
HAL Id: tel-00667072
https://theses.hal.science/tel-00667072

Submitted on 6 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Behaviour Model and Imitation Learning
Algorithm for Believable Characters in Video Games

Fabien Tencé

To cite this version:
Fabien Tencé. Probabilistic Behaviour Model and Imitation Learning Algorithm for Believable Char-
acters in Video Games. Artificial Intelligence [cs.AI]. Université de Bretagne occidentale - Brest, 2011.
English. �NNT : �. �tel-00667072�

https://theses.hal.science/tel-00667072
https://hal.archives-ouvertes.fr

Thèse / Université de Bretagne
occidentale

sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
Docteur de l’Université de Bretagne occidentale

Mention : Informatique
École doctorale Sicma

présentée par

Fabien Tencé
préparée au Centre Européen
de Réalité Virtuelle
Laboratoire LISyC

Probabilistic Behaviour Model
and Imitation Learning
Algorithm for Believable

Characters in Video Games

Thèse soutenue le 10 novembre 2011
devant le jury composé de :

Thierry Artières (rapporteur)
Professeur des Universités, Paris 6

Yves Duthen (rapporteur)
Professeur des Universités, Toulouse 1

Pierre Bessière (examinateur)
Directeur de Recherche, CNRS

Vincent Rodin (examinateur)
Professeur des Universités, UBO

Pierre De Loor (directeur)
Professeur des Universités, ENIB

Cédric Buche (encadrant)
Mâıtre de Conférence, ENIB

Olivier Marc (invité)
Cogérant de Virtualys

Acknowledgement

The following companies, organisms and schools made this thesis possible:

I wish to express my gratitude to Laurent Gaubert, Cédric Buche and Pierre
De Loor for their assistance, support and guidance. I am also grateful to Mar-
jorie Nicolas and Olivier Marc for giving me great freedom of choice. Special
thanks to the workers at CERV, Virtualys and Cervval for their welcome and
their assistance. Finally I wish to express my love to my family and Lucie for
their support and understanding.

Final version iii

Abstract

This work aims at designing a behaviour model for the control of believable
characters in video games. The character is controlled by a computer program
we call an agent. We define a believable agent as a computer program able to
control a virtual body in a virtual environment so that other human users in
the environment think the virtual body is controlled by a human user.

As more precise criteria are needed for the evaluation of the results, we
define 10 requirements for a character to be believable, based on previous
experiments and several work. First the agent must react to the environment
and the other players in a coherent way. This reaction must simulate a reaction
time similar to human reaction time. The agent must also avoid repetitiveness,
both in the actions and in the behaviour. It is also necessary that the intention
of the agent can be easily understood by the human players. Contrary to
what is done in most video games, the perception abilities of the agent must
be similar to those of a player. The agent should be able to handle the flow
of time, remembering information from the past and thinking ahead, making
plans. Finally the agent has to be able to evolve, changing its behaviour for a
more efficient and believable one. This evolution must be fast enough for the
players to notice it, making them feel they play against an evolved being.

In order to fulfil these requirements, we studied the existing behaviour mod-
els developed both in the research and the industry. We grouped them into
four types: connectionist models, state transition systems, production systems
and probabilistic models. Connectionist models are very good at learning by
usually have problems to handle memory and planning. State transition sys-
tems can be easily understood and modified but may are not very well adapted
to learning and planning. Production systems are quite good for learning,
planning and memory but make the agent act in a predictable manner. Fi-
nally, probabilistic models are good at variability, learning and memory but
may show problems with planning.

As one of the requirements is that the model is able to evolve, we had to find
adapted learning algorithms. In order to achieve behaviour believability, the

Final version v

ABSTRACT

best method we found is imitation learning: the agent learns its behaviour
using observations of one or several players. According to our definition of
believability, it is the best way for the agent to look like players. Indeed, the
goal of imitation learning is to make the agent act as human players. This
learning method is also much faster than trial and error.

With these studies in mind we found out that the behaviour model devel-
oped by Le Hy in his thesis (Le Hy, 2007, in French) answers to most of the
requirements. Le Hy’s study presents a probabilistic model based on an Input-
Output Hidden Markov Model (IOHMM): a hidden state is chosen according
to inputs and the previous hidden state, and outputs are chosen according
to inputs and the current hidden state. In Le Hy’s behaviour model, hidden
states are decisions, inputs are stimuli and outputs are actions. Several learn-
ing algorithms have been developed for this model in (Le Hy, 2007, in French).
The best combination is a Laplace’s rule for the learning of the action distri-
butions and an Expectation-Maximization algorithm (EM) for the learning of
the Markovian distributions.

However, Le Hy’s model does not fulfil all the requirements. First, the
number of parameters can be reduced to speed up the learning process. Indeed,
more parameters means more possibilities and the learning algorithm could
try to update parameters which are useless. Then the methods used to break
the complexity of the distributions can make the agent behave too erratically
to make the behaviour human-like. We also need the model to be able to
easily adapt itself to unknown environments. In Le Hy’s model, it is up
to the character designers to adapt the model to the environment. Finally
Le Hy’s learning algorithms use simplification assumptions which can reduce
dramatically the ability of the agent to evolve.

In this manuscript we propose four modifications or replacements to parts
of Le Hy’s model. First, we try to reduce the number of parameters in the
model with a semantic refinement. Then we replace the two mechanisms to
break the complexity of the probability distributions by an attention selection
mechanism. We add to the model the ability to learn by imitation the layout
of environments. Finally we totally revamp the learning algorithm to make it
more powerful.

In order to ensure that the learning is as fast as possible, we add some a
priori knowledge in the model by refining semantically the stimuli and the
actions. This refinement comes with independence between random variables
which lessen the number of parameters in the model. We introduce the notion
of global and inaccurate stimuli for the choice of decisions and actions affecting

vi PhD thesis — Fabien Tencé

only the agent, and accurate stimuli for the choice of actions which allow the
agent to interact with its environment.

As an environment is perceived through many sensors by the agent, we have
to find a way to break the complexity of the combinatorial explosion of the
sensors. We replace previous mechanisms developed by Le Hy by an attention
selection mechanism: at each time step the agent focuses on one global and
inaccurate stimulus and on one accurate stimulus and then acts as there were
only these stimuli. In order to choose these stimuli, the model uses probability
distributions which are expressed with functions. These functions associate
for each stimulus the attention value: the higher the value the more chances
the agent has to focus on the stimulus, if encountered.

For the agent to adapt to unknown environments, we enhanced and added
a model named Growing Neural Gas (GNG) to the behaviour model. The
GNG is a model which aims at representing volumes with a graph by learning
from example coordinates in this volume. In our case, the examples are one
or several players’ positions. The GNG can then learn a representation of the
volume of the environment which also correspond to how the players use the
environment. The final representation used by the behaviour model is only
composed of the graph nodes: each node represents a place where the agent
can go but the edges do not give any information on the accessibility of a node
from an other.

Finally, to find the parameters of our model we applied an EM method: a
player is monitored during its play and all its stimuli and actions are given to
the learning algorithm. The probability distributions are updated according
to these observations. As our version does not make simplistic assumptions, it
uses more computing power. This is counterbalanced by the reduction of the
number of parameters in the model, consequence of the semantic refinement.
The main downside of the new algorithm is that it is not capable yet of learning
the values of the attention functions.

Each of the proposition in this manuscript has been evaluated to assess
their impact on the model and on the resulting behaviour. Unfortunately, as
the resulting behaviour is not believable enough to fool a player for long, we
decided not to make a thorough evaluation of the believability with a sufficient
number of humans players to judge the agent. However we used our knowledge
of video games to point out the limitations of the models.

The semantic refinement allowed a significant decrease in number of pa-
rameters. In our application, the proposition allowed to divide the number of
parameters by 105. Moreover, this proposition does not reduce too much the

Final version vii

ABSTRACT

model expressiveness as accurate stimuli are only needed for accurate actions.
It is also important to notice that this semantic refinement still allows our
model to be equivalent to Le Hy’s model. Indeed, if the global and inaccu-
rate stimuli and the accurate ones are the same, the two models are strictly
equivalent. Therefore, our model is a generalization of Le Hy’s model.

The attention selection mechanism makes the agent focus on one stimulus
and act as if there were only one. It fixes the issue of the previous mecha-
nisms aiming at breaking the complexity of the distributions Le Hy used: the
agent does not switch constantly between stimuli and thus the behaviour is
more understandable for the players. This fulfils one of the requirements for
believability.

The GNG behaves very well with the input positions from players. We
present studies of each of the GNG parameters and explain their impact. It is
possible to adjust the level of detail of the graph making the nodes much closer
and numerous or, at the contrary, reduce their number. The model converges
rapidly to a solution, in about 10 minutes for a simple environment and 25
minutes for complex one. It is possible to increase the speed of convergence
by using more than one player as an example, dividing the time by two in the
better cases. Finally, the model can be left to learn for a very long period of
time without fear of it to grow indefinitely. It is even recommended to let the
model learn for it to be able to learn new places in the environment if players
begin to visit them later in the game.

The last proposition, the new EM, is the one with the most impact on the
final result. Indeed, the behaviour of the agent depends mostly on the model
parameters which are learnt by the algorithm. In our application the learn-
ing algorithm converges rapidly and can handle all the observations of one
player without delay. Most of the distributions converge well, with the excep-
tion, of course, of the attention functions which are not updated. When the
resulting distributions are studied, the results are mitigated: the learning pro-
duce distributions which correspond to coherent stimulus-action associations
but also some incoherent associations which break the illusion of believability.
According to our studies, our results are more believable than our implemen-
tation of Le Hy’s model but are too far from the players to hope having good
believability results to a true evaluation.

viii PhD thesis — Fabien Tencé

Contents

Acknowledgement iii

Abstract v

Contents ix

List of Figures xi

List of Tables xix

List of Acronyms xxi

List of Notations xxiii

1 Introduction 1
1.1 From Virtual Reality to Believable Agents in Video Games . . 2
1.2 Assessing the Believability of Characters in Video Games . . . 6
1.3 Objective of our Work . 11
1.4 Organization of this Manuscript 12

2 Behaviour Models and Learning Algorithms for Believable
Agents 15
2.1 Behaviour Models for Believable Agents 16
2.2 Algorithms to Learn Behaviours 27
2.3 Le Hy’s Work . 34
2.4 Believability of Agents Using Le Hy’s Model 45

3 Chameleon: Behaviour Model and Learning Algorithm for
Believable Agents 55
3.1 Semantic Refinement . 56
3.2 Attention Selection Mechanism 63
3.3 Learning the Environment . 68
3.4 Learning the Model Parameters via an EM Algorithm 74

4 Analysis and Evaluation of an Implementation of Chameleon 93

Final version ix

CONTENTS

4.1 Semantic Refinement . 94
4.2 Attention Selection Mechanism 101
4.3 Learning The Environment . 106
4.4 Learning the Parameters of the Model with an EM Algorithm . 121

5 Conclusion 143
5.1 Bottleneck . 144
5.2 Contributions . 145
5.3 Limitations . 149
5.4 Future Work . 151

Bibliography 155

Exploratory Research on Criteria Affecting Believability 163
Protocol . 163
Questionnaire . 164

x PhD thesis — Fabien Tencé

List of Figures

1.1 Two widely used immersive systems: the Cave Automatic Virtual
Environment (a) and the classic goggles and gloves (b). Their
goals are to replace most of the user’s perceptions of the real world
by virtual ones and to make the interaction with the environment
more natural. 3

1.2 A virtual environment depicting a world with snow and ice: Snow-
world (Hoffman et al., 2003). Although the game is not very im-
mersive, the feeling of presence can be strong: patients suffering
burns reported to be less subject to pain while playing the game.
The game could make its users feel cold even if this is not the case
in the real world. 3

1.3 Disney made the character of Bambi very believable despite being
a fictive and non-realist deer in a cartoon. It gives the impression
of being alive and thus is able to provoke feelings. 7

1.4 A representation of the notion of believability chosen in this thesis.
The arrow represents the player observing the avatar of the agent
in the virtual environment. 8

1.5 Example of a discussion with the chatbot ELIZA. It illustrates
that ELIZA, while not being truly active in the conversation, does
not break the illusion of believability. This excerpt of discussion is
taken from (Weizenbaum, 1966). 11

2.1 Two simplified examples of (a) a feedforward neural network and
(b) a recurrent neural network. These are the most widely used
connectionist models. Images taken from Wikimedia Commons. . . 18

2.2 A part of a video game agent’s behaviour modelled with a Finite
State Machine (FSM) (Le Hy, 2007, page 27). The conditions for
each transition is not given because of their complexity. 20

2.3 Behaviour trees are more flexible way to express behaviour than
FSMs. This behaviour tree is used to model an agent in a First
Person Shooter (FPS). Taken from http://www.garagegames.

com/community/blogs/view/18589 20

Final version xi

http://www.garagegames.com/community/blogs/view/18589
http://www.garagegames.com/community/blogs/view/18589

List of Figures

2.4 A general view of the architecture of ACT-R (Anderson, 1993).
ACT-R is a cognitive model which uses production rules to gener-
ate the behaviours. 22

2.5 A Bayesian network with the probability tables defining the rela-
tions between all the random variables. T and F stand respectively
for true and false. 24

2.6 Neonates imitating different facial expressions. Taken from (Melt-
zoff and Moore, 1977). 30

2.7 A robot imitating 10 different gestures, after having observed 6
demonstrations for each gesture. Taken from (Calinon and Billard,
2007). 31

2.8 Interest of the imitation learning considering the goal of believabil-
ity. The plain arrow represents the player observing the avatar of
the agent in the virtual environment. The dashed arrow represents
the agent observing and imitating the player’s avatar in order to
appear believable. 33

2.9 A Hidden Markov Model (HMM) represented in a classic way with
3 hidden states and 3 observable events. 35

2.10 A concrete example of a HMM with 3 hidden states represent-
ing feelings and 3 visible observations representing the expressions.
Edges that are not drawn express a probability of 0. 35

2.11 A HMM represented as a Dynamic Bayesian Network (DBN) (Mur-
phy, 2002, page 20). Neither the number of hidden states and
observations nor the probabilities are specified. 36

2.12 A concrete example of a HMM represented as a DBN (Murphy,
2002, page 20). Neither the number of values for hidden feelings
and observable expressions nor the probabilities are specified. . . . 36

2.13 An IOHMM represented as a DBN (Murphy, 2002, pages 25-26).
The number of hidden states, inputs and outputs is not specified.
The dashed line means A and S may be independent given D

depending on the system to be modelled. 37

2.14 An example of an IOHMM represented as a DBN (Murphy, 2002,
pages 25-26) which models the expression of a humanoid given its
level of endorphins. 37

2.15 Principle of the Fusion by Enhanced Coherence (FEC) (Le Hy,
2007, page 55, in French). Each diagram represents the probabil-
ity (blue line) for 5 rotation commands, the avatar viewed from
the top: turn left 90◦, turn left 45◦, do not turn, turn right 45◦

and turn right 90◦. The black arrow represents the avatar’s facing
direction. Green circles are attractor and red triangles repulsors.
Each command is specified for a single sensor’s value (the 6 dia-
grams at the top), the resulting FEC is the bottom diagram. . . . 39

xii PhD thesis — Fabien Tencé

List of Figures

2.16 Algorithm of the Le Hy’s model. It is possible to choose the way
the value are picked: randomly following the distribution, using
the maximum value in the distribution, etc. 40

2.17 Summary of the influences between Le Hy’s model’s variables (Le Hy
et al., 2004). S is for sensors, A for actions and D for decisions.
The model is represented as a DBN for the sake of simplicity. . . . 40

2.18 Example of a use of Le Hy’s model. The values for D can be Flee
and Eat. 40

2.19 The view a of player inside the game Unreal Tournament 2004. . . 46

2.20 The communication between the model and the video game is done
via Gamebots and Pogamut. 46

2.21 BIBot inherits from Pogamut agent. 47

2.22 New decisions can easily be integrated by extending the Decision
class. 47

2.23 New sensors can easily be integrated by extending the Sensor class. 47

2.24 Overview of the monitoring interface. At the left we have the
current value of decisions and some sensors. At the right we have
a summary of the decisions taken over time. 48

2.25 View from the game Unreal Tournament 2004 (UT2004) with an
external view of the agent and debugging information from Poga-
mut. This kind of view allow the observation of the agent without
perturbing its environment. 49

2.26 Decision sequencing before perturbation. The perturbation is the
view of a opponent’s avatar. The agent is switching between dif-
ferent decisions. 49

2.27 Decision sequencing after perturbation. The perturbation is the
view of a opponent’s avatar at time step 85. 50

2.28 An illustration of the problem with FEC: on the top, each dis-
tribution (blue line) gives a believable direction to go for a single
attractor (green dot). On the bottom the FEC does not give a be-
lievable action because the agent may constantly switch between
the two attractors, oscillating constantly. 52

3.1 Partial representation of the model depicting only the relation be-
tween the decision Dt and the stimuli Ht and Lt. 58

3.2 Partial representation of the model depicting the relation between
the decision Dt, the stimuli Ht and Lt and the actions Rt and Et. 61

3.3 Example of an application of the model. FoodInMouth and Hunger
are high-level stimuli, FoodPosition is a low-level stimulus. Chew
and Swallow are two reflexive actions. Walk, Turn and PickFood
are external actions. 62

3.4 Example of a model following Le Hy’s specifications and aiming at
expressing the same behaviours as the example in figure 3.3. 62

Final version xiii

List of Figures

3.5 Algorithm of the model. It is possible to choose the way the value
are picked: randomly following the distribution, using the maxi-
mum value in the distribution, etc. 67

3.6 Summary of the relation between the random variable of the model.
In green the inputs (sensory data), in red the outputs (actions) and
in blue the attention variables. 67

3.7 Whole model applied to the example defined in section 3.1.3. . . . 67

3.8 A simple environment (obstacles are in grey) represented by a
graph. Nodes are noted by circles and edges by black lines. An
avatar can go from one node to an other only if the nodes are con-
nected by an edge. Usually, an A* is used to find the path between
two nodes. 69

3.9 A simple environment (obstacles are in grey) represented by a
mesh. The avatar can navigate in the zone defined by the mesh (in
yellow) because it knows they are no obstacle in this zone. Different
algorithms can be used to find optimal paths. 69

3.10 The algorithm of the GNG as defined in (Fritzke, 1995). 70

3.11 Detail of the steps of the GNG algorithm. The black cross is the
input, black circles are the nodes of the GNG and black lines are
the edges of the GNG. Gray shapes represent the obstacles in the
environment. 71

3.12 Algorithm used to learn the topology of the environment repre-
sented by a GNG. 73

3.13 A simple example of the relation between the values of the random
variables of the model. Gray filled circles represent the observed
values on a teacher. White filled circles represent the hidden values.
This diagram depicts a whole sequence of observation which lasts
5 time steps. 75

3.14 Illustration of the meaning of the estimator α. In this figure α3
q3

is represented which estimates the probability of the green hidden
value given the observed red values. White and grey values are
unknown. 79

3.15 Illustration of the meaning of the estimator β. In this figure β3
q3

is represented which estimates the probability of the green hidden
value given the observed red value. White and grey values are
unknown. 81

3.16 Illustration of the meaning of the estimator γ. In this figure γ3
q3

is represented which estimates the probability of the green hidden
value given the observed red values. White values are unknown. . . 82

3.17 Illustration of the meaning of the estimator ξ. In this figure ξ4
q3,q4

is represented which estimates the probability of the green hidden
value given the observed red values. White values are unknown. . . 84

3.18 Algorithm used for the imitation learning of the model parameters. 90

xiv PhD thesis — Fabien Tencé

List of Figures

4.1 Zones defined for the points of interest of type weapon, top view.
The grey zone is outside the Field Of View (FOV). Red values are
for yaw, blue for distance. The values in Unreal Unit (UU) gives
the distance value between each discretization and the angles in
degrees for the yaw. 96

4.2 Zones defined for the points of interest of type weapon, side view.
The grey zone is outside the FOV. Green values are for pitch, blue
for distance. The values in UU gives the distance value between
each discretization and the angles in degrees for the pitch. 96

4.3 Actions allowing the agent to move in the environment and aim at
players. 97

4.4 Number of parameters for our application of the model in UT2004.
The Inverse Programming (IP) and FEC for Le Hy’s model and
attention mechanism for Chameleon are not taken into account.
The reduction is given compared to Le Hy’s model. 100

4.5 Number of parameters for our application of the model in UT2004.
The reduction is given compared to Le Hy’s model. 103

4.6 An illustration (same as figure 2.28) of the problem with FEC: on
the top, each distribution gives a believable action for a single
attractor. On the bottom the FEC does not give a believable
action because the agent may constantly switch between the two
attractors, oscillating constantly. 104

4.7 Using the same example as 2.28, the attention selection mechanism
produces a better distribution in term of believability: on the top,
each distribution (blue line) gives a believable direction to go for
a single attractor (green dot). On the bottom the attention gives
a believable action because the agent focus on the attractor ahead
instead of switching between the two attractors like the FEC would
do. 105

4.8 Result of a GNG learned from a player for a simple environment
after 30 minutes, top view. 107

4.9 Result of a GNG learned from a player for a complex environment
after 1 hour. 107

4.10 Comparison of nodes learned by the GNG (in red) with the navi-
gation points placed manually by the game developers (in green).
The environment viewed from the top is visible in the background. 109

4.11 Time evolution of the GNG number of nodes and the cumulated
distance between the GNG nodes and the navigation points. 110

4.12 Comparison of two GNGs which learned on the same environment,
after a very long training time of 10 hours. 111

4.13 Comparison of four GNGs learned on different players. 111

Final version xv

List of Figures

4.14 Comparison of the time evolution of GNGs which learned on the
same data but have different values for the adjustment of the win-
ner node toward the input. The higher the attraction, the faster
the GNG converges, the less nodes the GNG has and the less stable
is the representation. 113

4.15 Comparison of the time evolution of GNGs which learned on the
same data but have different values for the adjustment of the neigh-
bours of the winner node toward the input. The higher the attrac-
tion, the less stable is the representation. 114

4.16 Comparison of the time evolution of GNGs which learned on the
same data but have different values for the maximum error admit-
ted for nodes before the creation of another node in the GNG. The
higher the maximum error allowed for a node, the less nodes the
GNG has. 115

4.17 Comparison of the time evolution of GNGs which learned on the
same data but have different values for the maximum age admitted
for edges before they are deleted. No change on the results has been
noted. 116

4.18 Comparison of the time evolution of GNGs which learned on the
same data but have different values for the decay of the error of
the nodes. The higher the error decay, the less nodes the GNG has
and the higher the specificity. 117

4.19 Comparison of the time evolution of GNGs which learned on simul-
taneously 1, 2, 3 and 4 different teachers. The more the teachers,
the faster the learning but also the more stable is the representation.119

4.20 Comparison of the time evolution of GNGs which learned at 1, 5,
10 and 20Hz. The higher the frequency, the faster the learning but
the less stable is the representation. 120

4.21 Example of the meaning of reaction time for a simple sequence of
5 observations. The arrows give the association of stimuli/actions
given to the learning algorithm to update the model parameters.
Considering the observation are taken every 100ms, the plain ar-
rows represent a reaction time of 0ms, the long dashed arrows
represent a reaction time of 100ms and the short dashed arrow a
reaction time of 200ms. Note that a small part of information is
lost when the reaction time is increased. 122

4.22 Mean log-likelihood of the final result after learning on 105 dif-
ferent sequences of observations of the behaviour of a player and
100 different sequences of observations for a UT2004 agent. The
reaction time varies from 0 second to 2 seconds and the model has
10 decisions. 123

4.23 Mean log-likelihood of the final result and time to converge for 105
different sequences of observations. The number of decisions varies
from 1 to 20 with a fixed reaction time of 300ms. 124

xvi PhD thesis — Fabien Tencé

List of Figures

4.24 Time evolution of the total log-likelihood for 20 learnings on se-
quences of same length. Each learning starts the same initial dis-
tributions. 126

4.25 Time evolution of the partial log-likelihood for 20 learnings on
sequences of same length for m1 (left) and m (right) distributions.
Each learning starts the same initial distributions. 126

4.26 Time evolution of the partial log-likelihood for 20 learnings on
sequences of same length for o (left) and n (right). Each learning
starts the same initial distributions. 127

4.27 Time evolution of the total log-likelihood for 20 learnings on se-
quences of same length for λ (left) and θ (right). The value of the
attention function are not optimized during the algorithm and we
specified their values. 127

4.28 Effect of the merging of multiple results on the log-likelihood and
time to learn for test sequences. The mean log-likelihood for the
test sequences is given before and after the learning using the global
parameters produced by the learning on n sequences. The mean
learning time is also given for the test sequences. 95 sequences
were used for the learning and 10 for the testing. 129

4.29 Two distributions of movement actions for the same decision and
same kind of stimuli but different values. The left graph is for a
stimulus representing a weapon on the left of the agent and very
close. The right graph is for a stimulus representing also a weapon
but it is on the right of the agent and is also very close. The weapon
is about the same height as the agent. 133

4.30 Two distributions of movement actions for the same stimulus but
different decisions. The two graphs are for stimulus representing
an enemy player, right of the agent, moving to the right of the
agent and at an average distance. 133

4.31 Two distributions for the same stimulus but different decisions.
The stimulus represent a navigation point on the left of the agent,
same height and average distance. 134

4.32 Scheme of an avatar viewed from top at two following time steps t

and t+ 1.
−→
D is the facing direction of the avatar which is also the

direction in which the avatar aims and
−→
V is the velocity vector. . . 135

4.33 Signatures (Tencé and Buche, 2008) of a Chameleon agent, a Le
Hy’s agent, a player and an original UT2004 agent. 136

4.34 Earth Mover’s Distance (EMD) between the signatures represented
using the Multidimensional Scaling (MDS) for one Chameleon, one
Le Hy agent, seven different players and nine UT2004 agent, each
one with a different skill level. The correlation factors for the MDS
for all the representations are very high (> 0.98). 138

Final version xvii

List of Tables

1.1 Characteristics of the main types of video games for the develop-
ment of believable characters. 5

1.2 List of the requirements for a character to be believable. 8

2.1 Requirements for the models to make agents express believable
behaviours. 17

2.2 A very simple example of a STRIPS planner. The world is rep-
resented by a state (is there a phone, do I have a recipe, am I
hungry) and the agent have its goals represented by a state. In
order to satisfy hunger, the agent can use two plans depending on
its resources. Here, plans consist only on one rule, but it can be a
chaining of rules, requiring a sequence of actions. Example inspired
by (Orkin, 2006). 23

2.3 Summary of the characteristics of models for the control of be-
lievable agents. The characteristics are listed at the beginning of
section 2.1 and models are detailed is sections 2.1.2, 2.1.3, 2.1.4
and 2.1.5. 26

2.4 Requirements for the learning algorithm to make the agent behave
in a believable way. 27

2.5 List of the noticed limitations with Le Hy’s model. 51

3.1 Example of a model following the Chameleon proposition. 62

3.2 Example of attention values for the model given in table 3.1. . . . 65

4.1 Definition of each random variable used in the model applied to
the game UT2004. 98

4.2 For each hypothesis, the number of values for the definition of the
probability distributions with 10 decisions. The semantic refine-
ment allows a noticeable reduction of the number of parameters.
The independence of the actions in introduced in Le Hy’s work and
the semantic refinement in the previous chapter, section 3.1. 100

Final version xix

List of Tables

4.3 For each hypothesis, the number of values for the definition of the
probability distributions with 10 decisions. Our model totals 36%
less parameters than Le Hy’s model. The Inverse Programming
(IP) and Fusion by Enhanced Coherence (FEC) are introduced in
Le Hy’s thesis and the attention selection mechanism is introduced
in the previous chapter, section 3.2. 103

4.4 Sequence of decisions and values of some stimuli and actions for a
sequence of observations. The decisions are those the more likely
to be picked (γtd is the higher) according to parameters learned on
100 sequences of observations. 130

5.1 List of the requirements for a character to be believable. 145

xx PhD thesis — Fabien Tencé

List of Acronyms

FSM Finite State Machine

IP Inverse Programming

FEC Fusion by Enhanced Coherence

HMM Hidden Markov Model

IOHMM Input-Output Hidden Markov Model

GNG Growing Neural Gas

BW Baum-Welch algorithm

IBW Incremental Baum-Welch algorithm

EM Expectation-Maximization algorithm

DBN Dynamic Bayesian Network

UT2004 Unreal Tournament 2004

FPS First Person Shooter

ECA Embodied Conversational Agents

FOV Field Of View

UU Unreal Unit

EMD Earth Mover’s Distance

MDS Multidimensional Scaling

Final version xxi

List of Notations

Growing Neural Gas (GNG)
η Number of inputs for the classic GNG to add a new node
ցErr Amount of error removed to each node at each iteration

Err Maximum error for a node

Age Maximum age for an edge

Behaviour Models
Ht

i Random variable giving the value of the ith high-level stimuli at t
NH Number of high-level stimuli
Hi Set of values the ith high-level stimuli can take
Ht Conjunction of all the high-level stimuli at time t: Ht = (Ht

1, . . . , H
t
NH

)

H Set of possible values for Ht: H = H1 × . . .×HNH

Lt
i Random variable giving the value of the ith low-level stimuli at t

NL Number of low-level stimuli
Li Set of values the ith low-level stimuli can take
Lt Conjunction of all the low-level stimuli at time t: Lt = (Lt

1, . . . , L
t
NL

)

L Set of possible values for Lt: L = L1 × . . .× LNL

Kt Random variable giving the set of indexes of known low-level stimuli at time t

It Random variable giving the index of the high-level stimuli the agent focus on
J t Random variable giving the index of the low-level stimuli the agent focus on
At

i Random variable giving the ith action at time t

NA Number of actions
Ai Set of values the ith action can take
At Conjunction of all the actions at time t: At = (At

1, . . . , A
t
NA

)

A Set of possible values for At: A = A1 × . . .×ANA

Rt
i Random variable giving the ith reflexive action at time t

NR Number of reflexive actions
Ri Set of values the ith reflexive action can take
Rt Conjunction of all the reflexive actions at time t: Rt = (Rt

1, . . . , R
t
NR

)

R Set of possible values for Rt: R = R1 × . . .×RNR

Et
i Random variable giving the ith external action

NE Number of external actions
Ei Set of values the ith external action can take

Final version xxiii

LIST OF NOTATIONS

Et Conjunction of all the external action at time t: Et = (Et
1, . . . , E

t
NE

)

E Set of possible values for Et: E = E1 × . . .× ENE

Dt Random variable giving the decision at t
D Set of possible values for the decision
At0..t1 Actions between t0 and t1. For Chameleon At0..t1 = (Et, Rt)t∈Jt0,t1K

St0..t1 Stimuli between t0 and t1: (L
t, Ht,Kt)t∈Jt0,t1K

Qt0..t1 Hidden state between t0 and t1: (I
t, J t, Dt)t∈Jt0,t1K

Expectation-Maximization algorithm (EM)
Φ Parameters of the model
Φn Parameters of the model at the nth iteration of the EM
T Length of the sequence of observation used for the learning
A Whole sequence of observed actions: A1..T

S Whole sequence of observed stimuli: S1..T

Q Whole sequence of hidden states: Q1..T

α Forward variable (estimator)
β Backward variable (estimator)
γt Estimator of the model to be in hidden state given the observations
ξt Estimator of the model to do a transition between two hidden states

given the observations

xxiv PhD thesis — Fabien Tencé

Contents of Chapter 1

1 Introduction 1
1.1 From Virtual Reality to Believable Agents in Video Games . . 2

1.1.1 On the Need of Believable Agents in Virtual Reality . . 2
1.1.2 Believable Characters in Video Games 4

1.2 Assessing the Believability of Characters in Video Games . . . 6
1.2.1 Believable Characters: Two Definitions 6
1.2.2 Believability Requirements for Agents in Video Games . 8

1.3 Objective of our Work . 11
1.4 Organization of this Manuscript 12

PhD thesis — Fabien Tencé

Chapter 1

Introduction

S
u
m
m
a
ry

o
f
1

In this chapter we explain why increasing the believability of
computer-controlled characters in a virtual environment can make the
users forget they are in a simulation. As believable computer-controlled
characters are very important in video games, we choose to focus on
this domain for our research. We list 10 requirements for such char-
acters to be believable. They must: react to events, simulate reaction
time, have variations in the movements, surprise the player with unpre-
dictability, evolve, evolve fast enough to be observable, be able to plan,
have an understandable behaviour, simulate a human-like perception
and be able to memorize events. We present briefly our study and the
outline of this manuscript.

In
tr
o
d
u
ct
io
n
o
f
1

Imagine ourself in the middle of a naval battle, giving orders and
fighting corsairs, or imagine you roam in a crowded souq on an alien
planet, stallholders trying to sell you their high-tech merchandise.
These scenes look like they are taken from films but the whole en-
vironment, the people feel real, they react to you as they were alive.

Of course you cannot be in such a place, but virtual reality can make
you feel like you are in those incredible situations. The main challenge
for the designers of virtual reality systems is to make you forget that
you are in a simulation. This is specially true for the characters popu-
lating the virtual world which must give you the feeling of being alive.

The goal of this thesis is to make it possible to design computer
controlled characters which gives this feeling of vividness. This kind of
character can be very useful to replace humans in virtual environments
where they lack. They can fill a whole world with life-like characters,
making the experience richer and more interesting.

Final version 1

CHAPTER 1. INTRODUCTION
P
la
n
o
f
1 We first explain why we focus on the believability of video games

characters in section 1.1. Then we define the criteria with which we
evaluate such characters throughout the manuscript in section 1.2. We
explain how our work may be a solution to this problem in section 1.3
and detail the plan of this manuscript in section 1.4.

1.1 From Virtual Reality to Believable Agents in
Video Games

In this thesis, we focus on virtual reality systems. They allow both humans
and computer programs to interact in a virtual environment which consists in
images, sounds, etc. often depicting a place. All these stimuli are produced
by computer programs and electronic devices for users to interact with and in
this fictive place.

1.1.1 On the Need of Believable Agents in Virtual Reality

The goal of virtual reality is, by definition, to substitute a user’s physical
reality by a virtual, computer-generated, one (Burdea and Coiffet, 2003). In an
attempt to quantify how well this substitution is achieved, two criteria have
been defined in academic research: immersion and presence (Slater et al.,
1996). Their exact definitions are a subject of debate among the researchers,
we will present the most widely used ones.

The first criterion, immersion, is an objective criterion which is influenced
by the hardware and software (Slater et al., 1995). It depends on the virtual
sensory information’s types, variety, richness, direction and to which extent
they override real ones. For instance, force feedback and motion sensing con-
trollers, surround sound and high dynamic range rendering can improve the
immersion (see figure 1.1).

The second criterion, presence (Heeter, 1992), also called telepresence (Steuer,
1992), is a more subjective criterion. It is defined as the psychological sense of
“being there” in the environment (Gibson, 1986) (see figure 1.2 for an exam-
ple). Presence partly depends on the match between sensory data and internal
information (Loomis, 1992; Slater et al., 1995). Part of this internal informa-
tion consists in personal and subjective models of the world. These models
allow a deeper understanding of the perceptions and a better anticipation of
future events (Held and Durlach, 1991).

This comparison between what we observe and our understandings of the
environment is close to what is called believability in the arts (Riedl and Young,
2005): fictional objects, places, characters and stories are believable only if the

2 PhD thesis — Fabien Tencé

1.1. FROM VIRTUAL REALITY TO BELIEVABLE AGENTS IN VIDEO
GAMES

perception we have of them mostly fits what we expect, our models. It is rea-
sonable to think that by improving the believability of a virtual environment,
we will improve the presence as well.

(a) (b)

Figure 1.1: Two widely used immersive systems: the Cave Automatic Virtual
Environment (a) and the classic goggles and gloves (b). Their goals are to
replace most of the user’s perceptions of the real world by virtual ones and to
make the interaction with the environment more natural.

Figure 1.2: A virtual environment depicting a world with snow and ice: Snow-
world (Hoffman et al., 2003). Although the game is not very immersive, the
feeling of presence can be strong: patients suffering burns reported to be less
subject to pain while playing the game. The game could make its users feel
cold even if this is not the case in the real world.

Final version 3

CHAPTER 1. INTRODUCTION

Two main areas in academic research aim at improving the believability
of virtual environments: interactive storytelling and believable computer-
controlled characters. In interactive storytelling (Cavazza et al., 2002; Riedl
and Stern, 2006; Crawford, 2004), a plot is generated to create a series of
appealing events for the user. With believable computer-controlled charac-
ters (Loyall, 1997; Bates, 1992), the goal is to create vivid characters capable
of interacting with both users and other characters. This study focuses on
virtual environments where users can roam where they want and do as they
please. In this kind of environment, storytelling is almost nonexistent. For
this reason, in this thesis we focus on making believable computer-controlled
characters.

Before going further, we will define some terms to avoid confusions. In a
virtual environment, users and computer programs can have virtual bodies.
We will call these bodies avatars, as they are the representations of entities
in the virtual world. Avatars can be controlled by a human or by a computer
program we call agent. We use the word agent because the program will take
sensory inputs from the world and give back actions commands. Finally we
will use the word character to designate the couple agent-avatar.

1.1.2 Believable Characters in Video Games

This thesis focuses on the design of believable characters in virtual envi-
ronments. However, there are a lot of different environments. The choice
of one environment has a lot of impact on the definition of the believability.
Therefore we must choose a kind of environment to work with before going
further.

Research on believable characters in virtual reality is often linked to video
games (McMahan, 2003). The first reason is because game designers really
need believable characters to give the best gaming experience to the players.
The second reason is because scientists need a complete and easy-to-use envi-
ronment where to develop believable characters which they can found in video
games (Laird and Lent, 2001). Video games are thus a very useful platform to
work on believability and to take inspiration from. We will now use the word
player to designate a human user of a video game.

As believable characters are the very goal of our work, we need character-
centric video games. For their behaviours to express fully, agents should be
able to interact with the environment, other agents and players. The more
complex and the higher the number of interactions, the harder the believability
is to achieve. However, speech is a very particular form of interaction and we
do not want to handle that one for now. Finally, in this thesis, we focus on
open environments where the programmer cannot predict what will happen.

4 PhD thesis — Fabien Tencé

1.1. FROM VIRTUAL REALITY TO BELIEVABLE AGENTS IN VIDEO
GAMES

Such games are often called sandbox games. Therefore we need a sandbox
video game based on characters with lots of interactions except speech.

The video game industry being very prolific, we first need to categorize
video games before choosing one for our application. Laird and Lent (2001)
and Mac Namee (2004) had already defined different groups:

• Action: players and agents take the role of fighters, running around and
trying to kill one another.

• Role playing: players take the role of heroes in fantastic or futuristic
environments. They must use diplomacy and strength to make their
way to victory.

• Adventure: players follow a plot and solve puzzles and riddles.

• Strategy: players command armed units to fight battles, build bases and
manage resources.

• God games: players have god-like control over the environment to build
cities, shape the landscape and rule over populations.

• Team sports: players and agents play coach and players in a team sport
like football, basketball, hockey,

• Individual sports: players and agents play individual sports such as golf,
skate, racing,

Character-centric Interactions Speech Sandbox

Action X X ✗ X

Role playing X X X X

Adventure X ✗ X X

Strategy ✗ ✗ ✗ ✗

God games ✗ ✗ ✗ X

Team sports ✗ X ✗ ✗

Individual sports X X ✗ ✗

Table 1.1: Characteristics of the main types of video games for the develop-
ment of believable characters.

Final version 5

CHAPTER 1. INTRODUCTION

Table 1.1 gives, for each type of video game, if they answer or not to the four
criteria we defined. It shows that actions games seem to be the best choice
to develop believable characters. The classic example of such action games is
first person shooter games. In those games, each player or agent controls a
unique avatar and sees through its eyes. The character can, non-thoroughly,
grab items (weapons, . . .), move (walk, jump, . . .) and shoot with a weapon.
Each player and agent has an amount of hit points, also known as life points:
each time an avatar is hit by an enemy fire, a certain amount of hit points
are subtracted to the current value. When hit points reach zero, the avatar
“dies” but can usually reappear at another place in the game’s environment.
Although the concept can seem very basic, it can prove challenging to design
believable characters. In order to make things simpler at the beginning, it is
possible to avoid cooperative rules as tactics used add a lot a complexity to
the learning.

1.2 Assessing the Believability of Characters in
Video Games

Now that we chose to work on the believability of characters in video games,
we have to explore the exact definition of believability.

1.2.1 Believable Characters: Two Definitions

As the notion of believability is subjective, it is very complex to define what
a believable character is. In order to understand this concept, we must look
at its meaning in the arts where it is a factor of suspension of disbelief (Bates,
1992). Suspension of disbelief is when even though a reader or a spectator
knows that the story and the characters are not real, he/she may “forget” it
and have feelings and reactions as if the story were true.

According to Thomas and Johnston (1981), two core animators of Disney,
believable characters’ goal is to provide the “illusion of life” (see figure 1.3).
Riedl and Young (2005, page 2) defines with more details of how achieving
this peculiar goal: “Character believability refers to the numerous elements
that allow a character to achieve the ‘illusion of life’, including but not lim-
ited to personality, emotion, intentionality, and physiology and physiological
movement”. Loyall (1997, page 1) tries to be more objective stating that
such a character “provides a convincing portrayal of the personality they [the
spectators] expect or come to expect”. As we pointed out, this definition is
quite close to one factor of the presence, the match between users’ models and
sensory data.

6 PhD thesis — Fabien Tencé

1.2. ASSESSING THE BELIEVABILITY OF CHARACTERS IN VIDEO
GAMES

Figure 1.3: Disney made the character of Bambi very believable despite being
a fictive and non-realist deer in a cartoon. It gives the impression of being
alive and thus is able to provoke feelings.

Applying the believability definition for video games is even more difficult.
Unlike classic arts, players can be embodied in those environment by the mean
of avatars and can interact with the characters. It is also possible that several
players are embodied in the same environment, each one knowing that they
might encounter intelligent and sentient entities. The believability question
is now: does a believable character have to give the illusion of life or have to
give the illusion that it is a player? (Livingstone, 2006; Tencé et al., 2010).
There can be very important differences as players may not act as in the real
world. Indeed, even if the virtual environment depicts the real world, players
know that their acts have no real consequence.

In this thesis, we will consider only believable as giving the illusion of being a
player (see figure 1.4). At first glance, it can be seen as going against presence
as we remind the players that there is a real world. However, not using this
approach has some drawbacks too: if the player becomes aware that there
is no other intelligent and sentient being in the simulation, characters giving
the illusion of life can be classified as “being a piece of program” which may
break the illusion permanently. Users may also see problems in the characters’
behaviour only because they know they are not human-controlled.

Now that we have defined believability, we have to find how to improve it
and measure the improvement.

Final version 7

CHAPTER 1. INTRODUCTION

Virtual environment

Agent

Avatar

Player

Avatar

Player

Avatar

Figure 1.4: A representation of the notion of believability chosen in this thesis.
The arrow represents the player observing the avatar of the agent in the virtual
environment.

1.2.2 Believability Requirements for Agents in Video Games

As believability is a broad concept, we need to find more precise criteria to
break this concept down. According to an exploratory research (see protocol
and questionnaire in appendix), we listed criteria which were reported to have
an impact on believability. The requirements for believability are listed in
table 1.2.

Believability requirement Summary of the requirement

[B1: Reaction] React to the players and changes in the envi-
ronment

[B2: Reaction time] Simulate a human-like reaction time
[B3: Variability] Have some variability in the actions
[B4: Unpredictability] Surprise the players with unpredictable be-

haviour
[B5: Understandable] Have a understandable behaviour
[B6: Perception] Have human-like perception
[B7: Planning] Plan actions in the future to avoid mistakes
[B8: Memory] Memorize information
[B9: Evolution] Evolve to avoid repeating mistakes
[B10: Fast Evolution] Evolve fast enough for the players to see it

Table 1.2: List of the requirements for a character to be believable.

8 PhD thesis — Fabien Tencé

1.2. ASSESSING THE BELIEVABILITY OF CHARACTERS IN VIDEO
GAMES

As we only did an exploratory research, one cannot draw conclusions about
the relevance of these factors. However several work confirmed our findings.

[B1: Reaction] The most basic requirement for a believable character is to
react to changes in the environment and especially to a player (Livingstone,
2006; Wetzel, 2004). Players should feel that the character is reacting to
them, reinforcing the overall feeling of presence. Any character not fulfilling
this requirement will break the illusion of believability very rapidly.

[B2: Reaction time] The speed at which the character reacts to changes
is also quite important (Laird and Duchi, 2000; Livingstone, 2006). Instant or
slow reactions may give the players clues about the real nature of the character.
According to experiments, a reaction time of around 100 ms, which is a very
low estimate of the human reaction time, give the best results in term of
believability (Laird and Duchi, 2000).

[B3: Variability] The way the action is done have an impact on believabil-
ity. Very accurate movements are known to break the illusion of believability
(Laird and Duchi, 2000; Livingstone, 2006) and (Loyall, 1997, page 18). Move-
ments should be the closest possible to what a player would do because it is
the first thing one sees when observing an avatar. For example, inaccuracy
should be added to the movement to create a feeling of humanness.

[B4: Unpredictability] What is true with actions is also true with the
whole behaviour. Agents doing over and over the exact same thing are rapidly
categorized as being artificial. Adding some unpredictability can improve a
lot believability (Bryant and Miikkulainen, 2006; Isla, 2005). The difficulty is
that too much unpredictability can give the feeling of randomness which can
harm believability too (Isla, 2005).

[B5: Understandable] Unlike realistic characters, believable characters
might be forced to overdo for observers to understand what they are doing
(Pinchbeck, 2008; Isla, 2005). Although it can seem strange, it is sometimes
mandatory to exaggerate some of the character’s characteristics so that people
believe in it. This technique is very often used in arts, especially in cartoons.
This means that human-like characters could have a quite low believability.
There are however links between realism and believability so it should be a
good start to draw inspiration from realism. It is also important to note that
believability should be easier to achieve than realism because we do not want
the character to exhibit a truly human-like behaviour but only not to break
the illusion to be human-like.

Final version 9

CHAPTER 1. INTRODUCTION

[B6: Perception] It is quite usual in video games to grant characters with
“super-natural” perceptions to make them look like more clever than they
are (Cass, 2002; Mac Namee, 2004, page 34). This technique may work quite
well if used carefully, but when discovered by players it breaks definitively the
illusion of believability (Laird and Lent, 2001). In order to avoid this kind of
problem, it is better to give to the characters perception information which is
the closest possible of the one players have.

[B7: Planning] In order to avoid making counter-productive actions which
could break the illusion of believability, the character may need to have the
ability to plan or anticipate. The character could thus choose actions not
leading to easily avoidable mistakes (Livingstone, 2006) by predicting the out-
comes of its choice. However, planning in vast and rich virtual environments is
a hard problem to solve because of the combinatorial explosion of possibilities.

[B8: Memory] Surprisingly, memory has not been cited by researchers on
believability as an important criterion. However, nowadays most of the models
used for characters have some kind of mechanism to memorize information.
It can be linked to what Loyall (1997, page 22) calls the consistency of the
expression. The expression and behaviour of a character must be consistent
at one moment but over the time too. For this coherence to last, the character
must have some kind of memory not to forget past events and to act according
to them.

[B9: Evolution] Memory and evolution can be seen as two faces of the
same coin, so the character must have mechanisms to evolve for instance by
learning (Loyall, 1997, page 20). A character keeping the same behaviour
even if it is clearly counter-productive breaks the illusion of being human-
controlled. Agents able to learn will tend to surprise the players by exhibiting
new behaviour, adding a bit of unpredictability during the interaction. That
is the main reasons why believable characters must be able to learn (Thurau
et al., 2005; Gorman and Humphrys, 2007).

[B10: Fast Evolution] Evolving itself it not sufficient, the players must see
that the character evolves. Indeed, if players do not see the character evolving,
they will assume that it does not. The evolution, or the learning, must be
quick enough to be observable. “Quick enough” is not easily quantifiable and
may vary: avoiding big mistakes should be learned within minutes after doing
the mistake whereas subtle strategy may takes hours or days to be learned.

All those criteria are to be tempered by what have been named Eliza effect
(Weizenbaum, 1966) (see figure 1.5 for en example). This principle is central
for believable characters: as long as the character is not actively destroying

10 PhD thesis — Fabien Tencé

1.3. OBJECTIVE OF OUR WORK

the illusion, people tend to see complex thinking mechanisms where there are
not. All the listed criteria are thus indications of how to make a character
behave, but illusion is enough.

User: Men are all alike.
ELIZA: In what way?

User: They’re always bugging us about something or other.
ELIZA: Can you think of a specific example?

User: Well, my boyfriend made me come here.
ELIZA: Your boyfriend made you come here

User: He says I’m depressed much of the time.
ELIZA: I am sorry to hear you are depressed

User: It’s true. I am unhappy
ELIZA: Do you think coming here will help you not to be unhappy

User: I need some help, that much seems certain.
ELIZA: What would it mean to you if you got some help

User: Perhaps I could learn to get along with my mother.
. . .

Figure 1.5: Example of a discussion with the chatbot ELIZA. It illustrates that
ELIZA, while not being truly active in the conversation, does not break the
illusion of believability. This excerpt of discussion is taken from (Weizenbaum,
1966).

1.3 Objective of our Work

The global objective of this study is to find a way of designing a computer
program which can answer to the ten requirements of believability. The goal
is both to have a generic way of creating believable character and to have a
real program that is giving actual results.

Design a Behaviour Model To do so, we want to find a behaviour model
able to generate believable behaviours in a wide range of different virtual
environments. Model allows us to abstract from the application used for the
tests in this thesis. As there are many existing models for the control of
avatars in virtual environment the first objective is to evaluate them given
our ten requirements.

Design a Learning Algorithm We also pointed out that learning is a vital
component of a believable character. We have to analyse the different solutions
in the domain of machine learning and find the one that best fits the goal of
believability. The main difficulty is that models and learning algorithms are
often linked together so the objective is to find a couple.

Final version 11

CHAPTER 1. INTRODUCTION

Validate Results Finally we need to assess to what extent the model and
its implementation achieve the goal of believability. We also need to evaluate
if the model is easy to implement and to adapt to new environments.

1.4 Organization of this Manuscript

In chapter 2 we study the different behaviour models which can best answer
to the ten requirements for believability. We also study learning algorithms
which would allow the model both to evolve [B9: Evolution] and to adapt
to any new virtual environment. We find that the model proposed in Le Hy
et al. (2004) answer well to our problem. We point out weaknesses in the
behaviours produced by the model and in its designs.

In chapter3 we propose four modifications to improve the model. We
describe a semantic refinement which allow a reduction of the number of pa-
rameters and a finer control of the avatar’s actions. We also modify the way
the complexity of the model is handled by introducing an attention selection
mechanism which allows more complex behaviours at the cost of more pa-
rameters. For the character to adapt to new environments we also detail an
imitation learning algorithm able to learn the topology of the environment.
Finally, we revamp the whole learning algorithm, reapplying the whole EM
procedure for a finer learning of the behaviours.

In chapter4 we explain how the model is applied to the video game we chose
for the evaluation and evaluate the gains of our four propositions. We analyse
the change in the number of parameters implied by the semantic refinement
and the attention selection and give examples of how the modifications improve
the behaviours. We also give a detailed analysis of the convergence of the
imitation learning algorithms both for the environment and for the behaviour.
Finally, we study the results given by the learning algorithm and see if they
can make the model generate believable behaviours.

Last, in chapter5 we conclude on how our work answered to the initial
problem. Our work is however not exempt of problems because some pa-
rameters make the behaviour of the agent ill-adapted to certain situations.
Therefore, we also propose several ways to improve the results and to make
the model more flexible.

12 PhD thesis — Fabien Tencé

Contents of Chapter 2

2 Behaviour Models and Learning Algorithms for Believable
Agents 15
2.1 Behaviour Models for Believable Agents 16

2.1.1 Requirements and Possible Solutions 16
2.1.2 Connectionist Models 17
2.1.3 State Transition Systems 19
2.1.4 Production Systems . 21
2.1.5 Probabilistic Models . 24

2.2 Algorithms to Learn Behaviours 27
2.2.1 Requirements for the Learning of Believable Behaviours 27
2.2.2 Performance Measure 28
2.2.3 Learning from Experience 29

2.2.3.1 Which Data? 29
2.2.3.2 How to Treat the Data? 29

2.2.4 Imitation Learning for Behaviour Modelling 30
2.2.4.1 Learning Algorithms for Connectionist Models 31
2.2.4.2 Learning Algorithms for Probabilistic Models . 32

2.3 Le Hy’s Work . 34
2.3.1 Principle of the Model 34

2.3.1.1 Hidden Markov Models (HMMs) 34
2.3.1.2 Input-Output Hidden Markov Models

(IOHMMs) . 35
2.3.1.3 Le Hy’s Model 36

2.3.2 Imitation Learning Algorithms 41
2.3.2.1 Rule of Succession 41
2.3.2.2 Baum-Welch algorithm (BW) and Incremental

Baum-Welch algorithm (IBW) 42
2.3.2.3 Le Hy’s Learning Algorithm 43

2.4 Believability of Agents Using Le Hy’s Model 45
2.4.1 BIBot: an Implementation of Le Hy’s Model 45
2.4.2 Evaluation and Limits of the Model 50

PhD thesis — Fabien Tencé

Chapter 2

Behaviour Models and
Learning Algorithms for
Believable Agents

S
u
m
m
a
ry

o
f
2

This chapter presents our study of solutions for the modelling and the
learning of believable behaviours for agents in video games. We anal-
yse connectionist models, state transition systems, production systems
and probabilistic models. We also study the different possibilities for
the learning, finding that imitation learning should be the best choice
to achieve believability. We conclude that the work in (Le Hy et al.,
2004), a probabilistic model with an imitation algorithm, seems to be
the better solution for our problem. However, some connectionist mod-
els could also be integrated to improve the results. In order to confirm
this study, we present briefly an implementation of Le Hy’s model.
We conclude by pointing out several problems in both its design and
results: the independence hypothesis between actions, the Fusion by
Enhanced Coherence (FEC), the IP and the approximations made in
the Incremental Baum-Welch algorithm (IBW) make the agent unable
of having and learning complex behaviours. The model has also diffi-
culties in adapting to new environments.

In
tr
o
d
u
ct
io
n
o
f
2

As video games often feature vast virtual environments with lots of
possible interactions, it is almost impossible to predict all the possible
scenarios. Therefore, we need a model to control each agent. This
model have to choose the best actions to do, depending on the agent’s
perceptions. Researchers tried to find solutions to this problem for
several decades, giving birth to an important number of models.

Final version 15

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

P
la
n
o
f
2

In this chapter we will first present the four main families of be-
haviour models in section 2.1 and see how well they could answer to
the believability criteria listed in section 1.2. We then explain why
an imitation learning algorithm is essential for believability because of
requirement [B9: Evolution] and we list different work on this kind
of algorithm in section 2.2. We argue that Le Hy’s proposal (Le Hy
et al., 2004) may be the best solution for the learning and generation
of believable behaviours and we explain the theory behind this work
in section 2.3. We present our implementation of the model in section
2.4 and list some of the weaknesses in the model and in the resulting
behaviours.

2.1 Behaviour Models for Believable Agents

In
tr
o
d
u
ct
io
n
2
.1 As there are very few evaluations of the believability of behaviour

models, we will try to find the models which fulfil most of the re-
quirements for believability. We must keep in mind that as long as
the behaviours generated by the model are not evaluated, the model
cannot be considered to be a solution to our problem. However, eval-
uating each model is infeasible because it would need too much time
and resources.

P
la
n
2
.1

First we will list the requirements models for believable agents must
fulfil and categorize potential solutions in section 2.1.1. Then, we will
analyse the four categories, connectionist models in section 2.1.2, state
transition systems in section 2.1.3, production systems in section 2.1.4
and finally probabilistic models in section 2.1.5.

2.1.1 Requirements and Possible Solutions

Because of the context of this thesis, we will only look at models for em-
bodied agents in the following study. Those models can handle interactions
with virtual environments and avatars. Therefore, they all fulfil the require-
ment [B1: Reaction]. According to the criteria we listed in section 1.2, we list
requirements for the model itself in the table 2.1.

In these criterion, we do not take into account [B6: Perception] because
we consider it is not the role of the behaviour model to model human-like
perception. This criterion will be useful when we will have to choose which
data will be given to the model in the implementation.

16 PhD thesis — Fabien Tencé

2.1. BEHAVIOUR MODELS FOR BELIEVABLE AGENTS

As we already stated, there are a lot of available models for the control of
behaviour. Instead of examining each model, we will rather study models by
category. We choose to categorize behaviour models into 4 types:

• Connectionist models

• State transition systems

• Production systems

• Probabilistic models

Model requirements Summary of the requirement

[M1: Variability] Model variations in the actions and behaviours
[B3: Variability] and [B4: Unpredictability]

[M2: Learning] Is compatible with learning algorithms [B9: Evo-
lution]

[M3: White box] Can be modified and parametrized manually
(Isla, 2005) to make the agent overdo [B5: Un-
derstandable]

[M4: Exaggeration] Generate exaggerated behaviours so that players
can easily understand the agent’s objectives [B5:
Understandable]

[M5: Planning] Elaborate plans to avoid doing easily avoidable
mistakes [B7: Planning]

[M6: Reaction time] Simulate reaction time [B2: Reaction time]
[M7: Memory] Model memory [B8: Memory]

Table 2.1: Requirements for the models to make agents express believable
behaviours.

2.1.2 Connectionist Models

Connectionist models are composed of small computing units linked to-
gether to form a network. As written in (Feldman and Ballard, 1982):

“The fundamental premise of connectionism is that individual neu-
rons do not transmit large amounts of symbolic information. In-
stead they compute by being appropriately connected to large
numbers of similar units.”

This approach gained popularity in the mid-1980s and is still very used to
model behaviours.

Final version 17

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

Usually, input units are linked to sensory data and output units to motor
commands. Those two layers are rarely connected directly together, instead
some hidden layers are inserted in between (see figure 2.1 for examples). The
input layer is then connected to a hidden layer and the hidden layer to other
hidden layers or to the output layer. The network connecting all those layers
may have various forms: feedforward, recurrent, etc.

(a) (b)

Figure 2.1: Two simplified examples of (a) a feedforward neural network and
(b) a recurrent neural network. These are the most widely used connectionist
models. Images taken from Wikimedia Commons.

Connectionist models are used in some video games to model simple be-
haviours which may be learned during the play. For example the player may
teach animals (see the games Black and White and Creatures) or the game
makes the player’s opponents learn driving by imitation (see the games Colin
McRae Rally 2 and Dirt Track Racing) (Charles and McGlinchey, 2004; John-
son and Wiles, 2001). When it comes to complex behaviours, they are only
used as modules, for the modelling of specific parts of the behaviour. For
instance, Gorman and Humphrys (2007) use neural networks to model aiming
and firing in a 3D shooting game. The model is able to reproduce short-term
anticipatory behaviours and subtle human characteristics.

The main advantage of connectionist models is the great ability to learn
[M2: Learning]. Many techniques can be used to change the parameters of
each computing units (Hinton, 1989) so that to optimize the results. They can
be used for short-term anticipation but they do not have any inner mechanism
to simulate planning [M5: Planning]. It is however possible to model reaction
time with connectionist models [M6: Reaction time].

18 PhD thesis — Fabien Tencé

2.1. BEHAVIOUR MODELS FOR BELIEVABLE AGENTS

However, the main drawback is that parameters can only be learned be-
cause connectionist models are black boxes [M3: White box]. As there is no
semantic associated to computing units and links, it is almost impossible to
modify them. Memory can be also hard to model, recurrent neural networks,
which try to resolve this problem can give chaotic behaviours [M7: Memory].
Finally, connectionist models do not produce inherently unpredictable [M1:
Variability] or exaggerated behaviours [M4: Exaggeration].

Considering all those characteristics, a behaviour model composed of only
connectionist models would have difficulties to make the illusion of believabil-
ity last for long. However, those models can be used to handle part of the
whole model like the realisation of actions for example. Their use should be
based on the application in which the agent is used.

2.1.3 State Transition Systems

State transition systems are composed of states and transitions. Each state
may be activated or not. Each transition associate one state, p, to another,
q, in a directed relation p

α
→ q with a label α. Transition are triggered if p

is activated and under the circumstance α which can be based on inputs or
outputs.

In order to generate behaviour, state transition systems use sensory data
for the condition of transitions. States model either types of behaviour or
actions. It results that depending on the sensory information, actions are
done following the logic sequencing of behaviours-states.

State transition models are widely used in the video game industry in the
form of Finite State Machines (FSMs) (Cass, 2002) (see figure 2.2) to express
the whole behaviour of autonomous agents in First Person Shooter (FPS) (see
the games Quake and Doom) (Johnson and Wiles, 2001). They give quite
believable behaviours because character designers are quite skilled to bend
them to their needs. However, as FSMs rapidly become unmanageable when
complexity increases, behaviour trees are beginning to replace them because
there are more flexible and easier to maintain (Dromey, 2003) (see figure 2.3).
State transition models are less used in research, but there are still some
studies (Donikian, 2001) for the control of agents in virtual environments
which are based of it.

Final version 19

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

Figure 2.2: A part of a video game agent’s behaviour modelled with a FSM
(Le Hy, 2007, page 27). The conditions for each transition is not given because
of their complexity.

Figure 2.3: Behaviour trees are more flexible way to express behaviour than
FSMs. This behaviour tree is used to model an agent in a FPS. Taken from
http://www.garagegames.com/community/blogs/view/18589 .

20 PhD thesis — Fabien Tencé

http://www.garagegames.com/community/blogs/view/18589

2.1. BEHAVIOUR MODELS FOR BELIEVABLE AGENTS

The main advantage of state transition systems are that they are easy to
read and thus to modify [M3: White box]. It allows fine modifications to
adjust the behaviour. As each state often represents a kind of behaviour, it
is possible to recognize what the agent want to do [M4: Exaggeration]. The
transition system allows the agent to follow a logical sequential behaviour
which can give the illusion of memory but may be too limited for the illusion
to fool the players for long [M7: Memory]. Finally, complex state transition
systems can model reaction time while basic one cannot [M6: Reaction time].

The main drawback is the lack of learning algorithms developed for this
kind of models [M2: Learning]. There are algorithms capable of building
FSMs from data but they are designed for the learning of grammars (Angluin,
1982; Zeng et al., 1993) and not behaviours. Another drawback is that state
transition systems often produce very predictable behaviours which are known
to break the illusion of believability [M1: Variability]. They do not offer a
planning system neither [M5: Planning] and it does not really model memory
[M7: Memory].

Although FSMs and behaviour trees may gives the best example of believ-
ability it is only because character designers often have the time and knowledge
to adjust the behaviours for the environment and the players. The models are
often complex to maintain because of the lack of learning algorithm and the
numerous interconnections. This is specially true in the kind of environments
we aim at: vast worlds, with lots of interactions makes too many unpredictable
situations for characters designers to anticipate them all. State transition sys-
tems may be used for simple behaviours but not for believable human-like
behaviours, so this kind of models seems to be ill-adapted to our problem.

2.1.4 Production Systems

Production systems are the most used kind of behaviour model in research.
Those systems are based on a set of conditional rules often in the form of
IF . . .THEN Each rule may be fired (activated) when the IF condition
is met. When the rule is fired, the THEN statement applies. Obviously,
these rules are very simple to express in all programming languages because
the conditional rules are almost present in all of them. This is one of the
explanation of the popularity of such models.

In order to control a behaviour, the IF condition is based on sensory and
internal information and the THEN statement activates motor commands.
If several rules are fired together, some mechanisms can be used to resolve
potential conflicts, like for instance in expert systems. Rules can also be
chained, using rules as sets of preconditions or goals to elaborate plans.

Final version 21

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

Production systems regroup a wide range of models. The well known cog-
nitive models Soar (Laird et al., 1986; Newell et al., 1987) and ACT-R (An-
derson, 1993) (see figure 2.4) try to model all the human thinking mechanism.
Classifiers systems (Sanchez et al., 2006; Sigaud and Wilson, 2007) are also
used to control agents and have the advantage of being able to learn the whole
behaviour (Robert and Guillot, 2005) as in the game Ryzom. The Oz Project
was focused on making believable behaviour (Bates, 1992; Reilly, 1996; Loyall,
1997). Production systems are not only used in research: in the video game
F.E.A.R., which was acclaimed for the quality of its agents, the behaviour
model (Orkin, 2006) is partially based on the STRIPS planner (Fikes and
Nilsson, 1971). It allows agents to set up complex tactics which seem rather
human-like, see Table 2.2 for an example.

Figure 2.4: A general view of the architecture of ACT-R (Anderson, 1993).
ACT-R is a cognitive model which uses production rules to generate the be-
haviours.

22 PhD thesis — Fabien Tencé

2.1. BEHAVIOUR MODELS FOR BELIEVABLE AGENTS

State phone recipe hungry

Goal — — No

Rule 1

Condition Yes — Yes

Action Call pizza delivery

Result Yes — No

Rule 2

Condition — Yes Yes

Action Make cake

Result — Yes No

Table 2.2: A very simple example of a STRIPS planner. The world is repre-
sented by a state (is there a phone, do I have a recipe, am I hungry) and the
agent have its goals represented by a state. In order to satisfy hunger, the
agent can use two plans depending on its resources. Here, plans consist only
on one rule, but it can be a chaining of rules, requiring a sequence of actions.
Example inspired by (Orkin, 2006).

As many behaviours can be expressed as IF . . .THEN . . . rules, production
systems are well adapted to model them. This systems can model planning in
a very easy and compact way [M5: Planning]. A memory can be integrated
and updated by rules allowing consistent behaviour over time [M7: Memory].
It is possible to define noticeable behaviours by defining internal state selecting
the appropriate set of rules [M4: Exaggeration]. Some models support well
learning algorithms while other do not or have very strict constraints [M2:
Learning]. Reaction time can be modelled easily [M6: Reaction time]. Finally,
is often easy to understand and modify rules because they are expressed in a
way people understand [M3: White box].

However, rules are binary: they fire or they do not (except when coupled
with a probabilistic model like the random pick in classifiers). As a con-
sequence, the outcome is predictable [M1: Variability]. Players could find
those regularities, breaking the illusion of believability. As some production
systems are aiming at realism they may be too complex to generate “only”
believability. This is particularly true with cognitive models which have lots
of modules, making the first approach difficult [M3: White box]. Introducing
such models in the video game industry may prove to be very difficult because
programmers are more used to use FSM, which are more straightforward.

Although production models seems to answer most of our needs, few model
actually have all the characteristics. Because of their complexity, it is nearly
impossible to merge models to combine their advantages. Nevertheless, pro-
duction systems seems one of the best solution to control believable agents.

Final version 23

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

2.1.5 Probabilistic Models

Probabilistic models make use of random variables and discrete or contin-
uous probability distributions to generate output values. The distributions
form the parameters of the model, defining the relation between each random
variable (see figure 2.5). They have been very used, for a long time now, in
hand writing (Bozinovic and Srihari, 1982; Vinciarelli, 2002; Artieres et al.,
2007) and speech recognition (Levinson, 1983; Mari et al., 1996; Glass et al.,
1996). Later, their use spread to robotics for the control of movement (Sim-
mons and Koenig, 1995; Calinon and Billard, 2007) and then to the control
the whole behaviour of real or virtual agents (Le Hy et al., 2004; Gorman
et al., 2006a; Bauckhage et al., 2007).

In order to control the behaviour of agents, probabilistic models have to
answer to the question P (Actions|Sensors). It can be translated as “what
is the probability of doing actions given the current value of the sensors”.
Note that is may be seen as an extension of a rule IF Sensors THEN Actions,
because the probability can be translated as IF Sensors THEN you may do
Actions. Of course, models can have internal random variables, the question
being P (Actions|Sensors, InternalState).

Figure 2.5: A Bayesian network with the probability tables defining the rela-
tions between all the random variables. T and F stand respectively for true
and false.

24 PhD thesis — Fabien Tencé

2.1. BEHAVIOUR MODELS FOR BELIEVABLE AGENTS

Several probabilistic models aiming at controlling believable agents have
been developed in the mid-2000s. In (Gorman et al., 2006a; Bauckhage et al.,
2007), a Bayesian behaviour model previously developed in (Rao et al., 2004),
is used in a video game. The model comes with a very detailed learning
algorithm based on the human characteristics of imitation learning (Meltzoff
and Moore, 1977). The believability of this model has been studied in (Gorman
et al., 2006b), the evaluation showing that most players were fooled by the
model. Another model, (Le Hy et al., 2004), is a Bayesian model which tries to
keep the advantages of models from video games and combine them with the
flexibility and power of Bayesian models. The model is easily understandable
and parametrizable, it also offers a wide range of behaviours and comes with
several learning methods. It is interesting to note that although most video
games add some random picks to simulate variability and unpredictability,
few or no game uses “full” probabilistic models.

The first and most obvious advantage of probabilistic models is the unpre-
dictability of the behaviours [M1: Variability]. As each choice is based on
a random pick, they are, by nature, very hard to anticipate. It is possible
to define internal state to categorize behaviours in order to exaggerate them
[M4: Exaggeration]. Memory can be modelled with Markovian processes [M7:
Memory] where current state depend of the previous state. As probabilistic
models can handle symbols and numeric values, they are flexible and distri-
butions can be understood and modified by programmers [M3: White box].
They can model anticipation by defining goals (Rao et al., 2004) and by han-
dling uncertain knowledge [M5: Planning]. The ability to handle uncertain
knowledge makes this kind of model well adapted to learning algorithms [M2:
Learning]. Last, as the models are quite modular, in the form or distributions,
one can merge part of models to combine their advantages.

Their best advantage can turn out to be their worst weakness: too much
randomness in the behaviour can be harmful for believability. This problem
can be solved by carefully choosing or modifying the distributions for the picks
to be “less random”, giving more often the most likely actions. Although
probabilistic models can make the agent anticipate, it is much harder to make
them plan actions [M5: Planning]. However it is not certain that planning is
needed for believability, short-term anticipation may be sufficient.

Probabilistic models seem the best choice for believable agents according to
the result given by believability evaluation and their characteristics. Although
the models are not new, their use in behaviour modelling is not widespread.
As a consequence there are few models at our disposal to enhance or draw
inspiration from.

Final version 25

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

C
on
ne
ct
io
ni
st

St
at
e
tr
an
si
ti
on

P
ro
du
ct
io
n

P
ro
ba
bi
lis
ti
c

[M1: Variability] ✗ ✗ ✗ X

[M2: Learning] X ✗ ∼ X

[M3: White box] ✗ X X X

[M4: Exaggeration] ✗ X ∼ X

[M5: Planning] ✗ ✗ X ∼
[M6: Reaction time] X ∼ X X

[M7: Memory] ∼ ∼ X X

Table 2.3: Summary of the characteristics of models for the control of believ-
able agents. The characteristics are listed at the beginning of section 2.1 and
models are detailed is sections 2.1.2, 2.1.3, 2.1.4 and 2.1.5.

C
o
n
cl
u
si
o
n
o
f
2
.1

The summary of the characteristics of the models is shown in the
table 2.3. It shows that probabilistic models are the best architecture
to model the behaviour of believable agents. It is however possible to
mix models from different categories to combine their strengths. For
instance, connectionist models are very efficient in learning gestures or
very precise part of the behaviour and then can be integrated as a part
of a bigger model. It is also possible to use a production system and
add some random picks to add variability and unpredictability.

The final choice of a model depends on its compatibility with a learn-
ing algorithm which fulfils the requirement for believability. Indeed,
those algorithms are often designed for a type of models so the choice
of a model and learning algorithm should be done together.

26 PhD thesis — Fabien Tencé

2.2. ALGORITHMS TO LEARN BEHAVIOURS

2.2 Algorithms to Learn Behaviours
In
tr
o
d
u
ct
io
n
o
f
2
.2

According to criterion [M2: Learning], the model controlling BIBot
must be able to learn to avoid mistakes and to exhibit its learning abil-
ity. A definition of learning in computer sciences is given by Mitchell
(1997, page 2):

“A computer program is said to learn from experience E
with respect to some class of tasks T and performance mea-
sure P, if its performance at tasks in T, as measured by P,
improves with experience E.”

In this thesis, T is making an agent produce believable behaviours
for an avatar in a virtual environment.

P
la
n
o
f
2
.2 In the following, we first recall the requirements for the learning

algorithm in section 2.2.1. We then discuss the possible solutions for
the performance measure P in section 2.2.2 and the experience E in
section 2.2.3. Finally we detail algorithms fulfilling the requirements
listed in the two previous sections in section 2.2.4.

2.2.1 Requirements for the Learning of Believable
Behaviours

As for models, few measures has been done to asses the believability of
results produced by learning algorithm. Therefore we define requirements for
learning algorithms for believable agents in table 2.4.

Learning requirements Summary of the requirement

[L1: Believability] Makes the model evolve into generating be-
lievable behaviours [B9: Evolution].

[L2: Believability model] Is compatible with models fulfilling the re-
quirement listed in section 2.1.1.

[L3: Fast] Makes the model modify the generated be-
haviour for the learning to be observable by
players [B10: Fast Evolution]

Table 2.4: Requirements for the learning algorithm to make the agent behave
in a believable way.

[L1: Believability] This criteria may seem a bit vague but we must keep in
mind that the algorithm must make the model generate believable behaviours.
The definition, in section 1.2.1, indicate that the avatar controlled by the
agent must give the illusion that it is controlled by a player. This objective

Final version 27

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

seems hardly compatible with classic learning objectives, mostly aiming at
performance.

[L2: Believability model] As discussed in section 2.1, probabilistic models
have good characteristics for the generation of believable behaviours. However
production systems and connectionist models may also be suitable. We must
look at learning algorithms for these three kind of models and find the best
model/algorithm pair. Such pair should fulfil most of the requirements listed
in section 2.1.1 and in this section.

[L3: Fast] The last criterion is that the learning algorithm makes the avatar
change its behaviour fast enough for the learning to be believable. This means
the algorithm must be computationally feasible (Angluin, 1992) and that its
implementation runs fast (and not only on a super-computer).

2.2.2 Performance Measure

Now that we defined the task T and the requirements the learning algorithm
must fulfil, we have to choose the performance measure P. Learning algorithms
are defined as an optimization problem where the performance measure P is to
be maximized. Therefore, the choice of how P is computed is critical because
it influence greatly the final result. The choice of P is often very difficult
because in most cases, multiple criteria have to be merged into one measure.
We will study the possible measures in the following.

Optimality The most classic performance measures are based on how well
the agent plays the game. The best the agent is at playing the game, the
higher the score. For example for chess, if the game is won (Thrun, 1995)
the score is positive and if the game is lost the score is negative. For richer
environments, like video games, the performance may be more complex to
measure (Stanley et al., 2005), mainly because they are many possible goals.
This way of measuring the performance of the agent does not fit our goal of
believability. Indeed, players do not have optimal behaviours.

Believability As we want our agent to be believable, the simplest way would
be to use the measure the believability as a performance function. The major
problem is that this measure is impractical for learning algorithms (Tencé and
Buche, 2008). Indeed, we need either a mathematical function to use classic
optimization methods or a fast and reliable measure. The only way to measure
believability is by using players to assess their feelings toward the avatar they
see. This measure does not give a mathematical function and it is not fast
and reliable so this kind of measure cannot be used for the learning algorithm.

28 PhD thesis — Fabien Tencé

2.2. ALGORITHMS TO LEARN BEHAVIOURS

Mimicry As the definition of believability is to “give the illusion of being a
player”, it is possible to approximate it to “be like a player”. Note that the two
are different, the former being subjective and the latter objective. We call this
measure mimicry : the closer the behaviour of an agent is close to a player’s
behaviour, the higher is the mimicry value. Although it is not our actual goal,
mimicry is very close to believability and thus can be used as a performance
measure by the learning algorithm, partly fulfilling [L1: Believability].

2.2.3 Learning from Experience

Now that the performance measure is defined, we have to choose from which
data to learn and how to handle the data.

2.2.3.1 Which Data?

Learning from Self The agent can learn from itself by trial and error. The
tries can be done in the environment or in an internal simulation. However,
due to its nature, this process compute a lot of possibilities and may be slow
or even infeasible with environments with lots of possibilities. It may be inter-
esting to apply this kind of algorithm if the agent is alone in the environment.

Learning from Players A better option is for the agent to observe the
other players and learn from them. As the performance measure is to look
like a player, the problem is reduced to a supervised learning, each observation
being a correct behaviour to learn. With this kind of data, it is possible to
improve the performance of the agent in tasks T with respect to the measure
P, partly fulfilling [L1: Believability].

2.2.3.2 How to Treat the Data?

Offline Learning The way the algorithm use the data is important. If we
choose an offline learning algorithm, it will wait for all the observations to be
done to produce a model having a high performance. This behaviour is not
wanted because the number of observations is potentially infinite. Indeed, we
do not know when all the player’s behaviours are expressed and if it is even
possible to express them all. As a consequence, we cannot find when to stop
the observation for the algorithm to learn.

Online Learning A better solution is to make the algorithm modify the
model for each observation of a player. By “observation” we mean a short ex-
ample of behaviour. Too long observations would make the algorithm behave
like an offline algorithm which would ruin the principle. As a consequence, a
fast online algorithm should fulfill [L3: Fast].

Final version 29

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

2.2.4 Imitation Learning for Behaviour Modelling

Learning algorithm for believability should then be able to mimicry players
by observing them (see section 2.2.3.1) and update the model in an online fash-
ion (see section 2.2.3.2). According to these characteristics, the best solutions
are imitation learning algorithms. They are based on a learning technique few
animals can use (Blackmore, 1999; Meltzoff and Moore, 1977) (see figure 2.6).
According to Schaal (1999); Thurau et al. (2005), imitation can also lead to
believable or at least humanoid agents and robots (see figure 2.7).

Figure 2.6: Neonates imitating different facial expressions. Taken from (Melt-
zoff and Moore, 1977).

The principle of imitation learning is to record the doings and the perceived
information of a player’ avatar. We will call from now this player the teacher,
even if it may not be aware that it teaches, the recording being transparent
for the player. The record is given to the learning algorithm which updates
accordingly the parameters of the model.

We will now present imitation algorithms fulfilling [L2: Believability model],
which means that are compatible with behaviour models for believable agents.
State transition and production systems do not have learning algorithms in
this category. We will then present imitation learning algorithms for connec-
tionist models (section 2.2.4.1) and probabilistic models (section 2.2.4.2).

30 PhD thesis — Fabien Tencé

2.2. ALGORITHMS TO LEARN BEHAVIOURS

Figure 2.7: A robot imitating 10 different gestures, after having observed 6
demonstrations for each gesture. Taken from (Calinon and Billard, 2007).

2.2.4.1 Learning Algorithms for Connectionist Models

Learning how to Move in the Environment Movement in an environ-
ment is often both highly reactive and strategic. Thurau et al. (2004) propose
an imitation learning algorithm to learn the topology of a virtual environment
with a model named Growing Neural Gas (GNG). While the layout of the en-
vironment is learned by observing how players move, another algorithm learn

Final version 31

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

attraction potential for each interesting spot found by the GNG. The sum of
those potentials forms a field force, attracting the agent and allowing it to find
its path in the environment. The results showed that the agent is capable to
find is way in the environment in a “very convincing manner” (Thurau et al.,
2004).

Learning how to Act We already underlined in [B3: Variability] that the
way an avatar moves is really important for the believability. Gorman and
Humphrys (2007) describe how to make a neural network learn by imitation
the behaviour of aiming and shooting in a First Person Shooter (FPS). The
model consists of three neural networks, one for choosing a weapon, one for
aiming and one to choose to fire or not. Those neural networks are trained
with a Levenberg-Marquardt algorithm on players’ data previously gathered
and treated. The results are very encouraging as the agents are capable of
short-term anticipation. Agents even copied behaviours due to the use of a
mouse: right-handed players have more difficulties to follow targets travelling
from the right to the left with their cursor (Gorman and Humphrys, 2007).
A very similar method, giving very similar results is used in (Bauckhage and
Thurau, 2004) with a mixture of experts, each expert being a neural network.

2.2.4.2 Learning Algorithms for Probabilistic Models

Learning Goal-Oriented Behaviours Being able to display understand-
able goals [B5: Understandable] imply being able to learn them first. Gorman
et al. (2006b) modify an existing algorithm (Rao et al., 2004) for a video
game. What makes it particularly interesting is that it is based on Meltzoff’s
work on imitation in infants (Meltzoff and Moore, 1977). The model uses two
distributions, S is the state of the environment and A is the action the agent
does:

P
(
St+1

∣
∣St, At

)
(2.1)

P
(
At
∣
∣St, SG

)
(2.2)

The distribution (2.1) gives the consequence of an action on the environment
and the distribution (2.2) gives the action to do to satisfy the goal state
SG. With this second distribution it is possible for the agent to guess the
teacher’s goals to better understand and learn his/her behaviour. The model
after learning is able to fool other players into thinking the agent is human
Bauckhage et al. (2007). It seems, however, to have problem to generalize,
reproducing the learned behaviours only in the same context.

Learning Temporal Behaviours As explained in [B8: Memory], the agent
must exhibit a consistent behaviour over time. The learning algorithm must
be able to handle behaviours which last over time. Le Hy et al. (2004) propose

32 PhD thesis — Fabien Tencé

2.2. ALGORITHMS TO LEARN BEHAVIOURS

a model close to a Hidden Markov Model (HMM) (see section 2.3.1.1) and a
learning algorithm which is based on (Florez-Larrahondo, 2005). The learning
algorithm allows the model to learn the sequencing of the decisions taken by
the teacher. The believability of the results has not been clearly assessed, but
it seems to be a good way to learn convincing behaviours.

Virtual environment

Agent

Avatar

Player

Avatar

Player

Avatar

Figure 2.8: Interest of the imitation learning considering the goal of believabil-
ity. The plain arrow represents the player observing the avatar of the agent
in the virtual environment. The dashed arrow represents the agent observing
and imitating the player’s avatar in order to appear believable.

C
o
n
cl
u
si
o
n
o
f
2
.2

According to the study of possible solutions, probabilistic models and
their imitation learning algorithms seems to be able to model and learn
the whole teacher’s behaviour in order to produce believable behaviour
(see figure 2.8). Connectionist models should not be forgotten because
they can be used to learn specific part of the behaviour in a very
efficient way.

Among the probabilistic solutions, Le Hy et al. (2004)’s proposal
seems the most suited to our needs. It can learn by imitation the
teacher’s behaviour and handle the different sequences of behaviours.
The two presented connectionist models and learning algorithm (Thu-
rau et al., 2004; Gorman and Humphrys, 2007) could be merged with
Le Hy’s work to improve the results.

Final version 33

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

2.3 Le Hy’s Work

In
tr
o
d
u
ct
io
n
o
f
2
.3 The model and the learning algorithm proposed by Le Hy et al.

(2004) fulfil most of the requirements we defined in section 2.1.1 and
2.2.1. As a consequence, Le Hy’s work is a good candidate to comply
to the requirements in section 1.2, generating believable behaviours.
Therefore this study will serve as a base for further developments in
this thesis. We will point out the weaknesses of the model and the
learning algorithm and try to find solution to fix them. Before that we
will detail Le Hy’s work.

P
la
n
o
f
2
.3 In this section we present the principle of the model and its un-

derlying theory, the Input-Output Hidden Markov Model (IOHMM),
in section 2.3.1. Then, we detail the two associated imitation learn-
ing algorithms in section 2.3.2: Laplace’s rule of succession and the
Incremental Baum-Welch algorithm (IBW).

2.3.1 Principle of the Model

In order to better understand Le Hy’s model, we present the theoretical
basis behind the model. It will allow to introduce the different notations and
the underlying concepts.

2.3.1.1 Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs) (Rabiner, 1989) are well known proba-
bilistic models which are used in a wide range of domains: speech recognition
(Rabiner, 1989), prediction in biology (Krogh et al., 2001), signal processing
(Crouse et al., 1998), analysis of sequence of images (Yamato et al., 1992),
etc. They are not used for behaviour modelling because, as we will see, they
cannot handle inputs. They model dynamic systems which internal state is
unknown but this state influence the emission of observable events. A HMM
defines a set of states d1, d2, ..., d|D| and a set of observation a1, a2, ..., aNA

. At
each time step t, the random variable Dt gives the value of the state and the
variable At gives the value of the observation (see figures 2.9, 2.10, 2.11 and
2.12).

The hypothesis are:

• The choice of Dt depends only on Dt−1, according to the distributions
mt

ij = P
(
Dt = di

∣
∣Dt−1 = dj

)
. The letter m stands for Markovian.

• The choice of At depends only on Dt, according to the distributions
oti(a) = P

(
At = a

∣
∣Dt = di

)
. The letter o stands for output.

34 PhD thesis — Fabien Tencé

2.3. LE HY’S WORK

HMMs can be expressed as graphs with all the values (see figure 2.9) or
using the Dynamic Bayesian Network (DBN) notation (Murphy, 2002, page
20) (see figure 2.11).

Figure 2.9: A HMM represented in a classic way with 3 hidden states and 3
observable events.

Figure 2.10: A concrete example of a HMM with 3 hidden states representing
feelings and 3 visible observations representing the expressions. Edges that
are not drawn express a probability of 0.

2.3.1.2 Input-Output Hidden Markov Models (IOHMMs)

As Hidden Markov Models (HMMs) are only designed to generate outputs,
there are not suited for dynamic systems which also take into account external
data, like for example decision taking systems. An extension of HMMs allows
the model to use the value of inputs for the generation of outputs: the Input-
Output Hidden Markov Models (IOHMMs) (Bengio and Frasconi, 1995). An
IOHMM defines, on top of the usual definitions for a HMM, a set of inputs
s1, s2, ...sN . A new random variable St gives the value of the input at time t.

Final version 35

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

Figure 2.11: A HMM represented as a DBN (Murphy, 2002, page 20). Nei-
ther the number of hidden states and observations nor the probabilities are
specified.

Figure 2.12: A concrete example of a HMM represented as a DBN (Mur-
phy, 2002, page 20). Neither the number of values for hidden feelings and
observable expressions nor the probabilities are specified.

The hypothesis are:

• The choice of Dt depends only of Dt−1 and St, according to the distri-
bution mt

ij(s) = P
(
Dt = di

∣
∣Dt−1 = dj , S

t = s
)
.

• The choice of At depends only ofDt and St, according to the distribution
oti(a, s) = P

(
At = a

∣
∣Dt = di, S

t = s
)
. Sometimes At depends only ofDt

so we have oti(a, s) = P
(
At = a

∣
∣Dt = di

)
.

As the structure of the model becomes more and more complex, it is prefer-
able to represent the model only with a the DBN notation (Murphy, 2002,
pages 25-26) (see figure 2.13 and 2.14). The parameters of the models should
be specified elsewhere.

2.3.1.3 Le Hy’s Model

Le Hy’s Model is very similar to an IOHMM, the only different is that Le
Hy’s model have multiple inputs and outputs. The model defines the random
variables St

0, .., S
t
NS

, each one taking the values of a sensor at time t. Sensors
give information on internal and environment’s state, like for instance which
object the avatar has in its hand or the position of an other avatar. Similarly,
the random variables At

1, ..., A
t
NA

are defined, each one taking the value of an
action at time t. Actions can be to rotate by a certain amount of degrees, to

36 PhD thesis — Fabien Tencé

2.3. LE HY’S WORK

Figure 2.13: An IOHMM represented as a DBN (Murphy, 2002, pages 25-26).
The number of hidden states, inputs and outputs is not specified. The dashed
line means A and S may be independent given D depending on the system to
be modelled.

Figure 2.14: An example of an IOHMM represented as a DBN (Murphy,
2002, pages 25-26) which models the expression of a humanoid given its level
of endorphins.

jump or to change the object carried in the avatar’s hand. Both sensors and
actions random variables take discrete values.

In order to make the agent’s behaviour more complex, the notion of decision
has been introduced, the associated hidden random variable is named Dt and
may take different values like searching for an object or fleeing. It is this
random variable which will allow the model to clearly define behaviours which
will make the agent’s intention more understandable to observers.

As in IOHMMs, the value of the current decision (hidden variable), Dt, is
chosen according to the value of the sensors (inputs) and the previous decision

following the probability distribution P

(

Dt
∣
∣
∣St

0, .., S
t
NS

, Dt−1
)

. In order to

reduce the number of parameters, this distribution is first expressed as follows:

P
(
Dt
∣
∣St

0, .., S
t
NS

, Dt−1
)

(2.3)

Final version 37

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

=
P(Dt, St

0, .., S
t
NS

, Dt−1)

P(St
0, .., S

t
NS

, Dt−1)
(2.4)

∝ P
(
St
0, .., S

t
NS

∣
∣Dt

)
P
(
Dt
∣
∣Dt−1

)
(2.5)

The symbol ∝ means “proportional to”.

As there may be a lot of sensory random variables, P

(

St
0, .., S

t
NS

∣
∣Dt

)

may take too many values to be tractable. Le Hy uses the notion of In-
verse Programming (IP) (Le Hy et al., 2004) to reduce the complexity: each
St
i , i ∈ J1, NSK is assumed to be independent given Dt:

P
(
St
0, .., S

t
NS

∣
∣Dt

)
=

NS∏

i=0

P
(
St
i

∣
∣Dt

)
(2.6)

then, we have:

P
(
Dt
∣
∣St

0, .., S
t
NS

, Dt−1
)
∝ P

(
Dt
∣
∣Dt−1

)
NS∏

i=0

P
(
St
i

∣
∣Dt

)
(2.7)

In order to obtain the exact value of the distribution, we simply have to
marginalize over Dt because we have the constraint:

∑

d

P
(
Dt = d

∣
∣St

0, .., S
t
NS

, Dt−1
)
= 1 (2.8)

Once the value of Dt is chosen, the model then decides which actions should
be carried out. The value of each action is chosen following the distribution
P
(
At

i

∣
∣St

0, .., S
t
n, D

t
)
. Again, to reduce the complexity, Le Hy uses the notion

of Fusion by Enhanced Coherence (FEC) (Le Hy, 2007, page 55, in French).
The influence of each sensory information is separated following the formula
(see figure 2.15):

P
(
At

i

∣
∣St

0, .., S
t
NS

, Dt
)
∝
∏

j

P
(
At

i

∣
∣St

j , D
t
)

(2.9)

Again, a normalization over At
i gives the exact value.

To sum up, the model, which can be categorized as an IOHMM, uses a very
simple algorithm (see figure 2.16). The relation between the random variables
are summarized in figure 2.17 and an example is given in figure 2.18. The
whole model is composed of three types of parameters which are probability
distributions:

• P
(
Dt
∣
∣Dt−1

)

38 PhD thesis — Fabien Tencé

2.3. LE HY’S WORK

10 10 10

P
(
At
∣
∣St

1

)
P
(
At
∣
∣St

2

)
P
(
At
∣
∣St

3

)

10 10
10

P
(
At
∣
∣St

4

)
P
(
At
∣
∣St

5

)
P
(
At
∣
∣St

6

)

︸ ︷︷ ︸

10

1
Z

∏6
i=1 P

(
At
∣
∣St

i

)

Figure 2.15: Principle of the FEC (Le Hy, 2007, page 55, in French). Each
diagram represents the probability (blue line) for 5 rotation commands, the
avatar viewed from the top: turn left 90◦, turn left 45◦, do not turn, turn
right 45◦ and turn right 90◦. The black arrow represents the avatar’s facing
direction. Green circles are attractor and red triangles repulsors. Each com-
mand is specified for a single sensor’s value (the 6 diagrams at the top), the
resulting FEC is the bottom diagram.

• P
(
St
i

∣
∣Dt

)

• P

(

At
i

∣
∣
∣St

j , D
t
)

Final version 39

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

while agent in world do
s ← agent’s sensors
Pick d using (2.7)
for all i ∈ J1, NAK do

Pick ai using (2.9)
Make avatar do (ai)

end for
dt−1 ← d

end while

Figure 2.16: Algorithm of the Le Hy’s model. It is possible to choose the way
the value are picked: randomly following the distribution, using the maximum
value in the distribution, etc.

Figure 2.17: Summary of the influences between Le Hy’s model’s variables
(Le Hy et al., 2004). S is for sensors, A for actions and D for decisions. The
model is represented as a DBN for the sake of simplicity.

Figure 2.18: Example of a use of Le Hy’s model. The values for D can be
Flee and Eat.

40 PhD thesis — Fabien Tencé

2.3. LE HY’S WORK

2.3.2 Imitation Learning Algorithms

The three distributions P
(
Dt
∣
∣Dt−1

)
, P
(
St
i

∣
∣Dt

)
and P

(

At
i

∣
∣
∣St

j , D
t
)

can be

specified manually but Le Hy developed also two learning algorithms to learn
them. According to Le Hy, results seems to be better in term performance
with learned parameters (Le Hy, 2007, page 103, in French). By monitoring
at each time step the values for S and A for a teacher’s avatar, it is possible to
update the value of the parameters. The learning algorithms developed by Le

Hy are based on Laplace’s rule of succession for the learning of P
(

At
i

∣
∣
∣St

j , D
t
)

in section 2.3.2.1 and the IBW (Florez-Larrahondo, 2005) for the learning of
P
(
Dt
∣
∣Dt−1

)
and P

(
St
i

∣
∣Dt

)
in section 2.3.2.3.

2.3.2.1 Rule of Succession

For the learning of the distributions for the choice of actions, P
(

At
i

∣
∣
∣St

j , D
t
)

,

Le Hy uses an algorithm based on Laplace’s rule of succession. Giving a
random variable X which can take the values success or failure, this rule
tries to estimate the next most likely result after n picks with s success. The
formula is:

P (X = success) =
s+ 1

n+ 2
(2.10)

Le Hy uses a generalized version of Laplace’s rule of succession. Instead
of working with a binary random variable, it works with multiple random
variables which can have any number of possibility. The estimation of the
distribution is done with the formula:

P
(
At

i = a
∣
∣St

j = s,Dt = d
)
=

1 + n(a, s, d)

|At
i|+ n(s, d)

(2.11)

Where |At
i| is the number of values the random variable can take, n(a, s, d) is

the number of time the triple a, s and d is observed and n(s, d) the number
of time the pair s and d is observed.

It is not clear how Le Hy’s algorithm find the value of Dt, as it is a hidden
variable. The most likely solution is that he uses a decision detection heuristic
(Le Hy, 2007, pages 82-83, in French). It is also possible to retrieve the
probability of Dt from the algorithm that will described in 2.3.2.3, but that
would mean the two learning algorithms would be interlaced. This could be
problematic because each learning algorithm would use distributions which
the other algorithm is learning. The convergence and the validity of such a
learning could not be assured.

Final version 41

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

2.3.2.2 Baum-Welch algorithm (BW) and Incremental
Baum-Welch algorithm (IBW)

For the learning of the distributions used for the choice of the decisions,
P
(
Dt
∣
∣Dt−1

)
and P

(
St
i

∣
∣Dt

)
, Le Hy uses an algorithm based on the BW

(Baum et al., 1970). This algorithm is designed to learn the parameters of
a HMM. This algorithm can be categorized as an Expectation-Maximization
algorithm (EM) (more detail in section 3.4). It iterates, making the param-
eters of the HMM converge toward a local optimum. In order to do so, the
BW alternates between two steps:

• Computes estimators using the parameters

• Updates the parameters using the estimators

We recall that the distributions of a HMM are :

• The Markovian distribution: mt
ij = P

(
Dt = di

∣
∣Dt−1 = dj

)

• The output distribution: oti(a) = P
(
At = a

∣
∣Dt = di

)

The estimators are based on the forward-backward algorithm (Rabiner,
1989). Let a sequence of observations A1,T = a1, a2, ...aT of length T . The
parameters of the model at iteration n are named Φn. The forward variable
is defined as:

αt
i = P

(
A1,T , Dt = di |Φ

n
)

(2.12)

And the backward variable as:

βt
i = P

(
A1,T

∣
∣Dt = di,Φ

n
)

(2.13)

αt
i is the probability for the model to produce the observed outputs from the

beginning of the recorded sequence to t and to be in a specific hidden state at
t. βt

i is the probability for the model to produce the observed outputs from
t + 1 to the end of the recorded sequence given the model to be in a specific
hidden state at t.

It is then possible to estimate the probability that the model is in the state
di at t given the observations and the actual parameters of the model:

γti = P
(
Dt = di

∣
∣A1,T ,Φn

)
(2.14)

∝ αt
iβ

t
i (2.15)

It is also possible to compute the probability that the model makes the tran-
sition between the state dj at time t− 1 and state di at time t:

ξtij = P
(
Dt = di, D

t−1 = dj
∣
∣A1,T ,Φn

)
(2.16)

∝ αt−1
j mijoi(c

t)βt
i (2.17)

42 PhD thesis — Fabien Tencé

2.3. LE HY’S WORK

Now that the estimators are defined, it is possible to update the parameters
for the model to be more likely to produce the observed sequence:

m′
ij =

∑T
t=2 ξ

t
ij

∑T−1
t=1 γtj

(2.18)

and:

o′i(a) =

∑T
t=1 γ

t
i1a(a

t)
∑T

t=1 γ
t
i

(2.19)

Where 1x(y) is the indicator function which takes the value 1 if x ∈ y, or by
abusing the notation if x = y, and 0 if not.

The Incremental Baum-Welch algorithm (IBW) is an online version of the
BW: it updates the parameters of the model for each given observation of the
value of At, instead of waiting for a whole sequence A1..T . The IBW converges
faster and requires less computation power. Of course, it comes at a cost: the
expectation step uses simplified estimators (see equation 2.21). Indeed, at
time t, βt

i cannot be computed because the algorithm does not know what
will happen after t. The algorithm also makes some simplification during the
update in order to modify the parameters in an iterative way (see equation
2.30).

2.3.2.3 Le Hy’s Learning Algorithm

Le Hy uses a modified version of the IBW to learn the distributions related
to the decisions. Indeed, the algorithm must take into account the value
of multiple actions A1..T = {a1i , a

2
i , ..., a

T
i }, i ∈ J1, NAK and multiple sensors

S1..T = {s1i , s
2
i , ..., s

T
i }, i ∈ J1, NSK. Note that now the current time step

is considered to be T , as the algorithm do not have information about the
future. The forward variable is defined in a BW fashion:

αt
i = P

(
A1..T , Dt = di

∣
∣S1..T ,Φn

)
(2.20)

As in (Florez-Larrahondo, 2005, page 55), the following hypothesis is made:

∀ t, βt
i = 1 (2.21)

It is then possible to estimate the probability that the model is in the state
di at t given the observations and the actual parameters of the model:

γti = P
(
Dt = di

∣
∣A1..T ,S1..T ,Φn

)
(2.22)

∝ αt
i (2.23)

It is also possible to compute the probability that the model makes the tran-
sition between the state dj at time t− 1 and state di at time t:

ξtij = P
(
Dt = di, D

t−1 = dj
∣
∣A1..T ,S1..T ,Φn

)
(2.24)

∝ αt−1
j mij(s

t)oi(a
t, st) (2.25)

Final version 43

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

Like the BW it is possible to update the parameters of the model with the
estimators. We note Pn (A |B) the distribution as the nth iteration of the
learning algorithm:

Pn+1

(
Dt = di

∣
∣Dt−1 = dj

)
(2.26)

=

∑T
t′=2 ξ

t′

ij
∑T−1

t′=1 γ
t′

j

(2.27)

=

∑T−1
t′=2 ξ

t′

ij
∑T−1

t′=1 γ
t′

j

+
ξTij

∑T−1
t′=1 γ

t′

j

(2.28)

=

∑T−1
t′=2 ξ

t′

ij
∑T−2

t′=1 γ
t′

j

∑T−2
t′=1 γ

t′

j
∑T−1

t′=1 γ
t′

j

+
ξTij

∑T−1
t′=1 γ

t′

j

(2.29)

which is assumed to be equal to (Florez-Larrahondo, 2005, page 53):

= Pn

(
Dt = d

∣
∣Dt−1 = d′

)
∑T−2

t′=1 γ
t′

j
∑T−1

t′=1 γ
t′

j

+
ξTij

∑T−1
t′=1 γ

t′

j

(2.30)

∝ Pn

(
Dt = d

∣
∣Dt−1 = d′

)
+

ξTij
∑T−2

t′=1 γ
t′

j

(2.31)

Similarly:

Pn+1

(
St
i = s

∣
∣Dt = d

)
(2.32)

∝ Pn

(
St
i = s

∣
∣Dt = d

)
+

γTj 1s(s
T
i)

∑T−2
t′=1 γ

t′

j

(2.33)

The algorithm is thus able to update the parameters of the model for each
observation {St,At}. As all the variables and estimator can be computed
iteratively, the algorithm has only a few computation to make to update the
parameters.

These advantages mainly comes from the hypothesis β(t) = 1. In our case
β(t) gives the chances of taking a certain decision at t knowing what the
demonstrator did at t + 1...T . This estimator should not be approximated
so roughly: for instance, if the teacher is looking for something specific, the
learning algorithm cannot know what it is until it is picked up. Changes
should be made on the algorithm to avoid such simplistic hypothesis.

44 PhD thesis — Fabien Tencé

2.4. BELIEVABILITY OF AGENTS USING LE HY’S MODEL

C
o
n
cl
u
si
o
n
o
f
2
.3

Le Hy’s model rely on well-known models (HMM, IOHMM) whose
theory has been studied for a long time. This makes the foundation of
the model trustworthy. The architecture of the model is quite simple,
making it easy to understand, parametrize and modify [M3: White
box]. This simplicity may however also a weakness if the generated
behaviours are not complex enough to meet all the believability re-
quirements.

The learning is also based on widely-used algorithms (Laplace’s rule
of convergence, BW) whose mathematical properties have been studied
and demonstrated. The algorithms are fast and are able to learn all the
parameters of the model. However, the two algorithms could gain in
efficiency if merged together. Moreover, in order to learn more complex
behaviours, some hypothesis introduced in the IBW should be dropped.

2.4 Believability of Agents Using Le Hy’s Model

In
tr
o
d
u
ct
io
n
o
f
2
.4

Now that we described the details of both the model and the learning
algorithm, we will now try assess the believability of the behaviour
generated by the model. The only way to evaluate the model is to
implement it and to observe the behaviour it produces. Implementing
the model also allows us to evaluate the practicality and flexibility of
the model.

P
la
n
o
f
2
.4 In this section we describe the detail of our implementation of the

model in section 2.4.1, underlining the flexibility the model allows. We
then point out the weakness of the model in term of behaviour and in
the implication on the implementation in section 2.4.2.

In order to implement Le Hy’s model, we used the game Unreal Tournament
2004 (UT2004), a newer version of the game Le Hy used for his model (see
figure 2.19). We choose this game because it fits our needs (see section 1.1.2)
and because a set of tools, Pogamut (Burkert et al., 2007), have been developed
for researchers to use the game as a testbed for agents.

2.4.1 BIBot: an Implementation of Le Hy’s Model

The model was built using the Pogamut framework. This framework was
developed in order to interact easily with the Gamebots interface that controls
remote agents in UT2004. The communication between the model and the
environment is realized by messages over the network (see figure 2.20).

Final version 45

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

Figure 2.19: The view a of player inside the game Unreal Tournament 2004.

Figure 2.20: The communication between the model and the video game is
done via Gamebots and Pogamut.

The architecture is quite simple, we designed BIBot which lays on the defi-
nition of an agent provided by Pogamut (see figure 2.21). That gives us access
to the key components of an UT2004 avatar which are the body and the mem-
ory. On one side, the body deals with all the actions and on the other side
the memory store all the perceptions the avatar can get during its evolution
in the virtual environment.

In our model, called BIBot for Bayesian Inference based Bot, we decided to
categorize these aspects in Decisions and Sensors as suggested in (Le Hy
et al., 2004). As the actions are already implemented in Pogamut, we did not
have to create the associated classes, that is the reason they do not appear in
the architecture.

46 PhD thesis — Fabien Tencé

2.4. BELIEVABILITY OF AGENTS USING LE HY’S MODEL

Figure 2.21: BIBot inherits from Pogamut agent.

We insisted on making it modular so the model can be extended by the
addition of new decisions or sensors (see figure 2.22 and figure 2.23).

Figure 2.22: New decisions can easily be integrated by extending the Decision
class.

BIBot Sensor

HealthNoise

NearbyEnemiesEnemyWeapon

Damage WeaponPower

NearbyHealthPickUp NearbyWeaponPickUp

New Sensor

1..* 1..*

Figure 2.23: New sensors can easily be integrated by extending the Sensor
class.

Final version 47

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

The probability distribution are implemented as arrays which are in the
BIBot class. When adding a decision, a sensor or an action, the correspond-
ing probability arrays must be added leaving the other parameters mostly
untouched. The model and its implementation are then easily modifiable,
allowing people with few programming knowledge to modify the behaviour.

In order to control the decision sequencing we made a small user interface
(see figure 2.24), that gives feedback on previous decision, current running
decision and the different sensors values we want to show such as the health
level, the noise sensor or if our bot is being hit. We also used an external view
of the agent from the game (figure 2.25) to be able to observe the behaviour
of BIBot.

Figure 2.24: Overview of the monitoring interface. At the left we have the
current value of decisions and some sensors. At the right we have a summary
of the decisions taken over time.

For this implementation, we used the probabilities tables values as specified
in (Le Hy, 2007, pages 97–102, in French) (aggressive manual specification).
When BIBot is evolving alone in the environment hence does not feel in dan-
ger, the decisions are switching between Weapon Search and Explore as we
can see on figure 2.26. That balance can be disturbed by adding in the en-
vironment another player (human or not) which will be considered by BIBot
as a threat. Therefore its behaviour changes according to the modification of
the surrounding environment (see figure 2.27).

48 PhD thesis — Fabien Tencé

2.4. BELIEVABILITY OF AGENTS USING LE HY’S MODEL

Figure 2.25: View from the game UT2004 with an external view of the agent
and debugging information from Pogamut. This kind of view allow the obser-
vation of the agent without perturbing its environment.

Figure 2.26: Decision sequencing before perturbation. The perturbation is
the view of a opponent’s avatar. The agent is switching between different
decisions.

Final version 49

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

Figure 2.27: Decision sequencing after perturbation. The perturbation is the
view of a opponent’s avatar at time step 85.

2.4.2 Evaluation and Limits of the Model

BIBot allowed us to spot the strengths and weaknesses of both the archi-
tecture and the resulting behaviours of Le Hy’s model. As the architecture of
the model reminds of a FSM, it is easy to understand and to adjust the pa-
rameters. The model is modular, allowing the programmer to add or remove
sensors, decisions and actions without modifying the code too much.

However, the behaviours produced by the model in the game can easily
be spotted as artificial by casual and regular players. That is the first of
the two main reasons we preferred not to run a complete experiment of the
believability of the model. The second reason is that such experiment is very
complex and time-consuming (Tencé et al., 2010). However, in the future, we
will assess the believability of both Le Hy’s model and our model to confirm
our first impressions.

[P1: Navigation] The paths the agent uses to go from one point of the
environment to another do not look like the ones a player would take. This
problem does not comes from the model itself but from the representation it
uses for the environment. Indeed, the agent uses navigation points placed by
the designers of the environment which may not represent well how players
prefer to use the environment.

[P2: Sensors] Even if it is easy to add sensors to the model, increasing the
number of perceptions makes the model more and more complex. We found
that sensors were useful for the choice of the decisions but not for the choice

50 PhD thesis — Fabien Tencé

2.4. BELIEVABILITY OF AGENTS USING LE HY’S MODEL

Problems Summary of the problem

[P1: Navigation] The agent has problem navigating in environ-
ments.

[P2: Sensors] The sensors are not well organized.
[P3: Expressiveness] The FEC does not provide enough expressiveness

for the agent to be believable.
[P4: Scaling] The IP have problem handling many sensors.
[P5: Readability] The IP is not easy to read for novices.
[P6: Learning] The learning algorithm use strong hypothesis

which may hinder its capabilities.

Table 2.5: List of the noticed limitations with Le Hy’s model.

of actions and vice-versa. This is confirmed by the fact Le Hy uses in his
implementation different values for the random variables Si depending if they
are used for the choice of decision (Le Hy, 2007, pages 60–70, in French) or
actions (Le Hy, 2007, pages 36–54, in French). This should be clearly defined
in the model.

[P3: Expressiveness] The FEC does not provides enough expressiveness:
each sensory data is considered to have the same importance. For example, if
there are two attractors, one straight ahead and the other behind, the agent
may constantly switch between the two (see figure 2.28). A real player will
choose to focus on the attractor ahead, supposing the attractors are of the
same strength.

[P4: Scaling] For the IP to be valid, all the sensors St
i must be conditionally

independent given the decision Dt. This hypothesis is very strong but can
work for few sensors. However, the more the sensors, the higher the chances
the hypothesis is wrong, which can make the model produce unbelievable
behaviours.

[P5: Readability] The IP technique makes the parameters not very un-
derstandable [M3: White box]. It is not natural to ask “what should I see if I
am taking this decision?”, which correspond to the parameter P

(
St
i

∣
∣Dt

)
. A

much more natural way it to express P
(
Dt
∣
∣St

i

)
which corresponds to “what

should I decide to do if I see that?”.

[P6: Learning] In order to make the behaviour more complex and believ-
able, one must add sensors, actions and decisions. However, the number of
parameters rapidly becomes intractable for a programmer to specify them
manually. The learning algorithms Le Hy developed are very simple and the
parameters could be learned much more precisely given the observations of a

Final version 51

CHAPTER 2. BEHAVIOUR MODELS AND LEARNING ALGORITHMS
FOR BELIEVABLE AGENTS

teacher’s avatar [B9: Evolution]. A lot of hypothesis are used to simplify the
computation which may be harmful for the learning. Also, all the distribu-
tions may be learned with one algorithm instead of splitting the learning in
two different algorithms: the interfacing between the algorithms would not be
needed any more and the convergence could be proven more easily.

10

10

P
(
At
∣
∣St

1

)
P
(
At
∣
∣St

2

)

︸ ︷︷ ︸

10

1
Z

∏2
i=1 P

(
At
∣
∣St

i

)

Figure 2.28: An illustration of the problem with FEC: on the top, each dis-
tribution (blue line) gives a believable direction to go for a single attractor
(green dot). On the bottom the FEC does not give a believable action be-
cause the agent may constantly switch between the two attractors, oscillating
constantly.

52 PhD thesis — Fabien Tencé

2.4. BELIEVABILITY OF AGENTS USING LE HY’S MODEL

C
o
n
cl
u
si
o
n
o
f
2
.4

Le Hy’s approach allows an easy implementation and a great flex-
ibility. Sensors and actions can be added without rethinking all the
architecture, by adding only a class and few parameters. The model is
generic and can be adapted to different virtual environments.

The behaviours generated by the model are however too simple to
sustain the illusion of believability very long. This is due to the inner
mechanisms of the model, the FEC and the IP. The parameters of
the model could also be easier to read for non-programmers to be able
to modify the behaviour. The model could be refined to express more
complex behaviour without adding too much parameters. Finally, the
learning could be done by one algorithm making the learning more
efficient.

C
o
n
cl
u
si
o
n
o
f
2

In this chapter we saw that probabilistic models are a very good
solution for the learning and the generation of believable behaviour.
Connectionist model can also help in developing part of the model due
to their very good ability to learn.

Le Hy’s model, based on IOHMMs and the associated learning al-
gorithms, based Laplace’s rule of succession and on the IBW, are a
very good basis for establishing a model for believable agents in virtual
environments. With BIBot, the implementation of Le Hy’s model, we
were able to confirm some of the strengths of the model and to discover
some weaknesses.

Le Hy’s model is very flexible and easy to understand. The learning
algorithms are well adapted to the model and the goal of believability.
However, the way the model handle perceptions and actions may break
the illusion of believability. There are also some limitations with the
structure of the model, making the addition of sensors difficult and the
expression of simple behaviour impossible. Finally, the learning algo-
rithms could be improved to increase the complexity of the behaviours
they can handle.

Final version 53

Contents of Chapter 3

3 Chameleon: Behaviour Model and Learning Algorithm for
Believable Agents 55
3.1 Semantic Refinement . 56

3.1.1 Categorization of Stimuli 56
3.1.1.1 High-Level Stimuli 57
3.1.1.2 Low-Level Stimuli 57
3.1.1.3 Generalization over Stimuli 58
3.1.1.4 Human-like Stimuli? 59

3.1.2 Categorization of Actions 59
3.1.2.1 Reflexive Actions 60
3.1.2.2 External Actions 60

3.1.3 An Example . 61
3.2 Attention Selection Mechanism 63

3.2.1 High-Level Attention . 64
3.2.2 Low-Level Attention . 65
3.2.3 Summary of the Inner Workings of the Model 66

3.3 Learning the Environment . 68
3.3.1 Principle of the Growing Neural Gas (GNG) 68
3.3.2 Modification of the Growing Neural Gas (GNG) 72
3.3.3 Integration in the Model and Learning Algorithm 72

3.4 Learning the Model Parameters via an EM Algorithm 74
3.4.1 Expectation-Maximization algorithm (EM) 74
3.4.2 Expectation Procedure 78
3.4.3 Maximization Procedure 84

3.4.3.1 Maximizing the Quantity (3.31) 84
3.4.3.2 Maximizing the Quantity (3.32) 85
3.4.3.3 Maximizing the Quantity (3.33) and (3.34) . . 86
3.4.3.4 Maximizing the Quantity (3.35) 86
3.4.3.5 Maximizing the Quantity (3.36) 87

3.4.4 Putting Expectation and Maximization together 87
3.4.4.1 Finding a Sequence of Observations 87
3.4.4.2 Parameters Initialization and Stopping Criterion 88
3.4.4.3 Merging the Results of Expectation-

Maximization algorithms (EMs) 88

PhD thesis — Fabien Tencé

Chapter 3

Chameleon: Behaviour Model
and Learning Algorithm for
Believable Agents

S
u
m
m
a
ry

o
f
3

This chapter describes four enhancements of Le Hy’s work to achieve
more believable behaviours. We split the sensors into two types rep-
resenting two granularities of information: high-level stimuli and low-
level stimuli to clarify [P2: Sensors]. We also defined two kinds of
actions each one associated to a kind of stimuli. Then we propose an
attention selection mechanism where the agent selects one high-level
stimulus and one low-level which answers to the problems [P4: Scaling]
and [P5: Readability]. This mechanism makes the model more flexi-
ble and allows the model to express more complex behaviours, solving
[P3: Expressiveness]. We present a modification of the Growing Neural
Gas (GNG) to learn by imitation information about the layout of the
environment giving an answer to [P1: Navigation]. Finally, we propose
a revamped imitation learning algorithm to learn almost all the model
parameters resolving the problem [P6: Learning].

Final version 55

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

In
tr
o
d
u
ct
io
n
o
f
3

In the previous chapter, we described Le Hy’s architecture which
consists in the sequencing of decisions using Bayesian programming.
This architecture is simple to settle and seems promising according to
the preliminary results given by BIBot. The concept of decision makes
the behaviour easy to adjust by modifying the distributions. These are
the reasons we decided to follows Le Hy’s general idea. First, a decision
is chosen knowing the previous one and some information about the
environment. Then actions are done depending on the current decision
and the environment. However some limitations were raised in the pre-
vious chapter (see section 2.4.2) so we propose a series of modifications
to make the behaviour more believable.

P
la
n
o
f
3

In order to clarify the model and increase its expressiveness, we pro-
pose a semantic refinement of the sensors and actions in section 3.1.
In order to compensate for the lack of expressiveness of the FEC and
to make the parameters for the IP easier to read, we suggest to replace
those two mechanisms by an attention mechanism in section 3.2. For
the agent to be able to adapt itself to new environments, we propose a
learning algorithm in section 3.3 to imitate the way users move in the
virtual environment. Finally, to learn most of the model parameters,
we propose an EM imitation learning algorithm in section 3.4.

3.1 Semantic Refinement

In
tr
o
d
u
ct
io
n
o
f
3
.1 The problem [P2: Sensors] is related to the independence between

the stimuli and the other random variables in the model. We found
that when implementing the model, decision and actions were obviously
independent from some stimuli. Therefore, it is possible to alleviate
the work of the learning algorithm by specifying from the beginning the
independences. the goal is thus to make the learning faster to achieve
[L3: Fast].

P
la
n
o
f
3
.1

We will first split the stimuli into two kinds of random variables in
section 3.1.1. One type represents general information and the other
type represents accurate information. In section 3.1.2 we will define
two kind of random variables for each type of actions, one depend-
ing from accurate information the other from the general state of the
environment.

3.1.1 Categorization of Stimuli

In is implementation, Le Hy used different kinds of information for the
choice of the decision and the actions [P2: Sensors]. In order to pick the

56 PhD thesis — Fabien Tencé

3.1. SEMANTIC REFINEMENT

decision D, the implementation uses stimuli giving the value of the agent’s
remaining life points, the weapon it is holding, etc. (Le Hy et al., 2004). So as
to pick the action Ai, the implementation uses stimuli which represent angles
to objects (Le Hy, 2007, pages 36–54, in French).

This implementation of the model is logical: the kind of information needed
to take a decision and to perform an action is different. Indeed, you only need
to know that there is food nearby to decide you want to eat but you need
its exact location to grab it. This distinction must be clearly stated in the
model with the definition of high and low-level stimuli to be able to point out
the consequences of this choice. It will also make easier for the developers to
define which stimuli should influence the choice of Dt or At.

3.1.1.1 High-Level Stimuli

High-level stimuli represent the global state of the agent and its environ-
ment. The random variable Ht

i represents the value of the i
th high-level stim-

ulus available in the environment at time t. They will be used to pick the
decision Dt and actions only needing this kind of information. We use the
following notations:

• NH the number of high-level stimuli

• Hi the set of values the ith high-level stimulus can take

• Ht the conjunction of all the high-level stimuli at time t which can be
written Ht = (Ht

1, . . . , H
t
NH

)

• H the set of possible values for Ht: H = H1 × . . .×HNH

High-level stimuli can be used to represent internal information about the
agent: hunger, level of hormones, pain, etc. They can also represent global
information about the surroundings: temperature, presence of food, lighting,
etc.

3.1.1.2 Low-Level Stimuli

Low-level stimuli are accurate information about the agent’s surroundings.
The random variable Lt

i represents the ith low-level stimulus available in the
environment at t. They will be used to pick actions which need accurate data
to be performed. We use the following notations:

• NL the number of low-level stimuli

• Li the set of values the ith high-level stimulus can take

Final version 57

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

• Lt the conjunction of all the low-level stimuli at time t which can be
written Lt = (Lt

1, . . . , L
t
NL

)

• L the set of possible values for Lt: L = L1 × . . .× LNL

Because we consider that our agent is not omniscient, at time t, it knows
only about the low-level stimuli with index in Kt ⊂ [1, NL], the other ones
may not be visible or known.

Low-level stimuli can be used to represent the exact location of surroundings
objects, their speed and direction. The summary of the relation between
decisions and stimuli can be found in figure 3.1.

Figure 3.1: Partial representation of the model depicting only the relation
between the decision Dt and the stimuli Ht and Lt.

In order to make the notations simpler, we note the stimuli the agent con-
siders at time t: St = (Lt, Ht,Kt).

3.1.1.3 Generalization over Stimuli

The number of high and low-level stimuli defined this way may be partic-
ularly high. The agent must be able to find an appropriate behaviour when
confronted to a stimulus which associated distribution may not have been
learned yet. The model must then allow the agent to generalize, making the
agent chose the best action in term of believability.

We designed a solution based on the work of Shepard (1987) which consist
in defining a distance between stimuli. If stimuli are close using this distance,
the behaviour should be approximatively the same. The agent, when facing
a stimulus which has not be seen during the learning, will find the closest
stimulus and act according to this substitute. It can improve significantly the
quality of the behaviour at the beginning of the learning and for very rare
situations.

58 PhD thesis — Fabien Tencé

3.1. SEMANTIC REFINEMENT

The actual value of the distance is unimportant, the only requirement is that
two close stimuli produce a priori similar behaviours. The way the distance
is computed is to be defined during the implementation. For instance if the
agent sees a tennis ball on the ground, it can act as if it was a football ball.
Of course, the illusion will not last long but it may fool the players the time
needed for the learning. It can also be applied to positions: if the ball is
90◦ right, it can act as it is 45circ right, the agent may be able to adjust its
behaviour the next time step.

3.1.1.4 Human-like Stimuli?

According to the requirement [B6: Perception], the behaviour model should
be given stimuli reflecting the information the player have. Indeed, if the
model has the same information as a player, it is more likely to display the
same behaviours. However giving the exact same stimuli is infeasible because
it would mean the model should be plugged to real sensors and sit in front of
a real computer.

As this is not a conceivable option, we approximate the player’s sensory
information by the avatar’s. We consider the player has all the information
the avatar has, and is looking in the same direction as the avatar. This is
an acceptable approximation as all the information is indeed displayed on
the player’s screen and emitted through his/her speakers. However it is not
certain that the player is aware of the information because of the limitation
of the human perception mechanisms.

The main drawback of this method is that the information given to the
avatar is usually represented in a quite different fashion. As the avatar is in
the virtual world it has access to very accurate positions, speed, etc. but does
not usually have information about lighting or attenuation of sounds. Each
virtual environment has its specificities, but each of the differences between
the agent and the player’s perception can make the agent act in a unbelievable
manner if it takes account information that a player could not have.

3.1.2 Categorization of Actions

In Le Hy’s model all the actions are considered independent given the de-
cision and the sensory information. We will keep this hypothesis as it allows
to reduce the complexity without making the agent act in a totally unbeliev-
able manner. Indeed, when combining the actions into a complex action, the
number of possibilities is way higher. However no real improvement in the
behaviour were noticed with this kind of actions.

Final version 59

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

Since the model has two different kinds of stimuli, the actions can be chosen
depending on the level of detail they need to be performed. First, we define
actions depending only on the high-level stimuli which usually allow the agent
to act on itself. We will call them reflexive actions. Then we define actions
depending only on the low-level stimuli which usually allow the agent to affect
its environment. We will call them external actions.

3.1.2.1 Reflexive Actions

A reflexive action models an action the agent uses on itself, to change its
status, without modifying the environment. We denoteRt

i the random variable
giving the ith reflexive action at time t. Reflexive actions are chosen according
to the current decision and the high-level stimuli: Rt

i is picked using the
random distribution P

(
Rt

i

∣
∣Dt, Ht

)
. This models the fact that the agent does

not need very accurate information about its surroundings in order to achieve
reflexive actions. We use the following notations:

• NR the number of reflexive actions

• Ri the set of values the ith reflexive action can take

• Rt the conjunction of all the reflexive actions at time t which can be
written Rt = (Rt

1, . . . , R
t
NR

)

• R the set of possible values for Rt: R = R1 × . . .×RNR

Reflexive actions can be for instance chewing, yawning and most facial ex-
pressions. They can also be used to make the agent scratch or pick objects in
its pockets although it may depends on the kind of environment the model is
used in.

3.1.2.2 External Actions

An external action models an action the agent uses to directly affect its
surroundings. We denote Et

i the random variable giving the ith external ac-
tion at time t. This kind of action is chosen according to the current decision
and the low-level stimuli: Et

i is randomly picked using the random distribu-
tion P

(
Et

i

∣
∣Dt, Lt

)
. This kind of action allow the definition of very accurate

stimuli to perform accurate actions without adding complexity to the choice
of D. Indeed, D is chosen using the high-level stimuli. We use the following
notations:

• NE the number of external actions

• Ei the set of values the ith external action can take

60 PhD thesis — Fabien Tencé

3.1. SEMANTIC REFINEMENT

• Et the conjunction of all the external actions at time t which can be
written Et = (Et

1, . . . , E
t
NE

)

• E the set of possible values for Et: E = E1 × . . .× ENE

External action are designed to model interactions with the environment
such as picking, pushing and moving objects. Communications with other
players like waving, hugging or shouting can be also used by such actions (due
to the complexity of talking, it will not be discussed in this thesis). Finally, as
the agent considers the environment in an egocentric way, moving is also con-
sidered as an action having an impact on the environment: walking, climbing,
turning. Indeed moving changes all the perception of the environment the
agent has.

For the Chameleon model, we have the following equality for each time step
t: At = (Rt, Et).

Figure 3.2: Partial representation of the model depicting the relation between
the decision Dt, the stimuli Ht and Lt and the actions Rt and Et.

3.1.3 An Example

Throughout this chapter we will use a example to explain our theoretical
model represented in figure 3.2. We define the random variables and their
values in the table 3.1 and give a graphical representation in figure 3.3).

In order to compare our model to Le Hy’s, we define the equivalent model
using Le Hy’s proposition (see figure 3.4). The independence between some
stimuli, decisions and actions reduce the number of parameters of the model.
A more detailed analysis is done in the section 4.1.3.

Final version 61

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

Variable Definition Values

High-level stimuli

H1 FoodInMouth (No, Solid, Chewed)
H2 Hunger (Low,Medium,High)

Low-level stimuli

L1 FoodPosition (Close, Far)× (Right, Left)

Reflexive actions

R1 Chew (Y es,No)
R2 Swallow (Y es,No)

External actions

E1 PickFood (Y es,No)
E2 Walk (Foward,Backward)
E3 Turn (Right, Left)

Decisions

D Decision (FindFood,Eat)

Table 3.1: Example of a model following the Chameleon proposition.

Figure 3.3: Example of an application of the model. FoodInMouth and Hunger
are high-level stimuli, FoodPosition is a low-level stimulus. Chew and Swallow
are two reflexive actions. Walk, Turn and PickFood are external actions.

Figure 3.4: Example of a model following Le Hy’s specifications and aiming
at expressing the same behaviours as the example in figure 3.3.

62 PhD thesis — Fabien Tencé

3.2. ATTENTION SELECTION MECHANISM

C
o
n
cl
u
si
o
n
o
f
3
.1

Because we found that different level of detail were needed for the
choice of decisions and actions, we decided to clarify the model [P2:
Sensors]. Two kinds of stimuli were defined, high-level, general infor-
mation, Ht

i , and low-level, accurate information, Lt
i. We also defined

two kinds of action, reflexive, Rt
i, and external actions, Et

i , each one
being a group of dependent actions.

Depending on the level of detail needed for the definition of the be-
haviours, probability distributions will be defined using Ht

i or Lt
i: de-

cisions and reflexive actions need high-level information while external
actions need low-level information (see figure 3.2).

Our model can be seen as a generalization of Le Hy’s model. By
stating that Ht = St, the random variables Lt and Et being unused,
our model is equivalent to Le Hy’s.

3.2 Attention Selection Mechanism

In
tr
o
d
u
ct
io
n
o
f
3
.2

The FEC is not able to express complex behaviours [P3: Expressive-
ness] and the IP makes it difficult to add lots of sensors [P4: Scaling]
and is hard to read [P5: Readability]. Both FEC and IP are designed
to reduce the complexity of the model. Indeed, expressing directly a
distribution P (X |Z1, ..., Zn) can be infeasible because it may requires
to store too many values. The goal is to find a mechanism to split the
problem into distributions of the kind P (X |Zi).

In order to replace the two mechanisms, we propose an attention se-
lection mechanism. The idea is simple: at each time step t, the agent
focus on one high-level stimulus and one low-level stimulus. Although
the mechanism is simplistic, it fits perfectly with the goal of believabil-
ity:

• By focusing on one information, our agent may appear more be-
lievable than an agent switching constantly between goals, achiev-
ing none of them.

• The users may better understand what the agent wants to do as
its behaviour is focused on one specific information [B5: Under-
standable].

• In case our agent focus on the wrong information, the users may
assume that it did not see the interesting information, thus not
breaking the illusion.

Final version 63

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

P
la
n
o
f
3
.2 This attention selection mechanism use two random variables It and

J t which give respectively the index of the high-level stimulus and the
index of the low-level stimulus the agent focus on. The mechanism
defined to choose It will be detailed in section 3.2.1 and the one for J t

will be detailed in section 3.2.2.

The following notation are adopted:

• Qt = (It, J t, Dt): the hidden state at time t

• tb..te is the interval of time from time tb to time te

3.2.1 High-Level Attention

The random variable It is influenced by the high-level stimuli in the following
way:

P
(
It
∣
∣A1..t,S1..t,Q1..t − It

)
= P

(
It
∣
∣Ht

)
(3.1)

where A1..t is the sequence of actions, S1..t the sequence of stimuli Q1..t the
sequence of hidden variables from time 1 to time t and Q1..t−It is the sequence
of hidden variables deprived from the variable It. Equation (3.1) accounts
only for the dependence between It and other random variables. But this
conditional distribution requires NH ×|H| parameters, which would make our
model intractable. Indeed, adding a new high-level stimuli Hp would multiply
the number of values for the distribution by |Hp|. Therefore we propose to
add some constraints on It, assuming that its conditional distribution has a
specific shape: we define a function θi(Hi) ∈ R

∗
+ for each high-level stimulus

and we impose the following formula:

P
(
It = i

∣
∣Ht

)
=

θi
(
Ht

i

)

NH∑

n=1

θn
(
Ht

n

)

(3.2)

This formula means that each high-level stimulus has an absolute attention
value. The higher the value, the more likely the model will focus on the
high-level stimuli. In order to have a probability distribution, the attention
is marginalised over all the high-level stimuli. The main assumption which
is done by this formula is that the attention of a high-level stimuli does not
depend directly on the other stimuli (except for the marginalisation).

For instance, using the same example as in table 3.1, we can define values
for θ (see table 3.2). If the agent has no food in mouth and is hungry, it has a
probability of 20

21 of focusing on its hunger and a probability of 1
21 of focusing

on its empty mouth. However if the agent is already eating something (solid
or chewed), it has a probability of 5

6 of focusing on the content of its mouth
and a probability of 1

6 to focus on its hunger.

64 PhD thesis — Fabien Tencé

3.2. ATTENTION SELECTION MECHANISM

Stimulus θ

H1 FoodInMouth

No 1
Solid 100
Chewed 100

H2 Hunger

Low 1
Medium 5
High 20

Table 3.2: Example of attention values for the model given in table 3.1.

Once the agent has focused on one high-level stimulus, the agent must
take a decision as if the stimulus Ht

It
was the only one that he had received,

and according to his previous decision Dt−1. This is the main reason the
high-level attention does not depend on the decision, to avoid the creation
of interdependencies. In our model, we assume that the choice of D is done
according to the formula:

P
(
Dt
∣
∣A1..t,S1..t,Q1..t −Dt

)
= P

(
Dt
∣
∣Dt−1, Ht, It

)
(3.3)

= P
(
Dt
∣
∣Dt−1, Ht

It

)
(3.4)

We do not need any more the IP hypothesis, allowing us to add many
sensors without compromising the accuracy of the results. Moreover, the
distribution P

(
Dt
∣
∣Dt−1, Ht

i

)
is easier to understand than its IP counterpart.

We still managed to break the complexity, P
(
Dt
∣
∣Dt−1, Ht

i

)
and θ being both

tractable.

The decision being chosen, the model can then pick a reflexive action, Rt
u

which is driven by the high-level stimulus Ht
It
. In our model, the distribution

for this choice is assumed to be:

P
(
Rt

u

∣
∣A1..t −Rt

u,S
1..t,Q1..t

)
=P
(
Rt

u

∣
∣Dt, Ht, It

)
(3.5)

P
(
Rt

u

∣
∣Dt, Ht

It

)
(3.6)

3.2.2 Low-Level Attention

The agent has now to choose an external action. Unlike high-level, low-level
attention J t takes into account the current decision: it depends on Dt and

on the known stimuli
(

Lt
j

)

j∈Kt
(let us recall that the set of known stimuli at

time t is denoted Kt and is a random variable):

P
(
J t
∣
∣A1..t,S1..t,Q1..t − J t

)
= P

(
J t
∣
∣Dt, Lt,Kt

)
(3.7)

Final version 65

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

As for the variable It, the conditional distribution of the equation (3.7) re-
quires too many parameters to be tractable (NL|D||L|2

NL), NL being the
number of low-level stimuli in the environment. Therefore, the conditional
distribution of J t has a specific shape:

P
(
J t = j

∣
∣Dt, Lt,Kt

)
=

1Kt(j)λj

(

Dt, Lt
j

)

NL∑

m=1

1Kt(m)λj

(
Dt, Lt

m

)

(3.8)

The formula means that between all the known low-level stimuli, the agent is
more likely to choose the low-level stimuli with a high λ. The denominator is
only here to make sure the sum of the probabilities is 1.

The agent can then choose the external action Et
f regarding the stimulus

Lt
Jt . The choice of these action is assumed to follow the distributions:

P
(
Et

f

∣
∣A1..t − Et

f ,S
1..t,Q1..t

)
= P

(
Et
∣
∣Dt, Lt, J t

)
(3.9)

= P
(
Et

f

∣
∣Dt, Lt

Jt

)
(3.10)

3.2.3 Summary of the Inner Workings of the Model

The model uses a very simple algorithm (see figure 3.5) and has the following
parameters:

• the conditional distribution of It : (θi)i∈{1,...,NH}.

• the conditional distribution of J t : (λj)j∈{1,...,NL}.

• the conditional distributions of Dt : P
(
Dt = d

∣
∣Dt−1 = d′, Ht

i = hi
)
, de-

noted mi(d|d
′, hi). Remember that i is the result of a random pick of

It.

• the initial conditional distributions of D1 : P
(
Dt = d |Hi = hi

)
, denoted

m1
i (d|hi). Here too, i is the result of a random pick of It.

• the conditional distribution of Rt
u : P

(
Rt

u = ru |D = d,Hi = hi
)
, de-

noted nui(ru|d, hi). Here too, i is the result of a random pick of It.

• the conditional distribution of Et
f : P

(

Et
f = ef

∣
∣Dt = d, Lj = lj

)

, de-

noted ofj(ef |d, lj). Remember that j is the result of a random pick of
J t.

The relations between the random variable are summarized in figure 3.6 and
a concrete example is given in figure 3.7.

66 PhD thesis — Fabien Tencé

3.2. ATTENTION SELECTION MECHANISM

while agent in world do
h ← agent’s high-level stimuli
l ← agent’s low-level stimuli
Pick i using (3.2)
Pick d using P

(
Dt = d

∣
∣Dt−1 = dt−1, Ht

i = hi
)

for all u ∈ J1, NRK do
Pick r using P

(
Rt

u = ru
∣
∣Dt = dt, Hi = hi

)

end for
Pick j using (3.8)
for all f ∈ J1, NEK do

Pick e using P

(

Et
f = ef

∣
∣Dt = dt, Lj = lj

)

end for
Make avatar do (r1, ..., rNR

, e1, ..., eNE
)

dt−1 ← d

end while

Figure 3.5: Algorithm of the model. It is possible to choose the way the value
are picked: randomly following the distribution, using the maximum value in
the distribution, etc.

Figure 3.6: Summary of the relation between the random variable of the
model. In green the inputs (sensory data), in red the outputs (actions) and
in blue the attention variables.

Figure 3.7: Whole model applied to the example defined in section 3.1.3.

Final version 67

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

C
o
n
cl
u
si
o
n
o
f
3
.2

In this section we introduced an attention selection mechanism which
consists in making the model focus on one high-level stimulus and one
low-level stimulus. This allows the model to avoid the combinatorial
explosion for its probability distribution.

In order to define how the model will select the stimuli to focus on, we
had to define two sets of functions θi and λj which give the importance
of the information they represent. Indeed, we cannot define directly
distributions to give the stimuli to focus on because they would be
intractable due to the high number of possibilities.

3.3 Learning the Environment

In
tr
o
d
u
ct
io
n
o
f
3
.3

The behaviour of a player depends on his/her perceptions of the en-
vironment. Similarly, the agent acts depending on its perceptions, but
they are different from the players because the agent does not have
the same sensors. That is why we have to choose carefully the kind
of stimuli we give to the agent, and even better, to make the agent
learn to find the best stimuli. It would allow the agent to adapt to new
conditions [P1: Navigation]. In this section we choose to focus on the
learning of the environment layout because it is one of the harder in-
formation to represent for the agent. As we aim at a agent’s believable
behaviour, we choose to learn the representation of the environment
by imitation to include directly in the sensors the way the players act.

P
la
n
o
f
3
.3

First we explain the reasons for choosing an algorithm called Grow-
ing Neural Gas (GNG) to learn the representation of the environment
and detail its principle in section 3.3.1. Then we introduce some mod-
ifications for the algorithm to fit our needs in section 3.3.2. Finally,we
explain how the algorithm and the information it gives are integrated
in the model in section 3.3.3.

3.3.1 Principle of the Growing Neural Gas (GNG)

Models which control virtual humanoids use different kinds of representation
to find paths to go from one point to an other. All the meshes used to render
the environment are too complex for agents to handle them. As a consequence,
classic approaches use a graph to represent accessible places with nodes and
paths between each place by edges (see figure 3.8). Actual solutions tend
to use a simple mesh, with different degrees of complexity, to represent the
accessible zones (see figure 3.9). The problem with the latter solution is that
it requires an algorithm to find the optimal path between two points, path
which may not be believable. Moreover, a graph solution is more adapted to

68 PhD thesis — Fabien Tencé

3.3. LEARNING THE ENVIRONMENT

be used in a model similar to Le Hy’s: each node of the graph can be used by
the model to attract or push back the avatar.

Figure 3.8: A simple environment (obstacles are in grey) represented by a
graph. Nodes are noted by circles and edges by black lines. An avatar can
go from one node to an other only if the nodes are connected by an edge.
Usually, an A* is used to find the path between two nodes.

Figure 3.9: A simple environment (obstacles are in grey) represented by a
mesh. The avatar can navigate in the zone defined by the mesh (in yellow)
because it knows they are no obstacle in this zone. Different algorithms can
be used to find optimal paths.

In order to achieve the best believability, we want the nodes of the graph
to be learned by imitation of a human player instead of being placed by a
designer. This work as been done in (Thurau et al., 2004) where nodes and
a potential field are learned from humans playing a video game. The agent
can then use this representation to move in the game environment, following

Final version 69

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

the field defined at each node. In order to learn the positions of the nodes,
Thurau uses an algorithm called Growing Neural Gas (GNG).

The GNG (Fritzke, 1995) is a graph model which is capable of incremental
learning. Each node has a position (x,y,z) in the environment and has a
cumulated error which measures how well the node represents its surroundings:
the fewer the error of a node, the better the node represents its surroundings.
Each edge links two nodes and has an age which gives the time it was last
activated. This algorithm needs to be omniscient, because the position of the
teacher is to be known at any time.

The principle of the GNG is to modify its graph for each input of the
teacher’s position in order to fit the graph with the teacher’s position. The
model can add or remove nodes and edges if they are not representative of
the behaviour and change the position of the nodes to better represent the
teacher’s position. The principle of the GNG is explained in the figures 3.10
and 3.11.

while Number of nodes ≤ Nmax do
Get input position (3.11 (a))
Pick the closest (n1) and the second closest nodes (n2) (3.11 (b))
Create edge between n1 and n2 (3.11 (c)).
If an edge already existed, reset its age to 0.
Increase the error of n1 (3.11 (d))
Move n1 and its neighbours toward the input (3.11 (e))
Increase the age of all the edges emanating from n1 by 1 (3.11 (f))
Delete edges exceeding a certain age (3.11 (g))
if Iteration number is a multiple of η then
Find the maximum error node nmax

Find the neighbour of max with maximum nmax2 (3.11 (h))
Insert node between nmax and nmax2 (3.11 (i))
Decrease the error of nmax and nmax2

end if
Decrease each node’s error by a small amount (3.11 (j))

end while

Figure 3.10: The algorithm of the GNG as defined in (Fritzke, 1995).

70 PhD thesis — Fabien Tencé

3.3. LEARNING THE ENVIRONMENT

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 3.11: Detail of the steps of the GNG algorithm. The black cross is the
input, black circles are the nodes of the GNG and black lines are the edges of
the GNG. Gray shapes represent the obstacles in the environment.

Final version 71

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

3.3.2 Modification of the Growing Neural Gas (GNG)

The GNG version we use is modified as shown by figure 3.12. The main
problem with the GNG is that we do not know when the learning is finished,
if it ever finishes. We propose that instead of inserting a new node each η

input, a node is inserted when the error of a node is superior to a parameter
Err. As each node’s error is reduced by a small amount ցErr for each input,
the modified GNG algorithm does not need a stopping criterion. Indeed, if
there are many nodes which represent well the environment, the error added
for the input will be small and for a set of inputs, the total added error will
be distributed among several nodes. The decreasing of error will avoid new
nodes to be added to the GNG resulting in a stable state. However, if the
teacher goes to a place in the environment he/she has never been before, the
added error will be high enough to counter the decay of the error, resulting in
the creation of new nodes.

This algorithm has five parameters which influence the density of nodes,
the quality of the representation, the adaptivity and the convergence time:

• The attraction
−−−−−→
attract1 applied to n1 toward (x, y, z)

• The attraction
−−−−−→
attract2 applied to the neighbours of n1 toward (x, y, z)

• The error decay for nodes, ցErr

• The maximum error for nodes, Err

• The maximum age for the edges, Age

3.3.3 Integration in the Model and Learning Algorithm

The nodes learned by this model can be used directly by the model as
low-level stimuli. Indeed, they represent precise information which will be
particularly important for the choice of motion actions. However, the infor-
mation given by the edges cannot be used as it denotes only proximity between
nodes and not a path between them. Two nodes may be linked by an edge
because they are close with a obstacle between them.

This modified version of the GNG should begin to learn before the main
learning algorithm. Indeed, as the nodes are used during the learning of the
model parameters, incorrect placement or insufficient nodes may cause the
main learning algorithm to learn incorrect probability distributions. However,
as our GNG should not be stopped, in case the teacher changes its behaviour,
the two learnings processes can be executed in parallel.

72 PhD thesis — Fabien Tencé

3.3. LEARNING THE ENVIRONMENT

nodes ← {}
edges ← {}
while teacher plays do

(x,y,z) ← teacher’s position
if |nodes| = 0 or 1 then
nodes ← nodes ∪ {(x,y,z,error=0)}

end if
if |nodes| = 2 then
edges ← {(nodes,age=0)}

end if
n1 ← closest((x,y,z),nodes)
n2 ← secondClosest((x,y,z),nodes)
edge ← edges ∪ {{n1,n2},age=0)}

n1.error+=||(x,y,z)-n1||
Attract n1 toward (x,y,z)
∀ edge ∈ edgesFrom(n1), edge.age++
Delete edges older than Age

Attract neighbours(n1) toward (x,y,z)
∀ node ∈ nodes, node.error-=ցErr

if n1.error > Err then
maxErrNei ← maxErrorNeighbour(n1)
newNode ← between(n1,maxErrNei)
n1.error/=2
maxErrNei.error/=2
newError ← n1.error+maxErrNei.error
nodes ← nodes ∪ {(newNode,newError)}

end if
end while

Figure 3.12: Algorithm used to learn the topology of the environment repre-
sented by a GNG.

This should not be a problem in term of resources because the GNG has
a complexity of O(n) where n is the number of nodes in the graph. This
should leave plenty of computing power for the other learning algorithm. The
algorithm is totally capable of handling data form several teachers. By giving
inputs from several teachers we should increase a lot the speed of the learning.
The only pitfall with this technique is that teachers can have totally different
usages of the environment. As a consequence, the learned GNG may not

Final version 73

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

reflect neither of the two behaviours.

C
o
n
cl
u
si
o
n
o
f
3
.3

In this section we presented a modified version of an algorithm, the
GNG, for the imitation learning of the topology of virtual environ-
ments. The algorithm is able to learn from one or more teachers how to
use the environment by representing it with a graph. As the nodes are
placed where the teachers go, this should give a representation allowing
the learning and the generation of believable behaviours. However, the
information gathered and given to the agent is limited to the nodes of
the graph, coordinates in space.

3.4 Learning the Model Parameters via an EM
Algorithm

In
tr
o
d
u
ct
io
n
o
f
3
.4 With the GNG algorithm, our agent is able to learn some of the

stimuli needed to move in the environment. We can now focus on the
learning of the model parameters. In his work, Le Hy uses a modified
version of the IBW (Florez-Larrahondo, 2005). We prefer not to use
this algorithm because it makes very simplistic assumptions (see sec-
tion 2.3.2.3) [P6: Learning]. Therefore we will revamp the whole learn-
ing algorithm by applying the EM technique to our problem, avoiding
assumptions incompatible with our goal of believability.

P
la
n
o
f
3
.4

We first present the theoretical principle of the EM and its applica-
tion to our model in section 3.4.1. Then we detail the two steps of the
EM. First the expectation procedure in section 3.4.2 where the algo-
rithm estimates the probabilities of the model to generate an observed
behaviour and then the maximization procedure in section 3.4.3 where
the model parameters are updated to fit the observed behaviour better.

3.4.1 Expectation-Maximization algorithm (EM)

The theoretical principle of the EM algorithm was first introduced in (Demp-
ster et al., 1977) and its convergence was fully proven in (Wu, 1983). It has
been applied to a wide range of problems where the data is said to be incom-
plete. Incomplete data means that only a part of data is known, the other
part is to be guessed in order to learn on a pseudo-complete data.

In our case, the algorithm gathers the values of Lt
j , H

t
i , the stimuli, and Rt,

Et, the actions, at each time step. The values of It, J t and Dt, the hidden
states, are not known, thus the data is incomplete. We will apply an EM
algorithm to be able to learn the model parameters.

74 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

The following notation are adopted:

• T is the length of the sequence of observation used for the learning

• A = A1..T , the total sequence of observed actions

• S = S1..T , the total sequence of observed stimuli

• Q = Q1..T , the total sequence of hidden states

• Φ is the set of model parameters

Throughout this section we will use a simple example to illustrate the mean-
ing of the estimators (see figure 3.13). This example consist in a sequence of
observation lasting 5 time steps where the values of A and S are known. the
values in Q are unknown and must be guessed knowing the current model
parameters, A and S.

Figure 3.13: A simple example of the relation between the values of the random
variables of the model. Gray filled circles represent the observed values on a
teacher. White filled circles represent the hidden values. This diagram depicts
a whole sequence of observation which lasts 5 time steps.

Our goal is to find the best model parameters, Φ∗, such as the likelihood,
P (A|S,Φ∗), is maximal. This means we want to find the parameters of the
model the most likely to generate an observed sequence given the sensory
information: if the model were in place of the observed player, it would
most likely generate approximatively the same actions. As we do not have
any information about the hidden variables (Q) we choose to use an EM
to find a local maximum. The idea is to find iteratively a Φn+1 such that
P (A|S,Φn+1) ≥ P (A|S,Φn).

Final version 75

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

In the sequel, we will not maximize the likelihood, but the log-likelihood
L(A|S,Φn) = logP (A|S,Φn). This is equivalent as log is strictly increasing.
The reason to do so is that it will allow some simplification in the maximization
problem. However, the function is not easy to maximize, we need to simplify
the problem (this is also a part of the proof of convergence):

L(A|S,Φ) = logP (A |S,Φ)

= log
∑

Q

P (A,Q |S,Φ) (3.11)

= log

(
∑

Q

P (Q |A,S,Φn)

P (Q |A,S,Φn)
P (A,Q |S,Φ)

)

(3.12)

Because log is concave we have:

≥
∑

Q

P (Q |A,S,Φn) log

(
P (A,Q |S,Φ)

P (Q |A,S,Φn)

)

(3.13)

Then we can compute the lower bound of L(A|S,Φ) in the following way:

∑

Q

P (Q |A,S,Φn) log

(
P (A,Q |S,Φ)

P (Q |A,S,Φn)

)

=
∑

Q

P (Q |A,S,Φn) log (P (A,Q |S,Φ))

−
∑

Q

P (Q |A,S,Φn) log(P (Q |A,S,Φn)) (3.14)

= Q(Φ|Φn) +R(Φn|Φn) (3.15)

thus, we have:

L(A|S,Φ) ≥ Q(Φ|Φn) +R(Φn|Φn) (3.16)

This inequality partly proves that by choosing Φn+1 such that Φn+1 =
argmaxΦQ(Φ|Φn), the log-likelihood will converge toward a local maximum
of L(A|S,Φ). The problem is now to maximize Q(Φ|Φn). First we need to
find how P (A,Q |S,Φ) can be expressed:

P (A,Q |S,Φ)

= P (A |Q,S,Φ)P (Q |S,Φ) (3.17)

=

T∏

t=1

P
(
At |Q,S,Φ

)
P (Q |S,Φ) (3.18)

=

T∏

t=1

P
(
At
∣
∣Qt,St,Φ

)
P
(
Q1 |S,Φ

)
T∏

t=2

P
(
Qt
∣
∣Q1..t−1,S,Φ

)
(3.19)

76 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

=
T∏

t=1

P
(
Rt, Et

∣
∣It, J t, Dt,St,Φ

)
P
(
Q1
∣
∣S1,Φ

)
T∏

t=2

P
(
Qt
∣
∣Qt−1,St,Φ

)
(3.20)

=
T∏

t=1

P
(
Rt
∣
∣It, Dt,St,Φ

)
P
(
Et
∣
∣J t, Dt,St,Φ

)

P
(
I1, J1, D1

∣
∣S1,Φ

)
T∏

t=2

P
(
It, J t, Dt

∣
∣It−1, J t−1, Dt−1,St,Φ

)
(3.21)

=
T∏

t=1

ni(r
t|dt, htit)oj(e

t|dt, ltjt)P
(
It
∣
∣St,Φ

)
P
(
J t
∣
∣Dt,St,Φ

)

P
(
D1
∣
∣S1,Φ

)
T∏

t=2

P
(
Dt
∣
∣It, Dt−1,St,Φ

)
(3.22)

=

T∏

t=1

ni(r
t|dt, htit)oj(e

t|dt, ltjt)
θit(h

t
it
)

∑NH

x=1 θx(h
t
x)

1kt(j
t)λjt

(

dt, lt
jt

)

∑NL

y=1 1kt(y)λy (dt, ltm)

m1
i (d

1|hti1)
T∏

t=2

mi(d
t|dt−1, hit) (3.23)

Using this last result we can then express Q(Φ,Φn). The advantage of
using the log function becomes obvious here, because it allows us to split the
function into sums:

Q(Φ,Φn) =
∑

Q

log (P (A,Q |S,Φ))P (Q |A,S,Φn) (3.24)

=
∑

Q

T∑

t=1

log
(
ni(r

t|dt, htit)
)
P (Q |A,S,Φn) (3.25)

+
∑

Q

T∑

t=1

log
(

oj(e
t|dt, ltjt)

)

P (Q |A,S,Φn) (3.26)

+
∑

Q

T∑

t=1

log

1kt(j

t)λjt

(

dt, lt
jt

)

∑NL

y=1 1kt(y)λy

(
dt, lty

)

P (Q |A,S,Φn) (3.27)

+
∑

Q

T∑

t=1

log

(

θit(h
t
it
)

∑NH

x=1 θx(h
t
x)

)

P (Q |A,S,Φn) (3.28)

+
∑

Q

T∑

t=2

log
(
mi(d

t|dt−1, hit)
)
P (Q |A,S,Φn) (3.29)

+
∑

Q

log
(
m1

i (d
1|hti1)

)
P (Q |A,S,Φn) (3.30)

Final version 77

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

Using our notations and because some of the previous quantities may depend
on only a few of the hidden states, one has:

Q(Φ,Φn) =
∑

i,d

T∑

t=1

log
[
ni(r

t|d, htit)
]
P
(
it = i, dt = d |A,S,Φn

)
(3.31)

+
∑

d,j

T∑

t=1

log
[

oj(e
t|dt, ltjt)

]

P
(
dt = d, jt = j |A,S,Φn

)
(3.32)

+
∑

d,j

T∑

t=1

log

1kt(j)λj

(

d, lt
jt

)

NL∑

y=1

1kt(y)λy

(
dt, lty

)

P
(
dt = d, jt = j |A,S,Φn

)

(3.33)

+
∑

i

T∑

t=1

log

θi
(
hti
)

NH∑

x=1

θx
(
htx
)

P
(
it = i |A,S,Φn

)
(3.34)

+
∑

i,d,d′

T∑

t=2

log
[
mi(d|d

′, hti)
]
P
(
dt−1 = d′, it = i, dt = d |A,S,Φn

)

(3.35)

+
∑

i,d

log
[
m1

i (d|h
1
i)
]
P
(
i1 = i, d1 = d |A,S,Φn

)
(3.36)

We have now detailed the shape of the function to be maximized. Our
learning problem is then reduced to an optimization problem, like in most
machine learning. By maximizing the function Q(Φ,Φn), the algorithm will
find the parameters the most likely to generate the observed behaviour. But,
before addressing the maximization problem, we need to give an explicit shape
for some terms that will be used in the sequel.

3.4.2 Expectation Procedure

In the maximization procedure, the algorithm will need the probability for
the model to be in specific hidden state configurations. For instance, the
likelihood of being in the hidden state It = i,Dt = d which can be written
P
(
it = i, dt = d |A,S,Φn

)
, will be used in the maximization formulae. In

order to compute all these probabilities, we will use an approach inspired by
the forward backward technique. This method decreases the complexity of the
computations by defining probabilities in an iterative manner. The reason we

78 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

did not use the classic forward backward technique is that it uses probabilities
which would look like P

(
A, it = i, dt = d |S,Φn

)
which are often too small to

be handled by a computer.

Let us define the following forward variables (we recall that q = (i, j, d)).
They are called “forward” because they only use information from time 1 to
time t (see figure 3.14):

αt
q = P

(
qt = q

∣
∣A1..tSΦ

)
(3.37)

αt
d,j = P

(
dt = d, jt = j

∣
∣A1..tSΦ

)
(3.38)

=
∑

i

αt
q (3.39)

αt
d,i = P

(
dt = d, it = i

∣
∣A1..tSΦ

)
(3.40)

=
∑

j

αt
q (3.41)

αt
d = P

(
dt = d

∣
∣A1..tSΦ

)
(3.42)

=
∑

i,j

αt
q (3.43)

Figure 3.14: Illustration of the meaning of the estimator α. In this figure α3
q3

is represented which estimates the probability of the green hidden value given
the observed red values. White and grey values are unknown.

This quantity may be defined recursively (we dropped the symbol Φ for the
sake of simplicity):

α1
q =

P
(
A1
∣
∣q1 = q, S

)
P
(
q1 = q |S

)

P (A1 |S)
(3.44)

∝ ni(r
1|d, h1i)m(e1|d, l1j)

1k1(j)λj(d, l
1
j)

∑

y 1k1(y)λy(d, l1y)
m1

i (d|h
1
i)

θi(h
1
i)∑

x θx(h
1
x)

(3.45)

Final version 79

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

The recursion formula is (1
Z

being a normalization factor which can be com-
puted over q):

αt+1
q =

∑

q′

P
(
qt+1 = q, qt = q′

∣
∣A1..t+1,S

)
(3.46)

=
∑

q′

P
(
qt+1 = q, qt = q′,At+1

∣
∣A1..t,S

)

P (At+1 |A1..t,S)
(3.47)

=
∑

q′

1

Z
P
(
qt+1 = q,At+1

∣
∣qt = q′,A1..t,S

)
P
(
qt = q′

∣
∣A1..t,S

)
(3.48)

=
1

Z

∑

q′

P
(
qt+1 = q,At+1

∣
∣qt = q′,S

)
αt
q′ (3.49)

=
1

Z

∑

q′

P
(
At+1

∣
∣qt+1 = q, qt = q′,S

)
P
(
qt+1 = q

∣
∣qt = q′,A1..t,S

)
αt
q′

(3.50)

=
1

Z
P
(
At+1

∣
∣qt+1 = q,S

)∑

q′

P
(
qt+1 = q

∣
∣qt = q′,S

)
αt
q′ (3.51)

=
1

Z
ni(r

t+1|d, ht+1
i)o(et+1|d, lt+1

j)
1kt+1(j)λj(d, l

t+1
j)

∑

y 1kt+1(y)λ(d, lt+1
y)

θi(h
t+1
i)

∑

x θx(h
t+1
x)

∑

d′

mi(d|d
′, ht+1

i)αt
d′ (3.52)

Similarly, we define the backward variable. They are called backward be-
cause they use information from time T to time t+ 1 (see figure 3.15):

βt
q =

P
(
qt = q

∣
∣At+1..T ,S,Φ

)

P (qt = q |S,Φ)
(3.53)

βt
d =

P
(
dt = d

∣
∣At+1..T ,S,Φ

)

P (dt = d |S,Φ)
(3.54)

This quantity may be defined recursively (again we dropped the symbol Φ
for the sake of simplicity):

βT
q = 1 (3.55)

80 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

Figure 3.15: Illustration of the meaning of the estimator β. In this figure β3
q3

is represented which estimates the probability of the green hidden value given
the observed red value. White and grey values are unknown.

The recursion formula is (1
Z

being a normalization factor which can be com-
puted over q):

βt−1
q =

P
(
qt−1 = q

∣
∣At..T ,S

)

P (qt−1 = q |S)
(3.56)

=
∑

q′

P
(
qt−1 = q, qt = q′

∣
∣At..T ,S

)

P (qt−1 = q |S)
(3.57)

=
∑

q′

P
(
At, qt−1 = q, qt = q′

∣
∣At+1..TS

)

P (At |At+1..TS)P (qt−1 = q |S)
(3.58)

=
1

Z

∑

q′

P
(
At, qt−1 = q

∣
∣qt = q′,At+1..T ,S

)
P
(
qt = q′

∣
∣At+1..T ,S

)

P (qt−1 = q |S)

(3.59)

=
1

Z

∑

q′

P
(
At, qt−1 = q

∣
∣qt = q′,S

)
P
(
qt = q′

∣
∣At+1..T ,S

)

P (qt−1 = q |S)
(3.60)

=
1

Z

∑

q′

P
(
At, qt−1 = q, qt = q′ |S

)

P (qt−1 = q |S)

P
(
qt = q′

∣
∣At+1..T ,S

)

P (qt = q′ |S)
(3.61)

=
1

Z

∑

q′

P
(
At, qt = q′

∣
∣qt−1 = q,S

)
βt
q′ (3.62)

=
1

Z

∑

q′

ni(r
t|d′, hti′)oj(e

t|d′, ltj′)
1kt(j

′)λj′(d
′, ltj′)

∑

y 1kt(y)λy(d′, lty)

θi′(h
t
i′)∑

x θx(h
t
x)

mi(d
′|d, hti′)β

t
q′ (3.63)

As we can see, βt
q depends only on d, so we have βt

q = βt
d.

Final version 81

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

The forward and backward variables are very useful because they can be
defined recursively. Now that we defined them, we can use them to express
the probabilities we will need in the maximization procedure.

We introduce

γtq = P
(
qt = q |A,S

)
(3.64)

which is the probability of begin in the hidden state q given all the observations
(see figure 3.16).

Figure 3.16: Illustration of the meaning of the estimator γ. In this figure γ3
q3

is represented which estimates the probability of the green hidden value given
the observed red values. White values are unknown.

Then we can write:

γtq = P
(
qt = q |A,S

)
(3.65)

=
P
(
A, qt = q |S

)

P (A |S)
(3.66)

=
P
(
A, qt = q |S

)

∑

q′ P (A, qt = q′ |S)
(3.67)

=
P
(
A1..t, qt = q |S

)
P
(
At+1..T

∣
∣qt = q,A1..t,S

)

∑

q′ P (A1..t, qt = q′ |S)P (At+1..T |qt = q′,A1..t,S)
(3.68)

=
P
(
A1..t, qt = q |S

)
P
(
At+1..T

∣
∣qt = q,S

)

∑

q′ P (A1..t, qt = q′ |S)P (At+1..T |qt = q′,S)
(3.69)

=
P
(
qt = q

∣
∣A1..t,S

) P(qt=q|At+1..T ,S)
P(qt=q|S)

∑

q′ P (qt = q′ |A1..t,S) P(qt=q′|At+1..T ,S)
P(qt=q′|S)

P
(
A1..t |S

)
P
(
At+1..T |S

)

P (A1..t |S)P (At+1..T |S)

(3.70)

82 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

=
αt
qβ

t
d

∑

q′ α
t
q′β

t
d′

(3.71)

∝ αt
qβ

t
d (3.72)

Similarly, we define an estimator for partial configurations of hidden states:

γtd,i = P
(
dt = d, it = i |A,S

)
(3.73)

=
αt
d,iβ

t
d

∑

d′,i′ α
t
d′,i′β

t
d′

(3.74)

γtd,j = P
(
dt = d, jt = j |A,S

)
(3.75)

=
αt
d,jβ

t
d

∑

d′,j′ α
t
d′,j′β

t
d′

(3.76)

γti = P
(
it = i |A,S

)
(3.77)

=
∑

d

γtd,i (3.78)

We also need to define the probability of a transition between two hidden
states (see figure 3.17):

ξtq′,q = P
(
qt−1 = q′, qt = q |A,S,Φ

)
(3.79)

=
P
(
A, qt−1 = q′, qt = q |S

)

P (A |S)
(3.80)

=
1

Z
P
(
A1..t−1, qt−1 = q′ |S

)
P
(
At..T , qt = q

∣
∣A1..t−1, qt−1 = q′,S

)

(3.81)

=
1

Z
αt−1
q′ P

(
At..T , qt = q

∣
∣qt−1 = q′,S

)
(3.82)

=
1

Z
αt−1
q′ P

(
At..T

∣
∣qt = q, qt−1 = q′,S

)
P
(
qt = q

∣
∣qt−1 = q′,S

)
(3.83)

=
1

Z
αt−1
q′ P

(
At,At+1..T

∣
∣qt = q,S

)
P
(
qt = q

∣
∣qt−1 = q′,S

)
(3.84)

=
1

Z
αt−1
q′ P

(
At
∣
∣qt = q,S

)
P
(
At+1..T

∣
∣qt = q,S

)
P
(
qt = q

∣
∣qt−1 = q′,S

)

(3.85)

=
1

Z
αt−1
q′ ni(r

t|d, hti)oj(e
t|d, ltj)

1kt(j)λj(d, l
t
j)

∑

y 1kt(y)λy(d, lty)

θi(h
t
i)∑

x θx(h
t
x)
βt
qmi(d|d

′, hti)

(3.86)

Similarly, we define an estimator for partial configurations of hidden states:

ξtd′,d,i = P
(
dt−1 = d′, dt = d, it = i |A,S,Φ

)
(3.87)

=
∑

i′,j′,j

P
(
qt−1 = q′, qt = q |A,S,Φ

)
(3.88)

Final version 83

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

Figure 3.17: Illustration of the meaning of the estimator ξ. In this figure ξ4
q3,q4

is represented which estimates the probability of the green hidden value given
the observed red values. White values are unknown.

=
∑

i′,j′,j

ξtq′,q (3.89)

ξtd′,i = P
(
dt−1 = d′, it = i |A,S,Φ

)
(3.90)

=
∑

i′,j′,j,d

P
(
qt−1 = q′, qt = q |A,S,Φ

)
(3.91)

=
∑

i′,j′,j,d

ξtq′,q (3.92)

3.4.3 Maximization Procedure

In order to find a Φn+1 such that P (A|S,Φn+1) ≥ P (A|S,Φn), we have to
maximize each part of Q(Φ,Φn), the equations (3.31), (3.32), (3.33), (3.34),
(3.35) and (3.36). This is possible because each part of Q is independent from
the others. Each maximization procedure will need the estimators γ and ξ

defined in the previous section.

3.4.3.1 Maximizing the Quantity (3.31)

We want to maximize the following quantity by finding the optimal distri-
bution n′

it
(rt|dt, ht

it
):

∑

Q

T∑

t=1

log
[
ni(r

t|dt, htit)
]
P (Q |A,S,Φn)

=
∑

i,d

T∑

t=1

log
[
ni(r

t|d, hti)
]
P
(
it = i, dt = d |A,S,Φn

)
(3.93)

84 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

Because they are probability distributions, the conditions one has are:

∑

r

ni(r|d, hi) = 1 (3.94)

The goal is to maximize (3.31) by finding the best parameters, b′i(r, d, hi).
Using Lagrange multipliers in a classic way leads to:

n′
i(r, d, hi) =

∑T
t=1 P

(
it = i, dt = d |A,S,Φn

)
1ht

i=hi,rt=r
∑T

t=1 P (it = i, dt = d |A,S,Φn)1ht
i=hi

(3.95)

=

∑T
t=1 γ

t
d,i1ht

i=hi,rt=r
∑T

t=1 γ
t
d,i1ht

i=hi

(3.96)

3.4.3.2 Maximizing the Quantity (3.32)

We want to maximize the following quantity by finding the optimal distri-
bution o′j(e

t|dt, lt
jt
):

∑

q

T∑

t=1

log
[

oj(e
t|dt, ltjt)

]

P (Q |A,S,Φn)

=
∑

j,d

T∑

t=1

log
[
oj(e

t|d, ltj)
]
P
(
jt = j, dt = d |A,S,Φn

)
(3.97)

Because they are probability distributions, the conditions one has are:

∑

r

oj(e|d, lj) = 1

The goal is to maximize (3.32) by finding the best parameters, c′j(e, d, lj).
Using Lagrange multipliers in a classic way leads to:

o′j(e, d, lj) =

∑T
t=1 P

(
jt = j, dt = d |A,S,Φn

)
1ltj=lj ,et=e

∑T
t=1 P (jt = j, dt = d |A,S,Φn)1ltj=lj

(3.98)

=

∑T
t=1 γ

t
d,j1ltj=lj ,et=e

∑T
t=1 γ

t
d,j1ltj=lj

(3.99)

Final version 85

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

3.4.3.3 Maximizing the Quantity (3.33) and (3.34)

We want to maximize the following quantity by finding the optimal distri-

bution λ′
j

(

d, lt
jt

)

:

∑

d,j

T∑

t=1

log

1kt(j)λj

(

d, ltj

)

NL∑

y=1

1kt(y)λy

(
d, lty

)

P
(
dt = d, jt = j |A,S,Φn

)

and we also want to maximize the following quantity by finding the optimal
distribution θ′i

(
hti
)
:

∑

i

T∑

t=1

log

θi
(
hti
)

NH∑

x=1

θx
(
htx
)

P
(
it = i |A,S,Φn

)

Currently, no solution has been found to maximize efficiently (3.33) and
(3.34). Those two quantities correspond to the likelihood of the function λ

and θ. A classic gradient descent has been tested to no avail, making the
model parameters converge toward values where the agent focus on trivial
information.

For now, the value of the two attention function are set by the character
designer. Tips are given on how to find good values in sections 3.4.4.2 and
4.2.1. This requires a good knowledge of the environment and the behaviours
of the players.

3.4.3.4 Maximizing the Quantity (3.35)

We want to maximize the following quantity by finding the optimal distri-
bution m′

it
(dt|dt−1, ht

it
):

∑

q

T∑

t=2

log
[
mit(d

t|dt−1, htit)
]
P (Q |A,S,Φn)

=
∑

i,d,d′

T∑

t=2

log
[
mi(d|d

′, hti)
]
P
(
dt−1 = d′, dt = d, it = i |A,S,Φn

)
(3.100)

86 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

The goal is to maximize (3.35) by finding the best parameters, a′i(d|d
′, hi).

The critical points must satisfy:

m′
i(d|d

′, hi) =

∑

t P
(
dt−1 = d′, dt = d, it = i |A,S,Φn

)
1ht

i=hi
∑

t P (dt−1 = d′, it = i |A,S,Φn)1ht
i=hi

(3.101)

=

∑

t ξ
t
d′,d,i1ht

i=hi
∑

t ξ
t
d′,i1ht

i=hi

(3.102)

3.4.3.5 Maximizing the Quantity (3.36)

We want to maximize the following quantity by finding the optimal distri-
bution (m1

i1
)′(d1|h1

i1
):

∑

q

log
[
m1

i1(d
1|h1i1)

]
P (Q |A,S,Φn)

=
∑

i,d

log
[
m1

i (d|h
1
i)
]
P
(
d1 = d, i1 = i |A,S,Φn

)
(3.103)

The goal is to maximize (3.36) by finding the best parameters, (a1i)
′(d|hi).

Critical points satisfy:

(m1
i)

′(d|hi) =
P
(
d1 = d, i1 = i |A,S,Φn

)
1h1

i=hi

P (i1 = i |A,S,Φn)1h1
i=hi

(3.104)

=
γ1d,i1h1

i=hi

γ1i 1h1
i=hi

(3.105)

3.4.4 Putting Expectation and Maximization together

Now that the expectation and the maximization procedures have been de-
tailed, we can explain how to use them in the whole EM.

3.4.4.1 Finding a Sequence of Observations

During the introduction of the algorithm we defined the sequences of ob-
servation A and S of length T . They are the sequences of what the teacher
do and perceive. These sequences allow the model to estimate the probability
of the hidden states. As the model is Markovian, the chain of event is very
important: too short sequences would lead to erroneous estimations of the
probabilities of hidden states. On the opposite, too long sequences will make
the algorithm very slow without adding relevant information.

As we applied our model and learning algorithm to a video game and more
precisely to a FPS, the choice was a bit more easy. Indeed, in such games,
avatars “die” disappearing from the environment and “resurrect” reappearing

Final version 87

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

in a random place. Therefore a sequence is the actions and stimuli from the
“resurrection” to the “death” of the teacher’s avatar. Such sequences usually
last from 10 seconds to 5 minutes which is not too long for the algorithm.

A last problem concerning the sequences had to be solved: the teacher has
a reaction time. Among all the solutions we tried, the most simple worked
the best. Instead of associating the actions at t to the stimuli at t, we use the
actions at t+ treacms. The actual value of treac is discussed in 4.4.1.1.

3.4.4.2 Parameters Initialization and Stopping Criterion

The initialization of the parameters is a very important part (Biernacki
et al., 2003). A good initialization allows fast convergence and increase the
chances of converging toward a local maximum which is close to the global
maximum. Finding such initialization for the parameters often includes a
quick estimation of their values according to the observations.

We choose to stick to the simplest method for the moment: the random
initialization. Each parameter is initialized to a random value, then they are
normalized for the sum of probability distributions to be equal to 1. It allows
the algorithm to cover many possible solutions at the cost of convergence time.

However, the attention functions, θ and λ, are not randomly initialized be-
cause they are not learned. We have to choose their value using our experience.
A good way to find good values is to code simple behaviours manually and
see the influence of the attention function on the result. As a rule of thumb,
other avatars are the most important and objects in the centre of the screen
have a higher attention than objects on the border.

The algorithm needs a stopping criterion, based on the quality of the current
set of parameters Φn. As the algorithm converges toward a local maximum,
we do not know a priori the value of the likelihood function at this maximum.
We have observed that, as the value of Q(Φn+1|Φn) converges, the increase is
smaller and smaller at each iteration of the algorithm. We based the stopping
criterion on this increase: if Q(Φn+1|Φn)−Q(Φn|Φn−1) < w, the algorithm is
stopped and Φn+1 us considered to be the solution.

3.4.4.3 Merging the Results of Expectation-Maximization
algorithms (EMs)

Like all the EMs, our algorithm is offline, which is contrary to our objective
(see section 2.2.3.2). Indeed, the algorithm gives a set of parameters which
only satisfies the observed sequence. However, because we have short learn-
ing sequences, we can learn from them one after an other, merging the final

88 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

resulting set of parameters to a global one, Φg. We must keep in mind that
each result of the EM is optimal for a single sequence but we want a global
solution, acceptable for all sequences.

This solution has however a major weakness because the algorithm discovers
the meaning of each decision by specifying the associated distributions. Two
running of the algorithm may discover different way to express the behaviour,
the decisions from the first run being not comparable to the decisions from the
second run. This is specially true when the parameters are learned on different
sequences where the teacher has potentially expressed different behaviours.

A first solution is to compute the distance between decisions by using the
distributions giving the actions:

dist(d, d′) =
∑

i

(
ni(r

t|d, hti)− ni(r
t|d′, hti)

)2
+
∑

j

(
oj(e

t|d, ltj)− oj(e
t|d′, ltj)

)2

(3.106)

The two closest decisions are then considered the same, then again with the
remaining decisions and again. . . . This solution gave poor results because
the decisions may not be comparable at all. There is also the danger of all
distances to be of the same order because of the curse of dimensionality.

A better solution is to initialize the learning algorithm with parameters
close to the global parameters. We do not use the global parameters directly
because there may be zeros in the parameters which is not well handled by EM
for initialization. By using the global parameters, the algorithm will use the
same “meaning” for each decision as the global ones. This does not guarantee
that the decisions will have the same meaning but there are better chances
that they will be close.

For the actual merging of the parameters, we consider that the more the
observed stimuli, the better the learning. We note Si the sequence of stimuli
of length Ti used for the learning i. Thus when the learning i is achieved, the
distribution v which gives the probability of the random variable z given the
stimuli s is updated using the following formula:

v(z|s,Φ′
g) =

v(z|s,Φi)

Ti∑

t=1

1St
i
(s) + v(z|s,Φg)

∑

j

Tj∑

t=1

1St
j
(s)

Ti∑

t=1

1St
i
(s) +

∑

j

Tj∑

t=1

1St
j
(s)

(3.107)

Final version 89

CHAPTER 3. CHAMELEON: BEHAVIOUR MODEL AND LEARNING
ALGORITHM FOR BELIEVABLE AGENTS

i← 0
while teacher plays do
while teacher’s avatar alive do
Sti ← teacher’s stimuli
At

i ← teacher’s actions
Wait ∆t

end while
while Q(Φi−1|Φi−2)−Q(Φi−2|Φi−3) < w do

Compute α using (3.45), (3.52), (3.43), (3.41) and (3.39)
Compute β using (3.55) and (3.63)
Compute γ using (3.72), (3.74), (3.76), and (3.78)
Compute ξ using (3.86), (3.89) and (3.92)
Update Φi using (3.96), (3.99), (3.102) and (3.105)

end while
i← i+ 1
Update Φg using (3.107)

end while

Figure 3.18: Algorithm used for the imitation learning of the model parame-
ters.

C
o
n
cl
u
si
o
n
o
f
3
.4

We applied and detailed an EM which allows the learning by imita-
tion of most of the model parameters. The length of the sequence of
observation being variable, the algorithm may need a unknown number
of iteration to converge correctly, the longer the sequence, the more the
iterations. Therefore, we have introduced a classic stopping criterion.

In order to combine the results obtained by the different EM, we used
a merging technique to allow the agent to learn the whole behaviour of
a player in an online learning algorithm fashion. The whole learning
algorithm is written in pseudo-code in figure 3.18.

90 PhD thesis — Fabien Tencé

3.4. LEARNING THE MODEL PARAMETERS VIA AN EM
ALGORITHM

C
o
n
cl
u
si
o
n
o
f
3

In this chapter we proposed four modifications to Le Hy’s model and
learning algorithms. First we defined low-level and high-level stimuli
to make the distributions more compact. We grouped actions into two
types each one depending of a type of stimulus.

Then we introduced an attention selection mechanism with two sets
of functions θi and λj . These function describes how much the model
should pay attention to respectively each high-level stimulus and low-
level stimulus. This design avoids intractable amount of parameters.

For the stimuli to reflect the players’ behaviour, we added an algo-
rithm to learn by imitation the layout of the environment. By giving
such representation to the model, we expect an increase of the believ-
ability of the generated behaviours.

Finally, we redesigned the whole learning algorithm from scratch.
Our learning algorithm is based on the EM technique, allowing to learn
almost all the parameters by imitation. The attention functions θi and
λj are not yet learned. Our algorithm is much slower than Le Hy’s
but by avoiding simplistic hypothesis, should give much more accurate
results.

Final version 91

Contents of Chapter 4

4 Analysis and Evaluation of an Implementation of Chameleon 93
4.1 Semantic Refinement . 94

4.1.1 Choice of the Stimuli . 94
4.1.1.1 High Level Stimuli 94
4.1.1.2 Low Level Stimuli 95

4.1.2 Choice of Actions . 97
4.1.3 Consequences of the Semantic Refinement 98

4.2 Attention Selection Mechanism 101
4.2.1 Choice of the Values of Attention Functions 101
4.2.2 Consequences of Attention Selection 102

4.2.2.1 Decrease in the Number of Parameters 102
4.2.2.2 Increase in Expressiveness 104

4.3 Learning The Environment . 106
4.3.1 Measures and Representation of the Results 106

4.3.1.1 Application to UT2004 106
4.3.1.2 Representation of the Environment 107
4.3.1.3 Measures of the Time Evolution 108

4.3.2 Influence of the Parameters on the Learning 112
4.3.2.1 Attraction of the Winner Node 112
4.3.2.2 Attraction of the Neighbours of the Winner Node112
4.3.2.3 Maximum Error for Nodes 114
4.3.2.4 Maximum Age for Edges 115
4.3.2.5 Error Decay 116

4.3.3 How to Choose the Parameters 118
4.3.4 Increasing the Speed of the Learning of the Representation118

4.3.4.1 Learning on Several Teachers 118
4.3.4.2 Input Frequency 119

4.4 Learning the Parameters of the Model with an EM Algorithm . 121
4.4.1 Impact of the EM and Parameters on the Results 121

4.4.1.1 Impact of the Teacher’s Reaction Time 122
4.4.1.2 Impact of the Number of Decisions 124

4.4.2 Characteristics of the EM 125
4.4.2.1 Evolution of the Likelihoods 125
4.4.2.2 Effect of the Merging of the Parameters 128
4.4.2.3 Sequence of Decisions 130

4.4.3 Resulting Behaviours . 131
4.4.3.1 Study of the Distributions 132
4.4.3.2 Signatures . 134
4.4.3.3 Believability 139

PhD thesis — Fabien Tencé

Chapter 4

Analysis and Evaluation of an
Implementation of Chameleon

S
u
m
m
a
ry

o
f
4

In this chapter, we present how we adapted our model to the video
game UT2004 and the result for each of the four proposed modifica-
tions. The semantic refinement of the model reduces the number of
parameters for the model making the learning faster and the model
clearer. The attention selection mechanism allows the agent to express
behaviour which cannot be expressed by Le Hy’s model. The GNG
makes the agent able to adapt rapidly to unknown environments by
observing multiple teachers. Finally, the imitation learning algorithm
allows the agent to evolve rapidly toward a more believable behaviour.
However, the agent is not able yet to fool players for long.

In
tr
o
d
u
ct
io
n
o
f
4 In the previous chapter we proposed four modifications to the Le Hy’s

work. They aim at making the model able to express and learn more
complex behaviours without increasing the complexity of the model.
The final goal is to produce more believable behaviours. We must
validate our modifications with measures, test cases and evaluations.
We will also explain how the model is integrated in the video game
UT2004 for our results to be reproducible and to give an idea of how
the model can be implemented.

Final version 93

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

P
la
n
o
f
4

The organization of this chapter is identical to the previous one.
Section 4.1 presents the choice of stimuli and actions to explain how
the model can be adapted to a video game. We also analyse the gain of
the semantic refinement. Then we present how to choose the value for
the attention functions and show a concrete example of how it improves
results in section 4.2. In the section 4.3 we analyse the time evolution
of the GNG and the impact of the different parameters on the learning.
Finally, we try to assess the believability of the behaviours of agents
learning by imitation with our algorithm in section 4.4.

4.1 Semantic Refinement

In
tr
o
d
u
ct
io
n
o
f
4
.1

The semantic refinement of Le Hy’s model consists in the partition of
the stimuli in two groups: high level ones representing general informa-
tion and low level ones representing accurate information. The actions
are then categorized in two distinct types: reflexive actions which are
done by the agent on itself and external actions which allows the agent
to interact directly with the environment. The goal of this refinement
is to reduce the number of parameters of the model by adding some
a priori knowledge. The reduction of the number of parameters aims
at speeding up the learning, making our agent able of evolving rapidly
[B10: Fast Evolution].

P
la
n
o
f
4
.1

We first describe how we plugged our model to the game UT2004: the
discretization and categorization of the stimuli is explained in section
4.1.1 and the actions are detailed in section 4.1.2. We then study
the effect of the semantic refinement on the number of parameters in
section 4.1.3: the impact of each hypothesis introduced by Le Hy and
by ourselves is measured for a concrete example.

4.1.1 Choice of the Stimuli

The choice of the high level and low level stimuli is essential to make the agent
behave correctly in the environment. Too few information will make the agent
miss important events and thus will make the agent behave in an ill-adapted
manner. Too much information will make the learning difficult because there
will be too many parameters.

4.1.1.1 High Level Stimuli

The high level stimuli represent global information which will allow the
agent to take decisions and reflexive actions. We used six different high level
stimuli, based on the choices made in (Le Hy, 2007, page 60, in French) and
information usually used in UT2004. They are also information available to
the player, on its screen, fulfilling the requirement [B6: Perception]:

94 PhD thesis — Fabien Tencé

4.1. SEMANTIC REFINEMENT

• Life: gives the amount of hit points the agent’s avatar have.

• Number of enemies: gives the number of visible enemies.

• Current weapon: gives the weapon currently in the the hand of the
avatar of the agent.

• Current weapon ammunition: gives the current number of ammunition
in the weapon in the hand of the avatar of the agent.

• Take damage: tells the agent if it took damage the last time step.

• Weapons in inventory: tells which weapons are in the possession of the
avatar.

4.1.1.2 Low Level Stimuli

Low level stimuli represent accurate information which will be used by the
agent to choose the interaction and motion actions. We choose a principle of
point of interest, each low level stimulus being a point in the virtual environ-
ment which is important for the agent. We used five different types of points
of interest which represent all the important entities in the environment plus
information for navigation:

• Player: gives the position of an other player’s avatar.

• Weapon: gives the position of a weapon lying on the ground.

• Health: gives the position of an item restoring the avatar’s amount of
hit points.

• Navigation point: gives the position of a GNG node.

• Ray impact: gives the position of a ray tracing impact.

The first three stimuli (player, weapon and health) represent information avail-
able to the player, fulfilling the requirement [B6: Perception]. The last two
stimuli (navigation point and ray impact) are not available to the player. They
represent information about the topology of the environment which is difficult
to represent in a compact way (see section 3.3.1).

The discretization of the position is done in a different way for each of the
five types of point of interest but follows the same principle. An example of
such discretisation for a weapon is given in Figure 4.1 and 4.2. The position
for such point of interest is a triple (pitch, yaw, distance).

Final version 95

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

Close

Middle

Center
Left

Far

Far left

Right

Far right

200UU

1500UU

3°-3°

-40° 40°

45°-45°

Figure 4.1: Zones defined for the points of interest of type weapon, top view.
The grey zone is outside the Field Of View (FOV). Red values are for yaw,
blue for distance. The values in Unreal Unit (UU) gives the distance value
between each discretization and the angles in degrees for the yaw.

CloseMiddle
Far

Top

Bottom

Center

-10°

10°

-67.5°

67.5°

200UU1500UU

Figure 4.2: Zones defined for the points of interest of type weapon, side view.
The grey zone is outside the FOV. Green values are for pitch, blue for distance.
The values in UU gives the distance value between each discretization and the
angles in degrees for the pitch.

96 PhD thesis — Fabien Tencé

4.1. SEMANTIC REFINEMENT

4.1.2 Choice of Actions

Reflexive Actions The only reflexive action is an action consisting in
witching the weapon currently held in hand with an other weapon the agent is
carrying. This action does not involve the environment excepted the agent’s
avatar. As there are twelve weapons in the environment, the value for this
action can take one of this twelve possibilities.

External Actions As UT2004 is based on speed and accuracy, most of
the actions need low-level stimuli, thus are external actions. One actions
allows the agent to “interact” with the other players by shooting on them. As
weapons can be used in two different ways the possible values for this action
are: do nothing, pull the trigger or pull the trigger for the alternate mode of
the weapon. The principal actions allows the agent to move and aim at other
players. We defined five actions: jump, pitch, yaw, forward/backward and
lateral movement (see Figure 4.3). We choose these actions because they are
very close to what a player can make his/her avatar do in the environment
with his/her keyboard and mouse.

Pitch

Yaw

Lateral

Forward
Lateral

Backward

Jump

Figure 4.3: Actions allowing the agent to move in the environment and aim
at players.

Final version 97

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.1.3 Consequences of the Semantic Refinement

In order to study the consequences of the semantic refinement on a concrete
example, we will use our application. The definition of each random variable
and the number of values they can take is given in Table 4.1.

Variable Definition Number of values

High-level stimuli

H1 Life 3
H2 NumberOfEnemies 4
H3 CurrentWeapon 14
H4 CurrentWeaponAmmunition 4
H5 TakeDamage 2
H6 WeaponsInInventory 70

Low-level stimuli

L1 Player 405
L2 Weapon 45
L3 Health 45
L4 NavigationPoint 72
L5 RayImpact 5

Reflexive actions

R1 ChangeWeapon 12

External actions

E1 Fire 3
E2 Jump 3
E3 Pitch 3
E4 Y aw 5
E5 Walk 3
E6 Lateral 3

Decisions

D Decision around 10

Table 4.1: Definition of each random variable used in the model applied to
the game UT2004.

With this example we can now study the number of values needed for the
definition of Le Hy’s model and Chameleon. In order to focus only on the
influence of the semantic refinement of the stimuli, we will not consider for
now the mechanisms to decrease the complexity of the models: FEC and IP
for Le Hy’s model and attention selection for Chameleon.

98 PhD thesis — Fabien Tencé

4.1. SEMANTIC REFINEMENT

Because all the stimuli, decisions and actions are dependent, Le Hy’s model
would need a total of:

NH∏

i=1

|Hi|

NL∏

j=1

|Lj |

 |D|2 (4.1)

values for the definition of P
(
Dt
∣
∣Dt−1,St

)
, the distribution to choose the

decision. It would also require

|D|

NH∏

i=1

|Hi|

NL∏

j=1

|Lj |

NA∑

n=1

|An| (4.2)

values for the definition of P
(
An

∣
∣Dt,St

)
, the distributions for the choice of

the actions.

Chameleon would need a total of

(
NH∏

i=1

Hi

)

|D|2 (4.3)

values for the definition of P
(
Dt
∣
∣Dt−1,Ht

)
, the distribution to choose the

decision. It would also require

NH∏

i=1

|Hi|

NR∑

u=1

|Ru|+

NL∏

j=1

|Lj |

NE∑

f=1

|Ef |

 |D| (4.4)

values for the definition of the distributions P
(
Rt

u

∣
∣Dt,Ht

)
and P

(

Et
f

∣
∣Dt,Lt

)

.

The definition of high and low-level stimuli allows the model to reduce the
parameters by

NL∏

j=1

Lj

 |D|2 +

NH∏

i=1

|Hi|

NE∑

f=1

|Ef |+

NL∏

j=1

|Lj |

NR∑

u=1

|Ru|

 |D| (4.5)

So the more complex the model, the more favorable is the semantic refinement.

In our application the gain is worthwhile. Indeed, the number of parame-
ters is approximatively divided by 105 compared to a model without semantic
refinement as show in figure 4.4 and table 4.2. In the game UT2004, the num-
ber of states, which approximatively corresponds to decisions in our model, is
around 10. For 10 decisions the number of parameters is divided by 1.4× 105.

Final version 99

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 1e+17

 2 4 6 8 10 12 14 16 18 20

N
u
m

b
e
r

o
f
p
a
ra

m
e
te

rs

Number of decisions

Le Hy
Chameleon

Figure 4.4: Number of parameters for our application of the model in UT2004.
The IP and FEC for Le Hy’s model and attention mechanism for Chameleon
are not taken into account. The reduction is given compared to Le Hy’s model.

Number of parameters

Full dependence between random variables 3× 1018

Independence of actions 8.6× 1015

Independence of actions & semantic refinement 6× 1010

Table 4.2: For each hypothesis, the number of values for the definition of the
probability distributions with 10 decisions. The semantic refinement allows
a noticeable reduction of the number of parameters. The independence of
the actions in introduced in Le Hy’s work and the semantic refinement in the
previous chapter, section 3.1.

C
o
n
cl
u
si
o
n
o
f
4
.1 The semantic refinement of the model, clearly defining high and low-

level stimuli and the associated actions allows an important reduction
of the number of values needed for the definition of the probability
distributions. This reduction will make the learning faster because less
knowledge is to be learn, the independence between variables being
already specified. This should allow the agent to adapt even faster
answering to the requirement [B10: Fast Evolution].

100 PhD thesis — Fabien Tencé

4.2. ATTENTION SELECTION MECHANISM

4.2 Attention Selection Mechanism
In
tr
o
d
u
ct
io
n
o
f
4
.2 In order to break the complexity of the model and replace the IP and

FEC, we introduced a simple attention selection mechanism. At each
time t, the agent focuses on one high-level stimulus and one low-level
stimulus. In order to further reduce the complexity, we expressed the
distributions to select the stimulus with two functions θ(h) and λ(l).
The higher the attention value for a stimulus, the more chances the
agent have to focus on it. We will now study the advantages of the
attention selection mechanism over the IP and FEC.

P
la
n
o
f
4
.2 In this section we will first explain how to find values for the attention

functions which can allow the model to give believable results (section
4.2.1). In the section 4.2.2, we will study the differences between the
attention mechanism and the IP and FEC: number of parameters,
readability and expressiveness.

4.2.1 Choice of the Values of Attention Functions

As explained in section 3.4.3.3, the values for the attention function are not
learnt for now. As a consequence, their values have to be defined manually.
Finding values which make the agent behave in a believable manner requires
knowledge about the environment. An attention function for an important
stimuli must have a high value. As a rule of thumb, stimuli in the centre of
the FOV, threats and dangers, extreme values and objects in interaction range
should have high values. The farther from these conditions, the lower should
be the value.

In our application, specifying the value for all the 572 stimuli is tedious so
we defined some rules. For the low-level stimuli we ordered them from the
most important to the least:

• Player stimuli because all other players are potential threats

• RayImpact stimuli make the agent able to avoid collisions

• Weapon and Health stimuli make the avatar stronger

• NavigationPoint stimuli allow the agent to move in the environment

For all of these five stimuli, the closer to the centre of the FOV, the higher
the value. For the high-level stimuli, extreme values are important like a high
number of enemies, a low health or few ammunition left in the current weapon.

Final version 101

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.2.2 Consequences of Attention Selection

The goal of the attention selection mechanism is the break the complexity
of the combination of stimuli without reducing too much the expressiveness
of the model. We will study the usefulness of the mechanism comparing to no
mechanism and the IP and FEC.

4.2.2.1 Decrease in the Number of Parameters

The goal of the IP is the decrease the complexity of the distributions for the
choice of the decision. The hypothesis, which is quite strong, is that stimuli
are independent given the decision. The distributions need a total of:

|D|2 +

NH∑

i=1

|Hi|+

NL∑

j=1

|Lj |

 |D| (4.6)

The goal of the FEC is also to decrease the complexity of the distributions
but for the choice of the actions. The number of values for the distributions
needed for the FEC is:

|D|

NH∑

i=1

|Hi|+

NL∑

j=1

|Lj |

NA∑

n

|An| (4.7)

Because of the weaknesses of the IP and FEC, we introduced a simple
mechanism for the attention selection. The number of values for each attention
function is:

for θ:

NH∑

i=1

|Hi| (4.8)

for λ: |D|

NL∑

j=1

|Li| (4.9)

Then Chameleon model needs
(

NH∑

i=1

Hi

)

|D|2 (4.10)

values for the distributions for the choice of the decision and

NH∑

i=0

|Hi|

NR∑

u=1

|Ri|+

NL∑

j=0

|Lj |

NE∑

f=1

|Ej |

 |D| (4.11)

values for the distributions for the choice of actions.

102 PhD thesis — Fabien Tencé

4.2. ATTENTION SELECTION MECHANISM

The difference in the number of parameters for the example of section 3.1.3
is given in Table 4.3 and in figure 4.5. All the modifications we proposed
decrease the number of parameters by 36 to 40% compared to Le Hy’s model.
However, the results for this example cannot be generalised for all the prob-
lems. Indeed, the semantic refinement allows an important decrease in the
number of parameters whereas the attention selection makes the number of
parameters increase. There may be some applications of our model where it
needs more parameters than Le Hy’s.

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05

2.5e+05

3.0e+05

3.5e+05

4.0e+05

4.5e+05

 2 4 6 8 10 12 14 16 18 20

N
u
m

b
e
r

o
f
p
a
rm

e
te

rs

Number of decisions

Le Hy
Chameleon

Figure 4.5: Number of parameters for our application of the model in UT2004.
The reduction is given compared to Le Hy’s model.

No. of parameters

Full dependence between random variables 3× 1018

Independence of actions 8.6× 1015

Independence of actions & semantic refinement 6× 1010

Le Hy: independence of actions & IP & FEC 2.2× 105

Chameleon: indep. of ac. & sem. ref. & attention 1.4× 105

Table 4.3: For each hypothesis, the number of values for the definition of
the probability distributions with 10 decisions. Our model totals 36% less
parameters than Le Hy’s model. The Inverse Programming (IP) and Fusion by
Enhanced Coherence (FEC) are introduced in Le Hy’s thesis and the attention
selection mechanism is introduced in the previous chapter, section 3.2.

Final version 103

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.2.2.2 Increase in Expressiveness

As explained previously (see figure 4.6 for a remainder) the FEC cannot
express several simple behaviours. In our example, if the attractor are navi-
gation points and the actions forward/backward, the agent will randomly go
back and forth, barely moving because the “expected value” is to stay still.
There is also an other problem: if a random distribution is 0 for an action, the
product is also 0. For our example, one could set the value for going backward
when seeing an attractor in front to 0 and vice versa. In this case, the FEC
cannot be applied because the product would be 0 for all the probabilities.

10

10

︸ ︷︷ ︸
1
Z

∏

10

Figure 4.6: An illustration (same as figure 2.28) of the problem with FEC: on
the top, each distribution gives a believable action for a single attractor. On
the bottom the FEC does not give a believable action because the agent may
constantly switch between the two attractors, oscillating constantly.

The attention selection mechanism allows the model to solve the problem the
FEC suffers (see Figure 4.7) still breaking the complexity with the definition
of θ and λ as we saw in the previous section.

104 PhD thesis — Fabien Tencé

4.2. ATTENTION SELECTION MECHANISM

10

10

P
(
ET
∣
∣Dt, Lt

1

)
P
(
ET
∣
∣Dt, Lt

2

)

λ1(D
t, Lt

1) = 100 λ2(D
t, Lt

2) = 1

︸ ︷︷ ︸

λ1(D
t, Lt

1)P
(
ET
∣
∣Dt, Lt

1

)
+ λ2(D

t, Lt
2)P

(
ET
∣
∣Dt, Lt

2

)

10

Figure 4.7: Using the same example as 2.28, the attention selection mecha-
nism produces a better distribution in term of believability: on the top, each
distribution (blue line) gives a believable direction to go for a single attractor
(green dot). On the bottom the attention gives a believable action because
the agent focus on the attractor ahead instead of switching between the two
attractors like the FEC would do.

C
o
n
cl
u
si
o
n
o
f
4
.2 The attention selection mechanism combined with the semantic re-

finement allows to reduce the number of parameters for the behaviour
model and widen the range of behaviours the model can express. In-
deed, the model can now express simple but essential behaviour like
exploration. This makes our agent more likely to behave in a believable
way without the need of a huge number of parameters. We remind that
the less the parameters the faster should be the learning.

Final version 105

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.3 Learning The Environment

In
tr
o
d
u
ct
io
n
o
f
4
.3 For the agent to be able to adapt to unknown environments still

being able to move in it in a believable way, we use a modified version
of the GNG to learn a representation of the environment. Although
this model has already been used in a video game (Thurau et al., 2004),
its characteristics and parameters have not been studied for this kind of
application. As the results of the model is to be used by the imitation
EM, the learning by the GNG must be extremely fast to allow the EM
to work on accurate data.

P
la
n
o
f
4
.3 We will first present results and explain how we will measure their

characteristics and quality in section 4.3.1. Then we will study the
influence of each parameter in section 4.3.2. Finally, as the speed
of the learning is very important, we will show some possibilities to
increase the speed in section 4.3.4.

4.3.1 Measures and Representation of the Results

4.3.1.1 Application to UT2004

Tracking the position of the teacher in UT2004 is easily done using Pogamut.
The position can be given to the GNG for the learning. The difficult part is to
find parameters (see section 3.3.2) for the GNG to give a representation with
enough nodes for the agent to be able to move in the environment but not
too much to avoid overloading the agent with information. We have to choose
these parameters in a empirical way because we cannot find them analytically
nor use an optimization algorithm. The parameters giving representations
close to those usually found in video games are the following:

•
−−−−−→
attract1: Attraction force applied to the closest node first form the
input is 0.03 times the vector input− first

•
−−−−−→
attract2: Attraction force applied to first’s neighbours is 0.0006 times
the vector input− first

• ցErr: The error decay for the nodes is 6 Unreal Units (UUs)

• Err: The maximum error for the nodes is 16000 UUs

• Age: The maximum age for the edges is 75

In order to compare with other environments, the position in Unreal Tourna-
ment is given in UUs (1 meter is roughly equal to 50 UUs).

106 PhD thesis — Fabien Tencé

4.3. LEARNING THE ENVIRONMENT

4.3.1.2 Representation of the Environment

With those parameters we trained two GNGs on two different environments.
The first one is a simple environment, called Training Day, it is small and flat
which is interesting to visualize the data in two dimensions. The second one,
called Mixer, is much bigger and complex with stairs, elevators and slopes
which is interesting to see how the GNG behaves in three dimensions. The
results is given in figure 4.8 for the simple environment and in figure 4.9 for
the complex environment.

 1000

 1500

 2000

 2500

 3000

-2500 -2000 -1500 -1000 -500 0 500

p
o

s
it
io

n
 (

y
)

position (x)

GNG nodes
GNG edges

Figure 4.8: Result of a GNG learned from a player for a simple environment
after 30 minutes, top view.

0

1000

2000

3000

4000 -1000
0

1000
2000

3000

-600
-400
-200

0
200

GNG edges

x

y

GNG nodes

z

Figure 4.9: Result of a GNG learned from a player for a complex environment
after 1 hour.

Final version 107

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

As the complex environment is hard to visualize we focus mainly on the
simple one in this section to make the explanation easier to understand. The
GNG is however able to represent complex environments as well as simple
environments. In the figures, we showed the edges of the GNG to remind its
structure but only the nodes are used by the agent in the form of points of
interest.

4.3.1.3 Measures of the Time Evolution

In order to study the quality of the learned topology, we first choose to
compare the nodes of the GNG with the navigation points placed manually by
the environment creators. In the following node will always refer to the GNG
and navigation point to the representation made by the environment creators.
We do not want the GNG to fit exactly navigation points but they can help to
have a first evaluation of the learned representation. In the game UT2004, we
have those navigation points but our goal is that they are not longer necessary
for an agent to move in a new environment. The representations learned by the
GNG should also allows more believable behaviours as they already provide
an information on how players use the environment.

Figure 4.10 shows both the navigation points and the nodes of the GNG
for the simple environment. As we can see, the two representations look
alike which indicates that the model is very effective in learning the shape
of the environment. However, there are zones where the GNG’s nodes are
more concentrated than the navigation points and other where they are less
concentrated. We cannot tell now if it is a good behaviour or not as we should
evaluate an agent using this representation to see if it navigates well. Even
in the less concentrated zones, the nodes are always close enough to be seen
from their neighbours which allows at least node-to-node navigation.

As the qualitative evaluation of the representation is not sufficient, we in-
troduce two measures which principle is borrowed from statistics: sensitivity
and specificity.

Sensitivity Sensitivity measures how much the GNG successfully represents
the part of the environment the teacher used which can be seen as true posi-
tives. mindist(a,B) is the minimum distance between point a and points in
the set B. We computed this measure with the following formula:

Sensitivity ∝
1

∑

imindist(NPi, Nodes)
(4.12)

Where NPi is the ith navigation point. The higher the value the better the
GNG is.

108 PhD thesis — Fabien Tencé

4.3. LEARNING THE ENVIRONMENT

Figure 4.10: Comparison of nodes learned by the GNG (in red) with the
navigation points placed manually by the game developers (in green). The
environment viewed from the top is visible in the background.

Specificity Specificity measures how much the GNG did not represent the
part of the environment the teacher did not use which can be seen as true
negatives. We computed this measure using the following formula:

Specificity ∝
Number of Nodes

∑

imindist(Nodei, NPs)
(4.13)

The higher the value, the better the GNG is.

Number of Nodes In the following, we will also study the number of nodes
the GNG has because we do not want the GNG to have either too many or
too few nodes.

Figure 4.11 shows this three measures during the learning for the simple
environment. For the simple environment, the GNG reached a stable state
in approximatively 8 minutes of real-time simulation. For the complex envi-
ronment, it takes more time, about 13 minutes, but results still continue to
improve slowly afterwards. These durations do not depend on the computa-
tion power of the machine used to run the algorithm, they only depend on
speed of the simulation. In our experiments, we always use the default simu-
lation time of the game, allowing the players to play normally. Those results
show that it is possible to have an agent learn during the play.

As the attraction applied to the nodes for each input is constant, the GNG is
not converging to a totally stable state. The small variations in the distance in

Final version 109

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

 0

 15

 30

 45

 60

 75

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p
e
c
if
ic

it
y

Simple environment
Complex environment

Figure 4.11: Time evolution of the GNG number of nodes and the cumulated
distance between the GNG nodes and the navigation points.

figure 4.11 shows that the GNG nodes still move. This is a wanted behaviour,
allowing the GNG to adapt to a variation in the use of the environment: if
the teacher suddenly uses a part of the environment which he/she has not
explored yet, the GNG will be able to learn this new part even if the GNG
has been learning for a long time.

Even if the GNG is not converging, we do not want it to grow indefinitely.
We also want the model to give similar results for similar behaviours. Fig-
ure 4.12 shows that even after 10 hours, the number of nodes is not higher
than after 30 minutes and even that the solutions represent better the en-
vironment. It also shows that two runs of GNGs on similar behaviours give
similar results in term of shape and number of nodes. Needless to say that two
GNGs learning on the exact same data give the exact same representation.

Models learned on different teachers does not give the same results and
the time evolution is also quite different (see figure 4.13). Depending on the
behaviour the GNG can reach a stable state much more rapidly. For this
reason we will only compare GNG which learned on the exact same data in
the following experiments.

110 PhD thesis — Fabien Tencé

4.3. LEARNING THE ENVIRONMENT

 1000

 1500

 2000

 2500

 3000

-2500 -2000 -1500 -1000 -500 0 500

p
o

s
it
io

n
 (

y
)

position (x)

First learning
Second learning

Figure 4.12: Comparison of two GNGs which learned on the same environ-
ment, after a very long training time of 10 hours.

 0

 10

 20

 30

 40

 0 200 400 600 800 1000 1200 1400 1600

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p
e
c
if
ic

it
y

First GNG
Second GNG

Third GNG
Fourth GNG

Figure 4.13: Comparison of four GNGs learned on different players.

Final version 111

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.3.2 Influence of the Parameters on the Learning

We listed fives parameters for the GNG and gave values for our implemen-
tation to give similar results to representations used in UT2004. In order to
be able to find those parameters we will now detail the influence on the results
for each of the parameters and on the time taken to give an accurate represen-
tation. As each of the parameters has an influence on several characteristics
of the GNG, we will explain how to choose the parameters after the study of
each of them.

4.3.2.1 Attraction of the Winner Node

When an input is given to the GNG, the closest node, the winner, is moved
by a certain amount toward this input. We will analyse the impact of the
attraction force applied to the winner node with the results in figure 4.14.

Number of Nodes A high force makes the GNG produce less nodes, be-
cause as the nodes move closer to the input, their error is lower. Nodes are
thus less likely to reach the maximum error causing a new node to be added.
Similarly, a low force makes the GNG produce more nodes.

Sensitivity A high attraction force makes the nodes move more. As a result,
the GNG is less stable which cause variations in the representation shown by
a less stable sensitivity. There is no big difference in the final sensitivity,
the bigger sensitivity for the low force must certainly comes from the higher
number of nodes.

Specificity As for the sensitivity, a high attraction makes the value fluctuate
showing that the GNG is not very stable. However the attraction must be
strong enough to attract node which are not representing the environment: a
low attraction let too many useless nodes resulting in a low specificity.

Time to Stability A strong attraction makes the model converge more
rapidly to a stable state because the nodes are more rapidly spread across
the whole environment. This can be seen with the stabilization of the three
measures earlier for a high value of the parameter than for the low value.

4.3.2.2 Attraction of the Neighbours of the Winner Node

Once the winner node has been attracted toward the input, the same is done,
with a lesser force, to all the neighbours of the winner. The time evolution of
the three measures is given in the figure 4.15.

Number of Nodes The force applied of the neighbours has no or very few
impact on the number of nodes the GNG creates.

112 PhD thesis — Fabien Tencé

4.3. LEARNING THE ENVIRONMENT

 0

 10

 20

 30

 40

 0 200 400 600 800 1000 1200 1400 1600

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60
S

p
e
c
if
ic

it
y

Normal winner attraction force
Low winner attraction force
High winner attraction force

Figure 4.14: Comparison of the time evolution of GNGs which learned on the
same data but have different values for the adjustment of the winner node
toward the input. The higher the attraction, the faster the GNG converges,
the less nodes the GNG has and the less stable is the representation.

Sensitivity As for the force applied to the winner, the higher the force
applied to the neighbour, the less stable is the GNG. With a low force, the
model is more stable and have a better sensitivity because the GNG is more
able to generalise.

Specificity However a low attraction force does not allow the GNG to move
foreign nodes closer to where the teacher is. As a consequence, the specificity
is better with a high force, able to move “false positives” nodes toward a good
location.

Time to Stability The attraction force of the neighbours seems to have no
influence on the time the GNG takes to reach a stable state. However a high
force makes the GNG so unstable that it is difficult to determine when the
structure of the GNG finished to evolve.

Final version 113

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

 0

 10

 20

 30

 40

 0 200 400 600 800 1000 1200 1400 1600

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p
e
c
if
ic

it
y

Normal neighbours attraction force
Low neighbours attraction force
High neighbours attraction force

Figure 4.15: Comparison of the time evolution of GNGs which learned on the
same data but have different values for the adjustment of the neighbours of
the winner node toward the input. The higher the attraction, the less stable
is the representation.

4.3.2.3 Maximum Error for Nodes

When the nodes has been moved, if the winner node exceeds Err, a new
node is created. We will now study the influence of this amount, the maximum
error for a node with the results given in figure 4.16.

Number of Nodes This parameter has a big impact on the number of
nodes. The lower the error, the more nodes are created because the more
likely they are to exceed the value.

Sensitivity Because a low error makes the GNG produce more nodes, the
sensitivity is higher. Indeed, the higher the number of nodes, the more likely a
node will be close to a navigation point. Therefore the maximum error seems
to have no direct influence on the sensitivity.

Specificity As we already saw, a low error makes the GNG creates nodes
more often even if they are not useful for the accuracy of the representation

114 PhD thesis — Fabien Tencé

4.3. LEARNING THE ENVIRONMENT

of the environment. Therefore, a low error makes the GNG specificity higher
by lessening the number of useless nodes.

Time to Stability The maximum error does not have a very important
impact on the time the GNG needs to reach a stable state. It seems however
that a low error makes the GNG converge a bit faster. This may be due to to
fast creation of node across the environment.

 0

 10

 20

 30

 40

 0 200 400 600 800 1000 1200 1400 1600

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p
e
c
if
ic

it
y

Normal nodes maximum error
Low nodes maximum error
High nodes maximum error

Figure 4.16: Comparison of the time evolution of GNGs which learned on the
same data but have different values for the maximum error admitted for nodes
before the creation of another node in the GNG. The higher the maximum
error allowed for a node, the less nodes the GNG has.

4.3.2.4 Maximum Age for Edges

Each time a winner node is selected, each edge connected to this node sees
its age incremented by one. If the age exceeds Age, the edge is deleted. The
influence of this parameter will be studied with the figure 4.17.

Number of Nodes The maximum age has no significant influence on the
number of nodes.

Final version 115

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

Sensitivity The maximum age has no significant influence on the sensitivity.
Indeed, the small difference comes from the difference in number of nodes.

Specificity Surprisingly, the parameter has no influence on the specificity.
We could have expected that edges lasting only a few time step would leave
nodes alone where they do not represent the environment correctly. A more
detailed study should be done to validate this result.

Time to Stability The maximum age has no influence on time the GNG
needs to be stable.

 0

 10

 20

 30

 40

 0 200 400 600 800 1000 1200 1400 1600

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p
e
c
if
ic

it
y

Normal edges maximum age
Low edges maximum age
High edges maximum age

Figure 4.17: Comparison of the time evolution of GNGs which learned on the
same data but have different values for the maximum age admitted for edges
before they are deleted. No change on the results has been noted.

4.3.2.5 Error Decay

Each time step, the GNG reduces the error for each node by ցErr. The time
evolution of the three measure depending on the value of this parameters is
given in figure 4.18.

116 PhD thesis — Fabien Tencé

4.3. LEARNING THE ENVIRONMENT

Number of Nodes A low error decay makes the nodes more likely to reach
the Err, thus makes the GNG create more nodes. Similarly, a higher decay
makes the GNG create less nodes.

Sensitivity The difference in the sensitivity comes mainly from the differ-
ence in the number of nodes, thus the parameter does not affect directly the
sensitivity.

Specificity A high decay increases the specificity of the model. We are
not sure about the reasons of this behaviour. It may be because the model
reaches faster its maximum number of nodes, thus the GNG can improve the
representation without the disturbance of new nodes.

Time to Stability The GNG reaches a stable state faster with a high decay
because the error shared between all the nodes is rapidly compensated by the
decay. Similarly, a low decay makes the GNG very slow to converge because
new nodes are added long after the beginning of the learning.

 0

 10

 20

 30

 40

 0 200 400 600 800 1000 1200 1400 1600

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p
e
c
if
ic

it
y

Normal nodes error decay
Low nodes error decay
High nodes error decay

Figure 4.18: Comparison of the time evolution of GNGs which learned on the
same data but have different values for the decay of the error of the nodes.
The higher the error decay, the less nodes the GNG has and the higher the
specificity.

Final version 117

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.3.3 How to Choose the Parameters

The parameter Age can be chosen without problem because it does not
influence the results. A value of 0 should be avoided as it would impede the
attraction of neighbours which has an impact on the results.

A high ցErr can be then used to reduce the time of converge of the model.
However this value is linked to the Err, so if the decay is very high, the
maximum error must be too.

A rather high force should be applied to the winner, keeping in mind that
a too high value will make the GNG less stable. If the teacher often discovers
new areas, the force should be high to allow the GNG to adapt more quickly.

In a similar manner, the force applied to the neighbours should be high
enough to avoid having useless or even harmful nodes for the believability.
However a high force will also makes the GNG less stable.

Finally, the Err can be chosen according to the value of ցErr so that the
representation gives enough nodes for the agent to be able to move in the
environment but not too much to avoid overloading it with information. The
notion of “overloading” depends mainly on the behaviour model: if it is capa-
ble of handling much information, Err can be set to a low value.

4.3.4 Increasing the Speed of the Learning of the
Representation

As explained at the beginning of this section, the speed of the learning of
the representation of the environment is very important. If the agent has not a
correct representation of the environment, he cannot move in it and worse, he
cannot learn any behaviour. Indeed, the learning algorithm cannot associate
the actions to the stimuli if the stimuli are not yet defined. We will see how
to increase the speed of the learning without compromising the quality of the
representation.

4.3.4.1 Learning on Several Teachers

The GNG can handle inputs from several teachers. Figure 4.19 shows our
three measures for GNGs trained on one, two, three and four teachers. The
learning multiple teachers is a bit faster. Moreover, learning with multiple
teachers gives GNGs with better results in sensitivity and specificity, the num-
ber of nodes been the same. As a consequence, the GNG should be learned
on the most players available to have better results. Moreover, the number of
teachers should be higher for vast environments to speed up the learning.

118 PhD thesis — Fabien Tencé

4.3. LEARNING THE ENVIRONMENT

 0

 10

 20

 30

 40

 0 200 400 600 800 1000 1200 1400 1600

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p
e
c
if
ic

it
y

1 teacher
2 teachers
3 teachers
4 teachers

Figure 4.19: Comparison of the time evolution of GNGs which learned on
simultaneously 1, 2, 3 and 4 different teachers. The more the teachers, the
faster the learning but also the more stable is the representation.

4.3.4.2 Input Frequency

The last evaluation assesses the impact of the frequency at which the demon-
strator’s position is given to the GNG. For the previous experiments, the
frequency was set at 10Hz. Figure 4.20 shows the differences for 1, 5, 10
and 20 Hz (Pogamut does not allow higher than 20Hz). Results indicate that
the higher the frequency, the faster the GNG stabilizes and the better the
results in term of sensitivity and specificity are. With high frequencies the
number of nodes is a bit higher but the main problem is the stability of the
representation. The sensitivity and specificity vary a lot at 20Hz. A variable
frequency could be used to speed up the learning at the beginning and to
avoid instability when most of the learning is done.

Final version 119

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

 0

 10

 20

 30

 40

 0 200 400 600 800 1000 1200 1400 1600

N
o
.
o
f
n
o
d
e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e
n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p
e
c
if
ic

it
y

10Hz
1Hz
5Hz

20Hz

Figure 4.20: Comparison of the time evolution of GNGs which learned at 1,
5, 10 and 20Hz. The higher the frequency, the faster the learning but the less
stable is the representation.

C
o
n
cl
u
si
o
n
o
f
4
.3

The GNG proves to be very efficient at learning the topology of an
environment by imitation. The learning is quite fast, even for complex
environments. Although the model does not converge toward a unique
and totally stable solution, the representations are similar in shape
and accuracy. The advantage of this constant evolution is that the
model can adapt quickly to changes in the use of the environment.
We detailed the influence of each parameter and explained how to find
good values for them.

120 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

4.4 Learning the Parameters of the Model with an
EM Algorithm

In
tr
o
d
u
ct
io
n
o
f
4
.4 In the previous chapter we have redesigned the learning algorithm

from scratch to allow the agent to learn all the parameters of the model
by imitation in a much more detailed manner. The goal is to make the
agent able to evolve [B9: Evolution], adapting to new games and new
conditions with minimum work from the character designers. We also
want the algorithm to be fast for the player to notice the evolution
[B10: Fast Evolution].

P
la
n
o
f
4
.4

In this section, we will first study the influence of the data given
to the EM: the observation sequences and the model parameters (sec-
tion 4.4.1). Then we will study the convergence of a learning on one
sequence and multiple sequences (section 4.4.2). Finally we will try to
evaluate the resulting behaviours with different objective and subjec-
tive measures (section 4.4.3).

4.4.1 Impact of the EM and Parameters on the Results

Observation Sequences The quality of the results given by the learning
algorithm depends on the data given to it. The observations must give accu-
rate information on the interactions between the teacher and the environment.
For the model to reflect the behaviour of the agent, the information given to
the learning algorithm is the one the agent would have if it was into the shoes
of the teacher. We will see however in section 4.4.1.1 that giving the raw
observations may not give very good results because the reaction time of the
teacher must be taken into account.

Model Parameters Initialization The initial model parameters have also
an important impact on the quality of the results. As we did not manage to
make the algorithm learn the attention function, we specified them using our
knowledge of the game. For the distributions, we used a random initialisation,
which is a classic method when no knowledge is given a priori to the model.
The last parameter is the number of decisions in the model. We will study
the impact of the number of decisions in section 4.4.1.2.

Likelihood and Time Measures In the following, the log-likelihood of
the model parameter will be studied. It corresponds to the function Q(Φ,Φn)
(see equation 3.24). The higher the value, the more likely the model and its
parameters will generate the sequence of observations. We will also give some
measures of the time taken for the algorithm to converge. The experiments
were run on a machine with an Intel Xeon E5630 2.53 GHz processor and 12GB

Final version 121

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

memory. In our implementation, an EM algorithm uses one of the four cores
the processor has, so the time given is for one core. As a consequence, four
EM can run in parallel, one one each core. Thus, if the time of a learning is
four time the time during which the sequence was recorded, the whole learning
algorithm can handle all the observations without delay. In other word the
algorithm can update the parameters with all the data without storing them
for latter use.

4.4.1.1 Impact of the Teacher’s Reaction Time

When the teacher is observed by the learning algorithm, a snapshot of the
values of the stimuli and the actions is taken at each time step t. However,
the teacher actions at time t may not reflect a reaction to the stimuli at time
t. We must then take into account the reaction time of the teacher, allowing
our model to find the relation between stimuli and actions which are actually
related. This problem is linked to the requirement [B2: Reaction time]: the
model and the learning algorithm must approximate the teacher’s reaction
time to able to provide believable behaviours. Figure 4.21 shows how the
reaction time affects the use of the observation sequences.

Figure 4.21: Example of the meaning of reaction time for a simple sequence
of 5 observations. The arrows give the association of stimuli/actions given
to the learning algorithm to update the model parameters. Considering the
observation are taken every 100ms, the plain arrows represent a reaction time
of 0ms, the long dashed arrows represent a reaction time of 100ms and the
short dashed arrow a reaction time of 200ms. Note that a small part of
information is lost when the reaction time is increased.

The reaction time may not be the same between individuals and may also
vary for one individual over the time. However, we find that the simplest
solution, using a constant reaction time for all the teachers, give the best
results. Other methods were tried, like associating the more likely action to
the stimuli according to the current model parameters, or aligning variations
in both stimuli and actions but they did not make the learning algorithm
converges toward parameters more likely to generate the observations. The
choice of the reaction time for a game has to be done once and for all using a
graph like figure 4.22.

122 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

According to figure 4.22, the reaction time of a player is very variable. The
reaction time of 300ms gives the maximum likelihood, but the difference is not
very important with the likelihood found for reaction times between 400ms
and 800ms. For now, we will use a reaction time of 300ms in the following
experiments, but a variable time of reaction could improve the results. Note
that a reaction time of 100ms to 200ms is extremely fast. However, the fact
the teacher is able to anticipate events may be interpreted by the learning
algorithm as very fast reaction times.

In order to show that the results of the learning are really impacted by the
reaction time, we studied the variations of the log-likelihood depending on the
reaction time for a UT2004 agent teacher (all the other experiments are done
with human teachers). Figure 4.22 show that best log-likelihood are achieved
for reaction times between 0 and 200 ms. These results are coherent with the
fact that UT2004 agents do not model the reaction time. It also shows that
the players’ behaviours are much more complicated to learn, their reaction
time being much more variable.

-992

-990

-988

-986

-984

-982

-980

0 0.5 1 1.5 2

Reaction time (s)

Mean log-likelihood

-620

-618

-616

-614

-612

-610

-608

Pl
ay

er
 lo

g-
lik

el
ih

oo
d

UT
20

04
 a

ge
nt

 lo
g-

lik
el

ih
oo

d

Player
UT2004 agent log-likelihood

Figure 4.22: Mean log-likelihood of the final result after learning on 105 dif-
ferent sequences of observations of the behaviour of a player and 100 different
sequences of observations for a UT2004 agent. The reaction time varies from
0 second to 2 seconds and the model has 10 decisions.

Final version 123

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.4.1.2 Impact of the Number of Decisions

The mechanism of decisions allow the agent to produce logical sequences of
actions, to make actions according to its needs and to simulate a short time
memory. As expected, the figure 4.23 shows that the more the decisions, the
better the model can express the observed behaviours. Indeed, the model is
more complex and can make the agent behave in a more subtle way. How-
ever, as the number of parameters increase with the number of decisions (see
section 4.2.2.1), the time needed for the algorithm to converge is longer (see
figure 4.23). Too many decisions should be avoided to make the learning fast
and fulfil the requirement [B10: Fast Evolution].

-1300

-1250

-1200

-1150

-1100

-1050

-1000

-950

-900

 0 2 4 6 8 10 12 14 16 18 20
 0

 50

 100

 150

 200

 250

 300

 350

L
o

g
-l
ik

e
lih

o
o

d

S
e

c
o

n
d

s

Number of decisions

Mean log-likelihood
Mean time to converge

Figure 4.23: Mean log-likelihood of the final result and time to converge for
105 different sequences of observations. The number of decisions varies from
1 to 20 with a fixed reaction time of 300ms.

According to the results, increasing the number of decisions over 10 does
not improve the results in a significant way. For 10 decisions, the algorithm
takes an average 88 seconds to converge for a sequence. The mean duration
of the sequences is 23 seconds. As explained in the beginning of section 4.4.1,
the convergence time must be lower than 4× 23 = 92 seconds for the learning
to be in “real time” on the computer we used for the tests. Therefore, we
can consider that 10 decisions is a good choice for the rest of the experiments.
We remind the reader that agents originally coded in the UT2004 game use
approximatively 10 main states.

124 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

4.4.2 Characteristics of the EM

According to the two previous studies, we will use 10 decisions and a reaction
time of 300ms for the following experiments. For now, we have only studied the
final results and we considered the total likelihood. We will now see how the
likelihood evolve for one sequence of observations and for several sequences.
We will also look at the likelihood of each distribution to see how they evolve
during the learning.

4.4.2.1 Evolution of the Likelihoods

The function Q, is the function which is optimized by the EM algorithm.
The higher it is, the higher is the log-likelihood. For this reason, in the
manuscript the term log-likelihood is often used in lieu of Q. The function
Q is composed of several parts (equations 3.31, 3.32, 3.33, 3.34, 3.35 and
3.36), some of which are independently optimized. We will use the term total
log-likelihood for Q and partial log-likelihood for the cited equations. In the
following we will study the evolution of the different log-likelihoods during the
learning.

The following graphs represent the log-likelihood (total or partial) for 20
different sequences. In order to be able to compare the results, we truncated
the sequences to 10 seconds. We also initialised the learning algorithm with
the same parameters which are chosen randomly at the beginning of the ex-
periment.

Total Likelihood Figure 4.24 shows the value of the total log-likelihood for
each iteration of the EM. The first iterations make the value increase sharply,
after 10 iterations the increase becomes very slow, stabilising between -500
and -300. As the value is a log, this likelihood is very small. However, as we
will see in the following, it corresponds to parameters which fit well to the
data. We can also see that some learnings finish faster, in about 30 iterations,
while others take around 100 iterations.

Markovian Distributions Likelihood Figure 4.25 shows the evolution of
the partial log-likelihood for equations 3.35 and 3.36. The likelihood of m1,
the distribution giving the initial decision, converges to values very close to 0
meaning the distribution fits perfectly to the data. It usually takes no more
than 15 iteration to converge but in some cases it can take much longer. For
m, the distribution giving the decision for the time steps after the first, the
convergence is usually slower, the value stabilizing in 25 iterations. Depending
on the sequence of observations, the final result is variable, from -40 to -20.
Globally, the Markovian distributions converge to solutions with a quite high

Final version 125

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

likelihood but some a priori knowledge could reduce the time to converge and
improve the final results.

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0 20 40 60 80 100 120

L
o

g
-l
ik

e
lih

o
o

d

Iteration

Log-likelihood

Figure 4.24: Time evolution of the total log-likelihood for 20 learnings on
sequences of same length. Each learning starts the same initial distributions.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 20 40 60 80 100 120

L
o
g
-l
ik

e
lih

o
o
d

Iteration

Log-likelihood m1
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20

 0

 0 20 40 60 80 100 120

L
o
g
-l
ik

e
lih

o
o
d

Iteration

Log-likelihood m

Figure 4.25: Time evolution of the partial log-likelihood for 20 learnings on
sequences of same length for m1 (left) and m (right) distributions. Each
learning starts the same initial distributions.

Output Distributions Likelihood Figure 4.26 shows the evolution of the
partial log-likelihood for equations 3.31 and 3.32. These distributions con-
trol both the reflexive and external actions of the agent. Both distributions
converge very fast, in less than 10 iterations, toward a good solution with

126 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

a log-likelihood between -30 and 0. Even if the result is not “perfect” (a
log-likelihood of 0), the results are very satisfying.

-700

-600

-500

-400

-300

-200

-100

 0

 0 20 40 60 80 100 120

L
o
g
-l
ik

e
lih

o
o
d

Iteration

Log-likelihood o
-300

-250

-200

-150

-100

-50

 0

 0 20 40 60 80 100 120

L
o
g
-l
ik

e
lih

o
o
d

Iteration

Log-likelihood n

Figure 4.26: Time evolution of the partial log-likelihood for 20 learnings on
sequences of same length for o (left) and n (right). Each learning starts the
same initial distributions.

Attention Functions Likelihood Figure 4.27 shows the evolution of the
partial log-likelihood for equations 3.33 and 3.34. These are the partial log-
likelihood of the attention functions. As they are not optimized during the
algorithm, their values do not converge toward a good solution. Due to the
optimization of the other distributions, the log-likelihood of the attention
function increase a bit in the first iterations. They are mainly responsible
for the low total log-likelihood, their value being comprised between -230 and
-60 (we remind the reader that the total log-likelihood converges to values
between -500 and -300).

-260
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60

 0 20 40 60 80 100 120

L
o
g
-l
ik

e
lih

o
o
d

Iteration

Log-likelihood lambda
-220

-210

-200

-190

-180

-170

-160

-150

 0 20 40 60 80 100 120

L
o
g
-l
ik

e
lih

o
o
d

Iteration

Log-likelihood theta

Figure 4.27: Time evolution of the total log-likelihood for 20 learnings on
sequences of same length for λ (left) and θ (right). The value of the attention
function are not optimized during the algorithm and we specified their values.

Final version 127

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

Most distributions converge well to a log-likelihood between -45 and 0. The
simplest distribution, m1 converges to log-likelihoods very close to 0 because
it has few values and the learning algorithm can easily choose an arbitrary
decision to begin with. The n and o distributions see their likelihoods increase
strongly. Even if they can represent a high number of values, the algorithm
behaves well. The Markovian distribution m does not increase as well as the
others. It may comes from the fact that decisions are hidden variables and
thus hard to estimate. Finally, the non-optimization of the attention functions
hinder the efficiency of the algorithm. However, as we specified them knowing
how the agent must behave, they can represent well the general behaviour of
the teacher but not the particular sequence of observation.

4.4.2.2 Effect of the Merging of the Parameters

The merging of the parameters allows the agent to gather all the results
from the EMs into a global set of parameters (see section 3.4.4.3). These
global parameters will be used in the model controlling the agent. The idea
is to learn while the teacher is still playing, treating short sequences instead
of waiting the end of the demonstration to learn the whole behaviour.

The problem is that each learning by the EM find the optimal parameters
for one sequence of observation. By using only limited information, the pa-
rameters suffer from what is called over-learning : the parameters fit too well
the data and do not generalise to similar situations. By mixing the learned
parameters, we can make the agent generalise over more complete knowledge
of the teacher’s behaviour.

In order to measure if the merging procedure is indeed allowing the agent
to generalise we use a standard test for categorization models. 90% of the
sequences of observations are used for the learning while the other 10% is
used to test if the Chameleon model them well. Figure 4.28 shows three
measures:

• Mean initial likelihood: the mean log-likelihood of the global parameters
to generate all the test sequences.

• Mean final likelihood: the mean log-likelihood of the parameters learned
on the test sequences using global parameters as initialisation.

• Mean learning time: the mean time needed for the learning on the test
sequences.

128 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

-4000

-3500

-3000

-2500

-2000

-1500

-1000

 0 10 20 30 40 50 60 70 80 90
 10

 20

 30

 40

 50

 60

 70

 80

L
o

g
-l
ik

e
lih

o
o

d

S
e

c
o

n
d

s

Number of sequences used for the learning

Mean initial likelihood
Mean final likelihood
Mean learning time

Figure 4.28: Effect of the merging of multiple results on the log-likelihood and
time to learn for test sequences. The mean log-likelihood for the test sequences
is given before and after the learning using the global parameters produced
by the learning on n sequences. The mean learning time is also given for the
test sequences. 95 sequences were used for the learning and 10 for the testing.

Figure 4.28 shows that the merging of all the parameters has an impact on
all the three measures. The mean initial log-likelihood increases from -3500
to around -2000 in only two learnings and then stays between -2750 and -
2250. This means the learning and the merging of the parameters allows the
global parameters to represent better the behaviour of the teacher even for
observations which were not used for the learning. The initial log-likelihood
is of course lower than the final log-likelihood which is between -2250 and -
1000. The final log-likelihood decreases a from -1000 to around -1400, meaning
that the global parameters are not as good as random parameters for the
initialisation of the EM. Whether it is a good or a bad behaviour is difficult
to assess now but it indicates that the global parameters may be improved
to make the EM reach better local maximum. Finally, the learning time is
reduced from 70 seconds to around 50 seconds which allows an even faster
learning, making the learning algorithm able to cope with lots of sequences,
from several teachers for instance.

Final version 129

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.4.2.3 Sequence of Decisions

With the estimators of the EM, it is possible to have for each time step the
probability for the model to be in certain configurations of hidden states. It
may be useful to study the sequence of decisions the teacher followed in order
to study his/her behaviour. As the decisions do not correspond to a defined
behaviour before the learning, it is not possible to understand the sequence of
decisions a priori. A solution is to use an annotated sequence of observations
to associate decisions with events in the environment. Table 4.4 shows the
sequence of the more likely decisions and some stimuli and actions.

t Decision Enemy Shooting Weapon Lateral

Enemy: Yes No

Shooting: Primary Secondary No

Weapon: Assault rifle Link gun

Lateral: Right Left Still

Table 4.4: Sequence of decisions and values of some stimuli and actions for
a sequence of observations. The decisions are those the more likely to be
picked (γtd is the higher) according to parameters learned on 100 sequences of
observations.

The teacher begins with the blue decision which seems to correspond to a
exploration with lateral movement. Then it switches to the magenta decision
where it explores without lateral movement. During this decision the teacher

130 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

finds a new and more powerful weapon. After some time steps, it switches to
the cyan decisions, equipping the new weapon. Once an enemy appears, the
teacher switches to the red decision, attack, and uses its weapon in secondary
mode. When the enemy is defeated (or disappear), the teacher changes to
the orange decision which seems to be a careful state. Then the teacher
begins again its exploration, maybe hunt, with the purple decision (no lateral
movements) and green decision (lateral movement). During its exploration,
it seems to miss the enemy, actually seen it but not reacting to its presence.
When it finally notices the enemy, the teacher attacks it with the primary
mode of the weapon (dark red decision) and secondary mode (red decision).
During some time steps, the teacher seems to try to aim at the enemy without
success (careful orange decision) and then goes back to the red attack decision.
Finally, the sequence ends, meaning the teacher was defeated by the enemy.
This example shows that it is possible to tag the decisions manually and then
be able to describe automatically the behaviour of a teacher.

With the previous studies, we observed that the implementation of the EM
is converging toward a local maximum which is conform to the theory. The
behaviour of the merging method is quite satisfying, converging rapidly toward
a stable solution. However, this solution may not be the best one because it
impede the learning to reach the best local maxima for each sequence. As
the method allows an increase in the speed of learning, the whole learning
algorithm can handle sequences coming from more than one teacher without
delay. Finally, the estimators from the EM allows the identification of some
teacher’s behaviours. It could be used to guess the other players’ intentions
and could allow the agent to anticipate [B7: Planning].

4.4.3 Resulting Behaviours

The previous studies gave an overview of the characteristics of the learning
algorithm, the following ones aim at studying the behaviours produced by the
model with the learned parameters. The final goal of the four propositions
(semantic refinement, attention selection, learning of the environment and
learning of the behaviour) is to make the agent produce believable behaviours.

In the following experiments, the model learned on one unique teacher using
10 decisions. It also considered that the teacher had a constant reaction time of
300ms. The results given are after learning on the teacher during 40 minutes.
The teacher played against a UT2004 agent in the environment named in the
game Training Day.

Final version 131

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

4.4.3.1 Study of the Distributions

Before analysing the whole behaviour we can study the distributions of
actions to see if they really look like the ones in figure 2.15 and in (Le Hy,
2007, page 47, in French). We will focus on the o distributions, giving the
external actions according to a low-level stimulus and the current decision.
the n distributions is much more simple to learn, therefore we will not study
them.

In the following, we will show distributions for the actions:

• Yaw, in red, gives the probability for the agent to turn left and right by
a certain amount of degrees. The graph can be seen as a view from the
top of the agent which is facing 0◦: 0◦ means the agent does not turn,
angles less than 180◦ mean the agent turn right and angles more than
180◦ mean the agent turn left.

• Run and lateral, in blue, gives the probability for the agent to move
forward, backward and slide left and right. As for the yaw, the graph can
be seen as a top view of the agent: 0◦ is forward, 180◦ backward, 90◦ right
and 270◦ left. The sum of the distribution is comprised between 0 and
2 because the agent may choose not to move and because it represents
two distributions: lateral and forward/backward.

• Pitch, in green, gives the probability for the agent to move its head up
and down. Unlike the other distribution, the graph can be seen as a side
view of the agent which is facing 90◦: 90◦ means the agent looks at the
horizon, 0◦ means the agent looks straight up and 180◦ straight down.

For the same decision, the distributions shown in figure 4.29 confirms that
the agent does not react in the same way for different positions of a same
object. In the example, if a weapon is at the left, close and at the same height
as the agent (left figure), the agent will go forward, move laterally left and not
turn. If the weapon is at the right and at the same height (right figure), the
agent will probably not turn go forward and move laterally right. In the two
cases, the agent will look in the direction of the horizon which is the direction
of the weapon in term of pitch. In the two cases, the agent will surely pick
the weapon.

For the same stimulus but different decisions, the agent may act differently.
The figure 4.30 shows the distributions for an enemy player on the right of
the agent, moving to the right, at the same height and at an average distance
for two different decisions. In the first decision (left figure), the agent moves
forward and turn right in order to aim at the enemy and reduce the distance
to the player. In the second decision, the agent turns also right but may move

132 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

forward or backward and move laterally to the left in order to aim at the
enemy but keep the same distance to the player. In the two cases, the agent
looks at the direction of the horizon as it is the direction of the enemy.

Yaw Run & lateral Pitch

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Yaw Run & lateral Pitch

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Figure 4.29: Two distributions of movement actions for the same decision and
same kind of stimuli but different values. The left graph is for a stimulus
representing a weapon on the left of the agent and very close. The right graph
is for a stimulus representing also a weapon but it is on the right of the agent
and is also very close. The weapon is about the same height as the agent.

Yaw Run & lateral Pitch

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Yaw Run & lateral Pitch

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Figure 4.30: Two distributions of movement actions for the same stimulus but
different decisions. The two graphs are for stimulus representing an enemy
player, right of the agent, moving to the right of the agent and at an average
distance.

Final version 133

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

All the learning do not gives good results. For example in the figure 4.31,
the distributions are given for a navigation point at the left of the agent. In
one decision (left graph), the agent will move toward the navigation point
by moving laterally to the stimulus, but in an other, the agent will just go
forward. We remind that each distribution gives the action to do for one
stimulus, without taking the others into account. The second distribution
is thus obviously “wrong” because it will make the agent go in a direction
potentially harmful for the agent.

Yaw Run & lateral Pitch

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Yaw Run & lateral Pitch

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Figure 4.31: Two distributions for the same stimulus but different decisions.
The stimulus represent a navigation point on the left of the agent, same height
and average distance.

The study of the movement distributions shows that some knowledge is
assimilated by the model parameters. The role of the decision becomes obvious
with different tactics being used according to the state of the agent. However
some distributions do not represent a believable behaviour at all. The reasons
can be many: problem with reaction time, bad attention values, etc.

4.4.3.2 Signatures

In a previous study (Tencé and Buche, 2008), we presented a method to spot
differences in the behaviour of players and agents. While it is not proved to be
an indicator of believability, it may be used to spot non-believability. The idea
is to monitor the movements of avatars and to extract some statistics. These
statistics are the signatures of the behaviours, similarities can be spotted
between agents and between players. The most important information is the
differences spotted between players and agents which often reveal problem

134 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

in the behaviour of the agent. It is also possible to represent the distance
between the signatures, visualizing the similarities in a more natural way.

In the following we will use three measures:

• Velocity relative to facing direction: angle between the velocity vector of
the avatar and the facing direction. In figure 4.32 it is the angle between
V t and Dt.

• Direction change: angle between two consecutively monitored absolute
facing direction. In figure 4.32 it is the angle between Dt and Dt+1.

• Velocity change: angle between two consecutively monitored absolute
velocity. In figure 4.32 it is the angle between V t and V t+1.

For each of these angle, the number of time they have being monitored is
counted and then is divided by the number of time the avatar has being
monitored: a value of 1 means that the angle value was monitored 100% of
the time, a value of 0.5 means 50%, etc. The frequency of the monitoring is
10Hz.

x

y

D D

V

V

t

t

t+1

t+1

Figure 4.32: Scheme of an avatar viewed from top at two following time steps

t and t+ 1.
−→
D is the facing direction of the avatar which is also the direction

in which the avatar aims and
−→
V is the velocity vector.

We will compare the signatures for a player, a Chameleon agent, a Le Hy
agent and an original UT2004 agent. The idea is to spot differences which
represent noticeable differences in the behaviour, the objective being to be as
close as possible to the player’s signatures.

For the first signature (figure 4.33, top), we can see that for 0◦, the UT2004
is the closest to the player, Le Hy and Chameleon are not moving forward
enough. The player has a tendency to move laterally more to the right than
to the left. Because Chameleon is the only model which parameters were

Final version 135

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

Velocity relative to facing direction

Chameleon Le Hy Player UT2004

0 0.2 0.4

0

45

90

135

180

225

270

315

Direction change

Chameleon Le Hy Player UT2004

0 0.1 0.2

0

4 5

9 0

135

180

225

270

315

Velocity change

Chameleon Le Hy Player UT2004

0 0.1 0.2

0

4 5

9 0

135

180

225

270

315

Figure 4.33: Signatures (Tencé and Buche, 2008) of a Chameleon agent, a Le
Hy’s agent, a player and an original UT2004 agent.

learned by imitation, it is the only one that reflect this habit. All the agents
do not move enough backward. Finally, Le Hy’s model seems to move too
much backward and laterally at the same time compared to the player. The
second signature (figure 4.33, bottom left) shows much less differences. Le
Hy’s model is making too much sudden turns as the UT2004 agent, in a lesser
extent. Despite the imitation learning, Chameleon have tendencies to turn
more right than left whereas the player turn slightly more to the left. The
last signature (figure 4.33, bottom right) shows that all the agents are far
from the player when it comes to to change in the velocity vector. The player
seems to change very often the direction of the lateral movements while the
other agents move less. Le Hy’s agent seems to often change from forward to

136 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

backward direction, maybe because of the problem of the FEC but Chameleon
suffers from the same problem, to a lesser extent.

In order to better visualize the differences between the signatures, we mea-
sured the distance between each signature with the Earth Mover’s Distance
(EMD). This distance allows the measure to take into account that turning
80◦ right and 90◦ right is almost the same but 90◦ right and 90◦ left is very
different. So as to visualise the distance we represent the signatures on a plane
using the Multidimensional Scaling (MDS) method. Both the EMD and MDS
are detailed in (Tencé and Buche, 2008). The idea is that close (Euclidean
distance) representations of the signatures in the MDS are close in in the EMD
distance and thus are similar, the contrary being also true. As it is only a
question of relative distance to the other, the graphs do not have any tics or
values on the axis. In order to have a more complete study of the signatures
we represent the signatures for the Chameleon and the Le Hy agent as well
as seven different players and nine UT2004 agents, each with a different skill
level.

For the first graph (figure 4.34, top), the UT2004 agent are widespread.
The medium skilled ones are close to the players. Le Hy agent is pretty far
from the players and Chameleon is not very far but not in the “cloud” of the
players. That means it may be taken for a player but not an average one. In
the second graph (figure 4.34, bottom left), the players are quite widespread
and the UT2004 agents are still quite close. Le Hy agent is very far from the
players and Chameleon is a bit far also. Finally, for the last graph (figure 4.34,
bottom right), Le Hy agent is very far from the players, Chameleon is quite
far and the agents are not very far but can be clearly separated from the
players. To conclude, it appears that some UT2004 agents are the closest to
the players, then comes Chameleon and then Le Hy’s agent. The fact the
agent from the game are this close is because character designers used a lot of
time improving the way their agent moves. However, it may not apply to the
behaviours.

It seems that Chameleon managed to perform better than Le Hy’s agent.
Because the discretization of the actions and the interface between the game
and the model can be greatly improved, UT2004 agents perform better than
Chameleon. As all the details of the agent’s behaviour are important, this
should be improved on Chameleon in order to be able to fool the players into
thinking Chameleon is an other player.

Final version 137

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

Velocity relative to direction

Direction change Velocity change

Chameleon
Player

UT2004
Le Hy

Figure 4.34: Earth Mover’s Distance (EMD) between the signatures repre-
sented using the Multidimensional Scaling (MDS) for one Chameleon, one Le
Hy agent, seven different players and nine UT2004 agent, each one with a
different skill level. The correlation factors for the MDS for all the represen-
tations are very high (> 0.98).

138 PhD thesis — Fabien Tencé

4.4. LEARNING THE PARAMETERS OF THE MODEL WITH AN EM
ALGORITHM

4.4.3.3 Believability

We did not make a complete believability evaluation because, as the previous
results suggest, the quality of the behaviours of Chameleon are not worth the
effort. Indeed, a believability evaluation mainly consist in making a large
number of people give their feeling about the agent. Gathering enough people
and making them assess the believability of agents is very time-consuming.
We will rather list believable and non-believable behaviours according to our
knowledge of the game and players.

Believable Behaviours We noticed the following learned believable be-
haviours:

• Aims at an enemy when seeing it [B1: Reaction]

• Shoot mainly when enemy is in the agent’s sight [B1: Reaction]

• Explore the environment [B5: Understandable]

• Changes its weapon for the best one [B1: Reaction]

• Stands still for some seconds mimicking reflection [B5: Understandable]

• Is truly unpredictable [B4: Unpredictability] and [B3: Variability]

• Evolve during learning in a noticeable way [B9: Evolution] and [B10:
Fast Evolution]

Knowing that the agent starts with little knowledge of the environment and
its rules, the learning seems to be pretty efficient. Basic associations are made
(enemy⇔shoot) as well as more complex behaviour like moving in a maze-like
environment. The probability play well its role even if the raw parameters
make the movement of the agent choppy. The behaviour is much more smooth
when a power (between 5 and 10) is applied to the distributions before the
random pick is done.

Non-Believable Behaviours However, we noticed also the following learned
non-believable behaviours:

• Does not aim accurately at the enemies [B1: Reaction]

• Often becomes stuck for several seconds against walls [B1: Reaction]

• Seems to pick weapons on the ground fortuitously [B5: Understandable]

• Forget information which is not any more in the FOV of the agent [B8:
Memory]

• Does not plan [B7: Planning]

Final version 139

CHAPTER 4. ANALYSIS AND EVALUATION OF AN
IMPLEMENTATION OF CHAMELEON

There are several potential explanation for these problems. First the agent
may have insufficiently accurate motors and sensors to aim correctly at the
enemies. The tendency to get stuck may come from incorrect attention values.
As showed in section 4.4.3.1, some distributions are not valid which may come
from incorrect updates due to a too high attention or incorrect reaction time.
The fact the agent seems to pick fortuitously weapons on the ground may come
from the same problem. It may also be related to the problem of exaggeration:
agent have to overdo for us to understand its behaviour [B5: Understandable].
Finally, for the memory problem, it shows that the decision mechanism is not
sufficient to give the illusion of memory [B8: Memory]. More complex sensory
informations may be useful like for example a probability distribution of the
position of the enemies knowing its last position.

The EM algorithm makes the agent behave more like a player than before
the learning. The base of the behaviours are learned but they lack in efficiency
to be considered as believable. Some solutions may improve the results and
will be discussed further in the next chapter.

C
o
n
cl
u
si
o
n
o
f
4
.4

In this section we showed that the EM can handle all the observations
of a teacher without delay. during the learning the log-likelihood in-
crease as expected but some distributions converge better than others.
The fact attention function are not learned seems to cause problems
in both the convergence and the resulting behaviours. The merging of
the parameters allows the agent to generalise over several sequences of
observations even if some improvement may be needed. Finally, the be-
haviour of the agent proves that it indeed learned part of the teacher’s
behaviours but it is not enough to make the agent believable.

C
o
n
cl
u
si
o
n
o
f
4

In this chapter we presented the results of four modifications to Le
Hy’s model in order to answer better to the believability requirements
listed in section 1.2.2. The semantic refinement allowed to reduce the
number of parameters in order to increase the speed of learning. The
attention functions allowed to fix the problems of the FEC and IP.
The GNG makes the agent able to adapt to unknown environments
and to use a representation of the environment consistent with its use
by the players. Finally the EM makes the agent learn almost all the be-
haviours by observing a teacher. This learning is fast allowing the agent
to reproduce some of the habits of the teacher. However, there are
still some unlearned or mis-learned behaviours which make Chameleon
agent non-believable. The reason are many and will by discussed in
the next chapter.

140 PhD thesis — Fabien Tencé

Contents of Chapter 5

5 Conclusion 143
5.1 Bottleneck . 144

5.1.1 Objectives . 144
5.1.2 Requirements for Believability 144

5.2 Contributions . 145
5.2.1 Semantic Refinement . 146
5.2.2 Attention Selection Mechanism 146
5.2.3 Learning of the Representation of the Environment . . . 147
5.2.4 Expectation-Maximization algorithm (EM) for the

Learning of the Model Parameters 148
5.3 Limitations . 149

5.3.1 Low Actions Accuracy 149
5.3.2 Incorrect Learned Associations Between Stimuli and Ac-

tions . 149
5.3.3 Incomplete Memory . 150
5.3.4 Lack of Planning Mechanisms 150

5.4 Future Work . 151
5.4.1 Extension of the Attention Selection Mechanism 151
5.4.2 Improvements on the Learning Algorithm 151
5.4.3 Discretisation of the Stimuli and Actions 152
5.4.4 Planning . 152
5.4.5 Believability Evaluation 153

PhD thesis — Fabien Tencé

Chapter 5

Conclusion

S
u
m
m
a
ry

o
f
5

The believability of characters in video games and more generally
in virtual environments plays a role in the feeling of presence these
environments can provoke (see chapter 1). According to chapter 2, one
of the behaviour model the most promising to control believable char-
acters is Le Hy’s model. We proposed four enhancements or replace-
ments to some parts of the model in chapter 3: a semantic refinement,
an attention selection mechanism, an algorithm to learn the topology
of the environment and finally a revamped Expectation-Maximization
algorithm (EM) to learn the parameters of the model. In chapter 4 we
found that our propositions indeed improved the results but that agents
using this model are still far from being believable. We propose some
future improvements: variable reaction time for the learning, update of
the attention functions in the EM, improvements in the merging of the
parameters after learning, improving the discretization of the stimuli
and actions by learning, etc.

In
tr
o
d
u
ct
io
n
o
f
5 In this thesis we proposed a general model for the control of believ-

able characters for virtual environments and more specifically video
games. We also wanted this model to be able to adapt to new envi-
ronments and new rules without too much work from the character
designers. We hope that by providing such model, video games will be
more vivid, appealing and more entertaining to the players. Of course,
as believability is very hard to achieve, we relied on previous models
and try to enhance them to achieve better results.

Final version 143

CHAPTER 5. CONCLUSION
P
la
n
o
f
5

In this chapter we will first remind the different requirements for
agents to behave in a believable manner (section 5.1). Then we link
these requirements to the solutions and the propositions we made in
section 5.2. However the proposed model does not fulfil all the require-
ments (section 5.3) and may not appear as being believable to players.
We give possible ways to correct these problems in order to make the
agent fulfil all the requirements and to be able to measure the final
result in an accurate manner (section 5.4).

5.1 Bottleneck

The general goal of this thesis is to identify and find solutions to resolve some
of the bottlenecks impeding the creation of virtual environment where the
feeling of presence is strong. We focus on the making of believable characters
in video games which is already a challenge by itself. We detail what are the
problems to be resolved to make a character believable.

5.1.1 Objectives

First the definition of believability is subject to debate. In this thesis we
choose, as other researchers, the following definition:

A believable agent is computer program able to control an avatar
in a virtual environment so that other human users in the envi-
ronment think the avatar is controlled by another human user.

The idea is to make human users feel there are surrounded by intelligent
sentient beings.

Of course we do not want the agent to be specific to a video game but to
be flexible enough to adapt to new environments and rules without too much
work from programmers. This objective makes the modelling of believable
agent even more difficult.

5.1.2 Requirements for Believability

According to other researchers’ studies and our own, we listed several re-
quirements a believable agent must fulfil (see table 5.1). The direct goal of
this thesis is to find a behaviour model for an agent which fulfils these 10
requirements.

Each of these requirements includes a series of problems to be resolved. The
agent must react to events in the environment [B1: Reaction] but it should
react in a coherent manner. The time it takes to react [B2: Reaction time]
is also very complicated to simulate as it depends on the complexity of the

144 PhD thesis — Fabien Tencé

5.2. CONTRIBUTIONS

Believability requirement Summary of the requirement

[B1: Reaction] React to the players and changes in the envi-
ronment

[B2: Reaction time] Simulate a human-like reaction time
[B3: Variability] Have some variability in the actions
[B4: Unpredictability] Surprise the players with unpredictable be-

haviour
[B5: Understandable] Have a understandable behaviour
[B6: Perception] Have human-like perception
[B7: Planning] Plan actions in the future to avoid mistakes
[B8: Memory] Memorize information
[B9: Evolution] Evolve to avoid repeating mistakes
[B10: Fast Evolution] Evolve fast enough for the players to see it

Table 5.1: List of the requirements for a character to be believable.

information but as this may be very small variations, does the players notice
them all? The agent must have some imperfections [B3: Variability] and
must avoid repetitiveness [B4: Unpredictability] but too much randomness
can be very harmful to the believability. One of the bigger defy is to make the
behaviour of the agent understandable to the players [B5: Understandable]
so that they can guess the intentions of the agent. However the agent must
not appear too “dumb” to be challenging. The technically biggest challenge
is to make the agent have human-like perception [B6: Perception]. The best
solution would be to have the agent use the rendering of the 3D environment
with colour, shadows, etc. The problem is that it would require the agent to
use techniques from computer vision which are not advanced enough for the
agent to have all the information it needs. Instead we choose to give the agent
the perception of the avatar which are an acceptable approximation. The agent
have to take into account time with memories from the past [B8: Memory] and
planning in the future [B7: Planning]. As the virtual environment are often
complex it may rapidly become intractable to simulate all this mechanisms
accurately. Finally, the agent has to be able to evolve [B9: Evolution] for the
players to notice its ability to learn [B10: Fast Evolution] and also because
the agent must be able to adapt to a whole range of virtual environments.

5.2 Contributions

In order to best fulfil the requirements, we first identified Le Hy’s model
(Le Hy et al., 2004) as a good base to develop a model for believable characters
in video games. As it links sensors to actions, it can fulfil [B1: Reaction].
The quality of the responses to stimuli is determined by the parameters. the
model is probabilistic so it can simulate very well randomness needed for [B3:

Final version 145

CHAPTER 5. CONCLUSION

Variability] and [B4: Unpredictability]. As the model is based on the HMM
theory, the model can handle dynamics like reaction time [B2: Reaction time]
and party memory [B8: Memory]. Le Hy developed learning algorithms so
that the model can evolve rapidly by imitating players [B9: Evolution] [B10:
Fast Evolution].

The work in this thesis aim at improving the model parameters to better
the quality of the responses to stimuli [B1: Reaction]. It also tries to make the
agent handle the perceptions better [B6: Perception] and in a more human-like
fashion which will also make the behaviour of the agent easier to understand
for the players [B5: Understandable]. Finally, work has been done to allow
the agent to adapt to a wide range of different environments very rapidly
[B9: Evolution] [B10: Fast Evolution]. This evolution has a very important
impact on the final result as it define the model parameters, the probability
distributions, which impact the quality of the reactions [B1: Reaction], the
randomness of the behaviours [B3: Variability] [B4: Unpredictability], the
dynamics in the behaviours [B2: Reaction time] [B8: Memory] and if the
behaviour is exaggerated or not [B5: Understandable].

5.2.1 Semantic Refinement

The goal of the semantic refinement is to reduce the number of parameters
by defining a priori some independence between random variables. By re-
ducing the number of parameters and giving the model some knowledge, the
learning should be faster without reducing the expressiveness of the model.

The principle of the proposition is the following: instead of considering all
the stimuli for each choice (decision and actions), each choice uses stimuli
with different level of granularity. Global and spatially inaccurate stimuli,
called high-level stimuli, are used for the choice of the decisions and also for
actions which only involve the agent. Spatially accurate stimuli, called low-
level stimuli, are used to perform actions which aim at interaction with the
environment.

This proposition allowed a significant reduction of the number of parameters
(around 85%). On top of allowing a faster evolution of the model [B10: Fast
Evolution], it also makes possible for character designers to modify the model
parameters. Indeed, as the number of parameters in much lower, the task is
less tedious.

5.2.2 Attention Selection Mechanism

The goal of the attention selection mechanism is firstly to break the com-
plexity of the model by avoiding the combinatorial explosion of the stimuli.

146 PhD thesis — Fabien Tencé

5.2. CONTRIBUTIONS

Indeed, we cannot express the actions to make for each combination of all
possible stimuli. By avoiding this complexity, the number of parameters will
be reduced allowing an even faster learning. Finally the idea is to find a way
to break the complexity without reducing too much the expressiveness of the
model and by making the agent simulate the way humans handle high quantity
of information.

The idea is similar to the methods developed in Le Hy: instead of specifying
actions for all the possible combination of all stimuli, the actions are specified
for one unique stimuli. The trick is then to find a way to merge all these
distributions into one when the agent is facing an environment composed of
several stimuli. Our mechanism is very simple: at each time step the agent is
focusing on one high-level stimulus and one low-level stimulus. The choice of
the stimuli to focus on is based on attention functions: the higher the value
for a stimulus, the higher the chances this stimulus will be picked if the agent
perceive it.

The attention selection mechanism allows a very important reduction of
the number of parameters by dividing the number of parameters by 105 in our
application. It also seems to fix issues which affects Le Hy’s methods. Indeed,
the hypothesis for the application of the Inverse Programming (IP) is usually
not met in applications with high number of stimuli and the Fusion by En-
hanced Coherence (FEC) makes the agent constantly switch between stimuli.
The model parameters can then be learned faster [B10: Fast Evolution]. On
top of that, the attention selection mechanism simulate, in a very simple way,
how human handle high quantity of information. This method can then make
the agent perceive more like a human would do [B6: Perception]. Finally, by
making the agent focus mainly on very important stimuli, we can make the
agent behave in a more understandable way for the players: the agent will
act as if there were only one stimulus visible to it, making its behaviour and
intention very clear [B5: Understandable].

5.2.3 Learning of the Representation of the Environment

In order to make the agent adapt to unknown environments without help
from programmers, we wanted our agent to learn by imitation the layout of
the environment. As our goal is believability, we want also the representation
to reflect how players use the environment to make it easier for the agent to
reproduce these behaviours.

In order to represent and to learn the environment, we modified a model
named Growing Neural Gas (GNG) which updates a graph according to input
coordinates. The graph stretch and grow to cover the whole space where the
player has been monitored to go. The model has been modified to be able to

Final version 147

CHAPTER 5. CONCLUSION

learn continuously on a player without growing indefinitely but being able to
grow if the teacher begins to use a new part of the environment.

The representation learned is very similar to usual representations found in
video games which are used by the agents to move in the environment. The
agent is thus able to adapt to totally unknown environments [B9: Evolution].
The learning is very fast as it takes less than 10 minutes with several teachers
[B10: Fast Evolution]. However, whether it helps or not the agent to behave
in a believable way has not been assessed.

5.2.4 Expectation-Maximization algorithm (EM) for the
Learning of the Model Parameters

The objective of the EM is to replace the learning algorithm in Le Hy’s
work by a unique algorithm which avoid simplifications. The learning will be
more demanding in computing power but the learned behaviours can be more
complex. As most of the behaviour of the agent depends on the parameters
and thus on the learning, this proposition is crucial for the final behaviour.

In order to avoid making simplification hypothesis and to adjust the learn-
ing algorithm to our need, we applied an EM technique from scratch. The
likelihood function, which gives the probability for the model to generate given
observations, has been expressed and each part of the model can be optimized.
We proposed some update rules to optimize the distributions of the model to
increase the value of the likelihood function. However, due to the complexity
of the attention functions, we did not manage yet to find a good optimization
technique. As the EM is applied to short sequences we proposed a way to
merge all the results into a global one by updating these global parameters
after with each result of the learnings.

The results given by the learning algorithm are mitigated. Some associa-
tions are well learned, like for instance attacking when an enemy is in sight
and moving toward free places in the environment [B9: Evolution] [B1: Reac-
tion]. It also learns to delay some reactions [B2: Reaction time]. However, as
some associations are not learned or mis-learned, the global behaviour is not
believable. The tests of an implementation of the algorithm showed that the
learning is very fast, with distributions leaned in less than 40 minutes, and
can be done without loosing information and without too much delay [B10:
Fast Evolution].

As a conclusion, the propositions allowed the agents controlled by our model
to fulfil more of the requirements listed in the beginning. The model and
the learning algorithm make the agent react to stimuli often in a human-like

148 PhD thesis — Fabien Tencé

5.3. LIMITATIONS

fashion [B1: Reaction] and can simulated delay in the reaction [B2: Reaction
time]. The probabilities allow the agent to fulfil [B3: Variability] and [B4:
Unpredictability]. However, learned distributions can make the movements
choppy, so it can be necessary to modify the way the model pick decisions.
The agent can adapt to new environments and rules with the GNG and the EM
[B9: Evolution] with results converging very rapidly [B10: Fast Evolution].
The attention selection mechanism makes the behaviour of the agent reflect
more human-like perceptions [B6: Perception] and more understandable for
players [B5: Understandable]. Finally, the agent can “remember” as its choice
of decision is based on the previous one [B8: Memory]. This information is
however very limited. Indeed, it often does not give enough information for
the agent to react to stimuli which are not visible any more.

5.3 Limitations

All the propositions we presented in this thesis did not answer all the re-
quirements or fulfil them only partly. Because of this we chose not to perform
a full believability evaluation until these problems are fixed. We will list the
most obvious unbelievable behaviours and associate them with the require-
ments.

5.3.1 Low Actions Accuracy

Our implementation of the Chameleon model have difficulties with perform-
ing accurate actions like for example aiming or walking on narrow paths. Of
course, the agent has to perform actions with a certain degree of error [B3:
Variability] to simulate the inaccuracy of the human actions. However, the
actions of our agent are sometimes so inaccurate that it breaks the illusion of
believability.

The problem mainly comes from the interface between the model and the
video game. The discretisation of the stimuli and the actions, necessary to
define the discrete distributions are not fine enough for the agent to use them
efficiently. As a result the model cannot fulfil entirely [B1: Reaction] and [B6:
Perception].

5.3.2 Incorrect Learned Associations Between Stimuli and
Actions

The agent we coded despite being able to learn the base behaviour to explore
the environment still becomes stuck against walls. The agent goes straight to
a wall and continues walking toward it even when it collides with it. This
is a major problem as it is clearly identifiable as a non-human behaviour by

Final version 149

CHAPTER 5. CONCLUSION

other players. It also impedes the agent to play the game normally, exploring,
hunting and grabbing important items.

Even when the agent explores the environment, it should modify its course
to grab items on the ground, mostly weapons. This allows the agent to be
more powerful and to beat the other players. It appears to observers that this
behaviour it not well learned because the agent often miss the items of may
sometimes avoid them even it the agent needs the item.

There are several explanations for these problems. First, we approximated
the teacher’s reaction time by a constant which is a very simple assumption.
It is possible that wrong associations are learned because the learning algo-
rithm does not have the right data. The second possible explanation is that
the attention functions are not learned and thus their values are not correct.
The learning algorithm may have considered that the teacher focused on an
insignificant stimulus. Finally, the merging of all the results of the EM may
not give satisfactory distributions. It is most probable that all the three expla-
nations combined have a negative impact on the final result making the agent
unable to act correctly [B1: Reaction] and coherently [B5: Understandable]
and hinder its evolution abilities [B9: Evolution].

5.3.3 Incomplete Memory

When playing against the agent, it rapidly becomes obvious that it lacks of
memory mechanisms: when an information is not any more in the Field Of
View (FOV) of the agent, the agent acts as it never existed. As the agent
have human-like perceptions and thus a quite narrow FOV (90◦ horizontally
and 67.5◦ vertically to correspond to what is rendered on a player’s screen),
the problem happens quite often.

The reason of this problem is obvious: the model is designed so that the
model has a memory of the previously taken decision, but does not directly
consider previous stimuli. This method is too limited for the agent to simulate
a believable memory [B8: Memory].

5.3.4 Lack of Planning Mechanisms

The agent does not give the illusion of having any long and mid-term goals
[B7: Planning]. However, when given information on the speed of other play-
ers, the agent can learn to anticipate their movements and thus giving the
impression that the agent can plan some seconds ahead. The fact the agent
cannot plan further makes it easy to outsmart it and thus breaks the illusion
of believability.

150 PhD thesis — Fabien Tencé

5.4. FUTURE WORK

The reason why the agent cannot plan further is because it does not have
any mechanism for that in the model. Planning can be very complicated in
complex environments but some tools could be given to the agent to at least
give the illusion of planning.

To sum up, the Chameleon model in its current version cannot make other
player believe that it is a player for long because of the interface with the games
[B6: Perception] [B1: Reaction], problems with learning [B5: Understandable]
[B2: Reaction time] and lack of mechanisms to memorize [B8: Memory] and
to plan [B7: Planning].

5.4 Future Work

The limits we pointed out can, of course, be fixed but the solutions can be
difficult to implement. We give some ideas of the principle improvements that
can be added to the model.

5.4.1 Extension of the Attention Selection Mechanism

The attention selection mechanism, despite its simplicity, can give pretty
believable results. The problem is that players can focus on several stimuli at
one time. The idea is to add new attention functions. Instead of making the
agent focus only on one high and one low-level stimulus, the agent can focus
on one stimuli for each group of action. For instance, the agent can focus on
one high-level stimulus for the choice of the decision, one high-level stimulus
for the reflexive actions, one low-level stimulus for the movements and one
low-level stimulus for the interactions. The agent could then move trough a
door and turn on the light by focusing on two different stimuli: the navigation
point at the door and the light button next to the door.

This improvement makes also possible the involvement of the decision in the
choice of the high-level stimulus for reflexive action. Indeed, as the decision can
be chosen prior to the choice of the high-level stimulus for the reflexive action,
it can be taken into account, making the whole behaviour more complex.

5.4.2 Improvements on the Learning Algorithm

The main problem the learning algorithm suffers at the moment is the
influence of the teacher’s reaction time on the observations. As unrelated
stimuli-actions examples are given to the algorithm, incorrect distributions
are learnt. A mechanism should be found to align the related stimuli and
actions while the EM converges.

Final version 151

CHAPTER 5. CONCLUSION

An other issue is that the actual version of the learning algorithm is in-
complete because the attention functions are not learnt. These functions are
essential for the agent because they have an important impact on both the
learning of the other distributions and how the agent behaves. A very simple
case of study should be designed to fully understand the influence between
the attention functions and the other distributions during the learning.

Finally, the merging of the final results of the EM should also be studied
into detail to find why the global parameters are not the best initialisers for
the learning algorithm. Maybe an other mechanism could be used to associate
the decisions, which meaning are unknown, between two results of the EM.

5.4.3 Discretisation of the Stimuli and Actions

We saw that the interface between the model and the video game has an
important impact on the perceived behaviour of the agent. The discretisation
of the stimuli and actions have to be done very carefully to avoid having
too much parameters but still allowing the agent to be accurate. Learning the
discretisation would make the model even more flexible, making its adaptation
to new environments very easy.

It can also be possible to remove the discretisation and to switch to a full
continuous distribution model. The main problem with this improvement is
to find a compact representation for the distribution, for instance Gaussian
mixtures, and to find a fast and efficient algorithm to learn these distributions.

5.4.4 Planning

The model lacks of a mechanism to make plans in the future. We saw that
with the EM estimators it is possible for the model to find out the teacher’s
intentions. By integrating the estimator into the model itself, it may be able
to better understand the other players and try to think ahead. It can be also
possible to use the stimuli as a base for planning. They could be associated
with a probability of presence, decreasing from the last seen position.

Finally we used only a game mode where all the players play for themselves
and the objective of the game is really simple. By making the agent play
team games where each player has a role and the whole team has to have a
strategy, the challenge would be more interesting. The model would certainly
need some adjustments so as the agent is able to be integrated seamlessly in
a team of human players.

152 PhD thesis — Fabien Tencé

5.4. FUTURE WORK

5.4.5 Believability Evaluation

Once the main improvements have been done to the model, a thorough
evaluation of the believability of the Chameleon model, Le Hy’s model, the
original UT2004 agents and the players should be done. An overview of the
evaluation methods as already been done in (Tencé et al., 2010). The actual
choices of the implementation of this evaluation should be carefully studied
with psychologists. Indeed, believability experiments must involve humans to
express their feelings about the test subjects.

Final version 153

Bibliography

Anderson, J. (1993). Rules of the mind. Lawrence Erlbaum Associates. xii,
22

Angluin, D. (1982). Inference of reversible languages. Journal of the ACM
(JACM), 29(3):741–765. 21

Angluin, D. (1992). Computational learning theory: survey and selected bib-
liography. In Proceedings of the twenty-fourth annual ACM symposium on
Theory of computing, pages 351–369. ACM. 28

Artieres, T., Marukatat, S., and Gallinari, P. (2007). Online handwritten
shape recognition using segmental hidden markov models. IEEE transac-
tions on pattern analysis and machine intelligence, 29:205–217. 24

Bates, J. (1992). The nature of characters in interactive worlds and the Oz
project. Technical Report CMU-CS-92-200, School of Computer Science,
Carnegie Mellon University. 4, 6, 22

Bauckhage, C., Gorman, B., Thurau, C., and Humphrys, M. (2007). Learning
Human Behavior from Analyzing Activities in Virtual Environments. MMI-
Interaktiv, 12:3–17. 24, 25, 32

Bauckhage, C. and Thurau, C. (2004). Towards a Fair’n Square Aimbot–Using
Mixtures of Experts to Learn Context Aware Weapon Handling. In Proc.
GAME-ON, pages 20–24. 32

Baum, L., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization
technique occurring in the statistical analysis of probabilistic functions of
markov chains. The annals of mathematical statistics, 41(1):164–171. 42

Bengio, Y. and Frasconi, P. (1995). An input output HMM architecture. In
Advances in neural information processing systems, pages 427–434. Citeseer.
35

Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing starting values for
the em algorithm for getting the highest likelihood in multivariate gaussian
mixture models. Computational Statistics & Data Analysis, 41(3-4):561–
575. 88

Final version 155

BIBLIOGRAPHY

Blackmore, S. (1999). The meme machine. Oxford University Press, USA. 30

Bozinovic, R. and Srihari, S. (1982). A string correction algorithm for cur-
sive script recognition. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (6):655–663. 24

Bryant, B. and Miikkulainen, R. (2006). Evolving stochastic controller net-
works for intelligent game agents. In Proceedings of the 2006 Congress on
Evolutionary Computation (CEC 2006), pages 3752–3759. 9

Burdea, G. C. and Coiffet, P. (2003). Virtual Reality Technology. John Wiley
& Sons, Inc., New York, NY, USA, 2 edition. 2

Burkert, O., Kadlec, R., Gemrot, J., Bida, M., Havlicek, J., Dorfler, M., and
Brom, C. (2007). Towards Fast Prototyping of IVAs Behavior: Pogamut 2.
In Intelligent Virtual Agents, volume 4722, pages 362–363. Springer. 45

Calinon, S. and Billard, A. (2007). Incremental learning of gestures by imita-
tion in a humanoid robot. In Proceedings of the ACM/IEEE international
conference on Human-robot interaction, pages 255–262. ACM. xii, 24, 31

Cass, S. (2002). Mind games. IEEE Spectrum, 39(12):40–44. 10, 19

Cavazza, M., Charles, F., and Mead, S. (2002). Character-based interactive
storytelling. IEEE Intelligent Systems,, pages 17–24. 4

Charles, D. and McGlinchey, S. (2004). The past, present and future of artifi-
cial neural networks in digital games. In Proceedings of the 5th international
conference on computer games: artificial intelligence, design and education.
The University of Wolverhampton, pages 163–169. Citeseer. 18

Crawford, C. (2004). Chris Crawford on Interactive Storytelling. New Riders
Games. 4

Crouse, M., Nowak, R., and Baraniuk, R. (1998). Wavelet-based statistical
signal processing using hidden markov models. Signal Processing, IEEE
Transactions on, 46(4):886–902. 34

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38. 74

Donikian, S. (2001). Hpts: a behaviour modelling language for autonomous
agents. In Proceedings of the fifth international conference on Autonomous
agents, pages 401–408. ACM. 19

Dromey, R. (2003). From requirements to design: Formalizing the key steps.
In Software Engineering and Formal Methods, 2003. Proceedings. First In-
ternational Conference on, pages 2–11. IEEE. 19

156 PhD thesis — Fabien Tencé

BIBLIOGRAPHY

Feldman, J. and Ballard, D. (1982). Connectionist models and their properties.
Cognitive science, 6(3):205–254. 17

Fikes, R. and Nilsson, N. (1971). Strips: a new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3/4):189–208.
22

Florez-Larrahondo, G. (2005). Incremental learning of discrete hidden Markov
models. PhD thesis, Mississippi State University. 33, 41, 43, 44, 74

Fritzke, B. (1995). A growing neural gas network learns topologies. In Ad-
vances in Neural Information Processing Systems 7, pages 625–632. MIT
Press. xiv, 70

Gibson, J. (1986). The ecological approach to visual perception. Lawrence
Erlbaum Associates. 2

Glass, J., Chang, J., and McCandless, M. (1996). A probabilistic framework
for feature-based speech recognition. In Spoken Language, 1996. ICSLP 96.
Proceedings., Fourth International Conference on, volume 4, pages 2277–
2280. IEEE. 24

Gorman, B. and Humphrys, M. (2007). Imitative learning of combat be-
haviours in first-person computer games. In Proceedings of CGAMES 2007,
the 11th International Conference on Computer Games: AI, Animation,
Mobile, Educational & Serious Games. 10, 18, 32, 33

Gorman, B., Thurau, C., Bauckhage, C., and Humphrys, M. (2006a). Bayesian
imitation of human behavior in interactive computer games. In Proceedings
of the 18th International Conference on Pattern Recognition (ICPR’06)-
Volume 01, pages 1244–1247. IEEE Computer Society Washington, DC,
USA. 24, 25

Gorman, B., Thurau, C., Bauckhage, C., and Humphrys, M. (2006b). Be-
lievability testing and bayesian imitation in interactive computer games. In
From Animals to Animats 9, volume 4095, pages 655–666. Springer. 25, 32

Heeter, C. (1992). Being there: The subjective experience of presence. Pres-
ence: Teleoperators and virtual environments, 1(2):262–271. 2

Held, R. and Durlach, N. (1991). Telepresence, time delay and adaptation.
Pictorial communication in virtual and real environments, pages 232–246.
2

Hinton, G. (1989). Connectionist learning procedures. Artificial intelligence,
40(1-3):185–234. 18

Final version 157

BIBLIOGRAPHY

Hoffman, H. G., Richards, T., D, P., D, P., Coda, B., Richards, A., and Sharar,
S. R. (2003). The illusion of presence in immersive virtual reality during an
fmri brain scan. Cyberpsychology & Behavior, 6:127–131. xi, 3

Isla, D. (2005). Handling complexity in the halo 2 ai. In Game Developers
Conference. 9, 17

Johnson, D. and Wiles, J. (2001). Computer games with intelligence. In
Fuzzy Systems, 2001. The 10th IEEE International Conference on, vol-
ume 3, pages 1355–1358. IEEE. 18, 19

Krogh, A., Larsson, B., Von Heijne, G., and Sonnhammer, E. (2001). Predict-
ing transmembrane protein topology with a hidden markov model: applica-
tion to complete genomes1. Journal of molecular biology, 305(3):567–580.
34

Laird, J. and Duchi, J. (2000). Creating human-like synthetic characters with
multiple skill levels: a case study using the Soar Quakebot. In Simulating
Human Agents, Papers from the 2000 AAAI Fall Symposium, pages 75–79.
9

Laird, J. and Lent, M. (2001). Human-level ai’s killer application: Interactive
computer games. AI Magazine, 22(2):15–26. 4, 5, 10

Laird, J., Rosenbloom, P., and Newell, A. (1986). Chunking in SOAR: The
anatomy of a general learning mechanism. Machine learning, 1(1):11–46.
22

Le Hy, R. (2007). Programmation et apprentissage bayésien de comporte-
ments pour des personnages synthétiques, application aux personnages de
jeux vidéos. PhD thesis, Institut national polytechnique de Grenoble. vi,
xi, xii, 20, 38, 39, 41, 48, 51, 57, 94, 132, 166

Le Hy, R., Arrigoni, A., Bessière, P., and Lebeltel, O. (2004). Teaching
bayesian behaviours to video game characters. Robotics and Autonomous
Systems, 47(2-3):177–185. xiii, 12, 15, 16, 24, 25, 32, 33, 34, 38, 40, 46, 57,
145

Levinson, S. (1983). An introduction to the application of the theory of prob-
abilistic functions of a markov process to automatic speech recognition. The
Bell System Technical Journal. 24

Livingstone, D. (2006). Turing’s test and believable AI in games. Computers
in Entertainment, 4(1):6. 7, 9, 10

Loomis, J. (1992). Distal attribution and presence. Presence: Teleoperators
and Virtual Environments, 1(1):113–119. 2

158 PhD thesis — Fabien Tencé

BIBLIOGRAPHY

Loyall, A. B. (1997). Believable agents: building interactive personalities. PhD
thesis, Carnegie Mellon University. 4, 6, 9, 10, 22

Mac Namee, B. (2004). Proactive persistent agents: using situational intel-
ligence to create support characters in character-centric computer games.
PhD thesis, University of Dublin. 5, 10

Mari, J., Fohr, D., and Junqua, J. (1996). A second-order HMM for high
performance word and phoneme-based continuous speech recognition. In
icassp, pages 435–438. IEEE. 24

McMahan, A. (2003). Immersion, engagement and presence. The video game
theory reader, pages 67–86. 4

Meltzoff, A. and Moore, M. (1977). Imitation of facial and manual gestures
by human neonates. Science, 198(4312):75–78. xii, 25, 30, 32

Mitchell, T. (1997). Machine Learning. 27

Murphy, K. (2002). Dynamic Bayesian networks: representation, inference
and learning. PhD thesis, University of California, Berkeley. xii, 35, 36, 37

Newell, A., Rosenbloom, P. S., and Laird, J. E. (1987). Soar: an architecture
for general intelligence. Artificial intelligence, 33(1):1–64. 22

Orkin, J. (2006). Three States and a Plan: The AI of FEAR. In Proceedings
of the 2006 Game Developers Conference. xix, 22, 23

Pinchbeck, D. (2008). Trigens can’t swim: intelligence and intentionality in
first person game worlds. In Proceedings of The Philosophy of Computer
Games 2008. University of Potsdam. 9

Rabiner, L. (1989). A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286. 34,
42

Rao, R., Shon, A., and Meltzoff, A. (2004). A bayesian model of imitation
in infants and robots. In Nehaniv, C. L. and Dautenhahn, K., editors,
Imitation and Social Learning in Robots, Humans, and Animals, pages 217–
248. Cambridge University Press. 25, 32

Reilly, W. (1996). Believable social and emotional agents. PhD thesis, Uni-
versity of Birmingham. 22

Riedl, M. and Stern, A. (2006). Believable agents and intelligent story adap-
tation for interactive storytelling. Technologies for Interactive Digital Sto-
rytelling and Entertainment, pages 1–12. 4

Final version 159

BIBLIOGRAPHY

Riedl, M. and Young, R. (2005). An objective character believability eval-
uation procedure for multi-agent story generation systems. In Intelligent
Virtual Agents, volume 3661, pages 278–291. Springer. 2, 6

Robert, G. and Guillot, A. (2005). A motivational architecture of action
selection for non-player characters in dynamic environments. International
Journal of Intelligent Games & Simulation, 4(1):1–12. 22

Sanchez, S., Luga, H., and Duthen, Y. (2006). Learning classifier systems and
behavioural animation of virtual characters. In Intelligent Virtual Agents,
pages 467–467. Springer. 22

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends
in Cognitive Sciences, 3(6):233–242. 30

Shepard, R. (1987). Toward a universal law of generalization for psychological
science. Science, 237(4820):1317. 58

Sigaud, O. and Wilson, S. (2007). Learning classifier systems: a survey.
Soft Computing-A Fusion of Foundations, Methodologies and Applications,
11(11):1065–1078. 22

Simmons, R. and Koenig, S. (1995). Probabilistic robot navigation in partially
observable environments. In International Joint Conference on Artificial
Intelligence, volume 14, pages 1080–1087. 24

Slater, M., Linakis, V., Usoh, M., Kooper, R., and Street, G. (1996). Immer-
sion, presence, and performance in virtual environments: An experiment
with tri-dimensional chess. In ACM Virtual Reality Software and Technol-
ogy (VRST, pages 163–172. 2

Slater, M., Usoh, M., and Steed, A. (1995). Taking steps: the influence of
a walking technique on presence in virtual reality. ACM Transactions on
Computer-Human Interaction (TOCHI), 2(3):201–219. 2

Stanley, K., Bryant, B., and Miikkulainen, R. (2005). Evolving neural network
agents in the nero video game. In Proceedings of the IEEE 2005 Symposium
on Computational Intelligence and Games, pages 182–189. Citeseer. 28

Steuer, J. (1992). Defining virtual reality: dimensions determining telepres-
ence. Journal of Communication, 42(4):73–93. 2

Tencé, F. and Buche, C. (2008). Automatable evaluation method oriented
toward behaviour believability for video games. In Vicente Botti, Anto-
nio Barella, C. C., editor, GAME-ON 2008 9th International Conference
on Intelligent Games and Simulation, pages 39–43. EUROSIS. xvii, 28,
134, 136, 137

160 PhD thesis — Fabien Tencé

BIBLIOGRAPHY

Tencé, F., Buche, C., De Loor, P., and Marc, O. (2010). The challenge of be-
lievability in video games: Definitions, agents models and imitation learn-
ing. In Mao, W. and Vermeersch, L., editors, GAMEON-ASIA’2010, 2nd
Asian Conference on Simulation and AI in Computer Games, pages 38–45.
Eurosis. 7, 50, 153

Thomas, F. and Johnston, O. (1981). Disney animation: the illusion of life.
Abbeville Press. 6

Thrun, S. (1995). Learning to play the game of chess. Advances in Neural
Information Processing Systems, pages 1069–1076. 28

Thurau, C., Bauckhage, C., and Sagerer, G. (2004). Learning human-like
movement behavior for computer games. In Proceedings of the 8th Inter-
national Conference on the Simulation of Adaptive Behavior (SAB’04). 31,
32, 33, 69, 106

Thurau, C., Paczian, T., and Bauckhage, C. (2005). Is bayesian imitation
learning the route to believable gamebots? In GAMEON-NA’2005, pages
3–9. 10, 30

Vinciarelli, A. (2002). A survey on off-line cursive script recognition. Patter
Recognition, 35. 24

Weizenbaum, J. (1966). ELIZA – a computer program for the study of natural
language communication between man and machine. Communications of
the ACM, 9(1):36–45. xi, 10, 11

Wetzel, B. (2004). Step one: Document the problem. In Challenges in Game
Artificial Intelligence: Papers from the 2004 AAAI Workshop, AAAI Press,
Menlo Park, CA, pages 11–15. 9

Wu, C. (1983). On the convergence properties of the em algorithm. The
Annals of Statistics, pages 95–103. 74

Yamato, J., Ohya, J., and Ishii, K. (1992). Recognizing human action in time-
sequential images using hidden markov model. In Computer Vision and
Pattern Recognition, 1992. Proceedings CVPR’92., 1992 IEEE Computer
Society Conference on, pages 379–385. IEEE. 34

Zeng, Z., Goodman, R., and Smyth, P. (1993). Learning finite state machines
with self-clustering recurrent networks. Neural Computation, 5(6):976–990.
21

Final version 161

Exploratory Research on
Criteria Affecting
Believability

Protocol

The experiment use two participants to evaluate the believability of an
agent. We did the experiment 7 times, with a total of 14 different participants.
We used the game UT2004 for the virtual environment with modified rules:
the participant were asked to play a tag game.

The experience it done in two phases:

1. The two participants play one against the other during 5 minutes

2. Each participant plays against the evaluated agent during 5 minutes

Then the participant were given the following questionnaire, with no time
limit to answer.

Final version 163

EXPLORATORY RESEARCH ON CRITERIA AFFECTING
BELIEVABILITY

Questionnaire

Personal information

Name: First Name:

Experience in first person shooter games:

1 Never played/Rarely seen
2 Already played/seen
3 Played more than once per month
4 Played more than once per week
5 Played more than once per day

Which were the differences between the agent’s and the player’s behaviour?

Could you affirm that the character you saw was really artificial, and why?

Give the criteria giving the illusion an avatar is controlled by a human
player:

What were your impressions on the experiment itself? (time, rules, etc.)

164 PhD thesis — Fabien Tencé

Abstract

This thesis aims at designing a behaviour model for the control of believable
characters in video games. The character is controlled by a computer program
we call an agent. We define a believable agent as a computer program able
to control a virtual body in a virtual environment so that other human users
in the environment think the virtual body is controlled by a human user. As
more precise criteria are needed for the evaluation of the results, we define 10
requirements for a character to be believable, based on previous experiments
and work: reaction, reaction time, variability, unpredictability, understand-
ability, human-like perceptions, planning abilities, memory, evolution and fast
evolution.

In order to fulfil these requirements, we studied the existing behaviour mod-
els developed both in the research and the industry. We grouped them into
four types: connectionist models, state transition systems, production systems
and probabilistic models, each one having its strengths and weaknesses. As
one of the requirements is that the model is able to evolve, we had to find
learning algorithms for the behaviour model. We find out that imitation is
the best way to believability. With these studies in mind we find out that the
behaviour model developed by Le Hy in his thesis (Le Hy, 2007, in French)
answers to most of the requirements but has still some limitations.

We use an approach similar to Le Hy’s but we made different choices in order
to improve the believability. We first try to reduce the number of parameters in
the model with a semantic refinement. Then we replace the two mechanisms to
break the complexity of the probability distributions by an attention selection
mechanism. This avoid the agent switching constantly between stimuli. We
add to the model the ability to learn by imitation the layout of environments
with a model named Growing Neural Network. Finally we totally revamp the
learning algorithm with an Expectation-Maximization method.

The proposition makes the model able to learn how to act in the environment
rapidly. Stimulus-action associations are made which make the agent look-
like a human player. However the learning also makes wrong associations
which destroy the illusion of believability. According to our studies, our model
performs better than Le Hy’s but work has still to be done on the model to
achieve the final goal. We list in the conclusion the fulfilled requirements and
potential solutions to fix the issues our model suffers.

	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Notations
	Introduction
	From Virtual Reality to Believable Agents in Video Games
	On the Need of Believable Agents in Virtual Reality
	Believable Characters in Video Games

	Assessing the Believability of Characters in Video Games
	Believable Characters: Two Definitions
	Believability Requirements for Agents in Video Games

	Objective of our Work
	Organization of this Manuscript

	Behaviour Models and Learning Algorithms for Believable Agents
	Behaviour Models for Believable Agents
	Requirements and Possible Solutions
	Connectionist Models
	State Transition Systems
	Production Systems
	Probabilistic Models

	Algorithms to Learn Behaviours
	Requirements for the Learning of Believable Behaviours
	Performance Measure
	Learning from Experience
	Which Data?
	How to Treat the Data?

	Imitation Learning for Behaviour Modelling
	Learning Algorithms for Connectionist Models
	Learning Algorithms for Probabilistic Models

	Le Hy's Work
	Principle of the Model
	Hidden Markov Models (HMMs)
	Input-Output Hidden Markov Models (IOHMMs)
	Le Hy's Model

	Imitation Learning Algorithms
	Rule of Succession
	Baum-Welch algorithm (BW) and Incremental Baum-Welch algorithm (IBW)
	Le Hy's Learning Algorithm

	Believability of Agents Using Le Hy's Model
	BIBot: an Implementation of Le Hy's Model
	Evaluation and Limits of the Model

	Chameleon: Behaviour Model and Learning Algorithm for Believable Agents
	Semantic Refinement
	Categorization of Stimuli
	High-Level Stimuli
	Low-Level Stimuli
	Generalization over Stimuli
	Human-like Stimuli?

	Categorization of Actions
	Reflexive Actions
	External Actions

	An Example

	Attention Selection Mechanism
	High-Level Attention
	Low-Level Attention
	Summary of the Inner Workings of the Model

	Learning the Environment
	Principle of the Growing Neural Gas (GNG)
	Modification of the Growing Neural Gas (GNG)
	Integration in the Model and Learning Algorithm

	Learning the Model Parameters via an EM Algorithm
	Expectation-Maximization algorithm (EM)
	Expectation Procedure
	Maximization Procedure
	Maximizing the Quantity (3.31)
	Maximizing the Quantity (3.32)
	Maximizing the Quantity (3.33) and (3.34)
	Maximizing the Quantity (3.35)
	Maximizing the Quantity (3.36)

	Putting Expectation and Maximization together
	Finding a Sequence of Observations
	Parameters Initialization and Stopping Criterion
	Merging the Results of Expectation-Maximization algorithms (EMs)

	Analysis and Evaluation of an Implementation of Chameleon
	Semantic Refinement
	Choice of the Stimuli
	High Level Stimuli
	Low Level Stimuli

	Choice of Actions
	Consequences of the Semantic Refinement

	Attention Selection Mechanism
	Choice of the Values of Attention Functions
	Consequences of Attention Selection
	Decrease in the Number of Parameters
	Increase in Expressiveness

	Learning The Environment
	Measures and Representation of the Results
	Application to UT2004
	Representation of the Environment
	Measures of the Time Evolution

	Influence of the Parameters on the Learning
	Attraction of the Winner Node
	Attraction of the Neighbours of the Winner Node
	Maximum Error for Nodes
	Maximum Age for Edges
	Error Decay

	How to Choose the Parameters
	Increasing the Speed of the Learning of the Representation
	Learning on Several Teachers
	Input Frequency

	Learning the Parameters of the Model with an EM Algorithm
	Impact of the EM and Parameters on the Results
	Impact of the Teacher's Reaction Time
	Impact of the Number of Decisions

	Characteristics of the EM
	Evolution of the Likelihoods
	Effect of the Merging of the Parameters
	Sequence of Decisions

	Resulting Behaviours
	Study of the Distributions
	Signatures
	Believability

	Conclusion
	Bottleneck
	Objectives
	Requirements for Believability

	Contributions
	Semantic Refinement
	Attention Selection Mechanism
	Learning of the Representation of the Environment
	Expectation-Maximization algorithm (EM) for the Learning of the Model Parameters

	Limitations
	Low Actions Accuracy
	Incorrect Learned Associations Between Stimuli and Actions
	Incomplete Memory
	Lack of Planning Mechanisms

	Future Work
	Extension of the Attention Selection Mechanism
	Improvements on the Learning Algorithm
	Discretisation of the Stimuli and Actions
	Planning
	Believability Evaluation

	Bibliography
	Exploratory Research on Criteria Affecting Believability
	Protocol
	Questionnaire

