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Abstract

With the availability of massive amounts of digital images in personal
and on-line collections, effective techniques for navigating, indexing
and searching images become more crucial. In this thesis, we rely on
the image visual content as the main source of information to represent
images. Starting from the bag of visual words (BOW) representation,
a higher-level visual representation is learned where each image is
modeled as a mixture of visual topics depicted in the image and re-
lated to high-level topics. First, we enhance the BOW representation
by characterizing the spatial-color constitution of an image with a mix-
ture of n Gaussians in the feature space. This leads to propose a novel
descriptor, the Edge Context, which plays a role as a complementary
descriptor in addition to the SURF descriptor. Such enhancements in-
corporate different image content information. Second, we introduce a
new probabilistic topic model, Multilayer Semantic Significance Anal-
ysis (MSSA) model, in order to study a semantic inference of the con-
structed visual words. Consequently, we generate the Semantically
Significant Visual Words (SSVWs). Third, we strengthen the dis-
crimination power of SSVWs by constructing Semantically Significant
Visual Phrases (SSVPs) from frequently co-occurring SSVWs that are
semantically coherent. We partially bridge the intra-class visual di-
versity of the images by re-indexing the SSVWs and the SSVPs based
on their distributional clustering. This leads to generate a Seman-
tically Significant Invariant Visual Glossary (SSIVG) representation.
Finally, we propose a new spatial weighting scheme and a Multiclass
Vote-Based Classifier (MVBC) based on the proposed SSIVG repre-
sentation. The large-scale extensive experimental results show that
the proposed higher-level visual representation outperforms the tradi-
tional part-based image representations in retrieval, classification and
object recognition.
Keyword : Image Representation, Image Indexing, Bag of Visual
Words (BOW), Probabilistic Topic Model , Weighting Scheme, Image
classification, Image Retrieval, Object Recognition.





Résumé

Avec l’augmentation exponentielle de nombre d’images disponibles
sur Internet, le besoin en outils efficaces d’indexation et de recherche
d’images est devenu important. Dans cette thèse, nous nous base-
rons sur le contenu visuel des images comme source principale d’in-
formations pour leur représentation. Basés sur l’approche des sacs
de mots visuels, nous proposons une représentation visuelle avancée.
Chaque image est modélisée par un mélange de catégories visuelles
sémantiques, reliées à des catégories de haut niveau. Dans un pre-
mier temps, nous améliorons l’approche des sacs de mots visuels en
caractérisant la constitution spatio-colorimétrique d’une image par le
biais d’un mélange de n Gaussiennes dans l’espace de caractéristiques.
Cela permet de proposer un nouveau descripteur de contour qui joue
un rôle complémentaire avec le descripteur SURF. Cette proposition
nous permet de résoudre le problème lié à la perte d’informations
spatiales des sacs de mots visuels, et d’incorporer différentes infor-
mations relatives au contenu de l’image. Dans un deuxième temps,
nous introduisons un nouveau modèle probabiliste basé sur les caté-
gories : le modèle MSSA (Multilayer Semantic Significance Analysis
ou Analyse multi-niveaux de la pertinence sémantique) dans le but
d’étudier la sémantique des mots visuels construits. Ce modèle per-
met de construire des mots visuels sémantiquement cohérents (SSVW
- Semantically Significant Visual Word). Ensuite, nous renforçons la
capacité de catégorisation des SSVW en construisant des phrases vi-
suelles sémantiquement cohérentes (SSVP - Semantically Significant
Visual Phrase), à partir des SSVW qui apparaissent fréquemment.
Nous améliorons également l’invariance intra-classes des SSVW et des
SSVP en les indexant en fonction de leur répartition, ce qui nous
amène à générer une représentation d’un glossaire visuel invariant et
sémantiquement cohérent (SSIVG -Semantically Significant Invariant
Visual Glossary). Enfin, nous proposons un nouveau schéma de pon-
dération spatiale ainsi qu’un classifieur multi-classes basé sur un vote.
Nos résultats expérimentaux extensifs démontrent que la représenta-
tion visuelle proposée permet d’atteindre de meilleures performances
comparativement aux représentations traditionnelles utilisées dans le
domaine de la recherche, la classification et de la reconnaissance d’ob-
jets.
Mots-clés : Représentation d’images, Indexation d’images, Sacs
de mots visuels, Modèle probabiliste, Pondération, Classification
d’images, Reconnaissance d’objets.
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1.1 Motivation

With the increasing convenience of capturing devices and the wide availability

of large capacity storage devices, the amount of digital images that ordinary peo-

ple can access has become vast. For example, it was reported that the FlickrTM

photo repository has been hosting more than 5 billion images in September 2010 1.

This huge amount is useless if there exists no effective technique for navigating,

classifying and searching images.

The usual way to solve this problem consists in describing images by keywords,

1. http://edition.cnn.com/2010/TECH/web/09/20/flickr.5.billion.
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and to use them in a keyword-based information retrieval or classification system.

This method suffers from different drawbacks as follows.

First, it suffers from subjectivity and text ambiguity as they usually reflect

the author’s personal interpretation with respect to the image content. Figure 1.1

shows some examples of the retrieved images using the tag jet in Google image

search engine 1. If the user is searching for jet planes, then only a fraction of the

images depicts the jet as might be expected. Instead, the tag sometimes denotes

a jet engine or the Australian rock band. Thus, many photos are retrieved with

no real common semantic theme.

Second, it requires a huge amount of time to manually annotate a whole

database where no associated text is available for the images, as for instance

many users do not annotate their pictures in their personal photo collection.

Nowadays images can be automatically described which only depends on their

objective visual content [58]. When considering the visual contents of images, the

problem of the semantic gap arises. The notion of semantic gap has been defined

a decade ago by Smeulders et al. [141] as the lack of coincidence between the

information that one can extract from the visual data and the interpretation that

the same data have for a user in a given situation. This lack of coincidence occurs

due to the difference between the way we perceive visual content and what the

machine can extract and define as shown in Figure 1.2. Hence, a semantic visual

representation of images can help diminishing this gap. Moreover, this visual

representation is applicable to effective techniques for navigating, classifying and

searching images within a large-scale image database.

1. This query was performed at 12/05/2011 via Google image search engine website
(http://images.google.com).

2



Figure 1.1: Examples of the Google image search results for jet.

1.2 Objectives

Recent research has shown that the part-based representation performance is

much superior to the traditional image-based representation performance in the

context of image retrieval and classification since a single global image feature

is computed in the later which is not sufficient to represent the important local

characteristics of objects [90]. Specifically, the bag of visual words (BOW) image

representation [137] has drawn much attention, as it tends to code the local visual

characteristics towards the object level, which is closer to the perception of the

human visual systems [168].
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(a)

(b)

Figure 1.2: Illustration of the semantic gap: (a) Color-based features are unable
to differentiate between these images representing different concepts. (b) Shape-
based features cannot differentiate between the different cups.

Besides the good performance of the BOW representation, there are still draw-

backs to be considered. The objectives of this work are to enhance the BOW rep-

resentation and build a semantic higher-level visual representation that satisfies

the following requirements:

1. The required visual representation needs to be based on local descriptors

that describe the variety of local visual content information rather than de-

scribing only the intensity of the pixels. Most of the BOW representations

use keypoints-based descriptors that make more direct use of pixel intensity

values [89] such as SIFT [92], SURF [11], etc. This turns out to be pretty

much of a challenge since these techniques do not handle well the large dis-
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tortions that are due to pose and illumination variations. Furthermore, all

other information like shapes and colors are disregarded with these descrip-

tors, which is critical for many tasks such as handwritten digit recognition

[82, 23] and face recognition [107].

2. The required visual representation is ought to be less noisy by eliminating

the irrelevant or noisy visual words according to a semantic criterion that

should also be defined. The noisy visual words are due to the visual vocab-

ulary creation process in the BOW image representation. Such noisy visual

words add ambiguity in the image representation.

3. The low discrimination power of the visual words leads to low correlations

between the image features and the associated semantics. This is similar to

the polysemy problem in a text, where one word can have different semantic

meanings. Hence, the required higher-level visual representation needs to

be more discriminative than the lower-level representation (BOW).

4. The required visual representation needs to be invariant to the visual di-

versity that is due to the arbitrary difference in visual appearances and

shapes between the images of the same semantic class. Such visual diver-

sity of objects causes one visual semantic to be represented by different

visual representation units.

5. The spatial constitution of the images is desired to be included within the

required visual representation since images are particular arrangements of

patches in 2D space and the relative spatial relationship is an important

factor in deriving semantic features [27].

6. The required visual representation should be relevant and useful to different

5



large-scale image retrieval and classification applications.

1.3 Contributions

Figure 1.3 illustrates the different hierarchal processes that enhance the BOW

representation and generate the higher-level visual representation according to the

different contributions highlighted as follows.

Figure 1.3: Different processes that generate the higher-level visual representation

Edge Context descriptor: We propose a novel descriptor, the Edge Context,

that plays a role of complementary descriptor in addition to the SURF descriptor.

We model the color-spatial constitution of an image with a mixture of n Gaussians
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in a 5D color-spatial feature space. The Edge Context describes the distribution

of the edge points at each detected interest point that are in the same Gaussian

cluster by returning to the 5D color-spatial feature space.

Multilayer Semantic Significance Analysis (MSSA) model: Capturing

the essential statistical characteristics of different visual representation units gives

to the images a new representation, which is often more thrifty and less noisy.

In our approach, we introduce a new probabilistic topic model, the Multilayer

Semantic Significance Analysis (MSSA). This model differs from the pLSA model

[59] and the LDA [16] model by introducing two layers of latent topics: high and

visual latent topics. One layer represents the high aspects (i.e., image categories)

and the other one represents the visual aspects (i.e., objects, parts of objects or

scenes). We also make use of the MSSA in order to study the semantic inference

of the different higher-level visual representation units.

Semantically Significant Visual Phrase (SSVW): The feature quantiza-

tion process in BOW representation generates lots of unnecessary and insignificant

visual words which are noisy in retrieval and classification. In our approach, Se-

mantically Significant Visual Words (SSVWs) are selected from the constructed

visual words based on their probability distributions to the relevant visual latent

topics. Their probability distributions are estimated using the MSSA model.

Semantically Significant Visual Phrase (SSVP): In order to tackle the low

discrimination power of the constructed SSVWs, we build a higher-level represen-

tation, named the Semantically Significant Visual Phrase (SSVP) from groups of

adjacent significant visual words that frequently co-occur, being involved in strong
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association rules [1], and semantically coherent.

Semantically Significant Invariant Visual Glossary (SSIVG): Studying

the co-occurrence and the spatial scatter information makes the image represen-

tation more distinctive, the invariance power of the SSVWs and the SSVPs is

still low. In our perception, that relevance-consistent group of the SSVWs or the

SSVPs with similar semantic inferences should have the same index. Based on

this, we cluster the SSVWs and the SSVPS using their probability distribution

that are estimated using the MSSA model. After a distributional clustering, each

group of SSVWs that belongs to the same cluster are re-indexed with the same

index as the cluster’s centroid. This step generates the Semantically Significant

Invariant Visual Words (SSIVW), which consist of re-indexed SSVWs. In the

same manner, we generate the Semantically Significant Invariant Visual Phrase

(SSIVP). Finally, the SSIVWs and SSIVPs form the final visual representation,

which is the Semantically Significant Invariant Visual Glossary (SSIVG) repre-

sentation.

Novel spatial weighting scheme: An evident drawback of the BOW repre-

sentation is the spatial information loss since the bag-of-visual-words approach

represents an image as a collection of local patches ignoring their spatial struc-

ture within the image. To overcome this drawback, we propose a novel spatial

weighting scheme for the SSIVW representation layer.

Multilayer Vote-Based Classifier (MVBC): Based on the proposed hier-

archal representation, a new vote-based classifier, the MVBC, is introduced for

classification and object recognition. This vote-based classifier is based on the
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voting score of the SSIVWs and SSIVPs towards the dominant high topic in each

test image.

Extensive experimental evaluations: We have conducted large-scale, exten-

sive experimental performance evaluations of image retrieval, classification, and

object recognition in comparison with various state-of-the-art image representa-

tion methods from the recent literature so as to demonstrate the superiority of

the proposed higher-level visual representation methods.

1.4 Organization of the thesis

The structure of the thesis is as follows. Chapter 2 reviews the existing lit-

erature that focuses on different visual representations that have been proposed

recently. Chapter 3 presents different probabilistic topic models and how they

are applied to images. In this chapter, we also present the relation between Non-

Negative Matrix Factorization (NMF) and topic models. Chapter 4 describes the

vector space image model. It also reviews the different weighting schemes and

the similarity measures that are used within the vector space model. Chapter 5

introduces the different techniques that we develop in order to enhance the BOW

representation. In Chapter 6, we bring in the new probabilistic topic model, i.e.,

the MSSA model. In Chapter 7, we describe the different visual representation

layers that lead to the SSIVG representation. The thesis is concluded in Chapter

8 with a brief statement, that presents the main contributions in a concise form,

as well as some directions for further investigations.
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2.1 Overview

Low-level image feature extraction is the basis of any visual representation.

Low level features can be either extracted from the entire image or from local

regions. Since there is no direct link between the high-level concepts and the low-

level features [132], a semantic gap [140] appears and many visual representation
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are proposed to bridge this gap.

This chapter is organized as follows. We briefly review low-level image features

such as color, texture, shape and spatial location in Section 2.2. We discuss the

notion of semantic gap of the semantic gap in image representation in Section 2.3.

In order to bridge the semantic gap, many visual representations that are based

on the low level features are introduced. These representations can be generally

classified in two categories, image-based and part-based image representations.

In Section 2.4, we review different image-based representations which are based

on global feature descriptors over the whole image like color, color moment, shape

or texture [44] global histograms. In Section 2.5, we review different part-based

representations which are based on the statistics of features extracted from seg-

mented image regions, salient key points or blobs [26, 72, 143, 145]. We give a

summary and conclusion for this chapter in Section 2.6.

2.2 Low-level image features

Low-level feature extraction is a central pre-step for any visual representation.

There are various kinds of features and each expresses a different aspect of a visual

document [89]. This section gives a brief overview of existing feature classes,

which are currently used such as color, texture, shape, or spatial location that

can be extracted from the segmented regions.

2.2.1 Color feature

Color feature is one of the most widely used features in image representation.

Colors are defined on a selected color space. Variety of color spaces are avail-
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able, they often serve for different applications [65]. Color spaces shown to be

closer to human perception and widely used in CBIR such as RGB, LAB, LUV,

HSV (HSL), YCrCb and the hue-min-max-difference (HMMD) [98, 103, 91, 136].

Common color features or descriptors include, color-covariance matrix, color his-

togram, color moments, and color coherence vector [71, 156, 160, 176]. MPEG-7

has included dominant color, color structure, scalable color, and color layout as

color features [126]. Gevers et al. [51] are interested in objects taken from different

pointS of view and illumination. As the result, a set of viewpoint invariant color

features have been computed. The color invariants are constructed on the basis

of hue, hue-hue pair and three color features computed from reflection model.

Most of those color features though efficient in describing colors, are not di-

rectly related to high-level semantics. For a convenient mapping of region color to

high-level semantic color names, some systems use the average color of all pixels

in a region as its color feature [62, 103, 162]. Although most segmentation tends

to provide homogeneous, color regions, due to the inaccuracy of segmentation,

average color could be visually different from that of the original region. In Liu

et al. [91], a dominant color in HSV space is defined as the perceptual color of a

region. To obtain the dominant color, the authors first calculate the HSV space

color histogram (10 × 4 × 4 bins) of a region and select the bin with maximum

size. The average HSV value of all the pixels in the selected bin is defined as

the dominant color. It is observed that in most cases, the average color and the

dominant color are very similar, as in Figure 2.1(1). However, in some cases, they

can be visually very different as in Figure 2.1(2).

The selection of color features depends on the segmentation results. For in-

stance, if the segmentation provides regions, which do not have homogeneous
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Figure 2.1: Average color and dominant color: (a) original region; (b) average
color; (c) dominant color.

color, obviously the average color is not a good choice. It is stated that for more

specific applications such as human face database, dominant knowledge can be

explored to assign a weight to each pixel in computing the region colors [62].

It should be noted that in most of the CBIR works, the color images are not

pre-processed. Since color images are often corrupted with noise due to capturing

devices or sensors, it would improve retrieval accuracy significantly if an effective

filter was applied to remove the color noise. A number of such color filters are

available for this purpose [119, 118, 95].

2.2.2 Texture feature

Texture is not as well-defined as color features, some systems do not use tex-

ture features [147, 62, 103, 146]. However, texture provides important information

in image classification as it help describing the content of many real-world images

such as fruit skin, clouds, trees, bricks, or fabric. Hence, texture is an important

feature in defining high-level semantics for image representation.

Texture features include spectral features, such as those obtained using Gabor

filtering [96] or wavelet transform [161], statistical features characterizing texture

in terms of local statistical measures, such as the six Tamura texture features
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[155], and wold features proposed by Liu et al. [88]. Among the six Tamura fea-

tures: coarseness, directionality, regularity, contrast, line-likeness, and roughness.

The first three features are more significant [155]. The other three are related to

the first three and do not add much to the effectiveness of texture description.

MPEG-7 has employed the regularity, directionality and coarseness as the texture

browsing descriptor [98, 126]. The wold features of periodicity, randomness and

directionality have been proved to work well on Brodatz textures [17].

The limitation of Tamura features is that there has been no work at multiple

resolutions to account for scale. Wold feature is also affected by image distor-

tions such as scale and orientation variations due to perspective distortion [165].

Though working well on Brodatz textures, these features are proved to be less ef-

fective when applied to natural scene image retrieval and classification as texture

regions in such images are less structured and homogeneous [165].

Among the various texture features, Gabor features and wavelet features are

widely used for visual representation and have been reported to well match the

results of human vision study [96, 161, 126]. Gabor filtering and wavelet trans-

form are originally designed for rectangular images. However, natural images are

of arbitrary-shapes. Hence, it is problematic to extract texture features from

arbitrary-shaped images.

Texture features are usually obtained based on the texture property of pixels

or small blocks contained in a local region of an image. For example, Ma et

al.[96] use for each region, the mean value of the texture features of all the 4 ×

4 blocks it contains as the region feature. The problem of such feature is that

they cannot sufficiently describe the texture property of the entire region. An

intuitive way to solve this problem is to extend the arbitrary-shaped region into
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Figure 2.2: Arbitrary-shaped region and padded results: (a) original region; (b)
mirroring padded result.

a rectangular area by padding some values outside the boundary and then apply

block transforms. However, as regions in real-world images do not usually have

homogeneous texture, such initial padding will introduce spurious components

that do not describe the original region which degrades the accuracy quality of the

texture feature obtained. Figure 2.2 gives an example of initial padding. Another

texture descriptor based on local regions is the Edge Histogram Descriptor (EHD).

It is found to be quite effective for representing natural images [126]. It captures

the spatial distribution of edges, somewhat in the same idea as the color layout

descriptor. To compute the EHD, a given image is first sub-divided into 4 × 4

sub-images, and local edge histograms for each of these sub-images is computed.

Edges are broadly grouped into five categories: vertical, horizontal, 459◦, 135◦ and

neutral. Thus, each local histogram has five bins corresponding to the above five

categories. The image partitioned into 16 sub-images resulting in 80 bins. These
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bins are non-uniformly quantized using 3 bits/bin, resulting in a descriptor of size

240 bits. The EHD gives a rather precise description of the edge distribution But

the EHD can be very sensitive to objects or scene distortions.

Zabih and Woodll [158] have developed a texture descriptor robust to illu-

mination changes. It relies on histograms of ordering and reciprocal relations

between pixel intensities which are more robust than raw pixel intensities. The

binary relations between intensities of several neighboring pixels are encoded by

binary strings and a distribution of all possible combinations is represented by

histograms. This descriptor is suitable for texture representation but a large

number of dimensions is required to build a reliable descriptor [114].

Lowe [93], proposed a scale invariant feature transform (SIFT), which com-

bines a scale invariant interest point detector and a descriptor based on the gra-

dient distribution in the neighboring regions.

First a set of orientation histograms are created on 4× 4 pixel neighborhoods

with 8 bins each. These histograms are computed from magnitude and orientation

values of samples in a 16×16 region around the keypoint such that each histogram

contains samples from a 4×4 sub-region of the original neighborhood region. The

magnitudes are further weighted by a Gaussian function with s equal to one half

the width of the descriptor window. The descriptor then becomes a vector of all

the values of these histograms. Since there are 4× 4 = 16 histograms each with 8

bins, the vector has 128 elements. This vector is then normalized to unit length

in order to enhance invariance to affine changes in illumination. To reduce the

effects of non-linear illumination a threshold of 0.2 is applied and the vector is

again normalized.

The good performance of SIFT compared to other descriptors [106] is remark-
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able. It is mixing of crudely localized information and the distribution of gradient

related features seems to yield a good distinctive power while fending off the ef-

fects of localization errors in terms of scale or space. Using relative strengths and

orientations of gradients reduces the effect of photometric changes.

More recently, Bay et al. [11] proposed a novel detector-descriptor scheme,

SURF (Speeded-Up Robust Features), that is similar to SIFT, with a complexity

stripped down even further in order to increase the efficiency. The detector is

based on the Hessian matrix , but uses a very basic approximation, just as the

DoG is a very basic Laplacian-based detector. It relies on integral images to

reduce the computation time and they therefore call it the Fast-Hessian detec-

tor. The descriptor describes a distribution of Haar-wavelet responses within the

interest point neighborhood. The integral images are exploited to speed up the

process. Moreover, only 64 dimensions are used, reducing the time for feature

computation and matching, and increasing simultaneously the robustness.

2.2.3 Shape feature

Shape is a fairly well-defined concept. Shape features of general applicability

include aspect ratio, circularity, Fourier descriptors, moment invariants, consec-

utive boundary segments [102], etc. Shape features are important image features

though they have not been widely used in RBIR as color and texture features.

Shape features have shown to be useful in many domain specific images such as

man-made objects. For color images used in most evaluations, however, it is diffi-

cult to apply shape features compared to color and texture due to the inaccuracy

of segmentation. Despite the difficulty, shape features are used in some systems
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and have shown potential benefit for RBIR. For example, Mezaris et al. [103]

simple shape features such as eccentricity and orientation are used. The system

introduced by Wang et al. [160] uses normalized inertia of order 1− 3 to describe

region shape. Town at al. [156] introduce gross region shape descriptors based

on area and second-order moments are used. MPEG-7 has included three shape

descriptors for object-based image retrieval, the first one is the 3-D shape descrip-

tor derived from 3-D meshes of shape surface, the second one is for region-based

shape derived from Zernik moments, and the other is for contour based shape

derived from curvature scale space (CSS) [126].

Although the CSS descriptor is invariant to translation, scaling and rotation,

it is sensitive to general distortions, which can result from objects taken from

different point of view. Mokhtarian and Abbasi have extended the CSS descriptor

to be robust to affine transform which is a common way to approximate general

shape distortions [110].

2.2.4 Spatial location

Besides color and texture, spatial location is also useful in image retrieval and

classification. For example, ’sky’ and ’sea’ could have similar color and texture

features, but their spatial locations are different with the sky usually appears at

the top of an image, while sea lies at the bottom.

Spatial location are usually simply defined as upper, bottom, top according to

the location of the local region in an image [144, 108]. In the approach introduced

by Ma et al. [96], the region centroid and its minimum bounding rectangle are

used to provide spatial location information. Mezaris et al. [103] use the spatial
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center of a region to represent its spatial location.

Relative spatial relationship is more important than absolute spatial location

in deriving semantic features. 2D-string [27] and its variants are the most com-

mon structure used to represent directional relationships between objects such

as left/right, below/above. However, such directional relationships alone are not

sufficient to represent the semantic content of images ignoring the topological

relationships.

To better support semantic-based image retrieval, a spatial context-modeling

algorithm [97] is presented, which considers six spatial relationships between re-

gion pairs: left, right, up, down, touch and front. An interesting method was

proposed by Smith et al. [142]. The system uses a Composite Region Template

(CRT) to define the spatial arrangement of regions and each semantic class is

characterized by the CRTs obtained from a collection of sample images [142].

2.3 Semantic gap

As we mentioned before, many sophisticated algorithms have been designed

to describe color, shape, and texture features, these algorithms cannot adequately

model the image semantics and have many limitations when dealing with broad

content image databases [109]. Extensive experiments on these systems show that

low-level contents often fail to describe the high level semantic concepts in user’s

mind [179]. Therefore, the quality of the visual representation based on these

features is still far from user’s expectations.

More specifically, the discrepancy between the limited descriptive power of

low-level image features and the richness of user semantics, is referred to as the

22



semantic gap [140]. This semantic gap is due to the following inherent problems.

One problem is that the extraction of complete semantics from image data is

extremely hard, as it demands general object recognition and scene understand-

ing. Despite encouraging recent progress in object detection and recognition,

unconstrained broad image domain remains a challenge for computer vision. For

instance, consumer photographs exhibit highly varied contents and imperfect im-

age quality due to spontaneous and casual nature of image capturing. The objects

in consumer images are usually ill-posed, occluded, and cluttered with poor light-

ing, focus, and exposure. There is usually large number of object classes in this

type of polysemic images. Robust object segmentation for such noisy images is

still an open problem.

The other problem causing the semantic gap is the complexity, ambiguity and

subjectivity in user interpretation. Relevance feedback is regarded as a promising

technique to solicit user’s interpretation at post-query interaction. However, the

correctness of user’s feedback may not be statistically reflected due to the small

sampling problem.

Therefore, an ideal visual representation should provide full support in bridg-

ing the semantic gap between numerical image features and the richness of human

semantics [179, 140]. Since the step from the low-level numerical image features

to the high-level human semantics is not straightforward, many visual representa-

tions are proposed using different techniques based on several chains of processes,

in order to extract and refine the information incrementally. In the following

sections, we review different kinds of these visual representations.

23



2.4 Image-based visual representation

In the image-based visual representations, each image is represented by a single

global feature capturing information from the whole image. A great amount of

information regarding the constituents of the image, such as individual regions or

objects is lost in these representations. Once each image’s feature is computed,

the similarity can be measured between any pair of images using some distance

metric e.g. L2 distance.

Swain and Ballard [152] were the first to use global histograms as image-based

visual representation. They realized that the power to identify an object using

color is much larger than that of a gray-valued image. As a histogram loses all

information about the location of an object in the image, Ennesser and Medioni

[43] project the histogram back into the image to locate it by searching for best

matches. A histogram may be effective for retrieval as long as there is uniqueness

in the color pattern held against the pattern in the rest of the entire data set.

Swain and Ballard also argue that color histograms change slowly with change in

viewpoint and scale and with occlusion.

One of the major problems of the global histograms is the lack of scalability.

When very large data sets are at stake, plain histogram comparison will saturate

the discrimination. For a 64-bin histogram, experiments show that, for reasonable

conditions, the discriminating power among images is limited to 25, 000 images

[151]. To keep up performance, in [117], a joint histogram is used, providing

discrimination among 250, 000 images in their database, yielding 80 percent recall

among the best 10 for two shots from the same scene using simple features. Other

joint histograms add local texture or local shape [55], directed edges [67], and local
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higher order structures [47].

Another alternative is to add a dimension representing the local distance. This

is the correlogram [63], defined as a three dimensional histogram where the colors

of any pair are along the first and second dimension and the spatial distance

between them is along the third. The auto correlogram defining the distances

between pixels of identical colors is found on the diagonal of the correlogram. A

more general version is the geometric histogram [123], with the normal histogram,

the correlogram, and several alternatives as specific cases. This also includes the

histogram of the triangular pixel values, reported to outperform all of the above

as it contains more information.

The main drawback of such kind of representations is being based on global

histograms that have high sensitivity to scale, pose and lighting condition changes,

clutter and occlusions. In addition, the global histograms cannot capture the

local information of an image, which is so important for many tasks in image

retrieval. For example, for High Resolution Computed Tomographic (HRCT)

images of the lung, a disease such as emphy-sema manifests itself in the form of

a low-attenuation region that is textured differently from the rest of the lung.

Local features are needed for such situations because the number of pathology

bearing pixels in an image is small relative to the rest of the pixels and any global

signature would not be sufficiently impacted to serve as a useful attribute for

image retrieval.
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2.5 Part-based visual representation

Many part-based image representations are proposed recently such as visterms

[69, 122, 120], blobs [26], and VLAD [68] which is vector representation of an

image which aggregates descriptors based on a locality criterion in the feature

space. An alternative approach is proposed by Morand et al. [111]. This approach

introduced a scalable object-based indexing method for video content by objects

without parsing them into their constituent elements. Morand et al. built a

representation based on multi-scale histograms of wavelet coefficients of objects.

In this case, the performance of the whole system is closely related to the accuracy

of the object extraction process.

Recently, there is a trend of using image local patches for visual representa-

tions in the context of image retrieval and classification [81, 46, 70, 137, 178].

The salient image patches contain rich local information about an image. They

are automatically extracted after detecting interest points using various detectors

[105] and described by low level features [106]. The extracted low level features

of all the local patches are then grouped into a large number of clusters. This

leads to construct visual vocabulary where a visual word is defined as follows.

Definition 1 (Visual Word (VW)). A visual word is a local segment in an image,

defined by a reference point together with its neighborhood and an index generated

from the feature quantization process.

With its extracted low level features mapped into visual words, an image can

be represented as a Bag of Visual Words (BOW), or specifically, as a vector

containing the (weighted) count of each visual word in that image, which is used

as feature vector in the classification task.
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This BOW image representation is analogous to the bag-of-words represen-

tation of text documents in terms of both form and semantics, which makes

techniques for text representation readily applicable to the visual representation.

The BOW representation has drawn much attention recently, as it tends to code

the local visual characteristics toward object level and achieves good results in

representing variable object appearances caused by changes in pose, scale and

translations [173, 72]. However, as discussed in the Introduction, the BOW rep-

resenation suffers from some drawbacks.

In BOW representation, the vocabulary creation process, based on cluster-

ing algorithms such as k-means, is quite rude and leads to many noisy words.

Such words add ambiguity in the image representation. This problem has been

addressed in the first video-Google paper by Sivic and Zisserman [137]. They

used stop-lists that remove the most and least frequent words from the collection.

Yang et al. [168] pointed out the ineffectiveness of this method and proposed

several measures usually used in feature selection for machine learning or text

retrieval.

Another evident drawback in BOW representation is the spatial information

loss. To overcome this, Lazebnik et al. [81] extended the BOW representation

to Spatial Pyramid Matching Kernel (SPM) by exploiting the spatial informa-

tion of location regions. Recently, Yang et al. [169] tackled the two drawbacks

(quantization rudeness and spatial information loss) and proposed an extension

of SPM by replacing K-Means with sparse coding. In sparse coding and feature

selection techniques, local features are dealt separately. The mutual dependence

and interrelation among local features are ignored. However, recent work shows

that the relationships among the local features are important for image repre-
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sentation, such as the geometric relationship [166]. Gao et al. [49] introduced

Laplacian sparse coding to enhance the sparse coding by constructing a Laplacian

matrix, which can well characterize the similarity between local features. This

representation, however, lacks to semantic learning that would better characterize

the semantic relationships between the visual words.

To address the discrimination problem of visual words, Zheng and Gao [175]

made an analogy between image retrieval and text retrieval, and have proposed a

higher-level representation (visual phrase) based on the analysis of visual word

occurrences to retrieve images containing desired objects. Visual phrases are

defined as pairs of adjacent local image patches. The motivation of the visual

phrase is to have a compact representation, which has more discrimination power

than the lower level (visual words). later, Zhang et al. [174] enhance this ap-

proach by selecting descriptive visual phrases from the constructed visual phrases

according to the frequencies of their constituent visual word pairs. In these two

approaches, the higher-level (visual phrase) is defined as adjacent pairs of visual

words which do not necessary guarantee a truly meaningful descriptive visual rep-

resentation [171]. In addition, there are ambiguities in visual word lexicons. If the

generation of the representation is a pure bottom-up process, the imperfectness in

the visual words would never be reduced, and the quantization error would never

be corrected without a pre-filtering step for the visual words done at a lower level.

Yuan et al. [172] have proposed another higher-level lexicon, i.e. visual phrase

lexicon, where a visual phrase is a spatially co-occurrent pattern of visual words.

This higher-level lexicon is much less ambiguous than the lower-level one (visual

words). The main contribution of this approach is to present a fast solution to

the discovery of significant spatial co-occurrent patterns using frequent item set
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mining. Zheng et al. [177] proposed a similar approach by constructing another

high-level, delta visual phrase, and grouped delta visual phrases according to

their similarity to visual synsets. Both approaches evaluated the significance of

the visual phrases statistically. Zheng et al. [177] addressed the importance of

the semantic factor but they measured the significance of a delta visual phrase

based on its frequency as well as the frequencies of its constituent visual words.

Hóıng et al. in [60] have proposed to construct another higher level represen-

tation (triplets of entities) from visual words (entities) by studying the spatial

relationships between them. The proposed representation describes triangular

spatial relationships with the aim of being invariant to image translation, rota-

tion, scale, flipping, and robust to view point changes if required. Beside we share

the same motivation for constructing a higher level representation, this approach

lacks statistical and semantic learning for the lower level which is a pre-step to

construct the higher level representation in our approach.

Our framework differs from these approaches by proposing the MSSA model

to analyze the semantic significance of the visual words in order to overcome

the rudeness of quantization. We also utilize MSSA to check the semantic co-

herence of groups of Semantically Significant Visual Words (SSVWs) that are

spatially adjacent and frequently occur with each other in order to construct an-

other higher-level representation named Semantically Significant Visual Phrase

(SSVP). This representation is more discriminative and descriptive than SSVW.
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2.6 Summary and conclusion

In this chapter, we briefly review different low-level image features such as

color, texture, shape and spatial location. We discuss the definition of the se-

mantic gap in visual representation. We review different visual representations

are introduced in order to bridge the semantic gap. These visual representations

can be generally classified in two groups as follows.

– Image-based representations which are based on global feature descriptor

over the whole image like color, color moment, shape or texture histograms

[44].

– Part-based representations which are based on the statistics of features ex-

tracted from segmented image regions, key points or blobs [26, 72, 143, 145].

On the one hand, the global representations fail to capture the local information

of an image, which is so important for many tasks in image retrieval and classi-

fication. On the other hand, the part-image representation especially the bag of

visual words (BOW) image representation [137] has drawn much attention, as it

tends to code the local visual characteristics towards the object level, which is

closer to the perception of human visual systems [174]. Beside, the significant per-

formance of the BOW representation, still there are drawbacks to be considered

such spatial information loss, feature quantization nosiness, low discrimination

power.
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Chapter 3

Probabilistic Topic Models for

Semantic Learning
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3.1 Overview

After we have reviewed different kinds of the visual representations in the pre-

vious chapter, we review in this chapter the key ideas behind the topic models and

how they capture the essential statistical characteristics of the visual representa-

tion units. By capturing and learning the statistical characteristics of the visual

representation units, then one gives the images a new representation, which is

often more parsimonious and less noise-sensitive. Probabilistic topic models ex-

tract a set of latent topics from a corpus and as a consequence represent the

images in a new latent semantic space. One of the well-known topic models is

the Probabilistic Latent Semantic Analysis (pLSA) model proposed by Hofmann

[59] for text document semantic analysis and is applied later to images. In pLSA

each image is modeled as a probabilistic mixture of a set of topics. Going beyond

PLSA, Blei et al. [16] presented the Latent Dirichlet Allocation (LDA) model

by incorporating a prior for the topic distributions. In these probabilistic topic

models, one assumption underpinning the generative process is that images are

independent and one layer of topics are proposed.

This chapter is organized as follows. In Section 3.2, we review the probabilistic

generative process that describes how words in documents might be generated

on the basis of latent variables. In Section 3.3, we review the different topic

models that is proposed for text document and we describe how they are applied

in images. We discuss the graphical notations that are used to represent the

different probabilistic topic models in Section 3.4. We describe the geometrical

interpretation of the probabilistic topic models in Section 3.5. In Section 3.6, we

review the relation between probabilistic topic models and Non-negative Matrix
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Figure 3.1: Illustration of the generative process (from [148]).

Factorization (NMF). We summarize this chapter and give a conclusion in Section

3.7.

3.2 Probabilistic generative process

By returning to text documents where words constitute the elementary parts

of the documents, a generative model for documents is based on simple probabilis-

tic sampling rules that describe how words in documents might be generated on

the basis of latent (random) variables. When fitting a generative model, the goal

is to find the best set of latent variables that can explain the observed data (i.e.,

observed words in text documents), assuming that the model actually generated

the data.

Figure 3.1 illustrates the probabilistic generative process with two topics and

33



three text documents. Topics 1 and 2 are thematically related to money and

rivers and are illustrated as bags containing different distributions over words.

Different documents can be produced by picking words from a topic depending on

the weight given to the topic. For example, documents 1 and 3 were generated by

sampling only from topic 1 and 2 respectively while document 2 was generated by

an equal mixture of the two topics. Note that the superscript numbers associated

with the words in documents indicate which topic was used to sample the word.

The way that the model is defined, there is no notion of mutual exclusivity that

restricts words to be part of one topic only. This allows topic models to capture

polysemy, where the same word has multiple meanings. For example, both the

money and river topic can give high probability to the word BANK, which is

sensible given the polysemous nature of the word.

The generative process described here does not make any assumptions about

the order of words as they appear in documents. The only information relevant to

the model is the number of times words are produced. This is known as the bag-

of-words assumption as we discussed before, and is common to many statistical

language models including LSA [34].

This generative process is applied to images in the same manner and the

visual words are used instead of the textual words. Of course, the spatial ar-

rangements of the visual words are important cues to the content of an image

and this information is not utilized by such generative process.
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3.3 Different probabilistic topic models

By returning to the semantic learning in text documents, a variety of prob-

abilistic topic models have been used to analyze the content of documents and

the meaning of words [16, 53, 59]. These models all use the same fundamental

idea that a document is a mixture of topics but make slightly different statistical

assumptions. Each word wi in a document (where the index refers to the ith word

token) is generated by first sampling a topic from the topic distribution, then

choosing a word from the topic-word distribution. In this section we will review

the topic models that are recently used for semantic learning in text documents

and we describe how they are applied to images.

3.3.1 Probabilistic Latent Semantic Analysis (pLSA)

Hofmann [59] introduced the probabilistic topic approach to document mod-

eling in his Probabilistic Latent Semantic Analysis (pLSA) method. The key

concept of the pLSA model is to map the high dimensional word distribution vec-

tor of a document to a lower dimensional topic vector (also called aspect vector).

It is assumed that each document consists of a mixture of multiple topics and

that the occurrences of words are a result of the topic mixture. This generative

model is expressed by the following probabilistic model:

P (dj, wi) = P (dj)P (wi|dj) (3.1)

P (wi|dj) = P (dj)
∑
k

P (zk|dj)P (wi|zk) (3.2)
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where P (dj) denotes the probability of a document dj of the database to be

picked, P (zk|dj) the probability of a topic zk given the current document, and

P (wi|zk) the probability of a word wi given a topic. To simplify notations, let

Φk = P (w|zk) refer to the multinomial distribution over words for topic zk and

θj = P (z|dj) refer to the multinomial distribution over topics for document dj.

The parameters Φ and θ indicate which words are important for which topic and

which topics are important for a particular document, respectively

Once a topic mixture P (zk|dj) is derived for each document dj, a high-level

representation based on the respective mode the words belong to has been found.

At the same time this representation is of low dimensionality as commonly the

number of concepts in the model is chosen to be much smaller than the number

of words. The K-dimensional topic vector can be used directly as an index in an

IR.

3.3.2 Latent Dirichlet Allocation (LDA)

Beside the good results of pLSA in document retrieval, the pLSA model does

not make any assumption about how the mixture weights θ are generated. This

makes pLSA fail to generate new documents which are not available in the train-

ing stage. Blei et al. [16] extended this model by introducing a Dirichlet prior on

θ, calling the resulting generative model Latent Dirichlet Allocation (LDA). As

a conjugate prior for the multinomial, the Dirichlet distribution is a convenient

choice as prior, simplifying the problem of statistical inference. The probability

density of a K dimensional Dirichlet distribution over the multinomial distribu-

tion p = (p1, ..., pK) is defined by:
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Figure 3.2: Illustration for the symmetric Dirichlet distribution for three topics
on a two-dimensional simplex. Darker colors indicate higher probability. Left: α
= 4, right: α = 2 [148].

Dir(α1, ..., αK) =
Γ(
∑

k αk)∏
k Γ(αk)

K∏
k=1

pαk−1
k (3.3)

The parameters of this distribution are specified by α1...αK . Each hyper

parameter αk can be interpreted as a prior observation count for the number of

times topic zk is sampled in a document, before having observed any actual words

from that document. It is convenient to use a symmetric Dirichlet distribution

with a single hyper parameterα such that α1 = α2 = ... = αK = α. Figure 3.2

illustrates the Dirichlet distribution for three topics in a two-dimensional simplex.

By placing a Dirichlet prior on the topics distributions θ, the result is a smoothed

topic distribution, with the amount of smoothing determined by the α parameter.

Griffiths and Steyvers [53] explored a variant of this model, discussed by Blei

et al. [16] , by placing a symmetric Dirichlet(β) prior on Φ as well. The hyper

parameter β can be interpreted as the prior observation count on the number
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of times words are sampled from a topic before any word from the corpus is

observed. This smoothes the word distribution in every topic, with the amount

of smoothing determined by β. Good choices for the hyper parameters α and β

will depend on the number of topics and vocabulary size.

3.3.3 Extended probabilistic topic models

The statistical model underlying the topic modeling approach has been ex-

tended to include other sources of information about documents. For example,

Cohn and Hofmann [31] extended the pLSA model by integrating content and link

information. In their model, the topics are associated not only with a probability

distribution over terms, but also over hyperlinks or citations between documents.

Recently, Steyvers et al. [149] proposed the author-topic model, an extension

of the LDA model that integrates authorship information with content. Instead

of associating each document with a distribution over topics, the author-topic

model associates each author with a distribution over topics and assumes each

multi-authored document expresses a mixture of the authors topic mixtures.

3.3.4 Applying probabilistic topic models to images

When topic model are applied to images, each image represents a single visual

document. These models have been applied directly to image tags, as image tags

consist of words or for visual words. Many of these models introduce only one

latent, i.e. unobservable, topic layer between the documents (i.e., images here)

and the words. Even Cohn and Hofmann [31] and Steyvers et al. [149], who link

another type of information (citation and authors information) to the content of
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the documents do not construct another topic layer.

They simply treat the linked information in the same way as the content not

as new hidden topics. However, every image consists of one or more visual aspects

(multiple objects parts or multiple objects), which in turn are combined to one

or more higher-level aspects (i.e., visual category).

Lienhart et al. [86] introduced a new model named multilayer multimodal

probabilistic Latent Semantic Analysis (mm-pLSA). They derive the training and

inference rules for the smallest possible non-degenerated mm-pLSA model: a

model with two leaf-pLSAs (here from two different data modalities: image tags

and visual image features) and a single top-level pLSA node merging the two

leaf-pLSAs. From this derivation, it is obvious how to extend the learning and

inference rules to more modalities and more layers. Even though this approach

introduced a new multilayer inference rules, it uses an EM algorithm to derive

the different parameters, which costs a high computational power for parameters

initialization and estimation. In addition, this approach did not introduce any

criterion to estimate the number of different latent variables.

3.4 Graphical notation

Probabilistic generative models with repeated sampling steps can be conve-

niently illustrated using plate notations [20]. In these graphical notations, shaded

and unshaded variables indicate observed and latent (i.e., unobserved) variables

respectively. The variables Φ and θ, as well as z (the assignment of word tokens

to topics) are the three sets of variables that we would like to infer. The hyper

parameters α and β are treated as constants in the model.
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Figure 3.3: The graphical notation of a topic model .

Figure 3.3 shows the graphical notation of the topic model used in Griffiths

and Steyvers [53]. Arrows indicate conditional dependencies between variables

while plates (the boxes in the figure) refer to repetitions of sampling steps with the

variable in the lower right corner referring to the number of samples. For example,

the inner plate over z and w illustrates the repeated sampling of topics and words

until M words have been generated for document dj. The plate including θi

illustrates the sampling of a distribution over topics for each document d for a

total of N documents. The plate surrounding Φk illustrates the repeated sampling

of word distributions for each topic z until K topics have been generated.
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Figure 3.4: A geometric interpretation of the topic model (from Hofmann [59]).

3.5 Geometric interpretation

The probabilistic topic model has an elegant geometric interpretation as shown

in Figure 3.4 that describes the geometric interpretation of pLSA model. With

a vocabulary containing M words, an M dimensional space can be constructed

where each axis represents the probability of observing a particular word type.

The M−1 dimensional simplex represents all probability distributions over words.

Each document that is generated by the model is a convex combination of the

K topics which not only places all word distributions generated by the model as

points on the K − 1 dimensional simplex, but also as points on the K − 1 di-

mensional simplex spanned by the topics. The Dirichlet prior on the topic-word

distributions can be interpreted as forces on the topic locations with a higher

β moving the topic locations away from the corners of the simplex. When the
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number of topics is much smaller than the number of word types (i.e., K � M),

the topics span a low-dimensional subsimplex and the projection of each docu-

ment onto the low-dimensional subsimplex can be thought of as dimensionality

reduction. This formulation of the model is similar to Latent Semantic Analysis.

Buntine [21] has pointed out formal correspondences between topic models and

principal component analysis, a technique closely related to LSA.

3.6 Probabilistic topic models as Non-negative

Matrix Factorization (NMF)

Non-negative Matrix Factorization (NMF) is one of the widely-used multi-

variate data analysis methods [115, 85, 83, 84, 130], which has many potential

applications in pattern recognition and machine learning. NMF has been inves-

tigated by many researchers, e.g. Paatero and Tapper [115], but it has gained

popularity through the work of Lee and Seung [83, 84]. Based on the argument

that the non-negativity is important in human perception they proposed sim-

ple algorithms (often called the Lee-Seung algorithms) for finding non-negative

representations of non-negative data and images.

In this section we describe the basic NMF model and review the multiplica-

tive update rules that have been proposed recently for factorization. Finally, we

describe the relation between the NMF and probabilistic topic models.
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3.6.1 Basic NMF model

One common ground in the various approaches for noise removal, model re-

duction, feasibility reconstruction, image and text analysis and so on, is to replace

the original data by a lower dimensional representation obtained via a subspace

approximation. The use of low-rank approximations, therefore, comes to the fore-

front in a wide range of important applications. Factor Analysis and Principal

Component Analysis are two of the many classical methods used to accomplish

the goal of reducing the number of variables and detecting structures among the

variables [14].

Often the data to be analyzed is non-negative, and the low-rank data are

further required to be comprised of non-negative values in order to avoid con-

tradicting physical realities. Classical tools cannot guarantee to maintain the

non-negativity. The approach of finding reduced rank non-negative factors to ap-

proximate a given non-negative data matrix thus becomes a natural choice. This

is the so-called Non-negative Matrix Factorization (NMF) problem which can be

stated in a generic form as follows:

Definition 2. (Non-negative Matrix Factorization (NMF))

Given A ∈ RM×N
+ and a positive integer K ≤ min (M , N), find W ∈ RM×K

+

and H ∈ RK×N
+ such that a divergence function D (A ‖ Ã) is minimized, where

Ã = WH is the reconstructed matrix from the factorization.

NMF has been successfully applied to a variety of applications, including im-

age part based representation [153], document clustering [167, 133], sound clas-

sification [28], medical imaging [85, 3], audio processing [76], bioinformatics [19],

etc.
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One of the prominent applications of NMF, which is of our interest, is the

dyadic data analysis [133, 167]. Dyadic data refers to a domain with two finite

sets of objects in which observations are made for dyads, i.e., pairs with one

element from either set. In the simplest case of dyadic data - on which we focus -

is an elementary observation consists just of (xi, yk) itself without any scalar value

(strength of preference or association), i.e. a co-occurrence of xi ∈ X and yk ∈ Y .

In image part-based representation, X may correspond to a image collection, Y

to visual terms vocabulary, and (xi, yk) would represent the occurrence of a visual

term yk in a image xi

3.6.2 Multiplicative update rules for factorization

Various divergence measures were considered as objective functions for fac-

torization with non-negativity constraints, including sparseness constraints [61],

Csiszàr’s divergence [30], Bregman divergence [37], and a generalized divergence

measure [78]. Two divergence measures that were considered by Lee and Seung

[83, 84] are widely-used and are summarized as:

ε1 = ‖A−WH‖2 =
∑
m,n

[Amn − [WH]mn]2 (3.4)

ε2 =
∑
m,n

[
Amnlog

Amn
[WH]mn

− Amn + [WH]mn

]2

(3.5)

The minimization of the divergence functions described above, should be done

with non-negativity constraints for both A and S. Multiplicative updating is an

efficient way in such a case, since it can easily preserve non-negativity constraints
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at each iteration. Multiplicative updating algorithms for NMF associated with

these two objective functions are given as follows:

1. (LS) A local minimum of the objective function (3.4) is computed by the

LS multiplicative algorithm that has the form

wmk ← wmk
(AHT )mk

(WHHT )mk
(3.6)

Hkn ← Hkn
(W TA)kn

(W TWH)kn
(3.7)

2. (I-divergence) In the case of I-divergence-based objective function (3.5), its

minimum is found by the multiplicative updating algorithm that is of the

form

Wmk ← Wmk

∑
n

Amn
(WH)mn

Hkn (3.8)

Hkn ← Hkn

∑
m

Wmk
Amn

(WH)mn
(3.9)

Lee and Seung have shown that the application of the Multiplicative update

rules in (3.6, 3.7 ) and (3.8, 3.9) are guaranteed to find at least locally optimal

solutions of the objective functions (3.4) and (3.5), respectively. They have proven

the convergence relying upon defining an appropriate auxiliary function. The

multiplicative update rules themselves are extremely easy to implement;
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3.6.3 Relation between probabilistic topic models and

NMF

As we have mentioned that NMF and Probabilistic topic models have been

successfully applied to a number of data analysis tasks. Despite their different

inspirations, both methods are instances of multinomial PCA [22]. Gaussier and

Goutte [50] have explored this relationship and first show that PLSA solves the

problem of NMF with KL divergence, and then explore the implications of this

relationship. Recently, Shashanka et al. [135] have shown that there are strong

ties between non-negative matrix factorization and other probabilistic topic mod-

els, and provide some straightforward extensions which can help in dealing with

shift invariances, higher-order decompositions and sparsity constraints.

The two dimensions of the matrix A can be presented by x1 and x2, respec-

tively. The non-negative entries Ax1x2 can be considered as having been generated

by an underlying probability distribution P (x1, x2). Variables x1 and x2 are multi-

nomial random variables, where x1 can take one out of a set of M values in a

given draw and x2 can take one out of a set of N values in a given draw. In other

words, one can model Amn, the entry in row m and column n, as the number of

times features x1 = m and x2 = n were picked in a set of repeated draws from

the distribution P (x1, x2). Unlike NMF which tries to characterize the observed

data directly, probabilistic topic models characterize the underlying distribution

P (x1, x2). There are two ways of modeling P (x1, x2): symmetric and asymmetric

factorization.
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3.6.3.1 Symmetric factorization

Probabilistic topic models enable one to attribute the observations as being

due to hidden or latent factors. The main characteristic of these models is condi-

tional independence multivariate data are modeled as belonging to latent classes

such that the random variables within a latent class are independently of one

another. The model expresses a multivariate distribution such as P (x1, x2) as a

mixture where each component of the mixture is a product of one-dimensional

marginal distributions. In the case of two dimensional data such as A, the model

can be written mathematically as:

P (x1, x2) =
∑

z∈{1,2,...,K}

P (z)P (x1|z)P (x2|z) (3.10)

In (3.10), z is a latent variable that indexes the hidden components and takes

values from the set 1, ..., K. This equation assumes the principle of local inde-

pendence, whereby the latent variable z renders the observed variables x1 and

x2 independent. This model is presented independently as Probabilistic Latent

Component Analysis (PLCA) [163]. The aim of the model is to characterize the

distribution underlying the data as shown above by learning the parameters so

that the hidden structure present in the data becomes explicit.

The model can be expressed as a matrix factorization. Representing the pa-

rameters P (x1|z), P (x2|z), and P (z) as entries of matrices W , G, and S, respec-

tively, where:

– W is an M × K matrix such that Wmk corresponds to the probability

P(x1 = m|z = k).

– G is a K ×N matrix such that Gkn corresponds to the probability P (x2 =

47



Figure 3.5: Probabilistic topic model of (3.10) as NMF (from Shashanka et al.
[135]).

n|z = k).

– S is a K ×K diagonal matrix such that Skk corresponds to the probability

P (z = k).

One can write the model of (3.10) in matrix form as:

P = WSG = WH (3.11)

Where the entries of matrix P correspond to P (x1, x2) and H = SG. Figure 3.5

illustrates the model schematically.

Parameters can be estimated using EM algorithm. The update equations for

the parameters can be written as:

P (z|x1, x2) =
P (z)P (x1|z)P (x2|z)∑
z P (z)P (x1|z)P (x2|z)

(3.12)

P (z|x1, x2) =

∑
j∈{1,2}j 6=i, Ax1x2P (z|x1, x2)∑
z,x1,x2

Ax1x2P (z|x1, x2)
(3.13)

P (z) =

∑
x1,x2

, Ax1x2P (z|x1, x2)∑
z,x1,x2

Ax1x2P (z|x1, x2)
(3.14)

Writing the above update equations in matrix form using W and H from (3.11),

48



we obtain:

Wmk ← Wmk

∑
n

Amn
(WH)mn

Hkn (3.15)

Hkn ← Hkn

∑
m

Wmk
Amn

(WH)mn
(3.16)

The above equations are identical to the NMF multiplicative update equations

of (3.8) and (3.9) up to a scaling factor in H. This is due to the fact that the

probabilistic model decomposes P which is equivalent to a normalized version of

the data A. Smaragdis and Raj [163] present a detailed derivation of the update

algorithms and a comparison with NMF update equations. This model has been

used in analyzing image and audio data among other applications.

3.6.3.2 Asymmetric factorization

The probabilistic topic model of 3.10 considers each dimension symmetrically

for factorization. The two dimensional distribution P (x1, x2) is expressed as a

mixture of two dimensional latent factors where each factor is a product of one-

dimensional marginal distributions. Now, consider the following factorization of

P (x1, x2):

P (x1, x2) = P (xi)P (xj|xi) (3.17)

P (xj|xi) =
∑
z

P (xj|z)P (z|xi) (3.18)

Where i, j ∈ 1, 2, i 6= j and z is a latent variable. This version of the model

with asymmetric factorization is the same as PLSA model as discussed in Section

3.3.1.

Without loss of generality, let j = 1 and i = 2. We can write the above model

in matrix form as qn = Wgn, where qn is a column vector indicating P (x1|x2), gn is
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Figure 3.6: Probabllistic topic model of (3.17) as NMF (from Shashanka et al.
[135]).

a column vector indicating P (z|x2), and W is a matrix with the (m, k)th element

corresponding to P (x1 = m|z = k). If z takes K values, W is an M ×K matrix.

Concatenating all column vectors qn and gn as matrices Q and G, respectively,

one can write the model as:

Q = WG (3.19)

A = WGS = WH (3.20)

Where S is an N × N diagonal matrix whose nth diagonal element is the sum

of the entries of vn (the nth column of A), and H = GS. Figure 3.6 provides a

schematic illustration of the model.

Given data matrix A, parameters P (x1|z) and P(z|x2) are estimated by iter-

ations of equations derived using the EM algorithm:

P (z|x1, x2) =
P (z|x2)P (x1|z)∑
z P (z|x2)P (x1|z)

(3.21)

P (x1|z) =

∑
x2
, Ax1x2P (z|x1, x2)∑

z,x1,x2
Ax1x2P (z|x1, x2)

(3.22)

P (z|x2) =

∑
x1
, Ax1x2P (z|x1, x2)∑

x1
Ax1x2

(3.23)

Writing the above equations in matrix form using W and H from (3.20), we
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obtain a set of Multiplicative update rules that are exactly to 3.12, 3.13 which

are identical to the NMF multiplicative update equations of (3.8) and (3.9).

3.7 Summary and conclusion

Probabilistic topic models have the potential to make important contributions

to the statistical analysis of large image collections. These models enable the use

of sophisticated statistical methods to identify the underlying latent structure

from a set of visual words. Consequently, it is easy to explore different repre-

sentations of images, and to develop richer models capable of capturing more

of the content. Topic models illustrate how using a different representation can

provide new insights into the statistical modeling, incorporating many of the key

assumptions behind LSA, and making it possible to identify a set of interpretable

probabilistic topics rather than a semantic space.

All these models simply treat the images independently and one kind or layer

of latent topics is proposed. However, every image consists of one or more visual

aspects (multiple objects parts or multiple objects), which in turn are combined

into one or more higher-level aspects (i.e., image category). For a test image, both

of these aspects are hidden topics that are needed for image semantic analysis. We

introduce a Multilayer Probabilistic Semantic (MSSA) model that consists of two

layered of topics in order to select semantically significant visual words (SSVWs)

from the classical visual words based on their probabilistic distributions to the

relevant visual latent topics. In addition, we have utilized NMF to implement the

proposed MSSA model and we have proposed new multiplicative update rules for

factorization
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4.1 Overview

One of the successful aspects in text information retrieval has been the defini-

tion of the Vector Space Model [128] that may be further enriched with weighting

schemes, static ordering, probabilistic models, and latent semantic indexing [25].

As we mentioned before, the analogy between text documents and images consid-

ers that an image is represented as a bag of visual words. Following this analogy,

the traditional vector space model of Information Retrieval is adapted to image

representation model.

This chapter is organized as follows. In Section 4.2, we review the vector

space model and how is widely applied to image representation. In Section 4.3,

we discussed different term weighting associated with the vector space model. We

review different commonly used similarity measures in Section 4.4. Finally, we

give a summary and conclusion for this chapter in Section 4.5.

4.2 Vector Space Model

By returning to the text documents, an explicit representation model of the

documents is always required to solve most of the information retrieval tasks such

as text search, clustering or categorization. Since Shannon showed in 1948 that a

wide range of practical problems can be reduced to the problem of estimating the

probability distributions of words or n-grams in text [134], the ”bag-of-words” as-
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sumption has become a standard practice in text compression, speech recognition,

information retrieval and many other applications of Shannon’s theory.

Based on the assumption, various data representation models for different

information retrieval tasks have been developed, such as Boolean model [7], and

fuzzy retrieval model [154]. Nevertheless, most of the recent document clustering,

retrieving and classification methods are based on the vector space model [129].

The vector space model represents each text document is represented by a

vector where each dimension corresponds to an index term defined as follows.

Definition 3 (Index Term). The definition of index term in the text documents

depends on the application. Typically index terms are single words, keywords, or

longer phrases. If the words are chosen to be the index terms, the dimensionality

of the vector is the number of words in the vocabulary (the number of distinct

words occurring in the corpus).

If an index term occurs in the document, its value in the vector is non-zero.

Several different ways of computing these values, also known as (term) weights,

have been developed.

By applying the vector space model to images, each image is described by a

set of representative visual keywords, in which each visual keyword is considered

to be a visual feature unit (i.e., visterms [69, 122, 120], blobs [26], visual word

[173, 72], visual phrase [175, 174, 172, 177]...) called a visual index term. A visual

index term is simply assumed to be a visual keyword whose semantic meaning

helps in remembering the image’s main theme. Thus the index terms can be used

to index and summarize the image contents.

Definition 4 (Visual Index Term). A visual index term is defined as an atomic
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visual representation unit (i.e. visterm [69, 122, 120], blob [26], visual word

[173, 72], visual phrase [175, 174, 172, 177]...) in the vector space model, which

represents a unique dimension of the vector space.

It is clear that distinct visual index terms of keywords have variable impor-

tance in describing image contents. To capture the variable importance of distinct

visual index terms, a numerical weight is assigned to each visual index term of

an image.

Thus the common framework of vector space model starts with a representa-

tion of any image as a feature vector of the weight of the visual index terms that

appear in the image collection. In particular, non-binary term-weights (usually

tf-idf, term-frequencies and inverse document-frequencies) of the index terms are

also contained in the vector [157]. The similarity between two images is computed

with a similarity measure on the two corresponding feature vectors.

Let symbols ti be an visual index term, imj be an image, and wij ≥ 0 be a

weight associated with the pair (ti, imj). The weight wij quantifies the importance

of the index term ti for describing the image semantic content.

Definition 5 (Vector Space Image Model). Let k be the number of visual

index terms in the image collection, and ti be a generic visual index term.

T = t1, t2, ..., tk is the set of all visual index terms. The weight wij ≥ 0 is

associated with a visual index term ti of an image imj. For a visual index term

which does not appear in the image, wij = 0. Then image imj is represented by

a k-dimensional visual index term vector.

−−→
imj = (w1,j, ..., wk,j) (4.1)
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The dimensionality of the feature vector is a crucial factor on the efficiency

of the corresponding visual representation and hence its scalability. There exist

some methods to reduce the dimensionality problem, such as Principle Com-

ponent Analysis (PCA) [73] [79] and Latent Semantic Index (LSI) model [48].

Krishnapuram et al. [79] proposed an approach for reducing a 500-dimensional

problem to a 10-dimensional problem by using the PCA method. The LSI model

[48] introduces an interesting conceptualization of the information retrieval prob-

lem based on the theory of singular value decomposition. The main idea of LSI

model is to map each document or image and the query vector into a lower di-

mensional space which is associated with the concepts. Thus the efficiency of the

algorithm in the reduced space might be superior to the same algorithm in the

space of original index terms.

Baeza-Yates et al. [7] summarizes the main advantages of vector space model

as follows:

1. Its term weighting scheme improves retrieval performance.

2. Its partial matching strategy allows the retrieval of documents that approx-

imate the query conditions.

3. Its cosine similarity measure ranks the documents according to their rele-

vance degree of similarity to the query.

4.3 Term weighting measures

Since term weighting is a key technique in IR [128, 6], recent research on image

representation explores its use in weighting visual index terms. There is much

research on term weighting techniques with little consensus on which method is
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the best. Two major factors in term weighting are tf (term frequency) and idf

(inverse document frequency). A third factor is the normalization factor, which

converts a feature into unit-length vector to eliminate the difference between short

and long documents. Many visual representation methods use weighting schemes

based on these factors [120, 173, 72, 175, 174].

This section gives a brief review for several commonly used term weighting

measures associated with the vector space model.

4.3.1 Term Frequency (tf)

Index terms that are frequently mentioned in individual documents, or doc-

ument excerpts, appear to be useful as recall enhancing devices. This suggests

that a term frequency (tf) factor be used as part of the term-weighting system

measuring the frequency of occurrence of the terms in the document or query

texts. For a document, the set of weights determined by tf may be viewed as a

quantitative digest of that document.

In this view of a document, the exact ordering of the terms in a document is

ignored but the number of occurrences of each term is material. We only retain

information on the number of occurrences of each term. Thus, the document

’Mary is quicker than John’ is, in this view, identical to the document ’John

is quicker than Mary’. Nevertheless, it seems intuitive that two documents with

similar representations based on tf are similar in content. Term-frequency weights

have been used for many years in automatic indexing environments [94, 157, 7].
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4.3.2 Inverse Document Frequency (idf)

The inverse document frequency (idf ) was proposed by Spärck Jones [74]

four decades ago and has become one of the popular measures for representing

the importance of index terms in a text document corpus. The idf is defined

as the logarithm of the ratio of the number of documents (N ) in a collection

to the number of documents containing the given term (df ). This means that

idf is measuring the ability of a term to discriminate the subject or topic of the

documents. In a set of documents, rare terms have higher idf values and common

terms have lower values. The idf is often described as a heuristic without a

theoretical basis, thus it becomes a magnet attracting many researchers to explore

the theoretical principle for explaining why it can work so well. Stephen’s paper

[125] gives a review for some of these attempts. However, these contributions are

achieved under some limited assumptions. So far, the idf is still a theoretical

heuristic.

The work of Papineni [116] makes some appeals to information theory, such as

maximum entropy, Kullback-Leibler distance, and mutual information. Based on

the agreement that the idf is a heuristic, their work shows that the idf is optimal

in the precision sense of information retrieval. They first consider information

retrieval as a classification problem with each document in the collection being

a class. They then build a classifier that scores the documents given a query.

To train the classifier, they treat each document as a query that retrieves itself.

Thus the classifier they develop is an exponential model similar to the one in

the maximum entropy framework, but without the usual normalization. In the

case when there is a single binary feature in this model, the optimal solution is
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stunningly simple in contrast to the solution in the regular conditional maximum

entropy framework. The single feature of a word that examines the occurrence of

the word in both the query and the document is exactly a binary feature. Thus

idf is the optimal weight of this feature of word in document self-retrieval.

The idf is applied to images in the same manner as tf and is defined as the

logarithm of the ratio of number of images (N ) in a dataset to the number of

images containing the given visual index term (df ).

4.3.3 The tf × idf weighting scheme

The tf×idf [125] is the most famous weighting scheme which is widely used in

modern information retrieval. The tf×idf weight [125]comprises two components:

a term frequency tf that provides a local measure for the feature term associated

with the document, and an inverse document frequency idf that provides a global

measure for the term among the documents in the document collection or corpus.

Given tf × idf weighting scheme assigns to term t a weight in document d given

by:

tf − idft,d = tftd × idft (4.2)

In other words, tf− idft,d, assigns to an index term t a weight in document d that

is

– higher when t occurs many times within a small number of documents (thus

lending high discriminating power to those documents);

– lower when the term occurs fewer times in a document, or occurs in many

documents (thus offering a less pronounced relevance signal);

– lower when the term occurs in most of all documents.
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The tf×idf weighting scheme has been proven to be extremely robust and difficult

to beat, even by much more carefully worked out models and theories [125].

4.3.4 Variant normalized term weighting measures

For assigning a weight for each index term in each document, a number of

alternatives to tf and tf × idf have been considered. We discuss some of the

principal ones here.

4.3.4.1 Sublinear tf scaling

It seems unlikely that twenty occurrences of an index term in a document truly

carry twenty times the significance of a single occurrence. Accordingly, there

has been considerable research into variants of term frequency that go beyond

counting the number of occurrences of a term. A common modification is to use

instead the logarithm of the term frequency, which assigns a weight given by:

wft,d =

1 + log tft,d if tft,d > 0

0 otherwise
(4.3)

In this form, we may replace tf with some other function wf as in (4.2), to

obtain:

wf − idft,d = wft,d × idft,d (4.4)

4.3.4.2 Maximum tf normalization

One well-studied technique is to normalize the tf weights of all terms occurring

in a document by the maximum tf in that document. For each document d, let
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tfmax(d) = max(τ∈d)tfτ,d where τ ranges over all terms in d. Then, we compute a

normalized term frequency for each term t in document d by:

ntft,d = α + (1 + α)
tft,d

tfmax(d)

(4.5)

where α is a value between 0 and 1 and is generally set to 0.4, although some

smoothing early work used the value 0.5. The term α in (4.5) is a smoothing

term whose role is to damp the contribution of the second term-which may be

viewed as a scaling down of tf by the largest tf value in d. The main idea

of maximumtfnormalization is to mitigate the following anomaly: we observe

higher term frequencies in longer documents, merely because longer documents

tend to repeat the same words over and over again. To appreciate this, consider

the following extreme example: suppose we were to take a document d and create

a new document d
′

by simply appending a copy of d to itself. While d
′

should

be no more relevant to any query than d is, the use of (4.2) would assign it twice

as high a score as d. Replacing tf × idf(t,d) in (4.2) by ntf × idf(t,d) eliminates

the anomaly in this example. Maximum tf normalization does suffer from the

following issues:

– The method is unstable in the following sense: a change in the stop word

list can dramatically alter term weightings (and therefore ranking). Thus,

it is hard to tune.

– A document may contain an outlier term with an unusually large number of

occurrences of that term, not representative of the content of that document.

– More generally, a document in which the most frequent term appears

roughly as often as many other terms should be treated differently from
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one with a more skewed distribution.

4.4 Similarity measures

The essential property of a similarity measure is to accurately reject the degree

of similarity between two data objects. It’s widely recognized that similarity

measure is a key factor in many data analysis applications due to different feature

types, different cluster shapes, and different clustering principles. There is a large

number of similarity metrics reported in the related literature; only the most

common measures are reviewed in this section.

In general, similarity measures are ranged in the interval of [0, 1], with 1 denot-

ing the highest similarity and 0 being the lowest similarity. Similarity measures

satisfy reflexive, symmetric properties.

– Reflexivity: ∀x, sim(x, x) = 1

– Symmetry: ∀x, y sim(x, y) = sim(y, x)

Reflexivity means that each object has maximum similarity to itself. Symmetry

ensures that the similarity between two objects is independent to the direction of

comparison.

In many data analysis applications, similarity measures are replaced with

distances, sometimes dissimilarities as well. The distance between two instances

is a non-negative number, with 0 representing the shortest distance. Distance

satisfies reflexive and symmetry properties. In addition, distance also satisfies

the triangle inequality.

– Triangle inequality: ∀x, y, z d(x, y) ≤ d(x, z) + d(y, z)

There are many ways to transfer a distance measure to a similarity measure.
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For example, sim(x, y) =
dmax−d(x,y)
dmax−dmin

, where dmax is the maximum value of dis-

tances and dmin is the minimum value of distances.

4.4.1 Minkowski distance

As we mentioned before, in the classical vector space image model, an image

is represented as a vector. Each dimension corresponds to a separate weight for

the visual index term. If a visual index term occurs in a image, its value in the

vector is non-zero.

A commonly used class of distance functions is known as the family of

Minkowski distance.

Let two feature vectors x, y represent two objects, the Minkowski distance of

them is given by:

d(x, y) = p

√√√√ n∑
i=1

|xi − yi|p (4.6)

Three special cases of Minkowski distance are:

– p = 1 : Hamming Distance

d(x, y) =
n∑
i=1

|xi − yi| (4.7)

– p = 2 : Euclidean Distance

d(x, y) = 2

√√√√ n∑
i=1

|xi − yi|2 (4.8)
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– p =∞: Tschebyshev Distance

d(x, y) = maxi=1,2,...,n |xi − yi| (4.9)

4.4.2 Cosine similarity measure

The most commonly used similarity measure in information retrieval, index-

ing, relevance ranking is the cosine correlation measure [127], which is defined

as:

d(x, y) =

∑i=1
n xiyi√∑i=1

n x2
i

∑i=1
n y2

i

(4.10)

The cosine similarity measure computes the similarity or relevancy of two

images by comparing the deviation of angles between the two image vectors.

4.4.3 Jaccard similarity measure

Another commonly used similarity measure is the Jaccard similarity measure

(also called Jaccard similarity coefficient) [66], which is defined as follows:

d(x, y) =

∑i=1
n xiyi∑i=1

n x2
i +

∑i=1
n y2

i −
∑i=1

n xiyi
(4.11)

In the case of binary feature vector it is simplified to be:

d(x, y) =
|x ∩ y|
|x ∪ y|

(4.12)
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Hence, Jaccard similarity measure is defined as the size of the intersection divided

by the size of the union of the sample sets.

4.5 Summary and conclusion

This chapter introduces a brief review of a vector space model that represents

a document with a vector that captures the relative importance of the terms in

a document. The vector space model is fundamental to a number of operations

ranging from scoring documents on a query, document classification and document

clustering. This vector space model is adapted to image representation, and is

used for similarity matching, retrieval, classification and ranking of images. In our

approach, the Vector Space Model is applied to different levels of the proposed

visual representation, and used for similarity matching and retrieval of images.

In addition, a number of term-weighting measures are described in these chap-

ters which are combinations of term frequency, collection frequency, and normal-

ization components. The tf × idf weighting scheme has been proven to be ex-

tremely robust by comparing to others [125]. There exist also a large number

of similarity measures reported in the related literature; only the most common

measures that are associated with vector space model are reviewed in this chapter.

The best weighting scheme in IR does not guarantee good performance in im-

age representation since most of the weighting schemes do not consider the spatial

location of the local patches. However, such information in an image is important

for classifying and retrieving the images [170, 70]. For this reason, we create a

weighting scheme that weights for the first level of the proposed representation

(SSIVW) according to the spatial constitution of an image content rather than
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the number of occurrences. Besides, we have used the tf × idf weighting for

the higher-level of representation (SSIVP) where the spatial constitution is not

considered.
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Part II

A Semantic Higher-Level Visual

Representation
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5.1 Overview

As mentioned in the Introduction, we make use of several chains of processes

from the lower level to a higher level of representation, in order to extract and

refine the information incrementally. With an analogy between text and image

documents, we consider that an image is composed of visual words and it can be

represented as a Bag of Visual Words.

The objective of this chapter is to introduce the different hierarchical process

(see Figure 5.1) that are performed in order to enhance the classical approach of

bag of visual words (BOW).

This chapter is organized as follows. In Section 5.2, we present the Fast-

Hessian detector [10]. In Section 5.3, we introduce the canny edge detector with

the Sobel operator [24]. A Vector Median Filter (VMF) [150] is applied to remove

the color noise as described in Section 5.4. We model the color and position

feature space for set of interest and edge point based on the Gaussian Mixture

Model (GMM) [15] in Section 5.5. In Section 5.6, we describe how to extract and

describe local features. In addition to SURF [10], we introduce a new local feature

extractor, the Edge context, which plays the role of complimentary descriptor to

SURF descriptor. It describes, at each interest point, the distribution of the edge

points that are in the same Gaussian cluster by returning to the 5D color-spatial

space. In Section 5.7, the quantization of the merged features into visual words

is described based on Hierarchical Agglomerative Clustering (HAC) and repeated

k-means clustering that hierarchically partition the feature space in order to build
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Figure 5.1: Overview of the different processes for generating the visual words.

a visual word vocabulary tree. Finally, we give a summary and conclusion for

this chapter in Section 5.8.
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5.2 Interest points detection

We use the Fast-Hessian detector [10] to detect interest points. This detector

is based on the Hessian matrix because of its good performance in computation

time and accuracy. However, rather than using a different measure for selecting

the location and the scale (as it is done with the Hessian-Laplace detector [104]),

it relies on the determinant of the Hessian for both. Given a point X = (x, y) in

an image I, the Hessian matrix H(X, σ) at scale is defined as follows:

Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)

 (5.1)

where Lxx(X, σ) is the convolution of the Gaussian second order derivative

H(x, σ) with the image I in point X, and similarly for Lxy(X, σ) and Lxy(X, σ).

Gaussians are optimal for scale-space analysis, as shown in [77]. In practice,

however, the Gaussian needs to be discretized and cropped (Figure 5.2, (a) and

(b), and even with Gaussian filters same aliasing still occurs when the resulting

images are sub-sampled. Given Lowe’s success with LoG approximations [93],

Bay et al. use box filters (Fig. 5.2, (c) and (d)) for approximation. These box

filters approximate the second order Gaussian derivatives, and can be evaluated

very fast using integral images, independently from the size.

The 9 × 9 box filters in Figure 5.2 are approximations for Gaussian second

order derivatives with σ = 1.2, and they represent the lowest scale (i.e. highest

spatial resolution) as proposed by Bay et al. These approximations are denoted

by Dxx, Dyy, Dxy. The weights applied to the rectangular regions are kept simple

for computational efficiency with additional further balance to the relative weights
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Figure 5.2: The (discretized and cropped) Gaussian second order partial deriva-
tives in y-direction (a) and xy-direction (b), and the approximations thereof using
box filters (c) and (d). The gray regions are equal to zero [10].

in the expression for the Hessian’s determinant.

The scale space is analyzed by up scaling the filter size rather than iteratively

reducing the image size. The output of the above 9×9 box filters is considered as

the initial scale layer, to which is referred as the scale s = 1.2 (corresponding to

Gaussian derivatives with σ = 1.2). The following layers are obtained by filtering

the image with gradually bigger masks, taking into account the discrete nature

of integral images and the specific structure of these filters. This results in filters

of size 9× 9, 15× 15, 21× 21, 27× 27, etc.

Finally, in order to localize interest points in the image and over scales, a

non-maximum suppression in a 3× 3× 3 neighborhood is applied. The maxima

of the determinant of the Hessian matrix are then interpolated in scale and image

space with the method proposed by Brown et al. [18]. Scale space interpolation is

especially important in this case, as the difference in scale between the first layers

of every octave is relatively large. Figure 5.3 shows some examples of detected

interest points using the Fast-Hessian detector.
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Figure 5.3: Examples of detected interest points using the Fast-Hessian detector

5.3 Edge points detection

The Canny algorithm [24] is used to detect edge points. We used the Canny

algorithm since it is adaptable to various environments. Its parameters allow it

to be tailored to the recognition of edges of different characteristics from different
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image databases.

This algorithm makes use of several operator widths to cope with varying

image signal-to-noise ratios, and operator outputs were combined using a method

called feature synthesis, where the responses of the smaller operators are used

to predict the large operator responses. If the actual large operator outputs differ

significantly from the predicted values, some new edge points are marked. It is

therefore possible to describe edges that occur at different scales, even if they are

spatially coincident.

In our approach, we use the Sobel operator as an edge detection operator

within the Canny algorithm to detect horizontal, vertical and diagonal edges in

the image. The Sobel operator returns a value for the first derivative in the

horizontal direction (Gy) and the vertical direction (Gx). From this, the edge

gradient and direction can be determined:

G =
√
G2
x +G2

y (5.2)

Θ =
Gx

Gy

(5.3)

The edge direction angle is rounded to one of four angles representing vertical,

horizontal and the two diagonals (0, 45, 90 and 135 degrees for example). Figure

5.4 shows examples of the detected edge points.
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Figure 5.4: Examples of edge points detected by Canny algorithm with Sobel
operator
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5.4 Color filtering using Vector Median Filter

(VMF)

Color images are often corrupted with noise due to capturing devices or sensors. It

significantly improves visual representation accuracy if an effective filter is applied

to remove the color noise. The pre-process can be essential, especially when the

image retrieval or classification results are used for human interpretation.

Since each individual channel of a color image can be considered a monochrome

image, traditional image filtering techniques often involve the application of scalar

filters on each channel separately. However, this disrupts the correlation that ex-

ists between the color components of natural images represented in a correlated

color space, such as sRGB [150]. Since each processing step is usually accompa-

nied by a certain inaccuracy, the formation of the output color vector from the

separately processed color components usually produces color artifacts.

Thus, vector filtering techniques that treat the color image as a vector field are

more appropriate. With this approach, the filter output x̂(N + 1)/2 is a function

of the vectorial inputs x1, x2, ..., xN located within the supporting window W (see

Figure 5.5).

Assuming an RGB color image x, each pixel xi = [xi1, xi2, xi3]T represents a

three-component vector in a color space as shown in Figure 5.6.

The color image x is a vector array or a two-dimensional (2D) matrix of the

three-component samples xi with xik denoting the R(k = 1), G(k = 2), or B

component (k = 3) (see Figure 5.7) .

We used the Vector Median Filter (VMF), which is the most popular vector

filter [5]. The VMF is a vector processing operator that has been introduced
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Figure 5.5: The 3× 3 filtering mask with the window center x(N + 1)/2 = x5.

Figure 5.6: Color image representation in the RGB color domain [150]

as an extension of the scalar median filter. The generalized Minkowski metric

‖xi − xj‖L is used to quantify the distance between two color pixels xi and xj in

the magnitude domain. To speed up the calculation of the distances between the
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Figure 5.7: RGB color Cube

color vectors, we used VMF based on the linear approximation of the Euclidean

norm as proposed by [9].

The VMF output is the sample x(1) ∈ W that minimizes the distance to the

other samples inside W . Since the ordering can be used to determine the posi-

tions of the different input vectors without any a priori information regarding the

signal distributions, vector order-statistics filters, such as the VMF , are robust

estimators [9].
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5.5 Gaussian Mixture Model (GMM) for the

color-spatial feature space

Based on the Gaussian Mixture Model (GMM) [15], we model the color and

position feature space for set of interest and edge points. This model is used to

extract the Edge Context descriptor and later for spatial weighting [41, 42].

A 5D color-spatial feature vector is with the 3 dimensions for RGB color, plus

2 dimensions (x, y) for the position, in order to represent each interest and edge

point. In an image with m interest/edge points, a total of m 5D color-spatial

feature vectors: f1...fm can be extracted.

The set of points is assumed to be a mixture of n Gaussians in the 5D color-

spatial feature space and the Expectation-Maximization (EM) [35] algorithm is

used to iteratively estimate the parameter set of the Gaussians.

The parameter set of the Gaussian mixture is θ = {µi, Σi, pi}ni=1 where :

– µi is the mean of the ith Gaussian cluster.

– Σi denotes the covariance matrix.

– pi represents the prior probability of the ith Gaussian cluster.

By applying Bayes theorem at each E-step, we estimate the probability of

a particular feature vector fj belonging to the ith Gaussian according to the

outcomes from the last M-step as follows.

P (gi|fj, θt) =
P (fj|gi, θt)P (gi|θt)

P (fj)
(5.4)

P (fj) =
n∑
k=1

P (fj|gk, θt)P (gk|θt) (5.5)
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Where gi denotes the Gaussian which fj comes from and θt is the parameter

set at the tth iteration.

At each M-step, the parameter set of the n Gaussians is updated toward

maximizing the log-likelihood, which is:

Q(θ) =
m∑
j=1

n∑
i=1

P (gi|fj, θt)ln(P (fj|gi, θt)P (gi|θt)) (5.6)

When the algorithm converges, the parameter sets of n Gaussians as well as

the probability P (gi|fj) are obtained. For each feature vector fj, we indicate the

most likely Gaussian cluster to which it belongs as follows.

Pmax
fj

= argmaxgi(P (gi|fj)) (5.7)

Finally, the set of interest and edge points in an image can be grouped into

n Gaussian clusters according to the Gaussian where their 5D feature vectors

belong to.

5.6 Extracting and describing local features

In our approach, we use the SURF low-level feature descriptor that describes

how the pixel intensities are distributed within a scale-dependent neighborhood

of each interest point detected by the Fast-Hessian.

In addition to the SURF descriptor, we introduce a novel Edge Con-

textdescriptor at each interest point detected by the Fast-Hessian, based on the

distribution of the edge points in the same Gaussian (by returning to the 5D

color-spatial feature space described in Section 5.5).
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5.6.1 SURF

This descriptor is similar to SIFT [93], but Bay et al. have used integral images

[159] in conjunction with filters known as Haar wavelets in order to increase the

robustness and to decrease the computation time. Haar wavelets are simple filters

that can be used to find gradients in the x and y directions. The extraction of

the descriptor can be divided into different distinct steps.

1. A reproducible orientation for the interest points are identified in order to

be invariant to rotation. For this purpose, the Haar-wavelet responses in x

and y direction, as shown in Figure 5.8, and this in a circular neighborhood

of radius 6s around the interest point, where s is the scale at which the

interest point is detected. Once the wavelet responses are calculated and

weighted with a Gaussian (σ = 2.5s) centered at the interest point, the

responses are represented as vectors in a space with the horizontal response

strength along the abscissa and the vertical response strength along the

ordinate. The dominant orientation is estimated by calculating the sum of

all responses within a sliding orientation window covering an angle of π/3.

The horizontal and the vertical responses within the window are summed.

Figure 5.8: Haar wavelet types used for SURF.

2. The square regions centered on each interest point are generated, and turned

along the orientation at the interest point. The size of this window is
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20 times as big as the scale of the detected interest point and the region

is split up regularly into smaller 4 × 4 square sub-regions. Figure 5.9

shows examples of images after SURF extraction. The green points resemble

the interest points where the blue square represent the descriptor windows

around each point. In addition, the inclined green lines from each interest

point to the border of contained descriptor window represent the orientation

at these points.

3. Haar wavelet response in horizontal direction (dx) and in vertical direction

(dy) are summed up over each sub-region and form a first set of entries to

the feature vector. In order to bring in the information about the polarity

of the intensity changes, the sum of the absolute values of the dx and dy

responses are also extracted. Hence, each sub-region has a four-dimensional

descriptor vector v for its underlying intensity structure as follows.

v = (
∑

dx,
∑

dy,
∑
|dx| ,

∑
|dy|) (5.8)

This results in a descriptor vector for all 4 × 4 sub-regions of length 64. The

wavelet responses are invariant to a bias in illumination (offset). Invariance to

contrast is achieved by turning the descriptor into a unit vector.

5.6.2 A new low level feature (Edge Context)

Intensity-based descriptors make more direct use of pixel intensity values [89].

This turns out to be quite a challenge since these techniques do not cope well

with the large distortions that must be handled due to pose and illumination

variations. Moreover, all other information like shape and color are ignored in
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Figure 5.9: Examples of SURF descriptor windows at different interest points.

these descriptors, however such information is essential for many tasks such as

handwritten digit recognition [82, 23], face recognition [107], and isolated 3D

object recognition [112].

As one of the contributions in our work, we propose a novel descriptor, the
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Edge Context [40, 41], that could play a role as a complementary descriptor in

addition to the SURF descriptor.

5.6.2.1 Descriptor components

As shown in Figure 5.10, vectors from each interest point in the 2D spatial

image space are drawn to all other edge points that are within the same Gaussian

cluster in 5D color-spatial feature space. The Edge Context descriptor for each

interest point is represented as a 2D histogram as follows.

– m horizontal bins for the different values of r (magnitude of the drawn

vector from the interest point to the edge points).

– n vertical bins for θ (orientation angle of the drawn vector from the interest

point to the edge points).

The histogram data contains the frequency of the edge points that fall in each

bin of the grid defined by r and θ values.

The number of bins of the histogram can be chosen. In our work, the 6 bins

for r and 4 bins for θ provided the best results according to the experimental

results in Chapter 8.

This descriptor is inspired by the shape context descriptor proposed by Be-

longie et al. [13] with respect to the extracted information from edge point dis-

tribution. Describing the distribution of these points enriches the descriptor with

more information, rather than the intensity described by SURF. Moreover, the

distribution over relative positions is a robust, compact, and highly discriminative

descriptor.
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Figure 5.10: Examples of vectors (white lines) drawn from a given interest point
(green dot inside the red circle) to all other edge points (black points) that are
in the same 5D Gaussian cluster as the interest point.

5.6.2.2 Invariance and robustness

A low-level descriptor should be invariant to scaling and translation changes,

and robust under small affine transformations, occlusion and presence of outliers.
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In certain applications, one even needs a complete invariance to rotation. For this

novel descriptor, many of these invariance requirements are satisfied as follows.

– The invariance to translation is intrinsic to the Edge Context since the

distribution of the edge points is measured with respect to fixed interest

point.

– Invariance to scale is achieved by normalizing the radial distance by a mean

distance between the whole set of points inside a given Gaussian in the 5D

color-spatial feature space.

– The descriptor can provide complete rotation invariance if this is desirable.

Instead of using the absolute coordinate frame for computing the Edge

Context at each interest point, one can use the tangent vector at each

point as the positive x-axis. In this way, the reference frame turns with

the tangent angle, therefore the result is a completely rotation invariant

descriptor.

5.6.3 Fusion of the Edge Context and the SURF descrip-

tors

Following the visual construction part in Figure 5.1, after extracting the Edge

Context descriptor, a fusion with SURF descriptor is performed. This merged

feature vector is composed of 88 dimensions (64 from SURF + 24 from the Edge

Context descriptor). Hence, the new feature vector contains the information on

the distribution of the intensity and the distribution of the edge points in the

5D spatial-color space. It enriches the image representation with more local

information.
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5.7 Local features quantization

The quantization of the merged feature vectors (SURF + Edge Context fea-

ture vector) is performed in order to construct a visual word vocabulary tree

similar to [113]. The visual word vocabulary tree is computed using a Divisive

Hierarchical K-Means clustering that hierarchically partitions the feature space.

In addition to Divisive Hierarchical K-Means, we used group-average Hierarchical

Agglomerative Clustering (HAC) to bootstrap K-means in order to avoid prob-

lems of bad seed selection [41].

5.7.1 Initial seeds of the quantization cells using Hierar-

chical Agglomerative Clustering (HAC)

Let n be the number of feature vectors to be quantized, and k denotes the

number of children of each node of the tree 1.

A random subset of size
√
n is sampled from the entire set of the vectors, and

the group-average HAC is run on this subset.

HAC considers each point in the feature space as a separate cluster, and com-

bines the clusters with the maximum similarity. The similarity between clusters is

measured as a group average. When the required number of clusters k is reached,

the algorithm is stopped. Figure 5.11 shows an example of a clustering obtained

by cutting the dendrogram at a desired level. The overall algorithm complexity is

θ(n), and it avoids the problems of bad seed selection since no more any random

initialization is needed, as for K-Means.

1. Note that here, k does not refer to the traditional final number of clusters.
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Stop clustering 
at desired level 

k =4

A cluster at k =4
An initial cluster 

Figure 5.11: An example of a HAC dendrorgram cut at a desired level.

5.7.2 Visual word vocabulary tree construction using Di-

visive Hierarchical K-Means Clustering

K−Means process is run on the initial seeds that are obtained from the HAC,

recursively defining quantization cells by splitting each quantization cell into k

new parts. The tree is determined level by level, up to some maximum number

of levels L, and each division into k parts is only defined by the distribution of

the fused feature vectors that belong to the parent quantization cell.

In the online phase, each merged feature vector is simply propagated down

the tree by comparing at each level the feature vector to the k candidate cluster

centroids (represented by k children in the tree) and choosing the closest one.
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Finally, each vector is mapped to its closest visual word index. Figure 5.12 shows

an example of a merged feature vector assigned into a discrete visual word (index

6).

Fused feature 

vector (SURF + 

edge context) 

0 1 2 3 4 5 6 7

Visual word vocabulary tree

…....

Figure 5.12: Example of assigning a merged feature vector into a discrete visual
word.

This is a simple matter of performing k dot products at each level, resulting

in a final vocabulary size is K = k × L.

Note that the tree directly defines both the visual word vocabulary and an

efficient search procedure in an integrated manner. This is different from for ex-

ample defining a visual word vocabulary non-hierarchically, and then devising an

approximate nearest neighbor search in order to find the visual words efficiently.

This hierarchical approach overcomes two major problems related to traditional

direct K-means clustering because of the following:

– The clustering is more efficient during learning step.

– The mapping of visual features to discrete visual word is much faster than
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using a plain list of visual words.

5.8 Summary and conclusion

This chapter introduces an enhanced approach to construct the bag of visual

words (BOW) representation, which is the first level of representation in the

proposed approach. We introduced a hierarchal approach in order to enhance the

classical bag of visual words in different aspects.

First, we detect the interest and the edge points using the Fast Hessian and

the canny edge detector with the Sobel operator respectively. Second, the image

noise is filtered using the Vector Median Filter (VMF), which is a pre-step be-

fore modeling the 5D color-spatial feature space for the set of interest and edge

points based on the Gaussian Mixture Model (GMM). Third, we extract SURF

local features at each interest point. In addition to SURF feature, we establish a

new local feature descriptor, the Edge Context, which plays a role of a descriptor

complimentary to SURF descriptor. It describes at each interest point the distri-

bution of the edge points that are in the same Gaussian cluster by returning to

the 5D color-spatial space. Finally, the two local feature vectors (SURF +Edge

Context) are merged to get final local feature vectors. The quantization of the

merged features into visual words (VWs) is achieved by two clustering steps. A

hierarchical agglomerative clustering is performed to overcome the problem of the

initial seed for the repeated K-Means clustering that hierarchically partition the

local feature space. Finally, a visual word vocabulary tree is built.
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6.1 Overview

In the previous chapter, we have introduced the different processes to generate

the visual words. One of these processes is the feature quantization that generates

many unnecessary and insignificant visual words, which are noisy in retrieval and

classification.

In this chapter, a new multilayer semantic significance analysis (MSSA) model

is introduced in order to study the semantic inferences of the constructed visual

words, based on their probability distributions regarding to the relevant visual

latent topics [39]. The estimation of the semantic inference of the visual words is

important in our approach in order to select semantically significant visual words

and eliminate the insignificant visual words. In addition, this model is useful to

study the semantic inference of different atomic visual representation unit (such

as visterm [69, 122, 120] and visual phrases [175, 174, 172, 177])

This chapter is organized as follows. In Section 6.2, we discuss the motivation

of proposing this multilayer probabilistic model, MSSA, based on two different

latent topic layers (high latent topics and visual latent topics). The different gen-

erative processes that model the probabilistic distribution of different elements in

the MSSA model are presented in Section 6.3. In Section 6.4, the KKT conditions

are used [80] to derive new multiplicative update rules in order to estimate the

parameters of the MSSA model. In Section 6.5, the number of latent topics in the

MSSA model is estimated using three different mode selection criteria: the Akaike

information criterion (AIC), the Bayesian information criterion (BIC), and the

Minimum Description Length (MDL).
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6.2 Motivation

In image representation, capturing the essential statistical characteristics of

different visual representation units allows to build a relevant representation for

images, which is often more parsimonious and less noisy. Especially in the BOW

image representation, the vocabulary creation process, based on clustering algo-

rithms such as K-Means, is quite rude and can lead to many noisy visual words.

Such visual words add ambiguity in the image representation. Thus, it reduces

the effectiveness of the visual representation in retrieval or classification, and a

statistical criterion is needed to study the semantic significance of the constructed

visual words.

Among the existing methods that extract statistical characteristics, the prob-

abilistic topic models play an important role. Probabilistic topic models extract

a set of latent topics from a corpus, and therefore they represent the images in a

new latent semantic space.

Many of these models introduce only one latent topic layer between the docu-

ments (images) and the representation atomic unit (i.e., visual words). However,

in our understanding, every image is assumed to consist of one or more visual

aspects, which in turn are combined into the higher-level aspects. This is very

natural since images consist of multiple objects or scenes, which belong to differ-

ent categories or classes. Figure 6.1 shows an example of different high and visual

aspects in some images. In this figure, the face can be a visual aspect and the

person can be the high aspect.

A new probabilistic topic model is designed to take in consideration the hier-

archal consistence of the image, without adding much complexity in the process

97



of the parameters initialization and estimation. We introduce the new multi-

layer probabilistic topic model (MSSA) that considers the different aspects of the

image.

Figure 6.1: Examples of different visual and higher-level aspects.

In the MSSA model, there are two layers of latent topics (the high latent

topics and the visual latent topics). One layer represents the high aspects (i.e.,

image categories) and the other one represents the visual aspects (i.e., objects,

parts of objects or scenes). Furthermore, this model is in correspondence with

the current belief in hierarchical recurrent cortex models of our brain [57].

Recently, Lienhart et al. [86]have introduced a hierarchal topic model (mm-

pLSA). Even though the mm-pLSA model introduced a new multilayer inference

model, it uses an EM algorithm to derive the different parameters, which costs

a high computational power for parameters initialization and estimation. In ad-

dition, this approach did not introduce any criterion to estimate the number of
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different latent variables. However, in MSSA the number of latent topic models

is estimated in advance.

6.3 Generative process

Suppose that we have N images {imj}Nj=1 in which M visual representation

units (visual words) {V RUi}Mi=1 are observed.

We introduce the high latent topics and visual latent topics in the following

generative process for a given image imj:

– Choose a high latent topic hk from P (hk|imj), a multinomial distribution

conditioned on imj and parameterized by a K × N stochastic matrix θ,

where θkj = P (hk = k|imj = j).

– Choose a visual latent topic vl from P (vl|hk), a multinomial distribution

conditioned on hk and parameterized by an L × K stochastic matrix ϕ,

where ϕlk = P (vl = l|hk = k).

– Generate a visual representation unit V RUi from P (V RUi|vl), a multino-

mial distribution conditioned on vl and parameterized by an M×L stochas-

tic matrix Ψ, where Ψil = P (V RUi = i|vl = l).

This generative process leads to the following conditional probability distribution:

P (V RUi|imj) =
K∑
k=1

L∑
l=1

P (hk|imj, θ)P (vl|hk, ϕ)P (V RUi|vl,Ψ) (6.1)

Following the maximum likelihood principle, one can estimate the parameters by
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maximizing the log-likelihood function as follows:

Li =
N∑
j=1

M∑
i=1

n(V RUi, imj)log(P (V RUi|imj)) (6.2)

Where n(V RUi, imj) denotes the number of the occurance of the V RUi in imj.

Figure 6.2 depicts the generative process using the plate notation.

Figure 6.2: The semantic model using the plate notation.

6.4 Parameter estimation

The expectation-maximization (EM) algorithm [35] is the standard approach

for maximum likelihood estimation in latent variable models. The main difficulty

when implementing the EM algorithm in this work is that a four dimensional

matrix is required in the E-step because of the two latent variables, which induces

a high complexity.

However, Gaussier et al. [50] have proven that maximizing the likelihood
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can be seen as a Non-Negative Matrix Factorization (NMF) problem under the

generalized KL divergence. This leads to the following objective function:

minθ,ϕ,ΨGL(A,Ψϕθ) (6.3)

Where Ψ, ϕ, and θ are stationary points, A is the observation matrix, and

GL(A,Ψϕθ) is generalized KL divergence such that:

θ ∈ RK×N
+ , θT1 = 1 (6.4)

ϕ ∈ RL×K
+ , ϕT1 = 1 (6.5)

Ψ ∈ RM×L
+ ,ΨT1 = 1 (6.6)

Aij =
n(V RUi, imj)∑
i,j n(V RUi, imj)

(6.7)

GL(A,Ψϕθ) =
M∑
i=1

N∑
j=1

(Aij log
Aij

[Ψϕθ]i,j
− Aij + [Ψϕθ]ij). (6.8)

6.4.1 Karush Kuhn Tucker (KKT) conditions

We use the Kuhn-Tucker (KKT) conditions [80] to derive the multiplicative

update rules for minimizing (5.5) since it can be formulated as a constrained

minimization problem with the following inequality constraints:

Ψil > 0 (6.9)

ϕlk > 0 (6.10)

θkj > 0 (6.11)
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The necessary KKT conditions for a minimum of the constrained problem

stated above are obtained by using the Lagrange multiplier method. Let αil,

βlk, γkj be the Lagrangian multipliers associated with the constraints Ψil, ϕlk, θkj

respectively. The KKT conditions require the following optimality conditions:

∂GL(A,Ψϕθ)

∂Ψil

= αil (6.12)

∂GL(A,Ψϕθ)

∂ϕlk
= βlk (6.13)

∂GL(A,Ψϕθ)

∂θkj
= γkj (6.14)

where:

∂GL(A,Ψϕθ)

∂Ψil

=
N∑
j=1

{
[ϕθ]lj −

Aij
[Ψϕθ]ij

[ϕθ]lj

}
(6.15)

∂GL(A,Ψϕθ)

∂ϕlk
=

M∑
i=1

N∑
j=1

{
Ψilθkj −

Aij
[Ψϕθ]ij

Ψilθkj

}
(6.16)

∂GL(A,Ψϕθ)

∂θkj
=

M∑
i=1

{
[Ψϕ]ik −

Aij
[Ψϕθ]ij

[Ψϕ]ik

}
(6.17)

This leads to the following:

N∑
j=1

{
[ϕθ]lj −

Aij
[Ψϕθ]ij

[ϕθ]lj

}
= αil (6.18)

M∑
i=1

N∑
j=1

{
Ψilθkj −

Aij
[Ψϕθ]ij

Ψilθkj

}
= βlk (6.19)

M∑
i=1

{
[Ψϕ]ik −

Aij
[Ψϕθ]ij

[Ψϕ]ik

}
= γkj (6.20)
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The following complementary slackness conditions are also required:

αilΨil = 0 (6.21)

βlkϕlk = 0 (6.22)

γkjθkj = 0 (6.23)

6.4.2 New multiplicative update rules for NMF

The minimization of the objective function (6.3), should be done with non-

negativity constraints as described in Section 6.4.1. A multiplicative updating

is an efficient way in such case since it can easily preserve the non-negativity

constraints at each iteration. The proposed multiplicative updating algorithms

for NMF associated with the objective functions (6.3) are given as follows:

Multiplying both sides of (6.18), (6.19), and (6.20) by Ψil, ϕlk, and θkj respec-

tively, leads to the following:

[
N∑
j=1

{
[ϕθ]lj −

Aij
[Ψϕθ]ij

[ϕθ]lj

}]
Ψil = αilΨij (6.24)

[
M∑
i=1

N∑
j=1

{
Ψilθkj −

Aij
[Ψϕθ]ij

Ψilθkj

}]
ϕlk = βlkϕij (6.25)

[
M∑
i=1

{
[Ψϕ]ik −

Aij
[Ψϕθ]ij

[Ψϕ]ik

}]
θkj = γkjθij (6.26)

Incorporating (6.24), (6.25), and (6.26) with (6.21), (6.22), and (6.23), leads

to the following:
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[
N∑
j=1

{
[ϕθ]lj −

Aij
[Ψϕθ]ij

[ϕθ]lj

}]
Ψil = 0 (6.27)

[
M∑
i=1

N∑
j=1

{
Ψilθkj −

Aij
[Ψϕθ]ij

Ψilθkj

}]
ϕlk = 0 (6.28)

[
M∑
i=1

{
[Ψϕ]ik −

Aij
[Ψϕθ]ij

[Ψϕ]ik

}]
θkj = 0 (6.29)

This suggests the following iterative multiplicative update rules:

Ψil ← Ψil

∑N
j=1

Aij

[Ψϕθ]ij
[ϕθ]lj∑N

j=1 [ϕθ]lj
(6.30)

ϕlk ← ϕlk

∑M
i=1

∑N
j=1

Aij

[Ψϕθ]ij∑M
i=1

∑N
j=1 Ψilθkj

(6.31)

θkj ← θkj

∑M
i=1

Aij

[Ψϕθ]ij∑M
i=1 [Ψϕ]ik

(6.32)

A small positive parameter ε, with value 10−9, is added to (6.30), (6.31), and

(6.32) in order to avoid division by zero as follows.

Ψil ← Ψil

∑N
j=1

Aij

[Ψϕθ]ij
[ϕθ]lj∑N

j=1 [ϕθ]lj + ε
(6.33)

ϕlk ← ϕlk

∑M
i=1

∑N
j=1

Aij

[Ψϕθ]ij∑M
i=1

∑N
j=1 Ψilθkj + ε

(6.34)

θkj ← θkj

∑M
i=1

Aij

[Ψϕθ]ij∑M
i=1 [Ψϕ]ik + ε

(6.35)

Also, some normalizing coefficients (λ, µ, and ν) are added to (6.33), (6.34),
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and (6.35) with the aim of satisfying the normalization constraints:

Ψil ← λΨil

∑N
j=1

Aij

[Ψϕθ]ij
[ϕθ]lj∑N

j=1 [ϕθ]lj + ε
(6.36)

ϕlk ← µϕlk

∑M
i=1

∑N
j=1

Aij

[Ψϕθ]ij∑M
i=1

∑N
j=1 Ψilθkj + ε

(6.37)

θkj ← νθkj

∑M
i=1

Aij

[Ψϕθ]ij∑M
i=1 [Ψϕ]ik + ε

(6.38)

The application of the final multiplicative update rules (6.36, 6.37, 6.38) find

at least locally optimal solutions for the objective function (6.3), where all the

different parameters (Ψ, ϕ, θ) are estimated.

Therefore, the semantic inferences of the observed visual representation units

(visual words) are known and can be used for further semantic analysis. We

would like to highlight that in this form, the proposed multiplicative update rules

themselves are extremely easy to implement computationally.

6.5 Number of latent topics estimation

In the practical situations, the number of latent topics of given probabilistic

topic model is usually not known in advance. To determine the number of latent

topics of a model, the simplest approach is to examine the resulting divergence

between the data and model. This methodology is based on the assumption that

the divergence becomes smaller when the appropriate number of latent variables

is selected. However, a model with a larger number of latent variables usually

over-fits to the data, resulting a smaller divergence than the divergence with the
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correct number of clusters.

In order to prevent this over fitting and to select the correct number of latent

topics, it is necessary to add some value to the divergence values for models with a

larger number of latent topics. This kind of penalization is not a straightforward

task because the resulting optimal numbers of latent topics can vary with the

amount of penalization.

In the proposed MSSA model, the likelihood of the fitted model can be calcu-

lated, so the well-established statistical theory of model selection can be applied

directly. In this case, the amount of penalization can be determined based on the

statistical theory. The Akaike information criterion (AIC) [4] and the Bayesian

information criterion (BIC) [131] are model selection methods based on the sta-

tistical theory. We use both model selection methods for the MSSA model and

their results are compared in Chapter 8. These criteria are relatively simple to

apply because they require only the maximum likelihood achievable for a given

model, rather than the likelihood throughout the parameter space. Of course,

such simplification comes at a cost, the cost being that they are derived using

various assumptions, particularly the gaussianity (or near-gaussianity) assump-

tion of the posterior distribution, which may be poorly respected in real-world

situations.

We also study another method based on the statistically theory; the Minimum

Description Length (MDL) principle is an alternative to estimate the latent vari-

ables number. MDL is similar to BIC; however, it provides a natural safeguard

against over fitting, because it implements a tradeoff between the complexity of

the hypothesis (model class) and the complexity of the data given the hypothesis.

The three criteria are described in details in the following Sections.

106



6.5.1 Akaike Information Criterion (AIC)

The Akaike information criterion is a measure of the relative goodness of fit of

a statistical model. It was developed by Hirotsugu Akaike [4]. It is grounded in the

concept of information entropy by offering a relative measure of the information

loss when a given model is used to describe the reality. The main idea of AIC is to

select the model that minimizes the negative likelihood penalized by the number

of parameters as specified in the following equation:

AIC = −2Li+ 2mk (6.39)

In MSSA, Li is the log-likelihood function expressed in (6.2), and mk is the

number of the free parameters needed, expressed as follows:

mk = ML+ LK +KN (6.40)

Where M is the visual vocabulary size, L is the number of the visual latent

topics, K is the number of high latent topics, and N is the number of the images

in the dataset.

Given a data set, several candidate MSSA models with different numbers of

latent topics (different values of K and L) are ranked according to their AIC val-

ues. The preferred MSSA model is the one with the minimum AIC value. Hence,

the AIC does not only reward goodness of fit, but also includes a penalty that

is an increasing function of the number of estimated parameters. This penalty

discourages over fitting (increasing the number of free parameters in the model

improves the goodness of fit, regardless of the number of free parameters in the
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data-generating process).

When observing the AIC values, one may infer that the top two candidate

models are roughly in a tie and the rest are far worse. Thus, AIC provides a means

for comparison among model candidates with different number of parameters.

However, AIC does not provide a test of a model in the usual sense of testing a

null hypothesis; in other words, AIC can not estimate how well a model fits the

data in an absolute sense. For example, with AIC would not be possible to detect

a situation where all candidate models fir poorly.

6.5.2 Bayesian Information Criterion (BIC)

In statistics, the Bayesian information criterion (BIC) [131] or Schwarz crite-

rion (also SBC, SBIC) is a criterion for model selection among a class of paramet-

ric models with different numbers of parameters. Choosing a model to optimize

BIC is a form of regularization.

When estimating model parameters using the maximum likelihood estimation,

it is possible to increase the likelihood by adding parameters, which may result in

over fitting as discussed before in Section 6.5.1. In the same way as AIC, the BIC

resolves this problem by introducing a penalty term for the number of parameters

in the model as follows:

BIC = −2Li+mk lnT (6.41)

Here again, Li is the log-likelihood function expressed in (6.2), mk is the number

of the free parameters needed as in (6.40), and T is the number of data points

used in the parameter estimation, expressed as follows:
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T =
N∑
j=1

M∑
i=1

n(V RUi, imj) (6.42)

Where n(V RUi, imj) denotes the number of the times the observed visual rep-

resentation units occur in imj, N denotes the number of the images in the dataset,

and M is the visual vocabulary size. The BIC assumes that the data points are

independent and identically distributed which may not be valid depending on the

dataset under consideration.

BIC is closely related to the Akaike information criterion (AIC), with the

difference that the penalty term is larger in the BIC than in the AIC.

The AIC and the BIC do have the same aim of identifying good models even

if they differ in their exact definition of a good model. Comparing them is thus

justified, at least to examine how each criterion performs for the recovery of the

correct model, or to study how they behave when both agree on selecting the

same model.

6.5.3 Minimum Description Length (MDL) principle

The Minimum Description Length (MDL) [124] principle is a relatively recent

method for an inductive inference that provides a generic solution to the model

selection problem. MDL is based on the following insight: any regularity in the

data can be used to compress the data, i.e. to describe it using fewer symbols than

the number of symbols needed to describe the data literally. The more regularities

there are, the more the data can be compressed. Equating learning with finding

regularity, we can therefore say that the more we are able to compress the data,

the more we have learned about the data.
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MDL is very strongly connected to probability theory and statistics through

the correspondence between codes and probability distributions. The goal of a

statistical inference may be cast as trying to find regularity in the data. Regularity

may be identified with ability to compress. MDL combines these two insights by

viewing learning as data compression: it states that, for a given set of models

H and a data set D, we the best model in H is the one that yields a maximum

compression for D that compresses D most.

The Minimum Description Length (MDL) principle is expressed as the follow-

ing:

MDL = Li− mk

log(NM)
(6.43)

Once again, the first term is the log-likelihood function expressed in (6.2), mk

is the number of the free parameters needed and defined at in (6.40), N is the

number of the images in the dataset, and M is the visual vocabulary size.

Given a data set D, several MSSA candidate models with different number

of latent topics are ranked according to their MDL values. The preferred MSSA

model is the one with the minimum MDL value. Because of this principle, when

different MSSA candidate models with different K and L values fit the data

equally well, the simpler model is selected.

The main difference between model criteria, such as AIC and BIC, and the

supervised discretization methods such as MDL that the supervised discretization

methods provide a natural safeguard against over fitting, because the winning

model is the one with the lowest combined complexity or description length [75].

In Chapter 8, we compare the results of AIC, BIC, and MDL in selecting the best
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MSSA model for different datasets.

6.6 Summary and conclusion

In BOW models for images, the vocabulary creation process, based on cluster-

ing algorithms such as K-Means, is quite coarse and can lead to many insignificant

visual words. Such words add ambiguity in the representation of the objects and

the scenes, and then reduce the effectiveness of classification or retrieval processes.

In this chapter, the new Multilayer Semantically Significant (MSSA) Model is

introduced in order to study the semantic inference of different atomic visual rep-

resentation units (e.g. visual words) in order to select the semantically significant

units from the visual vocabulary.

First, we discuss the motivation of proposing a new multilayer probabilistic

model, MSSA, based on two different latent topic layers (the high latent topics

and visual latent topics). Second, we define the different generative processes that

model the probabilistic distribution of different elements in the MSSA model.

Third, we employ the KKT conditions to derive new multiplicative update rules

in order to estimate the parameters of the MSSA model. Finally, the number

of latent topics in the MSSA model is estimated using different mode selection

criterions: Akaike information criterion (AIC), Bayesian information criterion

(BIC), and Minimum Description Length (MDL). The performance of the three

criteria are compared in Chapter 8.
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Chapter 7

Semantically Significant Invariant

Visual Glossary (SSIVG)

Representation
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7.1 Overview

In BOW representation, the feature quantization process can lead to many

ambiguous and insignificant visual words. Another evident drawback is that a

given visual word might represent different semantic meanings in different image

contexts. This encumbers the distinctiveness of visual words and leads to low

discrimination power. In addition, the images of the same semantic class can

have arbitrarily different visual appearances and shapes. Such visual diversity

of object causes one image semantic to be represented by different visual words.

This leads to low invariance of visual words.

Based on the BOW representation and the MSSA model introduced in Chap-

ter 5 and Chapter 6 respectively, we address all the mentioned drawbacks by

proposing a higher-level visual representation, the Semantically Significant In-

variant Glossary (SSIVG) representation which is more discriminative and likely
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invariant to the visual appearance difference. It also overcomes the feature quan-

tization noisiness.

This chapter is organized as follows. In Section 7.2, we introduce the Seman-

tically Significant Visual Words (SSVWs) that are selected from the constructed

visual words in order to overcome the feature quantization noisiness. The selec-

tion process is based on the visual words semantic inferences that are estimated

using the MSSA model. In Section 7.3, we strengthen the discrimination power

of visual words by constructing Semantically Significant Visual Phrases (SSVPs)

from frequently SSVW sets occurred in the same local context, involved in strong

association rules, and semantically coherent. In section 7.4, we enhance the intra-

class invariance power of the SSVWs and the SSVPs by clustering them based

on their probability distributions to the relevant visual topics. This leads to form

the Semantically Significant Invariant Visual Glossary (SSIVG) representation. In

Section 7.5, we establish an original spatial weighting scheme that is associated

with the vector space image model for image retrieval and indexing using SSIVG

representation. We introduce a new Multilayer Vote-Based Classifier (MVBC)

based on the SSIVG representation in Section 7.6. We give a summary and a

conclusion of this chapter in Section 7.7.

7.2 Semantically Significant Visual Words

(SSVWs) generation

The SSVWs are selected from set of visual words (VWs), as described below.
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7.2.1 Selecting the SSVWs

After generating the VWs as described in Chapter 5, the MSSA model is run

with the co-occurrence matrix of the visual words as the observation matrix A.

This leads to estimate the different probability distributions P (hk|imj), P (vl|hk),

and P (VWi|vl). Subsequently, all the visual latent topics vl are categorized ac-

cording to their conditional probabilities with all the high latent topics P (vl|hk).

All the visual latent topics whose conditional probabilities relating to all the high

latent topics are higher than a given threshold thkare categorized as relevant.

Given a set of the relevant visual topics, a Semantically Significant Visual Word

(SSVW) is defined as follows.

Definition 6 (Semantically Significant Visual Word (SSVW)). An SSVW is a

visual word (VW) whose conditional probability P (VWi|vl) is higher than a given

threshold tvl for at least one relevant visual latent topic.

From our perspective, all the visual words whose probability distributions

P (VWi|vl) are low for every relevant visual topic are irrelevant, since they are

not informative for any relevant visual topic. Hence, we propose to keep only the

most significant visual words for each relevant visual topic.

7.2.2 Examples of the SSVWs

Figure 7.1 gives examples of images displayed with VWs and SSVWs. The

images in the left sides are images displayed with VWs. On the right side, the

same images are displayed SSVWs. The huge difference in the number of VWs

and the number of SSVWs is obvious since about 30% of the VWs are selected
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as SSVWs. It is clear that most of the SSVW are describing different part of the

main objects (dog and dinosaur).

Figure 7.1: The left side of the figure is an example of two images displayed with
all constructed VWs and the right side is the same images displayed with SSVWs.
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7.3 Semantically Significant Visual Phrases

(SSVPs) generation

The low discrimination power of the SSVWs leads to low correlations be-

tween the image features and their semantics. Such low correlation motivates

to generate a higher-level discriminative visual representation, named Semanti-

cally Significant Visual Phrase (SSVP). Analogous to text documents, which are

particular arrangements of words in 1D space, images can be seen as particular

arrangements of patches in a 2D space.

There are theoretical similarities between natural languages and visual lan-

guages. A natural language consists of words, and a visual language consists of

visual words. In natural languages, there are grammars, which restrict the words

distribution and order. In an image, divided into patches, there exists some con-

straints about how the patches are combined together to form meaningful objects.

Indeed, a random combination of patches or pixels does not construct a meaning-

ful image. The SSVWs and their inter-relationships are the basis for generating

SSVPs [38], which are defined as follows.

Definition 7 (Semantically Significant Visual Phrase (SSVP)). We define an

SSVP as a set of Semantically Significant Visual Words (SSVWs) that frequently

co-occurr together in a spatial local context, involved in strong association rules,

and semantically coherent.

Since it is not easy to define the semantic coherence in a set of SSVWs, we

assume the following:

Assumption 1 (Semantically Coherent Set of SSVWs). A set of SSVWs are se-
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mantically coherent whenever they have a high probability regarding to at least one

common relevant visual latent topic. Their probability distributions are estimated

using the MSSA model.

In this section, we discuss the different processes for generating the SSVPs.

These processes start by defining the local neighborhood of a given SSVW, and

finish by generating a representation scheme for the constructed SSVP vocabulary.

7.3.1 Low discrimination power of the SSVWs

An SSVW represents different semantic meanings in different image context.

This encumbers the distinctiveness of the SSVWs and leads to a low discrimina-

tion. In fact, the discrimination issue is a problem of under-representation [172].

Its consequence is effectively small interclass distances [177]. One of the major

reasons for the low discrimination issue is that the regions represented in a vi-

sual word might come from the object with different semantics but similar local

appearance.

This can be explained as a polyseme problem by an analogy between text

documents and visual documents. A polyseme is a word with multiple, related

meanings and senses. For instance, box is defined as financial institution, ground

bounding waters, or row or tier of objects. If polysemous words like this are

considered in a text document representation, they can exert a deleterious effect

for classification and retrieval accuracy because their ambiguity makes them have

strong relationships with other unwanted categories by their different senses from

the intended one. In other words, every text word should be fundamentally

selected so as to characterize one category by its single meaning. If it has several
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senses; the ambiguity causes the features to also characterize often non relevant

categories.

Figure 7.2 gives an example of two SSVWs that share visually similarities in

two different categories (car and motorbike). The SSVW A is, therefore, not able

to distinguish motorbike from car. However, SSVW A and SSVW B considered

Figure 7.2: An example of the low discrimination power of the SSVWs.

together can effectively distinguish motorbike from car. The discrimination of

representation can therefore be improved by mining interrelations among SSVWs

in a certain neighborhood region in order to construct a more discriminative

higher-level representation.

7.3.2 Spatial local context

Several methods have been proposed to sample spatial neighborhoods within

an image. In [33], a sliding-window mechanism samples windows at a fixed loca-

tion and scale step, followed by a spatial tiling of the windows. The very different

approach [138] defines a neighborhood around each region. This is represented as
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an unordered set of the K-nearest regions, without storing any spatial informa-

tion (K-neighborhoods). However, the neighborhoods in this case are always of a

fixed size.

Our approach attempts to combine the best of them. Instead of using a K-

neighborhood, we use the scale of the center of the local patch to define the size

of the neighborhood and all SSVWs (not just pairs of SSVWs) that occur within

this context are considered in the SSVP generation process. Figure 7.3 shows

examples of the local contexts around the center of different patches. The square

represents a local patch; the red circle around the center of the local patch denotes

the local context.

7.3.3 Frequent SSVW sets mining

Frequent sets play an essential role in many data mining tasks that try to

find relevant patterns from databases, such as association rules, correlations, se-

quences, episodes, classifiers and clusters. The identification of sets of items,

products, symptoms and characteristics, which often occur together in the given

database, can be seen as one of the most basic tasks in data mining.

Historically, the original motivation for searching frequent sets came from the

need to analyze so-called supermarket transaction data, that is, to examine cus-

tomer behavior in terms of the purchased products [1]. Frequent sets of products

describe how often items are purchased together.

As mentioned in Section 7.3, we define an SSVP as a set of SSVWs that

frequently co-occurr together in a spatial local context, involved in strong asso-

ciation rules, and semantically coherent. Therefore, in this section we discuss
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the different steps for discovering frequent SSVW sets that are involved in strong

association rules.

7.3.3.1 Frequent SSVW sets discovery

To find the frequent SSVW sets within an image database, we consider the

followings:

– I is a set of SSVWs that occur in the same spatial context.

– A transaction over I is a couple T = (tid, I) where tid is the transaction

identifier and I is the set of SSVWs.

– A databaseD over I is a set of transactions over I such that each transaction

has a unique identifier.

A transaction T = (tid, I) is said to support a set X, if X ⊂ I. The support of

a set X in D is the probability that X occurs in a transaction, or in other words,

is the number of transactions that support X in D divided by the total number

of transactions in the database D.

Definition 8 (Frequent SSVW Set). An SSVW set is called frequent SSVW set

if its support is greater than a given minimal support threshold, min supp, with

0<min supp<1.

The task of discovering all frequent sets is challenging. The search space is

exponential with respect to the number of SSVWs occurring in the database,

and the targeted databases can be massive, containing millions of transactions.

Although a number of algorithms have been proposed to discover frequent item

sets, Apriori algorithm [2] remains the most efficient [56], and therefore we select.
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Apriori algorithm is a seminal algorithm, which uses an iterative approach

known as a level-wise search, where k-itemsets are used to explore (k+1)-itemsets.

It uses the Apriori property to reduce the search space: all non-empty subsets of

a frequent itemset must also be frequent.

7.3.3.2 Association rules generating from frequent SSVW sets

Once the frequent SSVW sets from transactions in a database D have been

found, it is straightforward to generate strong association rules from them, where

a strong association rule is defined as a rule whose support and confidence satisfy

minimum support (min supp) and minimum confidence (min conf) respectively

[101]. The confidence and support of a rule can be estimated as follows:

support(A⇒ B) = P (A ∪B) =
support count(A ∪B)

|D|
(7.1)

confidence(A⇒ B) = P (B|A) =
support count(A ∪B)

support count(A)
(7.2)

The conditional probability is expressed in terms of frequent SSVW sets

support count, where:

– support count(A∪B) is the number of transactions containing the frequent

SSVW sets A ∪B.

– support count(A) is the number of transactions containing the frequent

SSVW set A.

We generate the association rules from the frequent SSVW set as follows:

– For each frequent SSVW sets I, generate all nonempty subsets.

– For each non-empty subset s of I, output the rule s⇒ (I − s) if
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support count(I)
support count(s)

>= min conf ,

Knowing that support(s⇒ (I−s)) = support(I) since s∪(I−s) = I. Therefore,

(s⇒ (I − s)) = support(I) >= min supp since I is a frequent SSVW set.

After generating the strong association rules from the frequent SSVW sets,

the semantic coherence of the SSVWs that are involved in strong association rules

is checked within each set. As mentioned before, we assume that a set of SSVWs

are semantically coherent whenever they have a high probability relating to at

least one common relevant visual latent topic. Their probability distributions are

estimated using the MSSA model.

Finally, the generated SSVP set is composed of SSVW sets that satisfy all the

following conditions:

– they are frequently occur in the same local context.

– they are involved in strong association rules.

– they have a high probability relating to the same visual latent topic.

7.3.4 Examples of the SSVPs

Figure 7.3 shows examples of SSVPs corresponding to three different visual

aspects. Here again, the square represents a local patch; the red circle around the

center of the local patch denotes the local context, and the group of local patches

in the same context denotes an SSVP.

7.3.5 SSVP vocabulary construction

For the purpose of online indexing and retrieval, we need an efficient repre-

sentation scheme to describe and store the SSVP vocabulary. We design a simple
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Figure 7.3: Examples of SSVPs appearing in different images.

but efficient method based on hashing. A hash map that contains the indexes

of all SSVPs is constructed to map groups of frequent SSVW sets (that are in-

volved in strong association rules, semantically coherent, and are within the same
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local context in a given image) to visual phrases. The key is the base 36 of c,

where c is the concatenation of the constituent visual words indexes after sorting.

Figure 7.4 represents an example of five SSVWs SSVW2065, SSVW621, SSVW1191,

SSVW2130, SSVW775 mapped to SSVP122 that has a hash key = 4Q28VUFALILE

(base 36 of 621775119120652130). This internal representation scheme offers us

several important benefits.

Figure 7.4: An example of five SSVWs mapped to an SSVP.

Firstly, the hash mapping of the SSVWs to SSVPs is much faster than using a

plain list of the SSVPs, and it is also better from the binary search. For instance,

binary search can locate an item in a sorted table of n items with log2n key

comparisons. Therefore, this hash map will be more efficient than binary search

since no comparison with other items is needed.

Secondly, the choice of 36 is convenient and compact in that the digits can be

represented using the Arabic numerals 0− 9 and the Latin letters A− Z. Thus,

we less memory allocation and the algorithm is consequently more efficient.
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7.4 Semantically Significant Invariant Visual

Glossaries (SSIVGs) generation

Even though studying the co-occurrence and spatial scatter information makes

the image representation more distinctive, the invariance power of SSVWs or

SSVPs is still low. Returning to text documents, synonymous words are usually

clustered into one synonym set to improve the document categorization perfor-

mance [12]. Such an approach inspires us to partially bridge the visual diversity

of the images by clustering the SSVWs and the SSVPs based on their probability

distributions to all relevant visual latent topics.

After the distributional clustering, each group of SSVWs that belongs to a

given cluster are re-indexed with the same index as the cluster centroid. This

leads to generate Semantically Significant Invariant Visual Words (SSIVWs)

which consist of SSVWs that are re-indexed after distributional clustering. In the

same manner we generate the Semantically Significant Invariant Visual Phrase

(SSIVP). Finally, both the SSIVWs and the SSIVPs form the Semantically Sig-

nificant Invariant Visual Glossary (SSIVG) representation.

Definition 9 (Semantically Significant Invariant Visual Glossary (SSIVG)

representation). Semantically Significant Invariant Visual Glossary (SSIVG) rep-

resentation is a higher-level visual representation composed from two different lay-

ers of representation: Semantically Significant Invariant Visual Word (SSIVW)

representation and Semantically Significant Invariant Visual Phrase (SSIVP) rep-

resentation, where an SSIVW (resp. SSIVP) is an SSVW (resp. SSVP) that has

been re-indexed after a distributional clustering.
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In this section, we discuss the invariance problem. Then, the MSSA model is

run one more with the new observations that are built from the co-occurrence of

the SSVWs and the SSVPs in order to estimate the new probability distributions

for both of them. Based on the estimated probabilistic inferences, we cluster

SSVs and the SSVPs. Finally, the SSVWs and SSVPs are re-indexed to form the

SSIVW and SSIVP respectively.

7.4.1 Low invariance of the SSVWs and SSVPs

The images in a given semantic class can have arbitrarily different visual ap-

pearances and shapes. Such visual diversity of objects causes one visual aspect

to be possibly represented by different SSVWs and SSVPs. This leads to low

invariance of SSVWs and SSVPS. The consequence is large intra-class variations.

In this circumstance, the SSVS and SSVPS become too primitive to effectively

model the image semantics, as their efficacy depends highly on the visual simi-

larity and regularity of images of the same semantics.

Figure 7.5 gives an example of the invariance problem in two images of mo-

torcycles. The two different SSVWs (SSVW607, SSVW1076) occurring in the two

images describe the same part of the of motorcycle, however they are different,

and therefore they have different indexes (607 and 1076). Also, the two SSVPs

(SSVP148, SSVP263) are describing the same part of the motorcycle (part of the

wheels), and they are different indexes (148 and 263). This happens since the

two images are for the same object (motorcycle), yet with different shapes and

colors. This leads to extract different low-level features from the two images. In

text domain, when documents of a same topic or categories contain different sets
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Figure 7.5: Illustration of the invarince problem: similar image regions are
indexed with different SSVWs and SSVPs

of words, the word synset (synonym set) that links words of similar semantics is

robust to model them [12]. Inspired by this, we propose that relevance-consistent

group of the SSVWs or SSVPs with similar semantic inferences should have the

same index.

7.4.2 New generative process

After generating the SSVWs and the SSVPs, the co-occurrence of both forms

new observations. We study the semantic inferences for the SSVWs and the

SSVPs after the new observations. The same MSSA model that is introduced in

Chapter 6 is run with the co-occurrences of the SSVWs and the SSVWs as the

observation matrix.

After running the MSSA according to the above generative processes, the new

probability distributions for SSVWs and SSVPs to different visual latent topics

are estimated.
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7.4.3 Distributional clustering for SSVWs and SSVPs

After estimating the new semantic inferences of the SSVWs and the SSVPs,

the next step is to group the SSVWs that are with similar probabilistic inferences.

Similarly, the SSVPs that share alike semantic inferences are also grouped. In

our approach, we use an information-theoretic framework that was introduced by

Dhillon et al. [36]. This framework is similar to Information Bottleneck [32] by

deriving a global criterion, that captures the optimality of distributional cluster-

ing. The main criterion is based on the generalized Jensen-Shannon divergence

[87] among multiple probability distributions.

Let vl be a discrete random variable that takes on values from the set of rele-

vant visual latent topics V={v1,v2,...,vL}. Let SSVWm and SSVPm′ be the ran-

dom variables that range over the set of the SSVWs {SSVW1,SSVW2,...,SSVWM}

and the set of SSVPs {SSVP1,SSVP2,...,SSVPM ′} respectively.

Since we are interested in reducing the number of features and the model size,

we only consider the hard clustering where each SSVW (resp. SSVP) belongs to

exactly one SSVW cluster (reps. SSVP). We cluster the SSVWs into K clusters

according to their probability distributions. In the same manner, we cluster the

SSVPs into Q clusters as follows.

Let the random variable ck range over the SSVW clusters C = {c1, c2, ..., cK}.

To judge the quality of word clusters an information-theoretic measure is used.

The information about SSVWm captured by vl can be measured by the mutual

information I(SSVWm; vl). Ideally, in forming SSVW clusters, we would like to

exactly preserve the mutual information; however, a non-trivial clustering always

lowers mutual information. Dhillon et al. proposed to find a clustering that
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minimizes the decrease in mutual information, I(SSVWm; vl) − I(ck; vl), for a

given number of SSVW clusters.

Dhillon et al. prove that the decrease in mutual information can be expressed

in terms of the generalized Jensen-Shannon divergence of each cluster as follows:

I(SSVWm; vl)− I(ck; vl) =
K∑
k=1

π(ck)JSπ′ ({P (vl/SSVWt) : SSVWt ∈ ck})

(7.3)

Where:

π(ck) =
∑

SSVWt∈ck

π(SSVWt) (7.4)

π(SSVWt) = P (SSVWt) (7.5)

π
′

t =
πt

π(ck)
(7.6)

and JS denotes the generalized Jensen-Shannon divergence.

The generalized Jensen-Shannon divergence of a finite set of probability distri-

butions can be expressed as the (weighted) sum of Kullback-Leibler divergences

to the (weighted) mean, as follows:

JSπ({pi : 1 ≤ n ≤ i}) =
n∑
i=1

πiKL(pi,m) (7.7)

Where πi ≥ 0,
∑

i πi = 1 and m is the weighted mean probability distribution,

m =
∑

i πipi.

By (7.3) and (7.7), the decrease in mutual information due to word clustering
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can be written as follows:

K∑
k=1

π(ck)
∑

SSVWt∈ck

πt
π(ck)

KL(p(SSVWi|vl)(p(ck|vl)) (7.8)

Where the probability distribution p(ck|vl) is estimated as follows:

p(ck|vl) =
∑

SSVWt∈ck

πt
π(ck)

p(SSVWt|vl) (7.9)

As a result, the quality of SSVW clustering can be measured by the following

objective function:

Q({ck}Kk=1) = I(SSVWi; vl)−I(ck; vl) =
K∑
k=1

∑
SSVWt∈ck

πtKL(p(SSVWt|vl))(p(ck|vl))

(7.10)

According to Dhillon et al., writing the objective function in the above manner

suggests an iterative algorithm that repeatedly does the following:

– Re-partition the distributions p(SSVWt|vl) by their closeness in KL- diver-

gence to the cluster distributions p(ck|vl).

– Subsequently, given the new word clusters, re-computes these cluster dis-

tributions using (7.8).

Algorithm (1) describes the Divisive Information Theoretic Clustering algorithm

in details, as it is used in our approach. Dhillon et al. showed that their algo-

rithm minimizes within-cluster divergence and simultaneously maximizes between-

cluster divergence. This approach is markedly better than the agglomerative al-

gorithm of Baker and McCallum [8] and the one introduced by Slonim and Tishby

[139].
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Algorithm 1 Divisive Information Theoretic Clustering (P, ψ, l, k,W )

Input:
P is the set of distributions, p(SSVWt|vl) : 1 ≤ t ≤M ,
Π is the set of all SSVW priors, π = p(SSVWt) : 1 ≤ t ≤M ,
L is the number of visual latent topics,
K is the number of desired clusters.
Output:
C is the set of word clusters c1, c2, ..., cK .

1. Initialization: for every SSVW SSVWt , assign SSVWt to Cq such that
p(SSVWt|vl) = maxip(SSVWi|vl).This gives L′ initial SSVW clusters; if
Q ≥ L split each cluster arbitrarily into at least bK/Lc clusters, otherwise
merge the L′ clusters to get Q SSVW clusters.

2. For each cluster ck, compute π(ck) =
∑

gt∈ck π(SSVWt), p(ck|vl) =∑
SSVWt∈ck

πt
π(ck)

p(SSVWt|vl).
3. Re-compute all clusters: For each SSVWt, find its new cluster index as

j ∗ (SSVWt) = argminiKL(p(SSVWt|vl), p(ck|vl)), resolving ties arbi-
trarily.

Thus compute the new SSVW clusters ck, 1 ≤ k ≤ K, as

ck = SSVWt : j ∗ (SSVWt) = k.

4. Stop if the change in objective function value given by (7.10) is small
(10−3);

Else go to step 2.

We cluster the SSVPs to Q clusters in the same manner using the same Divi-

sive Information Theoretic Clustering algorithm (1) stated above.

7.4.4 Semantically Significant Invariant Visual Words and

Phrases (SSIVWs and SSIVPs) generation

After the distributional clustering, each group of SSVWs that tends to share

similar probability distributions are grouped in the same cluster ck and re-indexed

with the same index k. In the same manner, each group of SSVPs that share

similar probability distributions are clustered in the same cluster cq and re-indexed
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with same index q.

After re-indexing the SSVWs and the SSVPs, they form the Semantically

Significant Invariant Visual Words (SSIVWs) and the Semantically Significant

Invariant Visual Phrases (SSIVPs) respectively. Both of the SSIVW and the

SSIVPs form the Semantically Significant Visual Glossaries (SSIVGs)

By generating the SSIVG representation, the visual differences of images from

the same class can be partially bridged. Consequently, the image distribution in

the feature space will become more coherent, regular and stable.

7.5 Image indexing and retrieval using the

SSIVG representation

Inspired by the success of the vector-space model in the text document rep-

resentation, it is applied recently to the image representation. As mentioned in

Chapter 4, each image is represented by a k-dimensional vector of the estimated

weights associated with the visual index terms appearing in the image collections.

Many effective information retrieval weighting schemes are applied to vector-space

model in order to estimate the weights of the visual index terms such as tf × idf ,

weighting scheme.

Most of the weighting schemes do not integerate the spatial location of the

local patches. However, the spatial aspects in an image, carry important infor-

mation for classifying and retrieving the images [170, 70]. For example, an image

showing a beach scene typically consists of sky-like local patches on the top, and

sands-like local patches in the bottom. The tf × idf weighting scheme does not
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take in consideration such spatial information and may result in inferior classifi-

cation performance. In this section, we introduce a new spatial weighting scheme

for the SSVWs in order to integrate the spatial information. This spatial weight-

ing scheme is associated with the Vector Space Model that we use it for different

levels of representations.

7.5.1 A new spatial weighting scheme for the SSIVWs

In order to allow a spatial weighting for the SSIVWs, we design a new

scheme that is a variation of the tf × idf weighting scheme. Suppose that in

an image, there are local features obtained from the interest point set belonging

to a given Gaussian and assigned to an SSIVWl, where 1<l<IVW and IVW is

the SSIVWs vocabulary. The sum of the probabilities of salient point occurrences

indicate the contribution of the SSIVWl to a Gaussian gi. Therefore, the weighted

term frequency (TfSSIVWlgi) of an SSIVWl with respect to the Gaussian gi is

defined as follows:

TfSSIVWlgi =

nl∑
m=1

P (gi|fm) (7.11)

Where nl denotes the number of the occurrence of SSIVWl in a given Gaussian

gi, and fm is the local feature that corresponds to an occurrence of SSIVWl.

The average weighted term frequency (TfSSIVWl
) of SSIVWl with respect to

an image I where SSIVWl occurs in nSSIVWl
Gaussian is defined as follows:

TfSSIVWl
=

nSSIV Wl∑
i=1

(TfSSIVWlgi)/nSSIVWl
(7.12)

The weighted inverse Gaussian frequency of SSIVWl with respect to an image
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I with n Gaussian is defined as follows:

IfSSIVWl
= ln

n

nSSIVWl

(7.13)

The final spatial weight of the visual word SSIVWl is defined by the following

formula:

SwSSIVWl
= TfSSIVWl

× IfSSIVWl
(7.14)

7.5.2 Vector space image model

The traditional Vector Space Model [129] of Information Retrieval [157] is

adapted to our representation, and used for similarity matching and retrieval of

images. The following doublet represents each image in the model:

I =


−−−−−−→
SSIVWi

−−−−−→
SSIV Pi

(7.15)

where
−−−−−−→
SSIVWi and

−−−−−→
SSIV Pi are the vectors for the word and phrase representa-

tions of a document respectively:

−−−−−−→
SSIVWi = (SSIVW1,i, ..., SSIV WnSSIVW,i)

−−−−−→
SSIV Pi = (SSIV P1,i, ..., SSIV PnSSIV P,i) (7.16)

Note that the vectors for each level of representation lie in a separate space.

In the above vectors, each component represents the weight of the corresponding
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dimension. We used the spatial weight scheme defined in Section 7.5.1, for

the SSIVWs and the standard td×idf weighting scheme for the SSIVPs.

In our approach, we use an inverted file [164] to index images. The inverted

index consists of two components: one includes the visual index terms (SSIVW

and SSIVP), and the other includes vectors containing the information about the

spatial weighting of the SSIVW and the tf × idf weighting of the SSIVP.

7.5.3 Similarity measure

The query image is represented as a doublet of SSIVWs and SSIVPs and we

consult the inverted index to find candidate images. All candidate images are

ranked according to their similarities to the query image. We have designed a

simple measure that allows evaluating the contribution of words and phrases.

The similarity measure between a query Iq and a candidate image Ic is estimated

with:

sim(Iq, Ic) = (1− α)RSV (
−−−−−−→
SSIVWc,

−−−−−−→
SSWIVq) + (α)RSV (

−−−−−→
SSIV Pc,

−−−−−→
SSIV Pq)

(7.17)

The Retrieval Status Value (RSV ) of 2 vectors is estimated with the cosine dis-

tance. The non-negative parameter 0 < α < 1 is to be set according the exper-

iment runs in order to evaluate the contribution between the SSIVWs and the

SSIVPs.
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7.6 Multiclass Vote-Based Classifier (MVBC)

We propose a new multiclass vote-based classification technique (MVBC)

based on the SSIVG representation. For each SSIV Gi occurring in an image

imj, we detect the high latent topic hk that maximizes the following conditional

probability:

p(SSV Gi|hk) = p(vl|hk)p(SSIV Gi|vl) (7.18)

The final voting score V Shk for a high latent topic hk in a test image imjj is :

V Shk =

NSSIV G
hk∑
a=1

p(SSIV Ga|hk) (7.19)

Where NSSIV G
hk

is the number of SSVGs voted for hk in imj. Finally, each image

is categorized according to the dominant high latent topic which is the topic with

the highest voting score (the high latent topic and the class labels are mapped in

the training dataset).

7.7 Summary and conclusion

The standard BOW representation has led to many significant results in var-

ious vision tasks including object recognition and categorization. However, in

practice, the clustering of low-level local features leads to some insignificant or

noisy visual words. In addition, this representation suffers from low discrimina-

tion and invariance powers.

In this chapter, we tackle these draw backs by proposing a higher-level visual

representation, the Semantically Significant Invariant Glossary (SSIVG) represen-
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tation. This representation is based on the BOW representation and the MSSA

model introduced in Chapters 5 and 6 respectively.

We introduce the Semantically Significant Visual Words (SSVWs) that are

chosen from the constructed visual words in order to overcome the feature quan-

tization nosiness. The selection process is based on the visual words semantic

inferences that are estimated using the MSSA model. In addition, the discrimi-

nation power of the SSVWs is strengthened by building Semantically Significant

Visual Phrases (SSVPs) from frequently co-occurring SSVW sets occurred in the

same local context, involved in strong association rules, and semantically coher-

ent. Moreover, we boost the intra-class invariance power of the SSVWs and the

SSVPs by clustering them based on their probability distributions to the relevant

visual topics. This leads to form the Semantically Significant Invariant Visual

Glossary (SSIVG) representation. Besides, we establish a new spatial weighting

scheme that is associated with the vector space image model for image retrieval

and indexing using the SSIVG representation. Furthermore, we introduce a new

Multilayer Vote-Based Classifier (MVBC) based on the SSIVG representation.
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Part III

Experimental Results and

Applications

141





Chapter 8

Experimental Results

Contents
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2 Dataset and experimental setup . . . . . . . . . . . . . 145

8.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . 147

8.2.2.1 Image retrieval context . . . . . . . . . . . . 147

8.2.2.2 Image classification and object recognition
context . . . . . . . . . . . . . . . . . . . . . 148

8.2.3 Parameters estimation . . . . . . . . . . . . . . . . . . 149

8.2.3.1 Visual word vocabulary size . . . . . . . . . 149

8.2.3.2 Number of latent topics . . . . . . . . . . . . 152

8.2.3.3 Other parameters . . . . . . . . . . . . . . . 157

8.3 Assessment of the SSIVG representation perfor-
mance in image retrieval . . . . . . . . . . . . . . . . . 159

8.3.1 Individual contributions of different representation lev-
els in image retrieval . . . . . . . . . . . . . . . . . . . 160

8.3.2 Comparison of the SSIVG representation performance
with other representation methods . . . . . . . . . . . 162

8.4 Evaluation of the SSIVG Representation and MVBC
Performance in Classification . . . . . . . . . . . . . . 163

8.5 Assessment of the SSIVG representation perfor-
mance in object recognition . . . . . . . . . . . . . . . 165

8.6 Summary and conclusion . . . . . . . . . . . . . . . . . 166

143



8.1 Overview

We have implemented the proposed approach of a higher-level visual represen-

tation, and the system is evaluated. This chapter reports the large-scale, extensive

experimental evaluations of the in comparison with the state-of-the-art literature

to demonstrate the superiority of the proposed methods in the context of three

different applications, image retrieval, classification, and object recognition.

This chapter is organized as follows. In Section 8.2, we introduce the three

datasets NUS-WIDE dataset that are used in the context of image retrieval,

classification, and object recognition respectively. Subsequently, we discuss the

estimation of the different parameter settings. In Section 8.3, we extensively ex-

amine the performance of the proposed higher-level of representation for a image

retrieval. We compare the performance of each different layer of the proposed

representation (Enhanced-BOW, SSVW, SSVP, SSIVW, SSIVP, and SSIVG).

We also extend the performance comparison to several other recently proposed

higher-level representation methods in image retrieval context. In Section 8.4, we

study the performance of the proposed SSIVG representation and the proposed

MVBC classifier in the context of image classification. In Section 8.5, we evaluate

the performance of the proposed combination of the SSIVG representation and

the MVBC classifier in the object recognition task. Finally, we give a summary

and conclusion for this chapter in Section 8.6.

144



8.2 Dataset and experimental setup

8.2.1 Datasets

We use three different datasets in our experiments for different applications

as follows.

– We evaluate the proposed SSIVG representation on image retrieval using the

NUS-WIDE dataset [29], one of the largest available datasets with 269,648

images and the associated tags from Flickr website. We separate the dataset

into two parts. The first part contains 161,789 images to be used for training

and the second part contains 107,859 images to be used for testing. It

contains 81 image categories as shown in Figure 8.1.

– We have tested the proposed MVBC and the SSIVG representation on the

MIRFLICKR-25000 [64] dataset for classification. The dataset contains

25000 images that were retrieved from the Flickr website. The images are

annotated with 11 general topics. The general topics were chosen in such

a way that they mostly correspond to common Flickr tags themselves and

may contain some additional common tags as subtopics. The general topics

and corresponding subtopics selected are listed in Table 8.1. We have used

the 11 general annotations as ground truth for image classification. We use

15000 images as a training dataset from different image classes and the rest

10000 images for testing.

– Caltech101 dataset [45] is used the proposed SSIVG representation in object

recognition. It contains 8707 images, which include objects belonging to 101

classes. Table 8.2 lists the 101 object category of the Caltech101 dataset.

The number of images ranges from 40 to 800 images per category. Most
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Figure 8.1: The concept taxonomy of NUS-WIDE.

categories have about 50 images. For the various experiments, we construct

the test dataset by selecting randomly 10 images from each object category

(resulting in 1010 images) and we select 30 images from each object category

(different from the test images) for the training.
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General topics Subtopics

sky clouds
water sea/ocean, river, lake
people portrait, boy/man, girl/woman, baby
night

plant life tree, flower
animals dog, bird

man-built structures architecture, building, house, city/urban, bridge, road/street
sunset
indoor

transport car

Table 8.1: The general topics and corresponding subtopics selected in the
MIRFLICKR-25000.

trilobite face pagoda tick inlineskate metronome
accordion yinyang soccerball spotted cat nautilus grand-piano
crayfish headphone hawksbill ferry cougar-face bass
ketch lobster pyramid rooster laptop waterlilly

wrench strawberry starfish ceilingfan seahorse stapler
stop-sign zebra brontosaurus emu snoopy okapi
schooner binocular motorbike hedgehog garfield airplane
umbrella panda crocodile-head llama windsor-chair car-side

pizza minaret dollarbill gerenuk sunflower rhino
cougar-body crab ibis helicopter dalmatian scorpion

revolver beaver saxophone kangaroo euphonium flamingo
flamingo-head elephant cellphone gramophone bonsai lotus

cannon wheel-chair dolphin stegosaurus brain menorah
chandelier camera ant scissors butterfly wild cat lamp
crocodile barrel joshua-tree pigeon watch dragonfly
mayfly cup ewer octopus platypus buddha
chair anchor mandolin electric-guitar

Table 8.2: 101 Caltech object category list.

8.2.2 Evaluation criteria

8.2.2.1 Image retrieval context

The evaluation criteria used in the image retrieval context is the mean average

precision (MAP ), which is the mean value of average precision (AP) of each

query. The AP is the sum of the precision values at each relevant hit in the
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retrieval list, divided by the total number of relevant images in the collection.

APq is defined for a query q as:

APq =

∑Rq

r=1 Prec(r)× rel(r)
Tq

(8.1)

Where r is image rank, Rq is the total number of images retrieved, Prec(r)

is the precision of retrieval list cut-off at rank r, rel(r) is an indicator (0 or 1) of

the relevance of rank r, and Tq is the total number of relevant images for q in the

corpus. The average precision is an ideal measure of retrieval quality, which is

determined by the overall ranking of relevant images. Intuitively, the MAP gives

higher penalties to fault retrievals if they have higher position in the ranking list.

This is rational, as in practice, searchers are more concerned with the retrieved

results in the top.

8.2.2.2 Image classification and object recognition context

In the context of image classification tasks, the notions true positive, true

negative, false positive and false negative are used to compare a given classification

of an image (the class label assigned to the image by a classifier) with the desired

correct classification (the class where the image actually belongs ).

To measure classification performance, we used the classification average pre-

cision (AP) [99] over each image class. It is a popular measure that takes into

account both recall and precision values since it is equivalent to the area under

the precision-recall curve. It is computed as follows:

– A version of the measured precision-recall curve is estimated with the pre-

cision monotonically decreasing, by setting the precision for recall r to the
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maximum precision obtained for any recall r′ ≥ r.

– The AP is computed as the area under this curve by numerical integration.

For an object recognition task, each test image is recognized by predicting

the object class using the SSIVG representation and the MVBC. Thus, the same

criteria as for image classification are used here.

8.2.3 Parameters estimation

By changing different parameters of the experimental setting, several aspects

can be investigated which have influence on the performance of the proposed

visual representation in the context of different applications. In this section, we

discuss the different parameter settings of the different datasets.

8.2.3.1 Visual word vocabulary size

The generation of the proposed higher-level visual representation (SSIVG rep-

resentation) is a bottom-up process. Hence, selecting the proper visual word

vocabulary size at the lower level of representation (bag of visual words repre-

sentation) is essential to the whole process. In this Section, we investigate the

proper values of different visual word vocabulary sizes corresponding to the dif-

ferent datasets.

Unlike the vocabulary of a text corpus whose size is relatively fixed, the num-

ber of clusters in the local feature quantization process controls the size of a

visual word vocabulary. Choosing the right vocabulary size involves the trade-off

between the discriminative power and the computational cost. With a small vo-

cabulary, many of the visual words are not discriminative because dissimilar local

features can map to the same visual word. Using a large vocabulary increases the
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cost of clustering local features, computing visual-word features, and running the

MSSA model. Hence, there is no consensus for the appropriate size of a visual

word vocabulary.

The visual word vocabulary size used in other works varies from several hun-

dred [81], to thousands and tens of thousands [137]. Their results are not directly

comparable due to the difference on corpus and classification or retrieval methods.

To find out the proper visual word vocabulary sizes corresponding to the different

datasets, we study the influence of the visual vocabulary size on the performance

of the enhanced bag of visual words introduced in Chapter 5 within the context

of the different applications.

Figure 8.2 shows the mean average precision in the context of image retrieval

using the NUS-WIDE dataset for different values of the corresponding visual

vocabulary size (K). The traditional Vector Space Model of Information Retrieval

is adapted using the inverted file structure, and the tf × idf weighting for the

constructed visual words. It is clear that the highest MAP is at K=10000. In

addition, we can see that when K changes from 5000 to 10000, the MAP value

for the system drastically increases from 0.165 to 0.193. This shows that the

performance of the system is sensitive to visual word vocabulary size K.

Figure 8.3 shows the mean average precision in the context of image classifi-

cation using MIRFLICKR-25000 dataset for different values of the corresponding

visual vocabulary size K
′
. We use the SVM with a linear kernel as a classifier

and tf × idf as weighting scheme. The figure shows that the highest MAP is at

K
′

= 3000. Also, it is obvious that the performance of the BOW representation

is so sensitive the K in the context of classification.

Figure 8.4 shows the mean average precision in the context of object recog-
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Figure 8.2: Evaluation for the visual vocabulary size for retrieval on NUS-WIDE
dataset.
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Figure 8.3: Evaluation for the visual vocabulary size for classification on
MIRFLICKR-2500 dataset.
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nition using Caltech101 dataset for different values of the corresponding values

of the visual vocabulary size K
′′
. We also use the SVM with a linear kernel as

a classifier and tf × idf as weighting scheme to predict the object class for each

test image. According to the results, the highest Map is at K
′′

= 2750. We

can always see that when K
′′

changes, the MAP value for the system extremely

changes. Hence, choosing the suitable visual word vocabulary is important since

it affects the performance of the system in different context (image classification,

image retrieval, and object recognition).
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Figure 8.4: Evaluation for the visual vocabulary size for object recognition on
Caltech101 dataset.

8.2.3.2 Number of latent topics

As mentioned in Chapter 6, we estimate the number of high and visual latent

topics in the MSSA model are estimated using three different model selection

techniques: Akaike information criterion (AIC), Bayesian information criterion
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(BIC), and Minimum Description Length (MDL) Principle. In this section, we

evaluate the performance of these techniques in estimating the number of high

and visual latent topics using for the three datasets (NUS-WIDE, MIRFLICKR-

25000, and Caltech101). In our approach, the high latent topics represent the

class labels of the training dataset. The numbers of the class labels for the three

datasets are known from the ground truth. Thus, we evaluate the performance of

AIC, BIC and MDL based on the correspondence between the estimated numbers

of high latent topics and the actual number of the class labels. We try different

number of high and visual latent topics, and we compute AIC, BIC and MDL

values for each case.

Figure 8.5, Figure 8.6, and Figure 8.7 show the AIC values for NUS-WIDE,

Caltech101, MIRFLICKR-25000 datasets respectively. As a result, AIC find nei-

ther the true number of high latent topics nor close number since the number

of the high latent topics corresponding to the maximum value of AIC for NUS-

WIDE dataset, MIRFLICKR-25000 dataset, and Caltech101 dataset are 60, 80,

and 80 respectively which are far from the numbers of class labels in the ground

truth. As mentioned in Section 8.2.1, the number of the class labels of NUS-

WIDE dataset, MIRFLICKR-25000 dataset, and Caltech101 dataset are 81, 11,

and 101 respectively.

As shown in Figure 8.8, Figure 8.9, and Figure 8.10 BIC performs better

than AIC using MIRFLICKR-2500 dataset (the estimated number of high latent

topics is 10) but fails to predict the suitable numbers of the high latent topics in

the NU-SWIDE dataset (the estimated number of high latent topics are 50) and

Caltech101 dataset (the estimated number of high latent topics is 70).

However, the maximum values of MDL that are shown in Figures 8.11, 8.12,
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Figure 8.5: AIC values using the NUS-WIDE dataset.
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Figure 8.6: AIC values using the MIRFLICKR-25000 dataset.

and 8.13 clearly indicates a number of high latent topics that is close to the ground

truth in the three datasets. Hence, we take the results of MDL as parameter
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Figure 8.7: AIC values using the Caltech101.
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Figure 8.8: BIC values using the NUS-WIDE dataset.

settings of the MSSA model for the three datasets, as mentioned in Table 8.3.
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Figure 8.9: BIC values using the MIRFLICKR-25000 dataset.
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Figure 8.10: BIC values using the Caltech101.
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Figure 8.11: MDL values using the NUS-WIDE dataset.
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Figure 8.12: MDL values using the MIRFLICKR-25000 dataset.

8.2.3.3 Other parameters

Once the visual word vocabulary sizes and the number of latent topics of

the different datasets are selected, we run empirical investigation to estimate
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Figure 8.13: MDL values using the Caltech101.

Datasets Number of the high latent topics Number of the visual latent topics

NUS-WIDE 80 325
MIRFLICKR-25000 10 325

Caltech101 100 325

Table 8.3: Number of the high and visual latent topics as estimated by MDL for
the three datasets.

further parameters. Table 8.4 shows the different values of the parameters for

the different datasets.

Datasets W P IVW IVP SS SF LS WS

NUS-WIDE 3248 551 2750 500 6.5x10−5 1.5x10−3 4.5x10−2 3.5×10−2

MIRFLICKR-25000 1248 480 750 425 4.5x10−3 7.1x10−2 9.5x10−2 0.1×10−2

Caltech101 1480 409 1250 325 0.1x×10−3 0.2 ×10−2 0.35 0.46

Table 8.4: Values of the different parameter settings.

Where:

– W is the SSVW vocabulary size.

– P is the SSVP vocabulary size.
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– IVW is the SSIVW vocabulary size.

– IVP is the SSIVP vocabulary size.

– SS is the support threshold for the association rule mining theory.

– SF is the confidence threshold for the association rule mining theory.

– LS is the probability threshold for relevant visual latent topics.

– WS is the probability threshold for generating the SSVWS.

8.3 Assessment of the SSIVG representation

performance in image retrieval

In this section, we study the performance of the proposed higher-level visual

representation in retrieval using NUS-WIDE dataset.

We compare the performance of different representations: classical bag of

visual words (BOW), the enhanced bag of visual words (E-BOW) that is intro-

duced in Chapter 5, SSVW, SSVP, SSIVW, SSIVP and SSIVG that combine

the SSIVW and the SSIVP representations. We also compare the performances

of the visual glossaries generated from the pLSA and LDA models rather than

the MSSA model, and we reference them here as SSIVG-pLSA and SSIVG-LDA

representations, respectively.

We also extend the performance comparison to several other recently proposed

higher-level representation methods specifically visual phrase pattern [171], de-

scriptive visual glossary [174], and visual synset [177].

For all the representation methods, the traditional Vector Space Model of

Information Retrieval is adapted using an inverted file structure and the tf × idf
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weighting for all representation except for the SSIVG representation, we use the

proposed spatial weighting scheme and the tf × idf weighting as described in

Section 7.5. In addition, the cosine distance is used for the similarity matching

between the query image and the candidate images. The evaluation metric used

for different experiments is the mean average precision (MAP) as described in

Section 8.2.2.1.

8.3.1 Individual contributions of different representation

levels in image retrieval

Figure 8.14 plots the mean average precisions for different representations in

image retrieval. It is clear the E-BOW representation (MAP=0.193) outperforms

the classical BOW representation (MAP=0.142). It is also obvious that SSIVW

representation (MAP=0.225) is better than the E-BOW representation. The

SSVW representation outperforms the BOW representation in the 81 categories

except in 5 categories (glacier, fire, sport, flags, sand). We notice that the average

number of classical visual words in these 5 categories is too small since the number

of the detected interest points is too small. Having a small number of visual words

leads to a fewer number of SSIVWs that are selected from the visual words, which

affects the performance of the SSVW representation.

When considering only SSVPs (MAP=0.232), the performance is slightly bet-

ter than that of SSVW (MAP=0.225). An SSVP representation contains both

spatial and appearance information, which is assumed to be more informative

than that of SSVW in many image categories. However, some query images in

categories such as sky and waterfall do not present consistent spatial character-
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Figure 8.14: MAP results for the performance of BOW, E-BOW, SSVW, SSVP,
SSIVW, SSIVP, SSIVG, SSIVG-pLSA, and SSIVG-LDA representations in image
retrieval.

istics and contain very few or even zero SSVPs. Thus SSVPs do not work well

for these cases.

The re-indexing of the SSVW and SSVP representations leads to the SSIVW

and the SSIVP representation that have better performance (MAP=0.317 for

the SSIVW representation and MAP=0.321 for the SSIVP representation). The

combination of SSIVW and SSIVP into the SSIVG representation yields the best

results with MAP=0.383. It also outperforms the SSIVG-pLSA (MAP=0.316)

and SSIVG-LDA (MAP=0.298) representations especially in the categories that
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have complicated visual scenes such as weddings, military, and coral.

8.3.2 Comparison of the SSIVG representation perfor-

mance with other representation methods

Figure 8.15 shows the performance comparison between the SSIVG represen-

tation with visual phrase pattern, descriptive visual glossary, and visual synset.

SSIVG representation performs better than others and the visual synset has the

least performance (MAP=0.211) compared to others.
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Figure 8.15: MAP results for different representations in image retrieval.

It is also noted that SSIVG representation outperforms the other representa-
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tions in most of 81 classes while the visual phrase pattern representation outper-

forms SSIVG in only 3 categories (dancing, train, computer) and the descriptive

visual glossary representation outperforms SSIVG in 2 categories (fox, harbor).

Having this difference over a data set containing 81 categories and 269, 648 images

emphasizes the good performance of the proposed representation.

8.4 Evaluation of the SSIVG Representation

and MVBC Performance in Classification

In the following experiments, we study the performance of the SSIVG repre-

sentation in classification using the vote-based classifier (MVBC). We test the pro-

posed approach (SSIVG+MVBC) performance using MIRFLICKR-25000 data

set. We also tested the proposed SSIVG representation using SVM with a lin-

ear kernel as a classifier. Again, we compare the classification performance of

SSIVGS+MVBC with the other three higher-level visual representation (visual

phrase pattern [171], descriptive visual glossary [177], and visual synset [177])

using SVM with a linear kernel as a classifier and tf × idf as weighting scheme.

Figure 8.16 plots the average classification precision results for each image

class for different approaches.

It is clear that the proposed approach (SSIVG+MVBC) outperforms or per-

forms closely to the SSIVG + SVM approach. SSIVG+MVBC approach also

outperforms or performs equally comparing to other approaches. The highest

classification performance is obtained in sky, and sunset classes. The different

higher-level approaches perform well in these classes except the visual synset rep-
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Figure 8.16: classification performance for different approaches.

resentation with SVM which perform worse than the other approaches. It is noted

that all the images in both classes contain very specific colors and almost not so

much texture. However, this is not always the case, for some sky images, there

are cloudy skies or just a vague notion of sky somewhere in the images.

The least classification performances are in animal, food, and transport classes.

Note that there is a wide variety of images that can be classified as containing

animal, food, or transport. For example in the animal class, not only real animals

that are clearly visible, but also hand drawn animals or parts of an animal result

in the same class. In addition, in some images, the target object (animal, food,

or transport) does not have to be the subject of the image, but it might also be
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seen in the background. This makes the classification a challenging problem in

these classes.

8.5 Assessment of the SSIVG representation

performance in object recognition

Object recognition has been a popular research topic for many years. Many

recently reported works show promising performance in this challenging recogni-

tion task. Since the SSIVGs effectively describe certain visual aspects (objects or

scenes), it is straightforward that the SSIVGs in each object category should be

discriminative for the corresponding object. Consequently, we utilize the object

recognition task to illustrate the discriminative ability of SSIVGs.

We utilize the Caltech101 dataset for the object recognition task. For each

test image, the training image category containing the same object is selected

from the image database. In our approach, each test image is recognized by

predicting the object class using the SSIVG representation and the MVBC. We

compare this method with the visual phrase-based approach proposed by Zheng

and Gao to retrieve images containing some desired objects. In this approach,

each test image is recognized by computing the first 20 retrieved images in the

training dataset.

Figure 8.17 shows the average precisions for the two approaches for each ob-

ject category. We arrange the 101 classes from left to right with respect to the

ascending order of average precisions of SSIVG representation in order to get a

clearer representation.
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Figure 8.17: Object recognition performance for different approaches.

It is obvious from the results, that the proposed approach globally outperforms

the other approach, except for four image classes (pyramid, revolver, dolphin, and

stegosaurus) out of the 101 classes in the used data set.

8.6 Summary and conclusion

In this chapter we have presented the large-scale, extensive experimental stud-

ies that have demonstrated the good performance of the proposed SSIVG rep-

resentation in image retrieval, image classification, and object recognition. We

have compared the performance of the SSIVG representation to several recent

approaches, specifically visual phrase pattern [171], descriptive visual glossary

[174], and visual synset [177].

We have introduced the different criteria for estimating variety of parameter

166



settings, such as estimating the optimal visual word vocabulary sizes and the

number of latent topics in the MSSA model. We have also examined the per-

formance of the different layers of the proposed representation (Enhanced BOW

(E-BOW), SSVW, SSVP, SSIVW, SSIVP, SSIVG). Consequently, we have ex-

tended the performance comparison to several other recently proposed higher-

level representation methods in the image retrieval context that are mentioned

above. Moreover, we have studied the performance of the proposed SSIVG rep-

resentation and the proposed MVBC classifier in image classification. Finally,

we have evaluated the performance of the proposed combination of the SSIVG

representation and the MVBC classifier in the object recognition task.
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Part IV

Conclusion and Future Work
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Chapter 9

Conclusion

9.1 Summary

Due to the explosive spread of digital devices, the amount of digital content

in terms of personal images grows rapidly. This increases the need for effective

techniques for automatic processing, description, and structuring of large digital

image archives. Most of the recent techniques are based on representing images

using the text annotation associated with the images. Unreliable nature of the

few tags assigned by users makes accurate tag based techniques infeasible.

This leads to increase the interest to image representation based on the visual

content. Recently, it has been shown that the part-based representation espe-

cially bag of visual words (BOW) representation is more effective than the global

representation. Indeed, one single image feature computed over the entire image

is not sufficient to represent important local characteristics of different objects

within the image.

Despite the good performance of BOW representation in different tasks such

as image retrieval, scene classification, and object recognition, still there are draw-

backs to be considered. This works aims to enhance the BOW representation and
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propose a higher-level visual representation for semantic learning in large-scale

image databases. The contributions of this thesis are three-fold as stated below.

1. An enhanced approach to construct the bag of visual words (BOW) rep-

resentation is represented, which is the first level of representation in the

proposed approach. The 5D color-spatial feature space are modeled for set

of detected interest and edge points based on the Gaussian Mixture Model

(GMM). Third, we extract at each interest point SURF local features. In

addition to the SURF, we established a new local feature descriptor, Edge

context, which plays a role as a descriptor complimentary to SURF descrip-

tor. It describes, at each interest point, the distribution of the edge points

that belongs to a given Gaussian cluster by returning to the 5D color-spatial

space. Afterward, the two local feature vectors (SURF +Edge Context) are

merged to get final local feature vectors. The quantization of the merged

features into visual words is achieved by two clustering stages. A Hierarchi-

cal agglomerative clustering is performed to overcome the problem of the

initial seed for the repeated k-means clustering that hierarchically partition

the local feature space. This process results in the construction of a visual

word vocabulary tree.

2. We propose a new probabilistic topic model: the Multilayer Semantically

Significant (MSSA) model. The MSSA model studies the semantic inference

of different atomic visual representation units (visual words) in order to

select the semantically significant units. The MSSA model differs from

other similar topic models by introducing two different latent topic layers,

the high latent topics and visual latent topics that represent the high aspects
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(images categories) and visual aspects (scenes, objects or part of the objects)

of the images respectively. The KKT conditions are used to derive new

multiplicative update rules in order to estimate the parameters of the MSSA

model. In addition, the number of latent topics in the MSSA model is

estimated using different mode selection criteria: the Akaike information

criterion (AIC), the Bayesian information criterion (BIC), and the Minimum

Description Length (MDL).

3. A higher-level visual representation is introduced: Semantically Significant

Invariant Glossary (SSIVG) representation. This representation is based on

the BOW representation and the MSSA model that are introduced above.

We started by selecting the Semantically Significant Visual Words (SSVWs)

from the visual words set in order to overcome the feature quantization

noise. The selection process is based on the visual words semantic inferences

that are estimated using the MSSA model. Subsequently, the discrimination

power of the SSVWs are strengthened by building Semantically Significant

Visual Phrases (SSVPs) from frequently co-occurring SSVW sets in the

same local context, that are both involved in strong association rules, and

semantically coherent. Moreover, the intra-class invariance power of the

SSVWs and the SSVPs are boosted by a clustering based on their proba-

bility distributions to the relevant visual topics. These steps lead to form

the Semantically Significant Invariant Visual Glossary (SSIVG) representa-

tion. Besides, we set up a new spatial weighting scheme dedicated to this

representation is introduced with the vector space model for image retrieval

and indexing. Moreover, we present a new Multilayer Vote-Based Classifier

(MVBC) based on the SSIVG representation for image classification.
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All the propositions made in this work have been implemented, and the successful

results have been described and discussed. The implemented system is found to

outperform various state-of-the-art image representation methods from the recent

literature in three different contexts: image retrieval, image classification, and

object recognition which validates the contributions.

9.2 Perspectives

Several directions are envisioned for future research based on the proposed

higher-level visual representations as follows.

– Parameters update: As the large-scale online image repositories grow daily,

an important aspect needs to be addressed when developing probabilistic

topic models in future research. It will be essential to design on-line al-

gorithms to continuously (re-)learn the parameters of the proposed MSSA

model, as the content of digital databases is modified by the regular upload

or deletion of images.

– Invariance issue: One of the major contributions of our work is to im-

prove the invariance power of the BOW representation. The experimental

results have shown that the proposed higher-level representation can par-

tially bridge the visual differences between images of the same class and

deliver a more coherent, invariant and compact representation of images.

It will be interesting to investigate more on the invariance issue especially

in the context large-scale databases where large intra-class variations can

occur.

– Abstract concepts : The experimental evaluations used datasets consisting
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mainly of objects and scene categories. With such datasets, the proposed

approaches have shown to perform well. However, it is not clear to us how

the performance would be affected when searching for abstract themes such

as love, sad, celebrating, success, etc or landmark scenes. In future works

this should be examined.

– Video summarization: Nowadays, users are facing an ever-increasing

amount of television programs. The difficulty, however, is that the content

of video programs is easily managed by the viewing devices. The existing

video watching options for users are either to watch the whole video, fast

forward to try and find the relevant portion, or to use electronic program

guides (EPG) to get additional information. Video summarization is there-

fore essential to enable the user to view the content in different aspects.

The proposed higher-level visual representation can be extended to video

content. The extension can be based on cross-modal data (visual and tex-

tual closed captions contents), in order to reinforce the actual proposed

representation that is based on one modality (only the visual content of

images).

Subsequently, a new generic framework of video summarization based on

the extended higher-level semantic representation of video content can be

designed. This framework will process the incoming video, extract and

analyze closed caption text, determine the boundaries of program segments

and commercial breaks, and extracts a program summary from a complete

broadcast
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