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English Abstract

At the beginning of this thesis, basic and advanced device fabrication process which | have
experienced during study such as top-down and bottom-up approach for the nanoscale device
fabrication technique have been described. Especially, lithography technology has been
focused because it is base of the modern device fabrication. For the advanced device structure,
etching technique has been investigated in detail.

The characterization of FET has been introduced. For the practical consideration in the
advanced FET, several parameter extraction techniques have been introduced such as Y-
function, split C-V etc.

FINFET is one of promising alternatives against conventional planar devices. Problem of
FinFET is surface roughness. During the fabrication, the etching process induces surface
roughness on the sidewall surfaces. Surface roughness of channel decreases the effective
mobility by surface roughness scattering. With the low temperature measurement and
mobility analysis, drain current through sidewall and top surface was separated. From the
separated currents, effective mobilities were extracted in each temperature conditions. As
temperature lowering, mobility behaviors from the transport on each surface have different
temperature dependence. Especially, in n-type FIinFET, the sidewall mobility has stronger
degradation in high gate electric field compare to top surface. Quantification of surface
roughness was also compared between sidewall and top surface. Low temperature
measurement is nondestructive characterization method. Therefore this study can be a proper
surface roughness measurement technique for the performance optimization of FinFET.

As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has been
introduced. Important of strain engineering has been known for the effective mobility booster.
The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowire
FET showed huge short channel effect. Subthreshold current was bigger than strained SiGe
channel. Temperature dependent mobility behavior in short channel unstrained device was
completely different from the other cases. Impurity scattering was dominant in short channel
unstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is not
necessary only for the mobility booster but also short channel effect immunity.

Junctionless FET is very recently developed device compare to the others. Like as JFET,
junctionless FET has volume conduction. Thus, it is less affected by interface states.



Junctionless FET also has good short channel effect immunity because off-state of
junctionless FET is dominated pinch-off of channel depletion. For this, junctionless FET
should have thin body thickness. Therefore, multi gate nanowire structure is proper to make
junctionless FET.

Because of the surface area to volume ratio, quasi-1D nanowire structure is good for the
sensor application. Nanowire structure has been investigated as a sensor. Using numerical
simulation, generation-recombination noise property was considered in nanowire sensor.
Even though the surface area to volume ration is enhanced in the nanowire channel, device
has sensing limitation by noise. The generation-recombination noise depended on the channel
geometry. As a design tool of nanowire sensor, noise simulation should be carried out to
escape from the noise limitation in advance.

The basic principles of device simulation have been discussed. Finite difference method and
Monte Carlo simulation technique have been introduced for the comprehension of device
simulation. Practical device simulation data have been shown for examples such as FInFET,
strongly disordered 1D channel, OLED and E-paper.
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Overview of Semiconductor Device Trends

1.1 Economical Consideration: Market Trend Overview

Currently, the appearance of smart devices such as smartphone, tablet PC changes

semiconductor

market trends.

The origin of smart devices was IBM Simon which was released in 1993 as a world first

smart device as a convergence between mobile phone and PC [1]. It included a schedule

manager, address book, world clock, fax, games and calculator etc. With evolutions, smart

devices have been continuing like personal digital assistant, iPhone and Galaxy Tab etc.

Especially after iPhone and Android smartphone has been released in the market, numerous

smart applications which use simple user interface, global positioning system (GPS), motion

sensors and Wi-Fi etc., play a role as a bridge between human and smart devices.
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Figure 1.1 : Worldwide semiconductor revenue forecast by product type [2].
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The harmonious combination between application and hardware has created the exponential
market explosion of smart devices. The markets of smartphone and tablet PC have been
forecasted as 49% and 162% growth in 2011 comparing with 2010 [3, 4].

According to the increased demand of smart devices, semiconductor memory market trends
are changing for instance from PC DRAM to mobile DRAM and from HDD to NAND flash
memory. For example, the market share of mobile DRAM in DRAM market will be growing
up to 7.1% in 2011 comparing with 5.5% in 2010 and the total growth rate will be over 100%
[5]. To be applied in mobile devices, mobile DRAM should be cost effective with high device
density and developed as high performance and low power consumption.

Non-memory (representatively system IC) device market vends are also changing due to the
enlargement of smart device market.

Centering around application processor (AP) for smart device, system IC market is growing
up. Marching in step with this trend, strategic industrial feature ‘fab-less company’ has
appeared. (Table 1.1) The fabless company means a semiconductor vendor which design, test
and selling the chips without semiconductor manufacturing facilities. It relies on the other
foundries for the fabrication of chips. The memory devices need the integrated device
manufacturer, whereas non-memory device need a capability to correspond with requests of
customer through the small quantity batch production. Thus the fabless companies which
focus on the chip design are promising business core for the non-memory device.

2010 2010
Company Headquarters
Rank ($M)
1 Qualcomm U.S. 7204
2 Broadcom u.S. 6589
3 AMD U.S. 6494
4 Marvell U.S. 3592
5 MediaTek Taiwan 3590
6 Nvidia U.S. 3575
7 Xilinx U.S. 2311
8 Altera U.S. 1954
9 LSI Corp. U.S. 1616
10 Avago U.S. 1187

Table 1.1 : 2010 top 20 fabless IC suppliers [6].
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Although the fabless company is one of the recent trend in non-memory devices, the
research and development of device scaling down and advanced transistor technology such as
finFETs, gate-all around (GAA) nanowire is still very important to improve the fabrication
yield, low power consumption and the device performance, etc.

1.2 Device Scaling

As device dimensions reduced, it becomes difficult to carry out device fabrications. For
instance, the integrated circuit becomes denser and more complicated as devices scale down.
Thus, problems occur in lithography, interconnects and processing.

Device Scaling down to the small dimension is required to increase device performance
such as enhanced switching speed and decreased power consumption. As an example, circuit
delay time t can be reduced as a function of gate length L because t is given as:

MOSFET Device and Circuit Multiplicative
Parameters Factor
Device Dimensions (tox, L, W) 1/a
Scaling Assumption Doping Concentration (N, Ng) o}
\oltage (Vp) 1/
Electric Field (E) 1
Depletion-layer Width (wg) l/a
Capacitance (C= gAlty) 1/
Inversion-layer Charge density (Qj) 1
Derived Scaling Carrier Velocity 1
Behavior of Device Drain Current in Drift Region (Ip) 1/
Parameters
Circuit delay time (t) l/a
Power dissipation (P=15Vp) 1/o?
Circuit density o?
Power Density (P/A) 1

Table 1.2 : Scaling parameters from constant-field scaling [7].
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T= CeVo , (1.1)
Ip

where Ip is the drain current, Cg the gate capacitance and Vp, the drain voltage. With same Vp,

the decrease of Cg or the increase of Ip reduces circuit delay time. The drain current Ip is

inversely proportional to the gate length L, thus the reduction of L decreases 1. Like as T,

circuit density is proportional to the L? (Table 1.2). Moreover, power dissipation per circuit

decreases by a factor of L which is related to the reduction of the device heating problem.

The potential contours are parallel to the gate insulator and channel interface in long channel
device. Thus, if the channel is long enough, the carriers are distributed along the channel
surface. However, as gate length decreases, the potential distribution is changed. Aligned
potential distributions are dispersed to the direction of body and induce uncontrolled device
operation.

The scaling law of MOSFET transistor has followed constant-field scaling. In the constant-
field scaling, the electric field is constantly maintained as device is scaled down. To keep the
constant electric field, the lateral and perpendicular dimensions (for the constant electric field
maintenance of both directions), operating voltage bias and doping concentration have to be
changed with scaling factor a. The unchanged electric field pattern is necessary to maintain
gate control and short channel behavior. As shown in Table 1.2, the thinner gate oxide
thickness (decreased by o) is also needed to make gate oxide field constant. Channel doping
level has to be increased by a to reduce the depletion width wy to prohibit punch-through
breakdown.
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Figure 1.2 : Number of transistor and gate length versus per year (Microprocessor).
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Intel co-founder Gordon Moore states that the number of transistor on a chip will be double
about every two years, which is well known as Moore’s law. For over about 40 years,
Moore’s law has driven the industry (Fig. 1.2). It seems to work so far. However device
dimension has almost reached the end of the scaling limit. Currently 32 nm process node has
been used in mass production. According to the Moore’s law, several nm of gate length which
is physical limitation of MOSFET will be used in several years. Thus, the new concept of
device scaling is necessary to continue the device yield and performance enhancement
beyond Moore’s law.

Lots of alternative device concept has been researched such as multi gate structure,
strained channel and junctionless transistor [8-10]. In 2011, Intel has demonstrated that tri-
gate transistor will be adopted in 22 nm microprocessor named lvy Bridge as world first high
volume chip using 3D transistor [11]. It will be the first practical case that the conventional
device concept molts.

1.3 Short Channel Effects

Device scaling causes unintended effects of device performance. These effects can be
categorized according to the different sources [12];

B Electric field profile changes as two dimensional
1. Drain-induced barrier lowering
2. Mobility reduction by gate-induced surface field
B Electric field strength becomes very high in the channel
1. \elocity saturation
2. Impact ionization near drain
3. Gate oxide charging
4. Parasitic bipolar effect
B Physical separation between the source and the drain decreases.
1. Punchthrough
2. Channel length modulation

Some of them have similar result even though they have different physics. Moreover,
sometimes, it is too ambiguous to separate each phenomenon. Thus, here simply classified
short channel effects will be investigated for the clear comprehension.

7
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1.3.1 Threshold Voltage Shift, Punchthrough
and Drain-induced Barrier Lowering

Short Channel Long Channel
Gate _"""_"““"_""""""]
| ' il ;
Source | \=sot /| Drain.. x |
I SORSDE ]
IDepletion R)egion \ Llong .................... E
: Lshort i

Figure 1.3 : Yau charge sharing model for the short channel device.

For a long channel device, Vs completely control depleting the semiconductor channel.
However in short channel devices, part of channel depletion is under the control of source
and drain bias. As the channel length shortens, the close proximity of the source and drain
region occurs the fraction of the depletion charge in the channel. In other words, both the gate
and source—drain voltages share control of the charge density below the gate. This effect is
described by the charge-sharing model (Fig. 1.3) [13]. As a result, the channel can be
depleted with lower gate voltage in short channel device. Thus, Vy, becomes lower.

With the substrate doping concentration Ny, the bulk (depletion) charge per unit area Qy in
the depletion region under the gate could be approximated as rectangular thus |Qp|=qNpW4y
with depletion width Wy by Vg [13]. In this approximation, the charges near the source and
drain, which terminate the built-in field from the junction edges, are neglected. The depletion
region from the source and drain are overlapped with the channel charge. In long channel
devices, this part is negligible comparing with the area of effective device channel. However,
in short channel device, this overlapped part cannot be neglected anymore and the previous
approximation does not work. With the consideration of overlapped parts, the shape of the
depletion charge cross-section can be described as trapezoid and Qy can be calculated as [14,
15]:

Qp = qNp Wy (—L'ShortJrLShort j (1.2)
I-short

The variation of Vy, due to the short channel effect is:

Qb, longchannel _Qb, shortchannel Qb, longchannel Vvj 2Wd
Cox Cox L WJ—

1}, (1.3)



1. Overview of Semiconductor Device Trends

where W; is the junction depth in channel from the
source and drain. From this equation, the decrease
of channel length increases threshold shift. As we
described previously, depletion charge can be
formed easily with small L. Thus, Vi, becomes
lower in short channel. According to this
relationship, parameters to avoid Vi, variation due
to the short channel effect can be known as
following. 1. The reduction of gate oxide thickness;
thin oxide thickness increase Cox thus AVy, can be
decreased. 2. The increase of substrate doping Np; it
decreases Wy and AVy,. 3. The steep junction depth;
the reduction of W; decreases AVi.

When the depletion region around the drain
extends to the source in short channel device, two
depletion layers can merge into a single depletion
region as shown in Fig. 1.4 [15, 16]. The depletion
region of the drain is mainly affected by the drain
bias Vp [17]. Punchthrough occurs when Vp, affects
the formation of inversion layer. Punchthrough
leads to the rapid increase of drain current with Vp
increase and the weak gate control.

There is similar but different consideration. This potential barrier is confirmed by the built-
in potential of the source and channel p-n junction [17]. On the other hand, for a short
channel device, Vps lowers the potential barrier between source and channel, which is named

Source

o

IYTTT1lleYY

DRAIN CURRENT, 144(A/cm)
)

Ol
£

10—10

-1
ORI TS W B B B
~1 0 1 2
GATE VOLTAGE , Vgs (V)

Figure 1.4 : (Above) Schematic of
punchthrough.  (Below) Calculated

subthreshold characteristics Vps=2V,
VSB:OV[15]

drain-induced barrier lowering (DIBL) as shown in Fig. 1.5.

Short Channel

AS10Ug [enIUL)Og
w2
=]
b
Q
a
o
]
&
=

Long Channel

Position Along Surface of Channel

Figure 1.5 : Drain-induced barrier lowering in short channel device. Drain is biased and it pulls

down the potential energy around drain.
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This effect limits the maximum operation voltage of device [18]. To avoid DIBL, the
enhancement of gate control or the separation of merged depletion region is needed. Thus,
increase of substrate doping level, delta doping into the substrate and pocket or halo implant
has been used in typical planar devices [19-21].

1.3.2 Velocity Saturation

In a short channel, electron transport is governed by the combined effects of electric field E
and scattering with the lattice, impurity atoms and other carriers. At low electric field, this
results in a mean velocity proportional to the electric field. [14]:

vq =uE (cm/s). (1.4

The constant p is called carrier mobility and vq4 the drift velocity.

However, due to the energy dependence of scattering relaxation time, its linear relationship
is not valid at high electric field. The field dependence of drift velocity is then described by
[22]:

Vg __HE for E < E¢ and (1.5)
1+E/E;
Vg = Vs 4 for E > Ec. (1.6)

The dividing factor E. named as critical field, is approximately 10° VV/m (10* V/cm) for the
silicon as shown in Fig. 1.6. When E is above E., carrier velocity is saturated to v This
consideration changes the drain current Ip in nonlinear region from:

I i
Long-channel device
Ves= Vpp ;
I Short-channel device
! l
| | >
Vpsar Ves-Vr Vos

Figure 1.6 : Short channel effect by velocity saturation.
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W Vo2
Ip = uCoy f{(ves ~Vin Vs — Dzs } to (1.7)
W Vps?
Ip = k(VDs)ﬂCOXT (Ves —VinVos - 5 | Where (1.8)
1
k(Vps) = (1.9)

1+(Vps/Ec L)
For the large value of L, k approaches 1. However for the short channel, k is smaller than 1
and Ip will be decreased by velocity saturation.
The short channel model can be simplified with the assumption of abrupt constant velocity
at Ec.

Vg =Vgat = M E¢ forE>E; and (1.10)
VDSAT = L EC Zﬂ f thUS (111)
M
V
I bsaT =Vsat COXW[(VGS ~Vin)- %} : (1.12)

Comparing with the quadratic Vs behavior in long channel devices, the linear behavior in
short channel device has been proved empirically as shown in Fig. 1.7. Recently, 30nm
devices has been used and the scaling down will be continued. In the case of a transistor
which has 30 nm gate length, the effective electric field between source and drain is:

\Y 0.5V
—Ds _ 227 _16-10*V/cm , (1.13)
L 30nm
-4 -4
a) 6x10 . . ‘ . b) 2‘:xﬂ)
5.
ol
4l
1.5+
<3 2 linear
£ o
1}
2t .
quadratic
1l 0.5+
quadratic
C 1 L 1 I 1 1
0 05 1 15 2 25 0 05 1 15 2 25
Vs ™) Vs ™)

Figure 1.7 : 15-V characteristic for long (L=10 pum) and short (L=0.25 um) channel at Vp =1.5 V [23].
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with 0.5 V Vps. At 0.5V, it is already reached about 10* V/cm which is enough value to cause
the velocity saturation of the carrier in the channel of the device.

1.3.3 Hot Carrier Effects

If carriers gain very high Kinetic energy due to the strong electric field, it can be hot carriers. Hot
carrier effect can be classified as [24]: 1) drain avalanche hot carrier injection, 2) channel hot carrier
injection, 3) substrate hot electron injection, 4) secondary generated hot electron injection.

At high drain voltage bias, carriers are accelerated by high electric field near the drain. With stress
conditions with high Vp and lower Vg, drain avalanche hot carrier injection occurs. When accelerated
carriers are injected into the depletion region of drain, electron-hole pairs are generated, which is also
called as impact ionization. Generated hot electrons and holes are injected into the gate oxide or flow
out as a bulk current. Normally it happens at Vp > 2Vg.

Without electron-hole pair generation, accelerated channel hot carriers can be directly injected into
the gate oxide by high V. It causes gate leakage current, interface and oxide degradation. It can occur
around Vg =Vp.

From the high positive or negative bias at the substrate, substrate hot carrier injection occurs. In this
condition, carriers optically or electrically generated in the substrate (bulk body) injected into the gate
oxide and body. These injected carriers cause gate leakages and substrate current

1.4 Challenges to Overcome Short Channel Effects

In this chapter, advanced MOSFET technologies will be introduced. Advanced MOSFET
technologies have been researched to overcome short channel effects and to enhance the
device performances. They can be categorized as gate stack, silicon on insulator (SOI),
channel engineering. There are several parts in channel engineering: channel structure,
material and strain engineering. In the case of strain engineering, it will be detailed in chapter
4.2.1.

1.4.1 High-k and Metal Gate

As shown in table 2 (Ch. 1.2), the thickness of gate oxide should be decreased to maintain proper
electric field according to the device scaling down. ITRS referred to sub 1 nm effective oxide
thickness gate stacks are required at the roadmap in 2009 [25]. When the SiO, reaches thickness
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below 1 nm, it causes the gate leakage problem due to the quantum mechanical tunneling [26]. Thus,
as gate insulator, SiO, should be replaced with higher permittivity (high-k) dielectric material. With
high-k dielectric layer, effective oxide thickness can be expressed as following:

goT = Ksioe _3q highkc

, (1.14) -
Knigh-k Knigh—k
where Ksio, and Knigh-k are the dielectric oo o
constant of SiO; and high-k material, and © © 000000 K=o
k=1 k=2

thigh-x the physical thickness of high-k

dielectric layer. For instance, with a ) ) ) )
y Figure 1.8 : Schematics of high-k gate dielectric. If one

dielectric constant of 20 and 5 NM gate oxide has twice k of another, a given voltage will
physical thickness, effective oxide draw twice charge into the transistor channel. Or, the
same amount of charge will accumulate, if the higher-k

thickness of 1 nm SiO; can be replaced. o ; i
dielectric is made twice as thick [26].

According to quantum mechanics,
tunneling probability increases exponentially as a function of the barrier (gate dielectric layer
in this case) thickness [27]. Thus, increased dielectric thickness can avoid tunneling induced

gate leakage (Fig. 1.9).

PROBLEM SOLVED: Transistors of the 65-nm
PROBLEM: Electron leakage through gate oxide generation were plagued by electrons that

tunneled through the gate insulation.

Switching to a high-k dielectric as a gate oxide

CONVENTIONAL TRANSISTORS

Polycrystalline ufn Channel solved that problem but introduced others.
Gate — . 5] i
silicon 5 Those problems were solved by the introduc-
. J\I\’) tion of anew deposition technique and
Gate oxide =  Silicon dioxide e © . ep q
12-nm| g swapping the silicon gate material for two
Source Silicon Drain gate oxide ate types of metal gates, allowing for the
Channel introduction of 45-nm microprocessors.
HIGH-k TRANSISTORS PROBLEM: Uneven dielectric PROBLEM: Phonons PROBLEM: Poor bonding
surface traps charges. scatter electrons inchannel.  between gate and dielectric
makes transistor hard to turn on.
Polycrystalline &) Ve
8 Ve e, ©
silicon e © o © o
: e © |e ©
High-k dielectric o= CamO
Silicon : >
HIGH-k PLUS METAL GATE SOLUTION: Thicker, high-k SOLUTION: New atomic-  SOLUTION: Metal gate’s higher
Smoother layer gate oxide prevents electron layer deposition creates  electron density screens out
via ALD deposition leakage. smooth dielectric layer. electron-scattering phonons.
Proprietary method
metal ~
composition Metal / @ Channel v (Y-Y-1-1-1-1-]
. Q [=] J=]=]
Thicker High-k dielectric 5 I-T-1-1-1-1- Metal and
gate oxide o - o .0 _0_ o — ] high-k dielectric
©%ceo00c0
Silicon Thick Gate bond well

gate oxide

Figure 1.9 : High-k and metal gate for the solution of gate dielectric thinning and phonon scattering [26].



14

1. Overview of Semiconductor Device Trends

To select high-k material as a gate dielectric, several properties should be additionally
considered such as semiconductor/gate dielectric band offset, thermodynamic stability,
interface quality, film morphology, gate metal compatibility, process compatibility and
reliability [28]. Hafnium based dielectric material such as HfO, and HfSiO, is one of
promising materials for the high-k dielectric. From 45 nm process technology, Intel has been
using hafnium based gate dielectric [29]. Comparing to 65 nm poly-Si/SiON structure, the
gate leakage current of 45 nm metal/high-k gate stacked transistor was 1000 times reduced in
PMOQOS and 25 times reduced in NMOS.

However, high-k gate dielectric has problems [27]. The quality of interface between high-k
and poly-silicon gate is very poor so that the oxygen vacancy in the dielectric layer induce
Fermi level pinning which causes high threshold voltages of device operation. Additionally,
dipoles in the high-k dielectric vibrate like taut rubbers and induce strong vibrations in the
lattice of Si channel. This surface phonon scattering in high-k is a primary source of mobility
degradation.

Significantly increased electrons in metal gate electrode can screen the dipole vibrations in
high-k dielectric [27]. Thus surface phonon scattering is reduced. Moreover, the quality of
interface can be improved and Fermi level pinning is reduced.

The use of high-k and metal gate stack requires the correct work function matching for both
PMOS and NMOS for the higher device performance.

1.4.2 Silicon on Insulator (a) \MOS PMOS
Silicon on insulator (SOI) is sandwiched silicon-oxide B N s pa
layer-silicon substrate. As shown in Fig. 1.10, the entire \[Siop R
transistor is completely isolated from other transistors
and back substrate by buried oxide (BOX) [30]. ol ;‘g’;"ate

Vertically isolated device layer is protected from
parasitic effects. Leakage current, radiation induced
photocurrent and latch-up etc. can be induced in bulky
substrate. SOl wafer reduce junction surface, leakage
current and junction capacitance.

SOl wafer can be fabricated by several methods.

Separated by implantation of oxygen (SIMOX) method [ o A S

uses oxygen ion beam implantation [31]. After thermal Figure 1.10 : Schematic architecture

annealing, buried SiO; layer is formed into the Si wafer. and TEM cross-section image of planar
SOl MOSFET [29].
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The top Si layer is typically ELTRAN process uses epitaxial
between 50 and 90 nm thick, = A
depending on the design GALE layer grown on the porous Si [32].

Si under the channel is After transfer using wafer bonding
partially depleted of mobile
charge carriers. Avalanche

ionization at the drain can

technique, it is separated to handle
wafer. Smart Cut method developed

in the quasi-neutral region |
(ﬂoating body effect) Partially depleted SOl MOS transistor cross-section

by Soitec [33] utilizes hydrogen ion

implantation as an atomic scalpel

The top Si layer is between which cuts through the crystalline

5 and 20 nm thick, typically™®™"

Y of the gate length lattice. Clean and uniform transfer

of thin film Si layer can be

Si under the gate is so thin

that it is fully depleted of .
mobile charges. There is no achieved by Smart Cut method.

floating body effect. — uly depleted SO1 MOS transistor cross-section According to the thickness of SOI
Figure 1.11 : Comparison between PD SOl and FD SOI [33].  \yafer, it can be classified as
partially depleted SOI (PD SOI) and fully depleted SOI (FD SOI) (shown in Fig. 1.11) [34].

PD SOI has relatively thick (ts; > 45 nm) device layer. In PD SOI, top gate and back gate

(handle substrate) are decoupled due to the thickness of device layer. The depletion charge in
the channel does not extend from the channel surface to the device layer / BOX interface.
Thick enough device layer has floating body. PD SOI wafer has several problems from
floating body effects [30]. Majority carriers can be collected in the neutral region of PD SOI
MOSFET. When impact ionization trigger collected majority carriers, excess current and low
frequency noise can be induced. Floating body also induce transient variation of body
potential and threshold voltage.

FD SOI has thin body below 45 nm (typically below 20 nm). Due to its extremely small
thickness, the whole body is depleted and the depletion charge is constant. The excellent
coupling between gate voltage and channel inversion improves drain current, subthreshold
swing and gate response time. Back gate is also more effective than PD SOI therefore
threshold voltage control is possible using back gate bias. Floating body effects are strongly
reduced in FD SOI devices.

However, there are issues to overcome of course. Low thermal conductivity of BOX induce
Self-heating problem in FD SOI device. In saturation region, device temperature increases
and current is lowered because of self-heating. Defect coupling is also a problem in FD SOI.
The presence of defects at the device interface highly affects performance degradation.
Carrier transport affected by defect scattering reduces effective mobility.

Even though SOI technology has few disadvantages, it obviously leads higher performances
of device operation. To minimize short channel effects, SOl technology is one of the
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promising alternatives with multi gate and nanowire structure which is following next chapter.

1.4.3 Multi Gate and Pseudo 1D Structure

Multi gate structure shown in Fig. 1.12 has been developed to enhance the immunity to

short channel effects of classical single planar gate devices. Even in the SOI FETSs, the body

Inversion Layer

. Charge Distribution
Source Drain ‘: /

Bl

Substrate

Gate

Gate Substrate
Si0;

a) Bulk MOSFET

Source l¢ Drain
|

. TTbOdy Gate Body Gate
Si02 Si02

b) Double-Gate MOSFET

Gate

Gate

Gate Body Buried
Si0; Oxide

Figure 1.12 : Device structure and energy band diagram
of standard single gate bulk MOSFET, double gate
MOSFET and ultra-thin body MOSFETs. In standard
single gate bulk MOSFET, the body far from the gate is
difficult to control [32]

thickness ts; should be scaled down up
to Le/5 for the good control of the
short channel effects [35]. Due to the
limitation of the process, it is very
difficult to be uniform all over a SOI
wafer. This variation makes the
fluctuation of the device performances
in nano-scale transistors [36, 37].

In the case of double gate, two
systematic gates make inversion layers
on both interfaces between the silicon
layer and gates. Double gate FET can
be fabricated both being planar and
vertical. Gate electrodes are located at
the side of vertical fin which has ws; as
a fin width in the vertical double gate
FET and at the top and bottom of the
channel in the planar double gate FET.
While ti should be smaller than Le/5
in planar SOI transistor, ws should be
scaled down up to Lew/2 [38]. Thus the
gate control is enhanced without
channel dopants. The absence of

dopant induce no depletion charge (Qqepi=0). Effective gate electric field Ec (vertical electric

field in channel) consists of linear combination between Qgep and Qiny. A reduction of Ees

yields a higher carrier mobility scince the limitation due to the impurity scattering diminishes.

It can also reduce interface scattering between Si layer and gate insulator and direct tunneling

into the gate dielectric.

In this point of view, the electrostatic control of the gate electrodes can be enhanced by the
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increased number of gates. Intel has announced that the next generation CPU platform named
Ivy Bridge will be 22 nm manufacturing process instead of 32 nm process of Sandy Bridge.
Ivy Bridge will use tri-gate finFET to solve the problem of short channel effects. It will bring
lower power consumption and high clock speed due to the advantage of scaling down. Intel
expects that 22 nm process finFET will be 37 % faster than current 32 nm process and will
save the 50 % of active power.

Beyond the tri-gate finFET, Gate-All-Around (GAA) will be the optimized gate structure in
3D multi gate MOSFETs. GAA FET has gate electrodes wrapped around the channel region.
Extremely narrow nanowire channel body has pseudo-1D channel structure. The short
channel effect immunity of nanowire FET can be quantitatively analyzed by using natural
length A which can be derived from Poisson’s equation (Table 1.3) [39].

&tsi 1:ox
\ &

Single Gate A=
0oX
Eo:
Double Gate A= / St
280X
i / Esi
Triple Gate A= 3, t
oX
i 2t t .’
Gate-All-Around A= itsiz Inl 1+ S20x |4 Csi
8 &,y . 16

Table 1.3 : Natural length of devices depending on different gate structures [39].

The natural length is the length of the channel region controlled by the drain. It means that
the smaller A, the smaller short channel effect can be driven in given device structures. To be
free of short channel effects, A should be at least 5 times shorter than the effective gate length.
From the equation of A with single, double and triple gates, it can be simply guessed that
approximately the value of A can be estimated by division with the square root of gates
number. Because the smaller A can reduce the short channel effects, the device has good
immunity from increased gate number.

Moreover, from these equations, it should be notable that the reduction of t,x decreases short
channel effects as it was discussed in previous section. Decreasing tox has a limitation due to
the tunneling current leakages below 1.5 nm gate oxide thickness. Thus high-k gate dielectric
can effectively reduce A. The effect of tg thinning is also essential to decrease A and short
channel effects. A quantum confinement induced by ts reduction enhances the volume

17
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inversion effect and yield the increase of V. However, ultra-thin body raises the mobility
degradation even though the reduction of ts; can decrease short channel effects [40]. Thus, the
optimization of the device scaling in the GAA MOSFET is still necessary to improve device
performances.

1.5 Conclusion

In this chapter, recent trends and issues of semiconductor devices are investigated. Because
the information technology is dramatically improved, the requirements of device such as
smart phone and tablet PC have been exponentially increased. Coming up to these
requirements and the fabrication cost down, semiconductor industries have been researching
and developing device technologies.

Focused on the field effect transistors, a simple but the most critical issue is device scaling.
While device scaling down increases device performances and decreases fabrication cost, it
induces unintended short channel effects which affect performance degradation.

To overcome short channel effects, many technologies have been studied. High-k / metal
gate stack helps as an alternative to gate oxide thinning. SOI technology has been introduced
as substrate engineering. Even though SOI wafer is more expensive than conventional
substrates, it obviously decreases short channel effects. For channel engineering, multi gate
structure has been studied. Multi gate structure has better gate control.

As device dimension shrunk, recent device structures are converging toward the one
dimensional structures like FINFETs or nanowire FETs. Based on this introduction, several
topics will be discussed for the transport in quasi-1D nanostructure FETSs. In chapter 2, device
fabrication technology will be introduced based on my experience during study. In chapter 3,
characterization techniques will follow. Transport in quasi-1D nanostructure FET (main topic
of this thesis) will be discussed in chapter 4. In chapter 5, device simulation technique will be
mentioned. As appendices, physical parameters and material properties of Si and SiGe which
were used in my study are attached. Additionally, the development of e-beam lithography
pattern generator and basic vacuum technology is supplemented.
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Chapter 2
Nano-device Fabrication Technology

2.1 Introduction

As the size of the device is scaled down, fabrication process has been aggressively
researched and developed. The limitations of the device fabrication instruments have been
successfully overcome yet. Most of device fabrication is based on the CMOS fabrication
process. Selective patterning with lithography technology has been making various device
structures. Film deposition and etching technology build or carve the target materials for the
intended structure.

Currently the geometry of device has been changed. The channel geometry of FET has
become 3D structure compared to the previous planar device structures. The improvement of
micro (or nano)-electromechanical systems (MEMs or NEMs) also makes the micro-
nanostructure possible to be more complicated. Additionally the boundary line of the research
field is getting ambiguous. For example, in the bio-medical engineering, nanostructure
patterning is necessary to make bio sensors or chemical sensors. Thus the nano-scale device
fabrication technology is not limited to the electrical engineering nowadays.

In this chapter, two main schemes of fabrication technology, (top-down and bottom-up) will
be delineated. Principles of each fabrication process and the instruments which were used
during the study will be described.

23
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2.2 Top-down and Bottom-up

The concept of top-down and bottom-up approach was introduced by Foresight Institute in
1989.

It has been used to help people understand the differences between conventional
manufacturing (the mass-production of large non-atomically precise objects) and molecular
manufacturing (the mass production of large atomically precise objects). Currently
nanotechnology has been researched and developed in both top-down and bottom-up field.

Hm —

nm

Figure 2.1 : Comparison between top-down and bottom-up approach [1].

2.2.1 Bottom-up approach

In nanotechnology, the bottom-up approach is the method to build up the nano-scale
structure using molecular engineering such as self-organized growth and self-assembly.
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To grow up nanowire structure, Vapor-Liquid-Solid (VLS) growth is widely used [2, 3]. As
shown in Fig. 2.2, this method use metal nanoparticles or a metal pattern as a catalyst. From
the gas flow support materials (for example, Si) and it is dissolved into the metal catalyst
which is in the liquid phase at high temperature. Three phases exist in this process; vapor
phase of gas flow, liquid phase of the catalyst and solid states of the growing structure
(nanowire). The size of the synthesized structure depends on catalyst size.

In the case of thermal evaporation Oxide-Assisted Growth (OAG), no metal catalyst is
needed during the process [3, 4]. There is no metal contamination. Thus the final products of
OGA have good quality. The yield and the growth rate of the final products are high due to
the reduction of the pre- and post-treatment process.

Si Vapor Si0O Vapor

L L

< Au-Si o Si02

Au nanoparticle Si NW

Figure 2.2 : Difference between VLS and OAG.

The laser ablation method is also used to synthesize nanowire structure [5]. In a furnace
with high temperature, a heated target is ablated by a laser beam. The evaporated molecule is
transported by inert gas and deposited as nanowires. This method has high yield and high
purity.

In addition, there are other methods to synthesize nano-structure such as Molecular-Beam
Epitaxy (MBE), and solution-phased synthesis (sol-gel method) [6, 7].

The device fabrication using bottom-up approach faced hard tasks in the view point of
device integration for mass production. Highly integrated arrays with controlled orientation
and spatial position are necessary to introduce nanowire into the mass production [8].
Nowadays this problem is getting solved through continuous challenge of research. Since the
beginning of study, the electrophoresis has been used to align nanowire and nanotubes.
However, it could not be available in mass production but for single device fabrication at
academic level due to the difficulty of fine control for the moment [9]. Shear flow has also
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been used. Passing nanowire suspension through microfluidic channel, well ordered nanowire
array device fabrications have been shown [10]. Alignment can be controlled by flow rate and
the size of nanowire can be limited by the diameter of microfluidic channel. However, there
is no commercial device by using bottom-up approach yet. To be applied to the commercial
product, the problems originally from the randomness of bottom-up fabrication process have
to be solved.

2.2.2 Top-down approach

The top-down methods start from bulk structure while the bottom-up start from building up
atomic structure. Conventional CMOS fabrication technology is based on the top-down
approach. Previously the size of nanowires (or the width of fins) fabricated by top-down
approach was not really ‘nano’ scale because the diameter or width of nanowire depends on
the resolution of lithography. Alongside the improvement of the lithography technology,
nanowire device can be fabricated with several nanometer diameters [11, 12] and eventually
it can be called quasi-1D nanostructure. In academic research e-beam lithography has been
used to fabricate quasi-1D nanostructure but it is not suitable for mass production. To be
close to mass production, other advanced lithography technologies are aggressively
challenged. Not only lithography but also etching is very important for the fabrication of
quasi-1D nanostructure. For quasi-1D nanostructure, the uniform isotropic etching is
necessary. Especially, when dimension reach 10 nm range, surface roughness becomes
critical. Surface roughness affects device structure and quality. The carrier transport of quasi-
1D nanostructure device is directly affected by device structure. In this chapter, various
CMOS fabrication technologies will be covered. Advanced lithography technologies and
etching techniques will be introduced and the results of top-down fabricated quasi-1D
nanostructure will be shown.

2.2.2.1 Photolithography

In the I1C industry, photolithography is the most widely used technique to transfer the pattern
from mask onto the target. Photolithography is matured rapidly and continuously improved
associated with the challenges of I1C integration.
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Basically, photolithography needs a mask for the pattern transfer.  An optically flat glass or
quartz plate is used as a mask base. The metallic pattern covers the mask base to block the
transfer of light. Chrome is widely used for the metallic pattern layer. Laser beam or electron
beam lithography is used to define tiny patterns. For the smallest feature size, a phase shift
mask can be used to take advantage of the interference by the difference of phase. For

example, Intel has used the alternating

o \ phase shift mask for below 65 nm process
: [13-15].

masks have 4~5 times shrunken pattern than

/f___
b soaTEs
P = e

Currently, leading edge photo

the final chip pattern. This kind of mask has
been used with stepper (Fig. 2.3). In stepper,

<«— Filter
AR the wafer stage is rapidly stepped under the
[l— Condenser _ - N
L, lens optical column from position to position
until exposure is fully achieved [16].
Reticle Usual photolithography process is as
following: 1. Cleaning wafer; standard
; wafer cleaning named RCA clean is
—><—2 Reduction

\/ .\;f’:‘/‘_ lens necessary for wafer preparation before the
| resist coating. RCA clean includes organic
clean, oxide strip and ionic clean [17]. 2.
Photoresist coating; basically the photoresist
consists of a polymer, a sensitizer (photo

g active compound) and a solvent [18]. 3. Soft
Figure 2.3 : Stepper system for photolithography
[15].

baking; the soft baking removes solvent and

stress. 4. Exposure. 5. Development.
According to the desired process, post-baking can be added after exposure process. There are
two types of photoresist ‘positive’ and ‘negative’. Positive photoresist is the most common
photoresist. The exposed area will be developed and then filled with metal or etched.
Negative photoresist is widely used as etching mask. The exposed negative photoresist is not
soluble in the developer. Thus only unexposed layer will be removed. After all the other post-
exposure process including metallization or etching, photoresist is removed from the

substrate by resist remover (wet process) or oxygen plasma ashing (dry process).
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2.2.2.2 Electron Beam Lithography

Electron Beam (E-beam) Lithography offers higher patterning resolution than the photo
lithography. It is based on the wave nature of electrons. According to the de Broglie equation,

a=l (2.1)

P
where A is de Broglie wave length, h Plank’s constant and p the relative momentum of the

electron. From the Kkinetic energy of the electron, accelerated electron velocity in the electric
field is,

2E 2qU
V= S et e (2.2)
mO mO
b E = 1 2 EE E
ecause E, _Emov , eEE E
288 3
lons ' u': C;.‘ @
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where Ey is the Kkinetic E-beam Livh
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about 20 % of the light
speed. In the case of
TEM, 200 kV is normally used and the speed of electron is about 70 % of the light speed.

Figure 2.4 : Exposure source and wavelength [15].

From de Broglie equation, A can be described as:
h h h

=—= = . 2.3
p my 2m,qu 23)

A

However, the speed of accelerated electron is close to the light one. Thus, relative

expression should be used as following:

PR ! (2.4)
J2m, qu L qu
2m, ¢’
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c is the speed of light. In 10 kV SEM, A is about 12 pm even while the wavelength of X-ray
is 100 pm order.

E-beam lithography doesn’t need masks. Electron beam directly draws the pattern on the
sample surface. Thus it is helpful to produce various patterns without wasting the cost of
photo masks. However the direct drawing makes the process slower than photo lithography.
E-beam lithography is not suitable for mass

production yet because of its throughput. However, v Electron Gun
it is commonly used for the fabrication of advanced

nanostructure. D D
Column
E-beam lithography can be carried out from D D
following systems as shown in Fig. 2.5. -
Chamber

A) An electron gun makes electron. There are two Sample Stage

types (thermionic and field emission) of electron

source. In thermionic source, electrons are emitted
Vacuum System

by heating the source material such as W or LaBs.

LaBg source has higher brightness and longer life Figure 2.5 : E-beam lithography system
time than W while W source does not need high

vacuum condition like LaBs. In field emission source, a biased sharp tip emits electrons with
high electric field. Field emission type has better resolution and brightness than thermal type.
However, Field emission source need ultrahigh vacuum condition and extremely expensive
cost.

B) An electron column focuses the electron beam. It is designed to make the definite beam
diameter or beam shape. Focusing and defocusing lenses and apertures are equipped in the
electron column to control it. There is beam blanker to switch the beam on and off.

C) Sample stage control the spot position to draw the pattern properly. Because the
deflection system can only address a
field of hundreds of micron, it is
necessary to move the sample under
the beam. An interferometer measures

several nanometer accuracy can be

Raster Scan Vector Scan achieved.

Whole system should be under high
Figure 2.6 : Schematics of raster scan mode and vector

scan mode. vacuum to form the electron beam and
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strongly shielded by electromagnetic field and external vibrations to control definite beam
condition and position.

To draw the pattern, pattern files have to be prepared by Computer-aided Design (CAD) tool
or others. Normally Graphic Database System Il (GDSII) format is used to design patterns
but ACSII format can be available. In the case of ASCII, protocols could be different
depending on the instruments company. With pattern filed, electron beam or stage moves on
the proper position of design and beam blanker switch to draw it. There are two different
drawing schemes (raster scan and vector scan, shown in Fig. 2.6). In raster scan, every points
of the design addressed by sample stage and deflection system and beam blanker switch the
e-beam according to the structure. In vector scan, points which have structures are only
addressed so that exposure time is shorter than raster scan mode.

Time to expose is defined by following relationship.

T-1=D-A, (2.5)
where T is the exposure time, | the beam current, D the area dose and A the area exposed.
According to this relationship, D can be determinedas D=T7"-1/A.

Accelerated electrons lose their energy by scattering with the surface. When patterns are
close enough, scattered electrons are overlapped and proximity effects appeared. It depends
on the pattern size, pattern shape, resist thickness, acceleration voltage and exposure dose.
Proximity effects can be controlled by proximity correction programming.

2.2.2.3 Immersion Lithography

As it mentioned in previous part, the throughput of E-beam lithography is not suitable for
mass production. Immersion lithography is a promising photolithography alternative
resolution enhancement technology. Immersion lithography uses a liquid medium between
final lens and the wafer surface instead of air gap in usual photolithography. The refractive
index of liquid medium, bigger than 1, is used. For example, the refractive index of water
used in immersion lithography with 193 nm wavelength ultraviolet light is 1.44 at room
temperature.

The resolution of minimum feature size (R) and the depth of focus (DOF) in photo
lithography is according to the Rayleigh resolution limit (or called angular resolution limit)
[19, 20].

R =k, - =k, 2k, 20

= 2.6
NA Yhsing lsing (26)
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A A0 g AN @7)
sin“ @

DOF =k
2 1 NAZ
NA is the lens numerical aperture, n the refractive index, ki, ko, the process factor from

nsin’ @

engineering experiences.

Immersion
Exposure light

Previous
Exposure light

Air (n=1)

Water (n=1.44)

Wafer

Figure 2.7 : Difference between previous photo lithography and immersion lithography [21].

To enhance the resolution, the reduction of A or increase of NA is needed. In the DOF point
of view, increase of NA makes small DOF and the manufacture of huge microscope is
impractical [22]. Thus A has to be mainly decreased.

With air medium, the resolution of ArF light source lithography (193 nm) can be calculated
as:

R:kli:0.25£:52nm_
NA 0.93

It is not enough to arrive at 45 nm process which is popular nowadays. However, using the
liquid medium as shown in Fig. 2.7, effective wavelength can be reduced as:

(2.8)

R=kl%=o.25%=35nm_ (2.9)
Light Soruce Medium n An
ArF (Dry) Air 1 193 nm
F2 (Dry) N, 1 157 nm
ArF (Wet) H,O 1.44 134 nm
ArF (Wet) High-index Fluid 1.64 118 nm
F, (Wet) Perfluoropolyether 1.37 115 nm

Table 2.1 :

Effective wavelength a variety of lithography technology [23]
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The molecular fluorine (F,) excimer LASER lithography (157 nm) is also possible to
decrease effective wave length but there are lots of problems due to its expensive cost, light
absorption in lens and hard pellicle etc. Thus currently ArF immersion lithography has been
widely researched and developed.

! Lens contamination E Fluid containment

Precipitation, staining,
and defect formation

s . Environmental
Evaporative cooling contamination

Inhomogeneities
Air bubbles Particles

Impact on resist imaging/performance Topcoat, additive, or none?
- SR S R iy BN (surface properties, intermixing?)

Exposed area Unexposed area Photoresist

Figure 2.8 : Interactions between liquid medium and photoresist in immersion lithography [23].

However, there are several issues to optimize immersion lithography technology. The
interaction between photoresist and water is the most representative problem (Fig. 2.8). For
example, water can penetrate photoresist and the component of photoresist can be dissolved
into water [24]. The lens can be contaminated by liquid medium. After exposure, the
formation of air bubbles [25, 26], particles [27, 28], watermark defect by residue of the liquid
medium [29, 30], bridging [31, 32], resist swelling [30] and drying strain [33, 34] can also be
created.

The residual bubble can be reduced by additional super-hydrophobic top-coating layer. It
prevents direct contact between water and photoresist. For the transparency with ArF light
source, cyclic fluorine or acrylate material can be used. Moreover, top-coatless photo resist
has been developed to reduce cost and process time [35, 36]. There is no big difference in the
basic properties from the photoresist of ArF but it includes original functions of top-coating
layer.
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2.2.2.4 Wet Etching

An etching process is necessary to remove material from bare or pre-patterned substrate.
The etching process is roughly categorized as wet etching and dry etching. For the fabrication
of nanowire or the other micro/nano structures, selected regions on the surface of wafer are
masked using lithography techniques and uncovered area is removed.

Etching rate (ER) is expressed in nm/min or w/min and the etching rate of more than 50
nm/min is required for high fabrication throughput [37]. Etching process needs uniformity.
Poor etching uniformity enhances surface roughness of nanostructure. Uniformity of etching
process can be defined as :

_ FRnign = ERiow (2.10)
ER;ign + ER

low
where ERpign is the maximum etch rate and ERjoy the minimum etch rate. The geometry of
pattern can affect the uniformity of etching rate. Etching selectivity is also important. For
selective patterning, the etching mask has to endure during the etching process. It can be
described with the mask etching rate versus substrate etching rate.

Wet etching can be orientation-independent (isotropic) or orientation-dependent

(anisotropic) depending on etchant. The anisotropy of etching process is defined as following:

A=1-ER (2.11)
ER, 5000 :
_ ' _ @ (100), Rate = 214 nm/min
where ER_ is the lateral etching |2 LD R o mmemin
rate and ERy the vertical etching — 4000+ (100) p-typep = 5-10 em
. . . = L : =7
rate. In the case of ideal isotropic & i b i
3000 |
etch, A becomes zero and the 'SQ
L
value of ER, is same as ERy. For A
_ _ _ 20 2000 |
the isotropic etchant of Si, the b=
(=]
mixture of HF, HNO; and acetic i3
1000 | Etchant: 2.38% TMAH, -
acid (called HNA) is used. SiO, Temperature: 50 °C
and silicon nitride can be - —a

0 5 10 15

isotropically etched using HF and Etching time [ min ]

H3sPO4 r ively.
3PO4 respectively Figure 2.9 : Orientation-dependent etching using TMAH. [38]
Anisotropic etching is based on

orientation-dependent etching speed. For example, the etch rate of Si at {111} surface is

obviously slower than {110} and {100}. It is caused by crystal surface properties. The

differences in surface density of silicon bonds, bonding energy of silicon atoms and
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interstitial space on the interface between silicon and silica result in differences in etching
rates. From these reasons, the etch rate of Si on {110} surface is several hundred times higher
than {111} surface. KOH is one of the most widely used anisotropic etchant for Si. With
KOH, the etch rates of {110}:{100}:{111} are in the ratio of 600:400:1. However KOH is
corrosive. KOH causes damage to Al and the other metals. Moreover potassium ion is a
serious contamination source during the process. Inserted K ions result in device reliability
problem. Thus KOH is not used in IC clean room nowadays. Tetramethylammonium
hydroxide (TMAH) is another useful Si etchant for anisotropic etching (Fig. 2.9). It does not
have any alkali ion. Thus TMAH is suitable for the IC clean room process. Relative etching
rates can be reached up to several hundred [38]. For the fabrication of finFET, orientation-
dependent etching of (100) SOI wafer using TMAH is emulatively researched as an
alternative to dry etching technique.

Wet etching is good for the process of wide surface. Thus it is low cost process. However,
there are many problems in the wet etching. Etching rates are varied by shaking condition,
temperature and doping concentration. Many etchants are not adaptable for the CMOS
process due to the contamination problems. Undercut below etching mask cannot be perfectly
solvable which can be critical for the nanostructures.

2.2.2.5 Dry Etching
2.2.2.5.1 Plasma

Dry etching is assisted by plasma (it is also calls plasma assisted etching). The term plasma
was coined by American physicist Irving Langmuir. Simply the plasma can be considered as
a heavily ionized gas. Plasma is a nearly neutral mixture composed of excited neutral species
(radicals), ions and electrons [39]. The degree of ionization is the proportion of atoms which
lose or gain electrons, and it is related to the plasma density. Thus plasma has charges at local
scale but globally it is neutral.

To induce the plasma, molecules should be excited with a high energy. Using the high
energy, the link among atoms can be broken up and ions will be separated. For the general
usage, the increase of temperature or an electromagnetic excitation is used to induce plasma.
However, the electromagnetic excitation method is used for the dry etching technique. For the
excitation, strong RF power source (13.56 MHz) is used.
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2.2.2.5.2 Plasma Etching (PE)

Plasma etching is preceded by ionized gas mixture inside a chamber. RF excitation makes
the gases ionized in the chamber. A target wafer is located on the ground electrode in the low
pressure chamber which has the range from several mTorr to hundreds of mTorr. Induced
plasma by RF power directly contacts with the target wafer. The chemical reaction between
the plasma and the wafer etches the target wafer. The output products of PE can be highly
isotropic etched.

2.2.2.5.3 Reactive lon Etching (RIE)

Reactive ion etching is a

1
= [ Ground ] .
/ = \ variation of PE. In RIE, the
Blasma target wafer is located on the RF
+ 4 (Electron§ Loosed)
power source and the top
+ +

electrode is connected to the

+ + o
ground as shown in Fig. 2.10.
. Accg¢leration of lons .
lectric Flelj l I | Because the electrons are lighter

— electrons than positive ions, the target

\’—Hl“ieﬁf“ wafer connected to the RF signal

is more frequently contacted

es

with electrons. Thus the target

RF Power
wafer is negatively charged by
electrons. At the same time,
Figure 2.10 : Schematics of the RIE process. globally neutral plasma changed

to positively charged due to the loss of electrons. Polarization of the chamber inside induces
the electric field and it accelerates the positive ions toward the target wafer. RIE process is
basically combination of chemical and physical etching. The impact of accelerated ion strip
away the molecules on the target wafer. It has very low selectivity but is highly anisotropic.
In the case of PE, the movements of ions are Brownian random motion. In contrast, in RIE,
the direction of ions movements is aligned by induced electric field.

To get the highly anisotropic ratio, target material should have a high capacity to adsorb
electrons. Without the electric field due to the charging effect, RIE is similar to PE. Dielectric
materials have a poor capacity of electron adsorption comparing to the semiconductors and
metals. Thus, normally, dielectric materials are not well suitable for the highly anisotropic
etching in RIE.
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2.2.2.5.4 Inductively Coupled Plasma — RIE (ICP-RIE) and Bosch Process

Inductively coupled plasma — reactive ion
etching (ICP-RIE) is a variation of RIE. As
the wafer size is getting larger, the distance
between top electrode and the target wafer
should be longer to get the uniformly

Mask

etched output in the RIE system. In this
case, higher voltage should be used for the
RF source. ICP-RIE chamber is surrounded
by inductive coil. The RF coils induces an

alternating magnetic field. This alternating
magnetic field induces an electric field Figure 2.11 : Schematics of Bosch process.
which smashes the plasma with accelerated

electrons. It helps to generate high-density plasma. This is related to the major advantage of
ICP-RIE system. It is possible to control almost independently the plasma density and ion
energy while an etching process is executed. It is also possible to get more anisotropic
patterns, and faster etch rates depending on the parameters of the system. Thus, compared to
the RIE, ICP-RIE has several advantages, such as higher etch rate, enhanced vertical profile,
clean and low damaged surface [40].

The Bosch process is a patented process developed by Bosch Inc (Fig. 2.11). It is used for a
deep etching thus it is called deep RIE (DRIE). In the case of Si, it is difficult to etch
anisotropically. The etching with the fluorine based gases, such as CF, and SF¢ are basically
isotropic. However highly isotropic etching can be achieved using the Bosch process. During
etching, it creates a passivation layer on the etched surface. The output of the chemical
reaction is re-deposited on the etched surface and it protects the already etched surface during
etching. Passivation uses a fluorocarbon process, using gases such as C4Fg, C3Fg or CHF3.

The Bosch process is used to make deep trench and for MEMs fabrication.

2.2.2.5.4 lon Beam Etching and O, Plasma

lon beam etching (IBE) is pure physical etching. It is sometimes called ion beam milling.
Very high energy and neutral gas (normally Ar) are used to make the target wafer etched. IBE
is often used to etch metals and the other materials which have poor chemical reactivity.
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Because IBE is pure physical etching process, it can etch anything. However it can generate
heating problems, physical damages on the substrate. Thus, the selection and the condition of
pattern mask are very important.

The wafer stage of IBE is tilted to avoid the re-deposition of etched material. Because IBE
has not any chemical reaction, it is not volatile.

0O, plasma etching is widely used to remove carbon based materials. It is used to remove the
residue of the photoresist or the other carbon contamination. As the interest of carbon based
device increases, O, plasma etching is also used to make the nano-scale pattern of carbon
nanotube and graphene [41].

2.2.2.5.5 Application and Issue

As the dimension of the device reduced, the portion of dry etching in the fabrication process
is increased. For instance, the dimension of graphene is controlled using RIE and O, plasma
in academic research [42]. Graphene is 2D structure material but nanoribbon (1D) or
nanomesh (1.5D) structure can be fabricated. Dimension modified structure shows improved
gate dependency and mobility. FInFET is a good industrial example. To make 3D gate
structure, etching process is unavoidable. Especially the quality of etched surface is one of
the most important factors for the device performance [43]. Thus to achieve the optimized
device performance, clean and uniform surface condition should be defined by improved
etching process.

2.2.3 Conclusion: Convergence of Top-down and Bottom-up

Currently the top-down and bottom-up approach are converging. As mentioned in the
introduction of this chapter, this phenomenon is related with the convergence of research
fields. For example, bottom-up fabricated ZnO nanowire can be applied for the diagnosis of
rheumatoid arthritis [44]. In this case, medical science and material engineering are
converged. For the mass production and human interface, it should be combined with CMOS
process which is top-down. With ZnO nanowire, here is another example of complete top-
down/bottom-up converged device (Fig. 2.12). ZnO nanowire network is synthesized on the
bottom electrode (top-down) using a sol-gel process (bottom-up) [7]. This device has superior
performance as a hydrogen gas sensor due to the porous 3D nanowire network structure.
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Figure 2.12 : ZnO nanowire network sensor using top-down/bottom-up convergence [7].

As another example, recently graphene nanopore has been studying for the DNA sequencing
[45]. Previously, only top-down based SiN membrane was used for the similar concept.
However, the appearance of graphene monolayer leads the research of DNA sequencing to
the graphene nanopore devices. Because the thickness of graphene is same as one carbon
atom, single molecule level detection is possible when the DNA passes through nanopore.

As we can see in the given examples, the convergence of top-down and bottom-up is a
recent trend and a solution to overcome the limitation of each fabrication methods.

2.3 Conclusion

In this chapter, various fabrication techniques have been investigated. Bottom-up approach
possibly gives cheap solution for mass production because of its self-assembly process.
Atomic level feature size can be controlled by bottom-up approach. However, uniformity of
device fabrication may not be good because of the randomness of molecular behavior during
the process. On the other hand, respectively uniform device quality can be achieved using
top-down approach (CMOS compatible process). Most of recent device fabrications are
carried out based on lithography technique in top-down approach. However device scaling
down using top-down approach almost arrives at the fabrication limitation. To solve this
problem and to enhance device performances, convergence of top-down and bottom approach
is currently studied. Probably it can be a key of leading next generation fabrication
technology.
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3. Characterization and Parameter Extraction of FET

3.1 Introduction

3.2 Basic MOSFET Operation
3.2.1 Linear Regime (at Small Vp)
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o O

Chapter
Characterization and Analysis of FET

3.1 Introduction

As discussed in chapter 1, scaling down makes the future MOSFET more and more departed
from the conventional planar bulk FET such as SiO2 gate dielectric, poly-silicon gate. Many
approximated physical phenomena affect MOSFET operation due to the dramatic scaling
down. For example, decrease of channel dimension results in surface roughness effects which
degrade the effective mobility in the channel transport. Effective gate length becomes
important because its portion in the geometrical channel length is relatively increased. Series
resistance affects not only drain current but also threshold voltage. Thus, device
characterization techniques need to be detailed and improved.

In the development of advanced FET, feedback between device fabrication and
characterization is essential for the device optimization. Therefore, accurate parameter
extraction is very important in the advanced devices.

In this chapter, basic operation of MOSFET and detail of its characterization will be
investigated. Based on the measurement techniques, device parameter extraction will be
discussed.
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3.2 Basic MOSFET Operation

Here, the basic MOSFET model equation will be shown to support the device parameter
extraction later. Chapter 3.2.1 and 3.2.2 will remind us classic MOSFET operations based on
long channel device model.

3.2.1 Linear Regime (at Small Vp)

At small drain voltage (Vp < (Ve — Vu)), A

MOSFET operates in the linear regime. The drain Voz > Vor
current Ip in the linear regime can be expressed
as: o
Ip =ttt Cox MV ~VlVo, (@) egime
! Liner Regime
where W is the channel width, L the channel Cut-off  Vin,
length, pesr the effective mobility and Cox the Vs >

effective capacitance of gate oxide. In short and Figure 3.1 : FET operation schemes in transfer
(Io-Vg) characteristics.

narrow channel, the effective gate capacitance
includes quantum confinement effect (called dark-space) [1]. From Eq. 3.1, if pes IS constant,
the transconductance gn, can be calculated as:

_0lp W

= T,Ueff Cox VD- (3.2)

Om =
Ve V,=Const

At linear regime, MOSFET operates as a gate controlled resistance.

3.2.2 Saturation Regime (at high Vp)

After pinch-off (Vp > (Vs — Vi), the drain current of MOSFET is saturated as:

W

Ip :Zﬂsat Cox V6 —Vin) 2 and (3.3)

W

W
Om :T,Usat Cox Vo _Vth):\/zfﬂsat Cox Ip (3.4)
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where, ps is the carrier mobility in saturation regime. In ideal case, drain current does not
increase with increasing drain bias. As channel length scaled down, many parasitic factors
result in additional effects which make simple long channel current-voltage model invalid.

3.2.3 Transfer characteristics: Threshold Voltage and
Subthreshold Swing

Io-V curve called transfer characteristic is one of the most basic but important properties.
From transfer characteristics, many important FET parameters such as threshold voltage,
subthreshold swing, drain-induced barrier lowering and mobility can be calculated.

3.2.3.1 Threshold Voltage

Threshold voltage Vi, is an important FET parameter for the purpose of circuit design. It can

be used to extract the other parameters such as channel length / width and series resistance etc.

Various definitions exist for Vi, because transfer characteristic near Vi, is nonlinear due to
sub-threshold current. At high Vg, Ip-V curve also can deviate from a straight line because
of series resistance and mobility degradation effects.

Linear extrapolation is a common Vy, extraction method [2]. After finding the point of
maximum slope on the Ip-Vg curve from the maximum value of transconductance, linear
extrapolation to I5=0 is carried out from linear fitting to Ip-Vg curve at that point. This
method is sensitive to series resistance and mobility degradation because linearity of Ip-Vg
can be strongly affected [3, 4].

Vy, can be calculated in the saturation regime. Taking the square root of both sides, Eq. 3.3
can be changed as:

w
JVIp = Zﬂsat Cox Ve —Vin) - (3.5)

With a plot of Eg. 3.5 as a function of Vg, intercept of x-axis (Vg) is V. For short channel,
when Ip is limited by carrier velocity saturation, Vi, can be easily extrapolated from Eq. 1.11.
However, Vi, is usually extracted from the Ip-Vg curve in linear regime to minimize
additional effects induced by high lateral electric field (high Vp). As we discussed in chapter
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6
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Figure 3.2 Vy, determination by linear extrapolation method
(blue, V4#,=0.294 V) and transconductance derivative method
(green V=0.28 V). Data was measured at Vp=10 mV.

1.3.4, device performance can be
seriously degraded from hot carrier
effects.

Transconductance  derivative
method uses second derivative of
Io-V characteristic at low Vp. It is
from the ideal MOSFET model,
which Ip is 0 at Vg below Vy, and
Io is proportional at Vg above Vi,
(Eqg. 3.1). In this model, the first
derivative dlp / dVg is a step
function so that the second
derivative of Ip-Vg is delta
function which has infinite value at
Ve=Vw. Of course, in practical

case, the maximum of second derivative value is not infinite. However, it can be available

because it is less affected by series resistance and mobility degradation [2, 5].

Besides these methods, there are constant current method; if Ip is above setting certain

threshold current Iy, with Vg increase, Ve=Vi) and subthreshold drain current; using

linearity of subthreshold current in the semi-log plot of I5-Vg, etc.[2] .

3.2.3.2 Subthreshold Swing

The subthreshold swing (SS) is a feature of a current-voltage characteristic in FET. In ideal

MOSFET model, drain current is 0 below V. However, in real device, diode like drain

current behavior is observed in subthreshold region. Due to the exponential behavior of

subthreshold drain current, it has linearity in the semi-log plot of transfer characteristics.

From the reciprocal semi-log slope of subthreshold drain current, SS can be defined as:

__dVe =2,3( dVe j (V/decade). (3.6)

“dlogyg Ip dinip

From diode like behavior, subthreshold drain current can be expressed as:



3. Characterization and Parameter Extraction of FET | 49

Vo —V \/
IDsubv1h =1lg eXp(—q (nGKBTth)j(l_eXp[_ —qK;_ B (3.7)

lo depends on temperature, device dimension and doping concentration etc. n is related to the
ideality of capacitive coupling between the gate stack interfaces. When the interface trap
density exists n is:

Cii , Co.

n=1+ : (3.8)

0X C:OX

where Cj; is the surface state capacitance and Cq depletion layer capacitance [6]. In the case of
FD SOI wafer, Cq becomes 0 because depletion charge Qg is constant as a function of voltage
bias (C=dQ/dV). Using Eqg. 3.6 and Eq. 3.7, SS can be approximated as:

KgT

SS ~2.3——n. (3.9)
q
5:‘10-5 T T 1:#.!0-5
KgT/qg is thermal voltage known as ,
1x107°
0.02586 mV at room temperature. 4107°
1107
For a device to have good turn-on 2 310”5 110
characteristics, SS should be as small as o .
1075 1x107
possible; steeper slope has better gate 10
=10
control decreases SS. At room temperature, -~ B0
the minimum value of SS is 60 o
mV/decade. 0 1‘::‘50-1:
_ _ Ve (V)
The interface trap density Di; can be also Figure 3.3 : FIinFET subthreshold characteristic
optained as : (Wfin=250 nm and L=1 um).
C SS C 2
D =~ I 1| *d (cmZevY, (3.10)
g% \2.3KgT q°

For the calculation of Dj;, accurate value of Coy and Cy is required.
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3.2.4 Mobility

Carrier mobility represents how quickly carriers can move in the material. When an electric
field E is given across the material, carriers drift with random motion. Due to the randomness,
an average velocity named drift velocity v is used for the ensemble movement of a carrier in
certain condition. v is proportional to E below velocity saturation;

v=u-E, (3.11)

where p is the carrier mobility.

3.2.4.1 Carrier Scattering

During transport, carriers lose their energy and momentum as a result of various scattering
process. There are many scattering sources including lattice vibrations (phonon), impurity
ions, other carriers and surface roughness etc. [7].

Scattering Mechanisms

A 4 A 4
| Defect Scattering | I Carrier-Carrier Scattering I I Lattice Scattering
l Y v
Crystal -
Defects I Impi""ty | | Alloy | Intravalley Intervalley
v ¢ ) 4
(s [Acoustc | [optcar]  [Aeoustc] [opeear]
l’ \ 4 I l
Deformation Piezo- | Nonpolar | I Polar I
potential electric

Figure 3.4 : Scattering mechanism in typical semiconductors [7].

Various scattering mechanism can be classified as shown in Fig.3.4. To analyze the
mobility characteristics, the important scattering mechanisms need to be identified for the
particular device conditions. Defect scattering includes scattering limited by both ionized and
neutral impurities and by crystal defects. Carriers are scattered when they encounter the
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electric field induced by ionized impurity. Phonon scattering is induced by the deformation
potential in covalent semiconductors and by both the deformation potential and by polar
interactions in ionic semiconductors [8]. Carrier-carrier scattering occurs by both binary
collisions and interactions with the carrier plasma. Free carriers can also affect the other
scattering process by screening the perturbing potential [8]. For the high quality, intrinsic and
crystalline semiconductors, defect scattering and carrier-carrier scattering scarcely limit
carrier transport. In polar semiconductors, carrier transport can be affected by free carrier
plasma oscillations coupled by longitudinal optical phonons. As we will see in chapter 4.2.1,
intervalley scattering also limit effective carrier mobility. Si consists of several valleys. When
a carrier moves from a given valley to one on the opposite side of the same axis, it is called as
‘g-type’ process. Carrier transport to one of remaining valleys on the same side is also
possible, which is named as ‘f-type’ process. Both intervalley scatterings affect the energy
and momentum of carrier [8].

3.2.4.2 Mobility in MOSFET

According to Matthiessen’s rule, more than one source of scattering mechanism can be
merged as:

=4+ —+——+.., (3.12)

where p, pe and pz are mobilities limited by different scattering mechanisms such as phonon
or Coulomb etc. Similar to Eq. 3.12, relaxation time of scattering can be expressed as:

N S S (3.13)

T T, T, T3
T IS average of scattering time and ty, 12, T3 are scattering relaxation times from different
scattering mechanisms. In Eq. 3.12 and Eg. 3.13, the smallest scattering mechanism is
dominant in the total mobility behavior.

Because each mobility source has different temperature dependences, it can be separated by
low temperature measurement. Jeon et al. and Takagi et al. showed the temperature
dependence of each scattering mechanism using experimental mobility analysis [9, 10].
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At low temperature, the lattice scattering is
reduced by phonon freezing;

ppn = T"NGY7, (3.14)

where T is a temperature, Ns surface charge

Mobility

density and n and v fitting parameters. Fitting
parameter n and y depends on crystallographic

orientation of surface (nis 1~1.5and y is 3~6 in

Si) [9]. Due to the reduced scattering, mobility Effective Gate Field

limited by phonon scattering increases as

temperature goes down. Figure 3.5 : Schematic of Matthiessen’s rule
and effective gate field (or carrier density).

Coulomb (ionized impurity) scattering has completely different behavior comparing to
phonon scattering;

Hcoutomb < T Ng#, (3.15)

where y is empirical fitting parameter which has positive values and changes depending on
materials [9]. Lowering temperature makes the thermal motion of carriers slower. Because
slow movements of carrier are likely to be scattered strongly by the interaction with a charged
ion and carrier, impurity scattering decreases carrier mobility with decreasing temperature.

For the surface roughness scattering and non-ionized impurity scattering, there are no
temperature dependences. However in the case of surface roughness scattering, it has power
of -2 dependence as a function of effective gate field [11].

Using temperature dependent mobility analysis, dominant scattering mechanism in the
carrier transport can be evaluated. For the device performance optimization, this is very
important. As device scaled down, dopant fluctuation and surface roughness of the channel
structure are much more effective in the device performance. Thus exact diagnosis of
scattering mechanism should be carried out with certain devices.

When the given E in the channel exceeds a certain critical value, the mechanism of current
saturation changes from channel pinch-off to velocity saturation [1]. As we discussed in
chapter 1.3.2, the saturation current is proportional to v, instead of pes. In ultra-short channel
devices, this will be more complicated by absence of equilibrium transport. Therefore,
mobility is usually extracted in the linear regime with small Vp (normally Vp=10 mV or 50
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mV which is about tens ~ hundreds times smaller than maximum V).

There are several mobilities in use. However, in MOSFET modeling, three mobilities are
widely used for transport analysis.

Field effect mobility ps is derived from the transconductance;

_alD

m = ’ (316)
Ve V,=const
From the relationship of Eq. 3.2, s can be expressed as;
L
fpe =0 (3.16)

“WCyVp
Field effect mobility is easy to calculate but it is not valid below threshold voltages (ue—0).

Effective mobility pes uses drain conductance. From drift-diffusion current, I can be;
+ plogg W =B == (3.17)

where Q, is the mobile channel charge density. If Vp is low enough, the diffusion term of Eq.
3.17 goes 0 because the channel charge becomes more uniform from source to drain. Thus,
the first term of Eq. 3.17 remains and

s00] ' ' ' o] Hefr Can be estimated as;
2501
— L 94
< 200 ff "wQ,
£
S 150
- 100 ] and the drain conductance gq is defined
50 as,
‘ ' ‘ ‘ ‘ ‘ ol
00 02 04 szsf) 08 10 12 g4 = aVD (3.19)
D v, =const
Figure 3.6 : Comparison of different mobilities in
FinFET (L=1 um, Wgr=5 nm). For the calculation of per, Qn should be

defined properly. As a simple approximation, the relationship of Q= Cox(Vs—Vy) is available.

Even though the subthreshold channel charge exists, it is available in the strong inversion
region due to the term of (Ve—Vi). Especially, due to the non-linear drain current near Vy,
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e dramatically fall down around V=V, [2]. Gate capacitance measurement gives more
accurate information of Q,. Capacitance measurement for the effective mobility will be
discussed in chapter 3.3.4.

Because s has the consideration of gate effective field, normally it has higher value than
we. If pge is used in device modeling, the current and device switching speed will be
underestimated.

Low field mobility p, represents the intrinsic carrier mobility. It is upper limits of carrier
mobility in a given device structure. Because po should be considered in low field behavior
(relatively small V), it is mainly affected by Coulomb scattering and lattice scattering. The
calculation of po will be discussed in chapter 3.3.

3.2.4.3 Other mobilities

Apart from mobilities discussed in chapter 3.2.4.2, there are other important mobility
considerations.

Hall mobility is used for the characterization of intrinsic mobility, carrier density and
resistivity in certain material. When a magnetic field B is applied perpendicular to the
transport direction, the Lorentz force makes electric field and carrier movement shifted
according to Fleming’s right hand rule. As a result, there is a potential difference called Hall
voltage Vg across the sample. Hall mobility is defined as;

R
Uy = M, with (3.20)
o,
Vv
Ry =—H. 3.21
H="g (3.21)

Weakness of Hall mobility measurement is that the special sample structure is required [2].
Typical Hall effect measurement needs more than for contacts which called Hall bar. This
measurement requires long sample length but short sample width. Thus, conventional
MOSFET structure is not proper to Hall effect measurement.

Magnetoresistance mobility can escape from the limitation of complicate sample structure.
In the short and very wide sample geometry, Hall potential can be negligible. With a
cylindrical symmetry structure called Corbino geometry, Hall potential is so balanced that
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there is no Hall potential.

B®

Resistivity increases when

the sample locates in a
magnetic field. This is the
physical ~ Magnetoresistance
effect (PMR) with the
anisotropic conduction,
bipolar carrier conduction and

energy  dependent carrier
(b) Corbino geometry (¢) Short and wide geometry scattering [2]

Figure 3.7 : Device geometry configurations for Hall effect (a)

and transverse geometric magnetoresistance (b and c) [1]. Resistance Is also increased
by magnetic field due to the

deviation from the straight line of carrier transport path. This effect named as the geometrical

magnetoresistance (GMR) depends on the sample geometry.

Magnetoresistance mobility is estimated as following relationship [1]:

PEIZPO) _ 2 B2 (3.22)

P(0)

3.2.5 Low Frequency Noise

In device performance, noise is a kind of inevitable elements. On the view point of device
operation, noise has to be avoided factor. However, for the device qualification, it can be a
useful tool.

There are lots of noise origins. In this chapter, several low frequency noise characteristics
will be investigated.

Thermal noise is the most common noise. It is generated by the thermal motion of carriers.
Thermal noise is constantly spread throughout the frequency spectrum. Therefore it is called
as ‘white noise’. Thermal noise caused by Brownian motion of carriers depending on
temperature. Thus, even in the absence of a current, thermal noise exist in the device.
Thermal noise is given by:
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_4KgT

=), (3.23)

SV :4KBTR (OI’ S|

where R is the resistance.

Shot noise occurs when the current flowing across a potential barrier, such as P-N junction,
is discontinuous owing to the discrete nature of charge carriers. PSD of shot noise is:

Shot noise is smaller than thermal noise at room temperature. It is observed at low
temperature.

Generation-recombination (GR) noise is induced from trapping / detrapping of carriers
during transport. Randomly captured charge can locally fluctuate the carrier mobility,
diffusion coefficient, electric field, barrier height and depletion width etc. There are four GR
noise origins; 1) free electron — free hole recombination, 2) free electron — free hole
generation, 3) electron trapping / detrapping in trap site and 4) hole trapping detrapping in
trap site.

PSD of the carrier number fluctuation in GR noise follows as:

4<ANt2rap>T

Sy(f)=——w—"1—.
v 1+Qr7 f)?

(3.24)

where <ANtrap2> is the variance of the total number of the interface trap charges and T the

trapping time constant. The interface traps obeying the Poisson’s distribution of which the
variance is simply equal to the mean value of the total number of the interface trap charge.

Random telegraph signal (RTS) noise is a special case of GR noise. If the number of traps
is small, GR noise can be displayed as RTS noise. It has several quantized switching events in
time domain. RTS noise is sensitive to bottlenecks of carrier transport (poor contact) and
interface states [12].

1/f noise is the common name for the noise described as:

K17
S, = o (3.24)

where K is a constant and 3 / y the current / frequency exponents. 1/f noise is observed in the
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low frequency region (less than 10° Hz). 1/f noise is mainly interpreted by the carrier number
fluctuation (CNF) model and Hooge mobility fluctuation (HMF) model.

Drain cur[ipnt [nA] $/12 [Hz1]
DI b) . os
= COrN=(T=+T) 2TTT:T
235 . Hi 1045 COM=(Te+ T 2T TeTe
"
230 10-5
106
225
107
220 J' 10-8
—bl--ﬂT—Ei N L . ! Luw -ID-.Q prveind ooy ||||\uﬂ 1:‘Illtﬂ‘-i- Ld
-0.3 0.2 -01 0.0 0.1 0.2 100 10" 102 103 10% 105
Time [ms] Freq. [Hz]

Figure 3.8 : a) Typical two-level RTS signal in a high-k MOSFET. b) Schematic noise power density
spectra: two-level RTS signal described by a Lorentzian function (dashed line) with its corner
frequency, f.om, determined by the average capture and emission times of the trap; superimposition of
multiple Lorentzians in a large area device form a 1/f spectrum (solid line). t. and t. stands for the
emission and capture time in the trapping event [12].

CNF model is caused by trapping / detrapping of carrier near the gate oxide / semiconductor
channel interface. Due to the carrier number fluctuation by trapping / detrapping, the flat
band voltage and current are locally modulated [13]. CNF model can be combined with the
correlated mobility fluctuation model (CMF). CNF+CMF model can be described with the
normalized drain current noise;

S | g 2
- = [1 + flef Cox —DJ 'SVfb{—m] , (3.25)
I D gm I D

where a is the Coulomb scattering parameter (Vs/C) and Sy, the flat band voltage PSD. Sy,
is related with the charge fluctuation near interface, which is given as:

Sygp= 1B~ (3.26)

where A is the oxide tunneling distance, N; the volume trap density. CNF model is sensitive to
the quality of gate oxide / semiconductor channel interface.

HMF model is originated from the carrier mobility fluctuation induced by phonon scattering.
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It is described as [13]:

S|D _ an zi (326)
12 WLQf Ip’

with ay is the phenomenological parameter named as Hooge parameter, Q; the inversion
charge density per unit area. Typically, oy has the range of 10°~10° [13].

3.3 Characterization and Parameter Extraction Technique

In chapter 3.3 various parameter extraction techniques will be investigated. Due to the
device scaling down, subtle difference between geometrical parameters and physical
parameters cannot be negligible. For example, effective channel length and width is different
not only from mask design, but also from the physical geometry due to the short channel
effect. Mobility attenuation factors can be varied because of surface roughness and impurity
fluctuation in small dimension. Thus, proper parameter extraction technique is necessary for
the research of advanced device structure.

3.3.1 Series Resistance

In linear regime, FET operates as a gate controlled resistor. The resistance of FET consists
of source resistance Rs, channel resistance Ry, and drain resistance Rp. As shown in Fig. 3.9,
Rs and Rp restrict Ip. Total series resistance Rsp can be representative as a superposition of
Rs and Rp. Rgp is originated from the source and drain contact resistance, the sheet resistance
of source and drain and the spreading resistance at the transition from the source diffusion to
channel etc. [2]. As device dimension reduced like FINFET and nanowire FET, bottleneck of
carrier transport between low dimensional channel and source (or drain) also induce
resistance. With the consideration of Rsp, total drain conductance gq can be written as:



3. Characterization and Parameter Extraction of FET | 59

1 g
Gate 9y = = do (3.27)
d G
Source Drain Rsp +(1/9a0) 1+ RspPao

where gq is the channel conductance.
Combining Eq. 3.17 with low field mobility

A Lo, Jdo Can be calculated as:
Ve>Vin
Vi3 Jao = —”OV{QH , (3.28)
-

Finally, we can achieve Ip considering Rsp
as:

Ve —Vin
"1+0(Vg —Vip)

Ip =

Vo,  (3.29)

K = = = o -

A 4

where the mobility attenuation factor 6 is 0
=00tGmRsp and G, the low field
transconductance parameter;

Figure 3.9 : Schematic of series resistance (above)

and Hamer’s fitting method for parameter extraction.

G
m L

(3.30)

For Eq.3.29, Q. is approximated as Cox(Ve — V). Because there are three unknown
variables (Gm, 6 and Vy,), solving three equations (Eg. 3.29) at three different Vs can give the
values of unknown parameters as shown in Fig. 3.9. From the linearity of 6, the total series
resistance Rgsp can be extracted [14].

3.3.2 Effective Channel Geometry

As discussed before, the effective channel length becomes more different from the mask
defined gate length and physical (geometrical) gate length of device in short channel device.
It is from the source and drain junction encroachment under the gate [15]. In highly doped
source and drain with steep gradient of doping concentration, the effective channel length is
almost same as the physical length. However in lightly doped drain (LDD), the effective
channel length is larger than the space between source and drain [2]. Moreover, the effective
channel length can be more expended by high gate bias [9, 16]. For the proper device
modeling, the effective channel length should be defined. The effective channel length can be
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the
resistance and transconductance etc. as a

extracted  from capacitance,

function of the mask defined gate length.

Linear intercept of x-axis (gate length)
represent the difference between mask
defined gate length and the effective
channel length. As an example, Fig. 3.10
shows the effective channel length

extraction with total resistance [16].

For the characterization of ultra-short
channel device, the effective channel
length should be estimated to the exact
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Figure 3.10 : Effective channel length extraction using
the derivation of total resistance as a function of gate bias
in linear regime [16]. For different V¢ ranging from 0.1 to

device modeling. 1.5V in steps of 0.1 V. Vp =50 mV.

3.3.3 Y-function Method

Y-function method is a MOSFET parameter extraction technique [17]. Relying on drain
current and transconductance transfer characteristics, Vi, o and 6 can be extracted.

As we discussed in chapter 3.3.1, series resistance affects device transfer characteristics
which makes parameter extraction difficult. Principle of Y-function method is the elimination
of series resistance in transfer characteristic model. From Eqg. 3.29 and Eg. 3.30,
transconductance gm of MOSFET is:

WC /uo
L ™ (1+0Wg —Vip)P

Om = Vp. (3.31)

Eqg. 3.29 and Eq.3.30 has mobility attenuation factor 6. Dividing Ip by square root of gm
eliminates 0;

w

I 1/2
fD = [— Cox:uOVDj (VG ~Vin )
Om

: (3.32)

According to the linearity of Eq. 3.32, the intercept of x-axis is V. From the slope of Eq.
3.32, yp can be obtained. Using the transconductance parameter G, Rsp and Less also can be
estimated.
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Figure 3.11 : Schematics of parameter extraction. o, 6o, Rsp, Less Can be extracted using linearity of 6 -
Gmand 1/Gy, - L plot.

If the device has very low dimensional channel, additional effect such as surface roughness
scattering break the linearity of Y-function due to the second order mobility attenuation factor
02 [5, 11, 18]. In this case, the model of effective mobility pes is changed from:

0.004 T T T T T T T T T T T T
Y:ID/ng'S
> ] g,’"s —— Y-function /
= - —— Modified Y-function
Vi 01, 05, Extraction %0-003' // 1
I = /
S 0.002 wrd
Ye—Yy/T= 0,V Ve S ooz Y
No @ S e
T 0.001- v .
> Vi -
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Mo, Rsp, Extraction 0000 — 2" . . .
00 02 04 06 08 10 1.2
VG

Figure 3.12 : Flow chart of modified Y-function (left) and application to the experimental data (right).
Bent Y-function curve become linear after modification.

Ho
= to 3.33
Heft 1+ G(VG _Vth) ( )

Ho
Heff = ) (3.34)
1+6, (VG —Vin ) +0, (VG —Vin )2

where 6; and 6, are 1% and 2" order mobility attenuation factor. 6; describes impurity
scattering and lattice scattering and 0, describes surface roughness scattering phenomena.
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As shown method in Fig. 3.12, non-linear Y-function can be modified using iteration
technique [19]. After making Y-function linear, effective values of Vi, Rsp, n0, 61 and 0, can
be extracted by the methods explained previously.

3.3.4 Split C-V

The capacitance-voltage (C-V) characteristic is one of the important electrical properties. It
includes the information of charge in the device. C-V characteristics can be measured using
quasi-static C-V or split C-V technique. The difference between two methods is in the applied
test frequency.

In quasi-static C-V measurement, test frequency is very low and can be regarded as quasi
DC signal. In the case of device which has slow charge response, quasi-static C-V method is
useful to characterize its low mobility charge behavior.
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(a) Vg <Vp, (b) Vi, < Vg <Vy (¢) Vi < Vg

Figure 3.13 : Equivalent circuit for Ccc measurement in (a) accumulation, (b) depletion, (c) inversion
regime [1].

The split C-V measurement has been developed to study interface states in weal inversion
and mobility extraction. It measure capacitance between the gate and source-drain Cgc and
the capacitance between the gate and the substrate Cgg.

Coc can be estimated by measuring AC current on the source and drain. AC input voltage is
applied on the gate electrode as shown in Fig 3.13. The inversion charge is obtained by
integration of Cgc as a function of V.
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As we discussed in 3.2.4.2 and 3.3.2, effective mobility and effective channel length can be
extracted using Cgc. For Eq. 3.18, Q, is

V,

¢ CecV)
Qn(\/e)—vj W v (3.35)

where Vacc IS a gate bias at accumulation region.

In highly scaled devices, the split C-V method has problem induced by parasitic capacitance.
For the exact measurement of Cgc, effective gate length should be estimated before. Then,
under the assumption that Cgc is independent of effective channel length, intrinsic
capacitance per unit of gate length can be obtained [1]. The difference of gate length should
be enough but not too much because too much gate length difference can induce Vi,
mismatch. From this, parasitic capacitance can be eliminated.

3.4 Conclusion

As modern device structures are extremely scaled down, device characterization and exact
parameter extraction become more and more important.

Various device characterization and parameter extraction methods have been investigated in
this chapter. Based on the basic MOSFET characterization, the principles of threshold voltage,
subthreshold swing and carrier mobility estimation have been introduced. For the low
dimensional device structures, the series resistance, the mobility attenuation and the gate-
channel capacitance characterization have also been studied.

In next chapter, the transport characterization in quasi-1D nanostructure FET is following.
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A4

Chapter
Transport of Quasi-1D nanostructure FET

4.1 FInFET — Surface Roughness Scattering

4.1.1 FINFET overview

In order to overcome the short channel effects induced by scaling down, the first
improvement consists in reducing body thickness, using fully depleted SOI devices. Multiple
gate operation still enhances gate control and allows loosening the constraints on oxide and
body thicknesses [1, 2]. To this end, FINFET architecture has been proposed in this respect.
The term of FInFET was used to describe a non-planar double gate FET based on the earlier
fully depleted lean-channel transistor (DELTA) [5]. Depending on the authors, it can be
called tri-gate or omega-gate etc. but in this paper all of fin-based transistor will be defined as
FinFET. The FinFET has the advantages of featuring no buried electrode and of offering
excellent robustness to short channel effects [6]. Fin width plays the same role as body
thickness, and steep

Drain (©)

HnnI

Bulk FinFET SOl FinFET

subthreshold slope, low

Gate
Source

body coefficient and high

Si-fin

switching speed can be

BOX —»

obtained, making this

-
Win

architecture very attractive
. (b)
for future technological

SOl FinFET

nodes. However, the
limitations of some specific
fabrication modules such as

fin patterning, gate stack or

junction conformality are )
Figure 4.1.1 : SOI FinFET and bulk FinFET. Bird’s eye view (a) SOI

still an issue for technolo
9y and (b) bulk FinFET. (c) Cross-sections [3, 4]

optimization [7-10].

Currently FIinFET has two trends which are ‘Bulk FInFET’ and ‘SOl FinFET’. Bulk FInFET
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use two schemes for the electrical isolation of each device, which are junction isolation and
material isolation.

The junction isolated bulk FINFET uses a high dose junction implantation at the base of the
fin. The junction barrier electrically isolates devices. In the case of material isolation, the
grown oxide from the oxide trench isolation across the bottom of the fin similar to the local
oxidation of silicon (LOCOS) process. Comparing to the SOl FinFET, the main advantage of
bulk FInFET is that the bulk CMOS technology is available and the wafer cost is cheaper
than SOI wafer. However the fabrication process of material isolated bulk FInFET has more

complexity.
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Figure 4.1.2 : Comparisons of leakage (left) and delay (right) [11].

The SOI FIinFET is fabricated on the device layer of SOl wafer directly. Due to the BOX
layer, it does not need to make additional isolation which means that the fabrication process
is less complex than the bulk FInFET. The SOI FinFET has better performances comparing to
the bulk FinFET. Gate leakage is smaller. AC performance is higher (smaller parasitic
capacitance and smaller delay). However, these differences are just several percentages of
themselves. For example, the parasitic capacitance of SOI is below 5~6 % less than the bulk
[11]. As seen in Fig. 4.1.2, the height of fin affects the performance of FinFET. Thus the
geometry optimization is necessary.

The cost of SOl wafer is approximately 4 times higher than bulk [12]. However the bulk
FinFET needs 6~8 additional process step. Front-end-of-line (FEOL) process requires 140%

higher cost in bulk FinFET [12]. Still the debate of wafer cost/process complexity is on-going.

In the case of bulk FinFET, positioning of the junction. Because of the absence of BOX layer,
source and drain junctions are deeper than the height of fin. It causes the degradation of short

71
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channel effect control and the bulk punch-through
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Figure 4.1.3 : Bottom gate FinFET fabricated by E-beam lithography. Fabrication process (top) and
SEM images of each process (bottom).

Thus, halo implantation and channel doping is necessary [4]. However it increases the
process complexity and the random doping fluctuation
which reduce the benefit of the FinFET structure. For
the mass production, the immersion lithography or the
other advanced patterning technology such as spacer
technology [13]. However, e-beam lithography is
widely used in the academic research due to the
fabrication cost. During this Ph.D. Study, most of
FiNFET experiments were carried out with the devices
from the IMEC which are fabricated by immersion
lithography. But some of FInFET were fabricated using
e-beam lithography in Korean Research Institute of
Standard and Science (KRISS). Fig 4.1.3 and 4.1.5
show the SEM images and DC characteristics of

FInFET fabricated in KRISS. Using (100) p-type SOI [t i S

wafer, simple e-beam lithography was carried out to Figure 4.1.4 : Failed pattern due to
make Cr metal mask. Using field emission scanning the wrong e-beam lithography and
electron microscopy (FEI Sirion 400 FESEM) and Raith étching conditions.
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Elphy quantum software, 35 nm width line patterns were drawn on the spin coated PMMA
C2 e-beam resist (ER). Thickness of ER was about 100nm and only line dose was used at
30KV. After e-beam lithography, 1:3 methylisobutylketone (MIBK) to isopropylalcohol (IPA)
solution was used for the developer. 20 nm of Cr was deposited on the pattern using e-beam
evaporator and lifted off in the PG remover. ICP-RIE was used to etch Si device layer of the
SOl wafer. CF4 100 sccm, Ar 50 sccm, 40 mTorr pressure, 500/50W ICP/Bais power and
120s etching time were used. Fin patterning is very sensitive with the fabrication conditions
of e-beam lithography and ICP-RIE. Even with same conditions, if different instruments are
used, the feature of fin pattern is completely changed. Thus well-defined fabrication
condition is required.

After etching, Cr mask was etched by CR7-SK chrome etchant. Finally, photolithography
process was carried out to make source, drain contact with Al. Due to the contact between Si
channel and metal, fabricated device does not work properly. Thus rapid thermal annealing
(RTA) process should be done during 5 minutes at 350 “C. Because it used only back gate
with 200 nm BOX, the DC characteristics are not good enough to use the CMQOS circuits.
However, it can be good to apply for the sensor application in academic research.

The electrical or morphological interface quality of a FInFET related to the fin pattern and
gate stack is one of the most important factors to optimize the device performance. For the
sake of illustration, the numerical simulation

of tri-gate fin architecture, similar to the ?il
experimental one is helpful as shown in Fig. 6
4.1.6. The concentration profiles across the f: 3:
fin, taken at half fin height, have been drawn - gi
as a function of gate bias for a 20 nm wide n- (1_}: )
type FinFET (Fig. 4.1.6 (c)). As can be seen,
most of the electrons concentrate near the Vol¥)
surface of the fin structure. In the other words, 0.8+ 15
the fin surface quality is a critical feature to __ o6 0
enhance the mobility and, in turn, the current 3{: 04, ’10%
of FinFET device. However, in order to PR
obtain a tight control of their geometry, the 0-21
fins are normally patterned using RIE 0.0+ L —
techniques, which are liable to induce some o0 :3/ (\})0 o 20

G

damages and increase surface roughness (SR)  Figure 4.1.5 : DC characteristics of bottom gate
FIinFET fabricated by e-beam lithography.
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at the sidewalls while the top surface is protected by the masking layer. Therefore, there is a
risk that surface roughness scattering, which generally appears at high electron concentration,
can limit the mobility and even decrease the drive current [14, 15]. Experimental techniques
that allow quantification of the influence of SR in the fabricated device are therefore very
important for technology optimization. Techniques that physically characterize interface
roughness, using TEM or AFM, are destructive and cannot be used extensively for such a
goal [16, 17]. Moreover, since the expected impact of roughness on device performance
results from a degradation of transport properties, direct extraction from a mobility analysis
brings more direct information for technology optimization.

(a) \ (C) W. (nm) In this chapter, the detail of

-10 (f)"‘ an experimental method that
. BTl =4I o 71"0

provides a quantitative
evaluation of surface

roughness contribution will be
shown. It is based on the

(b) ¥
= detailed analysis of the static
7 characteristics dependence
fin S with temperature and fin width.
3 i
BOX Assuming that the only other

i . . . scattering mechanism to be
Figure 4.1.6 : (a) TEM cross-section of a 10 nm wide fin

corresponding to the tri-gate FinFET technology characterized in
this paper. Scale bar is 10 nm. (b) Cross-section of the tri-gate scattering, which can be
FinFET structure simulated for illustration. (c) Electron
concentration, in linear scale, along a cross-section taken at half
fin height for 20 nm fin width. The different curves correspond to
increasing gate voltage. Most of the inversion charge lies very SR mobility is sometimes
close to the interfaces.

considered is phonon

considered as frozen at
sufficiently low temperature,

extracted as the low
temperature mobility (30 K) [18]. Our method is rather exploiting a range of temperature
(from 77 K to 350 K here) in order to identify the contributions of all the dominant scattering
mechanisms. This technique has recently been demonstrated to allow quantitative extraction
of SR mobility, with good correlation to the results of AFM studies, in NMOS transistors [19].

This technique is coupled with a decorrelation of sidewalls and top surface channels, based
on the linear width dependence of drain current, and as function of temperature. This linear
dependence has been shown to allow independent extraction of the sidewall and top interface
mobility in tri-gate FInFETs at room temperature, using effective mobility extraction from I-
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V curves associated to each type of channel [19, 20]. A similar dependence has been noticed
for the gate to channel capacitance which is used for the alternative split C-V extraction of
the mobility [21]. However, based on this, it could be concluded that the top surface
contributed to less than 4% in their 10 nm fins and that it was therefore possible to use their
narrower fins as good representative to extract sidewalls transport parameters. It was not used
to decorrelate the two interfaces and no information was given about the transport properties
for the top channel. In addition, the narrowest fins may be subject to coupling effects between
the two facing sidewalls and may therefore not give a perfect image of sidewall conduction in
wider fins. Particularly, the electrical or morphological interface quality related to the fin

pattern and gate stack is one of the most important factors to optimize the device performance.

4.1.2 Experimental Conditions:
Device Fabrication and Measurement

The FinFETSs used in this study were fabricated on standard SOI wafers with 145 nm buried
oxide thickness at IMEC (Leuven). The fabrication process has been described in [22]. It
includes no intentional strain boosters. An undoped channel, with background boron doping
of 10" cm™, was used to avoid impurity scattering and to reach higher mobility. As a gate
insulator, HfSiO was deposited by metal-organic chemical vapor deposition (MOCVD) with
an equivalent gate oxide thickness of 1.7 nm.
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Figure 4.1.7 : Cross-section images of SOI FinFET. Devices are supported by IMEC.
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For the gate metallization, TiN layer was deposited by physical vapor deposition (PVD). It
was capped with a 100 nm polysilicon layer. The distance between the gate and the
source/drain pads, heavily doped to about 2 x 10?° cm™, was 0.2 pm. The spacer width was
about 50 nm with a doping concentration of 5 x 10" cm™. The fin height Hs, was kept
constant at 65 nm and the fin width Wy, was varied from 10 to 1000 nm. Fig. 4.1.7 shows the
TEM cross-section of a FInFET with multi-fins. The devices show a tri-gate architecture with
a very conformal gate stack. In this experiment, fixed and rather long gate length (L=1 um)
was used to avoid any short channel effect. For this gate length, series resistance can be
neglected.

The static Ip-Vg characteristics were measured using an HP 4155A semiconductor
parameter analyzer. All FInNFET devices were measured in the linear operation regime with
Vp=10mV to avoid self-heating effect. Low temperature measurements were carried out at
wafer level with SussMicroTec LT probe station in the temperature range from 77K to 350K.
Measurements were repeated on devices from different chips (=3-4) on the same wafer and

show very little dispersion.

4.1.3 Threshold Voltage

The threshold voltage Vi, has been extracted from the modified Y-function method. In Fig.
4.1.8 (a), Y-function modification is shown. The intrinsic Y-function (Y=Ip/g.’°) of
measurement data have nonlinear behavior because the devices have the strong effect of the
mobility degradation parameters. Using the iterative modification of Ypew=Y-(1-02(Vs-
Vi), Ynew has the linearity and adapted to extract the parameters. Fig. 4.1.8 (b) shows the
temperature dependence measured for n-type and p-type devices. The curves feature only
weak dependence with fin width. As expected, the absolute value of Vg decreases when
temperature increases. The slope of V,(T) can be used to extract the doping concentration in
the channel. Indeed, the threshold voltage is the linear combination of the flat band voltage,
Fermi surface potential and the potential derived from the depletion charge.

The Fermi surface potential 4, has the most significant temperature dependence. Indeed, d

¢, 1dT is strongly negative because dni/dT exponentially increases as a function of T as
follows [23, 24]:
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Figure 4.1.8 : (a) Modified Y-function technique. Nonlinearity of intrinsic Y-function (black square) is

modified using iteration (red circle). (b) Vy, as a function of temperature for Wy, values ranging from
65 to 500 nm. The absolute value of Vy, increases at low temperature.

dgy _ Kk [m [ﬂ]_zl@], (4.1.1)

dT ¢ n, n, oT
with
n, o T exp & (4.1.2)
! 2kgT )’ o

where kg is the Boltzmann constant, g the elementary charge, N the doping concentration, n;
the intrinsic carrier density, and T the temperature. Thus, Vi, decreases when temperature
increases. The measured dV/dT is equal to 0.52mV/K in both p-type and n-type. From this
value, the residual channel doping concentration is estimated around 10*"cm™.

4.1.4 Surface Current Separation Technique

Fig. 4.1.9 shows typical Ip-Vg characteristics for n- and p-channel devices measured at
room and liquid nitrogen temperatures, with various fin width values. As usual, the drain
current Ip is larger at low temperature because of the increase in mobility due to phonon
freezing.

Here it should be noted that the slope of the Ip-Vg curves (the transconductance) in high
inversion was found much smaller at 77K than at room temperature (Fig. 4.1.9 (c), (d)). In
NMOS transistors, the drain current even decreases at high gate voltage (above 1.3V).
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Figure 4.1.9 : FinFET Ip-V characteristics with various W, values; (2) NMOS at 300K, (b) PMOS at
300K, (c) NMOS at 77K and (d) PMOS at 77K. As expected, threshold voltages increase at low
temperature compared to room temperature. At low temperature, the drain currents are visibly
degraded at high gate bias voltage in NMOS FinFETs while the degradation is not as severe in PMOS
FinFETs.

This decrease in Ip, which induces a negative transconductance, could stem from surface
roughness scattering or from lattice self-heating [15, 25, 26]. However, self-heating can be
ruled out here, due to the very low Vp value used during measurements (Vp = 10m V). Thus,
the surface roughness scattering is mainly responsible for the drain current decrease at high
gate drive bias. It is the purpose of this paper to understand whether all the interfaces
contribute equally or not, and which is then the roughest interface. The first step is to separate
the top and sidewall channels.
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Figure 4.1.10 : Ip-Wy, for the top/sidewall current separation with NMOS (left) and PMOS (right)
FinFET at 300K. From the linearity, the sidewall current is extracted at W,= 0.

The inversion channel of the FInFET was formed along the surface of the fin, except at the

bottom surface because it faces the BOX and the back substrate, which was grounded in this

experiment. Thus the current mainly flowed along the top and sidewall surfaces.

Transport characteristics along top surface and sidewalls can be split by linear extrapolation

of the current versus fin width, using a simple mathematical technique [18, 20]. At fixed gate

bias, the drain current varied indeed linearly with fin width, as can be seen from Fig. 4.1.10.

From the linear extrapolation at Ws,=0, the y-axis intercept provides the current Ipsige that

flows along the sidewalls, with an equivalent gate width equal to 2-Hs,. The top surface

current Ipwp Can be deduced by:
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Figure 4.1.11 : Separated (a) sidewall and (b) top surface current in NMOS FIinFET at 300K.
Decreasing temperature increases the current degradation of sidewall at high gate bias ((a) inset).
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This splitting technique was used for every temperature and every gate voltage. It should be
noticed here that it is important to use a fixed gate voltage in order to account for potential
differences in the threshold voltage associated to each interface. A small deviation from
linearity can be observed only for n-type FinFETS, with fin widths narrower than 130 nm,
and gate voltage larger than 0.9 V. This may be due to some coupling effects between the two
facing sidewalls in the narrowest fins. However, thanks to the wide range of Ws, values used
for the extrapolation, this deviation plays a negligible role and the sidewall current that is
extracted using this method is free from any coupling effect. It does not represent the real
current that flows in an extremely narrow fin, but rather the current that flows along the
sidewalls of larger fins, which is exactly the information that we want to obtain. This is an
advantage of the extrapolation method compared to methods which use the narrow fin
devices as representative of the sidewall current in larger fins, as assumed for instance in [21].
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Figure 4.1.12 : Sidewall current of PMOS with temperature variation. Compared to the top surface
current (b), the sidewall current (a) does not decrease at high gate bias.

Fig. 4.1.11 shows the result of this splitting for the n-type FinFETSs: the sidewall current,
which is the extrapolated current at zero fin width, is the same for all the n-type devices (Fig.
4.1.11 (a)), while the top channel current, is proportional to fin width (Fig. 4.1.11 (b)).

It should be noted that the sidewall current decreases at high gate bias even at 300K. In
contrast, the top surface current does not decrease at 300K. According to previous discussion,
this suggests that surface roughness scattering is affecting carrier transport on the sidewalls
more strongly than on the top. The effect was even stronger at low temperature, with a strong
decrease of sidewall current at high field in NMOS FinFETs (inset in Fig. 4.1.11 (a)), while
no such degradation was observed, neither for top surface conduction in NMOS FinFETs (not
shown here) or for sidewall and top surface conduction in PMOS FinFETs (Fig. 4.1.12).
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4.1.5 Temperature Dependence of FInFET Effective Mobility

A temperature dependent measurement was used to further analyze the role of surface
roughness at the two interfaces. For mobility extraction, several techniques are available [27].
The split C-V technique was not applicable here, due to very small device area. Therefore,
effective mobility s Was extracted for each interface using the following equation:

L
= |
w Cox (VG _Vth)VD °

:ueff (4 14)

where L is the channel length, W the channel width, Co the gate oxide capacitance per unit
area and Ip the current. W and | were set to Wri, and Ipyp for the effective mobility of the top
channel, and to 2-Hsi, and Ipsige for the effective mobility of the sidewall channel, peop and
Uefrside respectively. For each mobility extaction, Vinsice/ Vintop €Xtracted from Ipsige/ lptop Were
adopted as Vi, in Eq. (4.1.4). Gate oxide capacitance per unit area was measured using a large
area dedicated test structure.
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Figure 4.1.13 : (a) Sidewall mobility of NMOS with temperature variation. Low temperature induces
strong mobility degradation at high electric field. (b) Sidewall mobility at fixed N;,, indicated colored
arrow at (a). (c) Top surface mobility of NMOS. Mobility degradation at high N;,, shows less decrease
compared to the sidewall case. (d) Top surface mobility at fixed Ni,, (same as (b)).
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Fig. 4.1.13 show the inversion charge and temperature variations of [effsice and Mesrrop fOr
NMOS FinFETs with W,=130 nm. The carrier density in the inversion channel, Nin, was
calculated using the strong inversion approximation Nin = Cox (V-Vin)/Q.

To fit the experimental data, the following empirical equation was used for pesr [15]:

Hy
Ly = (4.1.5)
! 1+ 6,V — Vi) +6,(Vs _Vth)z ,

where L is the low field mobility, 6, and 6, are the mobility degradation parameters which
describe mobility degradation at high transverse effective field. The 0, correlates to surface
roughness scattering, while 01 includes phonon scattering dependence with gate voltage (due
to changes in the overlap integrals) as well as Coulomb scattering. It should be noted that in
the presence of significant Coulomb scattering, 6; can be found negative [28, 29]. It is the
case here. As can be seen from Fig. 4.1.13, the empirical model of Eq. (4.1.5) fits the
measured data very well. Depending on the temperature, o (cm?/Vs) of sidewall current was
changed from 122 (350 K) to 423 (77 K) in NMOS and from 80 (350 K) to 339 (77 K). The
0: (V1) of sidewall current increased from -0.419 (350 K) to -1.667 (77K) in NMOS but
currents in the case of PMOS it did not have tendency. The average value of 6; (V) in
PMOS has 0.8 for sidewall and 0.3 for top surface.

To further analyze the results, it is useful to remember that the different scattering
mechanisms that dominate carrier transport show very different dependences as a function of
temperature and effective field. Generally, the effective mobility in inversion layers is
composed of three mobility terms corresponding to the main scattering mechanisms i.e.
Coulomb, phonon and surface roughness, and sometimes neutral defects scattering [30]. It
has been shown that the phonon limited could be expressed as [31]:

ppoe TN (4.1.6)

At low temperature or high inversion density, when most carriers are in the first sub-band
level, n and y are equal to 1 and 3, respectively. When intervalley and interband scattering can
occur, these parameters take larger values in the range 1-1.75 and 3-6, respectively,
depending on crystalline orientation of the conduction plane. In both cases, the phonon
scattering limited mobility is rapidly increasing as temperature decreases and depends weakly
on Ni. The limitation by Coulomb scattering is especially important at relatively low
temperature, around 100K and below. In this range, it can be modelled as [31]:
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teor THNZ (4.1.7)

where y is in the range 1.6-2, according to the respective contributions of channel doping and
oxide charges. In this temperature range, the increase of temperature induces Coulomb
scattering rate increase due to screening effect. On the other hand, at higher temperature,
increased kinetic energy reduces scattering effect. Thus pc is proportional to T. Finally, the
surface roughness scattering limited mobility psg can be described as follows [32-34]:

-a
Eeﬁ

Hsg

where A is the rms value of the surface roughness, A its correlation length, Es the effective
field, which is proportional to Nj,, in this case and the exponent a is ranging between about 1
and 2, depending on carrier type and surface roughness statistical properties [32, 33].
According to Eq. (4.1.8), usr should be independent of temperature, while the two other
mechanisms depend on it. It also shows the strongest degradation for high Nj,, values. These
considerations allow identification of the dominant scattering mechanisms according to
inversion charge and temperature range.

Fig. 4.1.13 (a) and (b) show the inversion charge dependence of sidewall mobility for
temperature values ranging from 77 to 350K. In order to keep the picture clear, the top
surface mobility is shown for one fin width value only (130 nm). It should be noted first that
the extracted Her(Niny) curve shows a positive slope, typical of Coulomb scattering, at low
inversion charge. This contribution of Coulomb scattering is even more visible at low
temperature, where it becomes the dominant scattering mechanism in weak inversion, due to
phonon freezing. It should be noted also that the sidewall mobility decreases dramatically in
strong inversion (Nin>5x10"? cm™) as compared to the mobility of the top surface, indicating
a stronger influence of surface roughness scattering.

The temperature dependence of sidewall and top surface mobility for given values of Nj,y is
shown in Fig. 4.1.13 (b) and (d), respectively. In Fig. 4.1.13 (d), we show the top mobility
extracted for several fin width values, ranging from 130 nm to 1 um. It can be checked that
the fin width dependence is indeed small, validating the linear extrapolation procedure. We
found experimentally that pesssige did not depend significantly on temperature for high N
(red circles and blue triangles). Indeed, because of the -2 power law of Ee in EQ. (4.1.8), usr
is becoming dominant in strong inversion. This allows us to conclude that, in our devices, [est
is indeed dominated by surface scattering in this regime. For low Niny, Lefiside INCludes
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contributions from Coulomb and phonon scatterings. That is the reason why Uefisige ShOWS
enhanced temperature dependence at low Nin,. Especially, the negative slope of the mobility
versus temperature indicates that the phonon scattering limited mobility still plays a role. In
the case of the top surface (Fig. 4.1.13 (d)), perrop decreases for increasing temperatures, even
at high Ni,. This means that surface roughness scattering is not the dominating scattering
mechanism at the top surface while it does on the sidewalls, which are thus suspected to be
rougher. Moreover this larger surface roughness scattering effect reduces the peak mobility
Heftside compared to Lefrtop (Lefrside=600 CM*/Vs and plerrop=650 cm?/Vs at 77K).

Fig. 4.1.14 shows the results obtained for the mobility of PMOS FIinFETSs along top surface
and sidewalls. In contrast to the results obtained for NMOS, the pessige Value obtained for
PMOQOS does not show any decrease as a function of Nj,. As compared to NMOS, peffside
always decreases with temperature (Fig. 4.1.14 (b)), indicating that the effective mobility
along the sidewalls of PMOS FinFETs is not fully dominated by surface roughness scattering.
This does not mean that the surface roughness is physically different in NMOS and PMOS
FinFETSs. Only its influence on the mobility is different.
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Figure 4.1.14 : Separated effective mobility of PMOS finFET (a), (b) sidewall and (c), (d) top surface.

It has been shown previously, by simulation of surface roughness scattering in bulk
MOSFETSs, that hole mobility can show a different dependence with effective field, because
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their wave vector at the Fermi energy, kg, takes higher values than that of electrons, and both
types of carriers are not sensitive to the same part of the surface roughness statistical
distribution [35].

Finally, it should also be noted that the peak value extracted for pesssige 1S higher than that of
Hefitop in the PMOS FinFETs. For example, Meffside IS 490 cm?/Vs while Uefftop 1S 355 cm?/Vs at
77K. This feature is consistent with the different orientation of the (110) sidewalls and (100)
top surface. Indeed, it has been reported that the anisotropy of the effective mass due to
surface orientation results in an enhancement of the effective mobility of holes [36-39].

4.1.6 Quantification of the Surface Roughness Scattering Effect

In order to quantify the contribution of surface roughness scattering to the top surface and
sidewall current components, the surface roughness mobility degradation factor 6, was
directly extracted from fitting of mobility data using Eq. (4.1.5). Because both the low field
mobility and the effective field dependent scattering mechanisms depend on temperature, 0,
should be normalized by po. The correct parameter to quantify the influence of SR on
mobility is thus 02/po. The 6, parameter cannot be used as such since it depends on
temperature (Fig. 4.1.15), even though surface roughness scattering does not. The SR limited
mobility parameter, 6,/u, can also be extracted from the derivation of the reciprocal effective
mobility [19]:
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Figure 4.1.15 : Mobility degradation parameter 6, versus temperature () NMOS and (b) PMOS.
Surface roughness scattering parameter 0,/p is obviously distinguishable in NMQOS sidewall (inset).
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_ Q@ ae) _ 6,+26,(Vg —Vin)

D
" dVg Hy

(4.1.9)

According to this equation, the SR mobility parameter 6,/ can be obtained from half the
slope of the D¢t versus Vg curve. The 0,/po values, extracted from the direct fitting with Eq.
(4.1.5) and calculated by Eq. (4.1.9), are nearly the same as shown in the inset of Fig. 4.1.15.
As can be seen, the SR mobility parameter 0./, is almost independent of temperature. In the
case of NMOS FinFETs, the 0,/po values extracted for the top surface are around 3 cm®V''s
independent of Ws,, whereas the values at the sidewalls are found much larger, typically
around 9 cmV’s (the inset of Fig. 4.1.15 (a)). Therefore, the surface roughness scattering is
about 3 times higher on the sidewall than at the top surface. This corresponds to an
enhancement of the geometrical factor A-A, which characterizes surface roughness, by about
1.7 times for the sidewalls as compared to the top surface.

In contrast to the NMOS finFETS, 0,/p, for the PMOS does not separate among the sidewall
and top surfaces, indicating that, as in bulk structures, holes are much less sensitive to surface
roughness.

The contributions of the surface roughness scattering in the total effective mobility can be
calculated as following:
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Figure 4.1.16 : Contribution of surface roughness mobility in total effective mobility.
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where Pgr is the surface roughness scattering probability.

Comparing to the top surface, the contribution of the surface roughness scattering at the
sidewall is much higher. At the 1.8-10" cm™ of Njyy, the mobility of sidewall is affected up

to 70%. However, 50% of surface scattering mobility effect is observed on the top surface.

4.1.7 Conclusion

In this chapter, n-type and p-type triple-gate FINFETS have been experimentally studied by
means of low temperature measurements. A simple method to split the drain current into its
components associated to conduction along either the top surface or the sidewalls has been
carried out by measuring devices with different fin widths.
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Figure 4.1.17 : Effective mobility of each surface in FInFET and general mobility behavior of phonon
scattering and surface roughness scattering.

The sidewall and the top surface mobilities have been estimated in a wide range of
temperature from each surface current component extracted by the linear extrapolation
technique. The low temperature experiments enhance the relative importance of surface
roughness scattering because the other scattering mechanisms become less effective. In n-
type FINFETSs, it was found that the sidewall mobility was strongly degraded at high inversion
charge as compared to the top surface.

87



88

4. Transport of Quasi-1D nanostructure FET

S 1.0 pummeemaR VMM TiM) 1,01 TopfW_=10nm~14m}

< 09 z

<09 =

10"0.8‘ 10)

§ 0.7 T 06

5 06 idewall | S 0.4

E 051 300K 1§

2 0.4 | 202! -
02 04 06 08 10 12 14 02 04 06 08 10 12

VG-VTh(V) VG_VTh(V)

Figure 4.1.18 : Normalized mobility behaviors of NMOS sidewall and top surfaces at 300 K (left) and
77 K (right).

Effective mobility behavior for FINFET sidewall has completely different from the top
surfaces as shown in Fig. 4.1.18.

To quantify this effect, the surface roughness scattering parameter 6,/p, was extracted. In n-
type FINFETSs, the surface roughness scattering rate associated to sidewalls was found to be 3
times higher than for the top surface. In contrast, SR scattering was less effective for holes so
that SR scattering is not the only process involved, even in strong inversion, and no clear
difference can be made between both interfaces. SR scattering is the main cause of mobility
degradation at the sidewalls of n-type FInFET. It suggests that improvement of the etching
process and adequate post treatments should allow further performance optimization.
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4.2 SiGe Nanowire FET
— Phonon Scattering and Impurity Scattering

4.2.1 Device overview: Strain Engineering

The down scaling of metal
oxide semiconductor field
effect transistors (MOSFETS)
has been continued for several
decades for the purpose of
higher  integration,  faster
operating speed and smaller
power consumption [40]. Gate
length (L) is now reaching the
10 nm range. However, down-
scaling is becoming more and
more challenging due to
performance limitations that
arise from carrier velocity
saturation, high-field effects
such as impact ionization, or
short channel effects of
electrostatic origin such as

(a) (c)
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>SS
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Figure 4.2.1 : Schematics of strained Si/SiGe hetero-structures. ()
and (c) Bulk lattices of SiGe and Si. (b) and (d) compressive
strained and tensile strained hetero-structures [43].

drain-induced barrier lowering (DIBL), threshold voltage shift, subthreshold slope

degradation and punchthrough. Due to their high immunity against short channel effects,

Silicon-on-Insulator (SOI) based gate-all-around (GAA) nanowire FETs, with a metal/high-

« dielectric gate stack, have been suggested as excellent candidates for future technology
nodes [1, 41, 42]. Besides, in conventional Si CMOS technology, p-type MOSFETSs show a
smaller mobility compared to n-type MOSFETS, due to differences in the band structure, and

especially to the larger effective mass of holes compared to that of electrons.

To increase hole mobility, strain engineering has been studied aggressively [41, 43].
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Figure 4.2.2 : The conduction band, valley structure and valence band splitting of (a) uniaxial tensile
strained silicon or Si; Gey grown on a (100) Si;-,Gey virtual substrate with x <'y, (b) bulk silicon and
relaxed (100) Si;_«Gey with x < 0.85 and (c) uniaxial compressively strained (100) Si;_Ge, grown on
a SiyyGe, virtual substrate with x >y [43].

For example, hetero-structure can be used to improve hole mobility. The lattice constant of
SiGe is larger than the Si. In planar device, replacing the silicon source and drain with SiGe
(embedded SiGe source/drain), compresses the Si channel and improves hole mobility with
uniaxial strain. Increased Ge concentration makes larger lattice constant so that higher strain
and higher mobility can be achieved. However strain cannot be increased infinitely. Solid
state systems tend to be the lowest (stable) energy state. Lattice dislocations can be happened
to reduce the energy state at the Si/SiGe interface. Increased Ge concentration not only makes
the strain but also the dislocation and it limits the mobility enhancements.

Biaxial strain engineering is for the wafer level while uniaxial strain is applied to the
individual devices. For the bulk device level, biaxial strain can be obtained by the growth of
SiGe on the standard Si wafer or vice versa depending on which material is used.
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With the improvement of SOI wafer technologies, strained SOI wafers are developed.
Biaxial strained SOI wafer can be made similar to the bulk strained Si/SiGe wafers. The
biaxial strained wafer has smaller hole mobility enhancement and larger Vi, shift than
uniaxial strained wafer [44]. However, smaller fabrication cost and the device roadmap based
on the SOI technology make biaxial strained devices more attractive for the mass production.

Both uniaxial and biaxial strain engineering modifies the energy band structure because
atoms in the strained lattice have different location. Manipulated energy band structure has
two major properties which are effective mass change and the band split. Effective mass is
depending on the radius of curvature of energy band structure in k space. Uniaxial c-strained
Si has lighter hole effective mass than unstrained. Thus the effective mobility of PMOS is
enhanced. Also the band split reduces the inter-band scattering. Reduced scattering improves
the effective mobility.

In this chapter, compressively-strained (c-strained) SiGe MOSFETs will be demonstrated
for hole mobility enhancement. A GAA device architecture associated to compressively

strained SiGe nanowires is thus ideally suited for the PMOS transistor of future CMOS nodes.

The purpose of this chapter is to study short channel effects and transport mechanisms in p-
type SiGe nanowire FETs , in order to analyze the influence of strain on these effects and to
understand how this influence depends on gate length. Both strained and unstrained SiGe
channels will be compared.

4.2.2 Experimental Conditions:
Device Fabrication and Measurement

3D stacked p-type SiGe nanowire FETSs, with high-x/metal gate stacks (HK/MG), were
fabricated at LETI-CEA on a silicon-on-insulator (SOI) substrate [41]. Both a typical SOI
(100) wafer and a tensile strained (1.3 GPa) SOI (100) wafer were used to form c-strained
and the unstrained SiGe nanowires, respectively. The mains steps are as follows. First,
Si/Sig gGep 2 superlattices were epitaxially grown on each wafer by reduced pressure-chemical
vapor deposition. In order to obtain narrow channels, hybrid deep ultra-violet/electron-beam
lithography and resist trimming were combined. Cavities were patterned by means of an
anisotropic dry plasma etching before isotropic removal of the Si layers. Nanowire lengths
ranged from 40 to 600 nm. To achieve higher mobility, a 2nm thick Si capping layer was
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epitaxially grown at 650 °C on the
SiGe nanowire surface. Then, an HfO,
(3 nm)/TiN (10 nm)/Poly-Si gate stack
was deposited as HK/MG. The cross-
sectional shape was hexagonal as
§ shown in Fig. 4.2.3. A SiO,-like
LongLyw |- i i
~600nm | A interfacial layer (T,.: 1.5~2 nm) was

Drain also grown due to a non-optimized
thermal process. After gate patterning,
the source and drain contact regions

were implanted and activated. A
10%° cm™ boron doping concentration
i was achieved. After vertical spacers

Figure 4.2.3 : (a) Cross-sectional TEM image of 3D formation, the source/drain contacts
stacked c-strained SiGe NW FETs. (b) Zoomed image of Were silicided. Finally, the fabrication
c-strained SiGe NW. Top-view of (c) c-strained SiGe ended with a standard back-end of line
NW with L=600 nm, (d) c-strained NW with L=250 nm process. As shown in Fig. 4.2.3 (c), (d)
and (e) unstrained SiGe NW with L=600 nm [41]. and (e), only c-strained long channel

nanowires are bent. Details about the fabrication process can be found in [41].

Static characteristics were measured using an HP 4155A semiconductor parameter analyzer
and a SussMicroTec 200 mm low temperature probe station for temperatures ranging from
77K to 300 K.

4.2.3 Short Channel Effects in SiGe Nanowire FET

Fig. 4.2.4 compares the transfer characteristics (Ip plots against Vg at constant Vp) of the
strained and unstrained SiGe p-type MOSFETSs, for short (L =40 nm) and long (L = 600 nm)
channel lengths, respectively. The devices were biased in the linear regime of operation with
a small drain voltage (Vp), fixed at 10 mV, and a gate voltage varying from 0.3V to -2 V.
Both for long and short channel devices, the c-strained SiGe nanowires demonstrate larger
drain current after turn on than their unstrained counterparts.
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Figure 4.2.4 : 1p-Vg characteristics of SiGe nanowire FETs. C-strained and unstrained devices are
compared in short channel (a) and relatively long channel (b). In short channel, unstrained device
shows weak gate-channel control.

Following its definition [45], the subthreshold swing (SS) was extracted using (Eq. 3.6).

At room temperature, long channel devices displayed similar values of SS, with 67 mV/dec
for unstrained SiGe nanowires and 65 mV/dec for c-strained SiGe nanowires. Both values are
close to the ideal value at room temperature, which is about 60 mV/dec. In contrast, short
channel effects could be observed for the 40 nm long devices. They were limited in the c-
strained SiGe devices, with a SS value below 100 mV/dec, while they reached extremely
large values, around 580 mV/dec, in the unstrained devices.

Threshold voltage (V) was extracted by Y-function method [46]. The method takes benefit
from the fact that inversion drain current and transconductance (gm) are related by the
following relationship:

W

| 1/2
Y= FD = (fcox ﬂoVDj (Vo —Vin), (4.2.1)
m

where Cox is the gate oxide capacitance, o the low field mobility and Vp the drain bias. It
includes only Ly, geometrical parameters, gate capacitance and bias voltages. o and Vi, can
be directly extracted by a linear fitting and extrapolation of 1,/,/g,, against Vg. Importantly,

the presence of series resistance does not affect in this relationship, which is a strong
advantage of Y-function method.

The temperature dependence of Vi, was estimated (Fig. 4.2.5), which can be exploited to
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extract the doping level in the channel. Indeed, due to the small thickness of the silicon body,
the devices under study belong to the fully-depleted SOI family and Vi, temperature
dependence is thus obeying the following law [47]:

dVin zd_¢=_k_B In N _2T T om (4.2.2)
dT  dT q n; n; oT
with ¢ =— ke T |n(ﬂ], (4.2.3)
q n;

where ¢ is the Fermi surface potential, kg Boltzman constant, T the temperature, g the
elementary charge, N the channel doping concentration and n; the intrinsic carrier density.
Because oni/0T is exponentially increasing with T [23], theory implies that d¢ /dT is positive.
So was the measured dV/dT, as verified in Fig. 4.2.5.
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Figure 4.2.5 : Differences of threshold voltage according to the temperature. In each same length
condition, unstrained SiGe nanowire FETs have lower dV/dT values.

For a given gate length, we found that dV/dT was smaller for unstrained SiGe nanowire
than for c-strained ones. At this stage, it should be noted that the higher the doping
concentration, the smaller dV/dT. The ratio between the channel doping concentrations in
the two types of devices was calculated from:

dVip
dT

AV,
dT

~ _Ks %M], (4.2.4)

C—strained Unstrained q I\IUnstrained

therefore,
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dvy,

- (4.2.5)

NUnstrained q (dvth
Al — . exp 2
dT

NC—strained kB C—strained Unstrained]

Based on the values measured for the 100 nm gate length, Nunstrained/Nc-strained @mounted to
25.75. Therefore, it was concluded that the unstrained SiGe nanowire channel was
approximately 25 times more doped than the c-strained one, although the fabrication process
was the same. We will come back to the conclusion later in the paper in the view of transport

parameter analysis.

4.2.4 Analysis of Transport Mechanism

4.2.4.1 Temperature Dependence of Effective Mobility
in SiGe NW FETs

Based on the conventional transfer characteristic model, the effective mobility (ues ) can be
expressed as:

L
W Qinv

Heft = Ip, (4.2.6)

where Qiny is the inversion charge, L is the gate length, W the channel width. The effective
mobility was plotted against the inversion charge density Qiny, which was evaluated using the
strong inversion approximation,

QinvECox (VG _Vth)' (4-2-7)

Figure 4.2.6 illustrates the e dependence with Nin= Qin/q. These curves were obtained for
both unstrained and c-strained devices, with short and long channel lengths, for temperatures
ranging from 77 K to 300 K. With c-strained channels, long and short devices behaved
similarly, with an increase of effective mobility as temperature decreases. Such a behavior is
indicative of a phonon scattering dominated transport. Indeed, due to phonon freezing,
phonon scattering is the only scattering mechanism that results in strong temperature
dependence, with an increase of mobility at low temperature. Long channel unstrained
nanowires behave similarly. For long channels, c-strained SiGe nanowire FETs display 3.5
times higher mobility than unstrained nanowire FETs under the same temperature conditions.
This was convinced with theoretical explanation which states that strain is responsible for a
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degeneracy lifting of the light and heavy holes valence bands which results in lighter
conduction mass and less inter-valley scattering.
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Figure 4.2.6 : Effective mobility of c-strained (left) and unstrained (right) devices. Specially,
temperature dependent behavior of short channel unstrained device (bottom right) is completely
different from the others.

The most striking results concerned short channel unstrained devices, which featured a fully
opposite temperature dependence compared to other three cases. For these devices, effective
mobility decreased at low temperature, especially at low inversion charge. Such dependence
is typical of Coulomb scattering dominated transport. In addition, even at room temperature,
where the influence of phonon scattering is still present, the effective mobility extracted for
short devices is improved by about 6.5 times in the c-strained devices with respect to the
unstrained ones. This is more than what we found for longer devices, for which a factor 3.5
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had been obtained. From all these results, it was concluded that strain was influencing
transport also by another mechanism than the sole change in the valence band and its
resulting effect on mobility.

4.2.4.2 Temperature Dependence of Low-field Mobility

in SiGe NW FETs
In order to go beyond these qualitative conclusions, a more precise mobility extraction than

from Eq. 4.2.6 has to be performed. The split C-V technique [48, 49] could not be used here
due to the small size of the devices under study. Instead, the low field mobility po was
extracted from effective mobility model. This model assumes that effective mobility follows
the usual Eef dependence:

Ho
- , 4.2.8
Heff 1+ 01 (VG _Vth) ( )

where 07 is the first-order attenuation factor. Here, it was not necessary to include a second-
order attenuation factor [50,

M————————— 51].
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scattering mobility Uphonon IS €Xxpected to depend on temperature and effective field as:

ne -1/
Hphonon® T r]Eeff ! 31 (4.2.9)

where n is an empirical fitting parameter and Ees the effective electric field [31]. Curve fitting
of wo(T) for the c-strained and longest unstrained devices resulted in n = 1.75, which falls in
the expected range for Si MOSFETSs, depending on crystal orientation [32]. In contrast,
Coulomb scattering mobility pcouioms 1S linearly dependent on temperature [31], and follows
the following law:

Hcoutomb ™ TQinvs (4.2.10)

which fitted quite well the experimental W (T) curve for the shortest unstrained devices.
Therefore, it was concluded that phonon scattering was the dominant mechanism in c-
strained and long unstrained devices, while Coulomb scattering dominated transport in the
shortest unstrained devices. For unstrained devices with intermediate gate length
(L =100 nm), both mechanisms were present and dominated in turn according to the
temperature range. For unstrained devices, the respective contributions of phonon and
Coulomb scattering to low-field mobility was thus evolving as gate length was decreased.

4.2.4.3 Respective Contribution of Scattering Mechanism

In this third step of the analysis, focus was put on scattering by defects, with the aims of
extracting their contribution to the total mobility and probing the variation of this
contribution with gate length. To do so, all the main scattering mechanisms that can
contribute to carrier transport in the channel - namely phonon, Coulomb, and neutral impurity
scattering mechanisms- were taken into account together. Surface roughness scattering did
not need to be accounted for, as long as only low-field mobility was concerned here.

Neutral impurity scattering is usually considered as temperature independent [52, 53]. It can
result from the scattering with some lattice defects, which induce a local variation of the band
structure while remaining neutral. Inactive doping atoms which can be found in heavily
doped layers are an example of such defects. Other examples are point defects, such as
silicon interstitial atoms. Point defects are known to be generated during source and drain
implantations and to diffuse laterally towards the channel during the subsequent thermal
annealing steps [54-56]. These point defects can diffuse as such, or as neutral clusters of point
defects and doping atoms, leaving neutral defects in the channel at the end of the annealing
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steps. They play a role as well in the diffusion of doping atoms out of the source and drain
regions during anneals. Therefore, a certain amount of charged defects - such as ionized
doping atoms - can also be injected in the channel. In the following, neutral defects and
Coulomb centers will be considered together as defects arising from the source/drain
implantation and annealing process steps and the aim of this paragraph is to evaluate their
combined contribution to the low-field mobility.

The total mobility was obtained using Matthiessen’s rule:

-1

1 1 1

Ho :£ + + J , (4.2.11)
Hcoulomb  HPhonon  HNeutral

where
—a-T -1
Hcoulomb= & - T Qiny
-n -1/3
Hphonon= BT Ee

HNeutral = 7
Each term follows different temperature dependences so that the contribution of each
scattering mechanism can be extracted by fitting Eq. 4.2.11 to the experimental o (T) curves.
Especially, the contribution of scattering by source/drain induced defects, which will be
referred to as impurity scattering in the rest of the text, was extracted as:

(04

Ty
Contribution(%) = T/300 -100. (4.2.12)

+ B(T/1300)" +»

T /300

a (Vs/cm?) B (Vs/cm?) v (Vs/em?)
C-strained (600 nm) 0 4.4x10° 3.6 x10®
C-strained (100 nm) 7.3x10° 2.4x10° 1.4 x10°
C-strained (40 nm) 8.4x10° 1.8 x10° 1.1x10°
Unstrained (600 nm) | 15.8x107 0.5x10° 24.3x10°
Unstrained (100 nm) 1.5x10° 4.9x107 9.5x10®
Unstrained (40 nm) 0.16x107 6.8x10° 6.7 x10°

Table 4.2.1: Fitting parameter of Eq. 4.2.12 used for Fig. 4.2.8



100

4. Transport of Quasi-1D nanostructure FET

100 — W]
2 =40nm
€ el S, e o L=100nn]
'-g ] ‘ki? :_" r N - .
B -L-40nmj‘8‘“gx; -4 L.=600nn]
£ so|L=600mnf [ SEg ey
S~ [L=100nm 0370
O ' Solid: Unstrained ©
251 Dpened G stramed
100 150 200 250 300
T(K)

Figure 4.2.8 : Contributions of impurity scattering in each devices. Compared to c-strained devices,
mobilities are strongly affected by impurity scattering in unstrained devices.

Table 1 summarizes the values of the parameters o, § and y which were obtained from the

fitting procedure, while Fig. 4.2.8 illustrates the resulting contribution of impurity scattering.
All three c-strained devices displayed a similar trend, with similar contribution of impurity
scattering. A very small increase of impurity scattering contribution by a few percent could
only be observed in the shortest devices (L =40nm) This contribution increases as
temperature decreases, but rather as a consequence of phonon freezing and of the resulting
fading out of phonon scattering contribution to the total. In unstrained devices impurity
scattering is globally larger than in c-strained devices. More importantly, impurity scattering
contribution increased drastically at short gate length, until reaching 98 % of the total in
40 nm long channel devices.

4.2.4.4 Role of Strain: Boron Out-diffusion from S/D Regions

All these results could be understood consistently by assuming a smaller point-defect
assisted boron out-diffusion from the highly doped source and drain contact regions during
annealing steps in the c-strained nanowires. Low-frequency noise measurements, which have
been performed on the same devices as those studied here, have also been found consistent
with such an assumption [57]. Although our devices were SiGe nanowires subjected to
uniaxial strain, this assumption would also be consistent with previous results obtained for
biaxially strained SiGe films. For such layers, and although the exact physical mechanisms
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may not be fully elucidated, it has been shown that a compressive strain was effective in
reducing boron diffusion in SiGe, and induced a decrease of boron diffusion activation energy
[58-61]. Here, they would explain the differences observed in device resistance to short-
channel effects as well as in the extracted values for average channel doping or mobility.

Steep doping profile
{ a } Small penetration in the channel
=

C-strained NW

S/D p* region Channel

Unstrained NW

SID p+ region Channel

e
Larger dopant outdiffusion

Doping tail penetration in the channel

Figure 4.2.9 : Schematics of boron diffusion in SiGe nanowire FETs. B diffusion is retarded by strain
so that short channel unstrained nanowire strongly affected by impurity scattering (a) for C-strained
and (b) for un-strained device. In long channel devices, diffused B less affects in unstrained nanowire
because diffusion length is relatively shorter than gate length.

From the results, it was concluded that boron out-diffusion created a disturbed region
around the source/drain regions. While it remains negligible in c-strained devices, it
represented most of the channel length in the shortest unstrained devices (Fig. 4.2.9). As a
result, unstrained devices suffered from shorter effective channel length and larger short
channel effects. Indeed, large subthreshold slope and channel punchthrough were observed in
the subthreshold region of the shortest devices (Fig. 4.2.4 (a)). Moreover, the stronger dopant
out-diffusion was also consistent with a larger average channel doping level in unstrained
devices, as extracted from dV/dT. Finally B out-diffusion was associated to an increase of
the neutral and charged scattering centers that degraded transport near the source-drain
regions and even in the whole channel for the shortest devices.
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4.2.5 Conclusion

SiGe nanowire architectures are among the most promising alternatives for future p-type
MOSFETSs generations. In addition, compressively strained SiGe is known as a very efficient
performance booster, since it contributes to decreasing the holes effective mass and to
reducing phonon scattering. In this chapter, it has been studied that the characterization of
short channel effects and transport mechanisms in such devices, focusing on the influence of
a compressive strain along the channel direction. Based on mobility extraction techniques and
detailed analysis of mobility dependence against gate overdrive and operation temperature,
the scattering processes that govern transport were identified and their respective
contributions quantified. For long channel devices, phonon scattering was dominant and
played the major role in improving mobility in c-strained devices.

100 . : ; : : 100 ———— : — :
— I Neutral scattering — I Neutral scattering
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Figure 4.2.10 : Impurity Contribution of p,. Coulomb scattering in unstrained NW is much higher
than c-strained NW.

However, it was found that impurity scattering was also playing a critical role in short
channel devices. It could even be the dominant mechanism (98%) in unstrained devices at
low temperature, while it brought a much smaller contribution in c-strained devices. This
scattering originated from the presence of boron atoms, out-diffused from source and drain
regions towards the channel during process, creating a kind of defective region with a high
density of Coulomb and neutral centers in the vicinity of the source and drain regions. The
impact of this defective region on the extracted mobility is all the more important as its
extension is large compared to channel length. Results clearly show that compressive strain
has a beneficial effect in reducing boron out-diffusion in SiGe nanowires. Therefore, beyond
its expected influence in improving mobility due to band structure and phonon scattering
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modifications, compressive strain is also beneficial because of its effect on process induced
mechanisms and especially dopant diffusion. The latter effect increases the mobility
advantage of c-strained p-type SiGe NW-MOSFETs compared to their unstrained
counterparts. It also improves their resistance to short channel effects.



104 | 4. Transport of Quasi-1D nanostructure FET

4.3 Junctionless Transistor
— Volume Conduction and Reduced Short Channel Effects

4.3.1 Device Overview

4.3.1.1 Junction Gate Field Effect Transistor (JFET)

Before talking about junctionless transistor, we have to remind about junction gate field
effect transistor (JFET). JFET has a doped semiconductor channel. Different from
enhancement mode FET, channel is doped by same polarity as operating mode (p-doped for
PMOS, n-doped for NMOS). The gate is also doped by opposite type of channel doping. The
name of JFET is derived from the P-N junction at the gate-channel interface.

0 Gate 9
Q l-_' o [ P |
o)
% ‘“. ()
Off State On State
© Gate without V¢ S without Ve

Linear Saturation
o= N xﬁ_‘_ﬂ_\__ﬁk---u ——————————————— >
-
.____________.———?
o— N —

Figure 4.3.1 : Schematics of JFET device operation.

JFET is depletion mode transistor because the channel conducts with when Vs=0V. With a
reverse bias the depletion width increases so that the channel conduction is interrupted. The
channel conduction is similar to a resistor for the on-states with low Vps (ohmic region).
When the channel is pinched off by high Vps, the conduction is limited by the drifted carrier
and becomes a constant current. JFET has volume conduction. Differently from the surface
conduction of conventional MOSFET, most of bulk is available for the conduction. Thus
JFET has higher transconductance and lower noise than MOSFET.
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4.3.1.2 Junctionless Nanowire FET

Based on the multi gate
structure, junctionless FET
(JLess FET) is recently
studied for a new device
concept to overcome short
channel effects [62].
Meaning of ‘junction’ in Source
JLess FET is different from
JFET. Traditional MOSFETSs
are fabricated as a sandwich structure with n*p n* for NMOS and p*n p* for PMOS. In this

Figure 4.3.2 : Cross-section of JLess FET [63].

case, current flows through the inversion channel between source and drain. Accumulation
mode MOSFETs consist of n"nn* for NMOS and p*pp* for PMOS. However, in the case of
accumulation mode MOSFET, channel has a high resistance due to the lightly doped channel
region. High gate bias should be applied to drive an accumulation layer for the conduction
channel.

Basic structure of JLess FET is similar to the accumulation mode MOSFET. However, JLess
FET has heavily doped channel (N* for n-channel device). Thus, JLess FET has no junction
at the interface between channel and source / drain region. Device operation of JLess FET is
rather similar to the JFET than accumulation mode MOSFETs. Depletion region formed by
gate field limits the current flow in JLess FET. The most important fabrication issue of JLess
FET is the formation of thin and narrow enough semiconductor layer to allow for full
depletion of carriers when the device is off states. Thus, JLess FET has a nanowire structure
as shown in Fig. 4.3.2 [63].

4.3.2 Transport of Junctionless Transistor

As we discussed, carrier transport of JLess FET is different from conventional MOSFETSs.
Apart from the operation modes, carrier transport of MOSFET is near channel surface.
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Figure 4.3.3 : Electron concentration contour plots in an n-type JLess FET [62, 64]. (a) Increased gate
bias reduces depletion regions. (b) Drain bias increase the depletion region in the channel between
gate and drain. Device operation scheme is same to JFET in Fig. 4.1.1.

The conduction channel of MOSFET is formed as very thin layer squeezed along the
semiconductor / gate oxide interface by the electric field induced from the gate electrode [62].
During the transport, carriers can be trapped in the oxide or at the semiconductor interface.
Carriers also can be scattered by surface roughness of channel interface as shown in the case
of FINFET (chapter 4.1). As the device dimension decreases, carrier transport is more affected
by surface roughness scattering. Both charge trapping and surface roughness scattering
degrades carrier mobility and current.

Comparing to the MOSFETSs, the biggest difference of JLess FET is volume conduction. In
Fig. 4.3.3, carrier concentration of JLess FET is shown. When Vg is lower than Vi, the
conduction channel of JLess FET is depleted by the difference of work function (Fig. 4.3.3
(@)). As Vg increased, the depletion region around the channel is reduced because forward
biased gate-channel cancel out internal electric field of depletion region. It can operate as a
gate controlled resistor. If the gate is fully opened, there is no depletion region in the channel.
However it cannot gives infinite drain current. As shown in Fig. 4.3.3 (b), the depletion
region increases in the channel between the drain-gate when Vps is increased. Because of
increased Vps, potential difference between the gate and the drain decreases and the field
effects induced by gate is canceled out. If the conduction channel is pinched off by depletion
region near the drain, current becomes constant (saturation region). This operation scheme is
very similar to JFET’s one.

Carrier transport by volume conduction has advantages. The carrier transport of JLess FET
is far from the semiconductor interface. As gate bias increased, conduction channel is formed
from the inside to the outside channel. Thus, carrier trapping and surface roughness scattering
is less than MOSFETS.



4. Transport of Quasi-1D nanostructure FET | 107

Inversion
Mode

Accumulation

Junctionless
Mode

Figure 4.3.4

Electron concentration profile above threshold in inversion mode MOSFET,
accumulation mode MOSFET and JLess FET [64].

Jang et al. show that the volume trap density of JLess FET is in the range from 6x10% to

3x10" cmPeVv ' from the low frequency
noise measurement !, This value is similar
to the volume trap density in typical bulk
MOSFETs but much smaller than High-k
MOSFET’s (from 10" to 10% cmeV™).
Nazarov et al. characterize random telegraph
noise (RTN) of JLess MOSFETs [66].
Smaller relative RTN amplitude in the
current of JLess FET than in inversion-mode
MOSFETs was observed. The average
capture time of JLess FET into the trap in the
gate insulator is longer than inversion mode
MOSFETs due to the difference between
volume and surface inversion conduction.

As described in the definition of JLess FET,
no junction interface exists between source /
drain and channel. Drain current is purely
blocked by that the depletion region pinches
off heavily doped conduction channel. Thus
drain potential drop is found ‘inside’ the
drain [67, 68]. JLess FET has lower peak and
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Figure 4.3.5 : (a) Normalized transconductance in

inversion mode MOSFET and JLess FET [63]. (b)
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wider width of transversal electric field than inversion mode MOSFETs. Thus, impact
ionization takes place in the drain region while it takes place in the channel near the drain in
the inversion mode MOSFETSs. Vps to make sharp subthreshold swing is efficiently reduced
in the JLess FET comparing to the inversion mode MOSFETS.

In the inversion mode or accumulation MOSFETS, the majority carrier concentration in the
channel is peaked at the highest electric field region because higher gate electric field attracts
more majority carriers. However in the case of JLess FET, the peak carrier concentration is at
the lowest electric field region. The field is not quite equal to zero but much higher than
inversion mode MOSFETSs [63]. The mobility in the inversion mode MOSFETSs at the high
gate electric field decrease rapidly. In contrast, the decrease of mobility in JLess is much
smaller because the carrier transport of JLess FET is less affected by longitudinal gate
electric field. Thus JLess FET has an advantage in the current driven at the high gate electric
field.

However, JLess FET has controvertible issues. For example, mobility in JLess FET is
reduced by ionized impurity scattering [69]. Carrier effective mobility largely decreases as a
function of channel doping concentration. Beyond the doping concentration of 10™°cm?,
mobility degradation is not significant as below. However, the effective mobility of JLess
FET is definitely lower than inversion mode MOSFETSs as shown in Fig. 4.3.6 [69].
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Figure 4.3.6 : Comparison of effective mobility in heavily doped JLess FETs and in the other tri-gate
MOSFETs with doped and undoped channel conditions. [69].
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Vi, of JLess FET depends on nanowire
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of the channel width. Because the JLess FET has heavily doped channel, Vi, of JLess FET
has sensitive channel width dependence.
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thicknesses, competitively with inversion or accumulation mode MOSFETs [71]. However,
many other open issues also remain. Effective mobility should be improved. Because JLess
FET has heavily doped channel, impurity scattering mainly limits effective mobility. JLess
FET is also sensitive to the channel geometry. The variability of Vy, is one of the further
works to be solved.

As a new device concept, JLess FET is very interesting and promising research topic in the
device physics.
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4.4 Si Nanowire Sensor
— Low Frequency Noise and Sensing Limitation

4.4.1 Overview: Nanowire for Sensor Application

Currently nano materials are attracting more interest for their practical applications based on
the advantages of their small dimension. Among them, silicon nanowires have the advantage,
that Si is a well understood material based on its longstanding use in semiconductor
technology. Silicon nanowires can be fabricated either by the bottom-up [72, 73] or top-down
approaches [74-76].

1 : 10 : 100  Surface area ratio
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Figure 4.4.1 : Surface area and Volume ratio of nanowire. As scale down, surface area in the same
volume is increased.

In recent years, many research papers about silicon nanowire-based chemical or biosensors
have been published [77-80]. For instance, among many other examples, Lieber’s group
reported on functionalized nanowires that could detect cancer biomarkers [81]. Electrically
addressable integrated nanowire sensor chips have been developed and showing a great
possibility for the mass production. Device modeling, prior to the fabrication, can save time
and experimental trial-and-errors by providing a starting design that can be better optimized
in terms of sensing performance. The modeling and the simulation of nanowire sensors have
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been the subject of many recent publications, with detailed account of the role of electrostatic
mechanisms on the sensitivity [82-85]. However, to the best of our knowledge, noise issues
have not been discussed, while the low-frequency noise associated to trapping-detrapping of
carriers (i.e. generation-recombination, G-R) in the nanowire can put a severe limit to the
sensitivity, due to the SNR (Signal to Noise Ratio) degradation it induces.

It is the aim of this chapter to discuss the trade-off between the sensitivity and the SNR in
nanowire sensors. This imposes to use the same modeling framework for both issues. This
framework was chosen simple enough to allow a fast evaluation of the design trends, but
complete enough to include the main effects.

4.4.2 Simulation Environment and Conditions.

The sensitivity of the nanowire was first calculated as a function of the geometrical design
of the nanowire (dimensions and doping level) and was compared to a simple analytical
model. Compared to most previous approaches, the thickness of the passivation oxide layer
and the field effect mobility degradation were taken into account.

For the sake of analytical calculation, the external charge attached around the silicon
nanowire was assumed homogeneous. The conductance variation and the charge sensitivity
of the silicon nanowire sensor were obtained by solving Poisson equation across a two-
dimensional section of the nanowire and coupling it to the Drift-Diffusion equation. This was
done numerically using FlexPDE 5. FlexPDE 5 is the software solving partial differential
equations with a finite element method. An external homogeneous charge density Ne, (cm™),
surrounding the passivation layer of silicon dioxide was used for simplification.

The conductance of the nanowire was calculated for the various geometries of silicon
nanowire (length L, radius rs) with nominal values of doping concentration (Ng=10'® cm?)
and the thickness of the silicon oxide layer (tox=2nm) at room temperature (T=300K). The
results for the n-type silicon nanowires can be applied to the p-type in the same way with the
proper choice of carrier mobility with a reversed sign. All the simulations were assumed at
room temperature (300K).
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4.4.3 Sensitivity Estimation:
Numerical Simulation and Analytical Model

In the simulation, the carrier mobility has been considered either as constant throughout the
nanowire section (solid lines in Fig. 4.4.2) or degraded by the radial electric field E, induced
by the external charge (doted lines in Fig. 4.4.2). We used the standard equation of the
mobility degradation p=po/(1+E/E.), where o is the low field mobility and E. a critical field
(~10°V/cm for silicon devices) [86]. Figure 4.4.2 (a) shows the normalized conductance
change (AG/Gy), as a function of the adsorbed charge density Nex (cm™) at the surface of
nanowires depending on the radius of nanowires. As expected, the conductance change
increases with a positive Nex Vvalues as n-type silicon nanowire due to a stronger
accumulation of majority carrier in the n-type silicon nanowires. On the contrary, for negative
Next Values, the conductance change is negligible owing to the formation of the inversion
regime where the hole charge dominates.
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Figure 4.4.2 : (a) Normalized conductance variation (AG/Gy) for the constant mobility or the mobility
degradation. The inset shows the schematic geometry of the silicon nanowire sensor. The external
charge, added by target molecules, is represented by a uniform charge areal density Neq (cm™). (b)
Sensitivity of the silicon nanowire sensor. Solid lines and dotted lines show the numerical simulation
results. Triangles are obtained from the analytic model of Eq. (4.4.4) when rg=10nm and t,,=2nm.

It is important to note that we define the sensitivity of the nanowire sensor as the ratio
between the conductance change AG/Gy (the output) and the external density of charge Nex:
(the input). Figure 4.4.2 (b) clearly indicates that the sensitivity can be enhanced in the close-
to-neutrality and the accumulation regions of the operation with a smaller cross section
nanowire. This means that both p-type and n-type silicon nanowires are required for probing
the positive and the negative external charges with a high sensitivity. It should be noted that
the mobility degradation at high field i.e. large external charge densities will reduce the
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nanowire sensitivity of nanowire sensors and, in turn, alter the linear response of the charge
sensor, which can explain the nonlinear sensitivity reported in the previous literatures [79, 83,

87].
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Figure 4.4.3 : (a) Conductance nonlinearly depending on the cross section area (A) of the silicon
nanowire. On the other hand, the initial conductance Gy is proportional to A. (Inset) (b) AG/Gy
variation as a function of nanowire area A. Deviation from the general A®° trend is noticeable,
attributed to the influence of t,.

Figure 4.4.3 plots the conductance G-L and the normalized conductance AG/Go, as a

function of the cross-section area A. AG/Gy varies almost following 1/A%° except for the
small areas below 10™*° cm? as in Fig. 4.4.3 (b). In order to interpret these simulation results,
we have derived an analytical model of the conductance of silicon nanowires as following.
The nominal conductance of the silicon nanowire will be given under the charge neutrality
condition:

GO :q—luﬂ'rsiszL:M

B T (4.4.1)

where q is the electric unit charge (1.6x10™° C), N4 the doping concentration of the silicon
nanowire (cm™), N the total number of carriers in the nanowire. By considering the global
charge neutrality in the structure, the absolute change of charge induced by the total external
charge on the carrier number in the nanowire is given by

AN =27 (5i +to))Ngy L - (4.4.2)
Assuming a constant mobility in the 1% order, the conductance change reads:
AG = AN, (4.4.3)

LZ
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yielding,

AG| _ 2(rsi +tox)Next

(4.4.4)
Go ‘ext rsi2 Ng

Equation 4.4.4 explains the sensitivity plot depending on the square root of the cross-section
area of the nanowire for ri>>to, (Fig. 4.4.2 (b) and Fig. 4.4.3 (b)), whereas it should increase
as 1/A for very small cross-section. Equation 4.4.4 also indicates that the reduction of the
doping concentration can increase the nanowire sensitivity, enabling the optimized design of
the nanowire sensor.

4.4.4 Low Frequency Noise in Nanowire Sensor

The sensitivity of nanowire sensor can be limited by the low frequency noise arising from
the random trapping-detrapping (G-R) of carriers into traps, of areal density N; (cm?),
located at the Si/SiO, interface [88, 89]. The random fluctuations of the number of the total
interface charges, Niap, give rise to random fluctuations in carrier number, resulting in the
conductance fluctuation of nanowires. This might limit the sensitivity of the detection. The
power spectral density (PSD) associated with charge traps at the interface can be written as:
[90, 91]

&AN{ap)T

, (4.4.5)
1+ (27 )?

SNtrap( f ) =

where <ANtrap2> is the variance of the total number of the interface trap charges and t the
trapping time constant. For the interface traps obeying the distribution of Poisson’s law [90,
91], the variance is simply equal to the mean value of the total number of the interface trap
charge:

(ANirap) =[ " Sytrap(F) = (Nerap) = 271Ny L . (4.4.6)

The condition of global charge neutrality, i.e. AN = AN trap » €nables the PSD and the total

variance of the conductance to be derived from Eqgs (3)-(6) as,

115



116

4. Transport of Quasi-1D nanostructure FET

2 2
S (f) = qL—ﬁ’SNtrap( f) (4.4.7)
and
(AG?) 2N;,
3 = (4.4.8)
Go Noise 7 Tsi Ng“L

To guarantee the charge detection, the conductance variation due to the external charge must
be higher than its random fluctuation due to the trapping-detrapping noise i.e.

(AG?)
Gy’

26
GO

(4.4.9)

ext Noise

Equations 4.4.8 and 4.4.9 allow the definition of the sensitivity threshold for detecting the
external charges, Nex:  as:

1 NitFsi _
2L

Next th = (4.4.10)

i +tox

It should be noted that the charge detection threshold Nex v depends on geometrical
parameters and on the interface trap density Ny, but is independent of doping concentration.
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Figure 4.4.4 : Sensing threshold density as a function of (a) the length L and (b) the diameter d; of the
silicon nanowire; the other parameter being set to be constant value. In order to be detectable, the
external charge density must be higher than the sensing threshold density.

Figure 4.4.4 shows the geometric dependence of the sensing threshold Nex  for a given
interface trap density Ni=10'° cm™. As can be seen, Nex: tn decreases typically as the square
root of diameter ds; and the length L of the silicon nanowire, indicating that the low frequency
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noise limitation can be overcome by scaling up the active area of the sensor, 27z (rg; +t,,) L .

This could be achieved by increasing the diameter or the length of the nanowire, but at the
expense of sensor sensitivity and of nominal nanowire conductance Go. The only remaining
parameter of the nanowire sensor for the optimization is then the doping concentration, which
can be chosen for a tradeoff between sensitivity and nominal conductance values. In addition,
it is worth noting that an external charge density lower than Nj; can be detected, because the
fluctuations of the interface trap scales as the square root of Nj; in Eq. 4.4.10.

The detection limit of a single external charge can also be addressed using Eqgs 4.4.1 and
4.4.3. To this end, one can calculate the conductance change due to one elementary charge
variation i.e. AN=1, yielding,

CC I (4.4.11)

= : )
Go single 7 lsi NgL

To be detectable over the trapping noise fluctuations, this initial conductance should be
larger than the square root of the conductance variance (Eg. 4.4.9), which leads, after
simplification, to the condition: N;<1/(2mrsL). Interestingly, this means that the detection of a
single external charge is only possible if the interface trap density Nj; is sufficiently low i.e.
lower in average than one trap per active surface of the nanowire.
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Figure 4.4.5 : AG/Gq variation from the discrete charge detection and the random noise fluctuation.
The charge which makes the variation below 2.5 cannot be sensed.

As an illustration of single charge detection, the conductance variation has been evaluated
with Eq. 4.4.4 for integer values of AN =27z (r +1t,,)Ney L after setting the nanowire

parameters: L=0.1um, ds =20 nm, tox =1 nm, Ng = 10*" cm™ and Nj; = 10*° cm™ (see Fig.
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4.4.5). For this geometry, one single charge corresponds to a step in the external charge
density, Nextsing|e:l.32X1010 Cm'z, and, to a conductance change AG/Gy of 0.32. The random
noise detection limit for the conductance is given by 0.25, indicating the possibility of the
detection of a single charge variation. In other words, the detection is possible because once
averaged over the nanowire area, a single charge yields a charge density Nexsingle larger than
the interface trap density Njt.

4.4.5 Conclusion

In summary, by means of simulation and analytical calculation, the charge sensitivity of
silicon nanowire sensors was evaluated as well as their detection limit due to the low
frequency trapping noise. Not only from the extrinsic noise, but also intrinsic noise can be a
limitation of sensor performance. The principle and the limitation of single charge detection
have also been discussed in this chapter. It depends on the fabrication condition and
geometrical parameters. Thus in the same process condition, device simulation should be
performed before the fabrication to avoid the limiting sensor by intrinsic low frequency noise.
The engineering of the sensitive nanowire sensor can be possible by tuning the doping
concentration and the diameter of nanowire.
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Chapter
Device Simulation

5.1 Overview: Types of Simulation

Proposed Process

During several tens of years, semiconductor devices |
have been enormously innovated. Not only for the |

feature size, but the type of semiconductor devices ﬁ| Process Simulation

also enlarge. As time goes by, various device |

. . . | Device Simulation
structures require more complicated manufacturing |

processes. Cost of experiment is increasing as process

Prototype Device Fabrication|

equipment becomes more expensive. Thus a pure

trial-and-error approach to the optimization of device No Test

performance becomes time consuming and expensive.

Yes

For a practical alternative, a computer simulation | Cireuit Level Simulation |

becomes an essential tool for the device engineering. |

In electrical engineering technology computer aided | Prototype Fabrication _|
design (TCAD) and electronic design automation No ¢
(EDA or ECAD) are the most widely used simulation v

€S

tools. TCAD models semiconductor fabrication and | Producti |
roduction

device operation. . ) .
Figure 5.1 : Device fabrication flow.

ATHENA serviced by SILVACO is a famous process TCAD simulator [1]. Process
simulator supports virtual fabrication of device according to the given process flow. For
considerable parameters, it includes most of fabrication process such as material growth,
oxidation, diffusion, etching and metal deposition etc. Depends on the simulator 1D cross-
section, 2D or 3D structure can be fabricated and compared. Process simulation is necessary
to reduce the cost of development and the period of process development and to enhance the
yield.

As an example of device TCAD simulator, Sentaurus Device serviced by SYNOPSYS can
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make simulations of electrical,

thermal and optical
characteristics of devices [2].
Process simulation supports the
first step in overall simulation. It
can provide the detailed physical
structure and the dopant profile
of device before device
simulation. Thus the output of
TCAD s
available for the starting point of
device TCAD. Using device

TCAD, device performances for

process usually

the prototype device can be

estimated. It can supplement

v v
Figure 5.2 : Hierarchy of transport models [4].

experimental data with deep

physical insight and shorten
development time. Coupling of process and device TCAD enhance the ability to optimize the

device performance and process sequences.

Simulation Program with Integrated Circuit Emphasis (SPICE) simulation is indispensible
for the device integration. SPICE used for the designing electronic systems like integrated
circuits and printed circuit boards. EDA support not only the design but also the circuit
simulations. DC/AC, transfer curve, noise etc. can be analyzed using EDA tools.

All of simulation requires models. In the process simulations, physical models of diffusion,
oxidation, ion implantation, thin film deposition and etching etc. are necessary. For example,
Deal-Grove model is used for the oxidation. In the device simulations, lots of models exist
depending on the device structures, materials and the output which we want to observe. At
the beginning of semiconductor industry, simple analytical models based on the drift-
diffusion model were used to estimate the device transport characteristics [3]. It includes
simplified doping profiles and device geometry [4]. However, nowadays drift-diffusion
model is not enough because the scaled down device require quantum physics to estimate
their properties. Thus other models such as quantum Monte Carlo method or Green’s function
method have been studied to overcome the limitation of drift-diffusion model.

In this chapter, device simulation of quasi 1D nanowire structures and other devices will be
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shown. Simulation examples of Si nanowire, FInFET, OLED, E-paper will be introduced.

5.2 Simulation of Quasi 1D Nanowire Devices

5.2.1 Finite Difference Method

Lots of simulation models such as \ ” J

Poisson’s equation or Schrodinger *=0 1 2 N-1 N

) o ] i=0 | 2 N-1 N
equation are based on partial differential

——
equations. Solving a partial differential V() = Yoo itV o
v 2 i-1 “Ji i+l
equation can be carried out using h
numerical analysis. Analytical solution '
is difficult to find in the complex Ad=w
. .. 1 0 0O

system so that the simple approximation 1.2 1 0
and numerical method is necessary to 0 1 -2 1
reduce the running time of simulation A=
and hardware resource. To understand 0 1 _'2 1
numerical method easily, let’s guess an . . . . . 0 1

1D continuous system which has a Figure 5.3 : Simplified 1D 2™ order differentiation.
certain model f(x). Then, divide the

continuous 1D system by finite number of N. Discreteness of system is the first
approximation of finite difference method. From this approximation, differential equation can
be changed to ‘difference’ equation. According to the definition, 2" order differentiation can

be written as:

- i’+1_ filz(f”l_ fi _ fi — fi—lj/(xi 1_Xi)= fi+1_2fi+ fi—l (5 1)
+ 2 ! *

Xiz1 — X% Xiv1 =X X1 — X% (Xi+1 - Xi)

where i is index of 1D discrete coordinate. Especially, when the distance between discrete x
is 1, it can be simplified as fi.+;-2fi+fi... Eventually, this system can be described as a linear
algebra matrix.

Now previous method can be applied in 2D system. Let’s see how to solve Poisson’s
Equation using this method. Poisson’s equation is 2" order differential equation describing
the relationship between the electric potential (or field) and charge in closed system. It can be
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written as ;

V.E=vWV=_2, (5.2)
&

where E is the electric field, V the electric potential, p the charge density and & the
permittivity. From Eq. 5.1, 1D Poisson’s equation can be described as :

Viie =2Vi+Viy _ pi

5 =—-— (5.3)
AX 3
With the geometrical index (i, j) and Eq. 5.3, Poisson’s equation in 2D system is:
Viegi—=2Vii+Vigi Viig-—-2V;i+V;i_ r
I+1,j [} 1 l,j + I,j+1 1] [} 1 =_pl,j . (54)
Ax? Ay? &

If the difference of distance in x and y axis is same (it will be described as A), Eq.5.4 can be:

1 Pij 2
Z(Vm,j +Vig,j +Vijs Vi ja A j:Vi,j (5.5)
J+1 |
J y
A¢=w /‘_-Z y.
/-1 / /+1
T B OO -4 0 0 O 1000
B i © T |1 0100
g p—_— 0 1 -41 0010
A= T= , B=
5 . & 3 0141 010
OB T 01 001

Figure 5.4 : 2D system and 2nd order differential equation matrix.

The meaning of Eq. 5.5 is that V; j is related to the average of values of neighbor. Finally
differential equation becomes eigenvector problem. Using Gauss-Seidel method or successive
over-relaxation method results in fast convergence for the solution in the iterative process [5].



5. Device Simulation

From these approach, the electric field, potential, charge distribution can be estimated in a
given system. As we can see in the previous paragraph, properties are calculated according to
the variations and values at neighbor nodes. For the simulation, grid generation is one of the
most important tasks.

Figure 5.5 : Example of Potential distribution simulation. 2D system in Fig. 5.4 was used. Simulation
was carried out using Mathematica 6.

The grid should be fine enough to reflect interests of neighbors. The grid spacing depends
on the geometrical properties of devices. Non-uniformly spaced grids are used in most of
practical simulations. Near the edges of device or junction interfaces, the grid should be
dense for the precise calculation. However as a trade-off of calculation accuracy, simulation
time is increased because the increase of the matrix dimension makes the calculation difficult.
Depending on the simulator, the grid is refined in regions where the parameters change
rapidly. It can make the effective simulation which save the running time and give enough
accuracy.

5.2.2 Simulations in Specific 1D Systems:
Variable Range Hopping in Disordered System

For an example of simulation, the conduction of 1D system with localized states in low
temperature was calculated. Currently many semiconductor industries have been developing
the device on the transparent substrate such as glass or flexible polymer [6, 7]. In this case the
fabrication of single crystalline device is very difficult. Thus amorphous Si and organic
materials have been studied for alternatives of single crystalline on the glass or flexible
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polymer substrate. At the grain boundary of non-single crystalline materials, localized states
exist.

Variable range hopping (or Mott variable range hopping) is a model which describes the
conduction of strongly disordered system in low temperature [8]. The probability of hopping
with optimum hopping distance r between two states is [9]:

r AE
P ~e 2———— 5.6
xp( a kBTJ (56)

where a is the localization length, kg the Boltzmann constant and AE is the activation energy.
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Figure 5.6 : Random energy states in the double barrier problem (left). Gaussian random was used.
Shape of estimated current is similar to the nanowire device |-V characteristic.

When the hopping distance is further, carriers have low probability for the hopping event.
This is same for the energy states. Lower energy difference between two states gives higher
hopping probability. These schemes are available with following calculation process 1)
initialization: the definition of 1D disordered system, 2) calculation of transfer matrix and 3)
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iteration for the probability calculation. Simple 1D disordered structure was defined in the
simulation. For the randomness of disordered energy states, variance of channel energy state
was given for the variable with Gaussian random distribution.

From 1D numerical analysis explained in previous section, the hopping probability was
calculated. When drain bias Vps, is given, energy band diagram is changed. From the
changed band diagram, hopping probability is changed. Injected carriers hop forward and
back and arrived carriers in drain region are counted to calculate current.

This simulation gives a clue of the transport of nanowire structure. Previously, bottom-up
grown nanowire structure has been explained using back-to-back diode model which
considers only contact barriers [10, 11]. However, with variable range hopping model, device
simulation with channel disorder becomes possible.

5.2.3 Practical Device Simulation

As we discussed before, device dimension becomes shrunken close to 1D structure.
Currently, lots of nanowire devices are developed and studied for the alternative of planar
devices. Device simulation of these devices gives us the considerable parameters and device
operation scheme.

FilFET 16:31:40 9/14/11
6, Ve e e e e e ™ G s w ‘ : FiexPDE 5.0.17

4 , ]
K%AVAVAVX%{ o]

20nm_FinFET: Grid#1 p2 Nodes—764 Cells=351 RMS Emr=0.0142
Stage 8 Integral= 3.854469¢-12

Figure 5.7 : Grid structure for FinFET simulation (left) and simulated potential distribution at V¢=0.4
V (right).
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Figure 5.8 : 1p-V¢ characteristic Comparison of FinFETs. 5 nm Ws, show current degradation at high
gate bias (right) while 20 nm Wfin has linear 1p-Vg behavior.

Mobility analysis of FINFET has been discussed in chapter 4.1. For the study of FinFET,
FlexPDE was used. Design of SOI FInFET fabricated by IMEC was similarly programmed in
the software as shown in Fig. 5.7. Surface roughness scattering factor was considered as a
variable for the mobility model [12]. Without surface roughness consideration, Ip-Vg
characteristic does not have any current degradation. Before the simulation, the result of
measurement shows the current degradation at high gate bias with narrow FinFET. With the
assumption of surface roughness scattering effect, simulation shows the evidence of its effect.

5.3 Other Device Simulations: OLED and E-paper

5.3.1 Monte Carlo Method

Monte Carlo methods rely on repeated random sampling to estimate simulation results.
Different from the deterministic model, Monte Carlo method is stochastic model. In the
deterministic model, it is possible to find analytical solutions. However, there are lots of cases
impossible to find solution. Especially, Monte Carlo simulation is useful for the system with
many coupled degrees of freedom. Carrier transport or random particle collision problem is
thus suitable for the Monte Carlo Simulation[13, 14].
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For simple understanding, let’s calculate = with Monte Carlo method. Someone throw darts

randomly in the square including a circle (target) fully inside.
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Figure 5.9 : Calculation of & using Monte Carlo method. Ratio between numbers of red darts to total
darts is the ratio of area (left). More trial can achieve more accurate value (right).

If his throwing is completely random, darts will be uniformly distributed in the square.
Some of them will be inside circle and others will be out of circle (but inside square). Thus
the ratio of circle area / square area is the number of dart in the circle / in the square. It can be

simply rearranged as:

o - - 2
N° Dart -|n the circle _ 7zr2 _ Z, 5.7)
N° Dart in the square 4r° 4

o1z where r is the radius of circle. Thus without
: N any analytical calculation, = can be calculated
‘ from the ratio of dart inside / outside of circle
12 in the square. If the trial is increased, more

54D MHz

24

-30 : JI 15

g ., o . £ accurate value m can be obtained as shown in
2 d, & > Fig. 5.9. Like this example, Monte Carlo
® B NA A8 - I 24 . . )
LN R . method can avoid complicated calculation
o SN E s 0 U= and give realistic results when the system

Freq (MHz) . - - - - -
~ e = oo includes randomness. In circuit fabrication, it

Figure 5.10 : Spice simulation of RF low pass is impossible to make exactly same devices
filter using Monte Carlo simulation. .
because the performance of device
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components cannot be definitely same even in the same fabrication condition. Thus, all of
circuits should be designed with the tolerances. In this case, the errors of each device
parameters are random factors. The analytical simulation cannot consider these random
factors in the complex circuit simulation. Monte Carlo simulation can give the realistic
simulation results for the tolerance simulation of designed circuit.

5.3.2 Device Simulations: OLED and E-paper

Monte Carlo simulations of organic light emitting display (OLED) and electronic paper (E-
paper) have been done for the optimization of device structure. For alternatives of liquid
crystal display (LCD), research of OLED and E-paper has been being carried out [15, 16].
Especially in mobile devices, OLED occupies huge portion of market because it does not
need back light module. OLED has several issues. For example, life time of OLED has been
a research topic due to respectively shorter lifetime than other displays [17]. Basically OLED
consists of organic materials. Thus performance of OLED can be degraded easily by other
factors such as oxidation, contamination and high electric field. To enhance the life time of
OLED, proper materials, device design and operating algorithm is necessary.
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Figure 5.11 : Carrier transport simulation of OLED using Monte Carlo method. For efficient light
emission, most of carriers should be accumulated in the region highlighted with yellow.
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oeesr . Optimized device design needs
proper thicknesses of each material
ot layers such as anode, hole injection

layer (HIL), hole transport layer
/ (HTL), emission material layer
0.001 / (EML), electron transport layers

/ (ETL), electron injection layer (EIL)
™ 2 R R and cathode. For the emission

Current (A)

Voltage (V) efficiency, most carriers should
Figure 5.12 : 1-V characteristic of OLED. Measured (dots) recombine in the EML. As shown in
data is fitted by simulated (line) one. Fig. 5.11, energy barriers at material
interfaces accumulate holes and electrons and it affect total transport characteristics. I-V

characteristic was estimated from counting carriers as a function of given bias (Fig. 5.12).

E-paper use electrophoretic display to form visible images [18]. By rearranging charged
pigment particle, it shows colored or white images. To rearrange the charged particles,
transparent electrode covers the top of cell. E-paper doesn’t need to be turned on
continuously to display image. Once charged particles are rearranged, it can be remained
without external power. It makes E-paper felt like real paper. Because E-paper does not use
light emission, it also has been issued on the

- + -
viewpoints of good legibility and readability ~ (a) eg& Po  Ccects gggfo%%
and response time.

To enhance the legibility and readability, the fegfes %g‘&%°° $e €
- +

contrast control can be useful. Increased bias
can strongly rearrange charged particles but
power consumption will be increased.
Electric field can be manipulated by the
shape of top electrode. Mesh shape of
electrodes gather the grid of charged particles

at the top of the cell. In this case the  REEHE IR TS B VI e o e

aggregated - particle - can  give  enhanced Figure 5.13 : (a) Operation scheme of E-ink [18].

contrast. (b) Contrast manipulation using mesh electrode

Before Monte Carlo methods, electric field STUC™™®:

and potential distribution were calculated using numerical analysis. As described in Ch. 5.2.1,
Poisson’s equation has been calculated to be the basis of the Monte Carlo simulation because
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the movement of particle is affected by electric field.

Figure 5.14 : Potential and electric field distribution of unit cell. 6 electrodes (left) and 3 electrodes
(right) are shown in this example.

Various fabrication conditions, for instance distance of electrode, amounts of charge in the
particle and number of charges are considered as variables of the simulation. Stronger electric
fields are confined in the cell when the number of electrode is increase and the electrode gap
decreased. It reduces the flight time of the charged particle. When the charge of particle
increases, particles are more affected by electric field and it reduces the response time.
However, increased charge, particle number and electric field can make more collision among
particles and it can increase the response time of E-paper.

To optimize the performance of E-paper, fabrication conditions and device geometry should
be firstly defined. Monte Carlo simulation can be a useful tool for the device optimization in
E-book production.

5.4 Conclusion

In chapter 5, various simulations are investigated. Usages of process simulation and device
simulation and the importance of proper modeling were introduced. In the device
development level, process simulation and device simulation can be complementary.

Finite difference method is one of the basic (but powerful) tools for the simulation. Using
computational calculation, partial differential equation such as Poisson’s equation can be
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solved. Electric field, potential, carrier distribution can be calculated so that the device
characteristics also can be estimated.

Monte Carlo simulation is based on the randomness of the simulation parameters. It can be
useful in the case of that the analytical solution is difficult to find. Due to the randomness,
Monte Carlo method may give more realistic simulation results.

To be an optimized device, device characterizations and simulation should be
simultaneously carried out in the research. It can give the way to improve device
performances.
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6. Conclusion

Chapter 6
Conclusion

Evolution of smart device and innovation of information induce the requirements of
electronic devices. Various device features appear according to such kind of requirements.

The increase of modern device requirement enhances the development of field effect
transistor. During tens of years, one of the major trends in FET has been channel length
scaling down. However, device scaling down looks like arriving almost the end. Industry
fabricates nanoscale devices using 22 nm process. As device dimension decreased, there are
lots of unwanted phenomena represented as short channel effect.

To avoid the short channel effect such as threshold voltage variation, drain-induced barrier
lowering punchthrough, velocity saturation and hot carrier effect, lots of technologies have
been developed. As an example, multi gate structure has been researched to have better gate
control about channel. For the better control and immunity of short channel effect, device
channel structure has been achieved at almost 1D nanostructure such as FinFET, 3D stacked
nanowire and junctionless FET etc. Due to the change of device structure in advanced FET,
many physical factors neglected in bulk scale arise again.

In this thesis, basic and advanced device fabrication process which | have experienced
during study has been shown in chapter 2. We have been discussed top-down and bottom-up
approach for the nanoscale device fabrication technique. Especially, lithography technology
has been focused because it is base of the modern device fabrication. For the advanced device
structure, etching technique has been investigated in detail.

Because of the extremely scaled down device structure, device characterization becomes
more complicated. In chapter 3, characterization of FET has been introduced. Based on the
simple MOSFET operation model, we have discussed how to define series resistance, carrier
mobility, threshold voltage. For the practical consideration in the advanced FET, several
parameter extraction techniques have been introduced such as Y-function, split C-V etc.

In chapter 4, some kind of quasi-1D nanowire structure devices have been discussed based
on previous chapters. FINFET is one of promising alternatives against conventional planar
devices. Problem of FinFET is surface roughness. During the fabrication, the etching process
induces surface roughness on the sidewall surfaces. Surface roughness of channel decreases
the effective mobility by surface roughness scattering. With the low temperature
measurement and mobility analysis, drain current through sidewall and top surface was
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separated. From the separated currents, effective mobilities were extracted in each
temperature conditions. As temperature lowering, mobility behaviors from the transport on
each surface have different temperature dependence. Especially, in n-type FinFET, the
sidewall mobility has stronger degradation in high gate electric field compare to top surface.
Quantification of surface roughness was also compared between sidewall and top surface.
Low temperature measurement is nondestructive characterization method. Therefore this
study can be a proper surface roughness measurement technique for the performance
optimization of FInFET.

As another quasi-1D nanowire structure devices, 3D stacked SiGe nanowire has been
introduced in chapter 4.2. Important of strain engineering has been known for the effective
mobility booster. In chapter 4.2, the limitation of dopant diffusion by strain has been shown.
Without strain, SiGe nanowire FET showed huge short channel effect. Subthreshold current
was bigger than strained SiGe channel. Temperature dependent mobility behavior in short
channel unstrained device was completely different from the other cases. Impurity scattering
was dominant in short channel unstrained SiGe nanowire FET. Thus, it could be concluded
that the strain engineering is not necessary only for the mobility booster but also short
channel effect immunity.

As described in chapter 4.3, Junctionless FET is very recently developed device compare
to the others. Like as JFET, junctionless FET has volume conduction. Thus, it is less affected
by interface states. Junctionless FET also has good short channel effect immunity because
off-state of junctionless FET is dominated pinch-off of channel depletion. For this,
junctionless FET should have thin body thickness. Therefore, multi gate nanowire structure is
proper to make junctionless FET.

Because of the surface area to volume ratio, quasi-1D nanowire structure is good for the
sensor application. In chapter 4.4, nanowire structure has been investigated as a sensor. Using
numerical simulation, generation-recombination noise property was considered in nanowire
sensor. Even though the surface area to volume ration is enhanced in the nanowire channel,
device has sensing limitation by noise. The generation-recombination noise depended on the
channel geometry. As a design tool of nanowire sensor, noise simulation should be carried out
to escape from the noise limitation in advance.

Characterization should have a model to explain the device physics. Without this model,
device operation cannot be properly explained. Thus, device simulation with physical model
is necessary to explain why the device operates and to predict how it will operate. In chapter
5, the basic principles of device simulation have been discussed. Finite difference method and
Monte Carlo simulation technique have been introduced for the comprehension of device



6. Conclusion

simulation. Practical device simulation data have been shown for examples such as FinFET,
strongly disordered 1D channel, OLED and E-paper.

Through this thesis, we have traveled from the device fabrication to modeling. At the
beginning of this chapter, | said “device scaling down looks like arriving almost the end”.
Sometimes it sounds like that there is no field to improve in transistor engineering. However,
as we have seen in this thesis, there are plenty works to do in all around of transistor research.
I hope that studies in this thesis contribute to the small part in semiconductor device research.
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Appendix 1: Physical Constants

&o

LG

Kt (KgT)

Electronic charge

Electron mass in free space
Proton rest mass

Speed of light in vacuum

Permittivity of vacuum

Boltzmann’s constant

Planck’s constant

Thermal energy

1.602x10°C

9.109 x 10 kg
1.673 x 10 kg
2.998 x 108 m/s

8.854 x 10 F/icm

1.381 x 102 J/IK
8.617 x 10° eV/K
6.625x 10 Js

4.135x 10 eVs

0.02586 eV (T = 27 °C)

0.02526 eV (T = 20 °C)



Appendix 2: General Properties of Si, Ge and SiGe

List of physical properties about Si, Ge, and SiGe [1].

Appendix

Properties Si Sio,75G€0.25 Sio,sGEo,s Sio_szeojs Ge
Atoms/cm3 5.0 x 107 4.805 x 107 | 4.61x 102 | 4.415x 107 | 4.42 x 10%
Atomic weight 28.09 39.2175 50.345 61.4725 72.6
Breakdown field | 5 s 25x10° | 2x10° 15x10° | ~10°
(Vicm)
Crystal Structure | Diamond Diamond Diamond Diamond Diamond
Density (g/cm3) | 2.328 3.078 3.827 4577 5.3267
Dielectric 11.9 12.925 13.95 14.975 16
constant
Effective density
of ~States n|, g qo1 |- ; ; 1.04 x 10
conduction band,
N¢ (cm™®)
Effective density
of ~States in|, 10 |- ; ; 6.0 x 10
valence band, N,
(cm?)
Electro | M= 0.98 - - - m= 1.64

Effecti ns
ve m= 0.19 - - - m= 0.082
Mass(,) m; = 0.16 - - - m; n= 0.044
m/ m Holes

Mph = 0.49 - - - Mphn= 0.28
Electron affinity | 4.05 4.0375 4.025 4.0125 4
Minimum Indirect
Energy Gap (eV) | 1.12 1.05 0.945 0.804 0.66
at 300K
Minimum Direct |, , 3.1 25 1.6 0.7

Energy Gap (eV)
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Intrinsic ~ carrier
concentration 1.45x 10 | 0.6 x 10% 1.2 x 108 1.8 x 102 2.4 x 10"
(cm?)
Intrinsic Debye |, , 18.17 12.34 6.51 0.68
length (um)
Intrinsic 23x10° |1725x10° |1.15x10° | 575x10° |47
resistivity (Q-cm)
'(‘Aa‘;t'ce Constant | ¢ 4210 5.4825 55373 5.5960 5.6575
Linear coefficient
of  thermal| )~ 10° [34x10° |42x10° |50x10° |58x10°
expansion,
AL/LAT (°C™)
Melting point
(°C) 1415 1295.5 1176 1056.5 937
Minority —carmier | , o 10% | 2125x10° | 1.75x10° | 1.375x 10° | 10°
lifetime (s)

N _ 1500(electro | 2100(electro | 7700(electro | 3300(electro | 3900(electro
Mobility  (drift) | n) n) n) n) n)
(cm?/V s)

450(hole) 812.5(hole) | 1175(hole) | 1537.5(hole) | 1900(hole)
Optical — phonon 0.063 ) ) ) 0.037
energy (eV)
Phonon mean free 76 (electron)

- - - 105
Specific heat
(J/g °C) 0.7 .6025 .505 4075 0.31
Thermal
conductivity at| 1.5 .085 .083 A1 0.6
300 K (W/cm °C)
Thermal
] .. . g . A4 )

diffusivity (cm?/s) 09 05 63 0495 0-36

1at1650°C | 1at1570°C | 1 at 1490°C | 1 at 1410°C | 1 at 1330°C

Vapor  pressure
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B -6 -6 -6

(Pa) 10 at | 10 at | 10 at 10° at 795 10 at
900°C 865°C 830°C 760°C

Reference

1 VerginiaSemiconductor, 7he General Properties of Si, Ge SiGe, SiO2 and SisN, 2002,

Springer Pub.
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Appendix 3. E-beam Lithography Pattern Design Program
using Mathematica

Unlike using photo mask in photo lithography, E-beam lithography use pattern file. The
Pattern file includes structure generated by the software like CAD [1]. There are several
advantages of conventional CAD tool. For instance, it is quite popular and easy so that there
are common source of introduction and help. Also, there are lots of functions to make design
easy. However, conventional CAD tool cannot import another images for drawing
background. In the case of top-down approach, align-keys could be enough to make definite
alignment but for the bottom-up approach, sample image is necessary for the background to
make exact position. For example, let’s think about the back gate ZnO nanowire FET on the
SiO; substrate. After synthesizing ZnO nanowire, it should be well dispersed on the SiO;
substrate. The SiO; substrate already has pre-patterned contact pads and aligns keys. We will
draw electrode structure to make contact on edges of ZnO nanowire. How can we know
where the ZnO wire is? To know the position ZnO nanowire, we need images on the substrate
using optical microscope or AFM (in the case of target is very small). This image should
include align-keys to define the relative position of ZnO nanowire. Thus for the electrode
design, substrate image which includes the target and align-key is needed as back-ground
image.

Import Image

Polygon Pattern
Show Image
|

Get Mouse Position

Remove Previous Point
| (\3

Make Array of Mouse Positions Remove Last Array Element

Draw Line Using Position Array
I

Show Image and Lines

v

Make Array of Pattern Remove Previous Pattern

N

Remove Last Array

Figure A.1 : Main process of E-beam lithography pattern design program.
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To make it easier, pattern design tool has been developed using Mathematica 7 [2].
Mathematica has dynamic module and manipulation function after the version of 7.
Especially manipulation function is very helpful to make user interfaces. It gives immediate
access to changeable variables with powerful interactive capabilities.

Original Image Sobel Operator

Eight-neighbor Laplacian Sobel-Laplacian Operator

Figure A.2 : Original image and different outputs of image processing.
This design tool works as following:
A) Import Image

As we mentioned before, for the drawing with exact position, sample images is necessary.
The function of Import gives access to the external data files. Import[“file”] imports data
from a file. For example, Import[“Zn0O.jpg”, “Data”] means that ZnO.jpg file will be called
and returned as numerical data.

B) Image Processing

The image of optical microscopy does not have enough magnification to see nanostructure.
Even though ZnO nanowire has the length of several micrometers, the shape of nanowire can
be blurred in the picture. To enhance hazy shape of nanowire, image processing algorithms
are added in the program. Sobel operator and eight-neighbor Laplacian operator were used to
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make edge detection [3]. Sobel and Laplacian operators are differentiation operators. It makes
differences from neighbors and gives the information of changing value. In this tool, root
mean square average of Sobel and Laplacian operator were used. Output image is similar to
AFM images. It has obvious separation between the target nanowire and others, which help
easier patterning.

C) Alignment

Before drawing structures on the imported background image, position alignment has to be
carried out. Every sample has different (X, Y) positions. To draw structure easily in such
different systems, another coordinate system (U, V) is needed. For example, if the (X, Y)
vector is translated to (U, V), a pattern in (U, V) coordinate can be available in all same shape
of pre-patterned contact pads and align-markers even with different (X, Y) positions. An
affine transform algorithm was used to translate vector coordinates [4, 5]. The affine
transform is the most common transform used in image processing technique. Using simple
linear algebra, the relationship between real position (X, Y) and imaginary position (U, V)
can be expressed as following:

U aX bY ¢ a b c)(X X
Vi=lpX qY r|={p g r{|Y |=Mg.l|Y
1 0 0o 1 0 0 1)1 1

where Massine 1S the affine matrix.

In the affine matrix, we have 6 variables (a, b, c, p, q, r). Thus, at least 3 points of (X, Y) are
necessary to solve these equations (to create 6 equations).

After Mgsine 1S defined, all of patterns in (U, V) coordinate can be transformed to (X, Y)
coordinate using Maine . It makes alignment between (U, V) and (X, Y).

D) Structure Drawing

After alignment, structure can be drawn. Using the function of Mouseposition, (U, V)
vectors are taken on the background image. Each (U, V) vectors are appended one after
another. Each polygon structure can be separated with protocols. For instance, in ELPHY
Quantum system [6], the number set {1, 100, 1} is used to distinguish the start and the end of
each polygon.

E) Save File

Completed structure has to be saved. In this tool, ASCII [7] code used to save patterns. *.asc
is used for file extension.

With these functions, customized drawing tool has been developed. During the patterning,
seeing and checking the sample images give comfortable and exact design of each structure.



Practically, using this tool, 100 nm pattern size has been made by e-beam lithography in

ELPHY Quantum system.

Appendix

[ Clear Points ]

[ 3PointCheck |
uLvL  [{=45,-45)
XLY1
u2,v2 {-3,-45}

X2,Y2 |{568.135,212.628]
usvs  [(=3.-29)

X33 [{569.802,177.633

[ Next Polygon Pattern ]

[Remove Previous Polygon]

[ Cancel Point ]

[ Make File ]

[ Align ]
1 100 1
-55.1615 -51.5223
-35.4165 -64.9565
-33.0587 -61.8982
-50.8414 -47.3122
z
1 100 1
-31.8721 -60.1786
-34.1691 -57.7128
-25.4908 -40.3401
0.00434625  -25.7483
1.12242 -29.7432
-21.1478 -43.5585
-26.1601 -49.105

[ Next Polygon Pattern ]

[Remove Previous Polygon]

[ Cancel Point ]

( Make File |
None

Figure A.3 : Screen shot of pattern design program using Mathematica 7.
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Appendix 4: Fundamental Vacuum System

Vacuum systems have been not only widely used in the device fabrication but also in the
measurement systems. Why vacuum is needed? When a system needs to be clean or need
some special circumstance, vacuum is necessary. In the device fabrication process, 10 ppm
(part per million) of boron make the electrical conductance 1000 times higher. It is as same as
the probability of the encounter with hydrogen in the ambient air. Unintended surface
oxidation should be also avoided. Native oxide can be formed on the exposed surface during
the process. If the device, such as unpassivated OTFT or OLED, is weak against the
oxidation for example, it should be kept in the vacuum desiccator. For the low temperature
measurements, vacuum condition is necessary to remove water molecules. If water molecules
remain, it will be frozen below 273 K and disturb contact probing for the electrical
measurements.

There are several units for the degree of vacuum but Torr and Pa (Pascal, N/m?) are the most
popular. One atmospheric pressure is 760 Torr and 1 Torr is 133.3 Pa. It is easy to remember
if we approximate 1 Torr is about 100Pa. According to the degree of vacuum, three vacuum
statuses, low vacuum, high vacuum and ultrahigh vacuum, are defined. Low vacuum (or
called rough vacuum) is the range of 760 ~ 10 Torr [1]. In the low vacuum, the number of
vapor molecule is larger than the number of molecule attached inside the chamber. It is used
for the distillation, the sputtering, LPCVD (low pressure chemical vapor deposition) and the
plasma process etc. High vacuum is the range of 10° ~ 107 Torr and ultrahigh vacuum is the
range of below 10® Torr [1]. In these cases, the mean free path of the vapor molecule is
longer than the chamber length. Thus the molecule collision with chamber is frequent than
with other molecules. High vacuum and ultrahigh vacuum is used in the ion implantation, e-
beam evaporation and SEM etc. Sometimes people define medium vacuum or extremely high
vacuum depending on the usages.

The selection of proper pump in the vacuum system is very important. No pump can go to hi
vacuum or ultrahigh vacuum directly because each pump has own operation pumping range.
Thus, various combinations are used in the vacuum systems.

For the low vacuum, rotary pump and dry pump are most widely used. Rotary pump
compress the gas to the higher pressure than atmospheric pressure and exhaust outside [2].
Pump module is in the oil. This oil is used for the cooling, lubrication and sealing etc. Thus
oil should be cleanly maintained. If the pump operates with low pressure, the oil vapor tends
to flow back into the vacuum chamber. It can be the contamination source during the process.
Dry pump works without pump oil [2]. Like the engine, it includes pistons which compress
and remove the gas. Thus dry pump is suitable at the extremely high clean process.
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Ultra-High Vacuum High Vacuum Rough Vacuum

EREEIE——
Em_

)

DTARY PISTON MECHANICAL PUMP
DRY MECHAR
ROTIARY VANE|MECHANITCAL PUMP
SORPTION
BOOSTER PUMP
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(LA : WA CRYOPUMP
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Pressure in Torr (units are exponents of ten)

Figure A.4 : Vacuum pump pressure range [3].

For high and ultrahigh vacuum, diffusion pump, turbo molecular pump and Cryopump is
widely used. Most of high vacuum pump cannot work at the atmospheric pressure but below
107 Torr after removing most of gas [3]. Diffusion pump uses heated oil. The oil is heated up
to boiling point. The vapor of oil is sprayed by jet nozzle. When accelerated oil vapor heat the
pump body which is cooled by water, oil vapor is condensed and flow down. The air in the
chamber collides with this fast and heavy oil vapor and compressed. Compressed gas goes
out through fore line. Diffusion pump is cheap and easy to control. It has high throughput.
However, the pump oil back-streaming and the contamination of chamber can be happened.
On the other hand, turbo molecular pump does not use the pump oil [3]. Turbo molecular
pump is purely mechanical pump. It includes rotors and stators which have wings. Stator is
fixed while rotors spin from 9000 rpm to 90000 rpm. Instead of the pump oil, gas molecule
collides with the rotors and condensed. Turbo molecular pump is clean system but it is
expensive to install and noisy because of high rpm. The operation mechanism of Cryopump
is very different from the others. Cryopump cool down gas and frozen gas removed from the
chamber [3]. Cryopump consists of He compressor, cold head and pump body. It is closed
loop refrigeration system. Turbo molecular pump does not use the pump oil and actuation
part so that it is very clean and silent. However, it needs extra pure He and periodic
regeneration. Thus maintenance is expensive.

Apart from introduced pumps, there are many pump system such as sorption pump, Venturi
pump and blow/booster pump for low vacuum and ion pump, titanium sublimation pump and
non-evaporable getter pump for ultrahigh vacuum. However, they are not introduced in this
chapter because they are not widely used in the conventional semiconductor process.
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To get the high quality and yield rate of the fabrication, vacuum system should be well

defined in the instruments. Maintenance of vacuum system is also important for the process.
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Résumé Francais

Introduction

French abstract

La réduction des dimensions des composants microélectroniques a été le principal moteur

pour l'amélioration des performances, en particulier l'augmentation de la vitesse de

commutation et la réduction de la consommation [1]. Actuellement les technologies dites

32 nm sont utilisées dans la production de masse. D'aprés la loi de Moore, des longueurs de

grille de quelques nanometres, qui représentent une limitation physique pour les transistors

MOS, devraient étre utilisées dans quelques années.
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Figure A.1 : Augmentation du nombre de transistor par microprocesseur et de la longueur de grille au

cours des années.

Cependant la simple réduction des dimensions est actuellement en train d'atteindre ses

limites car elle souleve divers problémes.

- La fabrication devient plus difficile. Par exemple, les circuits deviennent plus denses et

plus complexes. Des difficultés apparaissent pour la lithographie, les interconnexions et

les procédés de fabrication.

- Dans les transistors a canal long, les équipotentielles sont paralleles a la grille de sorte

que le canal est confiné de facon efficace a l'interface. Quand la longueur de grille

décroT, la distribution du potentiel est modifiée. Les équipotentielles se déforment en

direction du substrat de sorte que le canal n'est plus contr6lé uniquement par la grille. Ce
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phénomene est a l'origine des effets de canal courts qui se traduisent par le décalage de
la tension de seuil, une réduction de la barriére de potentiel source-canal sous I'effet de
la tension de drain (DIBL'), un percement éventuel, des effets de transport non

stationnaire ou de saturation de la vitesse, des effets de porteurs chuads, etc.

De ce fait, un changement de perspective est nécessaire pour poursuivre lI'augmentation de

la densité d'intégration et I'amélioration des performances anticipées par la loi de Moore. De

nouveaux concepts sont nécessaires [2-4]. Ils peuvent étre classés de la fagon suivante:

empilement de grille, substrats silicium sur isolant (SOI?), et ingénierie du canal [5]. Sous

cette derniére dénomination, nous incluons l'architecture du canal, le choix du matériau et

I'ingénierie de la contrainte mécanique.

L'épaisseur de l'oxyde de grille doit décro®re pour maintenir un champ électrique
suffisant & l'interface. En 2009, la feuille de route ITRS®prévoyait & terme une épaisseur
effective d'oxyde inférieure a 1 nm. A cette épaisseur, lI'oxyde de silicium SiO, n'assure
plus une isolation suffisante et une fuite de grille appara® par couplage quantique entre
la grille et le canal. SiO, doit donc étre remplacé par un diélectrique a plus haute
permittivité (diélectrique dit high-«). Par exemple, avec une épaisseur physique de 5nm,
un diélectrique dont la permittivité relative vaut 20 peut remplacer 1 nm de SiO.
L'augmentation de I'épaisseur de diélectrique permet alors d'éviter les fuites par effet
tunnel a travers la grille. Cependant, ces diélectriques peuvent sont fréqguemment sujets a
un piégeage du niveau de Fermi a l'interface avec le métal de grille. Intrinséquement, ils
génerent également des phonons optiques de faible énergie qui peuvent interagir avec les
électrons du canal. Avec une grille métallique la forte concentration d'électrons peut
cependant écranter ces vibrations dipolaires. Enfin, les tensions de seuil du PMOS et du
NMOS dépendent directement des travaux de sortie des matériaux utilisés pour la grille

et le choix de I'empilement high-x/métal doit donc étre fait en intégrant cette contrainte

[6].

Les substrats SOl sont constitués d'un film de silicium (body*), séparé du substrat

1 Drain Induced Barrier Lowering

2 Silicon on Insulator.

3 International Technology Roadmap for Semiconductors

4 C'est la couche active, qui assure la conduction. Dans la suite, nous conserverons pour cette couche le terme
anglais.
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proprement dit par une couche enterrée de silice (BOX®). Les composants sont isolés
verticalement ce qui assure un premier niveau de protection contre certains effets
parasites qui peuvent apparaire dans les substrats massifs, tels que courant de fuite par
le substrat, photo-courant ou déclenchement parasite (latch-up) sous irradiation [7].
L'utilisation d'un substrat SOI permet également de réduire la profondeur des jonctions,
le courant de fuite et la capacité de jonction. Selon leur épaisseur, les substrats SOI sont
de deux types: partiellement désertés (PD-SOI) ou totalement désertés (FD-SOI) [8].

Les substrats PD-SOI utilisent un film silicium relativement épais (tsi > 45 nm). La
charge de déplétion sous le canal ne s'étend pas jusqu'au BOX de sorte qu'une partie du
film reste neutre et peut collecter les porteurs majoritaires. Si un contact supplémentaire
n'est pas introduit pour les évacuer, ce type de substrat est sujet aux effets de body
flottant. En effet, lorsqu'un mécanisme tel que l'ionisation par impact génére des porteurs
majoritaires, ces derniers sont susceptibles de s'accumuler dans la zone neutre du body et
d'induire une polarisation parasite de la jonction source qui provoque l'injection d'un
courant en exces, une variation transitoire de la tension de seuil et du potentiel de body
[7].

Les substrats FD-SOI on tune épaisseur de silicium plus faible, typiquement inférieure a
20 nm. De ce fait, le film est entierement déserté et la charge de déplétion est constante.
L'excellent couplage entre la grille et le canal améliore els performances en termes de
courant de drain, de pente sous le seuil et de temps de réponse a une variation de
commande de grille. L'utilisation du substrat comme grille arriére est également plus
efficace que pour les substrats PD-SOI. Cette propriété peut par exemple étre utilisée
pour controler électriqguement la tension de seuil. Les effets de body flottant sont
fortement réduits. La faible épaisseur du body et son isolation thermique par le BOX
peuvent toutefois conduire a un auto-échauffement du composant et a un couplage
éventuel entre les défauts des deux interfaces. Malgré ces quelques inconvénients, la

technologie SOI apporte toutefois un net bénéfice en termes de performances.

- L'immunité aux effets de canal court peut étre encore améliorée par rapport a celle des
composants planaires grace a l'utilisation de structures a grilles multiples qui renforcent
le contréle électrostatique du canal [9]. Intel a annoncé récemment que sa prochaine

génération de microprocesseurs, dénommeée Ivy Bridge, utilisera une technologie 22 nm

5 Buried Oxide layer
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en remplacement de la technologie 32 nm de Sandy Bridge. Ivy Bridge utilisera des
transistors de type Tri-gate FinFET pour éviter les effets de canal court. Cette
architecture rend possible la réduction des dimensions du transistor, et en conséguence
une réduction de la consommation et une augmentation de la fréquence d'horloge. Intel
prévoit que cette technologie FINFET 22 nm sera 37% plus rapide et économisera 50%
de la puissance active par rapport a la technologie 32 nm actuelle. Au-dela, les
architectures a grille compléetement enrobante (GAA, pour Gate-All-Around) constituent
I'architecture optimale en termes de contrdle électrostatique du canal. Ce sont des
architectures 3D dans lesquelles la grille entoure complétement le canal. Pour les
sections les plus faibles, le canal tend vers une structure de nanofil pseudo-1D. On parle
alors de NW-FET (Nanowire FET).

Le transistor FINFET — Influence de la rugosité de surface

Pour résumer ce qui vient d'étre dit, la premiére amélioration qui peut étre apportée pour
repousser l'apparition des effets de canal court, et permettre ainsi une réduction des
dimensions, consiste a réduire l'épaisseur du body en utilisant un substrat FD-SOI. Le
contréle électrostatique est encore amélioré grace a l'utilisation de grilles multiples, ce qui
permet de relacher un peu les contraintes sur les épaisseurs de diélectrique de grille et du

body, réduisant de ce fait le risque de dispersion technologique [2, 10].

Les premiéres mises en ceuvre industrielles utilisent l'architecture FinFET. Outre son
excellente résistance aux effets de canal court, celle-ci présente I'atout de ne pas nécessiter de
prise de contact enterrée [11]. Dans le FinFET, la largeur de l'aileron® joue le méme réle que
I'épaisseur du body et son ajustement permet d'obtenir une pente sous le seuil élevée, un
coefficient de body faible et une vitesse de commutation élevée, ce qui le rend trés attractif.
Certaines étapes de fabrication restent toutefois délicates. C'est le cas de la structuration des
ailerons [12-15]. Par exemple, le parfait contrdle de la largeur des ailerons et de la forme des
flancs qui doivent étre parfaitement verticaux impose de faire appel a une gravure ionique
réactive (RIE). Ce n'est pas génant pour la face supérieure de l'aileron, qui est protégée par un
masque dur, mais cela peut dégrader les faces verticales et les rendre rugueuses. Or

6 Traduction du terme fin qui est utilisé en anglais par analogie avec l'aileron du requin.
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I'interaction avec la rugosité de surface est le mécanisme principal qui limite la mobilité des
porteurs en forte inversion. Il y a donc un risque de dégrader les propriétés de transport et,

dans le pire des cas, de réduire le courant Iy, en régime passant.

C'est ce que nous avons voulu étudier. Comme la rugosité a un impact direct sur le transport,
elle peut en principe étre extraite d'une analyse détaillée de la mobilité. Ceci permet d'obtenir
une information directe sur I'état des interfaces dans le transistor réel, information précieuse
pour guider I'optimisation technologique. Nous présentons ici une méthode expérimentale qui
fournit une évaluation quantitative de la contribution de la rugosité. Elle est basée sur une
analyse détaillée de I'influence de la largeur de l'aileron sur les caractéristiques €électriques en

fonction de la polarisation de grille et de la température.

TiN/H&-A po|y
e\

.
%, buried oxide
5

l buried oxide

drain ——— sifilm®™,

Figure A.2 : Schéma et images TEM montrant la structure des transistors FinFET sur SOI
caractérisés. Les composants ont été fournis par I''MEC.

Les FinFETSs utilisés pour cette étude ont été fabriqués par I''MEC (Leuven) sur substrat SOI,
avec une épaisseur de BOX de 145nm. lls n'utilisent pas de technique de contrainte
mécanique intentionnelle. Le canal est non dopé, avec une concentration résiduelle de bore de
10™ cm®, de facon & éviter les interactions avec les impuretés ionisées et a atteindre une

mobilité plus élevée. Le diélectrique de grille, HfSION, est déposé par MOCVD’, pour une

7 Metal-Organic Chemical Vapor Deposition
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épaisseur équivalente d'oxyde de 1.7 nm. Une couche de TiN, déposée par PVD? est utilisée
comme métal de grille. Elle est recouverte de 100 nm de silicium polycristallin. Les plots de
source et de drain sont fortement dopés, & 2x10% cm, et sont séparés de la grille de 0.2 um.
La zone d'accés sous les espaceurs verticaux est longue de 50 nm, avec un dopage de 5x10%
cm?. La hauteur de l'aileron est constante sur la plaque, avec une valeur de 65 nm, et le

masque integre des transistors de largeur d'aileron variable de 10 nm a 10 um [16].
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Figure A.3 : Caractéristiques ID-VG des FinFET mesurées en fonction de la largeur Wfin (a) NMOS
a 300K, (b) PMOS a 300K, (c) NMOS a 77K et (d) PMOS a 77K. De facon attendue, la tension de
seuil augmente a basse température. On observe une dégradation du courant de drain en forte
inversion (transconductance négative) pour les FinFET de type N, tandis que la dégradation est moins

importante pour les PMOS.

La figure A.3 montre les caractéristiques de transfert obtenues. Notez que la pente des
courbes Ip-Vg, la transconductance, est nettement plus faible & 77 K qu'a température

ambiante. Dans les transistors NMOS, le courant de drain décro® méme a forte tension de

8 Physiacl Vapor Deposition
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grille (au dessus de 1.3 V).

Il est possible de décorréler les composantes associées a la surface supérieure et aux flancs

de l'aileron en analysant la variation du courant avec la largeur Wsy, de l'aileron.

T ‘ ' ‘ o v 2 10.0

51 NMOS V. G le

. 05V —s— 0.5V

—_ —Q—O:SVX -06V“ _-0.32
E 21 oyt —A—-0.7V 2
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Figure A.5 : Variation de ID avec Wfin. Ces courbes sont utilisées pour séparer les composantes du
courant associées a la surface supérieure et aux flancs de l'aileron pour chaque tension de grille et
chaque température. On montre ici les variations obtenues pour les NMOS (a gauche) et pour les
PMOS (a droite) & 300K.

On obtient une variation linéaire dont I'extrapolation a largeur nulle fournit la composante
Ipsige du courant associée aux parois latérales, avec une largeur de grille équivalente égale a 2
xHsin. Ce courant ne représente bien entendu pas le courant qui circulerait dans un aileron de
largeur nulle, mais la composante du courant qui circule le long des flancs dans les ailerons
de largeur suffisante pour que les effets de couplages entre faces soient négligeables. Le
courant qui circule le long de la face supérieure de l'aileron est obtenu par différence de Ipsige

avec le courant total.
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Figure A.5 : Analyse de la mobilité effective dans les FINFET de type N. (a) Variation de la mobilité
associée aux flancs de l'aileron en fonction de la température et de la densité de charge d'inversion. La
mobilité est fortement dégradée en forte inversion, y compris a basse température. (b) Dépendance en
température de la mobilité sur les flancs pour 3 valeurs de la densité de charge, repérées par des
fleches de couleur sur la figure (a). (c) Méme figure que (a) pour la face supérieure de l'aileron. (d)
Méme figure que (b) pour la face supérieure de I'aileron.

La figure A.5 montre comment les mobilités effectives extraites de ces deux composantes du
courant, pefrside et Lefriop, Varient en fonction de la charge d'inversion Niq, et de la température
pour une largeur d'aileron Ws,=130 nm. Pour analyser ces courbes il faut se rappeler des
caractéristiques des principaux processus d'interaction qui sont susceptibles de limiter la
mobilité: les interactions Coulombiennes sont d'autant plus efficaces qu'on est en plus faible
inversion, elles sont écrantées en forte inversion et varient peu avec la température ;
I'interaction avec les phonons décroT fortement quand la température décro®, du fait du gel
des phonons ; enfin, l'interaction avec la rugosité de surface prend progressivement le pas sur
les autres mécanismes d'interaction en forte inversion, du fait de sa variation en carré du
champ effectif Ee, elle dépend peu de la température. On retrouve ces différents

comportements sur les courbes mesurées.

On observe en premier lieu que les courbes Her(Niny) présentent en faible inversion une
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pente positive caractéristigue d'une interaction Coulombienne. Cette contribution
Coulombienne est encore plus visible & basse température dans la mesure ou elle devient le
mécanisme d'interaction dominant du fait du gel des phonons. En forte inversion, l'interaction
avec la rugosité de surface prend progressivement le pas sur les autres mécanismes
d'interaction, du fait de sa variation en carré du champ effectif Ec. Or en forte inversion
(Ninv>5x10 cm®), on observe que la mobilité associée aux flancs décrot plus fortement que
celle de la face supérieure, ce qui indiquerait donc que les flancs sont plus rugueux que la
face supérieure. En ce qui concerne les flancs, lI'analyse qualitative de ces courbes indique
donc que la mobilité pefssige €St dominée par la rugosité en forte inversion, tandis qu'en faible
inversion on est en présence d'interactions avec les phonons et les impuretés Coulombiennes.
En ce qui concerne la face supérieure, on observe un comportement général similaire mais
Uefitop reSte sensible a la température méme en forte inversion ce qui montre que l'interaction
avec les phonons n'est pas complétement masquée par l'interaction avec la rugosité de surface
ce qui correspondrait bien a une rugosité moindre pour la face supérieure. Cette différence de
rugosité se traduit par une mobilité maximum plus faible sur les flancs (peftsiee=600 cm?/Vs
and erop=650 cm?/Vs at 77K).
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Figure A.6 : Analyse de la mobilité effective dans les FINFET de type N. (a) Variation de la mobilité
associée aux flancs de I'aileron en fonction de la température et de la densité de charge d'inversion. La
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mobilité est fortement dégradée en forte inversion, y compris a basse température. (b) Dépendance en
température de la mobilité sur les flancs pour 3 valeurs de la densité de charge, repérées par des
fleches de couleur sur la figure (a). (¢) Méme figure que (a) pour la face supérieure de l'aileron. (d)
Méme figure que (b) pour la face supérieure de I'aileron.

La figure A.6 analyse les mobilités effectives extraites pour les PMOS. Dans ce cas, Lefsside
ne présente pas une aussi forte dégradation en forte inversion que pour les NMOS et elle reste
sensible a la température, ce qui indique que la mobilité le long des flancs n'est pas autant
dégradée par la rugosité dans le PMOS que dans le NMOS. Ceci ne signifie pas que les
caractéristiques physiques de la rugosité sont différentes dans les deux types de composants.
C'est son influence sur la mobilité qui est différente. Ce résultat est a rapprocher de résultats
antérieurs obtenus dans des transistors sur substrat massif pour expliquer pourquoi les
mobilités de trous et d'électrons présentent une dépendance différente avec le champ effectif
dans le régime de forte inversion dominé par l'interaction avec la rugosité de surface. Il a été
montré par simulation que cette différence de comportement pouvait s'expliquer en tenant
compte du fait que, du fait de la différence des structures de bandes, le vecteur d'onde des
trous a I'énergie de Fermi, kg, est plus grand pour les trous que pour les électrons, de sorte
que les deux types de porteurs ne sont pas sensibles aux mémes longueurs d'ondes dans la
statistique de distribution spatiale de la rugosité [17].

Afin de quantifier la contribution de I'interaction avec la rugosité de surface au courant pour
les deux types d'interface, nous avons extrait directement le parametre de dégradation de la

mobilité par le champ effectif, 6, par un ajustement global des courbes par la relation:

Heft = fo : (A1)
1+6;, (Vg —Vin)+ 6, (Vg —Vin )2

Ce parametre traduit le terme de dégradation de second degré, associé a la présence d'une
rugosité de surface. Pour obtenir une information quantitative, il faut cependant le normaliser
par rapport po. Il ne peut pas étre utilisé directement car il dépend de la température alors
que l'interaction avec la rugosité n'en dépend pas. Cette dépendance est en réalité un reflet de
la dépendance en température de . Le parameétre adéquat pour caractériser I'influence de la
rugosité est donc 0,/po. Ce parametre peut étre également extrait directement de la dérivée par

rapport a Vg de l'inverse de la mobilité effective [18].



French abstract

(a), (b),

O sidewall| 9] . o . o] - 40nm 3
@ 4onm S | o A i @ 65nm @ o
4 A 65nm 6l | 4 -—4&-130m |% 7|
ol : 130nm S | : gggnm E 6 . ~ * ]
— 250nm |o© . nm | #* I * =¥
o 3 ‘ P 500nm ‘?;,3' g‘ t ! ) § 1 N 31 » 10000m|© | ;g % ; R
a 4 1000nm | =, | o* ¢t > O Sidewall| % 3 ¢ T " = -
2] 0L 2@ | 2] ]
ey ] R.a 100 200 300
DEI ‘ ! Temperature(K)
1 i “\*%"—‘1# i -1 | 0_ ) = & .__.'._-5_._7__:_::__ _ __Q_ i
NMOS Bhan S PMOS o ¢
0 r ‘ - 0 . . : r
100 200 300 100 200 300
Temperature (K) Temperature(K)

Figure A.7 : Variation du facteur d'atténuation du second ordre de la mobilité par le champ
transverse, 0,, en fonction de la température (a) pour les NMOS, (b) pour les PMOS. Les
symboles vides correspondent aux flancs de I'aileron, les symboles pleins a la face supérieure.
La valeur extraite pour le parametre 6,/[1o, associé a l'interaction avec la rugosité de surface,

montre un écart significatif entre flancs et surface supérieure pour les NMOS.

Pour les NMOS, l'interaction avec la rugosité d'interface est environ trois fois plus élevée
pour les flancs que pour la face supérieure. Cela correspond a une augmentation d'un facteur
1.7 du coefficient A-A, ou A est I'écart-type de la rugosité et A la longueur d'auto-corrélation.
Pour les PMOS, on n'observe pas de différence significative entre les valeurs de 0,/po
obtenues pour les flancs et pour la face supérieure. Ceci indiquerait que, comme pour les
transistors sur substrat massif, les trous sont moins affectés par la rugosité d'interface ou, du
moins, sont affectés par une rugosité a plus grande longueur d'onde pour laquelle le procédé
RIE joue un r6le négligeable. 1l n'en reste pas moins que la rugosité des flancs dégrade la
mobilité des NMOS de facon significative, ce qui confere toute leur importance aux études
meneées actuellement pour améliorer la gravure et mettre au point des procédés de post-

traitement.
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Figure A.8 : Analyse de la mobilité effective dans les FINFET de type P. (a) et (b): mobilité

associée aux flancs, (c) et (d): mobilité associée a la face supérieure.

MOSFET SiGe a nanofils: Interactions avec les phonons et

les défauts Coulombiens

Avec la technologie CMOS conventionnelle, les MOSFET de type P présentent une mobilité
plus faible que les MOSFET de type N, du fait des différences dans les structures des bandes
de valence et de conduction et, en particulier, des différences de masse effective, plus grande
pour les trous que pour les électrons [19, 20]. L'ingénierie de la contrainte et I'utilisation de
germanium ou dalliages SiGe dans les PMOS permet de compenser ce handicap.
L'application d'une contrainte mécanique se traduit par une modification de la masse effective
et par une levée de dégénérescence des bandes de trous lourds et de trous légers. En
particulier, I'application d'une contrainte compressive uniaxiale se traduit par une diminution

de la masse effective des trous et par une réduction des interactions inter-vallées qui
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ameéliorent toutes deux la mobilité [20].
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Figure A.9 : Schéma montrant la modification de la bande de conduction (en haut) et de la bande de
valence (en bas) : (a) pour du silicium en tension uniaxiale ou du Si;,Ge, épitaxié en accord de maille
sur un substrat virtuel Si;.,Gey tel que x<y, (b) du silicium relaxé ou du Si,xGe relaxe avec x<0.85, et
(c) pour du Siy.«Gex épitaxié en accord de maille sur un substrat virtuel Si,.,Ge, avec x>y.

Avec I'amélioration des technologies de fabrication des substrats SOI, il est désormais
possible de réaliser des substrats de silicium contraint sur isolant (s-SOI, pour strained SOI).
Ceux-ci sont obtenus en transférant sur isolant une couche de silicium contraint épitaxié sur
un substrat SiGe relaxé. Le silicium ainsi transféré est en contrainte biaxiale en tension.
L'amélioration de la mobilité des trous est moins importante que pour la contrainte uniaxiale

et le décalage de tension de seuil est plus grand.

Les PMOS SiGe a nanofils que nous avons caractérisés ont été fabriqués au CEA/LETI sur
des substrats de type SOI d'orientation (100). Deux types de substrats ont été utilisés: un

substrat standard et un substrat en tension biaxiale (1.3 GPa) qui ont été utilisés pour réaliser
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des nanofils SiGe respectivement en compression (sur substrat SOI) et non contraints (sur
substrat s-SOI). lls intégrent dans les deux cas une grille high-x/metal. Les détails du

processus de fabrication sont décrits dans la référence [19].
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Figure A.10 : Caractéristiques ID-VG de transistors a nanofils SiGe. On compare els caractéristiques
mesurées pour des canaux contraints en compression (c-strained) ou non contraints (a) en canal court
et (b) pour une longueur de canal relativement grande. En canal court, les transistors non contraints
montrent un mauvais contréle de grille.

La figure A.10 montre les caractéristiques de transfert obtenues respectivement pour les
PMOS SiGe contraints et non contraints et pour des longueurs de grille courtes (40 nm) et
longues (600 nm). Les caractéristiques sont mesurées dans le régime linéaire de
fonctionnement, avec une polarisation de drain Vp faible, fixée a 10 mV, et pour une tension
de grille variant de 0.3 V a- 2 V. Ces mesures sont faites a température ambiante. On constate
que les différentes structures présentent un bon contrdle de grille a I'exception notable des
composants non contraints et courts pour lesquels la pente sous le seuil atteint 580 mV/dec.
Les dispositifs longs présentent des pentes sous le seuil (SS) de 67 mV/dec et 65 mV/dec,
donc proches de leur valeur idéale a cette température (60 m\V/dec), pour les canaux non
contraints et contraints. En revanche, la pente sous le seuil ne reste matrisée en canal court

que dans le cas ou SiGe est contraint en compression (100 mV/dec).
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Figure A.11 : Dérivée en température de la tension de seuil en fonction de la longueur de canal pour

les transistors a canal contraint (c-strained) ou non contraint (unstrained).

Nous avons analysé également la dépendance en température de la tension de seuil V. La
dérivée dV/dT peut en effet étre utilisée pour extraire le dopage moyen dans le canal. Nous
en déduisons gue le dopage moyen dans le canal des transistors a canal SiGe non contraint est
environ 25 fois plus élevé que dans les transistors contraints en compression, bien que le

procédé de fabrication soit identique [21].

La mobilité a d'abord été extraite de facon classique en exploitant directement la

caractéristique de transfert sous la forme:

PP S

o W Cox(VG _Vth) (A.Z)
1

Ninvza'cox(VG _Vth)

175



176

French abstract

T 140+ —
5001 2 120 S
§ 400 77K Ni 100- U(Q)
“= 300/
§ < 80 I g
< . Iy = nstraine >
_® C-strained I = < =
=2000 [=600nm 300K 60, L=600mm 300K e
1 2 3 1, 2
N, (10" cm™) N_(10"cm?)
4001 1 ]
5 300 . 807 & - Mixed Tendency
2 w 701 =N / E
o “= 601 g -
g 200 E,
T% C.-strained 5501 Unstrained
- -straine I =
s N L=100nm
100] L=100nm BOOK‘ ]ﬂn"‘ | 40 T,
1 . 22 3
Q, (10 "gcm™)
200{ 30
g 1504 == — 25 g;_
o = =
= 100 nE 20 =
< S Q
3 C-strained T g
1 L=40nm 1 =
50 300K 5T gl :

1 2
N (10"cm™)

inv

Unstrained

Strained

Figure A.12 : Variation de la mobilité effective [ extraite pour les transistors contraints (c-strained,
a gauche) ou non contraints (unstrained, a droite) pour une longueur de grille de 600, 100 ou 40 nm
(de haut en bas). On montre la variation de e en fonction de la densité de charge d'inversion et de la
température. Les transistors courts a canal non contraint ont un comportement en température opposé

a celui des transistors plus longs ou contraints en compression.

Les courbes pes(Niny) ainsi extraites ont été tracées sur la Figure A.12, pour les transistors
non contraints et contraints en compression, pour des canaux courts et longs, et pour des
températures allant de 77 K a 300 K. Avec SiGe contraint, les transistors courts et longs se
comportent de fagon similaire, avec une augmentation de la mobilité & basse température. Ce
comportement est typique d'un transport dominé par les phonons (gel des phonons a basse
température). On retrouve ce comportement pour SiGe non contraint, mais seulement pour les

canaux longs. Pour les canaux longs, on trouve que la mobilité est améliorée d'un facteur 3,5
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environ pour les transistors a canal SiGe contraint en compression. Cette amélioration
attendue théoriquement montre que la contrainte en compression est bien présente, méme
pour les canaux de 600 nm, malgré le début de relaxation que peut produire le flambage des

fils pour cette longueur.

Par opposition, les canaux courts non contraints montrent un comportement opposé avec les
autres cas, avec une diminution de mobilité a basse température, particulierement en faible
inversion. Ce type de comportement est normalement observé lorsque les interactions
Coulombiennes prennent le pas sur les interactions avec les phonons. La mobilité est alors
dégradée. De fagon cohérente, on observe de fait que la mobilité apparente des transistors a
canal court est environ 6.5 fois plus faible pour les canaux non contraints que pour les canaux

contraints, au lieu du facteur 3.5 observeé pour les canaux plus longs.

Dans une deuxieme étape, de facon a décorréler les différents types d'interaction présentes
de facon plus quantitative, nous avons extrait des courbes pes(Nin) la mobilité en champ
faible po qui permet d'obtenir un bon accord entre la courbe expérimentale et le modele

classique

Ho
Heft = : (A3)
1+6, (Vs —Vin)
dans toute la gamme de tensions. Dans ce modéle, 60, est le facteur d'atténuation de premier
ordre de la mobilité. Il intégre tous les effets participant a la dégradation de mobilité sous
I'effet d'un champ transverse et, par conséguent, l'influence de la rugosité de surface. Au
premier ordre, la mobilité a faible champ o résulte donc des réles combinés des interactions

avec les phonons et avec les défauts, neutres ou chargés.

La figure A.13 met en évidence pour o les mémes tendances que pour e La mobilité
faible champ augmente a basse température dans tous les cas, sauf pour les transistors a canal

SiGe non contraint les plus courts.

Les dépendances en température pour les interactions avec les phonons, les défauts neutres
et les défauts chargés étant connues, il est possible de reconstituer ces courbes po(T)

expérimentales par une combinaison linéaire de ces trois types d'interactions:
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C'est ce qui a été fait dans une troisieme
étape. Les trois types d'interactions sont
nécessaires pour obtenir un bon accord. Il
n'est pas possible de négliger les interactions
avec les défauts neutres. Les interactions
avec les défauts neutres et avec les défauts
chargés (centres Coulombiens) ont été
regroupées entre elles sous le terme
interaction avec les défauts. On constate bien
que linteraction avec les phonons est
prépondérante pour tous les transistors
contraints en compression ainsi que pour les
transistors non contraints les plus longs
(600 nm). L'interaction avec les défauts est

prépondérante sur toute la gamme de

température pour les transistors non contraints les plus courts (40 nm). Les canaux de 100 nm

représentent un cas intermédiaire ou les interactions avec les défauts sont prépondérantes a

basse température tandis que l'interaction avec les phonons reprend le dessus a température

ambiante.

La figure A.15 montre la contribution relative des défauts dans la mobilité faible champ

globale. Pour les transistors a canal SiGe contraint, le raccourcissement du canal ne modifie

pas significativement le poids relatif des interactions avec les défauts. Pour les transistors a

canal non contraint, la contribution relative des défauts est beaucoup plus importante. Elle

peut atteindre 98% du total pour les canaux les plus courts.
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Figure A.15 : Contribution de l'interaction avec les défauts extraite pour les différents transistors,
selon la température et la longueur de canal. Les défauts ont une contribution qui augmente trés
significativement a faible longueur de canal pour les transistors a canal SiGe non contraint.

Nous proposons d'interpréter I'ensemble de ces résultats de facon cohérente en considérant
d'une part que le dopant utilisé pour implanter les source et drain du transistor diffuse vers le
canal par un processus de diffusion assistée par les défauts ponctuels d'implantation (lacunes,
interstitiels et amas neutres ou chargés) et, d'autre part, que cette diffusion assistée est moins
rapide lorsque SiGe est contraint en compression. La premiere hypothése est cohérente avec
de nombreuses études sur la diffusion accélérée du bore des source et drain pendant les
recuits d'activation, aussi bien dans les transistors bipolaires que dans les transistors MOS. La
seconde est cohérente avec des conclusions proposeées dans la littérature dans le cas de films
SiGe. C'est cependant la premiere fois qu'un tel effet serait mis en évidence dans des nanofils.
Avec ces hypotheses, une zone perturbée comportant des défauts neutres et chargés serait
présente pres des source et drain du transistor. Cette zone d'étendrait sur une distance plus
importante dans les canaux SiGe non contraints. Elle expliquerait que ces dispositifs soient
moins résistants aux effets de canal court puisque leur longueur effective de canal serait plus
courte. Elle expliquerait également que le dopage moyen dans le canal paraisse plus élevé
dans les transistors non contraints. Elle expliquerait enfin I'importance des interactions avec
les défauts dans les dispositifs SiGe non contraints les plus courts. Notons que du point de
vue des applications, ces résultats sont également importants en ce qu'ils montrent que
I'utilisation de SiGe contraint en compression a en réalité un intérét double: il permet

d'augmenter la mobilité et permet en outre d'atteindre des longueurs de canal plus faibles en
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limitant la diffusion latérale des zones dopées de source et drain.

Le transistor sans jonction (JLT)
— Conduction en volume et réduction des effets de canal

court.

Le transistor sans jonction est un transistor dans lequel le dopage est de méme type de la
source au drain [22]. Dans les versions les plus simples d'un point de vue technologique, les
implantations de source et drain sont méme supprimées et le dopage est entierement uniforme.

Source

Figure A.16 : Coupe transversale du JLT

C'est donc un dispositif dans lequel la conduction est bloquée par désertion de ce canal
dopé et dans lequel il est possible de créer un canal d'accumulation a forte tension de grille
[4]. Ce dispositif n'est devenu intéressant qu'avec la capacité a matriser des films semi-
conducteurs trés minces sur isolant. Ce n'est qu'a cette condition qu'il est possible d'obtenir un
dispositif normalement bloqué (composant bloqué a tension de grille nulle, propriété
nécessaire au fonctionnement normal d'une porte CMOS) avec des matériaux de grille

présentant des valeurs usuelles de travail de sortie.

Le fonctionnement du JLT est déterminé par deux tensions de référence: la tension de grille
Vi, permettant d'obtenir des bandes plates a l'interface semi-conducteur / oxyde de grille et la
tension de seuil Vi permettant de déserter le film dopé. En dessous de Vi, le canal est

complétement déserté ; entre Vy, et Vi, il est partiellement déserté, avec une conduction en
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volume ; au dessus de Vi, un canal d'accumulation se forme en outre a l'interface avec I'oxyde

de grille.
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Figure A.17 : Cartographie de la concentration d'électrons dans un transistor JLT de type N [62,64]:
(a) pour des tensions de grille augmentant progressivement de Vy, & Vi, la partie désertée du canal se

réduit, (b) sous l'action de la tension de drain le canal se déplete prés du drain (pincement).

De par son principe de fonctionnement, le JLT est en principe moins sensible aux défauts
d'interface. Dans un MOS a inversion classique, ces défauts sont en partie écrantés en forte
inversion. lls se font sentir principalement en faible inversion, lorsqu'on passe du régime de
deéplétion au regime d'inversion: le niveau de Fermi au voisinage de I'interface balaye alors la
totalité de la bande interdite, ce qui n'est pas le cas dans le JLT. Il est également possible
d'obtenir une méme charge surfacique avec des champs transverses plus faibles que dans les
MOS a inversion, un canal moins confiné en surface et par conséquent une moindre
dégradation des propriétés de transport par la rugosité de surface. En contrepartie,

I'interaction avec les dopants est toutefois plus importante.

Le JLT présente par rapport au MOS a inversion un certain nombre d'avantages, qui
motivent les recherches actuelles sur ce composant: (i) il est plus facile a fabriquer puisqu'il
n'est plus nécessaire d'assurer l'auto-alignement des source et drain par rapport a la grille (le
dopage est uniforme), (ii) les effets de canal court sont en principe réduits ce qui permet de
contréler le DIBL et la pente sous le seuil jusqu'a des longueurs de grille trés agressives, (iii)
la dégradation de mobilité avec le champ transverse est en principe réduite, (iv) la résistance
aux effets de canal court permet de relaxer les contraintes sur I'épaisseur du diélectrique de
grille. Cependant ce dispositif demande & étre étudié plus en détail. Au cours de cette these
nous avons pu verifier sur des composants de Tyndall le réle important des impuretés ionisées

sur la mobilité de canal qui est de ce fait tres faible par rapport a ce qui peut étre obtenu dans
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un MOS ainversion [23].

Les nanofils silicium en tant que capteurs

— Bruit basse fréequence et limite de détection

Dans le dernier chapitre de cette these, nous nous intéressons enfin a l'utilisation des
nanofils de silicium pour la réalisation de capteurs. La structuration du matériau sous forme
de nanofils permet en effet d'augmenter le rapport surface/volume [24-27]. Une modification
minime de la charge sur la surface externe peut modifier le niveau de Fermi dans la section
entiere du nanofil, ce qui ouvre la voie a une détection électrique de cette modification de
charge. Cette derniere peut résulter par exemple d'une transition entre deux états rédox d'une
molécule ou d'une hybridation d'ADN. La possibilité de faire cro®re ces nanofils par des
techniques de type "bottom-up™ permet d'envisager des techniques de fabrication faible codt
ou le capteur est réalisé au niveau du "back-end of line" ou en "above-IC", au dessus du

circuit d'adressage et de contrdle qui pourrait étre intégré a I'étage CMOS.

Avant d'envisager une fabrication, nous avons abordé ce sujet de fagon théorique pour
disposer dans un premier temps d'ordres de grandeur concernant les sensibilités qui peuvent
étre espérées en fonction des dimensions et du niveau de dopage des nanofils. Nous avons
établi un modele analytique simplifié, validé par des simulations par €léments finis réalisées
sous FlexPDE.

Pour cette approche simplifiée, nous avons supposé que la charge externe est répartie de
facon homogeéne a la surface du nanofil. Les effets de discrétisation de la charge ne sont pas
pris en compte. On calcule la variation relative de conductance G/Gy, Gy €étant la conductance
en lI'absence de charge externe, qui résulte d'une variation de la densité surfacique de charges
externe Next en résolvant I'équation de Poisson dans une section transverse et une équation de
dérive-diffusion selon I'axe du nanofil. A titre d'exemple, la figure A.18 montre les résultats

obtenus en fonction du rayon du nanofil.
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Figure A.18 : (a) Variation relative de la conductance d'un nanofil dans une hypothése de mobilité
constante ou en tenant compte de la dégradation de mobilité avec le champ transverse. L'insert montre
la géométrie du nanofil simulé. La charge externe a détecter est représentée par une densité surfacique
de charge uniforme Next. (b) Sensibilité du nanofil simulé. Les lignes pleines et pointillées montrent
les résultats de simulation. Les triangles montrent les valeurs obtenues par notre modéle analytique.

Pour I'ensemble de ces figures r5;=10 nm et t,,=2 nm.

Dans la plupart des publications, c'est cette variation relative de conductance qui est utilisée
pour caractériser la sensibilité du nanofil en tant que capteur. La figure précédente montre
toutefois que ce n'est pas une bonne figure de mérite dans la mesure ou G/Gy dépend de la
densité surfacique de charges qui est la variable d'entrée du capteur. Par définition, la
sensibilité d'un capteur ne devrait pas dépendre de la valeur particuliere de la valeur d'entrée.
Dans la suite, nous considérons en fait G/Go comme la réponse du capteur et nous définissons
la sensibilité par le parameétre G/Go/Nex:. Ainsi que le montre la figure A.18, ce paramétre est
bien indépendant au premier ordre de la valeur particuliere de Nex et permet donc de

comparer des dispositifs entre eux sans ambiguié. Une légére dépendance avec Nk est

cependant introduite si I'on tient compte de I'atténuation de mobilité avec le champ transverse.

La sensibilité maximale est alors obtenue prés du seuil et décro® progressivement en
accumulation. Ceci signifie qu'il est nécessaire d'adapter le type de dopage selon le signe des
charges que I'on veut détecter. Par ailleurs, la sensibilité est d'autant plus grande que le
diamétre des nanofils est petit. Pour un nanofil de rayon rs;, de dopage Ng (type N), recouvert

d'un diélectrique d'épaisseur tox, on obtient:

AG|

z(rSi +t0X)'Next (A6)
Go |

2
rsi Ng

ext

Cependant, avec la réduction du volume actif, on s'attend également a une augmentation des
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fluctuations de courant associées au piégeage / dépiégeage des porteurs du canal par des
pieges d'interface. Ces fluctuations sont une des causes du bruit basse fréquence dans les
composants. Elles risquent de limiter le seuil de détection des capteurs a nanofils. C'est ce

que nous avons voulu évaluer.

La encore, nous avons supposé que les pieges d'interface étaient répartis uniformément,
avec une densité surfacique N a l'interface Si/SiO, entre le canal semi-conducteur et le
diélectrique entourant le nanofil. Les charges externes sont réparties avec la densité Nex: sur la

face externe de ce diélectrique.

En supposant que les phénomeénes de piégeage/dépiégeage sont poissonniens, nous avons
calculé I'écart-type des fluctuations de conductance qui en résultent. Pour le nanofil précédent,
on obtient:

<AGZ>‘ _ 2N

G¢ zrgNg L
noise

(A7)

Nous avons defini le seuil de détection Ney 1w cOmme la densité de charge externe limite
pour laquelle la variation de conductance apportée par Nex i €St €gale a la variation de

conductance du au bruit de piégeage dépiégeage:

(A.8)

de sorte que:

Ie; N.
N — Si it A9
i \/rSi +tox \/ZE(rSi +tox)|— ( )

La figure A.19 montre la variation du seuil de détection avec les dimensions du nanofil pour
une densité d'états d'interface Ny=10"° cm™. Au premier ordre (tox négligeable), Nex: n décrott
en raison inverse de la racine carrée du diametre externe et de la longueur du nanofil. La
limitation par le bruit basse fréquence peut donc étre surmontée par une augmentation de la

surface active du capteur 2z(rg +t, L.
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Figure A.19 : Seuil de détection imposé par le bruit de piégeage / dépiégeage en fonction de (a) la
longueur L et (b) le diamétre ds; du nanofil. Les autres paramétres sont supposés constants. Pour étre

détectable la densité de charge externe doit étre supérieure a ce seuil de détection.

Ceci peut s'obtenir en augmentant la longueur et le diamétre du nanofil, mais au détriment
de la sensibilité du capteur et de la valeur nominale de la conductance Go. Le seul degré de

liberté permettant d'ajuster ces deux derniers paramétres est alors le dopage.

Cette modélisation qui décrit les corrélations entre leur sensibilité et leur seuil de détection
permet donc de déterminer une stratégie d'optimisation pour les capteurs a nanofils.

Conclusion

Cette these m'a permis d'aborder des sujets variés allant de la fabrication des composants a
leur modélisation. Au début de ce résumé, j'écrivais que la réduction des dimensions est en
train d'atteindre ses limites. On pourrait en deduire qu'il n'y a plus moyen daméliorer le
transistor. En réalité, ainsi que je I'ai expérimenté au cours de ce travail, il reste une multitude

de pistes a explorer et la recherche sur le transistor est trés loin de la fin de son histoire.
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