D.)

For any possible type τ , there exists one and only one connected component of the set Ω for which the corresponding mappings are all of type τ .

As a consequence, the tongues are uniquely labelled with type. The proof consists in making a path inside the tongue connecting the starting parameter to a fixed parameter and keeping the type constant. This is produced by quasiconformal deformation.

Les langues de Arnold de la famille standard double

Infinitely satellite renormalizable quadratic polynomials

Theorem (Douady-Sorensen)

There exist parameters $\lambda \in \mathbb{C}$ such that the quadratic polynomial $P_{\lambda}(z) = z^2 + \lambda$ is infinitely renormalizable and such that its Julia set J_{λ} is not locally connected.

Remark

Here, the renormalizations are satellite renormalizations.

Infinitely renormalizable quadratic polynomials

- ▶ Start with a hyperbolic component H_0 of the Mandelbrot set M. It is the main component of a copy of M. Then proceed by induction, that is, given a hyperbolic component H_n , choose an adjacent hyperbolic component H_{n+1} which is not H_{n-1} (it is then the main component of a copy of a smaller copy of M).
- ▶ It yields a decreasing sequence of copies of M and parameters λ (or corresponding maps P_{λ}) which belongs to the intersection of such a sequence are said to be infinitely satellite renormalizable (ISR).

Infinitely renormalizable quadratic polynomials

Encoding ISR quadratic polynomials

Such a sequence of renormalization can be encoded by the starting component H_0 and a sequence of rotation numbers $\left(\frac{p_n}{q_n}\right)_n\in\mathbb{Q}^\mathbb{N}$ with $\left|\frac{p_n}{q_n}\right|\leq \frac{1}{2}$. The numbers p_n/q_n are determined as follows.

- ▶ For all $\lambda \in H_n$, the polynomial P_{λ} has an attracting periodic cycle of period m_n .
- ▶ The multiplier map $\rho_n : H_n \to \mathbb{D}$ is a holomorphic isomorphism and it extends injectively to the boundary.
- ► The closures of the components H_n and H_{n+1} intersect at a paramater λ_n such that $\rho_n(\lambda_n) = e^{2\pi i p_n/q_n}$.

One can try to quantify the previous theorem using this encoding. That is, try to find find the most general condition on the sequence of rotation numbers $\left(\frac{p_n}{q_n}\right)_n$ that implies non local

Thanks to renormalization techniques, this condition will depend only on the tail of the sequence $\left(\frac{p_n}{q_n}\right)_n$.

connectedness of the Julia set of the corresponding polynomial.

An explicit condition for non local connectedness

Theorem (G. Levin, 2007)

Let H_0 be a hyperbolic component of M and $\left(\frac{p_n}{q_n}\right)_n$ a sequence of rational numbers such that $p_n/q_n \to 0$.

$$\limsup \left| \frac{p_{n+1}}{q_{n+1}} \right|^{1/q_n} < 1,$$

then

- ▶ the sequence of parameters λ_n (defined by the data $\left(H_0, \left(\frac{p_n}{q_n}\right)_n\right)$) converges to a parameter λ_* such that P_{λ_*} is ISR,
- ▶ the Julia set of P_{λ_*} is not locally connected.

General view of the proof

1. Show that the sequence $(\lambda_n)_n$ converges,

2. apply Douady-Sullivan criterium.

Douady-Sullivan criterium

Theorem (Douady-Sullivan criterium)

Let X be a compact subset of the Julia set of some quadratic polynomial P such that :

- $ightharpoonup X \cap crit(P) = \emptyset$,
- $ightharpoonup P: X \rightarrow X$ is bijective.

Then, if the set X is infinite, the Julia set of P is not locally connected.

The set X we will use in the proof of Levin's theorem will be the closure of the union of a sequence of periodic cycles of P_{λ_*} .

Some main ideas of the proof

We find a decreasing sequence of topological disks D_n in the parameter space such that :

- $\lambda_n \in D_n$
- ightharpoonup diam $(D_n) \to 0$,
- ▶ D_n is the preimage of a round disk $D\left(2\pi i \frac{p_n}{q_n}, r_n\right)$ by an inverse branch of the mapping log ρ_n .

Some main ideas of the proof

The radius r_n is chosen so that :

- ▶ the function $\log \rho_n : D_n \to D\left(2\pi i \frac{\rho_n}{q_n}, r_n\right)$ is univalent,
- explosions functions can be defined on the disk $D(0, r_n^{1/q_n})$.

The latter "means" the following. We call $C_n(\lambda)$ the cycle of the polynomial P_{λ} which is attracting for $\lambda \in H_n$.

Then, on $D_n \setminus \{\lambda_n\}$ the cycle $C_{n+1}(\lambda)$ can be followed locally holomorphically (while it collapses into $C_n(\lambda)$ for $\lambda = \lambda_n$).

Some main ideas of the proof

We set

$$X=\overline{\bigcup_n C_n(\lambda_*)},$$

where $\lambda_* = \lim \lambda_n$.

In order to apply Douady-Sullivan criterium we have to show that $C_n(\lambda)$ avoids a fixed neighbourhood of the critical point.

Recall that we suppose $\left|\frac{p_{n+1}}{q_{n+1}}\right|^{1/q_n} \leq \alpha$ for some $\alpha < 1$.

Let $d_n = |\rho_n(\lambda_*) - \rho_n(\lambda_n)|$ and suppose $\left(\frac{d_n}{r_n}\right)^{1/q_n} \leq \beta$ for some fixed $\beta < 1$.

▶ By a compacity argument : $\frac{\max dist(c_{n+1}, c_n)}{\min dist inside c_n} \le Const.$

min dist inside $C_n = \text{dist between two "consecutive" points}$ = $|C_n^+ - C_n|$

as a holomorphic function defined on $D(0, r_{n-1}^{1/q_{n-1}})$ (explosion functions).

The latter can be estimated via the hyperbolic metric on disks.

Then we have:

$$|C_{n+1}-C_n| \leq \frac{Const}{q_{n-1}} \left| \frac{d_{n-1}}{r_{n-1}} \right|^{1/q_{n-1}}.$$

We obtain the following inequality.

 $\sum_{n} |C_{n+1} - C_n| \leq \sum_{n} \frac{Const}{q_n} < \infty.$

What remains to be shown is that $\left(\frac{d_n}{r_n}\right)^{1/q_n} \leq \beta$ (for some fixed $\beta < 1$).

s < 1).

Thanks to good knowledge (Yoccoz inequalities) $r_n^{1/q_n} o 1$,

$$d_n = \left| \rho_n(\lambda_*) - \rho_n(\lambda_n) \right| \approx \frac{1}{a_*^2} \left| \frac{p_{n+1}}{q_{n+1}} \right|.$$

As a consequence,

$$\left(rac{d_n}{r_n}
ight)^{1/q_n} & \leq \left(1+o(1)\right) \left|rac{p_{n+1}}{q_{n+1}}
ight|^{1/q_n} \ & \leq \left(1+o(1)
ight)lpha.$$

Take $\alpha < \beta < 1$.

Perspectives

- Order of contact at the tip of the tongues (transversality)
- Extension of Levin's result to the general unicritical families $z^d + \lambda$
- ▶ Find an optimal condition for non local connectedness (model)
- **.**..

Les langues de Arnold de la famille standard double

Étapes de la démonstration :

- 1. Existence d'un unique (a_{τ}, b_{τ}) tel que $f_{a_{\tau},b_{\tau}}$ est de type τ avec un cycle superattractif (on a alors $b_{\tau} = 1$).
- 2. Étant donné g_{a_0,b_0} de type τ non superattractif, construction d'une famille d'applications g_t holomorphes sur \mathbb{C}^* par déformation quasiconforme de g_{a_0,b_0} , paramétrée par le multiplicateur du cycle $t \in]0,1[$.
- 3. Grâce à une caractérisation topologique de la famille $(g_{a,b})_{a,b}$, on peut voir cette famille comme un chemin dans la famille standard double.
- 4. Ce chemin est continu (réel analytique) et son extrémité quand $t \to 0$ est le paramètre (a_{τ}, b_{τ}) .

Les langues de Arnold de la famille standard double

Tracé des chemins construits dans la démonstration du théorème de connexité.